From 316ca16f40508958bb68d31832ce84cc7b2c4f22 Mon Sep 17 00:00:00 2001 From: reveurmichael Date: Wed, 27 Mar 2024 04:34:23 +0000 Subject: [PATCH] deploy: 65f8115ccdb9d387608fd03de84a53d7547c902f --- _images/cnn_10_1.png | Bin 29429 -> 0 bytes _images/cnn_11_1.png | Bin 29079 -> 29429 bytes _images/cnn_12_1.png | Bin 0 -> 29079 bytes _images/{cnn_11_2.png => cnn_12_2.png} | Bin _images/{cnn_11_4.png => cnn_12_4.png} | Bin _images/gradient-descent_19_1.png | Bin 18881 -> 18670 bytes _images/kernel-method_32_0.png | Bin 41962 -> 41469 bytes _images/kernel-method_39_1.png | Bin 49317 -> 48377 bytes _images/rnn_17_0.png | Bin 0 -> 28979 bytes _images/rnn_17_1.png | Bin 0 -> 27224 bytes _images/rnn_7_3.png | Bin 30389 -> 0 bytes _images/rnn_7_4.png | Bin 32006 -> 0 bytes _images/tools-of-the-trade_29_0.png | Bin 37483 -> 37245 bytes _images/visualization-relationships_12_0.png | Bin 33700 -> 33561 bytes _images/visualization-relationships_16_0.png | Bin 30642 -> 30999 bytes _images/visualization-relationships_18_1.png | Bin 299877 -> 299848 bytes _images/visualization-relationships_20_0.png | Bin 88368 -> 89274 bytes .../cnn/image-classification.ipynb | 1396 +++++++++ ...-based-and-region-based-segmentation.ipynb | 332 +++ ...g-start-nlp-with-classification-task.ipynb | 1152 ++++++++ .../random-forest-classifier.ipynb | 1 + .../create-a-regression-model.ipynb | 2 +- .../exploring-visualizations.ipynb | 2 +- .../ml-fundamentals/parameter-play.ipynb | 2 +- .../regression-with-scikit-learn.ipynb | 2 +- .../retrying-some-regression.ipynb | 2 +- .../working-with-data/numpy.ipynb | 698 ++--- .../deep-learning/cnn/cnn-deepdream.ipynb | 2 +- _sources/deep-learning/cnn/cnn-vgg.ipynb | 3 +- _sources/deep-learning/cnn/cnn.ipynb | 39 +- .../deep-learning/image-classification.ipynb | 6 +- .../deep-learning/image-segmentation.ipynb | 2 +- _sources/deep-learning/lstm.ipynb | 2 +- _sources/deep-learning/nlp.ipynb | 3 +- _sources/deep-learning/rnn.ipynb | 494 ++-- _sources/deep-learning/time-series.ipynb | 8 +- assignments/README.html | 66 +- .../analyzing-COVID-19-papers.html | 66 +- assignments/data-science/analyzing-data.html | 66 +- .../analyzing-text-about-data-science.html | 66 +- .../data-science/apply-your-skills.html | 66 +- .../build-your-own-custom-vis.html | 66 +- .../data-science/classifying-datasets.html | 66 +- .../data-science/data-preparation.html | 66 +- .../data-processing-in-python.html | 66 +- ...nce-in-the-cloud-the-azure-ml-sdk-way.html | 66 +- ...ta-science-project-using-azure-ml-sdk.html | 66 +- .../data-science/data-science-scenarios.html | 66 +- .../data-science/displaying-airport-data.html | 66 +- .../data-science/dive-into-the-beehive.html | 66 +- .../estimation-of-COVID-19-pandemic.html | 66 +- .../evaluating-data-from-a-form.html | 66 +- .../explore-a-planetary-computer-dataset.html | 66 +- .../data-science/exploring-for-anwser.html | 66 +- ...duction-to-statistics-and-probability.html | 66 +- .../data-science/lines-scatters-and-bars.html | 66 +- ...code-data-science-project-on-azure-ml.html | 66 +- assignments/data-science/market-research.html | 66 +- .../data-science/matplotlib-applied.html | 66 +- .../nyc-taxi-data-in-winter-and-summer.html | 66 +- .../data-science/small-diabetes-study.html | 66 +- assignments/data-science/soda-profits.html | 66 +- assignments/data-science/tell-a-story.html | 66 +- assignments/data-science/try-it-in-excel.html | 66 +- .../write-a-data-ethics-case-study.html | 66 +- .../autoencoder/autoencoder.html | 156 +- ...ising-autoencoder-dimension-reduction.html | 198 +- ...onal-autoencoder-and-faces-generation.html | 150 +- .../how-to-choose-cnn-architecture-mnist.html | 310 +- .../cnn/image-classification.html | 2554 +++++++++++++++++ ...bject-recognition-in-images-using-cnn.html | 146 +- ...nguage-digits-classification-with-cnn.html | 154 +- .../denoising-difussion-model.html | 140 +- .../dqn/dqn-on-foreign-exchange-market.html | 108 +- assignments/deep-learning/gan/art-by-gan.html | 166 +- .../deep-learning/gan/gan-introduction.html | 182 +- ...e-based-and-region-based-segmentation.html | 1949 +++++++++++++ ...model-with-tweet-volume-and-sentiment.html | 112 +- ...ng-start-nlp-with-classification-task.html | 2504 ++++++++++++++++ .../nn-classify-15-fruits-assignment.html | 124 +- .../nn-for-classification-assignment.html | 192 +- .../car-object-detection.html | 124 +- ...ification-classify-images-of-clothing.html | 176 +- .../google-stock-price-prediction-rnn.html | 94 +- .../intro_to_tensorflow_for_deeplearning.html | 168 +- .../time-series-forecasting-assignment.html | 208 +- ...rintuitive-challenges-in-ml-debugging.html | 66 +- .../data-engineering.html | 66 +- .../debugging-in-classification.html | 66 +- .../debugging-in-regression.html | 72 +- .../random-forest-classifier.html | 2300 +++++++++++++++ ...d-random-forests-more-ensemble-models.html | 66 +- .../ensemble-learning/decision-trees.html | 66 +- ...-forest-classifier-feature-importance.html | 66 +- .../random-forests-for-classification.html | 66 +- .../random-forests-intro-and-regression.html | 66 +- .../boosting-with-tuning.html | 66 +- .../gradient-boosting-assignment.html | 66 +- ...perparameter-tuning-gradient-boosting.html | 66 +- .../decision_trees_for_classification.html | 66 +- .../decision_trees_for_regression.html | 66 +- .../kernel-method-assignment-1.html | 66 +- ...rt_vector_machines_for_classification.html | 66 +- ...upport_vector_machines_for_regression.html | 66 +- .../dropout-and-batch-normalization.html | 66 +- .../lasso-and-ridge-regression.html | 66 +- ...ng-curve-to-identify-overfit-underfit.html | 66 +- .../model-selection-assignment-1.html | 66 +- .../regularized-linear-models.html | 66 +- .../customer-segmentation-clustering.html | 66 +- .../build-classification-model.html | 84 +- .../build-classification-models.html | 168 +- .../ml-fundamentals/build-ml-web-app-1.html | 66 +- .../ml-fundamentals/build-ml-web-app-2.html | 66 +- .../create-a-regression-model.html | 66 +- .../delicious-asian-and-indian-cuisines.html | 66 +- .../explore-classification-methods.html | 66 +- .../exploring-visualizations.html | 66 +- .../linear-and-polynomial-regression.html | 66 +- .../linear-regression/california_housing.html | 66 +- .../linear-regression/gradient-descent.html | 66 +- .../linear-regression-from-scratch.html | 66 +- .../linear-regression-metrics.html | 66 +- .../linear-regression/loss-function.html | 66 +- .../ml-fundamentals/managing-data.html | 66 +- .../ml-logistic-regression-1.html | 66 +- .../ml-logistic-regression-2.html | 66 +- .../ml-fundamentals/ml-neural-network-1.html | 66 +- .../ml-fundamentals/ml-overview-iris.html | 66 +- .../ml-overview-mnist-digits.html | 66 +- .../ml-fundamentals/parameter-play.html | 96 +- .../pumpkin-varieties-and-color.html | 66 +- .../ml-fundamentals/regression-tools.html | 66 +- .../regression-with-scikit-learn.html | 66 +- .../retrying-some-regression.html | 66 +- .../ml-fundamentals/study-the-solvers.html | 98 +- .../try-a-different-model.html | 66 +- .../python-programming-advanced.html | 66 +- .../python-programming-basics.html | 66 +- .../python-programming-introduction.html | 66 +- assignments/project-plan-template.html | 66 +- assignments/set-up-env/first-assignment.html | 66 +- assignments/set-up-env/second-assignment.html | 66 +- .../data-science-in-the-cloud.html | 66 +- .../introduction.html | 66 +- .../the-azure-ml-sdk-way.html | 66 +- .../the-low-code-no-code-way.html | 66 +- data-science/data-science-in-the-wild.html | 66 +- .../data-science-lifecycle/analyzing.html | 66 +- .../data-science-lifecycle/communication.html | 66 +- .../data-science-lifecycle.html | 66 +- .../data-science-lifecycle/introduction.html | 66 +- .../data-visualization.html | 66 +- .../meaningful-visualizations.html | 66 +- .../visualization-distributions.html | 66 +- .../visualization-proportions.html | 66 +- .../visualization-relationships.html | 68 +- .../introduction/data-science-ethics.html | 66 +- .../introduction/defining-data-science.html | 66 +- data-science/introduction/defining-data.html | 66 +- ...duction-to-statistics-and-probability.html | 74 +- data-science/introduction/introduction.html | 66 +- .../working-with-data/data-preparation.html | 66 +- .../non-relational-data.html | 66 +- data-science/working-with-data/numpy.html | 68 +- .../pandas/advanced-pandas-techniques.html | 66 +- .../pandas/data-selection.html | 400 +-- .../introduction-and-data-structures.html | 1024 +++---- .../working-with-data/pandas/pandas.html | 66 +- .../relational-databases.html | 66 +- .../working-with-data/working-with-data.html | 66 +- deep-learning/autoencoder.html | 66 +- deep-learning/cnn/cnn-deepdream.html | 68 +- deep-learning/cnn/cnn-vgg.html | 68 +- deep-learning/cnn/cnn.html | 100 +- deep-learning/difussion-model.html | 66 +- deep-learning/dl-overview.html | 66 +- deep-learning/dqn.html | 66 +- deep-learning/gan.html | 66 +- deep-learning/image-classification.html | 72 +- deep-learning/image-segmentation.html | 68 +- deep-learning/lstm.html | 68 +- deep-learning/nlp.html | 68 +- deep-learning/nn.html | 66 +- deep-learning/object-detection.html | 66 +- deep-learning/rnn.html | 460 +-- deep-learning/time-series.html | 68 +- genindex.html | 66 +- intro.html | 66 +- .../data-engineering.html | 66 +- .../model-deployment.html | 66 +- .../model-training-and-evaluation.html | 66 +- .../overview.html | 66 +- .../problem-framing.html | 66 +- ...lustering-models-for-machine-learning.html | 66 +- .../introduction-to-clustering.html | 66 +- .../clustering/k-means-clustering.html | 66 +- ml-advanced/ensemble-learning/bagging.html | 68 +- .../ensemble-learning/feature-importance.html | 66 +- ...etting-started-with-ensemble-learning.html | 66 +- .../ensemble-learning/random-forest.html | 66 +- .../gradient-boosting-example.html | 66 +- .../gradient-boosting/gradient-boosting.html | 66 +- .../introduction-to-gradient-boosting.html | 66 +- .../xgboost-k-fold-cv-feature-importance.html | 66 +- ml-advanced/gradient-boosting/xgboost.html | 68 +- ml-advanced/kernel-method.html | 284 +- ml-advanced/model-selection.html | 66 +- ...upervised-learning-pca-and-clustering.html | 66 +- ml-advanced/unsupervised-learning.html | 66 +- ...b-app-to-use-a-machine-learning-model.html | 70 +- .../getting-started-with-classification.html | 66 +- .../introduction-to-classification.html | 66 +- .../classification/more-classifiers.html | 108 +- .../classification/yet-other-classifiers.html | 232 +- ml-fundamentals/ml-overview.html | 66 +- .../gradient-descent.html | 90 +- .../parameter-optimization/loss-function.html | 66 +- .../parameter-optimization.html | 66 +- .../linear-and-polynomial-regression.html | 70 +- .../regression/logistic-regression.html | 70 +- ml-fundamentals/regression/managing-data.html | 66 +- ...egression-models-for-machine-learning.html | 66 +- .../regression/tools-of-the-trade.html | 66 +- objects.inv | Bin 9937 -> 10038 bytes .../python-programming-advanced.html | 66 +- prerequisites/python-programming-basics.html | 66 +- .../python-programming-introduction.html | 66 +- search.html | 66 +- searchindex.js | 2 +- .../data-science-in-real-world.html | 66 +- .../data-science-in-the-cloud.html | 66 +- .../data-science-introduction.html | 66 +- .../data-science/data-science-lifecycle.html | 66 +- slides/data-science/data-visualization.html | 66 +- slides/data-science/numpy-and-pandas.html | 66 +- ...relational-vs-non-relational-database.html | 66 +- slides/deep-learning/cnn.html | 66 +- slides/deep-learning/gan.html | 66 +- slides/introduction.html | 72 +- slides/ml-advanced/kernel-method.html | 66 +- slides/ml-advanced/model-selection.html | 66 +- slides/ml-advanced/unsupervised-learning.html | 66 +- .../ml-fundamentals/build-an-ml-web-app.html | 66 +- slides/ml-fundamentals/linear-regression.html | 66 +- .../logistic-regression-condensed.html | 66 +- .../ml-fundamentals/logistic-regression.html | 66 +- slides/ml-fundamentals/ml-overview.html | 66 +- slides/ml-fundamentals/neural-network.html | 66 +- .../python-programming-advanced.html | 66 +- .../python-programming-basics.html | 66 +- .../python-programming-introduction.html | 66 +- 252 files changed, 23960 insertions(+), 7487 deletions(-) delete mode 100644 _images/cnn_10_1.png create mode 100644 _images/cnn_12_1.png rename _images/{cnn_11_2.png => cnn_12_2.png} (100%) rename _images/{cnn_11_4.png => cnn_12_4.png} (100%) create mode 100644 _images/rnn_17_0.png create mode 100644 _images/rnn_17_1.png delete mode 100644 _images/rnn_7_3.png delete mode 100644 _images/rnn_7_4.png create mode 100644 _sources/assignments/deep-learning/cnn/image-classification.ipynb create mode 100644 _sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb create mode 100644 _sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb create mode 100644 _sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb create mode 100644 assignments/deep-learning/cnn/image-classification.html create mode 100644 assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html create mode 100644 assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html create mode 100644 assignments/machine-learning-productionization/random-forest-classifier.html diff --git a/_images/cnn_10_1.png b/_images/cnn_10_1.png deleted file mode 100644 index b3d6c3a8afd03d1025f2fa85cbdf4d6a615e9836..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 29429 zcmb@u1yojTv@QyYpo9o0prnKd(%pz69SVv_gLHS7poBtZrTdZ%bH|Bii^E~qncrGu2gLw}V1qB61N>WS_1?7q)3JPle zb#(X_MV>fu_>0f(nTnl~rGcHJj*UKwoQ|E9nWdeXu`Z>9zKyN1r3D8wH#0jUrIDST zl`TIDi}`M~#2?_)juO7)OZS5$*YbSphqhCr+UC2JKk z@Wu0wUYw$7(T^!_aN+cH#!gaT+)TJF$=X6Qy<3r6uDu}0VJpHX)tP9Rq|1ig@K_A~ zBUNv|iTqF6&llb_R8&-oUidV4cz9t~A}9m={rzu$L6bs0MWL0152>y_6vc;6>FYYy zP%;_fJAVI3mDoN!Y|<@=Aq$4fBfNBo_4M>^k&_1p%51NTNr&e4z$F2nK5+_Q!!MR& z`r%T1w-~QztjR@NW;i}Qy?Vf6_4u(@%OCh{NvX8-bb`BgmybwUg7MR`?4}D;;WOlc z!Wb5$$KUozsr@$(^VmJKHMZY`mW8Ejja95Qp|VmSH#gV7?>?0xa|C51K?AF#y!=9Y zEQf&~m7;}7-w#nEqaO=b2*OMxZYc7Vhmu~yz?hw#O~t*Hp^V)ywKiOs_Wk>nTZDuL zHeys%`Z91)zG_bJ+z*HK5d%MJMdqsNYE(%%Ia*#`m5@=fG}RY$>o!&?U11?1AuVD4 z5qVgXvnz&lRQ*BAH+oz*t0i8(ysfFJ`A=hGfyeoYZrj5AJezS3&DYe_?VX*kud$BRd4!b1SL7#WsT4J0 z<0zTb%R*nIif{MGuoM{gK2R+-dFJL;m8$hrboO`9Yy+-{-pStb+E9T{6NP8OM73+7 z^R9tJtOU99`}wwL4$BF_67$jDWR7E^r559o($Y2+%7+`{d=6_dZ%_An721k(k@aA& zg5AK{Ug4~+PP#r?YWVxpU6dg+ZYpZ(yKK5>Z-0NHe<>^|m_VfE7N*nS%NM-A+>2pp zX}Qpq+*NM7xOI5AIC*)&<2d1*o+>+9V!r$*6(g_aghAU6Nq8*M)JiRg ze5|cg;O}gW%93VV8yg$UbNqvY1B3p|S15Cfi*JinS=1K1?>thzMM^3QL*hIWK*#I6 zGp9e>(b95XNNC(R{88Y?kGd;;8MMr`x{a8Ogn{2BZsFl6#YRyk@>*ZX>X(+3^zYpc z4ZZa_JUmd4PFOgJUg>+jVHdd>H%VJGi{YQI&qxIvuu(icJ^3Bhnjhs={etygpqkU3 zERtMoI>_JZb-q0U<1hQ<$ra0*;|Gsk=cY-7kgMbj=*}hzI6P8s} z^n8~iIXT?y`W-|U(Dm4wcl1#g?!P5K@-dAPW^ z6ia_*mZKzMR&RcPgJ7uGGCLa;H=Qo>cmdpPwH_N=nK%{>3hp zVv{?Ior$wGryFlK#>xdR&vx%PY<``apP$~?urR@!t4d z4jW?u$;lKrB;0lp0l~or^R1D31_m}qTRH=IS_+z)NlLNa_qfd@pFh6^yNIdeQ+hfb zDk`eHn$%t2`r$D*rIODMY*;ur_GT~}u-Td}IuivTtSwe<)})$`mN>b%{50ujI9MNT z5;`1vDk*v0!^5M@h ze6~Mcq@uS)F{K*!em^=s=HnmI3QbP#3Re)83cAPjL!*+rOXO1UD#p#U*Lj++vkxIs z9j|I#w!#Kpi!jo%nrp^`xl+hcE#BJS|E5vtkgZnQxqZSj>Gt&WU>#xz)x(GWu)PKP zi?u~c?{S&18g`PR+$0zDZ`9S9{`FzZZMVb8*?GH#F4<~lP71k~m>8O{uyB#lpRe7N zS0Ie5Syn$w6%T@im8MzkQgtw5iZbRfYK~1IJeF~`J=?UswMBXV{`5yJ0=%%F2E^#} z%fn|yr@WUZ&LUmz1(B`>*a6Xjs+ zoG*?SZ(P4VHELNqKkY~HfS*6^CK*4<0bvJhdVdJAe#{ybR%=6Sup@2^N!Z+^5Kizs zo27sSe1+BX!VThi*?P&SG+DC0q;W!LD^nj;(IY;ey|pu{HrKL>TV!hzv$sTYvG&ug z{Y3^p91*-|AR!{!{f^JJk2eadn3&g!a($#Y^{L-Y*+l-x>}*DKTypF>FVw4$y|s7d zT2NqV2B)Rb=)Qd`B`vKx^G^We3h@x~^|FPZ`faS(J`ivU9XB!kt*ru~`EvXpa3PxGpFFawEL z7GR6jn0*#7>ZXJxjavslcEW~jgK!p@7|6iF5(1OzwX|e};)_esnI;uZnx~K~oCq1<6uO3L`aTs>m(MVzuGENcMQtB1CikX1#b9S=kAX%*I^Gh@~;=EzA`*g}auSyh zo7Z6MrfiP>opONo17?El{)JfoL48O6p7C8QHZIYX(NdPC5DLRz?{Co1(Gif4wDo+G zAtNg#ARw@|EKQ1SAoLr zCtD+?d3-1KkP~)bRk1m4sCOptJ#}*8bsV$CfRX+XIM;()9`AM*>KOcr@1w z2G`YW41U-#Ha1R6OXF2luDc*FH6I=L)1#E|rqE!!`zbEp0fo!beT$l7gYOE-!L_v_ zY9(eVu>KoM%*=;>evqJW-}`y^Fu+^ubyj~XGTX4Z=H_?}axP{=M4DS# z=u2u7qNAf{!=|s|3f9369jbA!>`j%$3;W#KS@?6)={q&vh^;Ulzs-qy!D3&|vbp7r zinM1xbjY--TDLeds$wUkT#vS<8%ww$75*~5T!^f-p?&zpqv&VFJQli2bEobnN;nFaD zbEM!cM(x=S*6LuM<4TNqvFh;%U&z?pKC8Gm-}E#bDKbX( z8zGbG)aq&*Odgrm;G=P(wUA-hXnZzv*9#517D`4fQUN@^7E}<+)i_or!B9xD_u!2B zTwhP{X6WN_B+1(5vJqYd^FJZ0ou!z^&dTRqRhe2>**aGGv+i;lh0gv_hRuk9OP<|L zeC6uZ8#iu1EX5hK>y`5oYC)n^K|w)d5|8bItVPB0g9+D7q4Zh!UISRif+tIBmD8e_)INuXPC2=$JqK8jz#qOjT<8avYZl07z0O;J0AO8Y0a?Idb3(4r zpaTVRX8q`B{QLK4Pn><)!# zq#qu&IIHuH9uj3BOvga@Pgh80E~%B%)Fg+P|F$PhO5O8(Up`N0r z`RVS-YF=;FYnBHJNwO*`#PK|q4*>cGlL_nq0{>HN`Whhp@?ajt@$vE5VeO@Tk>ofe z(e@ZNAGk)hSQQE1GMw*4;Hei?&x##vIG5j+@vQm6f6dI|&+f&sQyD(N zOqYGV2hl0!hZBOeP3Mk%otH2S=B*L**mv3A%O~>V-M;{Br@b-XY*JK8QQFK5&Fg%(UMBn_h*B63mIYmb0bSntb| zwY5>Gco_?w2_5>5(hIaqPY&KMwGV&wYpJYM_0OGM?9-{R{&7s*#6X}lsGHSVM5s2e zUpQS>;TH+e`b6x_ zNCZFYKPVQ#$Eps!e*B`ggk>YrYEI?Z!(~-76VcBMn=l(^o1T}m5EdTL(fQrwFtD1c zL%lc|tc@d!qla098iNL@zH-6=K@Q2)kt-g}ue&s$y|wG}vS% z(`d?*4kFExji8i@T%4Kt1!&RfVAzli+Xn(1f-jRGej&G2&eQD3DV=DwAJk}y*77iR z;H9#;3%lG;K2hJ%2E9^=xs%pzN{nzo*Ejguu`@sZ7p$ktZ@tgA4tv<2=}X=C{L(or zEG%2IdSs22AxI78OhLhik_wVC^Ibj%9mU2u>;v*H8lKvvdZr6a3(gzGxbd~THtiuJ z9`hWA$-GJkJD?~I^|6z|O;<(sMDn0@sTLZJ^rdgyRbv{Y4GS!Z>TEPqBP4vvv42^D za!g~x-J!&ls)?bE2yA&RgE^IkFIcNV$9%rs5(9gGnhT^QZ+!OmZ`M!f=rFW2`QEGk zq%xdCQof7%XH_GcO?y|yvxf{zBV>Hacjyt?0o7*Ld`(10;r)SnjM76|pMR7L>2uYz zoW4Z&y1Wf~x=!6xCB$iyo%#1s2XAL}P;U3VNf(Bj!bdxSWPA(O1!SS+Aw#p)?ghcQ0IdnkSK^b#D9ET#Oz;3zcN#6O{ZWj_n z&BiMtAt*+zRFH6+JuFf^Pv)|o5sPAc^9%kpA(%qI;ZqzGYRlChZ8ygF0I6A7Ti>Ur zzoDRTzH^&RratVgYo}wv1bnMF8}hBp!K9VU|8#A~Ffw+_P&c7H_oi9IA>)sLoQ_ls zD+4*Jdn3SQ7!T%ZWQ0@a=NW0e0ND9xO;gK#|4v6dPZKLPeEXBh8uv$Q6W8wgzUwz> z?2r@bR6I}Qi#PS;bnqw-!jdt+&12Kv(fFi+zvcrnZ#(s`sGH{4`w}%#%2snLe<-Ej zv|VVo=1+=^Z2=OX9ySLbEdTSB$~0!>i)Yp7D{FqQW!z#amR| zU}0f_7yi97--eaA3xi}kZa+9ZJNp!p&Rr1?L1*U!Ef2W$^nA3I!RkN`)MZefQyT;} z{sO>FIyhWnPEtDVKr%5g(U+?c-$d^Esl8pcY1IcE=PS%v)%n5b`wt&pR63aZ;*czq z4bHbG@P#8#9{Cf?VMyq5emLp5m|M9)MM;U&?-o_t;!xr(I=K&Izu~l;AXQLM`1R`- zv9KGjww6eTZUJv`a3Y^AIy}I~JC9IQ3Usd#27Z799}G0g%<^(e=BuosQcH@%Fi3@lUYS`0->f565htIq@GZ-=l>Tv1`W+e4iinBq!XdXQkZC z<~wvaEC}JNzQV)9gN{vHhXkJOMj|q~b}hHJY(SThk4RpX(?*&%*NaSv}6SB@Q;mW#E?sf`aD%NKi19kVDb? z7OD_N)uQVStWGD(>3nuexAs>DF(~Qj17KwZKy>>+;c@iN%L@gDGrr`b>_tVM(|K+rP4eP5sm;2GE)C*64f?tX=;7zHw= z7f?Do8l#e=1WmAqf#?R5THon9C_{g68K;-~QAr@q+JkX!_SCz^{= zvp`*=2t{fmR@TtEy2t6bU4UKkp(YjvE(M=f5`c-2fa8YV@K62sextSId9@e(LN0q& z3_KQNyiJ#>U%w*R1i_ZXLN1)JRbW+4FDy6=OPD~JLn$B-4{3Jj4~7ZQdPvl&I$i(> z_8tYnB~T*0%gTBLRMK>(z$Oip|37c^WWOm~`jhIHTC3#dCWxRvDDhCLpb`RlYG>Fm zd3wWwV%i3FGGC|Xe*bIdg;+zUm5g-Krjb%h&&E70Q2<;sfR7#52BH3dYMbvs3t$5w zi)K3lI$-jLt6h1LJumoxT}uaU4+Z9?`-KOvpt3Qn?_idZ`U-NaO1`#eiZX3jR#>>@ zd|g1cB2EhK!J!>vjm!9Pz@4{G&bD{^B%&ik+@k}Y!gnt9We@<&oPi-lHrW}(8`(I{ z8z}!>B{4NStMqmC5{hv#adH07)Lwwz2pLMPrk_l>A8J5|kN}(v7!M5%Eh3ZI^K2Uf zs2Q6T$_YShKnuchv7wPf0&M^Oj8>wKjt=aEoS{|K9OZ@1#I_>iUeYFVD0GtC58gbG zjqwT$#DYR+8dw558i{CWIk|ZlVLMphFZb!C|F5Oi^&yJr@`?(Z-3}fi=jyF3tBtB% zdB9}PfXO%lbON=|^u_7sWp6=iG4-U$>{LtPnp8Qji5Va$eIl)#i-0)r=ev~m7NZ$*|b+U(qls|fyK53Kp$Ds0By-Ae*C3Npt4m;m;VO9`sn0@-DXbG z#@4otaSYiSQ$DymJ8dik6cn3A0mn@u7cUGB%U;&g{MIedF1#ajMx+fZm4=q~&PoK- zJU|6a!CGh<9jzSNWjVYDLs6|Z^)0Z2aF8x@YN_tOuct^iyCOGmwwkF!wze8@cVTU^ z!t&6ZJtyD95^quXbBgqD`wzszr4Mg#|YA(oNJQ-Vn+H^72>! zL<&RHorfgM@TdCQ2|KpWTjSwHBK6`tv0A$RiEcd4O z=4pxi4knY))}}=2YchVjFV?faWfOSA5D{c*O50^`Nfe|Om=A-0{P93)v2DQN*@E2% zuXa^YNh$F}PeWc-7905R8Hn_-av=*jr4Qu)`0)_^CTVl%{imdfMYv@AVkRaGNNs@v zViWc~PJbYl;60V*sGnyfmMQj`HPP-Uph;NriG?F^<#%A zhxu9V(=z&(sYyOMastZBX|14XsXvPdXcF3rTnG&?Rt8JmDRxWU@8AKD094_)x$$r} zy7ue?%xK(ngI{=fctfJ&L<^8sWMp4ZLGx+&`YaHkB>6yMfgtT5J%PuT1FE3Mo^PgE??>IZ&b>3;AI|hQ$X`_6x3`X1<*mrL3 zC}72}vRX|&{#jV)yqM^Sq?Q|)m@`1{+p3!aXhK2;V4$kw!GHsO220!}Equ+Yl z7yIs$bos>Va4{6PbfCOsw4ZL)c44tp)m@%XURnb!4O^}Weg?%0UbhNn7n@x0$fQPA z@tS&v`V$;)HGx?aWn+tn-}<2F@p8v+nQaQ;0IsO#SBprz3jMikTsf7G8)MMmSN*`!@; zDvmF^R_Sp@hf4ORqGgb($B=FTHl~fMR!Pg`cO9s?Zu_DwQ#}y5U_S*e0FF*ERU8M_ zDC%i~;7OoDCP6+#tO0?;w>zj|?(J~U$Rg5p5e5O$(>xWxxS8Hk*Gv6neOY|wETMy_Q z4krpHm$>rsAJg(!eOt>w)8%l6*CCH;H8V{$PforKT9tbGNPT$j{ZbyPCCGGW7#KvA zLq8;6Eo^LPGN}b0kaf+iGD#e-H{b1`-7~!FD`aggZ6L3;bLkz>c|5oicp0Y^)p)JS z)LX%PD^o|rpaa!3sro}poTG;b(T?r<gkD!WvFvfQ4uTgS@a z3G(!i{*>Er@xoT-#0+junhCYebV!{!q;2)^#mQWE{TZIPFczo8`iFjn%XFiEysNPz zX~}8uO7d>JBhx8cvTAgdgU4j$cOiNkdi_U<9R>=YNpHNgc$da-IOA|XgCT1$P-xMO zDmwYt&*{`BSd`sO?fxXZt(#S<&MAw;uOj z6JhZ*qFJl;hVJG(>9=COAK#y}cKeukRgX=oo8EP`wcl#Lil%@*bcvT%D0|Ik?4p!&YjZN{u z?+10srE~oFrr3z1JRQ_QqdlHF_sDpNf6d zGx070Uwi!S(`;@}|JFN?reW|1Wbn@8xlRZ?$-|*=6OA?+Bg+|HB|kH~*73 zz~0z2SjlhxN=Q+aNrERfHI;s&ZcLdn^3?x7O7p%tVBhHE=n`xIbp-1%C)h&ns&CPj#oN0R1dPK8|NNW`Z|STo^Lqxkc@16ne*!rsL2F9eGODdDHm10zbY61oABu^ddI{MIvQP!&V1n?4KUu{Ks- z*lY`gX)L=wCeOGX0qEv5G&K1}f2gvRPrH@=ryt-6tYqNQr+XDd^a0d!n)F@wnw!&W za>txF{AK#=u7Cq0D6ckaT1K!5Kibaiy}77v6xRAP(HD4bZ*uHn<=DpR(&XFIdWanr z?y57$zWDwj$G0P_$}-Uo^jo*D7LyEL;`m!xEdP;Y3^SFEbTJY#AK@f--+KW98*mEu zK_smA!Qe0*V3de;-d$kRYrciBOZN8P+6TX>k2^%CNBx=8lZ$q6IZ~1mUnEGsI)kX2t+?lO{@5@)^)IIg;ww;$G&xyS6X_#HJ z5xkd`CErQ4lOB8GZw^Tto0K;cY(;;dsQoUVC=HB=4+bu}Hb|;qbV5W56ogsNYJAxORpRjxNTWHeGq2Fv(2XY`tBtT#2WdBA2foht~fQJw%$fFyH?r z$@d46Fdg%NE0Nk87A>evZz}9EQm@+U>QXUBpV7u7CU!u89IEvc0ZYW*+Hg3mFd(&X zBw`^j01j^pqn7ybDvJ;}jOpS*&4%%F-Aiw9$b?5mHiEt7H*iHuJ>RgPKItcwr1JFb zz%=&5`h+hqDaAi)RFFPT!c5A&l0SKUF<*vPSVzuitcq)})XdND@eh9SK!1AKM2rlE zN6UhkRQ;Xhz0a^CMMTsm;*{2meHF~*T?Y*%h~vezVBw= z9nW&vOf}or*r*flhtXYYkLDSGLpP+AQ%a>+4up5P@?CU2vf8;9L$p%e%RbsFfg*z< z*;~(#M}pQG<~7uZC$~T5a%~X|HzGm`nk0w!b7TxB$}_TI6eo z=udiRmimO71=P-*HQzm>6D_{y?Yew&sbY?9dXT6Mi45}DgGYxmsbvHECf$|xXpSY< zQ%jN!l8C}GW#EzY-*)(M_+iqCzAj8sS>Gj~KS4iVp574%{$A*`i+52y|1je&kwjL1 z*8J1F-Sdz4(2gNC`TM^l1PIjr+5RUCD1qx#-vxdy9ih8a)^qH>Y^{aW05TbYrrJ_c z{gwq9aGmf54{lj6=0@r4S&)gwyKog4|If{2{#*SIh2rmUcfO<0 zLP~`u-3>1RO&|Wj*n1=2Y<6~|g12jUN@6pN9~ny_YfbZmY!@1DQl-PoUWdz_un%>zjeuv#>2&wy(ai* z@-pn#jGR>Vn0vz6ZeT-2g-RLy?}@ynV1pDVS0m&GBFHWm^&6;j?0ULmd2p`!=ir~E z3MVDs)loC_T2kH?m_N5trr1vjZcV04tLQz*HY&zW53VKjyMssn2(|({h-15Qzo|lrF1{9zAZ=>nqR+~K|~$iJZRK;y(v_GZ1JqDQnl=xHS1wX z@YKMAdZ+R%ST&N*Kph+W{*QgW9X9E>-elfg{p6*Bmc%ZCURDLvg~>HP2)?wa{T>=kmrB8@kT|cqh>z&Dr5J_{W5dG zBfp5%obb+s*-5p}Dpm9WLO|Bfa=DL@1vdN^ALvGcX{0|sO~wTF)e?8qNrm@&G^YhF ziC<3ju7@y{j(#^>EU;5!59FrM8Gollym)%YxvbpEweXfplem@bEPt6PGUd{U0;?s# z{i|njx*7e{LtCiqEk5V!tK9QX7stKA7u&Vtb91AlO%_HffvymIT?3zAscP4X0~Ell z0KY1-EU`}A>v7s%v$=uABaB1l=TqreK5?=XYg<)rN2DAtDw|JHJvv0>7xd#r&EXxe z=|P;z45_j`DF37^_pYk&;BC&y)4^y;%Iqgkj-1x-XLI|I+#8tbm9TtXO9lRFY4{d* zU({Nbk`Q?rnIej;QPhfBRQpk76=Fl%-DA7z^NXjIoG)!?s1!fIIA*Rd5vuSL;tviT zUZwgn+SWZ&gQ>-{o+T%hme`i+VNOxOeIvKqHPByjSkas2m6AB-8S4#h&nv`J3pg6$ zPtxh?8`6I@6bxe<W8VuvZpnAUY(W&dath@YOzwC4HcG~<)Q~a&r`o3-ygCt9# zl|f;AEroNH0RNZvCvwb@T00J>6~-8zC7Y)oM$|s39$X{ZrBfY?OsLPSrn4%j^9p_e z7H>$Ok6}18-_T9@z1Hq+(jKboz~T?`>ZGpk?OIzRHOMO|CAY5?j%ZfBGkFOH`PL*@ zAZ|OhI_G}*J50?|r4*(UBo@hNTr068YN&J^wkk!#HSb$OJ8@)##o_Xg%UyJcgXZhk zuUp{XgjxlZ4I(vefT7@b!y_XLijF1%RY7;T=bOBKw(=t=9n%4W0$oV}re3fadt2+U zF>3!8bNIZn1pWO6FOA9i%gXwR!H0BYzf|j|Hm5H5BANNFsN^$;jk%HJtf2S6#wu(8 zM?Jf)30BXq4_J4(Om0)SZJ}CQTO%eT;2{B!KC`l#cGd&7x(VpO0eyi3Ok;68mYpCzwSvI{tlV>8HMLXE0<&# z-!62LyNoVF4%{cTm-tb2FEN>O7k(>4n0rKVX>;A{zQ#QxT}iw!lYey8M~W2dXJ%#) z${1{PC_roD-M!o5k4H_+VIZ5b1Nvgs(M%vV33t17HrV=LU^u|wh_X?!%KYTXlNdf* zg93f|(l$6v4Pdy4E{)5pUfG=+Pu5z}DsFf8flwAt}bV*Zl zE#c8YJYXc*+p|lTyFfD~KifgA8okHurl$}bH+HRIpnjd@^~qc_D|S=&1u9u;1Sza$ zj_*Rc0{<^+(yUa_I^RkvD5S#z111r%Bdr$?I&IZskm&=Z+zG6W3~1+wg3VI3bp=#J zZ75gEDhSVc4Z+!2b+*%{|J+um%SPqkNAcPtjNZlCF4ftB!Kn`~Unwe20-wW)Qh5BuT z;=!a+U_1owAMJ})tw-<<$QfV2Rf#xuz?@&fi`|2Zek<^)XevzWf32yt0F$jbb0MsiHBsXt2szK0C) zK{z;Y(OiIUKCLQO9i0 zU0YfC*kSPKz(pdMbQ)F-*c&wT&C?_Y+*B^{sz%WVsx1|Qb60gX4R2qnM#=`GEM)Wf z>(q4&_NTnauN|I-c*)25|J}$t?l{?j7-GS?Wi(O62QD~+fBj`>USPn`^f=ZB1>&iZ z(L+S12dy0#5C5a1qmP$VFJGT}6p6^ojO$G1_1>*rXO+u)%ZJvq6^U!!s6njVKsT4 zj!wp~>Ri#blsf@`c#MD}vteh#eVAr}jWVCtn$FKcx?6v>xF1N7JDv~LY-$i#xZ{o7 zL?2}6pU;s@zI1sH9NoQZr`Afcq5lpcn>~42rtB`|ozO&dk@In3yU8dF!q-b%568{~ zkNVgJD%f?3?~d&pgpdl`2M@ZIPUTtOtA0SG*dMXCTe)&6#j^18jn1y1q|>#|qwwjmD4~HkiyKdz;+#aKXWL zmVu7Q_dtaBHLhhyCKuB?XuS%?r=hP_!q7f;I+`Upt$9s3#!fgQawT^ILaclV-M4~^ zI(jJY1l^uS{QDx1YiXmyQAIAV4%A=_sOOhGuDoy6hBc)&y0+BXpS|1macr3VQ}^S% zM-ha;qsYUP#CD*o5k3Az(<~@bVA!BW>B0V_On`53rh^B+SmWla$l~ODZ9kpA<*e-Euy5M)(*oyjD#C>N@}t87D`PTB zEz8eMSM;H1^ng>6G7W*gz9WsKJ5!S&^b+ElEvv@ z^wr_@J-}VL{UJWfScd4MzvML-5UaV@M;p$PC;c^AslsF144l=cam$7;Bl=wxehSbM zXyLv-aq#C9AO+^&F*LX711w__uVpIQbUmsM>Z-%J#MrpkDs0>DfwEyqB<1ybKVcH! z0SGP2su8Y)1G0YoO7}Mzwcib4q^vq^;c^L7Nb5{)%X*C2lLj_kILV2L0(d zvg};n$YYahyz9q9!_I}B{@*l@k!_XxN;)*N@{`^v_K=!z!Di*@UhjGSMrtH9Ns zpS;i0;IVdc`ejt?M@nq6%<7ZXKSBkdlxPTG?ZABNz>rV@V!HgG&+^Oo)Q^8UC*?H$ zIZNl*Q09*`jzxIxyI%E)Tt!-9bE@fR8JSYY;}cy=b<(FbT0h+NRNFjO4EN~Vstzat zey1;uaAM)IA}fO}7C$YMYL({f=$=^ujxUb7P)e`W5<8~gd3$iKbX#l7Vz2!Hp6Am( z7qC=56wN%#cFw<`Ryju3OCJv5s>DEWV=C;F3YDVe>&wH(;QgO2c~JlN{UW{a(^}0A zFSUoUtZYKuMT$PS3#a~IUikeg2;9+y$`oj8?jh>xoNQ_S{&4Gr;LV?O;;yx&o2LWs zMt?tD^{abkyBqQCPNfo`6&02z3(tnB+TfZMK=03>;tj(FG&S(jxkltzHhrUPnQu$6 zX?n*>$H?>Y=Kj`xUx*JBQOg7=Kdr3`=_G})^ zHa!&;5xr=pS%n}Dj)ku;Pdu4aF^_A%D2j_Zh4^@!@B%tO?8uJ~Iy1}!&m&1+c@f0& z0bzkw7s~wN-_IbJl|NuoiI%je2~rN@GE&O>{x@jRra}?O$9JqOtmz7XF)=k?g%jpS zECDI)Iz3CsXF&%{LDk$d!!tnEvEmKngO57I?W*P!BO+gv+{ZNbsVS+bJ}mc&=F+d; zOqe-LU3Mz3+#0;O-+og9dg|zDC2izl?LBmxh0RwK8=4yCjF9$NsA2{`J*6vDxsbp_ z@ez=SCHVxjl*xBG$<69R@)s{&K${L85m6J;e!>(V9o+;SC;q{~zoESeL@@AzDyFl8 zfB-62FBlD=Hvl@-79wA3f|Fa~ZUZZlqd-6f9NU|t#&fVXtYl#y(W=uK=R=G>=B7ag zDJULkv3;ovtSlB0vmRn*+v|}r8z~Ba`{PkiD43X-gv~brWcQ=+Xx>}y9flqQuy^r- zLBarR?ZNCw{~_WA0YE(kA53-dOwIwjtqb`YK7?*4Ff%eEr2yD18=(IRN&(2VZPlH+ z!Fy|h!jo3SUMU*)Vn~DFF&qeId%j0v5)u(fK%S3fdy9?&cEILlN%2p_^?)=nBLU$o zHWF#+4dv?uzXkpmvG*VEE?%_)iwGV*{x6V}0vX>DqXU!|+->I&ghm>av~S;#kH9sv zG?=FqRUjSEyg6F&y^W{cIFBEtpdi-utn$_fiBZ|yLNasz~_7i z0`@CnV7aMu+(g%gQOH&;{zxw5f`S;lp#wB=gM^q^Qe9oW;P6_^e`(&_izHM62Gn+d z6ir()8eKYAOlbRuOCDc@(XN&NvdiTHbjPuDooqar{5Z(0)c@DMr6gP#r@_Bvfj zLeMf5#iG>-9u8jU#r=!hVKgX^p3d>{M5w$tfZr!~+Y&`-DweU;@&e<@=cuTKA?Wr} zU*Qkri`tZ2XkNDM+p|u0T)qA`!7@x`;-@jGmE?PzyMU#?73!$#SXghN$pzL=hM=w; z(yqkD#>Q#fg9h`4G)zGy2hBt(LExWAKpNhzVG-s-lQCjpgGQkakTfs*s)dAvpdZa@ zB+VqIcm-UvL0Nv$m09KWkeMQ_`V)&ri;No(0Tc=!=jCtFM}xH&&tSQLTS6cFBI+5Y zO8+4irSXy}NJ&8tSW&Yr^y4;w#}|xKGhnR%sSPn9K?CQ~!`(64Eh{k?7ueKzc%mL2!iZ}cti2(##o(yn zFMf!M6j6o4C`KUcLLni4C!G&8L|9iD5ZY}r3B^zl^Co} z@F>9p$zYcXi--_2Gh>vJk^*NF9yD-*Wsq#J3R)bIqVC7*JaX_K8p5VWx>xQ$^+nN! z_7^@I8l?3anP#JIF9<{g11ee_8>EUWa`%S=L z4DW2>G3dFtB4POM@Yh(3^Lw1{5B6xvr>P^1|8k)-bb@uPck~@=iit_5_uc5p*J=2e zaP=WQeT%WLDPAG5Z+-TwgU(?e{%6xGUjyz#tzrjzd>#7hVQO#lPkkZ8)xnOnvVCNqY#GMRv+K6{=X{;&#ukI1 zKODp`Ck^);w{9W}*5_g71^*UOjF(P&xW=N>DXO|Eal9#5(8X8D%V?R(hUjb7F))1 zI896Z{m=NmkvAUnDJlH<*Q*Ea@oB`w4<@XyNME!{!B^5Jx61_^SV^CrQq-gfCt2h^ zkN}kRN&_;&K(0m`uE^PA2szBm%w=U|-QQ%05JL(y^tJ#8(MByFrfV)O*f7vwxMgKK zT~D$S`#0rY{bnKhQ#I!ZPOG>D{ZkOkP+`RhgEyC9bV*El>eo-IYTbq#JG-2J2kNHu zxVIgwtwQ@%<$Ih)h&=;IuH@w8XS>OlY0y~<~SOH3QGzqe*F|!aUi8a z(7U1ye90Iz`iwcv1|hu-AFzm`oV}>v$cFX%X6SYnFXJDip#Ft}{bCseX^^IyE=jmd z{sDg;pZ&^h@TT;2n`AtH!*>i*bRD78@aWaPt@uPlNBhOclZ=*HI`V5~DKpVZC{EXm z*uDR><_0>Ojp?lR-(UwFX!<>Bm>UM9z|ZI`+0rKCRHK6;@_u}%{Zm(fc7^)Aovh#&QJEY_w6;= z+`$r|PnaNS%`A&OT>DhWO(@T$5rA_TRpd$dH)!6NzvV00a&FC-$aN||vjWjP{oiPA z@&g7*hNb!?xwU`9&|3e&KDv0e5#Unhzx6Rm z!hA=Q_2l7MC?*LX)Ba^bsZ6`SYyMk)nq%=fy zTT0nCqo1N+ulGE*wG8l=ET^~kwgb8SHowE9`{AD|XInxz6af-d8x3oicg?WNCqT3B zueto0J$e4`cxJbsP>x$Q;DA9SqJLg20f{8LPfs!IKK&YhHNFVw@+_hyy&cZWaDq-n zICkY>U|YcLowf_5HQuP;=t`_}0kOEhE7A6w$3MzeFH{>?o12^Kz{ClFD%#kJiU^^* zYGK^_wzmJ>ts4+Vsv*BX)ebIFFksvVk{M|*f~!$56!f;wDd700g&fB6GAFH80h$r$_@cTL?IBf!g&C415bqxG}1u ztqtiB1zvJ?eje#bR{>LmQY>7>NGOwHjsRZv(lHyEltHkRZ)bhfYMro@=**vm@K-~R)uw==<6=}pIl;cD!h69PPX z0ig{!7ezv15^28yGyr}Umsi&5aH0=jW^j?gi5su&ap+aSv6nb`^v*55o~NO*`>Vy5 z;rpH_CFAFSSjzr{pS(ngWgG3Z~SJLc$Q zUrp%wps`R1Rt~fgB`-k}Ps%JX-&2TJzQ0&Lfft(MXlZEvS$2X$KcHFmSrW81bVblB z4HX*VLcIgs-i2WK0_s*-@0eC5$_kpHpKy3x!dW2t-~~K`b0B#)?&egw&I`KiS8Bt_cgw@;~>lN4eYgu*w_F+iRs2C_;z)rL9_ZSyI_NgFAtc{k2EG;cP8T?O+ z8O+5aDFzHMd0L;Ck=vWP*t!<}8=_2KLViS0HRwTDWS59nAHE=WNKhm=bM-0tHNp3C^Kw8v*Cw#ebZ_4&eL&FK>*%X4US;0<+Zf~LAE8a52Wkc|vDU#ZY-w%P1*G)19Sn~1004nq2j)aLK#2-G@^JXY1Nj91 z4g-YxmLDu0HUkMP9_}!+u%O-ncB%sH`YYi4mx4fc47d&HUn^h!9uH^l=x3}_>c3q$ zPB}j;%?hlIu0$BV=Hl$W8~AnL?_V~G1kdFn)I9UhXoYME`CZ&dvHu>0mjMd*4{U3s zdk5z!eInrrhK9`9#YG7yFJpNu$>CTFtBMVPP6`0jpyiC-P65h3q*qabo$&5msbpby zVjc^1`dWNN<%91A`8J2vjD)ANTu^{;XzUA0ik$Bez-bwCpixi(m5y`)LOVe>OyJMp z0>vIdN&VFijiZR@C=mBys|$7gZzjpi`0U{koq3HO$^~dmV1*tCDA}E%1qV8nkn?=L zZG2&}sb9`kCp7230%Xv?YH8Z-)S-=&D|@|cBdM4 z=8p5jxHb4??|cX(^H$XWwNPkF5J+;{kxFu!xdBeNR*nbdzH@KP5xx!qwGTN*%fb0~ zS9;952;@3AvcqV!gb6A$q+g$aPCmlW%m(LZv*c}B+TtyMpc*-xjov_f+@zHcwJ4iL z7d}~{hJF8g^5TF8DeR$)A!~Do!_OiN6BKdaV4;6ge0E5Bd{zq{q`aX>mj~uxEre!> zUr4Jc^sgeV^p;iI==JsWXY(wc^dZFG;zlBz;&LQ<5CEEI{Vyf;4}uN9A+L`ZiosEL zgdESs@St2=J%;$FqZyj0N74fcpww*sBuj@fBi2p;QEsrL^{x5J(MkE-qrg^yN<2o} zI;IW7gZc1(ly>FuRBmm17bQhPii(ORl$6L^iIR%KCLv0RLJ4J7h6o8!nWBSaiycB5 zXfS2YkRd0PDN2SY4fwA0>~r4tyzhC3^L^hR{eIcDXIyLD_kG>hb*;V00<4Mp zt=bYk^GLQ(L53nhQPg0pClZyfTgPq#^Ouj_=H zJSB6qY6};eovn#K==4;6ta}KzV*UPA1aVb)O+pcBj8)VEHN_0ph zzH>N^1ioL{g$&8a0U1)6n<*n`TJiIxR7ZLfvDw_)pKdrz%=YJ(`SY9G<`DR5~d?n*CAh z1?V5arSDqZ>h3FZ^mD-NE)?2o)SA$#gF|~oS6Nccm$aS^UyL_NEFd2(CdzPRy+U)fi}fea5`7UhU+#s!h-HwhiZHNkY*#DP!LWF77?BF=hTOOTjD zR4QXp!bJo01ebaj#D!?+ zL2#@Ir?q;Im<`ryXbnrbwNrcsYCg5SSgj6cL>8rZrFQJ&V>x_$@09z*mo4)J1S?uY zGFvo}0grJ2%z`C=(OoNEwE88pej+#%7zEUWQ;T+LYnOn^4UjBitl;uWofXp3wV4{* zwq1GnOJl=tVZ+L*5GPuD^XnFgbkGlY`T2?dcW`jf9B3!#2ZHmj{*p$??;r$pb{>nr zKR~pNJ9j$Rz?*VHuPJTzyxTg{ZJV;aAaEpRjM30m-u#2x+HN()bNiDHdm!v}6 z;Cv`L_1!uAoG&XYOCB0@D6xysk%r&EJP9|@1xP$40+Eys0EC_0-KUTp^0ha?0RYPM zl>Yr!Vor2)sIOEau6R_?lz@ zj4NxGPACzT0)vb~-vfztQAtS_S|r;``-_UyQzkV2Rn~Ig#_T2{ct_a?#eGuQj{?-U z1jfPKfWbn*rAs}N#O+d#2o>VF?G)L0${P37=SHqc0yq$H8D(-aD*cs!#hRu4Hl+< zXiRW=6wQh)OA$gcvp(Ohoa~xI+jm&JG8Lh6(GlvJSAf#zS83!ydv^9!G<*G>ka+5W=*utHe7CIMM8wQSc`EBx9)Jmb z*>52q+)9$+k`}kH5%NpCNj(sJ{oT_p<{u}IZ~4ri;zPv9RkRyNo?YRov$VHTfe34K zY*^3w+BVK`c@y9QdrVY*#|4U%wL;m?uJNzAGgM1e?T%YLs28~|l5g3RldC09ok=_C z&GwL@^A(wBh5A}p_mFJyEP*xy;8{BbV(1g~54_&2JfN3y@(1&$JuS2be7Y25wuF(m@|l8)DUJNcJA&$IVXr}ZZu zqk^VpvW2Vn2%tH)563p05ZY?u*L{O+z33>i%N3|l(8UlC#|?fhx$v&FyM7{`T9%ZFqM@F#I0 zRULc729)NSqLT!o^T*blpf_*cs8J2if6q}o`F+HiXaw;xtGo-8(ur=jYWnROLIND9aCCdOx#@Hi819Y=volI z5fd@|sMZC2jSHMpgyd|lb?igoGzcUewLdLbNalQFn&D^IZOwOUN7IDp7r`_;)tLE@ zpom9Y;9$ZEu;(#4Yw}&}AV z9*Tc>8kO+tC_f?4I$DJ+is65^!5!A|oF?(QGQNN754XIKgxvO=A?7F}C*t6&jI&0&i=@iLCm+xk^ z4|sU1NYP3Vnp&_D%rec+&Kxdg`adswo&twOyO2~1 z*7&-f>hYhF0233b?vwv24WPh_2x}07i8li5t;v!D_*&YjPoL_Fo0yssWaZCPzvTVZ zeur~Vu>xOy61VWpJF1JPo>A1`63WP8tmmnl^wjCjbXmwba{6e0^Q*z3Te{=JNV>}P zljAvdNR-@e{BmP_T&Y11EO=2}HSmWr+b`W50#JYN{yxFx)G_ToEL!h&aq7y-9Vc{` z+!Mt!2(vQe4&IJBBYbkQvaOXp_yWVmKV<2ERjtV~%%mjHcn9Q_7L z*Z7~OX4Dpi;B^3bUP+9tEMKl%8}z9v=s+&6PCXFhq-Yqrue1%lP>4JF|-_na9UHkxjLXrwoK+;m1vqPHu!x%+-(G-C8K3Y>LhM@mbC<0Dr4VYKE-E)_Q zIk*@^`+lz%zn{wr+}1e4ITDV07Bjhf+h_>KcALowV{tW|#q(Z|VvV(hio^RS&h>meK^<6j;CqgBJ&BZj<%D)5`U3LBqT60h_6yo+^j0@1IraM!`50dlman@d@lQaWClw+&LcG%QmbXF{GfYVdCj#1mhR zqt}+Jl(u*&&+^jQ2nHar=@S)ggqgj>`=>>r9*=+mo_FIVd}s;1&ZYr{b3xOl zpAKA4-Tkp0oVo%IH%5tGNd4vTIx1D_BOjhxFXOKfbD1XSnn)!X5%Y1rvXl?}&#UrY zh>C`SQOOF=Imzs)fn`;BLqn}w&w3ov4ALMJK=twMq}Srk_9`!JMKiidgA$2IpTVPSvS( zq5L3TJj5#-Xg_?bz0JJF8;9;66eP-27=@uW1|xr=+n0~xSHF)73AMPaZUbFusVQsy z+q-LbDCyFHIqnP|N;BL{p{@{x7{8&RLA2r$08%uHLcvVPwkVw~;`P&>G^NoK7CxdK zueuv1=JsdK5IbdC#P|vh76vYlG!av?(MTg2V(8d>oTb74ByM{bP?_cR3G}qXl)9@pINT@A>)X!(U6DO!%vMLrurxli8y2t zb1^LYArMaaF@5@UzWMVFKYFZf1McvvwWJQw!{NL$Moy=oLD}WH7GuR8;m+}05hs)_ z5YuayZdFsm9t~2%vFK&P5A`WX-FI4SR+|;X68l!z9&L{zAqip=et!OEu#$F$mA^CO z15w~}pY3Q(&R_fZ@2!z$Ub}ZEXQO3#gl0Du7M=e1?W8!%jXrlqu;!J z`vit#LhvY+lA51(5IIEsO>UAy;5l?>mWp)1bfU`#o98*$ct9nS-y7v|4Gw7qnUOSm;$l!Q67BEhU(zD7dnK5|G@tE9|Y=z zK1F;nFq+Zcp^r5sBz!AeBwBN<7CNOvV#g^MvrP7R1AFR;_5xxE#mT=SG&Xh@=ufCF zoE#Hi*5ue{_8<600N04I2vMVhlSxj9OY1^g)iFW{u6Ra9M#^8BExH z1vSL0f8H?#l{k5SQ;3rb5O|cL7?FQ%vz34P(~~kvXBp+vTr~7fc7tgMwo>2Io-cki zL+?;ZY6%Gm(coJb4UrH+k^!u)u&F_Df!(@{2(=wy$mX#71l+b32NmmDHi5H7c$IL= z=btlYk7ZN(E{2aP7EQhQd~V!HofH<{G%p^=f!dBD0)9=jsIL9`y*uh7rExKgdNX}k#Czugdt07S(MH5rP)T17R+a)Qp&}~6I`XR7~9vS~E zE!B+vL&zN~q;*SHvIXB0V8p{Xk?EIM#_+_J-VcV2uM542Q8FY^NZKFT4C4XX-*0{pd8dw}r;JGK~b>U7hBF>TUiURCFZmjsgjimw%Y#~qr zg59DY25F6O&e@1Is>$JR@ZWfR52#*TNO5to5Yg_G%T{knyz3OJ;+D%RD7bISi^w&P z_dRqTI#LlVqS6WhQht3V+KvkV33Le>wXE7P?g`IOHfe-y)1~Vob3ia;lQzgOF|vtb zj5#=O+0kbh={0@rEu-w4Lrkynw6Z3~@Q*W3y7~<1?S!HAwikvs@G!c6U_TgXyu)g>f!%v6oyl-XK$8+24}<}GMG-zeT^p~9z|wUi zH@<3Y$b`94WwdM%@oNMtVsT8>HmDKh!PC(2HTe|i#)HYHaOP9&j=hm_$eswaQt-V` zlKjI}=XYH(Mv8Q~<%Ve(O8m~UFvm}AQDnP?=2P_kos8nB(#x zM(GBg-+NaAN!kKFOGZY9cF(mTkv?AIX~Tnq34rv0|I3H4wo3{0$ZgBC*q$;>!>la) zm~ACvx?6Y_n2E${7c__Anb~UeoUeCQgZGeJSKxL2pfo(=iMJ}DJ)(n>;jB$}LNP$6I$C5V^+4NeP!5PFSxzKAI(v;Zt~#_e7tvdMBVhFecMILN&A{9y}oya{Qt zvOPnK0=@4TBl^8x>Rt{3QINyBUuC*4*;A(^nLkzeP7Kg!*Y*wR3w<#D4Ukw`Jvfv~iGZ2tU zyF2QJ!4!;TUJymXI`B;`l}8)&&Ibhr4dGNVbiWE$G_kp5#_Cb+JN$#~?YAub=7zW$-V zR_HEiXc7~V+MM_I_a`<#9aqgfq3I;c3y9v15|eO5B(9lp&_Nu8?R481EKw!p-_=R( z7KYHXchy2ZzC&=XQeknC0@)j_n9)n1SHry~qmttI@?JGIE2mNxW5mQk>5^i}^RFw7+q~02!$Ri(F zhD02*TIrD|Y7$g_7qL45X!3+X(PeDSD?T4tTW9n-kk%oUd4|Nt1qC13=>haU4jK|j zV4`}kOva9FkBJF7K+u5*+9QCl5U2;2!kQctc?h64*%lY^=017wZ}7iI zHe8^ZJN|5kSO_gmSobk=wL}lWm>P%1U(Ivvq#NL|@6@lxtha6_F2F72V#|2NxA*xh z6Kx7M^Zb@v>xq(V3JC?Udqx+sV(2@(K+#jUfglFXHOmE8&97uNIykd1Mi!zfg=R)c z*ulX;3_aPiYYWD_iHR2I+^XL?`LXF&4a7xLh_;=mPROoBh?Sl2u_B#ysH3jI#*GG= zRvA_bZ4gxnhYk*eK|QcBG(?;M$%+CUhX`!%$w0wswWta6bO~TgqV*sWC-!O6>_Ho*n@rP4dP;4r zH(O0T=^-`{!#ceSD`w?v4Rr=>l(o;|@2NlawAe>i%n7R_kKq4UNW7V3^Eb^3ubk0d Rfh{O$J2bS_Gt|tz{|EaAherSa diff --git a/_images/cnn_11_1.png b/_images/cnn_11_1.png index eec7cc23bbb5078cf01807e748f367404d9db369..b3d6c3a8afd03d1025f2fa85cbdf4d6a615e9836 100644 GIT binary patch literal 29429 zcmb@u1yojTv@QyYpo9o0prnKd(%pz69SVv_gLHS7poBtZrTdZ%bH|Bii^E~qncrGu2gLw}V1qB61N>WS_1?7q)3JPle zb#(X_MV>fu_>0f(nTnl~rGcHJj*UKwoQ|E9nWdeXu`Z>9zKyN1r3D8wH#0jUrIDST zl`TIDi}`M~#2?_)juO7)OZS5$*YbSphqhCr+UC2JKk z@Wu0wUYw$7(T^!_aN+cH#!gaT+)TJF$=X6Qy<3r6uDu}0VJpHX)tP9Rq|1ig@K_A~ zBUNv|iTqF6&llb_R8&-oUidV4cz9t~A}9m={rzu$L6bs0MWL0152>y_6vc;6>FYYy zP%;_fJAVI3mDoN!Y|<@=Aq$4fBfNBo_4M>^k&_1p%51NTNr&e4z$F2nK5+_Q!!MR& z`r%T1w-~QztjR@NW;i}Qy?Vf6_4u(@%OCh{NvX8-bb`BgmybwUg7MR`?4}D;;WOlc z!Wb5$$KUozsr@$(^VmJKHMZY`mW8Ejja95Qp|VmSH#gV7?>?0xa|C51K?AF#y!=9Y zEQf&~m7;}7-w#nEqaO=b2*OMxZYc7Vhmu~yz?hw#O~t*Hp^V)ywKiOs_Wk>nTZDuL zHeys%`Z91)zG_bJ+z*HK5d%MJMdqsNYE(%%Ia*#`m5@=fG}RY$>o!&?U11?1AuVD4 z5qVgXvnz&lRQ*BAH+oz*t0i8(ysfFJ`A=hGfyeoYZrj5AJezS3&DYe_?VX*kud$BRd4!b1SL7#WsT4J0 z<0zTb%R*nIif{MGuoM{gK2R+-dFJL;m8$hrboO`9Yy+-{-pStb+E9T{6NP8OM73+7 z^R9tJtOU99`}wwL4$BF_67$jDWR7E^r559o($Y2+%7+`{d=6_dZ%_An721k(k@aA& zg5AK{Ug4~+PP#r?YWVxpU6dg+ZYpZ(yKK5>Z-0NHe<>^|m_VfE7N*nS%NM-A+>2pp zX}Qpq+*NM7xOI5AIC*)&<2d1*o+>+9V!r$*6(g_aghAU6Nq8*M)JiRg ze5|cg;O}gW%93VV8yg$UbNqvY1B3p|S15Cfi*JinS=1K1?>thzMM^3QL*hIWK*#I6 zGp9e>(b95XNNC(R{88Y?kGd;;8MMr`x{a8Ogn{2BZsFl6#YRyk@>*ZX>X(+3^zYpc z4ZZa_JUmd4PFOgJUg>+jVHdd>H%VJGi{YQI&qxIvuu(icJ^3Bhnjhs={etygpqkU3 zERtMoI>_JZb-q0U<1hQ<$ra0*;|Gsk=cY-7kgMbj=*}hzI6P8s} z^n8~iIXT?y`W-|U(Dm4wcl1#g?!P5K@-dAPW^ z6ia_*mZKzMR&RcPgJ7uGGCLa;H=Qo>cmdpPwH_N=nK%{>3hp zVv{?Ior$wGryFlK#>xdR&vx%PY<``apP$~?urR@!t4d z4jW?u$;lKrB;0lp0l~or^R1D31_m}qTRH=IS_+z)NlLNa_qfd@pFh6^yNIdeQ+hfb zDk`eHn$%t2`r$D*rIODMY*;ur_GT~}u-Td}IuivTtSwe<)})$`mN>b%{50ujI9MNT z5;`1vDk*v0!^5M@h ze6~Mcq@uS)F{K*!em^=s=HnmI3QbP#3Re)83cAPjL!*+rOXO1UD#p#U*Lj++vkxIs z9j|I#w!#Kpi!jo%nrp^`xl+hcE#BJS|E5vtkgZnQxqZSj>Gt&WU>#xz)x(GWu)PKP zi?u~c?{S&18g`PR+$0zDZ`9S9{`FzZZMVb8*?GH#F4<~lP71k~m>8O{uyB#lpRe7N zS0Ie5Syn$w6%T@im8MzkQgtw5iZbRfYK~1IJeF~`J=?UswMBXV{`5yJ0=%%F2E^#} z%fn|yr@WUZ&LUmz1(B`>*a6Xjs+ zoG*?SZ(P4VHELNqKkY~HfS*6^CK*4<0bvJhdVdJAe#{ybR%=6Sup@2^N!Z+^5Kizs zo27sSe1+BX!VThi*?P&SG+DC0q;W!LD^nj;(IY;ey|pu{HrKL>TV!hzv$sTYvG&ug z{Y3^p91*-|AR!{!{f^JJk2eadn3&g!a($#Y^{L-Y*+l-x>}*DKTypF>FVw4$y|s7d zT2NqV2B)Rb=)Qd`B`vKx^G^We3h@x~^|FPZ`faS(J`ivU9XB!kt*ru~`EvXpa3PxGpFFawEL z7GR6jn0*#7>ZXJxjavslcEW~jgK!p@7|6iF5(1OzwX|e};)_esnI;uZnx~K~oCq1<6uO3L`aTs>m(MVzuGENcMQtB1CikX1#b9S=kAX%*I^Gh@~;=EzA`*g}auSyh zo7Z6MrfiP>opONo17?El{)JfoL48O6p7C8QHZIYX(NdPC5DLRz?{Co1(Gif4wDo+G zAtNg#ARw@|EKQ1SAoLr zCtD+?d3-1KkP~)bRk1m4sCOptJ#}*8bsV$CfRX+XIM;()9`AM*>KOcr@1w z2G`YW41U-#Ha1R6OXF2luDc*FH6I=L)1#E|rqE!!`zbEp0fo!beT$l7gYOE-!L_v_ zY9(eVu>KoM%*=;>evqJW-}`y^Fu+^ubyj~XGTX4Z=H_?}axP{=M4DS# z=u2u7qNAf{!=|s|3f9369jbA!>`j%$3;W#KS@?6)={q&vh^;Ulzs-qy!D3&|vbp7r zinM1xbjY--TDLeds$wUkT#vS<8%ww$75*~5T!^f-p?&zpqv&VFJQli2bEobnN;nFaD zbEM!cM(x=S*6LuM<4TNqvFh;%U&z?pKC8Gm-}E#bDKbX( z8zGbG)aq&*Odgrm;G=P(wUA-hXnZzv*9#517D`4fQUN@^7E}<+)i_or!B9xD_u!2B zTwhP{X6WN_B+1(5vJqYd^FJZ0ou!z^&dTRqRhe2>**aGGv+i;lh0gv_hRuk9OP<|L zeC6uZ8#iu1EX5hK>y`5oYC)n^K|w)d5|8bItVPB0g9+D7q4Zh!UISRif+tIBmD8e_)INuXPC2=$JqK8jz#qOjT<8avYZl07z0O;J0AO8Y0a?Idb3(4r zpaTVRX8q`B{QLK4Pn><)!# zq#qu&IIHuH9uj3BOvga@Pgh80E~%B%)Fg+P|F$PhO5O8(Up`N0r z`RVS-YF=;FYnBHJNwO*`#PK|q4*>cGlL_nq0{>HN`Whhp@?ajt@$vE5VeO@Tk>ofe z(e@ZNAGk)hSQQE1GMw*4;Hei?&x##vIG5j+@vQm6f6dI|&+f&sQyD(N zOqYGV2hl0!hZBOeP3Mk%otH2S=B*L**mv3A%O~>V-M;{Br@b-XY*JK8QQFK5&Fg%(UMBn_h*B63mIYmb0bSntb| zwY5>Gco_?w2_5>5(hIaqPY&KMwGV&wYpJYM_0OGM?9-{R{&7s*#6X}lsGHSVM5s2e zUpQS>;TH+e`b6x_ zNCZFYKPVQ#$Eps!e*B`ggk>YrYEI?Z!(~-76VcBMn=l(^o1T}m5EdTL(fQrwFtD1c zL%lc|tc@d!qla098iNL@zH-6=K@Q2)kt-g}ue&s$y|wG}vS% z(`d?*4kFExji8i@T%4Kt1!&RfVAzli+Xn(1f-jRGej&G2&eQD3DV=DwAJk}y*77iR z;H9#;3%lG;K2hJ%2E9^=xs%pzN{nzo*Ejguu`@sZ7p$ktZ@tgA4tv<2=}X=C{L(or zEG%2IdSs22AxI78OhLhik_wVC^Ibj%9mU2u>;v*H8lKvvdZr6a3(gzGxbd~THtiuJ z9`hWA$-GJkJD?~I^|6z|O;<(sMDn0@sTLZJ^rdgyRbv{Y4GS!Z>TEPqBP4vvv42^D za!g~x-J!&ls)?bE2yA&RgE^IkFIcNV$9%rs5(9gGnhT^QZ+!OmZ`M!f=rFW2`QEGk zq%xdCQof7%XH_GcO?y|yvxf{zBV>Hacjyt?0o7*Ld`(10;r)SnjM76|pMR7L>2uYz zoW4Z&y1Wf~x=!6xCB$iyo%#1s2XAL}P;U3VNf(Bj!bdxSWPA(O1!SS+Aw#p)?ghcQ0IdnkSK^b#D9ET#Oz;3zcN#6O{ZWj_n z&BiMtAt*+zRFH6+JuFf^Pv)|o5sPAc^9%kpA(%qI;ZqzGYRlChZ8ygF0I6A7Ti>Ur zzoDRTzH^&RratVgYo}wv1bnMF8}hBp!K9VU|8#A~Ffw+_P&c7H_oi9IA>)sLoQ_ls zD+4*Jdn3SQ7!T%ZWQ0@a=NW0e0ND9xO;gK#|4v6dPZKLPeEXBh8uv$Q6W8wgzUwz> z?2r@bR6I}Qi#PS;bnqw-!jdt+&12Kv(fFi+zvcrnZ#(s`sGH{4`w}%#%2snLe<-Ej zv|VVo=1+=^Z2=OX9ySLbEdTSB$~0!>i)Yp7D{FqQW!z#amR| zU}0f_7yi97--eaA3xi}kZa+9ZJNp!p&Rr1?L1*U!Ef2W$^nA3I!RkN`)MZefQyT;} z{sO>FIyhWnPEtDVKr%5g(U+?c-$d^Esl8pcY1IcE=PS%v)%n5b`wt&pR63aZ;*czq z4bHbG@P#8#9{Cf?VMyq5emLp5m|M9)MM;U&?-o_t;!xr(I=K&Izu~l;AXQLM`1R`- zv9KGjww6eTZUJv`a3Y^AIy}I~JC9IQ3Usd#27Z799}G0g%<^(e=BuosQcH@%Fi3@lUYS`0->f565htIq@GZ-=l>Tv1`W+e4iinBq!XdXQkZC z<~wvaEC}JNzQV)9gN{vHhXkJOMj|q~b}hHJY(SThk4RpX(?*&%*NaSv}6SB@Q;mW#E?sf`aD%NKi19kVDb? z7OD_N)uQVStWGD(>3nuexAs>DF(~Qj17KwZKy>>+;c@iN%L@gDGrr`b>_tVM(|K+rP4eP5sm;2GE)C*64f?tX=;7zHw= z7f?Do8l#e=1WmAqf#?R5THon9C_{g68K;-~QAr@q+JkX!_SCz^{= zvp`*=2t{fmR@TtEy2t6bU4UKkp(YjvE(M=f5`c-2fa8YV@K62sextSId9@e(LN0q& z3_KQNyiJ#>U%w*R1i_ZXLN1)JRbW+4FDy6=OPD~JLn$B-4{3Jj4~7ZQdPvl&I$i(> z_8tYnB~T*0%gTBLRMK>(z$Oip|37c^WWOm~`jhIHTC3#dCWxRvDDhCLpb`RlYG>Fm zd3wWwV%i3FGGC|Xe*bIdg;+zUm5g-Krjb%h&&E70Q2<;sfR7#52BH3dYMbvs3t$5w zi)K3lI$-jLt6h1LJumoxT}uaU4+Z9?`-KOvpt3Qn?_idZ`U-NaO1`#eiZX3jR#>>@ zd|g1cB2EhK!J!>vjm!9Pz@4{G&bD{^B%&ik+@k}Y!gnt9We@<&oPi-lHrW}(8`(I{ z8z}!>B{4NStMqmC5{hv#adH07)Lwwz2pLMPrk_l>A8J5|kN}(v7!M5%Eh3ZI^K2Uf zs2Q6T$_YShKnuchv7wPf0&M^Oj8>wKjt=aEoS{|K9OZ@1#I_>iUeYFVD0GtC58gbG zjqwT$#DYR+8dw558i{CWIk|ZlVLMphFZb!C|F5Oi^&yJr@`?(Z-3}fi=jyF3tBtB% zdB9}PfXO%lbON=|^u_7sWp6=iG4-U$>{LtPnp8Qji5Va$eIl)#i-0)r=ev~m7NZ$*|b+U(qls|fyK53Kp$Ds0By-Ae*C3Npt4m;m;VO9`sn0@-DXbG z#@4otaSYiSQ$DymJ8dik6cn3A0mn@u7cUGB%U;&g{MIedF1#ajMx+fZm4=q~&PoK- zJU|6a!CGh<9jzSNWjVYDLs6|Z^)0Z2aF8x@YN_tOuct^iyCOGmwwkF!wze8@cVTU^ z!t&6ZJtyD95^quXbBgqD`wzszr4Mg#|YA(oNJQ-Vn+H^72>! zL<&RHorfgM@TdCQ2|KpWTjSwHBK6`tv0A$RiEcd4O z=4pxi4knY))}}=2YchVjFV?faWfOSA5D{c*O50^`Nfe|Om=A-0{P93)v2DQN*@E2% zuXa^YNh$F}PeWc-7905R8Hn_-av=*jr4Qu)`0)_^CTVl%{imdfMYv@AVkRaGNNs@v zViWc~PJbYl;60V*sGnyfmMQj`HPP-Uph;NriG?F^<#%A zhxu9V(=z&(sYyOMastZBX|14XsXvPdXcF3rTnG&?Rt8JmDRxWU@8AKD094_)x$$r} zy7ue?%xK(ngI{=fctfJ&L<^8sWMp4ZLGx+&`YaHkB>6yMfgtT5J%PuT1FE3Mo^PgE??>IZ&b>3;AI|hQ$X`_6x3`X1<*mrL3 zC}72}vRX|&{#jV)yqM^Sq?Q|)m@`1{+p3!aXhK2;V4$kw!GHsO220!}Equ+Yl z7yIs$bos>Va4{6PbfCOsw4ZL)c44tp)m@%XURnb!4O^}Weg?%0UbhNn7n@x0$fQPA z@tS&v`V$;)HGx?aWn+tn-}<2F@p8v+nQaQ;0IsO#SBprz3jMikTsf7G8)MMmSN*`!@; zDvmF^R_Sp@hf4ORqGgb($B=FTHl~fMR!Pg`cO9s?Zu_DwQ#}y5U_S*e0FF*ERU8M_ zDC%i~;7OoDCP6+#tO0?;w>zj|?(J~U$Rg5p5e5O$(>xWxxS8Hk*Gv6neOY|wETMy_Q z4krpHm$>rsAJg(!eOt>w)8%l6*CCH;H8V{$PforKT9tbGNPT$j{ZbyPCCGGW7#KvA zLq8;6Eo^LPGN}b0kaf+iGD#e-H{b1`-7~!FD`aggZ6L3;bLkz>c|5oicp0Y^)p)JS z)LX%PD^o|rpaa!3sro}poTG;b(T?r<gkD!WvFvfQ4uTgS@a z3G(!i{*>Er@xoT-#0+junhCYebV!{!q;2)^#mQWE{TZIPFczo8`iFjn%XFiEysNPz zX~}8uO7d>JBhx8cvTAgdgU4j$cOiNkdi_U<9R>=YNpHNgc$da-IOA|XgCT1$P-xMO zDmwYt&*{`BSd`sO?fxXZt(#S<&MAw;uOj z6JhZ*qFJl;hVJG(>9=COAK#y}cKeukRgX=oo8EP`wcl#Lil%@*bcvT%D0|Ik?4p!&YjZN{u z?+10srE~oFrr3z1JRQ_QqdlHF_sDpNf6d zGx070Uwi!S(`;@}|JFN?reW|1Wbn@8xlRZ?$-|*=6OA?+Bg+|HB|kH~*73 zz~0z2SjlhxN=Q+aNrERfHI;s&ZcLdn^3?x7O7p%tVBhHE=n`xIbp-1%C)h&ns&CPj#oN0R1dPK8|NNW`Z|STo^Lqxkc@16ne*!rsL2F9eGODdDHm10zbY61oABu^ddI{MIvQP!&V1n?4KUu{Ks- z*lY`gX)L=wCeOGX0qEv5G&K1}f2gvRPrH@=ryt-6tYqNQr+XDd^a0d!n)F@wnw!&W za>txF{AK#=u7Cq0D6ckaT1K!5Kibaiy}77v6xRAP(HD4bZ*uHn<=DpR(&XFIdWanr z?y57$zWDwj$G0P_$}-Uo^jo*D7LyEL;`m!xEdP;Y3^SFEbTJY#AK@f--+KW98*mEu zK_smA!Qe0*V3de;-d$kRYrciBOZN8P+6TX>k2^%CNBx=8lZ$q6IZ~1mUnEGsI)kX2t+?lO{@5@)^)IIg;ww;$G&xyS6X_#HJ z5xkd`CErQ4lOB8GZw^Tto0K;cY(;;dsQoUVC=HB=4+bu}Hb|;qbV5W56ogsNYJAxORpRjxNTWHeGq2Fv(2XY`tBtT#2WdBA2foht~fQJw%$fFyH?r z$@d46Fdg%NE0Nk87A>evZz}9EQm@+U>QXUBpV7u7CU!u89IEvc0ZYW*+Hg3mFd(&X zBw`^j01j^pqn7ybDvJ;}jOpS*&4%%F-Aiw9$b?5mHiEt7H*iHuJ>RgPKItcwr1JFb zz%=&5`h+hqDaAi)RFFPT!c5A&l0SKUF<*vPSVzuitcq)})XdND@eh9SK!1AKM2rlE zN6UhkRQ;Xhz0a^CMMTsm;*{2meHF~*T?Y*%h~vezVBw= z9nW&vOf}or*r*flhtXYYkLDSGLpP+AQ%a>+4up5P@?CU2vf8;9L$p%e%RbsFfg*z< z*;~(#M}pQG<~7uZC$~T5a%~X|HzGm`nk0w!b7TxB$}_TI6eo z=udiRmimO71=P-*HQzm>6D_{y?Yew&sbY?9dXT6Mi45}DgGYxmsbvHECf$|xXpSY< zQ%jN!l8C}GW#EzY-*)(M_+iqCzAj8sS>Gj~KS4iVp574%{$A*`i+52y|1je&kwjL1 z*8J1F-Sdz4(2gNC`TM^l1PIjr+5RUCD1qx#-vxdy9ih8a)^qH>Y^{aW05TbYrrJ_c z{gwq9aGmf54{lj6=0@r4S&)gwyKog4|If{2{#*SIh2rmUcfO<0 zLP~`u-3>1RO&|Wj*n1=2Y<6~|g12jUN@6pN9~ny_YfbZmY!@1DQl-PoUWdz_un%>zjeuv#>2&wy(ai* z@-pn#jGR>Vn0vz6ZeT-2g-RLy?}@ynV1pDVS0m&GBFHWm^&6;j?0ULmd2p`!=ir~E z3MVDs)loC_T2kH?m_N5trr1vjZcV04tLQz*HY&zW53VKjyMssn2(|({h-15Qzo|lrF1{9zAZ=>nqR+~K|~$iJZRK;y(v_GZ1JqDQnl=xHS1wX z@YKMAdZ+R%ST&N*Kph+W{*QgW9X9E>-elfg{p6*Bmc%ZCURDLvg~>HP2)?wa{T>=kmrB8@kT|cqh>z&Dr5J_{W5dG zBfp5%obb+s*-5p}Dpm9WLO|Bfa=DL@1vdN^ALvGcX{0|sO~wTF)e?8qNrm@&G^YhF ziC<3ju7@y{j(#^>EU;5!59FrM8Gollym)%YxvbpEweXfplem@bEPt6PGUd{U0;?s# z{i|njx*7e{LtCiqEk5V!tK9QX7stKA7u&Vtb91AlO%_HffvymIT?3zAscP4X0~Ell z0KY1-EU`}A>v7s%v$=uABaB1l=TqreK5?=XYg<)rN2DAtDw|JHJvv0>7xd#r&EXxe z=|P;z45_j`DF37^_pYk&;BC&y)4^y;%Iqgkj-1x-XLI|I+#8tbm9TtXO9lRFY4{d* zU({Nbk`Q?rnIej;QPhfBRQpk76=Fl%-DA7z^NXjIoG)!?s1!fIIA*Rd5vuSL;tviT zUZwgn+SWZ&gQ>-{o+T%hme`i+VNOxOeIvKqHPByjSkas2m6AB-8S4#h&nv`J3pg6$ zPtxh?8`6I@6bxe<W8VuvZpnAUY(W&dath@YOzwC4HcG~<)Q~a&r`o3-ygCt9# zl|f;AEroNH0RNZvCvwb@T00J>6~-8zC7Y)oM$|s39$X{ZrBfY?OsLPSrn4%j^9p_e z7H>$Ok6}18-_T9@z1Hq+(jKboz~T?`>ZGpk?OIzRHOMO|CAY5?j%ZfBGkFOH`PL*@ zAZ|OhI_G}*J50?|r4*(UBo@hNTr068YN&J^wkk!#HSb$OJ8@)##o_Xg%UyJcgXZhk zuUp{XgjxlZ4I(vefT7@b!y_XLijF1%RY7;T=bOBKw(=t=9n%4W0$oV}re3fadt2+U zF>3!8bNIZn1pWO6FOA9i%gXwR!H0BYzf|j|Hm5H5BANNFsN^$;jk%HJtf2S6#wu(8 zM?Jf)30BXq4_J4(Om0)SZJ}CQTO%eT;2{B!KC`l#cGd&7x(VpO0eyi3Ok;68mYpCzwSvI{tlV>8HMLXE0<&# z-!62LyNoVF4%{cTm-tb2FEN>O7k(>4n0rKVX>;A{zQ#QxT}iw!lYey8M~W2dXJ%#) z${1{PC_roD-M!o5k4H_+VIZ5b1Nvgs(M%vV33t17HrV=LU^u|wh_X?!%KYTXlNdf* zg93f|(l$6v4Pdy4E{)5pUfG=+Pu5z}DsFf8flwAt}bV*Zl zE#c8YJYXc*+p|lTyFfD~KifgA8okHurl$}bH+HRIpnjd@^~qc_D|S=&1u9u;1Sza$ zj_*Rc0{<^+(yUa_I^RkvD5S#z111r%Bdr$?I&IZskm&=Z+zG6W3~1+wg3VI3bp=#J zZ75gEDhSVc4Z+!2b+*%{|J+um%SPqkNAcPtjNZlCF4ftB!Kn`~Unwe20-wW)Qh5BuT z;=!a+U_1owAMJ})tw-<<$QfV2Rf#xuz?@&fi`|2Zek<^)XevzWf32yt0F$jbb0MsiHBsXt2szK0C) zK{z;Y(OiIUKCLQO9i0 zU0YfC*kSPKz(pdMbQ)F-*c&wT&C?_Y+*B^{sz%WVsx1|Qb60gX4R2qnM#=`GEM)Wf z>(q4&_NTnauN|I-c*)25|J}$t?l{?j7-GS?Wi(O62QD~+fBj`>USPn`^f=ZB1>&iZ z(L+S12dy0#5C5a1qmP$VFJGT}6p6^ojO$G1_1>*rXO+u)%ZJvq6^U!!s6njVKsT4 zj!wp~>Ri#blsf@`c#MD}vteh#eVAr}jWVCtn$FKcx?6v>xF1N7JDv~LY-$i#xZ{o7 zL?2}6pU;s@zI1sH9NoQZr`Afcq5lpcn>~42rtB`|ozO&dk@In3yU8dF!q-b%568{~ zkNVgJD%f?3?~d&pgpdl`2M@ZIPUTtOtA0SG*dMXCTe)&6#j^18jn1y1q|>#|qwwjmD4~HkiyKdz;+#aKXWL zmVu7Q_dtaBHLhhyCKuB?XuS%?r=hP_!q7f;I+`Upt$9s3#!fgQawT^ILaclV-M4~^ zI(jJY1l^uS{QDx1YiXmyQAIAV4%A=_sOOhGuDoy6hBc)&y0+BXpS|1macr3VQ}^S% zM-ha;qsYUP#CD*o5k3Az(<~@bVA!BW>B0V_On`53rh^B+SmWla$l~ODZ9kpA<*e-Euy5M)(*oyjD#C>N@}t87D`PTB zEz8eMSM;H1^ng>6G7W*gz9WsKJ5!S&^b+ElEvv@ z^wr_@J-}VL{UJWfScd4MzvML-5UaV@M;p$PC;c^AslsF144l=cam$7;Bl=wxehSbM zXyLv-aq#C9AO+^&F*LX711w__uVpIQbUmsM>Z-%J#MrpkDs0>DfwEyqB<1ybKVcH! z0SGP2su8Y)1G0YoO7}Mzwcib4q^vq^;c^L7Nb5{)%X*C2lLj_kILV2L0(d zvg};n$YYahyz9q9!_I}B{@*l@k!_XxN;)*N@{`^v_K=!z!Di*@UhjGSMrtH9Ns zpS;i0;IVdc`ejt?M@nq6%<7ZXKSBkdlxPTG?ZABNz>rV@V!HgG&+^Oo)Q^8UC*?H$ zIZNl*Q09*`jzxIxyI%E)Tt!-9bE@fR8JSYY;}cy=b<(FbT0h+NRNFjO4EN~Vstzat zey1;uaAM)IA}fO}7C$YMYL({f=$=^ujxUb7P)e`W5<8~gd3$iKbX#l7Vz2!Hp6Am( z7qC=56wN%#cFw<`Ryju3OCJv5s>DEWV=C;F3YDVe>&wH(;QgO2c~JlN{UW{a(^}0A zFSUoUtZYKuMT$PS3#a~IUikeg2;9+y$`oj8?jh>xoNQ_S{&4Gr;LV?O;;yx&o2LWs zMt?tD^{abkyBqQCPNfo`6&02z3(tnB+TfZMK=03>;tj(FG&S(jxkltzHhrUPnQu$6 zX?n*>$H?>Y=Kj`xUx*JBQOg7=Kdr3`=_G})^ zHa!&;5xr=pS%n}Dj)ku;Pdu4aF^_A%D2j_Zh4^@!@B%tO?8uJ~Iy1}!&m&1+c@f0& z0bzkw7s~wN-_IbJl|NuoiI%je2~rN@GE&O>{x@jRra}?O$9JqOtmz7XF)=k?g%jpS zECDI)Iz3CsXF&%{LDk$d!!tnEvEmKngO57I?W*P!BO+gv+{ZNbsVS+bJ}mc&=F+d; zOqe-LU3Mz3+#0;O-+og9dg|zDC2izl?LBmxh0RwK8=4yCjF9$NsA2{`J*6vDxsbp_ z@ez=SCHVxjl*xBG$<69R@)s{&K${L85m6J;e!>(V9o+;SC;q{~zoESeL@@AzDyFl8 zfB-62FBlD=Hvl@-79wA3f|Fa~ZUZZlqd-6f9NU|t#&fVXtYl#y(W=uK=R=G>=B7ag zDJULkv3;ovtSlB0vmRn*+v|}r8z~Ba`{PkiD43X-gv~brWcQ=+Xx>}y9flqQuy^r- zLBarR?ZNCw{~_WA0YE(kA53-dOwIwjtqb`YK7?*4Ff%eEr2yD18=(IRN&(2VZPlH+ z!Fy|h!jo3SUMU*)Vn~DFF&qeId%j0v5)u(fK%S3fdy9?&cEILlN%2p_^?)=nBLU$o zHWF#+4dv?uzXkpmvG*VEE?%_)iwGV*{x6V}0vX>DqXU!|+->I&ghm>av~S;#kH9sv zG?=FqRUjSEyg6F&y^W{cIFBEtpdi-utn$_fiBZ|yLNasz~_7i z0`@CnV7aMu+(g%gQOH&;{zxw5f`S;lp#wB=gM^q^Qe9oW;P6_^e`(&_izHM62Gn+d z6ir()8eKYAOlbRuOCDc@(XN&NvdiTHbjPuDooqar{5Z(0)c@DMr6gP#r@_Bvfj zLeMf5#iG>-9u8jU#r=!hVKgX^p3d>{M5w$tfZr!~+Y&`-DweU;@&e<@=cuTKA?Wr} zU*Qkri`tZ2XkNDM+p|u0T)qA`!7@x`;-@jGmE?PzyMU#?73!$#SXghN$pzL=hM=w; z(yqkD#>Q#fg9h`4G)zGy2hBt(LExWAKpNhzVG-s-lQCjpgGQkakTfs*s)dAvpdZa@ zB+VqIcm-UvL0Nv$m09KWkeMQ_`V)&ri;No(0Tc=!=jCtFM}xH&&tSQLTS6cFBI+5Y zO8+4irSXy}NJ&8tSW&Yr^y4;w#}|xKGhnR%sSPn9K?CQ~!`(64Eh{k?7ueKzc%mL2!iZ}cti2(##o(yn zFMf!M6j6o4C`KUcLLni4C!G&8L|9iD5ZY}r3B^zl^Co} z@F>9p$zYcXi--_2Gh>vJk^*NF9yD-*Wsq#J3R)bIqVC7*JaX_K8p5VWx>xQ$^+nN! z_7^@I8l?3anP#JIF9<{g11ee_8>EUWa`%S=L z4DW2>G3dFtB4POM@Yh(3^Lw1{5B6xvr>P^1|8k)-bb@uPck~@=iit_5_uc5p*J=2e zaP=WQeT%WLDPAG5Z+-TwgU(?e{%6xGUjyz#tzrjzd>#7hVQO#lPkkZ8)xnOnvVCNqY#GMRv+K6{=X{;&#ukI1 zKODp`Ck^);w{9W}*5_g71^*UOjF(P&xW=N>DXO|Eal9#5(8X8D%V?R(hUjb7F))1 zI896Z{m=NmkvAUnDJlH<*Q*Ea@oB`w4<@XyNME!{!B^5Jx61_^SV^CrQq-gfCt2h^ zkN}kRN&_;&K(0m`uE^PA2szBm%w=U|-QQ%05JL(y^tJ#8(MByFrfV)O*f7vwxMgKK zT~D$S`#0rY{bnKhQ#I!ZPOG>D{ZkOkP+`RhgEyC9bV*El>eo-IYTbq#JG-2J2kNHu zxVIgwtwQ@%<$Ih)h&=;IuH@w8XS>OlY0y~<~SOH3QGzqe*F|!aUi8a z(7U1ye90Iz`iwcv1|hu-AFzm`oV}>v$cFX%X6SYnFXJDip#Ft}{bCseX^^IyE=jmd z{sDg;pZ&^h@TT;2n`AtH!*>i*bRD78@aWaPt@uPlNBhOclZ=*HI`V5~DKpVZC{EXm z*uDR><_0>Ojp?lR-(UwFX!<>Bm>UM9z|ZI`+0rKCRHK6;@_u}%{Zm(fc7^)Aovh#&QJEY_w6;= z+`$r|PnaNS%`A&OT>DhWO(@T$5rA_TRpd$dH)!6NzvV00a&FC-$aN||vjWjP{oiPA z@&g7*hNb!?xwU`9&|3e&KDv0e5#Unhzx6Rm z!hA=Q_2l7MC?*LX)Ba^bsZ6`SYyMk)nq%=fy zTT0nCqo1N+ulGE*wG8l=ET^~kwgb8SHowE9`{AD|XInxz6af-d8x3oicg?WNCqT3B zueto0J$e4`cxJbsP>x$Q;DA9SqJLg20f{8LPfs!IKK&YhHNFVw@+_hyy&cZWaDq-n zICkY>U|YcLowf_5HQuP;=t`_}0kOEhE7A6w$3MzeFH{>?o12^Kz{ClFD%#kJiU^^* zYGK^_wzmJ>ts4+Vsv*BX)ebIFFksvVk{M|*f~!$56!f;wDd700g&fB6GAFH80h$r$_@cTL?IBf!g&C415bqxG}1u ztqtiB1zvJ?eje#bR{>LmQY>7>NGOwHjsRZv(lHyEltHkRZ)bhfYMro@=**vm@K-~R)uw==<6=}pIl;cD!h69PPX z0ig{!7ezv15^28yGyr}Umsi&5aH0=jW^j?gi5su&ap+aSv6nb`^v*55o~NO*`>Vy5 z;rpH_CFAFSSjzr{pS(ngWgG3Z~SJLc$Q zUrp%wps`R1Rt~fgB`-k}Ps%JX-&2TJzQ0&Lfft(MXlZEvS$2X$KcHFmSrW81bVblB z4HX*VLcIgs-i2WK0_s*-@0eC5$_kpHpKy3x!dW2t-~~K`b0B#)?&egw&I`KiS8Bt_cgw@;~>lN4eYgu*w_F+iRs2C_;z)rL9_ZSyI_NgFAtc{k2EG;cP8T?O+ z8O+5aDFzHMd0L;Ck=vWP*t!<}8=_2KLViS0HRwTDWS59nAHE=WNKhm=bM-0tHNp3C^Kw8v*Cw#ebZ_4&eL&FK>*%X4US;0<+Zf~LAE8a52Wkc|vDU#ZY-w%P1*G)19Sn~1004nq2j)aLK#2-G@^JXY1Nj91 z4g-YxmLDu0HUkMP9_}!+u%O-ncB%sH`YYi4mx4fc47d&HUn^h!9uH^l=x3}_>c3q$ zPB}j;%?hlIu0$BV=Hl$W8~AnL?_V~G1kdFn)I9UhXoYME`CZ&dvHu>0mjMd*4{U3s zdk5z!eInrrhK9`9#YG7yFJpNu$>CTFtBMVPP6`0jpyiC-P65h3q*qabo$&5msbpby zVjc^1`dWNN<%91A`8J2vjD)ANTu^{;XzUA0ik$Bez-bwCpixi(m5y`)LOVe>OyJMp z0>vIdN&VFijiZR@C=mBys|$7gZzjpi`0U{koq3HO$^~dmV1*tCDA}E%1qV8nkn?=L zZG2&}sb9`kCp7230%Xv?YH8Z-)S-=&D|@|cBdM4 z=8p5jxHb4??|cX(^H$XWwNPkF5J+;{kxFu!xdBeNR*nbdzH@KP5xx!qwGTN*%fb0~ zS9;952;@3AvcqV!gb6A$q+g$aPCmlW%m(LZv*c}B+TtyMpc*-xjov_f+@zHcwJ4iL z7d}~{hJF8g^5TF8DeR$)A!~Do!_OiN6BKdaV4;6ge0E5Bd{zq{q`aX>mj~uxEre!> zUr4Jc^sgeV^p;iI==JsWXY(wc^dZFG;zlBz;&LQ<5CEEI{Vyf;4}uN9A+L`ZiosEL zgdESs@St2=J%;$FqZyj0N74fcpww*sBuj@fBi2p;QEsrL^{x5J(MkE-qrg^yN<2o} zI;IW7gZc1(ly>FuRBmm17bQhPii(ORl$6L^iIR%KCLv0RLJ4J7h6o8!nWBSaiycB5 zXfS2YkRd0PDN2SY4fwA0>~r4tyzhC3^L^hR{eIcDXIyLD_kG>hb*;V00<4Mp zt=bYk^GLQ(L53nhQPg0pClZyfTgPq#^Ouj_=H zJSB6qY6};eovn#K==4;6ta}KzV*UPA1aVb)O+pcBj8)VEHN_0ph zzH>N^1ioL{g$&8a0U1)6n<*n`TJiIxR7ZLfvDw_)pKdrz%=YJ(`SY9G<`DR5~d?n*CAh z1?V5arSDqZ>h3FZ^mD-NE)?2o)SA$#gF|~oS6Nccm$aS^UyL_NEFd2(CdzPRy+U)fi}fea5`7UhU+#s!h-HwhiZHNkY*#DP!LWF77?BF=hTOOTjD zR4QXp!bJo01ebaj#D!?+ zL2#@Ir?q;Im<`ryXbnrbwNrcsYCg5SSgj6cL>8rZrFQJ&V>x_$@09z*mo4)J1S?uY zGFvo}0grJ2%z`C=(OoNEwE88pej+#%7zEUWQ;T+LYnOn^4UjBitl;uWofXp3wV4{* zwq1GnOJl=tVZ+L*5GPuD^XnFgbkGlY`T2?dcW`jf9B3!#2ZHmj{*p$??;r$pb{>nr zKR~pNJ9j$Rz?*VHuPJTzyxTg{ZJV;aAaEpRjM30m-u#2x+HN()bNiDHdm!v}6 z;Cv`L_1!uAoG&XYOCB0@D6xysk%r&EJP9|@1xP$40+Eys0EC_0-KUTp^0ha?0RYPM zl>Yr!Vor2)sIOEau6R_?lz@ zj4NxGPACzT0)vb~-vfztQAtS_S|r;``-_UyQzkV2Rn~Ig#_T2{ct_a?#eGuQj{?-U z1jfPKfWbn*rAs}N#O+d#2o>VF?G)L0${P37=SHqc0yq$H8D(-aD*cs!#hRu4Hl+< zXiRW=6wQh)OA$gcvp(Ohoa~xI+jm&JG8Lh6(GlvJSAf#zS83!ydv^9!G<*G>ka+5W=*utHe7CIMM8wQSc`EBx9)Jmb z*>52q+)9$+k`}kH5%NpCNj(sJ{oT_p<{u}IZ~4ri;zPv9RkRyNo?YRov$VHTfe34K zY*^3w+BVK`c@y9QdrVY*#|4U%wL;m?uJNzAGgM1e?T%YLs28~|l5g3RldC09ok=_C z&GwL@^A(wBh5A}p_mFJyEP*xy;8{BbV(1g~54_&2JfN3y@(1&$JuS2be7Y25wuF(m@|l8)DUJNcJA&$IVXr}ZZu zqk^VpvW2Vn2%tH)563p05ZY?u*L{O+z33>i%N3|l(8UlC#|?fhx$v&FyM7{`T9%ZFqM@F#I0 zRULc729)NSqLT!o^T*blpf_*cs8J2if6q}o`F+HiXaw;xtGo-8(ur=jYWnROLIND9aCCdOx#@Hi819Y=volI z5fd@|sMZC2jSHMpgyd|lb?igoGzcUewLdLbNalQFn&D^IZOwOUN7IDp7r`_;)tLE@ zpom9Y;9$ZEu;(#4Yw}&}AV z9*Tc>8kO+tC_f?4I$DJ+is65^!5!A|oF?(QGQNN754XIKgxvO=A?7F}C*t6&jI&0&i=@iLCm+xk^ z4|sU1NYP3Vnp&_D%rec+&Kxdg`adswo&twOyO2~1 z*7&-f>hYhF0233b?vwv24WPh_2x}07i8li5t;v!D_*&YjPoL_Fo0yssWaZCPzvTVZ zeur~Vu>xOy61VWpJF1JPo>A1`63WP8tmmnl^wjCjbXmwba{6e0^Q*z3Te{=JNV>}P zljAvdNR-@e{BmP_T&Y11EO=2}HSmWr+b`W50#JYN{yxFx)G_ToEL!h&aq7y-9Vc{` z+!Mt!2(vQe4&IJBBYbkQvaOXp_yWVmKV<2ERjtV~%%mjHcn9Q_7L z*Z7~OX4Dpi;B^3bUP+9tEMKl%8}z9v=s+&6PCXFhq-Yqrue1%lP>4JF|-_na9UHkxjLXrwoK+;m1vqPHu!x%+-(G-C8K3Y>LhM@mbC<0Dr4VYKE-E)_Q zIk*@^`+lz%zn{wr+}1e4ITDV07Bjhf+h_>KcALowV{tW|#q(Z|VvV(hio^RS&h>meK^<6j;CqgBJ&BZj<%D)5`U3LBqT60h_6yo+^j0@1IraM!`50dlman@d@lQaWClw+&LcG%QmbXF{GfYVdCj#1mhR zqt}+Jl(u*&&+^jQ2nHar=@S)ggqgj>`=>>r9*=+mo_FIVd}s;1&ZYr{b3xOl zpAKA4-Tkp0oVo%IH%5tGNd4vTIx1D_BOjhxFXOKfbD1XSnn)!X5%Y1rvXl?}&#UrY zh>C`SQOOF=Imzs)fn`;BLqn}w&w3ov4ALMJK=twMq}Srk_9`!JMKiidgA$2IpTVPSvS( zq5L3TJj5#-Xg_?bz0JJF8;9;66eP-27=@uW1|xr=+n0~xSHF)73AMPaZUbFusVQsy z+q-LbDCyFHIqnP|N;BL{p{@{x7{8&RLA2r$08%uHLcvVPwkVw~;`P&>G^NoK7CxdK zueuv1=JsdK5IbdC#P|vh76vYlG!av?(MTg2V(8d>oTb74ByM{bP?_cR3G}qXl)9@pINT@A>)X!(U6DO!%vMLrurxli8y2t zb1^LYArMaaF@5@UzWMVFKYFZf1McvvwWJQw!{NL$Moy=oLD}WH7GuR8;m+}05hs)_ z5YuayZdFsm9t~2%vFK&P5A`WX-FI4SR+|;X68l!z9&L{zAqip=et!OEu#$F$mA^CO z15w~}pY3Q(&R_fZ@2!z$Ub}ZEXQO3#gl0Du7M=e1?W8!%jXrlqu;!J z`vit#LhvY+lA51(5IIEsO>UAy;5l?>mWp)1bfU`#o98*$ct9nS-y7v|4Gw7qnUOSm;$l!Q67BEhU(zD7dnK5|G@tE9|Y=z zK1F;nFq+Zcp^r5sBz!AeBwBN<7CNOvV#g^MvrP7R1AFR;_5xxE#mT=SG&Xh@=ufCF zoE#Hi*5ue{_8<600N04I2vMVhlSxj9OY1^g)iFW{u6Ra9M#^8BExH z1vSL0f8H?#l{k5SQ;3rb5O|cL7?FQ%vz34P(~~kvXBp+vTr~7fc7tgMwo>2Io-cki zL+?;ZY6%Gm(coJb4UrH+k^!u)u&F_Df!(@{2(=wy$mX#71l+b32NmmDHi5H7c$IL= z=btlYk7ZN(E{2aP7EQhQd~V!HofH<{G%p^=f!dBD0)9=jsIL9`y*uh7rExKgdNX}k#Czugdt07S(MH5rP)T17R+a)Qp&}~6I`XR7~9vS~E zE!B+vL&zN~q;*SHvIXB0V8p{Xk?EIM#_+_J-VcV2uM542Q8FY^NZKFT4C4XX-*0{pd8dw}r;JGK~b>U7hBF>TUiURCFZmjsgjimw%Y#~qr zg59DY25F6O&e@1Is>$JR@ZWfR52#*TNO5to5Yg_G%T{knyz3OJ;+D%RD7bISi^w&P z_dRqTI#LlVqS6WhQht3V+KvkV33Le>wXE7P?g`IOHfe-y)1~Vob3ia;lQzgOF|vtb zj5#=O+0kbh={0@rEu-w4Lrkynw6Z3~@Q*W3y7~<1?S!HAwikvs@G!c6U_TgXyu)g>f!%v6oyl-XK$8+24}<}GMG-zeT^p~9z|wUi zH@<3Y$b`94WwdM%@oNMtVsT8>HmDKh!PC(2HTe|i#)HYHaOP9&j=hm_$eswaQt-V` zlKjI}=XYH(Mv8Q~<%Ve(O8m~UFvm}AQDnP?=2P_kos8nB(#x zM(GBg-+NaAN!kKFOGZY9cF(mTkv?AIX~Tnq34rv0|I3H4wo3{0$ZgBC*q$;>!>la) zm~ACvx?6Y_n2E${7c__Anb~UeoUeCQgZGeJSKxL2pfo(=iMJ}DJ)(n>;jB$}LNP$6I$C5V^+4NeP!5PFSxzKAI(v;Zt~#_e7tvdMBVhFecMILN&A{9y}oya{Qt zvOPnK0=@4TBl^8x>Rt{3QINyBUuC*4*;A(^nLkzeP7Kg!*Y*wR3w<#D4Ukw`Jvfv~iGZ2tU zyF2QJ!4!;TUJymXI`B;`l}8)&&Ibhr4dGNVbiWE$G_kp5#_Cb+JN$#~?YAub=7zW$-V zR_HEiXc7~V+MM_I_a`<#9aqgfq3I;c3y9v15|eO5B(9lp&_Nu8?R481EKw!p-_=R( z7KYHXchy2ZzC&=XQeknC0@)j_n9)n1SHry~qmttI@?JGIE2mNxW5mQk>5^i}^RFw7+q~02!$Ri(F zhD02*TIrD|Y7$g_7qL45X!3+X(PeDSD?T4tTW9n-kk%oUd4|Nt1qC13=>haU4jK|j zV4`}kOva9FkBJF7K+u5*+9QCl5U2;2!kQctc?h64*%lY^=017wZ}7iI zHe8^ZJN|5kSO_gmSobk=wL}lWm>P%1U(Ivvq#NL|@6@lxtha6_F2F72V#|2NxA*xh z6Kx7M^Zb@v>xq(V3JC?Udqx+sV(2@(K+#jUfglFXHOmE8&97uNIykd1Mi!zfg=R)c z*ulX;3_aPiYYWD_iHR2I+^XL?`LXF&4a7xLh_;=mPROoBh?Sl2u_B#ysH3jI#*GG= zRvA_bZ4gxnhYk*eK|QcBG(?;M$%+CUhX`!%$w0wswWta6bO~TgqV*sWC-!O6>_Ho*n@rP4dP;4r zH(O0T=^-`{!#ceSD`w?v4Rr=>l(o;|@2NlawAe>i%n7R_kKq4UNW7V3^Eb^3ubk0d Rfh{O$J2bS_Gt|tz{|EaAherSa literal 29079 zcmb5W2UySl`!@VeO4`v5DT;~~8df_Ep<$Iug+kg%sf2b?Xvj)ap+#wH4}}IQG*wz? z7)|w@ul(-+^Z(z+eIL*9{EnaFOMO1?@fz24UgvpUub>0__OLMWGg1`AqOGNFKv7HN zDT=0sfgV3mGjJEje-vFbj<^`wpK@`ta5_opS-3dZ+Pm1Ewp@Guq?7Y$d%G=?a+0!} z*4ntZI5=;Yk~;TaACRP%5=7UU02iqfOg6y>;7TV2KI!oBYu zZbvu|f2JS1IJDY`{eV7)?UBrN=hp>`h>Pl5d0GWEt&if}rf0ZG`~B_PZ6?8*Kl!af zL|?RaW?58Rp$p|t5^LUZ@ukw#sq%7zLvArA^DnjL9Bz;K7-LQUrSpOF*K0ZqLdxpu z>L-L>M@aev1_o-y^4j4)wTaU0>>M07v@P<4goTA~l{={6Q=)!7{`loy#tIe=4vrX3 ze*yeXR*YGmT)_Ze{MC2Y{-w(O?XJh|?5>}Bb4SdS^@gR9IM=Dyx8q#+j4sQxAMoQ` zv*!9?Gk3b2Gas&mhO#_9oN@g}N1@gDm#T*BlH!Y#Un1m7h zJjXoG>1WOTLm$#j3we*%+8o_zO6ecn;Xbjx;QaUCJKN4${u*o=8yhRVx{S?X_`TSs zV|nZ=MfWzk$1Y=A;~Nvh=RGsD;mFaWG}PPsI|5?1SjV6L{>k=LDs}!_+vT#W%PPvt zm#77>`jwO@y?*@~Lv=aLB-e6!qCfBAq~w_okCR+dJ+jWWN^UYOFgjbRy?=jzA6P*$r)NN7_Dpsw?x~yZ_7?@o(S1=cI>R zyH<%02OH;{=_$QTJNE0>`y&g#Tg|OLK07JBWlLxE#Fw}G56j8Pd3l5(av}N{Q0rpzpK8!xl2Rs zxxPw8S(&mucTT^=+v{6biFrc$#mOHQ-`cWL%u9BYpC{>XF|Sf!zqIf-wRBv%S&g-eTDu{wxBG z&ra$pY~Nn~>eX_+J6p@j{h0cHfBg9IwxYA>a7!8!K5mq1K(~6kOX*9m+2CFCnAwL0 zsSdve^^1PDn4}maG2Xj(PujLkdZ*V+cH^Hyw^7ZS>#Hs7?b-J1+4F1Y-Lk_OW*^#4 zRR(f6I5;SuII-Si@&^lk#k_iZb}c{NG~oSvqo-!Y1qU)|C?+PRqS+sXV-pk2N7i7< z$uf?VIP8yQj2ZG%T9`8&nZB>!xa8J`{r-3F3SbUpj+auERaHZO=dQ2b;eVNSSv$sYyR;fUMY&PGvdtFQ5`lM1_bjZ>AODc{*zKh1bsPk+D2?x}9ttPA6o zJp%(9UcY%$h4J?d2ne_>W95G&^Z4Zy41>e@^W56n+7mMJ=RU2U`}?N9>}*b~i4`H-n^&yfah{W^yh6v+_x;b04hbp{BM_9N8y!skjQ7@r zU>NH@@4YLhhd?0X@yli$AtP}5=Rk;%ntx!v^8mNW!0?ABbW~HK_R6L#t36pZO~NvE z?FtsBPKj=J9bW(bOit1FPdR7(bdpx=y7-4Pghz_o{LwWrd0T)+}1Rc4H?VUChw0;cTE5D=TG^&cZQzhRXmm$ zCJE z7TtWbKQ=foPhmQ8VW1_=M4rt4jT<+Fqzs>Yh)3{=$1?JJE46W>*18nL67Ab}?}qsL zE-ii#`=TpN(fKO_W(}EWgOq^0-Mx*&T{UzSde};t&z{|^C}vmP>G4Yokti7RJLH+J zE@F|(c~Ai>d5?|F#+lzE0oZ>Qoki{ptgM>9hd*p9Sc-%}N8R4({;Yc7(cYLPR2x>N z^M@Yn=)>k-2ffV^HuLiG9$HlRGcYiON9$gC={#_~=yglWp?T-?=j9&kbYEg_ZjO(1 z&rSd2ui@Kriuuabt1=elON-`bM#jd+%dl`_pPYY%6xZF;a~X@jwtmy*&Er1`M}mJvzO%00Ze$ZXTJ&>YP>r6B&XVxSpPN$fst(T1x6BO=@ALHB$+~7| zpvqNxAw|Wb>HV*6ZNLarBN>j3^;D=1M3;;_vZ}dWi)eyH`OCw5`cf{!!}!#=Rrc9d zR#k>$c@A-vBl-uhRI%AZ!o%6IeD;|A7#a#{HM_`C6DAm)VR5=4GG+a$1ADm)ke#wz zM-H7hd9tTDNq4F@Olj=zWLGZ&U|CfN4+2*Jl2F;}*UT?pzT}VnJvQbO5>oHHpkb1r z$r4&pN>lprV}4^Ev$eG~)yS)K^TC7bnEB(FunSXTLcZ)11(lVRsx>o1k77xBGRd{; z>3emH-~4z(Z)fqv6#P5x@-r3zxrkQU(zYzCEXQ8WU&9}mkVN+&EKA!ouKo4xqv8DP zr$?VRmR!2@{>fpsPyu<(h6lUGu`?1*ze`SfoP>4AKe~F=s_vm7u`sops_&SjiXQ&{ zxo_V-{?W~wHXTUN3|$d6GC0UUX=!VVW!v@FMQZKar@418^Zd`)h1z=iu9qxAOLxzH z+v54>qqXrQl3)npUHvH1cWTy4gCrel{%>((>vTuSCBfKB^NRCxKO0o7qO$+mMXr~W zWIcWQG*Yy8oGV_$*Ep>j+rKeIf1SI#_JEGj3V(sejZdFGZ7gs-n{C&@kD;kR)XqBn zPIPbVZqv@><5Uw5V$1!g0XAtMrc&H_yz}CykhC=W+qZ8K&cD+SAe#S*)O}(>H%hw3JPC+{K)s#%SXbpEq~q zt&kaRD_we7v}xTs+U3ia`@IMa4lYMvZ%o+32Ke~OJZ0v#eG(ER@Te^EPBqU-b#>n& zGs}}F{eW2FF_#CPeBj-2e$%1!V?hnOXZOwvXB^9y)x5qc=*GG|WFG@g69BBkWk&)S zHhbNup@9KA7ndKFBrWCX=}Gm`r9FK3aA5c3+{~|`t4OvS)^G2r+?6}0({48WAS*lj zy~$>b0cN7T$bDtW+yoO+yQoxa%l#vty6olU<=Z}f?5PeF@N3afS1*12`ssnQB27QP z+!lE3fB=yA+uWzQjX8Dt*o?t3;DGA$U0#!`eTt;Azi2u8+c2$asBdpCYE;~0R>X_^ z<@aLsE|0D6&uk+Q`l)daBR4lU@3u1$X7gO_g>Lrhd-n8Bc3p~&?(ge64%AO@*TCER zG}QhFJDaBN#l*z4cdXCZ$kkq5Rz^d1ac&2X^@qm?Yu~<&>XI^lxk^z{k)R`Lt%3qC z_RQ^F7hhDLzd4ZqVG1z7_x}CWofmppu#Gv5&Bu%nrx|kr#g-wz_DlaQ${FmPOXR*a z_nT2@tKG-wh(D8`+uK*|^7vKy=lkbv#+jCumYLpvJzNGG;|@ggHT|@#XE~^VRjzDo z%umnE>x10ARziYl!~O@ASew^@A*}jpZ&1{wOP81hcdvSKC{0yWb;)+OAJ?{6zwHK! zRY3;Pl(;Mh6oCX*7R)8ljg5Wr;>D#)mzIA1Je%Lp18iOiwATIY8#8c(ufMnfq3|0w^ljX=v=|W5uL6u( z0?INlF{uHnWV!!5bq{EiiF;FcO+wN1*SmpXVKoRgKK$FxbYt-xDY_s7z$}^@JUu-f zhp2Az@tKJD;q+_H18*&UetpBMkTDsTFX3 z<~i*|@{vtbJe`@>?}K^y`91T0XOZkSe9E;C10sqTK0@~)&4g#9HKQh6NbLafp1Z%L z(9$2B#UZ~(S}RbASY4|}G;fMiTekId^HOAaO)Pq{+Zr1WAa*I`xeVRhw+(a0ztx5k z6cj94n4cv98wfe`WIcD9m8tOy+vU`S$qqMcduD{EP@0Kpuj&5iwp@Eb^0Zl2HRUMT zBo3#m0|WxsKYHiBA~INb(uPCK2BGLnsC*|o3;$MjR#w*Xx;mYynVI0_D@6lu-{uWH z_x$i6Wy6Rdgmva&K%&#LbqAJoOtImRGVi8$|xzt&5YaGv{=%^@i%Sq@aO)uvI|6S3LPu1QL(z-tQ6V)^>EOg!>Md0CkX zDjuVq?h}cPe*#!nufWrlfBbl~t*wm#<1J%Z$>8{-UD5q+y!Qi%@sfUOC&_2-56PQBm<8zlXnIeRJLg4tDXjZg{ZSWerss zrxpMt(3)<#Qbk3D+&izJAh;=EPY9`D?p$BHVZ)xix209Elz^m@98DA$+ZiQ&*#{b8 zdB}6&3y4=ih=jo?w9eQji~#p)h%DV>!=XQ&gS~QXmEsEAE3!t9L%*t8=D+BP|Hf_q(K&Mu% z6c&zm8U__$9BUJ6?#CqG>@vo-W@q=$y`V_yf)W$gUvPJS)zw>->d>P(91NUmNw^eo zYn?5LzO=zX|LtM^|B)>J*DofO?^1YoKvq^3xq(hXLIPz$1r~*OOpJ`$3J#7)F7J`y zSN-+T`j7UlexIUGYiDN%9POW$wi$?A+H=a`o}x3oDnnBJdayd~%<>*L@7`qsqjKbk zjhuhdqeoVVDS)cVz+mIplTWB-O(;q)|iXQkyK~a$a2$GrRrw0T*|Nd@uaCNOh zJR{V_MpIG3MHvJ!%CWB(6I%|Pp|y9f@2y*gF@l#s6)`Mde%a5D?rp4681_YkI}7-z z{!q!TF57%DtG~08HK;+uZ{50zCALmp{_xPveeX#&i!06j;C^D5{RR9`8d)Gs zWoBlUA^~6i{yA5|6r+Aa`*@!I0gx!;Wy=I9DtT|r6_i1K61bE20HvB>-3I zMB`pYr(CAzzxsS}vP7+w`TThW_<-@x_9cshaHGjGPi#X`QIRwTm2$VTH!v_*9JX2o znf8cvhRJ&gH#vsgP2%9<7@UaUwX5U63iJeIqJF$l1k$x$|n)F+(j;7n`tq}wA5 z4f3Y3Z@AKZ|JM(^W`14H&sQw3sBoP8VVYEr_#n&AEZ=Vg$WMq1iog=C#S2`(1*{BO zISKXJgc+^NA_;Y1tj4)^gfcS%)DjXB%0o>Q6#F^*^h%PfF|s737oPtve)UY~ zVZ{8N!NI_kl#Taxxa}Kq!c{nN6-B2$20)7dkQf$SFTDWuG*M24-??MlXT9&i&LEVw z#}Tpe9D0@jU$L)PaRrGy!lJ*r>eDBFFgQy~)5WmTBH2|pn);Fw=irk=Re;ZpsfHWU zJ~OY`$(x#*3dj^t^z_{47d9ITBPi zuna0U{XBj=Q$Md>p8k^$7e4$&X|=K1r173tCYNt_2`i4vEuAGH8(Ym_g;owkfJO>w-NQr%G`s$Vp^DxYRSyz`JU`O?fbDx7( z`ySH=-ID+oh*J20{U|QUB*JEPN9;U8-Z7hx;MQdvx|L~-jOKIfyVhL%^Q|mstQE!CSTlzxej;TVuQi z6ICQ~4>uF_7g$;OY7XIB7~xyx-s>>@P!>O2?{^mqd99F;%12AgSRHRg=yE4Fw}6Zc zDPMMt-J9N_gG6#hA2s z1!=MN_Lp8Jiz}#(70+V@)Dj;Yh!6L($*VFf&ak)u?*IDpX8~viNQ8kQA^&;zG6$=2 zTU*=i{(d?i5;BY&ac_lxPw(GTT`2=qNnZm)_l3wzDe)G0G6*vGTod`+TZ6so>Rc=p zp+Qd!AF)zvckf<bfr<`BUjYp0*NF95(U#SfI2*`l4BKMyWk^pO3qj)4u$Eo?tA$ zUm9jfB4Hre!J^yb_Emu1}PKJr0vByldR8zyFGcuBOf;NY4>W}X>-E5Pfk4MC$NA2 z{-;N>mYBS-EyH%lKJ=3`Eg%H4hWDwr_Y{Hmqs&pio;>0>9bVF}$q@H%MD~bW>-)Sn z$)E?Un=&YieX%3$`CHDkJPmRkX*q355**6(X)gnV6@XXaw{J6S*zjmT?Bj{V#Kh93 zCjI&6#l^+tTm)d~=;%P)bWVL)!nN8tfei&{8PRNx*`GVda`x){-1J}2?T%PlM(M}+ zww-OM1Q;D3>rs1ZTF6ahLSndZ@nV90f+h)mggrz(Z3%rv=l+#fq?mv_S3#yWrTtxg z|0z(i{2j{3A{xNgW1r4u^bEawwEa6?+u5eGND;yfDP^TGuMvRA>5 z_cq3<*)%?+0q=P(#rU^sG>tabtFsx!{$1X)EI$VtYQQ%yhHb5@D$6*#Aa8qnds9A} zOH_H>eQQW&WK^iOilSD=!0Dshl`cP1q|w0$R3S!!)L)ctlV+_+s5oUh)J!wDv8Xg{r(*W2$!8h z?M}{kSj39@(Omnk>mc``+OZrxdemd{^*YwY?PWB$%C6I6WHTWqDTjf#tBYoapAcXV zL2;}nK=42J`yaddKCg^Ql-2?+omh!om@}_>NU>WTPn$EGk;}lrF77xl^+t){`hTR4K-?Dcy8OF^|^CfR)pL zY+{YmhsN+CXWBQ5fPS-wEh0TSUW@NuEfB!o%Wr!$S8#LtgBYWw=H})IVkqX)s5@Ry zLei4^6(mQ|v#q%XHNLc}ijE3L!3WmE60v@wWIlDy;y)j(X$M_GBPJ%6=kZ(oOK&fS zpkNrm6)2TQU(Tirok^4}Uz}Sy%okSBGOXi0xJds=tgRyjE~#_A4&t%@f{5}!lt7L# zi>_|HYW?QToBOBjQ#`?f{(GP|gggW?`hrS&;#mNjpk;HSHd*;*Aqmf_{&S0fyCD6@ zy>rgC`iF(FfuQdG{yh``87ZfheVYN_t1hQ?zKdxr-a6suZ2@E>GM412)YX?#i;@^4 zWAjBvqZf%$cduPzPE1NF>+CdJ%u+6sdw;e=_$6#U;z4vYDC>uiGbUD6r2d~G%S~(! zjaRQXNjTjl)?A=S68r{UL5vFH)i?7%bQ8I?~L?Nc0`JR zpCI^H?5$e~(O0yNl9(Ppk^a8tRM{0e`b}4_(UDc0QY7J;#|Ob!Xk_iW#cd=$s_@l+ z>tZmd+u<+Jyog7{k$bgh|9t_liUl#uS0_mo2@3_mzfEtwJpeC!O}JGXFp=LVN zJ5{abmsluL*#&Z}8-osI1>EW(6<%ld`NcV!f6w^Hpuu_FQBb>tB!D(dwzRU55hs`- zhp(^sP`0#@nY(3d2iHmnz`+q?WAS5%_xeM--uZknEB5F?mM_QJa9Ei4BK!@roM<9S zRIuJEV1p#hU;d*Owl^uZt7~cs<6&`&(uMg+B|=CHwq^+Ko*Pp;VQnoCuPJVY+y<(N zTCD5DFS)SFqZ+!Jn=6lO<_pBr3vQFph?&p=vroUPX5V&mi9!kjU7f`JiZ@_CKv&R1 z`>d@8MIXS#Bl!>`HuE%;b3KdrDT1~pG(~*bb$Iln{znNYW_rCzM@wrF7*H}YGAYJ6 zk4aY3*GNVU_|{EV8{5wx>vWxjgsxe#L24tynstW=AMzLvj7L4V8(bEgK;e%T>42no z=RDLjtVBD2`hsPv#i9hzOoiXQ`=pCeTZT*z_6eq~ZZQw~zqPUx-FJ_{-rl~ly1M-B zTUHoUs<7Rf9v_rgwcE3e61i!Rs8UsA1;kdj^1g{3Dp1FP=XyPeuB%qBrlHc)(=YrQ z-}}irjcvAV?4?yyuJzoJp{fyJ-sn>V5F~L=#0Y}QBE6O-qYn1NhGldvIWD)u8Z1E6{qZYo6 zjD)~uP+3z$@bbiJ!xP)5d>ufP**_R6i=jJ+j8;~yuHEw$6b%un7Xy3b-hss!LDVNO z*Q&O*Pun#_6feyebq25N2liVIS|1*_rFcL;9&=CqMfxu|$vKY?1u@Z_iH!#^#UezH zt`R^EwNW=v0Kxeue&L15GR3r$>Rs)~QQis+@lE8DuMM$bVY_EYdALP=*9l*Il$DzB4aH5W_YT;lV!(xf-a)BdhH?e< zep^dTP0dJ}f-LL5P@_KJu;oN8`%cd(c91syg@rqoaUP}&@`A#`_GoI-quBaK4B8-Y zfF%^(x|MT&e%?PN;MxJiuH#l#R}nvx1BhjOH!A zE}?u8SwRGBU$xz(mfbb{hE*;n=9XuBfB@DqsBo?VT^)upK3hHB!Xy$g8{J=rVncuV z@`Z78SXkJA=~mIb!%>T=hL7axtuK-vMnrJFy<}Own3?)DQVWwr_dj4>JNlv5!>70MW9hOtJecsg96^?3QRRNIavc-lku+1(9jT!XPA8F1zM@% zUj{*+2{r?PR|fVm6k)7H!J(V#^!%v@j1I=|$Rn#;c8LzR?%WAR=7UK{f<((3=aU%a zK`xbJK^;GPHUtpE5-cJJ7>^%UC*dT3k5T;hACS>L7#l1eHVW=2q3eQ5*P%B)=&3G+ zMW^Q_FPX(a*ZlbLgTKDLqvJ+Igi+r*Aw(2f zRLIl){rx8!`Sth)3P==vXw+dqhEsI!Z6Ba~wIqW$6bybZWLo%wAA#dx^QZU0>(k$} zUaYE8c5XbFM~p1~%zRf+$Hc)9(N=Ov>9J9&<=`jA@v$-Gy?d`!KZEK9Laq#=)rj@e zv^0xz=S;c#V|KoEC8dH&>S&aci;Frqb>b1tw(l~#QOeHC8whsi^d^XBg77@m7exgJ zE~fD{gL6}Upzvua2!IZMXIv?t*jPd1Y@4{BWzf<8KMRX75dK!LZi-BeRj`d$3)pve zmtAekb6j`+M|q(?)+P4n<IIQFXCQPcs|9(nVxmnbXbdi4PUzAE{qzKbO`sEbf(^2bK%@N(%Ds zydVux;wq*%9+nBp2N$z|0fBfj?Mwci3RnHDamPmzjG&bBZ=>}PqX>s+VPSC@wcG8O zp}AkIh)UM+B$f44gBL&|lX9tf4-S{u74W=+#~hAY=DD8-+f6)*>`VTW0|~33PZvkN zxbW-HlMhfqH)XdsH?IH{+}fe9XnFdy*fM@XFyF{(R%|aCD`&c`;22;1u=#&r#C5$D zDpiQ8-w;)Gqc*9anmp5*&H{mPYHA8U{$av=mY*v0@?0{x)UfQ#`Lro$j_}a%xv!CF|+LH=WgXu+XJA%D)E-O9U-J?+PJB5ojU7j{07@CEJ9%r+mvtkz zZr#e+_hU~oBD(lQgW~q>{|IA;iIw?uV9OIQAv6%A0$R)1mNbg!gj}%NqDg@c7A-A{h(Q1F^swY~&UEoIBV# zZpcXd-YE}wpy2UqBNRQj*C?W{|Aw~&VdZKk)B69+>1&q?CS0QfZS(!xCOocPXNyBtSaHj|R#?c04rvO$3+ zB^XBRWBE=566ik^2Z?oF_r{v(*;(4!i&u7HUBT$CWe?i~Jw`c*rqd92H6 zC#LxuH_7i49h_mBPWf<#V0OaX`u|D>8pf{DbaIm2@DnS!O1eF~6EHd+lm*qc4Z~6g zBCvRohce)=U>V{fHMUqNzN%BO`rhJnkb7s`kvqq@b~Nq|{6=-$h=^P(@Zp148wZ}B z(xcpSeODs!ZbQ+rV{u24=NVlD#}Soy%tgLM2U>LTt@1ZOb`VAr2nj?e*znE|(D$G` zg7&Kf&|5@(;=JTiSVPlM4&;LRM^U?6?Iv`Y0XhNrmM%UfS_7D`{I6%MUCS?T#|+9D zfgB-jQJg!tmRbG;J3<|ySE%mXE^kA!=m|4hd%V+o_8e7uQ$&~G;>D){!x~-&PXcG8 z_`!1Q?JVbkeT0mUXS{+tRRb79g{P-bQfd(~Dkc6n9*Q46D%kNIx=U%`bv#J)rIaP) z7f5v6P>v`HR^LM}cyU{H+_t;ZYtob|1!y1tHDtJ0T^V9{=vyHhZ9Vsib7*L23QoYq zQP{f*uX;}>>86SO1rr4h4nE9KWj7n1udSzOo0I<&92}slN7@plq*pSp7{O$`(rV}kIQbwGaHf`ODCzkB7lu!AxV~!XqP3hFf9Bj9Xv; ztOp%_!uO??cBle0KEN9g2XF_yA~yz8Fo8jyaB+yz7J#fiJ{0PeE=hZ{hu7LO+ zQJBS$fEgGWZ$?8%723FwAucXX!&?%*KGFb#)CQqA48W8-{~U}-s7AM%CGJ$aUPv^7 z$8DS}@?nBXns92wMe(?~xxqYl_U~R$UBrN41?vOR*kHCKv=cE({ZA#av*D`CVeTH$ zOSwcg)~|}YkQa3q6%h^=Q^n4!d1qm=6T`qdwc_)Ld4Tum@mM3_(8bBOk9E!J5c z=k)4dy(;Uvw7{bLyk8VH1yzRP)d5@KE$v#{`zSE*fnR)2HF$b>2>g2L$X% z{bOfG*(Gapq!9m$9`Op(b>~r`|qRt4yc8Gq6fJcuW#nr8+ zm8pDaDc0w4@glrsi)F$nePJ^5x?Q_gLq1X7w~sa5yd<5-5Or?4dH~K!b7QpL)BQZh zO1xLY>dXp*vW!!o7F7xsLE3fL$bA+Ct_7&%Je2YzDKE?oDCN10t|4$gY2W1sH-xG? zv~n-c&dk)+EBvU=oY-GgYG*DiOCKC?7w_1M5`i>Ikd~+(aNKRrt;2TKPQfO}uh+3Z zc6SvF4o#UBYG8E<1X4hk66nB)?Q|ZR5T8)GR)-0)Vd%i}^~C&%S=cAGydu;>+v=WA z(SmtUV8p377aEG_rq=|O%ti{Zf6o$!+~_!VL$u1l6E-Lp0|S*I!H|B63=`0#+>*x_ zwruH`aGT$ew4PbsKT@fk5JA^2f7vW=pSju zIt)&R0pMH%2`qMoH2fTWE=r6oz}{9!=Y-y-*6!SS?2%XMhhZl!J70F*-JS~ctg8Y+ z93|DepZXSsYO=yXEqLbFyZw%%ox4aomlMNjQ0i1ig&ue(BzAN!Tn8Qdsy^v&Cl*_Z zY9(lgOaw>U<eSTcd(|)=>-jrld}`g7T+1aI_-y{Tah2hc+Xt*46LYxs#N?s1Oro zCOTlzn;Sss!KqmP;wF?R;%Gz>CJaB&h}^V^9UNXaZr?tl`2i9Ja=_xnUhGKnDH@1$ zM}(11PZtwwS5Q!Zo1P1eDh7G+ zoxh5yCgKa{x^E6Fmq-7VJTS2Sx96!udxGDcbGo$k3dB7rN*TtCM)XR!o5iAhgN~>+ zz|SIbDX&RxHuJs6!NT+BrsJ}cS78PxdQ}~h= zMC6c}Ki@-;m3ZF!~f_ackrQ z<5E!1X&^fc~B^(iTN%@_?hTBsYz0S|1964arF0Mg~Mg%H3kf6pIc~MdN%a<=hixfbd93u&WSlEJD z<(u=?B6`5C)_PK7_$Hd`1W+M_ z-@Iusc>Z^A%VrTj0X8-^N+YcBXwDff6y*rMm!FA;22LPTCA^2@h;mP(=qhTFPzahr zg=N_kuR(I^?wP@L)ThEkpQ6uca7Z&g9BdH~T1p@vX-I*2Ujeld4DVt}5xeac}{?m@|iE-~Mb5GL?PpvF^$N7}Pb8>TLk zQj!pB2PLouGz8s&yt6tcx$hzTSv^bRMoob@%%VJ-hr1Jk6n+(mA&*|4T`%k}AZq}d ztdp*CnMxJh{&W-~{DKO+F0fOQZbItQXvEEktv^nIY$qd(vB`voD*N1LZt6gW*)F*M z;C)g#`!L+tWkM;&3{om-g+-?3fNtp6TMergBx5*@h)oLAso$TI$dCX)w6$l8n@*w4 zf_JM8JLwg>Zx`8$g$Ry5fn#hvI&)IdvIzi74?GR)Ah06eQ^_RMFFhD)%7+kAKvS@G zOZ}R4hvQQ57hiAXHFYi;0M^atObub7P;eP!_bD3RykXzHQsA2=^mb6nSPLQT=8ipI zvGXTx4Lw3rD5R>o5zK8rw-CPgshowvskdPRjHr3WxjtvGFSbmf z1ZEqW+Orxl+s+>1ur_G}#zm8ouVrEXdXn2{^&VJpU7^tUg;)xDL5OQ`cnCK6e8~PCREhXjoMJ zFn?9zhTz`=AO~>gD~Yww!8PeukPH?*5Zz!2XUq{65$e`)m=8tl zBs%!MqDcr{kF`CbD4j=d-W-a9PNm1QUftuYfVfR(}G4T*OozP$? zy>H8&WF#X_l}3me_Wek^63i$sZ{LajBY$|_+eHk+lafTRpf@O8Oa+fS5pAxYIBh=> za2I=?2>i;Ow@EWWDUfDQPmf6F_BH(c;>+%&q@=7^R=~|Hk4}PsMJ=sp=L5}DhoAk? z=9Xy0F*ZTt%JIC@A0BhTlQq`&Y9)y|)EH=;CAG8Dl>25y0Bp&3+k?QRUORG?p5-|B zGHg?VrrUDP@}Qv6$Nq)}HyHD02!0AAr{iBLgD4+JtE_M-s$zS{IDdUDtaR8Y?^TzG zi0d0pS4qgPkiD0o!0cEt5>fsJ%74E!sbR5w%PJ~pQ81DY;iyeVmrzq+4Y!KkmeAto zu{;$uSuzLm??~SZ)j-vrYEYmLl(hKW5;nJkEb?FFypApivLPYwkJr4~&k)zNnXb>T zg;@7$3tt8W1v&A0^@hs#75;?JE#(^+mnIm*Zf?kDVq>d;BZTV9`NYYyUgvoi9TWF) zP^f4{@PP%D^y;Mj?A1z)3PH==+4ki|?HBG|!It;O!XkX0h}{TY9{2aQby(s_7vRcFzlUxP40)Ay!f1(;-D#{7^cYg0cY1H|xO-oL%(i?JQ5 zTjc9)#(waQT7>sBxOyi6&pY)~7%^9j3$w1DB(q%jhjRb$&*EEGT+8p;+O z(v9BxVt0oklpt=B;D;{3CDa`7v+=S*ou1_Gsf4-B@^k}vH?U5yEXAL34Y{M=iVYwh zItKA6!!8>9{rbD;E2ai3PPe}SQtK~FHoN$J8wKh6#uWgd6zv|(8DXzZ$mO_zraul zX$>7!ZO)y$^%pb9aQ*sqI9=k~g`$xvMV3Lmu~DkTv6mjT2Tmj~ zPuW%nQl1zbsc)Ud0zRjrBPzq$8ea?Akuxh$um}Tymi+y5w=+!SRc&qf2E$Elo9X5* zn!=|sUMG=JTmR8XEpZju9gu-1)V8Xrss?+WP&pcIED3`FTp{Lzmt*`1>uUsAloDW=wV;{n;RH2 z1U*(8jRSC;LA$skw3*N-0ky1W&xkyhiH=kEeUb57p+iH_tbO(BhP6{v^=Fsi_u2`w zT1f`4EKVa1!}h5H%pgtL9vWv3>>uK#vROr=cqgulotCp1qDcjWAZ9brXMI1i<8dAb zCw@|cfT?@0NwH+k)ZkO~#Z(+9GVy8yuk4AyYNynGQJ7bd(2{nq;n<~w;q)MM8*ogl z`o!*yD!z3T@_^&eiB{zTm2-nNQEC!)0*J^qo3_v!vx*?!8__NJc5tWYJkG<8r5OO`Bg`19>( zl5TvkmXS0v(GnkUNk#>n;sM@MJsX zdLAF$px#q!OWmfk*X|@?;{2U4EP= z7v~o=i*U(e5r*=cdkl#b|1h6<=H}!Cfvli$1_u+=)$G&L`|#OO-nMNm6$m>%r?DH# z3Y@5L_b$)O64EdeJl77RUB595AEq{hKV3?Z11rFUxTd?Kt8ujc#~CDV8Oi}gVV$yMh}4I0$84_t9>*CO2rCM~}|Zae58?dXkSOC1~# z=|_N@LCfqxc=%eSc%cQSSHx1Z2&d7p5sHUiQafUd(`iC>1{Olsm@w>c9WQd*i|;cl zcdkAPe60>s8|huAh(SH}bZi6RUfsd?0F7O&h_Rc(1(Jtu67!} zLAS2dgt3UIXmG~M86A}GT+`E#qMDpd-7le-OAI6FRPW%u^skP9s#3=@H zCdt%zuWZ`7lDXC)_&({C%reZ1mr_meG+q@v3pel*AJm-Tos)0C=hN0H`Lx}pUpcU0 z*Y!BKZ~RWVdz-;NK#>kCoYQi8^mcG?u&RfLN9uKxv3;pmKy64VS&e{V+yh*|z3B+G zHseEbN)Y!!aW3!qX=@S!5d{XjN|gSLcCnp3dzPG5kOyXF%l54Z?aRi#+LN$WYuAJzvXL+_TIB1jBdu}}xDQ>C~z53bd4Rv)ZP<964l%|zXCOJ?`@}NVm zYRz*vewHX_rENqz4C!R0*x}Y?r_|A1st)WEG{DKjv%%BLt3N6VKIRolhBsjfW}?bF zI*J>&ryfj37q+pI03V+i#eh;y_4h@0cPs%A$RaI-H^-i133c3omUj;92Z{0L&1=6# zn|Ww29?XJe=Tv_qA;BuHWDf``F)9!cn&%U8c41%3E!0OV!qTJ+bXBpV*oEy&ozaCx zN1>tmX)Ozlfy8=h95!jbUq_G{`ITnDJ5)TZx#it@eU)PTq?fa@qYSUzpu4sy3!KAA zGtEx}vHL`*KyofqU*CyPS5$kP-~n2;A2^S$q%Yth{Qf``5d%(J>SI~x=*#{kMCxT@ z+bDE&9aA?Dc{nq{DK%G0d%mz9WmtbdYzc70rMDHnMebNn1p-cU8@J+|4I1T5M=~E) z@+YdiA;R$kIC7iVDA9;2nsO7hT+g;GRaSNlrFZU$#GGpN+mY^?s=)eP1sP&iJKcjOQOhqsx z%@7y|ROX#raj=bmoGp6^I+>tB`xO=A%qH~9zH93OOz8LGYPDSN%Z>&%(rhpR$XjHk zdl<%x`SJ$APm;&-9&(gscW6Mb+)ATNn*9A*-rQ3(q}ai?Nc@?)^!Il(HDOm1Ww*M- z{b#c0$WAKDu48*zY~=MOBtO*=bR~#~&EBY%J=dP6PqCwN-#lRrYA1Bfu7bt_)U6|4 zn@lt{{XN}|q7SQj`_R60a!iF(jd&Wq&qz&7NmKO2dhK0}hgONSY{Ge|m5?mo)!u&|Q}^uPt@%YGRVg!%uHj7&nuH&nEIv z(Q~g^vu248NQdC+0u%=_AQ9ai(q2e6B@(u=FIX{ zP^QIq;BD`1chw=%4R|0%#Czb3cHzR+iR`^YL#d8#?_g)`%aTqyx#^a~`N2j+46K&$ zXl+xC=8hf2FZN3j${>w0+7h{qqf4esQli9$STkYq3(U^WRvlTnVnyG$HeKN<@b$uO zCsAP=jm&S*yR*LaL1d)Jv17-U9+>Mm0Pr;74*6BrOfqNC1#&?V1cD_#=nbfL&b0w| ztVXdTy-Q~AyJOqf(()(2AR5AT6?8$<;qOU5;Rm_1vng3Ll|8+8hE~? z)Od$mSEPp^;@?EW;o;8amLxG(n)D-CsJ1GFZ@9+yC<-!$NmG|qz)Bs5>Fgi%#kR8TL%pau`k*+oad$-fsEGY z+CZi#skE#8LMjc49Zb%qY)O=iYiNzyw~4>15xlgC3M7U<5xXaVqBOZsKUPAI+BCjh zN$RxRZ;TS7knfRvrzC13Sz+V3lv~ErCh7m0HOYt%U{|HTyS4 zw-3FTCbuUV%Fu!!8g|g5CDt8UMiJXN=Lv>!`zM<7-Kin4?&bfk@4|4b6%Aee{MoY= z2t%-#8rhXye87G<0-$($K*Dt$4hN{;?4Pv!1gN=*a|Cq%XR=E5`2f&4E0bQ_aWZn=7^?xuZ?PlboxTZToS>qSbwROY^si=6iCV zv|=R`499V{lVg7!7fv+jy~?(G;|nR0lyiR~Q4#tQ>CqR|=JQf@s zg_T52O8UsOC_c`09X$j8Iprzn?)$qQMDoMJH5iiK` z2snGjIQPcaGuyrA^4`ua^T7#mTFH!79Uts5&G+d!)f6XAPd^s*(>!6U2{F; zeJhP)S+OW7|CIDRe>XI_jKQ_6_Y06oa>2FkruX`W-HiV z)klAsgfeYE%2LXJ3^dB#@Av2@)?9S?{)tQ3tPzUXvg5a3%_T0Mg{r+Zy$pC&A6pk4 z!nEW}M-Us?4;C;CnK*(BQ%HmpSXm%=uKacS?zK$4yK){%Vb*2v$7@!>VK!e+&V0B) z^toHNX!>?FJT4Mzb6V%eEA}3M*=Ex+7bbc1NUI=OP-}PW5I}p)G785~JT?053PK*2 z(*R&4HK}4dr>AC&9ApI8_vk4c?NkbQVN??V;RAJ<73u`z$-h`jT-=w=6b%6tatNHaRls@fWgQ<5Rf7zM`FPE?MK7X?yr4)fe;e_4Iy#)wLD5rK6CAr z*bh4)lq+n3kzeU`QwPpHL<ymVqGk47;r09jB z{lu*w8*iTCl_V`Z?%___ZnD}97PBb&7}I7ElL>UqW>tuy4+iaM49i;+lsFpBU0Lxi zZc(A3p@6YC-EM#KDBAT>8#1!d3vs|!4_NLCIiLn$af#2)We4XEgW_fUE2)+H>!ODT zBOVhOA^ZC3ck-+oB}s-Dzc|)?nVJxdz4f(Ky3&09q!4;A*1Q*cQ)r14-Eib7VsSv$ znjPo&uG)Fw0L6~TC+XPLOuHLLK%v*e5^`mO%i*IQ9tGs=x{^khx7YB?3m7W7s7h#$+oEc4@(yhh1eJ7|3|%--qC{vsPk>+LJnW{HD==IZ>oZsiUi`3LC2ulbN&I zK@Jrh>lW;49#nrA|J(1_X%j?n%pKYx0c6MtYz#t~NC#BEa}f)LA`n%;YKokAM7ehe zp<19O3d|?m^dggWb#7j2CtlNWETSbFy}%q+SJT7Ga(&JlFTUMt{wOh*l+4daAoB%x zq@#>*l5Zh-;jvdVzHadT;TN>XyrNA)7i%Dx(skH56low9!e1aOPaKH@Yz3^w!KWO^ zAxGkRwR#O1Ta5mn#?A$*=llQTUrTO3Ok#2=UE~s#NN$yuYKkA3jbtNXg>EiUQIevI zeimI&lciiXQ6&8pMJZy%7iCJiVEn%>TjCeWeven%{^x&w=ln0{Z0GD)$G7k2^13{4 z@4}E^G58xB_u`wF=2j8!BGZEE!{5pg5fX#aDZVZA0mOj;IUfKlpRHeS&hEL5#(W4Q z+;!+AR>PP-2#l(?`RUPv9(++nSG+RPabsQlFBeM$tA-fr)Hb!wLH|5dd&~G8$-KpS ztX9;IQRb7*nhUc88hfzAHu6QOZP40xEC+tHjLaIGzeEmmv&!e_R8Gsy7|FN61eWKo z`UJ9HptFGWHicYg|EjPxroFcgtP%q=&*_M`9 z)T?fK;jM@v2(Wl|9Nt?p6ax#D=&?Xu zmripWq#0-S#MK+n$E3Fsku(CSp?C=Nl zlgx;l1%c~gSAXN-F#`SGWuO9)qdJ{`xv?(rGew}LF#vb@>2ALxUT(HfZkv@+{n^mq zbpIvF>5gQxNtWKI?Y*^)rd|26W|>8J>qdvCETj0Cckk9mEMTCxqLxGeV{|WH<(OOB zgDU22*pO?PoYxXmbtE?Fla3`Nvi#$f8%6>Z{v#nupdw{-~NP(#w|Pmx&^q^d@4rPBzHCzQ3|=cbB9s z?6XrA$0}8~j_leT0$V=z?iz{3v>UEBY*=TTy4s0`y(}kuque`K*LQPl?x#s_%Nm$) z(r&Abe^u#zTxHYP{P=XGwVDD1mOZ8y755U;YS!|reP!a;NzWX;()l-FIkQb~yyzl> z@7=w7rA9g-$e3jA(f&2jTduxeEj*7(CHc!jazh192IScVs$2l6?K*AV`5=FIDp6PI ztTUV()N<5vQwv+6fMnMJzijI6>a2Y8A}o4;lS69yTOWnNU|+Q&+ovBzMn)?!TCvV6 zDBu?R^T!^DFrR7W958mxhet}AJIbEJ6K6CK4ftvAZHIpdeDzqw7=8QpmFP_dnEzZ+ z2(lZFtP+X6uuzw7-qgSwvElpY(t26g`sbSxX(h7e{g7*> z19&i4P**Y$K~!B-9v9l0XA1KRx=@PX_Th<~Q(C?TfejG@oF=3?i}+mMNG)TZ3t(o@ zcGK`2*33PrcTbp$%ON13sJQsh-RD9rA#kdP!7C-=mWN!Yo@ryuEx%>QC3z&W{1`g8 zB6=h_jbf_*4QX-{xjhP_4S92M+bHehGZ=U9Z5f!EWjhZgfNXAH4t68jxA-WVPa$?J zE-U-&;twq|lV1Av9*IHD=og9Ygl?3l&Ze%|8I&>8Yi^H@;J0y|BxaHv!W-lgb5{mI zb2}xaYe^T-AEyDu1>AK?xnd+}Bg9Tep8lUX6iBH53gUMs)90x&LsHzKn#6s=7wDJY zjv_|J5c2vCI_?>6Xq}P3mo(~)gjsSbL2;I0>_r}K$tDV-w-b*;W=$$|(e&*-FS6wO zHC$3>{?(<9FguTGDwljZtx?v~*AN0M(FMS(iYuGk_VQ|p*^75M@5URhs{_OwtJ z_%LHOq3!)g&yNqVte`5{eeoead0;eaBUwt@8H@rU^9P27g^5Y|^>~EPgKE@JrTWFy z;8>V@Iqk`?kU!MUCPJzv=I7^Qldx5JKwh5l8LF+F>HnVP1Z7$I%RReyA2_`VspGhB zqIdm=S&rOIc7u?>z`#)wyQVSl+qA!A$&pb}H(hizHPsNXWu{^>yRq{9e~(U@cA1Zl zoBO$Wtt^me190+%7R<_=-$X7D5l6S*?JFv>iGAM54R*=iM}jOyj2IC+fKS#yj|DVAhjef2Ci`fP3d8IV~;eMh+0 zBWL6rQ4NPLovCGpmq;VnYv!b&`)A{gel}VjP*AmENAF2X_PWu1caK>cnpC31JP3Gv@P?^+p^xmTXTsf&kM@0C}SrCk|yx9F?#v zXr;aQDkw)H(HZiblIEX47CBQWYJ5UCtZ$UxeY`}t>4cpoN-EADI{BS-`xW%7#f@TPdef{R|Gz?#rbso$N|)uRBz z#EjV;(Wx2odBfRPJ=@W;NgiDzi$Eh2u0&^DQYt@ZZMN@rQROv~j3NyIs~GJ2L!8AY zy$Vv5aX^DTx518mt1UVvW>59#;O_?dv>fDz+-c#>?-`in@B%aLkNS^B4;af?94##^ zORxbOn9iIrqYv_&M!ZIvw%yh|zc&FA*lN@Kx^KAfBo9W>O%oSBe>As)b%w{#55JP1 zOKzzs?UMWp_%- z7#h!Lc9{_*!;IN6c(HH$KI`CfARyJ}Dzr|F&(An84-^G$tMNb-qRsxjd-aMy;tK3<=&RYUUuS+Ev-7#@t4-$cc6U<1n1WisZNV8f z1x-YZ#PD-Fua2!~E5)-o@AqN5= zQ0U3>R!>h6YcA%>E2`rj;FrP>uVE{*Rkd!)oW>=QfEO8a(4@(}1;$vyHQ3oWWqfU) zFL@3v2z~;8^D2DSgLI z1xWkKV{SN73#3chBDuxXq9;NP@p4jj&2voy&Yx+wO!sdwC7zXt;WV0!v<8}TwqJwo zVh<~D#OVw~;^yK%U0hu1K_6UlJT+iBIUl7$<*f^gd33=^9iImmy!#ba_ncUH6yhG=$cqHAr7Qm`A_4Me~dk%qKgdr zCaB|#@yVO;23}iq@k~cRG0M_On_II=GgHvPG+VF;DuS^X=F+N*F)lO^($H@2qfsGJ)(}J-fQ+ z^{K&c_MyNUK+#G=g)W71(0h>1C|TeS`wnTD^AG4E8P1qdgh&ONDbVkL36a z@d~f^x5&X_S-of)(L-Z!%SI$5B*@V(*w3@_h<+|u{8V+kuWjTnzP~fMk~%tM9VXQO z`*5g#8)lX6*bO5NtOD&)1Ld|#qPosXnWQ0WNp?2%YpRqEs;%SbRbG~z@n{$@`GZx!7$I>6?4jM{GC&Mw*R>Y|co-DnWSj>rJkT&I3$ z;Xl1h@f8@Dc({Y)zDP6%FLNmQVRGU@-j?636>dx_EFN8$a3iSal7wKDB-MxRUxG$l zz&pt@*P6U`7!s89?EB1fW~}*NUD!Mj`E)5kY7;8tDe;1$zdt6)UMP z8gfn!A^-^&5`~Oxwh%&|UcWRo83;ZEBuwu^PcVC!q2X24G|oPv66%KcAwFX|lUo#= zz^Z4s1t zT~pmYrlx3itEF;-68Q~j>Ry3Nh;in+9(uEtGztDy)%Ei;5OiA zF32uErU9=_1UaUta73HRsR=*Ed;E~xSg|d#95`RYY7f4NgV+m^O>}3YbbgqZ{E4xv zE|Ub50Q>Em@!HoaD?g?b%HzU3b^Mmc9I}Qq3>@5wLNQ>4DdEd9vttty`tw%D+@Hff zwWhJ8yQJwadw_6k%AM(U+r{o)>4hQ$ZJ3p`B(BgwRNV-3ih<$T;kMG{DB0cU1enVt zC{qkQvH+3SDKAqGe}k1xq!v?3hhqH$F>yd~N(f>kk7^Omm4RQsFVHdzXu&tfFL}u$ zHF*9}Ln&DjoFL~SKwTE!xpU@5h#a!j6Kyav$!83IV#Di@^Hq%Q2ynJ*xega9>$ns$ z2nfk7RHIQ!ycA+9Ir)Jmlm)xdAz9_^fQORve;DO2q7u4Y_6{9QJ)T}()Ot#nByjOw zWAVyyp9XOApnnwGo diff --git a/_images/cnn_12_1.png b/_images/cnn_12_1.png new file mode 100644 index 0000000000000000000000000000000000000000..eec7cc23bbb5078cf01807e748f367404d9db369 GIT binary patch literal 29079 zcmb5W2UySl`!@VeO4`v5DT;~~8df_Ep<$Iug+kg%sf2b?Xvj)ap+#wH4}}IQG*wz? z7)|w@ul(-+^Z(z+eIL*9{EnaFOMO1?@fz24UgvpUub>0__OLMWGg1`AqOGNFKv7HN zDT=0sfgV3mGjJEje-vFbj<^`wpK@`ta5_opS-3dZ+Pm1Ewp@Guq?7Y$d%G=?a+0!} z*4ntZI5=;Yk~;TaACRP%5=7UU02iqfOg6y>;7TV2KI!oBYu zZbvu|f2JS1IJDY`{eV7)?UBrN=hp>`h>Pl5d0GWEt&if}rf0ZG`~B_PZ6?8*Kl!af zL|?RaW?58Rp$p|t5^LUZ@ukw#sq%7zLvArA^DnjL9Bz;K7-LQUrSpOF*K0ZqLdxpu z>L-L>M@aev1_o-y^4j4)wTaU0>>M07v@P<4goTA~l{={6Q=)!7{`loy#tIe=4vrX3 ze*yeXR*YGmT)_Ze{MC2Y{-w(O?XJh|?5>}Bb4SdS^@gR9IM=Dyx8q#+j4sQxAMoQ` zv*!9?Gk3b2Gas&mhO#_9oN@g}N1@gDm#T*BlH!Y#Un1m7h zJjXoG>1WOTLm$#j3we*%+8o_zO6ecn;Xbjx;QaUCJKN4${u*o=8yhRVx{S?X_`TSs zV|nZ=MfWzk$1Y=A;~Nvh=RGsD;mFaWG}PPsI|5?1SjV6L{>k=LDs}!_+vT#W%PPvt zm#77>`jwO@y?*@~Lv=aLB-e6!qCfBAq~w_okCR+dJ+jWWN^UYOFgjbRy?=jzA6P*$r)NN7_Dpsw?x~yZ_7?@o(S1=cI>R zyH<%02OH;{=_$QTJNE0>`y&g#Tg|OLK07JBWlLxE#Fw}G56j8Pd3l5(av}N{Q0rpzpK8!xl2Rs zxxPw8S(&mucTT^=+v{6biFrc$#mOHQ-`cWL%u9BYpC{>XF|Sf!zqIf-wRBv%S&g-eTDu{wxBG z&ra$pY~Nn~>eX_+J6p@j{h0cHfBg9IwxYA>a7!8!K5mq1K(~6kOX*9m+2CFCnAwL0 zsSdve^^1PDn4}maG2Xj(PujLkdZ*V+cH^Hyw^7ZS>#Hs7?b-J1+4F1Y-Lk_OW*^#4 zRR(f6I5;SuII-Si@&^lk#k_iZb}c{NG~oSvqo-!Y1qU)|C?+PRqS+sXV-pk2N7i7< z$uf?VIP8yQj2ZG%T9`8&nZB>!xa8J`{r-3F3SbUpj+auERaHZO=dQ2b;eVNSSv$sYyR;fUMY&PGvdtFQ5`lM1_bjZ>AODc{*zKh1bsPk+D2?x}9ttPA6o zJp%(9UcY%$h4J?d2ne_>W95G&^Z4Zy41>e@^W56n+7mMJ=RU2U`}?N9>}*b~i4`H-n^&yfah{W^yh6v+_x;b04hbp{BM_9N8y!skjQ7@r zU>NH@@4YLhhd?0X@yli$AtP}5=Rk;%ntx!v^8mNW!0?ABbW~HK_R6L#t36pZO~NvE z?FtsBPKj=J9bW(bOit1FPdR7(bdpx=y7-4Pghz_o{LwWrd0T)+}1Rc4H?VUChw0;cTE5D=TG^&cZQzhRXmm$ zCJE z7TtWbKQ=foPhmQ8VW1_=M4rt4jT<+Fqzs>Yh)3{=$1?JJE46W>*18nL67Ab}?}qsL zE-ii#`=TpN(fKO_W(}EWgOq^0-Mx*&T{UzSde};t&z{|^C}vmP>G4Yokti7RJLH+J zE@F|(c~Ai>d5?|F#+lzE0oZ>Qoki{ptgM>9hd*p9Sc-%}N8R4({;Yc7(cYLPR2x>N z^M@Yn=)>k-2ffV^HuLiG9$HlRGcYiON9$gC={#_~=yglWp?T-?=j9&kbYEg_ZjO(1 z&rSd2ui@Kriuuabt1=elON-`bM#jd+%dl`_pPYY%6xZF;a~X@jwtmy*&Er1`M}mJvzO%00Ze$ZXTJ&>YP>r6B&XVxSpPN$fst(T1x6BO=@ALHB$+~7| zpvqNxAw|Wb>HV*6ZNLarBN>j3^;D=1M3;;_vZ}dWi)eyH`OCw5`cf{!!}!#=Rrc9d zR#k>$c@A-vBl-uhRI%AZ!o%6IeD;|A7#a#{HM_`C6DAm)VR5=4GG+a$1ADm)ke#wz zM-H7hd9tTDNq4F@Olj=zWLGZ&U|CfN4+2*Jl2F;}*UT?pzT}VnJvQbO5>oHHpkb1r z$r4&pN>lprV}4^Ev$eG~)yS)K^TC7bnEB(FunSXTLcZ)11(lVRsx>o1k77xBGRd{; z>3emH-~4z(Z)fqv6#P5x@-r3zxrkQU(zYzCEXQ8WU&9}mkVN+&EKA!ouKo4xqv8DP zr$?VRmR!2@{>fpsPyu<(h6lUGu`?1*ze`SfoP>4AKe~F=s_vm7u`sops_&SjiXQ&{ zxo_V-{?W~wHXTUN3|$d6GC0UUX=!VVW!v@FMQZKar@418^Zd`)h1z=iu9qxAOLxzH z+v54>qqXrQl3)npUHvH1cWTy4gCrel{%>((>vTuSCBfKB^NRCxKO0o7qO$+mMXr~W zWIcWQG*Yy8oGV_$*Ep>j+rKeIf1SI#_JEGj3V(sejZdFGZ7gs-n{C&@kD;kR)XqBn zPIPbVZqv@><5Uw5V$1!g0XAtMrc&H_yz}CykhC=W+qZ8K&cD+SAe#S*)O}(>H%hw3JPC+{K)s#%SXbpEq~q zt&kaRD_we7v}xTs+U3ia`@IMa4lYMvZ%o+32Ke~OJZ0v#eG(ER@Te^EPBqU-b#>n& zGs}}F{eW2FF_#CPeBj-2e$%1!V?hnOXZOwvXB^9y)x5qc=*GG|WFG@g69BBkWk&)S zHhbNup@9KA7ndKFBrWCX=}Gm`r9FK3aA5c3+{~|`t4OvS)^G2r+?6}0({48WAS*lj zy~$>b0cN7T$bDtW+yoO+yQoxa%l#vty6olU<=Z}f?5PeF@N3afS1*12`ssnQB27QP z+!lE3fB=yA+uWzQjX8Dt*o?t3;DGA$U0#!`eTt;Azi2u8+c2$asBdpCYE;~0R>X_^ z<@aLsE|0D6&uk+Q`l)daBR4lU@3u1$X7gO_g>Lrhd-n8Bc3p~&?(ge64%AO@*TCER zG}QhFJDaBN#l*z4cdXCZ$kkq5Rz^d1ac&2X^@qm?Yu~<&>XI^lxk^z{k)R`Lt%3qC z_RQ^F7hhDLzd4ZqVG1z7_x}CWofmppu#Gv5&Bu%nrx|kr#g-wz_DlaQ${FmPOXR*a z_nT2@tKG-wh(D8`+uK*|^7vKy=lkbv#+jCumYLpvJzNGG;|@ggHT|@#XE~^VRjzDo z%umnE>x10ARziYl!~O@ASew^@A*}jpZ&1{wOP81hcdvSKC{0yWb;)+OAJ?{6zwHK! zRY3;Pl(;Mh6oCX*7R)8ljg5Wr;>D#)mzIA1Je%Lp18iOiwATIY8#8c(ufMnfq3|0w^ljX=v=|W5uL6u( z0?INlF{uHnWV!!5bq{EiiF;FcO+wN1*SmpXVKoRgKK$FxbYt-xDY_s7z$}^@JUu-f zhp2Az@tKJD;q+_H18*&UetpBMkTDsTFX3 z<~i*|@{vtbJe`@>?}K^y`91T0XOZkSe9E;C10sqTK0@~)&4g#9HKQh6NbLafp1Z%L z(9$2B#UZ~(S}RbASY4|}G;fMiTekId^HOAaO)Pq{+Zr1WAa*I`xeVRhw+(a0ztx5k z6cj94n4cv98wfe`WIcD9m8tOy+vU`S$qqMcduD{EP@0Kpuj&5iwp@Eb^0Zl2HRUMT zBo3#m0|WxsKYHiBA~INb(uPCK2BGLnsC*|o3;$MjR#w*Xx;mYynVI0_D@6lu-{uWH z_x$i6Wy6Rdgmva&K%&#LbqAJoOtImRGVi8$|xzt&5YaGv{=%^@i%Sq@aO)uvI|6S3LPu1QL(z-tQ6V)^>EOg!>Md0CkX zDjuVq?h}cPe*#!nufWrlfBbl~t*wm#<1J%Z$>8{-UD5q+y!Qi%@sfUOC&_2-56PQBm<8zlXnIeRJLg4tDXjZg{ZSWerss zrxpMt(3)<#Qbk3D+&izJAh;=EPY9`D?p$BHVZ)xix209Elz^m@98DA$+ZiQ&*#{b8 zdB}6&3y4=ih=jo?w9eQji~#p)h%DV>!=XQ&gS~QXmEsEAE3!t9L%*t8=D+BP|Hf_q(K&Mu% z6c&zm8U__$9BUJ6?#CqG>@vo-W@q=$y`V_yf)W$gUvPJS)zw>->d>P(91NUmNw^eo zYn?5LzO=zX|LtM^|B)>J*DofO?^1YoKvq^3xq(hXLIPz$1r~*OOpJ`$3J#7)F7J`y zSN-+T`j7UlexIUGYiDN%9POW$wi$?A+H=a`o}x3oDnnBJdayd~%<>*L@7`qsqjKbk zjhuhdqeoVVDS)cVz+mIplTWB-O(;q)|iXQkyK~a$a2$GrRrw0T*|Nd@uaCNOh zJR{V_MpIG3MHvJ!%CWB(6I%|Pp|y9f@2y*gF@l#s6)`Mde%a5D?rp4681_YkI}7-z z{!q!TF57%DtG~08HK;+uZ{50zCALmp{_xPveeX#&i!06j;C^D5{RR9`8d)Gs zWoBlUA^~6i{yA5|6r+Aa`*@!I0gx!;Wy=I9DtT|r6_i1K61bE20HvB>-3I zMB`pYr(CAzzxsS}vP7+w`TThW_<-@x_9cshaHGjGPi#X`QIRwTm2$VTH!v_*9JX2o znf8cvhRJ&gH#vsgP2%9<7@UaUwX5U63iJeIqJF$l1k$x$|n)F+(j;7n`tq}wA5 z4f3Y3Z@AKZ|JM(^W`14H&sQw3sBoP8VVYEr_#n&AEZ=Vg$WMq1iog=C#S2`(1*{BO zISKXJgc+^NA_;Y1tj4)^gfcS%)DjXB%0o>Q6#F^*^h%PfF|s737oPtve)UY~ zVZ{8N!NI_kl#Taxxa}Kq!c{nN6-B2$20)7dkQf$SFTDWuG*M24-??MlXT9&i&LEVw z#}Tpe9D0@jU$L)PaRrGy!lJ*r>eDBFFgQy~)5WmTBH2|pn);Fw=irk=Re;ZpsfHWU zJ~OY`$(x#*3dj^t^z_{47d9ITBPi zuna0U{XBj=Q$Md>p8k^$7e4$&X|=K1r173tCYNt_2`i4vEuAGH8(Ym_g;owkfJO>w-NQr%G`s$Vp^DxYRSyz`JU`O?fbDx7( z`ySH=-ID+oh*J20{U|QUB*JEPN9;U8-Z7hx;MQdvx|L~-jOKIfyVhL%^Q|mstQE!CSTlzxej;TVuQi z6ICQ~4>uF_7g$;OY7XIB7~xyx-s>>@P!>O2?{^mqd99F;%12AgSRHRg=yE4Fw}6Zc zDPMMt-J9N_gG6#hA2s z1!=MN_Lp8Jiz}#(70+V@)Dj;Yh!6L($*VFf&ak)u?*IDpX8~viNQ8kQA^&;zG6$=2 zTU*=i{(d?i5;BY&ac_lxPw(GTT`2=qNnZm)_l3wzDe)G0G6*vGTod`+TZ6so>Rc=p zp+Qd!AF)zvckf<bfr<`BUjYp0*NF95(U#SfI2*`l4BKMyWk^pO3qj)4u$Eo?tA$ zUm9jfB4Hre!J^yb_Emu1}PKJr0vByldR8zyFGcuBOf;NY4>W}X>-E5Pfk4MC$NA2 z{-;N>mYBS-EyH%lKJ=3`Eg%H4hWDwr_Y{Hmqs&pio;>0>9bVF}$q@H%MD~bW>-)Sn z$)E?Un=&YieX%3$`CHDkJPmRkX*q355**6(X)gnV6@XXaw{J6S*zjmT?Bj{V#Kh93 zCjI&6#l^+tTm)d~=;%P)bWVL)!nN8tfei&{8PRNx*`GVda`x){-1J}2?T%PlM(M}+ zww-OM1Q;D3>rs1ZTF6ahLSndZ@nV90f+h)mggrz(Z3%rv=l+#fq?mv_S3#yWrTtxg z|0z(i{2j{3A{xNgW1r4u^bEawwEa6?+u5eGND;yfDP^TGuMvRA>5 z_cq3<*)%?+0q=P(#rU^sG>tabtFsx!{$1X)EI$VtYQQ%yhHb5@D$6*#Aa8qnds9A} zOH_H>eQQW&WK^iOilSD=!0Dshl`cP1q|w0$R3S!!)L)ctlV+_+s5oUh)J!wDv8Xg{r(*W2$!8h z?M}{kSj39@(Omnk>mc``+OZrxdemd{^*YwY?PWB$%C6I6WHTWqDTjf#tBYoapAcXV zL2;}nK=42J`yaddKCg^Ql-2?+omh!om@}_>NU>WTPn$EGk;}lrF77xl^+t){`hTR4K-?Dcy8OF^|^CfR)pL zY+{YmhsN+CXWBQ5fPS-wEh0TSUW@NuEfB!o%Wr!$S8#LtgBYWw=H})IVkqX)s5@Ry zLei4^6(mQ|v#q%XHNLc}ijE3L!3WmE60v@wWIlDy;y)j(X$M_GBPJ%6=kZ(oOK&fS zpkNrm6)2TQU(Tirok^4}Uz}Sy%okSBGOXi0xJds=tgRyjE~#_A4&t%@f{5}!lt7L# zi>_|HYW?QToBOBjQ#`?f{(GP|gggW?`hrS&;#mNjpk;HSHd*;*Aqmf_{&S0fyCD6@ zy>rgC`iF(FfuQdG{yh``87ZfheVYN_t1hQ?zKdxr-a6suZ2@E>GM412)YX?#i;@^4 zWAjBvqZf%$cduPzPE1NF>+CdJ%u+6sdw;e=_$6#U;z4vYDC>uiGbUD6r2d~G%S~(! zjaRQXNjTjl)?A=S68r{UL5vFH)i?7%bQ8I?~L?Nc0`JR zpCI^H?5$e~(O0yNl9(Ppk^a8tRM{0e`b}4_(UDc0QY7J;#|Ob!Xk_iW#cd=$s_@l+ z>tZmd+u<+Jyog7{k$bgh|9t_liUl#uS0_mo2@3_mzfEtwJpeC!O}JGXFp=LVN zJ5{abmsluL*#&Z}8-osI1>EW(6<%ld`NcV!f6w^Hpuu_FQBb>tB!D(dwzRU55hs`- zhp(^sP`0#@nY(3d2iHmnz`+q?WAS5%_xeM--uZknEB5F?mM_QJa9Ei4BK!@roM<9S zRIuJEV1p#hU;d*Owl^uZt7~cs<6&`&(uMg+B|=CHwq^+Ko*Pp;VQnoCuPJVY+y<(N zTCD5DFS)SFqZ+!Jn=6lO<_pBr3vQFph?&p=vroUPX5V&mi9!kjU7f`JiZ@_CKv&R1 z`>d@8MIXS#Bl!>`HuE%;b3KdrDT1~pG(~*bb$Iln{znNYW_rCzM@wrF7*H}YGAYJ6 zk4aY3*GNVU_|{EV8{5wx>vWxjgsxe#L24tynstW=AMzLvj7L4V8(bEgK;e%T>42no z=RDLjtVBD2`hsPv#i9hzOoiXQ`=pCeTZT*z_6eq~ZZQw~zqPUx-FJ_{-rl~ly1M-B zTUHoUs<7Rf9v_rgwcE3e61i!Rs8UsA1;kdj^1g{3Dp1FP=XyPeuB%qBrlHc)(=YrQ z-}}irjcvAV?4?yyuJzoJp{fyJ-sn>V5F~L=#0Y}QBE6O-qYn1NhGldvIWD)u8Z1E6{qZYo6 zjD)~uP+3z$@bbiJ!xP)5d>ufP**_R6i=jJ+j8;~yuHEw$6b%un7Xy3b-hss!LDVNO z*Q&O*Pun#_6feyebq25N2liVIS|1*_rFcL;9&=CqMfxu|$vKY?1u@Z_iH!#^#UezH zt`R^EwNW=v0Kxeue&L15GR3r$>Rs)~QQis+@lE8DuMM$bVY_EYdALP=*9l*Il$DzB4aH5W_YT;lV!(xf-a)BdhH?e< zep^dTP0dJ}f-LL5P@_KJu;oN8`%cd(c91syg@rqoaUP}&@`A#`_GoI-quBaK4B8-Y zfF%^(x|MT&e%?PN;MxJiuH#l#R}nvx1BhjOH!A zE}?u8SwRGBU$xz(mfbb{hE*;n=9XuBfB@DqsBo?VT^)upK3hHB!Xy$g8{J=rVncuV z@`Z78SXkJA=~mIb!%>T=hL7axtuK-vMnrJFy<}Own3?)DQVWwr_dj4>JNlv5!>70MW9hOtJecsg96^?3QRRNIavc-lku+1(9jT!XPA8F1zM@% zUj{*+2{r?PR|fVm6k)7H!J(V#^!%v@j1I=|$Rn#;c8LzR?%WAR=7UK{f<((3=aU%a zK`xbJK^;GPHUtpE5-cJJ7>^%UC*dT3k5T;hACS>L7#l1eHVW=2q3eQ5*P%B)=&3G+ zMW^Q_FPX(a*ZlbLgTKDLqvJ+Igi+r*Aw(2f zRLIl){rx8!`Sth)3P==vXw+dqhEsI!Z6Ba~wIqW$6bybZWLo%wAA#dx^QZU0>(k$} zUaYE8c5XbFM~p1~%zRf+$Hc)9(N=Ov>9J9&<=`jA@v$-Gy?d`!KZEK9Laq#=)rj@e zv^0xz=S;c#V|KoEC8dH&>S&aci;Frqb>b1tw(l~#QOeHC8whsi^d^XBg77@m7exgJ zE~fD{gL6}Upzvua2!IZMXIv?t*jPd1Y@4{BWzf<8KMRX75dK!LZi-BeRj`d$3)pve zmtAekb6j`+M|q(?)+P4n<IIQFXCQPcs|9(nVxmnbXbdi4PUzAE{qzKbO`sEbf(^2bK%@N(%Ds zydVux;wq*%9+nBp2N$z|0fBfj?Mwci3RnHDamPmzjG&bBZ=>}PqX>s+VPSC@wcG8O zp}AkIh)UM+B$f44gBL&|lX9tf4-S{u74W=+#~hAY=DD8-+f6)*>`VTW0|~33PZvkN zxbW-HlMhfqH)XdsH?IH{+}fe9XnFdy*fM@XFyF{(R%|aCD`&c`;22;1u=#&r#C5$D zDpiQ8-w;)Gqc*9anmp5*&H{mPYHA8U{$av=mY*v0@?0{x)UfQ#`Lro$j_}a%xv!CF|+LH=WgXu+XJA%D)E-O9U-J?+PJB5ojU7j{07@CEJ9%r+mvtkz zZr#e+_hU~oBD(lQgW~q>{|IA;iIw?uV9OIQAv6%A0$R)1mNbg!gj}%NqDg@c7A-A{h(Q1F^swY~&UEoIBV# zZpcXd-YE}wpy2UqBNRQj*C?W{|Aw~&VdZKk)B69+>1&q?CS0QfZS(!xCOocPXNyBtSaHj|R#?c04rvO$3+ zB^XBRWBE=566ik^2Z?oF_r{v(*;(4!i&u7HUBT$CWe?i~Jw`c*rqd92H6 zC#LxuH_7i49h_mBPWf<#V0OaX`u|D>8pf{DbaIm2@DnS!O1eF~6EHd+lm*qc4Z~6g zBCvRohce)=U>V{fHMUqNzN%BO`rhJnkb7s`kvqq@b~Nq|{6=-$h=^P(@Zp148wZ}B z(xcpSeODs!ZbQ+rV{u24=NVlD#}Soy%tgLM2U>LTt@1ZOb`VAr2nj?e*znE|(D$G` zg7&Kf&|5@(;=JTiSVPlM4&;LRM^U?6?Iv`Y0XhNrmM%UfS_7D`{I6%MUCS?T#|+9D zfgB-jQJg!tmRbG;J3<|ySE%mXE^kA!=m|4hd%V+o_8e7uQ$&~G;>D){!x~-&PXcG8 z_`!1Q?JVbkeT0mUXS{+tRRb79g{P-bQfd(~Dkc6n9*Q46D%kNIx=U%`bv#J)rIaP) z7f5v6P>v`HR^LM}cyU{H+_t;ZYtob|1!y1tHDtJ0T^V9{=vyHhZ9Vsib7*L23QoYq zQP{f*uX;}>>86SO1rr4h4nE9KWj7n1udSzOo0I<&92}slN7@plq*pSp7{O$`(rV}kIQbwGaHf`ODCzkB7lu!AxV~!XqP3hFf9Bj9Xv; ztOp%_!uO??cBle0KEN9g2XF_yA~yz8Fo8jyaB+yz7J#fiJ{0PeE=hZ{hu7LO+ zQJBS$fEgGWZ$?8%723FwAucXX!&?%*KGFb#)CQqA48W8-{~U}-s7AM%CGJ$aUPv^7 z$8DS}@?nBXns92wMe(?~xxqYl_U~R$UBrN41?vOR*kHCKv=cE({ZA#av*D`CVeTH$ zOSwcg)~|}YkQa3q6%h^=Q^n4!d1qm=6T`qdwc_)Ld4Tum@mM3_(8bBOk9E!J5c z=k)4dy(;Uvw7{bLyk8VH1yzRP)d5@KE$v#{`zSE*fnR)2HF$b>2>g2L$X% z{bOfG*(Gapq!9m$9`Op(b>~r`|qRt4yc8Gq6fJcuW#nr8+ zm8pDaDc0w4@glrsi)F$nePJ^5x?Q_gLq1X7w~sa5yd<5-5Or?4dH~K!b7QpL)BQZh zO1xLY>dXp*vW!!o7F7xsLE3fL$bA+Ct_7&%Je2YzDKE?oDCN10t|4$gY2W1sH-xG? zv~n-c&dk)+EBvU=oY-GgYG*DiOCKC?7w_1M5`i>Ikd~+(aNKRrt;2TKPQfO}uh+3Z zc6SvF4o#UBYG8E<1X4hk66nB)?Q|ZR5T8)GR)-0)Vd%i}^~C&%S=cAGydu;>+v=WA z(SmtUV8p377aEG_rq=|O%ti{Zf6o$!+~_!VL$u1l6E-Lp0|S*I!H|B63=`0#+>*x_ zwruH`aGT$ew4PbsKT@fk5JA^2f7vW=pSju zIt)&R0pMH%2`qMoH2fTWE=r6oz}{9!=Y-y-*6!SS?2%XMhhZl!J70F*-JS~ctg8Y+ z93|DepZXSsYO=yXEqLbFyZw%%ox4aomlMNjQ0i1ig&ue(BzAN!Tn8Qdsy^v&Cl*_Z zY9(lgOaw>U<eSTcd(|)=>-jrld}`g7T+1aI_-y{Tah2hc+Xt*46LYxs#N?s1Oro zCOTlzn;Sss!KqmP;wF?R;%Gz>CJaB&h}^V^9UNXaZr?tl`2i9Ja=_xnUhGKnDH@1$ zM}(11PZtwwS5Q!Zo1P1eDh7G+ zoxh5yCgKa{x^E6Fmq-7VJTS2Sx96!udxGDcbGo$k3dB7rN*TtCM)XR!o5iAhgN~>+ zz|SIbDX&RxHuJs6!NT+BrsJ}cS78PxdQ}~h= zMC6c}Ki@-;m3ZF!~f_ackrQ z<5E!1X&^fc~B^(iTN%@_?hTBsYz0S|1964arF0Mg~Mg%H3kf6pIc~MdN%a<=hixfbd93u&WSlEJD z<(u=?B6`5C)_PK7_$Hd`1W+M_ z-@Iusc>Z^A%VrTj0X8-^N+YcBXwDff6y*rMm!FA;22LPTCA^2@h;mP(=qhTFPzahr zg=N_kuR(I^?wP@L)ThEkpQ6uca7Z&g9BdH~T1p@vX-I*2Ujeld4DVt}5xeac}{?m@|iE-~Mb5GL?PpvF^$N7}Pb8>TLk zQj!pB2PLouGz8s&yt6tcx$hzTSv^bRMoob@%%VJ-hr1Jk6n+(mA&*|4T`%k}AZq}d ztdp*CnMxJh{&W-~{DKO+F0fOQZbItQXvEEktv^nIY$qd(vB`voD*N1LZt6gW*)F*M z;C)g#`!L+tWkM;&3{om-g+-?3fNtp6TMergBx5*@h)oLAso$TI$dCX)w6$l8n@*w4 zf_JM8JLwg>Zx`8$g$Ry5fn#hvI&)IdvIzi74?GR)Ah06eQ^_RMFFhD)%7+kAKvS@G zOZ}R4hvQQ57hiAXHFYi;0M^atObub7P;eP!_bD3RykXzHQsA2=^mb6nSPLQT=8ipI zvGXTx4Lw3rD5R>o5zK8rw-CPgshowvskdPRjHr3WxjtvGFSbmf z1ZEqW+Orxl+s+>1ur_G}#zm8ouVrEXdXn2{^&VJpU7^tUg;)xDL5OQ`cnCK6e8~PCREhXjoMJ zFn?9zhTz`=AO~>gD~Yww!8PeukPH?*5Zz!2XUq{65$e`)m=8tl zBs%!MqDcr{kF`CbD4j=d-W-a9PNm1QUftuYfVfR(}G4T*OozP$? zy>H8&WF#X_l}3me_Wek^63i$sZ{LajBY$|_+eHk+lafTRpf@O8Oa+fS5pAxYIBh=> za2I=?2>i;Ow@EWWDUfDQPmf6F_BH(c;>+%&q@=7^R=~|Hk4}PsMJ=sp=L5}DhoAk? z=9Xy0F*ZTt%JIC@A0BhTlQq`&Y9)y|)EH=;CAG8Dl>25y0Bp&3+k?QRUORG?p5-|B zGHg?VrrUDP@}Qv6$Nq)}HyHD02!0AAr{iBLgD4+JtE_M-s$zS{IDdUDtaR8Y?^TzG zi0d0pS4qgPkiD0o!0cEt5>fsJ%74E!sbR5w%PJ~pQ81DY;iyeVmrzq+4Y!KkmeAto zu{;$uSuzLm??~SZ)j-vrYEYmLl(hKW5;nJkEb?FFypApivLPYwkJr4~&k)zNnXb>T zg;@7$3tt8W1v&A0^@hs#75;?JE#(^+mnIm*Zf?kDVq>d;BZTV9`NYYyUgvoi9TWF) zP^f4{@PP%D^y;Mj?A1z)3PH==+4ki|?HBG|!It;O!XkX0h}{TY9{2aQby(s_7vRcFzlUxP40)Ay!f1(;-D#{7^cYg0cY1H|xO-oL%(i?JQ5 zTjc9)#(waQT7>sBxOyi6&pY)~7%^9j3$w1DB(q%jhjRb$&*EEGT+8p;+O z(v9BxVt0oklpt=B;D;{3CDa`7v+=S*ou1_Gsf4-B@^k}vH?U5yEXAL34Y{M=iVYwh zItKA6!!8>9{rbD;E2ai3PPe}SQtK~FHoN$J8wKh6#uWgd6zv|(8DXzZ$mO_zraul zX$>7!ZO)y$^%pb9aQ*sqI9=k~g`$xvMV3Lmu~DkTv6mjT2Tmj~ zPuW%nQl1zbsc)Ud0zRjrBPzq$8ea?Akuxh$um}Tymi+y5w=+!SRc&qf2E$Elo9X5* zn!=|sUMG=JTmR8XEpZju9gu-1)V8Xrss?+WP&pcIED3`FTp{Lzmt*`1>uUsAloDW=wV;{n;RH2 z1U*(8jRSC;LA$skw3*N-0ky1W&xkyhiH=kEeUb57p+iH_tbO(BhP6{v^=Fsi_u2`w zT1f`4EKVa1!}h5H%pgtL9vWv3>>uK#vROr=cqgulotCp1qDcjWAZ9brXMI1i<8dAb zCw@|cfT?@0NwH+k)ZkO~#Z(+9GVy8yuk4AyYNynGQJ7bd(2{nq;n<~w;q)MM8*ogl z`o!*yD!z3T@_^&eiB{zTm2-nNQEC!)0*J^qo3_v!vx*?!8__NJc5tWYJkG<8r5OO`Bg`19>( zl5TvkmXS0v(GnkUNk#>n;sM@MJsX zdLAF$px#q!OWmfk*X|@?;{2U4EP= z7v~o=i*U(e5r*=cdkl#b|1h6<=H}!Cfvli$1_u+=)$G&L`|#OO-nMNm6$m>%r?DH# z3Y@5L_b$)O64EdeJl77RUB595AEq{hKV3?Z11rFUxTd?Kt8ujc#~CDV8Oi}gVV$yMh}4I0$84_t9>*CO2rCM~}|Zae58?dXkSOC1~# z=|_N@LCfqxc=%eSc%cQSSHx1Z2&d7p5sHUiQafUd(`iC>1{Olsm@w>c9WQd*i|;cl zcdkAPe60>s8|huAh(SH}bZi6RUfsd?0F7O&h_Rc(1(Jtu67!} zLAS2dgt3UIXmG~M86A}GT+`E#qMDpd-7le-OAI6FRPW%u^skP9s#3=@H zCdt%zuWZ`7lDXC)_&({C%reZ1mr_meG+q@v3pel*AJm-Tos)0C=hN0H`Lx}pUpcU0 z*Y!BKZ~RWVdz-;NK#>kCoYQi8^mcG?u&RfLN9uKxv3;pmKy64VS&e{V+yh*|z3B+G zHseEbN)Y!!aW3!qX=@S!5d{XjN|gSLcCnp3dzPG5kOyXF%l54Z?aRi#+LN$WYuAJzvXL+_TIB1jBdu}}xDQ>C~z53bd4Rv)ZP<964l%|zXCOJ?`@}NVm zYRz*vewHX_rENqz4C!R0*x}Y?r_|A1st)WEG{DKjv%%BLt3N6VKIRolhBsjfW}?bF zI*J>&ryfj37q+pI03V+i#eh;y_4h@0cPs%A$RaI-H^-i133c3omUj;92Z{0L&1=6# zn|Ww29?XJe=Tv_qA;BuHWDf``F)9!cn&%U8c41%3E!0OV!qTJ+bXBpV*oEy&ozaCx zN1>tmX)Ozlfy8=h95!jbUq_G{`ITnDJ5)TZx#it@eU)PTq?fa@qYSUzpu4sy3!KAA zGtEx}vHL`*KyofqU*CyPS5$kP-~n2;A2^S$q%Yth{Qf``5d%(J>SI~x=*#{kMCxT@ z+bDE&9aA?Dc{nq{DK%G0d%mz9WmtbdYzc70rMDHnMebNn1p-cU8@J+|4I1T5M=~E) z@+YdiA;R$kIC7iVDA9;2nsO7hT+g;GRaSNlrFZU$#GGpN+mY^?s=)eP1sP&iJKcjOQOhqsx z%@7y|ROX#raj=bmoGp6^I+>tB`xO=A%qH~9zH93OOz8LGYPDSN%Z>&%(rhpR$XjHk zdl<%x`SJ$APm;&-9&(gscW6Mb+)ATNn*9A*-rQ3(q}ai?Nc@?)^!Il(HDOm1Ww*M- z{b#c0$WAKDu48*zY~=MOBtO*=bR~#~&EBY%J=dP6PqCwN-#lRrYA1Bfu7bt_)U6|4 zn@lt{{XN}|q7SQj`_R60a!iF(jd&Wq&qz&7NmKO2dhK0}hgONSY{Ge|m5?mo)!u&|Q}^uPt@%YGRVg!%uHj7&nuH&nEIv z(Q~g^vu248NQdC+0u%=_AQ9ai(q2e6B@(u=FIX{ zP^QIq;BD`1chw=%4R|0%#Czb3cHzR+iR`^YL#d8#?_g)`%aTqyx#^a~`N2j+46K&$ zXl+xC=8hf2FZN3j${>w0+7h{qqf4esQli9$STkYq3(U^WRvlTnVnyG$HeKN<@b$uO zCsAP=jm&S*yR*LaL1d)Jv17-U9+>Mm0Pr;74*6BrOfqNC1#&?V1cD_#=nbfL&b0w| ztVXdTy-Q~AyJOqf(()(2AR5AT6?8$<;qOU5;Rm_1vng3Ll|8+8hE~? z)Od$mSEPp^;@?EW;o;8amLxG(n)D-CsJ1GFZ@9+yC<-!$NmG|qz)Bs5>Fgi%#kR8TL%pau`k*+oad$-fsEGY z+CZi#skE#8LMjc49Zb%qY)O=iYiNzyw~4>15xlgC3M7U<5xXaVqBOZsKUPAI+BCjh zN$RxRZ;TS7knfRvrzC13Sz+V3lv~ErCh7m0HOYt%U{|HTyS4 zw-3FTCbuUV%Fu!!8g|g5CDt8UMiJXN=Lv>!`zM<7-Kin4?&bfk@4|4b6%Aee{MoY= z2t%-#8rhXye87G<0-$($K*Dt$4hN{;?4Pv!1gN=*a|Cq%XR=E5`2f&4E0bQ_aWZn=7^?xuZ?PlboxTZToS>qSbwROY^si=6iCV zv|=R`499V{lVg7!7fv+jy~?(G;|nR0lyiR~Q4#tQ>CqR|=JQf@s zg_T52O8UsOC_c`09X$j8Iprzn?)$qQMDoMJH5iiK` z2snGjIQPcaGuyrA^4`ua^T7#mTFH!79Uts5&G+d!)f6XAPd^s*(>!6U2{F; zeJhP)S+OW7|CIDRe>XI_jKQ_6_Y06oa>2FkruX`W-HiV z)klAsgfeYE%2LXJ3^dB#@Av2@)?9S?{)tQ3tPzUXvg5a3%_T0Mg{r+Zy$pC&A6pk4 z!nEW}M-Us?4;C;CnK*(BQ%HmpSXm%=uKacS?zK$4yK){%Vb*2v$7@!>VK!e+&V0B) z^toHNX!>?FJT4Mzb6V%eEA}3M*=Ex+7bbc1NUI=OP-}PW5I}p)G785~JT?053PK*2 z(*R&4HK}4dr>AC&9ApI8_vk4c?NkbQVN??V;RAJ<73u`z$-h`jT-=w=6b%6tatNHaRls@fWgQ<5Rf7zM`FPE?MK7X?yr4)fe;e_4Iy#)wLD5rK6CAr z*bh4)lq+n3kzeU`QwPpHL<ymVqGk47;r09jB z{lu*w8*iTCl_V`Z?%___ZnD}97PBb&7}I7ElL>UqW>tuy4+iaM49i;+lsFpBU0Lxi zZc(A3p@6YC-EM#KDBAT>8#1!d3vs|!4_NLCIiLn$af#2)We4XEgW_fUE2)+H>!ODT zBOVhOA^ZC3ck-+oB}s-Dzc|)?nVJxdz4f(Ky3&09q!4;A*1Q*cQ)r14-Eib7VsSv$ znjPo&uG)Fw0L6~TC+XPLOuHLLK%v*e5^`mO%i*IQ9tGs=x{^khx7YB?3m7W7s7h#$+oEc4@(yhh1eJ7|3|%--qC{vsPk>+LJnW{HD==IZ>oZsiUi`3LC2ulbN&I zK@Jrh>lW;49#nrA|J(1_X%j?n%pKYx0c6MtYz#t~NC#BEa}f)LA`n%;YKokAM7ehe zp<19O3d|?m^dggWb#7j2CtlNWETSbFy}%q+SJT7Ga(&JlFTUMt{wOh*l+4daAoB%x zq@#>*l5Zh-;jvdVzHadT;TN>XyrNA)7i%Dx(skH56low9!e1aOPaKH@Yz3^w!KWO^ zAxGkRwR#O1Ta5mn#?A$*=llQTUrTO3Ok#2=UE~s#NN$yuYKkA3jbtNXg>EiUQIevI zeimI&lciiXQ6&8pMJZy%7iCJiVEn%>TjCeWeven%{^x&w=ln0{Z0GD)$G7k2^13{4 z@4}E^G58xB_u`wF=2j8!BGZEE!{5pg5fX#aDZVZA0mOj;IUfKlpRHeS&hEL5#(W4Q z+;!+AR>PP-2#l(?`RUPv9(++nSG+RPabsQlFBeM$tA-fr)Hb!wLH|5dd&~G8$-KpS ztX9;IQRb7*nhUc88hfzAHu6QOZP40xEC+tHjLaIGzeEmmv&!e_R8Gsy7|FN61eWKo z`UJ9HptFGWHicYg|EjPxroFcgtP%q=&*_M`9 z)T?fK;jM@v2(Wl|9Nt?p6ax#D=&?Xu zmripWq#0-S#MK+n$E3Fsku(CSp?C=Nl zlgx;l1%c~gSAXN-F#`SGWuO9)qdJ{`xv?(rGew}LF#vb@>2ALxUT(HfZkv@+{n^mq zbpIvF>5gQxNtWKI?Y*^)rd|26W|>8J>qdvCETj0Cckk9mEMTCxqLxGeV{|WH<(OOB zgDU22*pO?PoYxXmbtE?Fla3`Nvi#$f8%6>Z{v#nupdw{-~NP(#w|Pmx&^q^d@4rPBzHCzQ3|=cbB9s z?6XrA$0}8~j_leT0$V=z?iz{3v>UEBY*=TTy4s0`y(}kuque`K*LQPl?x#s_%Nm$) z(r&Abe^u#zTxHYP{P=XGwVDD1mOZ8y755U;YS!|reP!a;NzWX;()l-FIkQb~yyzl> z@7=w7rA9g-$e3jA(f&2jTduxeEj*7(CHc!jazh192IScVs$2l6?K*AV`5=FIDp6PI ztTUV()N<5vQwv+6fMnMJzijI6>a2Y8A}o4;lS69yTOWnNU|+Q&+ovBzMn)?!TCvV6 zDBu?R^T!^DFrR7W958mxhet}AJIbEJ6K6CK4ftvAZHIpdeDzqw7=8QpmFP_dnEzZ+ z2(lZFtP+X6uuzw7-qgSwvElpY(t26g`sbSxX(h7e{g7*> z19&i4P**Y$K~!B-9v9l0XA1KRx=@PX_Th<~Q(C?TfejG@oF=3?i}+mMNG)TZ3t(o@ zcGK`2*33PrcTbp$%ON13sJQsh-RD9rA#kdP!7C-=mWN!Yo@ryuEx%>QC3z&W{1`g8 zB6=h_jbf_*4QX-{xjhP_4S92M+bHehGZ=U9Z5f!EWjhZgfNXAH4t68jxA-WVPa$?J zE-U-&;twq|lV1Av9*IHD=og9Ygl?3l&Ze%|8I&>8Yi^H@;J0y|BxaHv!W-lgb5{mI zb2}xaYe^T-AEyDu1>AK?xnd+}Bg9Tep8lUX6iBH53gUMs)90x&LsHzKn#6s=7wDJY zjv_|J5c2vCI_?>6Xq}P3mo(~)gjsSbL2;I0>_r}K$tDV-w-b*;W=$$|(e&*-FS6wO zHC$3>{?(<9FguTGDwljZtx?v~*AN0M(FMS(iYuGk_VQ|p*^75M@5URhs{_OwtJ z_%LHOq3!)g&yNqVte`5{eeoead0;eaBUwt@8H@rU^9P27g^5Y|^>~EPgKE@JrTWFy z;8>V@Iqk`?kU!MUCPJzv=I7^Qldx5JKwh5l8LF+F>HnVP1Z7$I%RReyA2_`VspGhB zqIdm=S&rOIc7u?>z`#)wyQVSl+qA!A$&pb}H(hizHPsNXWu{^>yRq{9e~(U@cA1Zl zoBO$Wtt^me190+%7R<_=-$X7D5l6S*?JFv>iGAM54R*=iM}jOyj2IC+fKS#yj|DVAhjef2Ci`fP3d8IV~;eMh+0 zBWL6rQ4NPLovCGpmq;VnYv!b&`)A{gel}VjP*AmENAF2X_PWu1caK>cnpC31JP3Gv@P?^+p^xmTXTsf&kM@0C}SrCk|yx9F?#v zXr;aQDkw)H(HZiblIEX47CBQWYJ5UCtZ$UxeY`}t>4cpoN-EADI{BS-`xW%7#f@TPdef{R|Gz?#rbso$N|)uRBz z#EjV;(Wx2odBfRPJ=@W;NgiDzi$Eh2u0&^DQYt@ZZMN@rQROv~j3NyIs~GJ2L!8AY zy$Vv5aX^DTx518mt1UVvW>59#;O_?dv>fDz+-c#>?-`in@B%aLkNS^B4;af?94##^ zORxbOn9iIrqYv_&M!ZIvw%yh|zc&FA*lN@Kx^KAfBo9W>O%oSBe>As)b%w{#55JP1 zOKzzs?UMWp_%- z7#h!Lc9{_*!;IN6c(HH$KI`CfARyJ}Dzr|F&(An84-^G$tMNb-qRsxjd-aMy;tK3<=&RYUUuS+Ev-7#@t4-$cc6U<1n1WisZNV8f z1x-YZ#PD-Fua2!~E5)-o@AqN5= zQ0U3>R!>h6YcA%>E2`rj;FrP>uVE{*Rkd!)oW>=QfEO8a(4@(}1;$vyHQ3oWWqfU) zFL@3v2z~;8^D2DSgLI z1xWkKV{SN73#3chBDuxXq9;NP@p4jj&2voy&Yx+wO!sdwC7zXt;WV0!v<8}TwqJwo zVh<~D#OVw~;^yK%U0hu1K_6UlJT+iBIUl7$<*f^gd33=^9iImmy!#ba_ncUH6yhG=$cqHAr7Qm`A_4Me~dk%qKgdr zCaB|#@yVO;23}iq@k~cRG0M_On_II=GgHvPG+VF;DuS^X=F+N*F)lO^($H@2qfsGJ)(}J-fQ+ z^{K&c_MyNUK+#G=g)W71(0h>1C|TeS`wnTD^AG4E8P1qdgh&ONDbVkL36a z@d~f^x5&X_S-of)(L-Z!%SI$5B*@V(*w3@_h<+|u{8V+kuWjTnzP~fMk~%tM9VXQO z`*5g#8)lX6*bO5NtOD&)1Ld|#qPosXnWQ0WNp?2%YpRqEs;%SbRbG~z@n{$@`GZx!7$I>6?4jM{GC&Mw*R>Y|co-DnWSj>rJkT&I3$ z;Xl1h@f8@Dc({Y)zDP6%FLNmQVRGU@-j?636>dx_EFN8$a3iSal7wKDB-MxRUxG$l zz&pt@*P6U`7!s89?EB1fW~}*NUD!Mj`E)5kY7;8tDe;1$zdt6)UMP z8gfn!A^-^&5`~Oxwh%&|UcWRo83;ZEBuwu^PcVC!q2X24G|oPv66%KcAwFX|lUo#= zz^Z4s1t zT~pmYrlx3itEF;-68Q~j>Ry3Nh;in+9(uEtGztDy)%Ei;5OiA zF32uErU9=_1UaUta73HRsR=*Ed;E~xSg|d#95`RYY7f4NgV+m^O>}3YbbgqZ{E4xv zE|Ub50Q>Em@!HoaD?g?b%HzU3b^Mmc9I}Qq3>@5wLNQ>4DdEd9vttty`tw%D+@Hff zwWhJ8yQJwadw_6k%AM(U+r{o)>4hQ$ZJ3p`B(BgwRNV-3ih<$T;kMG{DB0cU1enVt zC{qkQvH+3SDKAqGe}k1xq!v?3hhqH$F>yd~N(f>kk7^Omm4RQsFVHdzXu&tfFL}u$ zHF*9}Ln&DjoFL~SKwTE!xpU@5h#a!j6Kyav$!83IV#Di@^Hq%Q2ynJ*xega9>$ns$ z2nfk7RHIQ!ycA+9Ir)Jmlm)xdAz9_^fQORve;DO2q7u4Y_6{9QJ)T}()Ot#nByjOw zWAVyyp9XOApnnwGo literal 0 HcmV?d00001 diff --git a/_images/cnn_11_2.png b/_images/cnn_12_2.png similarity index 100% rename from _images/cnn_11_2.png rename to _images/cnn_12_2.png diff --git a/_images/cnn_11_4.png b/_images/cnn_12_4.png similarity index 100% rename from _images/cnn_11_4.png rename to _images/cnn_12_4.png diff --git a/_images/gradient-descent_19_1.png b/_images/gradient-descent_19_1.png index e224f2e1e4886d9d7d0294640b6fd82e10317d68..3f81b0867c460ebd1d6988f4fe4602310aad50c0 100644 GIT binary patch literal 18670 zcmbWf1yt6}*Did6NGpv6yJ}$8}ApysY>WR6$ zUv3f@f<{nmB{Uo$5DWv@Z@2=%d~*myLhGHVkg{v)-n^TulFGf{p-XZdEu-~UW7?6b za%1KitL>M5egjMOonLXoBFO8}vsadWhC~g06(kYgK!ftct76)U5kFJ5HHb0fL}k2@ z{m4|4`);a6X8!;~I+xn~K<0z}fy_er#@2~M@{4@)J+F<_;Va@aa%A`r@asM1*HZ}i z+3&)lj){d8Yem2S{w2YIjxQ=IN=1Z-28BXDJ@J2xg@yG!sKXCdqf1{1e5*n^J;#}` z;?S;LK(_ZE6C zFxSE_tIC)J1R@$b;pB>ZHrdlm+J%%5rtv;NC zHOYD0@EEWDKv1wld+O_{Je!DO1p(&=VnrpTO6ysU5{+uaeA%?l+9}=efdR>Uy=wb4 zNrK4Uyy)M*)xROhh>EV7FOo2I>~db{PaP>XAD=1Y24_F#5yC`JYpc)7f^Ts@>!dGl z_Ir$m&($0ay6rJEzy5Z|=kob`x6xQ=h(z4NFkSm`^of2g%H>4+kgJz0Unly#j*=Ni ziUAwpY_oUM8J*MS2;3v2r`<;@eQ67Q`Yi4GEcGXBU{!S~kl|H*T!@+f@`>1qdtx-Z zZXhFUO{WPleA6u~Dxyo}vV)&*boy+`2MUK(%pmZ!oV`&haNWH2zTB9nd`?I8iOuNf zawXcRH{$u`MDa5w?RsB4det}OQ%2{z)9Hj{VDI}T*wv4IuWMWJ$|Iybbv5agr;^z% zJ*{ASr&z(|vQKO>oE}+K^~!O7?)j9q!xK=?e<+RD!@?8vNorhV-rng_6=T;(+;I(Q z=CQ>6@O&uARqY)rehR0}`8XHYrsjQNF~;@MAML;X&;vPy*t?`LKOM*qLhkY*$2#kz?GcJr#1VGegP9jm6JX zqvWnG@DX@3DEs%Ll;%K5lM{2+6< zQ+R*V`3Wh6+;fB1lwd;Dzk%ZCo6siUH?f!of&6?vh2xXLjeZSD>!dv4hl$(j7-0zq z-wRnnafy3c2Y zbuUL(Tt&{!h<1ZYhl!2rJJA-|7b((6$Ip<_2a{NV{IAW34oa_Vi)si-MEnoWn-RJ% zb_-4`ZsB3#ef8z`AId}!Uka^H>bzC(ab{jv1!vp~*$GXIbmaxi%p*yJTn7G~VAeg6Kz zgy{G7@4H^@W3eDq9mQcke5|(OfP;NoSa3pxR4gS6T%ItBV7B+Fg*}M6Ock5vQ8&`f z(N-%O#8+_f6#`oMPVr$u2y9c>@~g_=z_@z%ag32icMeB&DD7@GNhLAD+hOA(R5C0R z8Eup%remXIP>-&?i0)y3#6!!^aQz%MYxCaFa1{y3@9hmzwVUG$zT;OY1e0B0Q8rOw zTatsqZOUvQWbuM&g6*qZK1WJ;Aa7cdjuSniuiH8vCiol*RiqZetk|Aix!m9shl998 zhIS0_22o0oeLd_iV1KC2qnhHI|80F`K4Sln|%ZhQ0i1eh> zHP7_O7=mPxZuh1{?EVHUfSHRvoaTvwg2KK><{JGx4k#TT;Vv&q6cRZ~QbxO=C=aWS zH>5TWrKNt!m`sOGp5Twn8%rsE@*~4KpZ0)D-HcD|&u&Je}bfH>E=Ed(F z0mnh?!^2q?%h?l%G`;tLi3(p0y>1HoKcXV`;bG|I*a&dUUQP(*K0fde+rO8(uIp1G znHc)fsCo~(syn7%yDUexww#^n0P*d!Aq=7BJT+aRCxe~E57jdW?^Ef--x-rM1_XmS zQ7w9nsuVFsx^B)B-`bu+PvLkX(#n& z3Z&U%G(5uRh2N8^EaqxWIL|X)Q@mmzNb%-O&+H5aD-$bK!T~pYe?g9blu^BSzUzb0 zY2o0Aas13}L%QB!@Ixw7v5<71^QG-Cgov=cucsCL{$Mxysh{T$lqVO~e}a4+Q4Wq! zT3aB(EgTrie#W{p==eo-!pQ6b+4FWp^mK1d7aYIf%3i+^ZAHZ`KIM9Q!DB|P^Yktp zvR(0PnRfO&UV}leBV-JN6?z}oVlr)ElR|gy`Zu)8G_C++Pjd!7fTJp7>4uF`EU@l@;(2xv0!pv zt>`;cN-C@dQL?XHVbAR#Ou-@a(|=nG-xA+wT%t&2<6+n=%;M7B+wWlBUQKcZp$c}x z29m;2LNqz|EZWTIWG%|f2pRl+SODJ}Xk*`;FX*1FZJ0vtB;cr^Vrb8*fmsUI;|hy@ zNCLI;dc~?w@-pZ+rYOLH4i2aLwSXA{WW6KjKJ5!BJ}pdB%;jN>7znq$%ncUOb#Bf9 zmp~GioHrWTW~m0jbPWn_o`v-PQMyy<#D#JHbCg9X`mdhl(!77*lSa# zAFQ8Go(>fR7&Ze!I{r_x4SC6pb>X31esQGndP-wS{0s|JQ0OlXmeb9ydxsOVz*wg>%q|~Bj=5Rco zuetG#0J0SO{qE>b8YO1I2DPZU1z&Zr!sn2X)S}XFf0kuDD(~c3;T_u-O`djnt$4t+ zTN2^$?t}6SW>T3l64HEOKcw1@N#N@Jj|_=< z)6CBdhtlGIAco z!BDY#C7GXw1!!G}+)jQV;38WpEvSV^g>q(&EKYsk!_4Jqc(SFkbluA^4@o4QwLf89O z>|VIIxb4{2`00fz3bq5oPB3jgHrGOhNh&!27QL8 zX4d-6fWorH=FXB0)t$+_>q=z*j~|xKv$t0#tgeUpd{?WV)dEq$l@>*gtbWpka@%Gt z4uO1&-Ue=fQN@aUWmekr`CKrXmJSOXo)As$)>Txnh>D5nIPqd( z(e_#39De&t`bP8mIiy|2PNx!FQv%;xMjXjX@p+1l3T)-Z6f@~CC@7)FP#df063Yr8 zKim>hf{)Uk)_Yi?w{ojTK&x}7?`kwR%>?P@rahcUnDiW5+?4BS%uD4b_QdKA+WzVW z8DL^v3D`96uuX6*xg5M-&R1GPoiDMmK&CLelRvjqScU!mmdi*;lfi?hQjYceRWMLdp;HY_%}s&DF@pKKb6&nZhYO=Idy zvmCYSP!4WQ>pDCV!NHp1hxa{r#xoO*n!#O!^x`!9xKJL>>|~?wIU1BKCl}Se_Onr> z)^^i7TFVVRl9!#7Dd(M|W+I-$PhELw;YhmtQUq+69T{FtaNm+T);D`D(FaDgz6}=? z98$-;A}CdfDNZA{oGWWi!9A%zxOYSh=X~EaYS#6ILg#S*(Mn1n>QaKRI7DqP>#$Z> zTra05gUtVNEQSFX_xDOL?sJL4XnJIL-K%Tl`(|n~4!FcLf^g1#B7f(Os1)35sm$#1 z(V5|BDGE`6fYPWnnm$4o%UQ}?fe+aeL4r2l`#dxfhIQOed*NKI1|XY`rG5B5FC9;f zHLtJ09est#s0zlXZ8>-DlE!GMmuh!fUwfv?FrVm85-f%J^-+487ne70S^nlhkM5?# zOitWCqx)s}xMAk|bVT7=)6iHhJ50a7>0XIfd(gk<>7~9DERbSvqUb_9o%y@-koUkW zUlplQ7b<%^WI~js^V@vvSZCww=DD@N2O+m7pA=u&RsmC8*#FRZR6Sy=CxfE!vn(b; zxvE{#pb0_b+eGOXz%6n;DGa^!^HM`zy40y43~wP;Sa}zfPN-xV?Xl#Cax!WB$1wLX z@M1(X?cuLoP+V@fLvye_?o2AkkA*Z3j533ciYb2Y3h0I{mJYv-%f<4~?urGrUKy5l zFVq;QZ2}#G3_J6y;O{A~nJkbwGWMH%1)DR%5sQ6~yeKQr?<-mA(2fTjaJXUS zSF#bXcGr7s()N=prb2ez?W_8PKN0#3`rNx<5Bqo{Lu_|KKDe%>$Fd;s>?;VZG8&dI zTE&Qo7G<8ki?U}UaM*~zPmyUCY~>oqrCXQTjr^O!o}B5&7T6>lBEjB$KK1g|g!}5% zyfw@E5VoXO_7k65TQVTx5Xj}&X@~1!W2-esD^!sP9JE-AkiGJwxs6~x`}I)XC%tpr z*|`IwA*QQ1ZRM~gBJ0tZu++?=YX z7iBViWh=SJPbOFP+)(N%1>XMYpBPMAqZlP+3Iu&3!JI2Khm}bg73u~`lm7JBvrN3NtJPWZs#pE>otbOFcsM z;++5SwtGYf>!0i%oL}^GKkqtuG+|fF_1V1rPIJo1$iItPTe#1^Ht{lz{ceXVfq(6AkcXT|JAose3 zvK2|U*#W`tw3XX#cjze*^q%#gKRMddFv>~mQaa_nsf1{HQuRM*0&5EK4f(yFa2bZ_+A^m{Pf~n)jg5a z)Mj{LGU7AMY_*3!p=P@W+At~wG$V7u+(b#{5zOg`7<&TO0exVd~K;xU$6#P}bM%4d@{%#9o>r{ zHMJT9O&fxO0SO1BwAZZs^I~84ek7nN>vVt%;FzGW$J)A7t!IFl6bM5wsKLxqzhzUxI#?8O{wAf(Px$jQM-9IYcKYf?a-(Mbq~ z@KUXjS+~LD&e)q`;ho^v`pIuoY`*E5mw%g4hP}My$GwA5@@$Rd82K!TkQKrXSd~x28x(7tBo0 z44CTkFz)#++0Z{;>ya`G&)G|w=Zc-b&=IxB#X;yOZd)@PcA$Y;6t1BZ8o4`(o+nAk z?r>=HyU&lB^#CWYFaL%K0=f76fyvNZR^D}_ee&lUP?_BG4A@^EmHoul1Q=^N}R|trkhsW~|0hH1xqoW{V$RFpd8KWm2YB7@`E#3~ml4t8v zN@JJ$=~VBsN4hJZ5LBVhKRGC8#;yz*O3+D_i6}Vwq6+1fy1gLpHg&6#nM_CHqytn$vSbLMI$SMGqKZm= zws-Mr_>ap@wF2U27a9_(h z!o)fDdZv)VGsi&u!2RXA?B?DtJ4t@eL7Z+TvfR83d?&&CC?!jvz(f^|gwh2+yZcfxtJsrJ?O8_m(|hqx1-tS37b^?FNE{y)_^>#KUH@SRyJ!dY4tZ7wg4S zE3PPs81~aCBnnwb(;kW_7EI5jY5Y4OI(_C-@bNa{cfH|7JM3`NK+JdD{P){`N(BA+ zZ)?#;v+Fv-;Qk4{&hyqN>3`X-G(K>FT0IGD=R!KAbBK_R~-p{bm*0T=wcoOnMz z#!pQt*@=wpwNF%GQCS-r>UILc)nkV%)JpM|@_TDOcz8!p<2%*kaCXZ{{lR2*F0X4g zi2mkCrt9@qKC9QYqg+I!M6D+Ns)jZEsN9#MXj^(d*0HfkeEp_i8Vvn{%cS3$nMZe7 zm%P$UAd6sVXn5F(#;o7&3x|mSXKrqu$nEgre1ASXQzY2kB0{vNH#fHKojDC-;BV__ zyxOx*WV33Osv&$bisFgSUz;q&YklbOg?q$eyY%Mv?!ZU<=6tWxbeL2wGFoC{&f3Q+ zW9xUa2k92gz}&Xk%MGLN-#?Q`H9Y>!Zeg(?*4np5h*mrih9PhXnV6VJWHIm?yU}34 zS7(UN^GO*rQOo!wp)$wcsx_4Klzlka^$(jO?@di>b)VYKxdeME@qi}9G4A&cC^It# z&I{=`IyxjX-)y28wd%;3n1;6Q)XKC&O*6bEONFotV|kxRb0;A3)&3-ZCg;pBfwXye zQ~2nx596flI#o0OYyua4Vx&3TGkSIX(jW1O@P`jf-q%|+47$w(@7}%Ray|SycEhaK zO8nw;;a2w7ukEF9IE8`54{g@ivLw?a&=18=ES(+5LLiQeRsMweXKwZ{uO0z^x1*zD zbFobjqW?3I73Qv6mbV1eT2Apaw{__Ib}Zeqc8gl9Y(G{S%7v3-dfnfnL?U%El*A&) z{wP=FEM)8V)4~%R+sZ24+Og|>rZg<`z}dd5X{$ODc3jc>&WV+#HEqI?&JMG5E@97& zU*U;oCOneG+gMYK@MMB)Sa(eUMj%Y|lX&70j&i-qr~H*qZ85kE@yvQrX}m6fPPfK@ z@7i^|_T%X8V$oxv~N=C8&_zNl{Q!Qz!DeFrlKMfz%8v7U6j|p_a(wRFvNKp&` zt%J)mKM*Q%*mzfRd&~kM&vX$_ZB`F_Y_1`5q3}bNK)ePUK6I|9S~%oAxzo+pmJkfv zxv%|kIu!PN@tV_C@aZ?V2w^dncxEN2Y(H@~e#@_A4PWMVG|M5fR7OKn{NZ^p zGN#X+a}%%~yr=7EoW1nG%IeuTzc;V>vpndLBHW|&4ZZgxTGY*QfiX=4WqJWSg(BsU zdd#9yl}2ppaA{DUl>O@|_N5M&s#xzTbXb_K)q@H|U-i$mtX*#AYiyh8JlF~fqaVlO z^38vdK*;^u|6}^AL{y)m5*O|N7PYHjzi2KfSF^;T;?@0B4#IM6x#v-F3we(HjiX1O z=%{kvFL{bF@&rHJC?ZWnaF=f%iZUBTKE9%6bSyc2!R{3BQ@{bmrKOT+gWlp-z7m0e zE?*_BGNkMR;}^7+ltFx)5X?buRJc#lMnOru-{vX)3J3-iSXLM)TOsBAlzQ`C-M0GX z@<-*OMY0g|lizFn)r8+Ao6jt^kQ-=M7)Z4<0vi#DUSRC|MWXfT;L+`RdeKBAo5Y0V z{D}ag&{NM(2q&iak(MPVgn2jNfJ}kPB57Y+9a+n^rRIK#9WMGdk+rMqm@e4!2nfmHx1=uH#Ykj z69N7y=^&ZqliiP{?DsX&;xi!J>n#_)bDF*xL;K==t#hS|iknkQ*EEug<&*JoF=cet zkAsWxTM{YYHe>7k%#LIoSW?GyUS`X2vm{&kF?st{Hv)0xzmyT(N`54Vht8AiW$W}U zY_weAM`Z{Km*Jz?A1;yIIdExwuT-H86+-y2ZwoS?G~}ZpmZLM3)$FTwS-z*q{T}zb zT~%|hUOiqy2G*hQ6Ovc6jlXA|UI*z<>?$CmO-i}n())*deM9vvP9N4N{Ya=w`NqB7 zpo`;}8dy<;nL+o6r8>KN-h#%ER*zeEPmfDz(N1X=>C|+Gfufd6@iIGn4id2sk9wph z88AB7gc%Pk(yV1_r=DuR{`wl`(flQ$4-|M4%)R3NC&j-EA()|PiFhoHW7plJ@Llyeww_FcuOh$0taN$o3F-2lTDeC5s2H0RjP2- zKs=HPq)?Np{v{q+zwMpA&zu=F)o+1gI~cxL_uST*pL=?FQi<_wk^CFch>_+=Y;uFi@t;bL;W|GQ!KB;)XW1jlWfng74-;3I_pMJyaV} z&0Y|yG1w>lTZ*4IgLu22#&GLcL<|B5Y++nBD+2;gtOt3xlC3u}2?N6DQAPGNgZ`-o zi|`m&n7`hOf+~@~oY0(l?B$?0u&8MIrESKTz!M1ObNm3-79MyrkI>F(EB|bHIBgPq zPwHl@EBJIg;bfCq6bV6vpwfnoSnsT#^!ciix$zuhWjwlyp}e|(vBbmZe^Jl*UXZ5x zS|U1HocxRdw$<%+?m@+IxPNK-@m0?~nye|2rh~EiVc_B0ReBI}OwNrH=C7?uau%E1 zvS*O^;a6A(=fxXLVeJhyq!fYUvJvvi6;>jd+~-?6bU4=tZnGK`cdK1VLSfyNqBksH z2SdXKdh^9}{!m&A+Cscu!AO7E`oPhm#o^gU=+CQRIhF|yeaGRamuA1Z^W+UUt<^bi z54)d)prbi&aU-;s%ENsv)b-Ez$1Z&2|JYnsE6}}tt=5H|F`$dQ*53pdW9(wvp4BOt8VE6hL1X|e zyj~$c%x)MT1L_6=ReQVFbu??oFUJ2ttEX^Cn|p@^EIvaPyfKY|kP@EO`PD4c17yQcOrRhd3NjUqg7l)(rT8q+hBV z`6x0X+Gy$|(|d+-2ie_G`Qd_*x`T1Q#L|4m=kSkM*qIuqtCXkqBGzuC%?#(mkWKGX8-s(_oG-Z6!Tv}#K9TQAh&0e6jj<4I%y=+ z4pq{hwL(KTpP}Qgj(y>h)G8xi34PGIVu1{@^F5zWO_uwk1Z$GNk{ zrwy<6&y0ryJ!`Bx*aEqkc)gG#`fuN6EUpL4ow)laEVTFI*Fbv=9)izo_W7nAXEQq` zgD>J<+lDe$Snu6fhnjk07Lp|h_iu1%-P^t`Gk0pxjQlZO)eItpVmsB9JFezhT`pTk zS{52OufVzv!fRFDvG3N$B}&W_F!bk3xLsJ%Ow}}Mm-eoCrUGAeHG@;iLYvx&*tu*n zAjB*EX{M0ta#)b2XpXElDn$l#ZN7YNY}@`UG-kz4HcoYAh`lM+XCVT3Ro^p(2e=>? z7Q)>E!`sula>6-}!SX5PwEl>9(423@>7354#eZMM*E?r|gGsVHvjTbZLFn#5Z&xa5A64%6DGk=8)}7yB$MV3o)O=^Y9P)L* zP%N%zW_M@RD$&@6y%hi^WS$L#0VQmC!)i6eVAd!fX0AtqP2lT7Mi4wo7d|$W;ztg= z3c01+@+b&oKjh%!vjgIf|ZnNGZTiYE*4U$cwWgCM2FkwMwjdQu{o8PvB%*2(CE00 zu3J{WH5ltWy4>K;PG+R9p;GH&sO*UlGr5Sz+$JnhKmPD^@_-v;rd&^!QlaOPW=*&bUrntzo=v{27XI{#ka!$O?VZZ57D zcC2$nuiso=_f}?EO!2U&RyX43{tEqsC{|{+2^erhJiHk519EqYL!ab!4DDLI8*Pq2 znRaA*h=dLSg9MwnxT}vtMgLBIaN|H64yO(UN1`av?7IaMxBrN%!XQ|{S7Xi53RqiH*ras2o>wx%AFjN+g} zdF^5zU9&2Bx;ZkGTUqq+n;$8bTLQ?g{0d(l%aiE>V7-`_7~kIBw|r;gO8vvbeI5Qt zSoruawpstha>{8NgC2Z#FHn<8!H>G=Z!%JAsCHa2n}l_EnHcq(QtC$%v1zo&S|ZtW zYWVeAqTbW(kZ+%Rvqa1)PHl9JciXglSH9-wJ!gjc(41d0(yG@u9{mw>+!}o>czgJ$ ztZAP|1L^HH!1KWpD%5EL)1$BxvtB^@Dr&&XTBo1H4qw8XzlvyK&P`JJ&_4J4J&3!z zx?2i>6gnY5pmBPzffRaHo9FcQ%yc<8*ilf7V)?^h2p9M>GdL;ji$t6$jt>Z=*yub8L{RT|f2ym*ln6 z8SOi`edX03UhW0hFd)q+8ZU7WYUMyN5he-NpNfvS*H2W5(r?XtlnO5IzI?pwvkAJ= zE~pqo+Kl;4gRRpkBCqJ?7G6kL$AA;-$TY0ZpizZzb#?W-)>5tbLaWu2JDyQ%^3&K3*QN+>HudGOy*6XRcF<4vFH;m z;5D;_IHRE0_!tLfX%!^cHu|opvS- z7Mk7cBSV$@)#xwMta;-UwXz-^Htk$5jd=xHb2Qk$pQ==3n2Cu5hJKJ^c>5^PwbA#t z8{(;YZj~xZKA39%G~0|TeE&nq`fJ>%W(Qb@O;t-N%>^HzC@)uPC}jN;sv*_v7ks3D z^~nfJ;9s0ZcFr^y9nLRfE38}uhBMB(<6M!Z<7EkzvAJZecjKb-6f;)d+z!o%nJV#TfZ#(t*GfDai z#oC!OzCNmqlT0SmO_A(&ZIS}{lKboBSkL6x#y8B^3s!YAEa?&U8^Rs^lCKd zU3j3$N{_DM6v1YKrM_vU1NKc7d@Bdv{AQ0=S4s&Hx#7{7>qK+dTivo^F^==o;L}aY z4Ip!t78CIRE)#-^=6vm@$CVQqQb3J}7Fp5u!`ZoTMNE>AbzXG->@F5NafguDd+1p> zOK1p$DbOsaZ4dVlQErl@IYYyDP3suQGreJD+i$(}nbx!))=Ii3Q^NxrI546RWF{*euDpqw5dE z^o7EXqR0Z;Y*;JTMMj|m7C7LVLX)+kbUTEs zU!^<%_AARH*qPLgsc^gsWZUmUU*qR+OMc`0`>GrhfNAA5ra}T1NRB$PP>N9TEYyKF z{kI1g%GvKdPHN`!k4Acl$2n(gPe#hr+w_Tf0(fj@_hc+IV8wt-8D^i0|0eW&9T+Ts zt$8ExGDv;NAs3Mcp;H?XLJ~2$bsM$`UjS$sDrXS+n6`I96Jqm?)23nuWN?oU6^6JW z?JJy5x<3(J7ndEyjY^41%1e>qK(8PBKc?-}MH{jAhW$Ayq<=2bt%-=!FuYVy$7cAw zm)O&1^#KHVJ7_!i8I%5pk<`Sb*!ZGsyKyXCEKg-Fr&}7xX(T^ubK)8P`TTY%_XRY39WN;xQpR_#XklcN05PTgH!mupO3CFSPq5 zpfz4_t}nTI0Iaf|-C42OqQ@}~O$7x10-DUZS8!cvWktq7Io>AFv_FGx|Daha;!ecI zN)VQSvnYNH@&J}TTpt(PzF|aiz_pQ1lkBWh(~;6abVW%NvZ7J2LV^1fCNIV4`v91H zY5+h&{{SY{4oCu*-Z&dWr?iV<9b~fM;em2+v9cR}h@gB-x&RW8rNYz$>dWHxdAUaqR$J;)S zc3I@rTIV?jwL_#M!_Q|D$NLk)l|ySJNzlHF>e@Hwpt^vY1ctUOY=KMh;na1?1YwL6 zS_p0u|sdBg5OVJIXhrx0^~UEw23LC@81X?S0F}3v4U6(2<|}BqgZqwzDFe#Q z&XjzBtx{IE5Ejh2*K;n?GqUB|Hb@+F(|2+F`^3$DOM2^tp{S@LtNQKFI3=ogUUU}Q zmE??QUIpc?Z7k>GUB<}lM@xT8Qx1Yv)n?jZ+0}Pb*nWJ zz>57tz~J4Romfl%Z;;F$6EsApCw+YwGTrTE%cNeiw6I3+13Lbg@`Y)n2rTM_0OY5# zCSmMvUhD%wF1Y!KJ-+*9Z5~RfeMH9})VYOx#vO0IK-m7+)EZn@m^D|EV*x04IUi@j zP)G>zN?8nkeT&>3SorYSsHI3Ukk0uKwiA}}r_u0W8nyhcA^og~Xh@(~3yk7$ zwe0QLe8C4H2k^FX4E&WH{~k#56m?u0Yba<>5!oDuL;7Brbm@BF_Pcy4F22{~;%Hq} z4y1ChbYy6d{nReH{u>19T^Ez8W=v{wX!FU78njVLs+W)i3qsF;->FSUr$Tpe-tO zxw#ou(Z6q${-QEP$x%hJ@QyV2Zi7ygzm8XnpBqg`bd?YhO;K8F!wQBj$G7Q!D+4$Z zP2&3Vw+N0XZOu3$=xX2G-B)fgpisS@Tuen#P?Yb)TmV1EBr9(r%o545(*r}+3>7tf z_tU_MU`WUuKpE>!O>z^#`;O0>j+o)t0`LY5Shx42O}fmjNQ!RwFFDjcLkN1x&t-*%PTTc=eUxXeC4tQ3%+HeXMT<7n}_-6LVe-mvKzEr*`j;_th~|IQi! zFf^=@fgL871m*O0>`#XS)F{00J zv0Xa&AzIaS`nxXfj6JvXmL1@11ol}nFyNyx;7g6Q4VqLlMAQG%`o_*9016$`RVTD2 zAen^=FFOcsL@c&IHC|&vrG_5UkYeBi|D(HlSb+X!WoD`i+*Y#rxkGbRfzlr7-=sfbv+|2c{U8&oNp>g;AZ3029O+kjUfDBf)s<{50=ucQvhssq znHRq&KuT=-nk;w5o!K_{hn3s8e2XAQzMKLc|3#D$#8(5Q()Iq_0D1gIlpYTXy-w=; zTSSD82Ao0#xanNOPZFAtj;u4#@2-YKZ*0v0AuwsR&kir3Pi&)URd2106&tUmk zC?(~uYEwB4B${~Qo#k`1g4fnMZ@l7on~VpFcYvnC@fdzUiT_REC**t*d43oIXl3s{ z`HQKl;(w@L4$AYH-J$vP=~GN{GTm%@bL6ZHiG$NOX&72@(s*gL#{xjQm-lii31(*n zca#8QDs)xf?(S?#1keumW`5(kN6e`%MfAl&XXF2f;#}o{PnB(-kpoYy* zJ42%RVkw~5c^3e`ZHy`|pAU!H%Kofd_~ruWRVn9L9dt|a%fBR~WCJR7VuUGQK%u#t z2+Yr<6aO7aso|m7AJ~`2yHRkG_p}{t_UX!C8Vwxe4rGZ4pQ zJJkvn*widXlkIoWG(3YqePW#K(+a?dGC;?t(f}M4U{1lpfZ(v}X5d8cAUP?xs{`f{Jox;*5QYrD zLIF`e-~jYC0&)`87@!vcCY>Y*_m}~?p@i(9sGAeNyI3F;#P8i*Pyt&F)P{oE1OGLy zM|*-j!aWBVC7^F(0)_$^viEpPa%39-QEfZlKBWGdhSUJ@ej5|(*MzGRc|OqRJBu0Z zQhFqCkU7>yfc&!r$iLmuK(|vVEbTrk61yexB_qGDT z6ZJ}V7@GK14!!D~Gc0%l_y>Sw7SYj(0qA=^-d?!Ht-MbmiD|!ah6jnm-T%foV#_2@5m!C-D#Po@jNS+sTJ0;}?i9V+@yZKH}q z1>gp)9ATVicF^eyFTN~E<3+@x5PF!lC$WDZhP&m)yW6{P5s0srxMLUnMMMBa3~XNg zCj<$8gB1STUVJD4pM4_>|qZ@N8k39On(qI9BmDsRCzA`M?oi8Rn zu;g_DEbk8U5VV3^9t2xdmQ}rAJTUA*KGfggb&9|rWdM$A8I0o!R?Py>KM<9Kwn+3p z(N`As@QC8#55kwl0c!u0qxo^z&Z|*SV%hD>vu34DxT9*mn z2P8Jj1q1=Ep0|2xU`99&`0 zJ%b8)dH;vYZMkdL0Z=)mNkVcz-&7yrfmMBh-rvf|4SPhXKoj(AcNdLot9G8x&KX52rJ#^v! zcsMIR>}ZvK#bH*n!wVRM(_Dq$kf#m+;-S}0AIf105k_iXrvA(8j1@jjwvuJa7Ky`oAV*qI{ z7kBRa;Sw!stMA)MNeP7>qk|Ha(+GTjuPAbET~Q&2?d)EMp%&zFjM1X>@kbR=mt-jM0R%WTmv>R*yi#WVg_BeH9Q9G zdd!oJVR3D3;sw{0Cjmi0P-^NPoRzUJh7Ke!LKn=3#4qViF1V zGhtNhPkk5sO#cEd8?26y(?u9R7kF#@V9)M}t;)R8ayLKwqbJ6tuPH zcF+I(F%%US=e;HL?|}GsEL|hBXPGL$y#M^=>nRI33%FotP%bV4KxFTTBH>N`P(5w+ zyV3~hg>)kM%@Qaep+&{nuUTjH99Tju&b#VVFJAnaP}380a$;W}&Nv7?0-eSN0UP*Y z!GoDew>cyq@WRE!#0c0eaO>ZX7hU3cYb^Dh-+kZ!W~e#X)?*n*%n2 z>|huTg;iD9Z?k`GZM1l+h76i?1)@E}Bqe>CCc811fBv$1Isz00T(Lv+FC2%p*wN*2 zuAZgcE0)xxdc}G`4T7f(91j*q;NXVnX`2O%urM)w6B7w+1WTttua|es8S4LDoc`!i zGqi7NyK2&eZuh@G<Fo*XKME}1_q$GxnQ&Dj-tNp4(iEfMLR%XErhTyF) zwN$+Ra613xdWy}+$cS&shej0OIKc}48_1NLmzPLGLnD#T?Ul(;YAATR;Uzzt%8&o# zFy;nlX^I3t6*Dj}80#z3Y5GF?>4j}mA$o5lQE)&2LWyQAYWv!WyrGfN(P0;X26sLpwFfASsOL?mqjlBE$ajxo^X$ijdk71O{mcCfCqg@s;H=hL`V1Sl($7~ zWcZL~zm4oHE^jS5tx#S|GEMIQYw9;QrwvMSr&ii3d3o^z&LFGtz?ZyPczAdg;{n{9 z{Cs+@SI5*K(%im=_JZ5AR52s6BR&U!DKm_S}do^xI8Z_gtMV~hSk%s%`q6wc}Kuul{ng^klWnMC!NRw z=j7yMw%E#FXEp6tU(b~roGbZnl*(7HU&oP#6-5$pJ}oRPBw#bcL`6e8+N~b`Ghh*<6`LZKBXD^wUJ~(^W z*|BD2XX6p#U4`XJCHw(iY8QC>0t*MY3%1JiKp)-RTp&S!^NpC4l;pZsJ5}Mlrx_@o z$22`X{gRee$kWqv%o?aun2TPdQVckzK;hvLXS)B(lOJHN+m*eYG5}yp@Y)33dH44( zM*te`0&1?lSBeP-0ZuA`sR!iE4)?w-X31p;NMgKGvf?0Ozz-kol20SDX~uGMbL$@* zw7w?bb!LDOW5K2eg{dm5s4Rp0?B--?%BY9}|B!mW{&bbGgrsCA(44V}i6LrwUU=YS zCkpzsj*2Ly6%`ekg#H~bR03^@y?;;Te!g3{)IVv&!Q% zg!jhA%RxjR%&sr0jDJ8N0M9HTBco!byj}f2^J5ESF=26EzUc4IHN0eC0NmW}5G=|= za3L6Mj~7Z}M6&J9H8_B7IR*v>Mj9MUwH*f8e^;Ag@VM-koQ^0*d;Rm`P6^=n{Qr2> g=KpaCr2NIWza6RB>?vX$sNEzt& z!C%y8M4y2l5qCL#cWtMa?p_wIFCc0b?#>QQ?hdw=be=C<-E5s+@o@`sKjx&fad&ri z6Mgi^@jqYSc5=0T#JWvp2|9V;tZ3i{f#6yo{vj1f71}}|O593NX&vwMg9RUN?H8A5 z$4&`fc4R1R3=BW*eZepJ)l9U3qsEXtUMUJK)V z6~uv+)A{L%5XO5oUAB>sFLCbKwrTTAv?<@lYK8h+8?Ts`hR@D@3LI1YD8%Ly&oZxC zM5Xai@bK~Rm7Y|(L!eOTx>$-n`2YCl|KES^wY-*YUWlo&9%c|1rxMK=noDM3U|x_*j(__J8%m{gC8Q>p6kD z=mIfqtKU@;hamXm7+JD{@72K^>5~81V5J7$@2sf5)v#XCW(;*@t$z9 zA7>1e$lJ?c*N+HXY&JbajRg_mPC-OQvI>LWGHo9$fK7TCW5AW&mrQ!$6Ki?*%^Y-NE z5Pq4P?|s%T#YP?TavMb&Z~o5;CMowPx2+-Xvq2$VkKGA*TB|xki#kI}Nw4&+SAuCi z4x;$@#baT!s40JTBxm;T1&r5Vlc1K8+`xBhju?0 zX{|RlnL`q+;_T$a?D0gZxWl{|N(PR%t*Tib&Owg5e(JiGrOU5#+bCKoninr#*o+ro zhhkHPW{7#^sHF+Ib}K-kOdM_=)HDY1(ccp{&>wG~Of^8~N3%Y7do{k-FEgl-uMh@O z(Q>#S5}DE>PAEmJ#~>~YQDMgJxmd_~kE1ev)7OuqB!;Kc1Lp^F`wr>%#|I$%kMgUfRMSqN{8={;Ivcg*x z^OkOz_OC?L&n0SPh$`9GgFwnT-21KSD}DaBcQ4p_2#RI?cBhs6CV~yQ9`DOc5otkl z7iA`PHMf+8LM2O^zR>VV_H}!O4S)SKy>fJQ-qo8j!@fp4ffJn1};WQKMZa< z;is`b+bLm2ziYKcIkS4XdYEc^r2;5%t%Ckywf#sjgC$Ez1xHVbCsvts#hrw zB!Rx!q=UnZ%0`jB0B0|vo>uw1InVOfw|R~P3<&GvY4cy-jKNNw+leD~O);_TLQuR; z5Lcx>3jz@jRG@8f)}uNP;8z=eNqT&`g+|AJD$zS_dV2$Lxa^^!$3-kgo(QpkN6Ke$ z%&Y^E$S1)#P7?273a@qx-1SY9eR6J6mAf}kAR(I+&of!C3|055=@=N)*s3S!JbXxS zNDT2vo_DM+;r3MR8G`j;P-ahOAwCpW$G95~Ura_RboaArx?~`Jxe-~s#tA3gGPJ2#<{Ht$HXX%-b(qgs9Xp;by5ykLWUlqCC^`DE3ld*-@#N?aMF{``B+SWB| zvl^ExiSy%-phBm;aPs=|<^D#e#~LhQQdnbnge^&`@^Imkl75Fs1rxSPuyfgOm}OpIXO3!YSN?UE=Eva}f* zC-JzTPmtEm`1ty}uPeW7FY;H?8KG;ib%o+Lu`5DhK&*`kd~G2A(1wOub{u)Go3p+X^C=bkpUxonli{u zcLo(vX140_YLu z17lDC+boh7)e5Lu)GleR`E#b^L9~by_^$E9#B4m-9KirH3;knGMX-zy8>&wwNq5S-Si%5|SoX06fVH$_5(6xPujpQ~QJ z;!pC`meT98Ee3L|#m<>J4QIjv7E67V+*3b};kygho94XdqRUQJzb#fTG7#$%wZj~b zd-9T4dY|osq1a%;YsPj_vuBYHjt<~LXpt6JBS3PbRoROSfK>Uzgi6uDg5z6Zgw`~L z;Uq6^uy{qEUmGrt8F!;K=$xE{y@(&*Dn04Qp^f+3y$4ji>U4!3C|)ht`};t0PU#oR z7|6~=zmpT9L8h5VV}`e)!pC*i3M#LnVIEZ@Z-0~Az^t}PMiz;pGzxI#v`9UeVf!JP zw3qsLKk*cZv-^z4x0_#42iZI*MbG`!Z4ShG`kWDJUrYNn`L{g$2iT<8iaz;}I-1rW zA&e4S4|ofJt*|5VvzQ1EM~%mI(ZMgM{2qeSz|a_18o^Uyh9%!4_Zz;hW_Cb{zZcnR z&1-)^Gx1|z@sJ|?VdDKRB7!1!{b<+oPUDOxV!jq6>QsH}GW5n6^ryTr>@u}G-_p!# z+4R2zI$--!Yc(lYI9Q_PxyOz@*Fw5}xdhW62o!$9qI)C{jMM0!oN5LxgE}QtFqUXy zOa|I@m1ihUb``6P5VB;V$VZo%7ayl5UXk)Rjni{3`cgsSQpd<2#q5;sE)9GzO?iK) zxriAB@z$^Q{&O*%J-%~1p{=1rgoCfttyhA+xLLMpg@Fwn7xM&)+Mqq6reev}`k*W92D-RZ82pGlCL4=&HE(ysa)2QofZ?-jh2Cex?;;h8{ zNg#|_sm8<8h9N~`hOs*wZpZD6`8?YmDPDo%;4snLse+zdnUdAHaa0!p$Mf9-!m8)} z1TDXIOSO8zAt$WR-TRW1$6>KvO`Y%c<@jswof>4;&o)+GosAeAV`DW{M^WV2()T%2 zc<_X->`LABbA0@+2pfCK^W(_*UM>%b9l>GvjH$27ChbDHEgM&ZVTv5^vMsZsie`pl z$b?8S@C>TBudw7>>#%GcRWbW-Ui=*TMniQ^bHPn&o{csNdz3u zH}ZT`#ip&UuI5Hlg60ur>W_U*L=&9@ReB*=a0r#5Xx&d(1uEw8k- zg^Tv|xVb_=Jha@;k_F!!Ov9(*e05-Vxj&mCV6WS?MG_g(kBV;_%CdKEH=9w#+m1J` zyJ>oMG4{<+ZP@?mz#$9HZc~Cf9?Gcg2tO{|`v4J;&NZ{1!`-uB^8GI8M zJLr1$rY8%39mx`zm&P{d<7qk%17;jjJ-T_apzg%`7B*K?=olkD7jUD%uhJ&bYdZzd zJOjH_>XC_A&cX6-v%!p>_S}cW4NhNig^i8hd|8n%d(DX|+gyMDQ`<+}wzt7e6ul8( zmlKj+q7gOnzWer}r+q(hBPBH+`>b2k-JUR%*tUOrhW$LEx9G)Ya3y{-(WVAC=i)bo z_w<~-9!S61Xjg4=S8$6COuHmq!7cUbGIZ+gQ0J=V7kE(K`Ih3fgOvosx`@+5$HgC- z>xeifk8N-eXJloJpc5PslQ+4Pvz^ z3L@<8dVd#6Pdv)nvztczYuojsTYAVBY>g5@UPr(h<%R`>_#$|OY)mLs+g3Sf;}+e@=SiC9=nh zt@^|A3cE3={WxKYo|zT6W{b5`qTgZLFmocKS^=?+*+Zo2M4^FFJ6-`s%w`RfAl@gj zUI9XQjB7u9h!S;Ek^X!n;cy4XkD~73;j;7mxgafT=dYF;z5Ox}+s%v=73aUvI6S0b zWv!G4?iAIdav5L+In}76q%$N`(rYKMwufu=vk?y6XBRIt1uLP}fsdt+GNx=nh!wJH zrg1pYxew9v!rhm$?^)k45Z1Gh3rnK!Q&f?O{jx&S{i*Jt=~gvzT;e0xQ-^txKclm1 zN4r_$Na#2tYr$b*pK8Z;6Z3CqW0O`#uiT#6mMa`>J0k+q3`#Lo?!s=+`uk{BZhri} z!y*&IY(tae{p*@u+&}j+ zr0gF8!q?w3d10Y9JOP=QtY!Xib?Ze{8Q_BlakloyTJ+~Z>Veq4)L|XP>SNX%wzXvv z18!16bm?B#;r#cBiP}vz5RL6o;;t+>_98(N!#ux6dUZ=bS{dw`8w_$F_zEEsu$*Io`dlme9P_+0j;B>!?~K)MNY4Tl)som3yCt%EdFq za_Yk4nXrL_qo`Yvemi3v(j{H4W`EcwR#`h`_2ak5Oh7FWk}vh`(Hrl1p{iU?-U!?K zEn@Wd+kMu=VoR_b2rkS3&ebA{Hep%a@%-^u2SG*#hR(EPW(L%76Kk)Q0n}yw#-~6sw3xvCeZKEE3uW+BbPer-fuhs z{X;Kl>wm@X31}{|oLo79QO?sn<4ctis0%lt_0(N~VPV2s!>M@~xD7oj6Pu5QG~Vl4 zjD0p?Wo?H|alNf_a3xq3`*N=QJz4-6XLlY0F=(X{EW>m%r7;j&tTPm+j?PSMrYDIm zBVBEJtP>kQG4v(*R%$mY!cN37mH>XftKgftdVH>5)BiZo9>(`i(=+CH%se}JD{Z4Q zDj^B3??uiR3qQTWlzDC!GFU51?z4v<&`~#ITAcGI^*(*0p5$E7PVPf zw^iJvatWcfMC)z*Du!mP6D3Vl>}Sm5;|K@ivYM5GOvfrP>CvVT%}vGb_|M;#cVp;I zse#8r(4XO2pFZp+z;$k~NS-^UqBNLc?J7bY^HIxrpm4x;)Kgu`Ib){R2=>k6NyqE zpMqHOd(mQv3Om)haI%cbpU3MWV7s6RC90e+8VxXIVRM8L#%vPjt(ydNpr65bU8F zunaQ-VQi@)ASjp zwj$jQ9wN&S9_YdPV*59Z*F*y;7&7zp-W84~`k|8QXl zRgb^UZS_yB@HBQ}mJ6``A36k~t+N!i15koSWb>%3_-@Jw)s7h^aUx|l2 z)rF&??88``T5-CGbqj~HLvKkLM5-*M1C%hE+2CWHcnsCNO=GdVAQsCJBc)O?XpTvy z|I?dzee}i>(s2~(-nn#m82RWbTt(Ffo%AOKGs$}L`^C?!0$dKbM1;9B0a1+I9}sa6 zhyjTI99fZ~lnslG$LV~hm?hM}Izq}&FAPU~5{OHCUdRGbMMBAutomR#YXL6-Wbx-A zEBIHG)67v~zsI{4Z0zrKO$CAxaJE<(yB3BX*=PR^QN#gIO*`Bxad$#TO5W=IZWvo> zt>sOE$@Sr}2nyQn$>9;2S-cJ;IUu>2&@xpu?)_mPeF8Ee=BbMKSfh(;2FdQXGr?&x zACZUZ!Cb7BJ;;%s<{Dp75pY_GLPamE!E;*t6>$4N^xL^}Chn`P_YAD7QnU*Fdh)uk zgVNr*Xy5mYt=1OWwXoc+;~}r!bjfz1-xmKP^foQ7{@sTm>wpbzCVz2K+Rl55Tc#hk zl(1Iyusp$jubgFgZ@agl!la?dzJCF?=8qy9jbRIN{s-Oj@bHepSX@W`VhB8grL(+X zy;L8}y8tYjYa(c=FeSEIq_tct@r`C^%8tymuNWfg3dWv{>X%x*Df7-=sjuT?=%NW)Y4lpYUrj0}F#w3b7 ze^aNcF8w`6Z#zd*04v{6zdr6Xamh)*=xBAU0gkU_Y7h7ZQkg!UZOlZo(7K^r+%KQj zNnCAB?Xcd(;jgj1-|zq^O53j1A%QH~a3em{lOj}5T>I3XaWfoDe+*B=)2YuR?jsdg zwlMOv86*HdF}3$6>DwKTtY%!F=#zK8#nP92*k7L4X#r3yhrpM@x>BwZFBiua4z^a_ zyvTb9+ywrdMiY{t-@!Rx0M3^!<(>E9J!MH#WZt$2&XkDs4n13K3z1rVl8p+mz3R(q zqIqu<%Gj*wNyi$s6>fsDd)y&-w(sWA3j6COoPVCZl6?B^!p9nDe`LN?I(&>)y(CA( z<*N8hQDwOE=dP%GI7W9wE&VnTG5d}{-V6>$x100ygZ^k>uI0V01mAKPIhiy{lb?&G zJesoniOW)1+#sCf@}5HZ%Z54c%d&5B0M>gzt)?$1@<5X-D#1))Up>A@u`XY?Vy6U} z44jrcd^<9tjpbczsbaJA!83_#4P9F#(2 zwOctOnQ`C@AHPg|o6VAS7XTKRUj`eku+hlp_&IrR;^}Lv0RhPIYN)?|)gBSVe3MJ! zxNy!_rtnNXKd;f0MC6z8`r$Br6BUp#Y!^XF`X4HL>xYY<=1qD|^8Ei!F3Q|^$V!6q zk+O}1+5#%3&2veVl0A;}Xla2oQL70Sp{A^M@wt!JGSfOa4gv0skv+s!ce}d3F;vB= z@$2zsfCnV9KBHlCD}qy($e;{;WbZiZ1evF)J@A~Us8}k@pBA{7{ECOtnnMk~4M|pm ziy0OMhnFw>>#iJfmAW@n>EASzJJl8~$th`FBo*aLh1~$d!9Y;nNcp}?Y>B%2`k@#v zh*_}*(<^XRThQzZy`;pN#e^PH4ZW;nH_kp2%cCV=6HnvX|5zRDt{CcF$-o@d-E|aF zo8+U|$hLsrY&BUYw6a-Lm-S@mBdzk~R@`4_TejyQnFWiD1$h}1kk*MyNO)V>ers4U z1Jlunk^NfR@u913UgF6BP{_k~1%x%ttGOrNlB1X2r4bO59(i5S?ifDwm-X8K2-nF@sr({dO9YWOc2Ry)w3KUcG%%DZ4#C#;kSAe_*cxZ*5*xy zSehBy!&3p*_L_;e(LY1tEZmhuYX@=%SDoaoLh>ZBgIs?QCLHRaA9ngm>0Jy zvv!w)gF~4D5@B&jdwY#Th20lJ47S$Z|O} z$-rQZHe11&IXd#E5pK)93$?#|1>-wUHMI+iDXUBQq+k>9jr_PzpXkoFN0A{sHY0S; zU%Xg3s9)+??T(~;-7;$PZq(+SQ<;HSt1H`Fxq240Y{0&$dd%W^`t^h43Qo!g5WC&| zqM~929eq4I$K>0q$?uaMsp2H*V9=%FnJu>UbCuiKbf+x0zlI*4K^u#Dl=SL7B1{A^ zgzk5ceNvE9lUTK6INqRr1x-n09Ik7T4FfGBjZ5^uXG&1!D#Xecs%Jda)O_=-RCnd~ zQG0KJTH1OrWN5_Gm(>9bR-1tCI7Nz2KI#~lF&J=gflVsg-b!e8nfx@J?G%RYpYC>FEH;^OB3lABA;v-jMV_IB);Z&5z`IBv$i( zc}Gy*F&50xPoJjLKMfqR1elHxVdF1UI9AqY%#O8E*J{N_ZL4$&YrCTf%6Z%a@Q;|J zqs;TLb2g>zxy6b7;o=vU!KrCV;p;u{w~7o}3##k8q|O`6n@YH0g{}dTvBl&DAmtNQ zQQlR>z(rmipPdtE8UyWpX6MNK@bo^wYn7lSY2n6y?p4gg--~|mID2EM>g~kBtusx} z`{f}b!pYB*;ktP}FZNRiIGQyMo=9Rb9}qdpePLZ@zua^dp~O-vYI0I8AFDh@$?6u9 z0<#Ps3`Bl2Ra7kW>Q&^kSS;!1`f++zaS=aKmBL%Xfe)8RF{edNP6G2I6f=h!*K+P1 z9=`hOVE23L(mGUS>d`XH2`s*5?3M0EQ-F%JZlEvz+C+yefBi~*0uT#)^O4KnGy(#N z1U`ufdw%HkS)UV#9MDpbx<1~_@7EAcqjeS$2_tHJ%+hI47Be9oV}NFMAQ1_6rON=R zceJY-0CS()b1Uj+PdY>Y=z}3cj^W2NDFUBa+(nmsScd!4);R!H_fbDi185~y+LdEX zGwphdi`c5o;ma}OGS~TKYL`D=f%Hj#uibK|QP%xTxV@^ULIIB410ebAX(U8eny~VS zb59_=?=?6cKya7E@KWXB@!sR^nyh_UZ)duSBj$ttcuP-aZ@(#Ns}Dr2IC?tVEzb(1 z0JaZy4rDHoq>+4Y{N^Db4>IU=1(gIKknN92p_~Hs1_zLM@klvdY0Vq8lK2=bDVq)CH!-Oq6yq|yvl4meP!M~6V|B1br>M=48 zSECN9JdHe_&p18O64tl*y1wy|^^5)}K=-3+pBqnerz6_oIo6vbF1dPc%K1FYFd8oW zr#0QyEMo;C*udrf@y0Te7~uJ9iM?T~O`a>_dcl3YK&A)r-8MtS#9O~Mi3)WY)!1f*%Bjs7nX zDkm|j)TwIl&#TN!w7%EQNygT({JsB%;q$QN^KC}$_zfOSihgI^{Rx+hfxYjBzlFMa z248pzwa<7>jTYd6l!1)$6{~olHI*j~M_1Id#s=r=6UnHaSBS2)s6TLTeKj~#NAU<- zbIKd>$KP`uUJg`HL4pLfwUW}bH~OswSHew`n$^SkK>{v(b^pGfmkbsn#3^04Icz}| z+V*HzX`1r>b9p<)P7IxiEm8G8VZSiHE8c(>%AhN zTegIIA}TX6DF0+!k`G&O^}e0Ce$R0hgnS=es^)DU$=^yGpUP5(N>miL=f}H@dfP!Y zQe-O9(R*#E9VizW!efHY3TeZP+Bwg|68Q&mAfh2Ga6uloCxIbD&>VyTwHM>DuK0 zgBv!20O0I`+8K?cFK&w$>gn`)aINB&($;REER}-~x-JP04T0Q7Y6jQ+02fZF;%qNO zBKXkg7#X1XpBx+T?P*nP`HLG2-Hcui>lvgi_>4d1f121F0lOjRAb}1(EqP0KRa|KK zJd3k;BFX^-T-ioxJkM2?RCB?)~KGf1(L-;jmO*xdE(nG zx@Cg@+Y!`L;qwU5<1~ba_qMqm9V{Ly!27YbCkV1sDcRXUrV*1r1WaUvlmvVMRblwAK%>g}_duJA;LHMtKtV*q+F);Pf{o3jlG(HqIjli6Y zrnSO#wnmR9;jJFQ0|HcG5coy_+CZE%+9BcvzM?N z;$#{Aw_WdQHOl|+0uT%2JVF)y@?r&r9DsBBMNV&;{( z_{3m+d}aEG(b>-F`C;;^h4g+ReXqCnMo!A|su+_e1jTZaQI-jKIZd@Vgcl99lubpJ zFVXOQVu&%LpYEkt+b!z(4O?#RE<^_m^Nz1<4C9(VH?GxN`grs|Ve|>6vJN?7kGUy^ zm&mtB#a_YusX0g}M(5dbAu2s~wID4QTlpipz>w|zcI?j+8w3bLxW!(!O-&sGlFT2( ziy_8oh9&FYaTpSC2r;oW$H4$Htyp697k6WSIt&}+aSucD>u6+~g7sXF$1(FdcuLn*%DIX8RBT4yru-W^|Cj9M>?;ZiS_G~C29AQv{|ZbEqwCCwK@_2874QhP1^SP@qheJ5%roe*(f&o|2X- z{Rh9_g&f4_BFV^hdk5D8y?#}aN1TvlfX<)Hs4dKAYOZiI!=bkTBg_*4uR9(pITV0>W@qz3Q4A(E+1e=+5KUO+)gy+|$v z@q!N|>Ht=l`Fyij)gK!+1mrF%^56=4pLL)P2BQK%=BBr3$VA%OXvV>MIN()`!rwG7 zwzc+7+k6Kcw)ysBh4rjzI(ANUdzx07_MKVzBzrcca>lXn8*)ERMK|#bncahv?ZsEd z-#HqBYR@^}>rLjk>99U7V2aEPDt>539k0HA^smq8go8KjjBgH|AJCY6jEwXUJU=q; zJY`d|S?FZ_?a`_hv1!7PfR-$ysCoGQvjlb1`Zs<>uAi*U5M1l$YaqH1x^M^g=TJzeY`m58OgS^GVczOne=Ur)E z@&4eOZC2(vw~Z~ubF0aWZFELURr(ndXCzT-o~;UD)wb-?x0=3T1QL&-Of&$?6czaJ zxsC^W%+{mVQZBwb0@8}(6iXQ-_98VbTQF1bh#yF82S#yT&I28 zK43_1OY9h~!{A}n{kA0rJcXyn8Ja%xlJn@L-4wH_RtW7gYk05!JwuE%E8rI!4z=jJ zxHvp4YEh!I%|Y2p(^e3n`Nv6p_$(nIF*&&#BQ@wXq7{o3FXh5kJ=5gD@$!4ho4h=x ziRtOJ#;wdQ$NGg(WHcN)&hJ;uzvIRI9h(dJv~+Nciw_lNiAsqLx8vzgg}5*D9p)SG z6InFmm)c&($HfJmpS!1vdSHl%hydQG>Zy##+>{BOH|O0v-K z6M6>Mo?IHtnprFeEXv*V^B2SND#LQ@EP%6Ua4Si|^;BlHp5cIWcDvwT6cx4Cxd8uc z>MGD@&_b>!#02c;!c1Qbp?POykbd7fcLDs|?tw?``-d<3dVgB78ATk_A{d=!^|-Vz zv+hHp!egbU`dx_(0@TJTU+K7e%)+M$L>aWu>IowOFM&=Urp8CrFMrN95O5LejPQdT+d09;PVr>LCfA z^$?uY%>Rw!+?Q;?wpNpzvf=NvId2V)gQcH57jrboC$=S@ozZqi`ufJVg)e|k9$tq$ z;_soLs=dGPfH$T3o0MlXUi@QYyG0@tBt&mb9(%_C0LZb|TcV{^U1#^w(D-)*919zc zhHDm!?{Z*F;W??Jy??WW-C^yA;ls{~-~TN?qC1M5ugY$c-C?E*X=P=Fm7V<_1h5j` zy?fV3Ko>vNP?I6}H;Ozl**d#+ECPp1HV!azX&j9j>RwD5XqTnR7Zb)GxfWYiJFmz9 zCc``+Ys13BZLjs4JD0x&bFSGt-Ha?D+hES$%}t|ev*x?6w+*@OFh7BMJPs> z??>bXrZnB4Q;mm`q!oa4T`c zGb{}Nq-_gWFVs}~Uq;>f;@)nVPysUoDoQQ$OZG;z3 zQf)bkPBQ`>#BZjqRrBVd8S4Arpyywr#$V_d$}KEih`pGp6I|ab-|K#bM*a6t9l>SV zw&?^^VqhjO+}s)*q@jkL@YTmLV}iIgWA`5>KB=A)w|DfMpD)GU{QHWoGwPIKeWGzw&?+&RgAp#X@Zt3`UaC zJ8%rhX`0WAzj`{TYgAAJT$BLcZY zFMB}@-^J2chy>ACnj++TwS$xq1CHp?NyPJPz&Rx^bv^mB;)dX3`8frOrw{=G6%<+m z!pgqzG37gc)m1GyFdGPdRhM5qAeb{SJhK8qbck_6Q`a_C_^pK3c9t8#JS_!OiL~^0 zNEwD~)Fk-vyI`>*5)@p1Q-aritEcfklpxIiPzUHOD2SAHxf*8oDm}v(0Zw02)EIb; z5WMzR%oS&Cap4VMJ-NqVbmt0r$X0i=?1%MO?^d8_4+%YqkLSOkJ>r}q-`45 zl`jknrlx%t4#%(06#O)uNb#PJ3|7WQSIoWa>cLb+v?lWWb7SQ%y1AKc`nDnbq=ha)?NfhD@HfWwyk7O~eAY+A0R)8cpsiOsh)vDHnqdMLD zAqZ%QfLRE$8UOJ2b&lHC&w`3HT*dI$m;vzY9E{pm7VuPs%3eT`MSiOAFa)N!$KT8W zcOe8sdVa$f&JG4deuU2F4#K%z`I*rm&rWGr$^roqr*Tn* z?DUj{KCs&}eIubqV(e_=dYdw6#wT7I(aIS3@sCCvEa@-Qo;VuOP0ClWeOwg1yh%gu zPH7Y+74Yz6>iGiy+^+;^6HS{gG0NX2+wJ+cKvhF{&Mf?1+$Hm;0pEME-9Tu}Eg2XnG6rNN!FO+-KH6GVbUo$TF`*^MQJdWIhloB@xue}GTZp&C&H0D!J@2hs`~RVefprb0i#S@#J4 zKv*{vjr8D2b$5j6LFdWNn(Rj%Jbboy#Fzwf7$vc_{;r_hUUnm)-{WaAD> zEkwGqYwzl!*9onc9he4ulTd&V{u_Uj{te)73gdy@y)!@V#Gtt^i%Mx+6DaOUe#ZEi z6CJ^(=KYdCW`U2d$p{8kav<><3GjEa%SuS9##yk*WJ_j1o3g3&H*W3isafgk_l#LP~M zSQ@X&X3ypOoHsheS;NxrW(oNLI>z!js9NI!$Wn<#4W{=-B(mb)6DG)Vbz0NPN6psk ztz`}dhC#&Rr`pzCWw>X@lWh!;4ot6Zi`}XU3|L71d>N1JMQ}J0j*dT@$EoAm$SRYsz4({GUPbPhv5hg zW@ux&zRt5}^z`&dXIsO`j5Mc=3M%Z*OK)kNi;C_!c12$wR}*0!j2a?@uMe5~QAiYx z1O>>afGW3B##xpDK$D{coXG7dW-M~;1bj;JlDl!x&-!te>2j3m+9P z_WJP!IOhT9dq2E;f40U#FpW|Y0|R5djj1?}4&B@BOv5|CL~{Qg0-%TtltQPMzMn4( z=vxo^+lVarDJ=LYHrlX?^#PTzy<)gGwM<0`q>5T`0;yc6-9>TQfG`WBTS_Jvdo&k2D@)kro{x_YEGh~L(n?I&F}39_ zB_!H>pR0aPppqe<11cmEBDsqYwfHEIbNgIV<1)Zi&+jj3Kg9`o0&;F+%z*jfZoI>f)UEwm4s~rZITFKU{#v#PihM{zf zTn{9Egn}Xke0(1y5WH$h(QtJG9OYA|VeI1Qiegqml#O=P-S?A0)YtF-WsCFn+=6D; z;a;eFG`#sg$mBp|^i4+7fKPpAxB$)zAu@G8#Dx}KU$LQG{G%ZBa**q76 z3}MDScnbi!VCi9UVuTF|M{O(z!=By>N;EfAj+aOqTq{-BFWu7z|Ef1XIl!@E6E`7Ro}Q z)2j<_(g{$IKqXG7kRbJaz(o6myeWYPm}sUeeV|CJ95l}b2;HOCUuchxZpa}#2SN*g zHfEZx2?}}CfR;{!!i$w+0iT(Mc63qd<5d%v6jxcjJ6Xa8Dz3+)H@y;nRTJ-%LnVD* zV$q)!$*a3w51|fYAaybE2>|QG1CLL%T^<66(%Wmy9KiB-+A@a6Oo9TrE^fF7o@?4v zNH?Q1f^$4qL-pO=vh{#vLonzj&hP3HTh+)O17E57S<&6o`@Gf1Zj@({$6*4^nnq5& zfI4}+nD^BNq}dUQo2RMDc{B4{EU+gX`)3tq2Tbzdc*gdpELpt(1L9hMwtfKxnNsjD^v%s>5u&drJ>M+21KRMwNubtq!f)s#)i~?bj zy1L9BqNES(n5AX50PRa+^UJ2!pn~_Nz?u@_#9PSUS~D>)cq~&ZF#=CXY>B2@O6V^N zq#@8;p(P+N5QX9#Lje?Co^yb)nS+zgMOIRB#sdSwvzBz|{p-s=N>b7Vm)Wq}b?|l_ zeC6=N43zQxSA8$2JctJ0wj?dFKXH~9{2VA53ml`^s{(CG% z4k`u~3qla`g0B<`n%^AtiKzNXA*%V{-B7yM|0>-D;ufEmqVN5+X`%202s6U>38m50 z=Xb&D3`Pd^Tfi{7s&YPOLcf=Eb0iG(0S~f#`0f&cNZ=8D(i46R_RWWTVa;iMd%woZ5ae)A+38tA2cp>f+*}Uu%OeBP(0&F#8xZes8IQ zO=Db(EC#5l05I7|OhnLC?-t4@T1A4SuCA`HzyB-nNGRJ1ruTR);pqD_)w!ct)&GSI z3dugJ&wcm-k)`G%<<9ZIL|E(Wf9WT_&j(NiKQ^W{;~-dT@3nEg<9YBS8&tcDW_|oO zlF#qalJ~&sp7r`UZ+6PLJ5q;w#NxgH_ysgT>GE|f002X09bR3tva-hgPB1M5C4wY|M9AJ~Hc`}mt^v*q0* zFuMJUm6XFk*LkeT>?G3C(q#NLcwZc5$BqR6f(fnzpnLdG?sOR_k)n|?O`HH&_`HGw z%j4y*it6e;Moz6EB_-@&HRWQi5%0(X_lL%Jn?7C43+GYWHA6&1L|jS=3|w$vIzFNV zhIOmJg8p`S5cBTRfq#`9A;@Y#jhL&ioH9d!{e>pn6^;L2{J8k!)fZ9)OLCD!)<04M zJ-u?BuTP_#IkOtt{TAyLwVb5L@}d+rK;j6z+o7BW@7av}hOJpu%Au)0iu3h+Pu$S?qJULl#=1doa;ie5I9j*m}!Cr-z9?u#QC-%G3? z^-j1M>R}gq(;U&!sCJN_T_F<(|Y14suG6O;Mv z%}?d996N9|#vRn_wx#Z{*h22%;n8sLW$x*-XZh|nCF9jr3N5$4_JEE_dwL3n;?l-| zTO}<2-u_VzE3h*#Fwk%D=3QM|`+y@?_v`W?va_=@H1=Sw9?Xi_xw#l66pQ>VND#D~ z4T(XxGr|ZcDI-}jz3&Z6{x0hrElyT1>;fpYGngCdy zapc_etB;>LI&!(Xy7E}UVWE{f7rs$sy!XUB_n-1SK7IJIhP)%6l3B#MX140(AO#}+ z0xGrRtYhC3Mcx1gTY2pjS>dtXhmW`xWueKV3zRfE?@oaA9z&_5mD#jcR#5>I!;uP; zW{$SS3KKCZQFq1cqP}Dxw&E8P+6^nAlp~d9Qu$q)`5+1ey`u^U2-u9~p#F-3R*HUrkcslv z%imudu^mGhVryNvQtJdpeBdN0^4Oc=A;V(j=5AZv>+bFb*Qe;RvY!(FZ|Ml-uv|l6 zh(JeZ5c82w(tY2)b=OzBtYugQCq2yE;(c z$V!&&TjwxKAmMijAI((&`*<;9wUQ0EidYo<=tf^0Y_C%nUiBt%88!5%yaI>ze@k9W zS15<&v3WLA>y|#-;nCRw``z94`gdG%^7JvU_p!NZ3J(&91XbBnpBfm1gUks%Gqe28 zQ=M31%m?371u%Xvtc>rC)yXkv157$8CY&t()9VL)OBz(K?7dv4>tJMn;+m{`Bgj=1gb zt)Ih>TBV&49Tsu%n^eh+swy6+oLqI_7Q2SjAATTF!H6{nEmQccaj@uPDeRZ3*euByUgPJD23axznEODG>hRqSq)XHlq; z)pLEarm3qND(Lvbe5T4`rqPY%N3CrxVjLof`+Atj0o?-Fwf`R%3IY82|E<9-Eq diff --git a/_images/kernel-method_32_0.png b/_images/kernel-method_32_0.png index 0068095f20ebdc6014ea722da618f0d5c52e4151..ab10cc25f087a9d091dd2b2ce40a805066312b7a 100644 GIT binary patch literal 41469 zcmZs@by$>9*EfoYQc4KY-AH$*5<^NiNJ}?J3xaeb-3`(W64KIL(%s!TXXEp|&w0Od zoja9 zJ1W_jIJ)TD8^g%zJK9>>I9i$+kT@ILJDAy6voUfqveJ`$c679L;ALX6`tLt5+Sr>i z(QM-wfQum7N@_U3z@X|s{X8oW$~S|7$ux(25K;b;vcKTsfq(JPb25D;H(t5%qjT2% zD6+ZkfMUPgtpB^>cE(5?R^!fBy-bE&hU}3_(;3LVWhEEsH%rq1ibbWn!>a%S3=GuS zIH%|bPeCGAia2=}8@=^$iKRP~%)Q2N3P>~sL=iayhfo+ih^C;`Hqs~m_gn}mGXB$p zXw6p|Gm=jaCJg?xi$6Wc!FrFy`S0Ira4O5Ap59m373m-L^Z>%}y>}ZXDsPWB$z(po z&qw%ca4-_47%3wo3aOvI#*h-G{x*+U$+|0--20*C;Vp8sW5cT1WFD1%YQ3}WpbLjG z8nX4PepR)Z&q;D3A`SXIOpJ^MZN4tYU-)0)Fb5VY<>PD4C&(c6_M%8hy*s|+=&-Nm zJZ-|yC*5kv$?@Y_@^~vdp1^I#`aS?9Lgo*aWXopQ_?sb5so>`-uMe6P7lVV#J3A>% zhKD{Nv@JHf&s3S#je>h9@*m$Zy1x#Bv79LnkD->wNs)}sx&71L4WrZOXgpt!2ve+8 zmo%O)kNfn(-&eS-p2%$!+G-A^Zca>fip)c>Y_#I(Q|T>Vk@?KN3RInbxS432%zb`MhPXa@yo=d zu=}F0qcOW2b@Fp^6588gRg2Z%-OWoX#zy+fVzMO47#R&vGBSqy`g(v@7@6XtF>_Z} z3Ba@ORaC+WdiD3F1_!-l6qExGgofWhkH2wy-7v=$i=iQ~-`P>p#{Frh>g(+3iHTyt zR#EBg<>}l?w_)Rrp1?`^-e}6T8Mdc@O3cn1HX$=MHkQC@j0dAtXTA9+DrJ)=vJ~TL zeJuy&@clixP{-viw7m72KWM4JCl>uVOPSU*x#Fj_&m=0 zfo(xKk!EC?R|9eE3J!8ApZzW@HL+~ejA5)x9o z*Q*|4?|`)vA(AFtzfy7!LBA!`ul9%ZLDRZEW^3QeiPfSFqUbHNCVu;T!)5<0X>7Vm ziHU`UM+hm3$cs9DIC=v;OV98ylqDTMOr=jcXPe z_$$2$#WUIVqn^g?7=+yDP_SJg_Vy_Fgzuv@2{mRqzd9d0EiCWT!bV~D(@^w@rhBT^ zFMM>hkTOqfx!q+?_qs*zk7uG}Vyc7OokrjUl@?uCQ#%quNAzWR<0xw2D$9e=A8s#9 zXUbP#iq$J(!Co|c4w?LHb};&WUoEr7Ov@%6k+wEBw+Jj>B`vMq$c|hRRpO`_k*4ec z_4#W^i$sHD93iA(L(Bv*e+^FBdrUF?%YB(QZ&G4oF{>;!oU@tY6t7k8mqkXL%=e75 z>5v*1!tbW|$daVZVe0Vr+-=sb518!kAE(u^Jdp&6Yo~RoTvurnslv%z59t*pP$|uZ z29^g}YszOWjZB6*EIA#(Y;#(wPj9PlL_B^!4ImQd(i-viwPwvumJu$0QGQ)=brP05 zvi%^fC{1>*$~i!VHbO%~!^JBev%ax$+6Iq&eCPR!*b8y3N8a+hMTW|M-3Z>_f8+Y0 zQquh0p0A5!J(TEc(HuPQ*Q^Xa0?gJM!ABOu4Ogy@R$Gg=Q+u64x6D!ymd4pvjp4_4 zqX*7@{r-#}YKB%Cvq;#(D)ofE@3jz5xHYAubQqb!BWK{UnT(g|LB&n6U);Gd2 zBy7emAvepCrKL(^aC$qm2RC4*Xgq+ z)}Qv>fGkkjcJ~>P=~|s)_?KOa>!BEgrSRL`*SUp)EOD;HV{PXbxx){2msXCc>G7OqwS$0<=}>&s@|s9KI~cDZ zCHeCTwG*Q$iC>24u&#<&Sm_>I3(r{ZL3gzSe4dpSn*BsJ1&3x8HfK*b;hI|O?OQc% zyBE*lQP#(#nO^U>HkO{lSximhPIK!UsO4DKM zmih9yoQA4$p}SX7W{^ovGPK{fCjk`s@?F(d(lKWcMT@b0|G`jPw(I?>;V-v4`5+j7 zlpH?!!vFNa^ImrcPlE_07D~%ca|_PNq0sd>=`xWca931ROkgqOg!$!iWVF=6^jeMr zQqdt~q#hHDucKnObe z6MuesN%_cjr*V_2-Jr|qPUki6W*|EGPHKuTcX@<71D2G<&PV!c7%5$%DS1K5kw?lx zj*z}yRC{}SnC;mr)0!Uli`}k%rq54mT*3QvW`ifb~2#67m_3Jw-sSG`7P* z&GedW=k!g=S@XdA11m=V0RE%yhVA+Mny!mKWr25tOcwKx_h_~{GzbrSafCW5ZRXkg zB`ykXm!FUGJ9!R~1gF?fG5sSBoJ-3J3Ql~B>5yuR{o$UM`U}Y9I?q@QX@%^^=^EY3m5xTBPm z=4JUdi0dbd?nk!Q#|navU(m<%1`C`HU#Y0r@*c#-)+4|fICy>gcb3fsu3WrOS)ecJ zZJL7`-LYwq9!Cw2hgz`+eu#A)J$js=Amei}#ZeZ%hIk3ZH)_*Y%;Kz`P1dKDCLPyW z$%~OkU@-ijfW?=38L5?$RatJwn+i@8KaqTmYI1b+8$UD(Dk@GhXa%o`Lc!`9Mj{J& zs#u7i{?*|E1$CYN@iM8CAT`>E=Dll>_|xQcJETYY9hJH>E!N{cM%-6zp}TM_%i?9=aaH!U0z;RJ=3U*zOa2>F~X6`@H}Sr*gQp@e)y zU!C?;9d6HQzhQvtRn~+5?NT!_p+ZRk&rcf6^z=XSDknOuNO~Ak-(qs6sNNwbOEWh3 zU0;8}V$#*VNEqHS?2V?BNo4K%ZB$`=eJs7b@C!95ufhm|m7AL@E)h+!1N&C!h9_<3Z;aKD;r~Y#OmrXtdG|Nt=EOs=iGi~Nkv2UyAqoC{w~vW&zHXeT%e(&Bd4RQ z|FQ;-q$C8g5~pRoa=tT8uhWQ$Ajj)6EO2!k;eG!N$B%Ck5@yO#&V_OH^b+%5(cqYSvM;`wehWQrWp<8WX#)V1JVR&DD`%XQ1>e6dFi{ zSn1({R0^+Cw7k#*!hc~Byk>V%S%qZU)kt9g%4*XYmW~qRhs9?0;*dI}V&HfmJOi}`Qn^*_3=^djRfkqzGr076Ddae z<9%>UaSj!8Yk!7^4ZDIjsw=HkS5y>y4r<~dQt49W(8HWpd-C`4M8XgD5u?2ZX=X=6 zeoJ~s&Sc9yO;*xyZ^Y6%(1$7GL(L})+M`VVUc4CkWsS)A{v^ym`LoY5(nh>qxczp9 z2x9IO*{!!$PI*W~1U0!KN>P#h_J~NWrCFj4(x5DlT}rIkS`hT)isj%QHa7$2;^+8` zu6rVQvI2T$mQCJW`yF$>B!m0v?x9$_AthVFAv9c({Ep2VUU=fvo79o;-m7>R$`@Uc zqbiBTS)v?(LYN3(HjKq|>BdY&cK6F*4kFYi2xGs>?Yk`MzZE20{)6{{(6?%bOqHxd}WF`IQ>>@r0V) zO_dQl{tAM&HB+GA!w5lnrs8!;4tH9k`Q6_^62}$f2y8ajD{@!2T0cZMOlZz;2m6|; zzFgd?B1@q^{SU0VzJ?194py(VMAVF}_SoK16GAoC%FLMCu=;z$zh*!ZQaQP0`J9T|qCc@3bZo<+t@ zrS-<-KPz|IGkF4j_%wa4o4Tsdd?n$!o)tpul#|)VRR_`w?26`#m$5(mDNRE%X|D6+ z^6x8pXx(>-mHE$^HIda#GAeG*cY4b8$pN@gFHy~2gIR9gmwIKHV>f zURQkI+94%D^p-j1-4W@M`EsczHy%dD4F8}a?K?9ipr#=q(YBm=;02NTVz)nOE8OPWmbA-F^iYPSNfc;H}y;{ISVHN zOQ#%GR5Xy53K8{~}SSE?4-=x&HTzLiysv}^Zcb%Z( z2ABFVGlg{7k5cPGiuzC1dcGVr*Ui-1rH(52`jL#32|e1aA)X&%Xh-QplXV(7!qDE% z95}PGZ9PFgZm)ZsWG)*cK%t5E1WUEhj?*NuzUJ6M>pNN7=Hz?S?`X4b{j4=jc(pv= zR5yh-Enxjy2a11(xUC4Ah6e}HbdXl2sgW3n5_R9g(=o; zj&|4@!UI%ZC^<5Ip(=<*pyXIqzMxYpC1GNkUjD!`WSMt;;c_yRh<~rC@^jPJ=ggs& zUTkl^>vyDLF`j@M{X(Nt&(T#(YI9(4uzfaQO-aE9oiy8@IRR<$b?cG@p!u{J<42x-i%B!*gWG?w&khi@yT(lgnqfMh&8i5gX7xZJjA-{4U> zc*7~gQV8Bs`cqI+{zzmS@9oq4GnC3FDQoo}`uIFF+?c zT9XwV-PflVe?nrX_)bNqA=f+4(GVsYk}4h&TQdoIgFZ1s8fQi_J3tfw2H_n%<7#u@!j8PokI5{0G8?tgj4uSVR0&c14s<)Z-W}mo86z|fEoU~ zEs1V?>wyo*uw8m{n2(r%ALC-pq$tD+3W5MG!3WLP^RC6{>QG02uFmXERk2%7bbifS zn8z7U=L*M3?w5W?2Dk?@di%nt`k!kN;FvvI7+`}a3avrBDbd6-ez@fTRhrfGdd z_A+{NNR-FDd!(r(73_Q}T*3P{ZWp`nNzgv^Mt8;jsJV~Ae$4DZBRy9FMFcc33SE){ za)I$wzd8P`wF+4}%FiHah1^v&U)nd<8H$m7HNJQk%cjS%qb|-`rY_aqf%-BeQFtM> z47>#RRy%JmdeNPnBp_>;zafPi&mSh?sCoVN?OP*LCi4?=ru+ENcA-ybjf%r%5qT@O zLsn6Uln_$pI-G!OJ@4Q0tD%sVwX3SZEU@^*f0AT@WJGf5|w>A2> zuIPgvF?k=4Z{jhbN3XT(mi+IumNM@vgrZvSU;s*M(4J5XcDuVe$}KJqHSVvZwO%g4 zxJq^TraGKlSE^(;?8$QXD}$OF|B7FwYw4Fw!nkB+w0{_;Do}0m^;#cQ$eE--J`0~{ zlA&sHV9NcMy;sZX4;$4=F(|u2gD~|emkyMuDqt( zVZ&p-ZUJ}b5Bl5fNqp~NT~gU2+qBZ6FPpl-X>n7by*Z6w-I3@3VxX4KwwiOUUtk1r zW9957G@KHm_*#Yv0~gmJFeD^9gCzYeT^v_|cgkL=JHVL-A>vRookqpSnRHsuOR>+w zJ#z)*aHa08#A7s)2v{7AgW_GoL{^)h6m<-)-%^YHT>cZ%017NXfmWKUbTGz6Q;3Ck zpvwbk2NZzRTWE82HdZ5N&A1LUnoTM9vV1hR+#$X{_Go7+F{X8{x}6o2dLL5fY!__V zev2`1-QEb1T|1at%_-csiNbo`iE-yTX3ls|LKJ98Nqzn!^o(SF18Jz?pROf#cS)GQ z@A?i#tJcz7+0>v!Lf&JI3Jr(7UJR36#V=$32%2@?n~!+Dt8}2H*&}z|E#K+z5Qf=$ zj`w2jYMIz8NJJ#}Z1-@C5h6QMVMt9Sm(mWx`b@Q%Kw)9wKLn@_AlawiUqyfvwQ8>d z7G`mqdsGZzeyQc{Rh_j6PxLoM)!-?{*Cn3tAYE{PB4ncYvCr3H1YWR#bG1#8$Bl1m}hpz>3- z+|djROb07(Fa^ic?hdTCUGIt_=dqlt?fRD+GXaQ&0e|^-1fb%ksZ4ibTgght?Mcm6rN!UxECDoZU7IGmQ;Fm!5+=PO!{?g_@eXHZ5)U<8VHt(Vj7@cp}5GLK@_yPT2(J zAi&11T(|+cBCuzT1;Awp$45+mjVe}KUJO8}nSkl8ep%|sFe$UXwbpc}I>P?pHL?j3 z!&kE_MuOG{mGzD;ZZLc30Cw!`BzE>te^gfPtTdKh?^2A;ie0d#W^-Vqib({x$o_I4 zH=Dc$p_WVcMS9uL2A&_*@5?ER!01&3st`|*DPHN<^{D93M-U6WlhBn^#FUn`>L}LO z(RQBw;kZ3Ay3Nht>onSf)(+1Lf|~Aw2Hcw(f~U8Q*IM!A$tI)xzC6%+TG4;=Aq$F% zotcW5Q5MZt3Yt;{<0QesrzV4AW8fUKDg&+_N4KH2ukS~HZ+}0>lW=)KOY>)IEkfw` zMiDcw)Buv>PH<@vsnyS3)ykJq{$WP-6^1?IxzcL)kIR3M}N?=%htzwPIC+NGGC4MCh3IZ-J}2i*VkjM=p)FWUA9`jQ_c3UN~OX%O=_ zQP@F2K_K~o4W?SoW~YIBB2*tgk?9%az3fF0@sQ+qcZ4`}a=a(;dy9>?k)noI6v1R5 zA*{<_h6`77jNxS+)LGw8LFA5s-+kgqk36a9n*4tmb z+S;=l@wC$$?|X#09uBm^da*k|#U&ON8>?(GfS^l%)pDwbvOnuTV$P@ykgm=-?No$N zpwS0N^gE}c#hB6T9@uiXi+4P)n$W9(hZqezLzzxf+pU+h5k{% zWYETYL`(Ya`k*=SaQEA?8z3p4mWTG*yU+YbCI0+ZE7^Oz(sA@u)LYB|klvh?b*u!I z*=e~h{=a&E2}Ae9fCfcjTQ`t9^9uqAVuB*}om&9;lKuTw3y>$ic0R)DMYSsU*3|_d=EnIC{X-hS$xz4S+(NIPT|(Afu6l?16nbpFU800llM$GHKbz5 zpu%=1H=fOAaRcN9@t!COaNb6#M=~)~lT+#Dt?3(wXk&ujs_u!+?FeT$V3(`6+iNRC z%C|>&e?{Stb6|vh_CbsX5p|w8ZVjR+y<*#$tvh0_sjmL{6JBA>Q*83wcb?~3l&M4; zaB4tn9Fhz1Pc?D4IKX@{ZRO&BP+nWN2$NnnG%E}WA=iGY38pK*gZk(RMNqsYaipIN z@!8k{8aI1QvLqHn#{y+LXvD}G#x|nNvD-6s>l*u_Q>Dz(qR*+nmLG>o^!f5!7t9ed znLzold12A+tPL@z^+N;slwI}-%mDE+ES#c7^l1x6Pvz2y5i^Qf#CNNg#S8ktB%yf_ zU`rID!MR;zZg+@n2SLE)j;9th&n~_rwbN0<$L83)5oNaeD+9`+kbV^r=Sxu!doo$t z_NV@#RFrOZhgFo$5~LnqP&} z1@#4LDQYlHsuDv(8)ht>?HwF6n%yW%ELG8aKiLx{V+qG%8a}L($0|{et`U4OHAUN= z7RuS`9=m_p)g{&hef(9wV10Xm|NDH04P8H_N$SBKm3F*)x*-hZvzZyDM+>%0SULk~ z+>pC8`LL(a|6*F1_1}<7gvV|PeAq2bozc4^-p%~Btx5;bus=9ot460>xCY}C)zv%0b%!4SaK8HanQ!}M1Gm%2ZIZf!%_V&u6Ve+s&u~^DnArr zwnaO%D3vHPWJGxu3q5s_eP>Ql$gw?9$cFI_+h)GrPJoh<5-=Cf7_kvuJOW}9W6GOP zh3G8=J1Q*^!}WwjcOzTWm%OL9{a66+Rv|SV!S*J*%}Te|lo=Rb$P1cswTA!uW{9{Z#YUq$P!-h^kHmK=c5cAk5x z=hfBa`$Aa5?$V^g%`EG#WyxlHCLn1SfeRwQ3b-rOdue@}iUe%8U{Rbh4I|?w5EL>& z8FRlz3|-!zt-8M%_U=A#KKrTnP_(#ZYGh=4cTlJ1Ufkkaz){|O&EIHVRJ3bB2K&tN zs9E;L28uQ{`d<7$AO;B;`On}WFlC^t>GBYtacwo2`TmZ~j1@SUEK~1jCO-|0STQ zNn7yF@&%h|UjI|+M4LX`!*|pqYi<2Zv;d5PCYxOB?f9Yqsm}N_nE({PrlSll_LyAk zP6AQ1rKsRp0-GrckZ`OQ8aD+!LMZVn1r?R16vx=<`{S1Z6A;~_CpuP*$nA9}9h)tI z*E-A$k(4A65Wo;q;Qn$9!{_W_{m(q5&zX!XBzSECFrs)kA=@L~8x=fTYSH*_*t-+^ zrqtBb0XJt`YVHF&j$^e}T0qL&^?amG_h<)W{Wfc9GEtzwe?Id5d~do8k|>imbHql7 z!wOg7EZh7doDuF7&d0rBkH<7)*(*jdJM?h;vaTk(=Z!_Gg#FdtOqbpQVS88J?Pmgp z)3UpNYmk-lWQ>8{YB^i!Q(ayARQ`_0WESi-Ne@b=xf>P~wU1=J=doXh`{jIK)D@ho z?J(#>L7k67$nfquU#6?t(?W9E(Q~!)WphML?X(9_xWSR+aNd`Zk;$pAuOHeP0=qi% zeZW|Sp#%VDZ9x0(m*raM3?TNBjAsl>PLWlB>+KB}7vL(oU%oq@Eo!V&Q0Z)PrFgxs zb99&@=Y9e2NLZQ#uf_R%QY&x>%6B*#5VZFfz2)KHr5I{mZ%ogMb9|-6G~-mUM%y6Q zl8n9m+NOJ8b;!^!OqSDm{IxM@HoFEX9;aQ*bkEw*Wb4Ml(QhJ}vBZn0-Vf3Xa|Q1V zrs&@=;f@u&uZ{!bj|j$N|BNPdzk=Fuclhh4fEUPXtOlJ3UeLRxfTl7)vay&B5itJR zXZ1QuUSfYIPm-aaxN1J(kR7}vfB)8j#cEO6(7%lCojOA-y-pCPt!>FK1(g^1<8qLo z5aH#$#nZgWpOW>bW4z?sUl$A6y7W8{odzD>AOcb-Lh$x0n`sLf2gi?}Wi6aVe2LS} zi@BTB;M_9u9|6&@>F#hY_Q#LWYzg_zfkf)No@Z0u(3pA&ukR?>3`bc%-?{n5jBTW6 zUTn{1JkpK)bG_OTr;h)aB`(;hq-l(3!DZD}IHAqXb zX8PBONuv5w#jl?` z6JXkvR?^gzvbJUvaOW)EjV&6-NQrGaA$m$bi(Z5m6SU{`+)X=)01v;E#d$0y62!De z^}Lu-$kI>b3m{Je3DV!pO>sNy}1M#Y0-+xyWH2SQ5RXBIR z!5J`BZ-u!)EH7;_97{V6ERj5bS*8H%f4E@$i~%xQ0ASl>%jJy+i_&`Fy~mrf27>W4 zowm5sv#OS|n^*lsZ|lqIlg7NE`F8zf2{K>CxBPhQ_D1&!$*t>GUJ{_dUoE&013}BU z&G!ZWNhijM);!vt&A_qgWf4t2x{o|59(L&nqGV`tv7fr>~#+56Xm;?tuUjbhYS?TsLRs zm~y+rJ2YqAUVYTR%;0*kH^;Yi$FC{$2-9QO%1QHSZwf4_fdLs)>pd&@pe4_%ll2&R z`$3NB0^8LfqwzqF1;p!$+~vfrI=_G~AYE>&Yu zR?U&H!W2?<^(A`$92%qAi=*Z%6l3FD5H?eRf|QBF@3z+zSMDrb9KE%ObCG)WlyI&; zJ@aafSm|KWzrX(Oq!O5O9pL465T=Iq*my^}EBf(rLdbUMJ{5uTr-t;GK`x_`g6;Y~ zX@y>})nc0-QG6bs{}d?w`7W)$EQ{H~cmj(9#@U?!a5>D0G6X_iu_anuzYpPQ%@D&$+nal7lOKYUzFc=J;EKB5vM zU5*g5p)~98WoP^6==@^OlS^$o-H@KCwL&f|wA!Bh`G|;22?=gmY`%+*kM98nRKv-l zAAnN_nD$)9!cl_1!2F?q@-v>Bhli0UM8zm1Oj(HZ7!}`VYuDmL*UfbRlVj`RU@k(x zSr!5WS1bh}T;-NLv=v*GeD{x&r1(Nm$rGH-pdZe(rM zoZi||g%YTWx!!m2&sLsbOv(5EG6aBFE4N#7dy+sS@{%E_)V6HUEFC8sPJRyD%mtMby=m2QULC0jvR`6Xs8B?+@U^d{T3w zqk;7V6mxbplmdXEBEkys9~fu=V&hQCO)zlEfL$1D06>u@!_P@6lg(UpdaNgdDyUL8 zo=BS-Nhv84kShGpJZ?6KF861R9Vwpt+~VewKqyM&VXH5?KV0CO{pAwzA9@7r4IDma zei%@B#Fi8*hOI{ zbO%n|Dj09!`d8)ADRVy`%&j#XiUXeTE1GzI2qG9I#U~(~t#55b#W*BTN@KBkKRR&} z*oR?5f;mMI#6#;lw{ZsBfq!r)x$M1w`%4`abRQr!`#oH!9qX`0uc|GH*vw6BCn(4- z21iqX9R^NbRCM$|S}1hHDRtqOONIT0y@96`Cy)k%)P}@*`(G4jhDa&v1^{`3#OyKm zBdLV#lmzHJP~K^e!ZsaF(?9q-$>I%s?{UTD<&j`Ut8A9y_y1n_kJ=?s9QIO!fKw7; z5iAVjv?K_MZNe3!il?_b`uzX;|HY)Fkp2+MCm6J2GE%`c+h%fl~ zW_Lkun|HVEIl3g~95|p54!{t?dETCjfq$j%&8n`R_{TX4Bebpej(?u3B?MM^!1!Hz z=w=&o1eS7sB9MPyYnA)&t-yEVwEOBw?f5@fnA9UHx?My<1@#lFm8gP!C<;cEvXcQit91=#QyalBz!!0Eh_pM zrn3i%RpqMFS=AMNeVtD70iwd9gb}c&M$=b;kQZExOg(k()*Krfi<3a**vJ-@C0}`B zG9ZRccHLtn3h$WwdfHPc=Uk8JE7?-*9=SUyL=oW$1MBJ%-CcV2RvOO^qPo|kiN*wbBsdwgAE;u2K;hWg)ur$;aya;H zg;1C~`^VUkfHCA1c>Y0bsyq%O#K<^4(cPwcZg`+pKjmbe=#Ht9WIz##0V`?&vgY8WJ!Qm}N z)c?4Qz5sebqs1d=UuGVTXqW>N%es4`F~4#t%wITz{Ow!Rj~~kk(`}MQ(G7j4-QV8a zz|$~6F?4OHbdO%mAI{Oxs7sse{QSDG9r(R`?jR@MR5f`^+&mF*yQQ5zU&TSM)+kHX z_uibylzkw#5VY!{WLt#-{C7GkakO@Ihs$HnZrDB18W#er!cicBk2)`+67s?zxLq9@ zI>wq{TWz(lC@K;Zn18ln0Um4R^*YRZF$y zbahL?6fy(8lfqx5)$0NG{}NsRSSbQk5GXbOw-+Oa8OV$j{=M~fdJ#>3`ZWFKfS#i` zftH1ne4vpslx)Xa*0yrZQ`9)Tt*%IyOM?WskC=o6Ni#D<(CC$E7S$k@eK;5L(BN(0 zeM?(R+>Cn4i|!2aV-7Pg;(*DANZJDKeE=M6^k3@YY(FnN6_xJLh@ousaq<=Fai8jh zB&7Oq-n=;!9ipJeZ8NEgO5{PUnjI)qqMj|!bj4Oz315%=(nX+{7ut2QCt-WP!;<2% zAho+JIFk;=t{HM7;dn|yw4s2BPE2%QNgPPwwo3`apT;Nb{fH&aiHKPDjL2_<4w|Be zM_OOxBHG^E{XJH*|J{_ucpd`~#^IJjm;|?$+a6w0vj&HEoH%^d#5Tng?J#jijoCTly`t#k z*}u$}l&t^Z=Qmd|2Mt3LTS1|(5fyO1G?*wDg~7ze=ICcx^}b=ws>eY`m}m@J>+MlM zt)8+F`|=e2lSGadJ#knJC}4i7mXL5=rL+Z+4IBLp>~$$rw;;9$h1gJ4df8mo4T4g1-dn|Q>2QP_>r=}HRV`OLIG5f{C@cMx}^6i-N z>({v{g8q~i3aP*yR9ZBn>&3F)V-xliCkBoFzs(Zp#;ga(g>zrgykznOIJ}q`51F_L zB1k{LkXH8zxfxfilaj6ksF##+k}XJ6P+d~fnhBnqpsqSDN=x;TqzvIJ#Il9Wq(6xU zpgpN!*P?YvJ|j((Liwq+g7lsYSYP{-CiQttEU2FX3RN(GDXP2>2n0|Sl|~TN8IW?@ z{199>z0SlU5TfL@=hMwSzoWH1#vvl2!emC!S7<_!=6%pi-(6*^Jy=y3Ma8l|Cms6U zBvfcj%fz%6BQI#Q(0GiA+kS-VY1qm{-(z_II$K`$ofv|CF5o3myR?iis?aO}HiizM zMBJVinh?99%X+koBwaY^bnT@&j;?Xe?FldVe<~-h#12@iBPEnpK?S*|Xtx3Ti0NyV zhnUAbIq8ACxhp^?JnomT+%NY*V}g$CVtT6$G_rOa*fV~&$qJ@{b~CC9dcg8E&E|yT ziJpRAGPu%x3Hmd-9z^TRdWDKW=AZl%qVuce)4xs$Ok5vf;-RYHN8~pu}9c%FW2zB5P^+jj}h&+=Ugi2^TGrJ6R!kpY!H|3H?z4o^9Z`02z2OK zfMorVwZ^=pire{iFR&lMfH?iubg25f7r|RNSOK3#Z`8hi?}$97(iOhNNNZ!nXGLyr z3R-cO3^aVuE|yR*+aqS13Ln35J+E?o3xQxj2y=2?we2)viS@EjC|R%> zbV|Bi?#upnlIuvW*udbVz9$JJ(d&^Y*kHDfE_jZPk0otKKIVB;3Sp z{-9wH26Rf5H;=`l<10$DnNQ$=u|i1DNa!r|W0>MbOMG*3`YUF2n+v#kyz5lQ31Z_O zpU3araU8ZC5s&;f{LVU>Uia+I;!o|0eg!=R%Sm4duM+$nl%AZ&mAB~KG?|65V)nOc1gZ8M%XqP4ZkQo%GiFy^icl}&hfE1NTG%&_}{ zu1ue-spcrOnRHL_%Z8{T;C!xv$jM~_E*j7gIS}mr&zrXQxG`pQqT2JC4lUzlXpCUB zIRy0rJ&LDL-wUSYQ9cWIt3!sn&D^`VKUB4v<6B<~_=c9to$3PX#<0ck6^)XDVjg=` zyX42LB`J`iIg`UcmZ|i5_)B##oGch{uLDo(erncq#@NG0_k6m<>i@7I4|iQmC%6aZoXq6yh7Z$UNNX?c^*5> za}RRkOd_`xR#Y?)%-y zpDH{g4OX>*uqF*auq3GI2QOJaLQ4>I)XLRWISmDOL{s@(R+21AK~vZ4HjQE+Fta0Q z{&LQ=NuFxKjghP<0%uJo33H#O-ub{Bw96UWW*wtv@vmE{Tp%DKx)`upmAMU=xHGKJ ziM6fiT-%h`GbWi8n9II*Qt9hodf{95+i^kp=ISP^TNKjkeR5;s=W+l2WZ7|1*kIKK z6!#>4@T5%%GJ2mlj|yDkHc4KP-$JWR`d*MH$))j&Kp;UrW=}oZdFb<8p7_maf}D*- ztEucSO5XQ?=1_w{&>#i6z?lB0iG(5Bi3x2R@3dAFP7Nw2l@vaCiw6^I&%ZvE^mj80 zJ&Pd!Y;J;`OnN%z>)Y5k#_qL-m+3Y%UQk=@(xaI4R`{~3qR2BYWsm#!>h#h-?Y&Yp zeh#QY1^tdO5FBm7zbFbkL6`h=uMf_bpud|ZQMdYOx7FJ;KVLvsyJ~_<67Py23f88f z-9#Ww5cGU$^|!ifqv$gWcE9i^62YZNw9PU^q|)<}m`GbHx4vz*wlWLSDy!_H;Klknn6lV}kR3fxC)ZFZc!l zGYaT-#gkFF>pd#Q_WX+l0}*MtHegGj)vkF43`Axv-{4`FQ9P{(Xd8J_hl)Zre4gLU z*6bl?lXE042@yn?IvX$j7)c}dBmQ}zG=JDXa^c6Txz_eU?zu3!vdPSVOAJqB=hq)XVCC^af8Zk(1Fk7|< z^RKg&1ZZaL6gZLiU~PRJK`o{XJl(iLUSu%%oW*PFy%;a4&G|!&S!iiHKvAfMg_J48 zRj(Qo5gk1ZqZF1J_`X5*?Yx>TA??qLZ{`tNB}{MV&3D~Ob!Y!#w5a0i$Y-=@Bz#lm zPm@0RvblDJ+P;PVz5hbs^h_u}Yt__`)n3Y67f`<@z>~GzI0R}@P=DbPLK?qja%2bt+&;DXWair9{3AAA z3;$olMiHMKZ>yLskKcDD+N?cTS%=j#+57?;{4y7}8d34-gD?DCoS(eknVj94M4D)Z@ z(bt}}m9I^Y;%}86k|m=^`lN!~SLJ7P?}+^->$dZiwLanXSMYYDh79VfO6VZPL z+D}B<@(4dwiLusVii;uu_#m#Y{|vC=lyny8YC0UmRkH?;)sbCY4{t|A32L=^#gD4`&iQ55iu%?tX`QQ(=%LRfD#TW3wq{n9n>`KamZ*;+xL-!M&!kRKgQ z7L2xzI+SSJ;lo@EmOVd`0(yRte8jnu^b zJq+XY1GYe^na=S|-pZM5aZ~DZ#%UeWLzSMRBee%~f%C#W4u+<2j@Y=Cz&xko4Xotg zQffuTQ>@c50(^q-FE3FDLJNw^4L4kBa${Nr6n>xl($oKYwINo*f@T?oxDno1N;9+Q z%67k!6Zq6SB;fhfJ9K?4A_(ueBz%dxez-rq-r+>qP8)_|o`=50j-EFN5X zkrkL?Jouti$9M4P2<(oeLycyd@JPr)9UG1CvLUU@UsUH0ZIsmOzYAyR5xPfa{peZK zKUtOMaZ@h+ZOyJRgCm29t?#~fffthW@<3wz<4_8s(!1WzguISMV>!S%Ihf34zdxg3 z_}rf&R&>oka0xRwSn&78t;qAVw-T;5Wqb3Y)0tVT&m15265C6r>JW3^m!mB^>xnry zPE1~K#>PVv@9#S>F^hA{Z8>gk0%+;n@nrYjT&_W)DlDe40U;gx-xefQz=6GFE7J-& z{*u&0tbRwR^Eq@)Ful2SSq1Ox;`x?5sNH;Z`grTgr2e*ZVm82iN@dn>G%^E>ajuFr+( zZ=5EwA_9_%Fl$rI0n~v6pUcsLgXzCh?m+5N?oPk4o^cd4So6xFEZUAGmkUvG>W zt&eq9VJ2H>w(@=m^I8g36sV*=Yu%=M8#xyn`R@PG1O6xvjky|^tOlQ1zlg^* zo4Q)gG!T7=5^fp!`ahOZ)R;#^Sc-*&Tw*tEWGoP6@evc8-HR^q5~bsV2P*&8BMB%| znjelC)~FYpT_fR=n41p_9X!7K40(n*TQamF#JPU1ph*5=@{FCiKQT$=N|}Kq9qS4< z{4I=5+ey7g?Oo7%F>h^6w?7<~N5z`Z3ZlqN_|+87xC1JA!5GHUI^VJJX; zBVPx)|1W+P?N_Whi>*cPmR9#QaX0Gd>6DJL1k8)?9tQskXC-Ih?70g=P*4EN$4~=u zpkN-2!La$c$b@p;U-&Fg47S-J7bwIl%t z5j0Q&FM@U#9uEHWnj=&aeo5nwby2e|VZ1JLGU<=!Uc5{m@GxFFTFS77s_p6xkvK$2 zQ##mi`2uG^UfCIV93irC3_OV@b<@s(^P3kYef>_WTZ53HDXd0~m(P>Rx-)cmRA6AH z^&Sddux`;Uoh(FYD88$HO#bd&3?XKD;rUl^U zgpiudtmJ0=dK*TaW!e-_e|C&O8SY^vE$_ba(^U@dv19d{kDsicpSL*msWJykK6WzI zBMN>`u-x~0&P!4XF@kk4IV~;hk1a+G>&KZ#6ADDE`yc_yfEA*jIsL3-S6GTD69EgMFc{RJ+Ij80!h)jHGjzC*gWKI4#F2Z@ZR5OVtv)of zFtFgvL8wl*ADxcapJ#utfA}oJu1b<{Rikv&hk{e#u{YVJYWvPl|1TDe~c)q0;|ma5u+G29+;A;s-^=(tEPO|=G$YI z@^jPafvZ4j>Q`1{A)kr}!_$POW}UK0HB(x?JdWt3MgHFQZWDaRBt;gvGoezM9;=Z< zpAy+^4c>0e-~5L?a{oS#i~Q+>JZyN{`8AFnp0>ci1}AKufM~JM)-ZonBDF{Kd4z9$ zwEq!|!HU`Ak_A1avCx_O6Xe8)AC3{YcD)|0uhoEerLGZYE310Y`=SWfNLONe&o`WuwLtwM9Q?VtODw%H+O9%p z&V6HQrjqCU>2=MMykv955!pgl23KD z!LAM(A)3(N?jknhl^nvt6}>+mpZUUo>cjry5|f6j7XJ?+ybSF zrgz^Sb$Y8SIHTm6;KcTY#ZW3Nkh#s9zdFlb;5*Q4R$ z8>h%HFFC|^$(f{@<2SdT4#|91Ck;#n35!2^y~>v zXVJgVk;x4DBYCUOJMALy4yjnK)S@-8Rk2(wzCuD!zZ*KG>6YHTZ){&V(il+DX4jpk z(c)aEJX&r;2qp15`Iw$^r|CH1REpe+RHSZIZPoh~`0~kaFxci51ohkG=6sc<#iy*| zGYE1{Jt!~d1a?<2Tnt;YVHrGujZp#)W1+$}k6DyB-{M`{x~H$-8RFF$!ZH(7H>#0e z?k>UHUs7t2A*mxV&Q3G;FT%5?Q0G65{tYpLZ8w<=|*o-U5(>NZ1$Q zG&PvHQ^({Q6rw(IsprhNZ+DOuJCc>cmo6lWab142>P;i;%D&XI=z4OsPZfG<2#6XaYSNT55W^E^T$Mxf^HN++bz(7PdOp8hi&=1Zdt{uh7&ho14=`kZ{a> z>?)Sg;WAlis3}i?%R+DhW=7r`rpZ5lYJzf=YgKZmdkLLN*fnQtURYSz{r5;&->DsA zJ`+r$!N3RVrJVBeV6e?&@wwa`{FRBwhsLl#ce~hMlsFL~%J0`6G=7@)QXX%`XZf{` zKu%uG=HVA9nM{Ph=aA9*k8RCsCo%zhmXeaf(;-U=!)w(>UQozgRz=|Z++)3UzepFn z@aARuhhPEwJ$_)>@8#1-pHRT(YtC!gNiKaYvA-kNLG zi8=CRk8^?FLToYgNez?wm)^sps#naW#3W6Oe8|LTCuFtPjO({X=m zj@~93`&rlCkxSI&@XjMG9#fHQQ31MSpKZ&fb zr|RrF$1`^758l<}gHaT$)ZJk&+zmAyWfh@n3qTSWO}N7Z(ll-Q>E0}KSd^U}NZzBX zGl2Ku)`BZI<1AFY(TLQq^W?xGVV`+%GkqqM(h+1(MYeT@jx{jyx7PD_0CfatD<8ut zfjUPR34H1V*_Xv>rLkYCO#`n>y1c9K+?2CfHgPE z>PAA2^U8l{G(f8GPcue>74k;hUt2>!^i;GQfGiTgR&NMtErZ;F5 z1J3TkI5q6OhwL!NaxHOF(@jfDb`cLichM`reQ|BR1)=mj1z;6km$xS7=#nu$lXNE|Utp_0*IIEbLi4=3HD1 z%sE~w8DT2n=QjkaI9T97E5`?NHd~eVW9_@on=fcyIgmYE&B!a;e9d&&9(~cEtwvqZ zC0OiMfyehD2F0S_f2Ae&?~|jXB}hsMQ>Fg+>;hz|fhm))_tlP$Pq1yL!@@dv9m^B? z^=o8jD_2YJQp%HJ!{*xF!$YKSAfn^p*mT}d^1Tfa4CLA}jBVze#eUArE0kG+j$_1L z0QNv#z!AzTEc$Z1(mr!ASf@Vuuz7#oa5j=$3$+*Fh-`g;ny>yvf1le)sbm!-(5*AKE&MG4#D z%49*2FmM5$e7q>?9A@K*E1vKEKtS15Qk~P-g@q2Nx}-7n2Iu)Jv@r?L#9%_KHGCZ> zO2_1k?CG77QcvD{afFP_CTg@liZo=k=0$kfK$Rf)>xJgkm7nj}KqZ9+X2w7M*tRwI zTtcZgT?#sVgq-PHO%-5KW30Fb4sYx4Ni*X66?S?%gL=6sTaN;u`;dMf+nMz)Knmmb zo5rsX$Ef!CYSUFT`ZWC-x6IibgQP1xU~fcs9;upZ&LcaGDad*fic5JHoMBKFF)4p6 zP<`c^e$&lFK{XIG5N<2P-2}YMAiRn-C?#N!`&p<*!>7ssvY~GbToj!TI^=X>1P^gd zhjrK!Y8~T`u!>}JsS5WTVBJ0fnuNCSpQ3DtqqW!1kvErLKKNZM>5K z6CDN!mUA7(XFjqJ6O-b(_SJf}qzIEXM2~CK;y>EL!pD3DU_hYS zh!{m5SSoDVF_*qyM8p44J>r5k%`Dwl;kmgp7?seBRjR&KP0>#6LEKK!8`$)Vs;+KV zR9%be_a?p8ZULH!$hbHHp|s&lmZP{hcIekRYpIQrWryQCnjeGcpk_ z@kkBIa;~Ppd*8;7{pKmCHNzGE_%pmw!icr;VX=Pq71Ip5ABA2~tx?x95txY)U&otd zJD)#I(i`0M?f;0{9~ub#W3hde;v3Cxw@U5ZM6Q3Bm0V$IyIwj?d-1-x}cz>tW>5TWnEVm4zrzJCc)}Ecql1!{` zUNcV2GL(|Kptdx8YEeJ68q$;=tJIfe3H(0va;Fbh*?P{gFbr+u+^iMrT_oQ3>H=VI znI5$hy!4N$SAz&{j`m_>(_jz4EJe3X@bvNBq*gEGdV>Fsk;(Week&<%u0&u28|ON? zePtrr?Kc9jrOO>stC7OE7uPRD6^M3cm~iWHar=A?UNw2l(%qA@zNp%FIfxF7X{oub z$Bv&DeSpwvIwX44Xjo@r-SCN!lJYrLk{!EaPp>x!5QaM~6pQ-$vW1}o>w-;l{n$K+ zT*6IH!h_-|SL->LZly5IQy&HtCYP$CZdWDu^@)(J`Dchv4u3hS!4A{Zy?dB_o5&+# z;uthfv=2j71oTxs0V1{6;LEr`;fdVYyVgKL|D=0g&NAYs;3&(jWBe-Qe!*$5>lz-( z&FR`@mzX8n`YD@=%I4+T@b?~>S#x*M;2AAIAFcDXD;Gxz(x3~m#dCV~fa9)OmJd2hpR zoD6lKi~c@hNA>d(CAp?#$_!;SC^-_Vji!ryCaip)nXxIX1*7SRzvw6@|K#nU(5mhH zs&njDmkUgO^tN~Kv~>3kFFbYJdr10(JP}b$(P)=deaIn}j<}_Fs{6ykZBQ7Cgh#n= zuTrOX6DhBuU;V1N`5pAyp)e(9;S5L#3Tk*PHavj*q{uOzqo}2zY!@@W#thTTMyKyW z_Gf;+3WL?f1*O6#*?8IU?Dht?7e_RxnhvoXj@{pOzmzCn>5tF3uT|Q3D)-2ZPJtsD zKL~Isec-2@a3qC?30JMYfNL)iX_JnyS7e^2?~)%*=zFHQov7BuV}eVUMDz0wu}Ddv zUAasrWyh%(_X)G_rP>b<(mS>3kzIReAt7}vY)H$&=G4I|4Rp5FR;O&63gSC1aS0OY zcfU}>!#t|X<0gnnG-2YGmG$nCK`uo)!zQwQ&h->O5plPEO8DEWd)J@*nRvqY??Obh z@aaM8$JNt$sm2Dzg(4Q#{Wq0POy0*Bzt2zc=7KDLtJZnVot$|oRxj<(IN!-11jt}g z#3Z#mn1?|tfT?W#z*s%I)R`D62Yk%kV%rL#rUI{kGmY@@1Wl7O1O?7TRb}j>u|mX) z!_$k>_H@@VF8E8G3B$d7PrDpDX6drKcrlM559ja!3(H7kuVBNJ|04ryqhgT11g3_E z%WomWLj3#`YhV74W&1V^YKo521Hb)vX%#?(E*VMIm&%i)WqrLAyy%&& z@41bwRL{nPc?wv_Go0WLr0w;jWFu~wILUEvFjedzx!#uV-rwHtd6{A;6L7{21@4pg z9!@_37+I-cZ2oznLkoSR-rHjE``7i9CM_rPY@DY<`Mf!~g1$YE=x|aA3n zKmF-r(q6Q5(?QlAX9~+k^j#@_fATkumn^awC_$C;4DBC5l|4*Xal5h*4y>F3X*2kb z`UM+Fe^<@#S!rr)-CNAI3Xhm>SxV8b={|a;x^#0!8SX7pG-*i`9?ts~`cizrfc8})Woi>`oC6L{vTzhp zH$3`Mg+hXYE}+D@Aigy6->ZOzTYCG@?-L8V(OshnE&U=Iok`oDN zQr>lZOEO%er%-(Q`5qk8^7ro(z>R8LrQ<13%n|c>gGTlK=(0jv9AnFJt(xwT6d1vk zpoRp_q_nzX>)s?XDw>3Np(u~!oA~+h%g}urR@TFts?m4oS;sEPoBYdI)}3Ff|FOq- z;ptiY4bPOOZ<=xQBlf)nqz9y+t-;UA8;xOAjG_z9^xA0ruScE*a0>4)Z5#QD`?xAK zuzjv=^pzxY@46c z6liE^BAD2kI~el={wRJft69VJv6bC0A&S{LUVeEt$(1kkPmi)F*Z!QniAKXH(y^lX zlI*o7|0AlyDaJq^S_q{dOSSnEWLNOU*bJ{=&A?@RH zS*=Dpha){7F4C|hdx0wY9!m#{!+52|Sout?LI#YEfDl5F z$}&OmlU2XCkXg3Mank3d>zCadMZc|7_(8K)0P>DVmXdRUG|+iXKjsGXV_{r|-4*HV z!`J~KxJrCInZY$s(kRkh>tP4K5Jht;c$}+NGGtzj!qplIzcOTzapVL9y1v8_OLg=M zA~$;h$~SLzfKr2UALCLEk>6ltzwmU5h?GmFe+*rlSZIlKU>6=CdCP>fJ$cV#2h6}_ z_B~aY@(DPcwm@QXRgLIA>h~PVM}8H2s6WX|!iJs9OVAs?gP6?N9<;f>UXun$1I3db zT*j#_2TkS}I-4F9;6jD+))Jw!vgUtJBBN4pr4@+j1%xyfzIodl)HwAxWv)-l|D3r0JbXLC zz{y<}osK2o^oC!&lXHcJS_VC<+hwKo8iNC^?IyuZtM6FIULu?a-XgZC~n39F(b~AAIZgNCWqR+wP-l4r7dNEARBoD+JUL*(~4MYai3mOX7*M zlJ}-6_l<{cNIy+&m$NOu({x5;S@KoXlHyoU*J~e)D_h8nA;ST*ujhwIeiD9sDxT=~ zv-L{?GB%1MAC+Hm+Yac%TY5UZVciictF8SF4?Fe`wgmVA0|VM3Uh9$XgoiGpn1L%7 zbFQr@pTso9%&UX=>^03Rk#epr$rI|}+dl;+9!99L=?&+y0LK0Mc;y}1CxM@7!3`H$ zuD+;nE#D$+xGs$o!!qy~XMKFbR%JJd1d(CVV8XT0bbc))Bn0ppuevzvu2)1GCiO86 z_4{Rb8#M<<3iT@#-|ZxD0?bY?8*6OFP^tC>seiVz`}r13Nkk+D z2h@*$nT9RZQc82$qOlk18V!tTAu78P`2^A*(nhpO$+gwv$eDaV5jhnrKobm;E&O&x>vt8u-ai#J4Q&SvPjbB^5~o)R)9%}->0^N`9F{I%_tf1$a*1!v6Vtc2P~zk{rVpnBLMv0w(+5!3S7$- zl|!ijeh15=jN^h8M-U36${*Y)q3<4w z898--1z7CVtvC{Q)txEQG_e`}YS{>+N(0YLJU6Cn{@Aqp0EG-(RE*CcxToZ&iAU_$ z{TTDg^QiPO*6Dk#^+)@%y}f}b^Rq<}sAcD!eIzbSwN zP7u(|j{dQmnnB9MKMr2Vfxr!DM0L>e5sGl-s$9W?7f+9$cWj852$>Tk&3sqk6uOJT zUoa|~^SduQ1G87y*-R2*IJi-6rL>P8YOz^S_(8A{6R@E%s9Gl~9*y)KbcKo(+(xp> zimd>Rs{i!!%aa$PmM{U+)W@Pjg$ck48^}g*pg(6TNsSQ>Iv8P6w5>il5d$=LS1{J= z0_I(u7g;kY+@d*)p7eM3%K$n48|7jE`pv7v#I6FJE=%hNVD>U8NsN&^djg_56yy@@ zFpO}WFy`N9WMtHisuyx!riD%J1Gr=r31F`N$IJ!()`gKW29#U~zMa?sd*GISh2M#e z;xB;~p7*c!NXYp%=zZjdJrXz!rNCv{_lg2FJ!9lAgnIn8+2_p82ulG#SfDV<`6R$f zfBTQ+^Ajmd0l;fx_V<;*8|JgY2Cxx8&QVnn=rV37!_}TwpajA#7>+^?#YexR*dzoE zYGf3foc6bq0{{yuv!mFE#En#0(U#+HXb12_2{17>k(5>GaT=(ZqNa=x)fUK(Wp#7_ z-uVd0MN){}teL=!=8FfJk`S7)mKuFEtEe;Oc z#h{AJ3CF6ZHd23H1%1IEldTxhlYgWf&h&78T*t(KX9^P>h-xZCf~fb$ItQ00(GCEk z@+&}X0kVKp6atf@ORk?Un_&Lh4p1((WzC1(X zs%eX&zSoCIsNf1XQ2r|ch|SsLDKS-sITwtv8TQZ5u8dQb%p7)S!$U)Qf+p|^_kbpt z|7buxg7vvThpnSq+}b%S88r=Kl>TcVl|w59PaR0KuL6O7)_m;ai?4Pick)qswWV^j<3m*6$wPL=*#w#4`JUJTfD>B5(&K>~DFnk@C zQo42dx931I2jI#cFv<-)dY@(*T%HE7!@$O(H~qmG_*tvdP)Sn>Ul)Jv0OeL}PTs5J zG1MDE-)ton6>_Ha0S{{|23-H_`kU9l$KiqkSIwgpm6rDLMG@YNM&*a(7(l>4$}0x> zi<_g?Y;b~p09$4L>`6;#SUHrEhn(b-_2$X1;4Q#26bs`5XmtRw@qJmLsH7BR_cvig zT!M_;Gz-2%SlO_9e?*!B}f-o#$P*RSJX5D z+}94(v0S1XPzD1LDaO)9cN1ObQWH(U zv4zorU(9wG4Xy-pYvjTL0FF~pxInPd%8pk$kl!|Y*;mGx?-?N3W9ZcOk*}~Iv*sln zSKn*mem03eOHaLi9KesOp-pCwuA~wqV(>KbXOW>7yp-OyC#^*Dt}4W$n6mj zSEkR;1fexq^lC!hK!f)%4>$u8tli)SF$cxLEVnh9f6@vU}+XH@X4A>E(&{JX1W21 z2bz5^RQBJ);uHvDFr<~X6eI@xjdBZoD>VARPvlF zFE{W-aWa5!{2J;At$SnRxYMd7B|}|*A>Iyjb`S#lg+(#Z62s6X>p6bV-DjcNDX)Zn zo;oB~wEjBWnujPX*m>Vy+cIhJL4W!BwKPaM5fklB0Xvk`k7v-qV-1uuW<2p-eAqRs zc3SdWLe#j-w^>vekc&OWBvIZ~#kql1P@s(zW!BL)3tU??h)CW6%ldi~*S+*~>bGVU zb_7e}%|HA5@0ZRP!$}E__Xt4r*J||Fbh$Z24mnT7Uo_21m(clxW3OE%oH+NZ>{*-J zI22gzV<7D|@oVJ&R_=w@Lo=a#M7c3gLzCUp0Cb0`dbpD`;fgbM&}{lO@L}UuYilc- zP+E^|Ovd@~$$=d>HmkSVDBtkeT!(xvuExV42rNhdLDbHA-Nplf6v}u-l(@rGaI!m9 z_?-sQ#wJy*u8)9X<458>lXGV?0!*{f(re1DyL^*vyWTNER|F@VIh^XZE;BJ*vY&2z zwY$43XUe`;HSCq%PG{yz}k0j zWw|kB{3uyYtw#bjm(zI)j z)ZC?Xw+ z>AoJBkR+378rT_lAdf9zfAe}tgkQM4{SHjZvB&VcLh3e z7=opE1jqegaAwkP^b-z5j!z4@E?|N%bOBD2U*O=$uT%wxZ1rkE;o(lk`PI*L8;z)} zlMeXCoa-iY-o4|t8)6UGd`5#$Lo>b1{>RWenI^9cCiBvn8xxL#r^mQv$GdL`DBqLV zFu#^^{Rm+M+X*hyeR17!jp#EbBVxlZ_cbyAl^zyq_Q z6dmd?C^Y;K_t>8gk@_j$>;+j*Z4VUKBUKy9FkFLqr9%;^viEuvU9T^p4MkQaTJRlp ztTGFicaOvlfUv-Bu#08&DFl#IBoVEeOZ&L2_6F-jFU_6JHRi$Fjp_t7r7&S(p=4ly zd>#eG@N-R~T>*!nv}nW6H!$kNh3=byX#qm&uA(f$?ZiYIP5MH07#vx(!Z;j8Kc0qd43B(G|+^)E`(@HY8V8qy(3kq zx20C>zd2WbWPq|To7^W8y!n^;1dX0rk9noj^xxRZR|yGi0Hr`1srBHMk6su!4aV<) zpNfTr^>?E1caPPJGVgQmgnHyek|~_@(li5u@0WO8DZ6RtPO+il8$JpcVr4T_0#?Ke zVlea3Q1By*_JyN_oJWIA=V%ZkcI`7jbRaA4(YA!8IbjxTF1TGDIDh%Bnlj`D$~&O7 z^eIdtnO+Q=hOn?nFZ&GMs+Yo1D=AJDQv0d1gWoE9`Mv$o<*Q_0Au9xMB9>hVurh%Z z3y9w2cAUTv0X-}P49&NBfJGH7m1aLOzg(pf%G-YMMzze(Ew+(v-6;?qf@ucDwt?Tx zlB;g+y%&#p)6O4o$AGrGvGrG+{|_Ds`r*#sqi^6RJO`m&O1&hQAD`d{0hRg(#6yCB z7mj5ZixJ7nXwU&THP4G%&HV-fGGv&w+1~#nqi+YA0vV9NV;MtYCLOII0aU-`wrD-P zxNm>fK8oOoPU6n?PVjvB;I-?j_Ngo`EgB@P{Lo#GPi6#(x||$f`T!F*`qA?BA0|y$ zF#_T}pFtJMw|WG&Dh&8a!Ep%5Gm+8svafxZlM34G9SPhtz6Sj#CK2l3+09w$KLmG9 zU@d~ohaU(bLG|?$mnBU}1k7Q;BN0uF+k2az)$@|iKK;v~^y4vecOZRv7%3vc zx754^9gZE=ni||DeWh3;aya2pkx>85M%?v-4@d(pEJ*e2gfF^I1ED=p|wNP_B#kT z$!^OW)|jYvthsTnGAhaT^KTqts@hGcyr6Xo(d}C1SB#DPKVb;CK2Gr=s)YXH+w}jm z`}AB1MQ^(0`b25w8rRg^Q;No_$`^<_1CB&H(+>-On_A%4O@ich> zKqCkCpdUDtHML$z5ZW}~f;SEQv`Yt5HVkw8Mq>J?vRnp-6QqDLdS=h0q=*G(%E!4q zd8=mZ5cUUPTp(F)!-<`3BLZ5%{wgQQY>SG=sPrv;$pZjZLqM$tBj66p8|=%lUROGd zb2}KoMetura`sA(Onsv93*@hjnY6UgQVlK5PpiWvG{7GHLq2+$;@dML15*@$B9_4{ zhR%r#C*}4ZjeeNvg*%FhWnXL_Bno*&SLdeFTJGM~^mS*n)DNU;^42acV+#w8>OBHkWEYN(_o}y^lr{sPzrW*o>9G`bt?Mr>*_uy-VXw z;4jl+F!eSBAADqsiX3feN!cr+6yk4WSwSx`+`2q<{h zwE4>`$wnU#T7_q6v)Mv10K#+n#jh^covN`lG@e#x!e$BI<^p=E*L0}OI0-yzIU=A@ zWw1a|mr(l?m@UE~rKm~R(fpn~J|O|96gbTv4Q%Yp0#_~tj~gQ|#KuQOxb&WI1m))> za56EygR2mQSAs+T8DYiM)iZy6$;WsI`HgHUNh^1%d}40$8<|X9U0qCqf`>QxD>#7t zBPgP&{i$I~slkrp1(^KjLY`+y?dJUO`KGMtk1~|QngecDLMV(Ndm{vF2@r^)26R1q!-R3?{D@7-l-d@R^@8t9DUFqiTaD*US*^9BTUf!@C#`W?f7V5<4BKb zKcWavy>5#A35FK^z&M0)3@AL{`32ys@7yIvkvVL?%*HA!#^$Alxr+?YE!wkw$8$W; z+yPrEFXf*E6IlDA<``L7MfEG?R)rO@Jf)k{DYb-*%)4cadL9_9UDTvvP7ZlK(1D1;_^VQF|w{@Rl} zX#MNPu4qpNJ^;S}eVWR<%%=Y`Fh`jHi$65oF4v!TxbE+&cp-oEzhc7m$(D5SI?7!? z4gDvlrsuS*{C6Cbf({$({%nij$J2Fmbf73{ zsL6oX<2<0##yT}Kb_VWaewK|;Se44WxQ=jYc5CUrob%e?b+K_Bx94vRG?=k;!+Ju> zC*8Z-I>(3yv)zfNwS3-fz(SteVN~TrT9VP@_w9kpB#PXv^Vil$UT4uRJouu?3*P_+ z%ub#`k#H@y-^M*IPY0!1@IGt8IL6J}uLishYPIt&@I2AJ=oS5g!%c$S^~o#$?l45E z^bXdTw%*&}bCOC87ydFAId{^ycjxDcGJ&<>FWR6x2h?v*9gj~jYCW9x#WWF2I4PJ~ zoR3}r2ZzOyqu#rgTTHJf*Llzfd&u!EDv5^ORQXFn8suY95*@|H(@SH1DYxOZ>3`1w z&_1}RU`bx#NOQ2OHG?-Gfu}|LgymNAS<^Y6-b3jcr$drp9`gL|(52486v>wWLG!|T z_It7pRj&a4>=g*P3F$C**TS6U9>M~vGf0jn7>HEhcoaxUo0xEeh3Ut(p08OSh~VyG zxZrWliKE(bwyoSvJbVw*ZmXTD$&Ck2>sAA1=)j-_#%=?KBS-U>P$HOD7zo3r!*0kA zdI<=TcKx44hxJm=4N`~fRPkqd+5EXxE*r_Lk=?}gMAotSIr?;6Y>mTcg%i2;_6kh zx`*Z#r8BLrBCzgnUGoIc+_yhmv}P!WUU4T@SN{`(E~|4cbih$H4^&2zmZF3m2O(6X zm?#@V&%m8X=F_l<#RStv+Uw#I)Q=Nr0nDquj^yoec;&zMgt*hO)?y9v@DZ zrL?L{Kaa7@U{rR32CdNc18QL1z|97ePFPmln46!6ZtYn?0ZhbR_DW8ZoP>7Bbex;y z&b3R*0zGY?3X%pbV@}_ElsuK~X&JaP6f-4HL^M!+HsCGQUkV9iS*5f=9m$`U7}je7 z2ffENmqiZ!M@&vl7hEgwA!zzK6w?jmTmIyJ2N;b2EYFB6@{g=7jze)<}i= zsV;Lw|4kJ)DXBWUsfe59u}t=JE?H{0Z>%EXPS*SWvCssqu%x3mS&(g&^#ceiD1l@9 zJRO_et9pGU%{U-fL4*l>@T~0Y50AE)wgp_1YDyYrv(#Gn`{oEYdsJfJ$L!!y-p%xl zp%6{hW57tKY$AShj|2L^tb1?+Qvt>m0@|R8RWSjHuTpEP@V9UO%@VKeSXST&7ZfK9 zESd7C90MR+?Lh#BR}lpT|Il#% zZqe4p-f=_n5E?XFQfiA2?KH`fREU~R(GA+8m!+J|S)Ch4zzKViSTefk9fg?Sgi0$O z4Mug|qkiH`;&e~vyd-4QRd{HP?O%(JW$DAF3ngJgwVCza45(n0jj8@+{kEST5J381 zs+@ZEV18p9&#BF*R6kOU|M%RGfew|USP=nm$;!1=CBalNi zVLA%y7Jd=kh)j<)x!G`!5tBe-WT5FC;ee||#M56DtJhCB;mKSkIH!WyNpr+MmET`> zz6Ab?PXrP)1`vtU=+Cx3zAl3b7wt@9+|~7rVL&B%KQAJ`rB`Co`hu|i4X?Gy2v^*H zCIYS}XUFo?WF6)HY*>Y==F-ANZvNZ&KLm%~}E}8W6f#He)&R|7=-$L7cL%?tup#U*};v2~% z><=FlCFMsHUkNP67f}+_W;b54dmTG>M@PD@gV9O0^$9T5P>{-^@n6BagxS@{EV-&0}> z=}P>+LL4kCH9$h&uVkm>2!7kCd68AA>y|C;;SQg)Mn45K#h3F64A!(v0|HDCwfd_f zSa^OkevK4MpM(OvBLa7=pV!xavx@L^6x@>Z#ZN2g?GM5DLicVf=7ev5XzYciXI&b= zL6cOh07BUFUX>D7Es8}TD1GpKs=*f(w>SFn-Ckt^`Gx-My4L~1Cla$ zuRrEqc!VvxZ4V(DG4aS$prBNKv&=9z{L#Jc;nGGVNoQHM+|7cYe**I|&_74t7#G$a z{mG)Jx$`F&O`kHz@$33=U7=!)ngfJNZqpko+3CGuJR$t?D)Zz+R;dW zS&se)UWvGY&tUBEoh^aj93g*uZQ5`zi4$XLg_jjMfBtswx20Ka=Kt_-7dwfeKI;?s z`eGE;U}8|lTR_wv8q zRft}shdZHW=E3O4X`_o^u;kleDNr(-nX&4i4aWvSv8QGz9_^X@!R+B41LKr8PX03= z!h?nRFLP|zM`5@nO%<0vZ?v1 zxITeuj8c!&#tnaDRE%QANg>N&!Tw}rIpfZ(srhqT-sEv^H{*}D40}DwnKspp9?Byz zTuRCcwd{l-5XP7mdb?Vgq^YX}nQ*jcZ)q-v*~yXjzSGNOVjlEfcYjhXG@)lq_*Og0 z+W&yVxek$9rh{=INzmcWB+?S&^Y;Lm_5&rKxgN)%D>CJy zjeja>|nSllUn4SUEwRV-z5!^ z-g^b5G<6;J0-a|ki3YusM}3->G2&pBdeuFI313G@c^W4XyPedyz;!5L-rTQ=?gP_8 zsT2J35~Nk${S`UUluzelnp)0&^P*Nhtch3YXB+Dl75EixG479iEd|pFg2F92otrupl6EyY*Os)`#!iN~ zM3+veovM&5Dua}m)0=X`fdQnYlcJM%6h-kx%VT3saR@0zLR=DKZIOw7hjeu@q0fzQnmcO zVl6$lIyLw=+qTkG<1Yff)Rm&^$2Q8qWEb{{oOZ~c38x9K^}bE~}%TdfFm3p|AaM_bkQ&VLmjK=IV7wJ!xkAJ3Isf|f{EiCQg6(ur3 zN3q%2^wU!8;CGb`9h@fuLMOL{T*j-ne2(Hxq{onWUTtMv@p0~X!?+|cr-E~UjFRki|J==RKOCh`TCSBaeS>A#n zyufwj(E{Rqlwt|f6KiqozQLSQELv`EZk05V8&5udZ1F>`X+$w#U&U3Iz@=-mn_{}R z=VOHRLVqI-G5;+{Tc7M#)pIOw;jc&NLj)pTX^#zBCK?13A#t_vfD7G z=MW6oj|JI=H}bq*ZoiPb!Wr!*!^59abv#IG)RfC2)Sf#>C2^spgOG(pdB<_1HbO_{ zgRyE!L@&CT@7;zmVm@is`8vW?qojXJ@v)HVbk2&J z**t&|wEgI6u~_Xd0K^8IFIJEx0aT+qF?rG+Is!H|RDa`Zo zN9>K~`a4P~&z=)kQNC+T-;CNgynU-T-^FFXFF7ng|H3BWX)c}g7L1BGCtgY_GYDJatu43})1xKg zTx>;jN&cAe!OxrA`qcvM@jhKCG{K=W*!D38z5p;xyMRhU0f}Z}$lsr+P3_9`QQIX544`FV3Sm-CxHmW% zh+KVt>y{d54oBecN3>>n2xUEU&s8TlP4PDSWL)7CKj)g2cS}QEQc>ZHHHGZ5AzY-@ zmnWZ(b+Tt=XzlsfH#H8+YZyz)YJl>Lr>x9HzbIh1ygIorP zl%amzG4R$7vKL%Xl~{!>aY_9)Hsp1(o79u#ep>T?@O99!Zq4&}_r<%ivZwX+4nhx^ zw3@D;4W-ODm)D@@6but?jRnHhfV<+(C$>#i9v?$PM(W3auC&8(Y}sCT2ll zpjmJFB*y4H1-jyhVVo4ub{yD`S4IJU<5k|ZiR)*pg(V|ZPBgue=VD;Ihuc0L%F}p& zKfTJx*l2xzQA^93oP?yOHG&k{n3p|2V}kul%O-EM!O3gkLQsn{jbypyaG#X3O~Cpr zz9J;RWl3%jaaW_X{#c|qCDev+#se~i>DkyQ)709b$VNrr4bfrE3f7y9EQ<)+WtW!X z15(?^$7iSP@bEFz`7G@0zY8{l!aE*5Xp4Na>@IS4c3=Trs{-O>@J(&v#cie-^C7a%xY^xFY*mz{c zXs?>zL==G49M_`W0{9Suj4x_{}?7|Y7b15;#Zvcbd4tdh9#lC*g=#5d%n6+SwV=|Ps9a+~hrlUflI^|`FFGGTdnS+{sIwW+v%WH9+MUY!wVG?j2O zl+vfgpLV@C6UVdnmsOPHycczR#A=A#Ye_D?&`G=2y7u0s&&j6Ri&_D>|2(%w&~J}v z*6G|-Dm>!z%2#0?a>O${^9+%T2BWXWDI?pQ->dh|zE&4-+g?z-MkVy4ezd4*i*F+f zaY=by)M(`U8{RMwm_24lAVFOXtgLr+21z9C*>2rZP*B)BUb^z^eSN^mRy(k@f@*7h zKrxl;qCIEup~)M6_~ql~;o`PxYp~VGMucP1Poz{LFnP(ag|yu_zmx=)31=GL+`0)=C@6~<`mZ%hU%sM zzt*li8p^i+Yk6c}YO*Hp&_YO!wMo?Q*ePZ5Mu;fOkY$W5%afgqP}%oTlO==5k_?)} zSduK6dSsofVUYFx&hPi0^Zx&y*FX0;=04}X?)zNVce$?5(%PX|<+s0I?C`70IWhiY zClqytU&jf*93)TN&NMwBD_e8M^GB&>LZ0+9n(IjcFUdoP7{5xMyPtoryKbYSbL_^A zb0R$KT{&8MCMNL^8}m3-FW4tGB^a7Xe!UW-{KX2`XTk~?L9yUrSWUs z{46hotmBr&wPGWAV(yuJ-api5i1gq!dY7H;@2Es`z2bu&>Ag@vtD{CGS}Uli!~>&o z6p#KuqnqBoT~PFkBTq#Zr<2i@eW8Ua84}&^(vL!zr&{DX9a>W}oBr-cEEZjQx%?Bo{2kL+W=n%s2Y zYx&)R9s3hS(m@ARtd>2D>r4u!gU9jqBdfBFIks($yW8hRZ6$x)|IKM=7+W20#KGI% z;OuD<(3mZ%ME*TvtL8n~=?oT)`bI_rXnExQ_d(iP^5sni^c)+?BJ&cW_|RR7$4FR| zlY|&DA~1TRrfvG=DKlR74LPpL(55-!_}8ki6$U-3b=1HzN;bT^T|&IKNHfSD?43@r z!NK`BsAr1l9SdK0(HJ;Z8-!jJ9ikUJA8JaN_HWW%8@pxK#?bLp*Y{A@cXfJKTmC3% z%EIi%jTfHJFzeX})qHC;x^js>{|n$IdH=HCtgq)rHt1j(zqCRQkcNMDmRijbBGFkg zn`;%`eY#>|4)oK4H=n%{JPNh`6UauO_Y;!o-<#{BkJ*2`WvWnwC|N&=$N%xc9d}F@ zTk&-Eq?VTOKsO;wSgOasPFlmuak7mE5)X^8c}4_N#b*$mi||^PGcTMgJCCTXhjNl+ z_;zwPZH(H_K{(M0+Pd8w0&~E$BL6^ z&_*lDUWa^{atLGOMb*XY`}z5Kn-!2wVX-K6GY(s?hhk&Bqz@#U?sval7^j{Q3=P`k z`n|Kc{EhE22MtDsZX5LgqoV7taYM#X?U%L)N;#=tJNe_t(@>IY@g||(xgi7zt42UF z{`n1_H})&`UV7W)JtG@p3kZ=H8Z z6kU9JuhX&fn|v5;?Kd8yfva3F$Wk$pYGxED-VS>AwzS*wp9`CJii1il@w%y0FHA(+b?S+KR#dd- zie;TGVXtt$IGm93aB{|gP zKT10nF*vAR@Ghb0dKI5h^l54M`Ul~+Y|WV3+P9WbQsGW|`uZFYzQUvQz`aX& zsB%h4RPyBBNQ5dyjzl^I>GWyW)o6E+-j0PFk>AHqhmH0qzMw*w!+7X~bW&V#&~1cl z%CT10hs5&g|9d`b>ld68Yf+l>D~xNf;#!%>FxEGVi;I)ZtpJbDyb!2679B1yfbw!c z85l^LVV_vnFFh|U?L{AhGMDxEq+~ttIso7WE9`VmT9#@b#8hF-5GWLi@pUcaR^<@H zG$P%d6)4aqT;ijLE$-MDpEzBn2qG~fBXjCUKHcEzl@R4&CzHuw1Ty}q&;_z}`?~sQ z4J=9<@50JXq?FWypFbrbv?^p33ee3R9Qes(ubvs^YY{Px75x z51jWww~ggUT(TJCK!yuQd9)YEz!kHfM-~Sc4#6`pAPfgm=iMWUF6)jx+FauQyBi)D zv()RJDgbTO8ETKE*~;#K`=xF6cE6VwOm{%j)OBDZ$La z(GduHS81S%z%>r zk^|U0(ZC@SXhe_J_VEd1(ZF}~`!|=(*F!kX=;7Tgv`_34ISUlv{D3mjTprAnODN-B zS#|G0vyEE)r^(759vkVZ;_0C_|O54^yh4LTMu1+l%77kg+`%1WsGhV4i8(h0NZe^ z*$IA%FG@TH%$fCJ;b~-5s$c==8B%9~zJiP;KEFXTI)5T)peb!gYVsn3Zy-DBI01+}~ z+THA5({*77_({;-xd0PmxdM>wB>1pD0X72nyxQQG2ON}bQlXIS&kQxt98HCLMtNInO&`OgR_%KfwYU9eQ5#LFE(i@Iyx zsT}$&d#&hs2$;b(ig@0d#(l$9-wt|IJKVjwT$~+X*f>T!KiqgiWVl`~*M;hn!8g%PwdXN*IR^2}Mof=&E)Czmgy zK%`Qs*T6!>%zS5bg#lVId{E3=9g#%iWkU6STS0dXFA2cV3gC{oxVSV3l5FLm@jFF@ zc4TmHP}O^6#kX{OGgB+%=*#|LW;6SvuF1xBK++m|d7&VRK~tUz9kIWh`6Z7kUr`aH z2B6wwVq@!m`r+})KxYxt8P`gGj{-+lA!>$AjmnpHCuPuB+zZhLz*YCRnFA$OHAFHQ zrMb1Jjlp0Vgllsk3|mZylvVY<_QI)VoE3`?kBoe+?v6^kf_(y048B~Q#TLk%rY znp?o_t_TP&php=ASPM_^O{@T1;5(6-Ufw^n15+sPyMZs0aOVVIey^~P`{WVFw*$bs zsKTY6G&umf9JdBv*=cMowg9LO5G|QA0U^k$D*LwBNv#BNHR8$&o?KZ8Qg7OE1VtS^ zeY>$K5aqMN^9_)LHdiP0B(v;LX|*1s6fD)%)is7loL|}8cu5>@l+_Z7D{T7?e9ut6 zsfE{H-K8NU!dMOMmX%H6rnITFxx7!kfB|H3F4KSkVTjL^TPqFf#*JxR#8Bl$4ada$BvYCWQsJ zELwe!E<8q5LtY~(EzQ8qO#w8yXjI5h>ysJxK6G||K0}`Gc2Z7CPX}Kso47F(-(G-X z_T;U}$;jm9<^5$=pzGt98my?Klnj|y?K@|fobMMr+B$CNev>j`_MZT8YKHD8J>lFD zKHy*!x&`J|`rk8gbUbbw{JXHqO_3{d^|UYULFXIqDHg7oEj~UzQ!^+Xn&nWTzC=9; zXJEuh<5p~7y9h3BqN1W8Ih+aWEw-oU3V`rg=9xgcUECJ_rIett!~s|{EzpjU0%SLI zOmKet5tPuZGS@m9npQp;ffXqf|1bq%|0GrIn_n1Ehd`LIsLg`$da^sGJ8+?qT9Bam zv4vmD7>3AlE~;|H_}vD$Tj4BepS#uv;7Y6JVIBU@hECLfKK-}#sG6A1LIHc^!+7Qmn9z-yT4$o0}tmh3e3rbUewIA8TPz397zA)O4FB za1n+ojNLKN!o0slB{c$aHL~uU=xu4p+R>rNhycS-l~ZG7JT@vWtc zSuk_voE`Ul)s9e6l759mhy(=%^-5Oetr`^63tlKF=xhWy@Ea##h&uQo;3BE*qHb^Q z;%?+*2Bm1^;$UO%Vqu zTm;cUM#mWn3eD*GKXj33p(PYlu9oauv3DNnhfD50#8Xp$Pgh24G<0~bV~~%R8W$Q@ zS#|6#mL+7^>@z0A;4#G!@}LmW<>)C~^hTZR8-qD`KWr=`*W0*S-Y;Iq)|n1!>U?FH zZ(A7)3(&0Ll5U!xntOe{n2SIG8&53@{$ad%N?( zze}z6OGNa4@0a-hc@ukxV890~@vH+D3uSQ)4c&LGfdvPGW@ctky}i9zmbxmHYy(t2 zKdTYQoS3_%^I}3v80jO|XR1|`W_O#(MLU=$jc)orsL0Ai<~KGH$4aBQ@*8#8H6)~^ zjozN`u%{@Dq<)nPLnR4zvK1g*lZcVL`C@`0Lg~pIpI|c1{e(&6$s}i`TBgZlX?gx} zr5%PfDJoySM!<31qp0WkdAdUsZ1QjiOgT9$e(5*6?0p*8Fuy&^Cl+wxpEP=YPNO%p zylPRV+=M9t&b-227u^S!Kb*EWl`=(e_N%}J^3bE2d3e<}e{)9@*(Jw}f9$nmD}3K_ zm5uuRX(SFXZY-%KB?_tBFDqyCbSP*-{(4`wK98i%W;uOvpE~x-;I5=xWQy5FN8yDA zd&%&hOrDA0@B6eCHhJMrSBC^whqr`KNyB|Nr&wEuV9eF9pu584YMbRZ<%f#aqIxrfA>uOr6DITe6m!_ z9tDo7RFh@rXIxL?l6(q>39eLb@$wF1pJcM=9aK-CFG4QHby0Pr`7bz$$FZ;Aw#4Os z&B|aLq*^y~dAkw91;a&k`@y^m)W+RJ`02i8xNYwfRP2o~Xc z=6Sjh^}(%KaSNDGN!BWT7fkr}O-WXkgXFba$@y%u#naov31tJn&ZCM4<*oIX>vjfE zOj_N)RRfW>Kc13h4qBZWy?*P^FO%eLDO1xD8Hg1;hCCxm< zmmIH0UakCj+;A#qwC>*P>%W!iAK2X4f%!1ohWx;Qtff)=zU2j87WI3vh3i+RXe;t^ zE63EzB+6$Yad{}m8)-(&Y-p|?@z`$vE|NAX<#qQWK0%$HiHVBKnZwibl9};a9y*8J zg7}}$vdJ}^s;$dI15>T%y+Y^M5$8LdI1L&!4D*A%Qjvny)s7?IUuRC2FRVJu4i4#d zN017ysZ|yW?g=h;1;dc#QGfkr+_GWrAgJ1^wc@4bLeg{07VdpGLxG?a-<|aQ@TPUT zDX-l{juzZIx13H@jVTNFE!)W7;dotkbJ>Z1$w_4V`qc=s>svPV_;T3#NnF^Ec@pDg zy4h(MeV=4|-TOKf7n0$YlPqjpSPo8EBzw;4xSVf;rpCY0n_Tw(d~J*&srESut0QH4 zhlBkRa;v=3k-z%e)i}d1Uh~l#{b>n4;&B73_i=w`_S377TJFU29dQz)&g2@dhr9Rc zi>wOPnlDAjWvwVSMR?WTaS=w3qzk|oPC!rN%b9G1Kc18Mde44@dz0lM6rN`~WZ)Be zLu3~a^g|_#gd~Lgct^AwOy)a?XXTGyA!ftjPhMy*ho>pk)Wk8?%#`Tn*Cgl-(3UHf z(Cb5JGu0TF-=3OSLqpTk&?vTNP)j0#J*lcZ!EJ183|;l~x6p^fO=!Mk3x$RGEj~)4 zbZj3F6Hf3H@w!ZIl;bdMnd{dz@3ta3W%T51Ygme${dNB{m|ChZYXuSPO1%75;)NqV4eQZy^ol*M z(~HB^pK_1fpl>>15!ecRQ-9_Gl$^%K>9XKMh)Reuhw>rH;~fE=KTdS4TPu!%4iylyEST zCv2xn@oLy_zlQeW490B4v{d^)4Me~0pq8Y6ew0_AP)YiGBN9}wLn}KV@vaBcS@$(u zj^v19hbLrIo+A!rmF*#?QDYp(kQc)X_VGfV%#NauVsCBhPL3vKw4yc9vP(R?FHpqa zCZ%Yyo*(dMTP7!&^V|t~?XY5(t%%QI`S*G&qJW?AtBaRY5|oYX9pVABL9Y+VWP{Re@ry-?QCRiB>=jnH-Bqwxp+S=F0r;LI;I_ z^K*uzKGL&>W6^!->dwe{yR(OZ=S!&1+Qo0HU=dn9fZlxzYm$H(8~cI~(3ZiCywY6$wyithcN3BsKA zCaM>Xy7ye*c;KA-jsNbXMh0!QxxXM&VNX`T_N{`w{;3+kCJV*7k|8ITW9o>z41ozE zO|^C_F+_I5iG|-$Y=EQ4F<*5{@R$&qv>(ga71Y=XVl+o!Ie~;FcZd?D-cS!JLo3^$ zk_!F&^onSAzK%)Q>!zcyhpDo)+j&fQK=^vGXPB)+;b6MF>7@Oh-}B5AD)(z%v!@X0 zH z1w-90W`Fm7{Sy8N2`gpUZQI9J>=E{XJytad!q?eI`Nk&s+O78Z<#@nl=2&14Mr$W^ zao~%LS+HV4UlH;CU34BB@9_8U$k=cZ^t|0ldcLQ|oeXb$E^`$B+hIc)1%=JJ83Sa8 z-uQPd>+8m>`i*Z43`n0F7ZdU?2t&8&nZ0jt4!Ht`=3Obhhg3|?#oP|PpFIanWqZUy zfnKLEqNTQ3hbM}~yikBu!*ECrIh1{+HG|i|Bkn{{&skRsLLJ0a!b%mRz|}ekJ&u}3 zsS}H+4uk2+{diH<(vqRZe6+-81b`shd2W&0&4g_f<#Pp5i_Sz zK7Fe;*PWQOdio|_YD}zKXVupo$`_x~6tccf`QryJm;13#d_n?@n=OYW=JK(yN-Rm~ zWo)d9##=Sa<)%HO)7KU00>N&(Q25ava411HH|DS1Z(4cZUDR?9{rOXIr=;E9G)*Hw zkWGJiRj39mrFSB~^1}vo@N?EhnrZce_-q2CY9Mapsuy8^6@sF2EgkpLD=u(FF}_v=LAT zl;jjK4&9$5O!6`~aNL;8u-+Wm8}0oWZWt@mY}_IBcyRnURWip)V@Nc*Td()wasDp0 zMmtRMS4p+B=#d&RF#6w3)z{MeSKTms6A|{1;#Zx46OAVmqVDtDlJ|@*agbU zG<0+c-QD7mkwY9QFJ^CBqz!Agtg9d$nI9J0%jX+}g5lI5n-d;k(WsW!jy>Day)3El zq{^4d5VzOshEL*S@1+JKdBS-W<)OB$si4gB6TaL$sYFIuFNw+&G5%UO>1F-=wZq~W zr&Gs`*Vq4?Lr+aj&As%2?Z04a5=)hy#9*TH7uapPDvknxpuYAl!MUeQS4|3c9VJ!JRC< zVKL@>`ZX&Z4~6+J{m;7EDm!*vpiNm$IZa{>1mmY{vW*puW0yf-ce>NiH3a7mjuzCf zN>@~GRB?NIL)gV-OANJXd3!#+qGDx@F&k#RHgRlOD${R@kH9kP3&U=Yj6~9D=8pQx zl;pVD2~i2ddbf=;{IGun`$4ykvU6M}dh5uQg@&zlq|aA+@X7S`?Sfl;hcnw1*#q?^ z%~kwnY`{w7kA)+f*(&G&fVS0jb%)NjhN1BVoTvu}2N!*>m(m5CKWUU|LVw^*^SoIL z^Mu^)$SNsq&s$e+ExE7cS5L;AoJdiQJHjBN+HUx}Ke%?=3X2RkmFbet+$b>hd#w@?%K}r{~!_u%8Tl>(Zi$ zW;Wbf@C98wiX@Qv?F)Y)1ZOWlx&i#rW->r7Nh7OPs~Qqs;Z|-?spRLkTOvi+{U7(s z%3?0T3kr?;^f?SYXiQ|`*G{HCTxXRL6&M5;vyNgJ)7kduyxP4>(!zm0$I}A|Mcq;g zL!y6#FnqIGMk(g9g^`hY20#k=!v7n@_}*WA;xFku`%D~aJ<>Se;%I36v>dzn;+<^# z3n{>CvEN99p_+7u$hz!LrWmw&g$bs2s$oa2cohDSE45mo$i6-HS~&3yI3s&xrd|WQ zj-=a(j7T<;8U_v}&;JSfYeRMj`fhWK=GcgoJav3L!-!6VrzP$;|BfJ|6%lrP2gT&@ zjb(V>?-f)xZt2vr*>s@MBL$Vnj@H}i{T%D~d9hc+t~tjwyM1Lm!pBC`% z0xSlTG`#HBz;1BUBl6WR{rzCsvuWfp$Kfzw@)P&2_~Xes z7Z@3wVSH*cG&hSJEnp7JF>cRK#vTkm)bjle;w^?US3QXUO{GK|J zr^{fInCPnkZ?A&|7yg(USX=9v#He;=DjE6qA(pf+J?)iBIai%i@rDl|tH!>U`B}Zj z?D*lau>%{9H8wh^(lNyC4~h+G$#i6NW^dRqk6Q^At~(^U%cEonW}}ijgkii)dD;@d z(0neEx9QZ1V@RRxAGe;mKl~*j zqW*8U!x`)+w%z7l-wvs`zo6xQb->isWJU{CRYi_qHMF6m99S#54R*mjMs!Tph!$fR zh_2ddUl5{Rz7sWoYmQ-0fgw}DiOgZQTZH}Oej>ZxhpewY29bZR$@iK~$=dOGMYxyX zj;5^4!0N5FUx7{2F+k|=PPQ-e2dEX4-xX{sRMaJhW(@s- zsFVlgG@2|q4o~25_p0csQ3YFnM!CSDPq&rA&Rqqvi-wNN#Stl9(i6xC3m+}TS+2RL zFV~5Q>9F{uBC`RMBc!^!1N~eTNy*4T)AiCyw;IO{uSGjNP{q((KdJ>Z(&;O&%`4)& z`3KgY5P|v=iyyIEr&lBa^X6nZI0ubWrtwJ13mb=XY>j-_c&%vsr!hIt@~87)6u@M~ zNlJjcBs17sfQy5}Ae9>j>U@>$09WQomj}l?1wziadJ>WmH%i8^==)?oKIL=12!Q4+De77WZqOo8pSxEuzS5K@< zPcF~oI(nqRm-JDcdkVJnWR*PeLC|3I$m_IPYJRo1hs^KrflT64$c_To z#%k=6Gltu=`0O9Z)e96PG&HVGo}L@=YOzI6ZMd3&QnzhXg`5=>Hib$^XQL-owZ8{5 z_o-y{=BBAsEUBJn)a1tL&t;2vYDt!qS?Ob(TwMgA9BmWMNKG%tTN*Y_Tk|GUy0>DzcK zHG`OXf3o>5m>;_oFTkC|%{QEME;gN4YnN?qeWwEwn3-9AHY(GH3tn66#guC~q^t%j zlAC}$-IUSo()nQGSH>1jpoHzuaXkx&wfhU-Hxa31N%?{jp@kzJd!DkfhtN#p#A$gI zRaE0J{}(HvavLvj9#`}mo!xajZ7f(s4++m}#*daVA4z^cM{2q?WJWARzYr`lF8|so zJg*q5s`ZpGvaR*Zv91dJ0NJ0)aT`0awG~~8o(B)ifvS@eCz#}_IZS$1R!VTwFEKor z`UNalmzBO_q-q{;h^qqjj?mi+RIy@SxZvy`!r>)Wy?uRQg47H_3>IUU=ZBe9OWyGH z_s6|=4=XCH`UtMtBF!;JF?uRUXV%OCDy;^!8w26~7hUMEbUb{LZ|Cfs|G^!dn#_i> zvc$tf1tg?1Flu=Pzw%uVcohW;yRzaFvE{|Y2uPJ5YiI%sNCaiNTjz@K&Pqm?5i}&m z+xY+Bshq8seh42qitDx&dY}o(%E}7Z+}un53tCFR z|I#Bd9dQ_zGur62JHDP}LUQH>3CF6|u%8ZA5?dd)Be8__h$$)IX8JX= z?1QOREYxoe-`W$M_SQeddP3gXx+KM;mvf}Jsg^?5kYtG*ag85;3!$+xS5=S8p>MC_ zmNEg5im=nTn%%fp2CDteiVr9UV%Iyb4CAdncs_Ob(V)m#B5s$_h=muKd!^MweE*(# zjW2N9A_ii6aaJQj<&OUxNpUXG$Rp+_2SDbpin=$tJ;`f1c{N*<`>Q*V&B=j}z3APv z<-a8Pa&IPHNUQqPjHyM@Vx>WibC>_1l$>#$u6W;K!Sp;a;ckkd*E&i(LZ_rM@pDHflw`+gZX4^t8Mf)-cP(&FG4O-=l zq0Ycy4Dr8%bO*QVQ2-Ij$3yKdw@KGsk-v8HA>99xhube~g>u7zmE$4QC>;$3ypGB5 zh(*ZvjzR@pBfdH^T6zhKPW5iGCL2lFN(ww7yQC^UpWTa|FhlsxdfT+yiwRq&aiE?v z&IbcII2wbh0@;;c4S7SsFraE~KfMm4B(lL5USGWsp5q7Mx{OjbyE{+5^3%(cI$!k2 zAQcTEi7@qtF)jML6X_4tA>2~MogC4K7Uv*>na3CM(bat7R1OxU%Zj(zNzz?<0l2 zHk~XE=z#avCoPktnMKCWNCRRrrUktw|{+)?K7rfI}y^+kq5TLD}eM}G`zpW zWB$Wjf9bH&*#9RZAR?0YgGh36;tqr1Wd5(*j+W^-@6Oo2De8%%mMsA;ME6@zP0zPk zdd=mF%48Vme?F6skgg9|dJV^44Hu5wP)QTp#sFeb1}lt;SMLRQFF6B4%AY@K-B3CUd+q}}{_dZAB63gw z;;}PKjj=xY;4qvsGO7Le!O8EsZ(7uYge>QXF?4(G$FrP}nwdlYnOGooJa+)P{e2{# z{W5(55xDp#aNCJSCl(K4#@ezvnz|F`jES$)dR&F(5W71;X=nSOStKB>O;Js>RBkBR$ zvs}qUrYSF9-F}A&h>r1%lh*Eflri9orbCIAMI}REaaFk@TqOG29qHwI+T>isqr`SKH z1?HJ05Ll5JLSLa_;3z^?6O^Z=r6nVmVlEBYawe<&Bu>3lS@k>PPaV-=5=xr4Q;!#& zhL2`#5WmI_^6rs4JQO4wM2j8h>5nG5xmo~4E_{-+X({;!SM`$f z>xh~{j9KB)osrQc6JLTK}Sc& z%^gE(E_DEcbWtyV8pRKw(yc*WbFhr{HEwVzSZf*GL)>KurpbUwCQg#G37;}stD>cu z2Q1MSl`~++q<*ztH@)!CdxS>{bY4>oM3Xs_|KB)(vE(C~8amj`2w5ZoA&y5@pY`}8 zJa4DqJ%sT2?0XZxM>wAM!yUQjZyHiNLehs=sIiy4_g3!mPj(Wj$X{K~ju$+UtGxjY z?d8Ez3))1%=-UbI7-E55P}%_q%SJ5)1bmjv3pSg+j+B!7)p!X`%xzQs0!crxW-s2nTb+;yi|5U`|-Xac1FFKiyl?v%CbruzN+8U^1=u)>)?U zNeOdjjKa);tc>k}NcQg*C6qX(-?B9@BHMU#-;u?kM(y^=uBxs z<_f1=@GH2ld3oAMNJD=;to)5Kggk?`hMiA676Hi$oU54thP&8j?f@aub+TqWc_mtL zjnc0^$chrZed@LRL_ouXM(bNS{lZ$aa0IrjECBhz@MuPdvxuWk2G2$8w~3L#1I1~q z5LBeo)HgKoiN6;_0Sy+)Bl02z1+i~lI4rv`(TsJ#y86h-k-D(#H>^y1#8~arXg5}! z;P>`&Uq~Z1f{IQ}H;`iq8SVQ?kcRNP$r%q+Tw~4@e(x(3P`M}zDf>QTZBFqq_#I0M zJ;G~>lno4+`2WQ~nzluiQ={UEsTBU{BNa`k-n9EZ{vkg@SmNQD6pjJ__0EQ+V52cD zZ7W%T**k%5o}A?K?mmtie^xOfKuDI2{zOl)MIEn5= zG2<^iy8+MPBYK*?RTm0OtS=%%v?4qLZmXr20P{d9F26H}M6v*(} zXCOv}@3>z&+4qHfCg5rWK17KyE=Pk-s?Nc*t&Fna8zm(vGf6qCeIXlOQQXyfbjoG8 z)9e^=D`pB<0ExE$u1P3l_`u8ymakV z?}tudC+<%qnbV%a(7WGTvKmfQ>=mXw+LEU$y3c;;eH@6PFg9`gl^nWJ--2GQ%X6r& z)&?At*6U^O#IIjZyOG(xBqt->h*UqWJUx=3i9WE~F4UKw-vVpX_~#djKvW?5($R4N z`2_SaQ2zgC&;3n}NC8_?qEQd;*z*3O(kV(czCK+Eo;|<6Qn{{jb|%y4O3}~ePQm>O2+mNS#zd*E_UITOJ4}t+zwA5FD5mIEt!;oUf(6Vi z^^{4dkyIY!_cL>?I=rLEus~+HxERJ^ARr)1NOBheLW|l3C`5#kCyO}a0n|CH-Gm!0 zq3@A*7H|2te^u5YsTVN<->7QkI_n9~wMnMYlJt}O<0B(u1vcx~xR#|^(q_Dk{#TGp z^%AX43mZ@;y1PS>ONGsA<~}Yp^8kgZ`1*EkZqDa#7d&XYQlIg=#{90hysqu$FY3B} zb51L0l|fy*(|Bk^MDXIW>c0g-7g%vXfKCu_{`1jr0ozIzu>ftQ=c4Pr2#+nR!7ds& zNDeH`1nZO^zAJHk9P*HvQcUGWES(zJ$vjz|P;SUNu#<`*j#iVNlGAur|H%isU1ye( zc`GWeUIxc5W3wQWJ<nI4$I zQ~T}@{bj_TUAb8_L*CFMRVxdN?QIVFWj64hxvpXTbvl7O-k3+knV2}T=Ie=W`@?b`#v_xiosV>EiNd6u^FP;k~E4W_8kaU+?>8uwWlj}^Ys z&iz$<5VXEd=vIaz@xQGcUO(j^26givHgjr98A4qxCw`q5dt7_VZSYY0rzW!nN}*?G z`|oSn9vkSH-zt2UJ1sa0SBjRWrIK`x4s+3|GPLxor5eQFzmv-e+mVm$4FkjJ*H6xtw9=~Rj*f}#9r*TYdVkNa zkpqa#4I%boJsIAz-R-_be#Z!g%?H+twrN+SM1z&cX`}ns3h#i42x2a>vV$72csMw5 zU%vd#a;~$S__Wp&2K43(+P=v@ysT$lm$ZFl^n?J6m_Lh*0#3QZk{zI)JU35T&&}h5$#@0Ktu>z!aA___ zXMV?!N@_DV7L4`!jlp=_U&43RZ7{9)@sPELd9A(hD%Iq-Z+$tS*g%PyKn~kM*S+~v zPfa>HYxDFZd4E8;8liZ7yi}jdhTP4M%C*CtoGM@NdcAYsr-(Vdi6HN(`)XxXIlXG zH9Edph`0c2*#{UnD8%%`5=1>(aZVCul0*F(!?SA^3H)`n*!e~DofvZCN;9tC*v8g6 z10O-B4ISP>a+Lvg%au1-nP~AiH*v$__Cl__6)v#J?V7f5L5K3Z7?+-_wZtOxe*hx$ zBX`51lYE`9&2js^U4den=B=xe5~}Fqp7P+(knuvj?K84obQ~Z7YE;|xGSO}o)i;2c z$wbE+u*%F=v1(EjX|W(>14xQJ-iq!+ zei~2ab@5N2z5{dc?{=DfjwNBN$Q}Kd$USouF3Y+uJ57##`q%xWs|cV|IpYN9UWaT;1Zaam?d@a zaUf>6seL0m!(q1^?zK;?UEbJlxN>-e4YG%(?)HQBGmyW93IqahFK11-<4vknTp6lW zu!+y{*3vuZ-%-e^mgESBkA8cjs*0i4F!X&WA6G%cQMr+Hr`&xty+P$F9Em(-_U&tp z{0aYMi+x-7oa9krZo6y( zda6bvm6nq4uOBB+%x3A($c(2-+16NC@_h$l6o9?OG3d(kmC`e{A>WaIXm7EpoH&Y| z+z{`7u*^u8<`@QRL_|xjk5eKM(hTX629nt?T=SMUT3h?$`3Jl z3>&^t6NIvwc`|DX2wlbMbN~r68?+|pN*~zgG0CdA#6>6~W8DwXv9pc7cr(t%cCPW) zHBw_Nop$Y8C=Xxox%&SAEH*aGx3_qMBl`Nb!IH8_IFhQ#945~}&DPo!LsodS<9~)% zC0|BP(GgenL%J6BKnno2kMH9RXa;_`M+GNCCIfZ z6(#`TP>IJV@CP+dQsfmmpwgy)SF@jqUmiR8^PLOW78u@7(Kp9%*&4JBSgst>T)B62 zyPc5qik?Aj$1cMc*7TcqI_cbX{J~S)zX#st&q73-}g10_*d%T*J20G={71XlhVqgg= z>?Qd3b9scHxJ}@!U;$?(BL8M7w$rBK78a=qOPnVLfhIS;Veszk*hYciHO*3~~E=RCFS}69HTIrAW)Evmt`iX8px>gH_teVJj0CKxWG>>Od4 zQq6J#E_0t};Rwpuzz;fm>irrc@D1hJV1bhj#4P#^Laz2@JnS2TcgGYxk0K`l&@d^S zW`vPBRrV_ez(Ea-2A&EoOLGbky@v*bNR<(&;&W0bA}r_BuD9BG%c@cKbI-~7Mify!F6Z>1!e;M{n19Wp#Sx;aI%2266o50 z@^yf=i$o-j;C6VE_~#Gik00NDUXiQ)j%eiXFdyw|h-%IFfa+f$f4L;2BMxx++X?B%uGOg;XvjebbsJ2 zp{0%D?pG1gVD?j~aSv#F2$4>g=?ntLOI715gSuUoR^{?2vE^n$WmG>$$2IDy=mTq! zZk=mv_XnuTq(2srn2lfFgf72iNRgXjqp^8G5G;kyo&utNq1~4)4vQrQ!Kw z2K?xte(;qnw(VsymPXk52vJ)!n3#WL6w(!Z9+vQKK>7LI87_|kHvV?zX)i*acuEOsolLi`^g;sAmIEmlp(fDICG7pRX&Ot=TCBl9dJq z(LMaClejaDYyl<@ zN<%nsu(radthFkshqq#fIK6i$ez!|H;?i8!})+yfsPF#T|lcYDcTS9vH%g2 ztMZZocEScD?g|>-tC_sKi+)pG%o}ovf0OVR7*Gg>8G;dOrAr{;9wL|s2k^|ZYarm9 zdU%L(=;mG26G%^0hW&3fd$(QV!WpX;dDxsFWpJnzrP4JZ>C=%SwU-vrZ{ zz+#ml5DDnrOJFy%2obD>dxj^@JHG~utDPVZ0-yq_XlfGfSLFmP2xCwXUgNIG+hH4< zkXcVBcMpC&5(D$tvRLpYzB>S1S7jvgNv7M^{ln~|WZl3k!(+-dNK5$b1erLt&IZ_H zpDr$50)`l$>94Ap2OCl0-n*3=jINuTQAsZ-wPA`dBGvXHD@`&Vu?l#Yf=Tt%|A(#wqDqmGk*1PzUlPBGL{&7{yEwtz zv;}77VCR+;2K>;CRh_EQF88OP-M;TcxkeuR&@!Nc`jF-kW@MBNh%4*Et!`w}PY*{({iZ{WqJ3n2s>N#`0P zhqQTjYzLz)o6WF3PmMSLG;w*Y#1nUQ^p}VCIY55nEeriIFG>)`1Xh}lcx`^(CJ(E@ zqO$7vYizuZm?ggi!vp(}-wrL(Q+JQa$rdsS`T^rNvRfvRIVPN2@yYxoHMb;h(8-?Y zafg}cBmMTs&{h{-ywOljNalxEM2@8`p`oFHvRPsT(!U!0&tBRfdNVWnR~}dza(dg8 z`ru0m#cTVwLzW<-lMM@1=!8lZg5tI1r}wlIPGB9tH?cvE0HA%Wud7Bc~H=Rp#j&=7qAXrzEWg*LMo5;Hp^ zqgu23N#MYSQC}p;8Z?5imE^0I$AQE|q1cLhbJGwN*2@?*hbFtMDhHD0<@Wv^#-W!A z1&Ugulls2t@QSbfEa3|M934BXX3;RnQ|psBOdyh8cWJ%7t^MP<9Ttyw7U<&7CG$QH^;!!X`Yq&>#L-D=tX; zJh-#tyXDZcd$9NR;{O~R%#}~7l#$bwRUL;%h$Ft3rDo8jryR0_c(n=M-Ws)k)I@OL zXYcL%l1L2F;sm6zPZP5R>C850OEBW^^kkU1Utx!?Cp|?ou?Ry2hQ*)TC=x#;(L{?{0h3#rz=J`%6pfZs~+ZbSrvq?ocouips_w$BgYbs+fvN58-k z6jV^bJ25`a8-Ql|yOu4mzs(aVE@+sic=^$hP|yblF?6u@McR?bn=Ja!WQC^WQ8GhD zWc!R2M2$z>(o3@5evwa8cXXJTc6kMPaO46y9g}wA(&1nMZ`lL)i~41FdNm?eLH^t< zY3qH74lW8@$c+5ngnysowQn|Z)yugiXLxWl@a2c!SrnkYwClKqL~klfK-kk(XlS?D z@KKUxI6T{y=-Hm2Q3oDxoDZZ`Bf;PLYzzWRGP*w86ik~CajL5mg_)q5pEF`_Il*Ye z?&uB;`9%#+&BCsT=`W5|Y5U~wwx{65t~8ANs3|{OS_qq+4U<*;E^lL_Pql%7HV$b< zpo**1HHs7-fzdi&py0iQPD@@tY07murAMls_w9)z?t zOSdr)2A;$7>=mGU?Y`bRZC*6XUc9V{R_5Fl6uegitNWp?IEH%V_8)ltwFd<1Kh!M2 z&8lLn-U_Xdazn|PIZ=g7Gs{MwJn#r_x2S+|QJMN=i}8V%t>4B#o#yzHyzF?>?Kb{% zaeeWYmN%Og_FL@oxqZVb50fg=7ExBm-NoK;ttHq0!!zsnH4j7|wUKj;>!z0rsCciQ z{+7EJ+a?GH=Dcw{l~4Qz!Jr6I9nUkagS3c^Rp}a9x(u8niPLMBbN#D6=qa-ysY@~I zJCx53>O&MXD*ca(-SGr~)qv{_f?oJdO>>R<6?d8R@7FYH9Jm;jXYNoL%T>SNkKjlKHb&OXfS=jcMZfF%e<{7M&4 zbaVSuCUcsQGfR|cN$v z!bql!5^2cbJ6AfB@BNyAU0bei^YfK+50(OkkHnhYj{3ofs%qSRW4;wbsBQCRuh0ty zIpNh)dzj&m6o!)71tt6w+Y~65hqz^yjZ(3awN^NQ^vDCYDJ!2A)@Qu+aO-Sp#*$rD zW_C4%L`$*$`%+spRwM9?kn~#AQ41T*{2b}2)rBcO~XU>ViVAn*IY4>VSKRupMt&ity`b&2n8Wk!=TlfUT2KLzE~P zEMa*U#1#q@7*qY_#s|}zlJgD*z6e>OMDUH#S^nZygS+m!yS6Y3at2(qJK(YFB!JA? z=5Xav>f>M(uYDn6_pOeN+EJwB~H+=}(~K9B|*(ZTgVD-_gGQ!mP@{o#Li>C)pT z!$7H>dCyc2eS5}rJSb;idje-(76NV?_4#g7TzFz~c0qN;#5zwjY}oXX)#7~llBmgH zjTnzLJ-5n%%kBR9)V*-cWPmduR=ZwdqqLG$D_o<@`Rr?{A>>Ib5*0Ak@cYN77n9mz zr3itJeViU^p&!C0H9@#+?7;8GB~VJ+QTvOTX14{Ort- zGUTK_dI^FrPW_U<>9oV}E4n!nvR2Lk36XCb0oM-#&R+Kx%PB_WOkYjkdayH-yo_1w zE_m|34czSyU-I%xA>1sikPqQy5BJi3ZX8g~yJ?GUYCNI8)e|lJ+o^i9iM3dxEycy2tcU?yroqbU)e?8!Cm$o~td=U+4#(9m6GcFDU#PJ=P3a0*&V4)9u zJ+KPdRS@g463XaGYM&-t{FE)Q=f&5$Y!L0&UP9Vuvph0c>{ik83$c?fQ+u{`?%mPO z+1Htl`ALWT|Kw1;Yg^ivt2d65F!u*StbYc3X;C8bOk0J$C`y=V6H^T(CFSm~NWjqq zAkjGOPY$Yt;natGjOudetQKhrYAkT3M0f$0wZ1JAPlA# zv^9SOBkSMiX;J7%&C9iYkEw3he;=Rt9CM;hH+%=dISKRWN{PwGx0LufsTT0LVFyMwo5Uv+qs2x?p~s5}KihcPkX6H{JG=y1MPp!M zF8Z909)g35f1%}7`#y4WIBygGpC}T4Nxg|jHSq!NsQKV>US$f|&-P;>eLDeKt|Rj4 z=?Vo+J{ z-e@u7Ym=Rc*To(9e*H%Ho)}Rvcy9vZX#OQ#5j)P`-h%%E14IoAqvvCyW3m1ZCL%Yh zFd#Hg?3H;x#8mlwjL~sS`1?#qk`+{=*~aE~TXw@8a2gIfU6d`RvA0nA?0TG?L6Dph- z1jj>1z{#n9M@4~Sa5HQO5jQrb1P-lkR?oMbFV8tCADG8`w6_RdpI#lz)>#8#0tp#+ zxaH%#NJnX~OB=xQJ(VU0x;0o>=Sbyx4U`lVI0=>v5L!*v84%%}-f$^^bK$5)=a@Z0 zQ&FiRh_!%%>v8+sU#I0NX8&9k)=w`=Pu)_{s~mG9wuTGizWXZF!$(kpq$`r>kQ6m7 zC3e2gsY)Bd6o@Pq|I6MM?HTO8|4>t6MDwJ2d5tRd_g_Zb!L zIj#o-Dv5(Xgk`YLP>J6{roSf&L#TmiIGzyy*X=myG43Rx!CF&SQdeBcpLtb!>miZVZ5dTPnPqD~-17bFK(%e_Z(u+%W=+cQ*(_N{7;oAl)TMNw;*DbW1CUh=3p+B1lMgz1Mi2-}BZVXRWi&ItzxG@7(tl zdw;flwPpSj?+YFWhY$63^ZcO8j{^P$)Yj+uxM;_ML@!E_c0wnfQ;}Y66P*kWj11TL zE5UEuW75=k_Jp#%Zr4(G5I)kxf!`L9lmEw+%J82nHE-soEgGf4xtnGqVPD^SOO5(n z#g&!IBBzuAlKP_@t!cYX8YJ?LW|K1$n25SxAd@()wPGWJZyeRBHEr&bW9wWy!*NOO zVZ2%vK2%RIj(IO6?36DG>x?+0e12u;hHg{Yq*3S-43~)d`n6*I6JmpF90T%dG=QlP zqUCfZ`8K%8%^Zeq)3iF2lk+zxXR2L_!c+YDbIix;zbedzs9<4AVjun+Kdn4$i*Umj zf2)gjYNhdgJvTSU#p;Ye*R z!=+`YCFVuJt2JjP<6bxTQ*bl9FVKPJvb{(*`~df!_PhFeHux+an<`plugMS+IsI~I zI4G~w3aixA6UQjsITkJOQj;4UaQvgw;KJ`n&onUKSBqX*DRVDe)}J?4qicElZP!M6 za2eg=zFu&dhE=o1c2$Fnw975E((+i{?mr&4n$CaT=vJaosCwe~TLN=ES(KdMYA z2)jRmn1$PJ4lOV+S3ZsRTK3Ro*(j5)>v1OyO-cFgJxccVgVSvn9M!aTdc-lo($b+} zWpmKb5zqTM=g2Ozsi5{PiI&euPeO@av#F3G=FX*}m3(zckF!HIl7!QmOap~w_ItG| zs(a+3H2Q9PecB3q%5e9j_J<86O2~Z9ASIU;0M(j|oc2f9ZQxJ{UR4r1(4(Bq?~tmF zl=x`d<+M3-UR1*lQ=nffJo>&CsQYLti!u9kC7}>m!gg}HCtJUcI zShV*YC@2?$9!k-2z?Mk>>S-eX_K&be{xmQUQ3U#b%e%LF{j?5)@I^bG*_1OgEARcXR1myBpC=c8%oo!f{*ARS769^rO~nv*q-Q18*rrGtU5j2UFdYC@jTM`U-G4Ei6U~{r;1m@jG7ICKDudalO-U>&d4$ zHyo$^wE8_CO!0evOn-TRYxV```_A_Ah5pwqY{>Nnw2=F>9B83q{)WpD55-}#4B(#V zbU})+Zjezge*zh!t7~W73@|2o^TriM9!^kZQayS}&pBC2FROrkiW?gz z(B2((6M=Az{_sIxMeD?LXZKJEx#JwC&3RFgT@<|S)})Nw88bOa@_1^dzSfr9yjEcw zKH$SkaHqVE&gKxK&Dq$Q`>#2YAGgwR`4;%?g>7tVL3AyV>r-ASBP~4#f5Wdgbm?Z1TZ)HS zGE}Hh8Q#%v-$ugdL&JDqpBot~dWXPN-MrqV`-ElK0X8!TMxC#5En#Q@(ohw)D37U+ z#z5Od7Pcf5S7+KhbFkvZ7;0p@=Vvr4$lhxG%X7^+nNvHPo_A>}5;;q?4Hth@l$|k| zz4?lp<%5Xg$0=7|u8(iWCM4MJt>CMdX!gV+xV{19=)JD~J5dFE<=WjulscDU{Mk52 zcxA|^Zsw++PKgfN4J0aTlWvY2dHRbyLLlP({5}-uVccaddl2~#lkkKdfuLn(POq+h zb%!8El+2_BJ`@_---Axf6GWn!)qD3JM8Jrp5hjjZUC+TEQ)78L;~U%OP12M&ZqpX? z{k!+KA~j_8AZ0+gU*GF8;;sCX0i$CsdwZd)BMfT#t;>Jhv_nHbY`giVXu@s_P9`2Z z10h(g*e}qW>=%2sW#mO|s-QF_Fpm4NSyZqx(@iG~E<(Ej#nPI5DfI5OZZG}a^Z6*h zevqlpGzWsYR9Q<)RI&#U7zLh{<}O$H@HLuxX(s#X!pryjX$X~i{n%s%xpH=X07@u&NS>qV8UO~XMLHVc@XPJ0$~biRs7 zimtVdkTSaY{e$f4J##E9=j#H6S3qNdP|5oYyV*zk7pbtBi*czt)=`663ZpqOTz+n9;zNR4wT z-;OKA_HRFoETU2+>Lq)vyt81*^gBVeC~cHPOl!geWFJ1me`xslsQnm_Mc#keQfAvt znkXc;2jq_%?N5KK6s*d?_koS1e5T{0)z^Z`!o@fS6Pu#4nnJ$9E4sGNWInIOMe?MD zZMnGpaA%@aT|cNzw!uTXS1{o&&Y;N+Z8xuy1&j+Pk%QBIq^I1M+&2 z^l5^gp|B}@U!-tp^%!*vj#euDD5tX*v1l1YxNR`$nD1Vt&>{GIKgBMK9@V+8UtS3R z$+!$XzbUl+xG-9aJbS1MoMZLiwSYx9>czu~Sd{Ds(cAHj!&46T1v`G74a=%y&yUK_ zgdUM8@VS}~47_Zd=^4DA;&!`X!3FlDSJVWaZ`f1b`8+ratrCG~LBheba?yIz(}a$W zm*U1q$E`UpkQHgRxGky06(E0Aw4M#Rjk#i}QUA{MX7AsR#U`$3KIUcfK7R^kyikX~ zI#sE4Y*}R*u{7xK+6@eVHxx&NDAp+NT5>=yp~_{0Sy`o~AZ&fc>O;os!tC_d4^}OW zU^c$(dAG=PQO5A2*;K@&r`VG5tzHFa4LGEZG?WQ_+bf6@*7~d;eu<53mNoyA!J1N~ zJnFdOc9mI!p>YQBu(BGI+nGfS!M7>8Hk_Y&p2)j~F?@I7PgG|ruX~~~)N)T~GUA;# zest>hddr_1UFW}vHD}ImyR^JFpWDB4Se&t_<3jN0nEbbM7k)7oPwRrSn;$pQr40=^Tfcr+J9bYIneY46yOHkKJ3LnYJf)|=GKQZL zX~+FHv-yme`@!s+Rj`3=h`{>L|DUD@L|u1?`uf)tEQ*j8E6XdybtwUpwp}1=rzgK1 zikEP?v2S#-0*n&*o59)k%eFKqk`)?EqysR=p1xYKL#ws=*=3qxO{WuI{m1Pl6fsDp z3aBodxF6IR)m{3Wos|+2y`<_I&6wd&_tI%dtfviK=vixV2$F@SnEF+V%2H|OZ>oTx z-lsXoiucg}X8?;oN-kbR#eB;!e0xnP(>x@$XW$3w{plGXwN%I=oDMTwzExt|JW;UA z6)$f^gAj(r6}TX-p=3QDoYwLxWNhHjoR5t=PluylN&R3vx9@#2&x6-W`lC_hvIxxl z-BpRO#+f8Pzi_zDe^^z~ikfk!{lOS&eEyYKf%nylwAMtk#fHeQFA4!lY7e+(wJu3W z2Yf(mLB-svoKV@i^X{@2ecSUHialWf)&_&KqqQsJE$+mmoF$gg(+PoQa<0dNt4FQ2 z+qUL^VtfkYjqg-WdW(Bq=mDRCeY@qW58fMieflbjcShk8`Aq;ev;=0|C9M<;Bkz@_ z_vRs5>c7I|E-f$r-X?kN`{4=BX`4vlvP21nuk+4zS-mYzmN>w9p|^t+ERp~C2BE}! zitRy#i9$cv(^xKvV3sP3vGJWLH`JTZBh2Y?#zzooUq3y@Wi}mN-dMO$oEaNiA~Dv) zxs@MP1Z+XWp{$hq0&w3?X*@P^aX-jfDSh4kqS4~Fq#4OQoY>|)l61Mcep1|fA0vO9{yk?@t+orBTCfuxcu|rWe`*di?6Ttw!Nw5+TY{2Oc1hr;qzMm(U~J&qv( zn-%!xw1nO93I+cnhCj_VUpu9q?VZfS?JyI6rr7RvDMn~D74g(lBzur)!5TDt`^KYW zE4A16)Z3eM8M#)ljU5(?x4!Ev+Ann3!}$b&%sjE+2$aC>v+8bX$|pK#7I~mxJDW*; zhH;G}?MA4bqPRlLA+o&TRtB{PV~<493xYdY@vHA5QpO&|Fj*S4~I! zY$l z$lQS+N%cUI10dIRsX=oLD4aR5QR&u>9BJZ{GYWo4lk&yq-Gx8!g zs*q^i-zkMM*(&*8>!)o{uME6*ly4-kY^e}Q9baC$xSyDaJ^rzydNw&(Ln`sSKRI=T zT@~0Zjb(KxUF42xsr2W;HfhP8-hW=$k|=v#Q#H=^lCUh7q3W2UHbaB%-B%yO2b{Sw zHG8ibR5nL?+csHzbhbDM9x^lfQ8EHw_*>*t6dzo2wsK$p6>SeHCG?8&-R;q~n_;~M z#3Zoz1`}G%_}00f>v!>@+X9E_-*lpNfN&e8zQ8Tjo(BI}e@RmFiSf`z?iqjbOU zRSTcu@*Zz-j>o9x56Mk~^|hByH)6~sj61FFs0sMDy$LT$$9=`^w8P<$_8GVdl4DMs z)+g8Vhwpz+%wf$fs;5)P{MA5=xY!JiZQgoPMrv|2@i>4gHA;sgAOP>x`nXIyhpZtr zC1teh?%j8>vEt_Dn1DFTuBC$hj3U9AuJr_W=rHkqWWKFGLt&XdqVGfT2N&xz zI1Aq^Gjq*Jz~^PWHAjj1D*Uv%1@e2Tt2vmtBw&C9}MaB13 z2m>pP>Ascep7!;IhJ`Ja)DhMKS4VlYU+BZM-d7aF>3V}m0?lZbMYtgfhhjNKo<9tH zn;ZGhGO(O9Md-w_Kq{g+H&XZ*_ZwCTNdDOC4ygFXfcqi_JF%Ws1J0zc3^OW zUP=3T^t+T4vTh=Ty$e6}woA`LaZC0MJT^9OTO;JP_j9jiCLUbjT%G9dwxt#~Dy^Fg zkVZ{>SJ(Q97{Hzcq9u>xm;Khz&eawuTJ=Pbv7j`;DgZ_KR}ZOwdd_%hvzIjwOHml7 zX02_k32_TI&!iI)diZtPlZxuhBr0PN-0HPP{f9BqGub=d`)ge9wcMis$5D;aT>c6@ z!94*K7vL^(a&i*u>s`Ko|1Kjhk7XE;@HxD^L$0E?6WG39=Onitj7MhC%cpW9I>v(I zjGvS?RR_`DPq2KV_Ig%9IuUmL4Kr1$>jpZN_8FUOv)+>%b2|KI0Pm%dZoh>`czg#020re?Pyg zB|q+g!1Fsph$oW;!RNLdCT02_F^u+}@U@>+%a$Lx`ng@~%wB)B_OdZDx(FFPai~cP zcA5@?rCMMApMF!Uw}UVnIh24{gCu1jAx-k+uvy ztJu)Hof3!t+r_ClFwm*;m*J0nlVY@TCrgX@IT>N)^#fO%?o_*b`H#|CUa zBYr}UuuFarZ!0_)8zR#LsUpk#s~Jhx<7Y4isr|7ioLyc0dsEIA)+K9wLU|wq-k6Yy zByWMaVCF4_P*J9RGB)}MGQJMJ&1N!?PJl&==4*23d@;)v@N*MJ+GgfLJ3O`NCGlnW zS1RXDB8EH!fI){=tB(C*uojZc_z93Ak#vKF-EZ&IOhIi_MvGF*3y}aPM6L0jIcf z)MJTl@B(w=Q|3d-N5|REGFoAqK%g+p{c7bQjCB{Bn*b_9T~A`)3{?vYJp(Tef8?+$ zh4bladIqBXyf`6GDKO^30dN{#|!JXu+r*Av*N2>-WHX*ms33Laq`F_vO0 z)z>yfUTgia3;oC4oPwO7m7#1pun4ppusWO_vHepuk|fgy#N&NlY4omhb(&T$CDaO` znNwarFhx9ezXLPEhjQVazAz68OoqP}+}@Cb&X8o^%;oT4`(R^v%wF{A+&xK%N)g7v2E z=Dh{!+@697@)u`EnE2X;41vTAkqX!Tr&l#NIgz_#lNyZFL=#o5Ehb3bj4}O;%>uoX zN{kWiuk`D0ROk%GcZp;Ls<;5EJa^wqw@R-m7wb@fs-rFs@7VLMvwKQO@JT^V{Mt7%Xgt}Mxv{m za_i9(QDp|x)KqNStX~=BpK|g7QLFW*j+H2@6Y5Gr(9?$`8od=phK5y4JCY)@gYb6q zg$z8;^}EiFBWWVZA~t>m(jOCxkr`>ed&(Ie#a~Ua`bQ=82YWm?#RvnP^;od``im8k zu_Y)k`_EUbCplJmMLxIo_g69=V=U6GDWx(ukG<-(Kh@>%A_;M3`ZF8_vlvi#1LPxY z$n3?B5>;O3b%2Z{E69i6iIPlem&i=1Fj=uMEWBlN6?9DA@xj-!oEe*mYvhLJ9oTxr(VRDDx?wT;jZ~@hJ}%>C^PBm8-5T{g20fMu z-*Zj9Q;jHUY;UkTU02Q(dBLZ<{Cmg2$SDmwxyPN2jZjU-M!cX1t*@W0?NZ+;-3>MO z37;R{z|)O!R4%uW2>nk@i4Q_6izKQ-0qH7&t80&0M!i$Zj6KieZdlLb7KiCAH^PH4AEl&AN>@ybr`MN-jOpQS_)w7$Uh|*#7%yauuonoUoYz zYHi9TC+Z2zi82JkEXy~-%hvw=x`rZfQuOmh_AixO$|wsX9(UXANw<&|GWa+j;K-(1 zX)DLA|DDD-xJll#Gw(i1E_cUIyRZMbQH?{(@EfdHfiqnUhvlV2q08uT)AYtO;W%>9 ziS~1vT*Z8YpCoOEAELDc)znbl6}U_U+*?gLgPfppM_E_`$pzd1V<0Up4W%5W6Zd?k zZ`B&sRUQiOq*Qnx2fxk7Ui`)UsG*=rsfS_1!jd0Wwg|Q7d26sAZ%q-o08*f^!Ea&T zZ&+lC#rtk`V$K#`AsoG*P=o|4PVJ?!-be~-!wr$-gpjb_$;uf0&!Oqxv0BvDe0oRT zeF9?F`s^vCM0rbizU}4etl3z^hgm_zZA;r|ebp}a%@%@ca>NfV{c^^!vham{qlpig z8}D^2@vSW^ZhvsH#I}XnE!DU;qQb+~Cd~5o_Yy+%)AQS7e2XlqL_owA7T7!;0-mPA zoUB~F-L%OLmzV5(a1vpOrql)Ttik2XZIR*enl(o#asAYzjiy?=H)j;Vi;r!`j^sv} za_Xyo-l@=JWGWMoc66L_q?jQWusp8-mr#p}>H2Lix=+!8LICi(X1gg^U!L*SbY;sT zX&2Dp{@T$C*20ecBo|SI`HFXTdwXS4IRd*12>`)Gi8ERE*`f%8235$$rKWZ?yJEkA zRzy?tUqf{FZUAq|djk7yLKDVL&uRMEu^ZP!hw*OAe%BnFqa-vb7p8d>{Nzgo4YbKe z`_15J3c7alAe$ZwVi~ePdFv%mmzl!UeZCj0d2z}aI;OH&iT?P<@tsP!lJaKhbz5&t zdiuuA+o`Pgl=#V0hfR=YeWZ8<)7Ym}_PfR4Q&XemfG*g0qB@BwEBF~rgoGSXL1jq% z!NUvI^^2>!3z14Jdcx0Sdw6WGq#II~P23kmowgdPWPWMmKDPM-D94CtWce3oxWT;C za@hA0Mz)ri-`ON;zGf^6&A0W&8nY?#P)?k^WU1X86HG&>5{>OWCv4ldX<-xpAniHK z4Q1nFb;iy``{7J6DU$)&?iWu2c}sXDRyC`|eIH;qwWOw|GBWFY>a^mlG84lO)nkjF(o`H<_X*}WcaNF6oDnbGUi1XwM#BfL*mgn(Kz+GoG(;N+N6x++bYLm3? zp(f|-vxK(dLvF(-r=zCgXqt=)x8<=cKYvE#=)O_gz!>HFI+NAMmZ z2z>S<+io^k`^#I27D`2?Lv2s`zw6^37+7=Musuw#r&TO+>@~V#z`jtwfAGHhQJ}hx z&I1@c0C=0@zY>Dy_1{UzcyG=9nN?yuqxIqX~2?{`3>BpO(ySb(ZviTOa!c z(nGr$7rAc>(H+6%R4T~fD@Pq*novZ5$f*Yw3CsvSaOA4p5m{* zS-e+gEwb&hwYL&z`m3PWxh^&f>J*p|se+%keJH#2MxaW*Vz%j^r5IT<4V&GZ!COg! z?d@$a1#+%6l-eGXV2^QVXJPoxe-nXYdH%jY-t%((cBf99w;49Yb>GCyNcu(!ue`~8 z1nD=10H+U3v2C3$*L?#a65oj+Ghm^9Lyc{^u4k!jzV_B8kzAR)EJVOQk zpuy}_t~Vl$q3!G7pl!SnPUo2Zu@km5JysA}EBS-EY0Mj9r77ipEQR(!gsZi_c2`Oc zY~QTLg-GPaE8gRy#mELb5Q0i)=Kq`j6qlfyX6tVZNSe?3$H&J&Ycl!yA(fWcc%;tY zaK|@G>)Nm1v|2S;M;YZlStIqEiBOa2HX<+bO|RY+lLKcfYpv6o3ABKcFo8pPMX^Q7 zrK59hIB>78G$sJ;J31!jXO0oh;R+it`~xJeOi@d6p737S4WvCoA!3#QmV;}ff^1N^~Pdj%m^w$kX+(!X(VJw2Crw65I zIOO~&A(_VCTcl4f*;074)amnMl+2|}SiO~I%pWjK0^m3V6h3Hvr46N&2_d6F`FZpQ z_d{k*E6uTHl-)3TqIRFi7=F6l_5wPbJV4?2KDWC<#;1I+)@yOz`i-463E_HDt`Jf? z-`sLKm&`+Y7;6rP;j1K2OsD<}qG3m|PRS#Kfl!rQCKXE9ilPRBo$x(9)~rWWFnITG z&gagU;uJ;audhu z$9QgD^wJEIu!Kb4$-X53Uxl>mY%(p!Ea5zczWv?Ga6SuEZ}1BoR=$Z$*>C~VE4D2I z`AMxBOt_zcBWYBlMe0P}>vhlY%Pc^?FHXxoA)gBcU8FHqGk;w|z1XP-p z1eH``9=#oaC+=wGu(dZ!BJ60i+^ZWx3y${7y%j(?0)2PM;jz&1=VxHHQe7IWti;tv zyNh6`#V;=cswjMB@0liIb0$=)Z$7VO%m<&AR0B|A71zB(j)xu}s52fB?{*2>=#FO5yqc z_rrmi51@V!G|OZ^M$#bgZjteRI@r(#nHQAoF=e{tm`>8jr`RhCh7gVg*HyW!fyrR{ z0MKW6oMbsiEJGm-p;@mS)w0P-xJTu|(};Ws3bJs*C*_hvvb zq5+#GKrwAK9m`|AviE2^(pw%Bp>Sv|nF^iWfAi*zLTJB%+5K(qNlv z41MqEFkoe~{DFE527IrbK5ud+YW$n4-*%CCtMs$hgywZwVSIW2wLDd9@in$XIP^Em3i7 zOxBDx&Gv#Y8~P1W*%y6 zFiXGgEH$kEtcuLaLYfRJ#(Y+Iy8D_xr$`kQYykxduw-2p!|P-e6d+yAS%J40^(MaS zHG&haUZ+*JI)Oz$a3Ee3s30&M$gcTSSr9p3f~%u80#OOa1GZi&oA&TV(9j%lvN!Hr zxY^sY2`?R|@q1AMsr!oZ! zEmG>5Jb5mykS1kg!wDMu__uGn2Y!%?L+G4Yp|Sn6Q}z)1H8>Y?a@3i2OzV+yWMRL* z&vpIoA+`Ml|Lm=4CiDjmnf>|{O%1Z-%$;q}wW8_N97tLu!`G3``yw3f!cSNTL`mX+ z2~2_kQ(^OxBLnsP`exDNP*XDsY_v8z8vtqQ-5w!t4Bm%@$VD9y>BC zW)PffSIm3H{nAES=1Yq$A7Ld3-&9A_@O16*wPUW7gNMwOE}IW!=WgQ3|MlpmMu z9Ze?O+xd$55X^u*8-sOJhgkzk29k&LEm<8h za({_N@4;cp!}A;>Ucggic(BesQEROwAzK~#OOP=Wiq^Fs1936~A^6ny*^F}Z*E&&0 zuryg1T;i1;$4CIg!l`J9zac{9#Q5H@CF@sT0fuQ!PgFc-B#ebMX7~g>wf-J42Bw3r z{r=O4Xlkizt=jqUg{0~ew3IO{GVWCbBs5GNRcmje_Jv{51RRq@lpW)m7?Vo@M0E6TAs3%!cRMe=Z99kt& zkLK{$SoKUy>7p3;Gc@h(@nMj6pWO@tkddW_F1b00N1NU^9c^xj4hyS^jJ@$ZcverV z^K4tLoI1Jkb`+tf+rc_~olt~tc#`4PGPm1dlJVWy_)1pdx=Hr-MtD-)v_#4kfB4v6 zp*QrU+mkNn zj46tOw~6%0i-K7qMEvVZ|M{@AxHn(o0PM1{f?vXN`P5)rc1R3vr1`F`?q!;Rhr z^Qhca?e=IQX;@=Goz#cDDNWFZOB6#rRZwCkS9>362C;`%p|$uAjtX14VmeM=Mf!E; zJ2vuC1ALKG;x%tFL%CuSi7$d6bnhBzFkw8%%4MGEE0qd-3d9CWDB%O}@8j20Zx8wW zymixGhuIBVB!R{GIu~~#0IZ`K_Q5a7lX4??;dY1*L=)Gcw~7A?2By#oSPI0o@$5sbnDjwI^#Pp$)Ysr_A^w?o~Ne=<%PcA*!OOcRd_EC z-O!hUKDB$0X>ZhVmh)277eog)TEz=*`bMy=kI3NN5JN{2Ud*C3^x4M+- zv8Fq=|#W3o^n%%mE2wbhR%u_7Uk1`?FE5&-!)fD8Y;UBGWj9M}XgwB|@k6 zZi`s2q;78#=WJb=y}({Qw~jF#`zi_Y1)OU+d3g>SH7!F=eGlFc&mUTmYRwK zV8M_#Zzwr9TAsV-&=WI9Jt?8!POFKJ#a8PEw?E=^mM(dt5toP=N)qz0voj8w ze+?Cxas!v-&cs}ne2hM^XcW5}{X}K9lMRBBJ$#4aEOAHwq6~A0(-(AvRiZBmc^4{;Y9h=Ic_h0}V9fU<=P z+ptoz{`mJKyj<(r-4ylmkIr?Qdd{P(^jBKBqAC{=ZnkUz6^~uH!=J2{gfHIhLF0*ejum;PHDv!HHO;Kz(c?rS6Mx&#kMjr2TPch(vY%8K4do4eSH za+?8>rlx#%cNYSHy84Ymd?0vp zD@Q4q(EgXy{lXy#5w`rAENNlzhiEklYAVzO^8a5`g<8O(-y?St zmxdkpi%IB=TY3A2R)?~O2S0S_C04iJ#nlABQ3!+P5Gn%F!Xc9M^NmBqM``<##?(b9`$~WHJ{L<7dw0xb+{dZz6+hB+eYeLiC{iryen68@DP0XpaSOw1ju!GOcd0Wqn~)4 ziKE?uT!>2-X~S%I`eEW)KSfUC$Oa}EAoZ-mH}Cxn1AV4>eObm^FKb(IBV?C`ILW^f zJy*NV5_EkwKf<47Cr!O)d0W#p5Pz^a3m$r`e}pRffwD&tQaKi1G$E$&9pqX;q_VyJ z_6Mrmq$7d5G3!eRprP!LKOi#9i>c6EtE^TyF2 z6$-FR%)03i!%ME#Y55lNZ|qS1JsZ>`Y}ute;h0YOL$~!Nc01(y0LNW8Yt@S59oNT| z0VTLP@@H@TzH4r`FO5F2ZxsOUfJYmK=Lg@W(MfU|0F5z|$9Ks7Kc`xhfS-n3z=@Sz z#4)iNLS6JBBQup)5_}UIR>yuu)=U0^gk=3Yg&-{wZBS)DxEk1 zlLaU)*lYhwMi;X{#lN8gPYobqcVH$!OG}$KwEUs<0t?c4YW}{-bZLR~nTpmOqwI1@ ziQ5XpaNdxdpX?{Vy0K!o%9I7hP@QnfHsmFlW>Uuigr$edUTesv&X}E~*a_1XPnYiH zTup)N@|qAkTXdLvq_A6so>J8`I^IRnIvRX=U~+&%#^m^RxxJ zD#WHEtWeP~Ig%KtXed(E=qy5F6s@ozFp!>@g_A)MaRR42fMozfgc3PEXqaY3u`J!A zc%j6_NfW( zNWZ1=0(i**JCOBVVxl-CpMgN|aTpsGHZ}|@V1op|Ktm&^q@;~X;$KD6_SM#V&M<0? zI!6+~q_FvU>1%$Q>Uxj0c8K?p;5$iNO7kzQ3tmUMI0-*a0>q!+j~~;cHDAZjs(Y5D zc1m-{RKDkI-uE}xT3rtebA10sVW}uIe%lPwkLND*#KrO!pg0(T@og&XVoo2% zuj2%?`#2!X@sh7}ueAd=C-!3dzLNjpebvwX)b@r9kgDEV&T{?+uP8KYt)5mPbEWi< zL0@~v2_L*rFM(P-0Q@pd#=F12Du7gx9G~Z|!*<0;7CeZ+hy*6kJv3;3%iJwSUu3OJ zN7_$0@QDt4DD2_fm~G?0UCv5DoIT8b9z%j~bJ~~)M}-rRgb&P+)BGhC0?Hve0QY=s zZE4Z^+w>p(e%59iZ+R?%ap!Ln*~Z)zLP~}hlJ`4e0oyVA5H_{k9wt+yCNIxuZoUim zFIi|7h#JMnkeX2_IN*dJCMM-L3^g$^G2!Md)gJ_L1Yl`JTU@RPAnq@xHiV#Yu)nR{ z#xTvi2NTP$(J3i`o%0VL`B>d@fhI}(KWl#Tq)`{RF`1G~(}V(g50<1d>rU$$S`eTN81NOgH8FE3xE znxi@6-rJ@vZ^QMwn*t)RaSe}GJOhMI1^@8=F6l;vUckPF3S`bZYp}nzTlvOO&%mV z$q@Ll``X>Z{|b{dE^k~j|0TnFoEsy%7aMes(8pjF^SssyWhpV3ZEeZCMMr}I*p-G6 z@6xldEY7uG^DUM(r(G?KxhFUsaj>t^x}#Yr6WehWLM=oDTssbH{+?c{;&+S@mlWXT zDToPZUf#VjP};zN4Cr3aA5F(=HTD-Cx4Iaha&5uT7M;8Hj)W1mjWFw=4ln?SzB0&4 zfIc|BIVZjSkG% z`5Mjmx*6f~1FMbmkFUs56&bxR<)Wx}-$X{z{U`U$gF65ccT)LYmx(OfDI{xIx7%40 zM&2BYH4n$F5lJm{JP*aBwEHT9?IDcxFD&ZYAA4p3s9rSG&X$Z%FuaJY`X#&_H2{ZW zk2~%>l-5iPvR{k0h%BDfdeUG{vqoC}!&|Ovv3+moCVg(^PuCg{&cK7m z=Pu(v;a_j^wFd~~%U$fBKElp!ZisWqWVsO@VQ*4U`-c*lmbzQt{aFKu+B;e>4mocF>xXzzfA zf~^u27uG&$hEzj%oq9seGr(3z0$I-Vu7A7dx~MslVG4GS?E?sS&l3)4LtnwG(h7j> zX=7P7edhUSP3tkQaGJLV5oJZ|$%oV$b9%K>$DTRa4l^7B*8Qg>3SZLG)N=(sA=_X> znk}i4Sas)ce0!9fIMmN_l^si?taCEo_F+d^T%9Qk)(@KwAb^D=CieC2|03-3-c!L! zD2*nyhDnKh=@?xpW)%yCpE(vJz&CXxc!7u{72pWHl0?IeBV57_~tHcAwaq{u76PfN9+mXry z1ue;kNQM66LK;lzdZU;RkaU;{gWsH-YAlNfxX;J%i#Q%KC7t_j8cft@{`CispV%yB z7z(n*o+qCa1fw%p{KCt*k8b4Jf9>hg?GM1j8(X0knhHYrbJI zvb&6ji3x#&KJo7!d>9LY=y!s{@$$z_x*7#8)K1Lx(eJ!luNL(s=>Ij^{T&YChOrDx z0@}swRxZ^e zE_wlE0F!S=DM!ss1Oo#OEOa1L5gE3eQkW!B zt~Zvo#tR4Y9E1+}=#Nd-Q5>fTWv|yoE^f?RGpx*_qn)qczKiw4s_SBU^CtfdM14tl ztB!Y!v_$*Kj?moq7cLos=k@bJ_X~<9s3stGG26mDYG>yOurx)y6wGF?5`()^TN$YeX=jDWBft}HFjKK07xkI`dpK|L+`Oi|6DHq; z)8K|Ge#9Xm5s2!}UR~jchM`qR7QO6CE#^A*$PfEEo)wmWr`sH{Sy z9gj^L#Qk38ewF3^udge3cimjyQ)a!&yQA6zQTi&4P;IF*mM}C3hdR6D?MNV3pc9bR z1-_VIBM^uOeCl6d^_0Zx#4DgZP8+_Xs~4&XF(z$|RJqlJyY825ElrW3MN@}p7t^~~ zPoFdwCYmuYTxak@>ht>+I={BvCn3{SU<9k1- z;^C>pU`EUCo*%u7!Xg(INyIlX&`UqP$<~V>U}#`sdvGRb*${tfc#uB(<*EB`F8B1= zT`Pb69meb8QXhr9uBuv&2`}{U*rj&dGhlaaUEr`sEIu9dFB~y=cVNnAf@V~PU?p_#v4S&sY2cnn-z@# zcSxx$UaRMv?JVBreusyxHh~>=u6fm5g69P>i|~H?jqCCu0Xu6f$G7TmKi3p1nVLLg zwZb@=o~7{gzn1Ch#`Y_XiAz|ggLh7Fn+;@-dAX-515ZJ zSlLKS+_ozuIx&rv$kW*)0;wy|dT2UJEF7ejeR03<=rb+e3?^5Tk;$D zD~Bv4||hus7@l|AjxS3i)?FQ3Go2A_xc`kf8c85TAhUonFh;2(~HH8mgm+7xRtcSEqFe zj%CVqonE_G)7ROqy?W2ud+!DDpxDXajJ@kP!E=9q?VcHK;kyss=H&e1i@*7EEq+M^ z!#+TVx$gWD9E#j_?}aP+{pG`}G@_o7eV37jC~4-ts+Sfl)(qm&caE50mrd2_Pm9 zpQ}YLl3J?TPmf%@Vs{)OevQT}46XCJZ)0MLn46o|MKHzeN3ac-4omUzhO;+t?XHVU z3tkG@y-p37c`Gt-&qju3JQF$3=6}VvwN?1ltEO`N*9SLu_piO;4YqlVxwXkr{wMvr z_E+4sRGx~rIDt8P4#Aia_T3DhRGB{4$X7_DF7009c=V>juy8W&9*+Ec{D&Yvh&bS!Ri&SZj+Gi@yW>oY+4j4G^pn1 zHp~Ain%U$JZF!?-j%hbsJ=)uJRv_uAD5%8eYiY3;W9YtBLlVjS-0$?p^;a(Rb$h)k z&#rnOV}JWucYeAVY|=;bk${f;1x|99DHwu3PLhU1-aI=yiYO|zJ-jxYccoPSlU6V7 zrx!jyan3Fdm0q4*DQar%8pseLzH)`+Y;X7(xAQuEtSlzE+e#+6{O<#^^GiN z=Th0W`uc!z<0>dD?5UgmZP@OI?rdy#G_uqsSw6<6n#2zL3VOnh&vRPOOL2I0HxoN_ z7~+Jpw}TW-eY!;ns+{`Iso#I`AT9cW!x~YAyQ2CuXrxEdqf|ZH=$nDZ1Q!MvAcXC< z-g5@qnR-j7yO1Ow&fYBf;eJc-B^plKsX+27nSPrzW32n3@cv)zk3yH`md3J=k~3Ve zf`rP=8x|fB3i^I*-^@JgT~@L=u77FQsB>#Lw$Mzg_QCJZDn5+|voSqyUGWqY)X%m$ zl^<|#ky%*0N@PbUDt*Rnd4?IxcbfGq0}ZeiH+gv6m9*T@p&u7>*x@fwWk{IHkX+o@ ziYs8I;{@H?r%#_&_MAaraZk|0CBLqTI9$@dudk1DV}E~tYk%MAHF>}I;}@qS z+q1_+S>wC!tP)chq6i_4jcWB8T3!PdUlz^;@3x_Zy-Hm>o(iHlpZ@*LmyA*!`qpB( zD$wvE{qu^Lx%_x_JmDrf_UJCt_evShfIpN9I*S+L;tXTE78C>b7<=C+(LC!21;~-c zcN+pLZviv=DBIRIcmbt|w=AKf|$phH<${(~KMWrl0Ja73I1O=hKLrB5o_+d8-ZS-W#>RRvL5J(ag{N zPsVMG;c>ed#VDlJL}mJ{fqTerZ`U<6FAW1Xvf2U<*!TH?%qY-^1VX(E8>`$_FPIwq z7siPdQ%p?r3QtH@CLpQd0pR5Dfn2c*Rc^CMM9*^PceW_Lc=l zI4&gxUss3W#NZggZc)+Dw17>pJR`q>HOl@XZ%uATtAlq$7Hgjv+-sH&6v*49+aArJ zM6e+J=o1XQwE4dZ65Jv`eFVr7VRh_MY=`~cuMufDud1e-mnnt&utbnJe!y_2@pw3V^(^NFB2ZfSeRO8hCtG@mL_y&Emx zshMJj<&5U$gvb&4uNCos4t6W6OLQmO_qJu;2+2jy+t70(x0ZAjvqs;Fe;=C%}ADj8Z^xBK1*RTFx4YdB8;A_4;y zm`@NsxKq)2Cyfl^&OqQ*n zyBf9+VXmd8rFEXvbo~5keDcbO7}jV&nygTa^k|;ZhHHQQy4swgOiU{-_O(E+{$TlC z-G@0~sj4wYAbMSnIY>VwZ#=~@yVaJvK7GjBaB=ffR~Jo3#}*?eh6-S2BvR?S3)kyg z_*&a+BzYtxjXvUH>D+Jn5u(ypr4 zyuIhg2qurT_&w)vF`S9ar`7#oC1~H>45UEP1si3D>SfL;3G_?FJf&RxwBXccgO9%J zhxv$X_e@fhqCY8AmUnNbg+a&A!a}oyjwy6z=Ay2?Rd5`?2GbekdL8_wEz;au6j(RL zZ%1@|p?z0O4YZPO_+Ij)9;!%ua7Il|i>LgRb2>fCQ8r|2FKP1>05=Sh6=o=2E;%PK zpdZxumZx{k{ZpCgi?@+>wA$~Orl+SXu6BZq?1*s{0w*MXTC}R_oxxRGwY`)Cna%X!Vx^+3& z)CVCDLeDA>=M^R0-6w+<8*Fg1f1UE(z4H7q&bsvL!iOlSr4Pbn zC%bNI6)!nGfNjUIoCs0IQbcf7RYzn-F}Je%9jT_jHY(9X){vLtk`XcLgU#(t`+Ww% z_?o+!v`FM{7f15%KZyuu_LI?XcEV5lQ>aj5@5f*QN4LvH~}v>y?u>^_naoHh~_6VF{8S=I;@GwR&18!`>>2@6w+h|r`NWqWLWql1*` zGnkkmY1qR6zu1Cq11*@BZp^1ng=JskZd&S(W0yyV{`87@-xZ0cJlGlpx5n z_`;~bq<6;hY5)v9F0~;M`ug!0>D$rJT5N~CG(@>VnfSGvoyrF`c`~lASG|llWmjYt z@LA)9o?y`p|6SU6+qupoKvX%pxC9S%rkUpQCg@q-Rkgji7=9p0$^Miw=}He)__^zy zv+wH}>5F&5G@H+3>}uQLE{y6_OcMJdPvAfA+l%mI;T_FKFgR4ap^=pTcL5zdCHR1k zqp{3SK`KM z>1RGs(Gze`1k|cBEGMO@7^!f;L(BulTHD@U03~h~3VE9<6&oh63JFm399}!$_vOpi z@GQb|XMz~8f60C8c@+^EN!9&EX(as*W}_~4;|!ws!;q8b(V-u}Qpmtrw;cBcH1Qq? zSI545Nu6o*82lczc?GSK?^@^;ZObVW)j!)Ot^Ah-p}d1}d3jmUe_QxyuU%C=-_&kr zb?nVr!`%fvP~;h}7;-8XYhexB-}gt~ETMp1fB=RScF-^gQ8zit+Wz`JbY|@Ux;X!c zL8URbu>J{zF@UL;4j7#XfXSDF!;^yYv5h5tYXnrVlooj}8`a8(sn6zkK*3MuW$=O} zfhU9}cj!c0lE#7GSHGsnG{`1S{Dp8$Cy5a_Vn-?HP?3g??zUO}@UYMC&D$sxs%>X& zYGU5gKP2;VVhM0Wj+N(IRL2Vn3HekJ%biDVI64Ym%1QtQ?c2^1 z_4k!%7#JK95)yVNKRe2nc+R&K?-Cynhljs>X?+iOJUU!dt(COhxLYB?zA_%b=Gpxw zm9DVi=)x;t9{+HF`|fv9Rf{@WbIu}>1%*<7*UxkAT<j)F~)JdtFAr; zs1VnJZeT*31>`!U!xlxPJ;l)IR^TU{U0if+d&>eg^W`H1yM zp*7I|tp2vq>K&_hOnCF=Y5zMNewf-_FT`8IXxJ=RMXQe+C`&lbgy}AMU)bB*EBj~n z*Du0L83$Zsmap>}Vg`JD+`LkW<8KC5c)j(c0gs9b7eqp!JfsySugACUQ-Qx162bfy z(9|UkE_=JCc%?1eo9y>07+g-n3a1&1{ur0zpkueoDlCjhOuQb`E_SDP2iYf$QcHY*YOW4<0~B zYP`bE)>iWFS6wtPz#i=W)G;zLs>B;a_T9F(A3ahHI>faS2)t5KOrYCatfWBYiPUqk zK&z?}*9008Cnqf?K6Cc=Im%|`<+%)6Sz9w$TU&pK5fidpjv8LPQaCd4=jw++GPT6i zK_Ht{%QONSsnX}8-fHjq%lvvD_FA{Y1L*1LaddJjIq=B=ytXIj8*+V*3W@PSXdh;8 z<`HPzyBLJ&aL!~eA_e8oy+}@mDlOwgqJge173_0O?4_q2u9=#K_w`{Di4WZS66zh@ z+`=u+=|Bn>iY#258%ErRGaSkkgrGU|up-Z>EapED6BBCz2)&K7gt$1N@gcdEU-i_` z>mM|HoG^v@W^TnnO}g6s`^s3LEIba)Evm57=J-hI{`dXL`tHg(D-$9!tx}#3dy~#>X>*R3sFd z()m=@)=B_?@;H8;k(Ct*kqbx#%|cxa-~``E-QV|C;nFKC#% z-2%YNjXIoENJxlFrFn@xb%AvQ>9|CWc&;b-Lc$sk5=VSIJc#u4^u4(#30O`Mizxy4 z!id4#^Al`PNdPV>BP8NNKxuk@yxe)T&QAum?UegFH|x3d3mqicA%1oXA)b1&(w$gw zU!Jsi@bCopMiF6AOM;nzdKd+l3A20@yb!CMg5oHeJk#8%`kOazlDNL1?2@i@EE*up z_V)IDc`f=JszDfex5-E_>4Cq7uCpt8@Jt6CxYnNM4X(H^6}aaS2%Q@(wmS~`tk5Z- zTvvw}vZ1wi^T-GrgnkI-?jOV0tOJ>x$~j0B$6|$bw!TVWf1?PtBLJ$GmTX(^IGdVQ zQGo(00_t2eCbNniWA*H^j*L0Exf>uDpk6rA(%ycYL3x`I*q5>-YSQ1or<77O8JDb={=BoA;OwoRR)pd-MO_+z(ZwgyuK&ZL8A}@OMc|U$a2n HCggtrlv4>b diff --git a/_images/kernel-method_39_1.png b/_images/kernel-method_39_1.png index 0341d935c7c5c74f3f91d534a6003f5766bf7d8d..abd7482f2403e2ff2643802567b3ae3940ffb327 100644 GIT binary patch literal 48377 zcmbrmWmwf))b5QEf`D{OcY}0;(kUQP(%s!9-5?9;lm-!yZlpm#y1To(&s_U?uJ^sp z=ksA-isIrQbB=M3-+j*={!vj1^)=yZ7#J8-8EJ797?_vbFfcEEAR>T2aTIz|1;6k) zOK3Q&+L=1L89182C>S`~TiZEXTNskLnm9UH*x7QhaI?H)A~Sb(ws+!ZWwrVLzJbNg z(TtUD2j38U2$H?DrV|VdngR5`7eyk47BDc)rZVDUpWM?AGTgkeuT!3vIjYo}v|NzT z)uI_ZUm00Pq2fo`EM#>3#+vV^ZlG%0U}E`O{e zjYx$~HlaS(%5i>gMC~uC!)P;l{pfiL;k=w>t>Vb?XjO`H)|tjYgnQ{PN)`sYAx%Vv z{@)kqEI}3j^T+5shz6AZ{UMnxdWYnHe=oK`78ETC{cS+K7$On)x8S!9f#}@Ok3mOV zLm;>Q?-S9xP(!4N*hY35V+z7kgVZSpAo%f!WIaNTVZUQh3>PS+N@H7?X+)BhM*%@>HkeiZj1%EuUeorG`A;6PQ?hEDc6C^|U; z^M5Y(|Lqdr&;0NG6aD}9jMDhG6Wk2?Pw7jSWIZ3G4>IhHqtg2A6c2KCuoB_b7B9sn zpwD20)SU2d_UpCb;< zo06n{A8DxwshVQgXg6em9k`Ey3mK!;a_I- zxM(K|;a?uq|8sXiiqJIGZj+a_k02fe(sF>!z6zyy)GmWH}`3?pb32rnR ztS~YBk;;&4H+Iy?MjKDbBzCNqV#t}pf^(anzOxL#^(s;E8vXaF;;d^&4Cp~GgoKEn zA^AG3n)?v}+p4iB-_!ysa`x%E3)v19qrbSi{!#oH-QWJ0Q0``($P~yleo>|8Ot4Ok zj)EZWFYHeyU;q3>lq`IQPHcXBnltdOaWdk%DhtaFdo*G?^7fF2{jI?3N_qVrCa^F% z&&H57{O%c1sJnlqA(#$!JWkrJ=+)*d4>|g5zuGb7KzcrxLqtepMBSHeC)4soh;DnN z^lv!7Uwq?FhWpLg#~w%cqgwR;wFg{WSOUZ_u1D1e%Uk5vlCt2;GlWN87!xd-=C0b6 zW2Fm8MR~#PnjZ|Y3dcSQEK9m_XA?zdhXw`O)=+o|?m#AJc)ui>P$}f@-i!2{=eLof z&*#q(GL^RmseFmDeTSLs2m3Ui7|MVl#kZCk`}UOWs<@aNJKw83==}_eHHsBZVj4dsRCrDPQrgrN@?Lw4ct*FxyVAi9P2Vb8H_G0;;xx zCjYsA_;MacNz$W>n5Kx{QNVm^-`-0BHhpi65i1{&blP_`UAuDeXj`@w?V8k{!Y6E3 z?R6xFA*mR5{QFGAw4H0c*KjYzL=1g5sZVY_sV%b`xJU2m%qK2e;g3CA@D($HL}6Uy z-*{ST9mj(AWq2nP^1HM&>e%Plt5mlo6$y)`!g2Gj?P1|Qzu!$KsYbIqdpxbu*3Tr*|h03t+n{v`=$x>_au{r4s zd+|Ci+x7F7gB2Vc*wc9IOeczzH@3E1z1l>cPGcYT)Z5movL2a~gf6iO2nYnPW{lDW z+{*Sd;9vS@HwFFB$Vp5`ku-|Ej<>Xu)^$LhT7E`o81*n|C^6KnOZ={F*HvMsly!)O zh=BFTVr|=cYszi6G+6F?$w;G^KJ&}RTbLC3(Xm2T_*st!W+^;&ByA6ytTKv zM`n@m;OZzec=MIkB-OE-(R>Qj@8{ZXxxSB$AL6dWf5K@Nh6wwJ+<3RtDv{w^Uo=(3 zd9AK3w)u%DC@3)LwKlt?^cx%Qj^$g=R#K;LA;ATR#ausyHp(X*(RIF0GGR+O6})nf z9cI)k`qS*IQ>Ye9tsqfW*7GnmM?$JchF>afa$;{`K@Y>n$7hqcy|s0AP&K@E>G@lO zsYST8o$POJ%?PH+(xSPOm^-wLml55Uq6j{p31Rx4EV|a&$-J1RCXi`cn;pf0AH+@7 z^@is&laF1-R3KVDo^owuGV-t!+Ji;AIzbr?uHT~U)hD_y!sb>i#ES0^nzgpAT3EHu z-seX}MQy?5u4IaX7$S$JI0SbZL{}pPVuJROJ2c~WtVh<4vV8jn?&VN|kH0>8ziHsH zFW&Bhhx@67JwG`m>~2+7FsrwJ*J`Jindk`KYptUkwC{Nq$$~8M4vx#1)7~5SOh%*$ z9R(tzoWzCW#1su<+==rwogVs4r0p4?n;{{^hyLQd0 z)A9y9>!F-AJwMOK7yF*-cmv@azdjQj4FGp0B^cELF8h$5`%Nfp z+j8viw$*x#1Am4zL|jEhB`b#XCw#;mmfB=jy*Lc?z7~Hg$q$s@f~3TC-~1r3fvYmzGx?0zzhvT@X*EX`0x3{=KG_jUjr}wVMx7CUPR(DM`W8o z8>H~U^NG^U5gI)FKC^=mr(3|QiQntyHv@7$Kh2rYQQqD8F#KIVt?)QEg<)V|Ft@Z^ zYq?&6)xSEJ%_}H4>!XadU+sYBww{6cI%~bvPn)$d-S)&)TwIKejeSzr_85J4=P7*M zFnn3p4}KaO8{O;Zwmagbrla<|K~gr~N>mwC%t6*a_cK`T$E|p!fs`w%WQcfR2U%KL z-he$hXR0}{JS=qm7TmVjIOl{_zz&JugM+iqc8Xc%kJ{SA)Aio-i*Y3m!>+I=ZcQ?D zaiYc;gKL&Sq9xcmWSbd#@9U-5L@uha#7kls3j1?rINMh0u|%MD{CAFo`ocrY%72I9 zUmxXu$6mjApu~?MmEggDKmM-dH6-YIRm%LXf4JRv@9MN`MhYropw-a%8W;M{zvxPy z9oCWYeen67XGN%>1xo0~oMpPwvqaYqphw7L14BXSfcbNEEb`uwU%*;`Y?pAWZrWhs zViZQ3W(V>1fWTVh=1p-hd|vDzh0C5h=F_8I90LP|O{)GkvVt50zSEVQD2c9mx9Cr* zAG8dF;R1Q7!#y==$YkJN;C!SGUu`F&uMBuj)aJVvc^>GGr%g4w3MeX>+gi?(i6`K) zF+si6+KXkEDIuEFU)Xxw1%YeKr!*ySqo! zCh##&l{CtYZ*0`s+uJMp`7^(k`@)M2f2APJ)?lIjG<%m|=KtbIn2h1i%2A_DvKs@sjP0W@PVr`~KyMV?)ueU)}qcA5~R{CaZ37aJFZgZz;#d z-u3nMkufu8L`9)sVy@--n}pVXNuF*QHDLP0*iN>E_awU>>qlYYxGUmnv_6KYd)*CWDzF-0l(;Cf!eSXjiCni3{rKC(YHka(Z1Kos^lk=mN)>xw; zIl2GEg}mv%bcN5KaZf|OXph$vSx7oI#ibIC68r4m(xN*DLDea1h2S&Z#m|DQxesG5 z;D*=_mgOoo+jlMvpL@%VJZ|k^l5yajiRW3L1OHqQ@IK!#&4tCmo?>(;s;Xj9Qy0?F z(-)NNIqo|KwvW)@cAHk6HVg~RGU)SnJ}NDDUyMrHH_iFj?^Q-UZ{^?E5zef+La5@B zlcfy}4bwK)dlblogaS)S7%VMIipt7zT3bo#<`q0{HNk~1HrjZ25SR^T8eHtKqYxz$ zkDu~4{<7TBhC-L<{)^-RuIcmd*pS= z4)i?4`(9;_$2z7VqOqjp>}-H_<^1;R$A|utRm#2rM*YF$xAN*ZBk@#7#c5n-6X}9` z%TF-9xoAdoLc|Osud?^EEpCn)vU;8$vWilsDm0i-NQDDdJIg;wqrp8)OiX-KQ=8-` ze)UnsF(M}?{;hy3Tzr357)CC>kS7YIR7^yJWSgfYp+7+t+uNDx+v^T}GW&5%bWO7W zUvV&rX5(FKpe6*3%op!2UMBO{?$~q4sKxzci9d^AOb{fCl7iP6`suSO+f zUJvlyVdai?eIx%s@XpvgZ4(}T{Udg8Wo1?U7Z$}VmaU6jLt{g3kjMqEL8R0a|s-#<9GS6gS5eOlg#b-kTQ zwYpn4LS3xj`f0!V(5+4Gq#%u4(yAEI5EeR>>8?Cpn91B^>1Bfg;s2|#bmex!Obb5Z z^iQiTyoRhUS_niHE^WU^95Rr^$mh6$4pvzE@pT=GlAIC2)#f+ZL4ti70|{6miA_^2jQINTFlk}I`|KQ9T4^{e^Oa@#sy)?eJ%dr-_Bp%d z1pdDa#?C`m)i2%=Yip{a()x-S{28a~xq0|`RI5Ha08 zOe{3}Ry9$6Qp?ZF!&gw%CjAapw&~X3EOalBe+YTaj`iZeRiJLE5k*a{!FiVg)YS(2 z9|3>=%1um9*CAMcp!>*&jws%08$EBqEh%<-QFJj52=? zP%Q|U^jxgX92N>Ux-L_UEo6MXT3G ziuf|TG`$(s*R$$i*2^*uJ#CyN#FS(^9;59plTvI>JX^qK4x*HLvwj+6$X_}IS0JCl zPqvMBfg0a0F4jK7J)p%vo+Y6Eufb^(9|b`&n(%{|*b7R@sQ1cU&fmzMFcw>0@tuxb zaut|ccAO^AvX}cIW5c(2SW3M{K-!A!zCA!L^0I@8)l#$#h+NN_Ln^7A=t=A0d!&LuvprhohXeQ+?P zDuvw$S4}NR`==N!HFX^Z7p>x3N)C?5>go$bEk^Vp($(Jt8(o2rSP2Bjg`YovLIq7k zj{W(NoOY64>lYbG$*pW;M3SiK<^l`%mdvSa!@Buyr{PB=o$3C*KK;E3f{l%htDp76 zQR^hkU7a(?u>iwmS5`t=yxdfEeQ^;dQ&I%neD^yK_qL(~ZX^>oxl>ep+ph5OFt4$;!S~E&N9&(k9xqhG<9#T{x{^ex5rK?m5(sd+?oT_HMpjh|Pq|UA8`o zlcDPmXJ)(=_AYX{qi1E!DpoC&5=PZP$DyJvtgxOvbQdIvArTrJ%?&O7`Ez|eR>b&t zX>q}G{~ftEJbUDSJ(1nFGNFsrmt=FS`=gVjOn^T6JX&kyz18xc$056Gt3i1$(00$k zU_LT30wXHct^w_{Dk^7R=g7lQOFuJKnGPBJ{cZu)&-czyw3Ty@d2B>%L_^g7>XZIV zO?=+{QP37Hl8VzY70gRt>*v#BX7mYTXZb+p!4c7D`k7atcVW3c)?d7qyJKRs+^RZLM3E&-LdQStBEEvVD{ zHUY(Qm^A`u+0p$CwmQ7ME#S!y4l;`UNn%xpq^DE7u5$TWztuDxjEvKKyR{F4A1z6v z$YlKYd$COcXMPDosox_=y_W7z6Q`^WVGmL()AwQhTTy|x+q zEqQwFTJNa&LrF;9R5GDIS$bckysoZrLxacnq%4!=)|OA7b=PiAjnZeT(xkHPnEMr? zr#)Dxxx(I1`CcB6gv63n*ee?gi{i7t=pSVVn+_( z7_64lJhGTE6g!8J3zG26*V_C574s|5r?{-T9iRhKTBnd@#!-bU=k~BUZkV&^H1@Rz z-aE8hz576v@hhk2RdV^#s}YlwpywwgLc=dJ8kx70SAKUieXk*e)=g(6H~i~I#8l<= z!FOofKTJ>w^cmrq|7*?PRyOE$Jgvw$ad6VPDXq7e83j6}NNu|IFUbbpsTRl^fohG9 zvS!7Ek546IxHDpaLd=hHU)L5s#$@^Oj}tdhr&k zk*B$+RKE8_KSauKxTb*`J=>JU^u04mecI=N)z8Ql5=V9M&kltv9H!#+rSMc&)8axM zHX}iu_drFU)GZIKu690Z+$Y)km%%C?O=hUUqG$Wq0_ZFKz*`wuy^Zui7L4hl^}ED6yX7n#o8D=Y{v zD+lL-;B<-EG4-ORR3WVDSH9a@gz5qQQa8WBK!>SOA2tWu%kFcsl#uxP7T(9U7?i!9 zo@mmQOHXC&V4zSWs5QhURv#a*G;}>%hu$G21Mz`}QaNC3nAIQTIq(ZVs;3WsR_a1r z>i9|(JHP|ppjL832g*jQHO_pA#j#^izvUwoRKE*LmA?i7*W zh%wRyai(MaA|CZxgINY_3asS+p!&nW*Rgay4lmp3EKN*w0p`#@Op1r4vpKmS7{J#+ zXC~W}zy?FEysrHlQ%Fu8PwF*04mG;?3*oHT>m}{sqeX#Hmkc2I9Je#9f{HN2xiWj( zq&xL=8(Hp^h}bcqKkm$LI4;?_d%oUf|FiIuJ7qc80!fDC*&2`&?^8x0Os>Z6fP3xb zU9(QO401s*s9@V~^pXF|6bfwD*I(_Bh$0nXAEQBnTkPpCuefuUa5scl%PO_iWni_tOy%zN}&m%jZy&+!(@WZcENq?WA?R zT8dBMynn+&t#mIU_Tb2^=P=RmyqPElzsOf!^^`2|MqKpq_WVZ%2 z(JkWP0$$L9b}n%I<%7d1{TotYQP3`=(NC zpUAFRR!2t%&#Q+fWU)!Q(T&SuoEGA}{aWSo!uz>AZ)=e|VNNcIx#nbXV+mBpHF7Os zTwbRF=3U%Mo(x!(K-@Gkwn_hQ6 zP!%m=yqVmod~dHpj%qc1-4Jdr_~l%vKLV2kOnjt8<>k4RXR@#@>_(2s+%}T(-{bHQ zbApv~C7qUi(7t5|y;W1oZTzOE6lZB^FL%*g|`9Uk`-n$i1YtoI0^#Pzc#d$92)QHXQ zHVQr>gptY_DX0*R0t+~YOL}J2UZ0IFj$4K-%)?mIR+aEaK|$(vmR}-}zZgG9vA5i& z{HHFfzipfwEL3{HFh!7xH`W1vOpD*?c&P>J>%+rK(BLpzsMlVRrxvU_b7xzKePO}k z;)=fU_6=x>gIpXWBr~zm^pN{<|g7! zBhDSg-;E`_#>UC`vwi;CW*(P;;U9DbG2zPP4eep57*Q@}BquIVuvF8AHI<2uNO39{ z&DRbAwT1oFV%(I??4KZp5|-G@7b09-T%Xj{RaI3bTwJ(nYPjG6#f&vOEV))sZ$_(6 z+77jurau3`x+AztN=~NhQc6zdu_F%;f8%;^6U1RATU=7ImZ)uO0-9wU_pkXPO39pb z77L!%Ev;(&yDy_((YXVPq)JLU9@?9vFE7mr2yT*oiMmlq%$0tAL$WaZ+eivDdU#}9 zWer}wF&b2c1zYv1uf+w8jS)cb?CtN*XXLQqN6lD&#>B#^nB}CB>CtD)rb7TqNHX_@ zgfjTMA(8S@4*d6i1C;^8+ufU%ImP`Fs;Wlk#|m&SUo`8Yf$qAuSMtWDR)Y!9>9`D` z^n-&{u#tYy8O~KU0RnHZiXDPN@HdpSRmsOk$gcI4A1Y1nE>hS}RiG0hlsGsOWqd0_ z8r0)ulkA3$hB-+EGzZTQXd1d67@u&ksV~M2+s}8_>s!xZ!vc7gJ39KmCnd3aoPAQJ zt|0|=zDJT)O-=2SdT2A-aeVl;hvveu}R2y4E11K6!LO4V8bWiccugF9N>OlU`+K@BKjXhL`BI@ zl{RGk(&lm4`-IWtc1#8M7N|#(bJZ-TtW6pEy25``#@@7WW3D{))V;qJ7OTT>u}0ui z)?WUzPJa6j2mcMR_*mKV*gho4@Ai;4>q$<$^}_!vY3`_VH;K;isJ7umjMw)c7KC7O zrDqYA(3~Y`KKx{yKot%!EtsEVl!ncpQkD!bx};-#B5y3LomDhF!XqNS)t|c0MQ{Ll zUSTi`Ae9230^r+?I*>;R9)*r*l`>ZjW>sukTs#KD-rqj(L8eOI^QpduOr(RBS{UG(<+L#p=Fa{)9ZQir(@lr z%63r;OmWG4POjxK7{As@PLfC8_IW0 z6mvbg(=K~^mc>Q9N)p{3EMJQ1SrTRqf7eDp*9{ddZEyMrL6}3^9sGxJPQda_s~YtF z;c$Op`45W^KZmNg;zrRt$R)0M95@7wn}uv*kGc+BgY*Qy7-Cwj_$GXLNuFZXSMO89 zLQUAlQuK88_`A!DVb$x`3Z3;nM6#nYY=lUI8L?VyxL{6fbg=>x7(j*&pzK{T5K%Jp z3UvTpp#0^FIOtY{gk=+lfVTnDG7fOA&r{!odvnC^XRJ~sU0iVRSU!DJR&MW(!~up7 z_xy}CHx$NLPMG&Z^+$)_r2D^h)0qZr*N8>0%y{#!0D=#4ym{MJ(+8!X=&;`y;>1Az zeUHQgrvKQ)$Ikl1n>029;1OIMKXb@>5HwQxmr=f`aoRea8k;ZTAOwC=sg{e`V1BYB z5sNzDp554ZSvmj9J^PZ`jrxXJ^>0q%*iTp9;8ilkr=&=jn&PS!DoUxT0Rd9y>CC{$ zy6V`#>rxU1xQ?{6w0=iWIM6WkWen$6@JR#E1-D?!vp?0+{x`ub;x~afVk}q&gbB?m zTJQH3b{Cgg_q@518%1zN3AU1+L)HhBa`d>CQAg-xnyssp&1&`CACOBQ7O<$Osju$@ zM|qE6gNL`*2UEtO7n-x?ZFL1<8UVNk0!npH6v24zZhj{Ez7Z)3LUCzx*X{W>9Rt7r z08V38f92rLD4%@lr#`Tvm3h>-M%I@`J`RJIWnpPa#Xj0j?6we28Bt093Zl`rB_=Q7 z5`oTb6aE)@X`S5Xz?`bQaD2#Flt?&W?y#RV%G9>zma~z0ftuPV`hPN=; z1-&Q2t!cgBf*#lI=rTI<+0Ikntttb7!qa%>kr-GfL$!ZIVYqxc zZ#byzD18%pocc9dnl*bY&@J2*78l1YH8KpnG_8s7_@YHGxbY@CBi%aOhFSz>E5s$Q zW7-OLq@deh9LaiL9p*ppaV4l@Vpi<%UpFpll+P-TeVTZ9sK^wU0zGTIFmkrV%gn08 z)i5UzXzOoTdTd34aH9cKGEw;K5DZGmHD`W4-v>It!wQRw<8+!_E8LE4LDi*WN`G%^ z`Z;gt&~4DviAZ^T{+to*bi2iln!C!6O}?|+X@1q-#NC{)rle+1{hQ7fp=!onTxhAGGwm# zfnQKw@XN_+HrS*t`%`N!Tyc-9uLSGYu}Ui)H+v`s$oe@SZwlQ-uEn#4@dnn9ocU*e z8xiH_7rp>ysC>FcU$q5Cg;se+eWb9V$H9Fdn8{~beYC9_>lZWoawH;w^X#lKjAgT4 zWnQN zHXY@YrDt@7=f^f;TP*Nq^oq;NjSlCgPu&-cjg1}e58d=x>3i;yM1G{BDDc7KE_~fq z&5{^?t;F=6DF*n#8!PRPZ+R+T~kvD zU*PlDzC7P%MbR$LH~+7vHo9Q-#t=&=V;|M8vjBBTh@p+*T|bLD<_`D6U4F1}ZX%#|8$dI78)rk5&wfjJLZ=ei76An_kQJx=HuTuJbm~{EEw4uix+OM*|G2cGn4E$tWy<2Sy=JKK=QN~WWxIp<__9eR8P>eZUeth_uam-W# z)x^YXrq+g0(Tt9bSHO!G8IOg6i;KA<5vjwUN@imdhYk27fP3_>c82nLobhh|OK@0^ z<^k?WvUJ)EE3gkxd6;?*U7Y|VJZ`yu0|*ix#t&PMqhX!paTnswT}+fFSIl$)JD6XQ z%y&97%{Ob2z&G^(jCLDxUD<1l)&{_ilu_l4HC z2VWGaSac2hP8bcGG$@1iyd;d04BUBiMpZ0~x0&Zw{p^a1$fcJq;z!=la7*DL@P?f* zdN9im)~IKr(qdc^j0zsx8Fd5#u5Zt`m(h~|p@V2t8q?b~pK6JhTXcpSEjAXy0@#3L zFpl(?8Q5SlfV(x6HqBrOlgO$UQ(yrY0_~&EU48y|MDz4myiK{pIGfD_OfMxGTxpR6k2A~h3JK!^cN_=X-d zo1mg_r;s4Kbs%Ukkf^<2`$F&;DP0MSXT~4@Z*?;YD+XziVM0y z?kJi&A7@!PIn63lg*1~lp@G0~mz8UJf;3-FX@h?~01z~Q>HR!yw+cNmhuUA0+R^X1 zxF$N@=hXpwcnf)`)(!j4P0%pxWk0xU_sN2f+BZr-hS7c z!oCpy-tF_#e*$*O>gofPCXB$6U0FQHi1x};R!blj5MCYm5eNe~=yz&4TXJe@uF8<$ zaC4G-^A3HsD)Ui_v-9)Yn{_m(OYnHT{3BbR2`sKXhiv!iST7Yw?$9zS>ZOmR^So+6 zq-|G)pIzP2?p*-9kY|j<{Y+?@FCH}Q724^rcm^!~srS0XpeXQwif9~yO4QTfw0-k< z>^J-YO{i-qFl5YZ){2HYSq%hl-hrNz}b#7XMgg~5fZivK%XT9wLrTm8v zuuxu^#G(TxUv{w0aaq2E<$z(I`9OSrMv9T1-eY4s))4IJgTgV4V$=U zXN|3OU*xJ|n*jfrtBC{@->H|_?P8DPDx%z%;Avk379pL=!TgnceZhL}WB+4$`nM#aKcYAu+|b~BaXT>|Q^mH}^e zW;-o-odplnzTO9llKl}lZtey$7UcJ!_+xiBZkJ$uv|b7V2Kn2aT(ncq79czlnKTJq zf(JUpIAeTD?RUqhg`aLd0Jr&t=SE9-zQb~(3r8p#X@@yyrRk7QUOuY)x8_^7XSt3x zZ)D;!tDc{XuRU`Dd!o}uJ#Si~@_!#AhISGPX)1$t+|$#upUA_>`R)5eRaq-QkAunV zfj|{r_7`X|H}a36B_++zPXfTJ=mb}0J<9-zSEcl2{vvP`_gl>5`Y7YA zU_I&A!9k`(7M+mJ)v$V-M;Xp2pVGL@%zhoW#oksQFQ{<`hS9vz(sYSP-1zwT`Cmp| z9reSRLRlpxmH@DvU(MS&TrXa~k&Z4{S=XaV-ud&CdrYaOBbj6};zFfE%VtIr-S)sW z7d8s2O`Q}|ln?KYn*sPFCmkjQpnw1a*x2Y=o?j8oq2;%4Jz;>V4qZ=@{G69UC37*(D{KM+1cJ3_C-v>w%99 z6CA7xpp4iTMIodPDEa-D?h!?j(OIBCRQ&7LD%h3=dlS2ZDIBaUcLDSf9b@?e?vI!1 z_WVRQC!N;~k5>X^&(^xEiPL)RXCQx4c|;s0L{7B(MU*00AMqA@~8TBXfb=F z7B7MN>P7{LYMs`+OK5GAP4a8^OWFvET)NkFi?!(not2a}il6=m>=T`M3IQk$VA*@y zBbaV1M8nL|QYOGQVgdYcI9c%pb4N7lJkl^OfWI(hwkI~!(#?qwQI0)_U>nQOB{^*?yhF9Nlvv~Xii>6;S zdoz~Q+Er^a?|xV_eRDhP_YW3LaAfP(ZJZQ|0Z7sQ@@sp%n)hBOTGn4|bU9dPh*#J3 z2v+jhQw3p@+*skcWm7ayF!{Ug+k8kedC9ZD3xj)^`H?j_f5By1DC#XA!`PPiTZQqN z8mm|P)8(D}m*3*z+J&wcfajCl3+(Z&A?-iRbqf*g`T&S=2X*wBKFa!daa%yV>_AV%Gu?1Rz4GWGE;pIe@}=oAfgrP2?fF z#$mH7Ja{mxjg6tn9@#JyIGG@>)qK6=3BpSrVAW~VT1#}zVFksfr+)#V)zC>xn@7Qr zmL~SYh0$GKNSTq(9a??c6I#yMJq%^4{u@XBeR4zJOKQwE?7yZ>wW9@K^7{~?^1LLK z!95#=4GIxZ6}6D0q+#&ja9!XxDMp*}0X@9jpI&us0vdry*P8>R?qD5{%qd9jw!|5u zqobkMQ}XjC2>5IcsJ}Dpk|t~IS$rBQ2S+CO^7OYI!WyYYF9!71eQr2ljWzFqCx4x% z{^>x<1L+QRS?GG*`^jX&0c(zF8V7!v*iHF*saKgES|6&6q>4&hJUvY(!c(O`Dm!HI zEPE4!tQN?vT`xF2XJc~(JW+#34a#sDAlY@M6rVrqMpSDWfUup4iZ4PVIu{JxYsZ0$ z1pPngPiA6;H+BuE&k$|)x58nLja1k_M7&r$O`R3@gDSn3q{ca4zwUYGvR5sghV1|p zNR`9-D?kaLdgE-9v2*ITCRsf$5E#GeShicPr<{(y@PSolbh+2m|2N{Fm!#5(`vOpE z$SYUhEI1)JI~1g!#zzjX{Mi*pB2H!y8zmu#iYXyria0HArnHn$0E##eZK-?RAwDy+ zJx78E)zfb1bY1FpCD08C#7YU`JO3v93@*aB5I_j@pSRWi2dv!FTkqz_t27Y9lA0?O zHmack0SD2I_+L@sD$No*?qA+>^QrUY%BC&-EpZm`M0U7+(s6VXT#J~U8OG`4- z=En+xA5mrd^2uy*+IBiD0YUJvA*1Gow`U0;t+DRfq*-Tc)6}hH6n%S+M-iLVcbjJ% z<8lVcW_S3d4=hZ(}mmYGQcayq)PS)A>;vox)-E z+k8~PL77(pU0Z_*_j6fuAlOLhinPFWBP3C>uB!%sYcQD$Z&}A`#;|JDqA)qXjIJnG za{OkwE&6NlONTw!D@RQat&_ipJnDEv9Kwf;XoQ~}pl zOVWN@k(SnLsmI@gsJ?tx>ySc(sQO06?v@yGy^l)Q}K_CMVUbXHH1! z797*)T3-QzlBYHSTD4qQs%}mRgKZsA-F)!CX2+&w$EIV=Q;T7D$&{`Z9;>do4c@vv zue5Xp(y_)X0NWj}7v0W*Z>0*h0xHqc`jmE3ueDy~YNyntUa|#0uZn2+53&c=+ zK1>EYYaqgKS&||_o&OC!6)bG!7*dhHQ@_$+fC+>E9$|PMpK|2zc5dsEgwLZ1i*9Mb zkM{8SL&K*BBCVEJV5NvFkM_Tb1sGB5eklWho%P<>nlcXjC@LBnfM2Lg2a_k~aI~f` z#aKPTT-FhR!>CzzqyRiqXuoW@-O6VdV1YK4c#?H@;QojWuAaKPZ)doGc?Kkr!OEF} zUX@~|V0$7nxT<$13?PLbIr~b&4OYV!6F zrU5FdnTlEK8SAU9tRKteib)_&M-JvOFya&xNCFGU#ieFqa`Gjc*VV$5O`Yu`XxfDi zybx(wSwr9e0?3QjcySLfG?R`e(Q(@|OQ9l;!MhaAdV6Jg-757+LY?VRPG(b~kEbBE z8jwtZj(7qBFskb6p9naCsNhy*j_MH z$gg!Hixycqd3wICwC*sJ`C}^gN5B4zEfuizy6#ml$0Wa_{sgC@rUph|aERf*;9nWH zPT7Znh5AKX5Z90fkwoEJW5!&mSc8L^Q$ULxM;?}=fhHLO-bhb05iekDxREIUD!H~8 zeIEnpwAMx&9D6Zs4vJ5w z6>o;(-+^Jrqx7zNhjke_tl5uoAf75V2#wqQujxKpIWME25M3>UkqbypEI4AOGfg1k zOTn{H;r>wwyS$*bHUx?q0S0Ar&+qbax!nA05D$U8mz9;xlZSiHrNe}a42)e-x<5@I ztSlixD18rtav%yS zWnqCN;C8ffHGhwOzI|=vyUi>QeCrKsacF$p2Mse>fD~cZt+^1o>j-*cv!sDn0DV{g znRv8@?k&39*6wI(YW@BFn>|FY%=QtphI{Xi+de>tUK2nn0S(DaPZtE99HqI=H1N;> z?fW@mu?kcR)XjdpzlKH$fX^uT<@+V=c)?Kik01W=w6Rqt12ji1*Z#>-svy!vV)ie+ zp!tERrlzLF^Yk5Pa_g)29~oGGFusPARTrpZNAly8M_EBfj}Kr#sV zRXFdygTk-5?_odo`APjA$fKhbArJ^S4%VNI$yHKP`(*nr<>cN6T$-XHiQ9q$9+2&1 zAmS70sXR{L+LRGTDV4j=51y~bZvHl)YS%z2gA<^S0B#PZ)xrGa@(0HQKo$VsBHmL% zMaA)F=t*B(pwN;YJu~_4Kb*cvH5lok>Bfl#i3R%|vVN=20rSKpf$R97&nOS)%i$3i zyHE*i?CsX)%O#W4OHk=-5Oj0DU~lN%b)g&nw;F&!QBqI5;e>$@p1 zGB@4Bae|qj#hjSI!%G(o-<(Xkvo>o6XEe!5=z$jxto^^QNSh-Ix=p(W?HzWt9S}R-}Y-=>>!Z^JcQb^fx*EDi(`2+;FSLMzLh;{*!BhK1gMqS6H;$; zqy^qD5ba0^u-5and^CEdKz2w#Zz4T|Pi+3i@zxkvm{}%f{hVQInHjo$#JXwGsYU!Q1XTW9y zJNFxSWneQkoc5%x8~)Ab0Q!!{Z%YzH9D1TsK$3-#CQ!DsyN13CK!Me+a3c_pGn}o& zaflO3NKO3?u>QI$m%&{=4I5kmQ|gz~?~$k(x^v2L5gP*2?m~ zkLPEj5J=;KqB{0VCxl};T{n=tMt1>4PWYB;V$cC(;R0zA^Mrr{st?9z7^W}vbY;kX zyNw~;XK(50IU3eu+O|W8GPjWRZeFbS2z~9ZW*OU(AlB5>1Yu)RkgWje;8MM|7?AFy zkfElcW~SwG!F9c_tC($-QW*=(%LkCsgL}->Eqv5`BZLU|#Shy{aHIvJw#W_OvA=Sx zLc?*Cp^Zy3);;$ry(3NN$B>e>+XuW3V}l2fbt5YQ?+L7=wd;Ej*{1_UF&32F&UJ_L z)zD+Gw*gl$TBt{g<1W?%-v}<^q@NbesLqc-g1+4{n8@zJfIG0=J}fU!$)M(mVyr-t zm^&>4Xt&7UM!mTfg!6UfM#Gu;(kjv@a*!CR;Fl^U4XIsS<@z;GN>mC*xFB^3x(gnd z<|<88pdDfp-6a8igGlV5ew21EA-n@lZS}t=ug)jUDCzOt9;NjS%^fDy?P&RdGt96p*eHl zF~wH%3DJnOeFcIRBqG3qJ#_S1j1zyJ>MP%`GbbbsZDk~(OF_}Ho^ex9zc$$XpRg{4M~l9 zoYRj=_7O^_mN5{S@I@JoV8J%z=SoRWHydn5`sZ{?(1fTBQQ^L@Y0vflt zzp?=Xb;f9}Q-#*AIPRbGeU*b3yHz)UEkd6u7A>wT0b@~N!Ro{Lc^|k0&u5(tN!q<{ zKW^;wf-`sU$p(x_p|w|x4ZmyC(sJkke=rBy&##V9;T2f4s(Ft*4U0?uZVi#De!?y} zk4v#wZM|2FPo49~ppbcO_^t)k9MSCj5o*}0#i8;7b z5EO}sP*ee@qJXAv*e#$2YfEZl8?VA{nI!!m0#K@RhcsDpCm2wpL_`~}EvzY!jDZ(8 zWUOru6rk5o+Q^DG@E7PqH4(7@%NR{CbOD3ZZw_Cy7p~P5)1JyiHJOaqpXoM)9wr+J z1*6=qc{^>7YaQf-gz2R{Bgzl5i6*$rS}3B*qez5AM3hz^(Lm_{dmI`Ti%X8eiI4!X zM)9|Ra{{0Rs+wP?o` z%)XF&CdAJzvYaQebZt^}t&J#=ZN5yzDd(yFGL2efc>tG#M)2-CsQhVOW-e{1cGXZN z->%=aYrO)nWgNHJNAUkHAX@_{6t;Z&0|=!9honu*tQiCG22^D{7!I?45%a1yD4Q%ApwBx=03DPLMA0 z{O8(T7tW zQok?K4ySEcR=TXYqtd>85=1l+wWhq@ac}^=oeNYo z1fmLzNT^&B2WdyZg}MxXvl;cQ*zU|NBgRIPQB;4z_uct1jIu{h_ccR6L~Pmx=oyfs z(#RV^LI#K4K-XBm^aRJK438FW7#{(4XdWRny0f~728iq3!)|i-> zptntPG2sLy%`|twvky&bqPjK-1tf}RMns&016mS^Cg40Jo`q9KPnpg=H|>mY6i#M)=T9e=08h-w!0A>jrOQyeej& zkR%8ey74Ld{bBE+;}#K*@7MXmh-$vY9!mxNi6VBGbU}hNE}M-#%YSVbFGE0At64^U@?;RpLBV@0Rl|3^ehT?%rW%1lhRUMWs;lbMa$!g3!am;g6Li#!A2%r(E#>$V$PTAm zRaZ%)fqRvRxP_cP9E(FbCluO8QLP5Qp-W71r>lRo`~7VO=)$-+(fs_`FFl=VOP`n+ zQ*mx44<{`?!l%P7ia)a$uT4$)1A~KkaZN0=?BgCtfdj5B!p0IsEp(l8y)qLG{w8c> z|ZH*0S{xW2bUN#A0$r zOU9bTEt0XD?dBK17Wf=EY@CWiX%2z@OH?uxXBY&nq8j`15WU{;eUfO8H2UL5i}WE4LFJLFwM=) z-&Z|JGn%Z$+9>1*cy>mhhw^mHJvMOd;0A@~Xdc)Bke*hY$H#lbr4KpHGta6qOOLck)>2QPYwDohp1Yf%ilydFq3pGF zhmm~UFA(#Z#AML5uZ?)^>ADZ@E4}YNbVcv;@w`VZ;pw=LA} zDS`mZ#l-~Km+c!jskz?|)fFM*j?kr-;UIbELu>_h$g(U|)IdzK*86q` zjtZS=jy2~7-T3&_u!0xgHH7(wL`ZM^I&F;>j~z_mFvlUErjqwoQ5iJ7yTDcpP@kqX z)j_AAvW*+T3?XG#`(kKxx(s@Zy3elzMkr$CYqN>;CMrV0CqVy&91HOTU?D?Mh_g@;pDY>;3k8)3?8VN^igT zPlxhL#FkxN^1IV|SS#y&sV{L_9~1|X=Uad5_vrucb`Na*wmy`DdQ!@?i0c-EDTiE| z6f_)Dw(`jFykc^ZO}uR4EwR5_cUrRMmS3pio9$2A&SY8q@GtJ!dg;O%raI168dG?v0aK$Kv;D)Am|#gwekQeu9opV*f*8aP3s!Sugw`|7b4IA#T?Zc$KB3yBuaihiM3Gef;^2W=XV49Czw5G$3?@b%{V&^L~yxKw9W;}x1i=3c$VYbBfumwPX ziekvs)8Yd3!WIiJ?_mzpP|spJ7D~z_q4PcV-^ZfLEJr7-apFOJus@`NUabVl zZNjrHp3u;|%_Q4l;)$$ZkzVGD=+vG2TNtERY*^kXt~xA|i%|Tw=uRlbV(aGBaz%Fi zt;f@|xlR`m#zCDDT4#^#`5dFi#Y`*~H#Roz=H}(arFt`v^;8CBa|k}4FqKC{w_C;x znOoy;x43h;ZcgchR)%h)Egf>E^g+pUUHSDB_n)|U7!s5JuCsAhp3RuyZ#s= z0&y(JYe0A(!*~B-eqntC*mPPAOaSNv+tk1@w2N$J+EVPAeRVsuWH&Eo^0HIux%T$S z@y@gpU$gp2P0ZY(*>b3^l!>ic)#3?Pi9a-IAkit&@E;^eDxpmFt9egBthknejbXce zc;XdI5VCwNHdZuns19BBFTJcUUa%y2Bv!+hVJZoP*pgpKdQ=!`$!JCBcKl9M5~m>% z*sYo1uVKV@u+ROw4&znnM4^^F*c<&8?^W?#`xqDqvz+UkX7aaWWq-grre(f29zj7$ zJE9B#3DB{E@;uHZ(p_ULW==GU@$J;P;Ex~thJ06~Xs_9KYHATVT0F78+ZK;`woFYn zJRk4gj*Q${+Mko8lr`SC%&p_j}EiqshW~#dRg(8 zF3yuSRydbYOwkHGFJJ2F+Q^$3kdY~xbw<2qypL;0tcY58<_COl%_R&X*jru9DYi>} zoPI@w5kb2yFPZWyDVbtu8SjuJ902Hi5m{P=vbDuLR1)g<39(6Bb9@!vE9cpzegDp3 z$oWTNVyjq9B5h}4N)SIVizLUv>A5x1%WXS4I}-cMsDux`>|6ix^n_q*~0He zCszDM(SpxMV)xE8f`%#x*=SOrJ=-|Ht>GBO=-NOH1RI0}OirYysl?;yf)qFaCpWme zgk0x4b3viAoMp2&?zG%1Gj}k-i=dOviTU_Qqtbpc+iKVkivt`EdEBD|%t8%Ko^0jM z)tvrJf~tG#%SZc$tFI$i$1YwnXg6OW?RL)+N7CB7b+eGr11bru<}j!&{boKpZC1dl zVNmIV6|ziUuXZQzz9wtw@LWJ(8XO>T2`}q-i^hJo6Zi#>741l?fHs|6mQl9N65mwv zWMC^Lt{kb~$e_p6J8#{K@8^0+Bd z^!I{%K2HaJwt)wHndUtOMt#&qT5b8|!VZ`1LU1n9{O%`r8V|gIoamf4?_F;Uy^uTo z0%DvprbS5`b~gh~ovTc~PxBp%$9RP64mf$rr3f^|HGSC^^>=hNN{MN+EDB3LDy+}? z_O9~pp3qq8+VY7h$c#GIltzu63e9ep4(kQ>&u1b-oz>qx2?`jfrP8f6SJA%`^}SNCS+a4S3mZ5xAc)E{-~k6vueo<%NwU@TZb$VL z>*D66{o+kCAuQ79wS6AG%b5Cl>d^_ij+N6|-#fhEMz8QXQtVIN$f&^&IFyx_#~^HD zj=+vqhzG=C?C!oFI4Z>$_<5_@j|S4BlM|y?I@Tm-3MT6MdGR+bWx>i<-Ed0+BTo<- zy1ypN8FcED#r5=jzyEp9r)8_Tch4I7;4phoRwoVbm^RauX!E14U zE~N^(!E6(8kAB8hm33ln;e$II2EJA{Ez?sdM++MDjrd!7OMS)+vP7_ln3&>QESJaR zO82f-&;5N-<);IeuV;d7qUtu>bNI7)l-B&a_TBlT3yJZfY#N^J_-^i8!wNT zPnWqO|E<>tl-yr*ZkA!R?PJ%-zx>cQ?qYRQ{J3tZ{BCN8&KV$6ve9N*dTf4@( zcp&QiF*35-aY9|sg*u=$G~ZH*(!n(ff&aP0mK)V|NxmrD|Fq{Rrl33b>ZObI{pagq zT0c+kGh!QZe}LKbHKT_QQ{NZlV>9rM8hh-WxJoHRN99;_C$hUV8H&M-TB|4d%^O_9 z5$J0<@RP3WpP&x?u+l+4MXws+M)3Wq!EM{41!8R0jaEIJI-Q04Tzj-avl0`nTbF|M zzMoa=rp}4xWS0{dcRhEqh1hO+hLz+kJ6@0^BF`SY;EK)7Dtxl;X;KG6?@FbD!B1U?Ji0j{&Ggq#9?pi~pgl9lfs#>bD2*AoROKXsAw zi6l#O`m(%N2iAi7%y9*vO0QxKXx$^nyI=3~Wph()-E(I;%DqYHo~)>K4K3kMK1<4p zLz~3y>vC#RvBBjc(Ua94$=Cq%gmr$^9#((2^vI1 zw+T?@!`sp~H8eDIyWG~2cd3f*RLM(r$X%L z@}P*bASR?EPxYTT)7<~}T0mHchBYCvTr=Hr+Zrmi-nL~Aq82|=k%G4)l+Pj*OrT7G zhOP8;L>-(!uyb70u-Bcvk)x(}=hENr%%8QJX((BkW2=vo?(y1$)_yarQ%x;x+N=^? zkUYK^FnqkV{*OF1cX97rmzE9ZL%g#_QAj?MjVsD?Chbh8v`wK&mLJ$rJwFJE}fI^%0Ms(ZY#PLz>?VxFF5m*6Ta=+@_mdCbp(VZl3|D#^U0MwI#i|a0YwdXdE zn?mL;qj`8Q+)4+A?t;)Lg!U4TJ@FBHa#be+)%r-}cMV^)Ly} z7Jmfoh0x|YmqtR0JorJ9>Layr`qM|QYFx#QjI!%k^d!}sPMiD2&uUN1b3Pv%apt=! zzgNl1T9kxCRdAtM&FdVC91H7nQuc`!D0{lh&&j2pNDp{Q7EEsGGjr_;&Djey3`UdK?R9^GAYn zN6~)g3@xW)rN^uMEk7p9jXf?;);#`{ce#V``YxBzGrts3gJT-^B*ag-$*Zl9bxd?s z&VSNhdLG9jvZ8)uEq>%53N~H#S=#x)@zQ@FB!L$rXhxvWBD4qxvweY0P&GI2jR7Y) zct0Ia98Iz8l8E$n?(BJHd^ZsAXB^8$ZeRqygPs?R0`G-6mb)Mg?1gQQ`1ek>x0e1~ zi;c5uH4q>al%ti@))JQSVfwvz!mXgd?b%p5cAB!Cej|M4iEw)9(J_@SOff5{yvD>( zPB>>f7|@$UZlIevt-mWX6;vMNKfQS2yVr5Y;j7L$d`~zs+Wt!S+Fqo+T%>h}e_!zB zPhENtc>fCW(wEA+XqHiw*ZtML<;0eACg?;6U;G=nusQT!KH22YzgQ=3B=DthS?8=8 zeHoyZw|G9blRs03U(Dnx6+2iFlC$z#Iuck(e=(2~Eghl6UH5EWjK+K*{7LB4Fn7C# z(Hk_?j!u#*7uo@xLek9Ssp52H@dox#ghU%xUf@=Em-oF2b0i8`c7o^sOPuiy2Z3!{ zvKKyQc#G1ppuF+jEEXci!)n;_cuZ0IZ<8ubMcw7o9lc}R=TXkW#dnHF$Hze`Ll(}9 zFb>p8{?R#ttIW6o!rcEk9G*j$8(9IZTbOBPc>k3RIon!j$$$}K0!PbZ0=vhbH0zy# z{1SB4Lyeywchlmu<4W0Uosswc0EjHR;7K6=GG5{qMOR%t2HNV+&CR02h-cJnZJo=Z zw1()MKBw|D-n(k@DdRo_?>hdzfkyC$TqLD(O_c%kpttJh6*Ug89x;!s<`eT0{+;Z0 zwBb0~zHFC|txs>;VR;@!m0dpc1A21}^8!E33(`KOr$>=Q-jU|FDA0wK$9?^%Ab)sR zb^MD(O7I_h0RRwYR#h#VS+OA<9j6ajp&MYw3H4L^JaGCWDM;8Du>@wFr&|Wo3@_>kH{~keEb7>1``oll_-1 zTZ>N`m~{r)1|5hR94?R#e(LqEzKK~;^Cy*k>{7W#YCa8$y)K;+X0T^`FoktI?+AHR zD^_w+Urzzf1a59_#EuAAIL_+?7Xa>oJy9C5+pkmPc516;cRH$>CyQN_`qX_oG6)g~o1x@nND-ir8Lk_g0p+ z-M~UWTLOncdC-oK>z~PM^33o4{E3O6oM@SA*T!Ds-Pz+Ys!s0yargGf5lv#x+cC>F zli0HZr|<0-2qCSKeOj<>q%o>RbZyll~@Kb2*r6^nM8$6YO? z$1!Wym&22Fn1PF4NqsHP6Nvc1-7j&%SNyohMQsoJt4Mj-xcI0&Y$ckCR)Uy^ zQawYH2RGtYNX}fzXMjL5x;W-J2~a^}z*|(GvNUpJ<5_I3;?Y)^0Vm&;@fpB)Jw@2r z6R{LVxG4Hi&yWGJUUa{-JV4YMteVg~0AeTqC7atgn~x9l>Xb)I|kGTvu$%gyame=%}vCL2kV z%!ik^|C)!*d*Ww*nvg?-2s|yIO~E9*%EszmfsT}w_-={*_TAblxXj{r)QSfK1$}RItzAvJF~R} zhYU1UO?ydsgeOQ4uZO6qs?HP#P|Il+zq*NgUrl*1ynmZ5Ompx>i+&%#hf%1Q;%ZDZ zFsX_FYq2%p2K6?-ywm3NxYY>^dUV8NpG{sw-+(=jvgBbCz47q;biQ71F$MmGJH z;m-}ZJ^zt|ehwPeC^gK8&D{1CR?zpSUhDM{B{RF8VhgR8`qC4{Y4hza)I4lA6y$J` zO_x6_mp8HU%b&FOgtyu^%SFq(-FT@s;-{){#O30WQc%JU2QUI>ktTw1eI<#2NFcx@ zf>s#V!rf&wUYT{Vw?E!Cl)LATF!Z!ylPyY&OHY$N9VAh;O$uC5y25gJsg+#|U~Z3J zZ?Qo7>AfMRZv>*C#=~i=^Yb;awYOL_bdMetximbd@dyH~Sk0vkUy28K(L7c^y>UOB zdILsFtcBxFegLAZIc1#b_@%I|GlymG0zvc#vC=s;b6mdQEI7a)kPj~JJ)4Z(HRdGm z9w2BkO&6Z>(AY7s=Yy^l+6qPKv+#U}!ND>z1*?|RVnie&YmwS{Zhl+NQfAa-c=Vqf zUT~%1qsBZW=ul-roRNcAh34%FM&R<>5BV+ieG&pNrw?eoixD{De~HVepfq4G{-s-k zb%$+iEK2}URka(|ECWzl6mvjNZ+z9XT=(3UD%vM3cfbd8c{>f@_)tNl3Wi>2Uq#28 z^3$uUyZA;3a_0N~?fM!_4`)p>xwlWQ2F>w(B4y0x8lOBDz zCh3cz_tSq3f0je-(GKb^0(#0MObDdRzx&V>a(_7N#=G444w2KJ&bFo6cyi&Us_lgq zy;hXJiOs`?qu$rGa(b=08Veg!XvdKXuOA$*Rs`?V z&4bu2fK*-VF0B7-B91EsY+Q;#x`R(;WIoALepsnA6ypnOoQFZih2x*MtD6*jd*7hF z*nfI}1l?hp?HjNQay6aZLK{{eke8i^LHm46A{#BtnV*-3$@u6YKYyaw)yY7b?LL$o zEA^(ajC){YKv^UY<4muMUlB)-g_JS__Z7T<@H#&LYz2(Gt!f6j$X$&&sjx_{zny}+ z^ljx-oMXToM&lGT0~6D_Maac8qK}NEyMx0`GnN5L7a3-LY?(NgE_T(?Bx@_ZOVv(b= zeylJd+nx&qly-oV;H~xOH<-HhwRDX-jqYzj@);WwGiC9r*PwHL)}?6$pPL4ZkeIf$ z;f;*}t4!=9D^!^6G%#*_*Qz|a+PZx-kW;Xcn7{eGY=#KC_xXf^Vezn4t=}gEBJbLb zz^r_Y`Q&Xu9_{NNipLkwiP$HUyu3>e1>Eh$ypDpWMRiir?pURY>EC(^<;|@8+gc2J zE3Gay6@Y1rmmz&s>s$R-KHjmQ$Zcajlvuo>@{Um!fGog8QOQ*Z)sl{)x)Jm&vuBLN z(CRd#vC*4ZDLt(3)w{V%m*HVY8HKdS_B|#NCTAO+3j=-%x475}3@IExeq&vw4rEhH z58jt_gX(5Q%T1Gr&OSJ=&SQBAa?{BQzC!MNSgFuU+xh9?f^ySFQD>3yfiCSnKYxo- zR|F5}u5Oq|?u5BG>)P4m4Gs&`iv0d5H<*T3WCv}f){Mu*Je#O$Vo0Zz=y;J6iL+v188oszqP&Nf9&JA);d-GEtHtvt}kCD2L|;p zg%!rQu7Oa{E{v-Uv76eObG(o(46|F=ESn??|L@Xa24+=r>NjF`1qaT~3Ny+sLDOmL z)l!s;JmN?t-cg?Uqk56>gRuUM5zHEEF1PxOl1EAM+JaN}WR8Rd*?U(L%e4GLJN|l^ zd?nFUf`gpR`K1)~c>f0V%~k{3jHoH@^09^j4%t{(%0U#;$ItP(%-*pyidX@RH(_BC zBJIrb*nZxxa!54{)JYM(mAL0$$E}|yP5o6P_2gD6c zTBnpLef@)3S*NUdN?jQfoz}jUE}qOn+Qw5A%E&;UGkGfENr&F2>tv&R-5Rm%aUXVx zRn_)?bjvV_h~S4Ti$-)tPfzJH&@aBp{k*bhFC5i(X#D5UE+$zJ{ws~iSIoS9Ug30( zOeB5GXQbo)z`W`A7pjD>n}cR92-ZC%_8sDBs2`F4xs-fDxbB0t4)V>qwe&OaQtOmP z-&TlENbiIKyY@a*Bl+-n@X0fC)Cgm6OFJbTyW)wMOQO#5M zR#(upqu>qNns7vL^3F zRWEh^_$odp7tzm5zqt0`h3P(@xI6-%@%}<+-{FAH-mi6NZ@_S1;e)9LvL?&&n;`QD z$lVj^Wcyc_JedU2{Jt-rxcw@17ruICXZJStcjwmSox&nHbL(?-_KBlpW4n6Mbi`DC z>4FTWK=a6!q{NS)i8JNet-og%AO)))Lx-YBM}1YqSC|K%*Y`Xq$r^p=Hd**P7%D-V zpt{HAV3cQb;e_x=qdCe|;f-d&N(RN>(eA`YvYz(%!F{wLbE{zYD8Uo|4(ytzD)Hkf z1(`muKE;@RDlF{z&jXcOmTmD#N67TCS4~DJG5UHvO5bN;S?{|kJwkQtouvtC5ymGT zys@M9x`Hlp@^TVwc4eCB*S;A{hK`;3QDd&Whz(=a|7Lc^kLE0bld|l;Xq57!@yc&wko%ipYKv*|7(3G zggDsFQGx{RL$uiZs0eH(K|ELaMr*gowZl;RZz_@Ex# zUO;U30_#0SHtr^98ejg;*G1*Ov~>J;`q=x3LDpt%p9v>{{ot|Dvkw6QbbK=h{I6=y z^!=52A45}(v7m6|n~rWsP>?FQOXY7!A#S^}C<$RP@R z`xLF9f~X*)5d$-j9x?J9EB4WdO5QzdS$7E>Ji zpq>L=c)6-4} zB<86ZXa<(IzVHqX?%oq!@afZSF?F7s6lA8Sue_$)@|c$duRpiM_P&b?WpWYM6)rwL zhl;k>^^Bc#b}>r-k*ROf)ukv==bY^ul&7z|`_FiDxdgcMMhg-$7g3s(b4aU+0uN#u zxY7^J#g^Y*%&9KdXMfw?eM2k#DEqHH6+>cL$LZ*mkqPJ|VpF|^!ifG#SHB$Or2rGC{&&1?J6)CDq-}6yMRS6*~bmwV(dO+8{3p8+yt1q$mW}?x)_Km8_WRhE$ zyW=PzWzd+aI%ogWaU>2NJUhQs#|WILNj4Y1N1iIlIk_Jk4?YnTf(OcbkmP*Ps-_5G zDCp`6b)Ck?yT7X^^bmlHLS7~(%x-y=mfXLMr?~zqOISBid2Cx_`oR72?dhq) zu{S{`5~r``^RK;g>gwtS91PpdzvRh$RMBflDBaq(E*0-*BaY0IJHeJA2ckt5mV#N2 zwK)eCOFG}cU~Ti;d}->`w$TQQzirih<45VB$?|B%DCW390z(GuE;O2fzg=rLE^lU? zyh7Wr=a&JVd(etENGJf)v9j_;>R{1!@G-Ue%a@~CHaxy%%Lk&ex^tq1MM%(9`bkz*>^NxheNjeGI^X!953d=F{sm)Olj&CsDx00+*KrFy3C3HdCgsH7_Y@!2`4k zuCne5s#@{(R)hTC;!5u#j}`}pc7EFG48?w4BHVw(LC-r{8JV zcIEYX+lRJn>JOBpkQNgixPZw3UZqxRJ`}GhOA-roA!7GN^m-%O7Yz$@%B2}GqqV8tck-q)*1sHf)bb69b{*L-$&rLu;1)_Eo0t5Py ztK%zRzXFcg{qd-2@h*X6L^*ht(4?dLLmM&|$#hCSXv`UHG-j?;gAI8JIC_FQrTpPE zM}Fsy%I|3K(v<|?mo*+b*4D%!H#x1hzHC|@aZ*I$QIdHwus;$SSzGQ90wE$;*U(U= ziqQ!IQ7&_k>2Dyk>%fTL-P;SMJ!QT5r)nemIG>-^;$Pt^Sjiq=^w>AFOgWNJQ0Orc zY7RCk$eF3hU28U>pcp^w;Te1iseb=2Gv}X&V<_NWp15q9q!69&QPugOaA3Oi?;#25 z^86i$Ar{P8u7JSMG=V-e+^y`8iSlo68plQ(^YWlm`IJ z7I;=za&wGhy}!n#+VII*zKZb!4vrka5rD4?yN7G}lf!bS)1t)P`$}Y$79-DrEa9dj zmN_jM%LsLL2WTw8k`wsDgqge-QL@c|7kmW^)KQY~RQL~!WIl@8vvBvOjJ3^~SNS$= z+92qG!O8Q4fh?r!`Q;3#k}+9tpLzRaL01DL%_xIX&8 zY*KV5^XWkMQ!y`u_L8)c0&dTf=aCeBfq%(P}^x&VI!;H_vBy@^y_SWqdgo zv3Sy!*lzy%4mp3vZgJ_+ZnveFoznBn88M1nM;w>VxreCSzHgrwC-d3lE zK`)W6(srVgF3Ri;zDT&3+Ii0R<&(ZcYa)rq;xX#?>ygjw7jXUa08aYQ=|}mamZno! zWQhR##$Y3@Ly!8T4M)D#Vi#NjlqEf3mg0%IAL{wv4SW{ybY91_=6v5%*g!(2h{(@> z4*;$Tc)wnK(Y!mszqgI@@q>92sHO%$MFY?p>g5BvEztIiHEaGHmZizT+)Do3OCC|1 zlK3EKbKaXedJPw*nR#NiA7O8YXTRP+y1!;wMRA=WK?B^v?rlw4wKSS}qD&NSdq_m`f zNfG|<^?K3#cg5gUnEJ~F(pV6Da9Irh20HPMPP0zvz#3reB7-orbNfPZgUUkH0!GY~ zYb}Jv#m>ok_6O+sdEX@{rA4jnD=jsg%`1*v#V@I8ru$GVA1Zy|i8NR=5sns?w(tCM z3(1VPO6jN%CL}`;{Gb43P%=QhkL?iHa5JzKh{z=179O0Oe2>t*y$Sws(71nwCBW(G4%&yPA?b+k2RRu_rbUSD;Ozb9x`!JL{sDgJ98xzW!MI?f3f0$;p$=K9p$iwKmk~Y*@jP zj0U_cs@IZB*!0$z=$Po9T1OQbUs^7BYxFO%o~E#{%Hn@r>$5ACs@1YM9ow0nyMkR6 zs8Cwgd_n{w|2D+;I!SMlNEz-eF+qp1Cq5xTS<5pyHFZ`dh4cW#@+edr@HwEJ02*9y z769ZFm1|JU^#~1~YB+uy|8b=Z4SjX}t)n%c7-k@;)X*pX0VOlD{CrcXck&M9x21+u zNR;D6c=%|Zs^G~G*#sm-(}=WPUUmYG^DSZbk&%%YMx4A#lm%C{ zJzi0i9FkoOrmOCvi)^DJ9uKS!b2?SKyW`8=5ZmITcop24PNDO2!B8d ziPhPrfe8r)9`T7GOEjRCy9--JE<9ZI^@1p?DilRT7I8)iRRv!DMv_y8PcLODAH>- z*f3}0(-Mm(23cNzSK$GzxsE96nV`B2te3pe z!NCXSTI;RD_w2POEHMK|3Lt?-=6!sq1Ne$~Q7~w*^Mm%%35>U8Q%jXjZg0T*8xCgb z(DU;EnG_<8_XQ8cAGKO=W0NSh+Mk3I!zw${kX6F#Ce@gG$R9kZ;L^USGP!7f4#J{iUzrC zm$hC9BX72aBxv3k36rqi7mV6F0+?&OSQ}Uv4A3S1_-N;wC3R{W7Z;a`$&Ul{SkZ1h zbReYH)F9EOTH8Llqu*)GgaRn`H)$=Mu39;{L^h^u_Tot*&TM1V$nwuS4|iD`KK@ZPxbOV6n5zbBZx>?HNZI24sw7;ZU5~E}MR6`t4>dv;PIra=4&^Xr~)~ zeT+4-zWN)T#OE`LkaP#JzK+;A|Mh(`XAhk&bT{MabBDa9!ZNLbCyqBohHj@55KI31 zC#?o+8iANMt-3l078n5^rISm1L_}|Wul=jjo2d#@1_cG0ipuABr&jJ)mrbC)1|;ce z)3AGs-o75k;m!qd!dgb40inqa9#WILJ3a)%|KhIDv=_wm0ekGeMXVD7;<^3L{2w6m zs?Lre|6%JMu?lX(M6DFWC!FLE%&ip=7;hy?XuA#ULGYqiTj}SNmvar9;b3ez z{`w|bV?71okWlrR!40~1OpTJpqfJdQ7?a5283Qbt`J-6RRDT)y90{_$1C*Z3%z zon1`wM0&nn^&i3xqOkI$J#}W3kMIDBT-|;@FU(>GM@PF+9T!~@d;VK*GZ{cGIa9+{ z94Wrmulp_a$$n72Md#YS!-*pk=p4R3WQ&YBvpQ==xna+fr z&4vZo?GXVTT>9I$V>&3}K^)A?zsOvd5l zBBYa?*pnsFzOR(ExA8{2vEu*-_!dwXqatol5fZ*$)KK5V@X2vvLk5=jZfgTnV9ydv zfdu#y%7qxdN1Kq_nf>4<6x9(`EIyL4yTYd@%DNSbgQPch-q5@=Q@VIcw+XNGX#*m} z@h`@>*v0MTgg%*8v^S29?ryX0W?89B@QaHkYlvvgF^GcP0-HEC@O|-ICsqt(=L}3K7@U96<`fd zA9TC_h}DKQ9=~UA`Np00Zx}Sc2_|Loc?3U--bWef}Qug-ln7OdDJD9*VjL+ zD9m%#F$s$BY>8BI88wHckHS*VH)8;_D)+$#l^`=`9TpxATs;B^r<(OSY6>j5rso&s z1)_L9yG!!Y2^60Xkk|4leCR!BWZhwA-_iMmQz0NNiaG<}7Wm&FaS^zs79kz0m}hm! zdPNr(^=E<}M}Tyv=v1IAZ#=x|=t8PxNzp7c@vCL!6?WW&=Kn`=$J9>&xn;b>=Oa`c z0EKzobXp>=uGiGkHMe4EG=hj`;Sj_1?=V6|8$cl_upXX+e~4wR4;DN_a0}a%6odT` zb-GZrs=zyR;NajuWr_l}E*Vz!TjmLx5MpdzK= z6bI6E0YL=7Dp9ajn}D4em4j))eM3c&j__A^jAU_BB;9C(HO#vJEbCleio5jl!)$H!a{Iy_ffxZSx4&0bP~IdI(hDMI zP*GqJG$O(9&BD=)TU}st1ROtnMsYQ@e4FP$LIJc2NkCo5f7r>{*~X+2UE)Vjp1l`1 zIWb11W(;PbLqHlRc9qB@nPD2&7lcDR)!@btH0?Fu=)h@%%l8}u{sVP`ZtxAm74V!w z=0Dec~_Si0cgo${+7(V*EC>D zN43(D5hw$@`0MF=M5wQD6XH)8EMKaF%X!arG8z^~RA!vbeE-q*9102diP!2D#FoC_ z=x-0$22=G^tsM$F0e)hjr<@<-^d|E@ci%gOJ*XI;<6W)UFT#!az*KX2bmyTDDn`?Jww|LzkJuqY@tp%Cuqd5S@(rUIAD zMFsQvHF)JCH#Z-GD_s*nZ_i%D9Nifb+@2VooJ4IMEDr@kp`WXp4wNZdTTvjPb7}N2 zzUmaE$}jx+)yWjH50)Ug2qWcTA_j<9fwSZO|^A=&*1m#@&T?M>1_xrD7XU0*iheIKcFgGL34^#gf5F)1kn0Cq$r zhJ-4K21BY>Q-@QI1zk@a@MmWiE^k3Dt`aQR0CHS{1`bLzHN#r;r4dM73GQbRoUg2| z$1#&W29Ox=Fu`yQpN|ElGvN@EgM0~iP$9e&g*tf5U5WAn*I9{@L7%*{Q<`1B`Pu(^ zRo2CLc=V;yfbi%ZpzVPl&%~Rs%OF7w+K~`R!m8tr9xU=-hE)DTP{F9xnNvV;U4{$| ze+lgcj|5rQ{iW@D@1KD8eitNP;Cy3;QB}CRj5JPYXeexuY0yrE`PKy0vWh$;LIWj9 zyJ+fRm;{{m0WO4Um2-2)NrMF)K=lu_QF(zY%p2!j$b1F@9V8H;^5LNOSH540OIJn(p14A6=r?Y6FNbD z5GV-Xp1__3ZtJKi>!_;N0Y#`L+4z?yy{S*YX8aI7zAA{UVM_px0E94DFWbPE@4L75 zv!#_J2RKBa5bB#x`tTfuezRh@0ZS+8JNW$MfNW#FUW0}Hs^}wFLg{-R1J|7V7VUTU zV}r!AjsHCJ4j0F7F6@5Op=1}mkniH(@%L(`VgES)r_LPlMlq%m|HPS? zJ?36ZJ?r`q^TCEFwl{X|?BsV`?+-7tbdM*g!uut+UKMM#!Vv|I-7X0EuQIl~4l*hv zg3jGx@^1KUdG4?=5W=gmxVtDxLPqxM=nMcasJ%TZH6RZR7iUDeeRBVgdq&4 z>c76rvC<~GVyB(4Fi~yz!*(I8&aw5z9mtTmiyV9=LL$|=rP#ium}9p< zMJN2LqO8mxfKPE5wA-!_7@k#C6%QifX23(!&1x+=BVZ!|7HGtID*S9;j5xQh6*3wx zCdI?dht*`eC^anXX5;)#aFp(yG@3u}(xK|Ht{H^ZtBjRAY-6&rF(xAOHv->wBg(_F zWtQ$@F_z!PDe^hHrQ`TR{?!-v@TDcA1a_aujS-HnE!QqVo*``JIF{jymmNDt&+CiY zjOE*OHDP5OLp+{fPDOiSr4Rtg{!{cwrL&rvd(X_edx|09h1dX`Ct{87zH375w9w z{c$&0SeZ@icWFkR+L^x5f|1u>9iMDXR|9T>cbq=d%%FDW$wn?ssq!`3VP(zC&JGw+DiwVyz+;ZxO5e`ucVU_q7(zcwy3%5)C>Jt~kTGH)N^f8M zl^u=%eC0h|!Yt+dY2%nlxQ#20yaG`#MtHnM7q~)|)Q5=`{k=sw!mhKh@HNh()t3;b zr~Dm3Qk^xGWNf*572|{hht#ON+hqdt_ZlsbsCFll_Lc{}E!vMiP`eZ(h!eHB8Elw2 zT5ghh)Ty6!urZTeUc*})I|+vzELOe7Bq%M0pcW`;x%7mpM{nl|h)|bPo%#zLyt_Zp zqhR}Nq=hodW2e<_D|@ZPe#}g{T-&2DoCib^FE`RHapjrS0&$cdv%X?B>e)HkZ^haH zAmP-M&$^Sh5z)=XV`PQ{`-ygSwG|#(982TVjHv*(c^h{>AElzsd9o^ZBbb;mLzIUZ zbi+XKihKNTMCmIu4`9nP9L|-+Pxm|9ss&l=diQdCe0&0)1|uhvSjOm#?dmVAq9?!Y z4e}qJ*fn?NzH=L~-R3B$^D;a}+zTR9_`QFk+3d|CCG`$?Zp`umIi7Eov5&^Y+Url# zw6rZq6mlH@zKdtO#Fdt2U=~^zd?Cw~|4>>>P^QQrO-s1^WM<*A^H*!&*Q?93YXVzU zBfuQwh!#22d>N_${a#pB&2gWz5T&W=JnOtcta7xSm4|TnI??l@fjYYIZ3n{t|!NgI{%T=d>%0*>R3vDx8_`^XJcKyyK(=o;n9-(;&izuh9o2 zQ~QQF?~|28VOafvj>#Tw&X+eSJ$SYjc5}XR zihO@g@iF)Eo1w~}k|T`!F0_=PuXapLO<@?Jo$7Nq<-9%n^|B4Io=Bj4ad~=0=5zVP z`_Q6kAj_O$-0hVCn=rP|DbI0o=&K`zvGwoFz?O@_>~VpdMA>WVKOj(kC|fF~3o7qy zyM^Xi`*!>Kf436RFnLpXH2M%sfqfSth%R|pFcCf557cQz9Mj3Ed68@ z30vbuYf^h7+~ML!=XAcWKiRvwDHJeqsKZQr=_efRcbVprAp5;uEPZC{eSJs4P-q{J zyxZH};Zm~J8g<-+RoQ>H!+|xr3!U)9r>b9I84uR=1@C=@IAY4D2={S`k$*v8*m+}z z7gr#yF}jDR&J^$TIO~I=ipp)|1PXEua4s&xwolb1l0(CA0Bou@VQWb!l}zLToTecK7rcpC9kVEW?9~#@jiMJwzhi;QCUJhjgam^TE74 ziEbDFnkU-u$jDvZO&-xJZw3#KuT;YBA1eC=Q)omyt6xn@ycby6i~l>WZKwKbl^&*$ z;q3K{o9cZ{`#blxhH<$BTsOKh$eD>@QMt^}Ro~fPzx!#Z@7JhH#4;9Ftpl52Y`10g zW3Z_~m7%_M3~ht;xdyjD^pNOUvpx#&s|8}>TlRBG5$(=95KLN=TW%po;kRpj8(5G^ zrbiC+;b45Bk8&JovSwyNuthw2#k$r`AVx=sU1hcoAC73-)ibc-F#)`ZI^KJqBc}_Q z1YCtpqs4HTi95Oeud}y|s`8D#MNtvyPU!{}DM=BKloH6bhe?KS#_t^X0@B2LKnQN`N=0sXigcDxMs}!t^*K_?E z&y3VmZmRj}$R^nMaBxf^JF1++W{>^{oT-e)K6|&XhZB~&-e3FgTpM#3U;NP-@5LeK zdIMGmQZ!^>RU+MLBKihiL?A&QV|1%F!zM);FYt zCbM9O&UHXHYw8V!FnJ{6taEVOOi}jHlvgtZs;H9LpJ$PW!8NLeP zHF#8oRu)jUZYX<@4Oraa?T*O4V0-xR=0a|q7tl~B__V*1y;C5hq`wP0o*bM)FV68y zkP`#;)5j!t@MzkRrQRh8>c77p_xe{raLLO>ZBZb*$C;|Mx`Or9uJk~JUaIf(49N*1 zhP6OmQ3l;^m7O`?yd%CI0B}+tVJ^qKE7EfK6TQ#LY?NKZ>DJHcQ~;!)l>UHnV!3tS zmxV^|EY77B+bzAU^)H~tAyL39%cMCI(+`PVb zF$NFGpb!xzQdUy30wVUz#F*Su>0LkDTERa%Y_lEf)A}Mw%y^6Uv$mC+y`q=I7QEW@ zdYaPG*Vv7bb*+$L7A54dhbyq^3<^<@g-%akd=Zd@<479g{Pfdqd9d7mA#Hkl<4=BUDWHV%O+W z`m}uPgn@!|;LnhkGtHY-?%BhLGBxo&-bm`WCslPHme0nI$>&YSl3))?Eo{MuysOD@ z+0#~sKLB=!Ra!)dzP_KP{MDUys}(&R?$yboFaVTzdu+BTXSzWLogf|-2AQ!vfLWy& z_L&@+^se@RK+CNnei?X{DG}r0nAqsS-a*cH5F;%g{?&nW2x^ z!%-0@8H#(8C%CCJ4pxy>w&jToath;Um!9}jb=l}?(!e7HlHe^X-p1nn=jHZZZI=L9 zgw`}R8(@Wq^6nQy~iK;e%_Z_*?RKuw^C*nRpLycIIU6+(z2SObyw7V zr)TwGsD5GZW0fi5y82v@#>2)RfJM+Pk%iyTAhrvY=nt8hv_eLzs`zsD7H=vF8Fb#_ z5A-+|tgH$+Uu=tRa*Bj5oyhv-Sz9c%oND_3Ke4e>s(f=Bo180%`muYJ>l*IaQQy0d z1ATpYRXm;&5HgPs6s+x(q3KkY&BH}q*>2u!*VETc<{Kvos@`}ZsL z%X8VnFKca;J~e3L%TI@T8D4h%^Cg#8C%qc zDHH1luMDFfm6MT@R(PL8Z_ZsXT2&`+&w|xyTU^gz0tbbZ%bwSLnCyQ1*xjeE#ukP* z5%*oA$+^Sf%7=4gRg&vCvKijJ4}07j!zg%pgty7r`bPaj^rE}Q>mF<$9pi|(Y8`~i zhXq9zB18y|H56na_{F52KWS)~*Dx^XFEe~ySX`uMMuZt`;S=!e+3M=*=3Gm}Y?Hsm zd~1u1o+mN}dhcBJQ$;ASr1%o(!%>+$Bnfo-DaDu_j`P@zIM;bzqU6Y)jTVvdYCWE*UvHbMLg& zhrfOM&#oIrT07VauwzN(oF!Ip*_J{YJ@9O+A3ohXwd-e7e}p5c_R`oNhqOpgNd+|d&YDKT(3=xW}EIr zbasRhNTR%KP>1*mB?@8pO({r&HhxxrrDl9YsM8Oh`!}uzBT&yJ|!0ZAh$y zXxw)I=gP=e$$yI2Fv0dBU!!0!l7cq@j)f1Y=eGd8tvAZ(>3QXDT4(yo%gJG+KMw7y ze=%u&2vFC8i-0K7wo4Q@&?tr~t||Q2LT3T-jF<%i2#as8~mvm87qV_RFJ0>&hQe zRep@))@iry?Gia3{LBh&@n4fllcWK*ELF`;C|Z)@vQ-up%UfAl)tVErr1bzCfF2SZ zbb**4PxRQKIo_U?1hc_vYhwy_@7;wPfM=Zr(@Lou!+2>_*ze#{K|-4O_U%g^B6L)S zww>vEV^4cUy7nnn8uP+Qg=iD}Y3HFFo4X$q<6IE6sB>537M!dj5^zTCJyk$PgRVY=5jo&p7Zo}FG~vRy9e4v13(R`i=pH|QTou*tF~7BPFeIRT{{??)PrtqF z`LURr^{+X<2;AV{qqeYo)45~5-vgOMce#tD=R)!STY#zFjCJ*i+cMY~YjLH)seSn$(un{zT49HC9TQ8CX_k8GPIARhL72s0fjN`$=QVox& zX#0D!PQX~2+Cl`KX0&5)<7t2(MeNNes$p3??{hY#ESVS*OPwaL@>7z8m{qAIvvgSmyRt!+%z zb+UQBEl-#BpkdY#4tLwhvL~>sKS_o@FmT@QZsyaS@C`aAtNw=MqCms^wEgovvig0l z$UhWjPEP5^mL?J11lVY>pJ8-0C^ptCJVHTm^y4T-iDczq;Z%0&+)))2Q*omS0$Z>Y>a#G~q zqycLwUulP9{b-IXr`O?M+gfYzXQ|2TdJ2!as!CX0U0sn5|5I)*d_1B1R`0EEqa)ps z6j(v}7*G(R1Zf?3S`T$VHTUx`+7T(MUzO=K_pQXa!d&`k|9&5mmd;ga`;Z;YZ}w`_ z^IN$!Ia*4-G+G#~kV}$^*hSEfAB0fAeDQIpw>O-LA57u_GTsI+DlacIsQwiIK8V>a z$RGAP4&T1AVhftcv5qsA4GRHex1_vUv!SWnLOcqFj=yQ2dK3hUt@e(sBxz`oXkFMc z4nmoc7t$5-kf%^*fff}kCpA@7aX8xm?MU~Ml95%vK3L<+7+rk1=O;T6BGHINrYBF*fe-@wdSjy0d&L8yG57>|@irqf zp>j^Owj{=HFzi_1@+)uP?3V-;fMJ46;@hRhxO#1Ay0Q$}&@FnHh?UrVvM}8a_68om_)N%vb=U-RlnfdrgQU^lD?ed`BEKEx+ zzJ2go$YljAZQ$4L{T>RROGk4)CYtJ>3HOdnJh+8^^QkmF`V>m2X;55-zi6LFVm~za z)YQ}hhCJ-QEm^J)?~0nD0IdTo-%QiX^?}2EDg>;q>cJFpiXDskY5hN26Y@Lp@BJr+ zD%uX6h;xotaNGT-smaU6v?CR3_+qEf>GhmtK59)rWFW_0 zcqzz;p`xXr8edWp71O~YCYDKZKVkAL1zHc+H`PSk(?H?rQ&DhF3hA>f$j&A-EVrY^ zsQ-`#rl>Jx^|7&;dP&8-nzgw$dSRlzXFsZ~J>NKtL~S+O))Lm}VX$FlE$byImzP-d zkFft}&6b$+_h2659{zdje}?bKPX%Gj+AHSFY7-bRTgdVFCF@+ z*L&r`9X=W1yMY`}a0nsqF%yrT`rw1KZ1 zKbVc|@4LVrwmmOR3nn z;vEQaxw-!yP5oMY3BKI7-Ma8SO0;_u{!z~#2`v3RzcRi2gQcp3szNEb(Abdso*Ji< zM0}KpGOs_d(O*oL!{&+CcrqOeF+zN{ni7=RcE;qiwZxu=n@aIUK6!1E0yQ9M#O-PH z>gUXijKNDwm=alysnOC0v0hHkvsA-OxWwu3!G~P7(GtF|&`T3e$NIn@>YQ00NRz)q z1cvi9ib)Be*vfCeXjAfT#ba(R>|1az3Y60~rYeb0zKXvY{u?uOviY?bsf!X}YLZpV zvA+J3g(v{Sdg*kCvQ!Pnc~z?XwZ`^|;MG4?`|_5zgxK|dw&}u)O~+_HlUHO+OBos| zAs3lLOS=20zncx{nzeOIdV@Wkl2vTJS6IDHw)iq{VU=&fBRyIB;GGg>A~u;1L#$VH zdP1@HIj_P?j=yfT6l%5XzKfPO*Ocw*CY6X;)py_si{oEj+GT0z2JIV^!h2b!1?u~M z^glei9~&z1WzFclo3!UvnRz)S!s4d%*MrSAbj1{xZ=CViC#jIU^9)F#)29Sn6$_!V zWY8M9ZU}1mSNXX9CKPP^k`)#^sqkyaD*Nw0KGG`}z9$_ltt>A8j)rt~ z9!PRW-tB>*%ulvo%9}8c76QnnlfJ+SFA?_Jgn#+88_UzFjp!mt8vDj!R63jg0)4Ol zRagmP>{(r2c@8m2*1B7{P06~KC;tTZt^Q>_uCRk5);|uj8rZiao^B3Zdv2aTyYh*=?8)W};}YHx3p?6fGX_CGHr zn!7-ZE81zA5`hZUszt-TWV&8gl|MORuJ@FlU!!$Iee(!MB z>*xWmxJ<6TJHt&S?vY0*xYn#4w%!pOf-Q;s`FSGX_c$A7e6|0a@Ka_2NQUtxI!fDL z$Dto>YdC#=pT+jqv6&+3`8%O9c1)7`@wP{AvQoHyjP4oxN#93Hpt`=B=mc&3R`OQ| zXkLjA$-~th29}B~3S53aXs(~9Nd22q=rS?13wP#|%nvK*L)hKR<7|5ulRy)=PMC^K zL;9|hi_7UBabK5;ssz2ng$rP>+a(hrLk>tEQG2JBfYk^Nlpr*muVM~fOFq3M4heqh zc;RBY(HFsM&i^iK$DTAH^kFb8bf?jnP|)9HNhwE%_}=yfP5|%Vw>^IqGs6~4W^$>W z55YUVpZAPisn15@OQn~;_aYn&7)qbn&Q-k|dwmsr+C&`_FBGqe{)9JfU;0XNwIs7s zxTCPvy=B_Sn_@D(J}2Qd*Mo%JuO|42)$FB!&^=>k%ZP4#PQr~86_x?LokkjE3qp?M zqG;2gc^#}x-+1gvA9HP*1X9Wv{C<6bI8iqq)IgMRG@^Ub(qGnQpCwO5_z%wL29wv@ zm$$t=??N&t{p}qQM*Y;BHm2`%6VZNEZQQ{mN`JRB3P+YGC7Y=`B*U2wqZ~Kp6?Wj* zwBPNoCZ)*dn!Z-99L-pHpFX*nM|k*&l{Nh~SM}xXx`(;Qo>%6*6NG8oLoC50DrYY> z!|U`j=ycivhx11sa_Z{B2Z{3&M96Z_JjOsrIQOkkrbNw||i78(!}AO&XIp!PZn1~hxZZH&X&)!u z(~w`fqMmq@PTQT$uHGw2S!}3-!lCrS(-{{mBS)Kvp7_AMVK1-U8amPBgq;oVkpl0r zZOfWTHQt+(q-b*st?n5%^trCTzc&(R_>thRx4BK~d$W)5b{yKG`fj|>qL-v}EWLpq zjE+O`YiTcy4cbxXzbU_oP4Z-Ej67mH_y9!mj}P?6e=TCrFNyz~eHSdKywLADEbNi> z)eYkn_59EazgRIf`Q*^U2o_WL5Mm|CfM@kddPX4!i&tOWx;Yj%Qk?VmzZI?9ZX8Xd z-&lCH)Mg=bUwZsiosQAXwzfGEeG(-^mGiCqt@%1L3s#wdzRta=oZNrg0)m&vWMj9^ z&8cJYF|KjUl_E< z9b;5av-_{d2qVkv>NHPp;RW`MH&*fm9OdBU+_Pr8H{muC|DHLo5dVaP*Vf|~mpV-| zZFihM{c1f{50xKgk$@p5?|6{SO;{ol=mw8ShKv(|$77^zsD+pZAw+f8S3(h$APHc2kGpZu|chX%` zVL@s_uA~8S8Wk=77!p(jg6cKD_k8v5x|ZA{SgI-guoPg3R--#HdY8fzcX29230duE0p znKD)8AcaS*EGbMcOlSDYDe~3H>cFp6HFKRdauw(RLNFRIj5Ubio6c^U2yG z$iw?in#u*qTHs0d(MQ`B1)am3zy_o_8>Zfnkx6x}gr)@39XJ(i-c0yIa@F>3Q5kE9 zNjPOevvw&64Lf(Gb`^sUU0{(NGb<(sBV7c=bsLY((vmG}_l+6f75ZQ|EwlN|v;Itn zNas&(6?%KduiZ3f(^_AYI|aW9dPc+J`Q^Pr$WzPGE@Wrjp&Rr&vphxC4VxC*?D@Z9 zSo3?0n--lASsPZS)qE~5JU9s{Hp|UbJ?tTkjG|`jUe4Q&XO#V(BuK+2);96nD5NK7 zqJXpWzSy%czL2|woJVt{|2>M`3dIvr20dj~IOddBH#57132z9Ji2*(-3@?+Ez8yt& z`R?TSvA$4a2*vZ~5Co)u#aDCf{N)!hdNzpwJ8}tVf#e?kB#UJzBFN^uF4$!YpUGBm zs2{i>kb94$CM&PbProSIqa4yaVZXGwm7pSu>-1AiJ#vozzKA=jamK>bUS*V2 zSne>t*fvJYn+LR|^sfKds8p_SYQK=9bnbK?pMB2F^d~*GPUsN)HesHdFJq|fB=wwL zYU#yZht0w!}@zXwvgV?3`8nWeB)Pc~V$ zdi%1fs=8XW!bv5#vDJ4PZuO;{m=l{Kf1KfoKQ6ixl0BwB$dz2!Y~giZnmH)!4oAjR ziGDpy&bo8CtUR094w-ZioG7iI>jkZ(=g=^Z7THIK+y#7h8iFK_c8D0Is+>j6AE5>w zIilDmDGJh_YuuM1kp$z0uGFm7Gr_Z2|0B0jqBwkphc$o6Q=tbN2P8|%H}5HPj5W-l z5AXADuUq7xpBHTZaNiiUcyU|y63_Xb7y>Qt2g4pFLG&hP%kTp3GLVc6+i;JDpB^fw z>$6u)?HTiu^(72U8NFt27M$mni!$X2DAPDzV;w#_d~f;@XZ#(bODi^(#FvfZFC|BwK617bI4zP9(TCX4Su$5HN-miBW(GkLhgLVq>8 zVPh=x@VdFg>7^cYY?TxO!N%+8Pq2#ttryHsLPM7IaK@@SGPz8>c0sKMi}u~`k##Q> zxq$us!tml`3WxQ(Iv9q$p;e#DpTatke=X$I9Ys!E_2!q;OP7J}kTLJgn%c(b=?)P0 z_@LKkA5v5E2&C^PR@St%f+Hh85@B$#H_S%qh7Pkx8}1|;q76N{bM&55LyKJSLk<0{ zPXSMB<=9D!gXerfqDo3^dw2r(}0#`px-nd4OohWeZR#)Yao5T^JaVkNCQL@B^ zPj5j>KFju9!&Y9>`_L)XP?e*T>siANO`6J+01)D@@%|fwn40rW zZ2yAcnc+=6Acz*poB5;iRae#@Ar7AmuC{iO$Fh*z1aJT zfHKG$vb+tgeeIyqdWZ%%%hV_=N-4zb0w(P!`AVr>fp{RMRAGt$QwJ(6(gzD=P21nB zs`u7&qObS*>$UXBAEsCYlaaX8!@{q^+{k-AXWv{~lKsPxy?(duMEg3Wl?V*2Q#OzY zL#qX{lJl|*7=dPdUv@)IR65QIqd*ExAyj62x6!C&#|h+g|6QK6t+k$SGeXbKaYm5z zp+VSBs`|KwAbh#@Iu{{%Y3aaK>}rbhh^uS^IE9u%%*c;QddioAQ6Q zu*iiv-v|p@d?!}X$<(|2?eqxRucx7RKD#{~??Qpx@!P?-J`Q|amzWo#?y*_hywE1j zAR(zYhs=aQ8@q}6knIu@$&k^X`!_J?vsoafN>H)F8emgn;tww)N@6p=3<~=%?dfo? zX}v&?Ovj&7ti}x~&MwH)5IXt+H5K#`=p+TT~oPA3J0aVL|EcQGSuPNkTjZLL(~omYW>kf{G(cB3q_^Ye3Xj(w8lR%q_!q=BL= zZYU9_G=@{GT_qgaj?MM`(VwL$S5u@q-7u+}l|Hp3lD2;*N^R~YaMl4_k?0`1 zzEun(9YaYb^h;5IOVDG)-v)-r)ZVKy1%)wQ=b%yyYQ())yKHRoEj{l~CQjF9RqQ(3gTnCs`_H!+QPe6MZN{B8 zlQbv@`z|hhF5=q=v%ID2r21l>J4!ul>cj0bxR4vShlE4Fan_mpTHj8nFGZXTrsQYLyckh5|OW+zs$k$kA1wlBJ zDMUQE5{>^i?6y)aCSbV`K0HDcJi7CbWQDpA%fj+Se#tegH#C*4dr3_MSp{uDW9mw zle-VV>R?2cmfPYx{wu?7uE@ecg)`(VzC(DvZA|8nF!I52 zecOeD=90E_dHNo^}!d*+PSz z*WM@Fe1N2^OAH#Sm=Ow?Dx#;k+;IPMzI+jM+008c;yF9naRQOA!oh=oer+(x^AfbX z{+X}nT3Y5gPdvA#XgeKn(&JiM86NWzi0qmTlv3)R8`^0^K3sl__0VQFt?ng&eoaV1 zl+Ia=o7_1Z>r=rbS0>8R+IqCj-+uxu4h z^{1LKW`ib(EcD}5iSvH#ZEo7b)Pxzamf2LbH6E0IH#ax!y5R=k;A>rQ=+%T>UYzq< z^^?Q711xYv5b z9!;~*LII%T-qiAQS&3As)B_!lh6c8WVdE=Pph8|VG7X$NNnqA2wTF9x5w|uNX-Jrg zs-vwABnvD=*?^a zXvJj8Mv{L8$eJwjnrBGlK(Q8S6xQ{jgXL?>!QkU@M_jk(m1fep$Q*X~BG3dYc5a5f zP*YRGBIcBBr`V!1t^yxZJO5gQ=8eqcJcV^y!05&bQ+E+kE1KGk4zf1G_Q{)4?aeyR4P+9-W9CM}I%l{XMU2{UV3kO#^Ua&Gd0u@ia1`fg33I z*XlH30@hOH2q`>Ckq6m4rr%H@Wc;i!m0X$nUt|?0upF1bW{mKMhX_HS+HSnquKTmz zNF(5z!ZrPBD;(&VJ`F_UvrfWr0>lRW5Z0IkF7*16qGCM<{`tKSJld$fRkPLJ_!x6o zjvn*AI%QjIk80;$Tn7$*r@04{?pStMlT9^KHQfIPxc0_wH0BOAc{|WFJb{sZ187?0 zz%(=mF8GYwq~Vl3KaKC98fXX#?ld3hUA<>Y0(F3xYl&QV++nbDt|3_hr}1D;w5VR` z%-+%Eup}N>bHZZp+;Tq{*D>A$IwJS~q9T$<)Dr@^GNluO(~y$DYzL0OO#31t^b|pR z*VQ0XtJGw1id?@^>@2^)93?ZlW_bWn>>5kxRg`I^lY2@utGN=5_ z#;%1E7?FH0CSGOc;xvtuxa3IKfD1^vn<_ zEJ;JpKD8MhzpXjUqJMvKGDGyb8So?s8r)HJNXg5$U2innn(2%nJ2;=e$~fO{iUv{? zaFunzY_~+1Di~B$b|E@fd+wPT`5tLCzS{V93r|GVfdixP`3~d~zdOl{S5^~^|2LEI znq3b}#@xB+xP*i*5Z+bsJ87DC9#s;EiH-dRM2Rn3b<@T1qi)nnqs7#zk3AlSnC@;? z52w){PYQRMGJ;K%s*7;t*GElBVB@4a(0b#=dU)X%7I z>5eb2Wq3!yimLBH8gfUnO`4EOT-VrLdAk0mpyL1ch`*%eHhkpQRdkSq0)OPBm8Hrg HOy2%K0IFtM literal 49317 zcmb5Wbx@Sw8#j!Fv`9-M-QA@~EuD&VcXuNKf~0hVG%O_|UDDm%(%mc_&)M(qo%hdY z=9!U^k#+aJ&wZWi`qbgOl7bXE3Ly#t0s=ZjT3iJI;VBOS!jmi{MDQ<;!Vjw8FMekU z4QEw5Q)f2=M-v2j17~|{J7;SPLvmLWM<)wATTT`p77iwIb7yCJCjnMgoB#g>EOw4& ztaRH1hTu(*?WI3EAt1amfPXzH6fLkoK=_LV5r41dp0>Z}=B)**yE+->pZm?Ewe)64 zAx*ev37L{2>>UyjN|4H&V}tGdJgkAa=3Gp6n%S96MoY3E!#J3!hsul9tUEa}Sm;mp z^}~bGeh0+5KhkD)?DF38h2f60XIjq5wqS0;eX$zgvwd}_gyFv zM@2OJJ9^um4oUc{a%(BDiT?NcZ~vDUWktClFv}zP=U1ht1VW*Iirm-Ig~&>Sh4BCT zl4{IARaaNSp@te^vs8?7y|*Y5oH7uXDF5WZ7gJbxjEQ1VfkC^{dp7FXD96r$S{6D-XBCuG92?A4Q z=wtV}61iy)#zcJ98f}EMAVPB9r4dX6-f|NDj%pG}Osw~0kQNV&r%y)q-XoQi-@Rbw zM7`A03urhBafyRp1j)Ku9F>mY{bG5={pl8+uV^SHT`Rc^-SaOhD&Yss{J%V1!gJ!l zW$wNOYx#7-$*khx;!~Awxj7-y6TL^z^+))-6jQ-}IAC{QxnzVRAJ85=YNx$?_XIMg z9>+mj-{dv2LH1Ra@_P)Gjx4ya=i6>aPvwgr->FN~SbcH|ri4s72V=zCO(a5&#v}e{ zbw%^|KHmxOl#(P6&d>;^g_K7A_xLpF+w&v%@)g?t=!?kkY5UY^I=|kt^OM-s;rzQ1 zY7iJRaRYzyUq=4E|2aPC_cQ-BDOch3vlyyG)Z6w;|K%vGX4hTFDA##|o1xcc0XvdH zj3z61ELi`%)+;;0d z5lk!kMY0jT4*fbpgn1*4F1sS#4jT%#-z#O0KqP*-z$e{{7W7u5=4D*Z1=UJ*KddSJUkE98?4542y z=a<_rXRwn*ykGe|Pz35K+D{NX9XHLcNirlc5M#I2j>;>uxmsb{-FX`0dn;77%LhfV{18an>gh_2y6{`JoK{n+qyMhtmnOHuDT$>yuFyv;PPH1KwuUu7>%NY zoJhWYTLFy-YA4LgJJbk%joYN#xgy=Rb9xYS}ysWr{9|Bek^=sW_5RpKI;9r{bkH*MZPa?FeZMA=g#C4OFT=Fqf2gUeE zwc@09Xf?BFM!AdNTUbE0ok!(4dW+~FF`CqC-&|lc+z6r50S|v4@Ingn*B|euTw)1p zxlA@s^!>JVkr0Vo9{uTSuy;qXmAh?)pSVA)39`#tQWbH>fZbZfUT-8NeRD(>E8xOW zR3qPUp|>nivTCXU)kZq2&(>!GoT4w>dFnq2Xhd&Dne4@)Cx3gQw zZU>~vs~oAwa?L@%-9+194fqtHemPw)fA%h!tE5umzmioUGPrM9HuO2UMBtW0f#zEc z*tPhxY1uy>l^bE{sh;^>L-w_Jrai((c97)Kr&hzvCj0uN-*8!fHLoPkmi-{rOGi`+BaptRhEukT6Ij?bo;Q!b?uV`|)xFJ+cp9 zjDFc*W&Jul?dT6tdB%N9n3`(WoUFyFZgoEz<=fHh13OwezP)ce?PC;rxLOmsm@z^? zBN2$3w`)nC*7Hj@%kap5Lz$2}B}EW1%Dk$E6UaVP{lI{d^_tQ_hp^6Hx+#*X@=aq! zF=XSxZ}?{he}qSCH&S|;00m~~Q!&iL*|1aIWh+iAm4Ty{03{bX&BYf_CQlv1GfUsH z*+`;F&_K|~_bGWSDL?KX%~U)~?C<VwN5pGD4BvEY1n4ZEbOFjE&RfjXnd5ip| z4~V%Vy__L7dc_O4E_YWB2=y*|AJ)hD0uBd4O}o%N~7nEn>Z zV}*D4xw5P-U%k0*ikcZciw<^Cpn}jDt$9yuCA=jTv-LJxz4?NHfq{)MBB@L>&8%kr zwV0Bw?$UOLq&hBfWNtoEW#`O6f<`d84u$E~T9cbW+jFGn|8`w4p`qDOx}&CG%K6u+ zSJ3^r7mxSLzuZqYb~wXckb0r{o}l*hnEwurDUYBz|95|Uy?YbInOdIr!lVg5<#?Z^irT&G0&`~=8hb^f!D7Qc746Q^m6gHy2itvD7*EN+8PuL zQTGfl|6}=_zi%2`Xm8N>ehoHZi)E!O-! z@`#$3{WLFuc~MOLMD!d<*PzfhqZeENKt#XhnU$l&tNJ>+Y-_NQo`bUEmb3xOp@b6@ z7Z*oV|5!am%tSmjr#*1Ol(0oPQ6Tyd)IYjGCf4HQWgKn!_#}~tx$D$p6&7>a6M%`P zdl{gN9IQN?)^%F?_;dB(GG(1&!zu?knJKOXCQ@{{^d0HSYCjSS0V-oYgT(N7JG&<` zyk2K6jCHU5r|)|$w2GTnA+6Bi`ed!!V!8Pqy|g?!*Bx_cFXHhb_*nGVKBqy7mwWuq zqtIkXv*q9eRULbo#y3rS=nKl&Y+OQql&!w1tD|Oo12#3ivMQ_KTUyba{q`67Rb6ai z5U5_UoV9KJ4vjSrk!+&wVK){U;^$^>er%c^60(>H!ekL0LUlV@gtbt`RDQyuiZ)>{ zo*9L zlHugc%n?##K5 zlBe{ZWQn59^v0ri?)P}ROwY`mrj#G zBBl(9i8IHcz$&Ko;VV(rBy7;3M9-Qo<|Bsir5^_BB28)boGJ6(Z_4wT$`@Vo4VvZ{ zFOL#w7E=sM?7_cY4{yC?W-hWh3XP#EIzWyffasrVplR_;&f4|dk}ZE1C>rHLkLnJX zKX}VMsoW$xcHpY4tSo1e_e%bmgt8J2F2L;SxT(x_H#7Qd(&Yc7)YWk$I*mE9{zUV< z1Q(nJhm@9tp<r%1P%@6ZMIC4JT34Y|Ypb1Nkz}IZ z`qjVpZ?tVVuDCXgu$0ax^E>g>)ukiw`P6@jAevrVhAFO3$F-;7vMM5nK&_?9-HB@bTU zvz{TMy`}G!bo`B;%AA}_MFfFBrn$xsrb-1r1Y?9-GQW=^72X-mp%p`FTVdPSFyTwj z1ApQY1bTaF7Ycv>Iu^SA)LA%9WY0&Oo0rFKK7u(mo?1p7NClBs{O>AKFu%sc7!IWi z_FtcE@wpum=SW56xgCihtgo;CoF?k&>wC-19iN*k-4>IUCa0o;#WTOrmGtIKayZen z_u?;HiTCBxu^Ac4R*o^TsxV$U$FmaCLGEx8L61pcjf%gKsuAHo$m( z(T>}>PX!5O2FN>Rf?Oms>h3NeP1G;)Y-@Ps?AlV>Z>8;ew}Xa~GPaw{4=Y^(KTL^; ziIFk2gz-khB1KX{fQ>W&h zd~XSTwynEXKQW;e6MLZc@gw+zkh{AN8cZMS-HzT5XEgN;4MkfyQPCs9>E#%AUw=PT zv_z*&M!Nj@d9wii1R{QlHgGds= z(CIycL2B{+n@Uq6j-p$Rpdc8}rMkd53j1d0-)_e-fL4 zV@aDe*j*H~1tk3Z2LytyLS{p0o7?O>~|+1bf>wyeNRy zBpxl)k;L|jcSojggBsJRcaDcdQgO3i+fqXi#C|SUzvvg$lWOrJ6Dy$Pa}{dtCZ$~{ zl`6@x;s8(e>sM8917A7KP?7{MefKYxt=kEG_ZYn+lqZJ0yfE;& zR;+#8qjhh-Y$tf>@gnNwT0J+NiGsK!qW?+kU-J^!@ox@VT1CnHB(Uac_|SkJbFs&V zXyyS>HAPEI1NMNk=6R}4^-004%AF{3@_fO~SiRm@I^jz++i z1h$^QA<$IjK;x1zufO|{wB@68Pwk#pCthyWQRn}7w1&5(H^t@SA?iw`bIL&v|v z>hyjJdIn;P`r-MJzYE47d15|Y_6*ee{(jo7ahI*)_f9)(41KGq_OX9#2%n@ zg!bCyX18sMe9-Aw4o{}brCWs1Y<(_5kMmJlW0M6Qa(@2gH=Kw1(`6)S{7xzD!Dsy5 ze3=UA0-Wy0@_+1>-%oW$=hFS}-mtr~GI9~$ZNs9CjNSv5@&HQ-yZxTVW){$}Aw#x!zmT$E_5D^8&OL zWcj4QXcv0T#R!~HuE5a=j`uneb?&e4N87ns=B?O{>w3lijq$oyVxk@2zKQWeTJA{Q z)0ShZ^8NgI7J%V{aN^HH0JHKrtP(8N>y&wGf83;^@1=?T2&u<_zdbXb0apI?*{-m{ zD3@5Qp=zAM$t~u)q<&V7)cn^)N zf~XW4b*HKfj5=tf-q_DxV#xIL4acYveSRY&W8TbvNp8&}PGW^0s32v(ZQu3`v0C5w zb(T`dGX+|^yxdhmJlqE1K0#u5}l(y?a0q$xH;h zoXu|OB`E4}1Lv5DdiZKvLm+AoFc&5D4i|>MDCrmmviYZZiCSDtQQd=6rKujb2fSC- zYXU=mcSX=&1+X=qqj67SKo zYU^2XI<-enc1Wlj*r!;!`nz0x%a4Id%MaWv_@QF@tHymII`Xwr!wKK1G4=PR?&;L@fvks@n~_hH=lBoPI1L)_8p<7V?@V%J^Ef=EuE%f4YtYAl27eX^UIy7(w8au z6+X8gMedG;wOKxu0Irf0V`WW+j1-wEJ-Z77I+wWHHu*N}d2qzLy@fo9wVB^0*j|^1 zh;LD)U!oI=fdQec9{+BNR)e(hWnce0Wu?G(g$$wjS$Sqk4-d5Fv;542bsF`&au7HVM;io}ei-@>)Sd=Ijp32{G7%+?yVeDBqeh7|y{?varKgIvu7o+aTABodaJachap>M&1^6jj!*U0%ZL9)k|o&En|I$N0_3SC;;TY~wtX^2jQOMdNpS*{Nw+I=yf5W3CVdw21{S!sw z&~j|C9x-c}c|>`{)Mgkf&o8TK3=R&CH@vn_59X@u61tHyi^ba~#dxnsmRXde5*b2iCPPFOLoeQ+@jUCtvy?nGz!|(({>W8`Rs&BWh~u zc(21cG6`iig7ASP2PshPSV`G*=ZA~IU=1zzW9GnW0Svaj0gE(nW*%63?^chX7H_}B z;?T51@fr-R(9nc<9Uaa*7L=bR#?^94r6HJKL23PRSo2&s>?sp$(v2G4>NJdYk;t7| z>&wjt0NU$f|LMPly2@}OUWzgzE9lm+0nn?G9`AWVr=NXENC`a}r9Bq9XBLN2cD)Di%YD?Jl^ZkdB zy$xAe%X>9-lbK(y|5#0D#50QK{rM9ZCE^){j7>9M{7E<9P?q11bT9Q$yv2@{4yBdi z!-?=Q+gr+<@;wWYA z0zXMrZDChj99(Z9Sl;Ic{nZY$fNXbKkW35-kLik_Y3c9P3HGmfRYPJELvx$*2={*{ zwV&%8`OStip6HMKqzHe*S++F4a&Y!Zrlb?;05o7`#cPqJL5h$;=YN~&oU4ZG8(^*3~)$ZR_2?GXy-e6ru= zQ=v1o(0qvpq}SIu7C`o^e!Qd{c)Zf$l+xoJ&wdd?x0DJ5VTax}ybx(ig_C=FDsKMh zX#cI3qFrbAWd75rh#%G!(@=xk_m`T|?{D2yKkvLR=jCv<&cz5(J}msP3QQl+9z%7T zJY!>GG<`fIBwqCP_D+|)QI(NlYdQ9Ax=cOaA3j;U)E~$%iVywmDXWg~6I!^jF-RIU z(YPKGF~Jv#8m7hpVMkO+(wD7I(>Q$q$fcXKz}UoD$-hAI|I zF%%~)-@2(G2dqLn{`_0Z$KbTo{OFpC@yVyn;7>^jZ~-hoIs(*fxpGoFTk9YUgha%@ zrj-u22Q`4ve7EPzO2~&GmjEW!s{aFQAteoWe=WOol|?00zwLMHvI;(Ei08o=tL2Y9 zrYo6VWK*9WR3809zdjB%q>7RkeeQit1c7#f`O5FO&K8(r|T2j>2wF|_wp05r9 z{7#v}94Sx?wxo+3gcM0U`80Z}Y!$|f3_A>a_g*_X{JX5GS}Ss_{r#?61&X4j7#wuJ z4GZA4nd^b7_ZP>eLUrB(h{PVL5MwxO&gFPESmUr)stQClIPX2sseikFAs}TF2*t9U z&iKo$s>wFD*AbndFdGwJt9vE9qT2-Q6(x1C51>R7r|BLqgY|j3xg?7$dboL1+8CLc z4M3^l;Nw4mFB0G`oqT}1q2DpD=z&y|eX zHK-|I^EhSRhIxLiJQBOzrkwg?C6$*=?tHUb#iVIV3&$}3I(pe7uLM}AbyV)6DFHHu z78d@i9RBEdxbPW4!0oUt7s6{)MbpX00kQOI?&&kUpUyCyPUal=t0Rk@_bB=)T>XA3!v=+ZOSbIr5MN#8KdUw7xQLpfQlki+b#DMWU^2Y zpmp$Z(2v4Dtn5X=`{padXJ8BguJ9v1UT3jHC2~w!Wn4u)UOA`hpM7qH>7b=Trii?U z2mhN-T!Znsn>66_Y~$nkKUb`d@7gT*+?=-?ewW776cE*FE9G`+Vnu80o?Fg>FahhYaDKQ0qDQJuR+C}U{$Pu<;n z4se@?wQDTN6VfW-$%A;Or#A?{jJkR13Nu7gz%c_;uF5tG^P*fR^j=F(%1>Vp)(PzoI<#Z0T&YI3);VV18qQq1 zI>}*2Q;W$pUtj-YG?eBgtvLL5?c|r&Wtm1WRp%RU`<9a>Ew|iV)TmFC%93mu)N$~V zeso~J`0(-=odhrEU0yvB z#qqWGmAA;w`{y+cD3pw*3L&h9BygN!b{+-!tZ9yv9ESGtsq^u%(>yL?k z7n20cV_XqHPwwmM>lqe(E-s1j_PYYl?Cb$tejURsSCtgYc=bGj7(Iul9j0 z#9?fCE>%Y+e)VJ%Yn^=C@D)e2`Y`-NjRJMbFxgT6{B0eYEQM|T#p=7 zcKU$Ak^vSjN zG;v~FoHIS7hXyQJc=!NK`cun+y22E!24cT;MK*#GhqP=uu#P~@(3WwZi%v;lK<%5% zrq{!lkih@^+n9nh>SgL+*ZEE*s9*DJ>AeC{QOR8&w=6*ytgKz7KWt*^%3SEol(DC7 zB2--F(qWzBN+)-u@&9p?#U7}fwPuC8Z;WK;R{LTLZCDi>XOpgg-rSH6_mkR(;{qV$ z%XFLp{g{r9PhI%!nsb69OzWF&IV~q=SV_tLE`7%4L;j-Lme@EKXvnqp6dZHTKzZC# zuu2{@{r%e!8k-L4U>oN6mnh}I1?b(aG1RCI0NIuW4p6;nZ)acydsobLUO6nil?$%c06-h zOe;gSE(^a=@tnrfS839+rmdZg8Y%IVnI*Q`FLp?7J0k@@Th?(h!Zh$k2@-?1bD;S; z-kcX%VZCV(&hwJ8?4I~-62|ZMKrEZUv_3kd(|ZR@>Y4hw8@|DW@T2H% z`^SIX`c;P4{jwU5r*C)j@@o(@P4P0y{jiUCn~`B9Ilu4DTqfF3xn1>iA){^o9E|SI z!fJibg7dFU@=PhD;7@3%dC%#5+u&oVravCas9R^jLY;$fz3hiJb$GOZ8dMiW){}q~ z;e2-yfSE%>Sz>_P3g*^yk}jzHe87z-b8t(uK6uJzgxT}SIXF1LLWTgAv1IxNb}8^( zQURExHNK796u<`v4VN(?+HIAO((i;*Db6YeBWwKi?tG?w6ls#kL&#oU;?v{hTZDMl zCNvkSpBB%&vUF?h7jFw4{7gAJgB5fIH78Iy&b;E%LZJbmzFNS79|K+Pwb)4UC(>Bj zrSOgR%U_Kb9N(H6o{YrAo(P}QEtUI{lp5KFb>K#AwXZoiUD=CVUkB3xKc#uWv~slg zlilg5XKc!Dh(X{qe!mk%AbiKJZ;`EEova0lMRN-POb7;alP4_SYT6dLvb2$ZILPsk zX{R0W9bMqlz*^Uo_u8HF56VQP8p7 z{A{2qcd`0i%eo#eK!8>cq{U6aW>8SxPtNj-nhaW(<+>y5!pX?~fyo4z-47t;JKQ)wDNw`*vf$2A6K#{{#%P(27r*+X zbVAKCg8YXk3!!bdc&Hz~zDLxn_@_0>^?ZVV?5!GZzZL6r#theaQ*OpE3w?FUeQZ`^ zV;bCdW6`NU9+PEN*3jrF_k}S6aYOWWc6hhxexgX#26#NH$1C0p41N6W_M$Ie9nw-$=XpZ=Y-_p&)_FQ>ogHB215cVVRMI2W1xTJq z7>NIKbUVHolav@|vtABeg^JIVogrpVgLDJReKoU7+#G7aZ5`E%4I)qUY8lCTDI87p2EcZj!D3;z|pHH_8I69+e=M?hyizB zKazDGKp$>@>0`EJ|C%*6Oz#aOBfv+RNS&DY2Wy345&gZ5FZg9QtETu4WvSe|bSbEZ z+g3$QyziNt(M%<3)_7K6JJP!rA4UkPkW{ChE~S094*C^!?hUxlO4kET$tY5t^a%ve zP$M!Q@3yRGe);n|ZF0FGsW9eS5ME!u?CswRfI16Z3E|0_As?r zg@PQ}L|dSO(D2s8rde9jfV~8_b!v|O);g^5``+;ZZUmR)(gfWSfN}fVc99V5MxYe2 z#l&FQwL1LyvoI9$Rh2F=Kd0-()1)s|G}u~lG+#s8j9WyZ>yjEJ(e(S8S4Xv|%h@lI z@O&NRiSR?@%w9-^x7}XFjy?h$K@Z&Thmj{=c5T*CzT{JUeZQ}F&#@87^>vL_(yv7& zJw>uk?$;rf`zKu)stlG6dE|>kt0$Tt6GHAbgxNK3>U5elqoYBEITl~={6He9`c5;8IBpW))!HK-!CF);y`JVIO94WZn`(hR)l2lmC!h#)} zR>3x*+k%1FQ-rX05B3`KW{##>vGAQuC;b2|DufaFW!K=+`Bc>6VJnOS{K+cTmC2PYEQM9K+-#B#vtHWFAF1=T>1<+1{GAR}%v$<$ zT=oK#qNolYTE?1$Oj?NTDb=mUq8DZ{Am$T(%`V1i8*Y+pl1s_OqgsW17 z-b|GSXoiMO*&mYwMen%#N7*P8JGEG+(LLH?JfGcaiYdcmGg-0|8^a2uM)pL1;g0O6 z?YpAl;_9}oY|hpfWC(osxuZLFFKaMY*nT_7!#HIp$u(MS2{hByPE>lP#xJ^d`g4EY z04uKua@fFM)p2c3CqK^TevF`1V_Q~M8WSDeyFF?&-_c@WRMq7)sw9S_kRjB%IjEC()d4|>Qs)92&x!a)r{=$VNl&47ie@V{&ig@j_Z@b zd>Ygvrib$)IxT#!$sH+HP%*N7gB+x$4>&r_@n1IIH_i%q}N0(n+-6BdnmBPH4E86m0*Y04Fr`^E5f&F1) zxYqAv0bMksf5UJz`xNZ6mlpHE)t6aogY6N6^MiT4 z3s%bjU|6%3^8ydy-(P

zB@M*lRGGDW*vTyC%EKl>hN zpDq46z@Qb!baxMVcKPSGuNJ*CIeBe{E{%xf$(Yb}^Y(3BFMk*TAtEwv@QJtnl7<+l zUx7S*dhpG(5IiZv-~}8Jhl^GKF$N3dLCnJc6NXdx3)|mrD`+8HsB{=%FY7Rg_Db(fjIF-4nRf0H`LpDr!^I`*dAD=X`1<;tYc_4z4&Q3s;T@S|sD!%Q4-6n? z!5c^}h=M%4yqkWPowX~i@cZj)%HI(XL@|aOat%ta989j5<=56yfKDW1XID6J2>nco zN|9nD%`c4kS(}4$0o=855fmFlF-aFvU36qa*`vj|_a=xDwwB(D2>B|3GZUz*cM?nU z@JsqbD*j$WPDNtBGXb9u5nvcG1FO_njZ4;qH~k|S`ockm-;~Anj)51@a(D|7$LjI1 z5AU}Q&&0|YKK9bx(*-dif&IzA zMxLu9Wo+C-z}RU$HS&XO)M|2iaSC?O$-DABiF4eB^E%)4`>YqYI`(#Un!!9f@ZL_- zW29>y;2FZ?YPbwtcd}pM-z#YJf5>6nt4qfXbX!31s|w;ng%o^GI~EvFNaZRIw_(Md zcshBgT=@j9n`su*s@fMkFPgiS^SaE4HvHPE2j3PL=ms(!K+5sx36rcAuZ$kg^H>JY zCkby!*zxA=Y!}m?qg}La8d9!31eH$R87zwu-5HwU+`AL+FGR$W>5Pt33VL5Gf9)&9 zY&n|y2-?ZV;Hz<4>ZL?UBGV(_V1bakYHG;}F)+?@oic=7EIpz=w1^{U(~ALpsZZNe z;=;fO-ks&FkQfsK_EyKr3IZD8FvL{=UGZA~BaW?^MzBdAqeF|LS>n%c&BA-U9Typ@ zN#72Eh6a;E5KwRruJP~?!&nvqia+nB9_%=jO)qpdhoD7SQH5a&yEI)&OuX5#?V4># zg^eSEXprDAf0mRK4yZc!&714IyjKu2fQ7{?%A(H{Lvps*W;u&2(&I06#E-kXx}<<& znC@>-G##cHHxYzAMt61&d6sXssv*0ss{Pg5kpTOFB{W(P4;<-pyiD;xD&U6AAU!A> zNGZYzSr>=B-Av5PbRKP~vDi?tOl~O)l>K$YT965X#p_IiPhd)`SLF!6a~>RlQkDq0&yleTx-Glh^0+T#T1a`ADBJ#Qw5jQ7 zWdm+S;6%N&dOzvA@$K;};PDN|;+sPd{Xk59x^cVtB)P-s}bt2I#Q>$$v3(yM$eZ z`v>Hoq5ffaB4T2TiY>khVqweG`A<)gM565NHooAXnyVMO_Bt*siI5N{=nu_oPsC!1 zrxP0(Y_-Fji}jyVS}q}&EhUAbo+`lt?~V=I$Xny9(6!TXs(Hh~;qSLeCx&j~i#1lO zu6NQd12c@WgObcDKv571m8$FR&I82fVo-*d7smJ_hi@c99bWBk>~%^|*n|QuFH@YY zdn$h-qbltW5r+t{pmK04E!cNMFQ;!T^=|j~R|u!Wry=UOSpA^PB3bKhM7iYhb`zTnXk!Ygidmi4aSuUKgu5H8HLj5GNZ9e%asiwxn`lX~} z)@&J4W|7tPYUk-FU<87Kg0s-?=>Y2_vb+?hg^_a7#4b7z%uB1M!Gqktu*rVQ)QaL~ zW}QFzNeryefM&jY3g9h<$EQAJ{@mD^bT35IBAHlFtln%9o#O#jw*{|>KWQl$# zW!QEb@H+7N2+1`h3t8|j&hGq)#5zC! zIeR!Ea214nJUcXmnZ(kZ`YYjJt45cEw#(>Syh?NER{zz*I{p_rt|+!#FHVr5CsKa7 zub`}4x+8k;jmAA?{VfC#7{_R@m8z@J2wY2hfwr@Y7qjuXg z5C}2$>j4`f%t_!rn5elOJe^WYNxgwEW#ATo?VACIYHNP|b9Q73j-a%LN73VW4zcP) z>&FyMAFOgU3die4;F0t%dbnZO0?#-E#W`-~#KhG6IX-H2;kEoa=byD=z)LoLC^WRC zGP=r3*m2_uN=oh7QlYb8^Z~?FaQfoU={hHDUH9+-bOiJ~qN7qeJN4XWODh(VFWONq zaPud-Efe%t-f-P7DBr^;OSEXkq;>1%xI@Om`c*~;s9i!G$ft&UT1`TtVx`SmSlqF=m5YU0^!J0Oz8JS1^;IaI7D~TPV)wvHU zoV?hJyQ2*UYgmL}_h@CBap-P7%J`#ttrVOB&5iz1UT@dF-3~rWq2cyS`zEs80DW-t z_u!=lY?clEQ6i!NK+-;ILY9Akc!hze3i?qbqOFQAPL5gT=jGXFuyDlR1ywh~56>I4 z*U`cwD;FT*RCHycM|;aI_{+`?K;+h@4UdO+Z)rx{Q!F)hV3tE7Ep8k!aUxC|MCylY z(g|}{YB0lM)Zjz3IavcUH92;#xbP9hZ~WXqCy%10T~Q!KSBGq8ShIO^vbDQRALAmm z?I;WPRhw#V5om_q33+@H0KwHif!RxOMS^>2jXUgC2fLj?k|-~40>;aG&$~#BwGY-V z;CseWtG{1$&2CfrG;5X*r-4iiOa_5~8Z~+nHLB&T} zA!AjF!8(c^DT3oY(TtWqPa~|Vd<>6%MABcF-CJz!CcKIb{nuU*e;@pq2{3PpjDW)|@CuAS{AFz$gq$n3)ZBe{d5#?H zdU*T6*g!N_S%jizPne_Njp|>oY0>=J*wCOvwgD7-066t3&@xYG(EEX9rx3d7o`22* zwNt@nqz*I1n`0HBkT_)!TcOwLpsZIg>|mAS_;bI*4F&mF>Ktg|sDtb5zgS~SY~b8e z-9=kG4rsKLkgcTrtRh*k->qA-FZIMuE74~VZ7$SLxXC+IG-Bo5?by->HuV+2z+80} zbx3JL^+VGtBI2fmL>73RY=J)(@gVjdRAPL*l#C3N8G0NXoT|}G7%qMWoeok`(hI^I zI3kB_$s8sYd8@7Vt4~XrOnSPPmMTap-fJZ%6E_}Z?p(`%;PQ&6$(WK?2wD%JI5%&@ z3^8=IT44;Ah>Q#ynT7xL9R^RO9~6SK2!(>LY`{WMiw97El}8FJJla->!yGagk}HwD z;NjuvFVbd(DS)DG#Lxnb_*SqjAj`-5tI2@jV$H>{_fk9G0v3(3v=Dj11`1gRDeB zvjJ9idXP{N{~oksE+GA_Q0Se&#LaLwHa0drI7+nh9J60HnEGZhdo1;~^rrI06y3OT z+doB|U0}3s%wWFi{qRLT%TU>WZFoCsE)^NXrLLqTqofqAj~!$B@nTpw+Q|vrWWyVd z<2W5`UuH!`K>apwf!G(QqlZcR76>)O82R-@ONm`5x!gDLC1}( zfJb27C`ztCCV#*;g7`h8RpZ757eBGWm<711H|Z^-p6Y5_esPvkY)tMh=}D_gWvOS@ zvFfDJf916fN^?7|+2TF(MHpJvdxu$Iy)zQZ&C28X!vm&A09wUAd4f~r@;!5+#zhrM z-jB^qWoVevLueGKzs81N-rN2-;`-*LuXH#9c47x=wfZi&a<>h5fV3II>9ziSWBMFo7h^*B3Yw)n; zui-74r_cmPzl7OgRamM0udeRySK@)EU|+vFQlg&#vPy#`$iXuCk~3`l`>D$)H2Ak)woqz5Vvjl_uPXc=4Eg1&Kq>Shww zNL}qbDiqECkMKSGYwATZdcqA>Y#KtU+@_BM1I?j0lFl4z`LXAF(c>4TUl)XhVZx{{ zE%=hu!R`asND~Y;BW0#pCV>aq^z`>sRPw<8yU@zVI-5*0$&eiV&I-OdLs4tYvN-9D zp5H}%^Xuv|VLQngt3#yY@sySPNF6Wp3xXVud}9ORjfaGd%7#f$3SrNiFoy{8G9Y28_zIZ5WEu$9=9$UZ%hZNzRgS#s6kEm>cC+Z1aJ1`MuA)_X@qcizc; zbBl)|J%On&UE3IW8yt~)FioM$Ly5Q)+ zK@E@Lcy3Z|Y%=62x$_p+#7%(yq~$jKPIo~Ez}gZT5@J-wZ2rYcj$){NmO6zlUPdA4&I>6rvx7yX%J{dZFo7_gj9GSC6#iOlU9D zzNL7<&`v0UVvtX(QJK)Q_~h4tXkL|IEJVJ@20YqX_J&}{P_OrPil!Ay3#GBvvAD=q zv`0)TdOZA_fCfF&@1DIKj--?Ma0A_ci%{QS6hh2R$0_ zK|{gQ{(e^hOg%_HV1flc;hqzU2Dfz-3~sJX(=C$@ZvXbpR=zsBYiYiC+Zofur=`J* zhe_Gj8-PZ+?EroH`UL46#|x^(=tzafzA53mhY5zg4)~&@P7JshymxH+Au6SQRd%-I z=TSXt^yTf(k1Kx{8`~UtMY7Two2~=l(@+dFnXoI?)15iv?>=U@Kt;98z*wMU^jjt>xlI1q4Kwl-~u@mQEy@c&0O_ zGxpaGzk?CoT`&r!zvhVMW+kS|00Io(G@_GoDW5U^E({1+==z4UBwVU3!1Y;$@RZWa z=CzIn5PE)AO}C=OBsy&}brBlF8XAv~(E}LCl?O*WG{%Ov{=lHCl8#VE$|CL;a}pvV z^*4KXl#^od>G+5rXewfXnU2XQC11 z4--O`y@wPKQ!{&bs}?JMjyME2_ZEhWnArNqYg7k5eR>${qF=-t=khQ<>2cx^WVcM9FP+~K*;wk#y+l(f(RoZ{BXqfFvG2$#YUqB z3tL&t6tp{-;*5Z=0YT=}z{bO4GtKrmKa)4FFO&1$9b2mCl2nWkS=0>K`|oHNAxW%g zy1HMECV&1k8AqF`epRGgQzOvw%_S$&A7S3mY8$R~v$O}JjgX)qd<9Oz#jhyFI~iKf z##vPwYz3VnNk?2vFgLDbV8WM%9Na*AzkJ_Qn|(nbc#Ey`hXR)2d)tSg6{d0JLG25~h`rZ)gC28!G$#dlF}7XBY~3cQUXDWy-%T)hLD` zq3d#?+w7O0sPoJ3q2n|=#+|KjWz#C`LBe2T+rvA%IF;B*QP=dU%7(ytt)NW!j9A2BAJtmer{!>X8{8|6iP6Vvi} zy+7J27`N7p}Cb`T?#C< zHsIvlnv2s37DX}3doQ|MyqgBEetp(z%KhZZk(`)-aglP6CZt?j=mk5*V*>sSic@rT z<1lOti}V2|K7A&5qP5jW?!oF%8%u7@o40Nia;0N0T4#b(krHSv2b?xDRVK<1{=f3| z6Y=5Z6@l0HeA7i9FU3tl!%Yl7kC{iykh(>GrZ2cZiqSa3imfjCCd&oigz2*R%^Dbq4!`IYh?sq(DSa|$yadl#VC3_Wz`mcAqxzR3H=&&b%mQo(ws6UrY`>ah|@k-_8p%(PI& zsW&d;i1d0Y30)qVAir!#t5s(nx`XO$3tjo`+w*N8Q4uf2LanZ%Xwb}?S={=PH++c; zC(OWIMg~?qVX}ap-k`z)YjdV?GG$ty1|F5Dv|BuFK>loxd=`4hY45RGGwvxyTK8V2 z{o%Q-a-WmV*P*&ypSRya2|;1pB48P#fUmMaz7`0~_t`KEi&9fl`yZvfd05Tw+Wx<2 zLX#;9Ng_&GDWy_cnp7eUM1xeCGc|`qb4jyGqXrsODyc*y%|(-D-}C0P_kNz^ zd7k6<$8R6|*vIzyWVP0Nz2EnJ-Pd)VuhR{OthG4qiQ9$xx3Ot5m1kA5Gg(uGQNVa( zHty@7(T_<{$&HfHVnzYQvr9!?i=JR+Re7`2V#=GXvql)85Tu(d!srb zR$(=@2^_67Fhnms9?pKT=B?|M>@%01Pp~stI)-y}4`{`78GR9w{yq07+tSJ&Z9>*eIsGsC$nRhl-J(Pd|WPWt(zc!jiP#Yc(V+x zhi7=2g0XQxe`geTc-zvO8*Oj8yI+LnX+_5`kQ;Eqh? zsG?YamT*(!DaCv|9SuqK2+8G8Duzf8KzGrcd@i#(^BbL7Emio?AvX+gl;0*CpRL)k zjkK`yE-M*D&kULg)E3&xn;kHXF*E&(6XA&z~bR1ckZMg%tmpk3M$--C1`u;_UlP;d z`1trsjUmej4(YEZ9VW622YW$b$hJ^VJJsN>Wni6KxOJYBC?aV_1J%+@H*30@rCeESirq`A@9 zzz0q}jw^4&wzF>Xj?(`Lf3o259aF zr`);i&-cOjgrcg6$tpV9Wn6YvaZ&=wOkyl@yS=tE=ty)>bF$On5>f-D;4yfL_t26e zeIRdds2C1`Ttq*NX@)^_u8rXe78YJgmdk=u_8cSzr@!3ffJs!FIH~X7zO94`V+RIJ z8{m2e#-u(PBmQx&heys{ohrH=qs}W=vc!9Frm9^khjr??t+UqjsuF$(-#fZ4q`(@$ zv_Wzily?MBl3FtkTkYdu?xvj-!n-5L%-x@_Kgm{yv-u9(&-vST>`3lZG;i2KFnUnI zzJk>^uy}En(dOk(ugCEfi;rU0+!dSS)PwKR_vap!kdgDBHods2xoRZK(rhY8YkAHm z`8t}E@Piy{4ifDvObpGZHC(_ZYtJ+b5-Zqx;^k$joFS+)&7EsuU|mk(l)IvlJ&e_4 zn~$0bWP$EMbwaYW5rTy*A=2_!RV1&!_@N!et?KRThxY1RNJPXTtcE#x7q(pM_o99` z!4;-#5fo%P+hhA2a)FJR0)^+qIf(HWvR4Aq!>zIl*g*<~gM$Mn8)aPHlRej_hL)rM zMfAvUWwySkhY`Nz{IHwxLj~%4V^+=IHlOL8CMbbi>$P2e8h1T#tkv5w#bqraR8jko zUPoe3g8xIF!|(=Ddtn+2#h=b_5eCp@+t_H<8t9fa_WR2W$G|COu#uJ*FWPl9KXg3&S z;`=$Z23pgCu)ic}8?eGngte=s8shsd`~PvFjw+G_C2c|ZXOMwE3-H4!w1RMVcBZ=eDcOl;5{uwj^ARr@J9iP79CDr)mPXxEYbIGa!+k?O6@6pdYpvRhy z?oQP7A>I4I-zZ!LHg)k&-N>)Z2)!{H_1mxCIA=-q=FOXvF3CUw^1`lv_3140C6pI{ zC@Ih7yZ$ap3Z|!Eb-jefFWkjt7%ySXEQi5}j7L$zeSxt5Pj`%sjgC;YIEc;o&er{3 zK@fNarIx6}kj~4oY5~~7LLSF!o1D!4eqApnYF30kJRH!klFkD35Dgf^@-DR++2-ln z@cZumbVW7GKsuN^L`)=jp@=vM)zz6?&C;u}Rr~t*Jcf%6#3;0Z4gl};6z4)s+!%=f z8qg0P?r1JUAB&Ji6QK+IHadC?P+I~B-2izS)CGyd-B@(ia&i6XlfhDlpX`0=E^~3$ ziMaYePOt4trmNcMlFW(YH=bNurgF3b@~&aV7l+CEnf=^F@#0)`;~lG4Ncz!U5b7 z)2V!&n`07&irkNJ0g3Ng(ws@kmOX;k$obemBnA0PLj!&?X5?bW$0 zas9>FgOpU~(&T|smOIbIME<;=%J~;9>ZK{AZz0S(j7itlBjMtnfGVo~>2}3o0p@`G zD0xLGi`iBalg{E}6O*lK%o~<5+7>Og|Dg62bn%Jgd!6~gG$W-KT##PAJTfUGN`EDIHuSl|B8PL<#qK5582Lw zjjpw5wcHEQG^G)KB)c!1Sx58jCM=cnKVGrQ{F(#f=VV^E{D0)vru7en`oz2hYm91t z1?UUkQs-5LHUVph$d5$N)ZSwm8&sdbbSa|skQ03it(v3Iq2)o*wK>E`Nz1%V%+!=V z(>gX*O)q!#-o5=cr53G$<~@g+gsbyFl2I-mSr3GnqhauZR89BB#V4tZYM<+Fhj6ME z+e}Zc3e>A>4o@|yBA}nL@ZS1Iw~C94$ww?}JCGa*5$23-w6)&eb=^XGS)l=ezz@)} zaM9B`^IZ^|+rrl-7o3Du{wWJaPibOo{+)?U0?~ntFGiZQqu4=fF0& z0L9F8=~att{4LUxt6v0vI^ebMcv|7qhC)F8;J8*tH_dKl%!KUv*l_}3)-%&LH#O0E zY_i`c^G85i+^z)YQB|QS4ocP2q z+okpS7juxJ*rwcf$r2ru9+WWyZJ9e}rl)T|d9u~h!{avGuvp{*;8V7-^Gr?Tr;}BS ziY)!4|MGyOgCMkeBU|E4kHiEi@Z?{5Wmolnw}9H`E~CeW)p7+@k{RvNnKuqU)LFnI#>P9uC&(k-L}yJP>`8 z!IWQQ)b^UNW{S2tw+TW>#* zh{-w#$!>nf$tK@6$`!hyLjd|DH_$;V;!bpGu-#Kw*DX6>$WNWRe%X&xBBU)p9WGQ0lzD1uq{nl*z(Hu$st5Ad zLeMq8pr(}?bdxhKX!~sC;ln<=Y}Qy9wRqYBRoeJU z(bf6o5?*cY4?siJz+^EIH3-(P{or=;m$I|PSscQIzh5|eWj+kd1Mky0 z&0ODJ{%|)gOnP_X-lo%{s(KFmk* z7AM*y!~=^GKfCd)8N;ihWjuT+U{Z9Oo_M@Qf}Bf{u9nfo=iN}M9lXb@^+Ca9{>r_R z-eTzu!KWWBDhAbVgholMwF2cuHcJwQ_BvV1bn@3;nbw&5xv&5&oLl1)w%@tDCbPf) zx;+AD4i?Xi$lhbx*7H#yq@sRz@(NlyS-23@9w|5zK^(?z1A-kW+U}k77qeV5=JyNR zEL%>f_2lt0^FGb@C<75RZCQ!vRVJrJ@Gg%|)ZxFwf$Ob1e?2ovsiFBY%2jyt2&k8Z zrM;CU_`o*!cX(5yx5G^tckr)z%-<%WB7*`jjI^fQ5abIT-48P6TQUK5YHOj zO*OTTh`SkS>y%*|QBY*{2II(>N46LGE}M+>YIleY_sp1T1+~RJ?AW?Fx>i!mG=I`{ z_pzm)0GYTY!?5X8@;MT&Irxn;V<}m_u5RUZCmk;^Uh`z zoG)tOF%n+#dw|LIKwuLHj~FO-M^P ztYL&o3TKp~qE~(x6*B(zVS^jmI?Kc{H9^YFhw^pF9t$C@c$V8?%V0Yxv5{IxX-w7B zoy|BBI=W6g>!ozt*YUcfT{y|Yjj{?ru`?y8B#6Zw=kK*@9;nQ^h&Law7wEx^l4kYR zGRUg0Kaw~Zdx8)40FMGk*`;BW==itJa+CLsX<*6A0$ukU?5DF&IXTR+h3p5a+bVcmCi4IN7Rmg_pt@j z+IiYz7v){%_n_QNom|9tunUTP-o&*Mf&XPs4?hyOWaX11k!w?7A`M}-;~yJy^8fNm z;!fnChmhW$hQy@%ZE@KFXYc>nFpsBpT`<2|8TN&iL6*!^(EfQp2b1Ve91jQas6||*kaO?>91+@c#HSd}c_!MGB z^|5GA%GoOsTzs@f_|cYKt!Xr{gPuxTAy8~gCwk>MB;EB^*1nnPli8k3)&6bb_m0VP zDO`UMO#=qYNgd|BFC&`b?2Io~3F$s~D;b*gK` zx?@to)mb4rPl~|ASo72Nrus7St5h3eZEol2v-op7VYd_9)^N3dJLWlEVN#7kr%=Sb|<{er?;R{XijM4RK6Lw1l)OuoR0i>8s?VDIxSqYc662M zNr$eY*g?E-6fAJLLm&3w?WI~hTRA?z)MiDDG3EEyGCIS;xwfo>t47dn*^|L3P@qxm z$jV=!k#a{nT3oPg*34I%Lo7>Myiy%(1lg4s|H8co&WfIO!Abt?4`J@rvNJbC(TRxMcyT0(=XHP6ezW6#8CAk-4?E;-5cf*SnCz;p^!I_`(ShfG>;E*C z-m9cFh+CjjVD{b8ySvbynU!J13b$LV+|}w;aW8cI0=7%gMaF1(NoUbjH1Hv$(k!VDVbl6_H=l zf=4POMTA=WQf)D~-s+BcpKnmmenelq^}CV2e$uj)lDPJwBg52ia^kO_MMXY4`R-7^ zsQhG*aa(YBtdmsJaxzuixR1xwUu!cq{ABTom?B4!hU{eS{e8=PzO8hb7psVKxgj9( zo;WEBrtcrzV4cob(ePf88kV6|xq8yXKRmRHsd}n5L}F)$jLCNs=k=4U3a`r&j;lnT zdrQ+t-$nn=z)!ijq#`8AQ2OFVw@N>$T*1D0zPWVn(dCt4FT$_qExT4(8fb4(kU$ei zDWdz~6}|9sY{icn5!+3BjINaMyx+cL+SuT#F{3dDHSSeu;F9unLnkXl%qIPum?<3; zkL6B7y^mBXzMi}nw^zlI?IY&A|-7yZ@^l%7Xtj)t}dgcN*H>cDk#p%y00+*LlurM z9u!Rj;8#9SbUl+w*5RGp+&56#9EFod5)OlW$I*w%lPha%R|Oxj5!s~@>Z((G=7Ts3 z<@n@)+Ir!zXMt1s+uZU#9iGa%PS=zse)xr`>2h@SVL}2=NR7<3AuX_AazIP&FkUkY zq)Kpt+0iZzf(##LYxxtw{Xn8-TQqr1jeb4`^hX>y5P~9&->drkiGKH?j*9muEcL^E zi~Ni&_!{?fEoZgm+3K@`@rYqPo;c;wqcFDhvtHo+?j+KtC;HZ|yCkG-Y2-48YJM)F zSt6*Wx<`tJ*+Nitfl0ViS~}d@8vzVQD1^hEBuO1-uit^i=#-DAQh(dQ)xbM_8h#IUv7d-&jahR9gEdP>Gjg@De2yH}o zxDPni6GLs9*>z|&Ln5Ps9u|ejwjdQH;Nc{7%=W)@b-AH(Ht%%&7h>SOsR+mAY?0q9 zm&OcIHg`R8b)Oh9YvJGfLc+BOy0n4A3Jg1KbAXWQxE?Gj_IUITI>ZA8SG4k!Eb)3I zDJOM~XQO_RyM<}cV1^iPyU`ASlqq1fCFID9ifY&!o;kA_{k`UqH0{(4c;8wkk~lc9 zfU>ET3*X$D)=w9w?uzAp9b^5XF~9TW3MJRum#3feygqn9RFkfTufQ#F7gQ;D(^=tK zm7YcWs~JRk)}Lv~QA$P^UAj!5TJ6o|RuigvR%xI#R6=Y}w9o&=&EFfeXXca+A>}j>=Fn-pE&NjlR6*4_U?4- z!8XHT5IRr0b`FZ8+>BhlBHVQ9U3IOFZVa=7yZhQy3PIs@5aMBrGXz`2+Sa~+-T)jf z&yxOd4G1!>ApCAdzoFrJWnB|J_G-hYRwj+5cUO10{`Pa@d953hJD;4kw4$PN zUM91F&24sWZjkAmRex*BvtM@=s>kO6hh{$CcpUW5oYR9VGv&#f2-`5u!nvB|H2qH8 zM7>GY_|O{|c5=zs9ndmGdlAl3{k9v<5vEF*9eO({bq#l@S+_5Hq}$Ui@#-s$?qr={ zdX=tj#M?G-=o_vQq@srOk=>h9tUB&z&PX~3{T!?*ujDnQqJ13{xJg?10kfqF)l)`$^JUE=Gugo(*Hr~E zvR+)9yIDK@4fi%mcCfClSJCcjh>@KOqQ?Qve%x3ZIEF`8@_4apxI=Zl`b<4D)cD5K zHKl<$jJ3dhpeOj${l<+O-@blTA*gtqGXJ;cSMKQ(%6fT5+VAu2y=eD1E=$<|{`}+B z8{F2hvGvbOF}lI&mza={aKb)OeWj)E%N;5%*>jMRq6B;mlS1z}_e5o$uGKxE9P!Mg zDqeTabWyG6)F1=yLuiqV7K_Ne?r*!dQ}Oex&`B@a=ysR7h_7V^ZAumQuO9P=is!TW zxWS0yyZNe|U~N-vdx%3Q7up&}7M)`fc79QQd!Ns@HT2ohYcHNR%(IPsJ5IOO;0g>LCl~T}=h(jvS?a7;+7_s*WjfAr-};WcI#=i$ ziVtnVDb^R4_q)z)-M{wB+maimX%WZs?fPSW%{ZV|4HY&x={nkxd(5ozoVd}3e7@CL z;R2&R=y?FeqX8LDAx8}1Ipd^?f3g&Ad2e(x;i|w9(z-!Rdbgj&r5tLd#}}ij@+<>d zI1AwcMu}h<8__@2a>{qh4)GJNZ6QK8B6qVXAMMC7O*kC0nEpnba=^82i zLbRf&_Q9|64>FbDNx-=PRb<#M>xgLQix<{4eYL9cU#?l#&h~si+LOc(gB~?zAq2qe zaqE`fv%S4<)^ts_-e42(2GRl8Sy%N3DmNSHG$zfMV3MzmlWrk{=#{qdCQ864(rzSU7rk& zVKeJL(Xqmg(v4Tu&wsUcPTcWVf>84vi^{e@jy118-n?aXgHK|oU)!CnXu__2rSq=( zsI!zq!wbH9N#W-Wzt>(fX0$)Y*4FfN8Kk9|=}bnWrEdpX%4nh@q}U|V%S%o+Sp*c` zjvOnqPI3;H81=zxYn7AllNU!BZt;t{RN0gN?skM-KdxcPy)^D9-S@gR+C`2wTej2v z_#tXj=z&g#DgomD=BD_7rVt`9{9Ix`kcZn~Lk@#a*7L$@M9XHalWk5Mc9wKs*!uXCGC z`G5YL!vEE%iZZowNdMo8+W4mw8v3y8L;LQ%Ip@7rltBSaKFoH%r`_i4V&taQZU)j} zy!rCRTq;9DX8ez_svrSVV;_!V@lrxZ3^tMG)OwNc!Yq|K!6lmY*3D&}zRz}G@X(Rt z+y7ndE2|yl;Ze&&)#=B23TQ9e+JeD#3!+7V7JspEe6W9;o4T3a`4^;9I{GV}#%S3U zHtA#^(wS*BWC#&ll4M~~jLaS{+uFb)T6?d+w#4(bQd2%+V%;INM5`C6=U`P*7YVTx zTplV*A8bFoHg%8UVuF0b|Hg3g{TiyUBSC`s%po@|sgHNxWPLH(U%oiAzfp^geOZ)z za`C*OE1!GR@h5hnnVurFdInT=^(#Ybk`G-uelm`cL6+zK{in-p%gQD~nO7`*rhlAP zS|x-tBUZ#CgYgLOpA;NUGy>=uWVEt>Kde$nPx8C%Qx|RO2$CaP{>U+R`(w{c?Ma=%eF0(c_K# zV*x1e^6)rEN=1RaTC*yI;*H4&KdmFio=t5AW+Fn$a#KE9+wrmN#A}S%c2#b$q#C?X z`qs~Py)J2T@JOciNt{Y5>1b*`zpHq@!hCy*K|u&6Y4#7FV3?Y!pLfD~Ar8cVB#=K& z=V2M~Gj-;szJKtwLRwd=#4kqs$jg-pO9VNFtlEq}RCn(<#=kjUf9O~f!-v}yi%Dhc zNy1FD+q3HpK(e2EV3NYQ=_K!mo`3yic~q$-t4rU`&)_j);q)H)v@n`pP1)PA_d^4v z;$iX13HejOd2qDq3LU_*UgObCY20<`uxU#fD&bnTp|xzQ3dek5vu@tWbL4aU_dci9 zP3ztHMEF%62~ce?IobUsoRKP%gJOG76&GyK%?HTd$CHhD)xN> z_~33d<0bsBvi;gu>)jLoc>!n|C4Ndo8)|WwZD04%*L3qHCGpEELGViKHN6{_P+a?| zP$^V+wkF&%MA;WTG=IUcg*P<+r2b(r5Kl|3?=tR$Bh`;{I*O}^# zCETPH2K_nQ;~z#IRKD?j_yphW2dU;wt5)|>e)k;aQ*_orxXczvVdBPO!vyjkkL8K4 zx1_x#7dxf+{mgfdHBI3Ug|>^EOaToh5w5`bV|;FObiE-hYGhg&uQPtu+=jl7^DJuZ zj~`b!)xPvqHNah&hp;P_J`)p6uU(!S6TX?@wmK6wt$Um0-BJYiGP16E?jqkcaDINV z{H6AN?&6$a<>Tb5bKZEFyhz-IFEfCdrmWUzS9xxEA>=$~m$qb6H|4I6`-~TJ8;j*O zHpvindbUuL*G5N=(5#*8}bBD5Wq7SszH8$RP|IENLBtOld zK-==ck_MOt_O8)bZNbVPY`;!b)b!~0h&u^B^1Y8U=vlUeOOw5v#le5;#QF}fg#(UG zm<9UzrS_zzJ2(eeAIaLcxJ@&g#hZ^cSiXyLHyqC~J!EiuR9vl(MeeFgP^!{jZ>wji zoonhGP#0i45XJxAoO7jKXnHC>bU00K+gaXI3dIMNl-$~a4w{&r4?E9$Kb1KwOZ(4{ z2S)K%E4Kp>M3CZhyIQwcTjFi){=5H)=>=}9w98QHg1;c+$)g;@0n`#suGT;^clL#F z_SCJVirs%(l=|K`6 z(h{KfS^1&MfX^ng{NSU}-rif7DJFKF+Vwl=wwzdd*w(WT$@Sak955`CsTLZUag7hj zQP>$`u0CL=eyu2FX*zgdstMFDlAZG3gdvH$gjG+SD2E|KmFJF*3Qfk8e-6}{^qX_uZ#Pby z-OyogYH8r%FV=xAwk|V$C@hYmf(#lcnA~ZWY5qRZy6aWNX$h%XsqRXBWuI8nWgN0| zZ#HDcu~XGW#{GkGgr@dvthsHn$?nTg{A_T2RR+Qz?|lzT=cSq{{!HPk4BP(0N|5G* z-tLeL0p$*zjj9E!ftjF~Ke)6#M@%^6E-*iipzq*VBU95hb~!dVxcb8!Ku3SMQ#Yn> za;l1K_#U=snJOk_9D<)-LPNhy*rxg?zwxqd>WxR>Ee__Mp0!@w$NO{5<=r7-7QgDU z&3WSMe;>nC&9kM^^AmsMe0}p_F?Kx$O}l&Il{zK_1Lia^0|?DY&AY+5=)We7xFUxF zU=kWUT7*Xp4+z>*UTl_Dr>jSvjCCHb&YDB(a08cFZM5-!g;&1r8C%gKUHrxs(?^VK zsm)Y@d(_GgzdZQ*YYJ&8@H=n#tP1K9a}0|EB^t~wSZK96aaeegZ!!QG&^!KgY96B)?{`!SSR&jU3I z=Kd9^KA*e(b`faJALGBQEVixt8T;uKNxs#lH{bt)=@K&zAPZG32c!5tw5ufHm1m85 zF{vPUSR$SPp`LhTC~g?QlT4nzw#@h>D=hg?M{*+VweO?ZzmD9-nr)1}xBUw~a-Nk_ zz1$hbQ{`X8VR#79kGm`fH<=wY^>5p7oIw_6__7R>8e)DW@pIVpN$drIu>$f3A?)<@ zbb>rDV1#J2%KVZ=(j2%9$rk_sF_mNN4*Tl9`mZ%3wPw#nM~|PV;JbQzcf5GX7h?ay zelSG2r>;fD%zQT=%!QE&5<7pPJ2&|oM7$?}{3Q@SL6^SR4atsjUCMCrNg!r9o(34CxIIr-}m#%L4`q&+ClWoOID#vLlCKdc<)6+6btXDD(c zEx0K1v2-v~;=S9Kdtb_dM)usVhX)Zde~7~v`V#mt36&*g5?Cv}P}mSJ64*)0{~`+3 zlb}UP32rDRnZQC5ja{@NbjR<66`a1G7W$Y=Pc_3NG9ocl1jw@O1+Sx#Od_HQ5HNzq zG=Wv`?+G=G!zIB}IMKH%0JaIFQ7J>J++6JHT3uHsHND3el^gAute=X;uaBk##mSs6 z@Of-6EHB^56CTS!)e17m8q)Fopywc{T${=f5|i4Z)>bWr+>d)Kd!G4cq_sl1O=3VO zU#%V-M*fJ3iu)&9tPkEnLAgo+AO@>o=GvT@9@f(rk*&qH?2WV}K5fe`OOY$Oi<9Tu zGGZ(DN>@DB5McE%^Vi*&JLCqf_>bVP!R7DHp9s;>>%C8Pn20?NiL1YuDr)@4Sqqm$qjVFhJ(1(0Y=vl7~aWgKyye}yvs zI}6(Jo&o^oi@vs;*7=H2>P0Q*EppUa8NzA#9iN)KcjK8Kcf~5LXh4(*KJF4bjsDWo zt{d4{X==#N*jn-3Vg^HWVNX2^{@ZjcMcRs;n!?|W`9Sze))W)0_0yQkMSXK-6EU^&c)A-rG&WqD?l!gn{j}T{RESxxeFvbt!CAe~w#t z4?1-4j`0dru~XldlNWNwdG}rj{-z~C@%+QBaA4#k0AHJ`W zr`!I&P`=NEMf-=CwiCVg|AFIs#h%Hr`kiEMmM@>6pa&4mXxoC?WHLM;%F9ng;k?>t zxc*Ux-}~DjNHJipWS7|R4-onPUp_ej$v(S8Z$hbNlK=@JReufn7M91pyfCOY<9m}6 z#;A`=DClnKZA+y7AU)xQUGE~8h?|ag$f7i5oNRl4TSBgd(Aqg z=dCtAdSsnBIllGZ*m7Oa8!@T%eN4K=yJn0Tp{=UuHGB2X&vuWm5#bJ4`4wT58w6= zOdi9>nrT~~y!_wkx+8`;RvhH^=zzFy2}L|yy_-zvViXlA8wQJDYt0si^AFDMTUd4x zYT%7AZ}`MV%6Qag5<<$w6@+H(i@dzYz|rZvymHC&vP9M3FE~cFK+FrpG-B%35DLbF zo>l$|5=awOG@mWq#Lqo%gv?c@#?R9mbh+2JkzQTUAvmp00ho18SrS9`qTn>aW zoeEwxIOqs4954||TE!?WII@p%f6k3jbx6SIvl%00L_a7(t{+JP8&C+!aAiW@6oF23 zUAV+8N<;DQMav&9$b;J{Dta5Dd^IQ(pF$i#vc54d{WQ=E@AOU*XaN>2+L5>VKs$+p zW;9{M6(F3R@86R;5uK9&{Z5iNI##r9#1*1_R5;Xcao*dT(g2xR%fKRtFf9wP6!RjW zCqne>(gzC85hVH%lj5iNV(_!XkLT3;!0`a@y+#C2_PPF^_O}-OvcRt_2bmP`j%^_NfsZF6$_K_1d*2 zj5$c;B-E&in7BM_w=}7}ywhvEroKKNrn7et)$}35fEds5NuR=nnY{pRS}1C#*eRJ# z+>R5y`_&}v`ZNZ}_s|KAN^%Ytz76k$vR~hj-Kv5)C9ca;{;ls@M{()mAlWz$!2^2K zjVPD`+T(AJ>ZPX_81({9K*k$Y|Fd z(E1M8@)PXBC&yBllJ{T5BS1bF+=ZIfvIsd|67BEL6cCh$_#TwcjcDhd?8uVe9e3{S zI1QOTwK@&K5f=(E=;NGWvc)DO?A%%($8)&QMNJLl-8e9(T0VcjvVbYk0TQdeAQW1Y zh&z!a_y+XAZEyf&jPo6^!mE*-oK>p;<^0!#$KKV&MFE;R4SdQ~T8k1FmT5kE#EZ0{ z-Akg;kWI*GN!2^m?fJU7_L2(#53%sprB-F-wujROA}+??0@&)_D^z8JdbK6s7*Th=nc4R>+mqx3w$e*3sO8l3JsPX9P72L~XD zzO%N3DF9Hrn}4p1F5D`BG_6{{{?wNu0Qh*20zjfqrbasT-bkD<8yUw4l?hHqq67Vk z%#$U-2PJ~<+3O0e0ejh_jl3LTCAtWaKWHRx`Bb}IiX7*t> znt_nLBnJP)nUdtnn$%8mGqU4K@*bNmmhnhZ&ZnexT@Kizo1O85Q z4py4;Fw>?sf1u@_tE;I|h1l8-;}YOLD*baTY!?x7+5FEx@FOAS)Vb4Ef6 z5rvv9go{D4?_})y+#oF{?p1GZZv+G}G@y#BexMVcA2B$OC%}_rz@r!=p;7=;1i&TG zjr7vv!~18Pf;+(p;RbQ%>6E_r&-rSY*SQE&1R_?|?7HT(&sbbBl9Ey|g8-|=NjRc9 zbb*O4w;vC6{gtcV_Y{v2*DZ;e!18q7PqYYfGV{+x@|c;WBTNQ)bZl4$$gze0s`hWO z)|p8}R{fva_2Gd@y`t;Vc)|mTQGFP9n0op#YEe*miK+Vo1Xdd%Ku4wqRF6uPY%zJU z2Zopz0^5D_Pt0FOq@;yAzKDdy5roE7!r86*)l+zhvsCdmpqVz3vL1I=P zL?4)t!xuT+4RObUb4`K+F^t>CW%$|!?jwHx1E&^KM?ZX*EB+6MTxdfvjxmlyII88;MPASx_gM+}#~22NpzyhA-G)N@ zRW*ZVzRnxwoGtC&Z|=qd38jw|pk?-=LkGNL9x` zT$g@lWcU2hhjIsz3P##%rIU$6@Lf^&Z;*9J8L-LIKMKX|dua*;tH8K|pRRw_Z44{= zvwU22rEZD|Rk7PkbaDpt%=PP=fIT??UP3e&5-XCbFiU(>TKc#wC9Yb$Y9=`J!2_am zAtCZS84In)EHJueGi|ik8q%63Xh3t{ei)Cw9v*$8TL;8a({UHtb(JiES%no*iwCSv zcjKKTV8bE*v?T{=o-(%ImMs9OL+eHyeB@7^d6)P9a2X#T=Oa5k>t=Pb(?hR%ub`kn zH}2s^Cl?rVWAN29U3zXRBJqfzNJARzQGRt=OuT#3~?;~(Oo2*R)nG2FGJ+6AB}O*${(#+|wqOCRuBm};6Tt$6Vt?|_mXD0A zC$Qv1k=F#`r*+Td$EvDZm%rp6@_`uw2Qr1Emw)Xy~7y>}Euzl52v^<4;j|$puo5 z7~tGA|2t)aZ3$U<+=0}(TVi(|3nG=fQ$v`)}_avqAu1K8Gh5NL+8Welt{??_~{ z@O`zMxmiAE0L(~604gK4ku~Fk@xu$Jc0GzHa$dc>_@TFtM?&pKJ#qjMlchRd1=1Ub zl4^2v#6SD5=Na-Z{^!}`zZ`hjsWI!3&WDx$&@dHxN;d8DP(3k|h!y@Gw2!U~rsis( z=hfn#gz&Hr1&(Ri$)=*vS>*$3%uMoxz@b6-*HivXt2S|v*Ck=ME9=Io0b(q7G@G-> zHk}hQHQ1F2*q3?~Ne6*nUeK^;6K-3Q(g*P-3!cWRb}fl&+!>7pjy9y^0rBA#qAE!w z5Q)*$s(kf|hEQvy?YI3zr%65{7Cg8`q+$jK1~ zEi_CX&zq3E5v(L7ot>O8uC3p69TtKuXm+7V*VmCN0@cJ1JhutKs5Cb~g9)KlaY7Cj zHD+voFo??ha)nt1A0ftRasY=y72pp*rP`Ko!C$PK9Ni@%5TF8MRXX%d+0PzkVA|Ul ze~gP{NTcv9$EqQQ)fiNUr4&+JpqQWkS;a;2j6Z=jO+uPTn&&Q}({m1Nj2pNpUjc=r ztS!~TsQ`(Q36~$?!E-;!UxDT75^7WRaB(^qnCM#r#7rrcX=>H%nbzn${K>q)?T$jD z0k77N<4Mw7u2q`~Qs3CLg*AO5;KrDbGJ96cJ?P9;whF8Owz z7|?&8gwC1om|8Yv=x+S86I{|I* zJFM(2+L0o954{s`)w6Ju-l(TV6aIw>`Ye1j^h_nV5z`SpN+Lu5o|&uAr=?J!D)U58 z4~7d;3TK2vyYbxbLq$W_%h+!T$`Tf?7M(?uF3^ITBkMQG1Z&S4Xx+CL}l%trcrEOem;qTeuY?YZ>aIkB1Jh&!C8hv%HCco96LcE1$X0YrRwA)gZ1AR z=OV;J`}E&C*es0F{@n(uQkz z7WwT2AwyC)&$mp}&yYWmKsG2dhmdTGQ!dGF7BH}>409l>hWaxs(4>~6M58XmU~dCb zfz#552%`++C!BlPV0=|xn4QcHp(Dh4Wn5b@8%cz1yAU2GN&^zi;SE(9zJz*w_kjL= zsvl~nlV23T;GP(4WhECF*Nt{G6B%6W$dvqtSt@9d-<*&yM)WGT#7wjBXm=3-H%gLA z^V65knVK5IE-{T60mfi7l)g`evRER>(8UP521Z}y;D-9(^UzSx^!C7paTa=}Jvfbi zx;}mcA`8_)F<1)x$wfiZ89>IW*g#2>1lNqgb^a#<1y#2~B6dd&;dVc85+T1ZY13{(hI5(!`6u>+n3S;% zh(XJx+$)LnX;i_g=+&Ie(B1RO%(j+;NGKZ J&s2=u{~vZ$oq+%V diff --git a/_images/visualization-relationships_12_0.png b/_images/visualization-relationships_12_0.png index e39c9ece9546ba46e54c191f6da60dd935687dac..1e673d453e91a12c39f9d758d486cbaf2724c844 100644 GIT binary patch literal 33561 zcmb4rWmHyCxAj9eh;)M>ph%~bbV`Xd(%qdB(wz!Omw_?&b0*?aA^=9+VELlxyEF;Iz7ArJ_Lw3OI82n1#a{M|-I1iz8{>+>0WdF>>w z?xbvM;^eCDU<{Gdce1mxb+R%ypmZ^Ia5T5IVQ1oEVtYkt=Hz7O$ji)Z{ofBT**cgq z({B+PfSaJ$NohDjAXxg)zc2-F^35R-zaVKb;rDK-`wOl~@Bhpo9^Je>tZJ@oJo~1G ztym$3OAz_ErkF%S;gmBl*dBRaU5gQgOQ<WTAGEbi&U|kiI&9b&O%rh35Ge0&K6L-x$=XebOcn4X?(_Rl8wmJDgjZ5n4*Z6O z71crnnTjSfp8|8oOQ=+l4F7oboD#L!6mpPv1Hz7%VM=hp7JtG`c0PAdX_`I zM0I_AU2n0;ot~Nb@Pv~=wHVT4uaD*5{=@~{5IvlLS;E^}FhYXbWGFrI?&h-RnU;jv*X^hzbE34730k!KzWi1_k2xv$9bxW(KLvMoV!+0KUPgl-88b78Dn21_i zTW{H49j%lfzPZ0zbGzQoKi;bvT5UXR@t?8kPJQjzcKY!Zb1;aZuvKxQFOlTEsQz7< z(oT*YG}W9%swJp59$jI0y?uS{35;5H8(&Rbu6d)@ViFUlRxSw*)oZPY4jK;ywOwY6 zA--z5UU)x#{80bl@VxZLMsmCk4l?``WOxzXM(t85Cg?Lz4I)+);|T`RAt(FYV%(cF zePeY<%TBy75F#R?59FK2Zi?^T`DJH6gWhnu#!_v|6A6o4?865#Fb!lLgEn=B*Js<) z_4bCrn_3M{FZNtKx0K$$#|WQV6%yv?NZm_T6ST@)e!-e|8wB9dNCF3?EZo%X$s;UN^?@qb8&-Z_2XLa1@ zAD+rjb0L<9CXd`q_r&zMU8A7(ux-}CY8I^E8v^?_lvzpDF0&o3m6GlcW_t}SErNUX*VotbJvCr!qVuZ^2#)`7 zTUWK%xcsdqmv<;V7xc~1LyDGzYt$4(I84@W~?H$ zGEA~HhaX1^u1kUEKcTnMjy!;1*0{x{!)pb&&}G%N5WG_NoznFoJ8XRrELOENL!Ys! z>oh}O3`%xyB@jTwZlVW*%Z`Wi>NMjaqB9t4Z6n1N@kuJS_tXd1 zm6c$M?htHh7Ng!L^F9xE^z`&?P41^p9nzpv8LW%U)b;L@zjPu8bz7Q@8Cr(>1`(uf z#x#TM;`TRlYXpf+Jq$!qMFru@j(SgPO%2|ghrdHgYHGn}XHIX^c=1TMtlE-T4Mlq9 zJrA3YJese%n7v_wJ3p}x^1y+}c8Vy-t1?m5SLKb}p|8SWc;yZyeJsg!uhvE#_h(LTjwZzQu zg^MItKbs8^;Z=H<{|&r`Q~>NdJ8jL+L{<{k*(qZTkJ;dwvzri;`|t2FCgtxq4^NZF ze6l@7JP-4}<|@W`lJ4$Zan!$G*73uj;9-!PO%&!XJgesWclmQ^RmGX*Pr->XHZmn3 zkRMa_c4DEHSAp|&to4MyY)7HGfH*WAXOX87~A@NM-i3ZLAk5~V4IDVEq4>PS?>||{FI3v;;k);qf zY55sH5&>c85NVztXGdt}Q*eoX^cdSeB(VMWfOqk95Cx&IIj*cS+rkctH?#f^R^Ow3 z-_-18P#=PYx#k3uxOUW8F!A#n+vL3m_u`TZE-Ku~-th-m2?1y=eUaZq*S3PQ#uoZE z4)4}l4gnW2m6wMsA8RP=uP6DxiICBc$eL^y?XtJm;J#a&%;A|{4^$~@SINiiy1kPZ zdmP`l`rD_;O)$A%4VF>_XLou?9*STg^Zb_dRw(L-j}?^W8%Mpn)YEYH6^uaETk8Su z5Vp?sY>rgrWU{f#U36%ri}}2QLo?3%xBkrP&74Z~2TrCf&X=!vOx?6;Oa3!gW*5ju zXl(rr(-(Ou0x(TYE0mDs2BPP^HP1_@k^bF;@)v3p?=8#DIP3lbTlZ1F+Lt2~Hi->Q zyS@Owq-HgRe^ZRYr~@OP@#HkEm+L*(TBARsViC{0{a{Fd+Ilt=NW`7t24+pJ1gn-r zncI1|p$wH4!9#A%b|}#Y*?RVxJ^roysN=ObhkHPht=-8eH`2;cDB)+DpA#tR>ULsnU+%X*lW)v>cNOjBmZ< z5FpFh$A1aqZNq0g&+#8$DR**xV}-yt$*H1<`n)^uB}jTk8cy}zCer2& zPHAmff260B`@_g``!8!r7)V_@Cx2e+6EVNXI2*M%MzuSBS{yVTkWa&KHJ5mk#j@Ow zt-<3gCGmDKpZRfv&^#B{FR;JTA1=rY8$qNywB`$gv;I=yEof=>b}^^y-)Fw5X87Wl z5mtFMTatP=ReWz|n|zY{)rr+TqvhY+ecnms=b@zior~LjRL2}$7V!n={4xap-<0%p zg#%P!Q2SwPvvF5xQk7`87GAY`2j$@JrbFF%aw#2A zKURWB+U&Kb*Zk0!LjHV%)}5z1pOto3^(T5v@-7{BG20k=31bc0=i$}5cR~R;0TnzD z0S$k7&bGB{Gs6c{3D+LnyL0#4a%y$fvaBna)3V%tO#&AWZ{_xMsAnWcvNNi2 z*$+)oON+##>A0JuqJLC;J!F|nr>MZ!D;*?h(_4BI9;lc)gpfk1=8EQ z_1DiaV+ctJSHWXow#G6RJalyQ-Mq(ciJ6Vf!5OJ+B2(ak4VFMySX_<)DyWGZV25C4 zAZwv}j4@mDgs5hObZ}6Y%EbLr7ifR1Auy1z?B!8e=D^OCw(Ij<&)bGMn?{Tb@9P&X z`?CoCR6JD61KdjieMTKIRHBL+8lg)M_m}1BuK;$T9^Z+lqjeh3VS4$}Z)`hYAc3Ex z3P(iBr<<^IFh`!F9=12~1ioy40&~8u5*>21g}269+eSX(Zt*`gX@GEG!}*0d7srQk zJ(yp=etF=HMhjlkFMd3gEB?^Pg*ytd8{nJ@xc9leI!QEzl%3_>Rw&6yH_BGdI)$)oN3jMdM|^4k|z z0FQBSb5p;0(^@7664FyRZ()hF@ZfO5V*|e z4y~;9p0`+)VP|JYQB4i0b%}!4+txe$U`(=(orxm*8RJBKfNPT2P37myVnIQ?Oy-AigJbJgnqOYO`lVha zVYD(%^;L<_mH#i%X+I~!qTYqQ#`_=VsnK>z_y>T)03_LqWow>@A&eD^=tT}mx z*8`u2G8mqVb=Z2jn(oim=<8DOIu-n0iKaLdmh0W)LQo4my#jr{pTQx2$@Cjxqr1*pHvWA zP6x)kd+Xfo&D@9RG|9AK%lGOr>tNsh%cLFSjc%YvkjF{mK`n~l6!;592LG6;1C9`B z#v9#p#qIs$%YUik#J7U1^{?QB&?-Q@g`;L?H!!|@S0gH-d(5Rj(Q=~0c z(^0O>l=*>dn^%mzSX6Io_-{bINjBW+wzf^qmgHKELe?52; z_}C_f7I_e0L52%&$b~7aicnO#8@xA`1vARnQ4P(`QRsiMwA+N)5DgwYzDXzvH*Pp7Y?`=|#z=J8d8J53^@XK?JGV4OWT$Z==)rJoCnoA^8DBR2) znJQU4WAG||T#8wb6XxhJ7x&6P?~pSei_^Wr#1;;+d_9KPQ@j;a%u?@$?aw}-M5G*z z`#5PymY`f-1r)sM^DthcVu1im)X}SL3GN&U8qina`6JdSkthb8D;DWsQ z5pUDb(rC0R1yj&kFC`cOV9L#<0s|>cS0$}VFI9-iRE2r|bwg0WBRp^29Lk`0f9qms z`$M3=yGB!qRXdg0MMpW6*AuvQl0DvFS6s5yo#~|9Z&M`s4^fRvSNdtvVbz5BH(>F3 zyuN#OKc?!omOmz&{m#CKxi7-L`qml?w^Y z7Clmb1w%>oNsJM?yy8gY0Zq?mE>J1&V3~i>m!SnYMNJInliT@+_w?}j2XdFbVRQ-P zCKiBMpTp>_pv~Ko_}46m1uDdp*G)zu5=3jKWDVg|>fDr;9CcIj(Gq+U&yS@$I(mvu zjE89Y6-O0}#%VVNq@au+ZrF_$+Gb}*y;USPq@zeFP3p>vs&0lRR;achXT%dI#+l2Q zfiWpYL%WO&o{z8>lMO4Y;_EXJNuI!JoLY?7Yp{AXUCz1v(@(%FPH6tem3a$*pn z-_SWgvl;eW(j%^ifDU^#Dg7KRJn_lB$@Qjxq&sVG~7^H&YD zlz$O6>mI#%7GA!^N#7?Gl})lBeQ+-b)-^Yq9z8gv8H^}Mr{v(2cY6&iosah%c-eRV zUY3qBi)IYHN|5uq@cW1iSO63{26UtpexBj2z=6z2k72JCI(4^BoAK2XLcB$@3&a@9 zG3upsesS)GN1iEHE4w(evfW>FK+q`3iDf6d(O*q{B~m%e;GJ71oz!yuIzz(<+2cEW zK$T*7uh78m5fSc%F#%VSEPk)BxI)9 zUyI+G%9bB>JF_G9tP6nD?~=pyBHYF)_;Du%H^HEI?rNJkq4m~Wc*zbAHZ}i6zRixv znlb4oj>S7a4X=dNiDP{>l>YfYgI=d$()qclNub&M?8GWa@Jr#IOmlb-opm6$O%hQ` z2MOT!PWBMjHI+?aXO15eWPtfO>a^CT9~~vtkWGlj#7l_Veq(10ZcwQIUXpey`T40Q z>{BOVJQ=q5IuM)hOlL{J^e0(5At|b^1u#=mPZ7_>2u`oJ&z?v?+B--_@>me_b;YEE zP+Sa8@E5k^Mf^RsN53U;SrY?T;NalEV!O!yIWf`orona59Vtg5(yv{w?do{#xQ{L) zz$=3_s4JWR;0_9j9Be3%zQ4OMbS47aB=h)d_q{@Ukpv=#>}p$AHJuqZLiDy`Yz;ze z{|*uW7l}+5QAZ7{FwC0(Qg6N9VR)rp4q5WPVHAA0bqvW40puKoPFda9l+|=O%#@BN zqfNs$t<^#U9>DRPfEEEH5$4uRX_kyy#`P^_^N6pI@9F$h?bG;!Bf<2uVmt zhG&)*}|XP~U;NykD{L~@b(KVV+&eRo~oTBlPMtdnueDUCu! zL%dq?+{{#PNjVx+`9`I1cUJnQkv$a3-`SEa0yT6oWXvx-#_N{6`2?@GsEakK5d9G` zc21_7n)t`3rh*03bakPP(D3D4#_k@W2r^NDn^O0pCO2S)dMk)miATMKyLUk}lzzp( z>mczKMttA4j0^HaT7V9UAv*NFi=Kx9AOHSIBxEy^sw?~Y+L2bZOo!}Z9&~$AU)fDz zApny5fk%`Z0*LruIgp~_6!6SrC)~r7FA93;V4Zx0s`0^b# z;h3g5}>Pp zB3jv0xbE#L0U$Yf)*{%;Ehb(PqJRG}#6T5rhG&RAQQ}RHDl4TQcF_TH>;Mn-uRv}w zjZeBUEZ&Nmm%=WU9mh} zjRkpHx#{c)O0J}lzFX9Di%k_m(JF4=Y$qHC>pRPY%TQ>B&ZPiY(98}Yy9G{N!K%z< z`KGY8gM>XBRMS2(p*->Ec8xp3l;P6H$G`bT-~M$Gk~#MCaxI-T2#*942Es&|LNJlm z!QTX56V_R7B`eZBzZMBCFxTJlGkhgnAw(NjmwBzbdT1%KaMJ+UYRtbQ_*nhuioZ|bPD>vL_e5L#CdZ{b35_abB#RjR@@?LD7Q5l&EW|P7$bkiNkYS`&AQ;@ z!35B8JjXdXKGhJ-3NuJ*aA&Q?Wxyt>rGa~#DLSL)_4#!Y-@@E&HB|}kD{5gg_Dhi< zw@wl$rOCYXg#tQCs>`d-Bl_x|dHKHT+ChfGt1}!>nUe)zD-GvUFs0b;Pc&Y)2n@sG zAqh=H|n|NtvFr9J%Ps4wEYy*m&&SF!^xXs`>Tp8f41?uFTb_fTwev5 zNR|<+0tL?O7=vLk z1U|-kB8#T#L9J`&#p6Z#26NNZR1(eGfP&#aIVQgnClak1aI-s@PWsaC^jF+$0>r{` z>BX0RXxz{Q0%&S>9M)SU-Wq%(CyoQ1J(@s$kt{NwdN-%>T6lq2dImcru?WU;@sbcp zpT|!7h0JF>AO`4-OSE#|EmdmrSJgg6Z|l$cTEBTansn|kS7d-8!<|KGt;hU7Ym{36 z_DYG;fgF4H(Z)m6^0}M}#22l5V927K6hd?ux1)MdMT-=E9+5isyDG~XL&G%A0R9Ef*j&Mc*f;Kd z9Gcthc!6o1{Q!wB{S|j=R!cD#T+P{(L?Ct^HIg_3;(2~jL72Z6Eth#@f-tgz z^O0c^SP`0>-aaE{Z(qvndQvy8oP`ft@SqRXj=n3lc}y^NTDL6Q99~Rx8k?)f zZ8ydR_9x{eHEzpstc0#SUR}YI^3vqKTWB}o zZz&`NP5#>!j7wd9M10YY*==-EF@&ANR_qbH&f1GrZ=iHW3~pOE8wl^4@svfkOrq#} zSFA@d0`5{r5w)3C@Dq`C*mFI%D1_IO)3|3_kF6^W0$^h5-BA#*RZA=`;E&FB?i2}+ z{FPo`O<+m&Z+HuVv9Tm_-pS96)i=piSz8%bp7cKsU_bi+ZWT6R6J zJJ*Ou5v=&p2?UOm|OI=p9SeaMTYR!$#N3P{44E_Vc1=eN*>( z)T^X_(Mc7!T|Q?omh>+Q@e}RVC$TmdVxNMNR%DAD6AI7Jl%vlANZ?@@w)M+V`bMym9UkfJ=*;c z>URo@jsX8HRD!uU8e>dUx8Op84}ISlm%=#WnKlkzD~gThlok}U0fCnc)f}Q&G@)K^NA>dMOOKD~ z&byQP2lGFG5DUx(K&LlO>{+tw#8~Dz$nBY~Fcj_KzgqUE^YR%lP-1p?$zk%CoLB?Me_Zi+LZmRU|rRAq>t$FI*XvMRRM_GhY)aOmXsj@_Gd zm}%uxL;n0uyxh9VPxnBrsi}EX(qm#{KQWXwvF+7Y81@8_)d7r5UKa|?DkXy}!Mcii zBbNtx`3f;dQ_L5iV3GuQk=TPwy7NBu#2O(u%fE3bMg)1Z-6FGQbYyZZ!w*oY0rwAT zt=D)5O{eleEY|}K4a65p=KfA(?g0e$>>79LQ3sm+N+7|-m0RNiX5#|+wa1@dU%*0k zMRG3^x}-|v238JK}J-_V^``^9_uZjzRI5i70Z%_b<%$rjf?^;C} zubf;3cp$C=wcki#<01f^>OU$+_|-B{UbM)|@LP{hJn%_G81s3Qzu3y>1?6^mc*dhxhN{fhLnOFj=$< z%DU8kk>i?BJW`;!K*sg}VP{U!g@LFsdl=hWb(e|Uqzjv77!*J$fNU9Lq_L_wZ8+5R5MafHiuRD!`UUwSN+R6bjWx6;t)|tcBNddxRIp(wTbfV~k&qUYzwp z^{}w8FnQ13o>Mpeg5u(zpd}#~hd2LSD8PwflD*D@auilkKs z{5$D{6mdZc$z~ZKOstuqDd++Hr_A`${MvEAxf2#Se~9&5EyzW1U0q#3oxqMF7YGAS z|0*ILof+bY$emvTu8#}be5>G#j$}Qh3VpOX=#&t zsmYz4Rv|s2FP;t#g3qKK0=_XkUhRVT&dzGSS5XOU?%sA<1*Qvy{N`;S$Y^`+*U&RE zcB!a+2<-2F`w<94y@P`Xj-Fr~vp^r&`|kV+ZmQ_(Y{p)3*M$WgU~TXRnIiktSq;%K zY{)G*gDVhlM?;^E7*+1=SwUG4YKe#t@sy{7e;nFv>c))NM5NwwHuzJO(4&7%NMAZB zwK-oItg97{!JT*5P}Jt9y8gr9PetadQPy3+Pck}CJ*S>6#<9Dc|K{$64rn0F>H?pL zAVx@uHZ*rvQ@((T8)!Y7lFiobjKc2f=)@5(%9W+))WsN9pG$YhGB*c+sfJa~mk*q= z!o0bUR}dun(hXMDXM77&&$R^St#FwLF=TPZ0sdx3fMs{Q{&aq8Dk%Xkh&Pc!17ASm z&zwhdmo8`1_C5K&cT-KDe( zM&VN{#LpWudgCJrnSGSmnL1S_a@BLffT7j#Pw7e5R1>2ji!tK=>;Bp(aOG@8gU8ay ziLMtl&QC%C5@=2v(O)H0mK7t9@1;qktEBWv;msYccPj-Xh9)Hy41RQ5Rtm1|4L5mr ztm>OlIn8;G$?}55=5=u*IUVxnUnL@b)xDFV`x@fc@Z$#&G!`VHNJGP!8jwMHhWMt~ zG@!UHdAYtP0R`=QY5Rbog4{Y4lw-QAn}R?NuG*2OsSAoHh%zX%x=7lFU!h5C%w~S` zYK)f`^Pz6NKQGIguuuY)o%rqP^lE54s{*0720E*SXn`EzuX4To0*s6NZ&dq<;=|4T z*|R6Puqfv1JjF`!IxEeW4vg?d2+slc6$E`Pz4djAZ;=J|MK_nue+I;1ix49G*> z0R+VT`V4ygcEr|1lFPL?kWEIl89>_Lz~%`R#~s%x<1VIKDE;;=FiZ>R-oA)xc5jK7 zW6VRX$WDNYpx#`URnmPHQZUeAbBwB(0_HlQ3}sTJ-av+`8(%EH+sSUpCa40z1$7%2l=W*U zjrU_SJ$xXATl5J$)Sv|1Yy_H`nnyqt7Hfq5^l_!i~UX_)6`GDnHte`$_Ui7?Gb8i7Q*y9 zgTxNf%VN6@A5ChO9NOCW7mEVeqzrN;s`AZmiyX3ld zZsDb!*DOh6d)L|pcWnprucS9s@M;oSAB~0LM)vSn*n0fhHB6Fu5)7U#{saN?zt9xB z3A#FZ=mW!1??W7#uVeEsnWup zHDpxUEbs#Hl@Kg2ho+X+$n0zwaOV+=2BEhDkd?gvMID+W0JvP~d1APbI|ChSWok2W z@3g@rkQK;_K&K!~w*C}0DV?7iV&fG}@rE2)OxcI{;c9s6wS^Ll=UwKkr_1%>Tn^@m z&V#yf7Ony5BE})wP}mjRxHyZdWKzGsr(bWUz4Tjcve9i?PBVg`T=`QZF1}K9Lv}VS zbOX@m!hk$$xY7{_)wVU)fDK7wqR}tqs~C0ebB*@+j6~7TM0p9hYkn2(UN*W_bdVhR z$k-pMVEGA@6cxU*J?G%^Y7+3g&|Cc(>Scoq$f_zusiJH0QOME81~ssXb`(x6tGyu{ z*|awTYYmC$uaR)pwTmOfmZQCyDDw`4vSWC7c);L>2zm5loc#HHypYY9GU0WPN*(qdMx-I>no>S8oxrp}Xawr<>MGa}VD*dv5B zG84{{scSqe-2ku{X++iAhl&`E2gF2)@#VTJb$_t6hH4?EQN10u8xcEWe`hUaqI)a! z%(w=Q4wyjV%t>H{ddSK=(3^Nxy924ok&$Ux-M^&+=3(gbrAHbHBpH~d{G+0tK{;MgRd z2AW-bZswMbfca$&%jZgTT60HP{`K=e+USzXaxr5F-ZsWepS2Cm!7B#Ln-hsQB&-3cAn!#NVhI&eBO8 zg+7(ooQpB!6e|j)K@lI%A!jo}uC<-&kv1Tk zlz)^%Aoa$6PUKa@$|!}Z=>;2P^i?UzBtnx!+99k!ve|A$1gcK(5BakO$)#|u02tf` z;OKD&8uMdvdg=(Qg7q`upd)|f!T9QWE9$cJh3!v}IRSLKy>5!dR=Bp%4N^(f?}&MY z#@I;=d3G(`^mijgpM%&Q$QJFJrz<^g?pXm_do-@Bu##+98tOsBYb<=4 zNsv+i+b{km7iPJY&$41a1dcZn6<}~|d#O4%ge{Jj5x=V5Nnx>IBb);^*%yO^EA{La zq>f-E4Cmxd2C$ON$-4omqDN^&L zVFwn?w(#$2)p>88&>;MAwgH4vtTC%lS*W+vZ`98Cj6;8bf>?T^!s*r}oyc1$J8@!I zp7r>Vl7JNpd4_5cwYKcisNk`KopEO}&*Ac{!FI+dlY^+Tl(PAz^U5o49^e5172!DI0 z56a62az6cz0734EnD^^AGWhwsxOx*)FiN}WFu7=hNF^`Ywa-j3m3OBD$M5PocPIwAcp)Z}Iu^xw6^ zY_A;R$Q5WAUc7+mv40|tEt~M_Q#L*Qix=BRBg(szC7ts>9F-ImAyI4P4u5_zMe71j z8&4G9HgKsExXgo!&FXffM~II2Hbamsh0A)!J_X<|4+3DTB0CCab0~>j(oremF-kfE z>gfo6j@K~gJk%m_{0bJQq2`c|MnEDD}4&oZUh&&(l^$2Wx9t1Mg{MM?1MtVGGL0IDYF7~&c?G<0Lr(l zLJt4{y$uZL&-ywze!zUD_&w@FH)yp&L51I}2X0YTlYT<}o4qQQuWz9TGp^@#L}p*0 zc7BpzzL@->H(Zdzdra3^>_5i5DwLC$V0A81G8VnS$z%rw^9oWv$|C_aH^jhhq?^Ib zmVMWe;st{{9m(My;q)?_3|}IG@KZ3k2lCR#Q;a`a=^ZQ(cRh7j?qR5F;c^2v!F8?B+RY%h4pwPX6LBt zEw!+aqs|xpEHBG0WnX{r#>Q_Bx{s1h1Zkc?_anBsx%qUZF*LtkdTm&U0uy_b`CvB^Xr$)?Rl9`7xb`3$WWu%$TI-FSk7vG{}EAAQp%W>xuyWk zBM{`Sb&6vJ7n4sAUs-CIHfB{4?Ot%N6vxh_k=wFcC>^dUjcj#abyO$eMN6qfu!7Q7 z4qQ1^@)$)_-mU!~EAq)xFl&TzR?F=!dP6SIZO>7q*tcU$^S`O*T4F!^_Brk%V6~a& z0h-ezvG!$X_-0>5R2AWGi+QN6S+DNuMI@A-yqY>30Dva-qcikS3 zSA>Iv_R2#}TeM-ZYwd5Df7+Lfx6JL!#fyiubiYvHHQJZovX^|NTL_~sAYj&sfWmyh z?{tB${!l{-^n2iAwS1-1#4~HXHww^ROa?{qY2ny5i}TL=Vx4B*GcR$aa*uP1{?ym( zrTfqBB!O4FGDp7t_MKQ4so=DZKUg^koZZOPM}Fr4z#0>c?BE>Fx&}9XEYa+u>MZWe zGNB+As5U}FR{g>|yxtDZM(jygYlnZOj{s=;W|_b^Vz6rUq%ROVEgu-Mrc6TS`kmrt zpIxK)fb(CExEJtG7y_!`|SG&TY=a;18 zY4s-xRp{hcsB;WFTR?PS)}q~a=Ej-9O9zn?m~`|_O#C&33tk2I-v5(?Fv@oMm+SL zcj|tETaBTArV6xuK;Y(%!3&RyVyg@_fOX59usB|iR|pdD84|c`JG{K~fQvU0ov1?O z($MD_Ux%iM{)WY9A8?lBBuLcFc2^0~cKh{ty~9plJPtU7GJidL2`U+WssJfL#O_CO zgeTgQ6MGnXR#^fZg90%CE|%v{Vif7%TxyKQ6)$r?%zOfzSRQWvO8XB(>SUqa4RI;d z&d+g9g>U3NUae+)hNi*{uL~lR{v;U46*yZ64uA#zJ>3MROhMLu6luU}=3;T)#MtcI z5t|3H@&hVJa7F_S0%hpyoeYG7drUOXuE3!Q{)cmzrpn_dCg=lO4jAR~Ieyal!p8nc zs{V+zJo1?`)yq!;NN7uVsbs${&b*5Rqw4qI^gj2;#)c9Z+D!pU?)a$YqYT)0)qpS8 z2l@uY7vwfbJJA$yywfu zI5=JE*#|X2?FgI$D|c5IMzGz~UhD^QTW$-b-Lo|zeYrkLSwQ|!SCV#(6sw=izp0cUbz!p$ZF$!2x_F#+#zgPLoYpoalx zJz6C+!C9vB@H_RoH}z@jAgWhWM^kNd^HuEu>9KM(&{}7BzKEF0O-o>iw)dfhw#Py! z?Kc+G3Gv~r$S#&qKnNEbwlPAqk7ktf4M`SwlUvVn ziGA%0td4vM{^+#oR-Pi#fCj&v>-uJaW@oDmJ#Q!mn_)HkhujCYn*= z&!7sUuSqndxxuxL=FTr77--Urz{@;VP<|Cx0X-@tc4*6KX1}&A3W3<(mK92#7qBz( zR$s$|^T=mKAAUp4SiHdeXz*SpSR%V&BDhC&9|6v8ace&0K?f$Yi$F*}`BQ>nY>1L# zJj@VtuiX_wl1By86iLic8>swopN$-g2;ZF9v}CJvV~c8j_`90*;|c{oFhO zW?fCrFt&b<9|>aMBaE7Jbw_QN+tgK^0!58#kl3V8I^KABhvj*ssDg?3QHoG(fE?M@A%XJd+Kpzb(sK%=bBqNDtf zo8LoOzW-tjb#lvauV(%3KKBUK;R|HtaR-b9Etu$Q;6Xxn10d2uW%E2Mdh-b7s`FP` zf!SG`$?&qmX?G6C&}_~n@b&?s9WB^X4I@HXw%L?Nc_Ctbc0LXd5D zwE01WSX0>RcbKc$B7 zi>W_A;tK`h!deI=I7H4Cw;v}JA#Faj@7K(VTIVjoQI7I$XON^t!!OsrNm9>FG!+*8HL~3^OY#_I*Gchu{0P_17i0KYyukk~lqFS(J{))Xz;NNm5rkTu6zeP-WF}{zLI4DIbI$E%g3SYx?2Bhl4cyHw7#3m2jgfH zXDxJMU<5JF$(O9_j~9-N@45HDDh~Sj9sx~?jr`sX>({QobIF4n)LwD9uj&jQtkUyL z3G6Y%SK|6+XUHrTyoYjXHCIQCuCAGVIBl6u)a1Q>` zPZjuwwtX%QOy~OVo+n0iEx!UMz~)xbGJ#Pn0)8)7;+hUjgPuDA3b{^z^pd?oY2}E& z_~C&Nu(m9}#YxZ+Y*AZF09HLxB%ql%Ygz&C6LPpPni^8`4(P$u(%Fz9M;%j0e56By zN;h#Oos5DUXL^h-*&L5Xb-y6l{`&=R03mVcm#F13MG_w(wWBB3i*kmnKkD1iU636F zVo{w*M?}bgEGj%<>c?^L7rvF%=RjaxR!EFKtgM^}P4&ipsto2KsFng0zUr~=6oF`bWIV|Mm5$)L=|E^MCb_7tVyVsSQ{S`d$Mu=kH zS`}DLc?l^(X2!mQ1UExMKrnodENA zbY#5dao)a*BDE||^v%7NTu$a!4M~j2X!}U}Pqs9PK!CXrAy;OS7?>O$9^*ky@%ZV! zA-^QBjGnvOd}?&Z_Ox7BM)>htSI;1jHOREJ@MrRg-tp%p9TrsOu(2Emn|uYa1|>zJa>4)(kzk-dH$e&T$*JMI}klQz;qFR(wFR#_AC4_CN?XV0M2w@o8q(h-w~ zy*LEk-Mccq|CIz6)l1aSfFh6$#gLdm?>^{%dxHoRWQz{d1z zcj4-zt5@{kca@?TZ-t?DJ>4MTNDfxt-=lPZY)5|3b3*2B;k=l*O-;E8e2S5fxk z;Bbjc3%N4N7iPx@EF5!wR2t1oQyMv{Sv;NaN~)AD<&EmVrwQ5+L`d;J{Jyu7u8#>30)hz|7~i$`ZsV1xB=+#_v$l9k91_cW^o3w&o)VfxOA! z#NCYS3!nYru7n7u_*q}3H_9USAt&P{+cK~M($+z8xZGs5R0$KxN&<>mQaRa3TATIW zm$~#jHAVnVyfF5+Q0?YrM@`k&1ik3uDhyesuZq4@8YaMqq-w=8UF2BAgQ+TN7ykvl z3bVyG;sd8VC^>$BE@5rtWa>kGNj%T9BQ<}&Kyg^y^&9Fg-58>8|AvE>?Qsvd5kC$% zHgk~RfYFd`8QikT4|kTUx^e`Ev~2Rb{nQU?4?Nn+j^X7Ms0nH1^`sy|tY(+K;vC~? zl!$W4s-4!{&r0SC4nV=MXJ3vKssOjQVv>oUbdj(>yKjjk>6Pwh+en5-asvAQOvr)V zRdhMNHdFQz2BIcU7QmqJB5dcc01OIZ393IEG}VFw8f?qpd^k;Dpr7II6;(*v&+KZQ zKESDVfr@*`vJDha0 zd$3`K(%t6rAh9gH=UCZhzJ!Bp$oKX*gOgSs-ra<$-Y~!wLT7CvD#ZcaPhig>a#N^| zI#{Z(6nIv>l|;dt8P4JuBCZiAd>z#Z67Kj*Oz*5Ut&vkx%%F+PcHk=#oL9p6a=E`V zc@<@WwBzY+*#uNGu%kyKW&`^D?w7LgZ~s;~(4+I%zGbpW=j7NC&xL1KM<3?#zj$<3R(i9DMF{ zE<(uBb>2%3_v}Wvnb5j!k`FLeyIm#6Iha0X4+m0~uP=d{04V`@;(#Cy&TOmOT^toC z=*8n9W>DtPjJ*ZvqaXUZT?66BQVv_4&Ym@Z?F<`@6ex8XAC``dG$a0O<0qVR;AC3i zD7k6i)Pm7euna83KXWmJkihdATR0b&S1ZZ}5k&ni4i~j{J31*2gXr0z46yDHIZ-@{ z)xaX8vV<38?NxA251pQo9ENzJg5rj;xoLl49i=T(*;U<$I=MJ#nNcP9aNUng=t%Xv z#1z9n3=W*IH#}WQNUHgEcUO$ah`N`yL~Lt!I<36vm#o~L?t9nBKqBCF)cIjq908Dg zc894-tY6#kV~ki3!KpcDG^1U=poWtGitG-Kp2hAqYqtld;KB}G<~x|2lj7#tOTKpq z<`PL5#Pxji(=ZS~4rYCm81izawBd_(cCl;%fVVO=>8`Oz^CJ|PH2uHU&H^Z_^=
)+|O%XxZ*<6 zrX%wT&r|}niaw6Z8>f_b94U2av@SIiM>#4!gB(it!-b8&VY}|nP!>{tdoMzQCN97^ zKlWCAtmjFQYm`>h8qPPOVvi%&v(M!^SjnGKqMuIGmZd=0ivv0??%T)h*+qBB zP%X9a0TtC!4LD{*)DugZJS(=~9J9P(D>41FH+N`uu_F8&>a_6qyCZ<|fh4qAFhN?1{_Ns>eC+I_Xf_Z#<*SJB$XIE0LH?OpW5 zL>G0ax{(uf2q%-n!w7d331{?P;;9kphp!a=o}Pg%`CE+})O(_1yWb11q_jGD#CTL$xA78mVkmPWKc{-PP`hwVnPS=Bl z7j3WaJ{tFK589*BbbV-fQg?D?BcPc?Sc_3yUyAXSsPtPj2JZSj_?6p{eVyE-fj~`P zUeYRgM2zJ#$%MWXo=3j|n7Yy$Td!Qc_M#Eq8%?Oaf4XFY!&*0#(M2>EUF&A=;?qmh zBu$V>etiG((|L&awjknrxXsd*+t#+z@yXY*!B1SDm#6azp{$(dkyMAF%e~~E2h&~j zsKDz=cI;uL99*`)aC8zUYLH8C8oAo@UgZ{hqdn?iE=jJd=5qf$#nzGMT~|lb6Huf5 z73ktY!I1P+%$fezdRZgYG=#NcA@E?^UuQ}TZXPOK;%%m_zNLSB`u(>0M`xc~<-vHO zabSm)rkVJM4U#|Ia6%$9!}C@g6cRg3Mn3kf&A|gt+_vNWUJy|uacF7%C~k!oBte%W z=EX?Vgb)KJX;(QsghX1(;oO-=HGPvJwjnYb031gN>AAkL~Q$?f7LYOnwJtm8JMbwWqD`QSBA_1`dTheM_(6YxxiM-lkV_*j|p<(0~)0NgGb=hVnV`v>cPl zt7f!luLnIBxc_XL5hMm*|FrCNqCydWIihL}E`D(r8t58J(E;)(BKyIwbx)AM#i;}2 z7tj$!5tu(;ps|82!jM8oHCt3HR>3lj(7Wn=&x`3t?35NRZwWU7LnUV>!!_~KG2@?` zD6Da{i@wJ}TOSW)BFMrN#dnD!#oh!|M>p8kr>O)>A!79JTcF9}AkZY@D)DUN`&@bn zd?=3`qlfrDcL}cQ-KQUXNHiMra6Q|gNZ<8f8aGD(-aOD1GRb@oX%47s9-Al*Wq9SMjMVc%402yI7E^uD@ zfLSb-*e4qD>TmIs>#O#y9Jh3{eL-m%yO8ApMefFuIhs(#2z- z;Gw9$4&CYFb*q=AX{2FT&Q8+7Gba!5!4KwYYxi4v`fdagMmx)PEZyXKRqJ*|U9ivf zi8GO1;u^T3Ktcps-F9eG`M95e_{Qb?lf^mc&HP1uL5 z&v2LSj*yqjqVd$$c5GTG)i3DX(~L2-%#7WU)u;W!_#!4^F(&R-5-mKq8 zyilw+@tO;hlJ=h{x3)AtThs_$hGD8)Ic(0e_e#&VPx4mST| zfg^~y<8Ybal;O`pg&X|0bEt#v-TNkf>bl?9c6C*s-ANck4@YK0e;0(~SN}u9s}Mo< zN!$My#htqzjhn8_hT(w29`o64FPD+K24Sz#rTrxI3k`$r7U<8tc<`#VH3T2&e%DTKXnn2t z53A%m4#qxqf#DU3*ALTkP$*DdxEv_aR@p;R8y34mEC_*J?i6pOXnB#hm65wC@7T&e zkr;l@`&g&md#ofqB5e%uTTAa74^|hCXGz=U1$r^}pah)NcLAIQ#c0vV) z;Ge$_|B}^h9!1Ub@#Jtvp|csDA_9Cv6x~Sw+QY*G{J0@QPu8fXrG9@4DQP+)LU<`a zmvI3@slva>l2@w|+7YkV)s|c->T^>C8St{7tH*k>k8ad#=3p5ryp@(VLf20Z)M!mSvvI z_d|?KX_@WaU6T}Rejodv{Te5KI&ZtEt4V-s^Al7OkYcC%?=_krNT0v$e0jW9>@-E@ zzF}x0B;Dj$4Np3trA%?%J-+=vv2)c2n(i!q2AC~GZ$q>O)^*vY!;wB)7knr+3#5vO z)h5N!SRddJ4uxB_?@>Dz3Urj#d3%_Qq>wy zx?B`Ml;|5x45l*xWWsnnhXX#e`w+rSpR#@1?ilSKErf#E$r%1tTvf6Tt;=IO5ylsy zyc=!Al!Lj=%QC-Dx&jw}UV~s%WU9v)`~v5Uxjz?TLbOL>K%YW z_}B{|^311SKkH(CxSkzbr%JLgRcSG%PksL9)ZJU4I1=;tHS!h)C`#E6I#>Q?o?6u) zP7G#nN`FkxG~B=eF?`$0>|>wbq5sNxc+H~KS`mpSyl7S?V!X9^ryyf2J9Oc4x2M|3 zxE)!5sb#R0gqD#xB%}Uv_ERxy2Tv{Q9Zbn{EvyR@d(r4zX}R#ecyDVSAFi(tLq}eR zwR!#$a}%Piv`1`~H~BqD1T`eAQauia7BFC%J25cSQGIq=c=q^uSKvIM>K0D$YW9?q z_&5J4NuEMab`C*7p8Q59TW$COAXc$3D5B76rmZNOzpXB~HAp)2n*Vvc)X;UfL?r6O z73GuDqZR7JRZ_tWB^JuI) zb^2+A)t^@KMl=Bez>t zuvEH8wfV=-YdEapYi-`QlCfo7e2=^$vzhyb&pPuY1)*e_Nz6;Vwp0*!V2bt-lL$y)-SG|oQ~@S=k+OWRj~vHvgQm> z$YO;FU6R#XHNVcnPM|7i)F40ZwE1W6Ary=t@KgR_r0^BLGw)dCUXQ9PJEi`gyCF}d;j>VE3vN)Je!Hb`=1a7C7;_Gm440jYzQNJ-t7WcBn^PTm?9^|Aj@01iR7D7*Nx(%gE5_<)nF#f2L0Yg6=p;R)+X{%VvQXOy$Ov_BTc&6YER{WN za`N?Fam5Tp3-EVX2oJ{HBqv!-)VM*5y)Wv8VtruPgQ#mGbn{wMO^DqJ!#B(oRb`&} zo(U2zXU#@BZQdJdYO#jr_IEjV#nzb#IJ4$-D!93nl)b1JQ zKZ!x=pDb0MUm_t%CS^n&z<{Cwvq)N@%5g*D01s-j#HoaofP6W zHL+!7^+4qp@>1i?Jik!SITW(Ih60Uuw7S4}uJ+k}pP;`W z4wnc`Vm#HEcT0=c!A_t*&ga2oTUwcg;e#{`(`d8+G%NaT#iDsCS-#pVrR;qqT;@6Y zapih9yDH#|O5f;1TLyYZ{dRYNDM%~@S|!>&Y=^0S)pvL3!)@@}j%089wn4{K$jfUy zMgn%agoli&>4W5h7ykYf=+i_IK}C&bE>*|&yfJ!};@Xe#-O7z>d?=i?xdqp>o)__f zYf>nA>SPGTT${i0EGX)!i66g=SIiE$zyCKGNAjPoE+(!a*AE@lJ~OPJ7#sFu+)MQiCaA#tPTVRE zF1X$g>(jUFsUqgYsrmWuKr`H0Kyfb?2TcO?ViJ;^ogxm698C>^WfDK{gd_}XnCAq` zi#ol#CF3Mmu9H9wf@m<-DRPd&DpiP%XobLbm@~SoEEwyZ{XR>l{Xgn)2KvF)YJKo3 z{4{DiWh7)_&(Y>fbTjeCB1$Tq?wah(%X^+1F-`WHSWsP1)3P)1mBV=l{#n%mrU`1l z%#TL#ltSKKR>pf^Pg@tQDkFS)jmSPx4~UWw6TBll8(6pXg_9MRX7>JMl#r;2qk zdP_53?=QIPJ|#(1xn9$HNoRWUcxtvt8Y?&#WWd4m8aJlrm~&~CD57&IVgE}q9B+TS ze}x|EW|p^nPJ&4)i5tNXuQmZ)nss_k$ zSS|p=>N?0ukjBOlTFOdSzcgo(klEMQ$dZH}-!O)fY~bzCJDoI|22!)tHL*fyJ5!sZ zpr8kjgiR^yyu2P2uCUrAUg+1x$J+>nznTJFqj^$-&G3EOYVqBhe4qJk?WXz-2cRF) zS8)yn*1;bWFi zjYIjIR+Yra!}x1j)|X2ptJEc^WFioHDOl2xN|IkBh0DJ7uj>9YkrS2bitXh=M?@0PW#xHPXELels>At*bB@_peW|3MV;fu~N=K_P4AT~afg`Td_(i1iP z*SZ7cg{)mkDl=^KebeP$a=pBU{xq5b=gz7gD06pN#bjoT@~X z_OTCrDCCbwVcqTm6+!5ItmoBqAZ~~}1ao_;JDs6Bh!WyYgM!moh0T(Xy6kACAx{t1 z?2m0bv&01J0XZclCNOjXA5G2vp;@qbd|UPFT^v?u)T2m@)~&WeSuOH}{)2TIp)pmtSVlK;AseJ(^<2{Qy3v1?g!jbNPV&5)$Q#l@W!BjYkC zUfUOT7%Tpibp7`0u~h-ENP*LHJ{JuF&{#+X+bsAk5LR}j-R<4W+V=rBuvW118ic%4 z_X&>8Y(>ixpA}f&BcY?Uo6?b2l}YS>z5kyA(i{w;rUmaREjXVb)0+xMDB4KMga8No z1)LlAs1e5?KBE_ECg4m8ar%ls`uRF5i$y<0E*p5daLfQoO(k}OoO2(A^O!gpWl+~F)j1T`;gLlk80T{+B>5P6 ztJwwwO;1!H$Zt70KQefJ3xdX!r<8qE&q6TJWe|?0P1H%YYRPpX1yEfh>V3h>uZKd< zc%Oh0YRc@4(MULA%=y&?qw;H9Br%MP(1Enew1d@>sD~Z~ooD;nL`B=HbVyG{9)2T0 zk^dEg5=ttACK?RnS!jui1UR#9bsrg7PXWR-{#P3%sB!cRJc8Ag)BB9Z7Uzu(`l1A* zjV48s$Oq4I@92#E7r;=h3Gcxle<5LEx#tUHarp%WtGf;Vi5-o+Kj=Rw{@2C<$0GCe z@RKK>zr43T#JQv&LhVf&qYcY3C5dPSipI7VUTQs9a{bYjpeSnBlJEL!+6 zuph0j1%JJ=wKmzn6o6G~(f_`lJE3;<9dU3Wu!$60!>{i)jO&jMzR%l(<#@{e#(NlX zT>&ez?bR_jVE}rrfeO^hYa7nL-4?4$iTjr`u8?@^8G9gzlWfJP);fwqs{MSup^7)& z`w+Ycxp&(N^QOKdKP^jcecP+lX-dR#s+v^R-PWSdq_&1g+tSA${MG>p{l+utqRt)Si!UjTyutJZ(1Ma?Mj&4y zsU$}wmIWC74-PPK$mh{%OYKqOkz$C{5umkl%E~Sv(0&lQvuUPvp5M>=Z^S494FB zL!s#jr-fTlIHQx!ujOJ1go~`aaBq8&Ns~m1Dc%ZPB9Ik67Hq(kU8<^{X5YDfdbCJITzSiD8nk$)`wI*Qtnj=PG-2kt60jWOPTH+yK_ zu&#I;S>;F)p$|?~rw-h^pRVRz%e`E6VOonFTxs&t3A9l1{vL=^WHhor>)p_;!fEeb zLp7n}VGiFFk=EdHpa}he=g!qE~`(MF_|bYv1$ zL`ItY?N#=7OU76_K_Y+OIisLcN#w&7RU*bScRs`g3e2T%gt(S7zX=6)Q_bp3>_%pkOayi(F!$Irvboi z`%+h%;sb{mBBi58+S)#i{U%@_2YeE0is+ zPBk4PsQztltHWBxIzDE|ry$&2ue(Ht?YtSYD%4*SlTZ^;YnHQexBu6C*_F$OBIvj% zNB7)MTo&8M)?(l0Ljdg_0$QOilU21&TvlAXqDUkVz#}=TTxExl-#(dc>2*#%Kb{&H z-V@n7vvby}L~;A_Kj=KRo`2Av_P_OKTv4=9nY8ie54DG&KQi~TQWDX+vpJ6xAl`ZW z>f&GC>bFLNRcB+%5VpYVv6g@R{scrTShAm7`|WDUoPC&NqYlg2*7u4SXIgr;<&NN7T!xs%ptv1FVuBz{3lU)7#fAa4>RhfUdlSTcv zCsiKoiYxLhpgWau9e;zu$}06L-xj#q^Z$Xja%AlI@^<^;F*6s*5MCaph9)}LY^Y+E zRMjoh^Cn^p1?1)Y&mmI}!=|_ANLpT8E#F?9xa!>?9>vN9T+ULuC6(vof~5d1eH!(< zS|0=Y9RQ2brX!;7(SnKj)9P)z_cEFUmu#1A$F)~jJ+{NamZ3@s{>4p^w22hV3e=PO;vxTQ~-n+^#Ix!@MWv8nJv zfODcP4d9Z9hrjI;X6LFz3M3u&wh%UTwJ2u#3hV-+qjqt9okR7;eK%J+<%J2Imjh=7 z(u9e@G6B^zGmN%Dk=Pq)QWqDKek%G(XEL|u5>vxKiTI#!>BIX=$8ANh^x8msA;M^j zheAs8T~&yQQTK^R($9OAn<|n{uusPMmS3JK2(ji2@M+}$Wx_y%?=!}A*GU*soJB3}d@q}2d}*iEZB`SJvNan~ zuVc0uE?4l;k0!3Qo#OMIeQI>8-mB?#BXHXPp~CebdGo?u4Em?s;KN^2?jk~bLU7KM zK_Lo&@F9Gh{QU<)ELNx-?Pf8(0x=jWfOdI)i6*)S8wF<@lu24=iywj3pA_^Rg&kq# zbOuXRpaWIkDa?BHdsgFioG9_rDge_SPkz1w{Zgb^FTrzr!WaZ%BkzI|s!6YflITzl z6WR#d3P4%@_N_rIoD?B=YqA=?$2598ga8MqPKa;;{*>(F`b>YQHuH2Tl%)N>OgL_~ z13tv489vZJ$j07{gVvNn(==`JqxzF8ib`_DeX`a(uv=4i(xRU}R4jL`Gbx=~hbb|o z6OMio1{u#f;ZP+yA~$;#80xpz+W*~n5p0sg-vfOIT|q%w&g~6hhpOmmyyYk~>XpLp z#gRPPY6emIdyX(O>m2;^zNN%k&HuE;wJo%xJhUhfjF2a%pDedM4f zg6-T-H9@tOeY?uzUwME72D(b`kTa=M2N3@h@(Vq|5qk3B{H{=r2zS?1h^ZwBU!e?v zoF0F5OZYJ#BSo@QE!E#L;(!Cx{c_ZSWO|Nh#lJ0g$X&7r$}eIk_xW4234USPrYESE zruX`xz<}|jiH=nFvxT`zj}8;;20)KXln&zQ3-ScAa#FA1u(i6kI~{v9lXj`7$-<%r zzpjn_zGD#SSf+>=r;;EvkwPL=UiAegJkd|J#TS$(Ak5NMbW41N=Pd-V2pi|W0G$Mf zATx!Y(tmB3td>9qkI+V_7U4GO&umQLjAx~Q9FUy1nIMw`ZBOCoUB>saLVX#k>;OU<>!_3+mME!gBq@URhx3z(}tyw||CMH-9I@~l{~!m~$iq!=(7(*(OXcI!NPbOTAg{smMb=B-76=hbb=p;3CDB1a;79#xd45Yu)( z3JzDZXNk#WN9vX&pqzl9>&=tVP)AR7*q}M)j1CD;ir(fDuqRA~@%;aLxtwkMX7yMCJIf_hfhGX1iB< zVFNG{%EnpqVySy{sU9m>138Z7S2IScl_%95asiIgdC_~-m>kD(q8t~&zDnik<@5XO zI|2r_Ol8pvyj!j?!Jx&FtYozE@wyQ-5noqUQo>E)N=r|dl=3Q*HTBI9t zRdT3kYLX)Jj4a#m5Hr>83GkbukiHgJ*iBPPW-9F{kcWsk?!Yx>zjU~7w*P+|=P?F!yyZ%-YKzr(H2SuAr z$fXMSpB$7z*bX@_+wK{rGp;j~kb>WFoF9fcPy?c6Lv3+jbWOoe*Pdn;UAolW%pDG4^9Ll>#e0ri8$2O^u1J&-YTq)lifU- z^?kqh1qB1&zD1v$oJiM*KL^J*=-SoZUK+xCU;%x!@P$-xaDr9{Nc`He@`5Sk&igpb z-L1ldl?gym-!+BF2Ydi<09&_|miPkYOYfC@Wb{~rnX@hR0dy;M4GsSRm{oY=#wQx{ zc7Q3zzj$$Jzo8S;3dpOiHl|Z@7?gtGn~(=Q*A{^W|Ep_#ag$z+rhE^GJQM9e%bPtx zfzUkZ@(79|Lm;8nO`*q3K#92)o8R^>?TZIWvB@jQ$`N9{`3@F|y^x5=eZVC_Q?v~b zUeH@F-&|AXf#fg2=3ft#hcII=qwsGZ z(MRKfpGt@*bL$+9?&hzyISQ74pmIeeWKRW=DjgMmOj-y~KquI^5({5{XMn+W5xR#W zhP#Ak({aFFr8>H!Y5B7{;|tLmUac2lakZKWmTr)F63cZWuLNim{pjCBlW@L!t@{Xw z54KbCH))qlN<=I!up&C%U+X|Hx(74RI-R@#&Z^Dv?l@>)&Gs>-tWS{^O>T{+rpv5O zlASG^M5QXIAe#uKW*k=B>|9V-$K&Fu*${MyW8;(A$2t(Zj;J+0YG%$E(MGlf)=~IL z*JClShg|yQaNPy0xVcEOeYx9}?ghQ$S1rFtvV-wi)Z_29?syI2u%2=Y)oN?m4O2)( zx8>!eTJoWJ#p#h!QzW^Pfh`-ZrqWXaDM$wt(`&pZCE4M9@DnNpu+jhXFhxK>{*TN; ze5>Y;op=Ea2x7Ooi{CCHH2xPO_PCv{ri==5(^xfAq$ntAsk;DwE_C;SRvv{&dQlHr zZ1lSyD@$bd>$h*;sx&XVcP_YPy?aNX5=+0l&v*51zwn#zQ!h=~vj*M|Z->dF93UzP zy~9Zbr3uQBN0W}#{yS}xvBlSgcRL-<9W8nc!2j=MPNB(m6%HAg6#4HLht?<=!+SJ=iVzpi?NUDFk| zs<2b(2VY)3MW94)N|wD4zqk+`DO7TjevMHQ;A}<6oM2tMcCCMP4>{anfXthurndlb zCj|i&4Ed3VS&ax>GOMmmd}WNXZ}kX4_~hTtlP?+bJbF}x?j-9?6DGzB!BSFE@;ce> zynU25T5KAHTr1eT`P2Il2D=#m*1G8WR8tUr%szZ%P$M9zNl-wK`Yk_mn=-5~RUicB z14cPbRz6*yu21eISBmN5O8_3AduA=} zUVP!Iaw(v`{&AXV%2=POiJJycQm>U@+2rKpJM$r!1vw65_j-Y4HV*Z-aU~j4%2AsR z+WLj(#)i7O7mORdg{J@+mkvZC$@R)1`I!{fr!kjBWBXo7r8`Z3NcQ{H&Cbom6~$vz z$>H7`gpHrtZFL`l7^`~EO&bK6lWJ6C0~OuKBjHaw9}ryQ{x~|W3__$bzvKNfr6_8F zBK@AGv(w|G#z)g-m+G{^f<89p469J~-{^4R~1!z{v0lQKPlNa;W zgp16ZU*+H7+y~rD8Eh`4z#mV8K|9Y)VVUVRzqK``K}S!!b~3DO2AoMkHG5U!q|Qwu zgIiQI<ou?%TPWuwfVu^QKALeie-Qu-|9Bkg-fdtR2YY@`s`{JzO#TO! zB~u!5)5Pp}9#5W#W4FL9lmFUX-dkQ#F#(wWue9hjfVNn3CP#{AeCZb;iwJS0??lD` zbkL$>Vq!>8#sCdnqD|@fgbIy)`X)Ra4=)fb!UkFUc2!3EUnDm}V}TiY9=io9(OtB} zr{{9?@(oQ*O_x%EauPn_C_+tuLkpJ!3&U}3yv%ab1HQQe3h?bmiL~gl`r_E=OEJ2Aj zpxZY?-UBXf?&!U10v%WCi!mPikM`mMPD0+~Cyd8Z=yai{sh0h2!7uwpFD$mZw^z~5?mA)# z_i8j#O$Thg}dehwulD2PGgrusc_jX3vQNU#im*4SQ(XLf%V0IstirXo>D3WO|6qPYIA@3m1gFDXpIz* z&)?jV?JdE0m3?>%l1mg=yNMVBPFxWtJrvYy;rE#ReSCXA%?37ut17XxpoYXklkDy7 z9l-61ftQEl=NRR($6h-?UR=QqFP}FALcD)P=72Jzdo$|Etv@zA;iL3RTuyEpe?8y{ z2&&|P7mFj;f{v3y291JS{2U7LH&;wV&%nLh0=SWPBl6kIJ#I_1v6w9gVk}@YEj23Q zrzP=%*QyMH3z+WKxl0H0N=-ed!(e$aU^-&3Q82eaE^mm1hlgiv{NKhH#EPF{zxi{# zKC`+4ON?sge2<~o*wfQrDa|dI?O6~#MgF=Q8nqz2KGV$9d_2ARcWxG)=864Y`>!-I zda*!wp>hffNnqDugrTqD0cXcEwd>VWdi!YzlB;2V(xLWfr66l)83dU4_0zGycV83$cNkdxJ@Rp(xw0#HAv5EM*E=u0K-oP%>k3!NGfY>Q0E91d&Fj{yogqW{^ zob&EhoQS04<;{j2GU<~o1w(G?@%6_b5YzyUnmbIxC8p+<)zTsZyS;%mV&+00ILC2(Ti6oVkBwR`!AI-t%n?(-|$`TUvn) zn&Z8((f(^wO_vg|0mvqfAR%}^EM2*I_~V%uqEkGIy3bu=_j_ZycIS&EqA5cX6$H7J zr4ZrL!&9U9r%`K|Nrr3QL(^fjuod==e;}S?1exsm-s<&t$F?xh3pUZq^kn$<4i3oE zgK1`H*qpP_Uu4dF@967iXJuh&YHA)p()Bb)B`!Sn5Vmb(0PGw90^4B_TI}`PZ)cg# z4)9?Hu-TJ^VQgkAHF>l6>R|tS#K0VZ4j(}8BodtbDx>3OarWme#4H8xslb8X z2{FqtK&~XEY+&ABG)Ao2bJGkqN+#betlRl_deJ7TJV=9a~X8}Fq-^?Nwd0VBk8$8;)9F@EUc_dTK`se!%@WXy~*w4G36YA zwV4snaKC^9KsuA}TFG)GSFweGsmI;%I#I{*7E~!bMdiJ;Y!B1U)rW#Fm>En|*35N%1%~T)28$Tmos8aS!-$djLWsvqw73dg;=h6pn zM;j*>*93g%J)pnV&qs27{IU&WGixiWQUGU!H_eQXcM0COF+pWu z(hA3S2b2mX;2>+OG~xkar}1#f@~E*hvf&q*);}K^9Svvf4DgzE>)|P^txfd<0jDFp zR*o=h2Kma`tl_&R4s)a@kVxSD-2%hMj~_?$RQT_t&y)hyuoQXa-Jj?;6t7l|nW5=o z!g!@s4q+4TkJhp4CxT?4K2GPF^=VC!uv6g(R&X(4sRqxj=5(W;(6RGvHSW; z$`Lxx$T!P{;FZBsR&Eq!*mUrQA>I?fg-ji=wSwSrja}xDu%Ng&_DEQ1=Yzzt=%cOK z)_#Gh8s`VVTf-Y#-773Djh8xF%DL{R2^q9s#Ei^pVTJd!4d)}ZzsXRV1{8e%$C9Fp z>d&n?A`_Qv$P+6O#5)V*%ABw=FA(5-e3dEc%vfB%A%SW^#Qd4lKz9Nj-WjKe&h(}YY(g?6{b zOEH0c8b#GekjsUJPJHm-g1N2XFhx73w3M8JO``=G+E3v|F-=TN0RIqB?pYY?dw5@W zAYK5#46tSRN*uXWn2Awp* z2Sb9cmjS1T2#*#D5NK53zp5lIpQsF8?n;ET27I53*su-RV< z8COLRjC$6MgW{))f%4BTIpmN(SP@kS5+=a@cORB3JT{PQyb#1)SXiKy_VtP=nF6d8 zge~wsVI^~l;r@hUDAu^1a5)ZH9qfk)Eghj;f0a4A3BTM({|@xgJFcae1kcakKUq?d z308me5zYx+7_uJ0L?WAfI;47~zJhKxKre z$`2kDWr+G1ebxks?Bo+s|DHVm9mW~Y`gbh!|K}@r$`nY9y;W;)Z59Rps3~bF7Ry@% F|1avWCpQ29 literal 33700 zcmc$`WmJ{X_bq%->5@EjNJ}H7gmfqfhYraDNQZPI-5{VST>{b#N(o2^(%s#i(!TrP z?;juDaqq`Fh7RQj&$DCgwdR_0Zo`yc$zo%WVL%`dY8adfp+c{ZV7}L0zzIC*)vwgzB&%wh+WA5Z+@A!<9)8@aw zfy3_Y8&2j85@YZXbbC2%M+gMh2=N;!|9PGT1QLKJFD0(#ma;qR?xi+*@%*4a)jNIX zGkstzTA;V4*lX7Cm#`}5ZGWBJEOYg$nkwSL>gOXG+bSbIMAEv6mWAe{ORbOnY0w_& z%F(b**8bXY-E;Br#Uka24K(4gI%+T|b+@qHoAJa6bbs3?vhFU}L2{oq@S%iC+~Y}X z8t@mnKg`Mm5@@t6k@xt(Kg6~E-@bHx$Bj}ujXh=j3XPV2l3CfcW%=-jZEf4~A$>gy zcp%DCj1k0hF|x%J(P#s6xc=XM$vIk$x_}Xi-pGV(38t9?)oB!`Fh6UBCg6J*+zqXZ z_7MJbNb$2nqxid}846%jdMKNUWRiTkQ1^2_ z{ojY!2FeoZ@z7`07%0WhSZp%xCha7yK~kXWb$}vml2j#ch5GN+n9jRMBZ4)MQyx-kdbg=S7pCZMP<&PKZh9F}SFZ6IW|IADG!GIAu3`#>=){jrmMU#7jFE1|- zwhtED@aBDY$~zBEhLx5t*3&!JdXtU#leypYQ5*Wxi`vWUolRg;Q(a}+v%`|_CW8c%+rkG_xL5gUO=1!8fcqP%WtNmtb&DRdd zkcClA18E;0QH>(4ciScP94?d~GIR8&OOf9%o7 z%)%n>;J{r{w}i1X*C=$|xV2@;%gbwcwlld1cd4fw&Qt2lRZRZgpwC4TIK3O~h9`kW zD*UV>=Bf9+3ij_N0!$L!4=kl&_Tzf4Mq@?VBm%atYu7&{CN6(T)Nl3NZw&FhJx*69 zM1GUz&S+_A333BAHpK7x`a1N_>iT*}vuhT^%a0)LLk!y6+qt)hK+rf1Y~U>A564(n zQWenKwr{=Yey|0W*l@f=&+WKZz*E?6?f2(T&wWK16_WxT`$eGp4aYcd9UTwnd2%JUz261%tUj2>HtsGP8ZTS}uwx;cxDXF~|ZIP%58u zqev3&dtf~0H~YRZt*sKjlLa_gZs@^scz}~K$}T#Am6Y@5ZW5P4pH(ww1 z)E#z^BSB=NDc-$szQ!HcbXv-Le#1gWMi%?|bJ$naJmck#D3T{;3g;A26Y zCi@4#P%8VLVX|tL2(xfwfPHL{k0n&&^Q7s<(q0=$IokWd-Jw-M{@!xNR$#|P=rspa zq?9o*7Ae2rS3tK6C&o^PC*Ae*AL!BOm`Uw3nPk(N_P5QS9z}f zS$Udr1|!(U1@{1a9A0;$fr8BOod5Ya1MKcQMouqr($BdkpO5y$-X%Sh=t}v zR*meSw~{9q4R#7BYx21t-U?Jh{HR}1CmmGf+-+$NrMQanHr9_E)lR*)QtD7wp`uAO_8U_z{k?{B>y`b+KYqN<_lfBC}`07@7D(dF`>wAc_jq;sQ z3{xYb}_Lp&_(dN`+v^alsX_wzr zsnoTessDD^B7i&CLlZ(#S7%16t2!7-DLb91?xiVa{a)$_T_n3W_G*UX~G9u_m=3)h!FrsbqD@9_fk!pl~8lnJg<7yZq5U5NgV% zr;7~vBvk&8?zq_Do00(x5&v;VZZMhRh!DQ$t6ZU>z%`xI^TCri@Q%`d?{Ei|sG$MP zD&@$-^%a4~^tZg0{D}D{2TlLx@+GXopX?2Uv6zu#I_H%F!802zjo@ist_UTV6Z7Re7AsPop^c<@bR;3kkb4^`t7^%zsCh-t_6sJ)K60*Z3(Z zpBPX42i>`wW!dhIYFwPeri44hk00mivntDfKTh6OUm`vv=H+3O+Dn3|f3c~ek{uDk z%uP~NKL7ZGrGq5udp#~KFC7>*a(E?o3DD*IK(CKk5`mVf+ZmsR?Gd8U< zh=I=qgXqnPYG_ty1jlzY(e%>kKSg@=#N!6OB8al0n9QG9S4RTXbHcNUJM;80M~X}O|(Tmcv{emWs%W7XT$?$FXiPJ`%%24U;z8tnBH z$5)B_?z`3FkD7cA+o6Z)f3HysHHurWFOJ(fPd!8^aAbGL5m8p+9~U|0LPhMoBRl*x ziLr`_g>TOFU$vim6LffW^HBOQ=WdYh?(WQ-oSntBbKzrSW45JuSSX7w^>q3m+s0+L zv;H6mamxIff_MT!K9O{bp6hIocBProOr1lc&wQ!xjTIp=vGE;7fEsvl>wBN77wJ@E z#E4!pj{!XNlH=Qh3N}~wsQ*>kZ}xD(jGN+3kgH!kkJQ0d{&b)J-_l8=Hmq=S! zSd`BFnSjSED*0X#h~A#V6_WXP6V}H^Ml!0aiI9Nhn;WBQhO6N|Gn8i z9D2!VG*M=>_{XhLAL2K@-CpW*%IbBonkeYB@lc~!Cy2GA?p|96ZfD9I5OLf3Zy(NTcUde*S01(f-?O1TaumR(|Mnvu*GfBi(VO z3vXn6T(&{>;RCO~SMxD${RX#3P>7#SaYtXOkOO!he5LDs-NjlmxAT^o*X_mn!1gKn zJ{_2+s^jsaq#5xE>~eC&kfA`0`;Zc$Y{4(XfoJras`GgjF1u5qrMQ&OMwTxC?4kC( zc6hEM4I+CmX-3#hUZ#e@<$eM5`F;YUlZs^?IF2va80kPkcSC+addeZ1o4r|zD^%{{ zdzl0N?Xo5XQN9Ou78fyJaBaim{pcydi~hlf96WmD>RlwQlc`VaCoekxI~7^zc#GHF zD}M=1Dgit2uVAWlVMs2&-=n(QBFvpo;YZfb-djlMHi)lGV|DQ}@l*2Ml@9dL6&!yk z(I=;y`MA@uv21jCf-US90~Tr|AK}p!=zVi{{S>_sNc@eg5M8V@MS<_`UMDvB=EF*6 zA3E3-^NYCZ?%jJ)p}?)1IS2hWKZQyrG&|*B>G{86H<#`)!1xjglA98W&zzf~UX+%HMvBq|5X0NwM%?Cl<8H9vRuWLm;1vh# zWdEKnRjBF5O4Dk#@%QBLd6O^}is6{Wqyy{s781!qB{5ho($kMCyFIyg<#W#@D6?i3 zH&thJzg??-`}M@zeC)?K=Yx^wM6>qDQd(GK2`0(QHLHaJcNHv5D9=Dl7i%bpr{kbI zw+-TlDZ37rOGzVtS#htKIh(hWB7Su9M*Ob6zvk`$l?n1ge7gU`qygnyW4lIj(1ebs zbMx|J??`~5G^yi;^ggWhJR!bYYKK)ExlE_b8w$l9jJCpL93;rvD>kVb2GKBCFL87- zqQnG|VZA#@N?)?2ha|@nAU@qZHL!gquxy`9ZPrLOpUy)M%5M%=@R?ue5}T^RQEcbE ze~(_qd|~c%d_$!eQQ<$%ACji%>-&P6ja%;15K*3zSg?Eqt@hzd=_$>-75u3f4+?$4 zRU^%|Z~fNb3i_j-qBd71!k_uh@BQPjU`EV6+>)i6^Bd1U{#zAH{RG(dlF{fNJKkL= z{q=TXHpFjRiF#_E?443{G--DJJ%ToF&zm0b*YW+xrVyE0% zX6>l(Hnx-OZlc_)i_$wKjxDQDBY{)9sjK2*S-gj)SpC(A7~r-v%27_W5W(2_HUDJx z!^qX>JAlKc-Xcrw6uY)jK3ps#&)DiT|K8HO>|0L;fe55LW#dpC@)7sfLB{Ig?<`g@ z^ZjC0h~P|8U7GzwoH^Xw(Q$PD`tw2>nl8BLgN#%hP#B5c{LFoy${g9U2~|$9kjQypp+ z-F>IfHGuo4_20w2XV9i+D}mwneS}3svp0$D9!h_fS?ORgaAUgzYxo}kw7lAyRd#%A zqHTN}naCZi$xn3;@|w5fUDof3ydx)6DH3N(5dRr3-XZo*bsjN=K<;3&JZjIa*@1#l zZoSac(M`;hv{ctq-mi*C`AMnGU-=Ur)9Ofjo&2dAi=4`I}7Hrf(kcL_WjneYN{v zhb>1pt|+76SA=A-4gR$HlASd|* zA~k+@`<&4jiU`p)q^h?1)NZXlD#|OKkG*p=7&|B{x~i2M9bfOD=v#bom9pl+fNUF| z6>aPRi>1mO7PXEFV#vX=U_$xH5k8gyXf|d?IJuQJ86$jUS^s%--)FSQV z`B>aEkha+xd7>*ermZ47^712F%Vu6WPT^=c0EwWp$0Z^n%JZ5Bv_=#xTc*X3%kcXA z@O&dX=225WN!wC;1cHpn9t@qVe3K2ZjQ%VQXuMlEVpff^MwH1 z)=snEpWeyGGcE#-4Hb?R6ckjqp5|%4-}na{7!K&s@o~A=#oO0_Az{*cLW1>(1S`1N zrGA!~gCn?S)xXy)!hsW=mcH7}4bO9X*8WmTa0eydSQvTs1M1&;a$Q^@hqF+M8G$!y z3Z=Uzn97BM3ZzNs*&H`D@Kok6Yxlt$AT+G3h0~7wHdBFMsbwjWpS-~VUp#>1mz2mz zN=p8G`j1n?O?UiXyjQu>10^)tuU$kB%j^51Tzr@OPfB#4HB>GV#Y+d-B#GsOrpQR* z5*E?!Vh=26g6>skG1mcpkIQO|Es|WIWcnCE&7@O*>*sj>oEq?Ji~Ft=+j}Vl?Ei}i z^ZgDEpGC_iL0MiOGACz?(MyF`v&h8{iXjjPH0qbEQDg)h6ao8*sIJ;C>uH-MIll|` z|HHZgOexvAUp&5@Ii9DvrzwH98KYtM(34yk4TI;X=<-u(-Co~ENt+4RqR7?iVPhfB zO@KWL)JZq|lZ4-FS8*tzQh2LZb12neGx%d-dNU@@ePx~dsn z7#$R)^CQ1Vm$s;LbHF!GFuQ6tloLMBdFIx~jeJF{#KP&gK__4|Q42@Oe1ffOr;T`n z({z8QKc@x+vQ~u&I%J_wX#eN8^|XjiYF~;(Jr~kBuVY2)+3!Su|M>nzg)9i-{9m}a zST&k%i~`+;SR#61Im|f!@mi;Za*BHqqArUeP*VUyVn0sZT3 z{XS<;s%mSOiz@qC0nKd0g_Y8d9QbfZvp0=q%Igt@yq5XtV2KBy-n#g=?X|Ibv|M&R zbNu3eB+$F1@JHjtZuTo8+gfs$`qVQRfdmScxXQsP9+Q8Tf6)Ubq(e-6TX$zx;fBEJ ze(LC_aCohLelL?)Da^>&p~G)7+Bxf;fGl7uR_GO}s7m}G_1uS;#dDMTn7Euqa%R>& zS||*p{%qO2t_wS#_wHC0(go1mCe=V9brf4`*#TiN7a>XdvV%mY;a)gTRM*Rc<1?u{ zrR4tWc%jfU`l#Ib%g1URZ%vwzpY#}Oc2vxAwwetXYSlb7n(m3aqrI>U8Q=Yqrykc)Pf^jCKh!qh9yQZa6stg7f%+vhC)E&M&!if66LZ(v&R^ ztM^AB$%k?*MR!zK0{1~)gAk%p#3F@5O(_7aG-!n{D)M@Esr~y+CeO!XxYpeuEC-CW zqDc#o68_UinD|-RBQLDB2gc+|YqwygYX%?*zLCOt)l>a*<-325U!qCEY7%ODf@?_2 zuqq(mrLO%0v-=>{C^izZ!#?7z>7r8+c2;@=U)2HS+pWdZF|f1B&D#^`wY~5{Uz!ex zHKcx9)9&Z~DhjI3Y2mCiORoESt$k$BNF6@neoBH$o{xYgBMu;Dm<)K+U4K6c2sb8v zhsX>gHK>LH8~FT5wnqnA*K@Xrub-G7gnWZ@Kbj|tx5A9Or=P&>6H2-E;CAW#V-$lJ z#19r);r`(4V(ykxC>Wr#@nQ3^gX(zSdt2-w>~x`p6$T?>1$*Wt9L|F>{~s=t#}DLN zAnBOUGk=o@#Siz^RX|uAz5TO{uv5F>%Fi;vV9+NNjb}MMEIty&LjXupF)*VCQl#2z z=lk4qK0m|${%LMpkVam;&|tgWBbhKh$Mk1rMGNKWAj0lr*~bZ}T?ZTZqb?>Y_le?R z`q6De1*wwPcj~xSuCIdkn;T7>eq+LUJtbA=elhoaet`fsT@cvz2^}*_SG1$vT1-=M z=kYdXwE$lA74j$NB=HXuId_z!3B>+Fnz!z}E;^SK?q;#`pt&zamc3(NkUQV`2a zNA1a9yj1te^ue^sY`CnZhFC07Bzx83ZBNHf@6~Fsp(qyJS9eHQF3I8)WpD?*qv*xx zmUon!r8)y4N(wg{<{!P+RA9b(7Ek$C^*)KK&i!LOEu`XzD4Z`dVPB1TlJv{7iNV(2 zhcv0Cg$Ol0p-3WG-`xurqLC<7&*V)6TXL7Na^4e{`VlKVbRWBAKQNA5q&A@Hn4Sir znx+EVPo=)cL631*#FglOVSw`k$1E-zO!&is=ptfy2f35RtVV9gPP;MM9Jg^6mS=$q zck$%K!Od66rMTL9)~fD$J4D>eC7GY046YHx&c_T^F|)c|$76UoWDrsKP4|&UM|3_l z9`8~;ILKt#2k0m7l(e@_^L$(j2$xtAlvL)&7 zrVjSqGFAn0#C}%@x@CLiO%@ zX0}5E+hhtGuEOu)MNnMDzN!~DTZZ7&{PMWltfG2+I!G(+lHzHb`mDgAJ?!i7Le(lk;IXef17*+DA)oZFCnr}U_haCQq$ zt%Ydkg;{PB!m;{`z6LTeXR?h)TICUSW_}Q{Iz)bN$CnWbe&DV{R?&)24gv8(yefB6 z*%)=c6-z)y6cSV^+rhSKZs+cf4k*ztPkC1<*)LV;0%Hl=BY2{p-7njyhDGHj&j{ z-33!$fnUPMzn=gtv;FdP8$K%oGO!ciHrxX6i(rwtRw+IW6^9QY3%S}~&?yHWM`jMT zwdJeB6*5zE8{jkrcPyrTFW>kAz$^hel#hcLdw6W?cli-C`n=DTjRLtm5UavCnKL^` z{bn<^kIi*7NYbv0@coMnL9foCXy~D=ZDekb8f!Xcr1mZf!}h0~8r@bw!Q&aATrSdJ zLoBPwFrge$>gwvHrIkK69=}tCpaA^?#Ko#nv~hS%Zr6ZE(V2QeCgfs$p7Q*95tqr^ zcO)O?y$4uH`j>zc^Hug|2p>EVG8oUu8oXcmD$2m;jZ`a!ja-F4iYCNe<9-M66pLJ^ zvf4Y3?gW;_H^ZsBv-MB{rdKE(AMd&d?YMZJZxgX<`~VtmZnAB-pi=hWk43o|CqTykeBtd0@e!BN zkeT-{0w;ZG_y$mXq^8<}&BC0o*du>N@JwBcWA*YIxs?z-!)B+5sMbf_0^QZSWkIfv z*3P~9{igW7s}@`zKdaJ4e*R*iAk&_YMnDw+rh+g*eQoV9AUl&_q5MvHN`UBC2Qnq= z8(;koVZS_P23m>eWGHN!N=$<=dsCo>q9s$~xitzlaf*O2t?FD;#sf_;F@VENzkLiW zVWU>?pv*5UEL@(976pH_{k{G3yy5n88?Q4@DLs0%Co#LBfdZ_(+d&Je1CR*dz%c-% zA3c35pqnE;Bp9>?Z`4SA;+H{BH$783c+!L-aC_{G4KZxFXnT(*ow3jADi&yv0NX1w zHvdTa7-Ptxt-Mcig?>p8XTRx+1Nb(^3y%}owEYnf-`UxDVDtOmOlvzkS$TQ%G`A)6 z8L#7By|m%c(C$h6^*h2hZYEh#5wcipyu5Qu>v?yKMG z)?1GRYj}Qc63}oX1Emfyag5e2Q--74>A`>IeVfOjjX;&pwp6g=?l=G>|6=F!TZb5N zG6)Y357*n3E-KAzAWCeUhG{#AqtP-MM@Xi6UmXZBn7)3rRmnG$$;rv{qaM!p z$;s3EXZR9wY}Fo;;z`^zJ&0h6NY~7sBnWIX`+*?UzXo;Uf39<1(Q+oylwuK&r!8nV z`S$JGM4bbjOe6_j3_nBa^ltF1ZC<-cU~HYkipOfD6U1A8wQZ+6Pupbu8%xZpgz+6TSLi5bxr;;&KLF(r7%fXm3>&XhO+92Rf3PP}*r?w9mzVwSv zQ9eBUoisq##tLc$yWDYBB&dU#+KiDLWw6*+S@{}Na&du)`X1=%-e;t_uTn88pH`4u z5GV=b#dqLIbcrovgidJgBXM?jRi1f|o&d;@0YnSI;ZW*+=BKCRSqo5l!JB*CZ`qi8 z_#`DwAICo~5Nos==TP{}gA6J2{d*g_Kj`xe9JZtoXnE}%wwAFH7_PbTakzM=GhK+rzu8`5f{b4w)!6r%O3m+bV>ZAo6JP4ib!9661SUCMtPr)ikC&A^&E`)DBv&iMe=HGL+vSQ_^ zTeufV@f05{5zE%LB>A2lptlg!hTDb)po&UA8U(dhJU5{6Se+2*AYLSD!eauxIH_$G zl>d{@-0)11Au_%Y2Wc0<9T0<~Qm3`ve`Z}J3rCl_-qUe?R#;pf*Y{-CD0xj<2^L)L z*>bybEY7YgzYI|h`K<6q8#E&6%fSX2gR#N{MU8)=QHXj8GGc=nJ9R|xoQ>8GZr~tqn!gZx9J%5Mh@ztO!9Ycmu3)`pTDeI}Pzk)PYtFM72TdOc0iDGnnPKAV6G z0@e>cCJ2Z=0sowgtd;-(@h>zaM_NvSyGxTl*o@hir;rfY1+Fj!O^^sv0K3TbJ=Wjp zS*WGd4MH^a$K?0{1Z7&Zd!X2e0)ra4jg1Y^(K(F~7(^a3tH{td8}-gY6`T+C{`JDV zTQ`Ce2blzIpc%L|0J$?Z=KN@{pUWKX+cp^!|{-lJ6MP zwRW8rdF{#{l}@K>T3dU>v*#YL-gY++ZlBQ1jv!24+l7h-&OB zRv6JL$wodiDs2uYkfaq(g^AG z8w}##;NzW5eU(+hv*+}z+!paB44N;e&rz z<$x~4Bsz;LZ}ds~W7M(CS+lTRr|7121l1}I#?U5nL3;k__Bb5yb#B1oxajl@{5k}l z!|bXmLICMvoXG)JXJEmQbgqP=>UwqYY+g}5Fqrpx5HfvTMqZ7utb9^%7w`-yBdua~ z)v{RBN(#5!@&sJ+r>BmLX`Xve^G7qA-LyYCOxx5N0T&p;=LVk}kjnaMC(-ql89X=w zS6z|HBV;;dPYKR?3~uoOvBm_(!3FQYg8WD{@CgIxZV6!t z01|iG`m0Y|wEXN00MsilpTI$I5PMtup9siKAGXwHw#tAwdBApgs}~P7MPx}tMGsYs zBaC|u6Uo;2>OmFiNP*fxA{ZUO)&mpZ(B2^Bqs?IjI>Fhfr{U07cpUjOG{L?zc^b5n zOK}c3GcI!nK6<5eeCFEG$Zf}L%I(an%`}#yc2!GJwON zm832#GX0_W=HuD6PAWkXppaPPaA{!3TXAu5TD1XSZ8ZWSWTgYhJ*vt0;b82VAyWsN zb29djy(Ez=1I!`9j)4ty242$lc3~EcmT_LNzc#na)PH{zX;&(1X_0W)T&%<^Ej9j` zi?|EaNg&Xl@zrH&d^L=L#k!zM30Ho{huF90NPu=()|$-=C1Uof7-PWJ^goozw<}0P2tmqn*x*nRHI|LFzBTW(fN3VaW}uS9TLH#?kU1XH(RCx_uPElApW3rX8YcHM&xayvr=ngvFnyGBeNEz#g- z+B1QB{uIZMy4);M11jqPnf66cU$aV3DHBYpP^A#UsvINOOsp)7k=mKJn2|Dcd(D4+ z&To9K7f_#z85z;0d2F#Dbdhpf&=CDhO};DI%`|kJ!E_c7^Fx$F-)%(W{2b2w!jTQ8 zC!0V7)L}sIca%{$Dim0~AAzcyRrFo^Ja5qFJUY5Gm=RW2Hsg^%f#Px+yQY#;=}R?@ zJ{*R0k+f0Y){`4hTXc4LVNzYqN#$qD$vk4k!rp^~^C*CQi1LtnHKa81`4_!>YbYL_ zAW!8U>g=h^1sna2qD2zG`a9HiapS~&1|F;S*- z!(|c+ThM7~ZA6iTtX@y3Zp%aneA-#Vvh<-P%+YPkd_7%2f@%@OEnIE++zr+;AwkZO zu0=BH42V61bSq@d^{29eSY8QsQw$PAOsC_JLt@W|kE0c6VFDc_TYAEe$wgvUluf@C zFmkeaU`NHq`9V#03jbuZlLN3B=?>

oR7fnM#gQjNz)s#Z%x3($2_Z!-O`n%9Ahj zH&T3AqChPxGx-%4n!(n?^AR*Kz^lt@7DZ=56H62fJf}M)n5z+em877~WX>`z7*;~V zhe}UVa$+RJr=l2@nB`=Tf1j&aB3gZJwfl=ql`j^{{&*KACMME!VRTd0d}7q2-DCp2 zes+v#IB=<>uCA^MUhPyOLDGG1p90ITMyWpKFbaNLACNeK(Z71v$ArXr@%3+tPTFxx zF<>32mk-Ipn!-&+6PHJ5px7K#IG$eqRlwkRq0R6>yCr7{>$ULM;JOva*l8J|FdQp2 z@iZ(pSX6#zBxyjZkn2*CRf)K&DuFN+?pl9(jQ75Nj#$j` zM}HQD!I+AIn$%#A{FA==?ZF1x&}oU-48kH%*@!|EMfJ(q^7=@K?y^CQo%xsjr8G#O zuoR-%r6)XPC!W-&Vp3Q6^1ghY{y@imXAm1}#eG6TNH&ACqIE)|X_99n;P6Ne<1v{q z;CAWeEkku1*Cg3RXKu!D zSnd%2qGGh(mnxDb1e|X^0+F#!Im}p~L=+@7D!&V8bJ=3qeI0=Wj!h8?cJR8iLC!lT z#RQ@qyOWF>5x)jO6bqQf!Fd0fqzXxHqS@m0Q4_j>ZL(2S>2k;mvR5Z`Q8{|E3W`2 z(`-~bI}r>>-EPBT*A9GAKF=UR75T=nk9he${X!@v67Z4}G*yJbyEqF&-TC`)WNUD`ZT$S3*35Hv@fK7N-W}(bdGExj-lwziiMDD z`pD9T^Zo#jk$!@596T$KG3TZC?dGUu^*O@97oU9PC904ji1#v)V|V!K@#DwJ2sfxR z2ig%ZRAK`9>gRo2VLxE>BLl3`Phim-7#Sgq=O-AVP54RgXJ0TEeT6xL^1-`hjLl?e|;FWLORGhQT!D>g}02<_qY;s&H9cmDe# zM>MnHTdJmW4eogqH)kDyC-M)W_94;KcQ;L+17{f(NU=U&)jI1Be-bDyAYA{p-!~Z} zNuQwfKmRMNz(}C)vH8WPHZd0XM}PsoZBIu)(4M=8pjf>S$XyQLs!d`#Sfvk$0Ua(G zM&M4G>CNQ5cOCy$X6(rhSvWfmX&dX@F%p+Yxv!jJn$-@^(S`L^BCaanikv)bI$y$6 zNPR|RR{3=43PE(ihwAnel6cWu3?Blt32Mhdi2a;{_(Q~97&e_MX0MVLUs`u2E6Xj0 zb8SnZSSWZ{RQ>fkF7?afZgFQoF}$y+Pho)>mGx?dde(qHn>fmrO1+mVlCwK>yJ}Y~ zi{ff^Q!F0(Ik%~lV1rdZ;SewhT#!oH^~K1c9Z`eqQPvE>p3ogp(P2hVM$)-Jd`Qa3 zpw!q*2ir{7NPERB*VQ3!`TO5P7#u$F+mQLU(CB*|N+Wbxgx?`o;j{n8kHlRSk=NH< zjS&|Y7ZbI12DRgQKrW{8I%uh@`i#X!rT_C*1{V|q&^dVHWT`9aBf!&}1hd7E;d+Dq z_n=DyUMKrPTmb#JOSgCjxH|0XMnk|=E0a%7=-QFBUdyy2^==^d)U6g(h&Ind6EemN zxafPNe4BG*VdL3*1Le}Jc+bs2N(Qc9Twia5I{f3^{d3^w4EMcWriK}~0zw904Wo0b z+UcmJr6r&04_Ly$2Yx2twt)Tuwi-G&zR*EEH;_w0ee<@CmMGji^9O!V73nRX7kc%9pb0C5~s=ENP31dg?fgal?%cKVi_ znzSJ+O;xwXniTY9r~xeya1252TLkv&NYiPL)yOA(Vu%|#G)zpWfZ~mcio#px<>zl* z+z_2F(Ju`Fjtw`wp?BrV`0;vt91j?fk!#YPL^+$frea3SVWTlf&s`GCLIfh#cOZih=+wdJw^?}>?v1KuHT*l26yt5&t8 z`uSCOmf>iDI_RIwB&MZNP+%I$qbuzIuvJ+Sy=A);?Wgiq9gaqwn~wtAe(OV_kGF;x zfB*#@-(gGNCDnYg=~xTVLx-|S)Xz26sW~9I-$dzaIgx4MS5;d~23rCc21p_M<=;l$ zKFvj3=MV50CK;zVl{^><(sw{xg~Qo!a1X(r9h8GBY7_*F3O^7AWpIZmUvvD>qj7PN z>tT}0d^sGoqN0M!X+s$tE41qBYPZu-O(ckt=mq_YmoK?pcC-$JV}REiuTZnJ0}v1R zO&zU4m=0~&0)|sn7J|!>PY~F>b^Uk|K{MwTnmoir<9VDcoNt9oGfgqOlw%W;dhScT z8$`qUiHDb&pl>Xndiig0sM3J_RMVWuYva*&_^gy-^ah| zT=f91u9go-YJjVAu5Zd<$|@35Axtp&%&f?~S)E_-X4avT5};qVr7)&P(euE9g7)B^ z_bbCV%Y2Wqg|Uq_5X1o)`84ANA&*<_UD`1OBSjy@XFccTee(wBiKVgL1kkMA&CdSK*s9jfyFX< z`jIVap{7F>-TcmHySG^%b z*igU>}D@x1#&CX|7W&dA+?J*gk*;L--N?UT!h>QGT9=_q_?wz;2|; zF8GC6DeAzQ8vhlZesU|r`TP4%k@&s3KSO-#;C4{=+uwCAI!+fv!VPHguL73XrlO@U zqcxs9^dCUAP>ut%-M+6X6lchhiEyDt|G_5CderasItgMP9zyI#R~}uT>{N(~oGl9CGz(u-d#Q|KeW>$HWLm{prQMj*r1A7y&jjL_sc0GJE;WB}qDihQ` zPZ>b_d5|5F4c@4Mc%veWB&o5*J~L7^t)B$3a1Hg1z{h&**zF<0-i>&t8gV&ITPVNp zL5?FpwE^<&qz_jIyk8M{slPVw8H43fW7{@q?#ii)%Xa_;ExHOh_6;AsSAmuhmandA z7-xY_2F&4n_Dgnlx9C{rC{qSkn^<+Od^3>z1Co?t7r=dtO(jY~!j6NTq{m(dHX?!$ zOkgkAf5p6W+L$CPJ`tr8`MAu;+{`?|c`1Rf(*dAZ(}8?JYmuFwYg=j1k4T+0))pgz z11muxP|w*kwN?b*9dcB#u6>HGRQijgEh3%z=Nr%Dj3qyVUY5>;%+D}`egrJaS5A-z zBl&wbk`U0l?j&RjfaL;i4biz_G$QEZF8jl}y_b1u`9R5m<#m{cU=ueoR$)xoiWTm! zz)oWo2ue~YbhOS|*HJxBub&R*V2*yXJ^M2Iu^4Cq;PSxfF4BrFw*0SmH&Y+!&iDJ4 zPrvjFvomd3Igcb!#aSqr8x!-`BVMlqu8;Jxq*1>>aJt1mw!AY3$67Ia99lN!pzh$- z;XwY=$hTTX0zsm6PopJax#%dx-+Oe1#}!y*O4MT*mAJ0iuGNm%G6}O~r>`4rbt^9X z@y|x;2R7D#Lq7Yl&yc~smtKIcH__#j+xDlX=Y9FNLZwa#963%C4PV0$Uzh5DUp_S(;k+kl8>Mb6coOv;9z|d4NV# zdYT>z#Ld-{-7+N)r-`f@!zBP`v{`IfL zXFo_hU4+SKwpQm>=8y4)QDTgk3>+QcU;EGOq88AwXdN{-PB@hj0S|?AV&vX%LVjZ6 zj|iS_O8yn+_{4hVVYEu|`?$VG`5rPB#JL|#BveRl=OThk#h4jb;Bpu2x+Q+0v(C1H zpg6los`#Hwh3DGi?C&d)`WI#^;7)1F7F&d**1+FSAkH|uD^1lwL7`fD1M~7C?w^H1 z$yXaAkFRelxCOI$3&+RLF!3AwL0?WxcozE}G^ZJY!)Qv%&sZKhQiPh)}Rvri2*)(-@>^fi-j zE@kP)kos(?7(bDn&d9^;Y~91-T+Yr)(}gf3mED*NosbbxeG)=Zec{o3@6$gH`7K-H z{4YG=Dj|LzsOTZAs(cLw? zRWzi09jho~N@h@lkk%8|m)6%$*jKGwft+?^gR+ux5E>AB3vPCzFeoYeE5*Kg90#;L z;e+|v3GHovSYby%VoZA=Eooy@2_g}r!al;qEuz0^BK^ovhnv>`?%aQ-9qrsxH8|sk ztr&PQxvocTnL;THI6#)gDxr#0w+Srr1exvRz|{-&&x-U)rezWLFlZ#l^{qn9`ps3z zM((Q5#luMFQNX9T6n2k~Gy#+|n98GE=EjD=`Q}aj>)fBCi^ z(#}`MfcvgP-G8LMI$V~Y-^?B$n*!N((KRtTdeU(vT4z`iaeN3KN54R!)K6H%2<39^ zmO0z#_D0Yrv-$09nvrc~q6xe^UGuwTqzKY7mGL_y)@qclvp_c4VB_tGdyn>)374N? z;J6gc&PN{i9D6wHRfh+RW(199Aj7d5@-upwGUh13g?FFMyNa zifm@!t6CQq!<(wfm9@jGKQ5p_fqk^ZL%PHz~t9W+ek zRnW2^AV@)D%UqEhYk{Q*L_?25;4%igiOEE>*-!Ws+^wJXn$TSj)-Qgg6Ki{nUiY_A z&-^f$CrHHUqAq@n;Upvi9JB}E{u>HqqCwz`_8{mJo99apASoZM#N}P~19%^PZWba& z=cwp?wlaM(JN79};M;~)93dXKpFXpHWiguh-qt7>?;G*`kp<=LmGWhC^Kh>#Jf`TH zQ=9Mw{(RqSy^Ka@blxre|q;YD0k z9>^rsowDkH0!M`?P$doKS*3mg15kU6Bgvz+%@z+uG}_;!T(zcQ9q8QhT3bK%(rLEJlnWMr^EUvyM7 zFY4h8!#UFLdi`oRH2m)W__>6YBJzl-s?2&9iP<4va+X^<&AXM*9dNkQIMnHn?CgVb zyGY@8EV8~DpSz)eCHz_Y3{;$@3b(1^7iOV&!1F$G=&^zkI8OBV#Xd9v;mJ_iU!Aq4 zl-6f0y&-9uFj03$YIoz~?V2H>K)>}@S>{niY) z&g8an%kL647zn37c3Oy^D zUE7aF22E0y0$s{&$@a@Px+itFkprz2tK_&r!d{J|;Xrce9_WXo|UlzgQI<3P^XCfQU$g(vl+5AuTN-NQ+1cN=bhAV12QUZ~xi* z&wh{PyIv1qGUpiMd7eA2>%5Wo3%Xj#e!98jy(guYpzLQVkkvAKiu>uBpSumiA9&kR zp(MIN6kE4@P0?FGpD@5Rh$UlfW}x?}4W|yt?2qTZqM>~MrIV!aH5|NEI0k)AgA{W8 z<6yHVgF17u9&Xt_wyas8%VNjTdT;ZFF?i zU%fKbWZ~uRML2tMQ@h~D%1Y8g;P5}^dcArR$(j&Y?4Q90fQ@)uxVlLK>aGndx{uDL z|8ZIvpCL=veaMfoRdufpnXZSY(!{XXXZs!0$Nb+{9K#oJxl z?E4mLFFq!`)r4T*#qO;61sPTrk-#U79R8k^#2+Ht4|5VJ>5%37nqdH13Q&2$th*6} zhk6yw0jf3XrmSdqQdnyO6w4j_?q&dsfl(WKcMTM`o)XB5B8S~J)uou|z4S=crz&1? zF8bh=GXhU7@^M5f_ivoAmFN1 z^5<^!f95ReuE@;TXe^>~Gh*RaPraaZnIgFSPMw zKdv4uEv1RS)Q7y<@XO;Y?)ip44^I}qk1jUV#=%vzK(3-FF&7hi&%%oe7LG}SC3Gj3 zEHDG`49?MU2w92!DG7DBH->U*|6*3Y#s`3wE*z2dE0cAHK+5QdH9T2uZ@g@Y2nuW0 z17B!#2q|cl+9cq^6NOgR&k&p{a+cdv)*9r`-tO=<=hlJ8hY|!6Wf(GyRg(hmIs~58 zYb_xzs_q>QUmt;w7#!{V3{u4cDJ>M8VbB%&xP^j;78?UBayY(XkF~$M+C%MKfD43s zJj=c|*Mcs=(Vc~t5Xhg2>q_~p8!Vr}_bd`hB;(1FL`u4q7H$mOsv;tKFqpd*)%nvL zj3Q{7L}ig`dSI%MVc6(AcjNPyVek6)WF?*Afcy{+`CmWbke6j*6<|_CuC?`S7N(y@ zq{nzeqxtz$XZgbvlX$c7Vy&ib^e$(JP^5}~&QsQ@1?DUYe)rsRazc&k@h`QfKQpr8 zSAM4IK!0%R#nvP~LewZ9A_oGAh8{U*zw0v8BdOCWo)@snp3%yO_;~W>1jD z9Grj~Q*8C#`&563LY$i&yNCkdL+9d`+^AU0jQ@JB&CH?{&BN=3Ma2j4jXUiV91QMT z(_}myrR?~3R0_pXw@SE2adXuO9R&*I(B^+uDLMZ&cnhhR_p|N@k=e=EGNKQx&;_8-NjFG+i)>S5m)>C%0yVh-rymmCd6p1<#nx{^QuhmQX;p%R#iRgMz-4Bd=3 zp+EhL_h!o8>Rr#uUwl*vW`R+Zb?M`}&a^*OZ?=(6s7Qm^3+ySxKIJ%r?@Q6S+#0Dk zUsIVM9@Nl?R=O}iTd+DoMf9i<4?JAgdlZTVaMN`|T*AotW!5;avjkDXBVZa*V|inU zp;)4ysy!Aqc@dm7f5!H_QQ2F9$~Ym^^7@|alf&7(UD0gsUk7uS1ghO%TCh zMmqe(n8Xqbq~L8Fh}FAEBpY>L!hhW?cPh3EJ(re$ic9sr8c@YRd4`A<0gDm1Bv_(f zk<;~e?)eJcLyv`!?*9IeeyescrS0r=G2Bc08zymr_PqjMk*-WLSH7cyl0^q#TGd5M z5{qGmr`CTjA+~)j>q`v8;dcPBRoy3S393ro(Mj{xSR&YE05K3MVa!8hU_}STvD$;V zx%th~dx;rT9ev7&?SAe{qhi^2UP_466G%v`RM$E-uX&$mm1H%vq?QkhF!{XrD!KXh zAGh@B0ZYQ2>*lV*AlPB4id{knF68_Dz&|2dEz1^w-NX#!CAg?ee2$yI*)@Oyt1 z@h>UeN%KW}cf0aM3|D2CtNY!~7OJ5Blnkx(fBUdt^#rg))OZU8F$NzBP(RK{CWO>_ zudn@ZvwkjTxWDVuTO&KCox?G|rq=%$khYrbRXj)@GDAz(Sn6}PsB+v}H9W<4c>{Y! zEQs;8 zkny9n&9%f(w`tP@bygQ;YtT>tnM!++`k-X#L~yU^R*7@#yK>_g=_m4>zOFm$C9@O3 z&1DkdP@DO_)9Hq6fKI;89op6qJphs#w)87^SNtkJtT)$4O-zw9N3}#{oBRY5ucpfD zE(Lt$^~YZ$b6S>m!1>9s=wWHe3cW^6UENTmS0(83Lm_U$0Gd6B5L@TrL)t;BL`<*= zaWke30iFk%?x*M!6`acPraacBL+^e|goqZ?3sD%wO@C1P>`Z%`Dm@O$qS3=d9OyaG zND>+6^Kf`c>5sm_$7bs02RoeK8-hn&`VadK*sk*;>M(#FSqf2rqXkq>@KS2e(4_^Eeq`<41lfPsxFS8aFekjAIC{CNSM?VfgX z>tsC3Pd}?4yphDt+%^0;)w5pK9E-!?eHppkK)!415>bDvp2Cd=G&)3RJ?pv7c_Fkm zRxX>6Da)5*!3fcdhqQH)uuJc^o5i&^_tQv-dMn$q7HiR7bO}x8+{@63qi`&6a4{*+ zp?xpr!+xE(|MOC&cGf`0(iwR@x8r@1pM$p|3^*O2ZT@9Vsie>v8};RlcJS3f+T?OM z^Ol{jSy7rHgIk8Fd_!&No5p?XgzZQ|n=G?b8)W_d)+~ zoQT$8Z?E2G%Rd}ReeG_hLPRz_AVMgRsgpXySX!7K=~bjQScl8v@=q z)ZsZc>|o!n->B5e`28Q%HW?WiOV%?M(CGw{Mp0LUho-T zy**tL)b8+Wv}%o%y4v=Zpr0VDNM8F;jZa_d=cWPGAD6XkE@z3Nx*i;onBlBkUj8)%3d zn(GHG?>3h{ThKc{!v@XYb6qiz90e!Z`m;$_3E)N<2WevQr{J{Y65XkV_wNW!U0?tb zIhGoN>gu|BMs!CMB?fA3ef^rQ{rTMaDFbMd0LXK}!kKx#lD^;yL_??3y$Qs3F!9ip zu(GOZXZe*0vw(m=Mfx?xg`aYmm^U7Mu5OH~&W6CFy>P_sfv)=<6=5hYIAI@|gb9z* zPTkpya#asfD{X^&V^tr(3<*$LR%^Po`Dh)K0Mz?i8hpBAFmt8Kh+lw~wztBr4(O zhb}K9?U%Xbj~k0Iz}`>ebSYA_0dPAa*%Jlk{GOsyKf9JPb>}5re?8yZ7=C`Z`pwel z-Jv#B`}&)>d6Ne+^=wvzgRLN6VOb^#;$W0cAdkLL$uv0iQO+$mFEU^cPY#<8bj3UP zB(1rX!x$#q+IF6@8GPQN@$#0O$Gx^tLmUm?mps4{IVuwD3x+qu{60e%lh%K5pMPOM zz}?iu$HIjXe8jL%v`HO7oa{80_9qY1hKnnJ(lYv~K8RMT`M1U2c4sX^>Kb%Kr7p49 zQk5owq@qn*u#r0!>>VXKiaYpsJt&HdfmI<@L=rP1M(YK z8dLUcPxcdrQ-*9pe3+r`3h0-GPZUaoO4yiCBSFjUXOmT_@O+MUd{u^eRqd9YjY@lE zvd>G$yNvAxa$a1Q+;&3@%38%Jlb7@;Um})D(459>A&iQX}e%IJsXcN}vzo=p^`>)NPJ(sbadtU1vO|@;(&r|>oV7W_1 zD~FW3%Kv->-ZG?_LqPB`Qv!XTMTdD^fzVK;P^t$d1Mw~{y)h=&&2C=$Im#Iw{yUvi zNxZl1zUlqr$AAKIlP9ru(P5r)|A)1mY2|xeCv`qd90V~L@D}BxVYjmIN6N0jZq2xS zT_O3x)aHkE*P7jBr!-iT_@AOAGQ~B4E(6)+@O(g|%&P}QBh>J_ZO1fiHSRDHmiSdz zXe3x*ak6Rm6**%MEfPu>|KzUOJ~Tdr^x@HvY?{cBGi@078x-!yfY|qD>{ad?yfTGS zLFI2?nNZjM(o;{^hkB^5RIG=1=%+$hSugF-i=Eg(uKd1<0m%KIePx=s@ z3}l2KE63c4P5`YSIp`3bXo+!_#oTzmB6;vjf2Ib+_wcHCx&Evbs6CJwI3gWMbvw-=QQIxaD?-EdI;Lf zM{`wP>&lVX1C6F6B#hO|3#^AhF0$xxvBSGI&y&MnwxDUshZ-nT7uT5zgzhu0f4Eug zsl}lWEm>d=EIg-(zLCeNZ{d`q&Y4gH`4fIp_@9?Xme(+(EjjP1?t0gWytbl~C!cI_ z&Yn-PhtzJK2z2S-)_|&DL_wr{x2d$mKNe0NFw>Kp4$(50-H0~ps*q*V3bhK31LON9 zip!4r5)|CwH5hN;KMa`E`@U8RSFM#!@||KBp3EI6)ngk4(nt&Es^3mX_6{VN!<(*z zO5MUwR;mxS(0Xj|It|1eWn_offfWQ)BFFTrYl7rEzaqjY7Z&8e_yN?Q?4+z-r+e) zrY@)n*%bD3NajX*yNp)&dG_L2a#EwF8C9>+#0Kyi44})r}=(;EpRJW=*?aE($h$e^1 z!V98HWSvl)g@wZGtGE^g_p9ToEHu*=p6lLJS5)9au2%<#!ZtQ5M3RZGzSg4`xbMIT z0gq!?oO{xTJbT^K{D}fsThjN*00WKiVU7fqho7(O7`(R}(&M?7_tCm3B99zmzj*!6 zZSP|3Epq9`!#fn{EIDns9PFv8ZKGYDlI{HR=_rj&T?ouG1%v1EKYsj?;9WG>CUk+S zZ9Vql+NaGK(M$>pxJq_bjo7*P_T_6byLjvFX596>IAnda zM%{Uc#>3p6!u~(&GzQ8skt3msA3pwMcPF}{Kcd~KG{Wj*Z!1%k0|$aICvKW z-ZKBg01e4s4dI36Q(pI-407WHu$_ypxPO_=CuAnO~Kd=N7+#)Mb>~+PGEzo%=i&YZ) z#9%23mU8JS`v3l_5->8Mc`E2grcL8Psapvb#E30T#_kfsD^a=}}#+6cTr$ zUtIeE?>#Zd0GVuV=o`p7B9OawpC2?B68l%eLy)Z+~~` z<2*cEifdmv0qtQMNXT|tFo@?N-|PGwL5lFudHMJ{im$Q|rHX>;T@>o}Y;OrSxBfka z-Out}b#`!kK!|x`=^6cF+OCBe_qh&0P1T95Of;YIiJxrCT*!Sk>ek=OczKC{xegDN zBJLxsCUN@oWYf_P1H~R0xVZS}JLstn`yG8pi)(<%J-O*t`|vg(J++zxJ}32YEly9l zDclh$iSJ>T?CHa$VyVpzBRPPPdnVKC`wub2l0a z2#&kZ3wrTbOh^G^M%_!xKpF0`T&69Gg3}Q5RUf%8otP)@H&vRaECy20umSZecz$0U zXIX|Uyh(LKwIq?EfA~Um@dgxZ_|$(n2@Xw8QaP7YRFLq$Ap`^`WMQ@+>iS%PG5c|1 zY<+KNy`H}H#i14%;u%07{8cnrTkpzcK+@BcMF1Jq!t>;9XQ}&HI}7A4!Pea}YZL2}!eL}RQzwT1i=3M{z(LrJ>`3U}pvk+Qj^H3-Lf&gZ~v zuF1y(EZ{ri4;&Z3JV=yT<+LE(u-$gaWBH|Cx%+S9@1EooHDDV4J18M>vIh?>8cN{16Gk#HdV%lnG=%Lx zGIHPha3Ks4gYJCQQa9_4XF?o0@Ia?+3n50&)HiQHCHe?K>yP9q>VI-sR=o5@;m-$; zAjCl+<+V08Wo#^MnTR9#K&H?i$BIHsl|V{kU1Z(^xgv6~sQb6N?FRLNf|L2K=ok$vsmHPOqsM8VF54S44BiZN*wZVLKwW~^&oOnzaFhn7No6hU) zx{>IgQuzW;>W6k|XdpNpDiVt36g^{?7TW*X35PO#D;0d}Wq>?`Cj7z>F!TH6mQq*s z!KAd;=U%5X{V9!0o0->x2~3e+3fL3PnMILh) z3KnKL$ZMRJe#(J+m60R7PX6i26N7X;w~N(b3K8vRImviLPX}y^^jF&D5?im=B+tq5ob!mYxN*ej-=gFtl&MDsR*l-H200;Z|`8cL8)$Lq*z<;B&8j<+dJ!|5!l1A1lbx2^&!SXsZ#;qy5pt z8T8c;mFM=AGOhQTuHTy0AVeXAl|?UKCU{+yPmTY1T~>eeQ1p7Vgf_+=f`lA^GCAR} zC`1Ov7O~%S(kMoYQNk)!!fK2S(kw>AweocM^9%mI8|&Ii>CdbC<6wDPyxtwM$?+@t zGyHMS!(j#u)e@5Xm&ftG=H~;9oM1Elzy9ejfg=d$cQ)KE=j<1iG^n~+Ov+WQ>M5P-Z0#sTlwu$ zvGJwc+eerz=b$U>69CTTmvjyP2LrdGQp6ueOX*%5cH3E!>C)P?I4@Jzoms0&g5`f? z`wxIY1JXh)4<{53V8*1%blRL zF1+L?PDewDRs?|w=s~)2)0MbPLD)W1Z>d2JVK{agu46_3PZ|4-0>>3+Z9M-a7-Ygb z#lOzi&23}$wa9F!&}^vSm``;RfToVyl1b#ihSW5YF(cse^}T!nNT}WUVs<#2#AK9l zRZw?)R8lxyx-%5QsFUs{di~)_QO=it0Fw6aszAbRSKl%&22i9q0N7g6FDdIyv^tbjE|^h z7ColmZL;`18orYB*eDn4ADejH)_b0<`s_pNyf;BtF-d5cLYQja`Tz^i#=cve7mg(; z->{e8`>1D_L@s)^>g%mJhE9(2{duc`_hW72k1HI}0ZS+jF=Qz-lNI1p#EvZuF-TnJ zAOO=AlpD4vv$Hi|WPl)SGNFKPt4W9PN==`f@tULbg4t0n}x34+N8E=nYWjl<10kBPY!iO*+ZKqL=omMFJ70dQNq_Kg4Mqca3? z(v{9t%JRcTBWPHL=|Id2`lfL2^}@OEp`?b?rHc*Z*HAvaVmQ=HJAQAfM|*~fhGcx(yiQ!-|u73veXxOedH5NMAl zT)y)Q@(Sl?VA()Qx@yhgIRw{`mjgX@zV8wqOJ}@U&dMmD55v&;BHo5oi_p-1q?o8yez z-TrI9I9E6K#fHZym+9@iE2ndbqPh7h3dYMkN@@>F*Ve#+ zrD^^9`5ZS_FKq3h_r4#~h&o}Z(LYc zH)D!4x+0+ZwB>)1oNvmwkOAL90cJiiQ3t@G%fnmy&pbectbzE$VOHAq$G19Qi?EaW z)E)|jNQ(!%U_Fhu9FfY8a6~=+FX-2V8b>E_K5Do!J(NFmJwku0QeSyCCk$1E4Ls>$O*4xoa-#a|xd|Al^;CYaU^EsO`NP-j8MB;cSs&JWn?8+eqPmIC3B8P6kF1 zI>)IkXtjF{qfR}wfxZXo{|nm!e);Y^B?G`12MDJ_S+9-Y8vfmA(663sJ9kpSc$U(x zKsVUX-Q>IEq@Ck}75ICjQ8d>z8!NK2O5Yk`J!TpqB=;Z*~3|kA}q%$1loRbUZo>GRoD?dF%I>CU7 zNDK=D&3CuAowg-VX)Ve@!gl3mwe>9^FcX1~ev%-m{mo@*WT*=Z0avJQ4khIE7Y1dD z7$CS5=E-)10khx{z#w2i0+I&R*nb<@`~)5*dcjzc)o0%6@;Wak&*a6meU&~4$|Fc z0~m1^${sv;zypothdz5_Br8VVI~^XtrfN4?-|O)rD&h`>2P08Uj2$Csluc5D41_4z zf}^sll6Xvc#0m5TnSf6^+0B>eP!*WLM0vp2fSrXfhDBtKl%wz8H;Ds-K*cybg1%dD zkA?6J4L}~j6fENpO#cVu>$55U5$preH_Ed?z5VLd{4P%RqBf8MxYxd7c#2#xCs55` zdn?$ZF)DqzNexH&Q^DtBFjlE9D;x-=<<2@%lbF+nlSuil#7wQho}DWP3Xx8>!B!uut`HT;^9%WX8pi^&&Y@_GBUEuk7lz$#Dal zZ!&U3`V{;;R1&`4vS24iriY!JFLlLr1>=!AP1)p|ZBBi-n7C0FYh0#&c-J0`1%Ms- zMj-|tcpERU?+Wn(|qj@mWJ*2NSmW?JEz_ z&^V3J2K-T)x>oM+EIw;q3vD5_;4tHU zGR2$b+)3^6r-yCf@4vRY zA*U!}dNPg_(V4rXkvqwf3@fRuao>(4+EqRKG&Qy7gI((kNKsY$r}}MwyO7KAi^s2mWCe zg8%_4&zhNy;JWeQKUA!V8B3p9zlV-Mt9HZ*%z4*WaaVhas!chWHL&8^` zxx(H}w|0k*UC+kcOL#gjU$(?eKvy)2CkHbmBL{@n!Od*F1eI5WZ{Nk1L$i>J@c3D} zMmtoGyLB`6Vv!~=Dl%v$P6EvjBE;)PgDX4`Q4l12VWhh>$>s}Gn81W9_#5|sd1yR} zrwU@mz}L#UU#Niy)!z#}(anQ9B%C8D*6l=#Q<^Gcjq+a8EO)sTABJA%aw{wBx)~^c z|MOl!)U~Vdb}{P`j(O@VEKJ#4A!TXUkwYM#gwyCgB)R|p{59qJH$nxuXdaaR^ro7N zGK?}Hu+S|gr|sJFAi`R^?IB8!l5}=WVf{7hq#@1~rG)nPuLkH7!r7a36GRtL6grRVI3$9Fk{Au-%0cP+u9fo3gJ#``bPh zaFj%k{V3Bv;2RfwyTa4V3zYqTkF$K1wz}sjy4`{?1lziU(ie@)k#@-qQf}^JIUgnB zo;6ZVWF!k*ECeJBfE>7}Kw(idyFl*$_g~e`{%>;9}xurKMg)=?ax%Zi#pZ7+3B%!2e}^N4~BZxiXmbgUXOsAc2iuSNY`*^f`m5#> zRs_S=Xgs$$IEIYTf#OxWDR&lN1OcM2Z+KvX?7)kW9H2fxReg&_DEA*GjHBKUNACjX zU;GgQzL^yH-O!FIhv`ECCt`A%lVIGR{PsArA5Q+Z{mtnv-~Fo03c&B(DVyk{GXJu^ z2cF+MZcq@b1boKDAD9pnm<|)ORFapsKLDn#^>*X#{e3ud%Ym9zHSJIz^IGM)E`SUE ziub?18-{QR?SZmr54E@rAQQ$|-!+dug*u!mOmnmc-?Ke9aP2#zsW-md9VGBGNnina zhaf+U)U5G2cH1Am$4~(~evS2T&bAN^F}=n0#0buZweg$Zs=~y8II2>rTlJDdud_it zVq*e=j2?QQUCkOe3~T((ec`8=-;LRR1C>a6jnCTrQ(*%G1M2!;IZ=~POE#a)ls#Al zRNrF|4LwFc@W4v4x+>sc0o$I!wD^V(3JYjh-*R`tcKM_a<28>Li2b@@Qc=gO#}c6xFU_|(08v(Nj%J?i zvbmj~9#nBP9R`95r~)?E1mt(X*FO$Ec_%r8!-l;EK@+w=+)EB`m1N80H*floVPu_D z<}mDtN2^f#%d$(zppBy=)VC|tB~FugI`v&$?_#u!mzgk#1HS$)YQc4}u&^)!%@i)} zrH|^xW0lARO78(+zfz-WY(}ql>i?poda2X_MdP*=QJCTM#j2{pl)IbCd;_8ibI|3) z)K0*&(+4pe>F?V-or@D?@8MAi6$5mJ^IDJd&ekaMWdsql59RsKoEn+z#y&^zF}h%I zqurAystOXqQF@tYCo2+F@Cb!_iJk6_mJ}4Q&l)|7mYXOWs5}1T2@kM=m6g@!!6js1 zn69xg{jpjaqp{CgFNAcxz?FC>{_(}TrelcT&`|`~GKVQjZv$bu0gj_>#fg@(LTc8O zTk`GwkinjT0r}_8g^)30hu-1`(3^qnfoA1TrU#H@R8kT?^@Z_+~5A7FAK-fAm$Pt!)7V?3htn$_~y@j(T5D855B zD2_bWf-r21-eW$X_8_;)V{a8m`d!sFquaox%PuIu1=9X!gnlK-7+>R)3Ustsda+0t zfQAd%96$deTq^-sIwQ3QH>P~|I$?yW(}2(lfB{0{VBO%rxDF@bbRJuuiN&$}tu6BY z6-=x(-(QD)4?u#Krp5+61calLno0xeOAHi@wLpV4Z*qP#v3-1sRILG$$<*g^NE^Gf z4GY}tcz+W>rx52O9&zNbx3IG6{6HL;GylGRs|}c4+_3CWk}@(FPM);ltJY7yv&w|+2ncBCWfM_Ayu9Ao7!DUiM^|@Ip!px+*}p+Q z>0HH!r5PUktMjcvkX>NFQV2l?o*`+$8B7~ps+o3Bo)+&<<+}ut2+ezlMt(gNh6o2b zEznlteeZ*w^IOkR_V4f86pP>TNgMaZ9~`a~mpP593he!BBr7YB^-Zp4zbsj{24YQuMI44Q^w-X^4PO~6gRO%Orcy8>fa@wM3ZSiZE>v z{UO}s=+zJEtQmglkvaZLf(`pqb_nahY4z9b$eA=@LbmiRU(9R&V*CS811bPc zQu6TAl`tZ@HZI?tsFb;NS&W@3W=$W%Dl0++sDkt%r~pNrIj0^_mkIlRB%O#`R%0U_ zz-ys5z=}kry1EqND>+fO+aSmX5=<~)L|_*>mqZANX=BBD7vt*QI5tHfgZThSjC4E9 zcxiTeIm$kl!nh4z5%I%$47l~zb4v2t7yKD<;VQ)mHbZNNDD0Z|KtwU4NR#-O&_$nz zXM6@P%Dq{*0fx5KE+;?OhPFvMZwG_j&PHO_QY$bRoq>5FlRGS#J3OBqM&AZeI|dwh z@ILa5GErGsStuBS0e51-RX&cMu#*aeaf`!mYY%LIRhGhMN8!6yYyu!7yc8ISlHs#& z(6BqA?0ovRN#b-ZrsZQj)A(HQKgNXWMugtFlIy$*__L-Ts#E%5ccntLRf6om< zuyPE|!+NpDaI!=%3D!8yiNntMyZKxk**TYXWYYvdak~%Pn!>qF@fSJl_HfTj%FE+7 z=bF#+e!Jg#cL);(>BQj&n{HD!!9ook{0DO40ek+dOV2ZSC=6BLe5wt%Gx0m!bAF(b zT;R*oISJj#0Rn7{2NjRx9v+P_k@zH7zD5QHl9WAgY5p5&W&Nb0;9b5-CDs-&id|D8{yPP4Gc*rPjAm)p9a zTSxY)!y;mh)I7S>peporzt#T7=F?IWI5d3l>Eptl%r&JWf6z?TMRzc#n|wq>VB)WN zG@w;IqmZAV6Lj(~)vpMAnUquxK+BtpG+d3lSEj3NNQ;Y#9-RZhS05gz2MFQi7}n1% z5s^1W&&G6+bGsxbCvXO!5-M<#z+?EiK^+;zST((A52sW~Q2JAGURd^I&%-;+3oA^-*oXBM@A3UK%1@R>FP+W!=RFO zv$5AE-@9S!NoWpV+Zvsn&8YDa))dwAVJlLHPe@38C)fw32|liO|7`^)n>j#oO@URX zJhi_Hl1eL@m{2jmb8G;%#vVc{d!UYN03Ig%dFG=ru1>1rk`fDmcs@pkA%6q9M|)-= zU2((o^t1tTVDH5FeYrTWVIGUso!5(%VjQp-8$J2%zE-gZ@(syBgcT(^)|!?+EKm%m zk@e844yMsO7r_CHhvqKT?F%KM>xBdHEU~8HTCEoCoww zd^&E|{bEjj`LY8d&o?~g*vAl?Eso^BKf>@w&XfgL^Z-=-X3exdj2(qvz5%OM)JFXP zVzNnqF|`4hudk=a49;v~QaPT*G}!jaA=2YXSL=c}n0f2P`%_`~qSwi5g)Z@Q_KX1G z7d}(b3+y5gK zfT<7vof-Up{3}bLg+XWzdyfM)(~T%#`?G8y zl$%Ne3IxcuoWK$?=mYyNx9^EZO1~8uB_(p?1Wl|H`uY9)v)tX?-2yYw<9N(FLDGP* zULsZ*nQV|L6)YQY&cJ+b4+zuRyHZnAw~-PP5{ZkSpSU8kd=Ty@^z(y|5CfDDLT6Bs z3K`TZ)JBM^6_>r#y zGfzpO-yHx%)6Qm@;5;E1MH7#U;A&z1S1io(%!OD4f%?F;i-Dly0CAg4tcMtu5@mAr z-SNl>8(ay3ObRsqp)ifr6x!lW^)vA-Hx`c(7XX0CT(?DuW0w*pwWLRaAnjxf&Pzt% z*o&Vd5Cjl1%--x^Yvypfofr*eTtti2|& z|M);1E+~iH<7B5R`+i7rO9O-kcyG@1AWaCuVB+l_w#<1z=K@>s?l#Cv$N?ya@`u}Saqc6*83L+; zFu5I683|u6Nn>Lhs>tK6j$lzf^atAiBHSM}H!WQ1ugFvlW*DJ>WR%Dqs(3s|pY-Y# zTfJg1f$eT|>g6kD;AVkv&|`P_9@LW(&@bi+2Ip}jF9^Lt5T8Oqt$=?q-su1BUysl2 XBlL}XhMv)(;2%XfHQD#lrh)$h=5|$7 diff --git a/_images/visualization-relationships_16_0.png b/_images/visualization-relationships_16_0.png index 51768453b5babbb9bbda2b79088d8aeccb3998cc..5661ce4a965dce17886295bc78c653d2a2d44587 100644 GIT binary patch literal 30999 zcmZU*1yEIA*gksbknU~}kZzD}L^_r3?rxBj7L;z3?ha|BQyM{1x{;9luk-u9d+&ed z&cK|R!(Mx@z1ADg`@GNMqpGqTIw}b&1Oh=;gj_(thp&}Z-==q{t{ zuHj_q?q%X?0Z}q>ceZzOx3@8+^0aVuvvG3dX5(YyVxh8jcXxIZVrO^we=lHjaD|P4BGZRj(|4t$$)?lMZghlh;Y+Gkz~o zI*?H%d?P7osP=R|Q8B`zBI97eF=DHUOQTaMiAM$Vguo-`QFo-SD%EwI{!RDW{p}YR zGJlN?Lci~2RK*3K1hOF+;JR84)Y&jB$*6F(JO=Q|5(~>q9foCUf>(k9K41LrP~8dm z0~OJK@Vi-V7!l~Ci1AxB?)yIj#gNRy2%`-7GqJpV3!^hXgH z+2F?2g3;i=-Q2ayv;xMK%Zb)-(!I3n?_S(m-KCLz)N%= z%#~9kOIA;|t~x@*eS8F^)sFDTir=QgQVG%)L$|aa4NR2Mr5}6BgPfI>Rp7iI7t?$E ze2@}TX+~8`E8Jyk00!cDv-Jvr~^$D0k;R_6g?tM!dYN?8dBi6W;+V5KmL zQvX@&u#D8EHvurrq{=!WRqg>SG(?FQSg`4?TG~hls*LctlaZ>7=GUrFyKfje_|NdS zh5pyX(@9D^3L{X2D&$#jiH-*+Ieq1nGT+@Z)$5%heYX*r6PO|pX0Mb{5F#h zyHG9pJ~nWj6l2@Gr-#c)m)}0S8x{2vun?&Iuy@|lXjkd`bRXi& zgcLA}JX4|}a&sv|U5=%QEr8N%#pU*_57W=qw%VwR;+1wqH?dWgOZOom>w7Tmg-bOx zwNJwvIN*9>D_aY$J`U$WaIu%7g zecL>?RB?^H>wzmL=*b7T*^4wj2a@?py-3RE+d(2ed!nk&yMxE7R14xdmP`(H=$y!k zCQ4p0GoM}NK9jv5VA=CI(&@Ux&+$7EwExv~Tw?@gzj68RKZl^RN^g@RkCW}W?1-d7 zhDGb+u#pC99@UuE_BUWcaCaRz{ov3iT26;$o(h9@f*3;ffyM0rGLNM>4w-~`DzUvz1e5%Wjc`CVNYs~ejr?AUIeLXFix0b!8X-gZ zY8Hi>j#M>o!iAL@!Ed>c(S3>PjBKSYDyo2%sQ8Z)m^30@iJPwObWJ@yT4r}28wvyx zvTNKe9-PtzhQ0zr)iNCO%IIU|^`&w&4z2_v=?VnDc5~D8UYjmJug*+e0CFhS@c>Ztlkf^g6gwngIE5T>?3%6>kUH-$6u#1A5`9r7y@n&|lJs5jNGm}EnIDK}aoj+IPi@69YRzpc54 z=9lrJ1@VMPrXD9Qw3%b)r$t1)(HcRf4ke6#nYSlIQx@UTmG<&-*$>*v$-yQO&SK3A5OIk%Hb=icv4oq%}u^6zEZBk=EVh z6TK;Zk%U^KSjg3!#Fmse#&p}IQjr@Q-HF@7Cd^~e2VzMgzRcmkinnuKmWH6Ig=-(E ze}uh~*cNnH7r@XX4YjWKCNLAuFRbH5Q?fc+{MHvFL72+YO{sxh2zG0TDhwa}JPf0~ zUy1;}L9XI4Bi(^fl~OWf6tPd9LU1ouw_Y6C46XeajWy;g#_OTSyZ4cFR5^J^VCXu$ z8A|Y0w+k5=U;azyv&03sPj;y1nBDFalnYKI671L9=7pLLS-g^aM&gR&y;z1& zkJbkJ)e>wahad>1D9FOTfWsfvuH`16rkb{_PhfgG{h|7_Y9{SL>eQKHJ*N^vvv zB}3YB!RXS#kd(v^$4dFJr^m8*=wDb(qJ$SbEM3m@4MfUH6_BXEiUCtfyPJD*=MUM< z;|yh{EJ8*&fWf-m9&6*o>bovd9Z2!wSryl^Bci4c`Oxw=$skF3uIYYGKFf3nzWn_wh);KXY`j%3ANHd4+EPDzB# z_SM9dyko@D=y5^9pv6!Sr%DNy)w2x+j({Z{BKL7H9*knvleBpZx5s?7I7bjNX>#cH zaq7w02Ds{1OyDE5S;1RWa#F`h!Pb(+e@^j0SdvfbE?jhwQgJ@k;`f#L2{<_36Md+n6a&1*j0d<*;^D+im32OXwrQFP& zk++g6Q6QcziIEvBT#OE;TCyL7A*72`FpQJW_U?ny+vkKg1PCQ0Qi<24DAbXOQ|Rup zIQQhE%c)X0Sc=vS4^`YQ}Y$ZEz3bX|RdCPy#G$dtIoInXc1mqp)2+^{un!xA${7KrYM4jk0;G>ajK%L*05TGH`m4S>9eHNgsOSU_5Q`^#@+J+ z>n5Q_UWX%5WiPuX=-A##%W3jf?t@(0MiU*8=6d_M?^rh^HH|K9{o0|MQPoO3UoWDF z+ui|{ye`L6$&Y8LjjIntN!LYqY5ch8TmWTpwR!epuYC04w*;IaS|VidsI$cCN1yUb zK+r(M77#a;QDlraIK~FyFW}9T{7c}!mt;bvd7{+jl;qg>u3`x>%Q7(J*k7WV(6JB> z(3nBMVH`FlU$$!^(c;x?mZowowKEXZWy_3es(B+)hC(d@l1GpCW}bx<<^UT?6eGzd zimwPUGI(yk3mM2zA8O&7c*C*Oc=iybJnZ0~(lUO|e+m85@G+{4guI+8>@OH%TK4-? zdSTlJXStYy5sVxFBRf3Z!?f(}P))t`h&-}6KYOdMwYhS@=Y*O-0?TF;k@s=5c{pkU zQ@NjPb2AK85I?{+qTE&)uac+(%SX*Mc%um1#dR6JA)-`{mzu6rq(Gbi(bImG;cV|K z{}Y^P#~z0?vT!6&qqx%{T@vTm1xlyL*_pzOI$jjwIwCXcm=fox&{uZ$hh_IlcagBX zf?v%OY(wL1u(`ryw8*h7*6(LlkJK;Xy2_?~4xaMFl`s?u5E>%z%9y2xu<+G*7&E3% zqs{MKvJ7rZwvH5s0%AS8{#9HjQ+<;P??McGcx{ZS?Cxg)s z5>zZ5mdf9*33h5azwj**&DG$n0^&vkoGENAY&DNtvWAjhgy5;0o12Eu&)smCP_%u! zywGX+GisE41R5mut>CUFmBccj=b`#aFzqgKYIaz6H{cxKU ziL|TkxXwd)5nVt))A^5FH&ohMw4MgF8i_wvR?fEhQ~Ihoxlwcp?@c0K%jdodkN& z-4IvEU3Jjos|kTEG=Nc$@)lMC?~jq;VMQn#8yktqs9lz&fos-vp%4SpLeH2`|Ghd1 zQk)IRRq+X}qI=k4y%nbD?K<4|>t(yh@5(6_Lv>mCYM%m7gpm-tDYewLi*n(pTPG+r zsL?Kt{)Q|{Q)D<&mF=A^+vMIkvv3v~)|sQcdGp43{+(622%am^|M;b%cG$Ln690Mv z9pVb>p|il*tYmY-Tg=%A6KE;ga(7Tp9i5W4o-F0O1b?8WG=znv<}QuvJ91Op4s7BW z`-{-!RmgtGT_~ogxRMfjRmb)F`bfz;aXfG92$-PH;B|&AOteBRiLf-ji>;0Ww=W;& zhufZdo7+2)E0&ufVoqF4SHN3gY7PT8SseHrjb+*y9|ikSWldk1z{g!0T^b+Vap|wB zxlPeziNdwZFb%LNy2#Ru5b?L68gGmse*`edf>pB&z7*$Dd^f`M{UpObJW=`)h^u6me+cP9#&-lVRLW=K$VHBBhDOSe1VU_#;wDT%c;^aEKau*PTT8ejFi- zAlxLWWm?oD(;eT5U-U51MYIJ|oRy*Z;!23ITLNcfk)8)?*=_&|2oeqM+(Aq~a|oFC zw_hm#3}CTy5+3Z~5dT;jDgMWJD6hqVX1U#0^Ov;mTIw-cXg+H}UKMRbQw{8@F{AUZ z^%}u33X3-kHSJU%*?1+#E+dz9}M3O=K&|WDw%+ZS|{NDPvxT@(&tWVEv|OwBe6fAUdMu&OYOOyRq$kg3=Vv^QS8C}5;=ET_9H zZpmS60eu?UP&ga0`U3I$W|ji(GMbbSX03jGaA&#MShD|;`xL=EmX`Yv@e1W60f;tv zf(|tALz!g>i>hZZ6hwkFWkSUwBE-pz#XD!3)~>^)aHfcr%>CDr%ne!cX)COqm$)bi zK)AOgiYg(wFi1D>oJ9Ov_6Bj>0vAh-m$@pJ{=+#uNNP1rMYte8+#cb)>9~g5A%bS# z-6@LvKd1VH+8{E*EPd6-Rah?#IFW$9Ne1KDR5~!TZ(e-_1ll}2?gLX;Q4$J7Lte{w zJc^#fG(x?$vN6VqV=o49))W2RED-^o$C^o;ip!}aOp<;kp`#~DiUJ6*FOPv-8yDon zrmz}c6{NCXz0UHm5q|{lzJES$K#5ZAHCEq273bZo}gFuF5&>)FC(RFH)ImT7ejWyzg z!Gof=OCM(#Xv%(GcvYcFw+^mtrmNlk$~&Z1eI9c7>I?J7p?OAL_!5+^zmzg4zLfL_}E&Z{0L4QZsGr& z^5rLLK#fPjyFY}d#6Lw8W#XXpl5ZX%j{)uTJ=u`k@=x`5BNn*R1nT+w4G-Ch0PB~O zrK|6m8?EYDe^#9*MX*g$PZFnpIiti+^!|fOMfsJPR3)XFj2tLC{B?X`-T70M#C7w* zBp3>;r`#>m-#-cu(n{;GbWGjRDKG)xNLiSayq`ykc8ra1mCXsVsyu9hdNr+CKxq5q z=zXEPp=j!D;m6p8Yf-%R{z8!g)2yCut39t@2hb%fNJ=gRX67!d2?}52AIa=xGLB21 z3$QR0q}}9uh9q?cep4m>opy)IW|+GXCHgNyP-o=nr#k+v7FUnn5^}v7NME^m7Iva_rvbPsoW{uiEjji=* z3a!P0sqlXCaU&6)2WgAw(}Gn$ zjs{{>L3D(!WaLa(Q>M1mGb|nJ|8Og2(fYH6zUoRwJTTdu-WDi-ejlZ0 zj}$<(G_Ydn0Z6WO)|b+sV|~{x3r#id(jbOIfR!*f3KExux}YOSJuoH|k%DS=iX^&_ z_bXKj$9f_>UW0LH~zlD|=<34h9nNP)E4KvIJvVmY310Iz+VLV1};_M$~yZ{bL= zz#7X3!>~P!#_OcB+dVagJY|=|kMV0R7_TcSSNp3?5YbaXzG|6~1i==t{;sLrZh#u9 zDHnmQmXgdzNY+N|;~>iT;KGAw3RcRP2o2a_I)7t!c}4Wd56fz2{ZNzcpXI_JK^dcA z%gC9WbWWZo=hspwyxmHY;Xnk85w^;o5TG7)jyy90mi(wyVa#BgYp~qi3Y^V3(z*S>}T7oIxRC{C0Gi|E5&Dnvbp! zuoF3b5v#}84HjxR>Y8(^OJs;h@u>bseKxo@|L(Df%t~w$3Ro)&hFA+{?IKxF7k`uW z?nF>Y5jrD`D+_h)h2>kyLsRNNG6;?)VJ*ulD5>zPy=4Kgy*g#+-wOuaMHQJR^ zWW*Ryf8OE!+32681TD;xg2kmn9nbl%_9d%@`+4dZyDf0l9HwdYOl0~db~vQt3v*f` zYrUFzl4jQv@~gO`aV9r(OwHB0YlM+D%i_^JU^E-UG;*>CK_S=n=?k|l$P$_}Si}XR zYj`CeOZ_p1ljNFk+Cl&=(>truKAB~(`ZMC7!pbSc8g|aX#Cy9l7YlHi;f}-<@1!m4 z;7Jc3nO1Kw2XL_J+z(|z)XxYR!V*zY3du;T>Q8=KR%+8c@QD@5lE_UF$>*dN1?+da zc(4Xpam6e}1HQt-4jCn`=Ws9Rk5Dn|(&9Jnr0%x&V&H1T$DKhAqGj48k3e4|;YnIN z(Cmw1g3poaoQYT^$8Lxi6RVp83`#p|G;Fc3`JHv~2T-B8^L@>9=NM3(!IrR-C)fNV z6tb&&(AdXt2CxP&tnR!rHyKTIHQsiByho`~_M*yCR791KeDP^g)*C*q_W&X}Ykq8@ z4+Zd@_9#6JXYZyPx^1(d-qlE`>|m%kU>^n) zBa-L+iNcqF9o1}>RnPHfL=gtK&X~j4%;17ZC+H9pz5wOS-?M9Fv;ZPwCgqwd)E?wY zR}2_d(*$yl>~yiZA4Gj8O~@Icr~tsl2A=Ah;`)@dg^0Ubvj&kO_Ej~R*QdDCQ|@?? zZ!OPI{Ahb0l-v9fP?T15FjfTYeqOlVXv1WHLFrewr@<^%lGaibDD=yY3lX?>msZ`Y z`({4u%2@vbV7Gn27xr3lJpu01$o3BLx@155yOF9kJv5{=d2U0RbYNpuJmI zQ-g&O3CC?Y)?KDmK1M;n`L6a?{Ejghz^FElqR~ZWRtpt$lM44gO9AuG*cP&mHT0ys zhv?ZDk#8;J4<``KOEhezkKrz@Sy6s0?JyXU;PQ`_xu5JEeUc2t8%avn$5JKq+3f6W zfv4LoY6Tq7S0lGyszbmOd*HaZyc{PZs144c)jOVUAYbA_i#V9)SneIki~pJUs37e0 zvCwm08$=@zT}_(>eb842TcmRaQ>x7L{a)(PyTd){(!5OR2r;L4A%O9TTDxq1wk--2 z=~T?j%r)l2NjZZ9vBYju|26IWuLeQeYeq=alnv~Y=A7CbNrWDO#*^s`R#biyZ3Ip8 z+xwqPJ4py2;un;q)c?`>)r;!sC7pQ6BUasWn7Cep0>T)OuL&Yuc{irRS^zB!DU$QxcS|O8FVYP;=L8;y_0T* z;r)2rycRD`HFc?`rY6W)??7Is7^*%tmrE+rr~(F_){ zX8Db-MS!465Fu7jFy&C0&OGQc*=Z*1|mo10?+5L947X-uL5N-ZrTk2Tf%irkHO3LDN->-buPo+b=?g^xW)5S zu{jbSI06$H{ZgtT!8EZJw#uI17o|14*g{Y;(dCMoYFB`R zLmHplIa4HKjKf3Lz|b(hRHOLX*M8(PQ%Pwlr;T)fnLh^8JHZMM=i}!Cp+Z1&7c4q7 zAH~>LIWNOYYl#%sbxEDWm%ZowdSd#E!Mbbu7qCK+s)||~K_3PwgM^!$ z)_xz>lE3yeo-I*hh>OyNx<-mBXas$N!50Qyq!P!tZmVVskMS*gK)8Vxh#Vcip(^jH zIABjflcvz0pqPF`MWC@6-UmZZ*+SLo73gys@A2$$1lYO&&A=9D?(_K( z(ZvApZH?Ry(rwSIEBkF@^1_%wZ)Fg&EHUYi_bRD}g~$f;`_1G6tnjX$q$rmF=76>XcN1N?N*PE&P5NHy zjqE{F@p~_w#`vf=bB8Pg)F{aP4HXX^2kgFoXx=H{c(+)f%sFg?^3efOy6k=LdUuZ! zH}y=5IX1SI9OH{oQ9gvNlH=HdDT~!YU8ygiL7;O*UHbqst2ryc&5~v%_N!fUxkaQP zQPE=QxRv>v^5J-6MD$FhTP&@a$Vh3~!E^Ro125LDL|4zMe#)MsQP-!TC7 zG!B506UL4?y7O`i?Yl|9a|1e~Sr&q^2=YPyWr|ITc#X%nuGXV5fiD!48J(Bb6H0*vQ&m_GP1fEGw02XYSfiJx z80Kg;nD-H^=Jg6J$r2=AjZ3+pAKJYJw@BjEV~qr2jqR`#TD?y#5$c%7ih7?E39w^d zV%1rvu$iIxEf+wWs|EC@75!cv7>hF4dZbc|D_BDxE1Z2t^L1SMKIdh0M zpBQ-nC&iw98ArXQI5gh$4{WnR7|S^{%&PIkzVa*-haTPm9P#j1)4h^4qdCq$JeA}_q`^PHFL^m;;J+QiB(3rG>^3nBA~ zAJ9DldCZs6?SRZAF&1Prhy15TCM80^iFxS38@9{K)w*VNyD{DfLJ;jo>bMvFW-1^L zGyd1gx^7jnX#;e_kv)pk46(51`wI%@i!46iLI7a@7`TH7)#Wv?0^ydtETB2h!yK0l zO(gki%6VgfxqyarnJ6E;M{X;IEbgM}Ve`ZP&S4XT=t&Tw|NS`?=b3IiBL2XF0!q<+ z#(AtCZe(x1dkz%@SH@A>+aPCjj<|8S$Ak57acqy8kcT}F%lWjW3KR>!DWRYTM+h{0 zVM2-_N}WP(2B!%$1=d7*o01;~-(L|ywIRa-fKN*S?3_4D$T+$L0P4LA$c$IZO!CQw zbRmNrxo{v&K_PKd7>mbFh9z``Kynct1l|8U9;LZ$K$Z4TN_prJz3CPI_)B?pc1Qxe zPkh<%CO=Rh)Y3b8vnE>0gAFr910;VU&i4tHM}fWm=kOkXCYC94Dr@UQ z<(137*F^`z@7y~mQL;_aCM6^?ws|tta3$aVsY9_&C_(^T?MK0) z@x(B|Lv@M-8%YQaky;JmTHCMb1swifNFxK*3d7Iz+M2(T)IPnXh~AuDFAi0>wfjr_c6%M?p47w^rY)Ka4biJRIk}lMotb%NJyy0<4}7nog3+9 z)yt@DP!Xt%(3r@~Vy|{z48)N}>KFy!0}LcxJ*ZP{7zc!kMD3o(Z}uUW^h9XAyO-2h z$lZrm7aORDePm12NSdOK^MD~H75TMrF zJPmsGD;t!BE{M-#jvBk+cOtJ<4?@S54Meh_hjU0U{wwYEw!mJM;ePp6n`(^FR5ZzQ>$a2SpG-vCfksH|EEJ2jt__`ValPX{rZ3*;dLS zblcj*e*sP=2&#eGiZ*EZH~X={KmwWi@w3)$Ny6)smPZP)la{Ti#l^HFiS+z7-VY^Z zW>-1NE0;T#(sPfK(N^Uije#rYcd|e_QS0ybifWum#1hkPN_2H8I^4-omL(t5U=RpSH8Z z&PUf=@^J}-=0`U;Prk^v zINsl4N(fsEf1=xlZD%VqPNAKwo_Ea>Snmx(->F`Dt!tHXbc%*=20FEKR%mtkbY0ayR(0!xLc<))HV zx3lBNkqNoFaQ@a)bMv~GUS^M5cS5HqMe0QP-j@x7y%ayoIrg6wKpf3dy{5Rfn;Rqw zRxG0q2C5wHi$L#NtTl7_fv=NSRJ4<~z#RR-m}BvfHXE?oUb!OpFO?W0965v^a>;eu znnWwt-0~#P;ZN=s82nq?arr_9$*q)o9!f2czBl=4ceI9B&H>4<2k_%e4ingujvGU$ z`Zn#g7n?qtPW9v(sL%oes|piDNmRrhc^H&3!UhIpS@c`5Ugmhyfbt1GVX%JfDu#fy zw>SL7{p)RsPw*6C*<#o}$|z11PTfXgzrwGhqV3`-SL?Ivn*dZX>a0a+1T}*NwpX?Y zzQ!nKVAXd&?Z^2D+3ziNh}@C)d-_0rsXH5tnnU(?SO8;gZVrwj7PQk#)Cz07&rSVr z+SgW3FQW^@)jsDuVUul^949WE@FP1g%J9@!K%&J&sKf*8Dv2c|tdIc2x!|uzmI^S%9RK zvmQ0)ub*u8#E6-Xk58I_3k~zDSD3f|PMR_-LHr?{APx~O4qFRq!5wXGrXf;X-(Aas zm0S3?{r1-~QGbV%gM{w1>ZjB0Ubo`H#hK=yT*>BGC*@atdZaemKr^e&SF%rK#`0}g ze#4naOG}H9on2+gt!R1SW$I>CeX%5gPetkZR{S^8jReb1j*$_A zU55Lf>}$J$uot|vXsb@gr)wac=}!Vu(C52_E>j>zj4jD^kCp2hSs zoS%Q`*XHUyAjtdabQi@0OL9_x(vVidRTx*!Zc)E@NUs{dB+fT+q_e($zQ8qF_NG>^}YW zv$r`9;%3Y7+*OGqdhr!V=w}yY?}hKw=+O|fgucOh*{5>Ef;AeC#w=0AS? z@cuh3cawS52@1>G>4dLOCm1>+_{$WJ9l#U`ON^UhoR8TK9TVu-9~OZ{S9_}xeR$wy>KJ**s|4aNNdbSv0`$X!ob3Dmni#UQIq&4-W~_U;c%c>XsTG=Q(8|0zkrg0z{% zbfa~~Wu-;Z8nI96)Dc(=iTcHgnpU5P6GLd%kXwt#6J6G8JMT9+?RwLOb0dbjK4%}e zL8RrXUK^|rHs@NpKkZ5|ix)(MoOL}vV)F9xwj7j|J713T-{?1cpKs2_a=ifBkLGMq z;-IGn5-0G!$+?<^v;`QpK5g6un>o#Vg>AgBk#y_v+{MP88A66oOZ)w6WtO`s?e^twHl_kbX}p1@GE z{`nm1_UX}&=hp1@4{0W#?P({eH&S=sg1XNuLpCQ%Ycf|mqM4s>^9Q>fwDyUT`TJUx zU9X9Sd~1jpoXe=Am7|%o>DwB8b)H)}em1DN;(50%YGtJZDyFk>@C6Rz<#O%WiVd-X zVT< z-%F`zZ2##6rU4JP8F9pqob3t{h~YyWAMIK)mgG?Wm5powAVjYJp&0ocH^N{tERcy5 zVclelk>7MQBK*pby!~fK>O9#xqq`-$OLzu3Iyw3{K)6{oBXV~SY zi*KubgirWxdLoA^;16fvSwM2A`;Bh9)g1eDD>%r*ITt*yZ4_{&_5I;u6i`|rW!EQU zjh5pXpV3$deU5NWM4W^IFMoShtgMD0{a!_ctP2|VFl})L*`^QEK8*ZulLNUgqc&eO zIPMAtn!2MD?nDX$fhW6+^Dg8yG~n4SRQ*tsBMoNs8e>X9{RsgpJ@a2Q$OAY7aAIW8OziUSPwLiwaqfUa^J+w`+2AH%n`GtW%E3ouy2j+xB)(_X{8Rf z>9ei|5Q6I)Sd+FkA>>}2ar&pV=ldXNtaJf~lk!SSnZAY6&Z};&+G#5huY;MXfti^N z#7fxN9R?LeDw(47VcT@Z>d%gtoksbXu47!udw=x(iWdd+2$@2& zDAIw&XbOxx#qb?i=iDSmExLPA+h1mD~}Hi?&h~2yT2%Bc+h31uNG=?j~NJ_Jd8fbaJucDtn*a{G0^?I?W24OZa-;z14GrJ@1#{EVLVF^w=WWN5S%ef0Fhek8ywxd`|x*E|C-8g zR@x$sS*`>>nR2GiZ=O#8hH!p5+91-{=JJydOGMkhiES$^gagIT@6&Stl{GR)slU$t zxBP&mCs$i}81emH+X+MIVAm7JUiqW?sRIGDsx2|&u##ZF_SRdD_d?I)fP!I*@;T~V zz2!G^Rl3(l9XcIfuFGaj|6LP+TL?jA+UpG)EiU2fkOwCnq`NzIzQ|VD9t2RaA(`J%EhHEmKY|4!MeqCLW(`qsQv(Zw`h%Nho~<8Wcw271?^|Lr zS%HHuVnOfYZunjv?oN_y^r`HsNCJEer0s?V29XxO^lF;s6B-)>-;(b9u()LAXs0<1 z{sM9p3bI~ zzju8jmebsxuJBD1Ew}G0q&x=f%7&Z#?Y<4JOaIV=RG^ZdZV&LS^OGHhlJ^%;+k28P z*|K#)wg&Je)@>q`ex8=9l-Jtpy?}_9+UJdOx_gh*0VBMOqU@qCgCJ8Oe7t& zrHR?mO#Z@9H#DJ%S8Aqo07fC#K}iB?EYvd4*?wJX#v@hLh;Kjb%*=32q_8l2-6`4% z|Ge}wmawa$r`OF!dzF&4M}WfLiPV!P5(YvzP7Fm&bEoOfIWrOE38Zl^cF_g_SUDfK zLj*k6?JCmi^WG5>ec@u*wKR2Dg}s}5H%W{UV>FdO_0`K~z-@V(1;DXoargGC{UNX& zkx<|K*@}N_t@mPnmdReJ)YDkjElXpu1K=$rlfNAbLe$R<)7&U&rOh(IIYYn#>+5)c;M-2P2_er!@Tn0 z<2T2Lqrbz93Vkp1K<)O(ssz6G1uaELFhDR5OMNaov0MTUkD?C}$PlUm>z0$&IeVUCZ2V zO6{x&5liVl6GocI5kv!E=`MK?7zdX4XB~B}feFTz%Q=IQo!5;+fI&?dILhm&MA^+xA9B5Ngk_FI#o? zbLXA{maQm&jE;ZSQ}%o(LKe~u;BM2dm$!7_ML$g97<@5*NT?i8Z_R$Yyw1?#pRQ=j zbmV}Rd0x+UxS-M=z-v7lvZ!}?xGjiHkiqlz4{&9oxSuBjh>k9n&7CG?>ii%>$p2F)=b1dV8jRx3I+QRvo1TBGcNzJb)E88%AQ0b|_30lJ)9JeR zpuJ_jqRQc@0T>yy8Z$(MO|cah<_bBnEY1{9F|4L{ z&XgyworD;^_+qK^JY2*nS))vI-Ks87XoFI2J7wN0o-$yuFaWUqr`c)xB+r9o?`ORR zeu@t01Jd`aOzUKbQMMQyD9{fcIUoLhx$?HsFq`0yS^SOHn_y%ZspTg`jY0<9fI!!S z{t6bh%^H-J`=ip5A+J2vip`TC2U#G&^V98@Rtf4PJr4^RwxGxou5D2?(y0vK7?P#~O8Ye8CBgAX+uPy?m(!3Dzi1F_kPW zHZn5Wso%Pwm4k&m-7T@bPv3tDUhmjDzAxNOc0J^URo)^k*zUo~>MCfAt_vitDC3RI z{r(*zSEo^GTkv81YwhjQezI#7ig@HJ}9{=5A$KYCGTKM3{;-AIz3HwU^Qz?);{? zYV2(%1qV&eByixgpSiI2^jHp8bgQ*#DH61-r|=igt89tZ|Fccw0mSCHLC(9$~9t^>b#q-an^x5Aigc=ueKUb`E17O z$zwJ6&LEW2zpfA;n)F_ZmC8z53D~;BP_)|fF!* z5B91G3683KnzfL6tIwDRtqfm$oGlmJgqyzOl*#Hb21tPBEZLxofYY@zc!Rf}eJyy9 z@E?wHNzbZ1u2Qn|IR|Q7bzVFA+OP&*K6!#Hc(yF_-_rhgr?FnEXo<;brc7iMMwugw z0Xa)xw}a-&WI5@d-->9XoB8O1I@eyiu=L~2e(gF~R0I7_&|$hEyP}B%&YxxpmMTHt z6F#0)2YKB1b`;Rb&&QR>KPtai*L6-L=ozgB-#>NWxBn^x2QmEb_da84ms!U=x0Neon3wA1vo9p?^XckFX?*g3-^5CXKjz6;x2NXk^ zj_>-R8DSxthX8C)P`i*bNEPo2ly;hms800Tu)B2IP<~}f0kRq3jF950jL6Y=vUE2T zvqz7m@2FWK+^wBIb zPK1ok&kArLhm#zvuiXyE!_MYA#+xN@^zQ6(fq%1+*Q4kG=G6AZ*6(J%t$9!(gN7=Y z6f{#FjQF(NwMut}%Krh=l5RUcVgWkp6L+b!IfD?j50RewIPYANVR*g~sKn%o(dY8>G8o&o9O?qv0 zHaD3cjae92K@k-?e`f=R(a8z?Buudq>yKoei61vAB$56L-E{_T#FOAYrMMvJQ{atv z_ck|yqQ3vg2o#Hu&x#Mn+-N6C{tYd-d!5(#j3LZ4Xu^VdjhAQ z&bO0QOn1i8EiuE>z^O);!v}?yr)?JylgqE&H;Yo|iyD;-6*=Mo4+#gga}}>97>II) zYV2SaFCl+m04&gqH3XdMQ-Q1{W`+t4%i7SeJZ_zTo%XJrwPO8C6Du1#efB`kEzSOZ^ z01lREnNPd}XbszD}!Pe8>@ zrbkD^zJv}83_bV&b}IKcqJTI}{p82Oo$jPx9!Sw2GzLOaI7rTuqF)bkugLvcS+Cwhl*V}NxpJ)iXS^7HpmlCR*r<4EbA z$vy3Tehk2W>Zrxe=m8}LW><$d0RRA+u}rSt_Anv{0J7}ZRhFuaJorEv<;Wq;Vz^@E zCI!hodOLsl)T0nky(>brrMM#CHO~R*#vLsO?O2=VoTY(T@kc;xnv7@g>NZ%b+?BQ3zH@D=g z@5!T+m&IR9^bzgmf(}d6z`<^76ejPG=)I%C25|#Dy_ihLHk3)RXW^sk&SRL7I<)GA zUx%UFqVZb*V-OPak zuk)?vGX$Tk6uHZO(SXpTFWBw-8}1KC+$Uenv9p6J%jG=mPI!(L5aRz&ZQlVD)z)s= zfFLM2Hdlg3R1pcHWRM^#S%M&$Mo@CjL4qWaq>^a_L=hDPlqgA%C`lxzMi3O5CTD^9 zj{p1Ty{eh1ntD@n3yZ2tcb`7{?ES^H)|a+1==A$rekCsSTA9EWW*f+3D*>xKZ^l_J_dw1Rp`H^7A;fnhIY1Vn|FjqNiLCa$UR-XDH!a}pF3 zZPCWFpG7bySHGo*3!{b0haXCJr-t4t-ffQoT)?t?#fhBCh$CrNhn`y=FJ)J{4FU`X z;wX5X5TixwV}DThUo$uLli#6&VteGS?$_iZtR$q(+1AdV9XnEHJCmr& z@w;-roq%9{diQAQs;Mm{N*l@s-?+~s=@-uvvw(8Kzc4vu?&(h_m6teC#sY;gwsGdjRAck1YDhk3++);FuS?RtEP?Rtd7pOS8 ztd7&Yd@F&!ACGHE8T@R~5IC>ViZ8nI$;Q_o!;RgkJOTO2%%J_?&*X}>h z(td~gWaiEiZyE9p&`DHhI0C#+0iboI?M#uR()X(@(hG{`5iSBZ%L)2IxYeKS@(U;9&~fWFG^f@+ zR=x`_vF?9%W$=muPV&!>w`WtY6gJ>3^YwtBzg_o{6_Qw?j0a;qso%=j-368%ojzyF z6@}Ue$F_MRwfN^}rqT|HNOnFIQazd+A-jQF*tn(D-HASP>3J@@I^Ttx>?DLnhNowvCp;S~EbXZWNX?D=qm9i? zzvHp9_oM2IhDlMCD^YaG zke~_|_C7orf88ljX4iEfK|Wp!;8&Ctf-gUgbFs2vXI%QP@L3QF0-*f!(Alv&x*E6a zV23|P$i>)IvDDXE8`Rr2Kk1O!nYdf_?^a5E8C6d}o%FlbQ8RPncu;IOQ$fYj!=6~a zET)~pZWIDt;Uzkz;G<XQ437MjxS{N!&XMSgAUQ-kg#P9oXd|4ms`8hKqtQ#hO5dk3>x+*c z!I6bD61B3Fr}|?~m!Dedz79?@U^~17Y237(iHC;%pV^bM9FUZLy|g$Q=HyAOPmRgqN4^E@~no(d+Vv)a(sw;Jnw3myKb}*@z%p?WA zQNcDX$YvSpq#e%K{|jtXoyNWP{#PigM34!WGPa4ZC6F9YcWOv(otJPp#3wj4X>~LE zN4OIXDK?Ey;IN7`U9UfcO^QC-{a48Ue=Dat($@G+6yZ| z3Ew|l@rFxIk8m%8c@}-Af)6*|IxeO6QjPC?y8}cdm%R_7<1QULu|dIh9U>?IB(*z& zicm6qwCdQM-Ve9wbrQ!Sp71B*p0@L%jS}|UGN3xkTvx?P6(RvB|FJsB_FKGKteBml zJu<;v2Np`Q*t0jwzY4A|)wA`Wo3hldSYiTEt?}oZdwNo>K1b==>IR}J>g(uGD-93D zgdI~aVx}^PH&L*stnXRGS{mz;BW3Sb&)!7|m|qBszvwjsSC+W1NVk@`zsg9s{ZUzw`A@l#)*XGIm zgQ~nW#9JdB!pkK`XC*it?zdn%&*!jGKDjAdx&HNRoA+Hla!Ng8!$y*2ho-GLS_#x` zHn9`Xk0!#-Kww#U_)z>F)!E8FZ6^ZGKN78_;f046*;5QeB2bS4Pzijz6@0w#ySw3M zwP}Eus2EWWP)IFrzLXYkf_`o1T?V9am?>Iy4C=#?7ZxmqBW&x3!-9)$BoD|~2G9is zEF5dg-MnefaUJSU^AN8=bsE*shdHr=6kDMPf>h1`PmHa!isMy#Nd0{-0(Dqzb-Osb zMsQ8S#(_%{YZyDi?&9yAe5372BELUpohdw7 zov(O2uTCuDr}Ukb)i{GoWOW^w6-k~>h=<^SQ1&WU=J*kT6(cGCL@qP65b0?k0oLGPz^2XP`3FYaYc6oC*~H4MS?+UhC{W!KqRWgNh(EM70EwiPQH|~M_(E~8W;R%g!K5f;| zoXhvV@Jky{#|J$NH&}S)y4Fk|;CM^q+*%gA64BxaPtfb5irDlF0y7zUWZ=CaB_doj z{E++F+;kyE)%KHtl;c+f+J}PF5Q>{nxZnhU@3R`I_W`QVHP`|0=T$((Yi1yjU1(Bg zn9{p^YqrX~RDupMBt8!jbM^%d@J~i9tq3qwkzDdvw$f)Ku@2Yf>zpmAz0Y|+KGa5p z-;!?qMOgk%1cdTd>U8%C@2Jl=UMaY^9ybkVbu^_J^^8g^8n1Mq59Y7$( zfnp|2#ueww?uICo4o(Epr{7J1IG^4+c*L~2F0n@E_ZS%&aUh6ERRe0sSw$19i@Yx6hj~kvzR|L;%(lrwS3Uq3mgTFQa;`zBsjS*^3-H%g=6` zUFD%~ENSKNZ?I?lFUp6Pv$@l(4JQ7%rlCsdOHCm(B6{Qz_|lHdih|v&hCFWOKNR_Z zJyHp+=gJ8uP!L@#s-Z5fKa_f@ndR4D|6i36OI$~JiJo+Pf;G5iIMAD@vOfqQbzZcp zt=_{%Lxaaz092LgPpQ+_R{@C=&_*-^XvCkN7lRuCkr2>e5%^a$QDroxZhL?}7Ne?$ z)=^Q4Zlw;Xn8WK`LI2TVig}sWY_AHQC8F{DYc5ozz-PyvI(;J8#E*>Brd}Rj2+V?d z2l|Q=8#Z9Ay~!-&wd?{((6W!)RJHhv=fjSX8kYiHb3qZcu`=R)k^;2k`W^}~`p;so zFal2wid@Qx#u0)i_~Mgk6-%2Ert%0j=xfDBW%|A~F?qnS*6HVX*yB{zOeqfPf6aQ8 zOY|?P)^oov4lipcLqQneN7yX^V0v^Gks~KdQhN%tX(RxaA?!ALJzS9sk$p6*3y_@j zUzQb%9I!1FuyA|L0tzyPgThbW#}TJ=Jym`OOfFTu5K~6soaQh~Uup@52K&a6^Y4kpP8eJq@S;rKdG5uwdsQ?I3-n z(Hu8N`w!^H*|_y|$o3(68a0Z?23y#l%^xA%gr#RtGi?RC2O ze?PFCPICo)D}aSa@X!$iW!wNW zoTljiU9tg_0^tV@aN!_rb27sB4Qy8fnWGh^n;lt1^2Z;EX3OS_O%Y~G3kvf<5~1p1 zS*H{NyNx6E{D-OP?l3RWvo5Ynq%)u$X_2zWVKHMGZC2WhF^N9aw9f7_`fZ*2i3$;e zn(S}_`E%K~+HS0XOgcuoaLK*%%uDL^#`}*D&XrIGdGSo|{@_H~IPO6V@$rax>1pY& zLoY(X$SA%(1rRF;t9VoB6r)Ic&%2UA=Y!$qgi8nUIpfdwD8A_6lefnz2B{*t3u3}2 zpS7Ffln+s&RmYLKCm?D?Ga8HwfBXYyT!pbfEPO@+(p`e*q*Mfb1$%Bom z4#4doIZz>l*t*d$|Gkzc$XmWAPN5Q0-FaUo8QY>jshJTKRmj!DW!VxX11s6TZ>szE zhK`fkF-SNfHw4mdz4W()^S_3PX6Knl+x-65N>hCxx=()tCju@P!ZwlWHpkbeC*Da{ zsUKG|?E7mgC~q(pXf(TK@{(*!Cbi#nI%aiFuS?ipBAixq7GlsyeSjFWDe{8`%CBpK z$r1eF32&jL#m3y@j=qh*R-$@MO~7f(1p%vrT+bfQ2y;KlE5TgZx2dvhU`a)xJtVh2 z%B%ijRuoh{LAUIMxjMA!E^YG=_y|K%3&2}rM)TCNjYJ0kD`SxidVR_AsXDjHm)@1EIMxl6t9kT6|_I_ zGF@=h)wQ-SF2eF*~j2tz`;$;smfKQx5KKChoJo`+H z2}pfDHAz0BqpzfNnhZ`NCY+}1+HB6f;_?DG_P1WM=yudE+jZ0F2>Q5dQEm%e;zj<-R>kE+k zhViYiwLGh&Q`2@EQ2^ODu(&p8f%OrQ!UodpGUv__psG`6JOGeA=qk=iJGzYi>Pb&9 zQ4H?m;jMnsY4x4C%p7FnKHntX6*_f|#Sc1njoa=jun$B&%8Xq0^fqP$@=sl7@=H3% z>mLucU+?f)qUTH2{#jZFS<(01JmCgmIAO&ss~#Yvr$K+;2^(TL7+ z<>yfaHJ}%I(L-^rg%L|#mcz$5E+ z(?NT?V=2SLU^Y3@mB5v1Y8Zro;Cl>7WMSw-)oaxbV6_!M)Sg(u*l zZS_LM+l^I;JWGTLG%8JLaYn21OCqXa>S*Q}vw*#z=Ys_8hf40F_=ek%!%r( zutft`v`eRz!G*qS`cxo6QeD06Ixl;PI16<(g8fMulk%?w`$aM(#VgNQDer6t zQ;~(S;u=DhPXs_|vd!J5=T_;^;Q(FHXdHUH^xhs_QMi*rKdW_gPt_+8z0bNy>VQJb$G7^agi~l@obEmC|sn~HK2F=w{ z0fhxW!5%KE%G}hnI;qdRIfcBLCEO;}jUXhb*Y%+AR4*k7>bTDJLt}4cDj#b)v*TF@ ze8)flP!I$jD}T;nJ$vfB1Vg|`m%oo0bYY7il5lK)K2dwoL3ohq0Ts`N^~!(;$sKR$ z>n*2O0&df4l3B%1kVQ5(2}LI;Qztd>hm|xaF-mkUNxo8CBTr$_%t%<{HX*}+DTuLA z7@*{#Bw<7Q2!9(ECd(sgsY8|5Xa-KRgvW7FQI6M6&swx^=Nk#;pofG$Y^O*1Z!V8PS+xAMpY zUJ>FUXhXeJpcH3+%BAUc>cD_Ou{6n)-cPi7Q5sXQtqN|2p<6&nX1&^e;w0Pg6v5tP z7B9)7zk`n7hYjZs!{zM&Jx}l4t zi#+^0ne?BiFLng9Q?43x&}vDypaILhB6cfPHrLHjj97`t$ z%Dl4kKO^TQwFw`aIMtp@qSY>sMi+v(Gq`|S*9E{(gePQ{IY;b3@C*92JNV0$ORob* z#wtwSy*zb&-FT? z&Viez;xk$0)M6tV|Y+NLk5*MYV_>eo1j z!=QmHNUK9A%i}K0dUBw2LHk6AA-<4(Dl&bwX^jmwvGx?J5_G_+R`CUQISfFi z;T(kSv1h%St~?;vVa z#GA!f2uqHm{iF&;9EsO>IW#kd`=>hxCz@5%g-l;rWseC_pl|=UR&pES5mDW&`AdwI zZ&P+&g3qxem7xJ#lZA4K7;oA*wn$ODX*~;401z4L<z&qejl^ww76r z4Vq_@xc=kzV-wMKdkEnTOOt)Qe`Iv>HA1dO_X3o$w+ce7DqL113UE5uS4U4mm8~rS zSj&KtQ`{%B?whC2R~EHMX;LteYD)e1n3Cf=1hKuyM6@%A9(rc!eD}Nt{B-brVp4f{ zA+x0UQcH)DlV6-9XUhC*czWrIYg4PS??FnG&386&#YYCPsf{q4B7SMCB14h~lCft^ zd=`qYkE_OhRRuCXs5@;TI*yS?KdxHD=7{BjqN0^vA_LS5!Q*9AADaqnw!c|LqZ%jF z@WE1USh>#DR|eawamtu4O)3v0P~s7ZR^(c}m#DnQU60T8WXE4HE^qkhmL_=#E~k&} zCo48x7^!zU(Sl3l^*Ns47$^b9%3gxHLeTP>5y#Eiv}_g5?#4JD&udI5HfxcQ2z_SV zDV7NbHjH4cbN^lr40Zq(>keGY_1g{prEOmoo#z5KdybBWUDeamJN=h_YU5S_g&2`S zo9805N|0%RR$Gpmrcp@(R5;%!0U(jTg}DaTk?TGIg?W%EmndokoppUr0SXc+46gBN zvQL{;X{6t|?)z8%4Wnf{iw>MJTHvQAKZZh)l9C?(^Cws35e$O(tWFIz5OrGy-`H~= zIUrV5&OH(-jn;bJAi2`Q4XM8PTciRaHy-I`J{6N0dhTyfP`8RE;Ib5e zOC5V(*g^r9bk&&o3DLOS8?xh=G}e!nXo>A{_v!8Z600vUBxXutuzj>!(MqysMb} z%%2?)O2>WeZ=zBn1AK{$k}iBc|ET%qWc~(;PzUWY7(;}e(;Vw zn6I+78a1;m^$g=m{&nZ_ZBLJD`k;Rg5okKr#3PxMquR1N6@+(UMgII!mH#`O;b&(G z23Q9+)G&3URMVS%{Y-ppbsPw$y8gZ4DD@2Eh8UMa7`6#V!1E>)^ADfHZ zUhs1GXWwzAw=Yu`g)}?idtU9YaRqr5sA>=HmQ!N{gKfL9pT|1!43hUxZ(M{m55_ z!-dVe%^pUYL@IKj6jW3mwsRvS^u3FJ&mqU!KXIN~YGnzQ=zI6>{py!assjWNFfSDx z9hWSRrc3E2%)RpVJDog&M=qFdr>u+FVdq7xnxme|7Y{9VwVQuH{_>b`v8M0f?iDe@ z-=+G`;XY`X5dpO~;76n++#SK^ydeG0kL&un-??B72{9MX5Tdg2f3CSovJ}Yg&N5`W zcS|AzM*s!(Enm$)u&%0#6?sg;4#UC{S(*Xs8B@*OS<+io_v*VUO;gq)vQxC(5sGzKM zr>AFo7!&`+f4MegYrk_=maqgg>@b0tR9SzoYNt1a&OFkyD zfa0iM&pc(5MJt;-r8Eru8R>X-ex%%SYn=CJT;SIeSNm<^* z^rOH3pe7v84o*dVXcIf14t!(j^{-+hdz*_RaqQB=K!)kb)Z_;}0rj!ktf0N$4xlaV z0F#v*CaOL0U&VUx;$AIi;MXh~!tj}Wm}D~oVqn7}t!zzkK%>X@*r&Guo~9cF2K36k zmhNnAjX9U)=AQ8aLdv#@uBmAke0t69T*gT91><4P!PWx03_^4>v z9bA~h&yHsft#Rylc)M*9Pl>qw;ET;eQQ!CpDQW2upk9ys*k-Zr9rai5cIoC4U!g1_Si2ke|!(A}v81 zd7LHkhpX}Uj`PJbxMkDRv=;gK`S_UgMHU&C9j%aYKJF51c!1x0joz<;2}dIrgH}%h zJv+OkqvPfl%s~>y&W`}uO7gkuyvg&)vAPhy{jDWR)Yymnx;>ccqOu=9thT=EYKgR< zVM}eJd)5VM$u~@9w)a_EUGefqyEK^ClEFa(vIl`M%}RFYSlCsv=kw|6_wL`fL=8jP zdR$ENM$#~_RKK}*!7v|I)YcakbK#aGXKNp=2Mw8NM!VimK?KF|iX~V~!4^ zAMV%I4S|wCi>Ca+hR4*ci@&SuNz$Y|&ly*`Sf&$Zao+;tQ%t>B_rF{WY7E-#G`Hc= zUOsQSy$u^sIJ>8HbZkt_=gPj?(80mnm3m7|YuwUiEl1#n&gFoe73A|ss_JXm@!JHL zGiAHGyIUJ%9=uhST>`}7{6ju!F4JxA)3#V&zM8pod$LR2nZ|o^j4C=Plvhpdya;xl zt5ekAtzn-#RjX?)^~bR#uN9docMV`8Bjk45>_Fzk>&MbxPQ$7zgE|@ zbE(fCEG;5N?DMp+Q0>My#;Gqk`Rg3sgz@NXI95JDaXcL}w=sER{y_isZOoS#rr{6w z84wvUL^{l8bKth?!RFAb-J-gr?tN*9T~~n^IaAsx6b6?zGGc|!0S9!kE=>*GCi4pp z6iKM>*Hc5T31svZAiqc37ggCPn9IK){>XE~XX)e6drT`ew5A$-bMNw4eRZ} zF>sbXt#zFD0S@)FR}D<2!fo$^G0()>qcMhnM+KJH3OsfzFdq^}f7V@r{=RW+-NP9E zgviXLnE9RMp1RmC>KT0T(+V-OkVzC=oE1Xg`v+$GH-}^ws^gpk7mW=oUAXu(GgH6K z6XHD%DXE$Oij3G|*Y7&2(_jRfVPM)S{I4X3OkN|fC+dBAYm-*O)z0_W7Nk;sQznnC?tTANV~D z69M2Wy*S`NBvg=B7?wL26<^N2d-pEvt)Tk)q0O$YE<_fi%4UkPg>WQ4E^b!LLLJFH zP*IlcF=bu>%R_<8zgq#s^K!-aY^UF!TD1kj_1_pwN1Sp3O$}NVI)te?SZq$C!?@a~ z%9+1CmvESE31jIZXgH~1ewlmM)3dq_XeCoqQz@s{DIQZ(5ZEJMb7s)k`3nf)xbFRa zH3LSYb?R`dB37M@%sn`;FT1|q*>-X70jc=Jh~Z)ILEQ_$09AmpxDz0)-XrAV91k!U(*`Kq#ZqP4HS;Bd{26k z`MqUR1R~Cd-`*uCN5NVBI9~#9WEW1%ud1q=Plv!d$+y;wIlh$@({5e*yZ_a;AEEPN zz06X(by~GN7;fO2r%pK8!cYl~8TO@%4BG{ZQe%~_nBsVFVUZ5sUfgh)X?a{LYErg( zSba1#?Xt0V%B0%kEchOkygrW!vlhZK#J|?C!uN~kk*RU4C^NggZ2sKgmRF^< zsJ^~GM-8Br`?2cDulKURTe7Y-G3Xite)9jgH$iIKUkj1jP9 zU-{Hi8|t=emwz@NTresPkIrr52>#=0ps)W097!X*sx?k(L7;Pr6BD~MUiIXiX-)D0 z?zp@K>;}BA2BCXxYyaTwhYwFpeSbbf;u(B?ikX$>E3u{4GOz~7t+-2NA>qdIW+0j0 zO|E(3&C2BOyJp}9t0mOnx~4{QiJDfiDQ5C@Fa_3{|Br+3wS|RF&n6kW|yFdH$=k((%lMUZr>q6jRXJ;qs9tN{ip#C*msU}o)4Dbu^=U={W!PXu@sOSm~ z=m&&~U-WOAK13k<#^nx;PqgHsks+2~T7r8vWqM}7{C$Cahxh>;X!CpqiG#t#edRnI z83FM_k_h=)Udxk@E2e@@DY!-afj}asw3Hs1sZ+Q5 z*cpfHzpBHkd2ACRm;nEg$W6T|u8Tns5#R+-Nn#7&DaqgwH$m|GEm$d>5@?nbti%ZY z9fonz1G>F&Wx7cOz#}GZ?Yx!nMr{+5SQiP(tF(SaL!RubK5P(6fO;8czzPxbg*)M3 z2)WRdu!LsW!C;$L!#Mw-;6-e$X+E#QXF2-tM6`VV*#Q+N)xISOWO zYA5jVP$76d<$z`XsV4a5p?iCN2$KX-A`}V{OdG3kZrxd(q1o{S<){ctG%}2|alQRR zGI(rB%nYA(0TgcAXjk7k2O=s3C$WADXa7!9jh_M~90{1KDgt?sNxx3uy~{-C{C8YV>LymeNLKp-%PQkGN2DbRfi>Y0J( zE;Z@5cmbJkDggnH>sOK1zdi~C3rJC^;`Yo)42Db%?SG}!3h76@$|L4950-FB*{AB) z+Gy7vI|q<}(P@HxVuy?+4TP3-0@w4hGKS8Si>(mP$3kJx0^A6K0s5x;K^5-I1)01G xuRx+g())^~l!(G0lCS?w#Q$4`is7T<^orHHeW&&GU`R3QhKi@$CO94ZBkUok z=b`Ch0;7T_VzTov@)ArNeH*f(5>WU)O2;!Uk6E3M^|d${bKWn}#zaB`RaO;oflP%y{Q zk5(MVPt%WkLRwZG$Fwy6o(ZZ&h`@vkCyn@30Uzh(vG~6Tx-Tw%^D9MTxgXs}&mXzx z>BS9;#vZ;`wx`d(|F~@>=su>|nTGQ+Bqk=NHZ6A-83z}4ypp>l7Q7@0&yI;T>jmQDS!So%!CX!Cyd#O250`W6VdEdcjF^~` z%qeBT=lU-TaEeqv#i4UFLyAB9Idp#B9Ad5NTXgA6?7ZLN%o6kE5fK#~pP&EuCj$=` z_u_MUvYarTVoyA0N6dRQiSOIoDw8Lzs}ERek`H`sCY%f^*%6{g%?PV^D_0Q6a3<$q zIMl#oxXEH?sGt3hgem-X3P|`J z2r4^n9Vp)Yc;WLWRUQI)J6qWwg-L$0UuX9JW7;VwLt}L&L*xkRtn+lYC;2*PG(A5BsK1JrZ{Z;U8Fa-wEZ$#PC3$ zhl!A2ywo80l_yCZ2X#Cb&m2aAknq{zXlXAq{JL6r%L$345{4ZiPr>srzuSMiTo?!y z6%|7Ne#?0KjdY_>V;IlY*o=@Rkny8I)J;vXAtVBhdJ7A$Wo7Fd+Vn3dF_3HgE*v1S zW}n6V1v;J{jtk4nF=V2#`qhHY@B?mli<|c=Te$*nJ?a}8*4wXEdchXEZp1S7@TnZM z9(TBYH)_5+YBkSh;AlPIXZIblATrayi)q!WSw76{qKo^c)nhd!(Q|1!n|%KK7kIolQy%F=FzTLfrfiziU#t4t)-ZO=jWo6-G+u@6cs=9UV zN%m-Lb5oI0veC=X=g!%4-ae!UMD&v?v@}rhA3MLV>c%AE8S?`0)Wk0c7*um(BGHLA zbUSYe9p1h@oy>dmh~9S+Aa@inL^jA?ydM{8>2XUJDOV?a7Ai&YLd8}cA9pJx0r`S| z)+l`S{;%NmcybUT1Qufi9Opvx>ue7BO1=e)gmIG;JuA!3+U1IrQlHc~+K8s2fjVZ6 z3-7rKVd$?kK8u5P@qG_u(zj@dwFxHRDEqq2odeCM{c`wM4Hs9V@rPZq-``&!n-3co zxjc5%m2-t~(TUi)4(99Jx{-*jYW02l$&+4?Bo+>A?)d&P*T#w2i|NAE zcV`;5_L#nsx_Jol5u>WSU5U&uvRt`U6=L7R3SHWXH*@@ePRn9U>OcviDDv3tsHJfM z3G{X}x{0zh>{2~pumKO(S{T{$GmmoUD;Gpn&+R&Ltg^6_B3eA#R4lOmf&5X;6<3VM zk|c|}(eQ<$q2C_(-6fy@W`HG|a+REG8A^rYz?asZQ`gWbrlbgAM1oX894>+_w~4$E zMizINv23zk&9s9$V3wU*3|6Xxu_rcVJXC9kZCFL2gS4KN#I^k`Hl~&+Tx1OO#qW*e zo+6f%#s$%KUIA_CUu$CgxEcbM>f5Bjvhub<$X8TR?X5pk){|X7gS8uSmz*ohE65l< zRYC?o3zegZ^m3E@H_B@;3Z9@c-yPI--fuPs8B(k*%~V87uz4Z~o@b%Hom%ONA*~WU zJab38#2$ySjDuxJiP^H=3(&!}Su_ zUCOUl|Ep?imP;+jVF)u)ef7YfXxLp#yb8 zV1KkL${A-gUMG3UO)1y7OuROSFPCA48u}b&FlAgNO?VR?=wLx135Xr8R$gIL^?zw#_oCDIwS+y&eEuqJ!OmEzG(?3*+u#7kQmT*!YK97Kq8J9;Ti;hatPZ4wv! zxKB||U81Y9ykUMYlF%g`x0=(t93ote3^VoPs6}&WI%hLuf7B>up5QGM;favCyzR7{Kk!wjybsbKkqWr zuo5a~nQ4s184cTevy3FPloU!y+9Il27M5Q`+v5w2E5TCz>Sb(im>FNv#bH6h70+Tg z0%unZqkwi)kvp*G+oE}5>-G==Gxe)5I>i##`QK}aQ2vzf6-wjHp&21j8+0x|7e4>z zW?vIyN(48eVm%LE)Z6^zGnX(|ze-clHcO>1e~WGHxSu9SA$kZ>5N%!}gs0??O zetk?*Os%fMB<_SqJz{;iK|l^R$yA`aj#Z=}Mejh8>q2x_B#zywyt&4gzM%sGcLTx* zegyMTO?(YbM5u^GRIHiSww+NLcgdYp8eO`u)7%{4EBWj)Wh6ezPcJZ?{r8AcokogS zeq+oOGeB2%G5Xi4nYbciE7>H1go(kYewb@NhqJG$o+gZwo>ZA*|H%vtj>js9hXE=c zH-LFf<0e#r7FSMGk6d3a{y!fnX!{YBWQLI=GO1~<1ibkM%JjM$jlI9vXNxP`l z-H&cGLnfgL6gaW(F}3BQ%;W0Y1c}g)JtYa}wRVcSZj+{T=N!=yoD3SPbAeF?* zevpZ|_M6>>`?V-3$&?~&azBZs-P4js&*e8yUcE64u~cJ=!|269eJ4$d>m)Cz?18)~ zN_px&uZ3tS60o!(Y=*H%SIxu|2h6wu>3z#dsdz~@pQd3*p`eyrSf-4gZ2hMco96_x z>-9$@Q{ug=V)s^EV5B!2^)v*NH3hWk>E|{4%Tn>CN_VihWT53Cw-Mux8Xwb$_j}{F zihJg#Semjpf#8H=N`$_ARcIWIC|O(T7p=Los7;W~j7SX*+xerlrTGRnWn=9ODZ5F^ z&nk&q7@|5i#nxRzz))7&)_R0U`zU(mWv!5CmaoO&h?r^-m-%qlbkJ!QUQS|O7oL8? z^7mH42oCREg^g1CrWgq%u>D1uhstWgDGv{1OHyOmM)9&VCJ>wu=^Cx&HV3Hov75_d zr&lQ+k0g;j(-hMp-eqFuw9?pNUvkdD;`)X76M_OGNFvY4qKn)?2!RW=qbS1h7vrw^ zQAE=>y^7G2uL{>H7s{rnH%oQkUhPS|=4#Uo0_HqB8qJcLitOAwM>{U$)|TxnX1R># zh(6apAzUSzUzV)p97i+zWeq;;X z<@ByT^yaJL>Zhsyt+&v$ZB}z{Jv7uwC?j3@FI&Enw_9Ufh-GS`|68mwH?`8P25c3P zA1nAu_tm7?^~rh)oqcrGFh?uf`;pgV#oCeP@cRql?YDHKv7~mGc1(@dW3T{Ujs|Z? zl!BwNekQk}ZuRfhZu7|35j;fgRru|GRp%>BP0g`c(c?A*h|p#NFVB4Wmr@X^h<^W` zi$^mAIftfZ1)K4!;gy(Y3dkgA8Rlpn5f-j`w*un2R@&oazi}po@0WE+KcQBXmoNS8 zbm@HXg4HC^phEZ`YcZ1ftxV*~cE~}oA6;fK!f_U;Z;-b;*t>D-e!fS$#aT%dYL=zr6 zeyeYBfTbzIi`;#8YDlqGQ6Kxri(*nmEO|FS=H)vAfGu|3*z9?O{bbQUe%BC|I7g83 z$Nwze;Q07+X<&^m4EK|M+^A*(K%EBUaTWyt#I(K!7Y51c5IRYN{neg1fV-XTe2m;o zmZWNEXlQL4u&L{|86J6o-_Y7KlkviJR%fvafKQ@e0=b!kBNc>@Wtu|PrFMSWw?Tn1 zOqk$Tl?oK25~FI~?grZRh)@6$OV~z7uFjNy#2qcd%F?6O(UVMJEcF$z}sop-5E%cHCQnVglOyB-0^ zKLsQJ9HJ@uGcD}PsCs<`zV@qE?Urs+`T;D(Vsju7cB(wf>GjNR25ZTCdaJmywp>wm zZBH_aAI+MWV)hvJHSq~k6n;rP7ddHQKFc_3r-W^`&OmGRAcebfH)g@>w1_hrR%t@jY|%Q zkVQUbligOR9BLTQIZvV+fwYA7%uD zc#H(N8bQ1xvieHV^uq0{N9!(BK@+0iGjV(wh-JtW*y7^%8O9zMSRe&iNv>?)Z5avl zwd+y%?L>&b9w|B(AzCBpXRM>U@5C{!BJoqYiGOEg6mg2x#1g)5x5aSS6D)@16|7JF zYq4hrxgw9Lh?drg*bVle17K_rWVs zTIIn;!-^zoEyw{XMw9>wm4x)%!{d4oiXSK*SJ;vHF=JSicF^3m7&JQ297Gb}sK{Gb z0cg&!u0KCGUbax53;}Q)1hoxd>qAPP3P{SCmp*OOe%o0)xpL+%v6lkyIW?<$-32N} zkVt+a_l8$;dBk2DCy5k19~1Wc(jUK7j*3-@E31n=&}2PjH<1q%MRu%gTd*b9Pp$xI zW#3gE7l!qjEB)P}H0HU0hq<;AB$UaYI^7S%X82exm9G|9!N)pBlsqc>gRpvQz_%+1 ztpORTxAI5ci1;MR((d0Yt{-_Bb*4M8xTETy3U zNt8Fj#*|>1irhgd_e5x}waZOTwBH?y5)7>_0AZbYw1Xfh^$p>i0oBbihg8DHee$ znx2_I;+yMERP3la#wg#TVFul^(p-|qO0UJq%a-pU(qKkS|EDhXgGAuW&5^zeRKnpX zL(6P;d6K2nLBc9S06=!c7?c-pX2;#EC}LN3B5RcQSOM!MrSWf#;ASKA2~NgeRjnO%^d|9y*+n+s)A`C!M$$ ziWiME(!ta*KNs1LDdB<0|Cno+3FrX5t$$Z`^on6}8G5(xL@92IzPRb(eQ<@k;U^JL z31_)rXqq`0;=El5WAZf6d;?+=ONkfjZw~}eK7y|g{Q?*qp83D*BXh&T(9?53UG`|_ zkc_!ZnQ1I%%M_*XYwhj_5r)HSvR1iQx^q%e@#oZfoV!u64Nfo0ov;D)%{cS@e$oUvjXy5=z-amr3Iaz{~&|GX91Swk~Lg1!p}gG{2~j32C417V3Y!NFLj5 z?rBxeKL7mu7$;rVu{5E?xmMzW!>%Qia3sj_2(7SmE`#tzJ3p9Q>0A<8CT2%<5`ChC zN0iToQ30y6K8C~aZ&bCWzI8^P1)obn2r@tYM><7ys}qv0PcZ|S<#uTK3c11+w0&wlkPuhp zLExeW_Zm|^6v7Qs!yrmctJL2LBYr#%GuT*lEV@*4QA?xKBly_qZ>Fw^2FelcPZ!@p z`*K!mUr8>6lQ}GXC!APb@*-4uWP-Xqik<7LPZsRcloeSS2@slK1@o3L^IPdh2^!7C zrvQ8jA{QuIw;UA^Vg-jm8H&ZhGW-@)Z>4F*orU1Q?Q(lp!Kpp_uPDJPl-m9lm@1SZ zaJ!B)n_k$Q^oasUWbMEQYNIp>t|q| z1LoSlNt0;thM%T;oZv8($RA?J;kEm3^cA{5CF|LZpnj&z=S+h$UgsR-_jWltk6;1S zSP+^2tFlEybrQc*cbkdU%wDpEej#=dGpM+%TZEany!3t_Bop0xeGC9)4?rLX83&07 zAl4S;Ac@|8YL_G(@=c>FD4mM}kr0@zE%?m%K|FW{H6C61wyy$$R4U+)iVE99qF+0&+EtVS+5tVz`94Rbzek8XjgQ%eXPQg-2^@ffxOO* z#GP1x_Ka?+ZLF0pbdCLSk8-s%GCFWsmi7BS38#|8O+&J_S z=q(b-8cGc>PA|7>Y}Dt|l7u%w`~`3N$YZ5P&c5$f&|^u)5--7QX<`8S<3tGWeELvW z#I(JJHX`v8u2#!|zORsMiyi?fJp9O`0^rLZ2tYj>x#4Q1*igPwZHPC$gywXeBdub; zRZIW3Om}-Nz%yPlj^F7;x)7T%uU6LUa_vuxVH%XFS*iHvlZJI=JO=2F*Ez=m>0X2! ztZl*qribW^M9KPuq;ic*ewIpv#oBUwHm+qlNdWG6X#QFHp`NM|$w|RkA_5QWwzcnZ zuP@-DXjB~#PVykj-OfPjoAtRCtNqI6oTbB)8%o_ZjZ(lrI1XFJWoilKVbn^`8D2pv=Mr(|9LIKH|j;)VRJUzF-ec zpeDixjPn5Iocmh-`%laZZ*FVVqdG~a(lx}-rz;A|{R>^r^%7%09C6hdLo?xR@7cjp$9RDcvc^!Wh|I*T2^&>Y2uo zl6dm@kf=^xvMFO@W1;J{aPu0ylL2xUv-w(USf5MXz##jljRtbFBMY5XP=`oSj@~j^ z1Sg)1H5?W8f+;9)Kq~#vP}&68v~qjQmmj`3U9t|RMUXX7g0$6-X~K6madnj;Brp}B zGIE&T_zjKEIKM+U#TzNOF>@TVzIt0%N_>Ek)IlovyxWJRWF z5Gk+CuP##C+|bfe7Uet%N^J3ezd2w%qM**;9L^!?kDsfYPoio%Xd}*`eK_X&~Z%?}ru+4sDar^97G`aqy&s>XRt?aT)7H|B2x0wDCX_i_$ zbhNPNn|r>+;mFCZGt}WxNuv|0h^;XAxDu3Z58(gXMH$z{iuMKWwc2k0j@1;g#}JOd z+4(u>M4<44BS}3!pIii0F~*q?&IAVA!k_-q3^NnT9@;@BLX_48ph&k;~-^5bO0Dc|Kxj=J!)~*B5*(@glbItN|ziI${#RUpN;12Y6LQ zC{yXOS3(7c>aANtPHPV^)ZR5b+c$ZFIiT7Rc}ey7{iI`*v{+&q5&;==U-x zXH}0_`X4qB3pg(|Pr^E1OU_pUrs;V@@pyM-x=lrwVy-HJzzt(UiV713!?Chxl&YD~ zvfCo{%NDqhzyZOs`TE}7@q4*cjZLro=_+%#aO@S=ce)V((fJBTxAFsATrn7G2b-=$ zx!vWq5nTSEHD3v~#I;$u(f4;bgM0h?+>UeA7!5JCa#sPKmT22$n3`rPZ*kazIH;70 z@QRTRyY;#$Uez=Jq(Ih~Yc;#N$|#q?^}|wLVX~&VJ9~!E_$KK2cjZ0)V=OmmCxbNrA8*EjH)@ADhOO$Dlt2cc z$6^Jn`|pe}G?g3?nYk%KX>B+2*$h>Ic$!{qV#QT8eH@E!+ z-TgXtaM!Z;YNGq7Fys3XDBGKQ>)?y*#y>|@&ZqJt8S{`6q(uWOIp0)Fa?xJB>Ywog z6gk;HcPwf{&+Z;he8h~DGqxje?EcBA8*X$(NFTwud;-jzUfVqSB;v46k$Sjb!YO}0 ziOKp9jMd>o(y70$si94frjmah#ziqXPMBn=_Z^{-CI0Sy9VCkz@)n$#gs{g?#4kbb ziI!rLyQD7^mrzde!R!Oe!E5!IMZXR|cU>Q;F~UT0kd~egEle^MdG~GRxa^VUV7GnX&oftD;%~fLgNK53fY!mg~6;WD6JYc(8M2q8p5-rvlI0d{T z>nflBz69U}KaJb8f;@IpS`?n_tx~acjj^11d?9UCr*=czItk1=>r0tURh+b~wTKsg z|A{wKEX014AovFeV!q{w#7Qv--Z5hXJ(fZW3?I^C2HxE%3qDRU+5Y>bd$lQcaZ)dKjqZBfexx+l znTt|IBYof?2Vk6SZZ0yBvLO94#;hrZ!w~b9oQ@A|?89{64a&5!VawEf>w74ZuoxD4 zOAogPy|1Ke(X$uTpgQw2k;}&ZnM(g`y5Gyr4L_bdz@LrNAq$=oxB|BSah&yVG<7_i zrLQ~G`w-n$_c;4lFI}@`yDTRF*KzM)IlxnwDN4H{c46Y1#8yJ%v~gL>e5R>qcus(Z z;~rWeCh`c;q;(Ytjq2CL=)X1wI#Zs^O8~XlY zxV}39M|k$TB)Qb}8pE1K%dzum&~E*}4!2`Z@%f9BF9lIO64Y0-Y=Jt_QpFI*OZ(^b z_Y-E!7OQS6NTqFydU`7}RiZ7Z$T!)j(U9RZY+LmSSP2_wz`+w1p*xms45 zFOJPSL}0~c?bk*=;$-WDWvJAoN?jGUJ|CuYl)8E*qtn$cG=Xel%`5m`!%X}C&+$R z7tjJA#Lt?X+rY%*Ach6o)rmD3a6+I3f+vW!5pb*p+ASq+i|g@yr-wE!uY#g)uwDr} z*#e{r@{vI}Q*CXdM0Uyg&VwlPI4 z!qLC!rpffUsP|4B&AfOGaWD+Dlk4>?KlX=B8@;Ke!Cl z-cL2xhEWl(bjb@9&T%iHtMc8P=qz^$GiSQf$10OayfDeqLNSyTb@W6UC3UN3D#DH0 zZ!P70h7F>Z3{v!TtmM8A$Kf$bR{s@2=HEgB(P*odwv@b_{Zs#I3Y~f+exJGnsaRus zOxc=B+K4yB{EV|Ab6SzbCtIOQcO$e5NZP3y>qEcb2&P1Jw4=aXj9%XC1LFXBhl zPHT3^=82P5k+s*}sLrRykz$I)BkJew^D2~{)+~aFMByyif2TgEWWC#8E6M0^5 z$ZI}lGfzXDs2A#v+sr2Efv}HqW9?@cOh5i&V*%`y=b>UV)vEGN0F2u4wu~t`QAk6KmXj+K z3?pl5AM57??cyxwmy`JB6p5s${a{K6+{>~{d!Z%o;7(j-vKcJyAUXgW^v z&UoO17$c=6uce0Q_KR!0opzCC7(Cdq6eAP*j$Ux9-UR8Q#dF{9@kvunJo4_illlpC zJ-D2ggdkl*A6QT0P4D4>>_x-DKvC9LC6%5jErP*?04u)stG6Q!8BC=F+5+6YQcE~M z9RZXlY`vvFs!MndE@esFKYu(+rMuPZ4xB2{@Oix1<_^65=R}n!87!eH`S8!_rTFxH zkR*^!1xQc>%oLJWMO$LN62&p)N1=$!@CiL1sE# zII)9^0h>eGNzsoNIu`#kJ3BjnUo@kb7XyKvon6tM0GE&|r!>FEI+9IM-8!~79M@@l zJ2rMH{|lNk^Mz1vG~Iz6SCsB6jM)+SDhM~ zn&AMBcfr~|b>^K9molE7{8T~L>ss}xKsjl4;k(mXTZ>oK`6vSLS53gpJB74})6GFk zpdG2yYncCyGw4H;)>(_-q zpvP1&CN1vw&rS>gZBenu)u+cMTQ^c5wQ=eObdH? z+m_`BYLaX4req*4B>+>!j*E+Hym=(lHA<}?03Rb1QAB-ldxr8Vfuv@i@jYF+ajREX z;vReFDt7W9Lf#lk)1vs=_CBgZR#O3b!{>iQNQ^YlgV`N)%d<7Ssf;gzv|z_gnw*VU z7E%d8LN&_@yj@DujKINxSP^Nwpcx{4U>O=$K@FAg`cXHNhD;swI45@h5I&7M_)l4o zahFK&+V!!}bhB|bV|!#QA*KZ9A8X0eMOCo*#23Zt#Y6Cw#b=KPGaRcX_6nfFLPP`{ zp4$U@{5b9u&+?ZqH_aWGg6;K)lm#Rm2CK20vz|6Bia?;K6o|E#Nt?MYVvHEfQhpf9`gDA9fI;@DUcPu%p-oUt)sI6)U)05wt4L%n=tim(9N(Zw7p&Y z8|Km{Ej9*!OGRF)YgbINHe3RI!u!jJb}nm$pIziRHc`wcYlCl32GVRGU5c7--To$s z+;2#pgU&(o<(!+4hq85)Ay6BM@-$?XkBRU3h$R7EIykuoWgUX?@#4}Ed(#rUVp`)3 znPgCaX->KppqZC^7YGjceKftX?2l$OG%8eS5j@okuMKzE|Sw$PIW7CJtg3V;$W* zDo#3RIBM2>XAMiG3-tyadE$@=Y{+IOrxIz zIz>3h+nI7W2=KmqC=^~PgKhV_>fV;gvUZtH0gx?vwNj!``8>B7$&M_Li9Y&gpfZ_n zzgjVHdG`?L6qNTPEh3Ma2k@){V*h>`w0*B91&C>uN|Xw#ENx=;sBB9m=zhJy8dcVF zs`;?l`mZbo$MTKX5Oxtpj}kgLAXhiq2`hxWEG`4pfs8jof|Eh12nZ(;y3KGvM_5Kv z6Wnr-c-!-<^SHoeC8ApS5!jqUcwccDA1IbhixJXu{SOH&@o~YK4P9cxbsRcPuW46^a3lpl)(?H>dfQ}dF>J!0L0ob0|IXd=@2(Bgo zDX#_K+)B!q&dn)4mVX9CXV!zNxP<8<97O0Te_hD>cFlwnx?csbvt&mj#c=k$y7e<% zDq-YRa^30UZGT&R-Xq^&e$WEJ&TDd+VNau_86pyPUsL39T4^J-%?lJ5NFSKV8Q1x8XtvV z0^-_t?SOGMx1PM`bFnx;*N`3)llIm0t|Tw`(HEA==9=ATEo$ZjR`34ixcEJYfx89D z!6p)KnQ9}Ryyuv-z8_v+EqVGlx#5F`O{GMUH+svh1?W|G278i%4mpdFz!Hx;eAEYG z%xhml{hs72^0?NOZ-eOQWUf7bq?u|j_GiOlV&3F~pyq${9R();2I7?(vu^lCeF+h-+7?!IJ+GEg;)RPCN8B%$me|ulSLTAO zhPm;P=^I_9n}P1`J+ZmI=98)#{>!z~vDwXI>dGkQkiyH-9u>(fNHITu?*vK`%V10# z4N%~k7a$Z*`E_;p5SSo4;Iy9@65_c(vn4wor$uhG*OjN17sjp4fyhTG z_)9-QP4}wepY0MC_uVHyF~MM7$lBl?W8gOmm`XaVWpE+n z>Ehga6`9?+d*>c|vF)O;5aj>``SU%xegWi&N z+jn?(KjAC#2@ja72I#FK%VoH3;aa+02FYl49HK)mDNUkkra@OTcDpG+0o-HwwRbMz zFv$llR%r2aBi{Yu9a{r>_+EhUT*u{zyB$1EdSPcxEFk zT>jw9EUhsl%Ft9l4)c?_5F1*M`@PSBcs(Dp({6=}fY(Jg;8~5Q+2nxBwfrB}$`MU#H zvz2eLH}l!tb4~ddRg~Af=WRZ%JAHw<1FWpr4H}%J*E)RR1=(w?rQQg?o zhOw;46z};x3xaE(xY!o%*;fq5!zQmt(=LTcfwp_cQ=L<<8X^UiZ}&Ofa3V_7uh3Ec zBtocb8t8dum}R>+lnZlCxBW6DKw~39gaVIW2wioVr%YDYwl)o5zq1^ue)DVbcVuzr zLd=t>jZsk!K=CPllvC6JCvYKs8ReZ1hc1fx*2X2Tqq>_ zeTaq?Jpo#)QM@)&=5`<5$ASSkPb(eUEC-jH6x0-4K;X;~bnkQu1{$7GQCFXtC_YF+ z<-7H+)GZvy=i7HOFvXo#3OLIm`;Dv4Cvi|y0eM-Jd2dt!C=-LPd#TN`ZCDl*NdIj< zM7@MR+0DiRdUKl=VOd$E;xXw5*wrn-u2MS#@gE!54A?~p7{|K=utoFf0J-M)tD*dL zLOFoykRWS6IR$N+`DJAzi^mA5sQeGO#qLjfuK^i5cRmL$A#wSfm>K!)eudqGZAYR1+dsV+#p)8b5fT7O&$)Vge3RgZi!XvHwK9o=Ng!4Y7%JtQ_7RhxfN)U! z6-tb&QLsO&zj|?TA+(jQ2`jBH{M`1w6CL_kR@{o(OGCgzMN{+)Urpb~%O8pPXfJN3Lb zb?$ql9j+@q0}GTORoB2`F)CIjPoOCa10m>_@$~22zkk{>DPI`ftRh|aZ=RnFL0`#k z8r3UmF#&^;g{;+<3HjcdLAo?eog&PS0#aXKCg8xkusaQCkFoavCO`W@1L;?i!4{EZA+|dI=IKR*F>#aAy=a!2SicWx{bizd>Oy&UY{?rx~-y=;ZCZ6(1%D& zDS*fCEPAg&sTS}ZmssqQ|B>IDQY6fvC`SoY%iDodvdb_Oe8`KK9MlLCFE)E-i@^QOfoh&#Bsx(50f|Wl;{(hPsixbsIXQipWuglUVqrhSeZwfeW;kax zuYaYVn<5<;!zK*{mC>lj`!lrgY~+LH*zl7cK}^7;oXkwv0JF&1W!TCE%BuUV!w;Y- zXr^st>H2%+(iLgT`AA#LK7C`HK0b1|kH=YVJ||10Lf{#R+Jn*2XDn5 zre7gKPrr095GKjxv|U?ii&{NvzCO_)0dPq8j&TKr>d}K;M5YF#iA$2JgxS7BvIDJw zN)%p$vMONMLKu2=e#Cm?<@2O1Y^_uKnpclT}|#t(N0l7%BS&dQcksnXTvy}z7U0_2J z==aRu(MzawHkzCDw3J$&luSBfWtqr*zLIp5XPFih(R9MjPraC`4?0w%t; zU^!?mD~AiTdG1648^pa$3y7Cm$TGR&>%gS>uoRFGjj@BQb%tVCEX|B)SrHIAw<6up)WAul*!mM!qMl z0Ko#xvcQt%w5hIWJ>w%jcg+muGJ%h+J~~I>899tR0FKBzAutpKD%&wfeJQU;>0a-- zmqO5<$jM78cnBys_{H|Tz@3J4Er6+V+1vLri3NIynGbHp?3TLP!Q=sl605KTI)2Xg zhw_s(Pcdi8f|ybkoR<>4uifsxX}WIPYgRwS@SsBSDt5c7@{D67+gdPENr*p{^zxayf5xIGNRlGm3)N|jHU-U)PRZIAl4#5jNL0DV?>m6|1 zL0vE1CR#tVW=~1+*}R=(ey^eLIP5X$W&K&-W+q5u&71>z=w&&9~&5_jcT_!EvuwGlAX>HUQ6I zcU8<_WyA0__zc)RKZcg6HDMuyQI!f2(tP!xy@WTX2IM%gfzg?lzckt#o1Z;h9ngSv zSvPBcBL<-RW+o#}_Z4(wT3j+a>6^@Jp5=N8azo<;a(=Djhx*%_ z(*hO>=!L|o2d@4sAwH^+`GO!xK z48Epb9zTdzOqEQz_(a0vMbO|kp4R{7Y# z0qzm(7~Hws#&vJm@X4{-Y%doQ7L|5V=YyTdz%+qvi@l=fPS$Iq#|POeJCFzOy;q7b znqnq)a}tfOJyhh!;An^f6v0CLi$e-n61Clh#}>?k2O>n}5UH&Nd$ZYwPL@23bTI)r=Kp;|e0 z`7dfhe%W^?H|3`OHjPfG?0Tdf%Fltn>gW`)mHbi+G`SO_=GrG^g##OVmIK}P+SP5s zA*^}&A!<4e)-Cp}+N*e7>{V?4aSkBmf#w{eGF8O9VyVvuR+!KJM>sBBb?=oweb;yb z%5@)`VZK2mlw_%Kh)sob#4eB_6Q2TV z;O>&yeDr_JYTC-nI2NPSU82%mmXtGGuM{Q~tWh&W< zV_J0_#s(*!P}PI5eGtx?M4_4TVi^d0jLzD}g&dXXfzBFc<`!uC}FHpGh{`e(~9;rnPa517kdODT3zR<9oG&p3*VXloZrRGNlhjL*#t6(Y{ro82A|Qo?klf?yyNFjqZL=w-cx_ zm}H7D6mvJG+vonQf8Rg3)6MKAS5-T`0pNG(ap2wk*+-=704EeW2w++J0wq_-pS=GG zVQ^SWxu^k*@LTMiafPJOJM9Yq0I7L!rAt9j1?kstV7 z8)D)L5M0VVOzkCK9=z{dTf=oV&}>TI{bC;uV^dRX)~F5rPU;I2P&~Ov`h>T0!=tJE zP``ft+S;x&$#?zm=+wdVq>vT?I8KX8(n)pQzp}bQNjWAaaq<$znN#?QKr8}SSlx}< z;*M^{vV|8A3cgZ`t4BMLN>OJqK$DHWJ_>!OM+itWny5@sAZBvgR8j&L(0G>F_M)S= z8HiF;NyEM-FbDjH-H=Rb*qYq|Ku;6a3EMD z`ceKte3-M;ox0La4X+t8jr)()vLg(VDJ$SG1v~2LoF<9BKc|?i3;F^I?$KkSl#6r3 z+72?Hy<%QFPfnhBPBN|enEjohQ2GJJ>g2d|beHSb`FX+)@PA(>!%yb^i5)yjz$eRCg$}sr3`iTpUmc`4oHuf6K1vyA(OaIQ^bez)Epgg59c6Q6D{Tigrs~jE*m$10?W=wf-b#O9}Plv^x zZunZmXFnOuo35O5;sN`-c)0R69<5ipki~T@xyaI@f;_c3 zw6nu7xpl=P7VwU+3;i3Pul`qU=N(kl7VPPxk|ZZ3gK$ZbQ3(>2AR<8!4>?E@$vNlD z0VIeZl0*%EybRrAlQnJTO+Uf5^vwb$y^-K&3J z>&@lyEX_gIUIbsn5;id@OFpMR?RfF!7T0)m(3LE~GPY1KbRM+JbEA4sIH>ujq&nHk z9lG{}1#T>-b=^VU!PZj1{>;RD7k=i@VqD&P+pdW-GNGjvaLNHDBV|0Vz6l?8is6HU z2~BE-$u@B~9Yk_)kjWyi0Tv3#anh_GWYi4odv$N^V;8pDmUp}D3-H2FgUAl=D_J&S*Im7UqQ`a!VVfG0O z(H9N0N}9UZx(aRwg~MJB+e1Nslb;?q!i-JewS0DB+LZR+DwX<0gklUdS7$YT^iwc{ zfn@dCg%C2P8bOXA$T3(#CZle%VNJyL(+gQS!te$cLHi#I!p;>?S{)97qs_^4Nk=t< zcTh)wMCQ`{hPlpXzu9_nN!qkNrxzs{cz;vct6(v?itl5YP^!NM5^cc$S-D65=b(o5rTB4U=Sq1I!O6&GIh z*t+#bI99%?h7@Y&Uh`51`F5tWtV*aXAQ1&)Q>}GbSG;)vxRI5-HAbJle5n}op5Lz! zg2DNPGZ?S1#?v3|D+GewQIm{O~&@ zRzV%!X((~*@q=^9>xWg8N0bKZov<0^S~~FKz$p04V#R#@trq78OpW)Z6dcw`^I@Kr z>J+Y1e!6CnyjYRI7{{M*GwXvG_%cCzGm-kKODWTr>O&m#?vwIk_q)*@w21G2Yc=h? zaVlDNwZ$Saqrq{N7!uy4QSe4#mo6mzxfuBFo$=1QV(~w}%Tg&(;5N}Ovt5y?2)f}c zVA~PSRuO4VjHK(LXnrcx_t*5u*VYKe;AV_Nxy@)HyGj?G&fnd|#EsMj^ZC%k(OK|J+rTY^qy_GF_Ebp{K}d3{(0e&|MsoV6l2ZHd zBlmtv?_D&zI0I*SzXeIAg=9G2@+9r0LWFjLyCi?K-lQ@9QG2}S)1@K|uVcbft#IVP z5QSu=AQ3QCuCkuk>AJ(OwtavkyXy%_v7dY5!!h1L2EV4y`p>;*@H}E2KyugWY+>@*mlz=V z4IkzD*_~wDHPGmh5qZGdavHPpwFnM1Rblg|0+>6+`Lor0`V-V`_HpiqiqqFb-~l&+ zs-0Ohb96}{gb7EdH%irh@HzGi{?=+;?JRZ8D&ai&{ ziqrg{a|L2pQmU2F8BVj$o^cZ2%aSQO?`b_@ppHWRo)6Iu3Cr%~3k?0<7G6cs{>0LB1Y{$?;MZFgr*EnD}`@e5U$ zeR( zf2*uGRqJ;B^IgBC6T=EB9n-t#8V>dRlLhHc^A%g83qymWiYQ4Z3$kOEPnQ;kRL~#T0qW(K|+eO zD_K=FTi-8D1&&^UwZopfQn#0C?K2-oc4TP0H+XyWf)kN?34eQg{-euxpOGU+p*|-{ zTPJh%_Cu-G%P(Fs0$b(Mt$+PC#N@*{!q)~(#P!ZPtf=@t=Dk)49@h=MKjn63XNzs< zEWl|8LD|fS3$OxrGE4?g@+d zC4Rc3jSugJ2`ukgQz>MG63UyVtSr4aMvmKwT9XTbZ4r(X}<-rcT>- zb4xx~Bp`U@Rv>64SMH3R`C=5AZk|^@63V2RmGl!URI@+Vrweh09h^EdWFzxBvLG_i(T4@ZBzSt98(6Z`JP`obg6(zd% z@GFv?5jX`#>@<%C&QtgVGXAqqDu9k76Ym`#bm;L^#JI%A*MOH<+OGCz&m(UG$mMJo2(%^k7T=vz~^Ah_S!NNrZC zAuuWBd2kO25qRCa$j*V#b@TAvIXTnR@ky`QUN>Xk#dH=qbr96l{aJCQl)wvepYmbO zij2;Xjy@z+N!nU#Dtzv>Zo<%c67E z=0vi@*lt}5IE(_83)>ePt^G5w1VTE$Z^BLp!~ zL{354R4{prNcIqmq0t)Z&tshEV8dAcY}`w4eNKXM88Jm8`5thiZPqX2Ewf0Rsxbl(zeYX>sPnSLg4mi)5Q zTx?-9$Wgu7&=1++?{G%CnwH0i#OtXl3972j0xat6->3cz_^kGm$qt`BC&a`mX|t8p z{PGJ3qXSjw*_?mZ*E+qm%pEVB&(;1a>EXb|{n?M8dNkzvGzCzjCeMMOt$HFZQMU#; zx{T>;mA+;T*~k`&8fp@8Uqpa~`krzWON=2qDt8FKX<@j`WK z1tf-N8>=6f^59DqVf?eKA zm8b4`2{kV;RDc?3m2wlf!C7BKVEwF9TwWLkFA6HdE-;=rWtu@+6oS+?b4#yQiD&=b z3dd^6CRG|_G8P~m{jrwOoB?twb6{(F(_>lA(_ShVc?{H*mc!++1IFe!u}8lFo*J0gi}-CF$Zfo`FIHVG{tCn#xGvCDR`A0YrvK5Q=_&uX60VivDqwk$ER4L(}TDuL3- z$IG0meZ8TQ|33kN|8GEqX+ya|v!R3{)_t@jlB;kM`OQpgbnxZLnR_%$&IP08R5z8pNK3tu10;OFmcC1kUdBZ9|6r!}aIk)fbc_H}vBaENb+Ov;a3OM1on-vy!Fw z(RL^yfFWP2<9m*BCD~@+b~7$NukMY#s3=3f=!z7sUvaXkmW6}%x=Rh|>j1*(0T^N; zRJUdq)kL~+0aB4Vhg z0l!Vb-Bi4l{o07O)b1?c$dupW$d&KwLqW=_^?=-}gWg=#UWDfxc_=6+6G#93T;4(J zX^Sd{rK(ry`fKg4-FT$J7{fAhR=8o*bAU;fj7}9TpM1C-K1I~y>4A5-Q6U=+cA3DO zS{Zb_{=uQnx*l5G2Oi|Tbc44n$p6C&_d^xOZh+=3{LV{|BofU>J^lA`z^qEbIkiJw z1gW5V9)Km87n-0fn2SO$kSBCH@1F5PCP-%h;{aR@&=L#}!1R=9WA%IlJ{zcz(yxr4 zK_L*b`(vW3@ZjM9ed1K5wv)m5+Se*V*?ga`JqHIPC4ndLW63fjzS8j_#uyIj{)9Z% zsEfbaLt}V*ToR;|K^jg&P(N4At3O7i@Lp?9)l!=ROABm<3@3%SOcC~6hpYLU!~F>wbXiyX)!VKuRX?tHAg6xow zz<1qc0u5!hvqwWi&=w#`->)Pt{I{UB!}1 z@L;OXRG>Ke*j&pdL_m$+&=fBktsEzR8c2Y{#XlpeieGq-Wx?z${)7)Tv~SDUuN-i| z@dozMk{2b_Py)i$F>p`>edO=}DoKA=7ws@}iI!CXj{oO3qLwbc0m%bEoqEjY{7&bc z?hvAJ#M)}S&)-7p#Do7UMrnO^kd#Itm!DSA=mIeS!AklTY%#=y;Tc}J4h$L3q+Z~G zCJcryZ+l(Rr0ipar4(Zz6)+fdR&R;ae+Y*a25MY9Y(~)qks{kCNVSbjXL#~CA)kL- zJt8gOV80zsBQlPt;8}0z)r&YjI7{G5U9#Il;Rde-+-lKM3^58mt-p|uUT33Yv7NOy zHUg52QiCM78FYx?@ByUF@Vu6jAF1QZ`M%sAY_{(gmj?_PXy@k_W~kkMUfwN}#kVa=NFEb{!8)%ka_GLs{`!i zpJX3mBQ>R`9f2bw!T|0X+|JKz)St?)2+JTh<4ge6=tBQAJn!D&&2h#=mIhl3WgS$N zK)dyVynS9kNAS>yGZ>F;F(;oafz2T!xKn?vwX3(hTwdkhmi=bJ0PD`27)UYK(%LTL zFh7V+#D+s&*Qso!8<7iQ7`W|Zyh!8l>)9=(!sOB`4UaMo=@}xJ%m(@}U|+?UgEQu^R)icDbdN&ZpOPJvDG1 z@-vB`k#g^6`<8pKjI$a5l;Dtq_C23eMq(e{MbF1zPIGS2e<$kiBf94dGDz zR}_<((NL8=k?Wr>?UVs_qwS*`&y=lzQy$-??z?n~68MbG2vWrNXkX(oQhq=^-6ac; z0TW6gBOwGKXaGi5B=YR3v%1Qf0k1H^S9_xS!nIj~1QURJhlSC+IV7^512WkKyIA1g zXdDv}z^rpS4-kkO$y|5qTKE?(MuZe*g0?8HA@rs?#0LM+ic!X{e7~WdemaSL53g1u z)!pKocp;CjJFX04zImPN72DDmn#^LvmPaAPNSf%P#b1Q%c?wYAQk`5=s#Ie{>+^kD z>$N#Ch|wQRDP3{8P|9`QOnIKWfkX6L6zW25AI5xVlhsFjmy%2;m!CP@i5Orx_w?&8 zm)QA8mtq7x)HK*Y%nuUK`nE*g9vHd>S_3%hvN*IXv-HbbW_id2cML=mDC40riI(T{ zOAwy+`!>~3us?00(0ItGLqrtXNmuhHnA7j~^vTTBkKmTW%hIMKoH>e*s1r|JGe|y% z?aMCmn5eph7guw4%5Zd6#ps%1Dh}Bewb|eU?LDKnMoB6gq6hQ0l_;8Qei;u_0SSwN zoAYK8C+ZG|mi4{N9?+LYC{dUxSQJ!qo{AMvOg_bM$%-MVku8OKjQ0_qL7HDwVj~+r zf7SgXao*bLFjuiIDBw}_*TUVu6&6zkCxmW&qu6Dm%j(JBeAn)C1aR4^@$wwU3k1@Q ze$q7;RGUt;HoGl30k(x+zV~4P@QETVcm*eYt;^Lxrl9|LJ$>{-A7F&~NMZ$^_ZH^G zuyjoWkB{1X`dhd#^!Bsfq=R_>;k!Z#gf^Xx8klBj z5(m$3QXBu=Z6zaOr;KGFQd&sjI?MVJKfgFu3;2$Oncr2w7uxyrdhy^KhqB4}$)tPh9e})V^7#=|Ncqps)QqR8TjC$v8J}9eg z_VcUG@) zI&l)`D9t~h=mbE_bqS4e+5#IV>0!dAbcJgYcpk$_pg+?%m8l$s&2!-l@dHWe-8O1v z8RL%{G;26)krzd2OzcIayfLOYMYPr9t7S#owE2*TuuC*~)Uf}h1oX+GRhPCKP6;Le z;1ps(_(DNi(Z%rd3+LxJsR)`A{#+(*k7UVQ!kZ2=I*XmZ*Ffs#luQ-7@{PC$w&c2X zyYAbs^VfS|@LggB%stSeq%@F6+0>&-d>|uQU6y$o(n~|BUBHo@^(wMmxyt8eaXq8Q zwms<%Pu_OtRE=|g-W9VeQFTJOe3%e#eJ?Zm`+DpSM5ij_D7|ph&A&F;eE>RR-MV-3 zg!3$j`pR9H1&@iK@X5lDR9P2aD6=opty%|yqcG)U(ZWf5fE@o&229YFXepV_g(9w{ zct^W=<9)kYmICFp_r2QUgCmxZ@g2}|#@(Bpas7u@i$|0cgd+H8#x ze2LU`p3=CzTXP0PwF;uWm;4m;(N_8dlpTTWs?-pi$|Q91h6q!ufG#5~Bnomkt7&EK zD~8E4bfU6U@006JvE!}l;yb;J{gIcKbNDU(flD#CQ_L6Xi`EaxF66~m8hM#^LWu-e zDqt}K;-ml<1w~<8AJ*mNJpIMdp#udV8^p%+sn>FY$og@k1F!dlNcGfNXUPN*{${t+ z1I&E(B6@zK(=Lt%2H-Th5M3T<*iWW#!y)gV zm}lt?Ab5yQ(c%PLCLg^a6J(U2#4yBklHI&x;Zac9+we8qAde+*nku*V&Y(M~pm!cW zvto&vqRmZ36)nYN4UON?2>}-{o0EZ8d;jxDuYJP{fJ#cffVYiuPa7h;Jfucu2c8X) z9f3gA$TGe$I1Q3%L^d?1#g%U)npDk*R|n?la< z>$c6g%;tuZcd&R*g}N?uTUQx?4(Pc*li_}V7Z6?mj^TPM(>$-YnEO`SDgmu(6qYZ) z&r#7Jxy*+3Y6|uP(62kJ6(jqjZq|pEyI7pckf2sHmYAzDxb&slA!#W0_*;IW%Y^k4 z^O?Z?$nv#c8_vOTmI+r0`qKmzwY9amGa*O-D#06j*@PU~1;JBf%Eb}M%0hMPn0p^a zbBZA(F!#*8-yaYF+;2cC!Hcird@iY0TU?;1JD?3>;pfH0#B71PROHg@uVqaKuLAkn zErKPJ|GrVP=L7*}0cZ}QGe_3Dx5r2_<*X=3{piIyXD(G!* z#Y2sj&VVNK*iLi4s;QT+Q@I!(krq9|Q@t_ItFIcRoO%yUTSN>+sQRBfMc?2899Je@ z8jbE2LAwHq;9rV9&8F|OrM+K{O}X_8*6ocNdHZC^!V`4d%gD3&?5}n$+&n|pyoC4L zS)nvt1#3I$08auq+l&mdH_&X50~ zy=B+m214YpXGiNc{vg`SQC3p=EwrFG0~wua`$$om+Yn~wBN;d)14N3i^tkJP@=aA9 zt7ow1vvZsKhnJ_Q;RajyL3n2!TI_U{WdvkBC@ts~F_#7!+dUKKV)^^k@4sGqT8QcH z?lukNSRrejNo;74a+s{XDBOSl$FUpJmT>L%v71rxrtp^kNR@zPZxXv|uxTwW`$_AA zX`kTwhx<=(@E<{%{hltX|90<2l@ktiptv@FGXY@O$FoOY#lM(2EgXHVQU7A5Da`#3 z(f|Z$=|W{K`d6`h-V!=Q{MR@Ajk)kX5=GsY)JH}~fu;5y6lhV=#l;=az~YR_SZ)0hG7~_UMV2`bHI%QiFr>n!vC@2MrLmRH)aMikkURzl_aQsi z37MtTABSqovQ8Vrx8);?i_^s&4U3&hRHU|U4`2DS>D`KbZH|RB9n$IM&*99;hs;BN zDDM#UT)iuqtqHn6B06K2Q&Lh=Zu7?o7-=1pN6^uy@lW&NPn@&sx98CvPPO^v<>a6Z zvq3K0u(^fY9P;GX!wH@j6%m0_1`92FCQhQ_WOg8L7B_RW={+AwXG)3c1hmiij_mN2 zF6jGmfn0W1Ya0}T7_fmcC;KPI&*-H*iiilp6^Piw+H>izy1hVj5}lxV<40QexPDUQ z!36G4>(NII?HF5j$5ZiSxrFIgKS+k2C3H_r{a(Sa<-K}!(R$wtx~Igdu=*+q7*r_< z7}sfKxpbVxRhtm83$^^R(ALxAfzgx|b^apb3N2`2!pWtImJb`s<5W|)F;F3N3nVJn znvM_F^78T&j6u{PI|iC>T^J$P&uBf2b$=QLbSrwiu^e9lb_O0#8%b?#K|3Q_fP6*& zS}mzi3Jh$ngI|yAvY?s?*wMJPC7iuKURF|~7SDY34zv4vQH#})SH7OX@<15sIzHSI zh6Eu?rPH+3Ht3`=_3q0{T}K1i(t5pB0>?jVTQP6#$6{~G{Z@h=BihL1GYAe=AlmLX zJH9jJJrg(&`Pu1}t?a>Nn$Mp<&u6)RpaO+16^N~?q36szREE8eJA{5rxK1*OsS9$T zvqu{LxPl&s#2~E;dLVtO@LD#}a&|n-HLZ6mKwU@^F!;2SZcd+9Rdq)O`U$}c0V%B@ zdw&%Gv1G@$OIj-XV4=0Imr^MJ74tcNli5|r%N3q^bT64V7b==hW4Whiid z8*XpU_zlntPF+KkG72%BgbW60%I@y&gJKji-$MYg1)Y%CBPhpA{mVd0JuhAXSO6Q0 zWumP3=i2Ircc*7QsHclupYmHPyV#IoqP8cS13xey#pFaOF%#f!80P2ys-YDmTZ+&V zWoT$9xw~;fyLfYJF!=ZlOru4(9;n)5+QSK79;DR_Jv+ormIrNZww?rO8yYqYY^`~Y znec#W^vR#h@xPyjOqY4!foK$)_r9WW1~tC%Gp7g8ngjQ-Q}yot<;k43nHn3Q ze6AAMH`XyVO@O@{X#u6eOB+_c=JUOs5U?4Mfj=jB9QPM?exp#<*4C&H=neG`YvMvt ze!^<~eJJOFDbFi+^2Z(31~SitcPTvi4Gj&;8Sv=m0YL`2`i=VgYs=qS3J%Iq%l7_)f#*d?5p@TvB~%!tPoDOu zJKn*FPFvh@GGfdum<2k4fR+2b{H*6JPgYX7(V35}hiea!c3IIZUi789_Jfu^to{PJ z<;Ixu@^a3%L4$WZgB$(Ij$3+Y?`nCUM4G|c__n&LAaEXwcrOE)68VtkMuA+NFc(b0 zn29$_$D9cC{z95&!LoIK$f@cB^A6Fn($djkooX$Au21;v3`oF>$Vl@S)u3rT_*~%v zgJ%hB160V;(tZ6h-N%m~JGeUn8v`~x|MH0gvb@8?=^5O#SWv6HqjSWorq+$4ufoCC zq5Kf+@zce|@#ec<7K+g&-!o_a5Zsp8#=9$a`K|XI-(aL&7rebn=oE&4zL27%ZFtWM zpVWjkwoL+gQun>#vlrg+JnJ;D$;L1F4BC1|m{flN4{;lQ;AQLn7}L>j?+gdzLuEk> z{0mH+E6nQswL!YOT1Eoro4$9DfI(6*Fkr~i`Cu)L~g$Ygg+^)=ynh_r=*Rk z)p|_NAS@NI_U8uW4h4#fi|-s5;?zFNf>@F5k#)x{YkH3)fHhb~I=0OHG)cAr; z#z2QI3NV_d?+@lYMBc0;8@G;cFgSwPR6SD+LW0;?9_)eXgaHlm0{9@B2lgApGnS7Q z!YSn1V4@@xCaJVcz41ff(7A2XnCzVOZA5 z6^~w}_4$+Holciu-Ka&`IayVnVLQ1-L?3XWm zqN&6Fd4FsJPIfxLh1dqN|2Z&`rYB5O6;C&qLpRQ+Y^cM=kYsJp1n;M@X$g9&(LCZr zwm%~F2%q0ypF|4u!|9TP`}BCFWtU^^wD_#oR;+CX;wI2QgMhr2mZ0b@Z{Y|8b>q)! zRB6$rNmm6+7zPz?kGK{mm^V~J$x)f^0E-7Fvk#j|_Kz;Bl?HjZJ_rpXrk&_uN~zAV zZ1A$|KcJ7&Z}Qm|H+y32hM|{m%KG~qzp?xFal;92&c$KJ*#)}$DWq9bkw@!z`r9_P z!mLAQ`7S+$YlG098x<236?JzigOcOwe(hUXLGHLN3)w^yFbWsV)YHljX%u3BAb1UW zxnU4>W!uJw#$0l|(-!Sv_{g8rAplaS(SLm}6!-w)lnOC$P2B)ke-;B7Vixex2sdCJ z{N3rLtH-ba4|^D5^N`(_ zgic6(qS?gl9aqP~b_|95AFV55VtWCON8KK9P#Fiud9k2;Hv`=0ZR7+Mk#ny94%#10 zf&l3T;y5&cV+q@!+e_S=^7`u>#ucbNiA|I{xEarI`3BNr(APB>tal9j@>KB2(ccG#0K%d> zp1}e*K>Y{E*a2JvgHLikCQhi~W;}~@&9ZF0e`@X6+BsyGhfVbyvdaT}ARhdli!(W? z<%j+-p(BS^Xu-H2iB}BIm=OEYAu8ce)NAY*(uNN<+2BLmOlK0iVgw8ibo)CeG3A0K zH!>`5+?3KbF%c9vA4h-remufNjeuiO;~l6?M#9A#k5f}I;KTlPnBe-d1^YE`4o_cT z^<7NPvFAvRsoVXerfh4AIAQaTbu=f;o%av+){qu*!p!8+fbgL_*$+P9ncw~;KKAz| zLs4jl-P>5`zv#5XSRWLOGz4)9R{1fgm@W6mXpT`?*KpeK9< z%_|-=GoVrb2e_CQ;KI-nF-dYc%e`}HAk%&R*lW+(VY&=aT+zxTKt^W$`Q z2JfIO1QsweqYG_uGC|;GFThK~M>WAfAy(hK7ANYqcoXqzK6*AUPXf)w^2g#kUOqkr z6B8DsDI8vSd(M_T_))wUFSdhGj6X}m4X`M4ASkTVU(b_)RA8UGO_nPGDHeeeOzr5~ z+w+_HZ-^PYwB!GRNW%sE$~mObW|ejScQ6t25IG=*Wz@Y{puY}SHm^Na?jS}Nv4pN0 zZ^xW=q~=`c5m+s95HDcTK#NABZ5vhc0=icXl<;R^pX`FSx(%D&nVY*w2*k<~$Rv_* zkFJZ!D)aE~TlL3KXy1kaBp}$!mYdlblurc5pMGOw14S*n3g5E9vg{mrrK1z9sDux6 zl}nJG8G1nbT#HEaCCygL zp%B8GK@uoi`-)?Gjx8sU=$Oxo6H>Us7|E&1(4>?1C;xuKDW%7L!!K|5z~^m4oVSo} znb7{JKy7={zTy-rto;Ilj>+;{eI@&TP=SSSV?VV>Q z%$542@WH5A7fE1vU2KCqEG5KW?3*ozPO!7hf=`FMIMltZ=6xi@6ZPBumVI0g9v}9K z#uT`i-~&{pA%GIc4Q@UUBp1I8?J((q10crg_l^B;E6~Ilk712p?G!;FV4LQli)ge! zKZH0`;F5>QA8#kp%lciJ-(7{Fc*I=vfnlZ#AdVw_Oh!T6khc%_i zgr1N9>B?N34+4GyRJxQWAL0!l%~VskHU4@Du-#dI z6N(|Gpi7}TmxMsgV8`!-HJ7qdNU1H1B-pR%>Cwsk`L381bg-gdS`3^Q;_bP|3}>Z--7u6+c(GZ0Zxu8nsF~TuI$llo^D;&u<#~xW(b?iMNdu9_3vZ9P| zj7W|heQ)p2@Av)w=i%{iocndZuIqZPYrTkOu!ttKp3vU}NoT8QDl2!|tOCVuZuX$v zvog>^(Qt+5Q0y-wiZm%B0xKa|4m)S6)uJynY@MvCH=Gk*N@x*MZz!H+&AR!6s&+Rb8MKAO= zFkqFUP+cuZAao2)8?#}X9Yaoc=J~AnW;CKAweC+X71_Sfm>Nw zBplz=hdFmayUVG7_{de`Y_O*;*>-)H+H72(C(>rf6QfB6^O-ssV|=R8qYHx+goErp zUmrxdcHQR*{|RH@C7aWso+p#8~3qj+an?sbHBMF7e;M zn6KHN%VMt*7jA(Q>%GN98o_MBF8fAidsku-3n5wh#M`gAt567tEJrvkooz^xOYR^N z%?1H0h=_uhk~TAOr8e;n8U}*S4eI^l#f)FP!|lkgPX}dXl#OH6@`h&#d5)HN7Cmq- zR;frk(u#%?ru_GDcH|On%zFO%kk-x|f! zQqNs{x|=(@M&NxL^-~V$9d#rvi%yNMf9tCX!Q@<9@g$^vo4aItoLP!9*P}I?|ObU82IILO#mg^h8N1O2A9krVgIh zdH`;>9drcIhEpXA(8yrv48diFKh=)?CCbW{Y-QU#n;4334iFL`2hQuBEDL7iO8X<2 znsFpoY##A1(3@Qh%{38wBHZCrm_Gl)6f~RgSf9Q0QO(bQTBou>K3VK*&jJeIe8NAV z5b9(}cOmC6Y4M>uZtYuStXrHsDjPp?X7hr=m}1D&mpsMyidk}~l5Js6;eyn6Cs=!( zbLnFolF=dmTp-9;rN(XB&vr7oRbX@B6+wKQ{z^dt!#WXx)MvEC+$xA8oa(`bcDCT- zJ~W&3SRWhLSYelK=O||&#zya6P;@46Cf2+du)fL-8|c|2yti2wHm=x%R_s)i=4|nN zk|B;2fBAne?+Y#6Ok+Xky%W&zixw*$~5w4Az=#IMY?-!%-cL$Y5Sg zKXnjCEj6UnwMg5l93Cd3$ArMk8(^pCu>V>vX^HB>3ghS!xvhHHReo?UEdv(|)=5v9 z(g9Y0mR2h)-6~jtQR>4W;fY~t6;JL;Y4)~pFc$}7z~*+P#7TXaF-}2x?QNL!Onk(p z0ytUwzr#XlnQU^yd`NSUI2o>NbglqU(kD84(L+et;UQ<)E8Mo@v~zyy@2jwtGDSP{S9>T#( zSASu;Mf9VnJ8-k9A3qXU+?xnfQ&UT-s`}%kzk`s~vn*a;s?1wGzXxn~ufMP!%a&=n zJpKk*93iHZ549gjyZ+_T_E-O(NotcF3@U%_BI#GnSOw|7kf|(}2zbArv>zXu^~{9% zSn5jgpzY%aHEha8D||lm+eTHC_~*NDyPRl%IItiu@pI!(EBDgqN}LrVn+q5=|3KPx z@kmP}=?}wh(lDPS$6UV3;4Oxyv)g08Y`ieDX~i^~`g3<4sem|mAc4tEkJSVrE$(73 z;P#~~v-GD>4lUCEoyFKoB@XK%Lm2zryL}4{E?y@~egi>&kH2{gnENe7lqnE3RE=_DdvqgZA7xTcYSYvbufptO<4I5#n$t2Trnmg1fSo(_WASYroVqiu#=Nv zZr?twwEnmh>bN?pUSsGyjqv&sBiw=V>%3TMI_PJq4ZiR-^Zp{)wDHcR#&JBielH?1 zNX;%-l|4#_lnb2m=D86yXJFNz3BoU4LLnz>4+HcIF$DKCXpE$u5?VF$a&R|-kX}>P zac21WxLAFl#(sXFzFW!@9((@i^djDupzCGvI3a-`6=&f7T*2Oo|4m!1hT^7dTm#vv z8AeBf3b-z2y|Q0(rqPO`n?VK%LSAa{ZbmO5crrRS8f>0zv(b{5C<0s(%a>mbPmdcr z<6NrSeS2)n%2vnZ_Isap{Gmg(9aVbty_0nD+;2a@w6`yLR_y=iWY3cJ=odzwX=Vp( zWI|6Cy$|x)FG0w^YwXzXRS#4`{$2dwq5>_?c3w#uRhgl8syo^8&Zmn#2k!bYTJA(C z{pF}?`|~*H>M(EM&-%zgrAIJDagHx@2=D>LLBip*M5@`E^kP`1A4y2_a7~e?0XQO2 z6MQBNUk9Lp&}LkCVkrmXEShcW-q-*%-N5@3`}d{S*wEO3mu%TGo%G87S{bg{nmo3# zysNCN0=qWYE382@TvGHkFqc7mLE%)nf?$PR7-h9f-?>v5c!>&2@#?mqR7@pbwu%GL z5WqvDz!i z(J#4~hg4*Z|J{2QEl}0f{f1OjM8wL>_DXh@`QW8~bGq^AWymc`O0~ag7bBTUD8sMK0UJG)o}ZPd@ALCy1WvB5v8VpF zw)qE0V@F2_Gcz+MTjRWINo8eR6VHryMyG0<%V+|mHQjj8_nTWuS((^XmbfD#dH>x{ zxytr@9Mgf$iJM(4BOU^bW+D1QRIavZ@x3t;P%D4X!#>aFZy`ezTH&6U{e4EMcv6~V z3TRQ9)Wb)xgu9zGZ|O>ujaJRV>cXn5EoYEsL#1t!Yag z%&ko|=yUa<%vlwIXI8j^>AhY#=<&&qvLktP-VUL`{=yhbeBHgP5={_a-q*Kp;r!X7 z@zctQFniwKvrJ#rC!;XGZF9?{Ox%i%p7^KuA^rD!*n;1z%_{?ZOvp`BWglk^gDe*{Yx zEo0bxd*AChx6Q*~CRQm5RbsLDsWX)qpn>U0o)Q5p7U5INC%9@+r}uz4+0cjb;^XRL zBU(CVau*#v-azamlT(Ec6T9CWQZU1C?Pg*?f#wN{z2iMmIb1APfNs}_g5PZ6RJWuV zM;u5S#~mU5-IiL2{=uRQ8^>0US3?tyak6D0GB~1nD^t7wHYD)85A(giODN(2Z%nf` zKLYQWO_75O2LTV6C*#dS@V>lUV0F#h+`Qjb+;I%%=jYeE_CXhPd3lMXp6w01b2y9g zi#t28JE5T{o#N_ZS|K?&e_x*2aW`{Q3rA1{fmUWYEP! zlWt23B{Bm4*?u%aR}?7(k`8D=X)l<3-6PAQ8lu{B(;G8!x`kUsHhjC|Lew3ai7TL8 zX)-nQp>zQNm43Qd{`3Ckj0ms%x6^D5&n=@7KBO^lGBl3|9DjDWX}d9+>A#AG#3tOP zq+DB1x9l&{&LSYll5*==UcUFq?VE$y;m;Hu6+PPPYVVgsjw@aWhIRjr-?dFph%D4h z#}pOyH}(I0*(8n=N}}kr5oS4X-7g+&?Z1{XdtTJC0(iS;u(? zR{+kPZ?@d6&A~;4*l3Iv3vSWI{E>vCy6dBH7S#-LzPnxVcjXA2NOG@#JXjmx(4bK~ z%p70-_Tx(G>guG^_GEAAbQXE}R6<&M?VU>%A(BAQvV--hMZkTG8sZTAsDTLcX zvphPOW-XBl@3OK83HAfVUoCq=J=fx-ZT7#nH~qW1IQYzdMb-E{u-uD1?+RaB8*u0l z1Pq0N*Tkg1kE)S(tJ{y6-8;@42-LSM)DPAuhe-Beln&i!_Xc$;me~%XQ8@e5e!wQW z8@bg^4aOMM-yab2xhDo*5?D3k5y0#;<9q0gTsBWLKd&{pU}(; z%ddZ2euOOSW@If!f)zeP(?4B}uJzo41a|i~JDr%P!(h_c*X=Q!mKP)ahEq0n@Uc#^ zWc(9LhRmh){GnAdyZif6yHgKoV^s5yyD<^p>^eBZowN`#ncUakTc`!cxwfw|cRl42 zUhOrLTAubWh{(!DU*iKtR@UC;&D@wTS<;`^$sOU>hdS^@`bVs$Q1cD?7!nWU#W$~6 zb3dkpr-p{sBWVwswu-W9tUuqJo}FDQx4h(6JjW(5&t?Z7&o}LNT>M6+RtJ&%J7E9! zx-W)d4ftyoqe@eIvy|cX#MORw1M-fzZ-cPBaFmb+jhU}NKhcYah{;~+fu-U|s<){c z&3`^d@Y3bvt?BFCdm%;}?>*FJO#2?dvB|Gg>QLV3pmF+~JNbl6x+%h-VrD~lk5K9u zN1m71wmFOAK$|KQD~<&ICK}u>BJO+PLmI3dChv2vP3956Pz$IINbF-z>jT=aYmW1? zT#6Q6v=jKu2N>dai9(MxC~k9Lo;~rrCi{tKt#VYzN(2MXVqXe3*^j>)(g$BWLd5qZ z8yXs}ACo2|N77|x88|pi|1WYs&Jb;fIs4huz%wEp1gXN3J*>;0(+JV$WKS&Dn~2aS zQv7jB&$w~=i2ROkyw%r=vgaN7rM{S*l)m@3Je0LWAkwsgQ*iv4HT!v6$aJb4#4jbB ziY5Z8c-K7Eyo$jx{!}IOt#M869RoVDr32)5U!rL8Y|&173Wv7?Z4S8_u&1<=g<>M& zHnBs$SMjI)wbM-hlj{E}Wvh5UvG_1k*8d}G>B(dWFqMeZNvY&VCxw_2&em4Rcw+Rphr zFhuKp6_L4no{K+3#hO{T!xI^Atj{6)Fm&e^>9g$N;k{u;K8d_wb3KE_e+y&) z_!A|ElYDeptTE+24I^(+4SF6NY-os`kt2fynpitxPKt3b%7Nye^Asp575(?$xG_`c z+(4d|DOxNi717^tXgV)-yRL>B%<&rWToYyTa66I?tCc%xVKw037jm06J)%f9-nKmS z8FV3j?ah=Q7msQ21X@T+Iq1VKT@2BN8UBNY5(7s#jLSv}!__p3@FCOxE`tShf=-`$ zO33+u-b(!nfZ+Rr@3ejmlaX{M=&F_Q#sZX<@gVA+MpyO%9*#FP4`So>q;8iosVzwb z0Gj%W3M7!b)B!_bo2i7P9g_j7Rgbf!j}!hjlYzhPT|C&lx7pJ+@;@@B-^H#^b&F5= zs;{yL-e&X3hg$A1LhAiZ`};jIiIfO{bf^v_ZU~P4ED3H2&%s5Db_-_N@yK?W0sqIH zte>fq-^_FoHJg{`B@|tD$w0B9f*fhtARFk<7v(hfc^ZH$L&@Wd9?#x*YR=Dyz!SxJ zYgod@t7j=W!V6Rqw%#UZ{74t;k;xGRn`gur(1EtzG>9<4W3EM@`u91wh4$i~uvuhC z$9w(XwV%T6C;;MJ5UNy=8olr!;!=kvqY%n)a2DZPFVI4}uG{FhU>g{J;zFbrF%rp~ zps;BE*a}n2cU?AZI zHA;KNX9S*bqO(_!LX{V@gce$icv$EeL9L>`MFVj0;WKG^gs2KgM+g(ONsBR)u*jyM zvLGgTlNinCV+-d14smm>*<0-T$zV zr=XDy2oJ3Epyx{_m`4>(;@Bhh_y;7^cR~MdQMfJXs8{g@873yO=9lreg#=9Ycq`tE z&xJb<7sWhj%B1*;-mAA+%62B0vJ_g7)kwE$0a3S)OUxt3RI@4mtJXa#Ash~#_su=x zbRt8ERv;wER8JIpEz$up;nRw2w6l(l*V75JUtvr998~%fiW0ehX7eh*OU_BUzh=&5 zZ<1G-8T@Q&-AyY{iT+|>%yNA^1zmugMqFqvBfBk#BW&-gZoGd_YNyp7SaC&6^ytSc=7@O2?qxbZ+EOtQq%)i{hu$zG5} z$<%I8+gyva8lb_2+Nz;6uMOgPe)`)w6XcpOX-7=DjGOVKF(JX6sCE)k=qk|_N?tsM zuDaYiS8W*b&74YWPv zYidi7xAW3m{d=LxP1AeB@C*GBxW~?HRhHgL_B5J{Lxqwy10}TA_({GQbXvDNZJb+ z6^FzB_gdbN+nKzsWQ5@bWq>BB`Qdiaik8o>t2p)a=QLOye8M9`Nx~Av2zZDT6~ae! zeoVEr#OnVsw3FhEx4_^v0L9?I48fcXOFKx)^&GH5pwdAIAV%e|Y!n!5+dJfT%m-FL z;MDEHa*!MVSHA9R24;hpyVa&=A{+3MzmZ!HO z5vx+j+RmZ%#GdahGMWhB$DI|70ow=JIJlnRJ9nOzgLnKDfTq?Qc72B!DF0eG3l+a>=^m(GliuL$;-|y6Wpe7=Iae-zlCw6q$LX1UW&%q#6B<0$p*K#Xn{Xm zsJ%%E%q``)3y~$5d-;%~R|}Ztgjfa4OF2n{CN0iD>q=}LTBbvsjx!r~)tmQ>wGXqv zm|ljumQXpbkq(XO-)_v{BX-tV`V`-CJJew2YCQ!c(7KtmpD1ZB?0($3=eNq==Z~Ps zg`J!~7t|_)cH}=M;dU5`>r;=`6MB4I$C@Q&?@es@eI`Ucy2hJ{$KTXygWGc;XFUwA)x%P9l7` zzzV>NF=nJ>sd}*k`?n@A;Dx-{AdY;mkQzQoi(NXd(R)pGJ>bFzqsc9m(V5+*PWXTb zt`X5K9F^B@7$q}^f@#=R< zal-Nk^IuF#Iz_0t*6B4fpF^|Pl^0|~bO5H&2vy?dx+fr-;}H=FoiR&awGpGX8R(es zEwGgVBWK32FnkV#wD@lbZ0p;!EY_Q4v(CriJ~tVT_4vd1&iJ-B7y#qmZIMg#Tw{Gq zLiC1&KT~e-)0dC4Z<7$T{i-)%N`LiCFj>@sRg-2*Y@3p)=dq@nZ#FIhf+^mFF?cKV zH&dyQquGKxmULGnHjWAf{h2dy&t5YkL zyL`{KNdw|*+FxITE`F(vrAqGfq0Gw0`2xm~dAInImXBADES3H(Qe+!$%GK@~u8*G{ zvY1=Qw={~cZ4TeK{|m~nu?x0A7X40rsPY1(RG=JTO52Cw94oAH{lnSvaXAJKk;R_) z-TEvY@ngKS+l#kMN;FeX^lXZ-)TTk5n(5!XFNPRk2&GFI_rhr*8-MqW51av`bcd2K zfN`^~I2aU7UXg1U0l!U`5~!GOW}q}gOUXs4K;dO=^Ib&O3gKhTraq5EyQ6(DO0}I7 z{|;uC{HGFf2LO2}Gb;;d(;7f^ix20hYT5FoD>Lu3)6PQgq<|I71eq_q`_P4eIM=w% zdEUdcaQZhNLaFmSJtjlH&|J{eY9~bH1qtBf&@5991vD_`-Qpa(Z>VO(+0%!Kkj#ii zCw==VlwtTwHMp4=$pP=X;uHMr`imkx8X=XhXg<1*xqh-0Gkp6f91?Cvn55_SQC;+h zus}92YTzW(^5i~beEh2TTF36#A&Lb6V4GxXy3nungoA@6?&)kf9NK|~$s>ao#ueNk zEma~ux6TL%I^Ksp`&SSCch;zoB9y`fG;?q!x+-rJ$-jcTO+9q2`O0AICHhP4#T~j8 zz^a!VyRxO3u_6AKfp29h=4M4>A;*4>_@K;tJH?gy82uT8~lhRUeL`?qa6BB-Z5w(_Hxhg2rEr={|Kp^I&AO6q+7DxYkAkq zK6K086ES|lCIs} zlb;jlkb;3{y492_>LHx4FaB8zoMZO#yjd zv9s-Hn;;Z>UqeOvb!yC=SZ9oW+(1&D?mbKxFuJIUs!Wt9Is^Zy8nn31g#=M~TwxFW z57a&G?7gE>naqDGtszrEZ_wfv`KIM9$vBpK{XG_Neg~3&mQql+y9`FnnqC|X*M_u( zw6RyVTi|0){9*7B8Z4PnBzjAW!PaTbcYn}kIUgoMUDcKMq zp~*vKqiBo)?Vx*h%o1LluRz1JLd%E1xLgj~chFL*+ypA_L%UPx-14U0oYY-`nP(D5 zle6yHajnTu;!dP(?GcIxlUEpnJ6cDyZQfdnyXyV9h=Y*!>x&69^3w8 zlDV1O@xg!(uLI&k!0x=P(AQIzO9uQL3ri<`1RnWliEA$41t_Ye9r}*jPoB;WE@|d9 zPX*iru@_@&@RrjsG1@caYvyNNyV#L3i>YVkIR5b(&kgI zRQM|10XZNd)Ol#~clkg%*&+)_FZ^XqY2GE{qls7tBC?n7FM0AKOju0LC zM=+h`ni0r(1h`%BD6d&z7_Dgc0z^p^J!q_&^+K(Aj1HPJfdT>`%*J$!Xe&?Kl}m-sN=uwK zfzv!Lvu1M|0B12VOzJePMZ7C@#|FP^jNc}L{&x(gkA@54!#BaUuM=0)O9b+Q04+p_ ziI2AU(Y*pj6|D+ntUUGBpMF}w@NcBSAU^(VDGFu*Gns#Z*e35?80mj>&IM(h3OjJ7 zLuljh=Z|!Gtl>YrY$i?*bDyNV`loN896?^K^ePiaAfm&7eYOT&hqIk8%IZwQgUc8* zakddFEqm9(2W$>KdTC|A6Nul}PUZ#@4D^4uY_pIP2J1c8T)noVJqFMH8Ke56II-0T zDlz-smzeY#7vqc~pxFZ|ANPfsC?)k8Ox87S_>uJC0R=;kd+P7iBt=&j%^z_>HqYqj z{8yFzdR+Pf=aQ>X7WZ6$8F(9L@v9$mUiyE6G6XtdrKGZIRLOMto?_+(biYaMPmi=t0N6!r4LPrcB7CsT*yKWapZCATuo1S3 zcOfkqhxens(M27LNc1ZupPM0Pe??vAzo7xi=DMNQ2Ali4TBaYg3A`(>v39?Wa4GGN zOk>BLe}+?7i1xS-NvAmPO&azktM> z$ll!jJq2?}3jhj@>IMB(9y0;5W-l1gzG*P>VN!j-P0FlK};#C+f)K#M->YZ%}S)*Sw%I&PqR0w^1HTDk}` zq#!u~T~!S#_c`sis+2dnhE@)R6rVfp^%IHRdHJf=Ovxk#5N>;RX2Xp&hQAjT;wGKg zS)-J=b*T7WY{B+V=uxQL*I@I}v#>gHqyW4d~8; z(b0f;Jz5suj+Sj4d(&9u(huO-2zG@4#?GLB{crO+$0ejl?df#ba6Jt>jswUxBg7Qi zJ^m9D<*LxK==!sp&iF*sWPqUQXHOIDK&yp%DXbYs0yd5X&649!>qlC&(Si9N`Dcx zi-pB|0#|$L247NChcAL|0ZAHs%?ev}ZrclD%FBGqZcp^HX{I5 zi3&QS7V%#qfJhgHk~SI~Op}S@FzNo?#FMM8@BfB}4zQ-A>ZffUX+BUSatrZ&VZ~a_ z&fc}tQUdgl8^0bY*6(k3eQuQnDr{_F{wuVy@MiIsuUD3N@HHecM*(yzZWz!-xto3& z#geW+H_wlteQAmi$ntJ|5?4Xn({xslT12QNI0@)%0XEs1_X@0lcPC-kGNH>fA8<68 zbQ*wjPz+e%{QL5PPrjp*;$k5xF22+bzr`{@;rMn%eVq5IxmCOhC1fM@Bqs%`9W1d% z2wdp@4jTD8%I=1JgO%As;IFX8>(Q;tG_6xT8fmx5D~){&#s^|jql8We11M@L-B?2Y z4SNOQ!$@T0+;b?>tz<#e3Qr3$L`g9n)j8{!@WfG#5j5MNJgIL~Zd8YZk)-^cY5>}> z_Owck4dKpc4Zp71hgKXV5t!Dlw*^ujXEXQLBEPFsD**WdN$8z>tt<_Z0Lc@>DwK}D z+NEECJ&ol}Cogu>U%H>nZH=fT^>$Y9-)S)+sBin81Bv{7en9Bz!qT-fKq>;I?-i)L z^e>b&V(r%R z%4AwMzWk~5$_Mkirw31>ey6ZV72p+6Pi&r6I`<^x$;LW<$90z|(Rx=x_7uJza9c__ zfQA?VxIm|D+;V=w@D98rEVj2w!L%t{H4t6& zcz1`f-&}{a-_7G$&e2689UbIc@-edMyZF`CBDO0d89P&AhJQl5mWZUI6KW;7 zO*hYS2n2&`l_#e>rs9CmFr$7}Kbicso8kI^WfL}ne*1<{MiPmE_>-&y8LIBWM zF~7F#w0=zI4j(pNUQHxP}+v>=bsSdwBt+sMSAYfdHln-mD*{p>=n9!32A6?I~5tN9?rbE##k zx%LL2ZhKbD#sJ+K(o_U=+3{X`s<(9bgqyn0HZsH-k#lIae{MR-+<$k9=z|V~TMvq7 z5zDrl!h?Z7AOHVpOfk1Uo1V<1oi%@89H=CRR#__nK}t4lpzXs%Qf;sxAhTkbZ##&L z+M`ygpeGZ^Dvzyovm6i!t4qcj7usVWN+hXd7{^s(%L0@;?bF#bd&4FwFQJDfeJG{3 z5|AL-gY!p`HE+|v=Cu8MAuhdRk9NMLNHs;Jv)$*nbKx}?7`E^qfdmpP*D&t zs5dE3R?j}S_iqZh^9}&>)ZDnb8`;A&f7uRJ`NOcHQvKo^*D6zlhC@pnf&&h4uA+J~ z16Nl6N#nJQwa1~oE^v+}%7iG-wf1V}!xWhYwzl9)LHVYScLxI14)ERXi=GYuf&DrY z!dvE$>l~jF@=4Z9843m};f$~O~M@?Oc> zMB}#TV~AP;+EVcd~H=z}WOoin`-O;pCP5 z%1R<}7D(-UX#F))|M;kPM}WJW@%Z_;sQC}a)Nk<=X`{$463u$AC)c)|q)l&U+jptZ znGR9b?c-J5Mh0Zi(G7z43%0YIR(P``fa!a)EvbSs*#a?tCP-F;JzCbTV`R!s&TxFU zm)nW#4fPy=BGe-KWJm}et&;}AZ+yAfOW)(d*6Bs>T3G6`)ODm^%~z`FW{0kT?d_k z@~H*1;~KSJkCk55kcOraD$;}2&9_RHoL?_FcPF_E59fRWofsg1EXxWk?~ZEUK?iM! zM_#iJS+3l4Oy|Dqz<{uEMv^~G!WMGu5osv7Ic)}c)DqC}SaI6P?1PiB{tvkeR&zDp9hKo z@4ub4U4yiTSW6BBmcok&M*H1Phlbsk~>-Vv!ik&Q60`kbV3$0p%6-+ zwY}myYp?drkSr$)7MH!vP|;6;Msxrab7KFq()_5s$rWzfd-Opf25{#3RX$VzTJrs~ zLL!>vYhwHNp^S~Pf}}|N8*{Gy9~W(e{>~o{#~q#IGaBHgz`Yt<@nYRMuvxF*Uvqi^ zyoKHymCDiZfk~)-C#ICsR@MJU6P5rEZU(1UI!PdJ zBrB_TU&XJ08Urs9DPMhy0?;bsiMt!|d$cCY^%zfcc6BNRj1C*nHYl_HQjmUWEY&bA3V!RHRqP%j{7RAnp)?hN=q2N-;!4`Jyq zsh85;S12$aykizfymp1I@4w#ZBQc^nnib=a?YKRZOJLho6S0Zxt&1?|%vxVv(Qw5B zD~GqO6EgDgbABi=_tKe) zpeDq<;ou&xET)_z;H!jVX8OORWzt+DJA0XCPBmFL9^V%jBJ zvupZ)QnlbdS@)6199-#gjY*9!LULxTv_DFOJ#^;tpTMjQqaVIO1OO(S5MLeGXwL!k ziYFKHF{|hpv*mxQX!bB3gQS?^@0#1E@R(6kc!codhl_r2eb zyAm?c$S7Wk;x$)ZLXTrgs`fk3%Yp$G@$>{Lm1Ju>41@}sBP9UjTZuUO20tQF-{f%p zCZRKEay8bqywll%vy?0+C#X^S{6Y_I7fJAW~^6WIYAD9rB5uh*{W|i#;(Kukm=f&E#qpUcV(!uBMN(6BCS<`R*JDf1R7qkFnRLdt!7$2c&U(rNzA@ z))x~KpSWe7U&=2c)#rZto%+|MQVuj7r-dInR?lu%24nLS=WMfMztxK%k9Zlx8_n7n z$M0_Ub39EV_-v z%v7aJt#1`=0lv{Paw=V@-?A~UXJp{~VDW=RcBkEo%0%;^1KZOuZEtU{e6D z-E|bMl8+xS2=zI*SIv@H6{mPe0p4$7ViRlUn@l;S*#0 zUS75VP2bgN-rVAB8GN|U$gHMp1Tb}{D#Z9f8hOup8d4a6SMrcUkN*o`Pz>4&3R>3| zh)p<2(3Tp5OKwO-2w~LL>YjO>x0z-u>d2WF1HktrVdZFzxTQuBMGTmZlF;}kZ`MvP z#(W9hQFwjX<>&ej`Btdjpi!ADe$`8Ag|RYAQ*)`WU7r5_#uGDJ>~${t4Cr7L1ZC0U z49FQEQ9;_ODuVIYE(Q?OM(kMw)H~#Xh2l&?o{~4MC30k#Y!)8~ISvKV;Z?@-s2`m{ ztXU^My|mb=c?NqR+IGEuMFYQA(6#uOha4{bpyG`Z_u4(4Yk!Z)^52Dp*(VG&gK*5~ z-Iyq0URzH=KMHKi3sTve0|0^=MV`KrIzXlEEl;yejnIlFY262#0~wS4SL4pz)t1o6 zeZ@ek%?DL^Z&}*C=STta@`dw5bBjd$W6k97m~=@ifB73O%nyEtQ*na$ht|vp-uKu) z`r&lX4HD>6TB4lHecgB&67be1Lmy&cK6*W=zkoHZHl|k(PShK<1%17)$si?&?pqML)ZR zOuUXoJ=JZ!fc*o6rFlacSts%g`f2x9Ph&ONzdLq@DBKnl%e1M2x~3O;C1vCvQf{h{ z=PFg8aSXz4T@-48gyDWcBs#nM*B|y80OLi1m{-V4j@UE%rrl;4HkTxBAj?_1pP068 z3bZbUdu?0_xuil-22^UyQ`A7M6vfc5UOi2)Jt^gI{XT^*Hx+Vl_)%8!0OyyIj_$(Oz_sopO!U;HRD7t zk(*PpL-IaZhANK=#ogzPD?6Be$Gm{*mevefsGM=q@=>1xdyQcN2^RQTxD>wEJi9!-cgOFQSG^yt+AFn#O*aUkQ{h3V ziuy(`I5q;5tx@ZAu?$u8887!A&-6wfRA+5yZ(jk4|FCEvzSZTN`3^du1@qBJj)g)A zs1K}4-Xs0Eb>_*rS>(+9s?nY`In#gH~$E&O@3Z1l^MO~JCy=gnWQTjRfrUA>^Q zZ93|NlfHSVqW8lGWeUFdxSPKL>xoNWbqGMP;|Xz0Dt}&2>Un{NLZ3dnK#Fds>pk7* zDl;)GnTQz)Y)_&XJbw7#4IYM^JIjgvPyM+?qjf;F@XV3VZ@s-nB-S6jD z$FsRg4h+L!ZIu^Sx>P$_&%7Bdom)=l6YMeakjv;EI9#*Fo>>!4#!-;?o5WteG7r@1 zWU{JWNp4=lg5VmnpJV7vLb3@HSml%&7}S`K!+!)jJN4KO0n3s7wmSTyK*V?EyE-JW z$ToJ#`Jrv0K-HQh6nk;lh3)_pJuXGpb>w#zWp?~CA&c;j3^UzpH8#CSh92*zK(EcUsNdC{ zAtWxHwIol!p9yy0)0a*UKczrtEh3_6w0~xEQfRGH*-sY11F>4a;@w@0vXhbMLIJeE`;bugi%LNJ(-p^8xXs zodiIaf+!kH@(a{#wKX^kjZ~X{#V$W4tjQKS{3P_p#RMaC1kp*t>_>G0UGfg}d4T!}eMhYq>e#^!Wl(#`CszC{_$NRQ{EoMbp6f~a z2AON|5>e93JH+3G34f~O8-h6|)JU&C4u;-zKqLmoa(lUgq~ZCJrl63SEOEJ`p*7HG z{%)Vyp7x}U#18cK`)c3%yl7bNxcb@+QXAj_={Vj#1LFd9k0;!)BvznWq1O8lY70ZQ zRz0@w3)0bRmq1bssVL3Tuv+4;*xL;3WJ|B^JBUBpK=}MRTBjWTy)7!ADs&#F-wmV{ zuMK*SDfz{K%Ru>yh?w8Q>B8OP-&+aU<&cC@pQZtG@;y=_bl}8q?f46+*QKyU&vvy^ zbmQOCfS}9$SJz|^fC`94Sq{E?Hk#WbIp7x1Fb{Pz^10&6Bg%GTe|`02>Xc-c-tmG@ zqe;FuTbs=!zNXmPzNQL#$fU_Ez~kEUOpxYkXTi|_hslGc7hgx~_wECN&k8UU2npCG zxatYMWI$keV-`}NA*w}8MFN2A(+>8f3QXtGBVp(vD?nVtAE~VVUR<#Nw(lvn8+z^& zc&#DLWF!0Ilseyrp%hmsfLtk%Xt!&V6BghHcIqq$x>h4!T#FF^5o`j``9_AB6Yzn> zh4OTfeT1LKJdjs^PcZX956&O1+B`3GQ)XXnx5TAd8p+HlG&%DSk z#fM-|Rv@j)!7I?;203?nB^EB=(N(XZs{sk@moRAZTrbOv4E;$tG>81A7(08^GwJ3= zjAK5wogD&lCoE* z*mM&tW7~61j~mK)j`nrJK8ecE;r&0eP;9N%M|G+th@YLXBsM^EfWVzobc$cddKr&d zGykDbrPJ86iX#JjEb>%TgjrcTllXJTd+KrhXB#3?p(Kbbx@#`}MsA@tK!+4?78v_5 z0J!Mex_KSt0+M-N0o$SU>zu$Qbknq}lRRT>x%+=6^Z@#*w;6YtAM*L&E#FD|3)TzS zNWHDP74LN6zUSWMA4<9aOh@mvRI@jz*=QxeWD|xgD$A&=Xf=5L6%q>3I>V=YDSSC! z*#sZYzW{{o+j@$I28NP6MX}x-;fX)nfR_7c?csE)OpTYtpS1~K%|9F1b2l_}osH>S zMdJu=t;jE#;a_`c$3F000C2Wv5j9B)Kj-9ns_iAfn*apsVA%Tc>LtN@Q--&Obc|ZI z$b8Ok*Yc#L?nCp;&%BSp2p{Too21DE8|sKMOhM(SbzByu&g8)JkE`{~lBd4|D6Yl! zl=(11%4@^KA1=Xb+_}c8`mp7~{*M2mS*(mc4##^9cjT zFSTWhGZSsz%RPKuWV}=G?b-eQCZtS*yMzH$beCeKSvoK!$jGLG{`v6v$3SsFO|-ZCu8y?qxREL0RkM3fp)1cML(X~rN#1Vkhx6_oDo zTLI}%43Jbnk?t;$T1bO{bc`@`=KwSBb^EMm@Bi_B+56*O$66js1?Gb-hhYBOY)*Cz!OT7p6qZ-#T$_tDS$?V@EeelM-K+4=NUm0>N z-w7@O@=JNojTgNGKQ1QvUbyP5vn^GuAhxmXm@i*j9K+nMc=%hY>9YhSj@yLNF2WPb z49be(7h{q4-a}it-rH93;NR1BW3f9hn@6uNva@5(I>*>FsQm4IJUIOCmdJas?&}K< zG9^=u0P|<7Sc6CIU85hOkz_=r%yZ?Zx{+#G*G~&2%II$W!(Ck;gGl4F3cvdDv#DE% z&R3-DX$4jAHuwF7@A_U7@+UlDb+vrMZXvn$p`c}psHHZ(C=?$gp;xtU6ItVOAN%>G z*xqHoX%jQd_t4wY6Gz-mp#yMj8$#ai+@iNRyh%yZa_7zj32K)5#_J>>qQF352gPud zH}SL1+aUWKE$*|=^NhT#6O7I$h|NQF2W@F8_U4rJCu6~Z`343YP2=^pnD3u?bfh*p z7BMAH z`eV@W?D`$GM<^dRUoG0&T;e3Ivu>8=srWgi)VtF=VJx+y8Yh|z)kb~!3HvZnse{g4 zrt`Dpl~)G!n2*yrlh1yqpT2V<@`~TBD=2CaN#W z-}955aE4;==Vj~Q$OaPytzQZU*%FvsrbHG7ui17at4j4wY8dgR3x#$BX;gSx?RphF z^G}?=9sT@W(=WWEhRvjxsQbzf>8*(!rG`QzOFJ-G(uu8dv$X)t$CdFpc*u+-iDeef zy=_I~Q0X?tzk7W?sUa=H!SK=j;FGk9YdHdSW;x2`hK}^Z`CrdsmVQ_AY;okY=4o*+ z`MtX=a!cQw>)ANuaY<>Lg`TL7MrLi>sJWy45-R4stE4s4+^W9&M2^n%UduXKfmCK(|W%Ab_H7N$^ulu_m@rWX)4?ivAiHWPo zrdCibrSrJf84xGu6U%+YFidf6S~i@$8R{Id8_o4jnK~gxmDaSDrN(Rk($TeG`99#e za$a(K$3plk6aC@K^q?|RmokuZ^HK&KQ<*)j$9lSH%#9+(ywssH$N!P3HAw|(H-Tn- z)Hsac2AUn7J0U9t__L;4+MBBxbh+jHY#nXvXAN(OKjtWHcp6<8=UaE29`mARs9#%Z zE&n3ZYNmj6sSnTrW;AP~`ntDv>E&~vXU#6RL)fHFxWNDMP=(F2zE8*h$x;|~-bUMffb*Pw8AztP?PJy!hKVDgt&bzS0d_ISLsgmzhNS}yc zNeERMcUNsdrHO4qRgdV4Pw5FIKVN+irHM)tWH2nVPMF0%K@PFE5HVEn2& zS4~%Z)rrM^VW!hZoS!*y@|5Avy3bc567`prZwJOM9LO}YnNgEVEJ|&gZAiH_?_uAa zeh=CnLep<}$ancWCm7mT>zqg~7$a;Zi4;} zqU#$!Y|S|A)}syf=AB@wa}fvS?(k|Aufe=f;iyNI>sg!!@vvh&^YxfTIF9Hm9nbOT zUtU(An$_oV1!x4gN|Vf@CE_XBboRb22Ii2o55C+x%b zVdTwu&Ns9D?lU*K1*3kS)4i71JjLL$s>$6s(YSx;vREB<(B^2--YN#ey`6ydHIo`Ekm*K(p}Y30DIHp`D0{cYDI=l^ckffkQF^0xu{YuKrEF`H6Wc zoX9o9cY%r=G(*Aca^PX2nD%J0n3bGoZlXv;pQQTA(5Ep|SidIAfJ>W-uMSCI3p03a z%Arzz3Ujg4LC0n#Hba<|DAWY-h|1X(yy1@2!?LPR_Dl-5f<{Ap+_7I7t|?P}R0VIH zkJBq^up{R#rA@J{Go5$kkhlh-6@gRRZMh%cZ?#aiefPkM(4l3pz&ZR*Sj9`KsvQB+ z*3ae3jZZnAr7Ej-p9p5s_n%S=diKmcS(C@~&*xbK7EHQ%W^K7Bjr%RM(|3=^%*#4m zM_~PZ1S6yO>RR&0*s01-!O;r?p*b(i2MN`g$eVWy{Iusy3p`KOC9t|#66JHHzcht@ zeBa-;VO_*fQ6Cwx>lS+B;8P1y>~rFJ%^4IKzM7v4_9&LE)i#A zC(6p5DGIR31_p92Q}Or>-8b?x$WwgvZ?*S8IRGhEl#9G8xGCt|VWw@)ra(MyNu zHapYTUEjbi_ahqVy@3bFe?898aWrGrux@V`h6-E1D+W%yQ`N30J<@9tMsjfJ!}227D&2Uqi1*g0KST+0;?wWZ~< zwFUz0w5}8=qWUaP|ZT_sEKDkz_xu9nsQUSy)}PP{m#s4?z>*EY@CeD z))Je6c2--`{7ZW6IJaQ7R)O{!lp1{TFa~~s&Jt3O#*}@dMz;QWyw#(nKCXi>85u~c zTr@v@#M|JOI8w|2K>ACT+cl1ZWd+AEOWi^lcje4U?Io*hm9Mk|rdVb5IbApXX?pj@ zFQRir$26bC3OjB|r#jFmItk-_^6Ex6sB%341czmp&c<8mVw$#JtK&-4!Av~C&!qXL zS41S3_Ob?)#zGEI2kKfO7%;TcMM zQ%)!S*!?&iyi9@YRR)R3ANqQ#s-TZI;dq8>P5YcJNGHTvPhN7% zRqd;(WJqrkA;IZb2*?Vatt|mA-EX+e;oQQrVI!^-q*aBh$bNmVPbv z$JtfWi>b%EO@#&p0O!+?PRQSrBi*8nJz-qO0h!@Z z%vPsr)3ICPr+*AR6YlUkA3Ft5GP8A^-3(a{M5Ywn5f0e^mcO@g%IfG|^yJ?u4D{MA zjMyxKd&5~uG89!<2wDo;@xYAQx5=^^kfUSa6LbcKsp5r4w!`d9#fwefs~zqNPdrS^ zXA|_k$mx^ancm^O^Nw+6q`+H|%a-q#8`RACn=xL|-Wo3J*@y82`_i%>L)cYLN!K0m zz~5$GmlU}MqLTL2{UY7PwiEZiT|prdcwNrgm`T&k{DKm?+jrTllNy4AO3Sk!vuo$3 z^Ub$0$PTDDBxFTv#dfaV3m0JPoVZE2c4Kkc|Knmx>eJZXdEpNU$YZZu8-$@0o+RQXXaavLrN5xHV!UV zkCX?7vSCjPzQZ$+ORF`oacNY4c$pXKvU&aS9tK;RxW#=KcVzs>tKuh($56#O7~KIA zGF@mDiPqQA)mvybE~lU6SNf2EvuhmpJqks&Wmb;M>zVqTzL?j*CcQ3B&BUW|eZL+t zV#0Y#h46Ghou_7KQRMidh#k*lx68S!S9Ecb{%C$Wi!7h)@id?!t@mb)655!n<5ccE z(0F)n1;MmZ%iUTX{LE@D(dieaSA63AS=PNiJJZ8@yGR)YCce~}wpHg**qtNSOKWU+ zD88jKwn_;dSw!QMnZwejvDvwnWzfarn z8}VxPzX*#F!jg9e`P|3I^FLrnWSrUBoG~Og4)lrdhHtFv-MOPlf4)2S@OQNA4otwn zM~{it9HPyT@MHPF?Y>bBjO=Px4$11WJ>}M^eX%eX(`pu|bDD*GHwcxC|Pj z1f>dpp5P;8Gw>#zP2cl zb`XaB!bY5efG0Y?Bc_YIqrwzB;2&H$Pt>h==2jiN5~(;Rlx0!R0vQi7H}hRg$hWru zD4k(sOD1aj&?hpl=r-M#>>ownxYpa8c^eK_b@#g}NYFSCk*nC*-;`$JFnhR&UVI2T^GwK@_42 ztDTud@XUFY)-`ey8~gtH{nsmrqpVO(WQ}qvVXMhg+@sT-IL7Y{o<+w&$1>vtm_ zL??XB&NSp;5>`SN2RfQ^MXh?z-@RcD2l_l$|HwfXn6Gsq*bk&4}z-PSLTwwSj1Q9pY3VR`~m%< z_-%Y>aL^~Il&N&aqBj!5LX6iOr;#Sxa|yhb>E8=x1^xCmSwrS!7&4Q!V-KJ6d98oz z&u62P6Z?D^+V>mWIu=qV>B^%$wK^m2dnxAVc;pV1-_9`#mYY)X0Z#F`v{lODoRb>+Y)&ry8ZEZbJJk{J1QN*+q*qhiy~za;MjDSD zcutQ3o)`v6r#x5Io^CyC4(4Fjo9fvqHhfg8CmSfJv?e#9G1s94@aD|m?X770m#eP; zNGkIsH5JW1#_KM4T(Z+xMu&@if^TM-qwBonKbUZSLpJ7=f!6B-oH?foHxDWIo^Tlj z;rRPJr6)T0S*)b3fq@>sK&3Zi4DWgVcIQP1K%>}(k9ej0} zV!U_Ra0P3Y=k`N$QnSlen^4C0x+ca4li8s6=kMp_G}?p=c~e#H2(<3SCoe4`!>=fv zVy^4%_xZyZIF&T|8~lkCvBOSAMi{fZ+)ZbKrJ!m&D!J}AkDve!kX3}a4)I+mqB`3u zEPZgp$=KV&qlEv5GLLP?fSvUywirISTW2vA%M@9od8F|5|<&5{Kdr4DpRpzIpi zCqa1j9HT8iT*jBgZWQG7Z=)$xW$UuEDteZ(29w6dZ4 zeJk$*!?eOodDbQr-qRhhwQ-$)(2E@Q%H44LM@lLz)b8@v5vC6Pu!X($vs*(UMo%Cw zli6h(tlU0_))UU71$1ZIULE;p3N0Y75EUgx5SZY|j8dgvT|UVFGY5twAUd5_*|9ey zOEYdI*8eo`?$)%MQ0?BJe1w^S%T2v_&&61?5TL)MSgUbPMcngcOHe|f-<4LNetA)~{Aq!_M>gYaiySt5#Uh0#N7!7tQ zkf9vf%L3FAxp;pvxffr&(rUDv;kPl?xL>E<V=OB`3gAXSVXFUxm$|u6-rH*K44jx1q4sB=cC@@7h zS8K1x&VG5c>}9|6C&SV_B|v!SJx`ul{z2Dr?X~;TYeZYlIO5NUe^ zq8?JX33Mo~-3y$OZgdGU8vU%*S{K`!QIl@UO})GdrzvgGm0F2qF0{|)=3Pk?7w3PJ z?oD)KptKXvJA!11=bnyV#_}gTS;GQqzbv93RYbsGEZqi70njBg*cJ_^c!i_I#1k*F zs&5I&1M#yQ=w4iwLI&B#;Wd7|~>G(=}KGNE< z0t#OM4-*%PhUBJoE;0Px^-Db>hU2t2U(Yv(R2>I)})8zf&ffz4Pb6y|&HvOvl~bkBOKU&_m&v z-xbW+xhl2x@jV^G&e+`uPs|J6OZdJ!{mYBm{!`FY{A$YZOjSXIx(=WH)WzbvZZbA z5qdbFAM-#(m0m35VMkPcd|Bn7NldnFf4U60o=Q3SwN(1uk}gALI^IL!mQaSbuw$X$>r@zKZ!?rBld${(=N+eEAbv zNr#T}?#rpq`LKEkSv3R1hVWr4aaRB;G!K)7TGQ%Uvvfjd72~5j2#Av4c?K4cgZ&^i)gzRMtm!Jx;Zjdm;Xx4R#(G~vD9t_lOa2S5$C3RT#?GYAk!yF zCd8VEcuBn(9Mn`uKdos0Mn1YJrp)&!10w0%DvtTSSycX%YmyR_kd|MalY8nX4&&Cl z08cOPPqh%`r0d8yeT3~I$#6O5fZ|$VCEu~&gJap6$D9VA39Iv#xO;l}XNJ_!D>5;g zFz2Lut}KrdLfl#U&Gem=xn*HcKP+t9HT` zAA$$xlCrJ)GPeHNrdpZs+?F8Wmn*8d0DNQtkIl1oC`spG=}7-|${XD2e%!4Z8hQ&T zJ3sX(^TNj0wU`bc1mXA?uP=YG2Xt^?rdMq9z#Kqu%U=asisvoN{$7fmUh!e_USYR$ zR}=?~oDA@d5Ic_I7^@2N%X4Z++E@Z(<+#r_zoxq#7*6)sxP;m{+F%XddN@)mxVlxzbLmR9soKR! z_CD+Mt9Cz3^6m>u(7&VCU_Zi5Bw)kd1n?wi1APC7N%XGUN(r%JF(OQcm7bLmXxKah z@3@*_0Lge&#{^Q`pMby6rH&Z#0&g|SziHK0d`w)`hsvX6E;Ukm8Zum&u7K}=6i=Jp ztQBADOz6jdM|PWR|GEo6Vq!2f3&sr>N037!p2pZi$;EdgUP~pNB%E|iXt*Jpk{U?v zOaIuGIUvkAnKEOXDW+o=t5=>*G2%L#nx1JSoh1JiDVci9eVSX~w4jdy=2V9Pe{zra zY+Gaywu&H7PMnZm{wKM$2CgxbDxwvTWYT0~49)z^_Xtuh6JdySs$>OHIkl^y=sy|xT0qle_S$^CpoO)zXl z;HG7@M$P~(VL8z$E3E87T<}z)KJ3N-lFux`ShlW+b-o6_BS@=L++!;Zwk!BN^xZ4# zmv!eqf5|)sg*|Qf`*(-JfKVm>$T-qMQy=Z?`kDz>C8XX}Q`sCn}NtC2TO zA~2|O^BAdo{#k#+Goe|RDfO=>CLT`YB<6I!s$RbPG!0-!XXzEwjeCx^>Wg&nx7-P9 z=&V2bD?;oV>${x2tryG7Y#!pNa-X%!+R=E5Lq=p^6ohuq^mdz&g&5YL;nbk19H10U zx@cJV;_T$YpY+D=p6ZZCIbOS?r4G(hz+G=m5IykhV3j-ROl#HNWr&j(R5ZWJ-{k@% zkEe$Ur*ce?*0Y2Ln*=L>rp9vmjoN606v$r(5kYEJ(yx-O5o9Q`hq0gG-I$FgUEqTJ znsfMlyAC&`g4mWMC1r0HBX1EvCJ741G1yWzfLqrF~3Skj|etbrQ7OEg6(5F0qfo&|tQ_nprk#bXh?iO{<} zxc+<#i5F%P(kmC9e&PXcY0O3gGV0gJn>5qOR%j@zP`UxteQ9;m;@bF=>z^e}JFoNm z`cq?!xZ6Wn$i!^}fCnWuKdmDkyROlN0>a?@$+`V3yDPuhr6jBMFi36ax) z@AW1$-vL@o!%l-WZ02b1PaEnjca;IePhb$LpR!Gv@0^d8=D;riQ2y57eleSQB|U)y zv(Lb^WWH{_PkY#O$12tKPB=S=gxnmZ`uQTMVljvm5cej4_W8iNnmt8(Z&`1R>6<0M?k}%Jl+6g)fm}QoURHg1r6ZC)l{Ca+#yiF@)x6}h~BOdc6N5HHJAMlROkQPPf+N; zUO{=Kr~fkh)vW~--9i&zgaP{8<+_)0;XcUw7FF70$MDbJu6PBWbjsj5Q8M*WxT9eo zoAY{(WY_(*+liUYFB!vbD8B!>8KVGWJ(O$JrdxObA=UQ%UM^@_o~1GWTOM5BD<}rN z$G_bgv@bd&R5YrC8weD`BKxxnHZDZs>73cCASqn&g&uqHf&Q*NexZ=9bHMup(4J^QriaL z{9(KxSZptC(BHQFW_1!z2GxBKFWH5uwKh_(4N1*-4{rVd28ECG?8Plo_>XSj`Kp!bMQtwU-t9Y9A#7|!n=wc7UFlh1jH73B2 z_>7dd2gZwgoB=fCa;08{*XrqBe2_YK&Ckg#WHRRA^Cto?pi{2xn31IZZe0|zVZ6YR zcKkX8hB5qvsen6*dn*2tf|C6(0Zi(du2x z*g1)NdzQX6W<7M`!bqhdJ<8)*WoU@gdeaQ9VVv76dKsW`Am{~Ne(A@UB!X^<AL^ zHBNvgM*UmL()C#uVYjCet&bo1*`4k-a6I0-S9eT$?ffle)jK{s&vtjXsJi-kA)f-zIXePBbeu} zt3K&pmTlLUp@D#Ea2E5dpY%Q+%^nPt2aw8YaD5+JP%h>_Rq~cE@kapkri5qWjyzXn zLUYQVizv3%q3d-C2T&!o1?d=gVqfZsyPd+h5U=Tq^n?lRO^Kj*9Tehb`jc7a<>26@ zhRr#~qQ9%rs5tAN+4QGx%{`Z2Dxq{_M6h(r`(U@zB1m&8&gv&=i&D{;zP zwUb^Yg7?|%@dactIkTX6EWKo_-`fp1aVIQy=hKR3iR;Ct4l1<;c#5-1*k8=C>Y2gr zTxSbdDGlF=wfEqBC-|>k@M(ko9$-w*fKCN|>l}ugMk1POe$rIvbn~Se1l1n0Pojy) ziZMAw`{4)Q>}G7Y7d$;Dv}2H9BxM&GeQ*`Pln?n#yFZ8kHR`tAd#09d%jVP`5;7cK z>v3H{wa*~|1YJ6c=hWQMaSCZo2QM~y$Fk>M+gztrEyWDgO4~)|YCx62{I2!NrKq?!f6gw~ z-Idolt0byK0eWD#+07UchQI`UkQ+dNoDc+Dq_J*;y{Yv>OMp}V%VoPMABzIX(V=gS z$y1#UnVt7nPIUzNwCUv>6Vl6fF10dv_&ej|OzyR<3Rp(9wZ7V5ZEDS|KC;dX6o|;j z(?4Jk#QmJJ0LC!D{&?_+KDGuQ`S|SRq-d?|x6jLC3qDbU-8CSfLx4a2OaBebU6^kK z`LJeTOMVMD^<_ZcH&pm%-1I7!RjN;o=`FL7OP}t&)zvl}-*SXH_1DFq<&EQc%dxT> z_%Tr77?QWxYJm0)%wTNN)fqYxZQG4{i*wX*l{os3Q(k7hZ9m%LM7(NT-zlwmfV-Z}Mh9-g4iL(Gi;B`(XcS4Hc;}pQKm%m-M8%0Cg;)nnZ6!#~Pk-pHXa?hh^SwsoRrjl;)VO7>j zPjj^+z}^I&^6srV;rCR=$zgXWM8>Ay#tgod4m`Qga@)gvtRfTi|0hi&ay|>?{d~Xl z=zivdQ}iS5;7*4658a$)lk<_SlFg&@fQTP2{-rM3b0hbn$aMa7e%5!O6?5y0m|&wx zWAjlRDXg55R4?J`mxovGePsxe4(fai#8|8Z!nVtH7A36K)l@i--Nib_oRNZJtDhK( zuZ#%06aIo8QFtHqt@0ada$DNRaR0~QVp{`OPXdmo)X=_}XB5sIL`k%7)5)r#`CqSk== zw@s(=0G3?U%U9G>QyqRHd=oJ6Z6|J;i97B#&2W@E3~`y8r^rQCL>=~P@j_=56N*d= z$ozrIC4$Zp@%9!V7bq|&HU$*CKfV!jmnor}P#o~t)KH$}`WgFj5DA<@lOs0(lHFBu z4z?fQ)=<99M-vau)9_L0Qs*1V=5*U>#g**4;IsefQ{MSHvlOF$UC~}Fc8XmZrQ1T{ zj;|rKG@uxFfJ5R5&eu7dk#$C39uWy^%4$y<3t&go`%gY4w$mKE<7LWmGHyTt;7G(Rm0 zkbQBU(7>V0E(Y*aFjCwoqyaehHP7WaWpG01F%63;I+wVme|_&kH=A@LiVsk4!`6^O zpSrJRT+Q*cG(4zp>Bo_@sN&ZlIJbYzC9=s<8b~s<2y!Wft^(Q`AhAQY$|o0Y8zoI} z)PQNm^{ai}(B*Yme{TIdV@V;$j{P*q-;ANHagQwK2DD=*RVao1A{ddu-Xzs_1C?mU zR=DjQcp87=_R5>IUIBxhfLrAbI{c`Vh?&G0uqLwSjwz^QZjBH^$D(QGYqEI}fAqYD zE%v%z=xn?rbV2T6v%=4kf+)I*3?;gPopR5_7oy!iVEF6&cz>ncyy=kY;%$}pRNM~F zzbQWas&*d`qG-T^|H602xm5HfYXSFHzxz39(pSoV`{9=$dG>HdGedPe4OWCo2|HJ9 zK^_bP0E08}36141p`%EEZ{7Lo`D{b?es+~-(jiw%cf7B=e_kRdO7DPPI}9@V{pv%U zuK+(It2azH3#7xS>vp54(=H}@eu1{bAn^AgTM@4O$?$GD1!vv>1YR^#gh|i&8=T{8 zo~=L_5nt**0<4>*XogUVcExNZ>3oGR1957>b-o`E#@&@|1EBMm##~eMd+3y4lr|7_ zA5~32MK&)s3BD|MtM$u}B`)oL)v&8$QB)R5bT;~N@Pdrin>RkOvRKG7quZ{GZVqVVpE6Gn$_o#&?8o8cCR0Vn)se4?3zL4d9oj5b^}yj0x3LJl0)K zh-@0|NhV4j_tTH+J?a0?`*ed3C+jVzBq7>hu&VJE#Fpcl|+_H1=xm32SUL-M| zG%rRU@K{B2oBoM`^1EvIiOpYD9f%zj#Kx~e4s&cn{HESDu9K@AmicPqo?k5n`f;oZ zmcim<{bxi9OjbtkYP>1_Vmlc!{97!us$_Pvbe@iLTB7N+F&A@}^a$BI&iQ$kmuJ@M zx_+}I%}>0X`OIz=5~Z2rw(>Nu03k+hf5B=8l(U-LQa9-q@@U}sMZ=?=Qbc{@y`$4+&fychTCb1$(TNDRCf`_8of6${q3E#Ia1PtG$#F zSgx=n6`J_Ir^kNcS6$cClev(%-IvC9S;HDiD#aIG531^nY3RES<=T3R@irB%D{WSN zqKwD36G$F!Gk3_L-AXqqQd-2Qzg?K>B8x5l$v?8*h+bkm&OL$kcV||P_5HmXwpRup zGCjySUAEqYPme7WCDd}tb;C&MwNLm?<_R!{HWHSz87OAr8t@%stB9!mmiP@Hi)X9@ zh4YQrLvorWwqF!QCQc2x&Sr$OH|6F#FY9}ZQR%fuRIYuIL&!@@*{-gx0s;a_3k#h$ z+HQNC39CJ|B8g16wMzhS7^L@`N~jXPExYEZwoAa=ZXNmhr6eMj*Z4+Gkk>BDO2 z{lJ<%C&l}a{iL#+TN!B;M^?e^j#9>E#XAkVh+2=n@FcAw@k&Hy_iGfGPuGQ$Z&Y&X z4W(IlCldesypwkQ?B<}>9pZeG+Zt}z=CFJW#gmgU>Sk@Z<~qpYs^(_xY}8110(s=% z)%A^6I?p8-Ze7DXVs+q=?$0v{8(%Iy&2@K?O)LA!OI`Qnx|k|XX6mcViVns!G&Jh# zXDBenYB4I&ZOG3Hlcp22c4-^C4J@5+of;)D&Gs?svthln9R-VeUj;dtlZw_I6;q<# zg_>i&iCfC4bsQHO{1g|*O6VQ0v;RYZc>qrpgLy?ioq4a zqc96gk;ECUrq0$_v9#-Q*TlusVFj64Lnwwl z)iRFjzJ-sQc9!_}veZI)eL|!ou%i?VPot&e<%2RSHZ%+J^M4T^%pCgro&UMI&SlqU z(MPfx?{D#c2<&BN$&!U1`tM)0`1BfZ?4Fgc`+KSX`>#^Bqq1`@{r5e%TnmVJNuWqT zp49Jj#gmf4U=ONhxpPi`f4_Y*U&GV~Ez3sN!3$yH32zle<+!=IMOXg0P+&P!n%;nJ z&(zF)7NDu6RbV@DPh$O-iUP(-r5MH7_=>YC^=Gwt zEZB7u6Dcs)=D+S}I^gR=TsO-`kc`k!Y6mB$*|jdE-r8CzL6Y&!8a64)_G@t1xSCS8 zRxSJUYw3EAR%}E0M!%V6o?%F<`09O&;qu4m;!~dT zrP~rq-}ko~ER+yfGjz(-dUf40;yj5av9LyQW_Gq~bo5D2Tlw~6G%~U5e1&8LuHsCK ztzyMgLQuY0FAt$tsB$?Zko*yYiM-Drqb_7Q_-(UtvqBX162t8(O>b6_D|kx&oOG#> z@_WJFc<9ARk43kUJVNtF1Hap!^RtlA{n%_WF^k;4y@~GX-4GjIrY`&PrA~5psb+pQ zv#d2#Cb4z1Y8z>>>W2lhF+;<{mb{wz|B!YGIIFPWVBwJ}_^LVZ2s;EExx@qB$!}Ql z>p5T0n@S?&SqzW{s`j*Yn)%!8NqexjH9JgV<9B|8`&uHlV24PIL2z)L^RU?W_x7f< zxFyzosd@uk%y_kNcbMS{(Mp7Fy`hEJ|^lxtH`>}qHDxn9j|AO zDb@b{aYZ8bp2{dUoiWAterZH-Po3QQCY;g^qX zYfAWfe zn~Sc!Woxi^vM|YDf7HjS9!kuo<@|zzX}b6=pM}y{9`u>KVc*-SB9~E1tUZXesXrT@ z1UrYDh@BCYNvo}5O5ygkw6arI^|k{ui^q@ZAa3&o;Ysqm6~A0sFUo(If^CYalA9%M z)3E8;sggBB#$ji^XttJ4iOcyu>@Vio+FMvyNFci_i7)%0#ytdia%(SfXQ$vvwO4)v zdX3FzWym;+?Ehi&Gaf2+AVybhGbIyt zln~-uR%CZMzib;>cGmv<;4VCRQ!A@p*zbLH$hzjZ>vA1~Aoy+#t`8d?az_t&i;nrw zaY)30KgvCiWD?@s6tP?1Ded7j%*^GrW&UHwNZuPEXZT?~HPD65SBd4A7xncb1>)%8 zi$x?!TX=`|Ta?r3d99sSv&s{SD&{Td$u7XkuK(^*VE?sk4df{uKPUUyd zmW|QyBJ3n4CK6X7s?uSHrdU;+ z$HrsWv#pSkk>R?x-n$O2Ly0rS+RJn0ZM<>USB28~!U6V+AEM7%AQl$V7T+HST(oV& zk;_{}XSqB!^5VPUNylzfyrN<-ee&eoyxIQ!`)3vw)U>psCtIR9nSmm!__eJUA79AXW1g2S{h)GKZ4rX^HrzSWomK$3BEgL_);_$@ zawuvua|e#tv&SDQw_B`4%RIV_+(7a+ z(jVu|kw~O+oYsGQaTFqsxw(HdMzddJ9d`W|W>t|~cW96;@4bGrtUerhyKVkLsPGTT zy|u11lFxX>cn1J3IJSl~tzZw=j`biu{i0iZSPL->%j$mAnQdz`9t-FDqe9@6ASO-7vO)dJ5rI}eC z1eLi(guElT{lpfIU4MA4CyV3nrzT-Luo~BbSFduA`jGbqtt|7?5rhszygWn@fU zi9dm9za*UX_3EVNI_$R3X5iL*R#a3pkfxTAi>yYEJepQIB)}SGF|c8;P_f@w(kRy9 zL#V`thR3YdNb34$45qzZIC&rB%#cYwI>{#bB6n`2N-s=&#b0uFjAnM55Z^n1jF2`o zv5-?953sv}!Mv|=p}#2zdD4sAay-i->O|M!{$gn^Vlek92#+Am^jp31!t}{WmVYy; z7vkjwlK;)BFf;UQqW}Gk%ZY^j|Nj4LN;aZEu7wu3<^*3>%!`z<|7OP*AU(dlW+HI? zdIH4yklWR)$5Lc<_mPdTa_+9By)|37?abv@=B_5|2q32nmpQF)l!0PgcHrBpV&eX)D zNKt0#oP7>fQ| z!a;FzG;N!m2$%gg#`<3fZRf;o%UO(6>V)T;ba6;0Dre|c^t;S;evx;W`s`;4sZDrN z2$RqZctWRr_Ht;-iohonn)i*1*Y7b;@=c1s1HNI=|8C<OC{ExEGlrbR-nk8rg1_yq9-U`uztAAcH3W3cDFxAZs12+Y=G%ahv6`Z|+J_QZwI;#$eB! zY5(zx>Y^MK1J8dt-`KDyszBH8hk_Sa@UGU2@yKGA7Ih*YK<%Tpr3QO-;>v zZnPN8&C~z;72Q)=RkSba=uoZzI}n}vQH_3%qde; zOw0lD@V{x=CVHUFdeYIx)MQ(H78-YRG`QyZ(2%1jI?WE1{M0`e!hV52%=IMw9~>`z zyY|d^De~STlC|hg5JNNI&PvaS?>iKX5iH{rhR6g(aA@dE(p$w&cvqQ_I;Uw?x|g5} z>W?2ko>Ek#4y8d68tLT2p;;x(V%N;qUu=`8C^j#!2bt=xo#9Q%`N0wus?%Jr*@vJA zLLFd%+ot6~?^`-96Yoo5$N3ugWD(rz|KAs)u2ARy(ia9+_(IMm5To+)CqzKju;d;; zicd2CF^v|^4&KTw{fx(XGHL2riaSKeEl-8WbX8VHJl&%>g~VcX!lAkofKq^4t57(s z(S4z^Qj+k0<@>(H-EHm^DcY4mHnB)Lqyv#0Xh-Rig2J6OENRKll{lU3P;*@9nMYPt zm0tCe2YH4q_jZW?@qUZq^(>#Fk;Ujmde>%fyc`@H`9?5;U!anR$Qsw2@3ZO-x3Wkm5jJa|pv@4ZGvy_y0S*UnJ2CA~LFiF;sXW|l#nn3`ES za|Pa)NR{K-BnnPO+rK#2s)zc^4xQBrF7ca4!!^G|Ze8Vk@eN`r8-g(h>wPV^@zm_X<`;RdlKs zt<^e4>WfaHP}lgb9^=~V_Ubk}b#|c6uc+Ei$6!3+^V zdoB%>J5wEpJI@I@X6)a&?P60T--Vd6HKg*gP{sMCNJ0#jf1qyovM17bVfOy-y70%a zC9?_wv!p~$FksmGg8eju@ou=5NG`R%{9*$}2~4!7Je-;FTm!ZX&5L{oFXRzosp`w_ zaCQtbmwNJ;(Ow~1D=RB?fMfVU=A;tPdmO8^`_6jx@>$wEz_1Gph?s}qq`NQ@fM(7S zA?Yc?>UKZ^%8k_K%|=4zI(7>PbVK$CA#!pug=vKi?d15(3E@2)z5hK>uKJzIBffFZ z>`JL>3pTf2ox_6PT2Vhcx9B@tzc4kI`S%&NH~@fQxNF_&(lohc&(+@_F~jp6a88;; z0fnPcw4<0KvsW!cLqn;K>frscbfs=0^%4Z>(l2dEmsXbMFQi2q`OCmKH1_Ki5znn9 zr*A%$c?@OzIhTL)7@E4J$XWu2zT1ou5DI@6x2r8r7#DMHaE@$}4IRHL!Q?z1THO~8sI6_Jb>dv- zQ=Me|Cis2%?G)Axs!yCXO26&uF0J7(T6O5jQT`P@y-+&af9mgV3wQ<+Ru|t#G6ESc zf;a)xx8-rHhmPY%tLT{ZU*unC$QTj%5Ty2r3T*-2t9Ahf!aYoHxqsP!=YAl2%tm-b{&DOh zF7lTY@e!l>!!I-xJ^2Df5k$dM^|QD_Hx<}99p+|z^)eR!U~C(3xTD}n<3hu{cb8&CqOe~TR^aUi;TPi_k1 z#pXXWpK?tvsrhv?1u75JC2{)T*9!@F*ehL|tvnA{HMYRGHHH%?G29g8>`EhFr5ziP zy-~+3h2po-7Vg}he6b;H7j?%09P$J^2~YBp*=PcBPutX8u%FQouR!1YDZxhwRk(i> zj_LV%4?&LX$b(sT!A@_mnjtW`M1uE6o`!*IoS3jd2X-(o8tE9vR$htM<42NPhx=b5 z2n;i;GFm$Y@1;9K@SUyC*~>UDZgBw(bG(UI{45->+12jo+U{n>*^sA2QSyDA|k2p zyRNYu&o*5X#b#6#ipiArLfO)%JfWgyZ4e!LcHV&J-{lgNY#hl`YZeXGiZoeUEtl5k znXvI1+;Ecq{ktt)o}0o`zrEJ$=Ii%+Hi4NG82Nf#bUdx;izL%N*{HB+?8de{fV@>8 zN+}mMb8RipU*~Rs1)^FIy3os#xyJG4fyg1#?XdT21`@E`Vs(?NetXj}nE{v>aX0(?&) z)nn+>TQ;N%JEyM|B0s#hsr>Q!lP`E2W8LQjUu==k6nBz|FY-nMGcjkU6335$9vthP zqpa6H6;b=~s~C7a$@`haFYA#>%uC5j&~#qWb_=q-g}r}?ZJ#y#6+NIzFV;Wi=0$%4 zBy6zEJ?#XOTl;h3#@kvp#C3*uuu0jNZCoM!H9HBX`sitFA0*#wV@H2uUR87;n;}MO z@?hr(@1DZ5DDrFi?&Vwvzdh3zCVD{;FA@BZkcp?Wvcpk1zlek1zbT0vV#RD|0EVPG z{PEJMH2YY^-QsvJ#hJ;ue_n(nvA}sajxmS35zDQd$$7`rc@v@#EsM<-tbP3BjMl8D zK59UT*-la3v*s?^Wz-g~@FZ=Ny_)G#C856jRVb%x1LCr~&1mB!f@~7O-3$Nn_AD94 zugSd414e{o?Ipe%Fret0cuCa5SvMW1mMuwNGsk=3SGeo*qPgl%H`xSeQ4Z%G02_AF z^lj+mqg2#NBJEby-0+n!6kO6?&H#4ZfN~x<9nGId1<9BZmpAzsP&(n_wj28&r0(HC zvi#l8!j@=k#6I382#&AoaTksz3wwyjAB$tyiGv~U)7TWY2U`%C{-r887-RwjA+Tx0 z+F(AVU+bTX!(1k|k*Wp~buIf*zbf%5o0D2M8PVd!Fapf4@=oD}MKS-|VzFer3kl;A zeADJssve_5mTfg+ZWalC=p8`O0i+Fi6I(=ezG_({3cv0kUha{0l7Hz)!W73 zVnvqRj@q?pY3}NpvibLgK`TYS3mh5%y>RH?ymFVB%78>j`%;ju zq}E_F#an&zI^^B~dNYMg;#z48H2b(yYdvx(&I)r-J767Ro+u=IDTG|0{^OIp&d-VD z9fc4}7es@l@R_|r#(M|uKX+9$iTeyLC4!vq%YtNs3l2K!Cnr?!ut|cjduumo6m^r= zB1+jJh;Gs)?vc+wj&?JcFtGOX`upGoKfYjOLe)h)^%X~~>D(l5o#!uJuT7(^`dejh zfTz(x9A@H@)rR|Vh|@m&rk{tbi=Og~ROkHIoFEr1nz%i+g`vF(Y5Ztc_GKa0es?lg z=w(sG;+FMDzHAh)AX1LS|Dfb3z0&@N)nTVxjz&RbI%i!iFa0hB&ez_i`txn{wsgE# z!fUX!cE#%06F8(1;^Fu?b;aMRLP4rRexi9a*bIS_E(uYh+SuqWKarq?3SkyTDm=K) z7tz&$&)*;5yeMUxjQ84e;f2P}*~5C+xwvbE-X-S1;}8WN4{$!wun+rZ++|XK2k=m0 zZo^Zx+w}~|H5)==^P#!Bu|sbfe~Obv2N56U+vDC>>(W^EvSNl&o3E&!W=L+6jAO9B zswcT!k_Xp>jpk6hXkAO(`%TT!aITY6fDD6l0&_`0$uDF|QHh6CG01u(hxL2T{vp+< zVCPu(aIb5MDI>OLC}kTMdpQAm3!5MNe3jjRC_t#gevIkji`l@@_OWw~bnjb?kiF}X z#zXM6P=?7xZZ!~$sJ@^JBgqHeykprbfPKfA4w0w-YqIff1;3fOVBYU*;Tp~D5e@$3 zeBx4L-b~+XdgjQ(2N%@j5RGr|dH?H_eI+pQdB1j&VP1mU*8d?j=wL=?VlZ!ALhwCs zB$_%wK@JgL?*gZcWobg*3Z#rbrP&n;(b@vhY#aZmFNorVH^V|~@uTRw%WXjvw(o+| z0{-LYp)|C>slOHytu5ViQ){_Y`uQI(!D&4`BL+(Z@`17x#kCaj=bJ~w$@7l1+n+f$ zUdI4tClbFkTr&?_7v3ZZ&x17c=bM@`1{S(bzlPBD{Pmcl=t=lM*f|Rico?!x9$X*% z1)QCufd#}1R^Fy`^wZp%QxcdHZ-1vTYQ!{xY$q(`wi4Je_R0H&M8Y2x$SlG!&#)z} zlBYfm+r|r@l==;jdnC+m3y42ldTI}mMh_W~^&8FC#-yP)Y#y2zWlERV!$!CPi@R#Nn?i&({8@{~ttt40FB~-2noZ>AOf`dttc`aZ^nZ@4%OZ_;%)7Z(F!mAy&S)w2(M_WfID7&xtY?7Z0#82HP$ zsf%Bl7e6R9#HvpBge&2rUyRIM#L@O+$LA>ITxbTDtYae}8$^0edn(6VPy0+TzhWAWd^5 zG6FSW3bUdpfm8i=RtCBnv_=#s9<(nZQjh7_FTS<(9rCC-z)jMP#pG>*Pzx?iC^r;f z99@!)4{43I$W8O~x%;_Uz^g}_-!>a#EP;6IhLZRJ;Qb>(baJd&Pg&MtGQpQZLj+%GnlbajKaKD0{|>dJI1~-6D)W0~Gy(YHn%iDd07zip$N>0^J#} zRGU?G{y#)~)1IxVF{boSb@^Z2exQWdX7HZZpZ1TQS_{DP3t_F!>R<+k9IdJi!QjR} zl+LrLg4hD14K*L!1C(tZWC~{3Oo0LA+qUrt;B1xf!nwy9P|wF^1AkVDjD(DZl)iJk z9Ugw<@ZkqQ*GUV-&_mim1i?^ULw=9$u{fGu_Z|hrGGn|~L+vnsf?a=JICV$EM&3T% z2*_$*r{nlzuD3!Gd<039LfjM+XOp97~sTnO7(Qjuul{Q>*$J7 zST}KGt6g<)&;a;5UR2iRi7}wx)?>N=Mu#g`>)`y4$o_5`W%LTaJHoag=)^=?A594u3FYdpq+`|(#_4!$3h>1W{-;yqp z^}I(F-w7=6%a4yO9$7um*qg;JpmcO>=zj$Kp#LZ2$F#j{ysN8=0uqNxd$&C<4g+b9 zSS8&IDbep|TYmF+1soQqUAqm+wS10%d24m5=n{lfjfxL2w6Eh-iW699NiLazkqSUO z>=6uRJlMT!7Y$Sr#o(gw7)BNxoOJdJ3vT11#KhO(D@kR0)(N96gH@OOMuX_8ci+n+ zQ0EiyC(I_t<4*MzN|Q**)Xs)BroviGb=al z`kD%J6AHDd+9UBds|HU+!mw5RPVi+tig;nr#^fDex$teUN*@jd2IVpvSveVMvq3SU zleuZAXKep;FUH?NDGC7R$kpX<)Y*l_kh+D@EAxw;s2zA|6CIs!s>-aYExIyKb>uky z=Q5`KsQX&p=G!J);|4g<5_p>;3?Dr#yu#4IkX&10#}S}$`hR|DtGc?fRM~M-LS=`d za2sTkXG&=UdJ&_#=S#$k<=znp`us>o8q z%1{H}pR1QH6?s1WrZfWFc91af{kd?A(>eHC6;pbxg1Bf$NIR$vDf)8o7L=Cj6X%r% ze@-y)!XkLD&AD}AABcXG7Obpk)b*p#y@K4gF7=?jpZax==8o(?2g!rm`Bo(`Kje*Z z0N6+UV;}cQZCLHKMTe~HKogV{P~>k9rmh}4N$8HF1yr*`Ij^<#C zwdWJ{oyNzubqb{CuJN#7sVN>&*gm|l|H^tCs9nC5?7#E&f6e<|AoH)CiUF*-J1!dB zUe0&d`Xc-9i{5UMu~)d&+%%axA?-&_7LXZNTJ`~6xER|03FN-zO^DZc3ye_q1ptOAu4d|MMJvfOLLko%($L$;nrTI}GJKPKHK`CGo5enIto+J=$Jz zYa>Wx27Vz(Ewz7u^5XtuD8>OV$RZ3>Cqrh6?uq1}5eMp_VaIbsiV(a!G*&V?IvTl$ z*O=2JjxlLJ>-IxM1UGfIy?1W6?}~P_%vly;Y?9v6-mikNV0wD;JS>$4kphUHk91M{ zWp{Uj%*A$BUrcm_NgF5gGD~i7s$22fT)x)a(jpytN5jzSm^e+Wph&C=t(BZg>n6?2 zNq#uBqE-$SFv3>0XWnly*^c?*zOi`>8)B?NYIC>_yJ2P#@f?)880WqO8odV)0vL_g zSeL*{l;{YDnqg`@`$@<37hjsWy545E5ZBH|y~4TLv9vYea#bGh z3iU=Rn&dq6^IaqdV*R#|xY&B?D&_B=&c8joT+=^>e8Y4cy?uST4NFB0T{R6W-}D59 zjTLH@b|hrqO?>S_dHC^nr7({kPk@)q)Y6qZXRzb9H^(y5FgFQ1L>V2=wj<+aeWFXh ze}j73>fZeP;vC(Sem(cxIxDY}5u*d#_fR}pfB&Hu8jbV>NI`;W1z7U?LJDeE<=O{J zGZOw3zjP0Q&)Yy2gz$OUyCm7 zgiuv)r5akHSdk)$nVcw~&ZAO<-Fw8rJYAfJxUr(H_z^DYEb3XS4egYnz1f87%9nVj&a=AO)9fZ7j@W_aXB`3f*xc2qW zKASTNT|uYqGk>07nQwH@jXjp)43NiW+O*w-uWe%|24Q&?7%^K9ZpEGXGqqX#*X?t= zVN`L>16Z)tvKCna^^l;fZJpxubc@iHN07MQJs=E*lTPsUn!)jl)21`oHn!iU+9_78 z&i`Oe;&>=&Y<`%sf>_eNXZIV(n2^*o=YgN^0MN63yM+dl_(zbKs!mVG9AACHq5k{B z+E8R%gNRH0h7s!A`|za!Yv7$#Z5)Ok6$)bL5h^pZ1FJfvFDYli^6Fw5VhSyPbY&($ zKUT^8eU@~|6U{ZlqOq>O2m#2|Q)a5C77wdLPC2@OfkqleDa+voF8_ghvaGFJL$zzq zuM6{azQw==;F3Nph6gygPrAvFvEp5%QC!%6UNEug85A{nq8qk!rtI0#(E=Fg^1ssxnKpL-%Vl4LC z19@gsR$+DLe`T}}yA>(G!4l`L;U!sbS!x?RgLLmz*tuCA2BMJ~*vw9EW%^?%YDar{ zJOiv1dkp6-&7~xCk$+{WzoGBLhb$RswR;%JD(!PwLpDWa_W2`%Z{}R5P>U(i{}}tpM2|QCoH=0eFo!7=^8ExR>cP@6DbBOX57|-> zCE}sB*}1|aAIv2$UQpcA{gp$L8SFGvP1)7$cWu1zn%f-=Da`&VK#fbu{E8n_*$svi z#WBW$M87CcXb;?}x(=x+*JNVy26SNzZCL%AwLh5p4n1hSRJ5-3d-PgVV-sT#Q6*W9&-O-lA<}DxGVa)2Ek7OQp(yj z5bHkh^AHr&m^VKL-5h+N69dt4eto^|HI2RBmY08hD|!Ro(rIJLTyL!|DH_#2ojKe+ zq3*TROj+|l#uouo-%PWAFUF45h^El;lbFqI#0CW#xHe2-+Ygj;4!V?wb^&4j-ip_- zRX&cfL6eCkI`xsY*L^U|_)T$-k?(=3TFB9ncQ)>Xau0bS%mZ<)kR&qRLAmG$^|{4T zAd1bd;@L61n0#UZN*&9TFmH`Z#bd+}(pH|3zUy*fXXFVe6%{2^PLqtV0@2t)VhPkz zQ0SeWbYz)|Ou={7mbn!b5J{(|4?hSz?E0{>XDGd!M8zB!b@iahg*Zk%xs@w)Ewdpx zOL&%G+c^MEqv01?RXREQcXf6i#2Ie0qxJtJREn$$tv2~Qp^AIReU6$x+M6jecl*PR zThrIv*wIYCY_oam!|4R(TGpym?SUD@v3PU(&(VeFma)Ddi_QrhG4gk9`fNa_{K%QI zDL;O~cfDZ*^)E=atbAOp7MyJFMQgJl=;iUjn@@Mb#IS`jGk}@yJqw<-6kVCt6W(MT z(C+6H(G97oLF|T`sWTs<5t>Y@AvOOEKz3OuH zAL_r}J8oz|!G@Fk4nesr5H+!c&}c73gX^PI1fuG+m`-q$B|Po|D{BTfcN`SbgX`1{ z@t+6Pxckl#u?%b1dqDl;k-atWxC~IkTiX-S@3}mJ9gQ~`wGy;AkzgphQ9JFpZodlx zQ5cmKw%@{`*H%O*MyK9ZcJR5E>Mlxv+2`*F(%o)B;U}Mf9B6|4M`YmF>{#ZnOP4Pj zPxqJhAIM9mU}E5|md!mk703xiYf}TjciJ2P&!;?UYh28R9!VZWv@I5hx@Ec zMI{hz#|5I+Ar7zOfQu|;Ryv_q*Rlt9ca_tZumWY^Z7Lp}NOA329jW%fibnh8!T!pS z#h-e6_>E1yEh96C+-iWi-?d&#uleeQZ*94pJ8knq;~jVxtSD_9HqCe|itUXeXC4pv zG%Om#*ykaOJ^+fl7Q}diHewR0$wzOlfgeC?S5cLIm$QPh1%G{;UwY41@=*HI0#(tq z1Bql?cqG)7<;Mf_v4_o^nT#M+jul0c$hf&h#42c#b5@@APn(1I5;}sUeT+4VYqgj* z{Rt-;EaAWV$vO8go2h-fc0m=#yWf=@HHojmkncBDYyo9(K2Jl{gl1V=VcCQwoZWNb zg1LYtU_z4Jd-lX9Y}Y*;efMON1wGdFz**NQ`{nc7qi=og_Op__RzM_-S;b?~?T!uo z?fH3s@!PIYl7&s2i<%Zi-sFLwX|rD~F9H2DIpk+6rs-p}X?A;$@xKi?H!$$2|9M%& z$yc-sI8-WrU*aPo+mofK8}2e&;0PWe*L}q62oy52|OiGMA$u7yqus`MAUJQE$t$FM*-e#D%yE~WT>g{G}I2ps*VLpyTAvaex1=1-fFB2&gzz&l**Zq z*lf%rt3`_EP5*h`Gj^_!dMgI>SjmP@+Sq70W;swgBRy!0)o_>n)oEoMIx?%jTA%2l z5YB-Ffh*(Qa*J6CeN0QerB`!!jEVAc*3 zwukxGh!ynZCB%kaLXZjYP_%D2K25+@7OT~!LrE%u7y6eQu{?F?-y5Fha%h2H-yvmTk>pQuDa?FK*GlLZ83uP`uoo4QGMkEuDg;3e%7J+)4M z1XEFf=2#JzCj~~7O>xSF)*~B``B$N29_b&cE#+UYFJEVAG{6Xn4+a$e-|J}vvc7E_ z|F-0VHnFUIy-Lwj&>TGRa!HtQBE5W)LCt=C}T~-w>}hpjGaIJ83EnzaFdmE`O%x`hgZpp_kxWA#woZzWKss zl>}y&dem9}i`=1YRFRS8_7Xjz-H4(h3Z0+%I=R%GccQ_CR55kgmYZG4oOe=QXzV?9 zgrDU7!d{kBRT(LbU(B2n_03B!!a6nP!BMscRl$jdz$lia%xfarfQ}>Xutf=fvN~G z2CCj>hP|_A%_H_~1s1emw$oc*{=ky%Ph7xXG%(vFd?Uh+kuV~5uYbBo;5oNb`X9Pw zOyY2~qDw8$z112nS=q(-_H`{{0xAub0s`}=rmv>~cK&j2F>>mU50!tpuaoGZA{`*H z@6of32)3H7(5<_Lwq}MTx8d5&+A9$fT0Rw%DK9plermr%C~v>SixCyknu?re9acor zsgTUb-6z`&%I&G!SF9vm5`L}jsc{cdo9s=3((WDz5yl-fe`xl{lZy*vH#F}vc-Wt2 zl`&bTQQnZiRgV+Oe!BtLeS6n#$pG$=&M7%0UuEWlD!25vm199?j3raIP+K0tbM^w^ zbcs(--F>t6V-f`1m4WNKh1n4Y`9-CVa*2z3 zUPoVmy*5q3*LXmmt|YJF%5yHrVRvn9aT>C5T-O0YhBqRfX$0m={)Alq&^sO4(?+8N z--CW~z2zU9PFPo0e$Dcf&FHqnG{Oe^#>9u4CoY_`~&`HN~Xw?iK6xMba7LcD=XnmTMQ7itFP zuLY=LQUJl><$~KCXz1vPVn%DXFvz{bYdD>1GCopijs{bvw=UbBGRemuC95Ql#hMewrn*Q$f2<=hrywt zBj{>~Ej0W@Hg#!rU?4NrDg~vOFVJHbq3O-Kg$Sh1h1OWHiyj`mZxf`k2GWEO88;3W zzCNe6v=n@)hy9NbNHL7nw)ncKN?8O|0gZ^#`!*LO9>3F>-6HpLU=QzPz6BnW@${5-Ee!RZ)T1Z5LSX5-h zeDFYo(3O6SC`w3E@-R`{-3v{0v}_0J;7D zpt(aHM5OGToOvsnj*lbL+s|{?Uxhc1RbXgwX(edhZu4`C1dn+$A3Vf?dN;w9nh^Jm zB`#+9hhfOY_tbjbQuYKv3q>?mAlGPJ#i5Kb+b|CmJp!b!@jFpe=pbiZTg zoAuzborhhSybA5x_`#T#hll*+#11RVJ!xK_dUoU{1EZ=lpob45EJ59E)(&7w4lF&r z|E{3Q#ZX;IlV@)*b>LLeBJz1Ix1j^0$IS*=&vGksk5#yz7^tsnbaq->C~@9UX8?2p z$c_&WUuVs_kNxh9-hGpjAekYfn~Yd-xKx3pK%%lcgLPH%j64~S)n8NambD0VgFH9A z^dK;A|L>j@a*HZh`h`yAB+hRv!e|P(gr2T0lb6!hg3s}(k!Iom^i+GRY|H=MglKIzfm%K87e|9OUxFR!p4saQ!9?t&h(JpHZNI73-^gU#)5v^AeI~eW*Iy zl%!cgs?_!(=BK*}zC+c1tzt33Y$}A;be{@Ihz} z19Df4fKjVhBO^Np2QDTEx{jcGqu9AE@fh^Uga_RTx(gf6CvB0f)?6-w^}qxf90oS$ zTnTG^oFAn|d`2spo6;{h_mP$fqJ?-v|9fK!UhD|%7I%^C_VG~k&FYYjN4arpdx|x1tw0mJrKM$3 zw=8f4521qxS5ZI|!IvIilnMgMH<4`l`bMi%l0qWY@=_RS zE8-?vcEF#aPfF`PEKS{V5XtAE`KZw11Z1Lu)r4-@JUA4`h>Ln{TDqOCl@$aY_wTQo z23Z2`^Bo1~(SXLZNw3ujuOt?hbvsd^>Ho3b`~Obv?IvV#pUi;z^d`ek!kivUBh5VI zsgE@fUK(i2_hAV;$rHoB5QOG&HFWORK2{1>3|&5@sZ$JMv-pre$gX2S31$6bn__9| zZAP`)qCoKfC9%hKu#SgJU5s|(?W{4S4*3vEr?ni}VE*Gn$L`)xviNE}L zorWVwetZs@??vN0WiT)_((nxZoO<3dIcpxL9CCiF0QuDFHSaP?0frBIY5i&i@p zqhC8w=B~1xBK`DblUmAM_xti*Hi#RhlH!=ycL_oi2!wW!hyl;3SjMd1!#cY3{Jj@1 zXZ^ioO|<2cb?Vs28R!i`;`fgg7Mt`e-yRuSxO+)vPyg9X(5#|p0;?ZZNJLAwNjXam zRwsPLFG$932Ysd6x$XUiw@rc>EQ**=F#P-?`Ax+L)al}6rA3n_ed^Feka$1}E2?S=Lff4q-0GB1zy$V_g`nVP7~3X|<_pCp&#@g_beu`A`Mk)=w_y5qJ4F z{5`oGaau>Ti8yVm<9`kL(BhPnpIj_}NB2C2g0z^yvz{L7IYo;d^I@++GksP-_K|STAVfJ7Flu{Hh-|)LY37p3WcQj!FwD(Van~t zn(k%#_7w$kdq)>sn3HO(SfXP;2##a<{e~mzyOBn-*TutWmy;-?UPd5c^6RGdm@X8_mlCZI^LEM8NDPsI{)(gOwG_Q zH&yQb6KZHNZuMRU=8PS-fFXXd=gtNgQ6YVlzJ(SpP64E@T7sYp)x3!oF#rFX#`SHpmLXa_{6EckOMIqE|N=?lNbThlOp*akLd*%BiLsof3sM zRJ&@8jPt9kEJ#mrAe$EJ;_o=+JpB~ZKiz1C%Qn_-cUIR14PsQCIBjHw5qCJ0@xaMp z^wSoaL^A$hM6~v`6iny(0N@-2lKKvC&HO(qaY@5*jQQX)`_A*;`VGP7jJZPrAKlho zds&Lic!9J3=&Z^7<*;va@CAqL#Bf%`JV}XUr+K`_Ltlu1<@;VgBu3HC5>NVM|N957 zftq9j@R~m=iu!#iT#_TX%D*l_$Ay{)3)$y)`r0~0N-2=+#-yM9ik8r1I&bpRkFCaF za5vAHh0i8Rq1E5;2ZN8M{#FAe^cmJxE;zQ=hedGU9y+363NJ!tzVGlp4Mq5h_o+T- z)Z(r&-Q@YE>TSBQRGiCm1sW&fW>cnjlVJzHg2n|@djOQ08mbD&)w{10aB9vywIBhw zakcc!A72XpjkTrWUH|5V)B|cx5lC$TejPc)!(Xe(;_7%>e7zoAqEy65mf}a;HvSl2 z^wIN^YfbAe!);@~t#z1w5`E!q6rsLvsHCA$7?EmPxoY#XnNrT@1HwB%3l5x_a4A7{ zV*-jB)}uCWMVCNGFapu7HaCaNRnH+YF*Pvv^fugh$5yrRS#UqCey#l7VCKtRf3ssc zH|iJFdhE?&Q+5bPZFl^oxHw=c`Z|yp>IU(vDoP^UH>A3 zOnMsiIUsJLokjCj^w=#l*4XU*^Z-2yzo5ok~>`&St%`&I21n~WiFT<@~wOTF~S_#~Yz60C6FwP0c>2Lp7zF9RIW-G4JV>uIV4w z8-!BWwNKf~x3KL)km!!;Z*To6{U5bg>@3Mq&{zTeMeow(Ee8`vNpg8S^-aAbb!=fR z$ohQn{@obyUq2sz>yeU1y4NNq^?;|oNURK>%vFCinKPyq47}TaKJbNojDc|Q7+SXV zVu&abrsqwU0qB5p$q)=nzD+l|Ywb^)4SyiIkz5cV<4oXhbD-l=R%mGd#pD=H$!6^AbtT ztQrcfRbAEZdutLsT>CNm8?aJr&{bWjDrmmw8gLmDF$CW%3(VVo0@2xc%r`}WsFUXn zj`WgRadw6|`V&1!xkunRjcQpzR5ykrrPl&We#~@-(Ib)SIb0*@rqhAkBWCwEtk}t> z49Oih41F>k;{ErGAH7LSPjsHLi4}-i3WY}p#$PK7dD;Dr^!$n_A7$2=TQGkY1_~D4 zy!(#YhmY_akRcZF)7Ft0CQ|s)=1u7?a~kDuzkGGZ&<_QYxg?%bT!LfD`(Z`9kuL!k zjGjmm1*w#xglRFK?<}kN_=kI90D&fhR0kM@f`*0P!S{hVGl#|zaJG`ey++2^I72dfz*%U|*H%jklH7V}sM*Gj%q1b_{|au!y#udiLc6jvq#-M~8MT)9Vz z`oao`A92c=?OgSPaadbX74&0_JKU~_Ou=IOl&(eHo$^{Y+e17%7gtxWgIoMUD}D+W zT%M7yvDFb%b_7SUX+d;}cO$JR*m3Dc(gLHT#lAn9^SK$?H#_DkPE%P&?Z0bx?`USd z;u{#ngk#B#b?RQN%No|zvM~}>bs$XBH>Bu%HcOhgzbn;pDa38aKR7}iXd`23EF((< zPhF*S(Sq6cx3r7jLQ6cyoOR3WyuqZ}=uO2Y|Cz*> zAtmzYxxfQ2%bv_F6MJi)sUFhXyFP0&d0L>M^Yifd9lrW9w{mJzRariOYG1$3c!@go z)|v%6_kG99$mWlkHXqxr;k>pVIDW7D53LO-{Ymdd$-jUp1TGHdAN;%N1fgr7r3>)- z4wrJGbD063!I3E&0|$jYk%@nia%H-m&Gd{u`@Ly zQT51-S#9N}uG{3grCJs>rvVqZVq{GI(Ea0k`n^MUD)RT&F!XA5ubf|Ncj zs&>-BQxA6J=+X4e9UYXzAj1Fe(bQ6Nn1lmncD}I=dv(ce*+Rpy`949NZtUqL9iGxsO<*4=W|yY&bUn1JZRY29OCtBke7Y7-4!hJ>fm1g@N>HxFd^jNy zOoNt|ckb=%h7FxXVGRJzJS>soHvQ6-xGfwqq|Vm#B7>$&Ii2AyrnH=`JoJ($&PgFg z>y39|hZFGi-_VEAKLLFhej*dTEECiC($Nj5!uvlHC=2`Do4r7GK_OK<{}C=v%mR(z zM6>UaX`5_$P3HKxT?yBSyWCP20_1b5evh9ZucUY9mbS!wB`vAFPrtpuA8i*6_5>v* z55>~o_|lQ*_hy?p^tKlQ;I3q`_;G0oVVs7&O^98c~5RW%}dH4`_-I3HGv#n((U z$i<+E05a;Re$SjAX!q&P=uq|Ap*VJB7gq8;l7e1PL9%!FK3kbc~a9})aecvGNdGUD4nwx&AsIDV{PEBc-A%~w)QtJ=`~xN5z1WR z3NUmS=l*W#b+Lq|mOO0CB>t#FCzisMOB$(zftYY4v5b)fkQ@L*b)vMjkP-5JJd_5C6kD|L9Xk8IjeXZ zEJw9H40~YMkCv6WUCrgJ2PcW$-KlY;>D$X**QTG#dP7f2c+Y{;#$U)R+hR!3?>gOT z$Mk?6pe)i+X`lMhSc@$Ku}(uEN58c93U{dL%PLPfm*BCUQQanU2JiCla-5&b1wXm{ zSh&E55fF*<9>emmP*SbB>cn~f!qR4OH#FLvevM6SZsMM*(1rQKOkhhD^x3x=eDldl zRn8rOI?#wRD{yN4wu&KQI78>4t^uV%Q5U8klx)Pz8jGuIwSGNyRvOIqltge@x)IY! zd@q4!I9B#F@e#TvFK~VVS8D zGIoI#imn&X{eE&6ghJF$fARTMW&pFVh_cM*8M*o0yDicDa+nQYwLQ}VU@%r+dSW*eS~%05tEl_Ja3_E`DEQ*k>Etu&)ZjKdP8Fwpr=mB zIv>Ya?Fr9u+unUQM^YI-mXxkJyLqWgsfD=p_cPpiA?N^2jSBMO46LUv6Audi$SXx=zG^`P`!Bz>fnG&kxLI64hIk9>TGRnru5M$>YPfEtA#@+&< zqVGYyYOTsPCnMBVI&&$v2W*%**Y3;TZhF<_cJ%ylrL2wEXdZDNl=(-GN6L@bTskNw@%ApGLvUjnSG|d_ zXX*>qv*0n;kh_#d-*Ka3_yF@f^Wa-a&?}qH6*}W2vh-&h3rehR+!OU`ALbGjk2>j> z1AOmY`suI;j?Ab{>6bZ8k9|hP>IZpzX6829&<*rzo?W;ezr)g61&>QQFF_l!6_$Up z-{x$hvkH&1KEFRbYlh+~sg1=2xhZBkgCBc>yvwRn4g?_DbcYOHBnC3q@x)N z*n`Q%S6}PFz715cgqBE^{`InJdj5$LKS*G61eaTm2$7^23m035f2GGf;87d#s{Upn zd2#ZdwFmCkhhb$Qkbmbu?1C#~K0UbhF=JeSy(MyLJ|VjvWL?y3KRFVC3D-RHjq&m! z7hepwGxH27{M%8AG%YFvgtGUZPysru(LF=f_k$8eWJ%TXAXF3DSfZJ5lq5$GlqIP! zp-#!ELJ2RR}`;zma+6O8{^Yv;uvr1iihAEDAPI@*Q*$mQ)E^5ipvW?fsOBSN4+=0W*g}xdEh9 zcB7a0YTW53Z+l3T_~n>M)QzX&g+ctB?78N2UY0}dBL`H=%czxCvDuCsQ*W1(O%j!q zp61oeqW!Bs@?B~+!4=j67v6~l#^EEXUFb3{8fm9kDtP?0%1qW_Pq_ShC&3K zSNPQl^eeaG&5tvILj5ydXOxdLWzTo-5%G52$nXOx7-kb$+ zF!}1!+v3cX=u%7B%6yob*$U<_Ub{Y`NYJ9b;*+u;(j}DmkEF%2YV23IqO%_QEcFMh z%%Imhe-htWLOkb48wN*xZTwhO^5kCw6}amJ?wJpEUP$&_?N!R-MC*&1GW|^*OBAqf z^Ft$l;I_alp{6zlepVD;T1(QkDg7oGCn{@el|{|DnG@a7UhT0WW&Ix@!uZtls&i?p zp9=)HEInI#Ul48q@5yeRN-){D@#hcAbB?FsMoPA4qtqRceDBVXgf5YrP-$%-afJ$C z*_=j?A9|z5{^bV%GGisGg52~Qq2iE-HdC=YxI&|2@$sF(cY@2NSBQ^5SRtD_B2Jk4 z=1I7+2f(bVSMNpc-6&wne0fnvjYU7vP8qYVnJGw z8#mBcd`5csllPpp>r@i!#Dwpo>vVH?SsKq?ULH!gqc{DCv^f5_yV29@>ZNd*O1+=M zc~ApusOkGru9(brXuB`Dw$hlOj_DEB$rbJg?KpNUUXB5->(`pL4Z5G-P&rXz16%{x5S7kuM~1Y9Da5U|Ap*G zoX6>o+2lk>`@mo4sm?E_HvXV(G4j!|(f?=|W(-uratn9N5A3!Lc7vrrs1)`GtBBH~ zII@0dlZ}|%%C(hZL)Ga87ondoYD`+;?8$?{C=QNDqw0r%hKZbThS!Y#@Ef(D);+er zG9HpkU2ic2NvJS;OM2%PBp18G;YEFXzomslu(y8n>7XWeDX9y3ZC_KH1g^9&o1c3x zJ`*BWVG7!*=oF2jLD4#Zm1+r0ADqM7VV0X?)3isw@H_3Gr@g=@Wkl#+%^SX3sE&lR ztsRD&-B1uvUA8r)H5pR!ICs`g+rYKph5TeLHN*Du1e@0x$@qnYl zM}bNLQF0k0C1IUK@S2^ts$Xh4)B7b3>Rm|(iM~x9KN$v$;;<2aD&eYs&j!|IVE4iN z()n$-z6r5ouro-C%zmCfDm-PAZC`(AFX2pR`=8yyY{*`Is2Tvt^_D&|sb)^?nA`#c zwQu`U{nQ2NbKIfB0Nn~x(mJ&5cf(y2@7`nNaFf@P`%uBc2tHJQsrG?va-bZJ)?IrE zJ$qf<>!Py-DUJckdm>NZkM!#Cztz*TRGgISk%4F9b|O~_D;JN34X=5o(I?^gaD^1X z076aw?Ey32)@OGK%B|^>esVYVi+Eg}3lqfvAHTvuQ1t-mFdlT|>tKGzO~xzjVdM8n zHiMqI%t-H^Kd(C$px$w|_D2a?yom9s_T|T8^!pzC!i>RK&DMnxn|_mT*YLi;fkRWr z6;;w)!I&>4DNtPzFwcve`9%>cs_n--XQ7qs5EU(@WWX?cH_88hC(WxT4`ZYQKh_x-;1ch5*w~uKt z{nboS`IS>>6Zvs1%{7pQ3`T3Xs?2RdzFHGn1Aq#DxfKh3IdRMf`UaF)Be`W2;DVxK z(DleY=zKQG>EwIWTH?oJeCih4C+Q#}E*6Bx`9@60Oxef`^->+LX+wjD4S2{&Htz5< z_e=2UaD?sr4zYz)8m;rB&rhK=Wis>NLI`8jta9gnvV&sC4z?wlk76nwj}!v4hW{`r zW6;Uf#h)^J>Q|G04Gm?0SWt3zO?q7d?Xp3&?c!YTwei>fr$DP8HfEq=@qpSiOQc$A z@z4nNQ7ewE1SYrUnr0u;@7>nzpuEEfmAuh_v#bM$PhWu=|FvlF?tqwQ)dTC(${kXUuQZcdfFaW1tV zi|2+K-3r3DAbzig+qeCOmC^30ePeMnsN}-D>nRGTHCsn-xb9vkJW%k5uM=cG-uL4e zXuU1uh4oM*cEi2oZydx}FURQoj5nsA$I%{o57kD+OqR_x-rRRsU-qikX*Hi*9^2HE z1i9rnm4<*Ctlwo`QbAFe?UbFPN#TR>!ffkrd>{uQ?yu5JpH$EMUrc>GIW=8i3o_~5Yiw>3@tF!PPlG$Lzh|cdhkXzt9GRv_yKmuY1}YC>a#Ej#-j`;@Q&+mi6QXP95s)?8x=D;@&On z_opPaunJuVaE(6d&J~**7k8$82XgQ=04(ItCVy{iaE>$uX_abDKS0b%1o?v{ z?#l5H$ESm*!VoF=#E5NgQurMs7+%hvFHy`~9G))r-$u15kJYsI2aKZxX`wL=_UQjO zU6pl}VyuNje1&GcnJlf zp|Y0Ks+a!)v!_dno@K#kk=>KV(3byU;)(|~UA02sIh+^#sjiaLk_bALl_V&9iGjzi zHm}qs`}IzY>7qPHptorymvwUOo6*Lu7sBz4)ORccJzW9}SO0eyHL9Y$w2pnkMO$B~ zucof`&wc{^XaLKJb%QHGWh@!JEkHjH7l9vVZ5yp5<58{Wn1ABCg^NdbWuky)!m(`9 zZp4JU4)Fw%f`Xc55Qu=N=z8Zj#o=?j34b6HY8GydM_bF5h9w3ACDajyd(psik2FvL^r=kU+T|W(M9m2UW8Z0>7B^aqF zW0}VFJ^dLuP0NWWpc{xGC?Mp2lCa>8Dj+ZuUj(UeVMcnGSy>1RQme882@-Az=WD7C!`pnpLM>rKM9O=qA%A$|Ck`MTKW{Ud{7?l z#07GL=+w~B2Y(Z~fL;=t+eE_nBRC-qg;jhpzvx9IQ29L_QPU1Gc2XFWZXY6~y`>WF z_@YtSZpFc40(m{gx3tET2`5{hujtYYYG}y&oJMH!oE%;Ue506v3kO!k7lmj96cgGw zs%6KTpOP})d$a4_#=E};(BKhIihhB_6T7F^+DMMxAm`M8e=16fO*lH( zjv}#D*KUJfAS)XV(s;V`$->m}wb#~xX>(JxS*;pX$RiRUQT?#t%&|}Fd{Tk(1@>36 z|4?W;nTsM?4S}C)!tvC*#^kU#sBS+G-JMJ6PVLziP8${O0y3y<4p}DU zHByQx0#&o;=%D^c8^~J;hahwBcW(!?jbu_TPSvm1|K6^9m|MHr0?1>Rj-&UK_OZ@PBIGy zszY)F`Ja_NC44RMFiL~c$&ogNcH z%E|b8h7C_jGH_WLomb4Qhm-}qdhc3Nyq?v}j|k$18)1vB-22q?%W+0*dDnt<30EP)T4+RfX$z-PVt-c%XfTL;@N ztU?A^geLBFerIl3LZncDQEOJ^BNI`aB}okEY<(jPIr}j6M}fT)j2)VDQ*Tde!UyhN zw_>Z{+00&3gzp0jfceZ*q@hD`_EEaWiP}MU@8GErdtQ8ivlK)Ll>c`T3FW2Rz~7v|b1CNKOoB~W`w@)i+#nEGq)6VggBk>T;EyS=J^+#43Cqfd4MKSBf=YTrAf9+ zg@mDl&M@}MTt6~vZu>M={=)6G!>b{>;rW*UvBX(z&Q0i`;q$l)ue^0Y!eClyMkpMv z-`Fv&^{y4ba7g!Wx-A|^w%*ZaA*IuP;{=JpM7>K{h*b6mW9O^ z-#}kggg-3GB0G1V%U-!j5iwgZz=W%#BF1&@f~pJJ(jVHX7E0K1THqGMORvUb{$9oj zU2pI6Pt^>2nrQ*!uT}djxD}4D8_b!p;u`O?(ThqgINP)q6=m9}9EwI%XJvjA9RMB5 zAJ-F#;Z+nkI&OnoawM~?J>r)yFE{=Mx7geBF7FlTAc`OrQ1DR9pR+%D=NamNASB=X z?40}_pu}&GlF7pNvz}13@3!c}rXySt+cH&l+OLsjSuoERjC1AWIY$KP2Aa<9aMTlO zF7O6~JZd7n3~DS}M*E}2-8a7-HL9q^RY|*qck>dY)oj4rfk;HflbUBPae60>5E-+` z@j)@It&L-wAsbd3cZ8S@@)vcG3psW+`hg>n8+9XLDV^*a(;^TKZJ-y!6>=#!eO!YiMyNelwi|#iFrlRa32}e7E7EjTfg2LWAmK)N&xdF^ zG&4|{N@D0J`VDNeu8c-iWo1q;kZ~3lCz0LA1% zZRS~wbb91}tnO?&5O_%V=;_R@<{%X5stCOS3Cxe)R-Heg7z9NJ5`IXT6@qr-oVSZ! z&4CY9sn?zh6ktQleA@r6-^10TpCn^!2sr8$-TCzfiUs1W8um9)4Q$8?NTEoiyfn=I zTFYOu_FrRlDC2THY!Yi{NXF~nWj$PM5%f3P$+3-#)A=D2zLT(MR8YZJJX)j)Un;U?lM@@vx7B5* z984tg7`N|wsb|sr0pTtif|RlN7+lAI?M}hK?-#F4fEeP@v|}sAtD2M9Y=Y zDHDdwvTzu}lsf;UH(2Hf$olxdnPp@DjLaptCW1^hgJiA%1)T_OOb*G-qzlYPNIw=_ z5=86g$Ru}Ok&@ODAZBVEQ!5GqN1J(eUTwSHaFdga0Z2~#dcbmr_mN?pU-{^7;!{h_ zM#5?z$@U2$Rl%b@%u(}o~^dv@$ft~g%%7K7=UK5p!xhVSK3kLg2qkY~SM)4R}xNR7qwH&^=FKh2K?st>^2XIpaRwC}Al#Hxa~ z5W&6lQ%=pKVu|aI#0%j4HUH)Nh4-fHu<393)?~Zr(Ho=1(88L8Or2t+6oVl?K= zh~00z?S^OXgGkX#6oDPsVIO<>*-b1g+N!z!Q=vb3vNAfWMc(!?V@O*14T|1_Sn$9g zxjLkeZ+N2}FCO%dnJbHf{%81?{ghWeBK*}@c9g$E^4^C;_W4m_Kt~9GUt{b2$!{>W-blhZ`I~pzb`4e|vz=ODlLKqP5jA1=jWQGe#QkwZ z`s1QOWBm5$T(+65!DICijXvH|JJ^sAfSt|9OonUA{(Jg;IW(#?qGBGdE?eEUcK5J9 z{j(A@0z=E{RF{t(>!)^9`X@HK;)A`5i5jJ)I<8FK7aw6f7GYflTP9-NSzo+SfvhZ? zbkYi^7WkuKpE+dHf^;b^A>VNUM)nuS4Clhk)t@wy;IptPjnFh;+2r%H#Yqd1s=ncP zI#vw}Q{WbuGANRhz_skow3>;oS#0m`{xLw;-|NndRk}tFb$mMSbtFvEwVwbwCG8*0 zx=t4Q``Q2ltIpYGIVyuP1umyzWAYM*t@yJEzeA9CI}C0J{;Fl&$OJ)~d%W>CrOSb| zX?2-XReCJaMj;t^N<3!JPL6$8kX8Yk4kOFD7=w9@m2@n4Y5!d$@kNW$8OPK(E>`!AX2fz-jVD1tI$BOb2( zP+>Z8jJ>O`^79Vj#qyV9Nr><^nK5?7 zofg~Agy&Et$JqaV`40(>q(L!f6&HoLSc5yu*A*=;!$HlTPVL{6(ds}C0o6GVAVfjy zWuFSBp)hQbsVu4=ZGAkf@IpFQwbQ7@cVljAB|Bw{x&1o}{8 z6!vdOP^EC0jlLbTm=;p!ZrRy#HS=pWGrzOtP?qW2Ec^P?09!fw0bJX$lG&cL2zzTQ zDk5?zKp$W{HX+@|Kb8=Cjot9&0_-;VqPyr4Zx2-7-S!L8i}C+fI_V=F z(dH3qsI#>J8d+3lak&N?fC$GB)q>GU>70q2&Yx34Bu}V>psl^6u?YTdu+9^wsYzaN z)g;p}^NA93vmdBL&w)Jy=ZLP2W)`Wgr=*0%1=*&+92QK$Dn;0BrCfS_B?wajwH@7I z-sZxJ8v)SibJt5bg3xy8qA`<)=3=6oVYQ>;o+aO0%_xu*5v0SlLXd__$dz~2ITpkk zbf>aOI_vlFQfnqw-{NJss~=GZpnVCCd=~fel^pt5rg8H0 zU6U_!A13CUwJMJlm4~dXT4X<$ba{PTVmkP$_k0Qn#|I!T%oRh!w#@yY z+Fog@inN~DONsB0nU^6`)kj?%GdP+)>jp!W*UEXXb!$cr5Y!_6ZCeI5%Lah5<@e}=nP(K zacoP3>m=6AzI~I99`Jr-%W1_5M*zGnY-1=!6nXN1I|-2Vkq+@~nTTZ-MX;=JW$&&E&0OnsPn&~x;8D9m>8pZuLNnW82sA6Je3fX z$;+CE7o`4xG`!<&fvJW|-#q_(%aCw&N%35HO88%vZ)R!3$31&>!2SX(=D6%{7TcUw#2$^8zP1LRJ=e!z193!G60;bGy6AN_E|9?q>>G$a)gj^)9`aoltpA+l zDzRowem1)MML$bv0Mh>~N#2NY)!@U((pQ-){Gtr}2O)w7%VspR=qY(MNX)QIoF*4s z^j?-bdIV4FG4ik&QB!MF2+@s+=_N#H$#RkCV`Y{v9_1OFR7HTSl85LGj0Dk1c zbxgruC%8qMsVRoBQg8x>nOHJ+6Nbu(S!Ub@cAjWj?Xe#jJ^ z(b_i((>Vp^+9e^uG7EoR?A7M>C9TPy~-O zWCbhltd5g*3agnf{Jp>D3OfJe71(T3TjZLH?V>o=R16Xh=_JTVKh=6(+{prZomr6=5ZUuc`Cal6=ZL_b-`fW=CvW9o^koXG8tAzbU-ioAG+G< zJYEbgKyCR~?n=9E1397G`yt_jszzwdXZXx?mM%mXrnFrMMPVoFm0l;n@QfgK7&hjYcAe%zwU<$b}rT*SrUv3s$#<# z&Q-`me<>Q)A#=QM@R{&z?ycozE8GL|fb+GIfBQd(lVPJm+oV~24upQVM~*PTR`7;O zNh|k~{@g`En%(Q=npt;9V*#p3jb?xxx;Ma9%i?$@Bk8rk;octZQQQ>-3p4e6#){>= z=3c>->@>ebgh`bdHSa%83H484W^SXa5b$ATCQ%@xs&)aLusv8NXve_eKamgO)#91z zR7sFcLQCOiM(im2ri9mE!pwA?dUZDc4`1nt7}#?VXR*F9Uy}4EK~fb0zYL7CKRr^6 zP>}7;2%)W~jXp09!@R*jG$UGWovuj!dl{ns$}Txr2H3E`1K3I&&1`r6Ll(tm`>?(g z!Tu_>zuT3a)hddcP*kpPEhloQ<)J#gpv~w9mBrI&D>lqcKRj6YWRzz_76r>rb@nvq zRj0EVSmU*MpYP!|4fWIwEbIy^EUxlCT7# zpW7;7Zgjf1yBX`^06HnrsK>-glCljL3Go}+H)H+3ZI0>(cr_f>&-gLd(FR)|xgExx z{BTdm^JI9fRx43L?w3u*;-LRcd zS1r+Uu)4co;1VrCIIB_l7_cmyeQvVd(__J;7zz_jFd@Dm1)ptHVV*F$j50A|aC#cq z6dioL_-byCCU^w1_nP}!smX#Sch5BSiJ4({lZWL8#F;8cxs^n{rhzq1re*TG=l4l| zHFV*dSj&7-Ov}`e=u@q@<{J(N#HI&qZi$*cRy=bxv21s5$pC=8#G8@9wI)JxXzA$J zLR~xn@{{|?3&%29x1ps!lp`R|LO>|7^$KF5oHlxLU;k(#jn5@k%2Sbs_8UEz?Y)7E zIYlZ)d?Yc5A9I1v1ZQF8GhyR|HfCsl9!prV2+~AcEajbTmaEOZK^6-EtM9LqY|ntS zgVkzO5{YB12&Z!L!FyN%BZ56jfF|}~RN%I+VL33VO#pRFI4e8qzMbDrU@M@LZ z9_{?$hbPJ!8gI2}=g2dVjSe`SAiK zQ=kRuP-sMBtJwx9+H8S5D_Qdad?`2oh=ip|q1f_$$Zfb6M*nQiJ!| zsjy?Wt1s?&CMD@+Y1L>;kY2rII^--~#5pqb!Lun$q%(ijt`F#pM>^7>^)<3^QNjTB z0GScP3DxjsN-hikCpR2%hh7ahgh@yvsn;%5eFVy`VFPrr9O3Hf=BniNq6foJ5#uf9 z`+FhgHi?+ zY{5hiJbCM(2V&}k>-S#0|cz0oIwo;dM z;?p{*vz(naM#Tj&Yx5A9sm(XPY5Z+K_9Y4^V=bWS6pOB|2Q+h0obzKB9rIe{7h{oI z6)SR7$E(3>Uqx)AjFwak4dPl?F{Y7!y5>KD5%EIInXmc?MCGh9b|MZhI>nABvDxse zK|pWrG@q%HvnWo<;>&c>@w%-xx=kE%kl#UwGTL4PIu;nz*sq73;Fq* zqv0+42+6}svA$v2qkd>fEsS;=FC(;CzY@&-Mke8x8<$J6X)fJC_3v~o{e zQ5g7&tQxCqB{K<*(5LcWCw89PwKEbEU)Oc!-i2v|AyhQy2fOCn4bYVVgCrY5V)&xZ zj|ur)8Y3v%$#aui|D(c^W1y_WZK@A#Q~{eqLv8i=Mm^3gng>KjWTEh*Lt1X7l3{uYb#lgLRZ&01o zYKA6ZGMVR_{mQJEHQcBRF(xBrFaZgwp8=BmE!}yw93z6U!~joQq_R$5iqxFeigN8o ziR3%|O5NUN?iohNn0Wfo@^Qm5;w`zJ!!;t&LnyAJ1OD?bt0IA7lRu4$-8(z_X-qQG zz~SR>uft{Xs`&qO!Z5?^2=~7`Yz61ur)qD%6WKgju+nKruMIg`ok`V!9C_``#6^$h zb=ym1$NJ9)HYaRX@4`#;gZ@2Wn+*sPW0LMZGtn{92+s{^p@vmyxPQ2+uTL=9h?Vk0 z)3b)FT_=M59)DI+>%M!3vjwPnU$1D*Ip5v$s7Mo}$unT8V(wVZ3>A%%r|Lhx=?nGk zJdmn=h`(4j<~0@2-)bnA>4Wh<{fzVbk~KS^8-Uq5_fuC6HC>luowp8Og?H_vTKx7Q za$9#st${*@V*72g#>z)ovq;-RO|!EHPOF$W+Ag^o)Mj4*;DAK4oT7OK$gBlu$Qmlv zhX9>%xq9HyyF@Roxy4gFO6$Ap$`TX2#H!zECrBOz4`n)WiIVOKiAMyiegUCQiOdX5 zLoV+o&gxl@reo2%?djMDNkYi-ftRU@OF~ddQRbp(M)dYIh3jF&5hq33=V^dFo8>`v0bL1kEGFS#{*Z_y*;Xot*CN*QTtH)b?mK3}^pHX})F zq^zw(9)htZk&w;ODYJjL_IRA4H+=+6XgYDf6c%b_TcLNS-|CAz6j?B6_t<{MoNgb| zDhOdAbL8P;9zhy6?YH762jx1m>c=7>bj`Psfx?pPj&ec}j|Y2kHP@QnJK3qgX0Ew( zX8|d6XiLgXgoM3OMC)~o=SP0d&i4@!!-0TE1pF3kIIXnq?*=7-V6>!5=EEStc#lBk z^Lb@$z>!hq&f)u-af7;Nk$QZG`&sf)qqTTwcL)=7=&kV|hokGWhtmJmS3npLJRlGY5=U*J@EG-Oz8 zGk?vmGaH}I;alCAHkuUxb_|HSTO9Lz7=NgSe)pWBzfM`alDSpKyp$ceMjj9Cv1}Hw z$f6Cg;JRj~1!xZ(0yp8rZPe>5f!6ZvrV)&obH9j!v-`wI&PCz4xLzMYS|qrM%d&tv z{8VjZN)OA`4#@!9Y#Zk1ZZ{UP$t06KYci@doyHS z$nG{6J&8YK#g%lm?%J+vDcoWh$XNAM8#tJ9KfqIo{lJ7|7%41uIQ*C_DXFs*r1P>y zAQq8Lx@%acFK){V5rUC%p42Y=)e^IluvL}?gLg+8b>`FC7(x!+X~LjFb;iDD{}kcN zHE2V-mfvdtm(C+;h(!)FaVBC+weJs%h3}1Q{SQ~`J)}-HnqC6|Ad{GL5p!14s=DlY zqeb${@ch$sYD;YqlVdNf0>0%vuNN+eP;GxpkATa+7Qfdur)*`uG*;Y(cIkeXYpoJp zlKay%N&zKy=`P8DopyaGhBGaFy|mqOeyk^g3}A}@)@D#=FYW>L%PBu^E0IZ-g$-8@ zR(~c8%Zzewr*%nsL$3kV??b(9OB>USv}Z3x2MWp$>Ga)W9SB~ouuxf)AHBkaL0X6Y z?D`na)C$Ed{tD;!ZDj_aaOG7o9!Lb0g2Uq<&P{WS2aG@0l9IhrtVQmRc~n=h-lyt2fVd_W53&gS&W7VB zQ3schMDTw3r>J5^kxfX9|H5Eo3bofgHIs{Dqr7>zaXQrS9qnf(_Y!j*cS~;0Eo4qV z$|#tQ2JpOS<}73gRCAS9;y(kVE<~5sdFl(ALD2=<)dhIZg_PwBt&3Fvx%W>KX2;%HIpY!&#FZDnJ$3KUBrVRB(L<9o=G!gB=^eBkbg`y)tLXBL z?7q~Y=v1rbv$Z8j5@5&vtaa4I3!f_Ue8LHXTbw?rnD>U}SadefN^i8VqB?E?O9F7U z8w_1T*SXWUW34xh>@cq6rv&QVhu-2h(1`T&(Y0TAAf3x;zt(=I|^~+ckLX45F zmYbo>Jw@o;m-Ta=opUvkBFkL?J?bN7%pH&E>^=o4qGh}2gbfqByGD(^RiZVess4HA z-&kOt)wR8e$ZWro zZDq~zp%*r%h&m2~HtgTe8a=z?hdbeqhzH{Dlg(B!<=ns+p|a~-e`?4z=y!&t6(;JYq_Z+0idykrPm|6{x_tu53<*sxp%!mXiasB_UafN>W*Yjp~x{Q_5V!pflW*c z#Cjz6=&;SoX0b7^`(#!>wZATBY}?}MX6x4ddG^jUW{rDUcAMG#zgHc{JmrGKlj`^EAqSE$of?^aWEJdG9ndu4cKML^0Ka)17sLQNptPm?__Lx z*(A2L|1;TDGn z!PgiKrac(At1y-?pwYS&<^J2xwaVtsPa=57jZBxFognXuAD(H7G=1_E%cJXYKgZ=- zk4n^wZn6<;kCKsETBL*YM7!!GhYD1-`xVYMzu>G`wKhFr1)ECzIl5E4i0X}|%Evwas!J9=G;?Ms zY*IO<%PBUk}^d?Vw)6vxcPzjy8E7DI4VI8^rGZ|d|1AyLrqBB`I_*mYPZ72 z3^W|yEZ z^)^eEKoIGy{o_)S?hamRqoQ`RUzFH8fBsp@SCMF;5E8@Pq{A5+)k}=&+a1(OHY&E? zigF4GoVfo)eWW`If5gS;Z5wsL?IVrsz0-FPuUd-MD zaH0<%nH#V(8sd~APQAMz>MsAm^SBh^=~1nG(1GX^TNY{)s@_m{EDGJA>|Y8ZY85Q# zhcCWDs5XxSP(&3OyCb*Tf+F;#Plobbc!Y`a>oCTr2m2|Ew1{U-b=M=gFhicMMb(anDDxQIaAm^<*Ulo(P+qVR^L zZu^JPkgu7XJR~RRnIn*U>qFwt!~5Ts48&Ad7tnVa+NIze{-B_^e(jl!19t-XEzMwV zo3mp+uKV8}E;?|~)uwwrsj?}2Hh?=ZYx0CY?%qhuMTZfcShMCz4O{@_e}`6aV`ndi zb^QEkaW(&LUx3ljudoYRUskLNGm*Yckx$1}RlXPCxc)21H-O?_V#4ot+Uf6eF|HO_8rtM)bMid)Hw`R(~ zvHgaq1NZ$JRcSI&UNM}xfX>~~=*gI>g>P$NsY&&paSV)+w>YH8s5Wk#L)1T{IwW%! z847S+sGgHN7v%VX2<|`3mu4LIzfE2c`)z)^XPWSs(er@6((8B!y_h1K%I(04grNX$ z-iK_&22^OooqGJ07P$Bhi!cR|`C{F1W1+*z|4_x9d~W~;Q+$UAQQ4arO2x|3DjYnx zo+~OnHkMHw939C59t&t>1-p%IlazSkeDPA;!SS2vi|MA9vtOWF`(=a-vC(^GCC;5E zg~SHf7Yq|5{L1bT`uyqKesiV8DHCW$UKd%&zH7G;n#N$A$-Vc;H&WaOe2yfMjw9q*z-*XnC zBgWCCe7IUes>%>hX}=(S>XHFF&M1d*$%1$_c4cS2JAt%ka2um*yF9 zEN*G*`PiWegJ^uZ9m_@&a2n%eG2$&sFHgtiheEB@xxcU z(#2g9yRHUW@!d&Vxt{IL*kPLwUpcV@GPke=L)7=4#p!%Z<4=#m$A+`XhuIzt=xGYL zh{L5t$>KJ6_2u+>OL^I%YLGT{P%)ujH)U9SPSJt%?=B#lMj-=aFQ@!?J@p2>35ZAm{yuDg5WocMLxTf90D0qr>;jC2jbo zakMuZ-1}40UtL1uM9QxD4VO_^2fYtSyui5-O<#KIYU{e}*E`+6ni%4*xLPZeye?X-c$Ve0kNXb(yH z(=}m0eQ>;SSia zrZ7p9XBytV&OWsq^I4R^?c@^mIYE!3?tkgdHf+HDiRpcFfwR=Bf>@hZC3l7DF6o5M zk^T2W#!Bo97hh=u+PR7VH3T+0>0Y95Tl!t}M!G2E)4OgLj{AyWzgnP)N{6J8;uKPe_q#?<@_(M8%FB zy6nAZ_G95IYtvH~yTp60v2eXxCBCl+mix}zpV&0I=d-BCG~SEwCg26*Iu;&He6@da z%mGD<3#$Gu6*VkMD!qM6wj5R&gCpK9!!HDL-rKsA`SG7?tg@#E)$R<%_m~A$lpnWs z33Y8+(2c6GpYG8pM0~A*yLL}ExJP}tY8xA4$XNc4F*56}pP{Ysr#3TJ*(78oFRF!3 z)zl@n*$-=S<4lt5#ZKOH%LPuQBh4SD3fnkYqLXB0r2g2x((vmbx(1crfI43Bw~j+l zVwOL*oUu6OBYX@wL%*TMj*rd=`kH>*q;=vav$Yj6#HTy>G~~?8+VoDAX$ocKH{}pC zs+}E2qw?$MB+s}cCn3U>_FqKjp=Krq;zx4g2wkCD@@G-W+srj!+xAsa|AM%&TH#~+ zqo$INk!Ax|;&L|2BdSvlXfaP+*oJLv=!=i}=I@G)*Y*f6ZSsWK?H zE`eA+=1M7RB$PkbWM!QgkrXpLA3s?0eWc$#yU{jiekp9ZUy0bHaD_##JW0GG&}M$Y zt0neLwl$_s;hBXFBSz)Ivy_`pu}oHLdUSOP8=`bgjebG$Hc~ROvzFiTbi3X;i3~2u zRZaf+GWq(3X!om_fE9o9^vp5a-fPD3+;SMyrjZvz6_UVd5I&O8K@*(d>*t)ta}CWz z!1_zLxJ^%DQFO%IV$X=_({wARqY4IelNElhM8P1P`Jt9rb@(`_*x!4?TAzkDl|P+E zf9&_zogjSOOH=1panR9OKYT+B;kNe3%SscevUp(sW53I2^cjW1B9GIcfzczYQOdz% z=O~jj5rKKQ_?YF&6AT%hUCQ9EYibF>Egm@q<_nwFTy=>v8dA;TU-3}bt|`{#N_=(u zen$E~LHMG34^$M2+UBU3l?Ebnf`Asm-)}mWT|1|`r)X>a60LO+jdi`uNwmH7!=iK0 zG@-8Gb?)66i_{;yeYRuPS2!6g*oenE_oEFENGf{y>WM{DCE8HBeCP$k1@>RD2|bk6 zdA&qiTJ)k`O+swK3E%75cuQNivhuEf(L*oIZF@D@sv1#23!?%I63Bh>q(fm+TC=>e1Aog4TJx2*vVZ*DLFdi!XjCtIud6~;ED(y zRvSu%V{iEgM^Ddz()Mj(+P(3u`6LB`nG831b(GHUvGOqL^)-h1tmHTSlpnZ9vg7)u zw{G)ym^zolkY2^C%H@2m0%P(dBkFL)2iAiIC&)RDg*C#F=S04A)A!0_+K(;E8$HTi z+37)Z9jwTa?%sQKFTJ;kmZArV<%F+nd%qb2!pzEB=Y-5$UfcdqR?w7rgK*3ijL@O9 z^|jfi!|vX=R8Tf&VqG0{X7(r_+Wq2a`P&7I6Mv=W|&FWXO7J$B%} zMlN=8B!H0t$hQU$c7z(th~n~MdXH7Z8GI;=?Bhv%T*r_Oc%5H(T7u1 zmmR;4--ar&C~X(q9k8;AT)88{=(dw*qgRrlEHZzaxOqx;(=Ey^)vYjO-}FhUQ;IMx zdxt_)2W`#wYu?`0F6plC9Pgybz*dsOzf1MW?Fv*ZT})%#$*q3px|7H6PyFAe?>DLG z%S+W)uoTf;>0m4zrBzr^{c~$S1ZnlPk)i?5r)e< zXa(P&{N}yLZ{Jo_Nh#N8Fpdsqe2ykdQYfuZ-BtIVF5CXtCFK@O@{}1jL z$``-4r-=`mR^VHz-y{t@N!bv!Ai|7rFpG`(A*X_Csa_=P36;wncz@v4xb*VUzHTkr z%V$Y&{wLCz5;Q zq3$8p#ySq%SqW6Q-m5MgvZdy@iFZ!)-$Rx{hNldM1KHp_tlH&7^odZ7-Ayj^n!LF` zA+(@KIKE%kLH7OATjW50A(>*Kh*%9m5l)A4k9#viy%b&X{EXSZd2t(Jnu4@0Up8R3jp%*=O%-`UcQH<6~ zPU!OHE56BeQgr7rS7ySd3bTXR-g0vd&KkcM5&aEMEA+I_ile{I6_k(qz8ejl6`MqZeV!hQif~;R+au=Su+{ zsNUB%a$`_K$Jm(pEFWiZUnvXI-lB2BmWgQa_^m{SD*haKb4*#I!rT21|BZATC!^1X`FhO zD8_jFlVmpLGADa$pwkdF`+|$J(NhUj$rSX1kn9bp$4E`=E?U*r z*9y+Mp2r*ia7+G z5l@PN+BKJm>2!Uv+qL~Ji|zwK`{K#mgaSr!z3{+l#;4Q)F>hs<&b&nj11Awf7)+X zO@5Yxc}TKai{oKJ%i8;e!mJ^$9hak6pS5?~XX&6%j_?JLj3VE~!A^@6!}qQ7ZGvz; zU7(|gY0n@3jx*GG!ciuZjWsvF*s7PG3i&gMJ&6nj*p>|46+tT&mIfN2kFA+r_RY?_ zftglDb9Ay?qU-7J>iAQUH%idZ6sX7(NEJbwigGpCCLC3H9r`cIxw&Fm4A6dK>G!{= zeqw4G@-QC5az!Yyx4SG@8jJ8P>~hWOIer>Xo3))%)n37m!Mv<>i)vMR!g#_fK8QZY z99anhvqG)&bIOG7Q&GdLp$qyoKSe!T=rXLwcTVh{^fl7cPcArE^YS`8bR`T>xj65+ z%QW(y<1%!;Z#lMI=1tfa6<;4$KA3LWbO_x&dGQsg*BSaas=lI^o0=g?IN(tXXFix* zwn<<`$}#&^Xj#T{7bOC`dS4}~%gXi&Pc;_hMZ1tfy;r0_RrQFo?w|uy2|I<2^zdwzStL0s)R+qMPAnU#q^nRaWeO|3?*Z)AGam)XfX zZk$$mhWi5COdua-WT$RuW%csM*WncuraE{N%HFYD6O{ybJHaMg&B26Ip!`#eA?{ zL(h=fhBv;)i zAv^SIx20V>6nC|@neIP|EC9Cr(=yJPo`Pwm>U!B8gCy=vu_v06n* zcT=fvU3p?TE{uJ<^~U+ui93(QtYQT?`88eQ2!!lf;$~Z%`N8t>GqNN!pvH0K@+WW| zCVqXV)^W}FKNuN|k;4q9hR?}y^TU%tyR$z441-}ZvvpZLgr77ZKB^5xrMBe{mo@d* zT(j-0Fu5xi*qDAH*`Q)LJy8s|M?G_q{Dbc&df()Ux3mXAAzZ!DleLnA^V!q~;o_To z?|#{MjyZpP-0T+h^u*ydK`g3;=mzR1?`HQFQO@X_S4%U2I~aYi;-FVvua z%BN`ZYkC8XupM`NmU;7ZPF;Tv2Q4y~bG&zKZRZ53Phm8^|NOR#JD_H>Sjk$eP+JU< z+HiA_J!g^UNmY=OL%Q(Yd;Cg6otNm(x{SnxnI6jM`3aN`Etkx`l>Q+Vm0HxuZ&5C% zWSf+I1sVHUZ!JS5$DxjohIsn9YL1EF8oW$v7EKUW+d_nn>m> zox#dhy|14$$zi`T3Sjr$oVe=OVkB^4%3!O%a#(x-r&8~j%6iG-xv^nRr^mC(b2r`Y zjJ9)z((!kurMKoC<&q~_CW)u?Vd`q`YS-^9oU1)L=-o`=Q68w6jIl!R625zgA?O9b zT+%{w`-+1j#G8vewfa--Bl%jJT zKKX{!9-MS)z?-ouj1ImK9NSHsFCI#zlNhoyydIVMuJ005q^hMVC-;Nw=T;nQFYa}B z|MrL}FYI6x%GIu1H5WTaXM?QmeD+5E9L&DWpUx0nVxX>);qt7%p<7_2=T8RG1_fR|2li9Buk(ihTUzQHGs&*#^^Z3UMUh%_dt?*mDqw^!c8^{QVZ{!Vk!(0ZS2h?H^>SL<^FF

& z-uquMV@JbUP%0(TM3>fy!O=DO%(X?8@+#h!+Z~QfS{@{9jJOgSwsx9ugw)dN2JCGY zi_|oo-E!1G@&J>nIbLf?nieNUNoxp~V~w{I^pZL)rw!qQ%za=DBSqdrRTUZZM!h9e zjL~F|L z-!au=sgcd9e9Vgo?~Qd-?asWnmsWpYzBSXaubKk?@GQ_ehx>7tQqT&dq5DCJar=^J zQoEeWlQ(S{!zkAbWpva)0pXG#U+;}00|D|SF60{O<3D6Ur-^+5hb44E&j7RzW{gZ` z@^;WGs5d&BRD^SuEp-p^n$E28r#n;CbElKVjdI0y+d%f_20wv-bPW(LRBE9+VIlLR zrI!#vKUZ9mE@NkRW}ITnhyJFhO;pr}Yz~#H1q1c2fwacnxyl?oksYkHwP||V5@qrk z$o?$F!5UPjPRSewLt;aTb?L9e^1LBa<0P?1c4MA_w22}zx}BG}gs~bEV*J7?ODjh& zdcuxg$nL_4yp0Z6zDD%9{LfC9W*xRs8 zcfFl+?)iQ0=iYy=afe)sdf&-1MHUElRx&x&E+s=rh@Kwo%ND5!P{!&wj3&IO#m z+Qvydr}K5bk%NUXSaNkhk2Z&14!s+DXZG$oqOoRpHM5P|pTj1%r;uYYgcDuh;cU`( zcJjUk?)2&PCynx?$tK zP}r1VbC?o0EiGPbWq)WMRL{~_2lVruD1*L<>fPrF7w4t=66S@KquB9Ee4VO@T8PJO zp^JjN3$m|rj+slibpALUBUJVk+f1T=D6d>7!v3&*>a`rCx4KjI(GD0dc8iQR0DDBaM&J=~C4+{ISk{XWv^@>0@ zvqK1hx`OxQs%$f@t2)nhjugI>DrExNVEPKv%ALG78orEU{b8SNQg?RdC!8n8>5Huh ze<@#>9e$HtCD2xUv zt}`Qs#-&YGkcNEv0pPUc?@_8p8ta8srdlKdAeuVrICsBbVPScHVB(11X^4*V&*|IS zAvwLPv*wv!zrQIsigQ1bZJ!=sqUNRO`}79RPdoYo^HW($`(iW?bI^tJ11O* zo{y;^w(=lFSVgJxdmeY}{fO~C`S|0xQNvR6^x4&kK4xTh22uVqny9^r-FA<=6E(Dg z?K5VZxL+k;db67;s)4SplfE@F=Y_?co)zoWnS93bqNQukV)csURk8<65nIv1i^ikU zQm`XM^aZAE)n%Ur#Pw13LW)4QxP=|IU(_Y>T&*yH;5uD~+{_31HLy)8VDEJWcldp)W4n zdr!Edi-y@iDlB}8$RjV0jPYvSiO@(xqk`ep++wJyEY4;Yy_!kbT>4rrQ3M98_Og0d z*t>*Emu$UC(p&R43&U;gIYS$Z6sy&Bur~UmlC}kUIB&C*WMZtJ`E1|Pe*DTPsn|w6 ztaW3)97~LDcxcYQaB7xbThxKCrh%P7Lsgju=L z43=T6g|&Y%?)7lWAF{d^_**nLUa~45+BS-cj(vN_3$tBlXI$xHmMr^bUwS|RR87nM zNG@gUDF4c-JpX5@nbdKC!Iee!D0etHc#`lh$Fc8894&Uh zz`g;Ejx@N#?X_vD=;Jof%7_bWyQ}0K+J324hMVOqU+8{?#W{sRIz2Udcj?uRV_gM1 zKY4v?kMPGMaUq9HOi<66*yIM8$!#x>&-jpP5w|z4-6AAHsO{6h2{0cX#M4_sBLN+{$MhQf)>Yhx23pQ)!(LXHEZ+~yB9BAlPN#+ zonzr}te^7vZwpoznaXAK%z^3l)5nx5$dFv`_TuI~pIQA%L-wTK_WEevl;(cY|1e$4JM*tN=?|MShD7Z+q3a&o zb3-C4OLW4XGHQH~mQQS=x=u>g-6P@IF zJ)IOr)Dlw0TAxuTH{{Qk`_fhJ5YHc#l&s4M@;IrOKL~;;>Hx=R_%YTaZj@=RFSgZ4 z!aZ+q$XZRt$DNqWCLNWDA$ro4=;bf^ z;loft+#c|0*or}tK&0n95!)`v61f*xUBQiWZ>o_TSM9T@0&k& zNwCkfDrt?29+HBU_G5`M6p#B*r74Y-I?=y6+{I1$s#aO9gy#YCB`7~l%I58%KCn0R zJ&pHZa#?J9mTb~Bkn&n?UZQ&dm}y9SU2DAMbPn_%=7Gi*$lB?~WbX5l&F5zV1nc5` ztA+JPsVg)fe~jVVfPbfp8#1$^<0q~a{IY*};|51c=~M6U_AVXuwcaSvtNi)R+t9O- zbN`!b<#TrFy!0;Jd5}6aI3=nnbkoall9JpP z2B8rGaw}N1hQ~X!7p0P39|(7Re_mYd$^O{x(2^_R7SbcBka1;x7dc?+AkI8h_gkR! zhvR|O*)K=@u95>F_9tyl-|h;G)lW6%8%_%0VsaJxTKB;9-4C;*RnjM#Pv7&?6Rz)W zom&^AmK3I*y*gFHKFc?_+rUV5wy(_5*@{PEw_E=hHcIm{RS$cYlZ$RYlvMzNx}MQo zxAd-krd{V7wGG@zYT%8P^Uc3AloE2cnv3qp4gw{*y`$ei3|e!YT?iMMty7_YSi5sT zlALX-VKlIND>A2Owf$A>cpeXrWQ1Q;ZtK}-W$Hk_DOuV=Sz%p35hhvMWDCA>wEf<>z#i`^)y6=w)8=uOOh096KGg~DM+LXeVcE_97 zUbrO4vrJ!ZPYG=9f%KE}LRQeL5k@7*It1zy1XcI2@ z4);#87C5|!)XT5bvR>_02oCUn%dH&|bNoVrr%+ka%1T>qKXi;=c^Uki?%U<^%X(M6 zCG#$xV0ko;oIh&XX%-PQtE%_f5O_84Rba}0VhW{Yfhg>)xP-NpNgf%vo6QoZmuOM# zbmPm7+M0G%_2u>_@e>3k(I$Z;{^oPGgl|!|PFm7!&vc4W8xz*hfOr&f%|4D>iQp@B z@z_S~(pd%V*egbp$z@iQb+gibA#3NVkqsnEjF^cZ&sc{PE8Y~F%I6D3S`aVB+|J^j#hC;el!olTzpAG zV-)-pB#Esk)M9g$7#CIx=AiJL<-98qs2w}kID7g2-fN?k`RR%(xdS}W%BYkC6xgmx<+FMa|f-VCYJVc6Nhl}#MY6@j;?+=x@W zwNA**>&a`U_Ze2sr1|U~@r+vJlxnW@hen_8*PGJr0c|}QDp-f+xq*Ch7XMSw{+@)R zhEZVc{nIBUDz>d#q3(bI=UyTx^rdL!QAZS4Y0o$BnoEfilG1ORkCG<`t&RyirAZHG z73Jf~wJq$|cpI4lHVx7QXN*6oss$8|mTrUB-(K7=Ka;gN+DqL=Xt5^!$A>FER5aPP zTwT2hvONKTkx`>ef~e-Vd!@2lWpB^bmCaCV&pMHlX+}{WmtpJZ)-Sf*&Jt(2R&zXT zDuq;@s$#b`lvQBDfZN{r>SjRsLZT;jRk{R2y7R0|q-2&~VFO)P@UC01otKqAnzR6z zm@WlGi!>s(_BEoF^616#CqcYNOLNgNHc2kyLje~RqW0puK{swOmuG|%IePFJaQ3-X zK%m_e0slL}E#~6Y7lYY(93NBM(u+}d`Y;2;2uNc(!OoBL8Q9v!P32kNcW^ytE!n{Q zP%m`;_BtEiClig)@gCbp03{nlKiGZb=|Hdr}Tw_o&eumZfcg`xixU&^%1tn z@SJT59}pU+iKb z&kpP+?`4aSCEv7=8?Y6Lxte^dEo&q*nRG#%v4dyU@ZgD>8vUt1T0(9k!Gg}Bb)fVT zM5Vf*^q`|Fb9J_>lJYAGz47KXhEHY9f$#34VU>Eiv4EK89aHhq&28-!%2GjY8EgTp zu1GZ3aWm`tY9*~=8NA{N0F&OmUezT5^U?ET)pFvA&-WN-j?&6I*R`U0vW=up%R_~U za2cn>J(=+*HRCx~GLuMMK%O~YN zs$Vd0XQ(Wvj3tPf6%5*9$F~isO`AyhgL5Y=x%T_Yq^4fMvciFqGxwg!iux|FM@c(; zgtUy*e3os{=d1VVeqyauM}AC7g!eVwEwLTw2C$H%_5qH|vryZXi=(GUor>Wq{6 z>!Qouw?$GprfbY=yta3+fPMRI=cV0l+Cx0EJ=s`>Cyp_qv3-umIC2K{83tDyK3qdN zj*Dqrc!-z-;;t9~^i6Hchz9>&HvA~`=Q*ZA0f}NEotvZXAJpQc3veYPjcmoiNo5n8 zMjzR=`?T_|+}AMr!c#vLwm6{5KV;y zJJ*SY()hqjh`6DcXZ`OnZq4VmNr|{$R(+FzUO7C2LEqOO~O9v*NGD$PqmD?(v zVR)|~*PtqP!k|-~O_C0$^gNWVF8JX}yRxm@f!`c1OA0u4sS8^eTrc-q^0|jH_dKRJ zb+eyq5V48(&2=o>7VA}I_YREMh14^d?>|Jk2RaI0GtMm?`dbHbvvS+3rAD}sa%F1E z3&HIB8|jmES~P2&E{xR1jzrGl$#|yen{Lzchu#B)&gs zQCtLFPmZvXr;}1=*I&KBS}PT!b{sryLF^z}f)b`1vVAd-J6M z68(;-%WdhEb_wWI8VHpt^j6?!w!OX`7{-mL&BvCG8+?u2M`vw>T&p(1>jGD(a5NZu zt1H|hpqt-lAT7|9VCiP-SAUq^=)EEEC?nfha!YRxVLGy^I(hJ_aG$Q3!dJF0+`w68QTVHh@|v+ zqKi6ab?B$EIc!!R>bn$z7}Xk5oV}}vSnDxm-j0uYq$yV3ap;BI71!< z>gqICNwo50-XKbLIJaf$quHop#txQ*Hkt6JGAvH-&s#ZfiW|1iHOe|QJ}6WO%=*WYl{fJa_*#xY)hwfTYjIwx=iJ#Y#Ravsj=B&%Ebxyzad)A(vYI51r<_UY%gOVKVoD3ws_Dq^5 z%}yJO1^eaRvVw{ax-FlR)4|`_{@B=JNJbY3y7m0|ausjH9GIGK9n-bxlKahXFI#F- zwDxG~yB}m84v8~JOFVF*EkQbaYuZS8ps9fwWkLw|B2yZ$gwKE|-#N}CTew(+PxarVW%mn3Q zEvPm4;p<5r3wQ=#*^{lt3<^enH+$tKs!_y!7U0mJ<_bAlyM%~tvZdu1s=G?eaoog1 zfA-$Zw3Fu}_<3B6(b}y>$CR&ZvwAAW>B^N|^?wFb9p$23bP?5U`2F+&Kdv~khCCwh z?);p4J%se4WrMG0X`b#=md>=&NE}QBn$S{{xGT{`ymt~v&YmLGUTSwIt3Q8p!afGy zWQkbg)F`e%D3&9o2uh5ecU{Ui!z2A#xQ{DuMYM&itSkeBHHywPp2i=0bKEk^>NWP( z^ozo#2O-LV*?s5FukX4QSzE~w5xXDz;%y!|J)ZpdIm?6rSY&TRpJ8~Cf*ODyhfbhc zg%}B*)oH`A&%S;+AbbOGx)GTk)g4F_E+0+_@|YRWWwCjX_>!FkDnmMS&LbD9nD`x$->4r4=14dEgN+S?OQ1gO;D z)%v;%u_U1tL##P^SEVuwNj_a%w6E#fz^wgRA!V>awk<=PM>F*`dx*V|w#QHXSSW8w z4gHZOAfXH&D_LqD2i1?ayBGEQzjp$I-*4MV4k{ba8s@B3t@aj4y)uWNpL0YhrQ=fD zuTYAVe`mpP*t6qyjMm7e1d;<4DUy>)U{}9(u@bwa8q{B(=}UII0fMfi?=PspqTP#x zdMcWIU{%K7J2Orvk-)=eHB|0AcI_6j282?g6Y*LO;w?+?K=YE_83Yk6y+H{`Hrx$1 zt*ePJBpK44I&i@6EF`5MF@-V=kk0F$G|UCqCXQHRA@Q7Z1LiAyL456N-j#6T;zgbo zB|>ioSF+rRivwYY%mcOVU|&lO;BEoEBOB(+=fdtSnarv4o?ZH?5|0~eH-tMIdu^?| zD|78SfFflym!K5pHox>tU4rB^NGCJ~=Q^Aqw|cC?4_~cp0A#O@EcpT31@RL&1k~JC z4=FR7Z8?D9O3p(nXLQG4aZ%*A1AEbBgXWS^60WZ4S=~?^&P?u0ytVmzrOOXM5E>Fv z7*E)O0 z{hJL$PCQ2|Pw{N{Sz)MCZHsfNE{Xc42QO3nJ@Pr)8R-EPX`pFnFz%$t9?xQTkDq+W zaqm4J1lF0Bx1^}29G~IHTtm5kO0j8Eg49XT@^++2$tf)I-Ray>5IQ-_$a*?bi;h&f z*S^B<*mKN4!V!Oe=>lq(^xUUH)A&0N?DcVpc2_w$57B;d30H%I;zuYgg6b$pP$$HS zE_{Xz^J}8-D-HR)b7&%J+DFoeFx~(j7-t=D=Wn@4rcRYyW6G(0Q= zQeHUr!bpVkulUsz-ok?W{#E<*)J>O7SX_F%1O>Lcy4vvwu1KXc)^LP$g-M}zxUo{Q zP4Cgo^eKOSpf4n6H%_tn&4<9Qo!X$p%JB9M52IQ2-O8g^>9?Q~A}dmDDKvJry@;U< zrN3g0inZ?|yUXp$V=q?JHomdMh@QZij-2Qz#*#_N(GjZXe~=vaqC zpZ<=nf2@9?v55Z9-tTBN;ZulVX;bfXma4?IFPs_@IBcEw@bVY`h&z#bS@I);>43zj zkEZ_uv6Tt!@p<>AbNf@u~p_(-uVv_+4b|4=qt;VGu_xa7puIB zUORb8^}D`+v54wu9IW@)*oyHjIXf`kG@Vg1si}K?blisPnE6ahws7#*o6-i87AZ3y z|EPtWYRRrWuxP+9=*Uu(84=n6gN`(?y&A(rEtkYW>f()qbontlp=^zMZ5>6O24R6; z)hzAAb@8_j{#_Z`12umD7M*J?hv~PZyvHB;v&5#y6!U_Re>;ONMuu@(&iH1Wq-zAq zwsJA8NfmsVJd`HHPu)etjl5#-1}8?zh1WA4Kvp@@+`b``6jW#PcO^e=zOTS;@j*bb zuGt2pGwC%7{XN6dM#)0 z2V=C1vJx8(D@CP+#JYR!*%s*D^XQv{smtW62}tEf>)gnx!afI`-KfJkc2e z0B?%6nQ`T_D&b~fL#}zLN;P5)XQMP8&CMSI22h0OYph}2;aq%wH!<>>@|Jm-<0+43D-)2(J-3uko%c-n`TpavYR)mcb&RMIfcwPVbrD z+VB|)gCwi&hl7ipIpZldhvzv{i*J*NeU`Wj%&nb7xq%C>5$c=o2Akbt`_t#l!JB5^ zQo-n#mXhK{OV3LSYNBYxauTV7dTh13Ze=^85`)E+c-B%Mtn79K$x$<^{tJ+4FkR^es(FZR z@bBOl8OV{f_cC{(emPAqsi$j62Py!^&Aq?KrmPGFF$79JdL23}2y~$uzLhF8(H#Qx zUcP22a&PEgCugceeISTxSx&Y-!_UkJXIRtLm;JCfGQIb(2$VU%7XBxcu+-O7|G746 z-s8J7Dl)vfVX07RPWcguC#ly4_mgXr)?S70WiM11mO`p~ z=MRm9xim+ZFbvxj*4dhW2{#Yu1_*;HbuHCp6RS2-*C>^RDYFA1gY>@X?C{5h6PKlw0EbVG%xT z*&ECmt&F0*Wz|yr$v*^BkW)_W+e54e*^TqnIc%iQSy&0^aZ2{YLz!Nu`coPHm~^`2 z)IOO&i5r7`(08qh>!aaSb9PD+RD=Tp=2xI15WF*}9k=I?FiaV(sF00Y$ktXQR=12C zK3?2!gA-3(+SupVXVZAwze?yB`}E~x&IY|gSR-H@Q9%nLS>=@qd?7Ee%F~}C8`-}f zsupZo&X#Vw&=mOXMgPywVll)eNP&?3R?LajcTS{Qo^d={DRGS(H9HerhY35tHx3vi zgD3?R8v)VJU(V}(8EfT{4^lfV56e59Lvm%)CVt*)*hhT>AVq;}ugPB>=7lpux{1z6 zW9a>D#~H3|+@zgku~neapiX);)9vCass4aWRJ&5dAO<-=wYBOJ*S|B%Y-!We-2>q*9HQqAjMSlT2K2eSXLI*6!>p^= z<`cK9zP+z%60Tjge&kV{ouM#@wA}YdQ?1G@(H;5SflVY@2&>}*j2P*Vd_eoF5KrkZ zmpVG{&gqf;O+hAFxkFlasHE!E{yvq%4)he79XYzV*a>w;_NB_O&;~OGr3jQwmLE$r z8WAxmm-a_OWETv1J#x`HqYirA{>Aqn(9p#~Yq4jyszMjxSh$+D$rqJ;PuEf}KU)jM zd%(e*-A|)B3ITgo`GilxDsb&C)6Buopt9s;#bN)iP3=II^iJ5t8AD;^i-KO3>?bKb z{&v8Wb+itkY2ACaagkH)zy3=U!m|rFu8FIK!S|RiAd%&{L6I%W$ZmlMGr7 ztX+%u#*I?>HLliV{=>DZiGxgARi2kP(4x@_q10igqX!F%T#YNyg>}B~N61ST+pV7$ zCsR_>Y9{^qJ$@!7*Z_mWXeJScNPKCvrU|aKOMD!VB+J02CRSXbllqPcN(+gJ!!B5y zde}&xMlu*&y<*Z^t$FdJU7SZD%A|#+*F2^E5#mEnoDTsigk@EfSQ|rAY&HECE-z6F z>H$%im^S{z^T_bXjPkbV_?5tu$!P6{{)K4g!RlVUHf~d`vC)4SaFSd391zuuYrwfWBo|%Mv z>NxV{+lxv(=1&NKMLvcG9l!X{z;){i@2FO0b?#91XB!Kh2Jb?vDEy9rO6*-5M)Br5 z4epRW21*OW=?#oT`L^7y=;%zBR{PP8Hys{W58NZ(wzk_npxMdD<G^!n%T1>6IXsL@Bgt(om`Hp-W=RnSjp^}2ybF~D?xU*?kibne{8O>Or`bMmJ-I} z_EB+3Vsj{~=ZQPK(=t&%3t{Bh{Ve!qG4=f3*`>^m`7r)JRpqQ+E3RBdus!K)MvvkK z@?WyM%6EhY+wfj>Qrva>NDnFC*7rskZ~{b^u6$_y4`Dy2E(#%YiXp7u-(4$me!5ehQbnISNBmLFG|nPxsqp9xoi?C!=ntw=tF}zbas*w#$11$ z{p~St@{o9CNq$Dtw4!6oy%)F_pToS;0P{algbK#subl|xigcRo7 zs>!iWK9DL{6)<3YDR-|#{YA)o@q2d%_e+47B&N9LdWtz~bNxR5nuq5c1CAoI&lO(G z?_^U?|0w`g>&A=Kl5wnc+V=&KLn~6%dXl!tLV*bfRopGjeKg%2=h#UK9l^a54r+T`s_YV8TU55nN#4hk>ypVuNC&953XhqNN z=CV12FK|oBsw+AQot8G7W)nmd17G+gy;5DlO(2tt{C{ujpaW&Kk0-&B(|YCFYdky;eSIxiD0whU2B- zBJ#rHxZ1vvE3Z8}&)cJiotPF%PFgEHNca4BAbKd)4AfURV=ynpdNnYZ`@SxW+h!+x znDuZOcFvaWB_V0ZWsENy$cD$#Q)4?nzc@tsSxav{QsIH$-PtTQso85gQlVQ{S0`DG zX;%so-|xNK(w|}LYE902(jvC#59wl@<=rX8R!y`XNh+|%IFIddI zKzmwh8{>-ks<#}K& z7$VziqJuMhR%TVz2({RvE%xT(5e(+p5$g*WOnxo?Am-ZQpVLQ@KYzX<#!9EDrB&it zQBZIEi=1aV@6^ie`R8T6G|~4?$R)VlPkZ?Ap{kKl zEc6)-i;j*a4)4L3wBP^trZGhJNaEjb2`~A)*A2O@nBZn|?$TkI;BIL9_g!)i=9IUi zqa)NIj8oaO(lL+YpSmz&9`_O3pj9FcBP=4K7~I&{c%*_GgZZL@!&N#uIZgbZue1_u zR%(4&e(ltU?aj4@4F%mxZAREFsD4jhsSX{PTi;Uj1t8_JRA#Ve4*-2jdhxz1aV`(8)Ls1>5g$5IiK1UNi*_{czI<88c0fq-=cj!!C7vrSqAtys8otgrTXiNWKwn&kRNLdcdPxow z_2(re4OgaGx*EfHvZtYy>iOuF-pO2xSP!n)(bE{rzWX2GY(;e4oDDZf=e1Y5 zr~X_a7*=A7U;Ft{z8qC~xJ{){q4VsALHlY$da3mf#VrAB63(q+)5LCdm7XYJYv&1n z(OI;uWD|e2jqM8j)N<_e3$%YLr9+;>5*9!727Qu|k-@2ez`(>GeZN+2>^AHYUQk%* zvf6Lau(i1tb1Jx|Dn+p~Iov3tC0dj;y1P@_n`4*>7g1p{bPke&e!vlkF$Uvok(Zm< z($XSM$|{64Os0}@NtJ6OAz)X+tH{Y8y^KG7c!0UaFS*)hDtG<*lQBmqC-jD%hRmbX z-cls18qU*qs)upeUWvJ5y0yMk4}Eq`Ye^Knwo#`x$@(C9cFPCm=FExmfg(ATt9ps~ z`5o9Dc)jrQ^75PMIAkP3#5QW|(UmuB60TpiH{q0?^;Wkk)A!if^xjc>Xihuv@=U

1_oP zAy?bM!6AGzG$v+vJ{KAvrf83vf}uEg@L*PTu1@|9i}wz4<+jH!>U?12(Yh534Rp0~ zjfU-5%7>90!PYCa11X6;ncCJZQNsA;Mjp>%d(7in8fz<6n4V@v-9{_*K)JM{vXcb*|wcsU1p_&l!fxeRjb{{wVGh< zFrU7M1O>(0drh!l$sO`8V=tH#gJa#t|L{MF2-b@`RKjF9L;vQPf+oHYPUQ%J>(bjZ zDlSdDrNmZ=#Zb;+_X+=A>i`zfJJQgs*||lSK#ccgFJNE8R$}4*gq)_D?ba+|^utnd z(a|iFwNkGQN3^%5UcrM`6dhUF7mA9C1Gd_C?*IdHUh9vNlakH}3aYnBZDw&PM;)W= z?7`6SXJuZmG}I21Sh#}jaA--hWB27laV9M>VAcV-@AA3AZdg3VbD`{4gXUgci@G1e<(&fq8P(8SmD&;L zeXMj1>$8E2cR)@h-BvkLXusJnfDj57DAHxaeiAp3U2KF{b3R2c50%7~Nc2X&%K|@-5 zE2~aJx8Y>46}er6l+;vf=p#)XXR1zv_RCtR3Di_o{opo=)7D0eJd$BKx|jq91>Iwt zbLN(iC?A}zhPIwFW4;^2TfDQzhM`viYnU$zujY_ag zjY(k2wShpt*zf_#)!EEkEBH3}sp0Sc;23gPu9s}^vEP3yvgyBUh-_10 zj26*lTD3LFpP81HHn_bPbC?$HO- z^Za~RRHn5)wDn;4-6qh^t8iFFzIh9?Ot1sAfoFjyB*>0zIhb~*srhhDz=ra}vvl%5ug?{> zy{U$Wh&rQu++-xz}bWom+n6gf<=qE6nE(1d(_dy5!%=?2a9hrOSsyU&yToI(3*lrk<-(Qx^(aJ zZxi6N=E-{1&}se6CDZy7u#D@65O76nqeyj^Na?6|xtf-i`TF+G6`VZgam`EN;>y_G zZeIP86KH!}H3I`1)DOzDxr8pkuo{-i;X!a^WzJKIaz?PEY&ivmS3yxxR<~oX_J5p? z^?U=sp<$8kgn^CEy%YNgYakwXqRym}z#F!MR~fvyco2g@o-zLmy-&RZ;Vv;m#+Pme zCaHTrlfehrd=F>4(_f98#b6Gc{Wq$)b`@aSwK!HBxkKEU_!i)cv4iSf%r)t}f8&Gk zCwCwY`upp29ygZe-*0Yd!I6LeeDe}G9ZdNA*S!bDIIj8JO9RCErF|c!T^cYj<_jGO zB7)(>mr{?JSy;lt!&B?)>wk^-zX4;et%W1Cd(VWAeBDb#-nO5nqR64&ro^=xB9QE9 zL%#5w@&$2P4k?5F{(kY@trbmO-Tnn(*Ts=+r&cj}SdJI?_1$9tfB9J8n7j(Lqr~g;3$KQsg+<=-MV<$p6nhJg!yxEYT5oW&C%9 z?aHH1RMhS1wGBIWDPzIOk)gdYF}rl6b7y+AJePyDr5JYy97Q! z$8E^L_x~TnC5$k^Xb^NnpT-)@Pxu6-iS8~1B3ZBo?pXI`&5#WM3%q{)nhZ8nnaSYM z6Hah?%29xtw6b*Kp#$UU8zvw--j90TB@DYf#4)d{(Ili~^~+ zdbKz=JtyamQaE22CtyRB26oRZ1ns}9aQD=ossN+yK8_t2b{(`;n^zKIW@ZkB>7!Dy zlT%Zx8&3N$CTXVs1xH5k{7UVHGlI^@TYY~12X#ucI(@j@O(_@<3U4kU^A|iRsi-h8 zt$)+;nvsW7fk!K={mn_iti5JgAgY+3Z9ZO9y#N2W_`2!8cLrcMPVT?q3T4!8fNS zLuGop0$BI1mkeiwJXdX!Q&Oz@3(R^~qDAd{7lzA)ksU9E&aI7=V%K>+@GH8571Y_x zMx>>shdk4jZTs1{cBtM9^(rl~lI6o9Pp(~SddFK>^2*#8Kkh6J5%S;yELfuCzvcw< zctqhL7j<{5ZI`HIObxCNV9SIcmV`pT+Oc*Nbxcl9&NTAmb^~XEA_p+W!;fldqok3l z06<;}ow^n=Nb*cqDk)fruOk=Pw${|pAo@yg#iRRQEar|vr!c`F5q1BiLymqqAIA?? zLSJkwSi|B6-;P*Iqdn}wDc=Sl*#W_U3plvUvNGLpWA8Ff+2a2;yUGneqUYK|4?3ov z-dzodMkO?Cl9v|5;as>lpgP(? zlJK`he|!amz(LX`w}L@Dz~yd_As+{@^y}+Xzy%hA-ndc?I7aON3n0f|U)NYQMe*5i zh8W#pC|mpYB1ndn4e92nLC3jTfg>M9F<3uv6TiOxl-Hz%QWQ$Ik>(4Rlzq3n|9jJ{ zju3a}{u2iOjTF+Krxl=<|40!xh6-nL{(A{?ZYskWr?YTU^Z#{;`V>nxerHlv9z4V#&cRiHT2e=GePD1KQR6G`@4kkum%n|j-6fNHl%&v+-S(m z-T4{2=jDHQf2a8>87fzkQ^kd#q&&Fjg@Ln4`-hkR&~RTAG!vDAHQrBza)LNE2>J3z z%|rkW6#sj~UtWo66hWRU7~Tqc^xH5xq5tve{qblLPCK}$EcmpzfDTB=|9;!}m${q# zjkX+cLQ07)%;UYy{im@1-ETS_?Qz~e>dKCpr>39cQTF-EHrqz=N6wy?M`V$I=j=`v z98Pt|8KijWXQv)@_&lFydQ4RN-ye{ak-u%Cmd@L0cBqW_302hp{mC!))e2!Tr`_qv)XKog>y1Ucu|HQN&dWMt6;m_URKYcIr)juZM^ zU=H}xjP|9VMUAwZkw(9s<}L3Y{}_<8t1G>9-gDs4uNQHZY6m-~z0e>2b**o?wn*AT zZ0dB%WrJhC9`uQ0a0sTs$Yaj*s-EcYmA_W$2Mah;5sqC>E(=cL{ZfWe2s|zR_0JX>e?Me!q>OooRiUO{QHi zf#XCTZeP0u%;DjKa2Pl`kON2IY|SgFq;pIPQ0Ws7M^3}}L=sj}G*$!*`3P8rXE*$O z|GBB3X$M^r!hg6*YG?!lrJaI=K2U-?c-tJD@^S}amb*}CD>~wyNQr2g>~tX*rjFJ6 z@<>SN1M^b_j&Be*3{J@f*e^6V2lgDlF%><98OT zA9kGf2O?o+W+n}HuCzc*=EKg$R@*7|r_fb;0S46^fu3c>UeWJRGq$c3B4u8>+w9Fg?ugG7$ zRZ!dlKTdveh-nu5V7EL6E-6yb!m8%!exU7MV~sIiv+r2NFWeMXbibfxn>mOI$#+k=~=>#BdhTm zR~al;?^bcngh52!;X}(pMu|oUUc@)&3MpN2I~sn+c_CF0#3{M;vzA%fy8;bvm7_(J z3C2hz-^cHJhasHr^&E!C2oG?;1z0g_DtQLGKIR)18JRB6?!h^W+w-R}pqL{;eCQf^ z{6lNFPei9kLR}FmT3fKTt?O!8v=)1GdunzrsKz?IF8Tz@r1(d)r0Pk;pomr2U(n zc=AN8zkS6-4N1>FifgOU5_b7`h~=8&t%nTT5FP)Tf%3(w@-8QE^omMK>fYYo|E4|e z*&a2z2Cy=YWEcH6!IY7bBKHd)el|`_#mzLr)5!+6OahKs_lxZw=iEAFZgGK7NT|Gg z2WNSiJySA5PJyrGGy(TzH{EA^y2AH$herPaoQ_vm;XgyWqdUx!^Gezf zO}%ej$Q9Z9@{ZHFqmsOJe1ZJe;O4*l8!cYjiu54D35Uyq>YhX1R)|8tNWWg~Behcs zXS0q1|E5A1D7G#J=7B_bFXn`<=q{?0l~o4hc+7Dvz_=89uGzK3NgD?X0W{4vEY|{5 z+AES+{OgQj2vU<#^ z+0(9dGw=ZP#c)*8VUT17{xELNwY*h&*Q;#U4vm`VCCP6o6#%dO_^W=gax2qq+FDxg z_{#qmWnThKW!wI{rSg^`^OTTzR)#XG>@6~92q97C2-}dbm1u8cAtFPzlFUQK5E(<* z2@w^-HV>IXI@ja<&i|~l&N=Ix^R9QT_gmkxpW%M)`x<`N@A_T1d6_>yh1E+cIN+2g zN>~t|xz}hPQ&|qtjO8vsa9Jd(El1Gw|4n(!w@LHvFdJ&6pG%Aw+tu?34Fh4|AKp7q zY!&#x$vzzap+ymt8-M@`(l$nH-zjLKUWgIjfz4jnOHWTP#6;p)ok>It!#juhFC_># zRueR8tgndS0j#O=s}M5JxN8^e#m@_rDIfN`+I{@L};Q}=P%@W0`oNAtjfj!Olese_BQ$R`NQcyTij zL_JzdQEe1qd#fk*;pKn+as+x8NTBWci5X^~oRr!*_ zIuei;?|#XaMxKPBKXFJHsNKUQmNJ7Ckq-UW>G4*B3|ZZWGZ~x^0f7=FuWj?qcc?X5 zLd2vvNsM0Z~k=qA?3lwKnGR1$m!Dfm?i^4rz&jvldVlXBwR` z%xx;{l6wfj1acqLhgZ2clAtL2X?QuepZWj)B1Ag=1^=jj+<*ng2vF;t*Hl9P^YCtky>a z=6O!Rq$b6Iw}+p{{`)P`4H?pO_XF5-ad|HP_z*WwcDFc`Ip=cBTpptD1H12syn3C3 z-!ki&!;uG&M~#E|E;eyrcR;K(#f6RyC&+d}i*tX0KsBOFBUK010QtLfUawuqI}q{~ z;OoO6c0$5%tpLeP1vVHug#5t=3HnneeavFS&FjTEpw5W|>;GPhb^i zIKNFEDv?0KZ)aV}7~Vn~UMJ)QAV-!ejk>tCm{81dYc&Xi-fz(EKfrBM2x7;BeThjB zO~xHXcIn3j>UK7<1ivnjcK#nRh+#iFq#fN0j;T7@g#yl?IYARTb()uitdxrbcg<(k z>A2Zqaal=oLrB+sR)f%B$6vRLe^xtvzp)3bG6JG-Ek0l$E<&1@^~3;4#%ceHcxHrnw0-Xx@-r3h(u z_M)QZw}2LIE65yCRlo=iaOvj;USrTC*@*BBPTZ;H{>lItb0MIO`4a`RdPN}?)(!<6 zRJ$MS!Yz0d=U<$&C*hXr@dxWNzXe!B?IpUr2gUdOaEB`PxC+X|OTzX{}I5J*14huPrcZ zARk8y7qD&jf`dbO7~b^Ud~HSMWo6eCrn=+o4{|xJc;9pRTy96ZhZMea)zYq|_Y=6YkX+9)MO=IM!hipTrGcju5~Wbs=Ex|M zf`Z{HAzzjsN_EM2;3$Kx)3Hi+M_(5X&@N^Q@)iUW^musnXy$eL7)|DFLKBJLvI+Zp>?q2W--NfCM^l|_zsi5*>@!>#ik z9N`Q}3T&?njt9wBlh3_JEaT?@P6;vXXsH_HZ9IPuyE`Jzg{z)*!`c0d=sXQwLgYj$rCvtn~EXkc{gxF-1+ zrVspU94yP;&go(aaCS~5RKJfTGlO|PZKwI5q~dvHS0)j2I>zhqiw`hMF;}w^e@7Mjzmvu`Ic1>`B|YhVOLza|q)@6%|15~?BHdjMz# zuk-I+3Xse(d_ONWZbgQv(wX9*QF1Pm5=GA+tVAMRbPx*2e;ARHo%r)o9JFmVPp(s7 zk<|GG#9CUHg^*oziU!Ae2-QrPOeW{$hTEp<)JBkRHDR8OuWqAiAlrQ?i71F1P6C2k z&vAZHa569%;pI#0o+t2$VLFX(D8^!z0(F|vM&+2H)0#avr7W)9o|4s3T|ip;-hHjN?<5_;75$w0joBlJb-r=b`fFS`taR5=Jky>^Rh zEID@S2eKJ0KW1inT3Dm2wUF&-I8e`&#-xop=k^9#EDZ@Z#WJLc&jhvlQ#!Bdo~4Ya z0i`&)^DYXHAOJ6*!PZaS!~{g1P#Vbyyv0lRevny-#2^WRxj4-$%e&$CS--hVcH(J2%` zZU{k+fOENj&CLgs)vc7AjIRsG3e{&r8HXhEt2fd+t#ruE^KQoLf!jt9|2CZ4 z|DAkwRu|d>0irbY{DqV-ba1i{;=RxFn1sXh*a_xIyA(@1IyUg*H2dbm%sT-rj}%X( z<$(tJKB?|7#1=$teRap$6^jrZz2!s+VLs5Lf-%U64cm-z4Q?Lje;O$5`?ngDNUnse8 zvbwBByn@C9v$h>pII$EO`zvw8hv*m&29o^z3F4%aU`ZSAhsdzU)k;38{eOPX(4u{xuN_8** zg0kH=c>zH~U^eIpkg2jiz)p``{AFVCxR#tJ65803m$xYwYI>?ixxwU8fR)iPrEP?m zo+8RS*(we?T>z9e(u;R&_{PTGfgIdRl9@LTGY$E$Cim1ajm*&(nc&IMXB_qGvFw79oNn*FmH4-U7V_Dl+hePTp4MMYsyIcnISN*VW(=1?m-)qujE8+#dR4`EQdeC`;T+aK}!giQo#OMvbNDE=VHK2oyG|NkoS76nPIKJ%!5Z6BkkssGA2UP$lLcuS=6 zLMIUuDd#?-@Dg|`K*q)G;~LXhLu{y$J~Q-^8k6<@d5;#CGyiPGPi8)dYQD6UGHzci z67VPoM%juAf^R;22}(miQ5%rP{njb4sk6*8EBJ(PJ%GY?1$ZAx0{_RN@U{OLBgFl` zfQ0{djIgv~#u-pTvoht+H`y`50s9f}WvdfPB#zy~$d2<*rJkb>05NEqHA5rgJEDMv zJr{U`-^0C>4${81^`1@c&gu=lWEl*?*LjkbRsb}GYrp{C1`ceNdaJ! zCY?#rgF8#_q_qPkpImu!z3H&(N;4BM5fi)BcHI5|ORXOk`RB^Pvd28ZTi2s`)NO$D z7mF~i=0N!!sYxT1Ggoy0CUG{_LF@fByQ`fDbc4W+9bH|Y0dnEfHd>$#`Qoy1P?=Ol z@TNdvZCk1z4Ez)BOz~ekF<&9+APebL;uHiJrg8#5|J;MRjST5e@VoTDRc-mRXI+70 zV+l}KtxZw4!UT=$v;PHD#Qo2xqODIEFzAS*|L58=JkrsY>KoY*azUIqi#|JHwZBQU zV3TCwW4QO-r56*^w2VA6QjTd+QaeD;qgv_TIt0KLQckV5lDg^WI5*^&0VPyiAA)rO zz9y=!{%&+bP*4ysqelWz(R?HR{8`Vl9-m4*4UJICt5T3=pNmUxI4HPE|Y0yrea<7K`8OPpm2!oC_yVSFj5=Z`{Z!E;gilnAHho=zZXIq4IknP!9ktQN2st zF+}AECcvPA-0wic4{73Y6?+Yzs0C?k98=q?_d(~fK!nXJ!in^SYT1f<1_ z$B0h=PxZe9idI?YczG+o7Qn-a%gdW0b?x-8wRg%8MhVc(b>gOaGKzoz1wd-Y@Kpbm zYoK*Te?TRt|wyS(DV8%McQgOA0lojvaiz*EM{Dyz z@4-6@2wX4k(8Ug<@mb*bJo^^-ORo-&67XUA{vTmV-2Z}8dMSmfHxyP+ajI_p2(6h+ zyozmMxk6qayfz5bwgN$&MDv}J+hZ4y9g!mI7&FzKmIt=r8gPPL5(|)X&d%JU;_e0h`Z~g&rDl~VuBZlV7dfiiBfN&_H%#CRo2 zSr5B^aWVjuwZbxAs>udRtb{};B=h+MM65?$xelV9_q?B*qKF`qHE(L%&T-<)vJ!B< zl!Ffj* z@(rF_Go!DWZnkZ@-iW)3v(2fS?y)aF$A7DmjZzRU9+TC}W}+ac#{$^hk~ z^w~%J*i8m`2=OHz9Lvqd$1H+G9s;&V($Z0Vvmzml4RqI#0OEvf2PRI&_->5%=!m56N8OldZx~&gil=Bh>^*}pW8~)qgeF1aL^$^$2}n8lX2F&P^I(^9SBBOn0>-# zYkze|Ze#vJfoR>?5p^yuMHR+muTk-XSQ=79<{B8uER@#1WKiDe&X0f;%42hco}S_R zg@Sz$m45~~5Fs3tIIYmu=$_8b$mw8I$jc!viQznjq#qSXqC55xaI2(YKVqNcKPY^d zZ!$Sw63?5Aye8kaW53?&Z^}!a^lB8%mp`-QLS!J9zC(dZOf($0otK+Rmkhc>KND67X z^iE0#A;Um9tsjbUd9$;#<_kky98Eho(bz)+o`4WG~$?T!g zB;7SR_%0MbZVz(SToqN7G(lI&keDiTfFO@`;GyKSG%6QU6;DOijt4rMurF*VPWN+og;)9?*vKxt~ppbxl&U zkZ{JK4@-Q#x1}h9y!({%b~>#Bx!E)g&qZoMCg3Uc0WfVSY#<{HSdUG&oRe68jaP#(XA~;p zUe#6u_5}q62YnSKEuJBcpanMxYbtiOedIr+)9}^TuPoP4A zXJHEbye^dhf~9$ryQ^+QdW&}Xx`5IfjmCCrxbY(RGyr4R+R7_-z!RddX%tMp)1uANwN z;p@J+jPxe%&qI3c(R0Pw#*KQ^fh_=ZNrvj2b~!~r_x?@b)dEB(C5QAI5a1uhq*wZD z5T{ELB#*F?_L*3A zui-;O*}jtd&dwDi*27O?Fzfi6+?UHOnL z8BmPX2Q`OFcODU>pjsBvl-$WCK~y#di((80ZtY4NuG@Pcv9WU=T@dj6+*Sfi zepLo{|C;gl4oO$k?J6&eWO5^Qf#{U2Q4Js{e?FHuEgmz(@Z@&|?hH?DLGU~P&^qYl zkzk5nIpTP_)?VX-p=~X%qQdO^?`}Uxxgt#=?5J5ExQeuRwqdC#Xe9MA`2rj)mxxvZ zqSEnzU@4502f(COF#k0y)3~@|>jNk*A*Gh;+ev-TC*i<6{AOze2=X}Y6BJbLt zOX|>B^2T#Q6JlAhIpGrt4zKcSrfD$V6aHMw@u*N z9&3v7c3#*N~X5BI;1W`eQMHzeua~nFx z?16>Z`%WK=?D8*jUkL7Wth9#6hB1Z_J66w6)Yk4*;NHSWOBrfAV{{Q6rW!#zo-sTd zjC!~dW&y6|^Zbe{h{in$I~;w0{8sG`&yrX5+S~7c^gU`k48rfZM|1v3m}COT4J|a#8JS1j3a0n5KO8HSRX*gIhn$PWTXc96Oy9(+et$ zjCIP|nd-Puj5mA?%}RrNA=g>VpqJyAUmFbUj17Qy580blcrkpDCCG5qmp#GjRCp6c z{P_JM)3|4~MpD@z1_*kmH?z8*+Qb1h^KhLS3+WorPV3e_=_rjoV6v-IZ+Nr{W(Cok zvaz^!o6zr~PtP4b5=v(q-Y;+aes?w^Vk^bh z8ryGey*tBsj^x7<)X(B$YGRHJp%7?lK*a}mrFUo6c%?1xOr%bmkaHJjJ6_H1R7**b z7iVW>`!!UjN2Y`8Hyv@efp}oYbIiz^p~X8rRnR;X^9w>T1*-&n&On$wktr<{L%`=$ zp&3RO9vQ0%-PK+~^BiH8?rsqye&y?ac?fmeNhIXy`xHu}%+=h>(878LkLEM44^#|P zA`!W`j0%`qekmAqOPqvyc!n;v0h*3?_+i2}6GMNF);63tPboCogv(CS zQ~4&Eg|=3=?3H-{gR1$i{#x}JGCJe?ET*iD@FC|uf75yKZ(;b=_$yClA$Mp4Ui-4g z-whA);v!fMq6*=bgV=G6a3;V|Ujs;p+%+Ln22Ca}>1}ZBD&$y46&rh7p6(>?! zkA=MxG>2LZbtGI^Ugu{fC4o-~(iD7-dA5T2 zJw;?iGet~xWnzh_}0ya}Qy>sG!RUWA(J2@_PCb{Se~%(||u8X9@Zz8fw$9Z42$d;bsmNo`RXL8OOodt>2i zWDpnH2M$%oqM}X%SkAIooztuvwFG_aT^be^GrzO;4LmJ-6s#n|(Z{fRq1QJVw=oC7 z+8rAz4HJ*%L+aAIw7J<=55;L7lZ6c>VyckXj%EW|(ZhEP3`UvFfwW1o4E>GkEy3vc zl+Ke`S)^!t{*zHp?@Wc!W7ZZ~cfjvxzUcf;N0Sv>O-3L3kcY3o*_kMs5&z-^COnyp zRwTGWdFt!&5Hz=vp;l_75f06BjLq?YG6REYY*#Y5^_`-50v>-<@aRc{VM+r7WA2HQDtzrJbrd;DCcGty zRq>JJd30qOn!);lWBhT{DNczC45RbtrBVyw0FTPkR&R=Mj7opim?kBQ%z6d}21GO7 zLhttv-?yF+2iUj8oH)e8Zlp@z;%&2a{Ql|34;QtDMrDpmIxqyuju0j2uf=F){jg3|VB4W(JrrU(s`p6HR)V?B zkk{p{egM(s@wGfh*3r>X^4y&Glrdxfn<|cp_X=#G@+NXUB5b@QLg8G)4RrDt35~uX zoUBAT0p|g3qkwL-N_^SeMaxRMB`nAUZ^a{}i4(5*4liuMFg)jF>wJ+Pb&4%52X)6Z z7aAy95@LO<+kgnWjGXOfXKsnLdNTAM%414{9EH(SDvX(=s!vrb#qqc*oN$|~KkuscmEwUT(ygtO(gIT@U zbBQ5zWv4uZ>r_8h;XM4*!FC>fbmir2`(u7lp3c%Jkg9k;S3a1?O1u>LOxPLb#|bzR z*@)$hVHE1fMkyBpK+3%mJ|v$}f&SVH1-5T5%F}c`rT7oER^vsIVuX&R#t?=0lUh=^ zy{pKGh5QW`vL3olR6y#$AG%IXDJc9SDcO@eiX)?|8Q6Ba&}W(XfmS}u8O0jxDbT~35%+An6a_K;o^}~pxb+E(!HVByL zRd#3KMf~p6-QDecw@VFaiwkm3c5d$0FJH_%)X@pYOR8jhofV=$pA;8 z;(j)6t1?+d|(+Kz}{d^Cn_e>&l9FUQ{GbSk|14r?QoFot0?{d6mx#rxbv zp?Rgrw)#D7i3PX(wUZ1(`d|r4%xRLWytGSV!*Uk!>}+9odnp8zNYBjC@O5bT%otQX zkBTcDl4n)K!#N`|Stl~4k-4mHse86`q5U|gsd0AnWG&v5O>fZkmfV;}+}a{5>c?$x zF34nF=d?$oINZ3 zgP_6xM2(qGjGy%N=OaPa+ww*I^B3jvs=Ic7`NC{dtA^V~z*cNY2d+`?*S>=dxOR*% zai}xzG7AB{+{Cj-4|N~)Gj3l{Nu5tt*FB)U7Ne*@v`h>v>Cwe%v`2W0N-))xH~PE& zLhf&3%*Qcq1*93@qn96ZaiumZ2d~L(|6y3$;ji+?Tzq+qfbT%-bfEo~g$iyFbg`99 zTPJ+aaEwlbVTs3dhd}}zhYGkGrN8zcTdIn@Ga$MpaPCkIh1PE`*9&QvXbP)OQUCOzDBNR5n+B)bNrP@pd2E?&Sl_a|f@-wA|~rWADTn+Jky{0=g&Xu30pDbqN1WSfA_rn(?j$P@jEw(Oh#k4 zID=NXv=dkqeH1uYc)4O^StDg=Stot(iiI!i99}8pQI9@n(iqk`yb|h{PKkONCBmX6 z!zU(OlGt8)qb1CP@R)Lpy(i z`Ht(v-oE~VnqFqYD&;7|9}w2;X{DangRoJ63#hwk9EWj{tAEm0m%khEw6z7Vt1#=e z&7JLTJF%p~W|Ktu(PqL*pl}v1rgD)#mu-Bw@uaY?(n`SlU^|xpp@8ecns0kiK>pK4 zpEn7`Q2lA$^!cjLfg#IBl6T+$rpSXK6GLAY-ex`z*t&wJR89A-FJL||4EmtE>>Rv= zYuI;jtqU7+SJnNu=+!pgCOw~P_$qA`_1C{sDDTH7vhVxdycR1gQ7Mjb`hA*y#Y?D*uA~^M_EUzW>NDJ8Vr#(A5%Jhx+*Mm6TNk6cZ{(Wv1cHsZa827x@v0Zc%muW` z@$p=D7MaV3BTL)Qm%W%%s^3cr+M4~lh@(UWk|S8QI(+5|?sM4g*12p%q}{4LX<#DV zYza>FF4N$!yDU>(AD4s@hiSf3)ew8C+{1`7U*9nWl@Aeu9r*4O=!>2Z96~Wz;!$mN zj=W8UBrU5@e{D``2_j_|Mwl;Go64NZ2-=&M~FtX}j{_wpvMM*;hcSlb_ALu31COdVgf5OnPF67<=n9O{1^dO2n zw|Qkt3qK!*ylHYA!DiZ1>ZEMPOVUDd#S|M<7x;+7jAtsZovq>$wQlOle`$pt7gO8) zHNCtuZP0j9XKUcfc@z_?4-q3@^F%fMNpr)`aP7-(JfFOCOhHbr4M=(>Ze za@Zv-sUgY$8+iappvp}B9S$%|3aZw>{HDx>7OpA!$4Clstl*3p&kpE$47&?bDU+NJ z-^;mwY;WE|CD`ep`>Uv>x&p|6t&2qV7rnH=IkX{NBWY4-uJSL=*kF%taaanhK zh!83-azfS_BJUs-a1HVCWsQ7FMq#=O=%OXvHQUeRQxaHcC3w#VQHCBv8hHkT9ja9` zOSaJAhgRxGNN3*j!x|*+=*`V4EsXf*8f)d=cRH^dr5m3oG61U5fp2LOtMU5M?~sW#h-- z-)TEHtIuchrkzeJlQ^a?n5Z`kT6n?MJgYqPm}Pogw*#rvhdWxJd1T=D+)Xp~Z5n#g zHiK(e?bbwTo>gL)4By{ZjMKz^zf_%^c2B7STCT&IXcHa2l4e`d4G3aIKdzAI)qbf< zk2jmMM-Crf{(8*%e*fslvS4lo+BO9?;`T{jc`(OyH-SZCZ97lX8N|(de+X?mUr@W zTP#nTtIaRYtw1%bkI$HK#x^svV7dKIP{er;-DH%pZJ|%ZuZ%<2SgMx_vFknQFw57-(d15O~32s}6}vFA)ThK8l!i3&Dzu(rAua!+EaDUe7& z*lvQK=l4Gd>%#481?`GI7wFQ--*0@r{?s6FoM{VM${u{*ojU6e4Pu_#YtFS}v>wIv zg}GujY`;qwXxyiWi-Alc4Ct~M$4xj?} zb0bgbp#)`JCrSnw-$x6GrDb(J!WMtRQ^K32h=yi+B@Fqw^0 z=+9L_THQo>zQc2oXJ_Ao_SS9acC)v$JAg>}gdxG1|L@Lgbf~Ql2Eq4%4KNPj&@l){DNBIUZYl_cs{p=VuQp3|p&7@1lAFr)0N49_OFRuhGhjRg}OhXgXWJLW^nu zg2)PJ?2N1LO{m`n-6K$WsQ>-ZW1Ny_3-#?+`X&msST#X60wkj?P<)8$3En7EJOQgv z%%p1CJCgmq9qa?cP5PLgUP8An_CWF6+Ck0xr{$`+6dYGl@2BStNf5!><^&6jTQxKi z&%AU|YA)(Z8zD#?jy!DN>vJMb;O6#*=wWoK4#nAKneO23QOF*tQa%IkUObfa){?zY2Ij1}GFF_LK^;1prA^aC^gxG%Rh} zZ!V4w*vDmPsA#HOlwfUwA7AF?@06)_rv!a@{G5w}-IaI= zZ9-$e)ipQ4-%85HsX8X4{KJJ-@X9WEOhIF*hqp%Pnwe=YUc4`hqhv5OV6g6!8v&Al z|4^q*IP??(ZoRWJ=KGd3Fp!8_{j#{|zP7n}HC9{dd1O&!k=`czyYI1}J~lRXJtsG1 z<@AT1(|si`c4n`p&PCI0u*GgZ*92g+i}1?rWUs5R@Q(jl{KUP+bPZrLs@y z;ZwaAozK7Hy_2unW3U#9#kp5$*l10*obdCRE)is&-|ZKRT?eIh;X!iOGMPV4t8FUk z>gt;RO;zwDLcD2;HZoT3>6@^gjqWGd{8V7GrV`4k-4ZNSE_}`W0U9;loOtFFvwemO zKi(2QfeP`aj`E_wg|K=TJMrcg<2B_U!s3c4lWrMkixOXHR^Z*&#w=*qPUMmriKyaM zF`~EdQ6nj_6oS+U$aif410o8#Ko3&0Nxf0~-q#muE)l-6vXVfzeD5B`+S;0V>>ZF} zFi!WdwQbl=*{a;KTD7;dwCwHeMLleyc-ZuKe`Rs7w7>jSmi=Ak+yz+-0#bGAj-jbF zF+u^J<5nvFN&OGw6x><*3GL}s*_SJH0h6-g%}a6j$u|CTr^@4>8oKq;L$+lynK2cx2SLxY1urdQuO8(T6$M4sbZg-n5#rz%TcZ$M6NccB zM@%Ev6iz@jr+EqY_pS=CV$3VtEIJ0k9$8gcNg?U&!1VU^_U+v*Pb)wzP$AG|$1YvB z#t3*&K^tNap}uNf>7KU!^yf5vEJF`$FHh*G%~sLuliUBfy_X^@ap;FF$poO7xBi=qT9PfKlDgJ!kudG8eAE9UO)&VCeyWlf1pz`R=9ZYd zFY&DmO~<@0r&LO$t;zX@k^T{D`%uh1H00(;uu`4lB)ol5ZIxjc>`*fpw&f4(tKxL)R?E(}O|_B0Umu-3JTB_!;HcH0?lV3fDcuSN?I5ZOdVLY4C?vaX2ECYw zy}jT-kZEc|t~uAe{ZMV~@J`y0gBa4W|qykD_ z_2WMEa)Cz>b)zl)(w&~W`SvL@=6DDD4qH+{4_ewQmD-jW$l1F_`)I^DG`RJ?aEwq} z_2-?!!hq}?PVOO(pPAQ60^CXIl`V4@1h@f5$kB&Vh8JIV*smw^m>Wc8*?C%D9~n^$JkMridjoEJp08?H2mpCMYBkp61a|NXN>iK=iLid+4SV95R;1WSwB z!o~jGI@Vqq1=cwlubEXfmEyWww-nS9kl!@cknwldF>tGirxki5qgq=vM?j-w>r+zw z4OIsaP(dV_mI(%d2fpuZR3dz-UGhcs_n=E+uR0~^afdoQJp48&-aUW!jt79P_aI1^ zB;$t7wm+FdD_G!EI1nUMgZIXX1`BWd%Xx7FumAEL+3(NG;e@TDrJ0E~o5znCR@&>Koy>j9onKg3OJeD&zrehQ?oAK&gS zrET1SCAtr-_`$<%$T6>4X+2J@#7eY!37;iMxQ1i;lgSHRYzR`yC>OXY6wqO7#Huu# zi1(_tTOT1#jaNRMW<=tOV|+D`RWFDa;&s<(Fj$7^xCuxkIU$=uaJbvH2ZR2^gEPl{ zd`?9CwM3nh&62PqIQgen+bt1nC70u|8)ofiBeAQX;Of^+4$N9o(Tv#auZS^XJOcpK z{gkBXp9z9ZBvs2Rn3&K%mI{K*D1`ye1WO$EcfN|W{;a1& zi?b}37^aaR`|+Q!3E=VL-tg53Xw&;(eTjpw`X;W=&t*Iiphzkbv*A`kz44F!#i-sR zh@U+$VKr}15<%twzC1Jqq$-nKl>ti|!1DzlvApbcB&z*FNawBTrFc#PEet-s6tNUw zMr&cSpur%!mJzqS@Tr+vzWSu-VqeewV}EPPI)z~M-J)u3`Ek_93oS_6WY;!4(u|jZH`!?tJ10TCi(G@Yt7Z4-Gu|P+6XNRYAED; z96`Q^jC}XYU|ABST}}?}l|N)zy;G1D;B(Aw9G5uSz`57T7x3rKcDu-h(=65>xl`re zy(IT!w4(vU1>F0Pw?!P|+f;TI2k{kWh!wQg@KurW-^RDLjyOVjVa5p99~{$2gUoCDDrkSddtc2}Pd zIx~~ze*e^Mu9jm_WU|K6kd;nx+@#`Qcx(-*fYif-j^W)hj|trhN!z8PQC^BT=eMTw zQfE$^f94sxa}Yk-;0-$M(!-GhzkE_ov^<$lCIe6!QZ{_*)~w=U zynmVn%4Gn~6La^!pg9Jcl)CDv3O{C5WE!2onimyiJO<-aAwOzp#9K0%9u~7*S||PZ zp^X@Dd}J6Oc0ZFt%j*sL;BTT60plnfcW}#9c10>I8P|)+A>X;ghUX>6Nv6U{8m$r4 zI6V|NV!0Enq}L9AzSiCKY>Lh3cAoVW6mbZQ6!}NQhijSzkDm1xK%M5zap+em%y_Y_e%ZFuoDpL!#!OGtQlkI_CE{(`gdL$! zGu~Q_+Ru9Kb0BH&Wj}6Zh5Ju)uN&PB?N_~WG}@i2E1GUu7HTTlf_|yWT-s@5pTIPS zi*^I%0}4r2vLvV#paOpd(6EuN~JsMnwBu&>42KyFv86Rg#q)L0*UkQ2%x| z+ykKke&c4C9xqycOm8ZU+~w9+S=&E;r?SnKwMv;V-Xzm2J;IKe?E7Wfx5d@^{$;p% zbFY*zx`LR&PXWX^CGO!X+bY=eKZynp^2$z!;v@K90-&B>{xZF&Z@wK+W(O(1N$zPo zX43QkkWj(d#n?OCLR!H6jZo!peA7owUpOWD&AO$m$sG#80_PF=>ROfgV%hz zqAYgvznr_E66tv9h}&f1&UR_gcY4&1IF=I@-mADsZ7gwzzyFTDHoE08q_p}ptdmm0 zcNso94~<(5b6O4LN0t~)xvy2_UjH(0Qk2w4j1#zC&Mwsf+b7B#c8~YpZ}$>n^Uij+ zn2*%)G1bKwbRRI9@cW5i01P*Qknf{^4FE9Gw(VqQk!Vl?H41@^2%q)Wnx$R^;Oh0u zva0NM>q}WkH!VtQNU_lmWYioKY|+&UH;*i+`5lQVRa!5_>&r>PduEes+~F!|jyD1b zQqwN7FX46&gSg)lGFW;00SFWT3^P2wWf6)g!xFEC#VCF2H532ce@;lJcALpJ1i72N%yN&B9gqpZ2T(L8%Gf`cSaHr@ZT-6W+c^Qb}>t7BdH4> zl}70AZQw#QVO!}jSd*o%lJ4nyN1ClW5TAKU>5~XH@QLBEvjBGkU*8eo?RitphviT# z&0wR6J(_#_Nu77+hHT3tFC;#Y*JJLy>HXUCc5#kmi?;~zT1_s~LbQ9-L3^D4+K=Ug zqGK>?{B6oyJ{|)649;V}T2C7t-oGXt0nK=W!&aIH3IZ2>Hz0rOjgp#RBEf{SPtNT#nGae|*!~sZh0cx03q%t?E3b z?22=Y=nd!Om{flYU9>+UO9BcBUult6p{Eqw|4ovD_@3lIV!$omQt>>dQN^Id-{sGuwUXW~ay-S!Tr99rCQ&@EYseDoK7b5xwnbx^!ZZ%%#(MfJ`*X9MsM7pW&L;=os@j_ zDqF=S$8^LG=zU?b|IL*yaxAMpCZP3w3;)FNT##sy?7R7pxx5EiCYQE4~L4^SY2S-ZUlF z0FCaWZtK#=`X%aPy?+B;=GIsDGrCqoSL;RCLXe>LLjK9_H+)Kital;ul4T(YYQHZ( zK23?*d&D|pN6T6;t-pq&fTw&3(T@wHE9R8v3oQpJd5zEp-&0I!<@6rrBnvB%=487k zKl`(zdQI-DU>m+{OM6XM(>}wur=x{x&gyKIgrB)(e{N(8;Kjtd!(1aJTM|Zq2yNRkB9vP9oFzAV0+*iD zjXD+lz3Co%$aa*s#Zdo2ivz6}JZbba9rq3sl^|5_f3UL|A(F%`&iLZ=>oP^=qCzb; zL1%o9$UmR$g|_R1)hjk>&nJc)v#F@Pp$=P@kMC|-1X-4r^=6yN$AID@86&B4eBFZV z#&f>YyhtqKGy|H0!}B+;R67uH)PwGqqOlybtvJtRXaO>$9#CmyfmW; zv4V9_?EA(ML7r#L*Ne!tNCPIMAsQ&WDEgdI?@N4Q+@Ac2p%~nP%=$j?0fJ zcX|6md(nYrbbuHDqgIO10HKnYF2gXpxT;%>)aZaI_n$O%8C8wzu$Ts@$kUzDy05UnBM zZ7*`B7=}i5lgXuE2`e;+G67mY!TI45B6;20p{i~27HDh$s4TeQDxjrixno@w;s7qr zqjo!L{Ay8YmeMhM7<&1l zr<8iot_Ytet)sM4OQ)G{!tOLu%(&rU#xR;D2rNSE=N?N-TC8_V9Xp-r!Kiar z$||?09GP^KILACY@XhjEJhZ0UxAD0kYInnRb4k9YSK5+vPbk*AV-VA3x!zJO;D`7t zAFqdJnT?nGgkuhzs_7Mcz4oJA2n4uF9{`gG z6;dCJ3yTfU2|zxW&}wgy1c^rqn8eZEh|J65Sy@2CViB(q{E39O~*u2p3{E&xw&FnTy|bTLKv~_YI%6~ zGr!wEV6cVK70>4aK9z6GcUWHyc$+_`iF$gqZJz)!dH|}5$4sEAmX`zQ3Fq_$w8Fhv>73u`8r(hL0>}$HW0`1%ksF4TB|F#gF@XkfO9@XcvHCi{W*`+ z>R+#%QhKK1KcPt7x#9iq7Xu)`=Ys`*1J{&ghkoO#k_z)dTXgx8_k9;N8DjFFP-Z(? zn;5qnWd)&r&W5vDR{Rh_ss!(TcIAcD*-eOhP`A@KW)6Jbv^C-d)+X-S-y31E4{`!@ zX&(!f65gd4N!g*agw*_ee2L=P!cHGXzkKlPc8xBa+iGlr%zvp4``RZoiwi+$N~K+M z$Z~VxRr-(u{B}x-;ctSl%_NP?ckEBcx5Cmc!(=+3g}G$(6Qo|!LAK2K{gjn#LW2I< zP|@*e>050B<<>Z0Mou|8f6ikg;)AgYcr7c*xpifua)2bF058@9X z8CJVj9C2Sdj{e>tkfNer`{%vj%|Am0+EISId1w3MxaA76A+{O_`^I1;+Qo0)V=n6JRLT8IaJI%IJ z?DjfuDD+GQ^+cuu9o=E@X0AYV$r)##zEH77ZoG~j=VW~&Z@W-Cl^@GQ*?z#(49(`( zo>qF$B9V8%4^uE2U$&%<{Rg$YLCyAx#!ZyUb1V-Cb5H(Q^YRgAFypPm3b%x7EXanC z|4BbuA0!nk=s8krb>o<`X-A0O^6=%HCNtH`k`c1$fBHf%3FC9>2poWo{jynA!v zoc&hvN z|I=Q`CK-`Ej;!odj>wih6WJNZp1mt~IF1prSB}b7_6i9pvqSbMn}lR$^}9}=@9)3+ zao=@w-sk8Q zD@DeMuFdDRQiRH~0xA5)crbX@BbDD9xbuJaFzgJB9LVOkRxZ{6byI#$UyyMfpzP<23CNJsE>B2JcZ>l;Vp*64Z2{P{9wNtS*e#T4 z*5J38Kdi^eZ6xmiV$e@F4^5@lOK(D(lVJDkhA*Sfs@w_G&X)u_I(hnkS7IEj`UVdU zdCzBlF#m<>8Kj$(l@n4CEc6CcmUg#gexnw-AaV!sBX=If@s?>)i z{`Mxd8$|2>&EN?iu-07Aws0s*;}G=5)-6eYlSpHp)*qNbFP8I=hh>`2d7kA8 zlNd%M5?+&v+f>0yAeyCi?H$3{t6Hb2t#P^&59qE@6WXU`&keU9*go%2>X0q$o>~ms z|LSH|lz+4WzGS%@9!Wm!(-P$xZgRBEh(Zwab(^v;C;mMMUCm&nqUEjrGGrjJ4_e6m znBPUNp`no+yPy>i_m2p9svQ#!^*T;UjOy_q*YwmZi;`cr)ich|;hy)fqzQ%&sn+9(1Tlrz9TG1PlOq-5@cHu9()NCE))!0|Lzz@@{hlMmgu0~ z3k=Lv)(_4;D|A_P4ELl;cZazZfCBICZVC#7iD8IAXf-!nPWRs{%J;yF0E8g7h?2mb z=2fcs(m)p)rt#Kg3}R0LE!roNt@qkBW(bL8OPOKq$}r#nxDV*BqFj-2_pteu)Wee-L#w&2W?x_v^DCHPpv|5}d&eh)pA-7!mIRqXhsLaWO60Sb~464}B?lOlX5d8!rQUNmsQ$+V^>R-lSE` zn^%H^M-bXaB}o6M@rlvJfA_pr4H>_3^9ZQ$KdVhOu9KeXo7cxe0Xm2vwshDGm z+7c`UwJC3N<*Pz)?(hnb=G(acYb8}NsWoX(A@HMo*2Z?1QMYO-Ne7f2+JsL>tOHj2 z%g_Y8<_14M!4Bua=fh*nN3O}_gX9I&ndTE{NZtsJfU|Ax3z$UEs-h1LPXqc5n$#(8 zw!n-j34sTzV$eyM=?0ktit>P-z%8C`nNsLr^ec!_a?H2UPO^+EyN& zR%XE;-491h@Fn&&;Vu28hc!y9yYPFAX-f0a)W6mA1f;<&^ONG6ZVrF7U`D}q=nG9a zC)9NRfei*zOw(qn_cYFj;;E0osGza0kEtnK&e(jWip4Sr_P#H$(k?8l+-M?HVAm87 zDF;jq;J$M^`GPd^)NeYLK|1ISU|9~{BX7QQ#Jwj_I_-HV#S8oN1>ua8_bOLHxT9(2 zh0=A0ZX}!rAki^(sOxziO+71IOEF;{*wQcyy?Xgum#3lR=5@n2ke~5-(bv-TA)rrC zBp>s`hr1$6R8saY@&rj6LNM>La2hgwRgt9R350opz2Q+RDh**PZ$f~3m`C0#qjEF* z6pQDAzlWv7Ie&kNd>@V`JyW*0#0d0Wrs2{2k%Jp06>r zEM9X)1&l$aRFas9Hp5mW4UHC;zs4S28d>@`s8b( zKFS%a=Z{?xB|dJ6YSca=dl;E6DSUP z6(kp!_=pe33#u78duNOFKK*gwn{n=s@y50Vb)=R*nq(+o*Vn+J!}&``08c4P0#jA% z-$(tpZWyGg=(wpfK?BV1{`I41N?8)&hR`~jj3xaurE9*5R5Gxn-j$5jyz#{ebA9iX zXAywARA~I9*IfLkHDmzazzdjMIQ-XOOo41O|BpWO`HpSMHy17@{im4l7I`Jv*v$z) z-W&{a!AdL~9Tiu*y8%@*q-*^j?mny|70LlN$~%`Ovpwi^B^FS&(jN7frUF%4W^pXY z|*BiZ|X(7%m0k|$%j^dI!Bw-Z>-MIsOR~jt`q+kM0;#$;G@uphaowcYwLv1-*bC(zw%oQ(t2y%e6}kW;9O~eO;c~lnD}*Q%aI~ zezLI2KUpH~Ki&tS2AdEEORHPNo9ccbw?-|QEPHUa3xli-F>+r%J92S+sQPUYW2mtx zfkvKI*U5JK5*1gNiwD;EB*32L3$;-(mJd|RnCN;O%fcQ8ivOogC&5dN#M8jL;20Td za6t0~!@>-w*57&swq<*)mM_og2(?39&B5ODrU}nG zeJdVQ24yO|7%BT4+|4cN$ugus`47%N4iBXQ5T%>_o*Ukh*4R+t)p>_Pa7xU1U&og4 zR-XCj^rDrWS$9%WSg^oZijgFn1R+AI%>BwQ3;m?WyXYNto}@OcL&GO+z|xO;RLPzh{Cc>t7+R@LK) zIGnd8g7@}1#P{rh^jVR$GbRm>;K zkiw49r^_!+lu(wlzctN;_&}(u;+Wm=+e-wqVzWN||FQ+nmvnTq6=$piNJoLad{w#| zmWx=#C=!^DTc71%OF4ejSgre_G zeLzzW=D$`cQeVWpNiUSw!K~WCfeJed=8=oGyo3&~>hTFiscyOw)9C0dfla2BDG4$It(`c#GzzG*m)+R@K<4EaF&FGCDH zrW0|TKzEIa@EaOpeHQaU8ovdnb9m@MtC&yO)pS+sP1y$ZDI*&0W~Ky2 z!lk(i+SN;Hg{^Xl;C&*DSVQ6jAn z9Za+nIRC)1^Hr1E|L=dFFmD<(J&E$K7q44}oI5bj;eI=bN1B#L&nHZO0hej;+nV4` zv1Ut>*GALj;g8xVH+7)^DtSsOr43M0$c0pc49C=eIWCj}go)5!>IJ|os~)W6bg#`# z=q!frKibyXWG6(TK&1QCeJID^ug#;--$nsD2&8CzeC*U6Rxufwa99GiZ13Q3!_@TR1SqoDDOFh9e}SNDsf zL2YhJMOB*82_${4QJF3II}2e_jN2H5z9D7T==r0Z10pzf^_R{@yHmAXop!u{&IgfI zUiw0X+nQ@@jov+;+QHdJZE{&Dr!~Ias09Bo(DaD^q^C4RWLTJJ7;o7U=FMXpaUQI` zvRVHf_kfNYY046>?MVGD^RyYo`4euQoW~OtKfEfC!3R9!8tAnI<_;Q#x%)_jN6F{T z$j>Uwi0>gS_tMXLK1Tf)xwT%p#v-o&Rd)o&)nowU9t30?G8djeDf~B}wB_&jYW*+1mF=3lYq{lK;A0S!jJR0(EN$*UI@-Nu3`(?NG z+iDv`c}0Te$r1rS<<9P4V-#%p#P7hvwwIqH36&uXD|#D*V7?&b#*TXpPC~v(Gq{y( zy#)2DgbRs0no_%2OPX^G~pVo&p`DKmc%RZ`4k;L&GK zfGH@9zkh8zBrJCVKF!JP4W$i}+6(FUY9yb%*fAdOvG$stSfswe47<~|$&aAWMg!Mu zR2(YQKqqUM6%Jw)%-iQu45?)F2aD6n*gkVv?7X$IKoGBu1Zz}N^2VNOw8pEcrRA%j z^M@w(@b5W-Rl$O6M}fsAKUkUXHhnu7|EBRL1z@~^s)nZ!G_zj4HR4oq4{1KR|I<#P z8Fp`ptu#kJ+_-G!JNdL4at7AMS06HvR@1uemJ{W7@pt!+f+J4ha4i}O zi!~=f-zRWwt0a0d_1pgI&9VkqQ92EaF1fC4=4stq9;x`JhlbrBr>e%iO}pD}wqhHH zpFW)E^)8pJ#c#bs4AMFTD=#G8F;im^bZo5|lIxJ5)Tb0Z$J)<0f3&j!3c3sh+40vw zf>c!TxAa6#;bn4!3HahB$5mRv1ZW0zXy(t)QiGpG_uMz~vY#M~h;gNw+i7!u>oD;jB`U7X0>VQ6u;4d` zatWYDGU5W~8q6Riv0UQeRR|Z!{hu0TrMTJM0rdYm-h{Y%ta-Ysr-&Ut!En!#_{@(+ zOpiKm6fknjy^tBn-w4e_4Im` z5h$CkSzc9@Bgft6!TC4hLG6b7dtL9? z{ED-{DL7P0F$mDeU-ej z3}MZM;Dg;0WeO!Y4Wx-YQrd7|Bpr#MgLi*!Z9ZKUa9izJ`o!O=LDeu2c`gIhkikr;&ouaT zmliiKW%O0heZfD-Gh2Cz|9;+n&KgKIFlEsCaMXTMY%KLbzZCW9WjH2A%rkI*{4op^=H;58v; zs?1T%T;g7Z@&D9GB|eug5g+Jnq;pZ8wuHUOLp2^eDCm91f?Rd@>G zNm~)vQFR&x78AO;#mm{?I|b3OsOv*;0H+ELRCxUw-FXXF zLdPaUTc>!qQ6YoJdhl#%=T4~2D$ltF;vLE0t{(^xW$-FBU zTyLiuP$rpgKj1XFa9ijR-Z$|JS(#nss#y4f=>w+Oql{e=|DPr2I6KQnQsUUhe|tfm zEGeSsC2Hg;&KN9Pq@9sx9I2`p%emowah%iz2!NDlR+p&00Skw(XWELya-O-n+ne|c z;(+;GNicM!s_&AlQ{On3SYbVn!~W#MVxNSCy$%k2E3{vpFC888e z_%T4f!$T4IJsQYN9FY=jE>U$~K~kFfjfhZiC3`67UvS#YvQd#ou7re-7~==QL7fJU z495uG=RA^L!!~bo!w6*EZenHhVD#LN*?I19OexhrUE@{XXkUa~bmYCee>sbbHkv5o z&j5@twUxFu4N4h{#0WJ*uY?)9^026^3ukj?FTHL!hKmy|`NV^Cxd0LWq95n7DwSBB zZ;VhKWe{{ah5Bg=a=CsH^FfjC(a(cq>lQE!N+S+uo znsz7mQH^2&aXG2f=?dftDpQc%=zH8hu3;qAW>`8cc%Laiaema2Zkzi1L6RmR;W0Hvz;wi(SA5{ptyO9ML-m@mtM z`r7T}fbKoz%W{F@C~BYT#N{TV&ku_iFs>WwQM+j z;K+9ke;psxrdJ${C_SE;bmfwN8Gi0o{PP?6VA>i$*q8;!-Gp^6x&GD^BH%yxySw;{ z0_ObXkRA0t!35mwVgHj)Q^(XM%h@&G^A<1Ae`hWA-20f=!L$i=RGySH>y7MDiCHJB z2FAKC9g3bLQJvUC#E+BT%yS9d>i?C%C>neG-Mjw~#n*)&95^j{i@Iwl84@+6*BUdM z_g8)CGSj*+WOU2;M%jWQt1i(0S4(^D{+Y~EH|L5@&bBcO& zwV=lIEhB*T==FE^fN(P6#ZK}Q%vEp9q)Te_;ar%%eXZC8eJ{{5Uw&ez-o5fr^^TYY z{jKftTl?#Jy5b%OZZfg5!~(?mc64tF+N5Iz$ZN{5mZIu``y`Sni(o^X^Dq@DW=5-S zf)_eJcW;{vh3Yn!I|TDT>Z?S)z7N6MVzL_li zP-&%rmlg;ah=W6`V!Sl;JCM5=t(Kb3!1j~{Ox3E142@DhrM`GU$I5~V@9fem5KWhh z5_9O$a+<^b2V!)ttm4@Ke2*K`usi|Z9*Nx#cWiw;v?L=Gl)LV!n6dnTgSqW<$(0eN zv4NqJ>bd5x@u&QbqtF05I-SWjLr~VI6RN8VJYV9g6*B^< z_|E?D?#8ktLDtWY70fBysO@C+(b9(lfn{OckZYB1onL&p__=F(uQ-d2%@!8jZ??dz zH})=uz58Mm*+nIfm=$+>-lS#IbMz5Rt!ogN63eNPia*rO#5Ne710k4I4ii8^j(8)5 z*!A+|D@I5;s|?&(ZFwb>gzyCH)l<*@$fT+|MP67e1@CJ zwtU#-X+Uusyh48-u+TOY26)s|uL2q7VqQK8(oA0PqMWDJ*UznWIWUe+QdH_Ox0;E7 zGiBGwDSWa-tw2N#dvnZJQ+Of_y-~(cPAI6^?V)mSA_;CeT|RK<`0$b%=GLKeB^3bI#o6w*8Uite3Em(?vdvW=gcXamH90& zgP<`4^TJ+R4cQ1MJZf5ETiL$(r?1X{E^%;NVjAr5j^VUTs*d|znKPaH*xXzU$JM&X zn;$}Bt8-67OKff@qGH(%$6-$Glr1nls5F1qe{C+SfgM4;kC*6uN&)dZBwd(VIT;r1 z4FYcXRY564wv)4Z^VB2r93Y0J@gwbSddE=$bt#wB-uv=KWqr1Pbv`tAhV+!f3Q{EQ z=YREExYEsn##<#DWM^ zyfu#4l<|-?rwji6^IbwWC)41iZdT2xr&;zg0F}uwjT?;+Pot#7^-@$4K|<%j@IuRz zz~l9yO`klP`3j_*I9@)_q9Sgq4k;D6ufuNosZyD@)ab2^-04VP5K(F-#$1xqR92-i zsnu3532}0@kjpU(HQauOK9%6jgv_(S%;yh$zJ80Cvhrj!uf411begD;dp|fv1^K7tA9}Ungdio!Ln5kbO8}- zAJj1)Tt|OAZXND54XCr=vi*OYw~cHqT37{j(Eh;xdT{$^!&5=H!zJPVzt=1Gt>D%2 zCL{}xlwD^v`q&eqzp8se!d*Cip{bnl%|`TcA;J-{rcLHyyKwVcfGu?jh3C~8VxP&u zV0Hy&hOi9})eC6U{IGu)sqo#t_&)k&tE4u`xdilp!BgV&JR!a67^ITUfq{! zhl@z`APB{dzdA1b|ABoc-|14>#J7xCr zMMo34xsEB!HAuzgAq}07N0GHm+7N-WpvNxfEj4%vHal6YX zYxcQ=-uU!^6Nb`Z#aWKbf+_po`p0IUb-jPdOECPatz$WNk$<>$8S}D(WCY9AZ0!IO zATNOg4Z!xRMK9=J0$5%Q1=iaE@Qb+pTtOU(Atm!Y* zX&B2K4T6jQ=c6$fif0OTYs}?;@)dqKUp1o`-d)!eh1rRl^9{>qVDJa?QU>Wuj@i4E z@yuG+^?I@J+)@n7H__aDQg62pA_b3B`Gp6iZJYK&#=XST@N@KtZi3O(G90qtgMrTl zw{LzL+=iQ82!Y2ZlgEyb=wxXsLcX&srbml1397LnNCt>85VuLgUO(T3>w0`Wtu+!x zo&yltYq~&5TUHQwHG)t_VH`_Bc2P-#KPqH4ZEk<~t!aI6FN-V&4NgIT%BK|Aq|*jP z@Ke5EMJiX{2!*}rCU|!$uw3bx#tJvZt|L{g5~dPwgxJfDsL(!B^uvVc$HiEZ9ni$2 z**W8Q6U*kS5`MqsJqHmY`i6vy>A4AT%xxsTN0ZV}o^gJkb?OMvi4Xgg`}4NaYgqUg zo9}>zxv|6OHR`c02iIX<@0n0z25sZr5lRhvj+ zjhgSllLTtk3y6j?8N)bo8GM8H7N6lvtR!nK-sr|OdO?t zk%eg6$dn7eMxn+E@zKcZau-!!(iEmG{NWhV!QRBC<5qgybQTwupRSlt_&DwL*_>5-r zF;o(qgbhJ`Gi6tLo?b$hn0+?me*};gp22Cp-}aibT0B`H4`E7Wf;`RPt-ZumnKN1C zQi;zZr_E0CTxQ%*{*qzM;Llk+^=SCu-NPfYM1faTsm)4x*MOw7;rjihs#wSsyhup7 zI3t4(9YDHGgs87a_z2TCDy+FlHe(wIG6vb?;`K{Kx+D<+L^OA|EF0`VGG^1qiTejJ!6=tzSS zE(0aiYhe6t>+>*=+Xvrz8~{xbrU}v}qZe9Vc@pS{m{a(seOywYQmxOUjw+y>|CC(2 z4Ew1_pK*8k85i6|2^H;-v+KcA8#HAmE+4~^(Kju@GMRKXQ89$zC?x_ec0mW2yAON_f$fdDzg~cb{!TXO{F5Q1 z?~u|d^z!n@OqP@QkUo%Xq~InLsG59vL#}!})JI#0zWF@R<61PFTIv1vBdN2cND$hJ z&IOHGPU)Y~$L#Q2)nozNPx`X4dSR$WsW#bV!+P2*jLObiq!p*Y6CP%>wQM6L0snO|JscdDSvh^XvNbEfM zNh}z~fOrB~{@lLUPsni7Dh1w&JFMce5VlMZ^p}4(J~+HPP}Z`NqU>7Q3nqlQ*bqkF zgylKNXhti4S@3>M=ADikGH&HfY)=^_g}j~6I7MO0=%T47@b3XEWgJ1h*LSKDa8Dd! zSF_*JyVlFq2iod9nxKTyIss?5Ua4UZY0l2I*#vV#a?pDFJi|3PXt3ISY|ODs)6UuhOrb1*ZKd~*UC8n;WfN+q)#_CR+3MYk|hl>~qPV8dd(-sg0LG^pWu zV{?26iPmoywAd8F+bE*GKdwK9_ysi%4a3V>@~umrh*SYUQAD2UmvCVH_3sd)m#2@ zB0HS*h>vn&RLNUdc;f(8i;Q_0wV4z<#4_Ljl34wE!rH6Z(r=xLuG=*tZ~9qF2o>s> zTI455U~vT`4uamy7h!0R0@e4tP_k~x^d|!;As#NZG<@?IMc&YL!a{Ipw!7peU-!kh6so>}&F0!vACCw9i@!T8nC~#aP>wb&UnQ3}1?AVM1mai5aJI#bI80#+-QyV< zO2c*#gwRHL2oVyqP2U=&l^*w^Pk-{cbqf;Fgx_QadEY_%7rXNj_F@SZ@bO=h$rnjL zgf`?sRItO!&9C5>%|1(*Gr6M6vztxI3TV3(JTQ+rtQqBNUUGl$Y~eI2!VpwxQTqFf zDSsd*avVzJ-tMsdtqSnC^Gll#mVg+^@Cp!k?M=ns2TWrwFS);*Uxp!Sziv-lqYW8r zWCLAuWRQ)?J8-dAb%ieo`FX==<)=1s1od}wVexjS|yj64Ilo^LuTg^`FLoLVw=nph}Ar);2X#>ub zO20R<5(qT)dQKgdy@BD2|G)w<UXs(&TA8YydCMp zu>DdNVYT|n*Ut?v)(i#tKmNN)@uN+FKx%ZdbJBfjTy+8;$jzRD{scn8!;;biX4{wO z(-*uWJuYbN)lrI9UAwB)hdZo1$6)Q{LlbgLWWR6K=SG!I6L84dXyek~?P{O-33X5~ zHCk$(|9lp%IvC@@Qy(Y0%Vwj61j*fwQF2qP@6i+!_>X{+gp z_)1MQ$zoc?d{elB1IV#!{=)|cj?Ub`lzOy)W^r^3S}z-_V(eZ4aJ-+}qa5l$3NT}6 zaJ9R&+EO!9&LX0TV1<{|Zs4euT3d3dG~_}2p)+KbA=aZ$HT;>=aBHVt86A)Qrhw#o zo>Il=*?^_U?E<>Hwda=%z-$ay^wpY@#b;dqO^f-Q<%jEm(8Sdt?TSn7)MXKj?|t-{dx+-%!cn) zHxt>O;^I|XA|lr2hOo}SeqVweK4uisIhsvLj%1g-WL`q5M?w~%hT8O- zPkMJzm`iI-bCADXTo;!_K2DZelnRZURT@q&r|m!_xX7Pu~?$;OKj zNh_oJ{6z`2)a&4&dih$h9e!^Vks6cC)mDQV_8?|T%cT4+N$TK~=~g=BZ_VNfrJOvV zi(?s*&J5`Qg#dr`|6V$Ow{IxGuHL?-lP`*2)$1meZxN}le0CQFOH94bLqgRO)VV0{uCmQ#eIlKD@4y64x=RJtHpIT;5UilDs7>MVFMbaV}>G=n056PO9 zG9~K11k|OL6!x7$F`i+B+<0*{ZvTV_n~2FJZ=H0B#;1M@`nLb4-KRQ{Q}#3eQmGge z&-))hX(W4v3|0N3ke`oWc!Q_5+DJ2V-^GhCuk&16k0qz=gOqfF)FQt!_wJ+Q$-%y< zit#h*?%e+FgI3o}2fks6)Ml0WG&)MnU5yjQzgN^b2<~`3Chzo=>v}ruw-IX3`@Lq{u9FzeYRPCG?)hdm|0gb142#@6E4?!)iK2|ekKrdUw>0ml+#gG{c>n{z*`K4ZY!0A2fK84_m@IXx~M|-P9>JmfZb*>U@C zL^Le>DEnu)CoA!O=}eD?s3<@AihK7iKI#P5{`rF^Hp>etcn_-Kd5&}Dw0#1}IMxV$ zC8P-9z|v{4U1;5AyLO+v)j}atX~XgBsP!1-6f~Vm@Y;VKYaEPlHy$*XFmJay{q??H z-jGt|LbqDRhD)HC5%(@%+4ae*J^KKlqr(@*ufpmFbBgNpk52J{x?BL^33V&MML5+l zSab>%xZQNjcWuTOO97id&W2ULt+$Ino)jEE(=HAppw4VtG)og?e~<0;CL15Tdut5) zGTu*jE_>=H;3S?xeVEBQ6-jSwZ(}W zCqsrF8rffUdR2b4`il64R*Y1X(%d|lj>?dLz=Mx}c3==1Tc5fRI8~fpJ#U>jJ9gtX zMz5>ods%ifJK(LMoW@UA?&rV0>~gY0^VXD<+XsTT*?aJa(64h)P&n zna8<0oB%)bLk=3)17ntPx44x_hI>FZCoW3mGGyJvoDnA^zEFU@@LuE^m!nGu3#FR<7nTg#;Py*dbEw7(;N?^!n=~_3m zLF)f-{pW2ttZ&P%FY=eO+cd>g$P#wX1kNP(fr{PPK=~-vK+mu zb-h7@bn#{=T(1Qq&udS`q_4S(#kbtuX4FB@hQ*8dwUQdxrprK#In2K?>U(;2S{_I5*hoRHB)2>)5MEPpae~bD^ze zpn?&Ga2?*HzJ-rPNaK-5RMx+CvL-p0`KWYkaCooxKVNu%3ghM9C@)$LPvAvF-+4O9 z%?8+d+z_tJ3h;nPPU@%8j*%YFw+*KCA2SxMO+1*CB8bR4Z3n6oDGj~Sn8dno`cggCL3|CoyNNC;uCHF z7@V8;z-W%O=Y6*2C1NDLi6|I0VbLFZ%mx;lnX&Hr5FH@U-TImoki9YE9Q~B`Z1K=t-D)kq7t+dABJ`}z_7SJ%=`b^ry%=67cA z?C@TPs#$fR^+4SR>+qA&y6pjy(sZGMY6fytq4+yRlgU@;#^Ff9a0%d0HH0s!vUSsb ze%f~|I1Y>v;xoOF=+}7ule})qfOzZd@bI8rJcnmT_#LlwAm2(s2CVI#9ICYQbKBx-9c5dD-e&tV1NKl|yS-CV%r z^pmW_c)X*P7eRT-_i#rFWeGtK|KjnYb?Lu0zUh+S%R7B|yTUgD z#+qMX{PVxT!O*50Y3=Onb}y<2^o7FrsN|pN=`E6GC;T6udzKtWmHLZZ>gG6T&oaqt z2CgGr7uj#W|10N1y}kTHct;wFG<(fCmMbm^YS%wby&*Vgi?bZ6Ft>HCERu4no~6WG zqk)iPdPvlad#!&j4Ik$2*P4O`5RD!%wCv^^y!lbpu{B|=;e2i?r4=mx4tJ>J^K;!~ zxyolmniY+N!C46qRBtUa-;H;$j0E8+ZFImd+;JF4Y=SK_5Iw{&7zh0tNnX@7?YMnm z(65#P0_Y9&QhcMg;-zVVM5)^p{@!CieLt2c1PE-AkysD!3t&hzaY1U^Z?;#IuDrHd zCtNja$S-?geWp#nT%x*gFq}UW1PKLz4G`)O*G-t3aUT|;g_uX8FOE)M6?Q3WK-V_^ zhA@uwV+D1o*y(s!zjgO;omHS$v84iH9BF%TXmoL6k}-B_CjYsTr-)Gf@KU)9>(5(b z+Egc=Jo2L&)4P6yW7tn^bPYk@J%ZZF`PTS6mQNjXpFwdhzz{Yq0Wq0NxMwK}q(F0n+UqR6DliUV4>yhFQI>SX^W+znd@40J zEY%-#a=9e%_z*$~{3-RtPh?iWV0#oLB~R6)k|6QJP>bypYGcTA(3npIP-br#3AXhWjCd8;CjIqzbKASzeh-utxxCYBr zAg8KX!_*LV?fP78ntgWVg1(!h+@8edbZE$04udA71qnAC7Do7Olw~c-m<06?wirf( zZIKP8VQbQ3W;%l@nNBJhay2(ihe|1xINzzc(S@hx;WpsewTDH3@Jgniw+;bhTC(n z^6EmJNEi&u5G^(BVX8D19Q^TJ^v08$dOBH4?@hU)bLrjsrgMuf=%kc2AyuCwMSf ztd>7*WSHb9Uj*d23@hJn-Q7X*^MfCFD~X7E*pM8GM#5AQW3JzUFb+8emc_}J|J+x_ zx-?3S6nGn0@J&A)JC7Cw)3Cg`PM7$AZTZ&~Ty6VA`4)%Ma8AtYQ+ddQIC8>0zA*I$SxPu=I z$!D(*ir6@xP8GR3Meu9>U?7O3^*tIm$uO0l;c@k~FY6nDZC(A6!hF9L0v)I~fyT>e zDLt^MDp6eht?yBE&&~p%4J{dY`dhr$Hjjz{FYl1w-&$2(Cc?LE9!hpWh1q0<*;8@t&gO`-2ahpDFXwe4oBBXZR23Hsb#fdAd z;mu32MXAJ_cG+t?lh?&X6kCL*%p#VOw9P6G)$i_o3-Vp|VXN>~qEiGbV)9=mGxQI2st`+R z!-v!C`v|hE_U9c*dS8j~?EdGsCJ>S%!N7-fD;deYIU$+K6MA>Ik2UR+N8&Lm9j^NV z1T_fBPf+fR-rfQi)m4?)`>i2AyG44r2s0u^dc_ZT{I4Psc>2L49W?3obMmv2OIr)P zoNpgiP%Dwm#nsOB`u#kX7DoJl$7^+di}$B|vK?hy4mUN`|CdGaB9aDdMVRiiZqg^~<-WOd)eb2mGM*)ud425ehv(IHoT)COSfW;x)(KJC(@i+_L zliQGt1m!5B+<9UOY$DTAi4yB6aOc7*I0`aNgqvJT;PC2uQp-;o=wJ)e--E7mO5Z4; zz2S!huf(uJDLLBzIJr(fI(qBIrDFS}h?b&@MN3^ri-um;%PQVi;f^tapVz-}=>LE- z3}U_9K2ckgR0@Fjv|tZ3&jgX6b}S6FpnMy$|G{*g(YT5wa)qyMm?Cw7|w zM!ir``@PSJ5%YBFf(Ts~gg`^sRMIz4eRSu?@Dk3YGV~<>W+X;tXuVW(=dS%SKGn)o zthzkq4qzbUOd7i=W}a>VPz?tUxsafXCzU6C(?sEIx*R7`&_R9$ZAqt5 zh3-x4aV|e89KQZ!?F}c&23F4QQQV-(W3;T(u7+%I&Z>Z!n)_Zm-eEH3%K5zn^Gx=Gyv6 zPhMNHE!yT|YW&l*UMD8@g2E zje}wC!?nd1?>vsHP|LGXrK)#sx2CRHD3c|^s+41gVCzJ=HMgo2K0W^ac@biZE)xra z5Ip73NZv&0Yl;0g#wYCeFW^fonVD4YC$Xr>tU+AcgE1ThYPIG*ABrU9FSWvw0+Bfc z7wuc-@0L-Z+yGTneR%T*Mvn~Us-mV7#tDTk8`HL@Dj4-%+so)_G_UDQpWFy}$$pQc z$7?nDb6RC{==vf?xC!yzy9ohC8xWoF|A>1Jps2R4TeKBDs7MfyBta1b5kZvLNKhIC zk))uY1j#5!Y;xEbh)qy}NY*B)AP6W35>%2PsU?YI5NU!0$@$IQobP}4zqek!SFdi> zrB2m32YUBjafY$R8nbg!dNA?}Pl(n@VvyN^i(-5K#TUZsf<}bOM7m2a=)7df`!?Z> ztdRxf{krDSF?e4=?SRdb=6dkHVf^u%4I_}?fob|D`kY}M_6=86jWCg5R2~w@2lN1y z97n?drKgUXfq|kt2wWvZb05`tOMSaf_$@#` zx2JIAKlUny9dl!>Ef`FKIvm^>BA7f0CjEuHbaQ zvod+|wi6{f>JMp*exE4;Sg*RR^I<)30<#w1dA-Tq(7vL4>!J5`qqTE~0>U6XXC6_uuxz)tM{{) z3?bPzOQnOT{)+~bp}i304|NZ!?td}2YLf#up0_@o_QSOyQbwM2YhYcZnp)JvH2Gsr zGIAm=RnP=Bj!v1QGbfyZiF+q~a5R9rhSoRhl~FFUCVTsCIHT4=YX>##cUZFGyz4w2 z<>s@z)&vP=b8XVQdp|URU+SjZ!KxWXrD~DAyEawFaG8a1oH1DF`gvLmrx*dsi`)|M zbDMzzC6zs87)7FYKC_d^13oq6!(#Z6*559s%XbtiHa~4eZ3^=e;U=2B(F#bPyOhhE z<$Uyd;yMf75J*^;fCol0g>qjxi2}SvRu#_<8B7*(2n*@m5LhdcqiS`%J@Tb9Cm?Y2 zw1X1%-=UsI&kgKpj{R_BlpdflVJhF(%u(NZ7q=0=RmRkWaKStmHj|?3=IKJKqy?Z`qOY@p}9#v zCieuKp~V9S0}`5U&>d({(poMJpPzd=pOu1_o)2^BzQaQD{>Y>wMrUv_adnK7W|U{# zS@2J~dUbMG5MxjCm}JjKIAa9`9@EX{``-^DEE=61!!@eb+V%0(B=y$2Y;$(VSLbjw)AFE8=^ zqke*($=CczV94%Ty4?m*Y@=5*aN$J#DrG92y*#U0nnWXo*lg$Yx8-Lt+dd)rw?RD zLzVg*&E<>EB;^=_M|ng-UjUU=pow={&r;9tB)a|cKg&Fd27Gz zd!=MNH(8l|K?$d8SMNy{aS7@mf`AmP%dL__@NbVMm(J(!8%k zwwSk;GtOOq>UHASIVL&Zeam=Gz4nml$ersK@$;>Fp|Fb>%f&NKgQ-Gl^{Vyy5|j(t zg$F^GBcZpMSQn98=s|bA@m@9mDXimsM>Z%37rc8mb`apBf?{y7?XH&&K9Cpxrn!L1 zIjrMuyO4mvgbC=;CT z+uUn)1fn6FSc8Q09LTLs$@~G01+luZgeVP>qSf%jS8-BW%q=EnWtw#= z58yT~hfspwck4?cL1EJ@qPdl~^IeY_=Kk^D-uUSXHDG9&hNR^;2wd04_z&s4XHZ5K zn$wrPfn6KVF6wM2ZujOE9Cd`~m~&m>PCs4d>`RXhCuIBd+ru(t+gUAET!W{f=mu9| zu*)H-v{NQZbxXbv!4ab$Ysk$6Im{~MmMge3+?Rg^s2rvZ&AcV05320anZ)ewYwf%D zfH)-Ahwa~|W(mtCHtUHa$fy+@3p59O?aU;&7?{?UaB}Vc%~>wP9x`%T!DF|>>gQinv9JlC}<=4hkPMdHuUZ>mp;P= z`nuGWYlF%jW6J88$$e+xDk@7J)8+5zq|GG<9ykH2UxxiDQBuZDPz#Y}E|K0S>HUws zpMwPlUT4+1%%~`wGd(Yvs=44(^nxH52aYvU_$ZO#{7uCqg1%j@z8q_T1^yp8O%>4c z`l&!~WV3)sJJrcH*8tLE*~B9(8QFG!rhJpLajpa|$MBeJj7%4781fPgY4?ULuQ$It zXs^R2FVFD~=t@o<3H;v^Uj+9LyAGv98U;p{`|!hpqn|obtvBGaXM6SQ&`ISGRbvpP zL~Qk1L;NCTUShAYLVa?KOTE1VKCNl&K`zxgLcP0F20&CZ6q#%zfs#;mHZCoWtT$ zDd&gP3FD2KI?<}V>OGJst#rWwl54SC;8}~ zkU%@1=~E7~(#3zAP4B2$l->_%aprfWYXZj)tTi3!1euCs>Wn~#fFmE$eCw+-D8xnE z=1TllV9})2@IGxZ+wTsWF4|c}BMu0%hS)ZxYM#jiE+u6}?4J ztfV5C*^Cu(2LZ-)zqK$|rm?;_;Tq9?gcM_1)^@0b?A^lb@b+Yf6hyp7A&W|pvoc)x z`6@Vtp!}zhN93k9O6w-tl+=|3GZloh7xaPN$$3PUWFBf|nV$=lDfiy1opiF0wy`93 zfxr^KQPEuydC%A<7uHulx{r$EBZFUZ78v~k`E8|rDu+RC_!z>B()id|r`kX_KFq{- zmbZ7U7K)rXngScTe|EDDt%ExlSv`M5SO{)0*54F;|M20iUgu>I%%|`hxzz^qSx9b+ zd@+;UY2z!;=6Fu!TzGQZvxWf`pd!5>)Q5hMs81~r;fJ#ydIY+Jf#WgC`lCyse5ux}3l~q_{L#`D-$#>5u zx$rgVp9z%Z#_qwa{OZV_zll`LBBh11g93S<2JVUUgL!&wGmGW2!GqH48$&wwQ;jaQ zzMCcP4`<{?>L%^InS0g)!9SpkrC~yzf^8>4-DOav?CGmf^SRJb=qu=Vzf6dbkZZc` zck2y9GP%Uwv(2?nh`9Vq#}M$VSWa1T?E^8}R_jc=5;qf5Nct`z58%2804Svia?czN zlhD$xP|ol-Pf!BASKrTpZcP7?(h%QeNGxxpH0)= zwzf?qJ6}i*5mxt@UnR_bg6Wj)5>rc#d5~b zXZZCL74{>NP!4zr2sn%qd5-Ld_W|j}>~-koLzS-f&=L)(SecOfA}znj&A(%}SXdHJ zWtTEFn1CWi(`4KCkV?jl2;?`QEhsO<=bt-SDZ|VKc&Y)AYxRsYKn(lSpO_bSOW%8Y zoftq?7*3=e=xnn6JSo}OGAUgy5+w2LJ@NwxD75y}9DjXiU!8}0JX@SDr0o^pgb#Ux z7{ARvK%@r|d7u6Lj+%Z_rf@$u>xhk33|d3yDCn&hoiZuUErOz7`nQ%qtcr)WHYehN z5B6PhM0ZUIno;;aaq4<%%8&_VPa0;3ns$1Iq>epmm+ef?gVghLg>58pZ%jPMPQ#R% zf?Ae9-ItYWBiU@;uDIZd9_>%U#4J~$ELVZVl=HSC21rb%g|ZHF!Va(9B|T@GitWC@ z_B-~}ZRLzKyK;M&OMFv6zHrmD63wxCIO$NBZ2FdJBwQaVnd9pbS@8-t~z>?M-BTKk8cs5qZVCq`!d+yk72176t`d2TOjH!nG>DxnE+KPg%y@w>m$3 zGgKbt_<5vH&(kjE=s%6qlc}KW^OB?DFES>#@&i$bguK%-8#|YEMD(-`+n?9dsE8|s zDw<;+^T9S)$j|zTp`k(Rff&p!+k#*bxG8XoNRVAi)<`KUDwVO8(bvU`+ch}<1^)a) zk^v9RV?kn`xGXgQvqLZ7w!g70+{f#ja2Z;kk*0=&pg+D!AMUMxzRZI#9_lDTL&L=P zyn(-F9WhUyg&wb}RbGvX*l^1%x3d(O{y6SzJNvTkgSJ z*skEx;^9($`0ajAu7Y)K?+vx6GkI@ziRmd@ryU9BrUu%?)|MLXFs*1ZM-bhJ%4)9_ zJ&gKkS`oJ%y<>2v1!;szVX{p71)A-Y@$>)8z4-hojOz_A!RJm;i_p;%?r93`Qu{u! z@h0T8OUEr-S-|NSJ-ywxz#>)Ra+0V3r8Yi43*CDUh<;x7{dESHvEt49^LK$-u9ODK zGOUr^nmoBdMg{GW9|gPJE5>%8B1)QYXH|tB{pF}5^bZR{I_aRr$#LOKCh=oUwA0&+ zK9C!5A-J3b1!mQxw>2(}xKt7NPYYt?UK(H<5+c6h6y!MyuuSnG#y-|f4v;$CqQ|U6 zt}l-aZ7Lm>=jDBE-3?;;)oYFx(!ttS-Uo(?oIKjEagcj+Qsc&8QE_tg)qT%G&VNfJ z1*nRoAOl64M|bP&we?Dv3+Q@NXdD+0!ce5nL6xJgZ!2fb$$ivZKNN23F_-T2!o5FA z2IC)0Bo@|Fom6kc=mEgXZ3%RrdrvvKAT8!qu&N zaAsL}DLmfnme;(fra)auI*2MM7{j&NNThAWL$XSF+x>Swo*EujT)jl(7Tj{kX-S1P!gusE^=f5T4AJ%K*hGHiP>+YJr&*_JVg~ z6C3#i*;vuRIX>Vyz(N8o2e@GU*J!L*;+GuX8|`Ms+LExng{&zJgF<`ATfxsJHhjvj5oscgM|BXiH%-)UT2 zjpDm_nhZ19!Jn(AJD1AvP;9REx51!|&0VQAJo5C~2wDlDm#&*bk&3Nn*It#9n5R%V zXSv^x?x&9k5Sw;yd$sf@1vN7sI{fhP==Wds`bXVlEQBRou5X*!uQy9Hq$AALVwx(< z8$+wtR;C|P&pIqmOZ=^w7q$-_UbQSf5jr**s(qdns1kT7Z?WQT!9Y$f+M!ofX;8lS zY2$sRrwpOl&w75DzIc8)gll&K-5%@icZ#?Ur75$9&Ja32x7!*}S`!K$1Fj#nCrP4m zFOUm{fS(jB1hMrerQcVO{8I;l;R-}VZ8cp!-0rx+f0*B;30JwyZ?1uiu6^nJaP_JL z*Bjd2!}nNuzgvRbO!JjTbH91chiv<;Nke6Uc8T(p&$7*@4JyjvNLP|^n88tq?bb~} zQQn5p(Ebtw!iU)3&R_Skda)L*qB-4w-yp_9?MuM7pKzCxSc6Pn^hz`O98b2&M=~$I zBHs1b7~JPSE>Nl-^++aMi8gdWf}+fO}^if zt_yOgbUoL<8J*=cFzr{i+PcrUqUdezVaOW|l$6i?dO>q)Omb-OHs(^}dAwLyDPwgL z8SZEG;=42_k$DB5UuOU?9r~$3GrJZ(?-H8GPE$K;63P8JIg;l+Zyy>l)fMM{>6i>X zV%`M@J7rJN^A}=h;3Yb?y-&e@0HsUy%s*P!T>q9@_^iK4Y@Kqw*+hf0PmuAq z`|89Fg<2cl0+Uxc4JvMVx!(m@l{-K~R$Q#1MiMS9tuNCJ0`iVl9kYE%GvGIw`M}+> zF}<7=jvyo5`trrE%s%qJa+@^@a%K$4CZ`4uE_kp(c}b{gbO)ot?RDDw4^r#taeDv* zf*bdjdsh#7eN3GDNjv}cT^04wMOuAklJ`xHv*+6ylYkX_`kMrs-t5Ml6BPSH3Gy}b zb#;f%$|g%Ty)CzoXbIni;5$pm#fu|mU`z==eGkiwx4a7O@7Ob?=~G60kW5Bh>+hO-pcZqc^8K#9 z)7-!b`Qc=DaGiSh${KLE7b_Qrl4|aKaBJI*R++iBWj89ELi2`Jr19R|Z4xIBoTme6 z56%_lhh_HF=|M?!@pBCscL8Lwl{)=$!IVMgzW6*xBO(LU?W#*SITJF2MgF#e!%Xdg zGPNiryCoI-59WgnoZL^Yai$*8GB(e%?A=;s z^PI;<>lx4+g6rqf?rOigZ^g0z-?fyBQ|RvTY$%GWV~w75D|pnE==bWZa3&j;jUpR0 zma8(l>mDka?4U5tvpzG{MD*NKb)Otl2O;2%rz^Rp8Rc$OK1s#ta6Nfy9~xCI&|V=r z^zivDHtvU;D5D;2o`gYHndg(B(jDav#PcsK*Tgqw)U9Ws=m|Pm-pwmn2i0tsuuk2t zo7v~d%0XZBZzg?%!&yIMyZ7YzcL;-hmigtSfkQ5Xm%POIWST9Ds6ZQOdo1*@v^3kx z`dt;cn7b|P3VvI^=3-jZ7|-O@*fMv>`d)YPRYRw7W$=`az*9Y(7JzRlp#{8e=6yV^ zk8d3QDbzFQHn_Y!dvxiN%1{~b5(_o-6Ds>wQ|>%lpLNBeo7d&Wz5Sc)|st5PJ#dS#CM$FgP9Z z&4tS~4`gVc4RreNy=QFL-4h@a{ytTyvu&bAp#t$bEni^C@3-;e(8jO)<0!jOVW9lT zK=o4ZVB6x3L<uaTe^+YlG{g1eM4_Gvx(*eZIYeyu+b>pMKthYsXjS3D6Fjthp~CPUj(5kDTJU zyjtOWxFz~M1i3wZc9zI!N@e>G&vcsv3Be@iI@jo6t4VO-Wc#_B`AqTXmA2MS|7del zPR@fC!o*7aT}}*OTUQVHI^Ak8&($~bIK+kNpD(a9s9YMqkz2pA3Rn)*x8j70dmoS% zjQrX_%W=*db6_n@Cx6;co*&V(US=L;n}2Z^3wHI{Yvh>yRvOh~%m=QsKHPQhKK^>S z_HNDa!{(o{qnS1ye*!)2=#KZ89ZD`(`}=+px^3o{$O;_a)}Mo~C#61KPo?20HQS3; zdSlg$7ys{U1a+f^_>J+?WbP;P@m55-2#l`2t~Ro1Bpz`R?3sd7MaHKDc=jKYFBf@MC>qg)HbK~mt2YW`6UHRxnjmNju_{yg~=Jt9w zqM@wDfx$2D4Ci+td#JVqE%xh6Ddaz0e&<2znEDLWAP@*O^*aqp7Ox&;-Gm~*=zVn~ zYKWeoEZT~Ri>k+^v?Hv-r;)I9J~cM_8iufXM;ZPPTy*cmKai%JzD&A(f_nucF;ET8 zv4Ez}EmtPnS;{In6vQGLCQ6$c-5aYXod^H0ihQO8tWHiez67Ft0Gh#kBy?PV4cu9%#&~cz zsiq_T$t9ewI-lCbOVQL^8u5i{bxL9YyAP37&x{VhQ3M-Z^%+L-Ezjwdm6#bI#2VzE z>8xzx^}dwmefb2y&`?<}TqYc`7oMIq1aT^68z1V{V;#so&S#BuwG7 z%x}5(r0t2Pj?TgdG5Q@HNsRALs4+^OzFTFoeDJpVOmC=U=4r_h83gLxVlc2}kL4;L zVnE;KaZC9EI9l0yREDMKRauLA&fcFk%-@X8_R`5%E=wHJ$;c0uS1%s$ldafV%uB1R z`o3jg=P`ivC4o0dl&oiL8S^HRkin9T?o@Tz2OT=>G_(j#Co3Thx=- zViF8AZL~Tq(&dokKwGuT|E)|CzDVA+iNj|ip|OW5B=}|7Pak_I4)NoeY3qUopFK;v zvXdO?v;1JB84MQkPSaE7ORMJz0Yr55Q0!Qp}w62`g~52~wARgXH;UJz%cI&nsYb~)?0&4Ywfp=U3L?f(6`i=RNl zz|wtXk23Y8?!8=Gx1UWLeDr!V@p^u9)2Vq`SI^zm{dCq+*ZkZw?~IRR`L+c4Ecr3t z{#28Rp&*`4&^$$)xLg{=5|WcU#uT_mJ$t?gQ^yg;2Spc2FhGW3RV@A&P{A(+93c0LhgUDX&#LKh=Q1{di;`VykzmO@V z=evRNU#gRNU*PhZ@6SM`iLCo{I|zXDseu6WBR;7obxg*X);{UH>u$!$&~TZtq%>+C zA8n~Ve6({((sudv9Q_v_=ZzN!c9Gfs!Q7pVa4)OM(a-*=wTbm+I+T20;VRy|8i$9blf&83P~>KSOj zmu_?Aei%M*{7!%B@d#-m+0}i(w^(L8J^IRdZmCN=zVAwg0+0Omt!VF(nJJs!=#q{w zmk0UM#GxV6XjQ&ORA7F-nn|mDb7mjL2Jub0Mo_41mst!vVlTLwa4Po$aT?LWC{B)) z-GtJ}&DpYUQ-Z6WYQLvH&g8BSFxgNaGY@;!;=!#b<Scqv@n1$RX-7p=jkQE@7v}jtN!NB^_R)>$VHOn`LA0Op<0Oy!mC9+?*B90Sx9|xQh@5^LeQ30Or$h z+Lw}ZYSoz~>99k`stExNA`ozG6x!FkexEU3b(ELCB)}}$7*zy=hP5GovQ6?Qp z;qQ}3LFNO8kxhe2zw+(X_;_|BJW2UxiF3w3|NMhr>bADENdIu$12luNlR1U$U0qoc zww>h78KknHdwAiu+;VSPw3fU<2<~DXr%RZ9*<7t>U4iT5buQ3Oo){k|y~;{?P0j7` zoIF3uNrTz*S?j+wK!6mfu;l??g1Bs@Zm;ES|5b1w&xo6#R#>@TF`qm`?uYVKu=W>z zOI3Dn`-sG~8CWN0Tse^jLc3Zfn-e!&N5Z8hK>mE$q|m&MF4?uyz^lpDIPFhQ@nn>` z2PeDWmC#*Il zB_)m{N3NZX&siJ$=ef(DWYx(ScN2Tsv;IOzaJ(NQ{YH|Fh!OaW4= z&tEkzFY*iQ8ad5%x@7Dw%xhHoy`CcEj+@){tW>|!?VpR2U6Zp_^j(|F1EOlB+gt04 z!>pA*c%G|&hvAC7oU!orc;rgn$qkMri6vW$v+VHn8?wZZqdw*F1m}p17(Diku8`gW zHHPI}!e!P?m%9nZctuK69-~dsj)#>8^4q$79wXtUi=DR?YY1qTuXcE)_Cf~ zBPPvO1p4L*8qDOu&ks=(-q%=lpwTkUC^J7_Y`X=NuluHycDD}y<|kRJ5~&!+bTOC* z)t+EN8gO6_0-m0}mC0H$8vyf`wE#sOjN`AUP}6e@U-pj-3$uY@1X1blZM!D!Q*#Th zaU4H>d~0lK+d<*_N`l4NS73*gd67fPyicOgQB~(sKMA`j1V=33+3lYzDHS5G$;kDX zVy})m8H0s6t1*KU6$b}{R@K1%daU%$X+)*QOsvmyEO~1z)nj=7pWc#dpxPeAckkyr zHF~*)$10aDZFcoK)p1=u5&iS6>BH@WFL|aW=9MZi#!%IQV2mA+j+ic+*W8w%Y*W)m zns~|v@PGQfoo{VmqiKK~?%p|{(YqL zd;77qb1mo7&_WnLiyczY&2poBLT{~J%a7QReM3D;em=fMkdtn5s<7ocHn|f9e=$JR z=kxaR@h8FdrQ;{c$K+;6nHq`h0|R;U&9YiIj6E~96Vf8Em!$@L3Ps8nt{Oq91MJk> zss*TIXpks{I4qgWLxBlB@1-fyXq-tdNRdybM{9lucX#uh9sZU1F8`xp5g*kS?&EZs z#)W~3O8L=XIa~Y8iU(J$nsF7@&3D+^QS}yu^wf$pUZVoj-wUa;T!%|7*GAi@T}ien zdCLyQ15;JIZ_-g#Koz;+tr8w%b0}@Zp3zr2UYnOghZmXH3e_YLD2;FxOLP&BN+8)a-&uNru`xwoyqC>f zJnC;0`Jr4?`UQs)LHGjrc^PTfY$G0fUGh@+3I6~}e;+3_3q`v|(`QpNMWtKh-5Niu znM^}@t76+3)ZyKR;qWpC`^I;ekCdfG+-VXbPJ^~-*Q!w5qwRbP`v0s&EAwDF%;}?* zy6@_?^`ri?s52?Qy^Sx!F(&^{zvCM{LAoI@uk?S95XA#y5^+4-!Z|L-{@Xb34f9f4 zkjRK4fgi4iF!SQ^8btaQH6nd=+JS)H z?M7!EjH1le^zTcHTH7T`T47;Q>)P;H|A^0&9%vB-2+`yrM^&o*QsJ5zG??2bYuUJ- z;T=j5O-pG9^lLBdwCk+>q#@(HeB6|iH_1Tc07k!|F(>Ux^Ao;|Le1#Nf8c{;PIO(= zt6X!-w`nPB={Ckkkum-mVTXGio1ho)iQQG`OYQLad|r8RxGW$~zJ2t?WiMsv9F?X# zy}{>Ik7b1i5&yr;CrCS+?g8aF8{Xs&ixUE`@X0hV5B|>K8avx(;y&8%CmJu7>yC4% z;>LVaUe&9^ptQ4Q}94CWm3Hl`iF zWr&U{24YOgxB4)aFEI3puwnF;YyUBOisyD-py-3REvhE(c`$7>5R-<)+-t7J_^$LL+j$8#?!=5S|bs!fEj`lSsu z1?6Nu7;zf*L|L3Q#p*Gzp@xlb>nh1&JcIc3kFr)1x>aH%mpPxLSVCVRxDP)KHjq<9g zJfz>2m4J37MzWa6h{#G=rU%evy8G5xLFofNuM?9tR+2Zm zMs{P~@zjZJA#Inxt(%8F>N7fmb_?TwoATzbqAW((5cy}p4b$8i@GWORP5abGCGl>i zYv+fJhtE;=`2&h^x!v-?NVpWwD91^6=cs)g;X61JK}pHclp~C!w_aw4YSQ`{ zxhVVkKcn^RjkAH=GwrYT2aOPPtAD!qyQ>7p2Yw71`QQs|ZVo%~(bI=d7t$LEP2sFz z0Sj8CUQM_)7G<@wm|@WUKZT`Ry>l7REu>Ey4Uh0vSEl~PLmZ1Hx0hg`KYU)_WpD8D zqW=S1+ANsv=$Ux1q#|8YRW_b}jOC3P#H)V6_K3H`F3j8Coh83m3C^0ReSH9lpyJyr zh4jxC!SXoryNdLi>7YBN#IEDU_Zb{)1*;wJc>%Wi(KCU&ybM%c?-(w@raYJUI7)+| zuP-bE$*C*V0?Y>j@b&z0D?Ewu@g!wdqx9HQH}2lPt!SOL+Q-mD`&QR)pw;PO9T%Z8h63Y*bS zMNOs=A3M7%Xw@D3V#kfi_j$f=B<*`&9klLoE>_~N8c_w*P^a_T{14!JdFI21u zx96`z+Y&C7OAyd+<~^ymcn8TLvFlNlX|mti_?B&h3=1Zz>Y%Thw?MB@oQ-t)Vc)re zZ8_BAWU!h4Ra=lx#6_wSDJF5><#+J|8)$7eZlBo;n@}n)ak&Jd`cvGIw%rAm$~-*W z+?~^XA2++0>01Ac{TXBNMl^(Czb`DjqvMo*ZYXl&uLKG%bk|+Ij7^3tV`*C^_VVeK zo6nhAgDc+YIJ_cHe17z0NV|JGKYcdZoip9k|#7ItVba{7ibarkjnul+tx=waVtRs*8ONmXEcaERz2{QJJCBz`O z0k%85N*Oez^kcfu#n&HQ<>S1H^lCg8m|~ENv;FC`%jRAZ+_Zmrr7e(*4l9}b65S@s zX*%#vA5=+P>m8HNvJrm`DX`^PcCPatZ^;8k*x5-x-`n!5L3O5%uV25Gwe+-{UV>B- zL37DBH{V}=qMH88_CRIr)w-(<|6>ws)K5=sbB*rW0)KeK$B@1~JPTEQDbAJRnxFcYZQ#y5@N&b9<4G-5aRr+jeO3P{pr)sYr*H-z<9`0=dZL1&fcc|}cO;=`@(XR%hyBhv zJ-#$}rsh|Qcie*QvklX~@L|EVWc-`lPU3htIok=w3q)e%;_|ZXXhZB)o#=jOMnY$m%zKHR~j&KuNnF&)v&LxYpXU`#ej?XgHHnU|k& z+J7QWwuXvZYrq{4AS|Ggc(m=7qTccHU`OscJ6|13MJo92*x1C8RZ_Yo7;CSEjQ7{sWA$TWiKSsGGGaYb8M;YMrdjk2^hL<#~ezBe8 zjJm$m)f&@$Qp2JR`KKzDAZvg8v*36bx)D|WJDY4dprr(?zR?boXrVvb&zCD7z zIRUg|IBKSoc$N?P^*DX*ftRRvnqEU!$uG_{;fH9Oo?B7cq`6QNo_<%I*mKMaJ1Lml zwAalLjtDHW4gX=(L6ncLe)CGi#qDJ06lcy5xPOi496{<23FEt?5euNlgP0-dZ_2x# zPlm_p3kfx`6Wb`cdV3fIAc}0q*9=+mk+W$@=FA7wpkAGxZ@8*-`u#_;s%XqI8wZut zh?lC41zem)b^@372sChE%OukjAbKLF)|r$edv6Ghi?X6YUTLx%D<4gYZdAIq;IHNX zEK~`|xsNjJA+Z+Mi5z}YK;Or)5Qm1C{`SS%$ppTdPB5;lY-kjMEeKE@#?y=WwSL<(;sm1+cCn7;G1h$+`*l&vtKGe79jCeMUwG zi@vbXXb}01AMk!LicR1P_dOEhBe9;F;0JgBtl}p#E0+krLhGvtb(Yn8hbZwiGnTx6 z;Q=&9fl+0DKqj!Ec*}bcmiNhMu7l5fg_oC+Q%_wcPF+(Y(2-Wz(XQ+a&B0dIVgblM z(0RVJWFUOtIh0rbE4ANRO-J-@W1dS$^SU7#q+>9YG-#w+(H!H70VdcUY_RH_iwTizK75~FVtXxSW!A(xK=(^*EyJb z2iMqX_*;FvsboM!fx@%^RkpGK)?ZU9KC?N4Gr~Nkz*R(!!1v#pjp&vL+f`30nHZUa z$D2WOC$!=E!Z#yAu3Ya|(%dR}0T9s>04bp9`*x$t|BMQb#CkiL{9fd6Y+Yh<3L?+!TL3qN?SH;@AtO za^$?*E1Or$r7=9jXiDIH7tj{Pqx*=Wjh!VqYMt^po`pbi#FG=}00SnU4?wXmR;wU# z1|;$J7mXmIhF9z?CN?EH-(zX71}6-?%uH)|kEwk}_YD5|ekgj+FY#w9iG_nWHfgv* znY8z4EY5JS6=9XcPVAn!|Cwz$IPJ1Yei0xpjI#ya@lK#wfYV9#zwR$v1#-l9#F8m7g@a@li(0%aWJuxHP>*Ru^ub9GN{p`7G!)2`HDJnJ|P8 z`qu)UbCjVL3bKS631K<4c}ig-6|EDmu(p?2$m9!GBXlIzE5u87jLDR>seKCVqY{U& z{6}59hN3SSZk1xNw{}{b@pJ+gxs$L{Y~|4~Rbrf3G}-pS6|ilnMdx}c2&=*O0{D&~ z%9v?8pe_A!=7Q**cOq)|;^qK|Qj=|>G#3iOG(IW-@=7rqYZU8JyZ+E@mCwsj3EzXL zqYGDDnXz1WNo7KNU^nDHXKn3q&?n4$^uvl_q_F}>=PevvMf@n}3D=2e*U-QUVV2YP ztR%+-8l(GVOhpoLTGsz<(7v##kTb#}yj?{uoFIAIF(S}!|K_V7bai<{Dj0f#xc3K% zKNgh3X=(46slXjuz(Qy?4I`-vt<(@#HSsXE_^0((obFKt5(0+9N(IGLT~m$+8TAUACM+nVcm-O$)RXjwa&uquLqsGxW+&fBpBgiran z>0(`<#kzDk%=Fjlq+?!zd|qni*NT{Y$N5UDTMog4FAr1peOT)lyPBuk0wyl>W)ZcN zGAt$Pcw%#gFk~G~fi<$Ec?mP!QusXP{m!}z7F^>@a|`BnWHf46MmKn?+KF@1GvbLv zt6<}sVCnJ^)vwzv<97C+yP!)LeGc?J$HI+a^SASdOv`;qO*jD~=W->Z&vfRjgY@~t z(Xy+dM#2eG;UX&u;GhP=Zts_XC$*2D3)i&Tj8wA0w{{fPqF~S;oJr>xElCYFVGx-B z@z+Tds@T2wu{@e`I&foV-3UPsWLs}jRw6Wm{?sXhgzgarRtRbHI>;+N-lcw^B3yKO*=l@v*^>E zG}6^CY%m6vt<4}%4#V)sFaqL5GR5P9rKwqJ&!;zP5M|+lnBw`vA49XwiGVQ3YYmAU z^j2~`=10l%_dUADp4dDqE{MVJ%*Vky3m4N)x(CZAO}+ZowH!@uGyFtF=JXRNbx&&* zyV^X2{JQ$}ddWdPVyFsBWy~@w0d29Obid4bmBw& zqECGjrUwiPIc~4O0xH7eWE*b(J1^GR23a44_DGFe_}a*!nld3q(CPv}2|9uiPa0u{@T2blrtcBDrO#Y!NxWjcX*?j|I)S4{ z9a*w5*x658{a0{Rp(rGV1h%G&8Bg^xA!9@D1fdPreSLJLdv}TuWx_ z`tTuIzNf|;*WY}B=WX1t8B6F@E_+AwdEHs6JqfO$)gwS_03r}fA0C!Z>t&F4V@(m!oJaxl+71=>a`1c#<0`w)(|8` zYR8#o(f3_m`oV{djM{C3K;8jPISq{7a97Df>=RrTBQ<7s4eZ`hR@6e=4otBIzcXIa0`cm~S~egPa= z>#ix}LD4RVC?o*-(>;S5v)+ff|1};m+O9!Ns|Ff3?onGPdlJY``ojQdxc`z=yc?4* z@R!HuMc|Q`Cpax!Un)QPDix6%k15!6DT=h-za5++1<_^~-(+t{|751bIJ|B@z|Lrh zB_BD$R{15H2!{j+8N(1vulqo3MVBm#1ahnL}D1*!Ht5tf9*Ao-Vm0km^&w81g7W<~JL9SU(?O3Gfs4 z@7LoUZEa~#d|r<}jv4nyla4tWVttLBS-o?-_B% zuX#2Gsn?p_E7AZEx$)8M&v!tDthNVQMx9YkN=&^49vSdm9?v$}d<_H?6(hgZ(JfoI zsUI&2o3ZM7o=vvzeAnGj)|FS+$Nr2S`;SdX6C~cJQ9uDb$wmRDWRKwxG$p5;lmnAM zvDhV;xW0jn^AaF=!;wFkGaAm{{NVZztv^KM>vpl~faGfl7yO!J+G0SGQ;%Wx9GgUa ze&1{8mQ=-DxL4JY{^!8)+Uqq$WAd_c{bOa@r%(PUyl3;j8~;Nl{}=pkDJmL|EnCx{<+TKyWr4*=WgDsc{3d}*N;+jU^AUGv_sP(&)9_* z>TpyHDG)>Oa19YQ!1Kg+R|LF(g(FqDs-dB&dABW7<7d&mL@UJF+I4L_YdsHT5ur3U zlnE1+zCKfFBI-9skT`#Ss?uuychlvJt9}WaTkA8TYyThUBV^siR-?3&#SIw(ES=Be zGILn5B$9@7mYaM}h&}3NfH#UWZA3RRR1TLZkfte2E1ku0RaLsVF3RpMY{ z)8>8B8o+A&64_oxx&mpB0F}hPX2b~!ROgTvtE#GgmU|cT-C3UQQ>MbNd#;z%7)M{u z5SNpCQ|`Si6!$IGM`Nf>9V{0eh5M2XxW2dI*hKvCA*iSJ8MG zPu2V?*}+%C zh32)KSX(Q{#(A_);;b=Kg|cUa;QEmDzT0%o*&U{E?1#^Ln)pFFA`M7GfEx<25XPHj zXBHHefuLmr^rWBf?nLw5frSRNr66%EcB1k(P_0l95TD$^8d0=5&*hb4a0(h8 z-FG~QI;S@Y3AoCsf^YcW@zxV432J5K1MFl63W@MuabM<(7srf%ZTqvpl7P}Ifxd&% zvVJ1aNaL-)aq3ac(jx~^uzkj(PIlpymhWX?GIa*QsT4}9+cH|D5iQg1GWLEWKYO2^ zoIK-`HC;L>;=A56&b4lzD?-i2tl;sLnau$*h3fa-)3+QpUiaX-{8BG zqiV}j3^6vBYS|Dr(o9E5^>JeXfTUAR#=c)OU^H?*W#nb{q?D5tgC`Jch=npT5jxV1 zw3jjDe@=Hnaa!v_@?o}7}-G^-DHB1NCNPH{3Ru0n-v%b#xgSI zef!T(T67OA#&(vd0+6A|a6p#Ce@CcFLK=goL4$w?reURWgo--#7jx8M7?pYL=1uIGCGc>e0TN@mVEpU>z0e!sTkaXD(`X}>CspK5B_sL^f!Q=#gM zbmrR3EzznX;m8Of6;&1^Oin@(AV7>)hSd2N6svVu%sS`vT_nGR;C`h60PV0IOUytD_I z?Rc9ON7r^<+pPTj{H&ONH2II8uv61&brzV+{BkZXoFC~UPwh3ScP%>+UM?OAZ){s` zH>Pu){S24uRi)7kZMVlS4jLEQLiC#|;fCP&oT4t+uYn-8?cHs5zu(_Zlcs})I;acu z!UgIy>9mkYD39xH=AdWmozyci+Gnik7QLa_Jh$z4iZl3Re{3l)%8ydU#Q+*NapsFv zI8qz86Hq&;pa-4nhX9?`oGe@4H%O&tJ_ataO2^Dk78Ms4AWKOI&HZWmFJxkmci?Se zP|#dr#T#vh)gQdKvFezsZ^g5;?9#LsR@&Hu_U}}hVzlwb9Oc|A$>6)+>KtjDhG~-( z@0i+0DLzhy=`NRR&?N%G9V$f~5&yd_S?m~(5jmc@aoexD+c1Na0@3Bp&WGU<5e!mr zbBYo$_;#O)antkzRYMUqRX0h@I3UzlBLj)FE#-yAc)*12s8Nt>ppJwEye7Ep9@C_6_NX0Y%yWt}ORF1!(8C4Ds^> ziiwsnfX1U}g;i`CsH31dmaHqLa|0VnJ+|54W*9H|u(yLOk#Q8i3>wP(j0{0kDScD$ zaA>#dQEiyC@7o^pSi-a11tqq(Wq8IFYnJT$g_;1lr< zw+HrUA9awlz}q^8WKM5T{iib9$D>mnY<6SJyZD(vb+e%TRsH0&rR_KIVeBY;*;w_NocS!7g?2Qe3<(YBYfTtU>2VkYbOiraI8T$zACa*f$eXrf5vWTOEE zkkYSkG^RBB1-M$CWGqr=xFu*JQ>_mHFzpn#DB0FXXT6LprPWNt+p|9jl-qvsy4fDu z#*EO0(RdH~F{sA@$a}kH_U&0~e92xJkFOBk+&~LFds|DCdTw=IOb$4Juf4pd1go=RNG7m=TPC5 z9)~-R9$z9 zIMf%YmG=Nex%x?V<`|qRK#RmNw-C_7Dl`Q?;M&ogYo~JPmN=Lk^g1HxhRIfE)x@43 zC;-SDS9O@I4sFug_poGJzkFfNW^TNhs#)>6A06Fz{hnN-Q1I_}i00nCnyJT)7k;(n zs@ZdrUR!}YaKSO7o@Rr8%hPL7i{i()!KZ&UyBN3Q#NqM&UP5{R+d|7 ztlMbWEm9PrJw1WWJQ|fdFq3a(d4P13AW!{Kr3IltM>9|y{&(qIzU-BvG=8a19leWb z5;s7sTJoqMoQe9jyeda{sDBcQcP|HG%8RBBf!X4263#*4>oZ~Ey2aAR3+7EL!+I)v zF?r!dzN2z8ZYS9;S~SA=vf4iQWU1o?vik-mi$`U8$Lf1P-1kvwKKj=To;H)>k^tPR zGv&4jrq5DKYaexS^4qEr8y#=@0cB?JoWRJ_DF5l>Nod3 zPQBq96M@F0*%7&~bEZy$E)c(DADRv|UoI4X_chLkG=CUTgf-Ja>LYo@H1-yBudCE5U3K42yzA#EOVmwZG z-%PcZ%W`;ItsW&nm-}-E`;-0m z@2ug{5_STV*MdD!e{FCt#;oi^e~AO*hdt6iD43_=G@x-BM5Q+~@)8&7l&~4y%*EZ% zmy5wcSvy^`LfBYa7>7Z4b6p58V4tWCJ&ehDlS}#hE4NKdnJn8pbescI^c;Dn&yqa= z+XFk6s_^q<{m~KXX9IJ2z!v`~OI-HVnQ;rqDBhA~ev&MB-;mKR9W8%ii#{Ndq~rf| z-3#%)n*kC}O?NXt$R4e=@95|_Ewn52q|1c`e@Z{7mM{7y-m~^EiQ61WOw1*SNv5$s z)0U7{GND^&z%(9bfPDOuv@#gSWDh0&9=H7^&65s<@ufo|+i!@!*pl-u;}Kk)*vQb( zmbbQ0+B9a!22AMpGGPQ21WT1czG(rIBXo-Mr-Fd0ND2YON{dyWZ^21=t4q;clDNO+;`4$r z+x6cZ8-{VLsvhcd=I|?5`J`ddtpxs#+;pbM@RWAZG6 z=Rn6Z7%(Kjx(>Lvc;|fu0w{!s)$$ z_obs9eCSDq5ix|e!i%Q_eAqX5J<3N+oNa!As6=9#|9h}o6rJ+OPJl#-Rt3>h8h?wr zWp{d)x?S*>`HVK0JceES*3N1y(<_ImELYt-Oz_$13S8UEe7MLuN6OBfyT!bPj}SOM>v|HkAcRr<-2wPK}5*IG*pscII|yxR@Wo8eig{Zf0wGm7Th zs)jr@2>!u^1rzYCQ?i(=Il8XQ^}4PUXWyiI=b=yRmQTrO&X=?ADh|N79j!Jkuf-)q znp!g2mz3EB&gQDps4346hocIaEaGe&%-V`+@;jx;URRDg#XcZ9PTgo1qJZr{bBCFp zl|FVm-Ut``(F~Y!SSnOwg($X9#UV0moFMz5H4n9 z0Qym9s^rpJ>U5T-5%J+t5p>CFYRy8TTipIV>jjvN&S*%wE_|HUW57Uz91o^un0XM* zKj1@z*xX3*?g76`+V0m{ek7Un@9~pWaazsw3;UzR8uN}uDayW)H$$}VhSw#C;*6uI zz9}^#`TVDJZgy4fm*swG&H<=GNlC%;`WO_<0%ITAxPn*pSc7EEVTt>D3B1EzJd;(D z%Xf=>4|uL4`|Nz!fkc0?p1px-8++oJuKR|-IoSPx@L?b6aYm1(Dyodq?DFJP!#?G* z^9iD{AE5N44|j@??T@3J(`K84u(E}^5-jZVP4rc?VKTV8!Q2%(!riUnhb&6oh zJOp`6{!WaW-%=fgKuH?Ak)GVVG&*CAr48G$0D~cxYOzX`QMwWti_}(3{#cj zaEwR@6~+ot6n<_A^>9fCh9$0(KLDxKZ~e3K@}FCWJd>=YtI9MUU;CscG@W|*{@yH0 zv)Dv1Xv4wg(9VG@YNcO$zvEurJs~+N0$k63Z4rOJt>;dXHZmZjub4{3r!7!;dRkU(y^?JXef>NsV#q!ExEkIi^Vu1a%Xl14 zPQBszfpRU@0ld~tk_Kk7`2SZ@opkD}Z+5G7uxO@N=79d#ukDc%8HkyD2S=z4lGT!% ziiJLZa&me$Yg2crIadb8Jo-{3HmUya6K~8sO7lebNCdGyJ>L(at}h)21-4=OQk*XI z_)%h_D=u#8jY8)gc}wTyN)#3Tnat2<88@{90Z1Q14>7MBz}^_DRa+_=e;Q(erX{f8^u4rY(lvgc)fV$;+Zmv|AR6J!d7%}d@M>_AW(W2(kQ0-Yuls0-FQWc(opA|X6mE!a`uck z1B&Vifj4!1eA%Alaw@>vT;N^Rf-^r+fD-XxY0)qzRUno9Hzmi6J6pB#-OHy}%O z^ILs62L$L8*hDLgH|0`SFXz`$UN!YUx+wG=@luL5`utAwqMt0vBW9V;lOMai+edAH z61#APs#1S6FSBfzPcJaR$9ExmH|TguFz_V}g`Fsn&g%u_7=GMr!lBJmzodDj_jT&wWCyo2-?-)zmg&b=aSrxEZX0Nk_G( zeSW=rh#*hy=A9KnzI$$;akEsDU+Af#9^V#fuB0%&czZYuOWP%soH_YTxJrKN+Tnj0 z(S&1JSYDe*Eok`)lBA3n?M?e&3c0@VMa{xo1Y}?*ixU+E_gv9NY&jETG50{AWys|u zDw6G0fD_VtX`c}3B6PM~tqQI~d{<)0oa{BN6Z>~Au_52|1u2ZEYH68&8O{gcYQL`q zqcG?kpuLkzS1ub)*YB_BYU>VtteBqFv6S7Jg@KK#Bu~#Yj=_U{q>bx(VswfVB@La9Up-$>LwuXBt;+1HCxq)J4I>_c}U z zkiYz^3jwa>4~dyO^wzr6jlmHr(4g1DElxApZm?g5C0=U_ZpF|(fFTVprAMx;BnuPQ zRO;6h7V?WczAl`S4t-<1@JYz+l%ho;^iJYkfpLj8Hb+U!Zvq(rUvAEPddD^T8d zordjeJ(!bJHWedRV{@c?yPs_I^$3Nq+gog!x`bl(%UBlaymydpe87$=08}@Y6TO24TAobA}l$alIYZ~=1LOi%#n zdi()!$^|x7NnvRMLAu!1CqF%kd}9A-p*B}TwWqlBNN}Ar?z@<;+~DwD0A8R7dUZ*V z*+AE^6__mt2r}4=fOz-rbdl8y9dBYsDhnpT{ZyEUb$IOvvF6Wh^KahVl1`fMJ%}7Q zAW3ZgzY94eO8>7y4%h!v$no!Q&AJAdj^y?oZg@ng*l>8mP_AP2_p6?m12L00XLvl? zpIMunBxhJ2BTxBJ0)Fose6%D`41eLY`{G@2{2mf_6F;3u=Srbw<*Iw`}GJtt@6cQ^%j6p4#Nlxw?iRrIhavYAQ%cE!FE=kbP~EI>s^s zWB@ld9|D-UuO{HDZku$fI643NH_JXoxT>=kMXx1PKi?Tj}$WhbGPN8ryWxF9ZquLA0q&}npb zv?Fu99E}e_jTva52rIcYxLzZ%u(-y0I%J{RZ+(ezW-suhqE=Uc0_)fn5Csd=aWSBaJVd<8i0`91!6WkUp zxe8M6MU{osmB|??{)qZ%K!SE*yYdNJLdPCX;9@EnCC{9&%jA6Xi&6V`xE_et+aIR zigHGa$K~#|>Q|1Oq_%0anbo|K%35|>Nwk(8%gu9D4O|>Qb(x+D<9N+m{?+q1kxK|O z{?aEljM?WzKFY$!SrP7Ic4JMFGo9uyjdi7Y>?Yy;K4p8S3o(n2Ms=czyK(r$Fe(8!r#S zJOUak`)l!W=aZIwrY|Xqlj&TMi;SVz>wuNKhRX>-w;mdPg>I_LLgz0&uNphHXV0D` z1TtoNAmn5#s3ZE6N5ZIuaRg?WJ!$2=-p+^|J12!c1sa`-_+;A)5v4#Ze2$XsdtHC> zUl$45?SKf64aVrxOxfY5TgrK>>2>OK%SX5h z2#vrx=UK$DSnKmsIu%VW6WV5lptVoG2e(!di2FSd-``*q*kXIQ){-!jX;8^YYjJ4X znH8L7A;sXJF{DeGFPr|=cCEx)8Jt#cn*eL`PaVII%A)`zKL=sOefg@zACYs@8|%|B z(^R87o0}8@=fb@@M|65yi%Gitk?k~+SP6nU2pORXWr=W0^W4|g-LSqv_X)VW{^e$V zxPZA@RG^=15f%pwoPy}3HY?COW$chE?QyuwNsS-3EsHjCYcUk(CZy{=1W5e`d^^_& z=J(%Vtbl^mxDB}Xk<5APf5{mRkh>7K|3Z20d9++?%2In-<9GncJ<#|s1Ux?X%{e<>y51RqyDuur{1LI5;lHhTBySq%7jQo zix{AtrjQHLEi>K0raC`9x;CkXtKc;%vS$1U04%cc(UR5yj2pL!dvS|PzCO#10q>de zy==e9JD2mQ;$py0z2XPT%JI)?7U8R2%N{C#aHPOhC0v1ko=AsPis)#0hrZPEB5>pI z&VpHuq=TZQUkaHedfcsDaF%E9&6a!r|U{^AcNQ>fW3KxI^S^4iz@>rW|*EP znU1TdR^y}eShQT-2BhkLyv8|DqU#BzJ2abM|nY!LMg6<#o{+p$J;{y ztzqd#z=Q-XJ2$>{JaGXZm*F*w<*ntSYR7{JBJaI$K+xLa7ZeVZX_CD-Zt&2C(f%%- zsiNS0RDtIjM7M~EsV-gKhUtta9Y#F7B#4;-3W4GJtg1$A`#^+e1$~WwZAC7lYc_F? zDUcd1JwEX0m@3CJ=rnF?tw4iI3rVP^Lc?lINb$K@-EA3rFq~ZdKrMI zsXSQ>e<3=VN?_AZ_}4|rzTOyym=JHmzjo%4TSHq=caUBbueQT6&`?bnNpl)^%lD;w zv{o;1jXujfZq-2n{gIy8xusm_Oz%B8Hi?^V6RvU+ZP+iz^U_Rq=A5Nk=|$NdF0?OA z`FhCE`KCV0J&x&T=7D@#{~U$nG|rQt=IZXIQ5S+tlGAGM?$-TVeVn!GvjidULFk@gSa*SaD_< zM`{lX(8*JLA_}fn)*<znY34#n004XsZ z&WaLbd!6(qg{vtzp&2aAhPo*?Eou>`tu!KE<^Gu+x5btNQhwse>lQJy2+#@r5EoOO zLw9JZ(|Hb>m9#YyeSIN+|2lI)?-zT2LRx=46+EX=!pkKKHLW!q+u8>IyRNBQNxc*8 zezN1BVeDY{J->^EL_b-0?Yt4^+AsdRS-mRar(1$*coQRztv;7eXV$;b|OV+}Q_*{F;h9NR5SNm*ns5yD*_5!gJ4V-v2w8V?C zzNvxBd|`={OVm5khzjCD^s;;7w#S4h5>1x$t5^O7L!%~Ynftr`=&;)5T1!q6#9dKK z??%P?3wYL^{o%Rwl3!#`Z&cTx^R@YI zLg!xvL=zow^%5@ti(Jg#@Vd)2%;4&z9Fpgo?|IjL-I1mQJJc`~2K5v^5y}0=-TYo3 zdGM5oGr~wEv*YS(TY^D>8t@du8|bK8fCoXpbUH5PcFw#6lsjH5()rNV!PHTqox}y;+pL6I~`03NpoK+;O$x(}tPfCi^cPTr# z5UyTSW7%oH54|cgm}2)@NqZne=5cpk9CCs%xp6B-dm}jna(2=EcSzm%km^zweSuM-^QZ0})bIvOAcZy`ME)XbJP`#W$ zJJ|~ve*s^;TCF&@*1l}7pX_LF_nOL9&B7D)i(0JTY5FXCSl}&u3wo|boYcIQ+|^7H zO3f~-4T38u<5AFhPW$#vOkmgN#Si!E0GR^(zPhXO>)FNb-QxRq%7kQR^-gU6j>C>S zOt5K6B{zPpql`$fb)kV-emLTj7c+;|Jl z=|g7KrV`7Sng&IeUrd^#u-oVEDbyvT_(S8BfgCo}+!>A`Kg!wuEG}v|stV11f8zoc zNu6aM)FQpxv?6Pcq}{r+1W$2w&m|Z!oV?x+(LG-^s#Ww>H9`HYb+B$Msj%$~FTfDw zHqU0>NONmOS-_ED4x_%ClW(s?Kp~u_LCjDVH!PkLW43*dxkv*mcBy_*X*;i!m#I9> zbLde&4X$lAm(}1#mx%31k!>U!rs$Z>?`o1)x~??md}fMcr5lOQ2{wQ2Z8np->Fe+X zxMjIzDk#1$QNzntf?7CJGvWrbSAK0VpSouyV4Vm`;X!_IciwMSE3I zT5fReE*gOCzv?vMQgZXx> zz*kZ}_@z6rr*v#7CP}$T`bM-0_}cuSWdwKN|3>kX>dPp z-UD{|`bE2|_lW~v9Hhsnk}(N18HOD1)oiGddXx(MrbDgBvkc6qC&3N(tfhc;>P57q zJ|(EOBA)ur3{nMBk%9l&ag97;GzLOfw*n8U`XMLL_>Ff$zvDm%BAbw;vjF7C$WY!Z zVbHs8h22ef0BKsaZ*`U20zIN)qa-b*t615L@i!xsNq~G+Y5k&`M?TNVQL{u=5)jGW zGj)_`C&gG>;(^tm8dn z{`0@V=ZnoPH(I8-$1^KW2z7atlP|ntHj~7(SZVS;Ih31Gh`=Xydj==jG&mT8NmARu z@mT7>4+F0-{ytejTjThsI4y!bXqBHfI?%4M5-dSnVp#H1z_eVb7^EHg94wK{!}+7D zZwdbnzW(ms{kc}y0fp|1Y`~Y&CqniT8q~#oSie@)wFf;@!}NMZiIg-j)!u|`kg6|h zh?)()y)&8AKjFM2^>;H=SiZl*=OUnL@mxoi*FgeZY2w5<@ zB{!q2B~5raC+N8?Ez|Ibd5E3Wx{jZV0dMh45*oBcP=Et~-Cc)s@Mxx6WMZkQsZV?a zOfZNZJ9PaT07w*AA9YSkaam=E>lOQ$FQ_nq0~Iz^vI70 z(Dlb&64E1sCiP(5`$U78wN8&xEDebzQhXE(W5$t@52m93`&PTZCjaF};g3fY1f`tv z^IW9tGV(9p4PiKm^br?KPWbk`=&=IcQBYS~%>DRjw9=)VuVxEh4=kU!C*2=OzxQG2 z2A;Juns#a`GtN(T3&KIm{{BGYnVc(n`&;+YKIo!KU8<~4w2i>AO6AVUTYt>fcGNz9 z27ToSsM%LnG^?d{X$C-VLU>RL3~`vQ&iH4(>}LT+2c#6pviNcHKq`}4ns@D6?fUtR zYyDiriOQMAy=6M^IH+;VsW4&KZAF()46oalu|*(0UsKDA9^o==GR?1Z4t}wcPI+#? zsRkhZ?QoyO;w_jzs}kNxOk8HmwMjb;m3RY6zr-tmFypASdpxc^87O|mgwzk%j*qYz z=alof?5183@b}Cg;sSzbO+~&c$CGLF9Sfz@!Tdk$)2B;#b+0Di7G!rb#6`D2Wk#~6 zMp%z+t|NEp@GckNU?F%c$@Jl;VvF?1oO_#J05S$f$)%R%89w?o%U|f8_B0{6s?%wb z!;*#2@0R&aTx-|eEDK8Ls*pVN=;X1R6MXRw(p7J@T_neW68rPlkJ>@i(G3Q5IC*Du ziT_Cux3^)Pup?06%Qt z%^mmjCan`?`z3jv;DlHLt`+?Q#)c-yyAq0Q0Wye+_U z=V}a%5Ar=}5etl#_c48hTL@>eO#z>y=JK+0&kyiX&R=ycYpkPyl4U)}0W%1;?zYoA zlgRo{eAnyj)l`tifKKx`oQAVi%o*W;ix;a~cugMRhWdee7x>yBa!F=)Z_kt6l-|(sMOuskTxp!^pimS|@Z|r~%vClK(r-^yRLI z9J7luf==$1@+#R4cZIrLW<;7-roh)7IG}lYk>G{>G9g#kPhOHowLrT{{lwPHIxEXB zOH>6tx0@PtE6VYy=Y#v#|1d-i6fN)1(g9u66a$GrX$G4#y8C-VmP&o#oNI18a|EFu z76kpi6L)R#t_UsbNxza9>9^MY$ot>^h4x~)arpB8NNduUllvGd@GOlP`CJFsDX_SR8$ zxr7r@V=wVrR1%Iu2JFc8US`Q_3&$q4D!NN-_y1Q}jb0yhnQBiUo+$8wQYK*j%ZFy? z)S(^2P&z?YA0riiKWPo3Samy;qxx*h4J(w3x;=t9uahf4vG9q4tj+hw)7E-T`?{>3 zo7=bT#1w&?(dzKKGy@oZI8tI`<&W`EAd!N8qXPLON(AvS&|R7p=(f2#LkKatM-myj z`#pb{uX(wDtPoTi>bMF?!pg#V$d_n2`D?46XjcuCBMxwvShqUsr8A3^R+Z`(4M@EW zjZ(T4{;*wtodEMZ9KyMOf}B))_h`@`TZH_ORV#5q;}10XKPSSTJFUeUy@2RDnKW|@ zpVIMpsNvA}?dt$GDVHv^jA!Be7+<^W^E@7kV%uJ#E8~3)d72!y*6@};30M4v%PwxO z4bV0)09PA(KRec0`mvyH`iC zYLGmS0-n?^>N|(?N5=Nvs8S-Y&!h^?MMwupv{xDL{l96E<73he#Su?mTaY^BEqJMBo?Ph&hp)tZ&dLrYe|7@5!n+~ zXN8vDiNxj1o)pMeh;}I4m`&so!#k`O3sj9fW~AH*#Po#dYAQS%OI`tL2x6; z9M=knSn_F2;u>A;=$T(VAUEs&5+;8@pYYJM4?+YM-0MG|V1Xe5U7R-jNE>oa9?LbkP0hJ~dLHVah4J zXF^wL`1A-+tk1_xd~_uP+S>3s4X%Xdbc6G8>LoWwwAT4G*F%LSG1iYE*lBvH?^QHD zX6xS>4vaG3k`f(c`*xJcoHz=q=ASM!fj8$k^rHS-D~JRl{my0kC2Y zEkYKe6$LhE#p7hJoPu#%QTIWg3f{Hk?TL|7U&rSj7Yjl(F~m&V&+{!M1zh=yYp0yg zyMclUM=W~u;-N(S5hent3IJ|`tcG7ybx9E@P9E1__t0zzr?04y#=0dGV_U{Peh4SD z)PK0A&U^pP+|tGjXVHNR%pMW0stIIBFwQ+}>qU%=Yd)&z8W*Ff=5nd^A2C2wbWZpn zQ^WpuGd^WXOzKTQS6=Y4MeN{?D=xJw_Jq=7#+dX-bW!b0N>zeHmd_G2sb?_3Hfd+l z9kAqeoBoKJ0*5$I$YlHlmZHe)uB%@oWFZ9|RWQSwc@{r})$ByZY#ogjR@*&xjJ+p` zE-BB9aKO8(08~zAo+e&nY*}l1&-LV;KSU<&P=y~Gx!F$ zXS8E+2y+SO6g+Ea>Usq8ECet^DSL-!`8%(ygF(fOJ1pik2aGJ`?YZgqe=HQvn*%%s zVYGi$*FRc@=$XMS29>wh{ePX(5n8ILzQ9VmA2BKxA?NV>rJR~in5?QVRdlp5Rj^CW zU(oH7{8l%iUQ|3~?C?dcI2Ol|=oE!G4`c?_w1^=Y<&0Ok;Ck8!kb+3AtZI#JJ0!3A)%(VroPwl_=MTwI&FDBjB#**dXG(?ua2|aiCGspX8 z>?rkn-4&%&h2^GVjXctx*DaVf^+qe{F$tP#7S|wOHqQ=9VTnuAUfQmt+sg*Gnq@=Y zh8cKSG=&%Hn52n>dI2)a-1mx$lqd0|2Is{2sXl1G8nmq163aW4$?LWrPkyEnL3fR3 zb%7o{SiCS9>yQJ-E~+$Lh(uA%I$3{C zC#3E!i6Skyr%=K?Qcjt^S>CXfgfi)JQrhGD6 zx8`L!e;Xzk5IZy)W4?CEKk8?mQV2VCyY6dUG1{=p1hR7NP&WC(q@U~u`)0=9ctVyG zdgpNk7me=Ob$35F7(>A(HO4aw**V9^VJ=au0n6)h%kT1|YL^C}3Q>(V&bWK0n>fzP zQ~mXToIkSu_6{V;6ulLvNrC_Nj{){&-#%&yaC+lSc74gdQ9k-1rFm*YMF;O%5N>Dv{cQPjjuE?q>K#oq^pKKo>a5cSphzv{D(LoY!zcG70YgGq&ynfFdqo9k*`u zp1AkWz`pc+NwOfAInO6mLJ;+&F-j zQJA^2xWB$TgKP&2mip;I4=q9vn`$ptvqj58s%3d#KG?17Yxyhu+a64X7TgS5B|6(W zP&WeNa-`_5AOE-#&%2jntU$TeGLBVQozZR=6SIwU7t{B^YLUk}eJEM~w!N@$8S72_Jj-%Tjea0%w_M~fHoATO6^1F;3toXS zJC)wQ!IC25Q}BsrH%$VS1e&?*+86*QW8d=;ce!fIa{9E^mU4KPh9>(bXUOJlzGz?y z2t@7O!iC?Rd08zkv5}2+a01mK-o^nF=?}o)=Fw}s8`oP|-R1m{qHNR&K&=V?n|9-tJw zkQx^T7B5<9?Ry<+Z|YEE;ebE?q`eCoN?>>ABDDpwDKj{cFeRTD#cgtdVR13D4WgXP3_hy$YIT5`+6+t9j?>h>~2v{UVoCoRJ8p1 z@cmN2Ezh@O;pEI}8DXmU$-c7B&A_u_A0iO@*QIIu{TSDL(OdhAz%Xe_fh7oNRPT49 zL~LrumuEr$Y6DzoVvcRT9<{So76jGfb$bss>NQowBdauT7WC`_*v{;QH2({S9cJ5H zAOyMJfns=W8R7W1XnJ*ZRI^4lblz!bT6+Fx5vkFG_-ZW^qah*R+5L`cWdXT8UZ&k$v)Jn*ph#k-d|MOq;0~2 z(F7s|+qV3PZ2lAQlb!2+{>;$}+s$h&I|V4y>F1CY-t^Yo%MV+y_q5Lt>1A|EPq7D% zb5NJ(nfoxLXMS%+V`x&m-%sO;;S_!H#oBFge4&tNaFe@+EGHqak?MOdg8=`7dR%4* zzrLQ>0Kck_z&ei>Gq#OoUg|GC>aVX|=UoM;jPd?e3CtD($I2DoQVG+moK&tc#MZiy zYw+lyol8CY*2q8jbIG@6r_UHz_X;ofJ? z^zR5BgUiz5z5H_#>#czavbBT5vfOIH+L;vJ@L51ck_&1aR6NTr&Rq|(Jx^H&(psMK@wQ-|7J=|mVl>4ihnsqHH@Yfamw*f4}AX#nUsJZq`*rx*mhowi(X z&;PZN@#5tP;gJuQe7!$H9&WG0+OBjYAf`(gwXV1Mp&b!&(X)mB2L7O@p~SLh%lu=D zjd4*BupKXMuao6%wy50wC5Wm=>3P}WGO!t;7n=3;^z~dk%X|W7&}?PQbN>#v{SUq1 z$DXG-2cNWY(MmF%pGD}yYukPuBK=&MdfyuGX7%qPhty~N3)bDdJ-n@hd4Y=0gw#(` z(7iK0k5Dn?8D(IE1_#6^_nRhRdLO~z!$^|=pczSj(2}^`8xzHD(KRZ8zAfdy$B^@c z;VmiTX2|W!>+lcZ&=#(x@!xf+l^lmUN-c8CX4rwLKGaok6fAjxk29uQd7Y`=3cvQ zH#V2p(-FzR-=2U3zY!f3@(QwDSi9^!SSu0QeQ{b%7B)5YG{j6@^E{$%+D4{ZII7$T zCZ`LDK$mkBav5zHXJB$XiB67&1ubIkT%Y`=Cd=JlS(eueSJfi6o&1y_JS+SBZW=om zbQAgZRAzcSE?`61XnI2cUT-7b4*p*Vld(C>!zeW%iUrLgN#~<|!I)33XET}FN3wc% z)#UOk(#oD+8d8R(=Y;$@A`o!SI7s3| z6%!DK&JEcuoo7|hAVjasDi2qchP>^!m?!EdwdJ1sCL<#1wX;s^)59b#cW)K<<4x5O z|N9&NPD-8I?@tN(&_N(^eX@ei{#8S3kIVx2KA$Kmq|R2;bis+38!Wd>$J)O6d1!c{ zsCX3c9u!v6Y=((Yaj_XLdP8=^A6}jwVwCa_P^@m7mDH8G{TYQ#2Urya4(cSsA^Lo| z=x8<)9NZPzT-e1Q!;FL(}HHV zUv9cj4rquu4e)Q-mAl*pFh1*-|wdAaJ0s#xdN7|B*`ZIdt~< zSkKc977pJ&2N+sv$jd@WNQ{v$qZ__S!}8)&tS-KDsdh`4y-IVWX^-3TsBc8)+$x09 zBV0)6{;tN;=7JtFZ@Vk^2T+us>{8{rmfi$id&m;&G`^iyxWbFrmb`+r8&{9zn%u7; z)d_6xa=24qf>W?Mt02(U`gaypkC@Kvg1*Q{zbU6?LT?O&K1q;k{6^c|pQj^FxJp#) z$cRNtIR#m%d(pSfIz87QvfQuGqdaHXaw?>V?%Ovjh8J2*av060%{&q02wlG32rAnB zrkC|zF8R<9TTn6x469cvCEG9RtU59rQgIv}V1AEuYuoi~@>1o|HnYAU>^99f#VJ?| za!3E-2WqW~_ub&|k$SO*? z>JzKpQTK6Yi+nH74IG`GBRG)^u1G4bv7avhIqbw6xeV;3Wpwi08x3E>B|mq5d8R%i z6Pr~;eLDq&cL}EKPSxO(=8__wu7M<=jD@-g* zI}#=G`L%(uj5UMPYH{G?51CMV{%jwGr$SgNTmi znax7H?fr8U_5^dcClG9K^K}v7F&M08A=iD>s-J9c#Yz3GbG18xVFZrk#$nEy`4U%+Tt$W{?wiwVAK6ryO_HB&ym0@tkNV{_Qh39IV5_{k2$M_K}h*6cqiS}H6aP9gL_BOw~iq- z8w<_qqL?jGt^j_|)eoe8?6_*5{m3sWak22^9jByyOR+XzqfRI>MDKg`6>>JAWzxl%SGlYI!&w)t618`EiWOQ|9?WVZUKcR;c z&_|%*?!xO{A<`g!BD(ye!%IZI;m4qI>#ww1PkRe=Da8Uiuc5C~U_v>%dD4~rC-fd` z+hZCcK0FRLtpZ~H^lq93i)YPOC7l^Ge(k%XT)6e)D@uQ#6vG1*qM)~*kStrSNECi- z_(`L+Tpuhj3kQHol}o%M^)t{<_WOf!q+N~i?Dzbw&VI++;pTowL$=6rtHi=F!5!mT zu2rJ`Faj5F&OCUBik;r4@Vc2 zWP|?R|L=7mwz{VpajI_d0d#96!k*z5 zzA%~98s7l%#W=g4_?|pm zL?*F7gB%qVm14y)FqX=f{TD3z6lDM4!cDaU)}HM}FM|~2=rNEg1I&n8fooT9GqguTU^}ndzE~jv1L1TZY|~^W ztGYTRGsTHYKg7ScbI0;k8o`TdTFP)H?NciN2*g;2oA>^7(qaLbc&bCq76FOTrhl&c zRfBwH9OAKmHhMmlk&3nm*rV&M{lR96S6g{m&uH!t&J5D^4w-=1$}Mc1{{hS!+F*_H z+p<1cii^Kw`X>riuB1bDwjO~8ud)>Yc?`GC5+woBk`6#F5(a2Oerbx%=CPb(lusht{}EsAf!tSI+6m6$ z4(L!cFM+>7_J8TLL&#e3EoJ0~YDhu@{{nR1D=43y{vH{ebB_En8xqpqI`hN zVB7*~jRsjkt((p+!xrbG7OQI|6^HHPIHxSxvrgF&oF^`m_l(=gM7PW*T;4ITaCDyR zzA7B4Nk=CjQca%%BeM#>XjyKBF1n_y09iqFGs!}Lex{$VTWAUdw!i`35l3wAUjm>m z&R2_j3q(vf47N&Fx}p<|mPrdWJ1lb03j461r1Zwnmpw29JGZWIs}5bttTz;2)(_hY z-ew-rcL}UyU!7{s8p?=?5_ZU%Q!FDro*0GBxY|I2l7XBB9`yP$rcqbPS3 zE5-S|TsY#K;CPt_+l3~9QEn#4nFV>-Um(qeqsofP`GRz7ZjKBsh&M@%=KRWATf$t0 zNI?2YkpoKrwpxosb`%8(S<~tkVCLusHexdIfPYKD!wV6FWS)!naT+%}8r>#VP}lxd zYu_Q!Bx&fz#WPEf*Oti{Fu}rq6S9iHdklj5tW#4w_i;XBQCy5e8=XZzveNgZ&X0Mc z6LF~0=2Ro(Qrt*L@Uz3W_F>~g;J+i0jho==zucN_UvUFBHZ<+O= z&Ql;ECH*pwDQIB4N?{+w2C2sb$F@ir8Q@q8y#~S_<7!(?^hz$e5ZHa{?5FBld;~eiUML>{=}ih?-(H=Y z98rnBcgJpZBtRkhCBUPGSb;kYxRd}HKQ{d2((D=7jmHdpB(E*(6KK}3wzj^=!hI8y zVS2TIkMFtO*?fQzpd>2etd*nJa`-9V1Af3q3$9Doftx4LR$!w!;?FLJg<}}T55L9r z4wJVaRAWHqr36wUxFjSLxH6tKkJ?Nz-96MdTUqo3uVGu%BH!T5n;Ve5RqCiSSWkd& zd~VFeZ{YOYSirn6Z|NcmbhH*?M>fFCbUn_D+ia&*IW<5fC}z*$Wv?0E)J@=yF66G^ z$d29|oCO3zpFv*!7GXbj{dP0MP5>-GO{!)De#V#yb`p}5qqHX5?I^wJF_3%D~;!}-vvsy?tauq%-`t- z>%y~E<^AnyYfTw8yrkX_lgK%SYEOYpNtn0B-e9%Cm=FpSUtTR%R6v|YfD z=~H}z9R?Q&h~cYqnJ)*1L+b8yKCkE7%p|?BdiSY^IFe0K|J^JXN9`41%m@`=j|+WL zAd}X^sczX-yP3Sx|8o+;sWA_};FDpxWiKjmQCk097&&3gJgO%wmrD=`c8AvA5)1sg z7bAtj*(*2wO?9k!*++XRb^-h+jd9n}e{p?4R64FKvrF-x<2i7qP=#Rl>j?583=2fzIUWKyv}Z;*h=c(yVW&P55rcR|eXT090^9tf=epjvSRTp>|A!xh*c(RhZ+q}9U(Q@O=G#_DU}N*s|<4nlry z=JkP5U_A~U9}qqk>56jB&JcSE<}eAsC>3*fbE}DWMGR050GYmna?3X#AbA_h|xTtS~;yD79o2Q9S!rK#`<`A^fPZgCQ?CA9-P?`uDcY=cf`x7HK|5pkEeB>IF_ zSD&Xjv3_rFxLYEpj$2EC>w+){8rn%V_5_4%Tm`v`55T0gEP6U>mmxH3`L2Q5@`@v}$YM?kl&j&r_iQu5rgy6O%T zVLg1ig*n6+F9yTsR)i$0PL3o#?}eHcPh)=E zUe(r;&=Zt&P^>27c2x)v3fP&6LhJ#VF&PVJ@3zjP1Q7i~{W5%bFQFfQHvlc`ND6#3 zB3h^wp!gi~X^(vbC?J5AqsN7~SP8Ur7?WigzjwFxJ8s2%6(0Fv6Q;bLL)ZEkO#B=o zNz)xCK1~#=``<4mfHxZ0vT_c0%-r9mi}cc^oIRZn6&iwts)1fgXqAMzxXj~KzSh2f zhWbup{mgO!1QsN111}XV@WU`K4F-g#yz6C4oI&tPn-45G!xyA`6}&dzZ($8M)1E0X zlMOhfI@x*Vm*x+{V?UDaS8=fID9GqF=UekcY4_J{J+61FkEkQ)j+19S_7orns>XJt z^rB}{1+d!Af7l;d?lc8*SFFRMtICcLK&cW91i}VZEZi(>{G&)_euSp9ut)e@R`>~B z@e?@uj`dl^vl!)zRN!a7b9t(&32xtP@s0ig;Lcg6%Y`$(IMh6gk5u&dUgF_4D9#Jo zN|z3aWWb6roZW3;UtJt$&aG9*@E{df<_9ojeY*Qc#(U?Zm!~0_3~8?qS+AH0LTQia zHS^EE9k&en9jL1lphu^#0I6X2tE4+kV2$C0`vtXYYKd!g6zj3;20H8&OD+!MWC+Jynnw#8;R)SU=WAZziKg1LqQkiTsWUQ z3f@zAM@h89;eznDB!Eyli?J60J1?{S145IvPuGKvH%No+Q#=J8IZMIngV${zeg7dg z8$WPMx;1k!U zc4G5*0EJ%gp?h?Z2|YLvqB($TWx;C1A%gdJA2WB5X?sNPK!W$v^dT$4IX}*ak0E})oR@;3639(h#R{M^mTeXR#k}oc z9!QZfAYrfZxJ+z2uFfDi2D}{m@9JUtCM%SJ9MkA8<1B!P+w1z<7YMRF|MUWqolmY$ zlP0ej5M|i1C|-Q3);u8N+s&*W(Tb;#MVhw<0SBHpSdf%MBMvlkcTn~3M%V!T67n$) zlSuv=nP`-NGd-0CPU>m46)PbI)wej;ydPbY^K0l=&uL#gF4-S1XqN-4Z^y-ga0Sxb)Za1QeyUJcn z?|?MQC=zgexDfHumA)~}T)iqNhVF9@%U)^03MWeWHIy$&}L|W1lqUD!5 zN>)^4iL3CJloxbYqCTNEmML@0y0XwLo%Uu3^{b&r5C|@-WtbUrPt1w}P*lt0E1AyN>f%r~B<1tH9bqjN`{q^ufc;A3upz|y`f1aP_w zfYafrx-*JW@Po8Gfn{E^DYwSLGR8*_PY$qdnx8zTD!r>-bz3F2hZ+GsK(?`Pf=5la zpUdsYcQq{)fh*4$+JNchFQ(h5T(+Lfk6=m2ixfuiZiB(HZxvQCPcBXCZ2oF)4FXK? zvKSdaPge$6MSuneubyVP6UUz6|IZ!T>SSsCN6rM<>w*ioZth&qto<@EnXLra;yVmj zp;^w{leLcjk$GOa93Ha(==g&VQ7KTgV3$^v2va`;OMEi=Ax(Oe>}Tutw#z;5mEFXhyeHR6sVp`?W10K=O~vGj|D}i^f%dv%lg(2?u~g zO0+P+RnOU)MiB`JtfJu@M~p3geC_Kzrrn>DNi44I=m`gnfhtO4(*9u?RfYn+w4`N4 zcbE25^8+UX;0|0y4-X?-Eqyl3CSa`rbQ#D<#nv=#ZV0?x!>RyGS`5pfEG=o+euu27 zpz2Bc(WN=K9g3%qvVH<`#;Ai5*U3@c*3cZX28;0jb~*8nP5aGqau&U~)+$4D^paOU z_9zS!)#^6=QzALt8s2rp6353;3c!*#5cmYuXvw!bPM*V5N)L zvY;)ws2aZ!pP1=+X7g_<=cKK|L;SkIrXo`io$Uv1C6kxqGWKKO%Dorox zkpPJC=oZOK2UWbhPt_N4F96dKPXhY!rssWNQ)gMog#XzTYVf>+*x=PLnm4IO{A7bH zt8`i@v6|Y6yV8Cs0n^UxR^jOtwahX+Ab4QjFrXN3n=#bAdb>wu3K%&A5NCC+gYHc9 z#e>r*La(*T6o5H7`YlW2z%y;4vT~6Ss-Ma!+>56M6=S@s4;&0i5ae!WmUx$ z36Zm{+1Js}9~Ek62E1ioB|bV+@|KdQ`qmDVeuu{5kiHetb_@uA=jf^x_790G#J=CR z%fo+m?5bOxX;UlfmG;h}6kPk1ac9TQ^|G)E7s>!%i=WyZTRDNm7@u2coyvnbcQlvM z_ef@Eg{8^Bb+CL}n?%ZhFt{`$5Tsdh-N8a2wZeV1g&GHK{OWf~>bv8iix~rSpw*vr zP+5|7p7!hs%q;rFP|5U~wjPvFh0efeNBw146{N>esep^^Ly$viZNqpR(<@pspy=TA zc%Wd*M;@0S8@QQ0AbqeM8Zhs52#)jUafOs_e9iLo^ucLB|8p!M9RD=Xp%fT9f6gq4 z??OFt297>}4n9Tql=2){-)BJP2R+Tj###=*MAmHaRUM2^7L1CScTG%ISP_8n>J5(q zLX`jg(0c}lB_L1fXK81be?pSsid9&FCk8es(oSX8ONMqV^5_9Vw-y-=e)DvOEpWrO{>4(G>=m`jAUn&g+O!ze%{%pHJ=Dv6GNl{rMf)DhB#eew_71ktKSp7;p zTx5k1%A?wZNdr?5eJeTQW}Y&rz8^AJJHQCOG@FvYr^8xwe`Bd#Q|{!Rgh7p-4N zOR54d-my!!DucuBg9#7r08BHPXiX>~hBgwH3@6R#p3tqn8dbYRKD!BtP8mK;c&>h< zTYw*GidbF-fY$(7j^7HK3R4cH+Q{p;OgzANgAG|_;n817`d45+B3Fg`<BWwfT-J^p0jD>zv)An)K=&MS5i7^eS5TEPt)W-uFDOG4hT5I{ zlmM(X4EBN9OF)obM5zGZ`mQg|4d=F4c{m%b0RIou>Z{22r)<$323=@1*eZ;YfJn*i zEhURJC4aWHiJILV;yi3`d^ zA22%k7}$^f6wj{rKo5PNyUM!GlvFlPW7Daq1DhEA?( z87!j_H?j(P$_u0|hQKTw9B1%22rm!+z6I7Ca!JPG_-ny)TMM@Q<9rYoKg+wG|8Gn~ z4M(GaE${ltxx^%I^z;1oN&iyz)!i*wR9NO6$6bmm8C@4zEWA6JJ#AaJlH=r)^UN!n zoSI11lNpytD~RU}^-pDXQ{L_$4}e_u?|+i3zq7GILWlAjjn4Bn-ytH)hAUT!9?zXB zo3P?%dkDdl^`SApn0K;m%{!{_1|mUQTECipZB#+^8^O1=t?B*c9?u{DCS^UOmhv(x zk_OtlFiv3IyegX{2NsjpWsf&y05$|j{o~*7eGoiGnDDw=7N5-L6Q}IY5sW9|oSjK- zqhd4%PkQz=2Q4^Mryl<$1*}li>bIYbFmF8_RUSX^ z^9&}oIQP#8ocRo99l)3rVJhvsEW0|(177y!WjP~|xRyOY&PC(gafPMRc$+9pH>vtV zXauykvdSAGdWDn{ULDzq0e6&RSO!qdkDOX+*L*VLTQ&wO6<}KW!5E7Ut zt;Y8mK7|f-wl92a(8?Xegd3wW5%uJ!^8pql3UPNqBD?XLX-j10W2RJKEPMX%Y@Y8I z(`!GQdiK==hR{9)K>!H8Wl75{Tm4kB^wHNPv7kk?;|Uxkit0X96$}ad@iYeN2ZGIH zLm*6W6Olw_+RIU%d;4)6EJK$wtg0v5&lyIj9I>_XTsOiLPWDZ-MizKa_5r)Z`S?(9 znSe1CuW9tD#T_6YBSkxNoxnexzvYciu<&=*&jRk&otlGxOU!u0Y5ne56#=H6%mnZu zbY%Dif*}-)z*ZBN`dVC7Dp;=25?El_ zRm+8D&{?rM{beC0g)xlXkTCjdg?>o6XU(s>qC2QK%+kE70|KpZY+hXV?s+ORYg;J# zN$_GYAqff(^&DTyJ^3oF4F-*%=m&p7G&zSGeOK;C!UXH7TI-_{0Bj#vX7Wuvu%Os~ z>p?wX>(DX^cp{r0zq!UULd0Q(ZR|Jb7PcxXOeA}OV~n$aSKH57&1@Y$N3Gt96#T;# zTTs%BXKbHR!c;X9&v)ysCU9xf(x>xXS}ld&P~nnF2yJ~d(X$( zsUqJ!#+=JkBN_?N%1qE@N_i>5mk^_W+|wZ zWeY}=AbcT%E)wtw3bFqFdSI9`Y}xt8!P24pGFld{!s0g^$*!8!wlsb+2yq>OZCucy z;XgQf#&Ov+34qcQ$jtubFpP+)o-=vL1Ehd{o2l^nZSZQc--D@fW^9|a>BwVBG!9fL zKNCD*LhySx#ik=K7+W#@md~7s`9*jWx4xERuiEFlEI+(j@*#Tq?mpnd|1L;fMu~*T zd<;M7iPOS0BhpS#Qs1lYasxKwi>=z1=XG?gCuz>#Rfem(+U=a^E80U@o3daoav6P8 z&A{{j=^)6nIwop%wO?olIx5f@wJOGA4hlVbY?#b^hjW2Y%EC7fG+X5Vj)L|-JR4he z7Bu6s&TGH;>(&1HhMXrV?(=2l-``+8^=#5g2Pln0A=UlTrGKJBn+Zl>I2b+t$~m~% z_PdT>09b{+cA3P;u{BwWzHZ~mf6t1rSn)(zTrM$zaZeY-Hk_1Gv_;@~N9YDIo{bSyFT#u)|^^Umk1Z+aGaxWW%&{dA><* zR{XktZ1{Bc#o?!wX6MQEo1wCv1b1J>87W-@Gu{7^_?+N1Thq&v-<|C#IW z{QJNe^+G`}e7~Z^dTWh7c64yL#~syv%$~OlwL?f_v$frE0vgi(9G8hp~6 z#^MZ6MCbmCa+WmXyGU~{00MgU0+|e^Xx{e6-}ey7=PFsOplaDZ@-LuOLFLo%8cEpv zbLd5edaWwFL`Px&>(JgA_j z3t+h$CBWZn?RF{by1!P1Ts#diKVlT~jNEW1)@_!{Cb)C^0rD;Hdh66&WKNBG;86msy zwmJ~R^uO*4t>P&uHRhwO2t2VcPGHWcwP!D-yVWe69JBd4Fu$+;a`BGptjA&%_jZmu zNLMzel>SX0BLt|G$2j)L{4;gR);F(0Y*hfI4Gw@w@n_U1Ro!Qb;dM1Dwl&c}ZesX2nJT@O2$8)v=;J{c(BM>_>U zwtuCHQAz6)%nU=12&*}E%cjsMq)LHAm8>uBNZAO#*{10GGnf#aq-`mcHE7IPXppna07N0SuZ zY2cK`BUnHMM#30f*}=*5XR){JFCJ=5E7W_p>~;+PXaIpY`w)B65$q}$NV}&brhl-Lz`Fzc!C*o+oqN$Df#YXQ|VSUa_4-!5f+)3W}%#{9Ua8ElGcHg-`JuPi!W=Rqnip)$NVO3~Vza;h`s5KH!dmQLK2!azq z&$(*&*lGblTTFEKFQyn0>3|Y~JYehHsmJruftRnjPCTr!U+!j{Urs~KTmS0T)}gbC zl2?84N9HM7>8*6CH)DU1f4%X7`UbfzF~?8J?BIj^pC77vdHe(O5=mZGP+nD4x$DOj zy&1dgBRKiNdGqvCp=mt+M{hS$|KebKScqK&0%D>NW@+$y0aETci}q#(Diasqt`w z^sY}2bp0j2XJurc?U2TQ-=n+KzLpa0kbh>b@g!3=vEejpg&lME##MJJ&+=(}Mu9cz zD_k&P^(4%jeb`YUo3@aB&YG>hulJ8lQ!%4NdpT>$3mB3Bhy^S z*G|(@=UG`XOFqufBfPspoc=-uB?|=|_V$$vE|-!7cn#JI_kHbdAGET!(hBlr5!LE` zF+Anjh8SW(PXYTQ$%h*`_geJBY=$CP9d3v!Ml)$qER)y@Hw*f6tv)6v=*R_hm91;; z98HqGnF+s7pzKb?4Ac#Z*aVEwlRA&pz8qAhY(;9YB80py%!w{i-W@jM`q;g0{0DD* zoT!(hTefNVvb2WyzzSblPa3_+JnFrB)0HeVLM_icztvNyxeEQ3vzkdQ zBxr#f658F|EIE;6nBZZ`?Fx9Gk1bnw$PeO-WXjs)#>Zn1siu^Er@9Z7a>D{5NqmbC zrs8%gF%~fhTZh+Iv66Otc)u$v$X-lWHa%dW(7B}8D#%d(9IW_QE#z$C;-Trtgq5N~ zB#Eu}kVVtosm%@)Hezps!0_y+>Ma>0)>Uj78hh9Qp2s@71Ysm438@C^Sq%GXt%{I6 zYs8Id@?34N#^PVvgW7TR$O8io1bduuHM}k#(4zcTwRZK2H(u9?wP@AltL>{`!a#i0 z)rcPYk;9h>T>?i_4BMNgdF_O>lIa867B|>Xzoy^~*KO0NQrvWIC*PSa8@G2{8R~@8 z;C3c`G)2XlbZ;ZebuISi)wU>%Ef-t`~na#M0Sb2Rho-6Wt2Geh&iwer)cI z&saL@K??^@3|6UX|TN5gxKYyw?&xQNyvanwIaI*&-CNjqr>o2aEL3fW} zTQ=&AFf4K|N`yI+%RE!sone_BVWWpqrwK3!d&b;Ef1`*6@m}eUkp2PGsyJ19H^O<7 zCfxq_zw$4$y)T{U-{EQRPdhU3P3?*CIKOalgXZ3`nX7R9c%z5flF*4cs>`_HFwrnV z765PRSU;?pxbGwI%C7l~F!SgxzdAVZ?d~6yG&AQsXx>KI!nr(v~nK zY1-bdaTsZcMEmoi@nvI#>n8rNaTHNX*E1wx`mw0W`?YM@ku`IhrYBxuZdK;QPw+Oh z+@Ahn3%||_&Q|yLrc)FPk%GlOzp{f4+Fr>ik*Hv$;I5F;+Oh=n89#Y)%z%bjLwg@v z;}Lf~`^p?0S6*I_0KxR00;^hC;=Elg_qI8F=tJ`x^AOU8Ix#i<^w~QP)nRdctJFJY zPiTU$_3l@K2)wPvt-KF?h?^#{h&DJIQ-qfQ{gK_r{yER2ar`W%FKH%Pzav|h&14Kx zec4FVjyA$b8?=5x&!i9mgc3$IKWE8iv-Me7m4X>o$dXyO%>I!PMhzXliNO_roer^2&a#;`_+cQ;rY)$DZ(|4ls^iJdmQ zR+p8|)2-n?`b!tP#DP&@=sK)AyJd?PE$d$I{`{d3m2r|T^U$b?H2PkM@LfIDnt;kx z4W}Cj6n?n@H|49}T6uaXd}n^M;^H5u!{!u9xB62iZ zxt$LWZw5Yf!=|}@{h7_3l;Z9LI?bziEiD&xXIpZR;>Vcq`&GVm9y?BC++?&QR>_9Y ztCdC9i2IM~*o@2G-Mz7UY#x8wVq8Gd#?>UOC(M<@|5}Y^m8480E0UVYEdn(o&-shJ z$xeHJzo9LrlKcAjVCkZ(4(duI2tuelgBx-no+w&BZ7uXG9$ot)dTPdn-}lM(%9rdS zSh8^ubQ?8tMIWZZZ(-~logG%GDviEknDmx?=z8Q;=V{Us%{Lb3$y1HDLe=2ecFmOG z_uT`$e~tFOyeOouFrVw7B)GD}dRw4a@5X1zjL+gz@tB;CITRR6bO0B_-2e`^gNQ8& zbsBwQ;jO!_MT!o*m77hbUi_-D9LBDc-05f;>Oxo_{&VUF9loY z;rnV<@V?`Nd%QCAq5~`xy$ZSHCJ%-1$NL$s<29_GON$u{Gyc8D7GbK((bNxYbKCPf zP&_Zary5~il&x)D5upan{%#GQCOw&xM#?E?sbN>5N62RPt~$Oq;4rLDCU_bpAo0f5 z1NyC?_-5Mxh0oln_#CMvY$=4)k``f8BukQ)OPGwV3T87<+b)Rdf0#{A z?V1y50pn?aABu2(fP)L|cfUSSPxkq|C*>@6#O^Jw0IueCsaHu9@i03M33L$dV187} z|MEjmI;d?k@?w&CTn?R|Q2ocj>6OZOPz6ksP)3g$Pfty;KJ=?_&6K4_&8EPEI|%M+=w=nv zmKzs3-=rE-|Ja~$Cm52y%sC|M)ueD`jt z7uVltjjt%T)f^e&wQCOfS3w&UVbgj&j3;$_Mf>nz6{~}~kS8aA8h?M=ldlps(!2B1 zQpa;z>$l3NQ)O;b51YkA(m;+r(UWqG@mImJ-r#{P20W4Y*oM)<)d_~0H)cK`jFS{g zk}~Sd*7=8yZS={nnZZWdA0V|@g_P(8jM1V2Xa-~F37>}Rc%R{FAN-pWf!}SAD%?7f zhSt05qn;w81_xx~eS$KqKfU^Ne&+Dy!+2iwG>f+#4?}(?CO9`Ea{nkhP8yB8eyfNm z;3Sqn{K^~^Xu<->c+fO&@xq30rVZbj%EaitZHnwb`Ki(4;jL)=!24~STOJ?U?P$hz zkUO-`G?%rkuQ{hmIh)(t-15W$D58Xv7%W|m4@Ic;m!Rq3q^CRtQa)I*8&C9J>iXn& zDJ>lLeUfLzW7*{Ek~C5Oudu5+tS&y6Vh_-}o&Xy^2=)>ve}f_wmlDIYdT{?`cCWH95 z#6pGrt@0@4)49b=e3Ru4)QgSPsmu{O!9ultP6HIsje^wLLB=%N`0)he+&g~s>eo6( z2fEm5Jyz2)F^@Tk)uPJC2`nc^ocukquO>x7v>SrX-`;JAwGT>~b8(;pPIK^`gB7iX zdr5gmIWqOMPi2TMe`%0no;_c`NmCBuHN@$zlx>@mZKX8-POw= z)1W$!R@)MM(t?TQ5CR?QX&&@+tw&s-h3@#&@($8|U44Es#8G?IP3PZ2`LMk1(_c(+ zGXsj$ivFL^*_khP@239rf)$y~5-8=oNs250C8%}uuUyF}D?|og-SSGl{i0T~a>+;fqWZYuEQIZ&8ho`+*&2Li zj%m|@g8C@JsoZiwxZ`L0;orqDQCKCH1X^zBmqX`=d!Bef*R16eU@oAW9Ueq_ZJNrX zsmw+_Db3cxWcawRyP+L^GNinBAv3VjeDbmY_-;OYU6b`^`{R3~bQuXnXf9wS=DWw| zLOmq&3stzLC=dGbd{~IF=(UpW`|I`mKiA6?a?KB$pM_bk>>&L8K2wUeHd0y4Jk-9p z(16MLD{q=I&f2d~E+k>T8!*uKi{xRUcR?C z=#X%Ywwa2kqdw_*bTg%NHq?Q#nx48Q0fMhX*}DkNCZ4LhWoa8I8F3(rDrulIdlqm? z@bRdxTGokIw%1Ucs<-ZmN<>kDN#sv{Bh~t=>+jVb-F+kw(L5ObgY4SV@{sNYP^zbpe{zd%#%8ma*kgDsC95gBBsLYu8=#36+!0R%!A^V`VU*{zd_nbxn*74jz zkEHq8H&BQ}Il}&at91TsKZq+0S81Db!9U;d61X-*W#+K_P^K^GfvmJF%{+7IH*Z2- zx0RG!3IFKXg+xeu?OY#Kl0?)J*#EOU2Az>z{;H~XOL}Ok(LS+!g2`TcznJq;rWuH4 zZ&)ck%l7)JV?#l31!}jU9PkUg7d=|{`|!wX>7c~!^KR@9ey!Ili_ekR69{(^JAnUI z=@G$=UB8oyr!>WBd@8?+TK}3ACJ}*7(r80V__>oA#EH)5+1sDEFV3u%=Ow_kZn6N6 z$Oy#xkkCeDALeAJ9@z8qL|9EE4502WZkBOvPZ)+-R!!vSaBqh_QeIeVRM0V=k3gwW zMewFQ)muKfj9as;m_Vtt>NiRobuR%|}8x?ba48)?A%B0T#D zoi^pg{+Tkv{%-7bTY+0TG!nnY2J*Rr6|X?!mQ}PRow-~H%v7Th(}ka}S`vn8c3$!C zO1>N`9$_DYj)T+Y=h|Lm6YWF>8){U|hHHPLIXF?c(3PxQ>pgnk!R?8+O6NEqP^f2} zeIf^cAE=?O=$ef=Dd9EzN*#w5c$cv0_9ADgVDb08d6vJ}t8AjHXT=@&kOBuW5Y~WF z`YJD46Z-}=Ns@ff z=mP9zLgR4GwAP^7{*9^QnL9=I`_^1hIis|7bq|9|rYzkxvfqsCH$+VljLM7 z%xId}d+s4+o~n$x8D>4Cb~*FEHN+S@an}!p-@&1sKew1WY`vrK;xXvyenKK)XY_A_ z!W~i){$P=>y(8@HYdssK8w-aKQ$64Vv+hLgjf|U{on|sJd%j zaHv+Sc1wq6gdiQ}t&j4CKQS&Mk4++vTB_w2)0rN6MLE0SM$y);2caDG)xNEdJgA$P zS)V*og%>>g28pnAQ_VBVM~=R^UwhSCu(vznS*X|XkzqdkK$QgyFpD>x>rFPb7)zYJ zxJGA3*ON5G45o3Aj%4(>b@vXUVmxBJNQkGl%)#uW-L5?Vbx{cU)9bXyW-&)+w zws7ZFn4m4c%Z@?Ri_LF&#D$o1^%vitMN?hRDb9A(2De+wIy=3|=51ya|K6K;9`s;l z>=hmAovo}Ge2h65mGw|$+R<-}xxf4+*BN(GjP!HN0L7KA$x(c2O zbE%x#*`_1Bg11MAR?YPn3IXlZNvpH+`Y)Thd)!J;aF6&+RzI`V>gs|`(-ER;PF@8q zOp=L7n2V{#^imf^vuYZikf1X-zS<1e9&z_4tMy8WmKH1>?otCEbHxgcA3NHw`26r- zAf8}>jmi3M5=QXM^)?<3hSBIDnVo+`)E@ciCGNSjR38w$_VcD|YdA2Z5G6=1tWbsM z;u(ymt+J~bf)zcnw6<{{VD*yeVDRa~R|L(%-1Oga`K(2g5K^B^Wv_sXyEM=;`#%Ge zdOb^p^AptoUfW||5*>K0t@Eam_P#4{AvXhVzLE2XuC2>Pnvbv-TjoyEYpF?(JdD^f zTU^;f4lX2mWSXpf15{{MP4vq$sOLF|~jaESG$LRNu^#y@(q9D9dw=c=y?|Am=7W zlWdTJ8S>)bg6M2@=^QUe`zUciQ2o0l_Q#*ti}%qJOj?QbW~xCmFeV6lc3|({SaB7! zW<$Y+uOl}NwBd%7(i~%>hPO$m~>PzSvC-JVt@#5~k@i13Z z`89y2H8`R%GE!f+*9PYC!C7@AGA%P5_@PZwEK$yTleHA)QX5tmuaUdf!gXTqO>+WT z4|{3jLeq!Rgj>*S{*Jg*Thra%L7%0m=eN@)Mef!#^y=fqj)SnupZ|W8z{b^r6*n`u zyh#mHw)@`@;eF{Zh}k$;LbV-zX|x7C!Ie`rhV9dOuf_BEe(VFJlCTkcWT0!I97bl# z6%AjQV3gC|kLnuzH~5#T!C`=$?{>meiKNZCiIcrkEh{uCO|VB;L?qp`!~?(EV8sVu zr2^1jXVzz7Y#Iu?u(04sqUuxmikz$(k1IiX3e*uinuYLs_&PCZLHM{RQ`dYu|GUY* z@3eBiwMOo_b(ONVHu-6k=(5R5(;lzRfq_|sFtA9Z2kBY#SVJ{{crCST!o7ynBpSgr zo^W6cy>~FImEjrv^^z$eb6qZW7H$;E0%oOd7Mc# z+%4-Y47fCUi|rg;(p<$OXqa2t9j~(lh`>yR*4ChQnB#V6 zbLwSJBlZxXbsaesM1v&r`j ztJ;^(s?P?t9@ygxe&vospiWZ+AvO{^{#AD5oKt1z#LQv!8O@*~+p7k9{RE&JdMaW1 z^6M-Mwqt-w3Gd5HoGRGu!P@DBPUI7fk!~q&x06@T%}N2Pv%uqR)mmJJIJXJlb5^@vkkH z_a0V%FHk7c`+~)sIkb&Tmx%!6oy;r!8#o~Bm=T}duc}5CdLiERNtOXRk42~rm%bKF zHthY>X>~{W%g<5L@mr`er#O81G4fl>mINzDWv>mclf>}{UD-*eQR6A4PaF2|J8p?= z^6F;QI>=g>rv4OxN>5w`@hp!^O@H>SpU)D+u?wUoVPN=AbnbDOWJJ76I|*Q;ePpa;P}cf9FjT906;W2xu{pXBdB z_3w*|uO`I|)+1^&HZ6$~T_lsifliJ_ueqM^``>?Dw+K-k-QAnd5Xx9mO&OiF$) zdxj9^T=_IG56*7avrqV zN?!)Vfi@{66;7Gm(-ZEE#n!Dm7hxGy^q*}R00x6rOWn@>i^@+o44SDBWkisK-z|Z( z6spSVHq>J^jUUl_DOuxAmGvCs(kJD~k3Z^++B^Z6ku2@Fk2Dw9run{d-n3N8X8=ey zSTWpSc#ECm{MP~*zlEKj=G+0PRsi@)-$qT#gK!bs89KJx-OkjuxbjhcxO$l9BwiK$K$n)g^8h4UxX+%JGZ_Q!lVUP9@ ztAKHoXn7hk$z|*7QCP9-JlE;YLNrkKDSoq0PBkL9%ZhCMMfhe|xnS|bquuS9DXX)c z+<@B&3(bmI_77qO*hPJkr;P~iKvbgX5{wnjQV~b>Nx!=n>CcQzgF~!`T)~jkVjSyf zSk`m3y8lhyZGQ0LwzgakGw|(B zX=AB%zjE@4vK8E~-cW-wb6((DA+=PUlYD!|D~eqG7rI(4gWmO=)g(}t{?OfL-h&5f zR6O+k_g!4i>vIaH*2SOipqZUtn2xUBdv62SZ?a;M7obPV0XJvqKYLS&dxoU{6cVhrzb-#>J8wZq9gea(NgISE zkDb5uuFL$wZ}(>*0-9`OUFGIJZ(&uHX1GDgz%-G}f=qk|W(&D8y}LbT3uca0z0*|I zr_VV~PEZcGCI;`f3!Nr?qG7SLAEjuD^KKR|#etwBQ8C`THXt>4Qt%{Ua&Bn>MeDsQ zm#g>g4=O`xwVmrkaFkQngz49-M9>8vP46le=q%Khe6ofPw7a+eiH7}IJDAD)7^~-U z5T*t%YudbB=2hVDCa-H<^?TO2+~@doc!D_KbA$5}X0MFG?wGE}4Xgbb|D2Xh#eKn@ ztHR%(%I5_-i^4>r#?LCF9oLkhyuJJ}EgtkyvWO+MPk+P~LY8J=5ti0RB(D!rFXX(<0p1Xioxl!{yr2`=?9 zawcreB^jl$730=t&mI%7#%7~ zFRu-j^N04cekITU8nDvfHKOQn;HwS5_m8PiT2RrZz#q|?sTQhr{c;OK(dSPcoD>24 zAWL1xF%Ix6b9=pF-bxt>vzQh=e5FrolC3_lk+_QkB#c5(b~b462rsNx;gKmk>vYZG zbna6|9M9jiG{3oWR8ChY9V7-ucTl96IPpIH;r!h?-~WB;EsxYiKPzMT!-WMwQfRTi zzk3JkVt3TQW|8U2j8fbGKK5lyQB9t!dAdPm)6^lY?17kR1r5uaU>Sh2wkBY}@?mD_ z^^*Gmw}OxzOgD?gg#9TuO*r~K+Q~B;?PN!pQOHv4Al!$XzjiF$ZaEuAkU`J2hG16b z_cC03Qb5wLs%Dpj8A^RW_-WA6l_K)(jr?b>10J%A_L`3j0zT6TnhAOS zpSHdNE~_n-gRQG4eio9c8vUOg2@XQ}t4f@!2e6bts&m)T z+b~CSct<#idflPCE+_YjH+Lm>LeN&<7RX9Jw)L##D#Q(Ad|F_(xVh_0b&wxYo>Kvr zH=2yr2R=MR*f8svVh|5Qqb24y*1h|I&T(-Dh_kP7NR4qrR=i`{`l!gr`F>8bTWj4+ z?CU0jH{-R|+c`X^`}m!n+R7zHj48i1TIFQeBl|rMKyC-WSm;g#Q$tPz&L)1TpJ@WW zqxL&M`|Y`tB4%H=${rm=T70#wLwLNycwG4OwA_vi8v}$d%Qa)%CzgFG7YKC{0RLA~ zy}h92?ak+k1zSN!nR+pcf4ulR^>Yo=O$|p2@@wWtdY*>p0{Y3)Br4BL_JH@uGg44=khnxMTTiNcp> z8@nu%&vT-F@fI3ytU4ZV$Fv>ij}Nf#5kR|n-w97VR!tqa%2JoyHGOYqfjB0xq=hx) zKC?mrv88vc+>#@}3ce?QcQtAIu{W5Ksq;GH4Ar`N1g^uKZ|nW2WlTgx>PAJKS4E%2 zs}{dXZh7eaSR`tmOm=T7$v=0Fj(#MoNc73xOqMXLUO_0!@0?&Lz1uyKp5s*8q&+K{ubQe9lLrIoK+Zru?o9``$loCM}*Q%m7hsO?UAM4(e0tkSo2)hc}XY=)6 zwR{$>lhcA>>p-{_icg}Hx;t-iI7;_jT7Nybl$0J8f49@j!QXYk3UD?A5inB;QIiVl zsfcy=`tPcTP%;3w-M1rSy&jh8Seu*UgFwsA&j)6Thnb*?QMzy^>GCT(O$w%0X%}bA z)vsS%}oPH8!C9`&sZy$_s33i)t2H1rkCPhhH}qfWKz{qAUv-!nO*_b z{0i&`u44P6#?hzMip5$TKN+lNwWX;@=!vKjvA<_Q~?pe%JJp&2Ss*NsL3B6@# zAcl_y85xCqxqCSJE`a@aZCc)x-!_~|iA0p6)U=wPeKL+G9h~KrN9rOk$M3DAV>wpl z>D;7#N4KI{R!H-c?fmP{v}nGx_luo?f!2#Rh!AkPq{w=r8$Ja|MOGdgqT#xeMOu{o zuiFG0U8|P9tN_XM`>AVP!pY`Spr==DRoEMEcVn&UB!vPWVNznhEuzlK?OUPJ=)SwV z^_f8aBJ|D!vS$61rLWe>oL$~W&+>Tz9z~9P>1>`;bpeVkfF<#uC&InXDFL<3uT4s} zQs)}e$_~W#9?|jfuwUAzm%B)Txp!rSeVua?(ncgJZ^$J5eRChb%Nb;ubeb5fpw_=QC1*Pz`!6>GaMS|8Cf|x@iF8!X!}H9u_#E2dW;d61qp#t(3NFv^VztvUFD%|g3e;U z*2L4_2BZtt-alq`WA_IlSplMD>$Tmx9$}1PClfXbWMBcNr{}#=tYVz*Lyp0EAaW_; zh%@YIy7#pPBz%{7lAG6a?+3j!=C<_t$l$w^DyVaG_6ly6C`GFEGkDwhc%x zAJyXRHlKGde3EE4>D-uCc?;+SN@pjz5b4Fagi5D#3Sm^}N}+|_{;@Mb^=3FprGrGM zxHw~9HZs2FnTWfT4CE=HbV_#&h4w$e*d0kBoecR4AJtfwxqbdPH{DUA#%Sy73q8R` zC{=FYoNgK@*i;p1BOAa`U{qFVO;t>)jUD48(*o zwxWWu1Nk@WyuH#E@>4Ic;}$Jb$u^Wy)VWH8mtCHby(_;>-o!f_;s%{c0_)n9Z02b7 zun+``8>%1I*fuaX+!T^xfP_R8O-5hs{`%1_t%(9!yPTqL;Y%0xBB|=bpF!}(YIy6M z^++u9YeMWt5b+t8l@~eIS=+j~JTQd)D0Ytf;Sy`~Dm(U$Y?0~J;OpvX&(G0V&k`C| zx6ORk>OX~*^g2WKtEBJ3gPCqNcq%eHEV$#ccHUgQ??N~NS&^AH+esbFvLi0^(KDiV zui>nqZ*v^u*l3p*6*+R1fR{OC-K~F#x&$b zf>6${mWG?T_ec^%$RP{NxuuDt2|c1Ge=XVH;A410*`hRw0lqi=HE5EM8&bZvdLk^} z-;Htd^eN1dHED$3Pf4vol;){=WIl|st;N(=x5;0xwURdH2EStQs!B4$$F~)@0`EUj z?)JipAgC$e{jhuiIenhY^E{cm#^3Mz)E5qriJw_O&1OsA`eFjRVJ`02$PL&?c18?T z262D>&?Q=ACp_pVakb6B5tVqxdJ_}K7<#!`UsqLB(LmRA#JB@A`-O?e zK=3Ff9(TA_`(@078v~g{lCDSmnhJ%+@L)(6QlV8sVBH>}OONDir zrX&tN|8>@iUtc+X6P88}2P~d-JPybTYA+=$gN~mx`>SnkH!;!LVMX~RUBG2fAvJp> zM;*KWt{nMn%&`Cpa_?%r&;G%8qSjVGXCWSa<8HWGnsaTbyFt}*LY8$p{IqfsHnGh! z=1IezJC2{`2x;7Fte@&pQZ^^0chMiFHE}puBZ|U+0ohSVzvTY1Y|%{?!`%9hzyQg+ zN+^}xbs?mX{e<+_e=Pk5^EAF5Y=Cul!|z{spA&V0l}gGaPDnl~Klx2%xcN3s>j>`6 z8RWQq=CjM~N<^{U>m9lH-m5Vz6NtrWZY|5!yq4va zlgbsKAru4Z-0bM77kkqm@fx1`iCrD^2Z8Z*2WD^e;m$qYn<`idj0_fSK3B)608z~A zx}2#SV}tq!Kg9v$G?_p6jtC11@_+E!daqlFY#+_ouO78q{(`EoGm;pM4jxp%HSs|Y z241wmn;B?q_+6ffruf7!o=fk@Kj*7>D}4*5wE}+2%kVuxXfPmzR1+MrEc1gxk~owq zI|U|!xiIs--)eBQGH)Q_&V3|1M$5W~d6VR{9^^A;ZFoUGZisHO`44@5XKu)lhL8In zS8~I*ub}t3D=#DRT)s_*{(e9T;z)A#9qO?;*|Fm$-Z4(4FE_p?75lvrO%vk(w6aSA zk}_&vVjs9Z17wj&QrXmi%61!zJ~}*>$Ye1$J|=+uc-Pp~;2zh)m-Q+HAgx=KS3cz4 zAS}-Nc8i+fX&h$m72J-(+QBpP@$7<%hmtr%`s6X^bE_#lR^ZHHH-8Z(mwp|k$$ojr z^ef0yDTjEk`IJ?VT^xgVX)y+5iAK)XH~@`>sX?0=>)5vesEP=XW0zFa1Hze9p14l#*SX`YH^7tbvng65KB!7 zhkIe7J;>C7jKcC!_RIU^W~2Uxp?IxQeJ;zmS@`cBYh z#m_Tzwttpx+W({C&KIVbF)ktD;b84zzxgJn%E7l-|Hb%h45NlaUH0}d_G6riqtyd?fRD(8P6 z$6&}+pJx8_ilGwj@mzJouaMO2b^a7;c++P2;7KFM8;n)r1Kbt~Zf~U3iyNoBZ)L6` zk{6qa11aQ)O$Ome#*CF^?PtVB>uGKxfTe0~a5uK-v4IZy)L%A-*MKW5-7+32mv z0chpD-c2xj7~rt3d|!A5GsRN!?*a*olZ`qHtDP@wKuXcDy|CbO5*Kz7kX>r%UZuYd zBQ7xbvb(U#q(X(Y%9M{?Dg{-A*R z^Xp_&GWBwu<#ghDMz5l;os)S(g2rkb${G=JWb0TNI?R@~Znr2C9`_BPx!PyCd&Ap> zs2|rR;k8g&BC;|qR(g~!0^G15k2+DUj>4yj5Lxzz0aYt(Mz0uxlHOwEVW<}qSE1hI z7|AfxCk8zU*7QOy4-a$h9ktz+MUIke;%Q_}7RNp4ISUv?(# z0dD|gER55v8jqfg`j%F*-AgA8q{=JMD;th$$_cvI31UPI&{qEmCvkR`3>kdB`k5Ou z6vpOvi(dU;T8EOh{N;3(8QDkF9`H|PGJ$Np-U!Yv1u8(Mx-hZCLVQc~Z_aWGz4pIk z#T^%c(C!)`m~9MlWS{5}BG#_I<4sTh4xQNkWZU=|*V#l|>;7VMWx-4BTtiHOJY=YW ztCFC7IUnS02}sOjoji>BJZLCx8>U-U<1SIvHv{{7eKs~ha5*6P;OBxWJZoI_#+C0W zxy<$D@_S=4(j#SPe{3;KX>PU=8`?=On?f1-_8WoR1Ypj?dv?0fiZy%hYRNaRkBnPf zxA|n6>!?Q|i+CdMhS`SoTAqwK6^f>rUkVBRq21I8hPh_M*wndtMb6cYI6+=6e)>98 z(^}dpPPw-!5^OSx>^pyE_(a3t(ZM%cT301DOdPasLXK-k9C3uFzaxXR=~8Gm+euqz ztpBB$16l*zA9m+|*FWM(1bXa3^?6?kba(`TuLA^4hG^Ti7f7xlM2ETDj-QOi5)GHh zY{(hp>Q3j==G4{~~5!^3Xg5WoWr@|KKMck)hntGri~ZiUhAFk92ph-Mm8`CU#e zCyyH!`P2zhUX9&pbw9)Pa!6t-GGwu@mtyarL%n6WH_>eRx#GvJ6RaejOV#gefH8ls zb5p`mZ#Uak1uKzCU&KK^&-= z^|x{2oTN;{EaY1iHQrl@iQry0ujp}n?H8!k32C{9m8v$>;YjdjnpPGQXke|p2cn+_ z1kM#VoR^J3(K@_UfNTd7u&fi zuwX+-CRTK(mZO{PZik8_B%gYyme0l_wKSJy8Y(#U%gg_!hmQ8Xr3k~y4FjAn5e>5jkc zUo#5Slz;tZi3usUnPS@dGU17D4EPsPXlNq<#oYRrK3|p_H2SR2fprv!xSef1CnHf3 z{%v{yHzU}(U1%D!nCZnIY)|b|<39-pKy^)H;MQ;m&W~|z?vuR_x>W~b)y!S zxm>xuPeXckI?`@ofyGu}zFAeDE^GbOOO98`ZjkhmG*yRx1J@58rt_&t){|esrD;38 zx=|~r7ZuD?fNg);{qQ)Qzz1l5YnwA4C(lI62h|V_TFiy&Ab3Bb@{r~3*qoBx)P{m3 z1XY}8xO19lF8sCiy@o5pu1h(M0`gZhr4gz#m%PEx6Eyp3ca}3DAESu`@IsJd3u z3FHr^Yb`(pC;;GIB#MR$`v*WxRZnv_?}yF&3N~hEDyMb-_F0K1*#6`6{_vF>pPye? zi~BC9h}vtH*63+z`8i@98qGqUyiTtDk<7#A2-F;`Mb4mQA8sb8mMV_Q8zxN*P{y>K z=Z~4%3JewAQR-D z1k-#Er5weJ%YsY-k}(BqhidD&YCl-VXQ4oGmyOt&3W8E+N6F=h(&iq!K7<7Y4CeGs zp7d?dnFxMp@a7s}S7qM^C}OK&g2xb3VI#&I@$vomG`=FNS6K^G(k)T>CHJmOgP<{D z3s#C76OGfvRZEH-_82}j0+LyYeAPn+avfQhMI#yi-%kMq5@73_)&;eAz%1wY*aGqLj1-2M9(=x|9F#ABT5B!5n_ht#k!o@8azI<8!c!cUSci+L$0RRaDl<;(yaJkGb$ZQi zN+lBDPEQ=X@3c*uMA9Tv%;1eR1Q<9)B@&4ysD@DSXNR(buq}&}^_Se0EQrHj;M^5n z$xDLnFebb{YXc8Kp~@`*KH ze9NX1J;tP30FSHP#`G&QjoC5D=NR7q_Tr7(^-)C)@Z3Fvn-B(UUeGzs&|f0G3y-A2 zYW4C3ZaLGMj}7(X?g+ATk6CZ8(A%RIHo`mC9`YawQzZ!pVS)CfCC`H^V~}z-&4!#+kR^rbcfIB>ml??Q-@#zXXTI`>F0bl-3DBg!Oe&5PWF#cfe%c?O z*qiJ6;>6D42G2rk`5e*L9cRFKL;`DuWE>LrRQ zsRAl<;CIpDD^A(79Nc$X8e{fAl4j{y|Ge3M%ob8}5@%`w`>vb1Ho$2q+f>Axx^33* zrGDH)#F^GoqY!*t9@OYy>9lBIDZ=1mwG-!sU9~=rD=QJ$9vs2-r#wC>@4&=p7xC%0D1{T`gJ zcQZQCAg`?_@>BMu_D(_tz$u=3`21?s%wRKNO&9>{2QZW*f$ZJcK>R3NY@Rnsm}Gdhe;IgsAgy+KxU$ZbBPlV3bpU&5EE0C_eOm8 zt5XUR+_4;h)W0nYta)6nJ%Zme8m3DHhaKy-egl5B-?tI=`EgZ@{xhz4H4*IbWNDys zwM*t8q{R)k>K96TmmVB?@Q{wrxw`_WrEdDw^@_B=4gDO;0ZKn_kA8X-r3-ibbi;LQ z!)f#pE6WC{ zIqbUg{(EkF?NYsjxuh#AP}`0jaOq$QKyr^58)HQnk#vVK;s8gabkH8TETC@#&a%(*^tqELOH-b|;(PllB&oOp-|K}_Dp%~ZmT4GrlD@YN zag-)5ELpTd1GKqc^rl9hzwohtP)bN>LyPjXyQLX}cj6NheTJF5uIRJddh7xoE00=5 zTJ)AZ`Ls7AGHN-NtHi~}2e-4cn-Wl9Cb6xZUKMfQhd{Cv2uP?vv7llxvDTCWy`H{J zEAzzrh<Tn(G^3WW%f(D1JvETnP>C(k$?<$;TV=gZvgK;~N!<;j$Kr zVPGnqz|Yi(B9gx#evIT#aki+oz7hYBRqpceJHJJkg<5oU^!+d)ft2WIE)QzMnCNJ! zJ}-WZlH%f!u4M(|cgJ2EH8uC>q&$kc){OW-GZMgs6!J+c%R<9ll z3k~1D?)82ir;t8z!Q+wf%?u6Bfq?t4Y98aB*}0J`ymxyfM{H^`95*RF|Ql z{WmHK_trbe_rcf{(5s{MUDp)oS6c%Icr7+C{PT}CzdxoaDeHlca|`5xcdEdVuS{UoEb(0fdpFcW&(p z8U3%zg;~ksbot++{NLBB_+QuSRQ34JDuBP`(~t|n*hI+9*VshR?sEqJEg|%V1}jip zTx`_j!HrKq(8_=iOLzSgJwGWP4cgfEes8#RtJ%+ zVq%p0`}+-`DTSr*+p|5haD(Ue)}LlvMrDsJKZoN*$HXYw*l<)dZScHFN%3v%RWMGj zxO(Z+wBJh$Xz489Uw10!&gc9DKX|Y#AG3`eZz6befDJkqbpg$R%@YCp% z!|$4d$AsZWmTKs6_BL!J2u;u;N(6fKEW(5;gg?|-nL2i*ZN#}w(5{q-gYPcK7ni|z z*Jx-!wQNjG3@jM5spzozWVQS`;s9~*=TB04dR#ViCCLZ%O;b6wo!am{`PjV~hy_M1 zcfKW}mMuq5Wf35xqpK_QY=FGwY@_txQaO=9Nl7VU>K*VeR+D8yt&z#w(&V_BLR#FVYf!DizPCR;1S$g;X&BZ z_D+b!7q?LxO7}I)iuR7T#TA#lqPrUr@%?u<=*jW2(S6PO;$$Bd92<*odynRnF_G== zT|x>93M+|$#p9jkUF)@x%xSP5qk&MEtL#fU$xx)ZAD;K3FDK|EC2s}JO~cWoNzRyU zm30sPX<%VNfv>DHQ)Pea@nRfsus_$<9u(_+UUvDBq|DHHusVogsZ|kEsIUkrDct~b z*1BU@toKMwjgH*@DX?PTRQ>ok$o~M?^5D*T4o#VTY&{+dr`Ds%+q=;2?!O0$Uc7$| zw7EBJL-^G{HrU^^k3`#cH|72=S!=k-xi3i3zmgk>^^UKji0QgH1~d)+7u# zKNm&~xQkR~np~h1L*St{tm6&0ZWVML)B>8|8C6?@XEE^0EJD|TEntW~(D`<~kkh=x z)?zDd{Zf#$u!som_B*W~4q~+YjXz1FbECn`aL-4PQA&Glb$l9?ivy?jK5;m>NTsFP zGqs~A^lkGTVIxWg6%xT&$ zNt>*!EWJS~#lt*kY;!*)CFPN(=I%<~Rv@^Dg1$b*2aQbp6xACksu7_3%1Yx}R+wtR zePiR<_r^ppV9-0Js}ZeEv?4aQG%_SGUR#G;at z`%X?37f<{zPFydRiJ*?JIS()ncmFwp+tlb|Ha;Ts;jAxh)`qE1zjs{hKLhuA=~{~b zX6j7%gK*5^D44<&UPBZx2EE5iP@+{=r0;^fmQGCDFO-OtWk z{1-xR5L7uY$$=FyxpF=`{B6`0(0H-gS;GJm^xiQgr=;{-FwoNrXMPX~g8^?9d3fki zDf+^}p&OhmoUL~?H8l!3dshv*JSkuoz;M>y`QZP&9DOT-`!J6L%y-Nm>&~;5N$jd;H~!FHLo0<9U4+AGp@zI22JK*hofNp zN4;sYLcQpnnTb%_rbd+1hX8+tUh*?*v=N?_?A5mbPVDU72QOzzo`^xvB#^DQrzd7} zvYc#iaB%h7*x2}I-@MOCg0&OmRB-}sCvL9ZnQCq5E$hfz5zct!g?bsztT@yUlf-h9 z`dFS6)qtN#%H1fG^?rH%BB`fT=E<*g=Yd4u3jk_QPJH&iYsyoAZfLw&(A6ob%Brh- za&l6T!FTsbwRHsAkOuAdP@%^1lzS58&K{|0Xi$Q&I-Lq(1*${u-o5Jv9ruV?uFauK&r_lD@^aKJbnP$1%&a*6+XHoj%9JS; ziHzEPe{OUxzyWNR9PnbUz}Dr0)AZ-hpC0IP)5821q`3EiVN`a4$ z@7DLRziq&L?bppYk-59O_Y@UzL9Qoz%c$(@i|3V0z>EI`eHhn42dkb~id-(7zgPD5 z_C4soQ z0h|@uE&Y!nN1{=VY_ERr#9v?~lvJtIDB#-USmnl?{}&+As7;e06CrFKBm`kgp+AvA zXWd~$a?$`~v94Q`Z>Q04nEM+ zBd5G;9RB(>X=PvF+3&(MDNml<++4wc6Bn7ouMeu`wxNSdfJO_D=AV7nGNaPcsAUem zu)=~z<*(^PY=#uT8@x_VcI~`D^<}iUva(O#&@3W69DChEiqE`-x~HcngrAXwB#8>l zyZ%1|?$yiHvLwxnzK;TCIkIcH<9T)<$C81*euO~#1u5tsSw6b5ede*Mqc>CPyn9n9HpVJ0D$7|ULX|(MGUMPOj3XS z#Q1ph*w`5Ae79YI(Ztl$G-?zaijA8qJS#j92}uMFf(OB)tqC4WK@u@UC_W#2N5tlR zO%3^zCr^x8{X{F;&g^c6{y1v*^~(l$dI5Bh;?hMZ{snkCF96v*Pi6sbPZPCIopJ>1 z&%SSlYQbl)Revt6t*x;F7>53-q&vsot(h=zKfY$e-V$_z>BF`!UW8~c7h=HxC|ua| z^xj?E_AJ{@R4>r+rMCbv*TY1HgwW7XWPBpF5f&NQ3UVzGo1LtnpuniXh1t!`Er208 zH8m1=5hUX)Y-TbL+gaVC5waPghINb=>uMVrMI&{=4{%IO;y!=AkMw(mEk)APvt0IR zB(%r6^Y8YYwuMC^vgZ}H0=ApGyDJhe30sf`7~%|I>l>CMY4^Y;>aZ02vFN|6WMDvv z)J?)>#z&!CmLsU{S56_2K}p!G5U_UpOV?La*#QT59P01FkrqLBfG;Q-UGb2jN8^0c zpwrbfX>a~RKUwfbvZq%{ag@v8^mYJH6bB~S5=@H^IGRFFzr4~|ntD-~8HoO7KGfVegE(F948Cq zinVSa3XR4|y+J@}Ip5&w1McSRaIM0;l?IK+;vXWiuS{83au>VN#*CaMz8F4k=CF1j z&a4aO#dCAgYN5%~2l%%xAbfzsFKJeI0BvC__<>Yg6Hv%-W)a}P1jnbQR$@4_I@ZVX z{y)E04Kg|Z{YYY@<5NXygkbX`O+&Eh|NDuCs_&YpHiz-?7w`E|82C_8(tuaow+#J1 DnbBu# delta 205207 zcmXtgcQ}>*|NlYCC>+PiUfJ1lY;g|CN;U^skr9WJ>^nO43>jHDvPEP^va>sORv{dl zj1c$@ovtP;k6EObU;zD(1hz z-!$jaHquQ289?%5b#AE5)|j_1rFBI9q(O^*)rMLb?DLc<2?#rLjGgK{971qV{u;dc z#X%f#;Gl=;ZlqDuGI&H6!zWG=Wrru%!*Jm;vj}RQ)L+9|uQK3#x%rz;0utsOINzn@ zMd|@s}F81VWuA8>M2KgEtZEIuOQ(scb%z$5Fh*__^)wD&% z^-h3ECK|a^iB6)A>Gr}gc0}Fkh!VX;gVzOqDA=RO$Hi!+BIn>E*iNLsc7UV9X@SvOcJjU9vH5AmyD~C z`xVT}Kqk)u8SIdtnO{1sRMhR@q>?wk zO=RYLc_nJc?Qk*YcizjNUIiYB8?sBmP2gt9@x4>P+eZ;ztZm2;GQLsI0 zH0EI8>)*p<0|b9^r#z1o3jUyG0Y=D&n|cTB44PzISZ4{3MF#^Ry@Lj{=n)fIl$8Ci zBLf~rA49xgI6#O0zavA_(VHg9Jru_6e+1P#I5}*D;=?lAv!ZfJU~J;AVZcUPD-%oq_Jc=iKoZxmsA0YVO zVQD^XCJQpiNaAm0sMdZcgRuN4iy@-4H3tl3g3z}2DwX13L^!%r_zUc?qgtmJ@TWgOw zZ}9ska?5jJ=@jj<*FTtZuiU`Hw_w=>Zf&+m5r$_BwpGp#`J1YIL^gLa65Z4;@0XfG zpFBSoPJw_JzPX@tfRe*^Gy*_0PD6)Q$_w`ql|mzlBwIDYu$r5l8NF50RR{WQFNgyjLU!%6~usIz>(8aE6vb|>z%#Wkz!f~wKbaYkV;w_3qy4JY% z**ciJ#F?F_8K;iBT&5m;-1EWhV@wyKY9;32PR>zu>8KTHtFsnX5 zNKa#=?u#ab9tQZYUgE`tBnOi*%5sObufAJtkCXb=&oLWl+(sNcD*n(zF2R3qMeSO< z-Wj@LpG+d%1bY76DYq;0$Jt|PSy}ZY-m@(aAjTJEY#ex4W`i^|gv~yc6>T|q$SRK! zSbTGF5j^YJaih4r9P#X#%+uyQ4d0geNLQb&>9GAFK!I8`jnaE%plz%Ehw_3oyYEjT z5zD&k;4jNeE4z6T6qAlxXp(l0Khmr&3M|^;-8sRm%Eae`m@?OAt3Fk5ylcNUCK;x54^_aE3bT^E z*@&wii*uz6%%UlL=^%>X+(d|VKU3k#kbKX5N+1YKR9MA)+WD-ovQ+;gSYf+qL-cIZ zNu{G-tTnc}S`vlsqTf9U?3R(8^&~mko{Q-L*aNOpD;?0}1Ra?N9^`Y#uye4pcQ2>e z#HXe*xXskv_;J4deDAOlU~4_@5{q@U4%|aF|DD_Ej+32_+?uIhdgEHrCNqh8sT6SZ z?wJ_&mjd^O)G0hr9<0kqczU=4{anYz6Euz-s$}X1mLWJ}>)*Y%iX{&XAc?%>!kIuB zFFO}U9W z8Q{q&Evsm+Z#{QM1#H#A*bM<=`see0{GWfnuKfAlBS?6n-27$0P7CAK)>gQE(7%iG zsb)W^;FErv#Q~||&c@Z87>;v-=J688zsMsWcj)iGKmM_Ys6tvV4lAp?mhYp0^TXq@ zBIPiJ?S_tH3zf44YV`7J)5ZPVe~PJMHt`-o8R8>&qNjR4?n82d-a%l#E*a}#BRxJY^_gK-4B#Zm?Vl`q+0VVM_l%A3@%C&Ve8}w7 zC;!?HPcs4mSsp<_c1VJ|ZU8Ns{GIdbuNuQRYY}-kg8-pX-{wAd(>B71PhOA|tSHiR+P9P{4otMzhy2_*mWD-Mv$$DyQR2X3@$%Sn+#H=VIN=Q*~qG*Ly#* zYAJocS$RWfuAJgWqd2W}(sq-asqDdPo7p>XYd#e3F|xUsMx zpyvZxF)_i3XV0JXQqB0uxBv?DQ6(xnG&BlKAyFp z7D?hGbCCb{z*vTd-#?BWz!iVl^|funt5=6|ozKIf2tFVjbUC8pLPC1R7Z;z4)h^Uq z&g}k8OVI!GUPmEc@G(x|u%hzo<)anfjHuOGM2!eA$PAcan&8aeG)2dN7W-bzF!)#{99R6n z&@3QY4Ih&_q-tN#f85aV7-%bJmVGh6W7VX2wo6KHb~|YgRr09b;=#g5cZAv?lH*&x zGp}IQ9(#;umGi>T9@#y{__8i!PvXS*olW5Z-C;M$r*QnJ7{ei799S;znh&@?MB^fs zPy_@&BC($PbRa{D2x4Vr1?AXTUzcRhl=J3m`t*s1ojOd7u(Oi@H1JJ$r?+Y}yACAq ze@ZihXX_c6m}s17QZNEqcg2mSV#?g)@#@hQiQn^n9QRnG{ClK)kK%IHKGVOfQYD*f z>JXpgZW7ku^Dpeez2H+6$uuW=(MaH}_td%V9(sx!PyG@_RV>)}xrmnjMG|6)x{u=G z_vt;zmrr-}Frm?C;BG_jDAH|YsMJS)3ab_F=@H{Kq-L+m_^)iv#|%bxbpXL%Kn89u zF2D?i4@+)Jxv48P)Fl$jQt5N9bL?0E*P7@0MVgVJs+Q9vL@KGO5Yz%87x<= z9=JB@WDvd!Fp#E$T%}hDN7nx|inX8YBMrw@g*pU-Q|VB2pFJodti4=TM=#m$aKP z9C-D|#Zmp{N}M8n~PW!&H6gCdoMRNdJqQ3n8;*@%rGGypf!x8->(bM$cVFmr` zdcaOxI!yuYwwzBM$*T;4HFQBG)@rXvHye?%<}Eib0O@#`g(c&E}t8ZWV{J5wjY5n6g=xa ztaRMY`1u7MZ*U0@x_2E3Bh9xE1MsOyMzABMN|TT%fiPA|Bk6e ztecqt@UK6(j0-KjG1?BJlf8KRaMyiSgYT3Vfw`CTv)WREA(7H6i7y_$tt^9mTdvdh zI`=lBgmA{17ESyrInOgod!-8p0TFHDEG!9`rTr_Qj(}mh@%6=tZx}rGersnSK42BBnyK#FKKRAq?mwxXVKus<(-4xoX>E; zC7ght=>}!{hQ%1%w{Rwd&b+ubNP|9Ev6T)1}E`IDjNi`hGYtM4w~5wH)TNeQI1)J^uRBK*Q$EgB51dVxyR z{M5<&h2x>;2k$FokBxQr*>r1RR=FZq9eqjcLggCs9%YE)o>Tq(wtARfF)P=Y2|`SP z&b>8)-KJN|u~#P}@w?8@L(JP!EkgXi{W{nKqo1)SwPxb^iYqevAXdc{3%(A?fZFRk z2J|qu?aCiz6PhBeO>;Vr*F*Lcehx;m5;rr&UNQm=G;vMeJZ^lap}(E-cMJ@^+RBD zDeh@;b_RPV`RV+;s@f;sCTkl{@ z3ZGpV$q+*GlfSbO5k&~QFV8Ix!ki2;Bu4EaC$I1>DdqDIbl7Y{@{AlKEPfAAT{zbn z=)wE2a%6pGk-*D`>0zpf7AYMo&FI8ean!n}jbvQB%+QZewl+r}oOa^xp{N`I*m*&I z5FD=(Pf>K^Uv-ni6PYXMkC)} zqB06bc|6ZO8JHDQ|5+a3In=m-NT9{vW)Q>;G(UJXj>#f`e40h-KU$VVe32OXNQ>yV z*i)I?i}W80Vx}_0YKUY6grP$rfu6X(p_209(oVK~np>l{HW8+=kr#Jag5Gc z+Na$9!7ahyOVj)76s2^YeNKT6t$`r29rdnMRg0rMtXIGSaZP6#N4kZW+*Z29-*mCR zPx?AEq4pN9B}l<}Nzb_68;v~`+yo@sM7kOyhsA30t?&f`5ltdu(& zrrbY&QQ#v?DKQ()_+=AO6bZHtW$wp3(@~;}C~1EA-yW}u*8d?Tq!~I@{$Pk96$(nh zDKV;U)rFR#{>^|Fe>V0QwW)_$5WOxGCLBwnc0Y}b-~Yi-Yn5j-RL$25s-##%vy1~} zloz|qaI>#^nDdEIG>&9?`W4M3Ay3(jZ~)wIpa^;xo*_rCe+Ni8$2>Mhx<9TTwVW%w z?ize?9P*8V-HRbK3(^Ze|GPnH_zyGP##D9ZKne)@mjM(E29IaX)0aBDYzlfthd_^|+; zl#(^j`Gazhkm8O-mx|o0axTx>uYz~sRyNKrmv{;F(Cm4W&TR0>OlE{;nXmc7o`ydO@h z-sow3$B(Pmt@c)r9Par1piOSa$XLeCIY}OWnEp1Awv{ZEM(y|O?FB7pOG-b|*!V`} zNfN@uLL>f)v^_lr+N-32#*Zub;WC*@csPR}AF zGvI5%lft$pVIaBm!FFrY1@dJG_Hy*OIvK}cu4!6^wzw5Ga{I7f!~AJ=etZe%JzDQe zflJ+ucqYHQl4353J(2#3W0x803S~3}!Zc=EPA2x8t;2Ilq~Y;-c}kAcXVK95!-Rro zIyMftdWQ!>6cFR53IMiS1>$_!%$zrZ)x3}kWue$#OdxwY>`!LM*(X9D zh{zk>vC3*6L>22{is(01j7ZWiyzmqEny!o@BMCu;y*|L5MHJ+}+Zy3{S5xeC)Q4Tn8aXR>L(^8 z9z0scarewQ*7MRobSrG1rny`m(r`Htvu%0d4Ge!6i*PA2S9Sl1NQoSbNY5agGRr@B z1n_?xcxNa=fd#_De2B9XQ3l7QoLq9HQAl6R8Ql#gEA!&! z?Y9Zn926V!*>K6diqJ`R-W0}z}a0=>p4%y`uh^PPD6H{xFQ4aH9ju% z+=p{V(nx_4P<^|!eI#Zfs>`9k}#8JB73TN1D+=ku(-6X($^f84e zluW|#f7`-g#Mw{b*2Rf)>b)$I6z<|ToN%sxJP=Jf$&tZ0fVH%gT=h^;4FCc=Sp@vws6QKFxSd&X{(^^M zQu_yk6ZT4i(S)Gya%&DCt`r&S^2DXdC0n~zX=#W&h|K%~-VQZHBUrK{~Qt8yZ^fzfY#OOUt`&N4oDe_$?6q^*av{z z0uHl+p(fV3Pcfh%YF?XD-q@B5&E82X)#jmhGoef!9GgAA6ha)5A7#NAIh$|7nG^F6 zt3^6erOZPJj}4Zt{+?6YS1+EsrDq>`4~}LN-j~SZKaMpT?CN0>lnOS&%(>0JEP{gQ z0S)(QEJcwmozODjhV2_6?K~rZj*Kzp)UoTUVZtgxEZPo_k;2DK8ri=8OWsR=d4}43 zRl^I&5SaZ(9=RC4CgpU7srZBRS5Xyn|E9l#71xSCqVQJmyKzr)J>3*a8g0aI4vYZi26l7w6oS-zV=UdSWN}!y)JF~X*9S3I8j6F=;|UE?RB)b zeq|BH9p8}6sW4}a?d!;_!SO_2Dkv$q9$%t{$ZhERnUcJAM_N3kYh0@Cz+QF<%>v>N z|HbU00K<59gAwx5e4-@>kxr8MA~ge&{q$!;U3!h>Ep@~YU6B>Ik^Rf!43QW{ktZS% zGf%@NIok1n^-ju<1R6Cy!{by@ZkSafxa!8S|8siG)r`lndIuEXmqffRojyDX{fYpE zaNvg@1;lf%dyEn}2s&qb7gZ@#=<$*DF17{QZbrY^3r! z^@1=k^D|A<7Br8D&$w<9nMbV!3QKoZtu)aw zCP&dI9EH{Ku=Qtr0DR*4a65`}@Z~=|_kR>lMCHuD(+Z@7x$dd1exMGr2264@K`@@a zB(qrux-dhajzhtj%ln|pEa>8a804pW(O_T0?2O&3*u6!wB&{?9;46)Zh0Dh!gqR{! zNr}HHeM4d>jOL-%0bzeDoT5mgQp~Y!^eaMtG-{h#5T*y*?)l^+$$eT^N7TXU`NuG# zNb%tqSWBHtVJb0d3L$!06#{{diHWR>)Iwz8W3i0QCs-QkjXt*IU{NUfqA(n)G!jJx z*;pBaKzwqT-i!p0W9hP3zab7zk`-NYsqozXeyPXe8L~sCGEJL_)@wUnI$fer7^5Z zil^qltbT1>JA|jHYPAK4ar7)ajd#Q*o)rX4{X*1J^82q*StV}LSr}q270vUGsk2`d^V|# zh&(>(bE`emXTh^zy&LiB2DMSWvC+M`R9f_9$mp-f!*!s;wTjc<>b?RRi4v$?e5Ir14U3C>Ybeh%d`&d0wUL7TiT9UyYb41*-k-2HyQ*=3wHRaTwy&C z-R`K*#*BEzp>N%*97=w^_dlUJQ-rqc@WhsXU`fKDr;`K$w1&#MjvYYTxN86YThq;Grkv8zpk5vKa);hLQ&;~@BEWUIIxM^Sk$UdqT= zmrP{zNwE3Cbtjy#(AyP*x7u0;61W5<%Evm^-x!v0y^AP|k4%hwS%iEdzx%S8{OS)( z#5YHSx1T8BpM~Ywf4v3)rM=nHqU_`0)~yUo1}hiVA@i#a=G?&qAlLMW)Jg?~-a+W? zdNEpLv%OK|bm0W_w$(cIEaxGzgI!xiydO z>U{*q3xY+p`UOBEvvin@mBKp~e--0zDh=N^FGD5A7!&EBMT4S1HCG-lY<0)J%1Yps z=%Vs1@?x)|BX357yNic+q$|4Gq)i(kkk){b8Qfk#;LAa5__V9gsUU-X2I{>AwV_G&L@rqB>4+1nHCU;ivRC# zDUJALObqhos+!gnumwfEEG=c)3**L#QQTZWR1Sk>NRa3A1Jo19Vro};w$+VCE=Wwi zQBCkV*z6zkf98+SJK#~85A_cMfjNxJrF&+K0WG?8_a>KluQ1fgguVlsUYeds23_^? zdIZcKH+JG`OD+ni5a-nC5g4q9U_UJ+1)f1(BxKb?L_d*&qQSya&E}EX=*fr8{Ehh$H!8F&8BoKdDRFj)dRV!&v&-rN_Y2 z!YTOI`&dE2;}JjQcQUSIb&=yFIXuyAF9%7qC`f-!ZQQ!v1Jlq~T{$QFVO9Y8wK)x* zMYwhmZf=0asRWDq-^nJZ!c9?;qbGVliupvw-x-v;jM~_6ofrT8Ac`|>+-h*}I0i7;>cLUVIV;SGfujPvCFW#6F; z?@@zKt#xgGc^V%a#}0=S!(gKZ9AAV) z$Oipu6kvGG+v}OX13L14YFcP+uVVYx(ZtiQ9IAdEo~k8#;W&VG_O_v9b@jBI;qFmLhDaw#DHO0cuagEb)g+j6#Bwn+{hLtJ~S^mo2ci->rC0KocfCfWl z?Tw!W`R9Uj-qL>+!qF$$!;9AvT3;PZW3ma0tLX!d`dTFqSl2-U!%6dyv)=_8MVM}{ zuW#shJP2MOYI6gLqKUZgG7E<` z_63xa?pY+N{TjnqrK0e+r530G)ubsIBzanGQD{UL4vYBTGJqN)-!optTqa8Fbxk#^ zlV3}y7oNRZd2lvjt}YroJ4fJGlvbK-;UlhDWrDhv!9tDsH?xJllgXIwYAj6aH9eE+=l zML>NW?!89}R1BLa$WsAp!CG~+OM}J!Qsw);8toU!#6M!|YQ)}@kzmt6<5PxZOgON$ zv^;%^fzFf`e}P?Vf>{esbfjXC2gK(4uq0Qo2hv9Dsgk8~pYU^oGEe5M?IHgrQ2Yy% zxF_|)sk}P97Wh~O(TR(kcX1f^f0*;d0p`u;k5LY+qtQD6#e?vr5E?Z}F3xBqtl0+S zgvB;FMp^wwAT*#i4h!84{XCML{b%OH|GHT-JPn0;3d&EC5tg4hvk0|M;P|e45d=HD zZzjja>cmfu`mC6bj1#sZoJ(cY+g+qTf|!f`O)de)Ut1~{oQ7H3%HE%o(g$dg35xh1 zjNX;PB&SpQ9n@+sQrV>S0KAm?g&zz~st z`UTkeU}2|mP@ZW?q6))%E3LT=dM#KsrDqes;z3%|K=hv=9b0!H!4v#~Mr{Nc`6g;{ zyfff?u?kj)`jy`~S2Lb%UQ6klTxeoBQ&{pEuJnb9Ku4uhlM@e!A{6imU1(g)P+Y3W zavn)oT9hd3K1gf2vcwFsw51Q1^?=#Gc~ZOms|mLK^Lm@0WCIq|gsqKs`@c=Gt5$ea z*bQ%2PYZ3CJ2hi(OZu|$e~@HckDDT7_GE;$>YztNUL#_mK)TTdhg7 z3PeXKWmwJ|5rKF5gBTV@vScRzk=yAHcl@+d+3syC)Y0yS{QR(e^;9_n=naNs^GAHB z3`z%+L%jB(UW;~s0i@V740)iFKjo9niY+CU61HMGA_biebn#5g@@elIjDZoobt_-z z{f9?)ZX?q){{DoYaruR6z0&6QZ>?8F99+*L*bOnJ7$2)k2Hp+Y=ed{KGU(FQBW4zv zVDo|I^V?W3?*w)mnwjaVAGVGm{u*afes(mV`LsAG<_zSHqL$lFQ<>e;EnnWaEn|j9 znM-@?seK)jXp4GEop3Eb|)bYn{&x*70s zItK?UH^J(xYGO3-{_v5>vrXNx#%Ju!&#a_CJS%uc=oz$7d0Fb_`I;0*@O%}ttiEVTJO?t$^fAQWQ9{fE&}#YE8|*2_ZN4L%&IZ8 zZW@iSWj&VW3$PF**czz+D)bNqg?U)e+XtXl`4vIkOA+29vxi7(XOS)et*NTK0tOZf zmp!QS{>NmJCExR7i1j4$@SKgund5g}km)t{`Eepu7W)6Ui ztLvVJ5g(|Fwz=2aDGKOsFyDSxJnCifJ!>Z0#i4+vdyxOV^o>V$uj)X@9kzrb<^qw@ zbzI3vSa{#pp|Z62&S7=g{a#AOg~}QIg}rmDsYzuwjLxlm{U2~^c>Z-we~rE2xokAZ zVn1fAXLUYV&%a3x9%$_4LWcks+n zikLRdAxLDo*PsTRp<>7t|X4p0Q`$slQrO>-_ZaRvf*ehCZ3Z1LJWp_7GFY9>Ir8 z(DU{HO%@Y|A0K&RO*wLAt_ptWH5^ESTQa2NnxxE2ASoWjSCUU?-8GYnuG&TNWYs z6`IlJD;z*8nMfPk+4P8S`!9+=4VYOk{{d!w;rL2&*6$ed!k1H!UgMHt)dv2fXP0~F z5dXDUucpdsVT@b02A+0cU_9=LtHj3?5R>xo44wu;0Xe{G$ zFXO|&|MJ6M=hHptV&X}Ya)L9Tg8F`E;*e|2sdMaPlwP5A8q(hc!A7Q-H8#TM+0Wbnd33Ssl^7P7W^8F`v~|$SfVnIe zun7J1{l}D}JO$h5^=#_GsruSK7J;{bw%RX}OHLJ{QmkssbBzJ06vKL`G*h!!y6nB& zn9v=Ly9MU^BJ5kN!D=nnCi5DsvV5X1!PFlh{bE|OC#CVcL+{|&BLKuOHnO!pV}S2* zDlI<5916hQ2_Dn`%VnlM5oUl5#iBTREagAaCSAeY_zOlV_npDA&l6fg7Xw1{(SOWr z>dF8n;n=oT%j`SKG1mRBd^j}aHFyng!<0@0i*;y}U_GbYAh~O3suL+|4~z6B?-SBE z%X=rcFd8+M_Yh_q1xuK$}I zg&HFC>&@uC4SMH~{(HmC%W)~4UDqJVBmeXf?9*|u^Cbe?S|@cyW+98VYC(TISY?ZU z!};h^Bj?tdM4}05G+%jlM0v{y>__<{juAo8E5>%;#Izqueynb!SiN1*;~n9T?y>jy zS@E1dr{P_U0DZRMMh;MyOcf4O(k#G*dKKN+U+?oQe@=JFE#?<*%ANazT?5hC$m^wx z1miDnag>aw)fx1j3gzkM%W7f$;ZPg0h^A)2)ucBD^w=eo*H6SX@wTX(7)6Y#rE1L5 zEJ=PyGXp-1a?ZWJ(72S}+J?)#>w|tk{MxB<*{l!hgTqxo)C?Dwd1=d4KzS~f59^3( zj^Y*`)H8x^>G4t-KLj$){)vGof3>tS+bVmXa7XRy!8h3J2vM4yfKj$p+7$XLYKFo% z>UdYz`9A3;k*p(UsM5tbMVpn0@mI+YHC4nrvv8K8;j%Dfl4s3xBSw6{btvdwTj-cp zgBw&2pqiNywzt|g1Q=}BARCIjXjdi4`A;$8Lh*kJ zb_4zn6lm|x=2@QwIVmUyx3$N1Cj06<2iWByMg-g!Blsp*@D|N>1deJAFAG|@r!F#~ z|8cAxUiC3rR1IMxTg3drq@fm9LMz6x(X(y%@@5=Kbg2foFEI3dAq#}Zpe_0tXmJ)@ z?ZK-stM*IB+xF6sx~}DXhIQ3K(V~8|X?Ea613CM$?rYy2^Ecw78;AD5-@Ol(L94xY zc@qBglFW6l-UdP14gZSMC*H2&pSpGH<++fm38us9phdsm6~%tNBwXFUG_t-bkxX;! z-bV!gv(+(w&+apeE1?t>3PDsRcT6>!b1U8$N44&_^~6L3K*aFD$kgH1guU24UJ)(1nCuw<6N zDC}f>Q#08cB$0g1qz^^pQ@dZC((Ar%@YjWbU?gP6LoU)L2>5wWKBs9(MH+9^=<7!^ z-&#WIVLq9)Us;Q5q@~{3esrk;+Jn1rr9!ZZz()BsykCe7QBq8UC)#pI;=@rdG+hrT zqPOLLRHuJIW@_;_QLOz*sxU|$$5OsuPCJm;pIC_sq5Rf{{19k&Edz1sR2y!8k@f!U z1~+6r7m#>GjpFF}b)qdx0 zFP!<{BIvpz6*7d{!Q@@T2Pxkl zuja&)b2pX85bCZtZs8**$IL>?L09P3<@s;tNP;H5ChPfa=z-BhjV>Mbuzek|onq{) zVi!x5F@Ee$B$YoKHne~?YS=WJdO!u*;?Ne+xX||w4Tt$2qg!5Dufd!LWY+^oyWO^; zl zrpaeNpKx9rl(?R zPrRHQ=^=u6fBb;w(0#87OF<%LG5MuJ*2;x)=L0~`juhA-U{)sL(iJUNg($TU2}r}& zET)xcmSr!Hyv-Gb$C9OkSoiHD%NJ03oeB=5X$`z!f;=**wM+m?y2Dc~L|jYLtGRvE zv|Pw0pQ$_6z^pJ>ogHRfEA&O86sz&I3`hOX0G+$4Pyd2!IjzT_}l7*+yk zHl{Z&FLwEEKM=cU-nydvtQVKA7HAW@{Sjn?#bVEKlN&t~`9T`3S08!dEFS{;j2jmv z7eTa1374dpqRN*cbPbf}L4dPRXDLxX^zvmkPxm7k^Ha_9aCoAwA{C3qxg^!|0E2un zf2H^Xin^o)$!a`>y}0fqs3_(FpD_{_P3Lsh$`c8zRELXax03r0Oz6hpE-Kj>1jF7~ zP|odV16{kzD4eUV0Xeua6kO2Nq+bMd*l76Y2VXp)MbTf?Z4^E+GZ;DyWHHw-90ljQ zUJ=eL8}YX`mg#A90Q!{l8SzLe|DJDf;%eeg#%kWr{NwA5XhiD+0W|KP-^{(hi{VeZ z3*M_s!X6g3fz5zhHCnV(qFxXKRboz?iymDaUp(-eUXurbZ!>Vcl7r)0*x_9en0AA} zG>e(F=g0Fpl5eO;*T<$ezh5F>2N~`}nk3~p9%TrObg5d=B0r9_=!hK)Yf+9Ho&4^F zi*O))V4T(X0ia?ahfm3bLW2xdvcZPzG*H=R^6>RPAE zE6=VzjkAm8rK#p3p2EnSq0a(fwC%rPIRTIru9!#~2sAyhWdr@jYZ7?S-|Ia-{qbk9 znm(?<*W6*-Ofm58&6oC#mXQ;$6~0NpK?G&r4gB~RrCEcyR&GbXb0 z0Vb5e=j{@KfABBi9_aITvxMvpWstnMF^~_A7od$Sl6XH!UmHo9#A^!{-e%u-)SvXJ9C>juv=wfQ;K0`4l)ciMNYOjsOc3Dj z^*h+IEG_khL$8*&dEMp)F=X=zNA$5T5UwN+&N~)xg5wQ$lXz>!Ugs55T%WASy#d)h zRR<*uac;|?DaLlt{J&hSC2z*Dv<2ywatzom7-Um4!I>*Hub5Z=tk@e1zoyY@#auZi zrf@)JSIemKb>W7JM}C80!#&`E5xo^pFgQjfQCV>vOz40f#Y<<7kvsB3S-BaJRL)Ni z(ttzBi`_nS;BQ=*b7WsY!t>MhQe)lY^ZuSHM-Rr&LAuA!Im^@#`aMxYa7MNNEE_dr zW3p^%nuoh*wz`N`-zOy2@DWPR<|ScYJ3tovFme!#%Q`~mHUMhd0kICp;lVw#7~Z^! z*{Gn18j(q`bb)R*+uEL@r`)?x_(*y@s9MQd)zJKD^=JL0f5Ub^M-NroB)Akn^R!K_ zHV0dErK@{uC-R4YJ{eapjfC0jiq6o&$O9&JeGgPLKj@XLe{YHm2FpXyVYz>nHgmzm z8h0NuVNC_dow&D>H&af_ER>Dz?{+yHJibr_Z3B9GF}5ud2!_BN_UKWy9>%;Y@q$^% z2dcyXsv<+?MhV^w<0Rko@Zd9s&#m`dLpRLCQ;>;+RU|tGRm|&KcBUH2n-Io`PjtqX^y;;0o%mz`);r_ z9{+GkSnM~gjPz|58|vQ6pmZ_Vs>=6}egRrfEUzT*g9tVt*lmC&i8>`dT3zdE^YnBA zV9*-dBzetbuv9I~8a1&Ihf=MhcDebE|FmOh$KiS$=>oNGFz5Q=DH`;~tIm(VV0%EE zq29z(sodZ56m06M@z3H|8f(^cW7qq#8}?A|-);n0QZZK%XKlY@dtn}5oALLWFO=HqNkt|1!LFNcwi#Q9`MjMM-*3o zq#=)&VzUQfHM6i4n(beE)O_wWy~_zkroAV`20e+?r6nj0#P+!F2tB@bN8z17w`(yS z^1xYyfjovq*mG{p8~s;dVsXz>>`Q#5b@-3KpO{&%J?^ZQ4^-?C^gN#dnjD3(7zGX$ zEI7F&Z1y+qcEj%>r@eyK&FI+E(G0p6<(e|KYx0_& zt4k4lwJSt5ao^vTGaHmNYM2=1f8=33oumhwHm5WdGFpAz7HkFL? zf@&pU^{twjAiIDV8=z^ElA)jecO5rz>QhFVc6)LlDDw}7iG$klp-3Niovwp}9K1yO zYhgG>(QKkJq$H~hUJvt;a(y}fJiUc$kJ!Y(=)nJ6W3S)gctZW}?%9I18>k3@%_}^T zlZLX*4IDLOTU&b?tp6H+eGzqqLm4324l22EDT{%Fp1|%&nHf&5hMAp=*0%5wbzRw?H2uEX(7 z)tktZQ?n7J#hzjnhsd?tasu?E?HPmlGk5WTkv8XZtyJBfz z)oiOt!!OrDhHL|mF4*AnjLP)lsduZ2-;Ox;@Qa#}K^pe=)Nkf;I&aVy;QkwJ6LOm$ zB?p6%;{)%q>6TBQROLxa;-6=I>pnU3cC}Mh2CXuodNv~SHWn)$K@~BGdgQb3x806$_b$sh<7n#RfR5kV~<+H7ZiLq50@^;H+xFDU~EUG2$gNwMiED4t-x zTF3Yrsj0zbTuBZq3ndoJ5}1vcN!Y^X?OyHLOjfl29dc=VUG})}nOGGl_<&7;46^%z zJ&)A6TagRbGYyA387K*5-2nkvl~qCojN6}?*}pAgm8|zx)=gU4h*hdT-0zCb9#qnc z5=FAC0wWUAPtQ&Y=nw~>m=Tf~O;L1fY0l5wU=JLmBZh#DbO{tAKqB}BMCal?ztq4F zl)t@P^2i~d)KN)O8R&Z#e10Zz$)%)Cns&R&YO+szS4KYn+w?m=r0nqo86e<$0$27N zI;+W5hvU6(d4m5RK?0gWulU(UH~~y?JN`yGhrNo*iH}q!xU5TAxjwYqr=ZNmWu8&@GyzNlmA$uUb1di& zx3wYLdbwlMYFe1r9wux$D1C(&(CVHCj%=GN7*n6R zvZzje;P|9RWjoo+HM?&o40&5M^5j=(?!?2FuLoayP7_S{J7Z~L^YcLi^&p(^^8V|* zs<%+es}N8<>8!7`k|_ZI+M2lDlD9o9^JZF%MM`H%{#m`PKVFn~t$~3%O~b6_ePL6X zg+Akq=TDH{^LFoxz#s&W5Q2xe^s$1TPn>V+v}8mTk%;GXc>~DB*=OUYgKwy#xLsOd2rmN^zVkxL>ABq-fh$lJ6b^$ECBuY$DllU97+MEHZ%<0fSgZ&F(xILE=ItJ{+7EVmFsMvZ<4ZJCVkQ1`?iQ- z%NL;7P9zqzM%%pG6@#AqG`U3LG~Ds#yYUALUhvHCecjdz{JU`OJEL#ixnAkfrVxC} z{dxauuwq@M>xkSSmX2hOoI<+Gf`4vaNTPcXD0!Bj*Z%)#dk?6nwryLq5D^s>5e1PX zh@eOik(^XOLhC1t(03ZmD-CcD=ivo^}=lLbd6pI%;kA z@HdqVdfza7{}Cr_;w_WqRvHkYbxK8VprkZ&HM9v#Bwl1>0E`$v`b#jd2bqeONT=`I(Wz*O*{P_e@y{SLH zxpk_9lx#jqrN!6q@h9V5y{T(wQ%2xp?Tqyz$$uN*K@y1#k(KcwK5XZeRrl3sXSKBp z?aYe{9mHruVW*Yb#?(o@5UZaOJZSa(!aFJ27qn8eG=r8RxKenx+s~bTGBTA~d z7BB(~Mmfy6iZK*Y0d5INBC&F_?-UFk_tASi1C*&Vysm873@iw)!(xY8pZr^D$s z-~W8aJ^C5P%Gll1Ew@S@UuWrJd?eK0q+U|Rx-ZF=8QsVn!bIt7*Pt-X{NC)uP7ZL$TEjg8*~*e78>UNj629TO_ZT>d2V3-biG z=29aP=#nsK^;9P1&i6wnOib7!MCtWrRaSe8Y*BC`k~lDSz(8)PTU>Wbp=e3$wNCRw z-dOF&*o(+AG;nI+kUHk+aAE=A-{zfW+LF~U^JQZ761pTVChna}(S9E;d+TII#+lM7 zdfxcoxA=lG>TQedWrXgFIyB$l&E!$z+X9|;hSf7~&UqWwS|5IEiXTo zFQShPW7cCanRH#JfiZsQ%_0Tn=1$+n+!wtF@%}5O*E^%Hq;eLsmtDBR9R10$Eg!jd zu-|2LbsqLpMtl79bMUgc!#@95O~A`JNmT|4XsC0B@*fIUIW1U8uJ{GpcgRx#NoUz= z4l}eCK~MNTY*!~Rn0D<}`m1knLJWpc+^~%Q{rh9^bf&q+IHZix8VijU*M!+s)Ipmg ziKI~~cva--Kz2y+RFr*-8PPj7R+eZN|7tS+P@pg8_sdjc->i=%NNB&N}HoXRz zWidBX(=&o{Nk051Pq}x*embwX2*9sqIKJ z!5gCy{>zEfi{G~#^qts_VE~d53==Gyk5ptWFVN;d11cG&+GF%|nYv^<9iR8l?62U_ z)9`gl3W>)&QHm5vnP0QYa=!lTOa8kcbx+(O-a8DpMS+RRp>*9&lNel zrsnkTHu~B&F`O!^$`Q1?McrikO;7#O;4AF(Xw}ayz1$C2UUjan>XuW&^p2Bw+Y0t} z6mw#=F+;-Mj-Pu^V{hKAujk4o9D12sMy#n95doFJ6Zhtwx$F&s)r)VRsnqZ>lu%*cEi=UU*~PeNWevVJVm8{D{Efw&_Q~%KeR8N+Sd!=`z-k3yQ_pP!pUWdA_zn-q$H)d}r-%C!VX{rHc$YapTqva4nds1YBuAJskuu zce5ov>TRE(_ojpfLm@T!Exsi3DaW>&H%kg}`!6}w^Y6s+0RM<_R+;_B025ZA$h6~K zpsidfPli8-B4{?Oe^bh<)v)Ar`cfwAJ1?u-qsTZf`wACLVJYz7uS^e!@kJW2FRhDU$-iv!9Vd^CdiIf-% zheSQ>+I7vYLn_E>vXr6sX0BIAb#>d@t&6$tcQ~8n<=)&rF%rue<-yIN1MlFhkS;CcUWGW#NZU7>NGM@d|6?7~3lM z*ZKA#jc{y^I!%!S0S24V^JwJTZ3;F02p+J*x({$7`Njab1kD=_bQwUy3^|4w0Y02i zSc>U$3$Cs2PX&_iJ74jbHsesN#pkvTOe5}-?zQTa`%oq#htQhKk#RYasJ^R`T&WxP z)#=SV8=t^&=3~ys&K10M*&P#q4Igh4oOv4Pnxrn*f<*qxs<)GNKd`v{Ee0)v!PNqe z{G<9CgQ*0ZR+y^dF+n!=r0E7s*WH!jiTsCJIpfOQV@z|`sdRF}sH6*nM# zTJ3mu!YzL3^{*-8BQDSpe>-&; zh4XS7xHe^V`hM{*ubdWYte6;fD!j<1_c5&?V-VtpSjoy3(S1^euO_l30h?RtLBVG* z^aOg>z_QqJQsvrPvGcNTTTf^dBkgiXlfJ6#*lb^P#^$BGImxo=rRn$TBIkumB{Nk$ zqeOq`HzHT`&D&11mr36ZKA|L_BWit}dC_;!*|U93O+;1HOnfe_J__}?Jj*kExqkFp?Ms*mDozU`PME?76O^Yr4d{H19_Q99jwmt5_xX4lKI&l$G>kWLTXHZU-kgwm^^jSVu905K`#H zbA~$(5cTlRz$#h(Qw9>Lp0%Pj1-C8IoNqpQL`Adv0Do|YP3*jyzUVr)!51W;{qti% zfPQno9J^L~5>B9Ze>z?VN?&EUDl8xjN#rl9>#}}S0De0k**ZcaMZ1C#Y@><-Cg*s~ zyXG3%a*5?Z1!{1d5v|&Y8rlEe^hXpEWkyrCee=&Qw84 z(8|j-ISo8|p7tJN%(4;n5^gW-A-GR1FKO}C(eG7I**UAIfJ*Dpkub}5cPH5MC&&y0 zqs=CtZ~l~D;_Jz`ELYEmPNJAXvyL_va>p}VYzMz_F32k69w3l#KV`M7Dmpink_|UW%+We*K{6)<$A+?oERja+JaGZt-&>Ppyyprv!S$@xg%oLyk*9 zicu{yz0=5`?_oO*`@5^2m4D6O-)GYU#WQ5n^rf>C;=M)%XCG z41Jq((EQK*8IcSr-O}lrlXTmVi>j=07uRXO$L|9RKdr?Vf(pHJ`velB!|tp`L2y?q zx}vdSS-~kqUuj|?IWO08w%HH7^%?=ii7fi%zSB*$oM@-}6tTiG1J$F1P@FruWmNGZ zeyfpz%`eRUgI397hn^Q>h4x^<_de@1|=PrW{BTYQ_L(hY=C zYys2k?a1Wa^?;dGjX$B!t*~{!pB%ts3av8+1L6g2M*E-VgB?gX;fMGhKAfG5^8sns zy?t4ab6#**s!3OSd^p8gwJwykJ!OJc+h5T`0c;VL{k8Ai{zDCA)wN5)rH~n7zDDKf znjIX=KfcIW7btyl1|H*M?aZYyJE^ZEImMqw0I@HBDp*?DSS1MqRQbqA3o)%P}%vb(~#Ho+hXk-@Nh>m2E4+sd< z%c`h^8mVM$kv@N={wzeRo#9aPF=j?H=+xgGtz91~qQflrXWRTvqT)hgk}hzoOf%At zrLBK|nxAE!MAhA#-uU*C`3((}B5`_MoNWrEnyJ~p;*Z}r{PdiZVMW`d-!JyjaMMsr zq)N0eA%oUuaA5XLf>wCSq1Swr;{N#_stQfssv1Xw>0Ktn;#jDS+Vl@Suo|lc#UOLc zG&}Vm&pynx0=_i2Bg#l~plz`neehIu^bO9jLLGBlRgx~yUyl(a4rQ#>IIMIK-PMvOZAwyz0i*l4fj z!PO;-Q}fl=3nP;`( z_rfU=d)HfsW1;i=VD7cF_fD-}TGR4$OM<%W#u%ypC}yLxA=rK~$&=~!t2X8^r$g6( z*T`9>=q>~2l%X}_S0#n*Wj?8Gz2y!d6F_$RgGtkS@$*N4pN(hY;FwW!$zq{cJyeI$jQabb|Hs`70`d-;1_~Z*1fA-l#K-mfwoh_d`8cB zx5Ww5Lwxh10;db!s|1LxoSp}_UBgJ8ZSG3Dvay+j{~@Uq8a?%NKZ^y z4wnfC1ts0m=&|#QU&n#@e(Wu)VYO|ofSZn5h-g&fk5z1BYMq~w*+>rP;o9GBTl$F7 z`pn8ZKfD8x*{2@Yu=A5A$=q=tIKwu`zwHm>H!M1`)Zh6`;!DNT>c=vHC{YsfHDEpQ zmO!&#Od?(J79UOTFd+%i$9&CZ^uI^bwmy5lpUUhF&e^!y!$xq?eg5cz z09xKVZvFP}o%VwfYYF~&YI0xU(^50nQ?R*?gi#QFy!IW~YrGz^Aq%zKb3J~&eP@|S z`4GV=%Wvj6o5>%Rc^ViH>bG?yNgs21j&Q?1iQl#}Zkkd;0cn+qObGDZ42nUuflrh6 z@oleeTU!5QLTO4lhRF;hm17~J4Rt>5d-nW>lI_8u4```sdu~45I;963mu5q4Yyo}O z=zu&iT5s;*efk*3Pb8ybYz&uKUJ<&$3l6FY3K@^BgL?{gWU5inf{|V;w^{Z-sb2`; z%xMM*Pf1j_<~h4NP1piQ&0F_MnvS%}IbXX(FC@{qRpGl+-BYxa3!f;wmB6B$M3(f! z1{dO(`kI0Z@W#0Adl3bX1(LNpuU_9?2+l4cBxpfeW#9cwcV{xfoQv0Hd*{^8Jh)GQ z7i~1Lx;@h0fBv?-c~?p3JfW)XNxqU15=l()WQqMjov?w8!!?bFh4krVc)v5Kbfre8?!Qp^CNQL zFZBl9>@>Z=l2YevnzSCW5jrL&fIATo@dSu*q1#CTD*GXk+}JDc9vjtbu0uAJ%+6lO zLt(wSnz^~bxpQL$kyov1 zHy=5+`2{4*xL@*Aazyeqn}peosz4;lCYa*6Wp&e!)~&*txrz|^mWGjKvv&Rr^^nUJ z(*SXi=uZ3@WxQez7hPpZ!Drb0CWn_EVQt%>DjBI4?0|7J^mP#xTv3b&n!%}SmrAQA*!Oi4-1lA(d2C! zL}sqEhy`xY%S);gZ@nBR_%@n820tvm-IudDI&=t&`W&-;7ZVZ<1LeqBMO`vY&XRe} z&Y68yddR%TQ<}*W;}dt;g_|?w{eB*R^I{zk$>M6CqZnoFfG}s8cYSo}CH22`2N#6t zUZvjm9`L;H^nu?lBkt_0;0|m5vYW{9H$}s;oa~;?aY_QaLjiPN&P)EyUzcnp$ssQj z7^5Ct`$g%1))VBp@!#C}?tHs%BHBj#IL@;jpn3s^uB?n`EPu3G7{JH?OS~h7E-p!X z9!L7yjsc{jI$X}Sh&L?LXZ%UNwYBQCq;H+2L!snXAb!32{*@y%KH-SUs($vV0!8JR zbF~ge3;C+ktGDWffLFY0-tx01-jrT3JnymDc_=NUeRrRBn0s+Csjxd1@{#d@)O}U7m^~LUDv!nu-o}i-)Wsnv|TU= z6rzi}tqdg=Ge^D!A+eVu#Oa0y9ghPw+7E1WT84`SCL6+k8D9_OO9_tO{&Yd1wEv+H z9iE^0C_YK1Dwhfq(zN>c-nheqn|^|marfY+!)Le1vj5=ZE@?^_46#Rd9bweVsLqZU z8j4gqGVI|Otc`DW)tealFjTF40oMq4`WMFVk=!_ByOv!XQ%A#gd&F^)4^=pLHAhon zN_N|x)7HP~HvC)mGO*jZm?$aN&*V7A7$ozyj!!0;b0_sgNf0{meD#+|4u?>9u)@Vh z5KtD+N;0MZ$JW4oU#_Gc<@4I(|Dpb|*7CWs2-6+Yl%L(_`VJ6#skqJ@uVE>346~aAoI9)DZz=-`}q}zH?r1%y$TOaioZ) z$_isk487BHNFJz_QQr%;F@%!_9-}-^xmM_VxT-~|wX>pv_gxMlZwLbq_C}AQjn$9A zgjB3uEzlRjhP{`a(IZ(q$9xlQl;r9 z!tP7e>pr^i7qJ-`zb)Scb*JnOfRt|h#oG=up)C=^0C7JKWBDKP!sF5I0%sN53n!AQ zEhawTPP7%}8;S-B{wfV~{bSl!B>RUo7?H0O0i~$)G8n#@yA4 z+`drk4MlRDyb|N`WTw_gVxlyfP+s)iNg%qfGdNu??tcC%X$-nXAa`V|n8WMkFTT@T zemY$7jO4Qhta0jslsAv=5SnHc)sn!%3QRWjiFJ4sC`XgRb!O}3j`ajHo-xgvji7(8dpmCpv>c%%Z4@^8;hPEg(Ifrur7Gwpc&V*Ayfep{6w@ z2PCBDS-F+gj{hx zw!OS5vvlVt4M)(#RJWCJ5d=>CKK-cyq5CDvNR87J8K$aw@~DY`%w@Xz0RH`ohb1Ns zvAvLMpCgWUY1(v%#RS+E-8y)YAQFt{uum!`hCY12bI`xbxMZBOuGI7UmJg*K zJ2cjAIsR4WYmC?zi+sd~aPA<2-*-;xap&i3-hiH7UFdUTFf4CB$aw?q?)A{iJR1Ijs2Pj#K9{;k~33se-0C>=>A+ zMyB9&2ciF=+@Xox7S%+on{Aw6&7?PU-r#fvTy*}9RZXila-4N{&>9}JsGFLUG}6!> zvY2g{SQy82niA8L6?-8lQCRDz{1SLxW!p6cIEtC888qvrWYZlgu$DadVxsUfvyCPd zozNSTnWn>_u^B(@d4;a2wSLxA@Y3>#GX8-w9n+er3Zw7pBGF!(*WDWtS@g&knrsn* zfeH_~%FZG^Vs4-vVgs%=u=#6--4ga;>imZ8&x}2bJAUuY&QgKG-*pZEt4V#-7H3Wj zZr$a&+Ea}JZUL_EFHH<$XjR^s*3P8A&-%))XwfD^au2!VOf&fz==&=D6T=ZLU0C00 z@2h{(mRm~}<=lEdJ$eWY$X4x{+mPa_S0Ro>$C7zEG+HH=B3_NABk7=&1|Dkz&uxG< zug0qEH{(vyQ?BNk`Vd9e#X`9^ZWK9=h6`X~QefQe6(smJ_XIcAWVbJiHprK~;9!3% z8kI*Y^+oJ9_|~_W{qlAlY!nkv)lhI6oQa*=0c32WTTjc>Md}i}!IfW#eB$GLix2r} zY>)T74*+}KA{Kq5QGaJcDs{Ar-zZ2y+J&VGu2H|l`2eU=wiL+SEwm`BR-*<*m)274 zhZa=Fl#pIOWd5;2V$}JM9MUJ-6b=8>jvDHF;GIz18VIXEe>k*An%0SC=Z@@j5 zP#Hy+H>etY3G-_DtCi-Ad11WOiA$w*<%_f-Q=3GYJ|aFiif>X~sh<-?PGevRmPy16Y}3#}kP&o;)4ToL@L z_Nu0V92O)+ms{$r1b1ST!uOXiPNW7H#-bW8%AV{xSL{F( zG3{3jZWsfTXLatKc;J}+06VQz7_ARbQ|Bec_G9a;vJAoCOr@e0;Z}&%GVU_&xl9aM@42 zPvytBIO)}r6bt7Ajqgg5Pc0nH|f0t@YCd}zn&#l+dZeD zj5tJ8i-?R7kaNa}T0eE2-{@&!l?8f`>9I@Q=C5jEj{!Ue`~Nic%l9cdVH}DlVlxLp z838=87da1&YDG^$(pr+we#y4V0tiNu`ehX~Ktz-9{c>v9YxQj7SjojF_URTrrR0-k z$hc(Ruj%jk!0%<1G-m->jOdWeOECR=+HJT{HPt2f1I(NBQU8<{nfDFJl~9_4zTg9p z^6@Oc1Fey*BsOg>6IfbT8gljD>auu(b|9RihP8eFKBKz_I2L@2R#jI+?u1~Z>bNIraM@Zi6zFECDEU8F+JAlUg(fu7p*~Y(YdNpilwby&4JAgM)&L@)*7b7uje+8$~%XPpu~M40M(2j z|2TrN2VjxV3Tw3QLN-$rL$8yUb? zrfBseNGqh$vFi>BuY<$UVBbr~pf8W(?`fQpHMu@-&Dsb!mHkq;=D=FZ?#9HDkpk=w zAVH=U)sy05RO^%*IoRYfiCyPvvp&7qeDEZ3P4G=3wB>d3Lz?D|C z#Z(0hNhFoF8n^~OOyPFrP`t7lG9A&w;RA^;NE2vCo1aeo-hunm2ec!DB}43-a5L(9 z_3U#H$kd=a5KO)xiBLrC9PlOUHq~b z(6&#Xrh4yV&lGwpC;He1NTW>Rm`Xcztw!>6kGE0){t_jUl;7@0K?KDRqo0HVLoeLM z0;>V=Bsj?DWk#C>u^zY_qtLe!_s6x}6%f+NGy~4?U*inG8iDQRgSN`__VSofCn_Uk z<#v`u&efb#Hxz>v<#L@Zjf3p>2YG*Wf0P-$0GByJ-@?)Wu!m%sRxkmHq2~$;0HY`d zqq~jjlx2jGFjq;hG~Bn{NR3k&hqDqi{3LRXD8aWJm}n;SJoQCTEx_?vPx9L3Ks_{o ztUb2Ks8R=;pnm7f*s6903?=b)%&`8A{XjSyr%7ejMQX&ndC)Wk$tb1Bs_VAC(kiJl&*d4I$2AtdKKbKy+ zb-gE#8dZ4akld_V&38(D>?I$P4V4DZ(yj$X|2pClalB3b5KsKH95jR6aW8v;L&CW; z<)^tbF;j=KA=h_jPsJ6NuozWXF=z_oL=gNNZt`R@K*~oxTc58?%Ibk^m?>592>?2n z)>kRlI>1%z+_09ItfrfZmw`NlbP?Rc=+{jU#|b|j2IBe)O`OPjQ(H{!RIK%GD<}~x?z`)uUAqISmM#+51 zOp-iGdqx6c*yt5kkT&qNo^UP6ZUPN4?uYUscfAw*)cb4ZTyFC@gYzr05;XAwtnY=Q(qqB zlwbG`0k<~o-ODB+fEp(=VoL01jsTA@dEcdOtN? z;b=Nx@;!|xdO3OEDR|cKB^1fz(7)VWxv0iI|#?8fULwahO~Pr-gSHgmut$JIo$ zXpOWI$*~w=neiisHlAHPu+g-5j27A{#MG9*u^sG;(BjB_Z+WG}b(aSvAqiXx-o576 zJic9ymV`l@(Z3LO`G8rz@>43~Ep(zb-O(g0-FUnj;?|o@nl26?cTc zxI2%xYF~ETse+ywFkJ;8WnE7Y5)l!}pgoeF*UwAaWS$Q(U7(=dulXVC(DWZ;*=G?7 zZL1+1Edl&Db!UILw|g9Z#qoVZryAc>3QR+=8z3NKuMI(qM4ihrr;sc11m&rtS~iUC ztmMC&zRFZ{LBf5x_df&}a(M3rnU-uOHFWqeM%3EAy&L6Mvjk(Q8gdh5UV?{a$yN@& z6(kT%x9QPF&_#*#c;QQ+{&lqC=M? zKeJLV&3;`nw5pQ<_y&3~(7`GTV0rsoy1X&8a*ME={!NZvzucG3cddzrsXN&_X(<@O zT_~gqC8RD|1T7~#l_%TbOsw!Q5F9Ej6ElwR0%-5U1&6+YGdtC)aiJ|k)#NAzUU|JT zjO4q020&e=@mOKh%va07^t!|O7VYbtY~~#Fr8Gw87`tx4v*K*%;17u zjw2(@{+V!IuCi}(=5bVk3d%9$=+Wj*`sA?z#r?*1v+K?zQ62pp((Y@L-hXQ4)BY?I zO$u&H60se3%Y@JEWR8F_FM??~T13-K+`Kl8Y�?o~kqm?llIWJO; z9sQEhHl`q)EOiTGbg32DCAXwv;eN`}dr!xC02339IPB84`4;7|E|bl1%8h5Z^?^}PE3Wu<$hPQ#q6r1~ zyh2ptB)vG9z^{&5heY6Ss}fm?@!4pUSsO!zHb9*T!RgH=$*(RCr#gNG5smlapYt0V zq{=V=>5oOecvS%$c%PRT-SPZ!BOqR7&zU_0V77L?OHTAL9onO~;MQkPvgTU$lUaJ! zLtl$B7clO?O(`{=Yzi3|75oto|AMmu7j(s3ZSly2CL&i2$66>x2 zQg1Sf57?_#rJwh+U!wYc@W<%6%WU$f$%BZ4vcf&6N?tQQ5%bNZ`hK`-8E^2{=jDlA zrHg61d;1kBM(=vo8+SEfYR@t>d>()%GrZ9ewwz}7B0tNqcP|=mYyFT3K7Vu)2IsJ# zX9XO1tS|!Le#zrB#2Nfkv_u;c7aC0rWOd_|xWn9Td=7;pLWgP=8foGKhaZ4**Ch~n zg0ic^y@VQVDHi*j20Aw(*c=N%$R4&Sq=*y@4fGK+{u#$E-bVQW)t-B&!B=4Xot;4- z(Mj;qaVLqZY(9{311bM~OC8u-fJi1}1CdpXp9WY1EOug}v5MhuI(Wo^Bn^nZ&UcnV zZH}f){^xbJes)3e=kiheo4?Sw*Q6+l*q!@)e(OSZ>ErV{oSt9c0pHn~9-QMkxD66z ztbXMuhJLWv%ASiwtweO@YM@`Zv)-?j+-_4xl6E^X>L6iGE#J=(?RpM;pds98db#41J6AOR_HESBi{LhA13Z z@L%Kvy?M;m6)xcY2~1I+7ZTyP(G8rN&>YL9Fdsg~_&hEE| zSnmY{>T&8XFl9XHr#`2g~mK!LW7J%fx;|*NNxOugZP^=S}DCj!$*$bnt+;Y^6BIp zng9*;W2tt3JT-9)awTxn8l5!R1&Tpws5*P;bHVznrQ3_;gux|WdYE9QUGB>33v+6A zk+nTZm7Fq_ZBnkT*HUx0;*@OW+Pwe~?BuUul>FsnwQdTMu0M$WA6 z7SUVs$_=-VTPasM)1Bhi@mtfK>Z;kqhiuPV=Gv(F^wUMwv2!ov3qGytGxPfL8vOpq zE8*V}S==&b)pkoXvb#+U~%K=nNYowhKrLs+}{?+ZCbxYBc z9Tm+F6qSmD9|}7SiJfd8=U-}L##XUkY#TQWy=a2P)lsM&^{8Y)c316&({DA!w*Sb* zFa{?bfmbx=i_h%<8G@>CWx5IVOoAFCQ@3EEh(mJGiFHAn{_Z`3g`>&Dp`ONX>B|q9>(r`Od@j9-tJhr?RbzEL zX}6;@XfT5MU3M3OYvSJ>xjjL=MOAh?vuZ}d^@Fed=s}s566&ztO5r3T&VyH=lDVid7DZ+ z$t}zG^Nh01ki#|R>xp~A9$cx)X{u&$iKLxTTH@D8-%vl3S=M70nF^d2wz2V%jFObU ztej@^gC>cdtLEnq1iy~{*k*r68tY$q@b0=K3-(xI5AvZ7pU?LA+{*7SHmZA; zCoP%qOTnlwJCQ`-HCTUY(q+(ao9<4iP5%~d+pzWFin!J1dZueG_9`}yWqMaX)KqiOi@;)BqzH=rKD)aIlP;SSEx#Ia3k*mW3YvaLY{G#D<+nl&GR+; z>wv!geqthNGjVH#QfAtFw_>Ha<0(1iDokZWyxZ|3&ktcRZ$U>-klLIzv|(iG;?iQ# zefzxxKXj(u&S)r^L{jBEdd(ABE4=|uhl&#EEr!Vi}bH37v@VM&Kk00fE zd3ihB-(WCTx&HIV0t}x;l}?f|B0XEJn18-BuEBS)5P174y^3>6r_K=9*R5f&nr^kP zPq$g}KmY2<)HSZHt7lkPG*wlprJOLBJ2ZHpm2vy8aAPoj9@akpemP9%r5n!w{==WM za+Lr4|5@t)_%`xieE5V;+1O zK`IVou9@DMjJq8m9eVTTO%BCidj1^3YYgVDl&q}m?BZh1Y|BX8VNCQz(cFEQyA0}L zsh*FWellp7>qNRP4(Pm9d^S4zkk_z6Tf%idZHqGNW{q`tXb%TtuA;DEgmVQ;FQ=FC zCllkGSp5CK>UDj0<#vMSqj90{jeq|cVjz&KkesNsDbez;Z!qU7z|TFd;Ox!t$o|2x zb@h*DrEZ~xng(*y%}se84CcRDAOAPS(aO@Y?X?0+y31U*sniq<6YU5;uhiMsm+|(J)@*ue!jDb#Y!$=Dor7JRxI1rt zYL6DSEMtd^0mqA)X7Z4DBSk!;-T57 zwQVwSq`-ITm&h;=7N<^-0sOncBGPGAp57qEpxjlgx{45LcYmj4Kj!PB*wKnIhw+=0 z>y=AgForohHNo?CHEDOr<@@=lZ*%9x_j4!;W8O@A4R0q%nKv^@oIL!|XP2CHFh zvfI;KO@evE1;d0ex8D$7)<*qVZH?RpU0ji?XI!dCzwCTFq!&xZ=hxO;z1ouG*YGkV z53fg$>Nocc+y+h8S66?_kTzQu;Py7IZF;X+=T>SGWfE=r*M|2NhWpGDJU*=~!9-d= zpZR>;C#fmO1k(n4dhk2jaEGmoya^4>)wpqo?UCoyU+hXoUltCp<7D>Qq$ge>vh(ms zd&B49Nv3vf%3?6HEcnhBj?L*yo;~IB{Jw{|K|f{i*?T4Zuz z{-1BDcfg;DhO(Z`Mxd z_GETtYDr)PkOWolG1{_)Fa3q~qqX5-hcK<)qN$v3oK)T-DXcpql(8aq31Je8q6RKq z8fREp`DcD(Fu(j(tZt;^yJ~8#OKna>pz8>oVQ5wJi~{b=&_{H*=6Pnu)~1~zX$&Sb zH9K25aigBgxyQh52E8X7GsC3aVVCI-{<9&1&969oV48AwRMqPFc$mB#o^mcs^oG&q z4@Aqk;gr^NpLOnA4g=4bkIhbeI-ljxk&(pG79SOuW?jBQw78nlZ&z)=mEdk%W71dQ z;Z(Ea=H^Dfi}xA}RtCpR*<4PC3~5CMJ@2;m)~j<1n#GmiQsTnIXVa3f zG!~jKrZGPpVXEfL8+Da7J-f<}vd6^a=DM>xhIf7qi%Jb6TOEn3$i_G}b?_II0*C!> zz^&Kv@+$X*app5G8EspG`K!|4tY|RKFI-Z(clmVZA+ET~GXy4&iPxt#out+WoVLDF zO20>UgL$Hlt9(Mo#u91IPHJblZVM(&Yq#MkFjs|}(h;*kx|CkYlbMXwLj7=(9*#LH1PRk-g3E6t{|TW;8KatXNSQghA@3c0I10 zOKPULrZWV)cpApdcES`;ADg~HMKrYh{ZPZK%*TvJ)&IrD%EqQ^ zF1I=dLWhs|=nLA_h{PSacfvO9HpPPo=f(ViCJSrpOIGB~w|QQB?QP;+x^>KF3KDm- za;mmw3zvBHOYV}BlUo`wo<4oo&8@hvukWhekmRO!RUF9oc&TM}^3V_SD^^I!x7x@T z8IzuZf!%X=w;%Ff~@8+vnl(J^Z}*#>n#`xT-?D2aM`=ZWhCzl$3tZm_}^=ggMg#87~@EB~Bmd zL+6rrR2BQ~diF1^_rpew-$h{5Yj2ATsbZIvL||P*4+tm;`rnDzeL3GNGVEQj`{PpX z?_tv3`T{K9`p8F1!_~uI7COW5U2E`o`zk9d*Nk9`^q0FXIQkwvc1#@WLG036fOp*f z^OL{W2*&De!>L!`Bb`_YZ;Tf}FJb|v%zF)%xvZ@qEi!hQ0+U-rY@ z?)C0mBfILA_@%=BzP|azMcZvC=!?*u-?h01BkwI(om;QF>gm0ML&Y2+Z4c*ur;LDY z*B$wWIG0yb}WcFP5nI`Az!dWFL$lA_3m5J3(S+7H6B6+0zDZb z1NP4=E!x=2D=P;Li>%)6z8l{8bQ`(yp5Xqt|4XX%Ec3M$vAL`QXE+9D^@g`Jv#BXC zPhK{Por1z(wBqpl@Pln+Z%kpnz30Shh1F4NL{l4m_(KrOd$wL-Fc!Ds)X6YuOwE~? zjHi&0y_sZQa`#7rC_3NR`vMu}!C}!m)$029FHfe7NMa|{^$oK!J zRP0}w*gu!?zb1vqf1gDD|DHo4|JwrQ|Jw&jvkdSZbm;*QC}mf-%sG8!_wI!hI2W{? z@XZ?L=BemZ=A%cBq)6e`7W#|Kew`^QF1Fs=*(}@n^YiYh;D&aVm2c;;(IPTRJ8L6{d#+U)FXT?mc|p0nwNOY}}W|J=wYQ}R9*kIA$8?jXDKz zOv#Xw%ocX2bnrvZ8xDY_j^=oYq6anm6x*5I20mQMt+)r%xi#T%d#h!b4w#-QdWfzJ zux|gxIgflL%QmVu3@>z?ydCfO<6;@i-afAwX=;fO#u~O@K=pgDgi(@bRuXvm9{`10 z)NUCW=5mL_KLs)@SM6V1ZN)bIe-C#BCWjZ&o8MKfw$~QIQ_7ZnL-^CDPuo|S@AY{9+Kq-lT2xf@9lrvHZo@v!4p|1}n)rCP1QqGcNAa+KP@qvrSojm<`9|SE;&lIP zrE4qcmH~TH@9bvL7hhW(%p4jr+}%thmHMui52qIwYlS;^D2sfbBhJEEtRc#z39AjU zt=@ITuWx%x4|*+CZtdV@a^X{_Cnw9I@0e4)2M4J?t8WQfYZ$opnwCvQ>J`Gl-~%tI z0YASI{a?T`eP+oK%uwh3{d&KN9vjv^#|0afm-ApD!AeM3TwK&;WjThy91RA<1M{}d z0}hYc*$fzO`LC}ho;RXsM#;>hzK)QU{I9AGXR8j z50pA}_4cO2TzM@tm#eme&8J&n777rZ5VGfO0HKec;9o^kVXX948lW%f)IQU)&FkZY zlI|>>g;TaQY?GY+~rOAe60Ba1$*mh3$s2l=v&}(;K>fU~wNI z!wW#pjqT1c$V78)RhivF6-j~|kw~<(x6hk4A;SPLfqq?O#oF|{@=`x=cD~OQ?;MUk zO&`eWyZ%i6bXoZ&Vr^k@3o@rN2zNv{gtfy_uy8ioB&@A5l+mTnGIa)$=#N9|RqK}c z=6Kz_2TwU>pgwCwL*!t&+ojV-W+5%>gc-~v|$2?%h#)r zu|N#6I+H|N_Lu4GP?gDMv@Kzq^V;3rJ$&GKtdO;4Ul0Ai!X?CI%%Jx$;+@-S0-;(+ zK;VOv*V+XZEdJkd=RfdM!?^W)4Cbs%bNV%61+*Oa*Ra!7=57~lyPRKhKe7D#(c3$D z?}%_0+Am@X?oghvCNxbI3i{Jg!Fo2}$y z^7;(x(I+!s(c9O)VNHCF-Z7}5Q7ovr2Y><=uX%w%&$(>Rk*Aa=1Lfe1ds=vC`RP-# z|BJOZ52v#K-i9w4+(igcgk;Q|G24)|C7CHRm3daSdAi(p%9IqDZM0=d$QUv-8ZvG} zlBp0IA#*8u*X90xfA8@g@ADqV`y9vf$Nh)yy|4Y5)>`K}*SS6ymgmGng07~#-f!gG zt(bh2gPL2bwz9Ia07$l0lf4Ks^+w@HL1v2UR`BLU(*~>G&-cqH0#rjD<~bx#u&gdK zWW#JX_wre36P$-U>+x#$->Rw{a&9+5yOWous8l4ut!f8iabA@-`kfWemQ&3g4Qlwa zKR-=}zBEPM#OX%aXxrE+4nd#j;biR>^L>|;~pU+Fd-U$_mD_F~xA6pN@f{C_i80KeX!l7X;~f2JtO%wcqvEn#uT( zkS6X=cM|2(Cbz{TFSX?8F5zn0i6j4g;XBkth(EjIC`0lQE+IlfMxq|GynafL&>yoE zRVpk%^B8uNXP{%sulaB=-uq}2Bd5^kS7Lht-Mdpl8+>l8(Bz0WlzCbE=Bo`-)rY{wb<~(BOgenK3pY<2{Z|aWEE2iO$4Fh4o-gn`eBNjVk{-F$fR?58C(kR?QA5HyNn+l7XDy#7^Y9 zX3`-ET{vB;=L$8w$|KopAI0s z*kabqTYfaHJPo_KyO^xZ4}Ubk0##p%zjOZdZPL@%d%{wqVefbCqh|PQ^T}{ZtkCo# zKEDgHVo`_Or0#hGzx1o;&aVpac&W z5V5*|nM5AxzYF^KHfA!9O-GcYx&(okkxIQ{p;D?5|Iv~KaX2$vJqy#K+nqPRn>R^b zV3RK}96M6wHHzfi%aJMlH{$o+e8@=jzL>}{DQ#R{_K13n8=ThSpg!y|msH}|cK0tH{s}7W z@s&Y*mn&?kk^X!3!*rx%A@=7olE){~n4N5}Sxu9qD0;v1rQleRx2lE!!9cF9C(`#g$mVe0ZVDxeLw0EDD|L|u zIRiGPBx*8-&h^9io}NVPwP-2sshZUUm+!o#7=eal;w#Ob(&p|6j0-;T9-h?4hPrfA_cSI`(jD9Od+9C zc<$o|2BuOFq{?;}+Y%{861peAbdiyWOTLr%A<6?BI&!})6~8G3Ghn2`AyYtFOxnG5EwPmYV)MKp6fq84pt4@$*Jo&vNBg;k*vXt6#GfMr;IZ;0&uIj`hr_0 zF#mg|x;NrIg23Kc3k0nPD9yQP`jRwIa9^=6n3W-9A*xB1KH{q{%=u5luS)}mBU6W9 zXXylkbkyQ{VE+R;vc{WbunIg+0DgkY!Pa1t zZ_7!@y#2h|v0gdW*wu545GoYpSr@d!DKyPF2V0JwM8ZDr<<=7Ensx}TyZUMy&xNmi`9bZ7}yvuo@V8l6_G+LZo?&CysNl!NZ%yU2Ck}o!BTI`ATZIlmnWM2-G!lzQ;SC|RIX0* z1s3svpOQh?C^`ggCc=ge%ndR2WX*9FMRnQv7jJ>X!2ziDSpgn5HYYJEfJ5TJa_M;uVkg)i2m zu?fBUQS2b8Mi;8IXQ(AV9_zA;RAEojNux%j?0 z;zaN>dw3A!4t($1`DDWc3J6)g98mcK0rlJ+dSqzVbQP}>wdx&O!h2H+2_UWsi`xy? zxdP-030m_#Dn8EzRQ`P9I;1mylL~QZ$%Es$d&uncNP@Vk778}4YbQSIp}&IOmtnmS1fSI5$i0OPxg(1lM8V*D) zHn?}`IO-?K$cMo;t@>6R8@6`}q8H%w?S7~+R=ov_T_+)SZSwDM@t%ecAaoTjG4Ql& z_u(wa?Vg=iue69-Z=%z2Y*`wiI4lO++}Xe4OY$oRw9_F|Sqq2*J2aPxS`*`i1ZO48 zGw6SOOr(sW*fwf2Kd*J54g#2NS^h}1sSA+@#dxf&P8dGR9+-|gfu*o z=J{71v-0Ovq0bPHQE&=fe036jkt#2gDQme)*V$pA_FBXXZaPyT4o}nWP_Tld4@P4_ z$r~elfd3AKnj&tT;kH`ckBJyrzeP(QUtf$x8F=|p^%KEuywS?_!&3t&sZDohl>&Wb zS!TNR_&aZ$5-C9!rwN5<+)68NmB(n^Q`EK=E05Z>F;!Jpy8u@Qgid~M{>v> z#}X(>Vz)_q%VJMlf|pz&`*h?mS141OV2v$=+i;S*rX3hSNgmG@Nj+w*sx$<))5m2rlfL?h*D^ah{p!7X#H6>`VR>O6$WT0x$ zx(M_D=D=%^wzjrp&YYnrIh5O;TRm-7Bp+Zf#PwalZ?e$anQk%Dq%VpK;0E&Yy0QCD zbTyn3U&Ka)1C^HPu2t<8a1=tHjO-yYR{NQk__HG6({G@$%LAU>nLPWXqQa;NCWbLa z=&$E!A5=*S{NP`Jc)JbEu(E6E17Hv|x>!s4coO>r4D6wy~i4c)>*N$FMLXe{gm_0Lw+~1uV z@wa+7Ju*87Cyy&`KH}`}N6pR6l`aGH!dM}b>~y)vq|}$IBDrjyiiHKEsb@}ygoHp5 z!#8h8-eV+XBRO;uDjPk)8925{C$+^U(-Ri zxulhpo<>C-SQu}*y6mqsV{09}tUjY4fC7*D`pdJ|U;5uQfB*iSuXO)hRBgdporCQl)4c4KyW{uH|nb>M`8>^2%^>=P|_GT!EmTEpkgfmT{X&rOg9^!!cY$acXjnDYZ zSwi-}&OCED8#m!QcZZ+?E@bsfeRMEXSKZ0r{g1hDk!Wt6;{<*WJ0Tbu18+Zz+T|^Q z@=!l{nDfky6AQ~g4q{v~pYxa3x7m*#ZQW}8Y5l0h+t05E^aU`$gzlO4pGWOB3EIA* zwU(G%ft}qebm3!JP7T{WpI3kaAS;OH34}EFaE-hc+{8PneFce)#HOFyUrTo{Jnw4? za+!PP%2dK9)5;GT)W~}7G*6&FdpQezM3v3EgZrqd+&?~h^>YlPOH@(*WT;j8`1$2; zt4&JoX&*bjn<4LqzR{U0FSGn##6WD5;R7bgr>3ZT<)#2x1NJ^`A3Wby(2te>JmeFy z3-~6W*|EYb1*6PbTO$`6e|ac_@4-l*eh^mDir1)O=9{5F=pP*|mI(eri}^QQMRY+% zvlr9b*taLm8f9%g#3VTdO-)x#u7*^JH~z4xs^nAohJrw-4>UbbKs%zA^|Qlq4UB0X ziqa1-f_UZ(##pX)DeC<#*!2j3DuE{c+-1S6;BsB%^~iU3^@2OG0&Z0y?k7d#>=WQU=hIwEuv$ry#MP2@xVgz) z4mVVm{nHdc=3roKmoXp?CW4rO-oFW9m;szmAs1)9<3@h2=r!|uhY-o_j%Lz`#6H-Q zL*zdT<2%KlH!UnIe1_eh&q9&9{a4BxdPQxhk)W?;6hM8o1}dSl&$ghAWU}&V<2S;w z%CJ?CljJo7xBlV@JTEyQMwL~>tlW&Dx(kq^q3yO7J^3Z9O&4CDUf?Dyb@LDIu^~BI4ogLMM0N5-sU;`)w&>F^8yd_?H zS%d)BfY`zD3c39zJ^-X8lDwwAUIYUvZ{*^64EC2BLt+`hOlonxc~Quq|I%;%tyv6D z2s#dY;G5q-JNb6uzsz&HEZYA8!QTMrt7t-o678=fYo&pO?xBe`j;=<{Im>Bj4E_Hj zW>KvJ5zp=OWNOHjboM~~#k zCrGwUD!$QS==#zm=KT2wknEj<6@{8PB6(>6Kd#7XAnMV!WXlTTlhEaxl#dCO6bQyY0;x{QXtk=YMErR8*{IZTGsoet#O?gJ>mI*r{$X zo}ufVr9p+xEj@s=7`YgUek~|%Z&`yk)`mX`)JDQSX1+uzdm$-TLne%Xp(s=pw-Lo-IJkY*9c9|H%r*4a_uj-}o z@F1zx1Rfl)nmzTR!$}dw-bkyVF|l1QbcK0)21R%ByUt9~&A4KMjKb<_x$S|g+lh_a z3!Wx(Kf==5s>%xZd@A|mm^lx%dRKu2=R0CLD&zjqGEOH{h zT!7rt0$T4^|2!@2&N`cgW0N_={4!8lZLKRQj1TPl?*sd(RZ2l@-xs5cnH74#_yD-j zwnGDcagb=JO7mU>>}-FVQe<4*i-9(Mp@E1qP_=+Ec{{krEAQy(3v&He5^i-T93u(B z&jHo7_-o?c(seo&CmA%4)q3o+@*K` z8)wnNs;Vmh6;;(47z+|10oWQ;v`D}xwZVptOp~T=ky9mqVU+O2f0yzFhF}~V+a0bN zAgzy{GHydvpbz9UYqz+6t72L@zTH|WR!4sV8Uhl{U;WXk`0nRrLOg-nG0i%X_iLD$ zvN4`b=Cnx2fHBGg%K&!SQ#p}D^f^R_2ub6UAA?HB%A2g7sKlCG0&HrkkNB&%s9b+- ze^ZC%T6Q4;gQu#78@1((6=f8Ez7l9-Ad1;vy#)0AL;GRCF{BNpUQKK0twMc7pQ!0O+Ius+eZfNNNMbVRBG+c;h22A z!Boak?SehPMWqt#r+ZWZG$B1BqU}i$Ksv(Vjcfz~zw*wHNwcfy@8uRBz|nfxP_8L} zA8ztcTYJFB6WEZ0aeA-c6ERZh%EB(GG*peHq84T^sIb+oTkF+2g2rB0U-WCTh_Af< zX1~?VcSm*&E1K(szK8>pGQrj$zl$H1X{qCFEgWV9@p?aU)=uibBv9x3ON%1!k1!*T zMMUsTAT6o#Te9B9;wOkr`LLs9VjYlMQaATx_lbp?Yilv@ON@$N1@2o#LP-#8q?(Pm6${b83Fgv-&#i3kt z4S0>Y%-Mi-K}9mg76a<&*IXOZ1&9J}uT#jwVkJF|e>LsBk23n(Rc zOrQ`;Z`1GgCdy#bPSt)I8hf+Zzp)ym)q`7mT-rtgHtlstzcNrR+7^~In*8+|eI>_= z$`0MNGe$?iiVEi{3d?ttRwitnU!hZZlX2)+k!L2d!vxy`t?;rGt z6J1iVUGtmIhmo4ZBcySV3)KDD`L*tdZa5~YaAkYEUDYOO8KRCcS06dybFK%H=M%qf zbtHc>eTY%pBbSKytiHn!TN2K6FLKhlhMKs_GB6;Loo?xJz{BP~m72k1t5#N4i7H^E zru)Q&6+5R%5a2|npQK9l`9LD&aQX@r5;m2Fmyp75{;E$KJ_l)q3~zfmzXiz+h;A4b zims-Q?<#z-RIayWPyZq5sLWc->B2l4Qi?W53JItGr7BOH^64A0P_yYBR>wBCHOUSv z!t6ipyiG9cDJY;Y_3*;N!oj`N&g0|HJ+G>Rx8#>@%_!|szvLzwy)~67w;9kU&zg&Q zpm0M)GMbBz+<7hTyqg6^yAPN1CEmD%gdNKP*M{jb#scTXw)@U*CxHCsWi!d?Qc@~j zf{_#lKxh6+$B~D-g(r_(Uq~f8)iK{VZKDH>Z7Qrs7u_m z`X+#sx?G-7u?K>2JHb{@QsNzjRBIY!V zjU#t3?g9O?iI#$X0w1)wIDjdVP>JkgDVo!2L`u#VN+lO_w4)qkHTC;{x8c|@H}>-9 zQ{LPs-O*pPNemclttfNH3<6v~E*WG94e^gb-z>5)?^~`Y!sUo#ijw8la-Je)KrAxwATIZedN%c)BU?I)md*kaRepj&XO+s7K9Nu$TGrk$N zCF#KXQ52=xU6GV47KTwoN*nN-$NQi)ZR46*G7A!hvmJ^$K?Kt)M-$hhHp^PLM1E|8 z4L3Z!MKu>SWGXXA6M2tSfIM$CGGyA%Ndor*%rA10;OzJyvp?p~x8dmPBxTes4F-I6C#oc0UgyOpCd>B#59DeJ;%86{f7rn?2M<7L!E ziwBocf2Fwv7xG5PWE*2c4toR*lHyR!)IgzwwU%3&VrZ*I|Ljy=y>;srG*30?Dtu*8 z232pO%7tu!jM=A_yHgVd2VDv@=n#=|7@M`w4>L!pHF&^knY(87C3E6lL|WYp3KYu9 zW>nQ*jTD|$8yB2PlJtlU)z&SCThacqF)%U zWh795iU;70!RsQ*w$SA;X{(uo`~Ly&aslJprZZPA3t)Sb9RN7tF3dRzf-F3ueRBDX zR><8xT}2&GB{-_n(-rWyum2gYl^dRO(%jCMX1!OGPh@OB$KFo#MbD*AE1d`I zD8pc3DM+QN0)FP|&PuWm2%+bv67)WRMh<_KHSON7M*T+G_Ab_@jaYRV_ItX029H?E z?1)+~2TZu_Yz^RDP7sgLm3hmJyBF-te7ltGK(o^9yTgE-IB&+Yg{d$>JdTkImviH2 z3TSWo2?l1S3g3GeBb+lhy1r_Yx)JUt1Jz=XoTd+;(+?@<^3=T#To zAbln%$LV{Dw(GhvnV%eXpyxzZPC=mj{+bq3lbURqhSgn{V-@o@7$Q$3@L{Rvyn&2@ z)y!t@4!x0&c(4rQS8lJZbR)%cg{>fs$qs!xk+id7(M0|^A9{6Vsmd)~!5c+dbHJ5B z=zwk{bf7eJU4(e!^?}_0(zM*nA>wsIwfIbe*}knEcqZ7e(7lme~!5KvMbGs&Rz;@1QztL3N7 zk9I7b=u2%9+ZH-gVhl*e47kZKS7BxL=Toa&dD}GzQovT*m6&@Ca*a7XQ8O#&Vc~!q zt$E%1kQHGO{Gatw)M|DTnY-lWL->MAK9N9K?+Ety9;{8#^geZ%^n5>-yh$e~+71|> z!WLksrbtAK^LV+tCYK=$DYss)1656k0l+L%XL^r+Zjn(Lt6yEalfJ?i=y-A$Ier7= zXk@$b;yx2k;3=l$SCzDgDy)MleI9SW#b;74RvsM`%%2%JlJTpaOHfE?eGfmhQV95z zh)PJ#dT4!%dF#l76mXYSYOeL}k8m@9Le)*$0 z$u~MaOv)+s2Ay-_@V&+P4AZDVr6hZ{5jHx+K?)cI8b_vvmx7VHuwv$o*IrtFPsSzw zJpmoxL>d7X(4vHCzAYY+&xo-X_-Hn|4_SW`Vq4Mwil;pZt81w0VuQaa7}ojcsM^{V z>Y%o!+I-dKrKg&=_>Us{`InJnKdU0v9}RQ+$rbNG`m+jkN$H0)74oT7wIk?iPEtxceW8v9YHj^3o1d0^_i)ZNzij~e;%4HYg>qaaXJYi$#@kt%w( zL=bpZ;9Yoj`i<>IGs*J1Njm`L&_7!$D6pvQto=Wn5G0}P`2oMOj+ql4+Iv*DQ{MB{ zxkHDq#v`Y>&D$w>iT9>w1cs;CnVlSV5702!ZDWB<1I5-&+}v+PmlRY;C`>veLI1uy z*Ph15bva|hoSPoG#`II}i+ED)Y0jJv^vK+Wjw7Vxz)t4pVgV0NM|C}!M>QAN(|WSd z$?Ky(ijpxg*^@{ZHP4k9!ylw_-eaUVFfY!&ZkMDqj{e%qafM#9Iq*(FcC{zW4fR^o z%#9kh(3z2K{n%5~`~opXt%^z*`GLld9`+M7Oj&~keTK| zF*uOGMM|zHE715-0K`j)kDzUdnC;~|)H=mLFXzOmJi&S%u!7SXFz6uIpM&NjOn11N z^8Zifi~gU~`JP+7ftenMv8Z0DGLdqitfu(YmmBX?D9RhX9_ltp^u)fBT-q1HD;Y@G z+H}G{-64qNz+y$);$2QXkO&%&uFZJ z5!z>cKr0Iuj^0!B#z=OoV~B4S`#y9bSd4=79JrzczES_l*g6U+#vA(YwBoV)8YXhb zSe5l$iIBnqs2~D)k#NXC!AIOp)ZDLwrdjm@QL9HoFi=+MN3hM6E-6}0!7eL$Hf|3JJF*w-tDri2|?8W5KK!v!z`sZ?p>i?@N&lcJ2p`wmzu~i#FT?Pxpor_c{yiBAWOi`6CN@pA`7sXmvw<^y5 zk_I$&GyXBKKl^T-1JSg|0$lbbst>IkO{+)!{=d38cAGi!K-+u{pnF#-v>LMgbjkkE z!MA0{mZ%%qMH5qJn>SCbGH3Z@q0MCXnwOD#*}6Dy-(m(DooJ|S1sD@8; z-)|oc=Fh7=m{8XRL7ib!2hGte`E7S`D9`8ia(#@idGI6Cp7#CXz&-&?hO8w0h#~^S zQPcc!j@ZM;k=StfT`!a9hhCkwL%t{R$uj4NTACS}-X21Gbc)eDBBhx>*^&hOgh`z8 zMhdH#`BZQSRQaHrfE+AB`k!5OI0-|wYG zmV{47aq*u)*bmMOOdrun$4iuTy{rDZ9LRD{D$4pGGs&Xb?7-)u1uCk7=rmo@aCNbk zcrE@cl(yEff*Sm%_iHEmhzQGHdodnu#?|7v#{kxNYV#T16P z9VH*}T(|ODzcT||FK)l#@!1;^I5Rvwuyq4L_%9aMi!8;zguI6;_*BCS@Gw!3f+ZWy z*oXvpChD#+r7~KPdiOaw$P#xqd$%QPM(^yO+Pb>B43Fi^OfG23DFj_Lo8^tavC1H{ z9b%e_t3O_|K_y%m^C^(-cdJ-H+j(EU%KE90Nse(i!%fhS>w<-kF5-Hk6E!#5j$N~Z z)$p)%1UBsn)-VgD0^Fb9t3=zhZ>Bv;9d;k=iqdt6v_K2DnY2L$|Lj}+NiJ>U+Ke*q zM)N(|mY_qA(kWxMx-^n;&+MkLKb0ymGHEy}bHucNepzVh;B655S@LBD#-8D(?ks|6 z@Vsf;U9SlKTN$^s#u6i23;pN zk&OlyF{PDwC8v(u>U!5>OE!t8GhMP%a>)9}fr zjr7R+>xNo;8RI}=ObhRA5)9yEL)Yzj?QFAwN@mUilXw3yQE#gc%_MJ<T7p6hTUow!1U((Uc_x6ObM62q>lCk{MAphjoFgz?-v*+2;q^ z&2t}gUcI+x#sBfIpRdDc}h8R~3?r*ht(^~tkGuJ9i~V!O6OE#J$= z*$+oCS`8f$Uu^TXi+LC@Nv&!N^#LzQHZurIskr2_iy1FgeK0s~N#gqcVe?&Rjz8u0 zTb3a=%s{e_|1@?_B#p^`8*B8lwEa>uhLd~*dO~dVFB608^-md*tBdUf z>ogwS#U!1yF*P1i4|~ruWS3#d42#7~??Bq8bia&4CUen0zaMP{j{AD*=tHF%esVL`;#Z!7ru-S5teD3)E-)(TMp`p+ z#86A`fh{;c0<2@O!O+AejxF|@!q~I;rCN6{|Kj zy1nziZJG}M4xG=nNh;2n_M7`2z*(ho98pc32=F+Qyt_bWp{^a4%0KsnaLPXMzPsQ* z-lt@vJUkwPt33MO5#MSv5iBA+z(-m~xD9u4kOqVNTzUOZn0FyfL7@|jsl$RZth*sZ?81t4dP&xXA+S*gyHC)rjQop9rYK_SU zHS}}N1IrO>{g|6Ifs)>KR)Rb&niEIzn#C~iOUr1YDvw?%wQj=mHl z{Z@m^A-?_4av>qgq}8Be=}6rPs=U@$qV^&-j8>db^{^$^eL;6V#}7m;<}-%~a|Npy zeD&HW-?zfD%KaCT?eR|QD0^#5R=tAN`^rgguLw%~S}y{eNSZ~zY}DeSM%LZg^9=lZ zR#{;XulNGb0ma%uhpiOoS)jUI213U|Rk@*DD7bjf-7S3mp3JKzJ^rs&B)7&=*FbC@PXJdcdI1WqR|s9e0lD;$@+ zqWsKWHQxKf=~ZG>D55$UedQ#6GYx(vy}rVI7&a6RPya2Yke>K;8>V_W3)hHLd88gJ(Emq4?C6*Ea=f;GX3-(S+~>k6C3`V+BQ1r8*;ELHiMHly{uz(u?~ z&(^n%Y$!oPE+QTU@7th~kq3duQ{bc(4Q82qcex|AwR)+|PfwbkCD{+vZOnAfwxAyk zmS^_sD`AN_!N9EJnsG8SY4sJ!`fc%L!N9z1SDdnOgb`tV?r*Uu;pBfKgTt2*?+qQG z^8&1kTX4yjBf0MLaVj(!0lST)nT(WwZG78?()kP82gzVkQtPTTOuoMIK0~RrS?8_gc!~7)hQXCIhKMxuMr@h*Cx#*9wQ|O zPm=!H^M*&WcdYE9)mY_zhl9J*wHD6ft<2%S>6eL1-a0JtOlfp9!8(rZ_j;?FP~cp= zf-WN!;^bECZc@$MKrb=3SvP0Nx5)=RO<~gyYkRBLbiEab6fvOoZo;~j16J>eY7CMo zOO9~QH%858fxYdg#M9?5)OW&F6DUSlLRc?we zF#GFjCjC^Om@U_+KvIyAS9>#VOOGD=v~OLJXNV) zqU+rz8)Y2<$HxvzQYhRf$g4T0cu$xOaT2&WIOX4%-u12kdH{sj2jPYgb-nuX{HNnh zXOEG(Z{DV8@Sn#jeKNd8#r6WNqgT`K+7Cfv?m@)_ignd~ZOA-pf7;!l3}j-}n*z?= zP0qN|frWSjjq+amhn?#4|D?Wb-P~k*%-kRp=YftEU+n0OuU)_i*B%2;p#Yp=zGS5J z07qY3Q@w_t@=l#c@b}#E&_62Bj(GS+qwm^3Z-0KvJ%^2go50EPJwR)W=6$()fKuTA zsNSx+Fe$U=*U7|n^wjsxoFA_4JHG}sslUxJMD{F0cWt6XSn&XPJ{n{&Kj$oegS?z= z^3}{Qe$9{;aZ#5m`;qLMDc!ixQpZb6%L0#2RTG}GOcN3hywN&*?;UYGtElVi*S`&@ zc@Uiz%W=TuGXjoJDY5DaKH?>@>YaRb_KtoiFHccd?rV{XJAyXO=e9GYx}p%_TiAYp z>^0_irwvm><6D8*N_yQmNxs3&ANp4Ye?v)*pGQG!MHg7uZU9-ui z3mD{F)8^0(cy{~GE@Xf#h?p$}EA0mQi|W&2YqHFge8#VmPd5cT#Nh4z@vE6wC^(4a>dI$NXwL1LWjr)G z##s3#M>M4+P)cTwrwO_1Umy2B2|9%boFs19v*Z})HwbgE^>Eq>vEKJP*He_;=gNZ= z;pA$&GfIGvbf+!tg{?(GRAkbl#jR4#_`MTDUrZ5BhP{WoSG**B#NR>lN1Yrrf0WXm z&Zm{UDj2vf{v-X>v^;~;4Zf#PNi%M6_W)`I(chOihnJVnD>9oonRu8aD7fi$o8mwq zC+`O#Vvi-MWIkIpD#+Nhn&qbQho@ui3<9sAFNOfF2}+LTx6E&~F>c>CbD#4-b$-(c zTZMhv9Y9e|Gy^#yfdU=9f%@N?K}=DreE+GJ0%11T@t7b24F^Tl(Z8Q2!~vUJ^t#u} zFVcE$n)IugIj)V>$#B~5w3cf3p=y>W{(n|jn+9uHJ#;?Q z_C#f-E10B44@P^6rqPknpcm#crA7S9vd|JJfFYPm#e`WmSt14E&`UE?W+^j~QCVWR z`rk7#)LsB7pTiYsAmKj?4?)ufsH1Gq#JHdXwQIgrPS#Lt8kc4-q;wM_lLoK@%2CaQw3raPKzaR2O^8GbpZ95zl>>8P(6_^jXCL&i2nw8vIq-?uI0Eyc?{AQwb%ih#FUF-sG^RKqErz;;X4Uq$MS< zk~;H$bLy%Tefv2m#p9B3!=~Pze?#@Hs+IyRHHgmJy>+2k`Hw@gp%tVU;zePsdadt! zem98EzAeMPsIXo^_^StRqYKAMSUVTAGx|U;?}B-&M^n2XH5&H7v+iE3`l@sY1$^XF z>_*Wir##q7R78@-O+GdIc;>A8}%66 z(`*$+A+mDkT5EOuzGuH;HCDvtOs{r17|UDimvQ^$EloO~pr%h=Ov#t%^?MC+78ttO*uRCpwX zJ{dU8;p&Yzel_okHRV2Xo90?F%?064R&X~nBtHykbz(&|vFh%F%_OlB%{AkE>`b$5 z^3^HipvEptqYZ@xgY#siIm@s#P&0c;4jSfusJ(mp=QRTco8{N(xe8hwg#^vj&#M4! zE8^@A!tAZ;K`|o`9%oVg^dQabS6vcAgpF=NmM7Epv)Ww~h4^2XXR~64sI6B}+WJSW zqqq10Q{H2J0XRC3FB~YU$ zxmqF9;^oZ1;Zq+4muKdfIN%u?yPr+!X;1n zI6wjc-r%=guPPZIUO)@!}tO1&BWFv_sxmccz9&Myn|6wG1Eezu)?Z zCs1nDdm)Q~d2QyWO8(w4v+N6}kNZ%xqFj68xobql|HWq~s{-PMnYDFTXt=khBu z#1js{8{Z|h;<`eU{OBn!_K-jRQg}~^ z<0OgH;gam`BAA#bXNu6$399US(0Mo3f2hl5EPVl=6;nYi1m~3q?L*iTYE0ide*?*_ep-2 zI$SL7?$2|Kw3`YzMEgTUf3*8>m9SD&=4oYx%XSi5V|LFZ^DAydE^Y=8w~eX|W~s9e zqn}8c^3ognj)ARA%GD32ys~Uaxgn%!BThs1g>p9B=3Rnu z2YFGj`ssm@*2SwXXC@ssZxqxpHhhGzb7l7RGzm#N*AG1w`|5xVwx}-FmwGANHxu8_ zDw#mBoSC-i3OTnK8)G^PCDs}=cR*g{NmKn-dAP?zmg%0t%sJ)^EyL1TJU5Ig59?aJ zb*0(C0$>@aE<&#FFe;nA)?M#hG?AbK$c%G1H@3xryj&ZWm3g$}8QkFVNFAn@J2!~= z3l-ZV%2C$9neuTepDn8`7rth0cmwZX6hK^vMFOilbW_lVtHD7n( zJMBM?pWuEKxO2Zx5kSDNH2R{+$ zzLdh}Jo}p3N1R{O-OZueecl8j#=k^F;7akK;Wci(1^u3xffilm%871nJ>$}cQj+)4 zxTb>~F`udzv_HcI5l#TUzvH0?g+H94AqL8ZVGPdgC6#bI-eCgm%5aiWVdr@Z>P5&n zc%ZXY0j}+E>58!Lzq9x;>r=WdrrIEXlhZWx^wat@30!vpXEQx`@?6JLY)M3rua8u} zIy_V@^PD%O`c^=m>Jf2tgM$pStaKH6Tpgx|-t4c(Q2$GNz4F1JXP1ci11b2@se=-m zgifu@z8E5Y+{7?4)3kPD<#Ry=(_w`DiYOFXPY)^?pFHp9VO=LkhUJv;=>9REZ`t9> z`aK};vS+pJc+G0}&Grw2gH1xGZt@PfTbDxy zO1!Hr`PdH6cL+0yd=2whY8jlM#EwW3JNA1Fn15l7OYg=RH653f&$m6IR0{8nOGO@~ zFe)F9Q7kn(&9il#@af1}09@cQU%ZDoL4^yMGkd~3nh@wIZqw%o_n_u>DKEP2**q&9 zn~8S*>*4yKKjE8RIA!MebA5Q5fm)jjvEz#*!FFiGjYcwLmsxYL;IFJLs2J$4{r-w% zY<k5k#WX1;uR;%4|-CE z+sLtwo=x(Y@M!&vDSbL$&H zxEo{Pa`(N6gOP!z5yS=2v5$&*@*A=3GwYP6xggKg_w3kfn_aCL>1^D6-dwtF1vd+@dWNwdnT4@GZ@IhpI2P&uR9a(wZ*F4_VPv1~X3seM1p} zpaKj=t?ru5KWR3%ZKKYjJxe|U?<2JSBF7YZoxbObWqq8gw$e*)s7f_nF$s%`4LWog zZt>OeRqbQmV>=0>9VvD1S<)%)K!t7JRScPWFMsph7i_)Vq?h%yYDvMITOq*U(Md?av8al2}mzp!%3b}1MnF8$$dZnCrwl_cZXHIU<-3F1>obB}B zkBbOW3zE<)PY6*Kg_=u+ULLw8H=v!t_QTQ@Jqzf$nS|SdexQt_ZsJ?LZ~;bGGb>j2 z4efIr)@@i4n6v2ZKIH!DErA@B*=04%v=(3_QgJB*&rREsk^VAfrjq~9b1T&EgMmU( z+cf{?!6BpE&K9bve?3#PGX4r&d}G4|*`8cS9!YE3N4rjQTDz2R?Dzra)pQ!ZDBybv zj0Q?jLSZvsAb)q!^}!470(frmi94?wr+R&*b4~8%ObdE6HYuGEZZFqjCm~^hHe(Un zDsgTvey9#6v0Q3gnyyQ7Vc;Y2&ROt2G6JpBV8mgB9G>;^#Fq{;J{=+@pnrL1T5Ya7f8fUEkvLus~sL#;a}VeGe=X zDC$0tf0MN+_{{+2KnqVB_HBN^Br?wmik=ibbmfBGjF`#9>jk?jy{;-r59rkX6I?rU zelw5sPLgK}-Gv7r)U|u|bOqDyxVCGPni?WC*ZKt%r7M_2&~l0D7qJ&4kOB>I&DZ|o zyLW8M7v5);((?&c2MIHhXns3eJ)>ho$T;(b*uT(f(TP4KAg=8WSDOuciKSL`qCd2DB7h(k3lI(?kl~Uaq=dL>dxGI1 zeiQyqmr_-tRw_r~5p+U(^Jl#a?T-xpmApFw+|p6jE|DH`Z17X6yfJ5fS@{!PGi{6y zm?aUb+0+HF*5klBClDBAci@saf5rQVtHbIofCLGsE--S^{h|9d@LJ>PUIYQIDVJc<4Q6cWrkr`X-MAn+!u)=QiDEY913(!Lbnh9!Vwt+arfpgs3=gLrwo2BBRBZtN_ADuU*3 zmFpZRYG_?un%{zFl-GgcpGZN%c?eIRMR+{;d-4XHM|AIcXlj4yH+xS2W$pqj9RW6^ zS<;GY|ET_Jb@Gz}_Nc^B@$nT`k+hTQ&u-)B$L7uvL8J_y>b-^w?LrPWFHx~-3xTlH z5L^O?G?iXMV1mjt8!7G;qty41^x7(jz#(R)$`VrzHz5q9AjcKn0tHhlvv*QrR5cMG zw@4Hjdg>GNXKEz9Zp7lr^N3aOTN@8k_j0%-BPn*p!Cdg#H9Sm}7-Bmvni<;wl~3)S zQ@c&5c)=kiDn*4eGeTB>7Nxli|KDar_O~sgPE*BvHy_^vpd3|$7}J`vM?#n16M@HG zSQeoK=^!-IfT!#Q61U3E^xBaPj@gKcF%5sBk%n7~(wGBBlkUzev zOVO!V16c~^B!X( zQpfeC*0cA?fgM|BYJJ9Dmwx(?PlICul8{0*!@d%|OH`4n1_o`y{07;$woi3*AaLge zA|~h>f|TzrAi(qG0_vBubfU=DD$4r;`A5D339y}X$O~k+C&SVD)UO9*>+{$l>4eHh z6Z_&6kMuS_4E-vf4^OYfEzMM>S7!VlI7UmYll^44Qf?J622MY{`3OoGFd4go0q(0> za2h(^O|p|e^DL;My_lKbey&Vd-Y_?@lyOoEz`F`N2$7bZ&JOxFYU+MytJ3N(d~x`w z?q!Vujg4!-B2bI~h)sO_-V3q&5lU`1#Wdx^88m0!tpGP=a1)tcrsu2Bt_!VSS6crW zDg!GZf=w)ol)nvGjy8z>vGe+>!z-Qw&che42{u-qy>YTUM(C?*d=JRU6p&w^AF_OP zD|mW|lAvm1o_S7agp$gR*(kQmby{zc1)%2O0Ug&T_YqOx?s*Ju*LXn{&SwnlDHN&r zxvhO9DE;G-zMbVrAPp2kGTh@y7}Gy#W-Sn}4X!|x=hauIa|NAtMrQt}&QN6^+^<~p zL2^FQf%TSrEkHgIkSKCQL@{b{yYDd%L;{6Fa$Ru|Xc=0LD#|&{{6n?PJ8$~z`Z^qu zbHiz~`Np_T8C9pGqb)BURBaqAjX~a`0lt?Gk`Lz{0G_6R!ar{32+#sxSm==Ao&;tQ zl7sT0$=EI!xgtq0|7&LkZbN`Jtp?uKq@9$&!<_{RH4}ryO1caSS-faI%gU~u#o<4n z>hPD=Oqpc>X1#33c)a3TdP-rqxB!77<-byfD;%yhHBqFn5xUP98pMI~JwhpPO74Be zeQ0gvePPIT&ewO6#w6bcg38q>(*+$s*G<0m!~h;Tt{3W2ly-ff@`6#`95_pUoS1^f z!KhsrCAtHuWwOKYfPcjyWGs44=zhc znHxrTYwIA_>})~tU{FGZ6R;g3A->EaAlnrt?lu8_1j%grAc>;!qzv|0B$4!hlJb7e z`>hmUmQEP^Vi&~$C*7cchv9%DPaf?J8s0w!fMA@`p)0%3$TNyO^LXv#s0l+sfKxp5 zINMCWU+4c0!a2)go~?Ym5l5N1RYV`O{uT~I#u^YHCr}HHMp}a7SM3X9L;v;Q8%+pm zjS9~X6Pz#Xhx1ZRT9iw>^H+hKt!v_`S5-@v;1lATP93E27aUKUhqI3>=(#^1iDdxsSl3>H%gC;Gz~&km(c{FWDE`^~C^V z2_nn8OSl#yHLL|zh&282q|j~t!fz-9qS`6A3%>o$JZKsO0&7j}mr9ZssAa^X^TSB? z&hGZ$@dac+KiJZU51zPa4j1qeS(o<~Nz795=txt^s%LDN0L6fzsN+q5y`f^&6dH|O z-GzghL7-dvT*QeFJ738Qe3d|d5JFn`0<2$YJ?2sJoU0t?1=&zw_#PM(C%oX0E|(0# z0jhxlcX_-OpdVAFcu{!h1VDtQkk=_B^!O^Ezom@WpkPC`Qovl9E&!|sZcHx@*ug@f z;8m@_lvQ9l2fXHL=p+c>c(ZIdY=d;fz|&o>)rJt73r)4+=${(-qCOw8iea+I+In@e zhE9*ad_+7M0@XY(9A#(LR5jJwK;26k zI>aCRjXOVYdI&V7P8fLMmuuo7A5g*pgp3p^ zZ&0he`2RDG&4HHpG7wpJ{fke}hj2W9v5h5%+R|zd#8z}IZ;SGasnFy4VpMnIv=yzX zoL|EP>>2cl{plHZO347{2fhx7N*iwqyD&6Vr-0wf4JQsRQ4Zt9SG@nET?PtTMiiiw z=r%t20s2oyKjm1&BROJCaDCUFRJdryf2!IP-L!^lwm7(taXyCuk_G*Vl!HUt`jl(YPFwFj0pxGLxA!zGA=1X zvUXCeI8L_Y+OO=ll)_RM-#r#r5jSsS}3oxL-Jj=>2S=2?o8OG^x z=zWr}Mf*Y2(?FN;ClfUpyOT-aGAv*O0^2sgsa1Tx98$e9s2y|PXIan#9R44QYy+|5>GXFTsMe96dD6(Xy&U;^)l0Hjd+UEmIAu~lrT?@Eubv!`XW?j zj_&vG21iJNqr`T>CU80|taw0JumV>Uz8}GWgt(V~{;8*vlhb1`|7c8fP`OK_3CF_( z6goC?^^MXmiH(EWsyxQZ)*k}BdsZt|%}fjq5?n9AwKyk3isw zHPsjXh?e`+T3ILl&H7EKr(XjHyX-U>slV`MzRkaS1MDqrk7eMe-IcvT0A|s5V6ir(TsmM5(0osNwf~mAdL*raGz36b zfZtEKfcrH?hyEVFyUQ*(Zz+!pb9lo4ta@|ibfbP^C1_y3MlE~m(_ z|1!?OEv^}_v=OO$3oy{%(1`RU37h?$0F`9sPMP|N_`UawrKt#bDgHVgD7-9+1p+z% zr*$^vU!josCFsGG5UuVt5IF@vEiu2g6(i4Aw$3L85rYbRkn);)6yq``(F7ngW0|Uj z>aPOZYEcXEG=M&pSR$eT?<$N5FniMZy|M@i%yr4F61ffsVFzLzc*;-ub<(6I`!~6(6sr@tdFALf~4cwJvHY)0<|uqJRSs7O2FCogW8(v z-T#}zd3&XWzS^$f53mDCWTr4c-9!3jI9R&2ykJeGqvt+c!l*e$6=C{%FbiEM3_KP> z4wQmBClIY!o4mc`uErC9ucZZE+Uy`#?WvJ~9OYeFC2_V{-6a+2QV$@1NlCB0*Cf3* zWxaB*={_EiOGH4|(K2p!gWGc82R9)V)Io7)cvVCLK|V3>Qv;EJ(0WXqm49jX%-^{f z;y9Vy8G{%wreK?3RRN|`DXrOpb3Yfm)`*?ym8DFnqBvz{Y?U@Y#F4-}vmYM;X0F+_ z^RW>^Q}D)t7u@zj0_pgs)TombBff6yo`;cH@Fn(O6!k-2m%B_q93J1`?SA3$UY0f1 zkXuC>5{!SNR52z%PF{62HwNLKA1IT3Eb-!(h*T=HU6ei-YYF;qpbD+0>=PHlt$y?% zCu3TAU>?w0r$B|!Ei{3MFoKS+FV1I(;Uq)2U_&2))TfUK0z+-gFMmQ`2&fB!=E+%$ zIa-Ib2K}Ar+mUoy)DL5WFX|V=7A``(BC9vWT)um|=}LnpKispmqSy=Bn+G!caG;(X zkfH{BUy$X47FeMX+OUXaGK4hgcFMmKAlTZp6pcI|Y`zeZWO7PbC79p907d?Q*mmY_ zE~s!+ta88>FH>a?p9^PPgB`WzWVA-$qn$7FZ*!PBzW7n2FPME{@)P8yX{mfWA^|Xk zMVOj)lSU25??>J2Dzd>qu@s6B^cl1%n;Kd|>?B*6Yt$y_y zM*dY_fU3h4DAG*Fn~iF4Z1uSwYorN|2(JYUoE>g>4#*>tS~}8e&psf}?(!ndiLCSW zL?vS;*zfykV+F{t;y_A+gc>wRZpcPh8vWheG z1^)`HyqWJ^ZuS|p#e|^FBzVfCzpF94qXJd@Su8gn2n1cGUBlZdyKqH00h7NyoJHVo zNY1m66|m@b&b}K9%(4ljRk>ug^mnZGph=v3r4TOU#-R8TAv?;A0ZA8rc~gohkpX0Z zRmnPD)~1xS@QJs`+)x7!SK>{-o9V z_07c^SF;OkT72-!37`%g3*?}S-hw-FTRpQHg`Uz(iIj|s(nkXFtG&);9&r{d@G%k? zE0zejzxsrV~Mvq27LB70lJb zcwl$|8e3E@J?eB3HSn3gGbvt5ItIT5eBmB3CW{vg78la5C!Yn{@=T3+won7W(|dVY zXfwlc(VQ8iUV)a$#V|@%N=I2)z(w2*;Yf6#q%CqKW+{hA&8-ep9hN4&V&L%FjWZ59 zxCB-e@V2(C3CdD5mdI(>am4Q75J^S)depqr1WZ4UO?ziHb1xx#1G)T5Phl)X0OJkW$nG% zSX`}q2OXiQvd!OeE#&x@Uz)5p2JqUqZ6I}$W)?P})Y_8FOAFos9tK;K%YXa6n7Z!7 zp?C>tU{r}TnWg_K0aP-ST8N#_-_E7?t`bT!o;>xNIjOCkd%g&s=&000qrO1;)c&F4w~wYu05jeaXuF+fIw zBv%i>#_xs!yf)b2d@7=zqmmk1OJ#2X8m`*WCtc_1p#IJl*xRX9D&zlL1hvt-M;CYs zPXT!HAEgRZOIeD#*Ornf&uJ*R&~iL^J0&Ob+m=BUu5CM~_~s3ai+{bmIcW8WE7`_` z*x+d2YUqq`&bf+ch{^?z-AN$LAMhD}U2+v#goTq5K#C1WSNjjh!`D7nk~l4O4RgS_ zcANfoHBT=j3pl=cfbe6UN6=y?8k|W(022NDQ7Fl77|qT1{X29s<~q`2g%b}cR5#2p zRGFf8Q@?GJCHdGS^07POp0~%2sRPm?CR&M>X99AbFAOI9))>8 zzMoED>N4TT62tdRrlqO)ilV0Flm4ZXd(-$P{a0cqc&`#afHH9G4uaIqc}MffufW?V zqc(HGULZ7@ZqB@_qPxu0rm{W%N8fz||aX#rBcA;Uwg3 zA=$i52<0LL3NliZ{ZRIPbV68m1F)7L2`sfjLaK`NTdJm4<;pGx>t91gpH_JiPiGOh zwkr9ZwU6ejQX?+fhsXjPm-{FyEK~;feH4+X*u;*=ps0NBmeJDjxidGq1%>OE#-q_i z=*Wd~m{@xBLz-pdXI<5mj<2tOa1*y?INB{|G6xVp?1Rl@$l!< ziG?pK#nu4PceXxp9CG0%Z2IwUq@`p7V;gA-zX(Q5I8*dv)rz*_&U3862MK`eGt{zb zq&}J`GS6EO;H~#HYvO6uSKt}e{OPxIE;V&5zSZV8ZT&CI`y<=SZr8OePIQ=&#PNTy zpsek?ES*5or^g2Xt097PcL-EjuYpd|9X?9e^&BmPKdB3BLJ7GAc(x|MU#?{_boEb5 zw+XQD4@D~Ji@ekR{A(AUQT!0hTRCqBa{0l?O!Lmk@lhl!R@1fdC`uWiMY_W>ICK}c zH1e+uV9h?gx`Ao`{jvqx{o7JdvwJ{(U|(I#MbejWUy5n4WeRksx&_85>F^zZaq+?s zaK5CbM|}qbC*$n&`sQnb5Hbz%VdYy%05N3lGnst@gQZ@LY1n2&#)Tl^v-y+pdAr(`ovLa6VAsSqcP_`y zeDt^r1cVeWvfY+N2gI>%BPBHL;Ea_!jYDs~7Cyp-9_wu$D!RS?qD-9qy=xf6ph!@8 zUOQ?&2r%<0u!`xEp1#LC5k0ZGM_?5GuFmEL1i-SIj{}4X!g>-NiGW|w; zccvq9d35C-0=~z#4Me3fR|deaQuq6X2YrH&$iD_JLX(S`eq^X5_e--#cK>rcaUq-p z#d}qantue%e@UAXbGbK4-c@_m0NW2Z_4AnTutQcKoF!qaV6aM&66oc%8pz|X%c{hE z6H;tYtd4e5VDL?%8y*Yn<(85SoQBR*8$XZ7#Iqd6d`(qx(0@!->^bMVI=2yao-NEGVSfn7!zR+B zD3J%H>%5g92}%-*Ko=@q6c94CgyS-cjC&gz2-HE-6XTLj!0FhH9iN|*$-VKK%} zU>)C8q_NXF17`B@)unu5QG^ZQfzfpM25L-#IdX|0N+;L6^+~`WK$bWJ#!lVi2Ni7l za9KsS$X*lBD0VKd0T(O~KXqM?pt>uG1_AV@E>aB!d=e;n12CE@J=vbgKm?S_B{B_R z47JN|(vyd=(@jZFV*)qhDP|BkZhzrF_OE+XTYBLdB$Y7VVg1 z`#w>=B891z4qZ~bQqAh#IZFPDc$FfkGOd4jY0?1wskrY7#$bY1KL3lGS=LGOz(Ete z>yWNggGnW^EaZR4I=$ZRD<-9aKS*9u!lDzh0sq+!eIP8o#34Ww*p+Hf0XSk`-qteQ z&;SWN%nP}ud5k9d7%8bJ*A*HfgoE0Iup;MZAgXSKw>lA-pJ3{sHNin!s12pd2{!@z zz>F7?2zk({J|R3PlXbUbEnu8fM7uxrvDHPM{EYeLyLsmX%^&0Z6$Rxn9Yni?Dg0s*gc4sxoPmbN2bvp*A9_cj@KvsA3(&Sp9_$ zf28Vq;3|iE8|2YEG!m3WNX2mUlBQy%*SQb2uwjzSk)@?WYX*L@Hx6F^Ib(+h5bDiP z5-^uBfdenkzXRxNwV9|AfynduZN8H`pSzn?5H9T{{2!;)>F#b0AuK?E992&6;p4G3htT9>Bc z!FZnC7spYyu&MKV3Qp-C;0hcLJjv(NO9vv|1gPm?()&2&s`jk5u3b*Y`Ae%H=0uGUw^+d43#(QT~dNG^>-UnbCje zgh4;wB+%uL0IT13;~kCoDc?WMO#V8p4ONvR>Hq8lUYh$W5|4Vn7`3-%Nz)}DzXVuO zM)ab2d`=xDaFt!_cBb!4*tj--#8;5@p!72Gu%T^5(q_Cy{BqVB?1^*as~ovxm47RJ zg*L9)`2^@q-7&tb^L-Fq4<^h6v;J6yRFY>6Jm@ZBACSLEYJUY`%qx#r<`jmkAC;#C zvUaS0z4|Dq;sKbh(|q9_I_f()nmj&8zFxziEVV7HS;m$xce~_9?Cg~T;F&74ZDg4D zPQBDnL&zSwT5@LbJmpPf+JI0q@Xz1_9(8G@DnqWEmh|AEGeDi8?uAO#fPhN=UWZ1q z={E9Y6CGqy6fi73*=QCw&=GQ;*+?BM_#sqpt3B zlu*7JNNjv~qz5L9XU?r0SI)l6Wn0_wucQt|;J zEfIBoNn6{k@y**yl8dTMyShM2d%^vda~+>VfoGut0}9A;8T3h60fg}?Kb>EarG+}= z7eYfUW-;0X(7d)?G&cn|R-D$iO`QX<3s9}kJFTtJ1bkUC2W=}0f^1v8 zv~CE>V`|>E;1ld@SBy;HpT$hE751oGq}|0mRYe>DYjy?~#4W$2l^eeGDNVy0Nz77_ zCPXI!bS#4AHaq3|o1ail1o*@3>C%&}M!Wbtc}}QoRkW`A%0XmQK)=Wsy>{k=)wKLk zyRrOYT1kdS1>N#ShP&*5ag&d~}~117!QW*c^tk&k$} zX#Q$c|HGtPB*8|3!C1mwR=TY88ZtnEgS~@Nd;2=*yyH`yXXq{54Gb?*%spa}mX5ZM zQKvht{s6ydTA;|gZv`h~h0v`$@3^LkEJh~@@9DVGBhGY)Ez_+6~63~r6A-{p4z?70~Sc8 zgyM^G9@luU6h@>jgy=fzU5$6sT$AxKQkAw41KpoF9c_SPIO=L02jd+w{PV`%C^_8! z_GQkMRo_L26KZKXA%G4VhM5l(wi%W4P zC0&P8mWf|SCo)8;DjkK~Wdjf?LZoW8M3JA4$Le1CZd~fEjE{+I#yyvS>nYO%XvSFB zzmhwuL8Jpp0KP~f==l$cgqHhiHTi3T+T_YT;JFFZ!TBcCn%>9PDFqS}Fsl$t?~)oY zw-3V5}k%FW$*&UOKeCS>9-cQgh@Lp?7E$j%)G1mHLxzF0@D17X0U0`( zybjoBOTYkl0F4w!@u&+2Wy!^JiqLoyboj&(GT2U_f-%tKcGo^^^Dhgr0S$v8bXD5I zQi{HJJV0$^HkHgljZ1Ery>2c+?;<}k(D|461FvnE(aPU7;@S)o^S5V4Hm44xF1J(&#u0X`JXi8sClSTKZtbmQ)92OUg%a zPNn~gpB|B4eI+9}J8#vH=b=0c&lh67!412X@yq>Dybx0uMhJ zbE^aK?FXl>lkO`s$MEy`gn>vDj68e#E>}dGu!9_WG&S;T4I6^=`@?BauL^UD*=f8z z5R1Nl=J&?)#I7uMSz|RGX}Lg%ryW$!qlJyZf}eB)2}gEH00 zk&foA9YYoNTY60d!2S3}i;HAfGzSzel~{Fhotylv53*uk={YNLog(_=;luMR zL^-hMkFK0@yUsR5pE+Uqf%u7gK)!K##@!*ZYSiRU#1x&sLcgPolvC5#ab-l~)<`KO z&4=4g4=!4*LQ-O(L7nlVIO=cCFOtR*U&8)c5&%dN_<@!l@Cj=i0vCZLAE&i5`zNZe zK<);aG0IAbxjY0i3E=r;#QWjsUh;e6%}aOTpqO#1Xuqe6S0$^ED_(jLc9wJh&H3E% zQFDo;1DLU_3Mi~ptg&Z_mENQp%q)hbo}4(WHU1tiSv!hr;u%e&sv2oh+R|LJ*#oIoA1s=CnJ-_ymHYWJKvV?XBnlHPLOdu4~;S) z&5&l~ht)La>q2A4;uY?mU30WQ>|F%=+TXRh>)$h4zaJ$V&3t$Hu?n@^ZNkx0Cj8bN z{p|)+fyRX?&m^Hx!+}orX4ii7?=W9DF7;R6kNTO@O{L*Kk);n1zvB(YdtdWz#CnRU z!UAlK7tI@FUY7;Q!JoHd-?m@i(-9a9X|a9`4=@G+ z!)g@C|Jt*cA~}-oeo3epU+fiKXhUBi`W#fQ~Y0>o>FD9bR)yst7rw5}^*Q<8*N*~g9^|el?39FYld6qU0VPO^Y zzFzE3&Ub#B@9f@wDxsjH=G^sYZ6wm2j*0z4I>&}i>G7?Ls+hs|QFPyERlTy`KBZ-* z-Q7mp8d#>~9vD@u2DoWk&?lY>#%Wj9kn(-9tGZm1W-Tw!xcQLKV6-)EdUnOA(%&U+RIS z#$_B(@{&=DJU*Zf>oSLXyLmtx!;zFDb~e?B?;tj9UgsKS*c$)uDBK^&=}L{M)2Ziw zz3#C`VemZ{EvX`E7YoXNn{yX)8>m!Ny(8K4!ihKGzC?NO$8gh=U*@M@&s6xC)>J;x z4XRUZPVG$U9i2)Hg^`Q1QHb;S+ zz{}EUk1B>f{io0GlWy7&WGGR!wz=f~xrlqI<`68A>hEn>MhoXIRfoD;!LJ$kajNkT zLu^C^KgqC&Gd8UJ`4;W7aW*=_7g248+%@O8Bf9QmsIq(Z*LY+Q_#I{^Xrp+qp~&Cf z6CpE*!O6C_s{J#Y&iblvxt-iYwq{yf3;Wr8_Rl~M3%xa*mn7nRK9ia1DGaN0O zF25|Yw;HU48&0R0vs|n{4mKR2Zz`L5R%^0f96(>~gGrg$*&kvPaQr5JU4a3n9phE| zHQ<>)sd;6El@X&iT^Vru$+MQ{KFBr2K^rL0^2}vh@lgQ^UjM)2Kc`v+BAC6wBKeN? z!&3NAjabsG-U#vj`)|v!5wP=DH@Z}$FFsKA^C@#qn@BUyaBIug=np~u*s%Wa zY0CRi*k#wNg18mT%P#j?CzYUeba`0RL(EJ%D>IQH21?o^m?W z$Rv+6?d&$))^_6eY1lO>vz*ksb|_8aK}B#B(^$lRXWB7Wv8t_ToJ`zl6q%5BNvrm; zYGCt8$0^-ud@S3&r~DHRXfx-?TKTr;l_ng=j}PbKGb)2{CDB5 zOB8Iu{BE(cmys3ObaoW?F#;O@-hV|Lm;Vk7 zY1l9xUpD&s-nFJiD~mE^(I zt=sbWu3t>Vcw1(CBn&$BEA*yZ-)pdnOPi5DzhCSfG~|m-=05t9A2YoES;gd

    sd zvy^w-F*M$hDrP+y(TXoLkAi`RL+Cu5oI9;4M_!oLS21SfO#mjXaa{ z*LeJG1rQ$IUY5htO9gz2-dCNLc?b@^xS@b*ugTX_%Rz&5Jbus!TktH{nTySYT8;Q} zWw&_mn{ZSA$fPO1cz1cMxrq~9*{FUYjHRK_?06%xBq4ibnf|Jng*0ueo?WhHxd>)~ zp>2XCy$r@tH;OiTytYV|t(wazd|3bWx(ENH7qVi6Ia*lW=D9oe27$56Y<=9S$X9JN zvJu5wmqa%R@ZaCj%O!5=dtz+Cty$OR?kEWMyz9Q;K*wBGA^IHR>$1R@{BUe}8KfD#dqYc(Bs`XYRa0l*^JLEhKEU`qsogBu%A>1nQO=|be zgJY3*q@JAD#B1zwd#!}E^{A-;x>Vo>eh158WRH-B-jVK78}Y(3bnXMD5;qf3rnXk!-MWoSL`o0h}^#%*poSPZ~Pll2qD&>LdZ~f9Pf45 zG+Y9eR4y&79lgBO+&WLiovhqgZ4qu-pZ4@)eg%$oXjRtX-2=)WSDf_n%dL@SV7e7! zr2|1*1;=FEjwQWKY`#IbMbB!v?${w2&fiQ}(*4KelSydw6}3Wd`@zpOrySV1zQ*6E z5gg*!Zz0QrbDxoqr6ypayK+Tlu*U7F85E*Lj<$Z>-d!YoHCVxmUuHyxO^$xxj+ue%oZQa7tS9^(+vjS=!ho#Ey-Wd(um$$^r0xv5zfL2nv ztJrla_Y41Aocz;W=(O(_j*yk|L@D zj<2c?-~T!FAa_&zli;$2x~{k5bIbL83kwy@Kc~ZtRxU7y_GWNITNkgi4z0NjX^;73 z-vc{TNtp_qSmUR3Bvf;zMWAs3a6LvQT#$r*t-IGs%KxH!7y%R8>WkxGTz*xz5Y3+^ zb<-Gp63jMd)^`cf=_UFiF#|7T1YP!*=6vM_tVO(67qJVw?3(aKwshB0LGz@3$FJvV zV&TJDU1hT`j~$fPW2Z(<72jiB)xAfCNSkfT4td(mQRn8});qpNL$HoVOKjRUKIMjk z*umwU+HnVQC7}~;Q_=}c%~=~>>avm<}j%9maCJUnf|jFms|@@PYGE+%>1e=*r^fovZk^L_LbT`E|fgp-KFdO+1p-|Cu2tF`cpj|@>&ksYj7FQx>4J3 zXkmXzr>_E+mGjfY>EKg|dh#Ft{Klg_ftB)=dfspPX{{o0%9jQh$rEG)cGr!f97!Mc z)uU(ShYJ>0;?(9GeiY~>1tef6%MRTTq{u^A4`wMjpBwHKPQ$O^$^B235pu`fY~x4U zWh)rg9>DtEuP>M&)2WhAEvh7sdE&1@A{YLf>b5U^q)PtNZLnnXd+LFki>Du7)gW_i zbwy*f{*}ZV9qgt78PCqbk_i=mx(9WL-{w`P%5nPaK4w}D$*vXd{i2p*x70C5%T7kF zn#ODL!)yi?16vmN1zR`!0^Z%d&VGaONH2#5(BfWisxfE!=|_rg@`35AFPV=3g-E|2_A4oZK0vfp|G>h9M^QIB#6k zIwdE`^He2n?mXP|orMzgpA)9W++wyrEu)xj$!J9}e9Xbq>`WdiJ{w|eXtl=sK6oqw z`%bq+4rF?s&o9bl7?$I+WI1k)za@{Selg!Z3);b_E=CIo;_{bnVtVWcBJ@rXmOuK8 zxFLppQQ2mMUn_&lS8iWK-&cmUq8b7pW_O)qgQb_t;n}6k42b3U_5CxZdt^RO|1)wg zpX7+hy1Ukn>wdO(B}1=X!-jA({x5t#6!41U>>vvlEX-XzE&o>g=v>;QRDj@~HCbNs3msm;bMv~E*B;*(%hYzbZPRbG;#x46I@{HaAv`}6wGE$Zh|eX8$Z3r|O` zjp&fAFCU=@f0^FQ7?HEZ0)2h| zU`GdB6J~sHmk=GVis^`sjjyd9ZUbqG-ks{Y_zF>(l6LGjuC}+{v-D9n5!c%)^_(m* zt~E2NtLs~4DDei{k5T->K)`2m?^W14jb_P#`X6jlY@aL2x7h!sItcr}F<%7)f zpkoi|z9y|Dm0srd(>=N|;@GC>(Gi+I6oKjb)gkwDt>A^{bg3D)I+0ECzFKs5RGo#I zy~s*4U8}0{6#Jk0SXKmq9~$U&uU(L4=`qlOzf+pBD4cFW3oq_Qh2$Wq@@9G$^Oppl z*Q(bB1vxiax_GL`9(&H2AN`CUWmObhJRSmu8wl%Q^y z`C-dDnEJ}Ah|KxVX0j#hQODq*x$E=XcaWLbZ=|rXe+CYjmF3|ee^SBu&=nfapC^rv z9gy@hyKa_L(OVyw{xJ zC!c=`DE3Uvy`lqYDTtwc(zQ>ue*X3N(0Q^EPC4_{`*m@OH*Ip{GW>O1EZ@gGhpFbW zS}57&%SyPZKss?1OIk0Vn*9FxLFDj0i}1ra-y@HK;YbbvWcYF5!*&2bkH66K6Pbg( zYH4Ye!x*%W(b=0@q8v1Gdebm_h2S5Qoml0KY;TINOiM0b3*n8PKI;FjL(O#@Y%nl! zH1ilHHf=e;w#{TO-Z?k&Qjz#oy}zyn`wgd@0B zqeHJHX60mM1cY!eytXsLMjtHDqU1l^l)LS9EiA|C$RUAyp=H!A&Afk0-B#CCDxI0_ zaS23V&ir)Zd+=Pn|E(cW1ecA@NLB*eECm|*Zi?gDSZ>Qr z`aiE72baX=c5cM#owXmdSLF_WJPEWLE-Gpi8Pg#fV&4#(+oRc;U)I6Z?DM)BKmSC6 zMOO6h*`TeKQ2%FsYt1t|x#4XUf2$Z3bl%7lMG2SEf{xtjhT~M7KSS3Ka8{7<($Pw_ zSkv3SC3+Gkxa&sac6Sc%UwHqC@>MTV*f|zQ=<}?JoXfKTdu2F8dyI%xvhjiTyv-{8 z)yLDOt`9$}1jwJHywMtUZ4Nx&6w_1B*ATy{Hmb9?`gQH@Ai$At>BdE)Kso z7r*!!+?A7Zj~2>m%zCkq|!bDsT_PdY~UMF>3$`wtM>_Y`#G*uE(3agnQakCU&e5Zr`j6sZGO#te?Pv1mLHtA$^By&0$1YJmbP}Aa+`uamyY)evVsV8 z0dq!fsj+rDmq=Lnu?B6v7!Y>+lbKopWxt3bZj` z{jsZ9KkDO(R^+0K4UZ(x$H*yFiLagP)Z05r&iNy52dfJWqH?M1`}TZw+>)63F$TGx znUEx}@-M=etJKl5pcqf=y>(nC{)jHL2OCiyfYSi?c5h|)_F^}Pl~$rdqYQ$ zK%Qk-;a)VD`BqqcWBPJ%b4BwU3X{@zTm z#fQ=~KNp_)?*0=!GpTE#4jU)cp#BV8aNp1>0?722MYSg`WiMggrYIo2IcwXw$opPr=_e;J4J3XNBWDy*j1mOSVm$xx~R^NFx_DsKP-WU>F~yt;Q9 zG=}&sDiV zclv0W#z7;VS#-L%w$@-5&Y4%EwG&&rw<~>t`s>VkZ`_Wvrd7 zsl_hNYqecwX;Hb?YDt^28r#m&2jY~?z0(?+m0h4}Cc$#FU>M*vFpxzmX*V*lfFk=X zGNQ!Wa(<>lPMtmlKlDD2<33*86784!RNUj9B}vWwgagAJ!=A~H)pqtgG?*mS9J_JN z<)pWSN6~pvA3M#peHniz= z<5E`E1*#Dv%eGU(LzRq^?#a=2Up#g4kVFR_Oo?axxSbb8{J4EUXICuDqSzn$2ZV!$ zqccV&tpz5N6HF5yKyiYZ_@x3jw2F=mI!NS_%(b6t& ztf4cIbNpGIV^n+L_Tk$#X+AF=<)LSUls;kSpNC8xm_XXGz|X1+#Xbn7GMUA|$i!H_ zKLx%u!;YYV0zSUk<+BZvpQ5z9P$`%A=^Jtr3a>2m@7n?;&dG1ap=xsDe~=-|qRz5k zX#kY_f{I%?nczXI)_6Rq{*rSdBXhBjQxuW=<;}&F5;r__VrMvrlEZBMW*J^OCe%=F zO8%i|;Q#nG>&>$e(_;wVY_*O(q?V^!%$RP>rLSohjV<6So1|sdt`y`FZtHB4#L_h! z2eUq?wc+~`G4=8@sgoU|p4+|-g2`4nDbhRfwr8}a<3^LNOmE;|@1H1wD`U?7;xfY3 zK}Qtd$(fPUWG-v0yw@Uu@a?{(&H15JBHRM(LZdagJaFinDZ||nB7T0M_J8)65PPKr z?;+b#a(c4#Qk(AX5~`%Y$KsIcQhCV@zsI#j=?Y%OZl8-F{`^uMuPvRNzWwJQ0%kQ= z8j`}wdn2*+LHUI;A5)q4i6ti19t*c~xn-V8^Z}VoRzuxAP_uR>f4+FM9yI_z+J3SZ z9aAn}(gR!OQkzq)f7F*4`%hs3WRQoLmFizgSIJu<( z>NI9s-*;pWtW%hX3`Ri9%2#}-K#p}+4oI7tG|gR+>^b-eTO!X$$1V&7r695+*`y%q z|HLS#9k~2sI(z$ga%em^j8awxb5FcKH6HYN2G;!_&fYUDs%19It$#J77s3Zje$&z!guF zIbJ%Wu<4!dyK2>{RaNV+94YPDbt_XwesZ?EcYF$yDV{0Zwy?nK7Pp+&f|dM75oijWodU50cin{($+7*-_Y)=M&8^z1Wnz02FBzEU;Pv3Ol#C3*DrNKWv?cvik<{GSP3Lxj}GPI3K(FLav_L7=W+ zCS%h@z`UsFa z3bgAy9pfe@ZWqcoHR9@iKKfMg2add*YerkpypVAWRueI}x{9#VQ>16EoY%da_LlC1 z_%GBIzB1uz+upI+9iPW2k4U|9+hHN@##305QtrCp#OmuWq;c9MtTjT~JC6ki@$ZYb z2z&A&>{uW*@FUh2y4%=zrR!S>CwjzPhU-@19XV$r-yRvf@_qBE+mpt+)Y~bGg$Bxb zijz{6D;Vn50?F7rJT-Tj08(sgH)|-zD{h)yQJbUq*P8DV1GzVG~o>4RQxMT#wa(BSRqd~lKB~kj$bH^c)Pe%RvAc` zC>^zalZ0=Lvhh=MI~+2lBYoz~f=R=uF6MXsykP%HQ%nv+goXX)p#4%4*?o+0Mp6&5 z{kEwe$OCb%{{mv}hde^2KdB1pm_^eRJox|W{j>rmQ@Ize_wD#0u9 z8x51J`Kzv5_MCHT*&bDd)}&zF_-YG_D|Q)!Zy3S?yEt&GLNd$o4WI zMW|8%=A5R}#oOdMoml8#rRU({hAm=4VHe|1Zx5;QV$LOZMz0eW+jm_1ek5aC_ZFBK zk@aWHTxm_cSKK{g{2z9^3S4o?OSUN2j3^w=45MZt4&=#t+YNHq*T>!8Chq|yhHY&g zbVw00@Cz|OGx?K#kHX6Obw%d5g5st6d23nMCN}} zz5TK)OHm+M!wlo2s6>PvSvK+nk#b7lWpUm8Sj312=$+@V@fo&XD8{RCRKi8F19S(p zibkU*WOQ+n~OMe|(gJ!!E|sCoBSD!$aMR0@zWE(F)bnkUZ{A4p5vATvMC7s;G@|9%Hn z&A_*{+y+q<3n^(bjZ^8P4;k0cs9>QADIBB}I}Fx*H)@=SP?^A`f&pWRiOVafII~n} zKe%8PENbbx;veKb(~T4xl(!dOJU2pKwv8HGSmzTFP}(#V)oBkG>P^}=FTS6U=i2Qw zIjA^!MOnnhnHteXYU*CN9Ftov2|x1niaue^_esbX2j>F^^u+2aF1mV{W>`i(bg2F& z@nxDW`OaqI3yv#csy~DWZD#Ig*-bqCzI2@SaX_kUuyMtzLQV+>@Kh}fdJ=VdIQ)=| ziG9J6&Z4;bg^t@^wnZH(KWvQgn|;|n@F{LP3u62TpTIq~8*Z?yBSp^&H5NXf zP&#jG7hEH-UK()M@TA0iZcFo+!|Px$z)yVg+ZV6XF%)_X9bPdE7e~Dg3N%3zWBUJYSU@|w8z$Dxn=qIy@t8*%||cgnZ(cWNF-PgeEbTZU3euM<+*pH!4hguG{|465cpF{*3Zl%BVnWoCDh z*ln)0%ewtP^rJelju?sJCkUKg%U?MU1Ro;~f^~7ha>cP;_{b4TOc6k`#)hVA|3tY- z3<~Rik8ld>PA)91{dw+p;exYdsbgQ2)hgFaPHyiWz;P~IYbIwL>mXRqRmDYk5$cy6b z*yZn6R;{t8uwPdzcbsyC<8^G&_Yn<<7H_%?kI{34vqfh!I!bC+Us=zMDJuSD3F$mI z284PL`I{rMu6UA)W*mP0qI=laPOX+45O@X=8| zUT`u?VOqF8=~B|h@_tB%ha77iKJe*K*rAwBc`cwpMDzJA%0Il654xL^)JX!mmHH>DM< zxUPE~y#p=75@@gN}JyE;K)FGgz(Zttn0860%5cAoUu4mL1lvSO-tD)+Vc#&3iw{V0!lp^2T zUQclS0{@pUmNmbRJHbvJNsrpU08qEo_({6im4>HCns!zXEt9Nszk64<+fe|+7v>gL6BSZ z|5z@2-sHXcm!4?No9SDaFUR?|gRPuFzBcvZAEOg#;_duoRu7eWM z{70&XXzB%%NqOsdf8w|_<i1U}V?J$)}~36>dc$z6cwWq`Z%F;70IKotu3Y^20c{Q?hSfn4eKfRI@er zJOxRYZeR^;M?Ud3{+vHR|F@J|%Ob`>Gbp}4Dc8N0;ve>PQR*x&7ys$T>Dsv_#lrZ} zRu<;pnCiCUG(qfOYh~0_B%6tNPz5LGG4Q7qkC{smk2 z{qhmlk=5x6Uz0*K=f5xQ-;mM0Q!Y_(8plReo>`^}LKfToO%6LuQ=PulVwK$7t1!N= z122~9Y(hv_V1f zk-@Yl*qhDkjDr61yQ^$luQ7DJhGBjpGK#Y+0%Iz!h3GJ@6g`ET}Kr|uM zy0wq15G?BDw+q#GWf`Tfle(?NjH`>UTEq=*QjFMHLLJ=Y>nR6j?z>W4Cc!&&oNl)V zd3DkLn98Vme?c+7x2C-8<_$B+?1B}UQ&+*X-7cxw-{w-bak(GpDC1*%t8VjNYT#vmdDhm4BDuu zmw)o8QOnO`jKhOwBiAgkHCe{~jXna@4eBs0`P@5RrP5eaV}(V&os(@#Rd}yeRX(?V z6uPex4DLV6$GP~>R=V5mF5v%ftxBkEc~3!at^QU|?LTTQY)q4QR2T~b|J#*fd%|_i zp|j)_&=o>xlN4miW9)Ag&(Zv-2xubkEme4=Pri6SXEJ$mMdtnE$Jaq_^e4tyFspW& zMmKRT zIQ?b#`;vtV)E$K2Tg#yxYF1Kk$dG7lp~ePHI5Td3`|;n&?}R4x(*sUjxzYHe#`zNB zc-9JGYV~65I()aE_ z@|RkbPp(D5d~c|eFQOa^MX6fQUuL4&U+WI>inV2doM7<&1Uuhp+%)!+)*Jli2G^xx z58Iv=24ve;`QwP;SbhRABv$-pB+6BtXSlz)<==S8#nu0(pIyA(Hg09ZXeLsmmz}X4C!i%t@PB{FSa0$%dYtKWMCi zqopk8$o=P)+`cgtf|>|jQjjB5?Ze#Pz9hBE4+{imk(6q`Pk!ycKP#RjU1{io)ZsT| z2H1GhToS||4vU;nY~JlTuiA&5i*YkP6xjlSaQr1+O_WmrRXSky8uuP2P#l32B9L!9$w>Uoik)~o2OHemD^8du|> z^dKbJywU&`9#(M@xuSgfp6=m?UUd;Jub&Y7FT4NdvB(`NPKW#3KWNrr?L~vm(!(Dm zW1^)OOiqWCxpiwhU`_!_s?x3KF`m@LPqfa_Q7}~eb|CU#kJljy}ZRt{(Y*eX&(DWqUqaeEM(!s!&^GSS2 zy8Zn_2p(5R$Jli-3g_5=dS#{0Vq)@~V#^JYi;`^8vTc}YEp64CbgcY!Qm&i5yDwTv zke0Evb_m&3R%i-Ht)QLjmqQe2QueMxLL03OIoICipQUtFKmHSK&j5r#C{#^JxSbK5 zYE_0vQ6%ZaX=VwV*v@I1&yM!{wOrm1(98=NbPp=g7574L@7i^ma~^!g_bI8PM^KK# z>Z%wFEsq4&;yXZJIX{4xNtInoLFrFbYTrH^fe83484xLX_w`aaNq;#fn!AgAa`OWT zL=49EmlZGj8p#LnnUH#hI@i&lQ5s5AzjEbW?6o&@9o|Smp$+MJ=-I#%8fYm zISD4((sybK2vtef#1`fE8iaG4%N3w&l;o+CksocVB|dyjnv%L-riv!Mh#zz`g!0aRh3s$z(zCH9_?NNW!+LMht+UD{3Dnj!5ljQ!Jjg6VcG%4ok)J^WL z*SOps+n~6p1p1bIdneB$tJki{KVV{#hbEtsz|)e(ftrjQWpGvH6*@Va>_Cgtw+7|} zu{Uvh$g-0tcZU6zCC#YD!+M{j??xH~zgF4RJwdTLUnnmq6v=iw6(jflgOhCY@__24 z6>pIctU2gz(e z!uVGMit$ZXTr&Ju`;`4E>NV=^O%PEl&!1C^D3P*kEe2bVP$a~8s?EGv)PB`$vpRzKz1x|* z$CyRR-y$sBEy>w7z0B~oRlXHM2=+^59@-+OkB@n*^Gt6_>JC2;kEZ_{$%6tIYYitE za~ChlsPRZfn0~vruoLA@xyo2xLS#l6cR!B0Gi;-8r*CPek74JZSQ!Y$>zq$e z_x5cQQp z+BE4dNO0-N?{~a5^;No^{+!nJn*?N^4zJw!JQs0c&;)@M0$b0{)l2V>1yNxq589r4 z3F2oB&)_A`;Tp(tmE74D+r!MZv|*psuux}Ftwj8gsFkRuW5QDhc$I5q`PCV=i8y=> zTkg^~YsiTu$%t(9cLv|DOyZVa6z^hUA6py+?JUj(bIXsiKY<1RjhUZ0C(X6^H}<8= zU&v{8$pYC%y9kiT*n8^77s=WBrg>zWwAIc_``=5QpcE+g6pv)HYNQk>#~R3c-3{cP zm&v|0P~(_pgIWU~`SEl*4>sNW_DRBTf-o;c`GQ(QeQKKQ#V_jENucE>8_JZ>Jr)wX zGSKd`P=RMvu_u;HsC3aO&ls23E=nSgk5Tcb22LZF}0S+xL+dPQxTwhp4^QjnUaq|JcIyi;+* zQcq_1H}2*F3m5f4d);aEQO1-U{$rrNG+G*h{=%u>}|a zE{pfQAXQixH!781InF3&>I%X)0H+;2w+1u(uNRLjiHChv!*-9};bK)H4oiC7d<|79 zF^*e1?c_0px?YT5L~MSRO!fUjn&l12fkg~J%>{sW^+%HO?P{PeZlm43JZ`SZY4@UywO*$wS?a})hKT;sa~CAR4YZ;n;N8u zUPXL;>QMw}EIsR@pQvHN0~JHx9u7{e8YP)YB#PT=xq3nXk@0JR6pmyQG!rs*%yD^n z%GHpy9}wg5m^72i=B^>Aklv7gnBADCa@~>a~b)PJZ9kG|CU`QQCFmA83976X#1cmx}eaghUSh}QuQ0F zO8Z79;*fjTH<4_7w4WA@SL~=R2^;cn69dr96iP9;eE%xA;w=EU&8T0EnBqoH9;2>z z#n!3>wbfontc^f%TBR>`QS8GVOp&RuPsO7?9U^8~5$GMEJVXktJt%LJeaV$Eoa-F`0Py&iPw{~A=qG{*~ zud%hGx3OvrkdU1lkZ{D(hZy{_OCLnCulv0g2Yz(yqfduT&kdIgm10uiIv=32 zNKbnOO;D2>oEgubxvza){#J%G@q}E5h(xWV)JSqXmt5%kWtqcn*;Q& z_DM=(%kEHf5fyk-j$X-&Hlq{CN`3jZj|gb()0u|Og&fTGscH%UTXIj`aS9>bua301 zX5Lm31x@1BRZPOSCV5y#^xkX@@j+6={n4CDJ%j*@PXO@3=n-KoC^-8Bq^@qLaT zT|1!uQFd)YV+o*Gune6oh^_2PY}!peHA^{#LM0{xWv|NtHAA35s!V;;BOc8D@TJY_uZk>zQSEZX=J^N<^Y>V)g4oXKH-SNDLTwDqUw?q&rzsk?m- z8@J{UpaI>^7@ghTNBmK%Vp@7k1apGW#hTeos~j86j^md}M6q>J$T?Qh@Jlmqd>0HZ zf%@G|Qo3H^*!q_$KK|s)`j)iY!rh&7D_1H6Fbo!Q1`xz_948|T)*`9GYAX*4Utd2@ z{?02eqTa5~R5X3Qf`YLA#smaI8*iRdo=xv8qzJ(FE+|*Savnk$Z$Es#^f7HwYsfo1 zD|$B1_j>qEm;Nt(O1FjosSKqR_d#pDSv3g$-!@lI2iuSTyahoxh9+gvzzxrqCn-Tb zOI|ERT2Z!DthQ$J^*KQcg-kEZ{(k@J)H)cYLD4#3H@C|7!DxY}0oL)KO8$BK_82!G z9+!eH-cBqmkixH%^p-KG?tHwgzgWE=nPLLHQ4EqLQ`-ewAIBh5CApH=+&AXqWTwK$P?Yn; zYm25QKFwm!Itr>)8^IlozjR@K9!^Jfs8#sHptw&(VV)}Dg~UQV47(Jsfkon_8jZ_n zW(8J{*85jwkU_*SW~)$Oe$_=|;YQsaq|5?r3A5WNN;(b#v&E7)4yZhR`^ig6hpi4F zjB|-un?82jnad{MX}{|Cy?SNA!$Q7pjB*8B@qSZTEso&I(;1h>Z@tF;NpnGQ_5AqL zk_O|Kc*S4{PisE#1EXnYAZ+WtQ;}JQc^NpuL~d-E=?4L%L(zkQW_eqmq=wJ|t!i)K zKeDczId(ciQudw9{@&lsAZO1#gVd`-dbqqj#TpW6lW!%In>}HM47tUTaMspo%CyP- zL7WC3ggkvdTz8l{G$Qu)qke|;faDl`v{{(Uv$6&CX!!qAwZZ- z`%hjqIoWse4UJ}WjkW6Aak)^)`Wmia2+FY|>pDsM6C*`SgI&B|HTqEj3E+BJ|29*| z?NP|{A*@6ry(q!G>76=HjX1~sYhLw%i+{sA&4|iAOkGN`c6he8;}QniS*bjY@Ca*Y#?)@Bc7x11I$?xZ3@WNv{Zn}U9Aa;zg7iF8Q_0-XlkLvIcxqA0^8Pbb> z(!-%aUf*N@H{J8q;y3f_JKWe*dXos)Xjgr*x2;hXKxYXy%$CCzOVQU?Ayj$ z^@WY?N=J*IMFp0h4u{~~69gPZxSB*=GEfME3UxujKQBj7@QFk5K<|sD3Y&lnB&^QJkbp0QtCD5x z*4?18*h(^raiVzX8~NW7{2IjAJ%2p{O@UY>N+|BTeUMaVeVu^E9gt21v%@BFw`K!d zPaK-%1yKqKv_{_kUH&5uEm0U9q%#DS+JSS8oE7f?87UMZ1-1@>6h(CA{$ZLI;tA?= z-7J|pS!W2bY7+A+d>({cJs;xer<=HjJ9#A17k5)xkgkBQ!~o+`w_hm`nE?t1K|0#v zE6xoZeoonPqh{78<(YFXFkakZX0(#2EH2V(He=Y8sClqga}~MtQ}EYM1Nx*J-e(Ng zs_q=2Yp`r%xN(BvNTg9HhB#!U= z75*Y7<{mc9i7lP9Lm*kSM-WKZ2%)cisNvtPGDc&05NEBq_h75NA*fw)F>7wV%7G|6 zLq=>-Yy`PputqmELo6QOzo%W5OzA#WH@)qK(v*~y&IFVLu3JenVu^{)q93z!!_p8? zJA3;f70Jv(?n9jnv?iN`4!9mge@OuX4*T5M`@G>qlCk*%+2xIGl98Uy1^Y$}i;Xd; zLb^v8P(Rd1q959bvqfmtFMh#PoN7s{GcxT-U;Q%`%>tdXr~9}_y3H=0nf>(TO6pl3 z&+j;9-tKDp*}yg*YsMqKkd@MC^9hC{2!{JR`^Nc@UWEi)e`WS{dA8C&`P41mYUj-j zEyfDD`nZA}BYzM+Ay((tvQp2ueieF*bgH?G%1VIaMbO0+)-@RUL|yKMA@&np&uvFk z2HNyCiCUAlBL>`vc9l-8;$nmQpI|kP<8K(B!JLZLfn{UoRSNldc)i(J3B7qpdyJZn z{L<7xff9K#R>JIVjo4cjxG%ma&^zJBqlDKRxJ| z8FKZlS6pu0P6M;_{#)%|IU&eiRa5K>NxqleA18SbZ793%l^e@aZ{Pkg_W7ktpBp9- z<2^;eNi%h{aX@*7DryoT%OzIxgxV@LMc7ecQl1&!1z_j*8Vo{wp9hjG;)@dYS97^9 zw#P;42AV!jT~P2t@~d=%Jl;@;%nXJtKevbi>HNnjes%s1#~r=IOy}0}NI{l-A&o@S z;bI!9Sax|0G@A>%AYXWld8l--|9t#OVlV`N${g;wa{R}AB7eKE7iDv?FcGfOw zear*oNy+BsoTi=YBEOpVED+jb&SltNjtfOTs~dRdnF%@tw4~wbq1qh^)d&M5ll~t= zvs&6X{t~C62f88cXu_$&O4F=wBQK!N0a)c4e=s zd1u#-v^BGKY5sNrI7NxuHSd(O4iO*xC}7ZT-AA443Nq!2(MsoqtY5ZEsLf?WvH41 z`7I9p19TTcs5#aO$o#6Q=2LJ1C~kxeV11JI68(%Msl50rzKX`PyXIh{XR9i?8KijC zomIxv=3jKLJGpw%3!g}mYP{ZTRy8R7I~z`&VGKbW)ApJkML?Zso0LWv`$Y9$7Jgz^ z>X+WF*tdtrhirVRrKt!-h zoyYOd&`wtV#JB8Z>sx%7oZS;k`SydF7UR9PJ7D8982|bpbRj!?lzQ>rzEXS4{AX>i zx@9L$Tgdf+xrMU9$wUc#cxE4Z7JjdnWja#wT_G@0_JqNaH0`%by5G68HQo*&?k(MO zbT-xw4`1anQ;i2qHL8%VvBZ>3*9MF(h6OLi3xN zm9TJgAyWg{`3>?1-!0?_KAgQZ>Sf?$H8k;ojO9(d(tZj;x`Aq0wNGw_4>>DtIhNXd z6yc@6ar6uZBLwXRT)#M5y1}2BHFD*>U#aIzFafq`R1ci2lT$872?bReC6=~|0=5fh zm$;=8-VtK=T?6>dIvpOgIJ$Sgsln*k2-3|F?0xbL2sKcQ0jN9dvnJN7J+#j<^{3-(@`*?yJTg-LA6yA+|394NX0QLJ9S%A@*6D*JwGhbimne$xI^ z-$E{a`1We5#QwH()p>erLWoMG?8LV<<-M~fSO8VdySE3>J5dfOPLx~&vW>8A_71!% zx;8xae2~VME{SkSmuk}o9BI0l9%hZ|Mkb{0h7S0j%)LdwbtCG+Y_PV)-OCf6Ccj zKB1VRCpJ$40}VwxtGf|jLE-te%$HrJNFfS&Sw@#o)Cj3#08zScmUNvR>)fbHfSRLO zMoc1!`RmsBDN8OoLV?300x0mY5|Hd4{=UljfO#3M@hFaQ>{D`4CSV!Avh{8reYnMX z)1EhjAwm3DD6tt&KQV9=hU0=ym z3SpQ>_BRndZSB-J5$gqy=AES3?j+Vh?4vtRCN7^y?>v;W@9mn2k|dcD{u(+ry^;KH z3O1`-6%Q<--AMB|sd!5{o-3CI|LX&&-hY3hLA>B~g`?2C(YSijzn=6K=ZIytPE4ie(|6q# zbF4OTtR5r#C@LzBZ=R+KXgy`mOGQ=MT6dgEVWsy4M`nCH%QnS7`pugPpN5Q#>-6;W zW}x`Mc}y0UWufd@3p;t+SvuFF*gA*6&*P@87R)=i}qkGd3Qb!Ad4+NF{YYhC*g4TKj@r zDyomP1o-$yMIP@reSLkRJ{u39|6kQtZ~otZvl%J7A1{yiAKX0g&&^W(F65fF`QgJe z8n==Av9{fbQt>h#Ma#|m{$dgm=;P8P79IG{p;G~8y@gDDSKIQ6iiX%d##3LuJdTcp zRErf{5`A#yKSw?EEMX41%k9k*^fD;u=*-MaZc~#vLv3yCiwSlrs-pt`-t_Y8Shbpi z2$I3=O&#<{t1!3f$&)9KO`L|8$iu?}-O~h$R$AhZQ!()x8XTZ{9=2DIdj>`T6h z%!l@5h{#2CZy~ovr`PcX**$;%DLp$?n{{)y-s4$MhOAsf_tq`x>0bvn+Q>z;G!?Bm zO)#gZTKk?~TJ>`MWZj4UWA%zb=4n5wktO#q4q54a?@D zgeGcapI491XbWNV7`4KrDX~a6CieCBi@{7ebb_I`<6L)A*~kO4J#UzrJGCuvkV^Q^ zqju`i8L(c=9(_5-D+av(1lH0PzIot>GT zT}TTNybX)Jp-JpcZz}ZD?)|w#Iez#cbZLMAr1>>9hMHGapAHpU6m#x=qpqWDjFG+t z(ix8}4wovK1q#ch@?H#5H9}Zx{qkb7WQ;bU6KpudTWh zbC1w46_s&;4t&5Ea!~=0*EFZZq%s%+Us~@;%B5 zV!t$6DGh`9T+vB|Fr_ejd-DjDg2&OFy3z4*7{Mp41`epWd9QB5XGIq5iQl}M#mi3U zN^EHBwh-aoOea`qs8cB2W1yl6 zJWR0Da>5SATKJEYj4dhq`88Imo0%ouEguOr0B~qNd0aTB7e-cK1si@|1N%tXncT19 z$j{5`i#(_1+D311BXYtEnPW$vFnQUdIsYW9IGzsK3S5LV^>S)Slo>Pl4jL_57&B@5f zz`370ch1hnM$6tlpO#&kyLobQMjU~0qzh|)d%JV;_AusI8tyiILIPakGcmCoA^U}X zP5HtQp(exDU^;`FH(y>B5g{#>_t^DisA{ipQhodRp^jx>%#Bnt9j*gA+!1ts6d1?( z>Mm2=Qq|ax%^kOI?;q!E(n%&lqt#v>SQnMyvKxjl8B{Y}IjnE04GAGx?2|0OdPF`s zqy_t?(cNGjM)H~p#=Hu|B@ zo;~wkMr!AN?PeI|j0t5Hxwq#}70~k7t#b3_%a_EjB0YH6af43CjtQ81KMKJDd#Rm` zt3K&>8U?gfS46lR*`_N|N+&{ouclj?z+Y(5+=LtanU!@O2lfQD71DkV-rjZY%j3C1 z{;MH%8>99lFoC8=jvVpc#CfQNi@XkZrDxK!? z;0eaSaP%xdHJKS17v$wFGBY#dh3{UAnB)>Z17eU~Yji>{3K`J%Xr1UB)X~vVFo&9V zhlvKMDZNcF)_lMJhEMicE-iW>Pa*dEO~md^oUMk9n&dueTen!&IqJs!cD5%4DULPw z&c#_4H<9z;pF$Uhp9!P*#iZ(%#dZgDgMO@_&>17p4?BNyo`fz_LZ`)E8N8i3oDkLf zUU;eXVwIVhN|DlT?NV&CM-D!A+@zy=xMgX!v{P$$_bzNS_*nxzz38Uh86l5)Xu(tkruO$4U&esS*+FsmE5p{jZbo$}5Ki%LZN!SJ13F#HlQsFsr{ z=q{7}P{Ac`=FLf@8D`yyPs0d!3FR=B`!_DbhWeXHdF-@XKs$;-5C zl6NS1d3j}3BTatwujAru$9>nkK79&f4FiM?MjL50taHt+>;fNb3l86Mb*k-C&`H)% zSaM^^{{Btc+S-_9N|htd4mg)-`TcFp@n+bb=whxH8=PKciaM`;SwniBdpeL#PFQYd zQDj=8c{>a>!m#&0Qg#kgaZ3yhPNd|^t$pVD1hz1=M{eiq7Cgjzs53%n7zIOjHh(+8 za0YXL*m*A2^w*ccNAfcV%%{)a66OFOr%_C*pQLm%iCBfc zj)}4QihwKf+^1~HIJoRARkMQc51L$w==V5G#T06&Ge)pg$H91d=LxSl=C-yr)DJoj zXsa;8e)D8&mO-6V-Ke=HVWF^k!tTwRH%z&?xu1S~i3;;su5JJA@ImL@<$#tpE2f}J z5B*lCXeF{!{OiCQ{)T!Lbz%_}6(XGTKal(0i?h-Ja#F7NR};SL>ShmHj*Pwk$$`I4{U4!tS3^RB3!H*WBB&h|5^uz3xuHk(Lv?Mjf)kIF7PIwgF%e8YAunskPAau{q$+-brYtpsl z2;+@N)TaP=vTb`wFTGqdO$5}TVzE2Lh)%SJaPCGV*xFZvQ2!=iRCXO~ zL%I2my~R%a!oos@>-=riz6P&#*TvHI1q23Lzu`V|@BlpH`5;!uUWaNN!(h|(^wiX= z@DB5eiwztd9aH2bsHlRZ|5s>quHm#Fd@PI9qm1*n-oA74Ur!iq^r_~y1)#F#-S`hm z>Fn$jv--+ZXjpnJvf^Ib@vgU*T6y28p>ypAfSrK3&?d;()8?Ssux%EYP?T>_>{uQ4 zPb_=a;dEEiuXP9ip_RY*!gt+kebyH2O}w;Q9@wdOC2glqWg5Z;MvTkAEld}5yZUfSWpRXLtDl5C4 ziDYI%rljvS1RU<(6TU_D4v$=1qF=vG{qW(M6kE7p^)VzYc_WkWf5+Z0mIL9TES3Bl zdu!aL$0WqZSAdZZW4d&$+`32K&Mpr|k6Xz$!-(^xiAIz4xt>_=t`vC-du)*&xR=VV z{Nkp(ab(<7Jw*;TdVW{ztHW0;IG6s#k@7Kz)4v_AcrbF=KEVb~u92++IBm)Q01yHH zrAQ7?;gg<18}y$2-H0Y)rjRWJH4w@+qX-Zj8wx%Q%*~UF8rE*2lnDTcj;^l3lM>_a zw%6wf0KlTSliY@kka#)2I>Fi>e^AKSW_=~4XZ~BQoC~o3qx$FHaHAu@Q54|TDNv1n z$yd}%C~htSqiC!a!(X~#`TfH))HjP-ce8aR$rzx1ET~d&(7zu6ox!2p z)c__*zrXYENx4K$Q=sESWQIUA0&Nspp8n70@Sw6p41XHq&B!W!@h_ahf7F^#c|ZR5 z`_N9+YZr#8Eta-IYou3@*6tpiJ-oskVDsY%7QBG-{%#z(0d0H2};wu?(rb& zhhFVN9a-0xSpqI-BmeWxKCYVHRxk1I z-zoghi#$}0(8!L(rGXrbuzE4|77-+eP$T(AnbWV!fB&v@tC1b;*0x3+dVS^iuQSRn zNa_wiXE1G}tFZP&YVitvAjQ4Y>-jUx!FyxcZ?q(3eg-`<;D-TjSc(oOTKV(_=m*}R z2iZJ=YRF*Yn!%Ik5wCVfk)W3_Sj>^PRq5A*4!GJfM+dbaHzFZ{bZmkZJ&MZPs;w5< z@0-W-sg7Ptq$z!$8%{f58c^h+~_09(4E3{h?(;4F{ za{uc%Xo5K>8N2$-=%(B703KR8SeOwMR#*be(aY1aaj&Mwu>R-q9etel=`)mf(bhu| zjoR71BRAaPbSI8?IZm1Wx~@PqH;F){bI`W<*GdSy=7|bB(Qhe~*^{;gnWSTv@}Lb_ z)*DbdB*21E4Fj-uHT6Fm{Lb&tni=WWS?X}ka;*)MGJSJa`qlVV=`TuL!c+^K0h3k}Dlk~Gxg zMO8x>g_enXAq)b2Kq0(IPA)<{|4c{pQgVcq1=UB*sCt3!Ow0@tC4Yzeq0_IM#hdF{ zmOM8fP=`i^&_g$x+W~ABcVWhbG-T_0Fu9d;?_GMhbRKS60_PfK?)m+Q?D|&`07}&r z0G%M1_8MCE2e1d%c7-D%M#!S5ox|rATn9=c-*qUrY^P0f>6VfPW~I`qiv{O79agu1 z6ZwDujDZiU&C*OM3g+}TjEjr&{_$ERZGw?%m7Zhn?5X)* zfcb{wU>G_uKqQmf@cN|b$nTqe2YV%sAwp>u@Rm_b{)@2k@%;z;EpZ4531Qz}vP2=D zY9GXKqL!ad06sMw<2Ni(09R++><{EyJJuZF6zTsJ`MI_&x#y>*rb5u{cN(q)R$>s# zf8i$+Q}jt$ItC;f6ttUc5A<|`>q`!B2R~)Nr1-9>qHmyXXSrTR)&P=06&0d0b92@I zO>_*2e?Q_1NV0ah%Jv^>$Gwn z|6YvgZ*py$ckP&8+_U2fz>5Z7#`OOx@kMX`#DC+&k127%(8!igUZk>pDI1CTfln$F z11A`%`#~C`39L_{S-n1R4yFEGaUv?{iY}DT&dRcbq|Olb!9;^my~oPX?)LgQRY0TI z(MrhW>D_l&U&t@!m5?y#&(^H2I)s<41Z>$I zyPp>EmBzd!8~F#F+|ajrqoy6M1O0#7m%22F0$~4CFG8OqDJdywAQ8r7W1^!ozqbaP zL|AyuM57z^`0?X!5)$%R9c!+l7vkK`&Z8<#C@2^8BfFvr05Yi<0hD;0@-tX|0EjVb zGreYDX^BAIF91P}p*Jv1#abYU8QgP448PI6#+Co?1XV0Il*p7h)N;#f`CUGIq(4GT^M1dUbDrmUp647v_PQU_TYQ`<=}!po4h!X^ zPRxKw*jH|^M{vu%+7rZU7IGe~zTCdoeU(86p7~D}09mUo9{qn$h+R^I-^Y=*GW$P*=4LV7i!@Oq|JG9gv;(P`)e1gJ{L?~BmOmj(ss4Y1jxE1wn?7Hld> z?ss|RZT7)LnK+@R2rV`?qBWanwhAm$Ky5d$SS5hgwWq()Kf<}^U=#h}2JNbm2W#*7h*M}c zgdR&d4{oAu0ho~z*uiBQmW*=8TrC^RN+A5tUv>-19k_%zg0ic0f$4G+)J7aQ&#aM; z?0U2d+1XN%edYR(v;A5=O$eq_?0T-4ig<1Cj2l` zXjy%bt7Lq89}8drF)d|oEns_L&RZ;|=0C5NozpJbw6kaJKspZ$kboMD57QS7`y~J; zXMugt>90_tr?F>ieC#;oYXD#ZS&lm)1*8ME2{%kJ?6pOf_FniJc%+2g$b$67__q7! z7;w?HU~72RP*NsU!uL5N=Oh$ODuG`VSx`-mzz_WQ4b{ynpY!SBPydTs;UE|SI*0X| zK0HGJBun@g;f9O3w9;0gR~w?LNC1pLvIbrtXOsEyC-^3VVAoWmb5g8nFhBP#s9Aup!!~xl-bDbAzgZ%Ga?Bb!f{|jKnXa%Tx(ywP7-&&v@(Hfe~v`Sb5u?kr!&#P2X{oDgbRp(^?$#~3#O7?$oWq| zAXX9~FASyV7okd|_A>O!0+{=I4byY&x)}T{37*d9Q3M`-_=@7cn~w%lblf%NtWchiXJ4WWn{vk-S!z#+bXvH(NVrc}t4jJT0)sBTNB$bM(~@Tqr?BEC z8LW;cisU1wbnsn$cu3}npte&)L(l(W5O#~$M&s4#cVVrx#1AJEj#wV)P;?jG&V``N zEZ4bAqf0&*K(9&zH<Qx+TfPgbCa6@s52_#(N|yk0)#$!C8{bRZz1k{AqgKldp|i+I06HLM1cqS&@lt%hWHCzq_lf6 zF$Ca3C8Sv3;yLE~k$~#9oTU`2mIHEln|q*xMpZ?QI=%M#@w@`MxbzVOZNmU71Z=}8 z!9l7e^7~MH@4l^}tKExc7h^*#V^MA+HDQoJ6@a%nkW{kl?~1sLvgy4yF@5FF z9wW63RX0;!I*n2=5X8gJQ1p=fjovq(@W9DZ&-3$PxC;&ppP=o-8PY_cZk<{dac-B6 zD(p|O!C1I^dO zT1_!rKA3-vLq7C;?7<}=cSko__66BEb32Md)D_3?#TwixC}Xp4MhecVV3aS+^IAGn zAvs4X+56ZHaVb>>z@Q`=A$wGK4hES47oY64J3u|Nx?o1d+&rN?O*Q;PVK?hT!f3s1|7Fi z3Fo47H;uR4t>T5M;I}!H4chqD3VH30z;ntgLy`T6^rLRx>h)yLJ$%`Kf7w*FK6g*E zmvsM%;kk47nyd+YQCTelYc)Ny7s7>(+RX{Bxkg5_2t-E&mV4w?|OV*Cs!FD`L zc&0cU@LUm;$T=o9Ui`s_5%}nad45)|V5ZNgg)g1*ZSlq23}suQKI?55}5vnjnU(iFsA<*j1e^ zdw23j3JfU4J$(xhDfTkrJzxM74KqoK*9+G!lbRRB#4jpJx#JT+*5Fm7y_ShX1?4YiRB|g!*KY zE)qsmR8A$foM~&!rg^*f@W=ys$j1$=+4U`iRlXw{xzCK3Lc^4mCuSV*Kwx*PVP>2T z8;|N~X#kA>9<#F|4pu&xadzHp@BzAKWl6}>U_alZ#MwdD(;ekxsL2GHjW8+|p(zo* zZOb)!?vjneanEo05B8E{eZ`xpW6NN2xgK*1)tL`*0H)vn5}O1)O3FvGfRu(J@f{yS zuV=;}USyCf3IX=3gRhSjTm?Y%^3Kfe+CCXmGF4!1sFG77qFswPI)=TjYZ z-t+MnAcy>9_sSXJU^Qgu4QCyF`3ac`rF(NszeF8nc!cNkC5H z3Rqs1s>CVkOGIEHBCUF@%b2KNJ(i3oHr+X3TmSqMA4=qlhCj>(;5_mV>TwcSD@;FC z5(yGcyK;txYto?yt2}~Vt^*X%fq?=rv(Xr)HSN!DJfR5?UQwkoSc8|I54Oii)Irf| zAN}d2?@|u`xCN2+^ctIU)=_H9uW$SJv)^%i^XMwSCnHr#_XSb6nP5zSx>5uheCav( z-C@4ftb#*tZrMFtPHYkmdSH1pMj&0>Ey@-GEq@U5f^PRV8dghhIowemcPh6jFRlBfwtM;e;g`Gm@3U_Ms3Y;b=;eNX~S+eye5 zA^9E%_SYaw+4lc0tNV5y-SBhnk;dFZ=MO{;RgZo#dAk?S2kPZ)Dh*~@W6eOJ0+L%& z?iR11odRL3CV==AW%`z(9(;Zx0^hBA!}vI;q2c~&?}(0DxJ`~`T35I(fKF=IgtTEM4~r~pqA2ilD)Qj)k1sQRy;|$;ptY*`v$5m{X=nx{ z%PPLlOk5*<8XB^+FX~iiAOLkUg3yg!U8l5wa!J@XRF5JTxtf%6Ydym9p#Kb}VlL->s zutY)vYshs#$!V6T-kkV_W8s-1&{WPW*LWyJ)oT?p`&)7_mn7R9&?<@rS36Cw)P6b# zS=qIxpiidP{=;_QG=#KWmFdxppUL0`BQ@dIeS^#xsbZ{0Kr9y*0pCVpdLhYWqXf)4nJvRH2WnGRBI#Nn?N~&`s-u@ z{F?>H$``hX*Y@si3q8HtyIEOhuV8E5{SWaPwz&*ygX*y5(F)0$z0Bb@Cz2U+MH}OX zdYG}l%5u=DoqTr&Gs!*j>nIM@;i1>RNY|eo8=%Ckz?91Z0d7qz^W6d%8$(VZa_&t& zx+aJpA+L`-+*vcTDoAB7(Lf2}1tJpAm)DDV{Q33M2Bc5G(HCB_3th7SIj`r&>H-kN zC63=^0Bv2p8WAlbX!NaLYFatGxX#xNM-66xJzs-SHCYt=z8bY7*kM- z{{eN+LbuxcLAXkVAi=l&zoRKh{~J#!nXCL``^OZoVmhd+^3HqH@RkIhTXv-1ep(=E zvnjtosX7P(szKyLsQb>jue_txfGrpTH866E6R21I8^MuHnSAykrl4#rLT);oM_d0<7*b;r=5z_>rvxIp z6(m_B95}fRgzGk2%2|g-Ca*_`z7qr#H84g}6GR?}@$y*c&tASA`@K>D<@B^=QRyRI zGME(tA^zPO2x2X5J&re?`T|a0Ex|D_&%-lM zfE3Do7o+nI!J|YVdHi0c@ZdSMpiykhpu?eC5OZRGCHr8YJX!rjz(G@8fcPhVJoW@T zXKazs3}nk-|Kyd)ZXTqfVe&KRyma~xKOu-oD_70Kga|plG=NQl-wEe9$1#!eR=D{G z*HAigKNvXu#DatZZmshPq{?inG!!`q)+4w{Lw?1cJym@kQn0h73q_WPnZ>9C<7i1MT(7?#-z?g2>&U*o^7FzKxj*!aI-FJbvBJ)L&ke~OJ;?|1Za&gel19~Sr z;)w^r2*9SlAKf>Jk;FOZ(LUtlN@=NXXy(o2zW}`ghl#0WUJr!ZX{%_n%90jfb1g@~4tWvrgsZd9@%NyZc1SbfY7-D{?q{jFSKoRaql%BUYb|!ehYsyhc=f=e{ zjy>MTGR3VUhqui{kiiV?Aj-jGm&>^8xpHp`bLJ0ZK;hvQtdw)faRxE~g%iZ0e9OizrJTZOaHxd>wGLH2 zi13HZDY{DQ4K>c#d^fLh^@9P}NYZ^z4-d+kHWR;7%6Moy&g34#C$a|=W!B#BA2@+0 z0>*c&{Rf3TMU+eNz0P|VCLQ4o2N7<^=*IZ`mJXwAI2XMExtq1&^OqNH@!6e$iU7!; ztwR0-Fn(R-Z(}59N#s$=!kbxfM+a_7LjNaFVoC1Nprqdzc|&5{jOKI99A3 zYh|90^I#5PR8_wiK$HzU-^!R;>R%kCyjV+%(8{G+tEw0`!oXK7udJ(W4La6Yt#lYha zSS!g83GmM+T*R*;iH+h2dCxCb?AV&mW<)WNj2L9ZrIR{cw1(flEkJa3@Ne;>J=^$G zQZ^N>RODN{{lpWZN$jXdg(NlpuypS|ynD2TANPSKEH}=}u&sxvlK@NHD&!xalU@y{MEVD#woDfwcLkLbk^90Z9@ z3H$MRBjU?t)zd2v8=hI?6i${OB@PTGIB-Jt0GRv-u+d?lzhAnmFTAk&Lp1&<)&4hW z(en3%G)ni;{`rK_PINE^dBl%Zx0MW(`ym3l1dS7b7vw^U!5w zWK^7*$#6n>cotq>-@f(GmPS(0uTKd{0TKHacct$GA_lwxs;u8fehQP@*mjmjR5FrB1=ZOhVPQfRpuYtq>xk2}&!FM1QER6}>Cpfr^w(x=#^)(U;-` zXJ)w?;YqDVu4!!+Aj$G&dzQ*o>OqupkS@S)5~iu?Nf-p zut}-aeSjV3FV|Us*z?+{0FIY^{rhC7ZaHfhz$#yrfWZoHvVE#%jxz!Cf8K|L*)=AP zdg(|tOJxmE-(v$8CX}&<_dYPl&ARaIP~g+BF;uep2kTsL8NdL zzo5;##%Y818g#_(PWAA}P&IY&#K`^gkPSgS&VcDd+Q8evARTCEr!=r({%5fnIt@4S zT>N!%4w;HopG~5g-gbP=t6|5~7w~&SIswGmP&0Pq90)IeFF_YLIOTP5X$(jappXM| z%Za8)aeb-X|4a zzcldo3ns~^VRQV`YOBCyqzdjjySgJ3l#xtN`Ln<58<>U`p%ohglnI1oVz(@snDlWA z&c*T}=I+nJ^9LLhZS2qOdbOm^x2`5#QLimxFPUQ6-;JmJ%i3-=8^epjE!zQStKn;h z>{^Fx2?J5eyrcQv+hAe2(}fHx%6ReoctF^~P8ggHq0_y68zf~b71)f+#Lay>`Oi5r z!+EUZ$xQoq)?Z|ZHzrMyt$oC8Zj#->%&X;*Le2PbyFZ73T-chBfUr0llZgn zIOz%0_C~^t0oSB`!xSVg0_&biNq;PKyn!f39cjMuoZ-MPBiBXN6uI6@q@(evx@a(M$f*;p=1LLIOp`jMnHBM>(X0v=VzQktzL0wJ-wgTG zT&uZuH9dX*?Ohk{C^As4R<_$Ex=M=k$R!>lc+2sjmW<+U`=AH3rLCzY{uZ8vUq^|J zO)+0`enGH6c4Sw>v7R8~Tg8jT#UTat8B5bQR*H+Y&9nx6dq|-x^Vj$`1Idd~Qt975 z$Tc32OVLkdeK|$N;i@o#+-VF!xsy0t3y?zIk*Qw~j~WF_ZWufc^uYk8<@LeHqr!D{ zw>9q@79{V!Z+U<5#kU?^F|I~XSWSKVIe9f(Pa-BRj(2vF?3pH&-WGJ#br-~?4gmz@9W-u{Hmgax0Rf=G-f0&AmDrWhHX7<9 zP7+<q|lLeAbepAawT(v2{YD25>ff%8-*3y#qy=V>7 z>tAK4$DlSY5M<7!J~ORO2ltxVatbkaEBumgWSSw^SRr3*jovF{u#XPPPgo_V78(|^ zzg~>*Dylu%KhhZEN5IL&Oi?xCVh{7B!jDX`8_u0Pxk&5mOqFwy6pAigXA#^goZnzd;cy z&p$d#YM3^D^;`>?m9^i63T%LpyF9`UiPj3)ioon%UnF%gZ1 zsFyB~;9VJo)<`;wM$4F^d&J9n+%+aA`LX9Y)pTplzaU{%h4lzSQ}I&6RZjH@kx@~P zehzuZTH}tX^XiEdd_l+tz}C!c$b%W z?Ov1s%@^98diHDUuhaXa<7dd5zl=+@5Wu7%FpPU*xOON zNtd+MYR(_!|Ey0RIY#kK>dId|#5sD-&Z0oJ_&N1W+i~-x<|7rW3sY;S*my4y=dE$; zW!!LP&)rfcQai6Yb!u^PnjUH{mWUTM#m)ba*`y>l7$ljU(7!h(MP+fe(ylI@KTV{L zIp^h-*3|Cb{zvNj-cqu$IT=nbG$wdWs$k&g*$9C6B#W;k#(cAc1|qP^`D0z%Iw;E@g$AQq+LzH;{K! zMBD!Hci<20!b{2+z_~!m>VBq*iOVZ>;Uqf@3EUC*(Fv5;*S_l~rU@}5^hV%wEDYi% z=LKKr!KwX$@CS!8moilh5ci`#eW!X+)2Xex^U(Q`$foPBO7?R5V7@QnJ}rA}Lw#IY zxBOv1{&+h5=OMG$*x2k}%2+HJ;*`C>Q)vHzQUu;jev0P5lCRI{SYK1*Dp8pzRn2JxoSS6LGUS}NG#T*z3@Uv&njDNnfu(V~a9*YH06_5-crGC65FJ1>*_Ub)H4CN?M zzhmXWsQck)#ywN!l$+aJzI$jfQz=I3jr z@k8_7AUzriFrh7rglGp_yaXDp**-{Ff%|}1heNyP%H_mey-Ug7n$pSeRvT9ilQihR zT_tO}qx$TUwi{_4*cMJ>;Fw=OJ-Y_Q4>=))OB&FvAp*JEZz?^^4#!33VXV>^F}~aG zkbR}I$SXb?lYZ^wX4O+SXWZ9lQGS82d5%>0cX0qQ)*nQ`r1o_Ql(VvZ@Zz zv*!F?yI+Q!=PiHg(-czNRJhg*0p;Kqpv=CP1-S&B=emnlr#ME>+TAYzs`Yq6mbCRr zK3gIuQXL+adh97TIDY(K0Ko2$B?CHiVD+&mtNryo_ah4xvZX!!!P zR+Luk!Q*H|m7q!DKGpp+x#3kvX(AS~!xC-+6h}^8XAuT*-_h{K#^dfDK|LQydXgQn z&nMj^YBKqO(e4{|NR=uh8{^E+E3xxdO%r6U8o-L`;znq?4`Q%<@Iyi^-S?Q1ln+}G z<@QBTJ%jjOE^C;ZGoTauCW}O-XN}(<9FEqxG(KbhXV(4-^dp%;e)IEZ#n#r=vwsdz z-;rC=k{LT>d$L~|ukw;Wz#NTS1#v+DCHICY&68^9U@h|$&q>zopJ#%zqJNIl7BRy& z#J1J2$K3kbpnZysr^<~p)KFjasIjyE8w&kQ_TI?X557XDbfELDK)KyCpkcSN_{h9s zF#JJIJ4B>=vUftNaqFk_nrUJ%Y(4D;;UtAb&eKV0HD0yh;0EBzmaE$;m?7|_kzX(3 za94N5PHn7o6ytl$VgJ`$=ls+hN2HH^Uo&y?aC6SyOL^`86^7EcI6eQ6U=$T9hx5~K zelGPcf?b48nP^7CHFM!8i(*jBtmx8tWv`FJJ%cio@J-!M zXd6H+-#H5m8gkO^SESmfm$on`l+;{ogu7{#U1L<553MwsJ=00BK6aMY$@{2K+Tfj z-fctqFTcJ2Rn>6%rahG)7NGLExeHSD@+v(oZQxv~Hv1?7d@b#14A*=6X9#&xb{gu} z1;W0n=yiMJ(~UTW_~`Ev1?OLRscupzSiWy!nNJLxX&>HGv_GiL5H1pM_5%ZKC@e{X z>x5Wwj*2)3z3Xd%`K9;ub%@gom^M^rIMrI$v8MQ7wh&t#E_?iB=&?{< zaHBmEdv9+yUGWqxP^NN^w>MIs@miYA5Ht>eg4iJ}jZstVEamVQn^f$&_iYF!CUP2! z<$t-sTy$Ss41K;`7X0XLQc{Rg&cesX+ru5e!NSYkLYCDg(W6wVdd%$b#rJCDfZsnn z{-N&15QgIpzW64HdU*kt|M@PbsXC`pGsGP?$DAm!#=UPtYtRe9keMIatx3<_ zX_Lliq4?7MyqhG@1w1vyqE5WZ_cZA(lO#3o>fF(d#-_;6wD)!Y*s@H7O*#E)JAcHQ zIZ3aYd(K{dj>VpmouiBNj?}{(AMH6utYPN zMK7-DjjUyzS_L_~mT~0$q)r1qH1#cqrQg##ca^LX@$4z$wj*EG8a_5z{tX~OLkV5W z!k3m1v-5PJWWB%138Gk$>T*1Ct_;0C;%Wxa1`XRXU+oA;r!QO-HK{Hx5KLRgq zctYRo&s~gDsk`MKhz(vYu1KJC>>C7TfufV}DJ#8ayp@xHr~O);_FkyWY<99uy6 zK`HHbP2;S=!U0!T`B^lV<(H|9W0CKVk#@6Nzp9=n-}UK*dwb=3XFuvU!i_v{_YKk@ zS_6D^yt|dJ2G=~RkZV@wl`G$y@GTB>8wg#%M)D#7R7%k+Wp1*R!onB%wTUSJq@j57 z)ooh=km}v%W!}L9{<7+CD8|Y=aXcZP-Fm0L=!#y^bP4%%Y2IO}W@UdvN%nO>d~2-- z(c5c?=xsU^h(V0_-}X146XI!@l&*4e;?Pd*BkuT=0|(4t1llJkg7E z%+$r-;)Q=CL-GY@qCoAOTPy46vgvR*y02-^v7j9asr>p+#;zY6zoLz?qu(7^SK>~~ z`$INT0xz)ttsHgCCzElq<=pBpqnuS9^x!3SQ`Eu<8z*&KC{-+j~=D;VEL#UhcN94$k7~ak1NFTxq%Y` zUh!xrdgBgqeU?(o1$v5)8k1Na1RP;ftf5n+)c!qJSiYkA8NvyCoUg~FNkv64##|Kf z9nli^0K|I4#ozv%{5ObGvh|hK;6(WQFa}rQig)_jH?lhx;>n@CWlt$!j^&*pJ`3}~ zP%^1i^jnx!CB8KGVHr@iK-;G%Xhv|byStmQxcJI%gk&38UtgcthC_3Pd=Nc&Twk9h zB_-uEbj{)1zJ0rNyn5I#tlhVik(cw|GM_$W&Da>seJqtPB)V5?m7_;}UNG>ea3O)l z1;uCci8C~44pjz~`GIwIgutm=fg20CZU9VZClyjgHd`80tp;tguzUw+2xPJ+1!QGl zjYxR*lfG?Dk%|Xm99tlb{#`f8!6#CoWZuISqTTVb9nl@Y6S$SJ`C!1iJoCXg<+&Gq z$YiaX>z@4$3pQIw#jiry7yrSZuk}BFxM$)7Jy*zWGtV~`pK`M8C~6Ct=FWJDlr%#j zPeUWI1P$$&*^Qiqzzcs#9H_}}CDzd^4}L`pLx5Ot z41J*MkWXoz?LrNt39v%#J{SnU93BA9NHq$Gg;#HH!oy){$v-!Xlzbcg`~i=Qv$W*% z|M=!QWWWWvxw(Io{M}GMa9cC<9Jz{miB#AW+Sc+ydO{3S!$ALn+Mt$nt!r2Ql76p0 zsjU@&jzq7L8h*Ki%qeFy@-_UxKOgsg2PH*T&o1t-{}K!JiNnRV(a=X}-`_6>|6cbh zrtLs|?!FwxeelOime1+yFIZ4lpp(QTl<74>j>tLWdqqa~0<1y=6p-GSJMvo(F&$D7 zS3+(Z6J4p?;kLPwid-?7jilL^>L93IC3L%TrXdze6x7{-{G}}h4u!d_d@v@$)E54T z;-x!c(gW2dhecr6#B=HMvBRsC&{Bb&`ElNXRQ4P#?(VFDKMKhYAEHo|)z#Zk$XWy* zjVn4|Z4(cv^*zwuDn>FrkO}p&34ybr}a8IIlbDLZ>DgQ0E-r& zqf*`mr3-&Ld%4hf72QT-XejQVZBe*8?sGcZ0P;;)%Wn#O2dk%a_9>(bvY=AWJ0!BA zDnW0%-Sie-r9d4P*9@|1*G`_~)KV?S6QAtub$ZS?6U)xa9IkqfGfmT!eASeGiZ}(_ zdow8c+<^EIwSpSDwV$N)bm3;F!!hykxy10jY;2EnbK8QupaWOh*AOs(!z0ZNE%ONn z2m1SOKqD-yAUjqt?thjxt!?Ido7wpQ+5Eu%8NyfC*569=>lIEogowKTLGQK+J(~3RZKI#6@=ymZ zY4U<(jXY)PVv=r3!nFzdhsO4@&mT4Dc+R?3P{RshPO6;eS;md{2|?#Q(XhXp?`J?P z)m-k)t5Xp9mTHfTj6}|~#m@ktu>*xPqzhcgPEy2T-L+iDo{=uOdw4X~ z_$?K-i5-g!j0t3i;|0y})MgLE*+V`re6O>Nqk9KSbPmuo?^2Jzve@RV86|LpzPwl;~7`C{ws9CKTmcu z%@xnB91xJ(O#)!I#i4fK@tX8wU+>0Gf*le^v{))?YUf9%p{JO;ySt8;m+S=OuBPT5 zUDmsHO%wW*eWu5U?F04AVZ@-JUV@4*)^BNe3IcCQq-D(N`uYq=36E;SS6T%OA6w1b zJN0bLyD9hBZ;u!2b)Q;5T|~D3OWGKD4t)U&ooS%e^l93oHVF)R6Ehzn{Br2h`JFo= z0(-AbI13G&YCEAKV74QA_?krUUEph;khLe{%MqetJ30z#?~lkSsrO`01o#apy(Il=Bk4SFc>%^5 zr*fc0b%YS{DfH8|VP_$B7NqEU1~Q_GnED@1Do2h?LrU#uc)GO6LeS1zkmM*(u*79cJ+ylPn3mN=@+Fu z@V-@`QH6=ZUo`1$x-UM9qswazx&-AGjpKa{e+ATiS}btu6*?GsjQY5H{?+YUm#|6@ zxPCiwEsZ}l=GDQu5FTpq9l?3@j_9vDit5NDV`8WUpw_yRk_*Xcy{sB+F4CKB`2Ay)5rDttR0TJ9(bY^Q!VS zv>Z)x0L&4}L6?UkYwv@0MHx#O7dX@0ckpzB^>|kgL!e>OJQ2$T8;7QlwdSN_s`pSUtkk~lZH6dT@L}W z2Eh`+S^-${QDVH=ZRMtR<9Zxt+PE_g_gxaovNh@3p1j#MxW0$95G?VvFIs4p2_?S= zAfGawvUsD_m^k*xyVN~b-HNEf-@PzLCi^ZFPhpcRY)_-Y!3~IBf9K>)UgSX@o|@$c zGERcY4bvxz{pQV5eBiHu&l3ZJaB<=35T)mY{y0TOMpzTehI-R~{sy`R{>^t6HTba= zo>)ra9?!u^)F?OISy0!0!fiWn{fl5RC(AE%PqsgZS+$Jiyw|ru6iYv~wIBIDn6*a~ zVGdoqR!j8NZQ(}_!Xx0S&|^?WH2hhOm%h|Hps&XnmCx|}K3Vuv9#8s%lh6Rb3zYc7 z&V=eH zUT-TawZl~0XGYyjvIbZ|>9Iqm_u++02+GxBy_bP&gENdFdns8P<8B>>-KVTAUxPrtsxfr-4CRP<4QwHU)?Njv*dGmlrMEj$)$7ugekPCqqe;qpN2jM7Vbs3+aJF1s*lU zx^klBU5!+K9yMpPaqDO#Pr(*}XZbaEhVFWqGrm}ZCa83->k`vTAk`Kim!-P&eq}sb zAnX^>*sNOi_~DuJxZ^tcGuWgp+UoaGI@JoccB~M0EI&;T4U*h~YS=Iln4pqf{feILMSk5Mn6=>S~GsA23ob zz;6v@>6kZ`q^rl#&#)<^r{t|pUAVA^mj}P9p{;I2r1GitFgqYo4{z5Sh=`MFzP)MW zY&PE${Z^oGg?84RsOjKM3@2s4!>P*CX5LL1EaFOLmQ*ykDq73IRHab7{iq}QoORW? z%&5|MxYX9br>QR7{jEEEr1;EzSI6kz z#WVp`VZ@l@eWC6RfSy+5*%B4mWzM+wavQm$rlfIU@AGcreTjbXs41 z|9mDZnlBVhNQ>Q%GZ&NwuKhxh{8~twtNuAKFupX|bu1sihHB$!0#0&cDpSO1_e>{= ztOP8UXB^ctu-CXFp-AK~% z=4})zsgUtH<(~a1pqvlp_xPSf%fvxQd)28_DnNZS+TFMl>Sl*0%Ux|_ZYc#kX|veV zcej!(R$p;!lxA+06?OvsM zz8eTRHq0WsH}v$v69P&RERS)PKULCSedwECickyB%=&%kLeQBo6dQI?Eb+_Xrfs4f zEz(Br>olV)i9`8GUa;?Jr=3W|DvS|W;pkjCVT zouIzR<{plxr$Mj41(b5vh5cHdwKJ(zNpGq^Suy`c^7qT~dpDvEJ}G#bTDOgUd! zpvFBOAeVqH}XN>9!ZrXk}DMB>vF?@I%aV}jHatc`#x1LsD{eDcgAB`$J3NeyhN z4a9$oM{~uf)2~4c)JXk~F0L3K*hjZz-(NDO2rXvUzvbqH*f!IMRe?rVZVo-|p4Y1$ z4Q(KaoSAxZs6bneYSzuas$cr88H<|a@v1E>o?C?4$_RYyjc}XXWJbH1`T?VdlpcU- zcSG@4V|^Xr_jBrqo=i>G`BRP>r&edxT|B0CcMBlcNO(6#v0W^CHt1Dx&lW1ndlo9X zO2#kZYJU0kzD!j2Tzd)g*BtL190cPvfCQH zI6fauW9yV>=SA#`49}NZ6TlBh!g$07Xi`nrySFu^b-mb;+KU#F?|Q!4wyONc!!k!A zgmkAkh;xr9cs3=lA3Sk*=q(*dKzFYVA-_EiaHu|P%WQ2Ro}ek}sY&mrajV>>oDoAX78mpfB?mm=yldL@j@U~ zCk5%=GktO8Dif+SJ4P3O{R1{>Q4=`;!2IR7P<_GYgR$(|V}tIWy}P}Me;2N(7vQq| znkCNOnVoNWDdT33fB{Y#xo4kW|8Z>Ihd7whx9`FR-Tj~5a`GIy)M&J#!S}Nmb}MY& zSs#V6O#FP~A>tChODNGv0_8+%^bHnPp{gbDEU54`R+|oOhCJu|t8Y80HWGT~);<`* z`HRvyA9$g_RCeyj)JNu`Gpa)CFNizBzibM#H=_pKQajMh&9gC&V@)tejkqp->X4iB1e-cwS@`z7lJZN$1E zjd3iH^g|IfY2nt})Zf#Z@LO;zzBtXsyVi3C=T_}->8yD-(opU?x(3Rt!*%YbnQ@tZ zAq$j2fOMJWN@Xp1k3Cra&(VMo!8ZL9{GSC(F+#DzSl^I1n}J9B7Ea)Ht^JJCQJtmD zIP>pm?Rz`IPOD zcj59m35{rm-vVuB=3$J~!x>-40qV2zzadGw&w8Yjqm9jL2P?6BvNAEXsTaZ2*ZRtZ z2UG?6v_~1EUXE*;SaV9OVa?4s@T;M)y4hfuE?yoJ7VVgw^{UBvC(UarJwzI&6kF+f zaRt0ylJA*q5Y}R{81Px>FfO$3v+2(mLIS$GMIgSjh8`<1zWFXrZBq~~+O!m1$?X>dzIW zF{W3Z4;*T;j|f z-E?@xw=OL-1B4N;=!OlkEdGSxfW9*vW9$3BI6_jLoz3{`r(>pEu=&I6>^rUmVs}>S zw(`{Z=7wm&jdY2?w~YH(mumxBPv_Uio~!v*I56Y*5w4uvwxp7j;9^UJlUF)xivXUZR4b`mH|kRB zrqF1F1un@~Awcz-?K!gv`|qpUQ8g)bEyu8rtorFYE^f6neyIh{MXir}-lD;f)M!pMBww$S}-)|Db!zcuNoL#^c`_f88M+&*EVHCRB%HOKa{K9jSL&A$v4I5oRthNtN|qj zWh#MZp1QQ=bM^bvToXuqwe_GM${ib!p+*Ky8R0Idaf+Mn?|n=0PN!e}aXv^Z z;G!VvnP(ad%Q7MieYTGm z-i8X9{5tC*zzz{K8ohZkZub|g8^4?li`tW??Ng33uWHQ8g6=+#YGY^Lo_A4L>&4_a$0mbohH{M4#Uz z*uaM)Z|{6LYzN-J&xHy-7fzl_Wj(Vg>4v27jbkI}qaPXtdabRVWpr+B7)ZfNjCu}i zn^PP)>%aTK2;g6oXh9KaU%IwZ)D;3Al4whFRf!+mK12c3uQI7PkOtll5^uE>$=Mp3 zn>DP-QkMbW<9bMPQ>Lh!8KyVh`0bIYeE-A0P_uKN7{rUc~VQF)Y9P z-*>s)K?MDu`6iUtO8Y^$Jow}GR7z$Rk=h$JjwN|$J}X{6K^QuG%;2(18rfS|3@uj2HTYwtxic1X}a_)IVJVWgLOy-&Zr zK`QbHK3RW=lhdNQbcmAvds_amRi*z3-P70eXiQ$RrG0_%>hdOl|6726kqlo%vx8{` z88c+^(Y1)2JTjVa^95Dc#rjpeH@4wTq>GVlw{Yc80{`9?pDT)pGm`}k3{M-DuRL3S zFS{t$Na^FEZC>-LZlS6CI=p%1By`Pl-IYY~*X93|)ysM=r>BPg%>*}CZT}qW;$Wms zX0-<~-P4bsm^e94D{!d|w|W4mIT85^9Xu*{q_%IH2)}HYHH{i`0FA?|Lr|K4Ppf}$w7^M9w9)v>I^@B>~eebXI zFcGT*Wv{Yk<`#;Lyz8>i z|HIRJ$5Z|P|Np05MA@5?tfZ`Lii3uctZdmMayZAXXC<6tri|(|nzi8bFJaXz<(~%3-R;4r4KDvVnw0rmv zO`f;3Jc^4^*WecCj1=`-{4R{Lxp5E2OfJ;MrfZ!X6f4aXtigK}Ua0U*GJb9w?w__| z13!NVesbL7H8Fd|(Qe_y^9`0#;?YF6LSzw!OzdK=sc{5Vt@A!|W9ubw6!+Bfie-!% zmcm^9zk68gj<;;mu)H@z11mh5@erXPHtk7nKM{2*+m$+pX7T0%sXOHADtg$zJTzC3 zFt+jS5wT)y*%0z-YJvMA-UbTe*WWWQj;<>tU%uQlXK;eJEfgQE)FhMjt-{F9#||Y$|*Z z@pcLd3jWZIE*{dwZoKL?%HqN9ZBZD6lcOUNs_dZL2vpeAhK> zW|eF$dBC+>K?H97q9wnMZuQAqXZI0md-oNU?lO}TeJ>HocG6-`!VS@DTrXOa z2uJJ1IoK|&33qw31`Av>enks^zw2{2WInY5eHF-%M$rZRF9M|CU%iR5ubRlvC8-(YiiFLZWSX6j?Um@~N81d=*6y}yd=Nz#x~V6rvT3kJ&I(}5 zg@YdzlJl!crV7m(}c@|`FI-^Dy?t$9KNmY zW`tN7-+^{Yy-~X911RQycg%a|i=j?2QTtI=rI)H!8pOlwae*cVuOcXM(6}-sQ7XKB zd^|r^H#Iu@YZ-k@qE2D#_3q>|r3Gt95k$;Je9H)OiL>4*A1UGbW=LhjBq!zG8c8Lwv*OP%?! z5GZi1tdfH*U!BAb_%fpP$;+Fm`6*#cK}_D%4j;h$PFD z)LYOKbT@l7&nXnM&zmx3%K32f9YEb(C`?zvUcnNjpcJ@-fMm1N_JUxAh1Q~3oSF7}5|-%whp6SU~rM+1w~aSWE=jnijP1~ITkvGcl% zXMgpL@zL>HENTDQCPob864ZriTXi?R7Jg}+4A1lIU}UZO`*nl4*z`_d1{6}W$%{*B zM;6E&^J$CkM;BOe*nS-&->op4f`cRRmy${w0{+znA5Y zVap})*UHO`MS3&vEVxFcrnZ5i^oSkxvaZcwDoX+;W`6MO0_jZMh&xK{6{d^%yByqq6@(dvN7UKG9=2i$wsoj@eS)Ra zZOA{`svhW!MyEzRhf{KKMS_##7aX~`=ru9JEoq(h1A!YK)QF4UHH_o>aXVnHaiT1I5?=w%whIufP zBL)eL_cIt~y+%mAq?J?O;F|g(h;X{6CWTY(YE*^zeOZkq&GVWBMNA95J-kDsOpV#iRf5TVgpgKx96&l>J}EbYun&Oh6A=wcaGdF~;H z&r=45kt5)EJooFSK6oyr4VkZUezp1<{WgpQiuu*Cr%tJ~`tFSPayoU8%aVY&VB_hcoW0JDWE^P zfO>13u=H>e=0hIq#=o!L!c+@0#O|P{HD~$31}Re(Jttb^ichRj{ITiB{xFt6FW~bp zgy!?QtTaa(t&k9`E-^RmJOBOYjhqlDJ7sjn@Hm0CFa@9qxN3{cdn^WPvpS3HP2ahe zbEU+@vA?_1 zD8{i_mlDXSZOnA8NqZmnl|K~w(aaV8k+A#y0Zi7A?L+4&q%!X?d#di@Zd>IEJRB6h zb>JyD2(1e%IYJLz>sc*4DAibg(@0T;QEjqGfV=F;`G!9@LHO~DkU_&Gws_LCr~>07 zs6ehG3I9)b?}&aU4@H4oB4-UpTK)^tl_M8FBrP3cm^a`T*IWKg%l4GeI39_3`TO77 z0@uXla#L`AD8Sc}XbVvD^jnCc+df1Lm(gmQwHFL1-TDay1n9O#74CDF$+QWTSv~W; zOY*H6Rxg_hdTkm1ye1wPcd+_5d|hb!>nq5cwXhtw|4-A1C|ZIWayWkHjZsnQ?Kc)} zaX%)4hH>Kx8LpC9hz?B;Iwqf!7jE(@LkzD1>Wwrz;^+vCwIJrqr5b|iGB3Y?CAmU#?3NBK8q{pb3gp2}U6|y=9imF+KN$^V@UO{B>Df${ zq`qci<_lMik+`LKLSl92*n$bvb>8joFLEIIA15g9--o!j$#p-2D>3thnN-~og76h= zN`#x#LtyFDhH;Sx?F^C!bN!5=k^v$22`TqVY;G#`QE&tLQA(>FE||jeFY#6(7;!L2 zX}Qz0u4F)8AR6Jl{$Kqh6nmTKI+f;FU0rQl6rVz_q0wZi?z$~}avr%=7Ka~p(OyIk zZ&VXX8~P|}Z*8|M&L!lS$)t?`LP3%2st^7Eg(%wcl$+Wb7fAxigK$h?L1o5Xs>xhx z+I{q&oX-!R38|vt-bqq+R#hEGgkq4ts-B$;J*!OBf$#{8Qk{!d2hP(^y`XvPf5+6l zrI|`p0*HW&emZ?)Xthuqlvf2&uiWJ5Tw*-V&#Va&{?sI`y)#A%UM^ggj`2%c`5URU z8RRq>_Z-|vvL~qHP-P;MWkNPRYhhK&8y}`fQG6>?9rX<5ggJ<+H#tuiE>qIbPGDpN zDW3*-Rg^W$`x;?aS2&(<#0aI$!-)rw^VfLH2dQ%#{y>HnQ7#MmeCHHGwTPu&@T6_{ zVU588uJzed;S~O^LsxlzD~x&<8qD0;q|;VQhy-mE2DADrx8QvPVvGwBpbtysPU*U3 zBC_cN9)_RPb2J>z(Rhe73fm4hKv$J1X@Wfu%P=17SGtQo3H#iwB;_RvT zOo5!ApOkOB`I9}3a(|~Aor7#s-|5%xf!q5~=EFF1dF&rXHlNsPV;K!shwDNCEA}g( z>dI2zC_}2T}oEu(EYM#+%CXeeT)Ly6B0thPHc*IuVWZ`%6$#}j=)7(W$ZF+~g zwfSwRL2GB_ZP0TpO$*NY)KE3-XR{zP2D0mES%ND=(J7Q{key-*q7*z*( z^O=;@5ol?W(_9D9a)+;7kJ4g+TF^qJiYa3BKI);$9MOPhT9MW$%`)d7<(Jl1Z$;1b z@aV@GeK5OUu^5!JkiP$wP#&t=yZn)`dZOKXQ7|v(t|dRwH4c6wBHl{XX!Ek6NZ_2? zM^3TD>woI|-2XjrWSY0tsM+)}8b2PtATW(s_^GGo4&fgNYJ~#%8|?#E4{3p&uC;LE z$>wK6(Z-2%N7Us>fZ7c~D$602yRV^8Uw;^RJ1r}Hh^J^4C-4VY0DS^(o-7|p@?Rme zV89lEW?Y=QvEY;o!VB5QAad6Fb+D z2+AY8Ffj*5oR???3}?LGEkg-=3RG}vxpu~*)sa)oj8-w!P5%_>)GOhk9*ca_D2({o zayX5ln8)Q3*Tle1dDQAx?eHB)rFtrG4Av&{-D)gaQt+smW$jLpJpnrtKG)*T!P={* zKVFc@`t>_2_q323H)y|n`SKlN2~Iq^y!bR2h%N@$PsCAgbpe9epFolTuB-Gvb{7IJ zzHS9zevUXnZrfVgR_RU5-BCMca5@Ln06`c!BkzLHvl) z+_6El^EQ1MSc_py|9gNo=L5zWjgGs5PO?OV0_eoDb(|TkK>rk1sOzC?`FD z2JD;F5YB&+fG%jKelG2+<8{<+hyVWcA@3n6Le=m>2z47LDH01c0DA z=K^uKzlUPcYD9-I%C|_3kgdRbI1uMQ6B=Qff%0rF`zfM+J>QbZ)X+#{1Tc!gusAeEdoc@Q`7Ic@8#HRe!_V^fU!Asam5Y_L1|*R{OwQj_o0oVGY-tLDTOIj zc(NQKocIulC#0MG_ITj{2%J|UO?q$BP_ zQEl`ehlWBodKLQuy5YZ{{veqifGmnENx=FP`LR{>m7kEhcE#G751f((?E-t;>+I{^ zUh)arM6&R|2S}Hybi?0YoNPu=>sY}FUHv&fK^sdZh_6017jnAP_l1i(|LL(33R+!U z7W+_xPmjaZ&P(r2o+U{atfx$o5!=sho8-M{g`QL`hC{64XJrmxL)3gKB37% z#ZfL}e0dUXz-<###+0@kwX|qRjF2~AX!vp@BD6c@MW*P8za>3fB{#Ko2tjs20SiUevkz!&+#o)FRgrrIR%Uc>n%S8*Fh(Vz$Sta1wwOBUNV}KcstX`Le4CB0{ zv(IHiJKoxhqYyX!`F;TLRXZ9jHIr``{`^AeFCA;#NY4qz8c_ig}hh(#4s|r(RXDDR6F0s+%Vj8z|A%HmRHL`+WK zm{pDHW1Z(uW}!9=8ob-_4c@2YYo0fwB?tbaO?2+&JEs8 zqL3Q?qfULjw|t0Iz%i!(-ky+p;GFE?u*#_a2cuJ{H)Rn)xwh6vDpJ>Ue`|dtOVonp z_H*={znvMwc;bwILeUb;Ah@UoaUgxrkBXKm>lrR12R$u&&>x->#DRv7w+#;^lt`Xc zGrZ1@}<=Yt>e|P*A^Kv}b+t?1EsE{r2<96-Q zJVSQ8LEo=9Cx_BrsQ(zyO+C2%l=M%6C50;>Fi-+k{4Ggzs%j}|{!6up4xwQ(kVck> zu5PiQJvTYwh$fAAxG$#x$w>Wiug;hFOApF4OPQ1N&y={&vm0RUN*ngi@beS%KveY& zby?2_OKhQY%S zNTn_mP+^@zNO>{XFO3+xHs?ORY6dj_Z=TvTBlAVlv3wX+Qt_nl2CjVs$1J$oA6-UK z9WcFViu>3PDEY3A5dbJxeQoPV@6oGWA+UuD}3mSLXfr#VDq3IW>;z6(Ye;@ysmXkS4Va{m3_=13-J z4b|E44e-ea4Dko>Gu_|bC|Gf9Y5ib~?e(*JW%g%`erb$~&{b&kd?Y|hSmBSQHvvoN z6KIy)+Vol`9WbisKq_D1pF%5;^lwV@goUy%sBKX{H|j5X>E1*ngmxZ4c{KiUg#AGr zuwtAR^%YjzNULmB**xM?sKEw$KgkCnfA{3yMchkx{SYrpOl7I+`d*g@$ z(Ym^TM^P^lvC|_&Frm@XM(Cvbg0+rof5}qeBAm=dRUS>M80UjX5KJ>8Lp>KrHD~|U zbjJEcxp2IplgASEo=ktn+&%tK!thhCSv}QU4UP;$J9MT}P2LCbU=0ms2hY%yq>59F zCQ~u3IjLO2Up_6}6-|SBUMcYIaTs4>++UvvMRK)4M_{R%kK_YX=6kKZMJ=gZKs8GP zd%WkS-1#FCTRc}`Hlv~P$IT~eN#SszE;g{erqu`{-m7g)6;U=|CdcPSFVsfwLtZV9 zj%Wzg3imrcPqj8*8GjtYC_B@3`9^8f_Q#txU*_V}4t4XGMR~NxSq9hG6IH!zjwU1Y z;2(VVPQLLOkCQxrMZm|CL`VuUOyl&y8qb}ipTJOp&rJd>8~hmDb+Ow&Dx@PQuZP{} z{yP{?fF{*8{*w#Bi{yUPmbdpjWFK-mxl8OTYkw?^~Gt*!$~0y#bKU za$3|hhG?*49)!PZw#(`-$l~Yc=(VU5(S%6Ym#{cY(%*hMW5ySt#6eKM0h%deU9H10 z827gcQGHrD0f2HCja4>i@@^X~U1yrz|4l`^jJp-#@k&%LtL?Cmxp*7fBz6&oI#U?q zwUUx=+M9QI;)yrEV!9yMqokmmff|aSf8Rj5a9J_ii${z`-~@7R;k1#(MbfL|x0Dqa z-|YVVYO@d;NZ9ZH+}D-Cl6mO4_rP;1-1hUtK2+r=HHL;O_W#k-3HVPv-{iUI%d$bFA}k4+GvB2b6(NwV9`CZ{>%f{8&X}3?IP^$aL*y_`MKtlXmEU#oY4K#`f> z*+qo__%^{<#xaIz{(PE2nVndoql8Yv;}pzZ(w+i zzSRmDc3DtQ%i;QQ*NJILPB%J)JoL5F2P?!hFDyQ?yA){&Qps@VUpUZlkJrQv^+$g~ z0c?JQeRe;)dP!@W+wQ)C4g=CcZ)n7rpEI?7t*zmCr#;2GE=O zJO(%(%`<L3$wvodvlQb*_krn~@O!q%i(AI9N zFBA-;wKv7uXu+0!VdA)s=K6H!F;r8+M9o>nMz6BNL(~yh_HB*LZ`#;$TcXkWmuC+) zylPMP`N%LvPHp-fGR)$AND=OtZuhY+sN0vE}T$Nm`mGLtrM}b8FBAX>c zS<8?fKKZu0qXQ>iZdy_vv#Z=%=dT6E@HtF4RC^sh3MPT82CtGnyQY@yp$P04!#*-n zZB-c|AkosA7FVUrqeZv8n0!r4L|02+CiP+j%%YMd+MNpA!)`DyJiESg zx8g@K<$Zs&CaNhjvmadxF2AHY)O{k8avqaPk*nXgho)$211^6Ga+xS$_Y4v&WHgw& z3_$1YeH}iWV77{m5#fxEJ~)L@xRv~|Kg2d%#v*WIT7FiczIGlbU-D)^ZjajY9RSRd zKV4pd20>p5%;K7lbBWCd!|1oXscH22qJ-j>;unBG-fU6HuBmn_gHvfKP#BX^y4nC?V| z*}jlcXM>*Q`A6)_^3JIAp~bhng=Y~MNdt68IzT-a$EY_c@+Y|{wbGfbMLT4`ivX-E zL?P_I%#xAe056T&Ahv_iam>+#&aoREqrFne)S~h0*O7v$5~@H$-Yf&@4?<=^0=vI%i06)$URHG0tifLL&mMO)IS+SdvW4(%>Gm+V zO%MsAbEb)W4EhyP;gs1$NRiQP5sRPYrK&yM7p!`6Cap4~3FhNiNJVlQ z#X-nwW9Pv0$^r-Q>4H$~Gy0R=l9E`o{6@UG>k5|6XvT*8ZLerfJnZgaL9h>RhlTH# zn!MRL1O44Kdj%AgHgg4H~c6)KlL3`-QTt6QegAN#K;z+6QoVA&P?k=T}%XTnGeFGiQ4ky9?xf>of=n(%Xo z;h}c^t%D3B$Nu++!R9vnk%%oiNR|#UtEDnr@yENU)$RwgZE`B)A)G(4#gKrFj zW-nK_6Ggo4FWw7CP5COictS1gdw)8n>Z47W+sohAymBC_+RtSUo5e*?Jy&0z1szLBeS5xWgyipjEQ#(i z@gaBD8OefV7!y)5@ZXf&Zh&=O`E5m9n1(5&i{#fbjzjktseu*E--jH8pcE*8FIbyT zM3B%=5G@BiQAr%}#xujg17t|4*@p-$9ol<2nT`<$S?tKe@;RtqH$^AwV;;jYG4rc{${81+)QPg*TabG#@{Q=@7tW09nS2GzP z^YG$1yK6$>lyy-t;yF_E6-3(YQ}@G3D~z~1z!*uAE^UV}0hu<4k%^QA{V@n-d4Be@ zs2eQ65SO(UFizKtCKEGd*J3`jvKYSiAI+#S}hCUNn?I0|WR2 zyGK2KcMkmS&-ewA5Y=VAMY!Dxw*-w%n_JSC?Gh%#`kqt%<5i226lX5W)qy!*?si9E6x1jR8P&HDh#&G~8k#|7XoEm3B}L zuF<=X^$*4HNLK!|vYdl6oJ>7a%U5?rv%ws=xc5L8VuBz&Cm14;l6={|eOU5pnvu5J zBivlniTAV!k<;q^~EC zWHxFcP)){`?~(SvzTcRhD&FQv`r|E2&(>#`hGyE=RQM8$R}WtNtBb{Wk1RbaXT1dT z=@*ZWfHIZ983pgZ6ZJa`yRFFWBD=c`aqg)T1djpj&0WIL_v#XFk~Z?a)}Q(7R6cm% z)-&;@B3Oo6*m{=SEk)4rfB?t$z)yp(;dVbVRj%;5D{my_cI3I5En}86ii;)vH1SQc z-bYD7J||$BsGo2imbL%It347p`@`}%?7IhT8owAba9Vxvjp@AqJk+A;PzDJTM`6v& zMTHOEECw>I(pmTi|9>qsm|D9kzT*5ujKlKZOs3q>1?T1r)c}qOe=@>&^_jgpZW8Be zYh13(SguyacBwVl-}xe*>KNl@1T0@_KI4uofcDR*fXbBu9v4E21Bcjl4x8@GifRC3 z%Ohv2Nj_%krhxGW8rnJom;j~6npIK`B}>|^y`q{mhC^fj<-a*AcwTJr^d_1?bsgVh z{p&cq`ew+eWo%t5y{TGx&W~8}BnXzcmPRQbo3L~Ve*V5Q{ln=y(HE+gYh6End0G>! zeO%Y=hn&=|vhs)2ZQ!@~Nm{z5k4gKka}0?B=Gp};n|+2Zwu!>sUGbIAKt?#3K2iN0 z`IT_uCa!DA%ckYsrK^nJW6zma6k@LWc!KZvK{5;zg7Mwb%c2GT+IUmL44qdWUe#R6J~5^{^t3Y2?Z(1r;K0=R`f8tpR9r*hlsDMQ%APx?tGoPVn#{l&$cds)woJXtjor}DPDP*cTI@Q`f zk3jCg8bWvG+5OrEP%>Jh@BOSTdDU_R^|{3Z%a4!@u5(C|&&XJyeY+&5%~o49o=2R9 zr_EGrjz0hbdk?wOnP%L$>z|>+pe)xy=Lp4?czux0%3S6FDzPL3&c1+ej)WNtn9#kf zk;+9v`M2-+rnW}C4dShu7c-H(4RXeG+}Yf63bVF&C1fDq_upAAf9^&0 zj=uq;0OqZ-S1qy*6qiEaeGsbPMF;=nYhE!04x^JY!;g~`$b8BW79e+t^NotokG^qT z4#d2MEX`1zcH_Apf}NSBwSL5ajZJIzq#py^8B zN}k?8Du9nO=2Zv_Hx3(g6x@EO8oqwgPA~5gJXvRbo&Pug=8+UPw;T!TzS|=3;aY2j zHiy`va6J>`hhJ%39y@1ZRRynzTj~eDFOwlJYqm=LlXW+%EUVe`>ryUq)9h=hK9A#a7hG9u!x66Qj4<7dilQB5BnDl^|*zI zQI*0a&EJu#s;>XUvqxXgVmrRS;8->p@}ouo0TP{??F?xiJ!f+bV^e~k6MjueF-;Z3 zD5`M2`}ztq9v_q@q|kfc@l^tTh-T1FXnXh3HBcPgRoGZ{neJ%L4j{`oQ;gUBNNgr2 z7&zm{tYOA`!`MfAbljYt|7}?rn3E5AZ+~02Jktbr@1z1%nYB*P$Mj+iE&^O zNDu{b&N8d6YmjK0&KF25X!>lLN}vK`I(p05bQ%VVq#sbopWamrVrm0bv zb8YS~B1M0Hx@TRYGlhiWb5H7q9n=`OURhyzv^|pleo+#oOvb#Gcdbp=R81her`o5L zg(sW@Eqw^2bd>Xnb9UdM_%txIEE?$)|M`3n%pUwQJh$dx*$_VARF{~1@1c(Lh}~{7 zIWDHnLXeCRSNO=a^b$^T*UxUOE`5#+4J6RHz+Roh*@nPF_bK@AVGyrELki(c3d-@K zp5KJ#OkMd=8!~@eP28OqS`d<}35hI`JcbTs_WE#=N1l zLxL~HjaXnnI*jAylaVARvgRT9 z^d(PyxV$?rgf+0rRC5p2a6w1AtcOkdU|K{*ol2hJju?U7ZQnyFj&MrLquh#_>hex! z3r-2HY&Dl8N~1ytTJ<9PWof*z=eL@H3g(sBNi;^(f_)x zTP@?okC>PV)&9QCJmPc)DRPDEcTYcIoBJMOx3^WZD5)?6acfGj>`o=Db}jfP;4V$` zSvNr3+~D4LSa9$oj>ceo$3$w`L8C!h&L?TKZY30mlgw9U+8N2p^85K&IF+1fU6RyQRJ^)FY9Vb#;x7vD=t5aocg+8`7}v;jvZ&LCxBcl>%IRXLf0OdW)y3H zrV?+}5j}Ocwd7{$(3TUs_;$fa$i(P)q(hnts_AMIWXflmN|MX%^N07BMl3?Y3;ey3 z{~x+9ESKhBaws;9dUi5J=lvdibO+UBp@9Zo-8Qf7Z@vJX#Sotm7v+>$-*=X_ zBG*jhCCNv+kH1Z4End;Jc_u}EUdOsIQnm~Jldok)X?RgikKL`_XTDC14DsgLWJV%T;HbXg{TSH1%jlokl z`r}eIq)PcMb+?^@5D=S^WB}^Qb;MVkaWD5=0DId~9v$r{3gY;|56C9wrln<;8quM` zW=bKxu+r-N>e64=G@|~G^CrQ>zIz&_DKZlq^gP??7tAtEFXsK4Dt@6L6hyrry zfe}~J%V)E0^iW29tvkWn6d}|e;r$YgHoDvzvZ8FqY;pGL&Flp<8$nd{!SYdv1)rWs z?CoBh4}oT0U>~oOM^1j3;SNR|85zH~^D8s+)Jr?CnOVw)8rO1r!639H@yCms+DJ&> z$_w11z#TC!@&WysU(Irfu+f<5D!MJxOk?wtjMg&&yh1?faN<=Z32WCDwHal3cuP(i zm5hpUX1smF!vo>@(7YzC^{H&^m@*Hvu)tO-1@2adDv$Op)u6JM^JE;4P`et{(e-a* zyzYA?pEBXXWciU_jo8B&qjrQSPj@@DlJ^#lvU16%c5ACI=y`gFho7MK*-Tdj-p`6h zUj|SEYJQa#afNIS9cB|$!~EMMWQo*Z;G1bbcO5&%U(}WaX$L1^uZjC3HjPa%J$@fs z$3z~o`-p3JC3~^;XNy|7>ABYx%^{hc!h-KGVv?$`(<5VNbY@8w>1~Hj=xaJ#-&ZEz zl~!fGIws_y9?sz5p}#VSl@sU`#R?h7@L;5F`$#gjPo2*Co^r$fYT4CpKlqdPk%}5Zn+1NZh(U_`2K-Z7R`zoFciNd zz^)!KOxQ@QFxmDLl^A)|B3PAM%Pp98Z|gHd(EKCFhW*=Vr?vi$tw=Li@$G&} zhLv0t5SHIZObU~3p;>~}2aZHQ+(=MWBcbreyjXhhd~^&H4%(XWrfJpP326`k_OeF| z0c&PbxY`wO-r!qjue~!VvW&@ziJS&UJ2Ver=2lfj&h0nQh9WJF?dIBpFkN^e7&8Fh z2Xsoz8!-6GLm%m19VlPY41b{~nS#4*p*>%hmH&xXRqpX+!$$@QFP#~w9Xs3o*8aj6!e*BKxW$^ET(Fdk%AO##;&B&uUCIW(Rw%H`z8%=q^3 z2Z(~T44BW#oCWBMT<<{m3qD`r6Tb;rL;V)mmN(3~Q0#5%)NrlS8S=KE{k_G~qi$ow z`7fQfFFI}eGFLb|O!VaZj}#}pX+q1Hq4vLjg)kHSW3KxYqmihoGjD@b&VCpdxpDjL zOO|=@^kCS6()>=I&ZxX4t;~GDZtSFjH2YB~M_twjE$WFCCM?2A6PJ zUI`0BZAGLlSv=_bk6E}qp}@^~ukODWSv*n4=Bx66x$2&(+^pO5^n|=aiSr%E!NNB> zT1DV~NOKA!?yn*`mX};h?+F0`RChB{tvOXw)??={9V(JNxcvkj+tgJ8Ui5}V!2!o3 z73!L3{mdM9cat~h*s0eBGa{2xDYOBlbmJ*@00asL8M>uLz;8BJz}xYR+^~G2ogr$$ zv~J!mJhYlL^XUafw|`(!r>68|bUwi78?|>Pz9ASh%as9*+Jnz&I3vBU4T3X~n0%Tu zNfIY3H2p68uT+>|k6WJO2{X=A=Zm!S2d<4%`nY96!^7XdiGBkq_g`$tKs@^^l8*?T z`8^!?YyZ{Ol9e6_CdDGx-#L?SpMYfo=0e40lfiv&9nU}bvm5b!)@^vEwuiPPcRbNx zA7VND$Ta$BCcpW|AymfbqZg#9Tn-H_!*itk+G{d1yULKy<$8uDXV;UPlsyAU)2N4f z4P|V5zZWZRf4O6EGo3wU{G{|1eHk~d2{4*Rs;fVGQykGu%-j20Llf;S@nEh@mv0XL zJfCr%8uNE)g_@l$bT3fs)lE-_du$Vk&y+2yDd)ik|Ait#$IsRTZxk@MCAE12_x_2J z91FcKq-!%f%J6&+6#TW%z_ujUmo<$t$URSVRj5pw*EApYG35z^G-$kwsIBSH0|~8J z3SJ*Js0*uIBoQl`<9)F&@YoTYWFUiOHw{M7!7bq^M}es#biHK_(C9uwrcbcKew;v9 zA~aXQIc&(!rkw5UxBEmN{kCbDvg&+2!dqezK*8uZB#bzF-+DVyb)^{w5!6GrC?XNn zq0IERw>^5g$p!`F=k5+2*Y^|V#?$W{c*-YOcnzfeQg2Pvb>_+0o0d%zz*y%>*Y_lk z0U$9Ey`z2Ws7M)tEEQ~Qzn zv%-~+H=c)6^ff|8MKaIEaPYnh0J{iCP)~c_Sf83ffOTN z*O$#}kp|xjk0n@uAe{PPly->chFlS`u-T!(*iasT1T)YESjKk(^JT$?#H=gy4x@yO zedew5$E0lG$UF)6glb`{#rSw6SFy!0)bAe|zi!9!@)wCM7krsX78tA?CdrF620gBhX&Q8y0iN_PWui&e;vEzWF2f_ zg25!3h3>#}edlDAvyZhUjudYtvFY4U2!gN$dX%P?Wl?KTxG9d9m}^jS6DAHCoB4f< z`%wA#2hJV0-KxWxGMl;Q)G(H06LXxIFtXx&SMAff;EhS{hL3LztUrEy2G>yVN{Utu$^aHmo&8+4 zOUO6AqoXGUHr$|9-wQpTqpm=+49QXmcgCpbG%vUG-2GQ<%+Od_9{HIrQQO;R_0iRR zX+rfP;dVmw5_U>Sfy^`XwW_PW@4XS-fn7YysNk~vOnYbP#d`6P@EUWuoPCUu`|(gB zStJE?Cug7G9FX`HqejL`S92Rz@uQxw9P&;XJA@m9P@LNyySlz<>9q!5ClZm~ufu)m zPXzYu{aT!;M|2BqA@FkLq?=auuTQsn#vlhUIch17*W2nnlqTQ@E^m+2-Q4H_139`j z@*w!RdZueAS5FAxsO~GDv}ECJTt~T<*7{z$(qYu^MXuh;p}SQEmD5gT8ntjHR)LU% z`VOt-ZN;n~EG9B?h<#^ek7Y&nFua3&bn)&c=(1|kRNM0z|GtznU7^s?k&gVLQyYlt z&Hm#~7q5~U2_IT#X^GK62z$_jg*KxEkD$qV;|of0KsE`Vu1| zH|yb7Eco=AN7KnXFjk5z#d3%`gC3`vHg7Q~KZE=wt5(>#x6p*tJ21f{aP;T#ud<4| ztSdD@>t10dn{&bT?j5M9YokTn)IUdpJ*@}G8{4VW!*4ECpETJ@EthE9@UyJRAcZ>^ z^_*cXWM?*Nf2pc)HeuyLT@+6MBo(>QL9xL-Lczg?vz?*)^@m4uRJ~Mm;5)N%>Dh)r(f$ z3os75tGoD1%hOZ%As~)ciFd~%SrxdV+D{xI5;*uh80Kv)+Mi65ww$)V?5(!Az5Sb8 zagM|eR>Z!4eGw3_l3H~%vEV8aWm~EcTVC*2)qnXY1U6Bz8KGj)e}e7;Ma1UW%V$8C z4T%;!0edsv=KMXf-(hDYc=u@0-qdry9ru_i2&}p_l%Z1r2#Kg@Y?xIce60L$e~=Hf zKtjMAj}Aet1cD$LBWH2L(qw{%1-EsjtGHF&9bRdk-~af0&MF|}9H2mUeY@wsfi*7? z%ic!k_Eo#&dqgb|1=T;ePE76nb+hi8hrnmw@*PF8PM6RgCz%FaGDNN0j9M z^=JJ2icYWN#^Xg#n=@EGyZE|X$@W2gl{J=Fb>*4Bxl8uG(XrwTXJa5G(gAGYfAUS= zRKJJ79^-Bq#Oedn%v9t&m%av|5``S+MfAlb4ynXs2`>$f&_+)7+z?`V%LSQS8^yl1 z{M_yDLkg>1mKGl)y60h`FJM|D)-^{WNXZ^;&S1<}mSSj@(uxw_?1`9bTG2i~ig#-O zzbO8!9`Tmm{dXe_wE5s9#6^tz*vR zjETUoe7>yg=Z_e;q$%D7u)RmBIzvU0dK|rS-(Urs2v>VeLDKN?Yx`kM9LB~|(#6kg zy=vbBDEX-k9V}?tUAt!`yzK+(^R3cwN+Wu+9Uy)I5eXEKl>0FnE%pK)8WYmH|v?3`N!tUBN4Tk-i zI%-#(v3ete2`AR;{6+GZc2xI#*ul>V5<*keL~V_*Y7Q%5qs`MIt?XPdep%x#f3kS* z>ld;vTKn~#6;9o_tYzmaxb1l=9D-v|s9x(KmDxZCmCz|f+8O=`u*3um{^wtq(QhhzVmg` zUx$61^ABg)#YsyFyOT^>>qC4hgyzoN!9y8VEvH18`|x?rpp`~?TD1KG=mTRMg=Vn) zjMV$}#+-~JlDVkIg{O9T-#_lkMWbYlZOc40jp=SOvOfp z&4`S~A8|X?>oCQgfoqx1iQy|(=nUtW=Lg(lGH65d_ZYnr&YoHIL8SQyd?Pw+56zLiev=Y@F|XI9Yr$s#pPt`={NA(S!$4SWaK$_FNQc5r%_EwL zgTRoc_ev9sVgl~-nXyYTPH}I>s`~63`-bkHp2)mc?|L19GP4tTwfAqasc_$55Z?|Ttt@-2 z9;c#TJZg>k5o`$hB7@k)*Ipn{@^^4zABJ`?EGyWF21;TJ?7#b+PCZ<8adUBwVl{5o z668SPCfdx0CSiQyOdBx5>0c=;NgK=S4^iR<_C!jlAQ7`c1)3?zrH1fN*He4oK2asa zA7yjQeud<$Om8htN{h$@g&pTOnB|NI+GrZJ`dkO|ql^ysFw|GBoS-T*z|r`C77#BP z>S8TgCSGK{m$m$L9;zvBTXr91G(LT;l{|i(|9;`eqtk^GUu<$=awf%+6M`stM~yye z+nQbv5BVcYujg=6eC7F4gfk%1smRWj7O+~Oc<7Mt`%&gP%K||lD$@%L@qMdaj|&LK zUzd9S!t>8}5CV`%pj%@qW;KTEMT@_YXM{K`P&MyUtN{T`iG$W^*-S@<%}C;ti>y@BF>m6*2X=f%i^Mmc^eH%om)VjrKu8JRzRDDLvB=*79 zk-+1yNg~eAm%>#b2Sx)wE)u9mHAl-c0H(uVHxA^EQ^>ZuFBi%*&YhI}CTrV2?qn06 zH4{EI`HwNs`h6PuVm)efmG@|mDC3imp`K_s5YPkv0Oe@j*2%;OA&`7(Xz}JTp7+V+ z__i7N!}Zgj0oIOop_b}00SN<1kLN_zFzE~Q;;z)6qLGh+al(9e=^I!?S%QWCd=g8o z@7s3ckY;!9t~k7yNM&r>_C^bGn4z!rAbyFTE_97Xd9m(BIg*9P9CAqaS^dx|XS+_x z2;j+-2eIP*gu^1o6@43BgJgXi#Z8w=rsyzHywS%QmoKxTY~oUX2UrK+4xgTMR)5|% z(NNWf*gA8%Tr$Y5cCGiW9^)RfXx4U{6KPK4fE_`rUDYjK{v~7S=8w}sVXGG((e#BU z=7r{s5rd2EM5e5gx|rRb8NS%sTFUuVCzf1X@F|>ps20gCl)pv2oNnlfNBJBEbEJl4--3z;OY{Wa+;2rOEdkGsn^U&�OS@ zP;c$YNPB*f25`Lc6|qggI|fSjoTy5${6krv;L$jif|b0!Y=#Hb(GO$MT1aKg^WS|p zJ{m38tCIa4oQoP6irW}*RR8naWyWD<*#6VNeXayKNK7sVexqf02x-RG;wPM|RC}Qs z#dc~gZ+WCuJ(~Ar(zm@)dW{om@eA`};#JY-{o%$~g(>}bS4c`kuu}-ot={RdR))wy zPN^@}*0H$F{^eutN)Nm{vQ0bYf;~<9sBotD5@9(;N#0TJHeBX#*xDCXaCpS=9>w3u zzQTIYfO&qPX>r7K_7zqvBsebs6bt!lhUIS`Y-x3WVxD1UGZ-o?tP{>MbMrUny^*Ig zUg&6|+5R7 z7cX&(N#|Kzk{+ylFN`JBOTd+o6g(p*CJm}Iwq#5nm{#wc{Wi=dCIhDeaBt!5Y2&1p zLsISIM0N2=V%ukRHv9GWbnY!wDXs2`LRi9Nc0+}THUy4TOEObFy zUmQ4MMt-lxRxjRN1)0R)VQ=E-%ZB;h{c*^ZONysbyks`w4~`YDL$T89qsF)jTZ6Bs z?~u_1{2=TB&w0zKVY=cmUxw8E`;rOL`d_v^h-cvhS$+uWS_dkHZMJU~dn8eMFU(Ee zjO+-23u=ExIo#sLCuwQM?+V_m9(K#Vb3g3EuSEhJZ_tM1_li6jI-<7BSaf*Jdlr%O zo*h2{2Iqcrn6q$Wg6B`idCH4Inz-Mw?9 zRi=K`PR8xPfC7^Vk-#Jb#HTM3C=GQYvQF@8M9Zp6Q-Q7rnjpr5{LL>VS&))Fo)cc4 zH)-@}$fY^z<^?s*ydPP}5ebW1wfde(EzgETy>HFj{l2jVTXb1BR}OvG>pS?cena5I zqmxes;(e+Hdhbaxo|eDnMFw*DUt9Pua?@315F!$bM2Ez6x$rNDR?bdad6)6Iqwn6` zHkq_c$R11lwmL?x?8OM`=dcy|DPC+6g zV>hm~8Sq|+bhf_GLe9hyHoBEJ&!7L?$M&|X+H$IbD?Jp3fi}-b0rP}s+s`{E{I}Jhid4>zy)PgBX=Ldn=*V;_X*(M zy`H)3Y)5`Pt8yd5*i}37wI?XM_^ehyvGU@r58*ooW=HQHY4-FNp?VYRKun$S zizZme%HH|P7G}+}`xYZ19>OI1TXUa!FTDO_`wIKqTy*2G039;9B$mlQ*fQHEv6OAS zp*?NHN5$0E8**IS{5H5nz>@XGMv{1}8y`x1U+jb%69Pph$$cA30e#5<6v`g^w(Xo2 zp-C46Lf+f5AaqMY!W9HqNzxoH7)Gh~hiK zlQq`c(un}5c0`AWzMQ^$7EYDza*kZ-E*R{VTHgkBROTzM>`V@ul$rUOG)=k4y?p<& zfiVOQ#cjMg`8;g932MTR4tudRomVvgM0#gwMC(_e)9`tF^ZWV1Ghm-;n9$xkKh`%@x2ww7K za=Dd18d}J&e)-nnF^KHPd!2zmcm5O0yxVk;Vc$J$jUBg`5Y z_25k*P^$6F`OmL{GQ0L;2RWg*nP}^5&dpYaeWMcWin769FnlG1pR<{NMZH>paTkT-r7{^_EG-XY9!w6gbW^^21WW7?5Ui&@Bc ztV|{op(>HHC3?m36JH z>#6d>`=;$p56C-3Z}fyH54u~Qskgf3B7<_c9%ypFHYJ|Nb%V6eZ^kS73g2b+V!mFF zQFDfy0)UWyCoI_h{#n}7Cf9HztJyL zpC}Vdb#%YQtQCXdPc3=xt7H-ttXt`|XE2S_1n(@kKxK&+2%Rq3JCj{j{yABTW($-y z4m9eESlPTop7l5_DYakjN_Wr+J_<6;wbp2rq2SP>>BW)rD5L$~`ezK~ONvYeG^Ojm zW!bOp<$?+;2{`lg@EYwr0B3fCCsV@xPtF0|K+26IEiSnGIQr;hiaGy=GyG3(Iv)`O z1E^MW#_?|~5+3)&e*#8mc^lsowT^?HAft$Uuj8Ov;K=($L!+w*(nWiCdxOB2Kf0B7 zO5a(7Y|-x4FQTb^<({&dxun>$?=Ji_910i3IWGQvJ4ZniENsx-9WGXFm%LKhnps1L zc)MR_kM6z`*ocLGmw_lNqxvv`h{H8Y&sxbaIC=&M?9>f!?SJ72_^u#S`^;WAg%rIn znd46A8x7EV2IOQ?jp@~JRWhmORoh*6+CDotv`kUF+e-hfD-m(P%C+;=1gHF6gnPB_ zNsUdfnMF71s(`o;${X~a+FUg1`2p3@9_~&R11kw?%g_s(V?HIx0*#B6fKmgk5qh@H zz937H3VgiQZp&?r*b_(>aD54bhF@&iJ+E-VI6(ID9nDUD+4DMBi81tss$sU%Ib71u z8#uS0zKcaOm8a4yx<}=hId~)q=a*X1Vg{53`-dcUTpz%otdwfq#pcC2J8Q2hX@eD>%%94q{J zFW=Fy<4ueX_s6|g3<>b|KW8BdMISN+0)&$I3b_%4$kAA zb=>% zl;nk4A~jsufY1c#ZMSLv^W1gmqcGbwnn>-MF?n{l!s9Mm8Z4@HxtVbbpxUQnIt^<9 zeFgPUAq>R+BuRO?46cto-(7`ZcdHL(rkIH3dvhmP!0`LLKiE-dE?lsFvVg5C;9B6a z4sd)X-hM~qd5ybo$9b`aQ&Zm1lqA2rDR*~d1kRj5?D4vQ zXIE2xC7qhH?weGh_VHr>dMLAo2!%2Bn~5geHtaoTNvM39>&&YG(BIumEqz_6S3_zZ zb!^Y`LCF$Y?>@-k!F<*APT@WJTZ7)9Y?+GM=82oJaj0DM50d>hoIo)yW>6xoysmIH z$W4i{H0K<8v`N0L-gqnfYj2#JK&8lje4CLV!#A?NcKhPDlUX*-@;^>@>^ZNhS4GI# ze4WHX1xg5jOY~w8mUmw%1;v}Q-hgyY?b@nS=Y$hfHqk*X(JEYndlvlS*h|4U{)>%! zid(qMbK_rcFgbm5E7axB;*4~V#Q&h`Nd4f(q2Py9xfMMTOR;p&qwf%_I;E>%dhO9@ z1yoAltNOz#+RjP*Bw8J~$bNhuCh7HUN&s^&8A0Sobr{)qMRS(A)0tDYC3_!t-tk*Z zdT(`{Ig80{P;E^WdI0u;?gQ$Kp}OD*)F*-DUV1v_xTIyMv91bSfpC`QcMaC=3#k>( z6^ysx->4B|w%It*$Mm-GX*2{#_kI*wRZ%|?Md@aMJVa*ahsNKv?j|mccR7Vq4OBx8 zh~4Mkb7}$`#ZRb%{Pf;`?KSAnl+*59YJBjI>?+smsXHS)LB)WV_Ss$c>$6Wv)%)IRARf5m zxqM*W`|k^eskaa?Db>0#6q;Q7eyj@4btX!s(esxp(h8361Ya4wdc&TVt%^L9a8JmK z>Ej#wW2`BfaE^NG0p~S|BF;!3>Q)Alr-F_}#u-x~|2~@4bRM}~dB|kTM zU%a~d)wwsZvP>5@ZW2B=<-%=|l^;+Y6>>>oY=Blz`mYO+xFIf2&s7NK?GF-3578BU z%M}eQ& z9g#u@2R+jQ2-5rD;sP5_5%!h71?`B%tzMJfwge(4F)Mv z@*0X&z5%z!&!V+QK+_7u0RE}~jR@a9__f-d5<+&RGV-=?$K2~s9zLLbSlH(naM89^ z?|0JC17S5$ilA&ElubC`UhgETlLi8;i%U6?WEhnG>{q2y(_|p24m3d_x8c5SbzBy1 zO#uUdE*$)dvmwEw9}Nx^)aE)V99Nb;g5ci6WyyBqXphyaS!$y!)pis?p#z`pO0}zf zVFp+I9+r$KqZ_@_c>yMSImE%xm$FAG<%!-ohb#4HIQZJ?`1|{u*l`IR!w*mSYHbXx ziw4CxpeU&+ibMXPse;E5;0hsrI~{^1XHuXGu%k3lE zpC=|q0A`M#dneO8yi;*&AHa5Z9sR^;vId+Qqo7h=VcaQtZ>!BBi`t4#>J=l?ERQ}|A3~?=UUxac)11Fj2lXmv+;Aq*LhYO^;LKQ9f ze-R&;Rr_{(FTaugfvCl{7%E<2;>n%@p4UJX{WEU)6r%In#SzFU#go0-sWvigO;B`a z);z4uEf1%Wl7K=gc-}u2L({Nf;tQf$DP5+jU~GQ4V^U(-VexuUz-O z-J<#TPchFQsD{1|qCH5hmrSk84q5eD*B$q*#`ObDS7sL1sRvz0%0sDkMk`{APD0$f zt~L3iI%`fA0X3nkE~m17cHf!#nm8uqtIR_-hFgGA{vY$nIg7K!#YvGuilP=mV@AUG zW9!?v+f?957tuSkMD+tr=N`&p+0FuxwG1vofZKia*QeNpsk^JslV_Af=A?J-`5LL$ z{=5X|K=Y4zL4W{M*u-ffGYDfi*y3U8q5kJ!UbeYOK2yYTOWjan!(*dhWXU7!*TfQ| zStrN)R8s~2DpT1ACY|sx2-@9m?_6qLdz$Z_@)CmGp?QlFC)WOEHMaApb-z3_5-VSr zh?Bkn8~Hi6u)fgbPnlpm58v*G!^W{6H#yB|wxDDf<9GBhRQ82^yL=pA#SfrAjro-l zcd})p^kSW(c4LPaU^*c8CJPt%w!HTLBJB7chk+~F$)bW<*Bg_}McAqw!KUX_SGsBR zq#F_8{N+o}8Y^4|Dd)6aWF($h4X}9qVU==(Z=W$T;d;6y4Id zYJ<*Rzux`VjO+SKH;j-!oeU@LgWwxz5VAoHjvz=^Ew0opkB|yL;Lz>&P=ZWZzdr$o9FvGgrFD)@76u|W3QogYtB(bD7V>~qn3jmqD!Co-0r0WGIdd#>A} zJc}Y!>3w-wdpeaB+7FRQOzyjd997waG47LK3Fix)w%$2T)gU3u z-0CGgx=5H2lj*rV1F?wL&)KJ!SS3UAWj%#OnmFqX85#9LRDV`qUfuA_bh77`Qh%Z zeck55Z?i{&q26c&<*$I<6 z2PKm-2PNR{LS(i7wp?|X6|3F3WEx%NHI_4FuU#Q{;Z-h6+}_MJT1{xEbhz*QN&I0HuV zVa)j*G9`X!=I}SxA7ieT-1tzNZvb_r2)KK`gb2UqsNPNAI5QTO%WkoWdkwqr>jLG-fPcg)-77$xRW+eqf?m0X+N zA9{VahmNZQ=Gimh1R4>IjYs^m1$Z1@r-_Engix+RsRRs{iLBfMrq;i`x5c%O3*bYG zb#4zx&N+S}+WrP^B!6V9Y6W$jU#rWHmKYuby73>5z$ji&`yr~V>{mE>?_tE9tZExs zombE)sjOYwsaiG3w_G4&KCK&ghK!m1d;}9iJg3CsA%_YhRqD0|zk}hr^;<%M3276d z_;A_`zlv#>&!c-Dshy@fLwK+2dgeUEv23s2LX-T;X>SBcT2j2yV?1cwlDoCytuSFS zC0g0>Cc7iI!y|QVawKR4D5MdiCN`&V3routAm}!+2X@jGU@A2LvTfs@rpqlnj#SEj zUzuzU^xa*WXd5WG6E=MDcnI!|=gM7;t^g*J7dAyTS2_N?qgZZttJMR_(>Rp!l*xsl zec=KzHz(!yjt8*G4%GToU43bgUQeZLlzvG)&d4!D33yg#_KCS84n=K8GtbMX-q##yF4|7r3yOG`_a zcDYI7dkT&(+A@QgMxv8Q5yOeAg2$t-ZMk8vfnYm>n|k%FFsgKoq3bg)yr!2H`rIL~p6VSlq51P)>UKusN&SM)sq~o#Q({g| z6gHhNwXr={rl`<0t4c;{2hkJyn${2=*`XfY*!@~tiFUVn;!tMAD1}XV#+#M>zy52& z?`WbFFJbou2?e>T%TeAxc@71fRYMTqmt8=7EiBG489P6@T4lxSkhV70Gy7%H|Mth{pm zxJM=sE;|Fy^7I3WQS#PsnRZeXgckVT`6pHywtlgaNzE-z!Wzc;rqVn(WmaV?ouf?jC z$u7@KmJ<4`Hdp5=e@1I91D~;0*`RCUP6A38kFMmx^3g+ze}4F5!5B+DmMkJ7BcJ(* zU=ZrPO%elRM+r@q7I(s}f79%ak#pH&>(NIOJRIx6sE@r1?_E-oIej|2C;!?E>+qjI zFflfbF6czzSfsqp+AvaQ0_3(c%G+bg%jc2h^8=+eae+ZWd>Y_el9m3vr@Gsbq8QpV zw()~P`9-3Ats&}Zc1nkl)wg9+Ki>OSuJqpE(*R9@Jd=&Cxak3#qNluakr^&Cy;C&{ zK1JKB_B(H1nhTv5e%jU9`52hqV=wUMZJjl2Z9u;cL6o%O}2t#r>@Pxz11bSB8= z?7>j8wdZ3nB84#80;%4YgN}Q?h*a9JN(T1f0hm`_YaqBr5|Wd9rgBo}>s+@sRm@y& zon$V=m#lN*sV2h~nO{SAc9+^tQbINp`(sj5c+sZlXM^SGT~xdxGvuCO2WkpFi%6L1 z7g+Pl6v!_M77mU+5Kv%E+FZ_!&Cbaw zbz3kQcdUpm68g)c#jYiE&DiB>U|`^1<(b}s6AKjNX*Lm&9rRmLHAKI#f4u}oe(qCaPzw*C5}F8i0w*S@bsG%&^v zV~zMeL^d)*exbS>(Izd^W9dK|iTFT`r zvbwD~78aJSeN0AaCvUv9Y6xY}4 z*Xfla&!@h>V^XbFrhB3@<2Z`RnfB~##hsiYH$*U;2QtR&Xni}RD3e2fRAK_c zC9?Y|2q(eFz?!6C!QYnbpRFhBd}y*BQnft$-a5J5F5Y*2`Hb;$!sN_WVxP?BE5B#; zs9pTH4|Z|W;Up^YKG=FJL(zm5Sj{*2G;*z{jY#juB!qB*QdY3P9`d^RC-{%0YgFLG zbDegbj+JmA5!184&fMp{pp{o@f&ks4(Dis%(d9aH}dI+OkPtA_G z{*hRoh~v=Vj}1N-8(dk3*IOnvLdCdsf-NG`LORhY!AB5t{TTXPvPR@sL}oSb#?2^R z>&_dZ&F}*FndV89V$sfe+NPUv@TM8s-+h_cubXcV{;Z#V|A<$pf97gsxE{#4qd%R} zq(As79G5=y-18QV#y*W@>*#-))b;^wl1gne-v}boullc*^dG~Ms~r9$#xRF0DnHBo z*VLy-|9p&H>FGKd`J2ytFcJP&$h+$#f1-qEAaIhnSSK z2f%}A3IQ6eo1r_@52<~)h=N}(q;HBA&9ZMula zxOkEszk2i`=b5A&Jn-*K&_#$o#jRlp0+NWKT%`3^2Qth6RhSw&x*Mc%kWBt;tuWX7 zM&v0@=G?Xo8AdRGw2MEBTCSZphX z)o{kVJKH!xNiZaNy}g0xdI+i0mp1gweR0Q&pht>fv)UBTXIe6omfjgN)NCa$+tJp< zp$6lyJF6R{e=cd#!c)a1;!-W(j|A@x{j-WW#g7mWvNVlzO*PoK5_tmZeq$}{--s?a zbujPR+OE+sYxHB|9OVfb@F~sL;0T5y`lWZR0$u@cu%-2p)j(%}H4#@PW3k($_oQ!& zOC>Jp`J=5VEtw3yLhhh(nLp8HVgwx<_5dyfI`;m!Site9z^Ahjq8kIZ#n8@=z94M{ z(?Mv*-xJHf1t}$65TrkJa%133QG0_@9u?-DkyEN2Y#z+!2_EY3vVT^tc(h{-QR_;D z`sJ>CCoULhgJ5=i5sUMTQTUS*baj9!A3z&@@SGlOdq~@lQ7yHsha_L+2X1zdwIHA3 zw~VEfekIz(2c+o}pLW4h3ACu=*9IE!XkW70=5TRDHIkX4E;iv^Z^g?(&XAPP*o64D zo|SS8X0FL0eCJKq@9pQ@W^R4^p;z$bW27(t4pWQM!Bg?$ORA9bQ}CA7Q%^oO&r@r! zex#2okNdMb_BTlj_N$Z~Q(}|xGH)1yyhHrVJGmr^_I%#ll(Q_YOak|k==%nhTy%VA#$Fg`pb`B zKe}8*qou#18^ooAIn^@NWpCQ#-GxSa=}j+w*l*o=U*7R4F4<1bEHm2mxtB!7`3Nyi zL8OKK&uAUB$Tzx5#ZOkas%7<74a!uP2~x@XC)e8BM- zX&}jAWd^b6iV?lB@^o3A087D;w0o*hqi+p2^D}w&ByZPqX)eteP4JN#jKQ3-is#x8 zP+B|~aF)v$L`$}tEG#UX;jqnmy!k21v16V6mZ=3#o;<-L_LJ?&*qN8Fzx4IxoU-X9 zZY>~nCHXu>pl3?p$*M#$+9!eomaW7;=n=7+>P$JmQ3 zieFrtJPX4q-t^E#bT_bhU=_l((c!x)wKb-^ouMN;@(3Sg`u`|v6$M3wAT#>bz zircpc!n=btq29)h_X<<%-ko?AX`f&v35j&44#jIb%NKVt$6MkyIXGBZyRX&$W-#_y z>G7PiG0l%)m6;A?wd?dj)&_G@|Naz+&IHXl<0z$#7qzRUMN^qEI$iOWDY;QTv*rVp zF8Px2;k;9oGlku{=h?F^A{*V<`SLMm&^4L?=`(_*(h~EI7wP3|Rl^0KDQC)h+O`wK zeR67Rm5hL?0o~mzaZCFgBa%X#UWt6GTpuWC-+XnP= zUg`^H0UYoVY5QJO19{et&235Md*9v`5KoQVH^@o#t=vg)jNIqI_W=Sh57LZd=3dXfO^=?C9ht=ZPXq}v=Iyqa2 zPS)kawT#5Q(s;3ZUv3CjdLrWK_ht20>n!2UY!_^jxy0dpSipwT-ozU=nR03hVEr6- z^FM7ZyzA^%yrhuD;SJ$_ZzMabfB@= zJanxPtn}eO0E-j>{M8}E5^)!@W5~iOsE&(lterb|?v3l*b&W2-9ZpF~N-iv|I)&Bz zlV#>#Ex61}E3}^Qp{V#vajfHir?+uy^<)FF_4Ga(kPeMnY9l2ji9sP&Urp)Hi(xBi z(2h$KHS_h;T@n1Llyy6XIEA_i&9Q1gwC*IF#vy|L*@q+M^=bsLqv53@cV$9=Ux-!vw~F0jZaE>iUcrqr(LW1p4j*YM$DiF`+^Wn;c1`dFK}(U1gfOvM1JD9pe2AoqO&a*wO;W3w zM%Nj<3FWFZ7R9EZk=XsGETo_pLfxJ>u+Ec%YVcb5S?zqOxSaNVm>(sRk0AV3$I<@( z0r=iP=8e%3x$~R+)m)w@NmvX96PJoxh=)}5wE>!x9M}tg{(vi_w%jL%S?=5+Bq;Og z)+uK^`r9AOCyEWeEZ|bxPK`f@zxC6B7+dA$F}#?a^mumXHQ2QeUK?V!-?T$Ry_a8F z|8i9hhwSEFyYF@Qn79IvtCyBqK2bG}2!VQQoT&)QigM#EU3ej<0eJhpfxH`|=PtYE zT8&>3y^Pc@oK}N<>xah4%adrV1WnwJHqk7&R#rJA<)s8EC4Be#E45tSx$`mcNxc6gB_By$ zOGm`)oWE=1sjgKRe91n7_KVlLI&G+B$m;2D7g4z;!4^)mO)r?yHl@?~IPl~SL=#Q8cOEFSnTdxHBZ4H4*cQrNKK z1-xo_H;zDnNOTROBxKNNe5rtu!JI+EF=}1{lMEVL_lPo-{?>4YHG%EBjm`Jh1FZgB z%WD~Zt)m10QTUrkbNGS*KJuO`qLvd$#1)mc^MM&9ANFfsY3kdK)7eyBv$8ndH>+xG zox6`QOmm&fGa;1=K6Ob7-n+-_h{ke5xF;kU8sKAJJ?~G-7@m#)@;=vaE|E8)_Ibm< zfCHNKa8jQOyBtL%;qIgAaO z(!e~gKJfu_A?nA(|JD9rc=<~h3&eQ%C8ant?#E!z%**fHu|vk1j%*o(G?Fm(cCM39(Acpo+hnZ{ZjJxZ>?@*&Sr<1tuk{(g z{z=Nlpxw-jVb9FDW1g-(jzR1M0d(Tsg*_g=1M}w$r_n{0_kHE{EYMQp6Pj|vOW`Ow zfeJ({N|A~eZ?^K0dr2vE0oT#C$p*dkYbLF$E@IZ)K`RKLk=qD&^3$U*A+URWhL(*_^`OdJ0cUxYgX zX5?QgK*;+0?h!B6Pe( zema+*gDbvcrsak|&#S@wUpBO#d^ws@r)`5gyoc-yB%39Wb^Eo0(wm2E)-}h^I?G0% zJJ9Y5av-Q*xmjRkondmw$I!I(;=bOy;%6XyYCrY#GZjHYS1cUM1b><4fOhkdgfl+w z79ar>UxGwoCOiB2yZ5<>8tRA~hOKE|43Q=gXGt>6FQI53AD>I@5M?l?yTnn6L*IFI zx52qtSc3WPEFmOkd4MOHnDv!+BY`spd>eRl6$)WZum;n|uzBnb+7}cgeIS0JQ;VfQ zi*~TU2_PO7frLybr!()K?*N8Jw3XYWRxWO*87PGu|4u!)I@|?zOQ-z=Cl*%o1pB2- z1v0AE1XddOW0g7hW8?s}`Emt{5HK4hhr!kcZw>l?tX-)(DLnz`ijNs zH%V@fjk&&^LI2s&Fbgc=;VeRS^%r8iXuE|S4rCJbMTV8(=yMdE z8jwvoB^hXHw8cu`AoE{0Z2IKzM-GL}N=Z&vgfZEkw0lv&n%5wx8*Dkq^egFzVf`p2 zB`kwexI#?2zQ)esOtB%Ni%xstxw{SMx~Ze039aJ0ECl~-?mbKoMdz997fwPg zkk!04TLfauh+|Jl+4H?!yW=(@VxU1mmL}-8S zIAIfS{BnWMV4gLi+pBs86D)og4ZK&>ubgaj;Mnx6-M&_}vQllPAQjc&Iu@6Zv55ZbAH|i2?;GTXqYX zqyvYZO<&k9$S~3Va(ZyEDstJ9uEEFSKAvq2&{x1sP9DHK__Mx1MeO(Q zuAF-^*oFX9tKv^`RhNkk;SwzDpemyX5s3;#d~0j2li8mem-AY=JQYSwrgJRU<@Tsh zJ4SA9I?r?4VpJwcyKgIDiNDKmXS7m@1VeUuWKZ-|+_w;F*q$%jlwhPq@w^8mbvik) zWvld|b|~A5^*$Y-^gK9E45|G!T6VYp{Xwue?B_?uBGWw;tzF~Bmr1Ay+Jj4uLt|y# zufaspzM&5Iz_d|lMCNy;CD(8-AO7O0eG<3FQldV2Ctsf<={g}cVG^D{Fl z%wDdz3)!+F6wCK<)KU_a_$vD`Qgd^-RyU~~} zrEv5RW^i{tR9R{|t(w^Z=<=HWy|Tr-A_#zN8#2O~Z;!1I0ObTK=D@1Q!eekwBPNFFE zkIg8o9{-go)v{>C(;@8{nV5mp zR9qBn%7WnZAX)Oc!%N8hNam*k%gt||687i?_jA2OUbBPd87O-WGL=_4Dm}v ztVOC)US>O=VoL`#=HVq-Qrc5_m^4R$DP@3K_f@qw@DtD@3TI4J+C4v=Wwi)cHw;Gz z>&$ypI32Sg%RMEFai&AV#xt~v_L*iH&hj`|kZD`m*@L*@@1Rh$Q5^=)K-1`S*DODy zpL){501X9B_(DiXR5*`8*C5(F^%)DA)s@!TSoqwYMBEx0V|9$lHWvNLdqFyP*ozlL z!&r>-(`-rts&PF1h)(B{WW2s)JbK)`%(1h`u{~+|KX5?gKR{qnvD2hZvP-Yw^vq0m z!YP~O?X^17e%nQrsT8ky!e@chmpJZp^GLaKP!%v%ZQc*?R;0pj^_Asi;upP(J>*mh zmzLK7Cn8z|o@Gjfg-X?1*4}Ut-;FMpKN`z&$;5cJNhTY~n5P9}+E>MK9k-d6F(N9| zY!KqA^xd7N-g;F}*^OeB06u9e@2q#M4D{7rMScq)c)+J{(av#~UXrtrt;MN~l3zvO z#9WL0aOWHwo~TsUo;3uUFofgSrpz*fH^Z)YFY+G{Fe}{{r;Q5ip$ijP-*}{qo3uQD zIr9k%Te3xD;XgqCkpDOEpKM|6 z#@!mIUFlt)Of5nI4S);vOifb@>$W{Lgl8Z(Z#pt~3XUm)25hFQ4Pwzu{B{@XImNG7 zrf)FaS|)rx#LI9v3>nH^ynC@A*e8+yWOqnP%lLAey{}$OOw0g?!~;f^-QRDR?7K0w zZPOc9UqH@Y-tC3Jx;>mqhG*%#H2vSA^GqbMi?+{4m^j~Y%y9C=)2LKI<2_i5rtODDQ*xm z+LT_Z7`gV}0ee{5Q2;Oz#S86@Ig~@#Sl$k!?~8`4gMLnTClmVskMK#+hix(BMdCC> zlkbd@uI1MQ{6I8WnPU-DRXE-Ul~_C)0G}ZlzN@cOrxI)m2{(o}uHKPkW>;{3B}k?u zDT#-wD$VHLLgRdjb49;i8GXjIL}q?sEsa=6t>>$4 zd(Hiak539jP^Jy`H{g97qKStWXN-i|@T4$9F(CPd{6GTUeIT2FCeNumm+UTm7k9@!+lGz$~V~_jTSY8_e#j z+g|yfWhFNdi}2gG^(Pe*?!AYd)>?(u*wKrSBPo}K#)ww-bk2CO+}}Wgd`s8-!XT3g zxk?Txgt?{{L^NG*zQ(xa{ofE<0$Ozgvhyu?)5$m8I^AM`v8kClp(y`om{{QyEa5vi z>cQV2gZj!q-|>X8E0UAxP$a;F8F(Vm$Z>Aj%SCiCxDNo)!O6agW&LNkxbK>fd1i_> z?ZXV>t%`}ZI+5n|lurJ%n94IPF3?2fw{*!Z=dID$TL#~**1R^F4O^j=d3@4X&gRC% zmkRK%`Q>yqH%FWUQ+Y67L}V~4i=2S1@>O(!Jpw44yJcc-aN;2>)mvRIEzL>i*NU)9=9IHAX zhCT7_geYS`fuo_+bE~hvPeWY_x-&-fbA43dR%VM-gP`!#)sb7eLaD?YN5~yy+=7)9 zNr4g|9GFv5csk?gb9!+0wjT~uyKYiJ2s<#Gxh7jZry6GkaCLzD=pA0IAVjUmeISHxU8 zVQI4KU>NT-84UfMkcrz;+nGa#w+r(8$vPXuS$fHb@*ouw@Z{M=Z!j@Kw+P!GAp&v{ zExfzY$+r$?RImTCk)>TVv=2tlp+93G-bf3JRm5?yu;fiTV64nV7+n}d8SlmNqCxz- z+ZM1)6f^}qxi-COM*+|kY3`uG+=ZeM|Bx4}cch&02)PQAkXNv8{ZW}OOR|_Z5{zM$ zfGwcWzFKzI5>r@Lh)HXa(^Rf)Fj^0@x5*VxwTdgXm&}+lglX$M**vVN{~<-uYxyJH zMfK=N#Z`j>lN#(}|2>^1;ZIoA7JdtPN<|a@KhoYj9?CWRAD?pMlv0PXhL%Agk`S_# zK@+kR*%gY&5@Ts59<9ihEtP#_C)tu^IMqSOGP18n!q}1wGMM>ZkMsR}{`$UNzdwF| zp7Rnj&vW1RbzSf6MtOBYkO?aB08Y63`4%)#-f|a@(6<$tL<6os6EQu(o1B!?r8>HH zN!aW2Vd8SWT_FfZyH)5NT0S4x`J7!`Bxw$RbnFP%zuMj*Z=t&`As_R4?1?YA`cvHE z%YyL3g*(&K;J(VTxYd7*OW^A!{xAd>Dd^Rj79B-uX^N(Ms1>*S$)p9!RSi&h5`O-R zoP&ebXmovKm9Riroe5YV*>yDjnO5I_h^RCuKbF&RHpifCZ&&(mD4!C{=-DrkfASx$?~*qL6)#OHdXjmxVLFm0qX|zf1GxiUHR89GNhE%sHGGD%yU^_;;~Ub3u3$y< zw?dAj#{$kWwR#CpnfrV|0S;^&U}{;CJ;y$4As|O*Mh`zcCitJc@)r!_Et`% z191}84fS*!sp~b^P)U&7(kE!T-QH!>Y=>N) z>SV4M-o)Zb6p65H*AAQdknMcBO{9p@>-ZuUHzpkIXwb8gF_J4+}hRRSxvHSC6NMtjpg3WUjpFfb@N&L@8k2{&tz{ z`s?2N$4B(GnOmD`(UFZtq>HhP{uxxi4>a`ErE}YyHFUBPooIr>9wTVw-Bu>=5H3!^ zj%t$Mwq;%m8JS@FckzKlM2uRz+J#pkXf;0PxhpUNlqmA08}4p?iXo0X)1b0|RfY0e zhl3BET0qA0uNL*7Ts!=MoRQmY)C(?I>0y20HCSRo^W?$#C7G(8-HL}pM?mtSxqi_} znDy6Mtv^6|JA)lvJE{XJbD$B8(%m0%#dpn}XH%M&J!rs@GmEyuNW>D?OO^7noxC?z zcV07wz294Cl`YEp-MFOAL`@_>f;uCu9PDYt{v@iiWZ`W#(Ez0e!m1Vfra!5D>+u|&XwlgU4C6{*31ZH_Yy z(;nUY;WrzjCqtc^D?t4z7h`_ZEL{rtmrb+-4x3tZ1wH87jA9%T>dRkQzwZ~^>**@Q|(VCuT=Pe6S*0Z5(3aE=Gh-C=ZWe_sSA9DB{C-5w01W3LTCzsvX;tWnS?Lei&DD8vt(wrM!BG8-1t zdLz8bH%Mk8;prRq^P*K(AWt$G;S5@lf9WgwIMoVp!{QK<`}E2-&l5f}XszXc*9HQE zT!~krWWyW$WTnnhj_d6flFrH+rL(cI5y2rN*j0>izMPfcV*NTg zj#ONpg~!v+d4!~p+t@XQO7v=W!Jz`}5|)TbMh~kr@po;A*uh=L4|3%y@lv5d{z@k+ zUAfs~Y#8eL#09|FXqgLSL+F#ltxkYLakLsMuu0?x3FKJYB>4qAzO!d zco#*Pa4RYSC+cp-P3he0ivyAw9 z&tTr_X-8D~#HkM)!P9f~(azq`eY>XWTR^J!02ojWH}j#IN6pecY?Uy1^`D`0GI)B! zu3rR2^(nk92rZ?v@(wc$l#t=qR_>MBMfWD89;%CA-11eyK5+V*7`1n|qH9PB%T!%1 zw)+>;|8gW7Chz*JHAC<0t5!^3{4Z$m>j)LMm~?3^5loJD8)a(v&6f41K-j zo%$Wlm}_#T^#@W{Yo=~_dY+^?Z0pDhH@;dy9>g*{OO$!n$<7iv+`O=542XexaND~-vYh7{d#bP zV(5r#Fbz37{ncps0$Ibuq6oWsPxTX$is3baqJ2C&i3~MQIDk$C6y&nB*}Zdh2#cx7 z#idE2O=20fp=Ae;KGy1NzCXE#%0aRh#AgDE>8z?4YU@?(TviR&7w}q$>^NM=A&AHv*a@LH_zM_U9M8d20 zK-LGB=StgW7Ff&$g|lbB!0b2!be-?R^}PF!kaNSk@kM-U3I@Peu6&c_JpsY`Y=ScqTZXWb@7=JIo+l-arC%Hu5-!V$9Z6c_ zxV!eM4*ByhiPZ$df(!2yl^h1={DxpTZt_A za`?4XKg`LiP}vOced8fQyO#}?8eQ-RA(tiNB^hjK)qkvAu&FM_Kc1AJ4*wwmB+C5F zPSWn$E8J=$H(*n3s?E1j{Xxjsw;{AguUJDX)Rq9t-o0&P*C32*lshx=IMJUmG!rJ? z0rMh1PbEQPV{&DfHlD2XDiOE$$1K!28#$P*{{EI%CCKt%&DXJ`zxTy- z+rBC+dc@g%ox4Q%kL7CB2cHd7JBBuV66bd?!#cDnXp>@VAX;@G>WM-VI^})qgA3O} zf234oojSX7;MlU2v|y}_-YMuWgV?Vq;1CuyDzJ<;Ww$wV^{UTF%s{O1stm7iaWd_p z!6i_!VpaGSF#|33c)I%x&M!RrxZL85b@O9!qUpd|6ZjmeEqOFm0ZZO0Q8zotFjUsjA!l z&YP+D2o}tz%<#y_nI0>TZaq7O$#CHM{5jF1LA+Bk2i#YTPmk0#g#%sVXQ!~wW2X4K zDz!3%qeHzDvCw_Dqo$~3)_O>&b6J2aLH?1JE#$6)(WLY}ejeSCgwA40;SQgywjH;Y zel-`drsuGF>6s44Njpq4zxhG!RX z&+NE0g*?Njt0ei3*Hu#bQ98eWc7#VbwP{DyZ4S&#Q`Rcc;V4%$oTlFbYampJek!S-mtY~C4H*-drA--DLxL&}SWET{NaDczni zqm3BLQO5z{v(kidS>8LNUA|h$dTsp3Et~X>eH2Dw2HN-dDlhmE&RiJ+6*!{YJeicW zaA9Ugr13Q$na6tCh23m0tV0-f?dv(LdPXkf@7qRh>L2QhM%>ipL;^{ znK}bSmk(t9KyGZcIij01U7v~gt21$zFHvDM_@=?wo~A0`u;1j^+rTQ{XhU*^&di`q zh?d)CI7%57df1$SAt0qr7Z`osv){nUiy3*O zD{AM-Q1?;!epnM@`+#f5ESW0c>V8zsB82e>r5R8T>UK1;rR|9)ejVMj(s!81DMrn_ zmj?!Do512@aJx6r79g@fV$JhQbbr20z+i0W_NmS7L3uHT{a*$*y`=fv_N`hAeCd^p z$5kxM>X^Vo{BpH>Ne2|4MgH|t57c=vZq59;gCZB?8h-D5{2Zw0X}(0n@{b@hT?wLX z+sn~VcO*4ft5b6iX9i074D^pu-vOd0%XcGWgx^Bq{gOE#V4yx&HF&+5D2}-XUjgZ@ z9?3*u)N`VoL5eqE#&5cxYtcG6#3@xBl+_4I*w>-6aK1k)}qM z@4>X)cM(jQrA4-XaSnF5VR*C%@TEYvM~65DGkL?_%o!d#=+)l1E`A|{?Ul zwgay#{gWuuNFvGefqn6}M!lk1#>{_RQG+61;(0r&=xQ)e>rGhWC=X&|<4 z)1W#EJB_S$$s91~=_^hA85oIzOvv)DWZGKPa{bU!?`b^!$)CO#xF6!`h2o zcg*h#(CIX~Ho8}H9Z-b-t*I}f7v0l*+D`|Z?zRMwUtK%;)#MQoO%k-*>%2MM(^;43 zCbvlI>t}Pe1b#-8+qu{(KPI^?Q|`fTk9bRIN&KfK5w#MjdJqpSmFaM73wk%n|J5g% zhGdMNc(EmHNu%^>-`?buZq>(CXY)|HN=^fnRl$H2TWgg9>eDOjGQ1J{eaVeAhtWgI zc%hzb!rUB2NgnSlDEI5*L~TG$IQRSyf5~Ar)tO*^EObOInYLWujrZ3QL3bi$h>VU` zLWe(JqF+Hm;n#fFH#~Ts9m5O1N@4b+KvgPCF_|iS=!h=>zoYJo1o0}Cs@Gi!`m6{o zx(oxf2b4H#0EzUp*zXEj<+R->UuCw{jY{e9 zN~AuAN3mkVF{>kP3xIC_(H+|M41qKMMlfy6Q(e7lD!I;F+7gL$*iPZSaH7QgN;BL! z{NJaNj{z!=1Qy4_xGh~yqJ>Lw&ipS$@jl)6RuK+YyiV>jPu4>jv7Gn-`(u_TaSMyU zXKY$}M9S@&$(}o-!(*E{G($I9+sd|Sgw`4* z>z&rfp?$X{H1Z?YZ4M{KFwjz4Hz=R- zqgmq3HtBHm+w(g(>ihYSqYT;^4@0_7DB#-dFawV4m@-KReSi$Ug=uHD{a9*K*2x^n zjzSCu{apP+urQrK zZt40@WGiHlv8^iwc}APz$s-tF<-V6lv7%@>Q%{bWfMO~7Sx2H8WU z==z7h>2pq^Bvtov;nfNI{>H!DqGT{-c})+*Zc{jip6z~oo{4!M8%$Fkm(k;FSAMxe z0cYs1VTZz?6hM1P%vUdOgxGpSt~ba(v#}lrZ(XO-;{1BeU(ds~A47$Ih(Y+OM3?qs znH77N)@!rU2g>IjqeoU@+e-Rs{ZVbU&`SHiR=rF6+XCjAdUjm|^)le@rH z_(ACiCT+y)W*~}SHr(M0+rcve-7X*h*5tQy>l@hp;06KQ4f>b+xsxJBY`^uiV`0aw z?l|EqAdD$P^6rTerO3ALcWyi?Rux9FXT~ zCvEu@^c=vsXaci^TJzCR0~b$EBiEh+YT^i8Tn#2c?V^_nb@^<(h;8ZrTOfd+`+o@p z#{XXefyH8&hB*KDESE)_XYnnpMaXQftVHTlA|k6pAB|yQ3FP#|8IUEOUnG-~X~Ji5 zN;d-=^WlH6@sp836~4v`{aj2qhtzI(i}3-Q6TxZ{NOKF$Usbcf}n&}{X07T!` z2AoceCc{87>Rl);Emav0mp`qnJY6^0sVCdLH}EH0z?AAJm9jdLZ&U3%4K#TvYt33F zyR=P34@x&oRjIX%?xL9nA&;(!1iK$~Hya}nVbmo>f7M%~115@Iu>@T!EH2i z=?(I?=pTfq(N{SA03AU^;+EE6C$_o~^W)$BK5hIjmG|cKI)uphtN{8wgEVp7IhqcA zBv_Va-QAt@c@;h5tUZg5!BbmO@CgZo44IjB)<(O}#$w|v5Hnp7N+UU_r32=JnAgR{ zasd-kcGT{xc7?rQRs#Mx12SQDKu$~m`lycJ(b%G8T1M22tKIr5G&%-lZ5e%y>RI3< zkc>r|F2sQIUq#rb%a}pW)+j_1HNZnqjAm>EOv09(th0}tvLzAgcBA!NO!XZp#KT^`8RHP+?>lb7n(!L&auE^@;&Tn-90Cx{BJ zx152cf1(YzC+TwYt|G*H`peUkO$H(D2ITCl;Z(zYK$||eJHaMZgfcXOA|fkxrT>$vf&72OYHX{Dk2Y?ob`IA*4~Z>|hkOM+6|7$I zJrX=bFT#0Nz--j=&r$~i_0EBa?9x{+eOPY_U*JT+(+6!|$ACD6*;fnw7xDN^KbHto zCGzE}IL!01KX=q|Q!n(1G8~Qhe_=FDOT?bg)D|}`JieH~@Va=m+_bQZJ52j3?3R}W zpVlQYwa*2}s*xFbGL<+K-a|b#7h=#zhx+k5Fe?_&%E9&p;))8^tB(o2scgcCH<(y5 zO>)T^n!2Y3rV60}4ib4L^o08FTRT*5 z3mC@Ybe+bM2JU8c{&<^?gkp&`oB)A2?6*v76AQss#c5~&wF*HTg-`6JOitpW_=aA; z?#!$mBJoGy0iQg=T=PR5lK@nC10UNCHZActBtW6tu|JsmMgE(ri&|P*%v6Y1QCNQ# z^fw3%Rt)Z5U&zA>R~1|xt@Vukc=%RtU-*iCnP1URPH*tYQE7vu)-elM=9}&Bh*4jM&J^d ziN~r@>L}IJc`pHyakmQ%rn<3 zuy*Pw?0@^>7eClx%wstud@EwpK)fPvyaADy<0%U|2kioTn6?A8v(7A~Vn~>*;e9Rd zda&uy2eVEewAy^lk!}H6F4wd|KA&e@AW-i3n*gbzb{QeorNIr}Cwz zZZeH_U@Yse4CH%TU>lU^ol5#ELMU{>)CrUfQ*YSD>a?eT}}5^F6Z0a?j{ zM>GLZH!N^t9>c55BV}Kos-vVl4L!!i@TqHGoc41C`>gakNr55&{Nw}CP|IObFqYL*BvNHdC*XL2$KORY+?Xr)u=wa)m&rK)cSp+{(%5=#Ni zSt@sG7qJOkn?R2N^qe0i&K7F7=p-O2ylFxL3x+*H?*H%#l8fHr=__x%i$PU+A_YuY z0?=ayo`Ub$`daBWEh^#aRAT#<0PC_$ZfhX94;c<+Oc z&r1%RV06*mGj9x*GVF@fEnC*dZv-Sa>Gu>p!OMUmCZ@+f{W#DTZxMJFN;ihi%}q~J zLDN+Z+n(Ld`=7sbY0s_PE$FjJz5}-y^|FD*G*@&%+uU2MR{#Z|+Z;=H9Zz?j{=QT- z5fJk_d$6XhegWq}#S)RTd7ht#Z8g;80ov4TDdFs6@Js*<A6evB!}-gXF}CqHmyxHZ@sU1oS~Bd6cq(tYv~z3vNtksV;Fh7c1#+-EbVVge8`lEjWGY)1Z!G^R#OJiIKxnht87v2NBw$a?G)6m~oW6Z`gS z`ho9@jks-MxU7Ecq3$i4@-nWza?_xsJebyG3$qqn79=US3$I3nj)2-GLS9d%u><7s z082EQYyA_Q`Gp5V)n!9PGC&-Au#qxm{X3)LI3X7-xdN)XW++Rx4SveSK0HyUBAHhF z`6CjQ3=t0PWw*Ek+TR{8N1mq?a33)i7hEtRjPP~jhhZLjDoc2 zIMg1LqwSl1xT<2%;VGQ*cfv`ZDo=*i`W?~06*=DW1-#dzk|qM|BLJ>Jf<a)R;H zFa1Pus&36Cx>?bdlP4d7JCNE_D|-I`pTji|sDJqJH{ST}>!5jh4?C2C?$F5>omvFm zu%1+hp#aIp8jOJ0wGX~xQ}6D`hNeh6gs9I^7D^Y`wh@&6`(D-m-cYP2B)7nwW=#71 z6@BvH<5QoSdM<5AlDk3nttqBO=QT8fp}qNzq$nL3B-k{8#p|q#tqe+|y7A_DF9y>} zVP>kg`FP@S9IOAT)l>|0WdV`p3MrsEIE3zpqvM-R@cKuSU**!GtIfu?0Fak~2o(e2lWz3cPKH4clHnVU zb%|2pTmP+rj_od;5RarML3MC@hBGv%Mp9jNbiust&O0nlZNWFi13rZ560f)-p%SJ& zD_&=QnpGUYQ{GbDy=HGCD!N{IZ~dl5UtU%UjO(2>n*3 z;H1^!4I3D(h{ujeH@*N0ir7PRjcq2qBz1vk2x!n&Yg*FWALqGIxd1asMvW8Pd9sW zxL9}+>F%lgqE-k_g&VKGH>0lPysQ3rVVktJ8s#u(nP*g3nf(TWfQ{?i6>s*&B#Ed#HS za`vI?>UBJ7h}H|3c3uemtWZiU^lEo|_u~}Q--U$dr{+%Zm8VN$hPMF7zIt+ePvu_cg}2*|&-9iX?gOi{rhrDO zS3h$7oK){OjAni_?}mFSP#R&6HnX$LWh_M-_+j%e{QLKnMN$%c03b|S3Tf7Es7nN6 z6Lnan11|sd)z=7g@%U7m`Vz|VqMei$MNW)T740;T(^;=x+slO~9JibP2vBgLb0<`? z?6%D1;JVxgqvi4H&8gl`6S^W0l1*V#N?%QLkR`O02c+%TFz>lI2&N25?<)lmD{AgUtZkNo5|mLvqg`rH(zPpWqW#0 zMHA$sZ~P~2R=XT1K?J^hSgEyeNZ#sq^}Eih{S`cFtaimvM8r|F>K~9Bs|*n( z5Rei*njLNsTGm>$2c1LI?PF{DDc7#+b z*`FqR1XBbZunxO;!(=wWpzBfTOoFv{iLQv>I`SVI5aY!*Z**1uV|A}MXPn>QHG1A% zAgkI26UQ_g)DagE0yjlM2iF^? z*J%JteDg)OT*&Q6>BwVzR|7`&HmhY0IY6! zdX?v-K6S5t6`nr!L4>74P^qA|tB;1-GL?ItDi>T-G)@W|D!Kc= z^7-ZQIRWJ%X3d}%UAaIW)LrGKzST%__t~lx*Dr$&?3h!rbKo`V(|8%g8)-L-q5JCR zVu^5zG-?;D-#EYja+e+jmJ~)FnM_(na;!{->~7oK0c+QLwtpZR65cT1}Kn`Nu5^|1$k1@i*_lUn_`8m^+*XcV8Zo|9#Yg?&NdHw1)4a;f>Aak}mxh z6PzUZ$)jt1A@4>uZMAFSLuym?)#jY{hKAB z-<>XGb80T-@+~XEIA1|XOrF+(r`AY$#nPMX?XnXAe z9IBVQD!a7XYH?UOLO7F~@eg5rN`3QH89iYrGPIWU6tzTml(xnr-S#!=UIlW~ti3o4F`GNtWOTNS70-98gJ6 zLo4Kek7CwZu-vGVKcm3!19u@*fkUCTmrNKHB=HSaP4@jLY9>;uEd0U?dA{;3S9te7 z8O)66g9pT^l*5c5RT%LNEl&76^atl*z~IXQuVNa=a#$mLnyX+vB|Q6hgB&}Z zgcM&z3?qLDm&aqNdo6l0j6MtV_q|!Fhvd&yMbHs&tSnwIZ(%$Tb?(wTbMV*t6QOcP zUQDyxMCRWNDH<-SoFGAjrdc?{=p64bmmT9<^wYN7i9E+OLCm3c3o;KyNhev4a;9OA zJBU9#R(qRKCzi>`Wi#JkymZWhv21TM!hC;Z>{+<6#e&T?!v8(azP1d6T;y|rPOj+R zJ;)J3s-?#{J>?eduo-K?7q|)v+_b`@9X2{}-@rT^u-1Nq! z5{pmv)SfwzdNY49|1i0acNxQ&EB_(9(;++=Y|*{L6G()DA0hW?YP_ z#fgAc!OHX|i*j+jqfi0f{Z?hw+AnkQWi=r)B|OgxN?CAxr8S|qk3b#28=+5*B96Mg zk9ZCWUqdwF!t9i(Huo@ey&n!&QH*Z|)8Y?0C{E>^-0g%Y#`~5(&yNS#R8tDHnY?hH zG&=k|yy@r|4o9nPa+n`7Qg}Ahc4A)uaCaSOIE1kM*<`yo`_a!z_Wm16FZbY9>j%SIP>;ODWeK9|9wb7JdD(8I_*ZibO=s-E{cy0H z!y%lzG17O*_fwP~Ek5-N7*N=Uae`k^I z%C^iwzOWxdN}2i0@jGfHPfKKNnPXFE0`oRbj4zD0tCIh#cna*cF zay3LF#*y6hy3MCfC6%GAyJiJC4E$Mrh45BlGJAc}_jT_>xi!aYnObxosUa)_ii#VA zF1s=|Ps~N+5sLZn`5c3?p-9RCikPPP^!;IBrwwb^LJOWf1ZkYe2c2Zkou@GXqUw40 zc>GL=38~UbaW^0%8LF}+#3{I)D z09vf;$ze*kQ6EoBWv4ODGKl(lh83pdjf&n>a;eM#J=PN~x+7ca1x%2a!QFVV6>HN- z^D>25Ym={Qf!!`9BLD<{4gJBqeSyrepj$VRF(@i*j6K+yFj8y`eyqTiYBt7q~r%20Wjy6j^XRILrW7l z6&Af*4QXh(XL$kw#sGbasV8ezKyn2vkh5MO)n&dfT+CsyCpjSDC6S~LB}S(l4o7=l z2$m_O&@!cL;FS?q(gy4Oy7B_+yx;wWr-K6_Al7}AXeCZXhYx2p-}fht3?S0?z)0Iv z|I+Oer5TB_W?>`M2DM-vL1kQ2T*bY@ulJT~N2j6MfRgczo-J!TzH<`34YFC0A%++I zonW_Sh)}j^9l9*cjb<3 z9QaFM?3k&8yswUoG4Pqy&oVb3+`P;S_ye1>7!Oow_%2~$Ip~yA@GZ`-P3}|{Az81a zIc~_LS@<*|hPo(V<2@A{^Lp=XTRVDb085~8rYpnD`ABj%srFr=LuUr&0XRvef$y3~ z2=je#J8bvU2)SK%U;0;H&GZaOsXJ#qs*(UNVDYXP_OK|&f_gsfLxgGj93F$r zNS`c}JEOvfx2zbN*G6vMpCGHQ5CdrW9FP&b0Sj%$`u6DXs}GMphFPDikgR?Yi5|T% zP@?XIi~y(#1a4-Fq42oOZBWk;a*8ei%4XAHX_#8Iywl)ysmkKp!^x$KZ^`W-R}Ww! zH8|HDJdEYfj}V#lieN{}bPT^{3o7-&E`u}c(loC9-RG}%kATPg){C0G3URiqo|W{XnFK7T zeX_R!AoI=HM`$Hoj~!1y1y6rA$}v6Dks|Q)nRltxm03Qh@)X504eqT0dv;m^BH)P6 zM27BavP$L!@SVEM-@jv&{^{Ml;tZlqDFCENgMQPl8fyU=dwDJTiM4H+1n$iW z($Has@yI^3lzDPfg!^kXP{dbz?C1}4WGN)va?1F$3~u$V4B z?{-%#_2C49x zim17C)hC$Bl+;6O(GX_|0L0y8_ceaCcs`18-WfZRIO=(Ud8Ezjd%lU~te=I8IBUPT zLNYBfdhVq+R3BNxqoKCd3%5y@b;O(c50TIu_20p>3HLVHi&QRp_%B+vPKGmo&F*!v zV|ycyDU0&r4P)TxTr`|gLyqUk;aU@RvISiITkzET{4zO-9Pnbnh-jR zKAOjg&V=U5QeXU0vM8e6-dlMEoT48M$QlW+j<02nfQXzspd9QwsZB0fZG1@1(c_6Y zk6x984R$i+-#>zGzM^;D-Gr3&u-9voF8!D2+yI+#e=-_geg^a?GdfC7!S9p9j7sNfY_md6`MuX z!bg=|B1Z3D`oR6e1W)%z1lH9LHaZ`Wl`grs7@%=oi_<($tDWG)|^Ne2Ww? zc^4TSnH#Z}3Kem(1>VI?46g*=$%7e5v3Alf?SAKrpQqLH|_DQp}{I475jpGDeKTwW?{w!T&`L5CqDA#6t{t?5IBu<%%l9WL*I{y;VpZG%Qa89!OzU{C(Ct4L} zXjCz5Sq=*_-Gzbx;MvDaV{X0Cuqj!nKk7`V(c$+OFy$eZSr}4not1}+z z#(9Ug^_?ux@c%HASKF3o`|Ipxf7VefJ|S>6fk?bhIf1FteFp~?@#-bT2jH&>OOh;s ziLNOInk&=(j~c6s53=96-W_O>;VoQUH^LOcr4}9APC-2GHTgasQ$QeOzs;zfRglc_ zw)jr=f)fZKE+%#flO(WU*0X%aM@jLKK}+q3<|p6L@{DsH$~I5opy&O!xAGsULhoDM zSR(WIN!2u&3Xh?}9iLN`U^8W|mYJ#%81_^v(UC$?jdH_9XLC_z#vX-$Le@gTIH9xZ zhG1d}l&RXnqfhJs-?rr*rkooRz|(uCaY(yzq+P&GHv5Ml?s^UYNakLf<~rGf!l{ey zPuOVU=vFW~bF9K|VxIj$;oaP92;dy?qB?Qy2c;>5((MlzQlGJH|Ko31yx~x3udeiZ zq#1hvLt7S;OYnh)65{wb?Ts6AoX=82R1z+UkPV%@7{6Pi@G&y?mZ^wk1-U4zC?Q0L z{@B~F=U43ukwC@FDCWP>hq!n&6HAh5V{c|~9xKN0y&_31{c;U;0;$p$$<-RG^(iHw zK!l9S!IQnW+h~99UnmN42U`^l^RD^E$-kDr{>8R)@UhKkY_&r;%io~@aLbsoHgPIn zj<+)LQgT?~)m$eS%CQqN2W%AfU47sDC_w5h-wR-vI(7jc1~jVG$|0e0Q@iV$TJkEzjU}OJ079wn;SdXvdU0wau{|?}R;oO%A$PKu ziC?93l#C3t6~l{cSsz-xnlUb~5O4xB583w}+kQpGPAz-}@?E9Z-_d)GGkzwP2I#L! zQ~HEwQ}W-$wJ<)WA~j@axm_`ZGvF zj%N>)pWJbKDi<8m6y%~^&6HBiYgjsam|k^8gxwcHp#$f|!)q7{DHo1S-Dh90> zH`!CCBk|;l24$tG3%g+THXI!zuO=@(&`#&fq`GNJhOGL!&UsPyQ(!bfXa1lK`_c{J zwGTK4m$SPr-|v>?^$Dht5Q$Ev_LO(7KxSzqG}|c^1r@aAe8FhkY7D#UfPZez6@Pg& zIc75PCm@w@iXJcJ6=X6t^F}UTd+hP81^=aeGKnma4F5t_zr`=6u5LmOewCsy#RQ7k zz~6OD?ILBJBADblEp!*w7>cZ&nwa5F%mM4Uou**#Kpv?i^vvLtb_Jhjg36!#Tjv(} z-;L^ySTo;{THl2nWr?fRHrA1e@sU(wl2XUW@U zws@?**VEo>N6n@sjokxeBr9*>Dp#Vkxmw={8eF!8#lNupch64~%VHilKHnMMuSYoB zOee6E(#Su<{#h+roXI6 zf#Gv?W_3M_UhBc~`p}HQBp;u8U)Rf*?+uo&ufji7djc%;*6OBi7wTVF^XwZET7(eU zm8-1tQ=`KUJ{M3MK0z3=Xf-+b6PI*sV|EC2g{mi(2GF`$D!`hle90#iw`eaxyxWqk zM=Z^!&|9ElD|hbDF<&EVz|Mfchm$J0OMiIBLawr2GX#}=)T;@VjXMFD_kQ9L!IjwX z<&IlhqeIlaQJddukqM&d%dW9L>$WY7Z;Wr1Lf~CPmOnM>(4#aMZo{>FK|Pmy?5U9# z$wJB}JoDa${w8A?NlT8$_Wvs4>Fn>+SdU)(H&0~~^$u-?>Jfsv=o=>{*!IkPeD^8T ze-C)opnWd9eRsf+oM0;{Il&ip>2;~k?7@QuknO5yNM1#mN0qFadNLazRh$V=;t{E> zi*>?${r<@9s_YeUQVvt~wk^5Tyq6kGbnwBOSgj@g#VKp&D#2Q1j?OkwcNWs3W=)DJ zYEo?P^*wvDF+MJaXL$~eS1l-!W|?Z+%65Y;9?6|lV7Z{ZOztpd})No5@dlFwS@tUH3ybb{1IKv`6?+v@q1 z*hg+h%6WxDLmWPwe~P7Z@5oGGL09F8DgODFe?q{Ty>Xf=+U#l8wuu2Bns&~n@0=KQ zFX#z2-?i1x<77>zxM6IurK|Y}p+g4+Qn;n zn+x2U0dcW75K^q<=KDVP4!1lMBI5wQr*A3=Yf9giR5d19>LW_gE6-zhl-7`5KpWAE zwhhbSLL*f9;U1b{^JK@%vO5+pfImYKiUty(TTsamKb{UmokVr z9K*cv1ahyH%T1=qLZ*tviAMej$H^1C!g=1PUejfLf*k2Us9zP0mg`Kk`*qgstiAT- z$nnpnn+$qt$}xNuvr(1swa8at;tb}rPLI&jgv*dAEzc?a{x)BsSM3Q)=_=>smXA}T z(N|E$QQa}VO{J!Bd)01$QrHk6$-Z5pHxRBnZGYn}0DX#VsyYbsh(4?boIPex=JX9l zEA|h1RCpbFQFdM)C~War=PWjcz_zjqd=U=?@NWIKTQ9p3D0mx}Vw#B-J*nbYYn#2G z0(6JC*Bi|*&FCI={$_)z>N#K;L`aj2ERhz0#-eW0B~mRGnSRLnC8egIGSW4^%}C>t zfEGRFL32T_BCzYO>DVfVA&Cm{ubiVHc5@r9v9xo0s3iNp_7LxvtD#uwMUr7K2CgXs z*kFUb{#r&1&0_UINzY*-a%3jE7NLK)#dBVToFqwL)PHj(fCGXA|LOi}bR;+pW`t4$ z8Kl#x>V^3SW%0oyQJ)7ByB?}REze50a93!Y%W=-$7>1T@Epj|^3;cs8#a_O8*)75R zRCsAEzn7xvx?M1&>svq(l8#n8h&h+p79FI_t-6697`Q{OTw`> zk_}xTGDf#(rgyFAY+irxQT$V#kBp%~JMx(0dBccHv=W4rb0Yv$WYPH) zoJS@&DM((fA4SQsNjTZ^)1-e4$sByoN)~u5WOfnwV1!SUZ;-Z}ifQVuX!s<)-PH!g zr|(i|9N9y4?bQ4hJedO-vnMU7ph^Uev(Sj1{z~{znFEXLfp>Vo_PqX!0G(Ewck$Pa z`+&lJ8ByE=akk1d4+X=B$k`{NtV=P3H6f+nNR-)I;>q+v*0`hgr^5lPglc;GDyz0X z_>V)^CV;|x4eFOz|EgBk{iTsqZlwE(XLvLiM&UHdlpN!o#qF&EOJSX185h@=iF~0r9`k0-v(~*>pn7Af~VGFHBuF~7Xx+@{GQDrw(H5dNr)jeI+ zKuPn;Pl$a6ih^~s!aCaXvqpA#^LhPs)ovNj=aLrElFE_$xgHa)b#AHzEQS#6|T)8k4Sd2V%xM#uM~+xNZR zdIb`Nb4TWVzn{@*h<^S%UvbjBW__|h>GIFhRz7%oxz;u=^u8w>bf%e{3p&fqm0S1k z;&0D0UC%D^)q(i@FyrY68Ij563Gfh>v7W0pk|GrD_>hG~Vb8442QptDKi84PLhSF< z%O2oZS?UkjA(pB>#`Ez(;AIZRtQb~JB^?;CeMYpp-O-Wv!=Hd-t$nwx2gHh2u%}f$ zi9MOseAK6BXRx!P6M@<*+EuGEMC0fQ==?D+xUIv#M-3U^e0^mNF6O0-;odmnUO7sfJ<&~8g zxYVT=y<&v^YIA*c7Cg|Vkn34;qlJLRWZB!3X$p{=RkU?Q=L{%lt9)kZxrPBQBgLS5 z9;HICPxsfa8K|!Ty$(WBoi|Ougk4X2ic3sT?riy|@IxX^|I=_LB^VZda29E33rEDZ!;{Oj**B#B~8@6@mwu{#6uxoUvSrjosOYJ?1*50e; zt3y$%Rw=b&@7kLxsbDa0h`;7a(?rWGN4PB7zITWXi z2Ys4w(kD=h0jT4+MHb5#bOovY`SYJOYjHUNxIeBWb|@}##?rNp>=Ba@^d_Ud$)Z{3 z0lvhQsL;q{^zL$&*a7KNCvY#Z2F@H%8#plUVRo7*-=i_HGP&;CK~JDZ+W*?mka!Nh z>}>--w+dM*uW;aZL7pn+0n@+UUU>Se#R!nK7))r8PK7NS2t(F5i3^RgE<>W{bvau>QU%VCW>OY)D)}tDD2|j)h^>o0(>E%Pjk52vG zvvK4^xV&y1bbPZ!E$`ppfvn`nDVRJj*r{NkOeQ2{^kTo8<*$5gMVA5hT)qZLvlN&J z6i``suj)2Mvu@3EIQIT|LfK+wFxEt-6*2~ZKK|EmjQzoapgqXK^d@=cfQ?HyEDFN^ zW^Z>nxOwVA2s=XMSE;A{s)m>K%yJL_;0eO`izF5VHu@Fm+^*AZqcbi=x?(L_>4S^^ zIOyaD)Bi7K6+~{Ek_f=*1m~Ce;0Kz_ftST*)2wL{mo>es!X# z4NaVi3YYU+|NT;W+x&S2*g24iqUs1uvWJ%+K&1gGOGs`7bvjaMtFfM!N!XvhWad;Y z|KS}`f8b>_DX+Le^D09|qO1(}h#QWdvt>8fC;6~!QT`tmWEKG7bei@m<9ImfLX1~h zEN0a8zD%@Xe9Aq0{gSNJg|wXCH7a5|D9A&vCi zoXAEs`)+`pijxx)70o4w=#oQ+xz>os+vDWD+Q(mTSRn~SN1%1uAI>C>Kz~Xs2oBv# zN8&tCnz-v2Ifn%8c~E9#b8MvMAH2+r|cSr-4ce#?dlZs>d1k?M1*;?M~OB|2Xx7)pK7xTxP&os z9v1+w`sHm`zbC-R#oPy4zSO$=PBAq|g7GLJA)`PJ>W+)gCDY2JaZexOLP8{gaE8a= zC9l8cd2qvOV3|^~kHyos7%b0Ro_S(s$J^@yg>!5&`~Z~d`w4rQHD?Boj6v%P)JO24 zogKITf}aQjWWQG+FyzMvin5G?aGww6I_r*CgJVM>bDhJZyqLVi|1bOz+O0n)kX+&U z8Iq5y*e$fBN0oS9%mVgiK%)c<58WoJxGmDay^OntDy)C?@&)whqgT)!FqZUu9d^(y zSxcBCFzSJT1d{>=REEK-eo>M%AQ$hRKSNdF$-j3kZHqX!IsB*HUt{4TgpHGvZR2k8 zyR%Qemdrg4@8`X&@*fzlx6h{nCDebRiUtF3s$ z6i}#{t`Yy1jC>#ozo0>~_kIGVLzyCJo>(O3qg!w(+{o<{*3B&*4yujIs~M$?1b3iF z&%4uxQ>~`CxC5kFPk;@KbT$L(o-!0;9}OmijmL^u`fb0w(Bzk~x$E^C4k;_3S+NJs z_aL>38-DwCH~Sk9n@n6K+tVVENW_3`wb9mGdpr7JUYqg)&Jg`DG}B@oNsSBI3~ZO2S%=ZcawULIyYAcdBfiFCg?bvex>WJGR-+6 z7*4qMOX&Y%O&qK!FyN?G+m>E3gb#(am5O$AW%U5 zm(WMPS>{MY-2R{<&DsEQbHEFo9k%||)jxr2tzjuV+lH;0op|~w+>4GM}9*kRSiP{h;Xnt&xK@H z5&9_ayTYbIX3`5v87|6H=(-Wp(;vVptRF*tZ5CJV4^n2;0y!^nFOy^{;@7K=jZbcY z#n-&}#nigYErJAcWMMe|+j-e6TpO+xAK89*xfPoyGTPPkjvUp#k6jKku^{2cYl8{? zWFM+w*4dqNt?POfL&|R>&oO8c7zBqqX*z@Kj1*h#Wl>b&Ft|*9dQiOTGwF%q#2qg zfAFhI{%3Q?4i$mpZiovK3@q$`HDx_dJ40(%zK66Sr>6L=h}lC6Uf{7NlQwK4mBLC1 zTv{}M+MYChR~aHF9-hvU z2e!3axbq{-vFNG?v5w%J{S%oXo*PSwIIh_!aD^1eWcY;G3n9yG1=rz!1P^O;Cc)Cs zz!ps&wEh*t=p#SPOK9_PwfDbR(7+yvSE{s>L;n~FyG^?JlY>c5o6n#FuOPMR_RU4` z)&t1MS+&jED~hckI4DP{qA2VoHS(B2i=^-{Tv!T>RJ_-Be_B+7uwx=5S7Z+q;i6%! zlSW%sNd0wSN7Ucl7GVMW`T9Y`A4bwv2~?FrfU6YOzYc(}WG=IlDeD@aLeGAvBd=v8 zZv*>DhdRMJw;d0)4|-Y;lg-{YUU(|!6xC!(Wa9iPg6$)2H2F(s0kN1w*?mP{z>5Nt z9H0hqfBVW81W1mre)$eS$>X~)mB|?CE-=Vw1FobcZfpsfok^vh?s8&r{ldoSx|h=~ zM2S5Q7p81B#m#LmTA?wcr0_wFv^28DP#x&C;WW@ zTaTEyd%%pi1nZs$ zt&;<8pKYUb1~&ae$x2*jhajOubo<7x7HY4Hqx;s)pu<=((POvNMJ!ck6Z+vmG8bX1 zov5Z6;}%U-gE0LJ3jf*ICu3UW9h!lZ+^Z>+VWZK@vW?tN{Xx~Plwq^yO1t`3gsE&b zgUV#>J`hKvFM$;nw_nFhkn~5Ibfl1Yf)_4-2#i+Q=^XxIeR3JDLV0XgF~qrDxk|L^>jw6ypypiS;e<4EE%+bPcR#;(84=g@rM>_@2d zU%7V&gm0~Vhbo-+TqRD~u{YiaYiyP;!(~{Fxt^hQQYEf^%}IxFCbDH!s5Zd{z*6HP zH-O7fRx?<0N-@>sgHY&Z?N7kUivKcP(w6w~b`UBsU_K-xv z6c_R}2571nCBeKDm^@xQaQ_#&4#tT)H5_IWq5O3(X^?M=$SP%OHUw^D`{kvO1IrTA zeu-d1*MK!C_R1s2{1!aQYy~Lao=Tczf&?pa4Z=*l0S$D@C^lh{%` z27cXPO;JcT&S4-lR@$3E0pmLHxxZ$=1|vIE>kS`%931o1)E8wNBDV|TCx^b^XrQ3n z9IjUf?A7d#?I%^A&!8Pv*y_U`(O+5{mOH8KZ(cY>T3c1Fj#T0uHm8@V+zFWdUVOjj zUY`y7)_#Vrxk=B>rXT?j(>KTtHrXu^z#Ruvk;97uqOt7ZQ2&;VkWE;@zM-H4bAgh= zO{G-qZ;Ov$ou9)!Om8r(0hHIlKN+lPVuAq87@}-^8oU^ivE=>@kBeDq)0Aq1jeo4vm&;{#m{uOS`uLD zjk8`ud#R8QTiMGcx?lU*)iDWN1cFek{q#0Y{3sm2%u5XscJ^x;WKGjh3{cdqq{JaB zd}AH&rw_-pCOnm9$~k%1h42=p97TNok|Q%4&Qusj^u=O>E z=ORsB&qd6d0GbuyJ-X6vPi;@1nF|Ry24N?8kkVECd0`q}S!pQZPryT5?o2)o;3T5E z!_bF{38|{KwfmTYbv&V<<*HFFAQ%JD0C7IK*{iPyDm;d&2S_RHx;0%oWSrC+T!2!8 z??4G1JowRNh?el0{dk{XfdThW5H>c}HDblPY`MjNtw=oM6#y$Cq(v~Hcz5|K6)@t=Lx z8Jj&yh8q|Eh>YEHJSQ5jw$VCw7+UqT{O;+d4oDMf)+Fujc;dG*BK$IcF`meZSidiC zOF1T%u!F>Uch>`q$gA~01l;>$9YfGi0IAAwKe<);V=lIIiMMl{dK4FgVgaQ{Imj_$ zl*Z834~261?;Qbu3c!b++Zmz0Z?$6jbPR6ss5sb_Pe=XqjfcSB^->AhKun(c3G@;> z%H6raPOMC_b`@`N`|kR?yA~i*YlFDj3&KXc zNUpfGb?IOfXbz=j$$TNG&27LHyEn&~f&)@SpjHTdp~(uUCMN}X|F+pTc43~9PG!Gg zKYS1(fmC#tLjQ?JcxrTLBk^q&V8i1yU#7NwWqnMz2UF<=qr8aaZ-v&%gy*eaXt?@z;+Xli0>MdS%10$~6>?wU=390*BC4|apt`n#CTPEKm!Y6EM~jNNSk(pV+q9m9as$gVx7**FCNzn4|O|1U@Y>8UuqIL`kX; zk`@?-CaNKl?*Rwe+e<$o-8LgIEV3?fmksJ+kdk;;@jCvZB}Ksz70Z<+*x4DCBLyp~k&54DBFqe+3JZEUe7G^;o2q5S}) z4$x~>b6XwV#E0X~PELWWF!E`i-3MuT;yQq^i~@4S(b(Wt6>WD;yeYW_2bR(_oUF*Yxow&giB0XV zH{#LJ{-zK<;>}bOa<@jVh0|hrhLt+(DwPNdg%Jf8==Hb6ESW0DCv%5u8t@@T*GJ|^ z9t-iBgkSxSG+1K|%Rw{-c?9PynRsUEH9I0%&1_ZR2?AH=2aG}QP04+REcAZS66QDp z^~sZ3RBWvN$+nd8r6LfiEYqG>Eh%?nG#tYDl(cTki%1O~HM~*k27{j%_I&16#;B(v zGrt_D#vVjqT90DHkN&s;*6OF5{+#oBjl-B)d-HlXn{g05hk z{5A~z<602*IJWQJkP$B%0zmCXxa~>!BJyh;F*c#LO0FEp+{xZ(4cQMLJ+3ztjBo+& zf*;c!nX9>$0u;lA)QoIB>01>QZ%Enf);Q5Tw6j)2YX z^&3Qg8w5Ht6A10NXMgwnG7NDD6aD3HO{MuFtTX!!RAWx4$ZI40GV`DJJsxGayg>@+ zboV9&r`v5ki zov7T{(Aqkawg3As8|ug~IJ_-!CCH`hX9xY6cgBE9+r|RcI0oRRUebs4;>^Ihp0aqP z@A@-NY%qm=%l)!TDChYH+AXyf2986s@VXD>tq)N-n>)q)xGM89A}`z zNv8^=E8SXg@=5;%dYucE1@o1iYFmH?D-B#%;BZpWS-_i&F_dvK2#-K>gV$~`k=2w~w ztYQxu@Yq0U+WR^v1Aq8+RE2C)`CJLB>EZh726l-Y1Vo0W*DTqIu8e4X@Uf3bzALYQ z5e_gj^Z^XJ>p5$arpV}dhfF)+Qa3+;l2^B$ZVa%!ZkFqO4fE>dUEgf{lRpa_y&i5^ z@sG2BfHY7~u7NsKU}GEzjcp<7C&{L5Z}8QzZ*V=gBV{j{OITJMXtjh+kTAy%*FK!> z0F8(C>Y^F8bZrp0eQo!wl3u>XxJ}<~=7v|y-8CJ%jsDfbg`dDWJry@&@A(~&^Jt~@ zA~g`h(aFqe`txHI-}|39W(3l=wn!y+$5c#> zi@%t~mUeID1S_4o5Quu}5SE5nOosr=SkCVV2KN6ThNKrk?(B>Ek%ZJ0#M9?iZ|_rz z|KxY(thGZ)&{U!!IRUo0kZ+jF&t61%>PO2tptQM%Ak{kng3j0!u8PzKFikUqw@q-2~zoV>PmTm7sxsl zav$#?_IdxBA~xS}{b}G$xz~@(P?UoTzf8A2=6$kxPU}Q3li*$4^pjQ7meBtlDpw`z z=Dk|B2G~Z>uZ%&sD%g8{Rm5~du2T7JoS#sV@S2mx+T`M1D1b~mtw(py2{VBjT!f8d z@aC_Xz3-qXNd*zgox3(b8tF{c)Ay1JxzS>X#q_9nuP)_$c(2&B7~LasbU{|Y^CVjl zKapn61;=CA+s7c;#sUby(KYSg3nKrT-&rjNqs<--tdp=DtbPIE@YXOC?p5?}1!2?! zyb{j5n0Z&fTKAp?*_t^FLK>>5rltXqMSkC&NptKfTFLcXnw5!NrBQYuvyV6Pdvy%i~n8KU12aH8i|sgdb@K;)o^6?=lPh1h%A z<6JVk)NIp>`H5jJFvl>Ky?48P#CP9s`tonI!F}{7(t#Mg z_+@gW><`*j{!P}SfAQ%3>lrb%s=!D{-_IT^qxVSJHu;;^KW!}#nVn^FO~)@OvUX-e zslxmD!tWU_{~O-IAdT#dwz*~u)TD^D9;e3ddjlxQC*YUzd3q#ev-_SN|BEZgW2p)T z0-kew5VU*7pf$E=#ZbP6f|i4pV`Il7Gm=M$z5i)9#B3}m275OHQX5-Aw70nnJqi=T z2Xu|u1;J@IH?EPkUBl4Y-p#ccv)k0w;xcnVx5@!!?hO~-QW64>V)w25gB{3Ypr=0C zM~Ho)%z6OI>CqT4gUFbWnWa~ce(4!QT&U~u9$)}DjfwBS#$KPw*yx^+KYk@Ou~5YR zqwYIxP_6HRwmN-lLWwCCxzOBAlVO;u^wkD}-U9aKCImDt%v{C|&hH1F9M5Th)UXAJ z>H~O(AfWQn;^Shke);&V%stXe?2@@cP$lbxdR_~=wJ}cw2k;hBbx_W1--E-4<}w=F zO0&-wk26G~BUfE?L5H!W$vHBIIF6qA%GznsgVzwua zAxQ*x2=0)lDO&LICBYMwpM$!I?+4-~sQ4+uB$@@m94x}xe|qpUc{!_;ts6X|AG6^R zuh=fV-Ud29p!8=Yp#H=@JbuQ4h?imxkT-PZ#cTHrZjwpn4ukBl%`%Xr)C-&u$uIBT zlY{xQOfI2zX+0b3O>4%u@W6({U*4I%wc>rBpvmfD%E{v#4ku1L1nks^H@ftjCQ_5T z`&%pNBb6@4;s8_$GEfrR?U8owB4x~89!CtM-3FcqlC8@-FZ}n^Gnmoi%J$&KTB~-I z29DjM$56$#GgQ}j{%lQ=9anA=0Tb}L5$@HaTW46a1qPUE@gS^&w5@G_VfDI5Xj_ZO z-|=r#HvWwsPz=&0|0HcELQ)Z13qo~s{fa-b%L-NztG+=5K5Ar!qjlYTl2lyXOatKWZIJT*t+!0kAsvt*5dR1}C z{?%{%()PSz5%O&WEwyua#xF_Y=|Lx`e|N*oVI3y&%F}c}6rXULA$~^I>z97hBaGSh z72&VCx&nrR>r{oD!9Gt|h1*9p?WTG2!Q`=zXPxR@F8&vdD^XcDmU*?;-tHigO>1BBHpk6@0T|=kN1+@r#PBgmy&3L zm47&=s~7MhTOnS0(2z=v0d*}|{1)$pcXt#Z;*$4A+kk6d)ej)a9bng?jIG8|4n_!% z)-w|#=%&LmEW-WJK;(OCb++rvsr^AJ;j^Uz%y6|XaN*xCIrk~v zGfMW~TNN(2>turlZ@CH6&vB(AVM#)$|LDCENE8eyLP@?R^BotnSg%YLRQ?6Nuw4EC z>2;=5YXlPtE2#t>2mi5(XGXKkdkpi8;Gua(X-sBIM$cT_@A~c$)o1?3DJsr=xqVJ> zwRiP9m%jv88H?SFpU-|)nde%}W6r@cu&a1_*cbC_I9$Oz>bN~nKYzX#)5t8F4)Iy6 zR$&2`lIr5J+4+L~KF!%Y2tP2#6x8ySK9@0`>~LQkj|LV_VZ2CZaaka6vPSJ67DmOH zV_R~8rKcI*BIR~rH)67MHzDAET?5tIi|H-{Y-^+8@$UF+R?FQ8BB|bYZr6EqoOEbm zFs%4*_RerbHSQMwDSC)S;o8lp)2F^WWxq2z?e(=SaZ+2~D0Cn;u_}90PvOSJi#FR` zmF!h)+uSBqWkC?6iZiYfG^u)_US~1T^Y(nirwTy!_ZpDd_RQt-FYB!pPOtT}pJQl6 zAd~KXok)KbG^};>@OvtZ#+@4QPp-k}8voP89qW@Gb1WkJ>X z0p@7iJlyK=_zuH9?+~>`rjIZtw$F09ae~bXcI7gau30tZ3MPfIO#hZ~S>jwI|IfWJ zZC}#fOxLvwZ$esfuZ?e=qGtB~5W;XPHBSxu*dGy~8&|Mi`^>w#xJ7!|N0?1eO*HFX zgoezmeepY`7hLHHP)_%-r<&&KAz> z{uop59EWKo-a)nk5fQVIH0%0S0!+Ndd5btO(Bs}xex2eYbd|L&Wq5RF*iy7^VyB+O zewt#Y(k-#&K@=Xa@*|l)X@(l}&zA%x9kv4t^&nLkLG4W<%(b5N7p5O^e!8C$EjNm$ zE(rgi{2&#@+?L?Ya^VelAdVT_=|*}~`lErTUIe+p1%!syy9+oXiB_5m75-^8!?-H z$%enf$!_0VNAWBbBjqCjWOHSx#=4pKU;^4*t96()GyK-u$-m!XxgSyhuYVdnO|NE^ z{q(@oGjFpI^hE~tu4cc>9jdlW(-a)Xc-lJl5}G|a zx_!=z!BdTAr44m+bbrQfiF7Ja3F(6$)zXKTkarn@;t*Ufml%M1bq~zs&L^O$!*pDP z7@Q#K$Wl>!oO18!`md6Tq0oK==!A@y6PcR=!+hz+nV%o zYyV2daB1fCVO~adZrGROcd zl|2n}d|oFR$H*D#Zsd;gkFN6(mMMk#)@5tXep^V&5bnI{O&VyEwr80UG4N3UiZTxe`^2Aez% zXurrwUIxn{ZEk9^?DQE#$4?7sX8vWq)0+{(7v9V;x8`MXAswTb!f96yMY{PK=^>f$ zH_~TUtNYrFNd>u z^O&otlYem-RsNy;a{ls9UedlyY1RhKat1oxi9h+L46+&dqjRt8SG9^u!WUREtQjxM&TJinJQZs)K0CI5FaVXo!Av>8z2(H5@*~H%t=l1aX@6UT z9g`Hby$$!$y1F}Wdw%}v>+YoocYSTt3aMlLRcX&Ys&hL1Z`i9)%-HRhG$j2N@B3KP zuv^9V5p&mq%PQg$A~bJgC@+sQaMh)9O6!HFVufDLm|4_clL(GOzufF@9%g=c650<{ z2y^vej#esSJY|-<@3J~nFCC@hWqjeZrSFHgx0vNc4ao*OsVy@8n!VvSR99ELW9g6ZEl7_PrJ&krleo!EX{GR0M(!$NMC~YOEamjJ z60dV3D_Rd7;ux8u+dY|nvl@1_@rwrC9HagjbnqQ!3RN#&A0Z#x*!rxrt@2fM-l1%} zRfIeAesa^yz)xmp@>EOX%GtIF6Xc3@-e=ySEU$rJbjU{6qtTpk$T#b)(k~QYaNn4b z-uhvKJJIdPeJGUVHppiNG07C6NgfuIVw^=``gz|nlcO$*!1_u5l^kWnCWESgrh&cMzrjT#G z_=&ZJ7viVx@ zZ6$x}l0U1rlvKVT`077i6pg@4GRWL++qQNpp51>?B59gv_sxnv-M{okryhVkC$H*? ztYSLr!Ro#^M)QX(t!g_KkYX9xs$f0*EhYq8xb`fh{w}) zoh&-@2BbV6;kVgfjy+j^_SOf}Id-pFkI!-fqb13{U(d=vR=Ds!Qh@RFrUtK5OdXd$ z-%Go*Qifi0y~?TRa1aY(tEstOBuC69RIH*cAm8{;nbvHtm~5&k23PvzaeLB1~V^}D?H-k+kt_(L=? zqheu4;o-NEbt7CnftRkU{ntXZ$#fs#xOAAST_vJ&RM>*8+}S5xg}c54CQhjpa(iD9 z*Yb^}M6Y*rEANzUPNYWGB-`OLE$Bu|5;~;EO-moaKxGKhdSjziN9FTqEk&obW+!|N z%pktv_q|ps8djqDE8M3;R5Y=#&0b8SF-PpGcbLB&N2=WI)zP|2;6bw9F6EUP)Q>P{ z?V=DWqL&Gx)kU0fj>yDddw3B)N5^Pn%6cl2&>FX}HVuWwMIoJle)pysnr?h&^VQB0 zj&0?o`d496N_`TTTmEajT+DdT!SivBuBBa->kDuF7F%xrkS$ZNhcYg{3QCm9%ARj6 z+Pd~u6Z56evEvSF3_}=&B31|(iL|ch9sY${L zyd(^>WWS00=b(ccd~(tv$jCf z!>jp~qvz6coPA$s*S_WQe}@G={kW2{Eq!kMyeguaKHYAfA1ZV0$X2_Zc0(jGzxgBK#^0c z#9>zgi@ll=L9`_7|9bm%Dm_K|{`JToFW%t?3z-X(F136O6wvl!VJjA09LU_<7)Is5 z2%$GFcyvUpLZLQb?c7i4K&;oLe~T-gv{H#i-m;iT>d)4@Bwzj{7I_ZB43718AHVUs z8-z?p@Zn(Nj%S*81ZxE%_3ubKH;Gu;uye7INiK_W%14ue&KD(rETS=o(SzihY+5cP7He%*(_ zZ}~iUzqM_7h5)cCuW2*lu{R?;PPg#ps$t)A=pyc%Jw;u>AXf082Gk2@y_w%C;S$A8 zQ}loSc=21UvKcp3?0BQbx=P-LREyknNoq?1SCdMTuTsuPKX;W?l-Re~e_PIc0o;VkRV(k2e##4C5!5w5x8_eD6F;WYo(ZLh`t{+mdSHC< z-0en?iZ~iGglCdSZ~3S;!XB4EKm?cFP-KCGr^J)ctREcb-9DtGFo+m*oH-*NVeVqr zZ4X(5U7Xx~wOwDm!sVZ}WlAxA5qhEH=KN?1$An{>5TIeAveq0w$dwI{*F&%xMQFeX zX^Aj7PbYs>b4`cnmuP!I#}%#kDgd9MD5@l-*+2Q><`Aun`1cmBLq(|u_4wY?O& z$l$R^kllXOnh3*fg;Cc~F-4E^Ntfy-ztZM=^yh4OK>%aa6XkOgjG1Y9JlI5aM;B*wGEbaAbxb{MU=-{X@cuCw{rBo zkjnZgipxLV@kGpy_2(62GHgvXzC-Xf6>o4gjnD)cdI&D&jHZa+r<~&`{hs>0SOa*| zyqK|*>s`3_* z`vy23^o5tI%`WZ@Umn`o>JSL@{d&naL$bJYb%I^vD0kKZ;%+i7`nECtdlP>Rb#dJ| zM=y9gZmeG^$EzCy9?F3A&nqA2ixl%2)tBB(T~vuvqCI;;h=)snTqOzp@i)_R)6wG< z86AC!x9VRtrbpUxH*Jtm_N(+oGRTs&-?TS=Zm%6HjuzfC{&+3tAk{ZpUm#15A3Wjn znu#Xh-Khutz3#5%@hDMs%Tz*L}84)+p(tfdCGgML_>q~Q02CSPe zqDcTy=rW`NB_sIrO4&Fe-F8kQp*toPrFXjHOP89WN7FDvkk@;TmFSm^Ph+|=LLLHEu~)lDgtBn_$z9;2T+OVb-hXo%9Po_WChzVH&eo#X0ILI)zm@vc!M zG`fIfkn!3wEu|*4J_4Xc1ZMlz-kwf2ZOB{3r{KWynJ`{~1zq0MphG%vd(a0Qpybt9 zbeql_@OC@+*EVEH=Po#Y0vC&Bu+CZVd=Zkn4R*#Ft{g1;uN(Ltnm1Xo2)}Y?7-Jrv zKia18^gR`q<`q1O21Pnv#rIAG2lP4#&4YWawbt?tgPF}eOt zZwnfLaEk>N>l75j@3|IxBYCV~#U+fG9bNYK1?z5Ohjo{Ee8L!d){RXgpnU;`4<%82 z<@XouoF6=4lJ-ev`Pw`(zwe3F67W?(jZ!P)y^Aw?y;)NJ`)H5kY47sr#6At%cxE{1 zH-N-=NGLhU>BnmNG}HfFtu0YV<_h3Kp1)Kig<02mzZjhvE1!CXp4mpz>qf(J(TGW) zmoi&0U-9c+tFXzxA1xFiT3Rh3&v=v!a!Z3Qx~xvPo|oC65l_scLfk>48dDTtalL=t z7Q=2C1XMrh$q(K1W>C0mc-4)YRnUhwRVcd|Er5gJ5>6PEw8}GBGFR}z@z+W^us7io z{-qp_mrLA6zhuh}NSkhbI1j3Snev~bH5(D?G$+t<5KzYhPvdU^@g?p_n+H=);7Ks}T zI{4n;A4|d#+6q}ll`qp&8+~5ot2Q z-*L%mUS(<#(7S67uLz0Z{11ZYQEOLsGynALc8P}#T6y14EBl6uy!3T3F&p6Bdi-WV zLn`@eUtcLqZ|OIKkC%#qd;9MDC((iL2&(1ErB`Qs*j#t~%fNqB&I6%Q>LlD|z2*q# zeyry0b>>U=7r(B#u~X|^Q^YqVMZY|;eoEJNrxg0cuvBTx-Oq=Xcurer61D7tT%l)Nm+Qv-eiAJn4UW z1)AJY%S@MXUPb8hSyoH0Y)xdB!f@mLD>jOE*3-(K@t?hFgVtJ?{cIs2Mr9H^y0qfm zZaMq&>J`mVKbeZI+Yz%mTlE#bpSUgnSmsO-3|a{5qzKvLwSBH;jwWVk9h!*>otKUg zpHDC2b(?N(-svuD|Il!=0T%SM>Eq1A6vT8U9d%8RWy$3^lRcnqbVmGBu731v1Z>7u zXN&-rzYQ#vRX>~YRT}MG0~drVcazugZWB|YSdG=E%yC*J1IMv37c7jXUbJ;A3FcaL z=u9(i0{WvR3<=XcmQ!vd`5=sYq4zScl^u;IGfR?!%iLnGmG3;*Z65@p`5KNpWQb|%^c*8 zdfw8G(mTb-S@z>ZtH|)#M;_>&y+|+N6x+HQwgP9csL8o~o+7ZRfDJObf6h}S{~gxW zs|(|X_&u+7dYQX>zTYDD2b6p)pygO~<97IZU4zR$%$FOfvt+vEUz{pf_`vA7cSGCY zJI}~exgvid787UkJu=tJoZQnc`;K8>=;w#n?`Dz8xCOfR2EIfNS}hx69YButP?k4- zHtKE$zw(^hzeJ`c$%aL5RR)P`DjDpt`60i7R9J~$YkcMF$R9HTi7mw&1piCm&fTQXBIvOFsL``w>YXdK?r91a*&v$=PUijA^Zo3Rgcs2h z24mrK?X?WsBp2YZD~jkqhAK@xk)B%ZQe$(@OZ`qMjV~)Bx zJ!qw;~CqIvA}1s?^9{(-#U!&3PskZW2l@ZEJi0dZGI*Mn+g>nj0t#ezOdfH22g9aD%<}?BjwA;NE-A zC$l7cF-$h@1Pdk$SfdN6Y*elkf~!!epu5mVZv)C1!kQh-^R7Go_kCwmo{WdtK3CFF zJ#ViXR8I^%xMnKj%eP6bHS2?l>oUakLKi>;Q5XY6vY?}Q9I_!J3^`x^8>`k0n$Bh1 zEUN&^AMkK?x|ed-YM=3)Z8@Gcng}jERsEiu@963*5U7ar`O@9FQXam+lZfW1~ zrR5Z@0b5d=!8@*qa;HpKY)cK#q9=45 zzFD;Mb#!8{13-)1o)X}CdaXzMu73jKCEws1DINJiO6%47ORJHQNT<$X8r*4!;?qE1XUoa#+*4ZkVh-ry zL}{-Ye12v;cd1P6wMFQmr(g#`^5%zfwU%5Lmr6Z>vxd%yFNM)tZ#xhHGt9HRD_o#1 zK@2aZ&-MTCE~$Thyn9X%EJO3P_)V$WNl~EVWeGj{@ zct_Tq<~|7`*x$xu4+~vac)I65tMe{RjZW`?OYokz>S^JW@29FnB|;s(+IfY@Alqjx zB3N=LK^ew|2rpCFaPPe%w`6d{f7n@}V(sCg@NxT_9H_vI6DW5vd*8j49u_*?zb$JV z4bW$TtY$f^-YZ!C+rm{X7j!W_%DZjGh`zOZ9ST8iW)vW_-h0)XxvG1vJ}!=KHHmQX zmDrv7k#pFSYGt^k0YJ->wat4CPA^@$`tcve`0m~0owW@%ukN1xWQs#Ko6p)Q*CO9I zeXUO2NXX2mf|wrsz+0bAqlVtTiiT+THyq%q8xxi;$jac6eWvMSbBZm~D`onAJ)g@tYduck z^MT>xPrTa_Iw4J{L1Wkh#wL3pxxheF3f`Z2e z>Ny{%^zdGn43b3Hy9b~S0LVnE+b;K>g6z};%^Ly*$}`79dfKGkmG!Le4mDZq^p7z# ztV9Kx-jf#LlHtzF6z6KRJtMz}ICK2(c3k`*_@V$v<7&RsvhhUUFTl!Ft^{UbVfxm$ zE`x&NWD5a*`%kUbR?{kHl84ktuLY5+^1re?Mw>LM(p!t(P2G~=5O#3qr4dzAQWc)E zPb3B)NZQs4)uXSkMbm@AIM}3(JXP2#UNa;N-+M&-bFb7>BCTA4 z;r z+Bcb*iliFm(Xn1_BU5m0Jh4i7Q(~5)R{NXL(u26`oY5*GDIu(y?5|hbL^@QYH5Z$| z3j`V%hH^7JaPRqklI43_9bgLJVhi`?Wf*7F%RwNc8u%FdGv?btFQ;zfTbrO)EIgnV zeqbUa%#AFGE`Jvc9WS?{7GOFh>|zDd5wipR<3o!xaI85R;MEeleRzwV%_;f`wp*ad znemNrR58od&&0ixRf{h2i%6NmC3fY`%lN$x^E+5uoaqIA6`*j_YZ74FQH2Zr7j?jXABIcabjChy7$HhXZCy; zqlLs;4m+Pyd`q{DS-*SgF1HBXHo-+~j7fiK*Ohv~t@a|hT6T4jjq!z~n|m0K{=M6y z)kBEao~skqrkCnQ{ZMjP)gE^Wom~J`{slHHQa=I%0C%U_1rA@<Lz zdJU-+JuX#_cv*7h=}YMZG>q`fJHbffM3@hKM7a^e^`p=o(Y9JSV&%)tVO5hY310)q zg>k~J(XN>bL7(reskH00zcEiboVPLLwXGahxLUvJODX?Y)#q<$s%>pcHwNa^{A>rG zpL2Km3&0Iy8*iVtZDET7IP!qG6y+-P2zNVXOw4-pe8BDyqt1C7kM}<_C1U$l0Tu+W zOsxa67Cl6>c|kQ7-ocj7%^SVU5LBPbK`&7`U#L_k71KUz9Pkdy;RcXxw`(%mWD-EW_J|NkHFjqw=gs`p+ze7n|~ zYtFgPVnXE|KCL`66a0av(0Y_MYlnu-tq~FIz!W?kyXo*p zh?q*pMYg@>?(srS$*aN`1He5!59_wS(}KfNp{1!dvt$n0e+U`$+w${DjUk@;y0x7X zCw%1t#-2WOtR==WWv!k_e@{z9h$bscu>)OPagoj<*tWcqqN=_O%i2H+i}T%S-Yy`U zQ>yGR3JDuJmup>lSTa`}d04TM4h#o=UaG|8Zi)om?2(}>PrU8yUnZZn(|96+%Wd2) zn>S$TPz>>kDNC^=!(RPTh;*|KNKgwRv$QBT4WWtfR1XyJATCT6#}=xgb2V%Hl$)tP z>o}LP=BD(bKo_-XPf|=eLP@i?BLG2pE^+#0b-o5vHd(*K3E7EJ)i6;Uv(^r0I?XD( z+o~XF@;U2k^luqjIQsQ~=kPpdbGQ3WSaj`741pm22+**@@6}%TCoKzB>m-N*ZQ8pj ze41$H@0!htOmeqR-^mv=06!=P7c4@bk1U+`{Fpz@3Tqy+2;N6hW#whqsoOkV9Yc1- z2ccJ9I?if>-_mUGh_7#6tLu=svNiOxcvs$u{T$4CCS^?mN2!tL7ttC3bqNi)R>qAx zzO8t^C=E@CCh=$@bgp`-F#-V3iX}ze3H}L~;a~(g484ykBr~RrB6SJ?R>Qx=%&BSh z4y+-0eXbQweaE063m>VN*V4lprOuD0E5i3m>nWkx#T8|{rpwr}sl{(jt{|KQ2b_G`ZCTP}pTX{a${K3+(f*cAgk2DO| z?0e9QoaT2A5BVzxy|nJQ@ux`yUROhynpY#*gTGun%C9U8^@s%^OEL#Cpkt}#lz zAfg(38y`&bUz4#Ns@rc%0EnRJzAD~B`Yfw^gSR8Y%<1ajuUTY-i6 zDI_Y4a+)fR3!QqD(nUaa_lWEk`7K18nEU4m=+YfQiym?3spvItw*CwnE#Q-2Et^@b zU!VDySv;vH?#a5+z7&^W+EgUS`VjZF)?Dl)MPMErjgrFbyStX$9gx$Pg@ZRPXV>dY z%b0870yWN0lE)DMQ4elr3yoo7# zn@nnFuU(Y9hF}NiK9*}Vv)$D;mH`TU^g%CA{azbyJikDWj`}&sCoT`% zH4UECB8GBp)k5cZubk*GxuDRqo@jp0yk(2&*lCq_Rnxs4Z)2;xxFU46aEWVmx)m@V1kF+jywD_^nKP_-4%lVDT{S}+W)^~mm7;qP zRRj!Xl^}&048y!{;iLF-6s-P~38tN0*U@9f~KOGD+MKl@<2T%K)dnz|%j%-s-9 zU-sTX3w81o$`B^OKU#Lhm}Ck)QM+ZLNzQg<7F~TKS=cz$YZk_es2T%^W*!_m5fpBAKH=wXWkB<+5=oZ^fS{j~!(jB-MW zW}%FmfRJEBAUNs*xs}YdjWeg{c{3wfk}7VQau#0>6a&oDGj-(cLuS0+H*q0#UQj_q z5$CnsibK?2U;TW0>=Fo=YQSUzf<%$x8{-^LFk@~QDO42f@Zo#TfN|G?c}(3JxQrUE z&0**qjC;QGl~3jPA~GYM)`9u^PvUQ>kA{oZL4mQ7R8noDjk|OCR;rTDx;fo|ru8#O z3=4-{=(^pdN>(d`KrM%X(wHD!8PT!vSh}o2NB)ROkhOkyhsddK(Z}jeo*mmeqn-h= z`kHeHzT<2y+*rG<`7;!chk)l}(93}j(hrm`O5PDg#^Q%T`5c`aso_Y>aa-^H;m>>~&tGj*Flbwh@W-;ZavXTr^ z(mEp1paF)>g&Bf%AN!g#5~0t#^WEWB5YT~l82+IM6LH6kPHe{fd&c#5f;_WZ?Cw&ktIt%Nmqf9-d^`Jr3ENXMq5@^6s(|6y##a=qc{WQszNX3Seh~%AC3~C%SVg; ziwdYYt-tWg*_k(ZGisE=c4oA2<@UC9;ZK?eyC;yfntN^CZ?2%5Z4^yNJeD~5?n_qF z)(P9L*Gkfq0l8PkFwpcTY~VCip;f=T1x++H5ix zOFr6mP)f|W3-w8yjPO*FS;;t<_?G3HH?{1$c81a+Bss1hWqSWcXLNor$}dUJ?G7c# zsr{Z(w<&`L0tuu!OH=jMnDu7PWl5wfHv;UDqiXhyF4+am^PGci5KIsQ_t}O+kj%T# zf=w*J9}V>2X_D>7{#VptFT58x3M={2A0GWwvSXRBi!nys`1Cj`NZx)!(B#3=-p%gc z`6hsqON#K)z{iNsU0FQ*s_>^XwU?Gj6Z?|sSSYz43JWd;X<0kJAlstS*zARkv?gpG zNL>py!GI_XppeMcz3GWA8Fy&)LR(R&UfI@jUaczg&F!?dSRqXC^P<03?eIhr=$W>w zmvzW!&WIXTifTf&7nyAB*=Rc@vzmap0K_+6`S{-GU!t?OPLL=u z>fSI*j3|A(LhTvB2gp%oxMCMmuRxbHTz+@NJfmG}Y*nUW0JTn9Mw2d;>ZLg{JNC()H02?X)p& zIA9DE9@6@{34hfMqLmRRgNZ<&NN-Ahkb@12m^Ax3Wpgzp@%pIrn@fN0mtx^{ z;DLNppD~;0DdQlyKin_E3xH&8t28-wUiR6SEOA;|paj)*+8C5u{MOh|eeJQ~w(dX0 z%gnYep?Hx@pDo+K%PE$D!~#dHEk))|cEj>&&#&)0YT7tj8G?U?Mg#|H?J6bcBLkoQ zwrrg-2%$#_#`PCV1R}EZvRN$#ap7HWP>%AmX4&qcmJ%YOV)3^}jGEVpfmBiZhB3Yh)wSe3kCbKnMdz zGxVrByI76+gLPdLWOb`eT zBCltckF^2ocCg~P`BDC4%Wo~P(M({RFG$gYk>Qzd*H?vRmLa>nIHi-N$1X(31SUBS z=?6FQ(Cj{h=TFR7W7<^MVSFveX^;%mFN|hu;y|6BT-1mpAUisoqKc*tVFMG1B=LER zZtnoGWHHpIIhyVhi|ePokt02d7>dt*8oeC~*4yo)>BrRzQd73Kq9(R~rj1};+JNZ~ zu0z$shckDXgC(MZF&$%t3gn1EIG#BuG6dwwgl0{*bOZb3HWU}BlYiz;b7uq4Mp=)k{s<>W5@|e=}2A&1{?cL z)0wQZ{BGax6+l`>&c|Kp)tkNzyLrf3LYeblw~;L0ac0ieG?kG%F>%0CKv`>{gw{);}N>%(v;5y3%EGeTnjEt^QLn%8Yeir zp1Krgi+k@9%a%`Wk$+3U-~X67I4x^7^2{zP!UEVRPj5+^ht*L}<+2>k)jy7=^M`gGJ2!aQZ;x3#qCgZ3b& zc*Z?M&vueM$-=`CQ9U5spZMkCyjE}9Z=pW!R!XqiREzBS>K#~)YeCo2RAB%YoL)#~>QGwYg7JsSJ?D*Rd5@I%Kzmow zpxzhuh#MK8U`?)->swba=!NcV80&yiHEWC*4Ys2#K)Juu-UiHI`Vm;_gbnE_YpfwO zpDlFBW~U6k;KjZ7e0ZnGKmu(d8M6Ek0Z2t5E?N)-UR#v@#PDrotg7$&nzb4mC9pT`p@CwGtKidZ+@(54`uWl(&{e%&H)uyfOKl`fPa0sDr#bjwDw%+~ z+niO`g97YdCjsBuqW4BVHnmPib(@ulA(hR2KnCoeOKKLGLh5S}Sdm{pG_ut(Q_~ie z&Hb-tul01L))f&>BfmP1U0-C>=}bK*n@UzB;3h>c-x+`Vz^%%TKVcid;}z7R=d2am zIU5;-9*0q4_dQSKuAoF+jH8erD~5k)4!=F7n+G(Hv?{nnr+Zf;B`RW-C(*~+N{R&i zc8)Rsy3M`by#rF4cKOSG|66>J^12w1iW3TOw>SjneQDTQe2(@)eq)p4n7#1#BFVz; zSj3=kKI(buURp;D@R)besrsVQ`-m1`lcl}xudCwLd4WJz4Fa$_oaJZ=@xCz*sfo;8wF6CoUVK6=zog?|9P+d#%h61o)! zXhAqhfYaZd0g=}grWhd&a7ddVtJYS_X~#BCAM-_%r~UEMrcb^2E>(n4Y!xcrkiO)d zJ_r)Y9`%#CR(@K3YB&I{D72(rW~`N;se59Ml8hLxOok3ACzD$1 zievQ^a6*Tk8>zBN}>b(3> z(TTdT!5b!H!57o+7eB48r;%Jlz0J8A7{s_ss~6i0h8whno26San<#JJjp-!VuA`&) zy>%Y*thzC%fqbrv_0CeR9OFi#NyQ%^ z#Q?9d&1Ckh)Ic<0v(V>24V|u_8MKu!=l7c!ux8)YutRyC-!xJ8Z^hKaMwImw0BCIY%(HHSctAmeCh=X(4T32+R1Se zxE*CIpfAryJ{MjqScBM~H-$qw17zJMPgmch$4!=|JU32VIj_FQ7?@|Gp0B$iPw5ot z-!frWxFKP3>&_Pfj(Y?hMNPfmXa!X-!Eg=2D_ol0<)WOYQ?K-9ZlXN zDn**v6}~S!zZ8O702+eBkjYJJsgQFEdM=xuR}lOxGx9R`_y5Ab>xRcJ-dTLbT`3Ish1BbileR->IgNZ;{cM&nwLnq4s z4m9ah8b5Z_)mOi_isde+2{=9$W#J4M4&X+wxdCeb`G=K3Juv5hjGnWYgPu&rM6c29 za-zX>#h9x4JcS69nPYlcl!mK-&+1p~8t}-WRtI>?)xB2$hs0(lBfp>845mmE8;oZy zc85!eE(j}Y#d&7cCOF&DQubLADJZ<~3zQi((q-JsC$q+%6>Ym~1P^~@iFD-gI<--5 zR)2g_gd?~22St;ACM=5s7x0$4(uGtyAAg31>8F7wA(;NF!D>xC(Nk*>)|dm`NN-n&tmu;+o6reOO;}#m+)9 zZP~%eQOM%%*u$A2uHs`Y3B)iaQmv$E?2KF{cQMn>cI1_B?ggaTq0|_#j zrRp8V*I~zuw9L&GClkoI3SsUn)}%K`xMfX&moKgcsq^8GOTw2 z8sieV8?bq2z1>r3>)p~fHLtnuREKc8a}Hj-6enXuc(?Z(cT}3-z`XoTF0AHULCzBhNF!2Q3V)45ej${wt4D>aIaya2H*wwmPXS z1~qa-e`cL^>|{?;?jM~+dV~QaO<5nN0}8gwYD<{)jtoGqF7o`&s{s?p;G}qnBSSoK zRusoLNF5=WJHw!k82cuc6389Q=om}6H?i}{y`+k|f|ctNVY=;kemyQ7ojGMJDzC2O zotG(7ffAW_e|ucHfwFz@SovoRIv{BZ4kh+LGOl7BOHWuXD0%w8tV=gar|G5L*nk8B zO99NQ^Ul6k)qp(qaC`-`Ii5E9L^xB1E(Xguig|JLx_pL#F__o_T)w&}#iX%e$?r@4 z;y)rq({>9q7BZ!tmIZSn{mcD(u=%vZ&SU8Ot9_1Z?SygH4BgHX+gJ=3Ury?&G#>f~ ziyK4<1^Krhc!vY{1hQZA{mkxD#)X44i}*D&ReKHFzUlmHgD9K`PHHC)eKFSav0+k` z9S%$^z%ZZ8`;s3ixzgdPBX8t_6kPq*l}FL_NE%OIA~|>HDG&oTtoj_mXIl@%Pg^~9 z2KGPs67%!vMyVRp9X|JpB2+M4okwYnb|&D82Dlh?H^Yw{2abX-JEpOliaWMY5hnLq z%jgRoQM$76Ks9!fuqf8yvmbu%dXDR_h~1rsIGzV;q=U_j)M0T$5)^tjP$)H>DnR{nJ((G=j>{YT_NR^DH%S24`@3KJd@!}fGep0Y7+ z^aqPd?~gRTI6s}CxlhSqp2+=ko6#G%okpE;4u+wcn6*4eEC4J}j5P#o+t1!t^R)kE zy)%jj)(&|e1YCH)K!%FB6ftVRNA;YFCo$&ZvXv4UU#xV5AklEJYCymxUm$xsh;=CP zIrx$I1<#~IaNbK@rcYDp0j#o-t)|PzLWR|t;qUP>_I;_aLV=97F7b~e1v%)OVuSmN zz}3}D8dB$@bTqGJtzAbR%$C^xZ1V@{BY(YS2;OwtGa_!RdZJw8?>ho$5g$KuD$(Si zO~R9u;0vH#c%9^U2yoCSo8O@oak7l-6HNHX_h#!S)?!92*FL}b)n@Joq@N71Z^W1= z`vc~>A_ebtmeH4Rf7CBS87#Ji0TC?(Nbc&0%dDMLW$?R^?Rr{Csj>prKN;1tO~7%eNqwMpoi}RE{n6#f=Va>hV2I~ zzg+#0JX5@ua)zMz=s0#Ix~%Zb^>neV39?L$r&;R2%MScOIKa`&!-e|>Lpj?_Abrwo zNAr3ETy2|i`ot9{z}~7B%N;B3)jJ6yXOI{oRHXI#SsfX2j_f}N%tQ8bI*vG0j9 zmO_2{HR4j;;FM7D7cCI5pODP&SbWfrn~>0Q2Z0dW5@3+cid{7gLIeVl*!jbZk)`;k zmkX1sk60nFgoVDc+jjpNP$g73*>6_K!0;>#NXvQ}zljKrSy%^r_h#L87kb5a+k1GM zLf@2`E_{2R(t?l;d99}AS6*ITXyEmfvERG|&~*z?nZ!!9{WDs?2nVPz0L!6RcJ6Oi z=>&Z&;EiH-f&lD#45%(Z4u8@y`M!KXNZ{|s9t;RS=ZiGAU-F?Xix}UKHlt@5or?hm z4zoAX9QS@IhIR(3(GXr3(Wx>rGIpQGl##6xgwh8SjQ$q!`I8`s z_0aTpv()Xm63lC8UB=3a$Es$9blPpVK~J(NCkJDHf8Wf~Qbt!-H!gxLSjGZZ1L!?s zSGKlKnq#qLWYUDljdQ`pcOV@@`+z5qytwA@kZd0UK@E5=!C1jPf=8En7=_=2hb>+@ z$=!EEC-%WVi81I~!aFSiA+fdvU$btrE1J^seojZOY`WXZ)#v?RnH}bzpXJPpvJ%LG zdv|DWE3^rSh{@&3xN&r3Pc3Gj-L|TAAM{ctJwH`YP-t)sm64G_BQfD5AW&Z8DLqax3Qd{C*$jJEKSwcRe*%9*(OoV;+H`ipaJT5LS zMQVfsf`Saf!ep75nGH90@|xxo&KCdka$a&h+b~yvE)d3r!X})}Qm5fI3iY-U?zRg5 zzUuFk(q2mx9`sFgwz6%m}!TbH+Z~T!jzst}$qUE3WLyqr1 zZ~O=O#{XRd@Vk^&+@EMTH+20Qxs((SO&=GHF>!O_fDI$7tQ<9F^4s*GRpYrSGaH+9 z*3d#L7O#xDx_W$gwKcM{0bqoy<~-}%rwnx?N=qN;+IEmUS5$mvZ!f_5D&7n9UFbOt zK?GjzHqm|i_AM|xytCCGOIbyQu#;&=5BD?L>5LOy01j2a+8SgQO3sf8b}HW^xu@7i zf)m9?XuT4rx^LgTdx8&lKj>!DKSe*d+1%VLaX9GN3f5}tKt0_xktzDG+AZjcUM z=Ws9ok4humk8M!=ulPxVPBjBx?!pH@9K&o!{P{*}_=UjbK7z;!4*v=-_mAb=bGxf=*|6eR0gr%i9Hd>$Ex#dzegB zesl&O_RnX#C{r|rKIJMPAYiyNUGq9`YvzpR| zjGWv$mGnYFq#>l-J`OHrpOY$?vDybVW$H|Kp2qPQ4e>Crws#r;73(e2gYfyv#A z1OZ`Tlfevm=LLTX?L|Up>RKpte>UPG4xyq)#lX zEI^Kp&@LdAI-5s3=lA#bXN2vqrb0k)g-*oM2iX6vu7-dIC0OlC<(+k$`iNl1?LDpr zO|sfu4uP;Uw{9OyK|!%NcXJ|qF67%nZ(gCjpX@Zd9wNPE_wws~f}(~K?V_o#+&Zj0 z293JJ9W7O?u=WV48?74;`rX_47GFk~Em({Llg6713uSzGNq&BQUwA`Rxd9XtZaGt{ z4yUJ;@&td;yMgs)bP0qlV@JozYUtL}_Gcu+;*gRQ_na{Ps4xG&y8}6XYvh1cJ#ad! z!3GMjt-vwKzF}0t#`}vMu)C`X&X~*BU~lw2 zfBwArXnkm<>%ML^KBhmaPNn7gp$YEi&dz5*>-B^D;4oing(UEKNA(9U^0g~4m%vT> z8i+n0-6R*w1dJ4nDJR+F70z$Nh@9r;h`i98kK~$DVC{`{x2c!R$H-MLd4A+R{Zvj& zs+dItqJsF}-sF(|r7koWCl^=RfY~ziC>rDzH4Tk`1$MW&y4}W*WN{~BupW}9I8f)Y z$fxCd`mXCN(=MyYXP^s}ALv=L0NSYdKTB@`9hsI-lT%W5j_bYaSx;x(coPy5UcY_~ z%T&Sm+~zGu>jLkI<3;y+Qp1{p>T(O_2h7=FtwE*=0|&>4*ZENsmYou()4n}Cb=bDH zwy?W%36J*MiC*WZRUeP)h}SnkO-26>^q<8;4s@H+B)8{r_`l<9;Q#M9SIJfNE;y0l zAY#V-@Xt7C5GZ6dO}-+XY3l()~s;e_FF{MXD zl%8&bA2KpB5-;Y!sm4hHUZX_@5#Si&a>in=udn->OTg$KJ|r^f3O}y>_&c6o#C8!5 z`?*_pJ$wq5Cr_iGwc&I&7#ti#^>4jgQp{0n zUAIRiPqJ9#h&+{g-%AZ<8!V!<=Wo!24KHgb2%O>LbBO=+&U%QvygWwZ<&HQ=wr(?0 z@uSPXxQg0m8{8TsEy_wui_J$kuXdqZw0mdsblH9h!$xNZ)`Pd2>CCgu^Iv5z6AqvI{qsZz|(&W^mb`0yc$&Tc78IM~Gn za#;kA!)rCysF(EceYnW`-XuO+hq;3!XP#hRYl%v$8O~fa&iyDkT7s7^UbI)uy1onz z3L=M;6d z5yZcCkPZW>gsq4V4-Y%QNxrXZozo?zLzFkdnc_6-VyvhbUJX{Os81)PgR!ae-{e(3 z=DAqIe$oVz*7hU_U5KC6le8wBCgyU;s9g!7Hf4MZttLdF>cL<5ps*6`B`y_X&X~1p zY%knfx9j7vm9Fy2%HXEk>)np_b{T$F)@SweK3MI+!NGep_H-7v9dG#xyFeD>38$0N zA2zQre)7cotO&a9+4RgB;+O@A)!5awHhaXp;|>;SpscK{k=W$y*zhnjGQ%0`>!*;D zkg!0wbdtJPpuN%-$y<=cuRse&8c)Z3t&*q29nG_lo?fyu=-L(}maG^W5<*l|^OthK zOdw!k#_!pCi%&;u%1xG z5x@HcA9+ZcBHmP4(ZHX0wHU7L?;lr=6bp9i>w5^=!i(fspX%#evL zs3I_NI@K64;ou`i*qLXYmvF$5X)`Wyo@umSSJ8D@iKVfMa@(#L<1_tDE+Z?O_We5y zY(C>GsinN4#@1}*bbK0`Fp$q_y25Edo|p_c>1Io%my)7WR#w(3HzRoQ@?`_<>3UYG z@y2jYU~q8j-a^|x=oi*vRR#5&V)=N*>APaACOgp@o0#nXWCET+$=fSC5DL-28$6en z2klRF>7}yL(oi(@97qU>h>(R?M+jMZMh0{L3KJvaL2LD|YEZAFwE*P#f*A7^f=Kx} zGTGaRP$P5y@>FhK-acrowFufz9=lxWSU311adgBZ=-?hE7S{e+dc-1#6>Z3kiEGeQ zUQXQemAeff#}Lr%aS7ncE)at^539d^C4F@8lgSyJ^J35u4n!YakV+1&rEboc3Trnw zkts{Wd5>P-WrZYPzd`%vfWc+21>F{mz;Le7qxxjh;-AOx!QyG2c%K@k2h}+umn~k@ z?#I;`m`%#5D(kNIsU88T&`fAt zj8M%{i|029xVrT5L1kuU{to^xc(C>q2{+`T73H0SYRR;Wf}5K=5G^POCGK?uoCNdJ zrw7j>Xv11tTjQ)F;96)@RGV?XBH%1?@7}%Bsaa)maKFX^r_ax}%yc$f&9!OrGm|Ox> zkgTJlP@GT{oB?xb$re;5PqT)M;*6r;Owi%M!5-+vN0#b-fWfMe;0JmOQ$$E!WcMu@ z8ynm7Nu16DxYPv_Zrac~l2qzG<<%~~XW+hnr}6qk2YKGg-uHEagB->n9bkXai0rZE z4z}+<@Y&_yZIW###dxhlp8M@)QB(Mbp&tuLcD*f0qILjMHC}8$T-hTVJQ|^afj^}{ zNL2qfu5_v)Qt)MziQ7EzWdw@vYZb!)7;dxclNigAays4^sRkRzh>!f@Xch1v$E?V| zhTIXLWsNbAVlcl21l-NnslweHEocL1i+raINokCcgOdRG7XH{k*I;>j@NFEbKlr|b z2!X8Oz&g_Wf4*;9_rK8?{C+k6FD1bBzgYZFRHh=mfd(@;Yw$M^elYMQFRLh1_|(wn F{{R?wtZ)DT diff --git a/_images/visualization-relationships_20_0.png b/_images/visualization-relationships_20_0.png index 541bbf08849187b359508e8f253534f799508911..612f86593e07611baba596f640cc77462685834f 100644 GIT binary patch literal 89274 zcmcHhbyQXB8$XIJI;2ZLx9l!I(z2lBM&T))A)GceSIp6p^pLpIGt*@s|PRdM*!C=UB&T3r3VDNo0 z7+gJKLij(QaZ1|ZH(5{3E1rg~cAh@gx2|I@SbMrTxq3R?wBhi+e#_>IHV?DUs8{ z9QK}`ZXR-?qR#*O0TI_*H$(;I8ExPqByML-JTMqaYxEyZo^tL@3=RgPqoHc#oBVUk z$Dht?k7%vyanV8@^+LCii~+S`gdtsNvTth44=T-XhDLg&RvCi=i?4ReQc3&eKN$Y3 z%lOEd*&9y95wTfaxB7WCUZ+1C|13xQ3SZjJ68+25dsPHE${EV?f-8HJeS2TFG@!LPIurU174^kfijk>!-PFlvs44Zxd zNdckx`3{UW|6DcG@|*!39Rq_}0#EkKm#W1BtCfqvQ51Su?5@93Z+|}*Bbm+o*9@u; z{T4n~{<|%Uj=2q01G?|CvrSG?k@75=mW|g=tLFA(WM|_mrBP~SmG%WnnehGnhD?`I z*9aVH)>OPhz4glb|KFc62J_*=2P%A=Bq?XOYfgFZpAFIcsl-{|qQq@m%jNB+TcQ)s z+|Y|}?V~q-Z64jy(juZb>oXBRq)KH~dZl`^inZ~7LmJF<#!iI_U)bbLcHeei!R4JH zYy*SvmEgogMmjpW$))1=6h1Q4tJ#nA)UIFWrJ^ z+_UxH{*nF@V>LcA@j(aNdpoP~j~_o4xtH(Ly|nf5^JlX2Y7a=*{u$6k@BI9xAICO# zpXKML#CUXP>%b4ROn->ok++*_ig3<3skq)k%P3~0GQWL~>5Q1yqLISETJy(`A60B@ zxK`f(350na4cuQotEZ>+KJc)_=0l8B+eE1?k)GTF5956;7O!4|-J|_gv*n4m&L?to zpN9?(Ub%Md+N5jH{)xrKMYVl?z2vB&vKzKvl4Z|cxbWe7`=gOM3QYsIKZiS6SKkMU zF_JN!u_II3|5^4mP?f60eMW0E=+7Yx`?2F9qpP+w#Q0)&ww-u*csL{_>37C_t`@Y7 zFKyYZjK2HW-ma>vOV)b-MC5Ay{_8&Rz=L(|EMg8j4tE$P+V`}>_n&JU_o;{=QqSW=k;MY(32Mj z9WLS6j#PYn{dq6${nis65=!L*F_D^|r$_xaI_C$9 zCpgpglU(an(J;w{P!u1s#R`{OMG?Gk!;Asj#fXYsr|5RgSL4XSLPjMoI(`yFZoa`-9UCj*j9m z&+w_5F&;*Y|G|12nkKg{#huB%%U2`1=94lCQXk^w?Yhfyl2`1>oY)Nbe{2W$_0 z{PZbIFW1oneGO&h=&fU^zSAV=j@bh?sb5zw3T-Y8PzLSwq^Zp?oH7l+{^{w|Lv6N3 z7}yASR2E)dURdES9-qT32H$aKEDwmLun1uB+xH{v{5js5N$@dRPe#7xq zV56g_x1MYW5o5lO!8{YCS|>?`eGY?fwYAvCs2r%E6~_|&%+imf;Bs**!Etk{{Ie!i zZk)!&mSg!$zi2Nigz%^O;sVNK*apDT9xS^-sbP?$aK?YvEju^Yw)2G~CfG_WDm)y& zc6T~9QOcP)CN@^wZBhkr1RqT(rs%XCe1FwKPLf+2tIuR35qk?PtKcr>KZm8lCr_%o zxQLLFlDd6=sBHsqRWjtXyESl?(zi}lR<>%r^@KZoYvkJ$wJMf$~+4Yrt<=bufZJv92xgYx%i zmezezULOnxH#eR(tC!LITOOUWIy$NsE?g+szt66$wE5?a@J!WAoO)oO62@v{wsUuT z#C4=7XQ=LubezJkvzUg#Qd>&Kq)t0^O-%wlxEJG*i%P$*IgQu83%k5q1B;;)JMnyd zrfsIQjZIyQv8BJrjGBy4y;O3;uP&orDM{M3_30_Iwbm1^;oAlIq?!i$Mn>V(+*;+b zb2%51)acdrJG#0eg+DP$yO`UXojXT*m;3~SpYTXc7wk(@XZhdXAFY3Xbn)%5_h<38 z@FQhDKEn0&b?3mlofO^{fGC8hlBk9eP8F7YX@adu|Kh06&vIKPvE!*`mpNXkh(fWpi-y5ZFQ)*6wB^f>EtF*gZkN?YCC{5p7BSGuey7_L! zaO%^ick}aw^75JUO>fFtEV&)72K{M%m77Ycl9X8i-;W>)zq#IDe05@$8Ss!)Ct)p8`2eTUib_&aQs&2F z!{NF=FmJK7wF+cRr?Z>q6lN1`*WjjS@(W%&l)1Jra6 z;oql~k5k&SHxK;%<4V2%?Sf@memxCm=Topo?jmlmkek+;n-(~HeJ)^cA$NWJ&Z>1= z94p%N-v$Sx3X1EQF>W*Wr86@!Z~&nMrJM$X(Z>MG+pw1{BCNy)U;V8xh+ZH!=z(Y8UPdm2{`!a*~LM2wxxq>d{5p!dFT#e~xzEms&OAexIAOUFt8& z=*Y=XkDNZ(=xVDNu#9C7I-o|ofc~<1NOCeua?sK5{Qw0-y>6rhFuMWxy6zAf}t|)gbkMtD1Vb?Qmye!fvlKikf@v^O>$m zG-~tTvQSB5H>R<=dj6?!V*>AaF~3dwgWZ{URQ4adctMKE$WH=bKGUT@tIZxDG5h&> z7|=iC!$7&|*(BH2qRR1@5tkZr^l!jy&LG%il=HODwM|tDkQ;T8){~jSAN8HNU-jdu zndw%UNvRD%&c(Di^ch4tdS4lq!V>jSp@AI6+_p4I*(JC~d%(cYNNfAC5D|C?<1-`G=Y%JTXC%fO>DS!fmhRT&xv zasSa*u1tZp|0uKp5gDTx=Ay#7Mr50)c@>py>pj`YL@2jbi@mQR=`ZsvkxI)rS~**rSR- zgMNSA1}Zh`-p1;?_$v27Qqr-qA(mEwnz)HoN+06h5C2m_xbSbWh?;oJebF>9pfz?KJ+a35BGlf8t^ukY=HH9oEd?yK+rD8(smUje2`#w$zQro2&y9k)$+sHXUKd;crx~l$@^STUbOo{UguE#RXrlobl6zgh=WsCb z=aBua^GJVwX70;ak!oVV&RyUfrGUjOcYc=29B%e}`}+0k%5EFm9Woe)7DPkQwkIbi z_g$^qp`~hf+MOcOO;ch;)bH1?Uu%FFwm&+a zI48(}jA#Ms6#IB^UkAS&86bR+FP5()@s z%DR+d5qYCj+MNuvO%t~z1gt%d_VSfV7gm^O_~Ehq(2qZEO?}g5{{TwiuB2msdU-h= zECm8gvftt>MhSZ=%R9>zUwz+C#7mF++P)w7dgIl<3*F-5vUdSceWv%)cDX9@=5!n6E$`K%g8LO02 zV!psR`;nfD%0;cMt@({suoSQu}v zZ&Bl2A!nzhr8U3Z{qlStaF=kGKRfULU~O$}v2C0OPFWT;@69g!PucgX`T5B~&5^su zC~ouqq`C8WEfYl~o}i#0EJ*SIdLZ9BD`U>BW<|zE#>O_IRqh$i|FAH5djHiiJSjtuAufHBrc)z}oB&C|bqnjuOjs=Vh;_djV#D59X zl$(scv2p*3ugOz03y*&}RSYWzHVGjm8%uS{lP3``UcC6ajBse+wZ-nlpCclbq<$|@ zi?9`Eg9myBK2A{t{{wS-m@+0enI?~Mb&gM`uigIR`ka-52&mB-5SxmjXNifvXXg}* z;0a-4H(fpY^-OC2o|f(WAIhgx;=qU4%(Uk{tBorORPFnc1QZon=Tdyw5PpZ?5lzE% zIPbWxF8zl~nJfInDx&#SGTVc;23RZsPztMt;IO!hXV0pD^#V*L9;r$U6*0bA-5m-Z zD&k2b;Yj$CF&L=m!LYHQCaRS}*|+-mfHTtT0xD*7nvFXXLGe0|_$r2!ZCZ#AVD=*N z^D~4}fh2K>h)}?aa`f@%plaCLT5<=vkAqoUS~Aer4}Qq4?Je}y@%1}G#5UkxBOAkr zW`K_>g`fO6CZieqZ)E|nei05V*cMP7G>@phx%oYy^dvi@9+a^Co_Vi&z%sLHPvE^$ z=O^j?b1>wDOBD`7?2q)h?gdXIgh~Pr{hUUtsL$AaMt%+Bx!uoc%IwAUdqPP0Ess=k zD=V{uv<-5Dz2&|50(f6ALMeb0Nd&q8`$#+Z?k`v3V5CRg@U~aRVv}5|Nss}wzxqC& z;26VXznN=zkmNe2^h3$Nm?cgfDD`xe6Dp-^B&YP|$;tsQ~J3 ze&T&lZt)U;)`zQq_AZaQHIp;K-avN_atfoOr$>Pl(gEByqoSY0>-R@~pOa-bf}^tm zIIMmSmdd~!fXCvSmmdT7oZVSo7)Gs$hFJyF%H~3ke1JtjNc!94L9KrP&NESgjWQ-C zM$B!p!C28MZv#;^Ko!rt?%c{GSr0zY{Oh1t!{r~B$bMaAxbv@DNNv#a#qwfjK6??Aqv=JL0H%}Ehn9U4Fq14BbR zj95}96+Y)@18PlCEOzSFJAFe#V1OED6MF5){(fMwnL)%nN;8%r;$?Us=x9tZ@~GOn zE@)_sUBqIIu-HbM(r|gYOiONYaq8#KpD*+2njlM)`Ucdks>S?*66hKqmC>s~hxACf76gQ-V4%JVJ4u~*>pBsan3yQ0$@KdmP#H0cDsvI1k+(cRNCwX@&MN@393v*5XGydv?}Fc$cXXec7F z7<~hS5ZD)NLBBs;UHe(qH4V2x>ERj4FDgoj(5)q!c7(^b9(Fie{0-R5NCo_zQE*!9 zw-yGV2FIa_4Zqvnn&a@4V+HX~fQ$g&$q=HowPwo7VPy~z^ILvU#uap_X$*KC@+<_q zo{P?NENMSYO>L0)1NLCd$=3}?FUYS{;Xy^x1iz3i=wSVDoS%xgVQyo~>aoSe;sN#I zft`6-T3T8pkZnMR?GC&@q93+2HI0E8oB|kXMYVp}U8ASVHHiFDTReL_Shj5ON_zq@ zhHS$}fcwXRsE9L&THY%xEOd$QTJZGVmjzJE#6irq_aqpp3Tq8`j0(PDWP~tgsVdzAX$)B6DDKDfLf3f7XS9iL0rpi78(Y3FVkX>;(J;>graIrH|`(Jr?ix=58n1-~YO@87~j4G9yq7R>5GUH-%Phn0D zA^Mb-7U4ZDZmoE>`1gWrtu-ooISQ_<4?eXt2IMgwP@SLX&&;}p`s zK{N-poHw=~&#qkGx!F2!HHg)=EiR({n%b>fr$Nu&t-G`HmiY|GDP(64R=IQQDQ+1h zcG``CE4P2&V}1GqvaXSH2AkbYM(oCyWc^=67*s^dzQ`RTAt3=gNEEZi1u;LeCKLGCdJF)k`t!e(#D zfMtUVN|7?tOsO2+Y1a%J=i9>4_WmKL57A4PE}1%C1)&O{ZrAyO07S+2@7Mgd`YtD) zzD|nVz=&hVo0h$2z+h=Y1qlF0QsR^Y=y;ip&u1Qj83RASMMZ4Y7)k&E!@Q?|r;v~k zxQ6`5FzqiiLDi_^)2H<>@~aKNsgcnHme9Q)pPtRE)U37w9l>yH23!R%8?25NcyQz* zkg>>66&M#aL3#n93vwpPng4(WZ*r-efkhO?L44({6BBT$_f}o0ipwIb!`-0T!wj;t zrr7`N68&|=fzkV}yqkOQ{CV`^qC+x_3d9d(H@dU{V3iIx4WSIuN+prQHpIaUI!Pff zwraEcy!&#+0QwrxRY+eV&%hQev7#?S##|Yab$QRvX=u<{1KG^L zm6;sKGsse#k#-)=#?>!=H~Yf4?YX?qYf_a%7?(ajCQAoikrh=vW z5j-&bJ}77loEalWN5{V5VN)-#Ru@6?fhf5kJ(dlhWuT{jg+Yp_0wh!4VcR{Xteo83 zf~~Es3}=vW#+n93xfj#ehNU3f>a&-~hdIb_MzV`X$Klg6yv{k(QX9>rD>!-JwGoej zK~pUhlUWV+i!ra`zsAG`-OE%NPeeIhs*86e%NllebX;0m zTr|C(CguF%#e)aw)#f6gr6j3{^H5z#1m{|kn_InZZ?Qmqgkp2U@uGHGmvKQw=Y}yB zixgfy2XRK4m%DqZkWRwhS9Qt?=1PcHuup#&kMQdzrsL|T-C21T);iSvZZ5TekB27@ z1{}uE5R1J-0nF7XMd9|Xf(g85pI%b1$mlBqoicSE8L0MJg3(0|;c)*!&I`U31uCK}Hm=7?zk-)q?6j>pV2RI;kRZQ%UVj}7%m z##}7lIl%7Aa7H^7{DRQzY@Xh}zKD86_Q6L3*^I#;m;BxdX$sfcb*=e&z#?P~xWji; z)`b742dZ!kGGWeBr^vIk<6HBw1#6Y>56RCz6LFSYX*wpVVQOkR?+w|hl=E;nAYgeu zA>5d)TPxFzaJFag9bk5`80PAIpw?!gW|ju+qMNGlJAJ)E+kmdnvW^+3v}Mi76tC~q zJ6nKW9B0nZf>60>pQM+IjA^pS<`8gS>ic%ji@d`J_LVWxsoe8axef36nHv-^28>sP z8Bpc{$dRA_*G~o*Q^?C7Uc8}v``5KAMaBoPTrlN18J&vZbegK_>Ug*zm^k1iUlX5h zAO2>YcgIj1`Nze_x54&ZLxS0K_6P>F32B%;llS1I>eCS%zv}N^u+$DA?$-?U5naJE zjAV!_%55@A-2t0-YU4Muqu^&LF(o&9_)t;?0zo|>AYi^$FP9cMF@UtRFIEO`(Tjj5 z0q6pLHGXt-^s>^^0n0n5PQ0a|rd|$1gc`Uupz|^x<%>rmouEiKVz_{RbUT>a+3^7n zHan$Gk&aEs`XPSe#0mAvW5=QgG-k}j}G^3VH>UOAMTD! z9Q9``u}HhHAUy;mp={_LiZEWB?s0+~tH?$A>HzTG;d`v$j4Oec3Cd(}*}H1Y1(s`h zXBF(q2pZB912eN@NuB+6uhyH<7l2KsMrRgu)T{7v$x69x_S(fyX)_^b6T+1t%N(q` z<74k&3C_4M!!bl65#LxIFaFVWgz`(M?9D+uMd!Em2@IEsSg^=EM ztlCRvA^TCuogEjXD3SSSuWN11X@qs&nWIea^n9C~oUAAPUTHdt`$1}I98{Hv1W9nB zF-TF~dcRX<5-Z9b4be)g>L+!d3eeyN?Md0QPIhR?(h>#x(&F3{TE zX%G4&{Uj!H5_C-itIz1Sl|k-!h0~jV5c(@0ty9*5eP0E$yAEp!rA>~~>)olny+#lf zETqqv8q0beXjL-OHD<#4Th`myL$e*qM(IS0h6lkAaMrkg9n-4A?U9G6sT7dJ z_^#Xh9IvbCJe1qtSo*l}yLRJC*pO2zVBY;ldU7OCiKH|P$RsOW>iJZu*1#-!yPx=> zwUx~{dB5l2iqfx-+|GN{%Xd}~TRUl7NGxfuclK;B2Qdg)(|MUO>c6(p ze_K4>I!u~bSdhnlK+D5tFENaW@^16gy#6$=tSl3f9OJ$- zoVS+;OYtDXkBW{C`DP#9evK4sR9?OskW^qL%y7P7dEdAT!Gw|$+sIpId8>OV&-44B zgg6boA&AK=&z~MDwbix{@;QJ0JY;|@p^cNOLE8{hQ6K^X(LrUOm&lcp$r79S&l|Gf zr6Ly{#7{)f(MFo@Qc?OMml;&MOkTIUfde=wRd+BCtw zN>yNjlv(TM&6|)31qLQ9#m2{LJ2*Jxwdt4LNWGoY=WIYH4kgeZGTPlA&#n%)^qXsf z4sa-0@b>`hh$@yD!O1rhJN=oT&4J?7msKJvGX1P(uk~^J>wLV0&ACdU^`T3uN5L zf~uN*;phe#fi)!cgYP_UBzY)zV^s`vhDv zQQpTzK(((M4CHkPwQR;~ZwrWsv_kSkef&7;B0-%LiIR?}-Q&*3^_6&m7}NqIe!YVZ zMMsw{yy$P;x`lKF-~$6hrn^8eaqQ!NAR8RCC~^*f`Zt5C7J=H6;=$m{tF%F6(k}w4 z*k6SU$`S>WoKS3mmdJl!IBi$PgyJr?z+Gz;Z6VigdS=EQ^)GzO)I59kti7aV@xV;N zd67n-@jX+s9TwKm)wBycs|12WAJVZhU_#RDWnnn@0Rly3zLZb7bXCp_ml#A2+Gb`kWgF|SOMf{1sG`D`i(1)_qK87@&lGE*D~etY;}i1>g)Gi zoJ7jf`@c}?gH;I4twek}Dq4j4M);4P-j!!YLy#FYb4&mpKD}{4-89+y{mkZ@sGs=U zqxBqbADflbwBiIkV9%s67_bVBr1)ZwZ(|$6Dj!^3?WX;=QI<}ePV>Wxsk~4T+qD)Z zPSPfvwqv2ey;tyTwoa2e{`^=_(zvp|qhGGkn-n402st!!GPH6*$H`srD(d{a3J&x0 zZNSv}*wGQ%eyu56=aK%ED}xTY0PrI34{o)zwIRnC{GRaUDSJsfC`hRP#7cr0qTX0w z;1$u=fo&r*1*|sIA_Ar)eUXm-b(C{!XS1=Bh-K>OxSDh z=nW5-d?UUl!P_ThrDel7uEE7+(eq!49m2Dt2~-=vD2s%KHr%goriO-ws+Ql5i21CT zV}kn}G{KKVp~TIe98L&@xV7V2z=A{-9S8Hb_JbpVy2ZfkL~Wt)xQY;PhFTU&%GZFM zR^qqi06Yc{#oMO;fmT=&cqchl0dQ4%~vOOs%B&3GL(u0zw8-DuWL9qKwt2O8rOt9BdKPOnc zk4JHWp-!mMX+l9$l9&a9i5wc)te~j?ay}J^UhQ>1ZAir5RJy2bb2ENmDWcQvSisQo zwt9dJSEMB+4?mu~k3;m|hT=@6)+utU8&6n6(uaB5SutXZJl9&2ti1M1-+d14_Tvvd zr{T|VQNw`ChE@T4p*`&0y?e$ZXHK71+Xrq50%_dgz3?a0XepUfXIrk&cGOxv8dP#+ zxC|r+bohqXL%-zh2L*97rKQ0FxVLYsxSlorJ0xBY+SpsZ2+0?+DRu5v@!(%`)g9(O4 zX5*29f&%sZ(`U{={?p?S#6hK^uC87nzRa5SLv~v_=f_dlhi*17MR#|1zg~v+LeGxRn`w3aJe+(?|=@Z@=_r1P}mT&hJ)xyC;LAc}Qy&&vA}&GQJS zT2DAKPzKVSbA>qWgiH~V-cF*GO|#Zp3e**%g(PfXe?Uxb4LTH4Zr6%Bs-OiFU$r4w z)?*FmBWlNO0LqQJzEDS~@h~$8c+`f8s49x?6^QzFANC&@(DC>X>LP)u(5o zl*&JdNCIuxm;IE>OUbApL}SDovc~KXyVY&%6q3-Q3;%cya*>w?wr~6 zzv;R_%+jMJ^Ssr?HqEzDv(04(AbWk&K_dMN?ya#jr(AnoNtfe=#s z?TG^hxel#zmBSD*4NQTZxb!A*;cIwBXrv#t4({pG!HRc+t7NPu8{D+fd}w%nJWwT& zFIdj=*?sVY%7lJVDp9L2<&5isgVgF=rMZu-#C3_aWlcoua(b zJA=W`hp$(TSeFf{U9~LUN#B8!8K}3}9YPUx`-k)X&|eANf-zYD@1SqOVpk8j)UN%h z$ee%t5Jy77{=zf7kbg--uXW!)^vJba`vRVA%HM+aA1HVMC^WG$XeNRn;Ns-u+^q0j zpAH+p0Zry5SA>zauphbp%;GKzwjldDHQSjK30@vK#08qtT6(M>_7oTWLNV8_) zr1@X!SL2UE5Ygv-#at=7jkPwPvs))K7?xi;?np<`UrI>Hb`Ym=s_;rFE;s=)NGi*? zAaDy74$Ncs)?L%zId_48h2m8E%ueLL%fUD_CdQ%y?pxvGJ?RPuo)gP7oqjxR^9Gkz zoBD5^WKOPki_|cHXck=+!OFGYJJHJMoC6-ELNI9hOz~Mel0Dg^;-$RWH2I1f?@owoo?yq^s;27R}ELWWA8i@%B-=KM*(~zU8P93dk zL~;8<11PnVkDosM+uK%Q0ooYMfTrg+QlqDuBWECZX^uE<8HJ9T=svu39t70b#it>g zo>l`QMGLoFT&lPc;pI|$*%vlep~v&w>+7ewoibMgst0VY;mx!vfiGE&E7`+(Y^Z6k z-_L$Ehh(Mx$Zt0#U^F1q0~on7<0f4tw#Xhq1X}U3$JRC^JNsV@2)I($9GlYTo#;vP zd9Qx`tw6s(b2_cTO|Rym-eB2NU%nRPyrkZ`UMGFw!b5&prZvBcKn1poRar<}WGZ#6 ztlQqGV2#1$N!;r{JuRoBVO&dM`9Ab-ne=Knt`9qc+6#xzH}A%EJKVm$;a>}+e>nes zHuc9k5%55Y8h)VN0aeW;$5g2v&^W3j8)#Wq;EkLtEUA9SL26LGbfO}PPFBO<{4Y9s z9C!DIbk(UiBs!w@qEz%7Uo#UqI9p!h+k6cKA;Ltond5w(m#@_hzL<<6gUPy9R9(rC zgu&GYQntn0gkk+o@6s`OMdUsb2>yDBph+fEjvolc+4$9zlXlQCPWOPxHB^9j(AY&& zwSt^2NDQRXH%`zHP22!InNOY($)rrh<*dFcz=o(olQR{CQ)rd+i#AoV+29RfU6U#eVOu71dxF(O`*c zLHcm*a~(uK7J;s^(e=wvIX0i8P zSQ&$x+VOZ-o}bd0RB`hb9-+PA_r&io(3zH>7k}9T8|1=oVcPGHF##7IKf8^|y0?AM z;JUWuOL9F?<$Js_gs`1_7d&BtA|k*HtIArab8xK4PnotUYWGqL?O&7QkNoHUDn{$A z3@8hf7BD>q%tb4 z_#9&)NwJHY{6>@R6==wh4_@T+9{=?VlO{U)ZIePT_i6c1H9f5Bj+E`ExXyaNdi%uN z5rox+X66kVE~&t-xhKQjqEyeaHwD2@ySQJ=39mtmrI!9%#|lM)s+zeny}{mp$bE)3 zFYjxPW9h-hn$cxPto+NDrfFGKRe13e((SgDJ7*Koq8ZC5Z;YPy25Kc6GXtpH4*y4jXn>oAY6p{~*$$8Ksp= z33D@lom!l*zHdQ9P9FzK@Qh7|pU33}(W zOoyGDM=ssx%~S4k5&l^;_^xxVn+ANK2GCwwwpH9Q{#dL^ppsREgW(%F(~2H=7(XH` z0Ug1E-F9AT>Me2#R}4X)H$JXV_e|EAA*u_Y(F-+b7g;Pp-COB9knQn4msjL{ef^Eb z&2#yf3p!62bQrKh{8Qbhzjbr1(^SWk;?qGSz%^KYDlbo;jw4S<--sjcAdrQ=C_XnI zW2ACZPU=O1l2CbRaR1V)pnN9oGMeg@5MDVlSbo3R4%y@ zFLmnt(~!W!Vb|sc5_T~Q6bo1?i7b z^QW6OoMY^DhVnNiNntdC%Ae|FjESO1KSwi1Y+l73gX>%2O0J{QAzVMpihlpmR1M}y z$A-R?73?|P$R#xv88r-skful&&RN~w@xsruP(H|8L4RfcuV?FXf^3O zlcMSQDuZipOhcAODg^Hg4Vk{VvEy>8{n2B(m3i37)yet!fP_}AS;s*7o#mQ1h>X>v zc}U&0D46LsU3)ynX?@*Pja!-BO|F^s!tU=wQ|=#E1Ha`=!P&on_7uBLoz%O8Mf~xd z{dIF$>V_6YilTr+a}j#Ehey5&!yTTguiaE(b6WSX8X{w2ejoC!T`3DJ!4uj$xdFxRq1^a6t4QcozQZF@Kj zU6DOQD3iLNvNoC;L_#5yp*^=ydU1!BTc(lFgR3YkYv+CYxssDTejV{6mHkW zMY_bRKq^37)}&x@I4zr}Vd^VQc1*V|C#1k$L_k1Ou-;YvIN2??WIeeu?cl1LQTO}u z>3(hOYuPl~e4~*kAQ(Qe+uQ4=ojn9tR&iH8v%bxtk8MAbt4KLv$bW4=JJ%8GhQ*Gt zv!fwcC!$AS{AEhrkLAQ34Ru8eERAQqMnyE7q8AHX7VaBi&G!783Da}5&gUfRPQ~R{ zJk?3Pkd*j+L1$UgaD_MwM~t~bNT#ypjxBh|i-a+mnR)%uq_HO!+zF%1MUtZO==ppF z_O97EeDXfduw5UhU|Ib3^H%YDhstI}-X#^dkO`4v&M38@plQ}m#XEizs}z7Ie#pxl zkbg*H3rkx=V|ntbR*ce{!lJ?o$7jY1-DVO}4zA-qE4@Nb5*{_PerptO?>Qsat^1A} zALs1(o*eJKe(&1|#m8Q@&Z=4$;kgsC-mBINY*5wc)rJ!At=+!YIH99!K!_&uc_s#U zxR6O_kIOv+iQHtJ)RiCWp0&?!X(x6LcR9^{8JF)Yr3Cs%uE&n5h&m_NqBp}cfLZT( zeCpCx;vy$Lt{7AWH_x5JJqRpfzgWIax9%J4JW}4lsv}o^Q~F^#OmKyR4qGhmDD@VF zal!WJyzZGFad4}9^7O}jI@j~sB>27GJ~dl+)Zq?1>8x=R@kzs#s5~EVO`&{8il%c2 zYO$}lMMZHj18j_)K3y)I50ia*`dfB}s^ild$7kDjZmr(I+OwyZtRL`xzdZEtDj2xOuLt2p zM^Q8#*DopSpePuLln{y3)9}S*kLcypY1K(r5@whM)w+L5I`f^R& zI6R`E0jNQ(c%=hD&4By)4qfrJ3d`PlUoy5vWD~1o!1H_Q_?d?3puk1 z#4w-xi3zr3u>Kk?;ON;5e%4t(;Y+{yAeRbB&$RI=Vg>v2^vngSDjNpsZ>n1fK2Lgc znaEVsLZ6DgdPU+RK{V@)XZF^_U2>i?Yxu7bDZLH3BS8(iV}0 zxE2+D_6MfPHHSJOC$^#&ZH05n8ya*0U|s)w<;B%r7-qS0ojn|&fcxk}_BgkqMFB%Q ztYJfWKR3_sztF<%412$I0|ljTW=pQ$eQ5~K2#`s8Z`3g0&8 zJxa{x<64BnTzNZG_|6?Y<8`JpHj=o;Pu$;?3z{TJJL;s2%fOa?5ya2ndg8%XMu}Nvo zUBkCg0&;_jC~4r%!;s{N9o#vq0T~lR?zraDkX|FJIXwVqZ|_~3S4Dj}_ar6k4c}}A zc;4)q<+*tM$LjrOSpgqPUVk<0d@Qe4OmwexBG+N-8i4`(>?Wc9O|PulZ{(HAQ9NaA zg5nm2WBkOpmu$%0Ae<;HMeEPaPuPb1;6_>$*CXU|IylGNG_DmNouZ=F7dOS5O{F7qDDb1Fvv-}|-&!)m$}iu1{{7}kd(X2+3L(M9*Nyelw_;<$k2C<> znr`m6Oy*@ZJ#$*bGq1-8onm`zV(zw2$MeGT>`G?Km-^3sOny2VPx|m8rGqmTO3%ig zag$``iV+A&4+UBbhMKu}Y}CBi=DJTxuj9)chX74Pjf>~LEO|O$h0NY!_#PR*>lt_? z-wA}1LVIGReP$hFR_V~y`ThIHvn!b4E`CLe^Lko)4xR=b%g1ak7U7*Z&unnTHqtWT z!6SP$UFpkxA7LKwxp7soNpG-A!D(n7)cz0YG=s1>GHg}h)sDk!MnQr3=d-1qbw=mT zmA6n_=5Z*HZJ+VPeSes9;p)=)rXfIMUA|MC?>zV?x9-Znuxy^8%mh($pO<{l#5t0O z_@j=*&b+4}h(VSt?PP;iP!Tfmrn`jg`nVVK;*z9kqt!S zRqG0fPI(*hU!2lU`MEMDAe^d8`j)pP)80k2xKwkrOA#r>>o_8{tiZ(d)1sTYQ->|L zY={505f+L!)OL}?M_Ih=+)o4?4t>2>S5haQD>c9nl#fT>=e_^2xExRDL5h`HtJ zfj8fFT;rV6j>L0*uEkg`rAFJz5%C*eSTx~xK6FhU)06!{2S+I3jWIUxS7#fO3J3bTlRY>ebb!NgGDyGii-Y_kt7Y~F z@ptMPy-#2yJfHz(5}vLFbz7iw63`*rf|5c@O9~8Xct#Dv(7QwdZw=9gGY@!F5c zagSNu186}>l=BkG(MyQ|({^h#Of^!EE~HR+*LzvD^QphnxZ_O+-^JieT&8utYy2-B zFgph8(Sg=6(Erik`jX+`Qg85#N+C*?!3KTnHP%*{8Au4z<*ysTcVobYQa z=P1C|Je{8Y=mZ<;O`#;|M8)|UHiu?*BYhY58Q>94Co7wd8$Eb#rIu+zDIRkqayB#g zvoEcNYQx)GCrR^vvKC*1)EZyYpcHbRa|J|9?yY%yW;z;lLV+^{7G(R(PBDlOlH#*dBgOt#!Eez_nj02--3b# zrB4w4Zm82Y!bXVZHOw4SdzBaL?t?=na{TdUUB*uEAw0$41wC6dWN%ttDpFp){_<@? zPolUfd!oIOVHS2phGm$p{On3)5B2ryrcZ|1kJ5S1ksPImn${eDNiG80JJIVj&F5;% zb*&G8Ama;~4uv@C-L?wv~VCXy|h$ZBIn2L7i|)0xr&y> z$EA`^ZGsU`x&AO+eQKS^z;?$<`w98)CsL2iM)hrH9?;opcwZ;c9e;c1yUk0COO_v6 z9%J*J;RkmgN3%?c^0hh&y^B=v+;m1GrFBg)%Rh{vp&@;EHl%ZTj(;+e>*V=@??dH+ zdqTHOr3|3U*+vP4N;{{#U} zJS0#+H7imx&uR4HsA?vWUWLs+TgPxmg9D%SM{nmm1&oIL9Axgi8^ zgeB|tRXEEHsVjwV>b9_DEh8Mdk_$hXt4>cWR3eRCl8`%G+YS5riEH|T+{X)jM2)=? z^Fp7}MMp`x^0Fugm9@)9tOQ0$-c{3tWYgu@ozcK(8EAYWV8>M@NDU5^OFG_{PlSsP zt`A>bluQ~r*8|$&kd=i7zb|GI-V)IaFAKU4-CNMk1g*Uc z=&&h@Nmss7I6#YA6~v6{m7hL+62JBRqnK9jop=5?gQGaT!-{Tu<=7yb&C}Clci$@B z!pAw<6ovuGXlZSd_O%}o&nJDCPjlBop0hf6?S>sr_fe3=H64vY9$Z4_dztxb1fg!X z>93fJBY>qp^UXb#OQf5cH5n}}To0bG4)gB%f2Cgysjni=x18w3yE{xZSRm)!RF&Uf2M3i?=1eJK4; z(7Y#$-mn5kuDPIV5zaVy31rxo4WUEF2XL~U2y>5JnGG6MPe{A8z!@wY%!L02IUJh? zgj2JHju5up!@&6$IZNp91f!G_V?siLnr;2jo+A(xe!3nwzJ-qY?tJA|QQ64VR2>{u z>Xr9*+ryv->dPg`42igUK@Tx_HD9-d|?#f^QZ}E?f_Iqk06TZ7=PfyV` zbSSPH$i3F=QnF;q!6qFjwnl3PQX`?RF2YRM7_Y)ZxXnOO@&)OJ6&GPH<63e=Z3T#v zfyh96K5Uuq@}04Csyf zbOh2#hT)Y?M8&~S?F?ZS0g3s8We@3V2=)Ku$Y92ls_FcMGe&r=kkD9p*yVO?vukarHO@uepBVBYCvGekn;$9J)Z5b1b-8vfLCA`a8TnFHBqd&SM zLwHt>6fx=zOKV{wv11Z6GJQUNDJa6_reb35$t{wwxe=FAaOUUbmHDayLv|qF_Qf?E ze0sVq>)Pm?LhGl;u)uOJrtnB4wD1eARCYmr^YD;qprq~l-u=9GYC>P=_HzVek*0a+ zuJ1H25ds}gic}_bpY*HOE8XWZsvrg=n->0lw%o83;k*DpJnr@DXoR7Fh=3FhF2R6_ zKd_;Jg$2`bJ6+=EB$+^DDt`GHVYMQB3}hliMzbAh5(4uw?0}7hWfsv`dLcL+UjDF) z2}JjRB})X1p;-{=YK8H#2;fsu0##lRbdVxpO2Ykajr5zJPM*77DfAAGC^&P`lA+&* zT{Ev75AkLfm-rj$6LnYyihtbIuBeUVij3Q5`s%f*4?{?RgM0Ykei3shk_SA%Wx=7<`aup!~_NyAdk8 zX-nqCyPV(2ASe{-co3drw9C76B}H6^kyb;8%4*Y9zv2}^LPU6uWV`;(-gV7HAp&R2 z*e?2DKuzCF;nlIBWHrqNy17^Lw!EK_U`uEOYV5~f*tj^qjJ=%&-FF6Te-l#k;U~KH zU}FSvwdAdb=-%slDVi()gy4m@mZ^3Aq$UN0q0@5pJYhAiah{eg#fw|^$J5m5$)k#o zEDDCMO``yPsUUknl|V{yfsXqzJ)OCtcV2(MR;7KE}TlA)4U zG|iv2EfQD&5Ha|RNnBBFSRYE)n>_2kc$XlA=(^PBzBK`*l3n32EJ8lQtflse<08srp;kHlz#+|ca5B;!DK`6=lEH#h5L zd6x9!9&t^KS>$nih{!~T=Yd^!AoZWI=W zPIwNgfs0X&jd7aXO84HYR}!wShu1w1?DJnIw&guk#=(&=xTTjF0z zZ|N9_VPjOa$7oW%DwpH@*EjYbqG^T-3=)vgye_8B<`gO!u@}9mWF-6c&-Z1;ay&hq z>*OCyPtJ`b3kt5kRlDt|_J$4HkXL>t$AWQmxVLNVH{jg_`+sc8{_xN+)u*V-b#5zW z4CGeXNE^R>FZd6!f;LAy8c3g2=h}3v9pn!Fl6yNsV5%X@OC~aPE8pge-hbjWs@k8J z?wPBQcZ?f%PSOOUhx~gGNdSXC|G^CWQ1!9i(8Xo=ff+fu2mO9^pX$63Ti*j#lLRQ0X9gdbANK@GC9kueT9+TK2`O2 zRuTgoIr}equP82Q^{r%*w%IVaXh_OF82Pq|CzXKForBW+-uSuZCT{$1M~&1C$E(ho z#3Z>XaaSJCesP0uMGoI;kz6)psNklf$?|ZrU{(Gd1&e*%EZZRGCk&cEjTv(A+V&tBAKcG1f;Xs^dxJv%1W(Sczzv~et= z90n<3Gy`G=0akYzNq;rctQ1))OA;@|Q$Yn%KXnwpUr)~Hnp>r z`oQw0*qBV$PtS$)k@=Iti>SY_itw!*-;OkH%%`Z+kx0P!m-gY5UoQR9m6wv0;`QMR z8?*G2(C2p*=>)Xz@dajyO#|$IxUu0NZl$3)w}WAJXxn>gIOSXIgN7aGkC8}tgU5%t zocZWEv8Y2~1%5cGj^ZG-nSA%mgO4WZO9u8ofjgxbD=jB_A;$1xYF@r{Dhjt4i!hd6 z&OpjGI=e3nv#5xvun=3oM_*^t(O*2Pc?(CvX1qWO6B>lL6zD9HK&s67o-}E5QkEjS z!h&|$AkgH>VLE=ogXctD&U%_UqlX5alkjCpF;iW5wJi4Hg?!S&!&^ZhLzwIImgCkw zR(4_)-7T?-dZGQov(nK;Ja+4+CmIiTrO2yZx~d4<8>Se%e<29B=-D2h*x4aV|H^>j zU;*=}%JI(C7lu{ZyE->>%X`%amWH1Ap(JGk8f`phFcROXtDcf?3Q*zwVKk&clSF61 zDPobLV3A;x9#}_vb8pZ1W%~@7WcIeIBBP?i$t~AoXH!y4OSaVSD|_ZoYAD=d1+1c! zhYnSt6*RCYUDX#vT}MgR6nHl%dIMv~H<3M%K_WR=t;uX8LDIH(`#cLbR-9Og>Rl18 zZZDpV4j-#WmM$I+EKe{O-go8kqQsN@cfC_QFTT=zFCwXl79t^`<+$##5(nSuetL@F zAx5^8Y;-_x`k^dx8T+Zh%_>M7+*Q!L=4SJdWfSvRiKJXfxs73p+Qvy|EOZ^0GDNYI zkt6q0Q4vyr&9O_-*E~nVo{T+&z!lQB8OE0NF94*+eAhp%RdB5`bm}sfX5fd|C4nP_ zeHl$QVAf6AN!YKc^fFr2K97!O@WCy;%h1R@z-G!Ck{nn?^U-!v_)(>Z@h$;>Bb{4V zq2qy8G#ymwbx+=W5L6vg;(qo;&vf7~BSK!2E1>7l0c=1aVzp68QIVWMQsS{!aq-$V zg;bwnHiVo_?O7dk>>>_wOi1F0zq1Z?V@UcB_5M2wPoSAa`@_l8xwse0are*Cqg#$@ zO&|^-_Xat={QlUD_+?N)Lt4kt)^iIKmd zD{5R-{$X>D$t&^K z$Z8aUF~oqgvezUXcIO3tpn%>L%+&wb3D+BoaxOu5S2HCRINa_{2Wmf6L$C*|0xe4v zlVwnNYQDHoWKk<6c58$B%UH<-;wMQY597=S6}hk3zEt-Du0Y)di+b;)FRxw!xTX8` zQM2txzAY=uwY_Kim}$i>l_u8+x3@W4Qe8>CRVvBxrA+HVWv?zPRYil8lxW*SRl6cB zQ7SCyn(eU|Rq*Un39Y1j%XoCOBDaMrSo*9u?FKV$dx@EG zTXRqff{v;f+;vb?i?!9c2d#cKnKgS^dfJA`Id^jpxaK#K>bB&d1 zfl%)_@9kN}zn1<23f^-Hl93AD()R;#jHPb;Y|-hbZv0Rtcn4t@;i?E<+!0y@es~?4(d|w&iwLC{I9@Rhv9D5Z5x3NLS#tsEN4KFR}2KXneYa zHZL>{i7`r*zFMM(5@7*;_JuR&7BRN%&Z|E1*SQGz;&3 zEZq@OaXrqR3CD5rUdf=!Jfe`76O=M<+M=AIXaqjf12ecM?=iDIP_VdxKQ_LIS7^v= zXu{Kl(HhhJ~#P-bcNw;@5Y;vM>z}(LY*jR6afX~ zE*U!X(W-o6umc5TIax8E-UV?zw9gNUmj=oWoYl2;DFoC}Rc=JE{&yQBVIKpDOJ$Ul zWFP%Mm5b6h5m_xnLcl|mZqjYS9;wPMz5f~2lgKs?)I~`-dHwRY4u~MVEWsNV8_t{! z?Zx>W>ldC?JmZn9rC!G@tkT;bp7hWr-iX%!F5-Dfvbx?d$TF%IOPwLypZd~n25IWA z1QHQ5)Xbi1XpvM|k^i%0!shKT@!~`M^bTrEDoeDNSBQ)n8JrTohR@7!Jb*SuMZpJ+ z;)SdHkv^VY3L2UNvwPWJmgJy1Fx8N(myF%Ope@jYmtX?)7X+{Hr=~&h{M+4md?S|u z7`gNNJ5PTE19;^yU<#uQW(ON%N4=)!fuM^P%4unfj6chk{?NUL(xLE`4S)~SxfGJ) z#UP-2oVw5ZH4^gV^3>{*++(eeV&PZ#Q;}0LlV|*2_ zLyvXhVv3Kt$|f1$UaM(M`EuU(G_Y)dEwF#CHh*@E!dBp0HQV?~y#VSC{DTJu1g-Q5J z+Aua$@dQzdI8s)#MRKnJF&W?fUJKE679;@p4A6PV(f0Y?z+wa-Y5P`iV;*)(unap- z`5fW9E*!{>ArFkSee?7j*>!;2ohdc z(P64f`aUpctmRfm3n;S7gc*0U+1;nggqi(e2%Y-#v==9gIe^AI2ws6GZ{GJ*gjXBR z9D_jBsk1nDpgUc)W;?s_F@DX7(VDkSVD|+0uP*n;b&mP8bun}(pq-k9UM-5dp@eE# z8u8YVAjee5K`D|l;(b3kU1`r}(b_IU$HkziK9hvw0(bJ=dS8z-Tp1GXZr)!ngu7`K zMlrO8vN&%;MnDiyvOyOvDvWcBEn4IcqrNUfTr%1|!|hLAA|FjcO-O->)x1i;AUGB+ z^RaPLLUWkI6DUqB{e_y%B=UPFH|(brH6h1`Ykvy(>vO*`NgfZwwcoDG2et8JcRcfh zDU%OoXfT-N(R_-?VgQl_YC--1udv=XbO zouzOiU^sMm6kEE*P2mdOUxP9KcE2<8-1EI)Yu{ZMmh=O_^9O~MAjifoK6qsJU?f=Drr61B4@9t27#aRk1z!D>=> zEMWisGP(If9jYi#nn8?nl0=p-(IiyuiutosjqM$Dl%;{cNdhDs;rvQ4Jg`?m*E#I6 z0^}EpPcUu~{xE3U2QvKPiCF4%%9jFyFuV!qK5z9`Naw4-#sU`v_U8c+#IdIV@i5Sr zLoirmcp2p%7>EvpdJ7QsnZtdV2KnwLnQW4&^CkRSSYOlqWDi>FJ{*=mChlHHC(Z%+ zL5eu2v{vz8Yyw(zZHsuV^nV+a*lx(pF#GW9MZzVVD^h`1PS5TE}vv?~pjEWNU1_>8X24qEI(TG|F*6}_c(2p9Uxan0oyAY4Jn`^l>*7Do5^ne`Tx7Mg1&i?I zOy>saN&rDNi#?koOD+ZXtt>?xyKPrI3slSgl5CQ?x}##_q)SD(RB1)Dq$+cYWf%$C zS;a;EWhLZ|lG3fD($zQ)l=vZ-hV!dQe1$;jm5x*k{4r^iER*`cj*tTvFq|@!8GpWn zz7avv`vAxGr{O|pab|;zFeflP%-Nfl=%wqtclP@z2zZm4KUPAaQeweY;9eg$eG?rX zj@^uC3xEi@kWin>0u_NsUmzc$hZl``97nx2tKM%xHcQ9EH_W_p z&@5nvU1Cs!jf;+f@=^?zOeTJk5N9^rR!AwWm^uC3PY%{l6zM({R(Jtb$?QiD9Ok4&1bxh=iA^LvDqR)?FPfFde6XJ%8drShQ&FTE%6%iSyJq~gcSk=TJh z+SsV46FGRwi8lpSqTJeO1@rq^gcj0lsoa*NpVrLwe;r6Z%%{t~ULfHn9H*xhj=_k% zJ)5mzbrqU6?@c93`@(=n=?`eO#BJs9k=}5@9`5xjTlye1<#U-J=+{AY{cnMEHWrqk&OlDaLdyoMdW!iMulWk*snZ>}h) zhBfBn21Gg?#jXIaur>v1Iz3!zb2J@E8HPmV=+GciGCbXc?Azl6E%O2Hqfe<+mISnu zV3$n$qr(^+bsd)fk4wt8qktC=942m>%DmWj@2+~~sr>$PIk3>(x~E7kg$NykCDldY z#fzABa-gTv-h=SmHYpz~xj$JKUu8)`D(*!TQ0c;VzCZXhOjc$JL@T{np_E-g|* zPp!Ibl{aS!iuLC!wncNw{pc>WFc@_+Vq8b)UD=h+()3v|r@McJYTl$dap9szt8zX= z8}HW#i>DyND)rolC;*-z9x-;lv~VKaes)A#L03-%lkjbVPoE+)80TJH;; z;@51=xw^wvKD4B~YJ0Rt!j+nKdEimVvr_?Vy4VB9QS-m`fOnW&8P{3ENIN-!@C@B@ zjV!5PRD+toW-_tkAmg_q@3*m4R56IT=yWl_6yPPJ~2Lxh2nXh4VnlR11Im1IfTdwXtq?F?*2t zW3()eaV3KRubV#Mq?st)f*^B!G>rF@jg0bA{4VzV(OfoSo`zS(FkUX*Fp<>Zt0mDG zaZ7O!T#H5fZ21Y zblq3%!iBSTn$U*fp3tJ0m&AO9)yPrhrpN~Da17m&;BzFR-9)~8fDjd z`$Iq+Bl3Dq;r{%Mn}o{yGLMnE*$O6!GK*nOY;^S1R~n4X)joK8vff7l zn8@4=0bESINB}8Xp2R^Zcx~IWG+wBs0_b9$lloBV%x)G24__a=<5>9Ol={gbaK)uH zv*TrjSFV{BFS#>5KBg!4#w1BizdW+luE6=cWhK6;GHmR56UDG^s?O}Td1wy9Y&nWh zG&tGwyHG675x%_%h^q%t^u#9#3K@*SI{;!(YFo@h2Oz|^{}$EmXUV5^tuRhTLNb5` z>7H@f@0?yUq0{HsMUm0+bivOilHnlB3`ixAL@WDedkD&;^G^;0W8b64$2>;Bf`}K= z+&niX88wMCUdSEY`H1XioApQGddk((@R&^Fx8bGNanNnwH(iY(Qx9D^WIhe>&f+(gMp6eAYvUOA+E)M)_V%mfJM_-)o|H|qnQBe)b5rpqe zvsZ`5oYM-)N_gQ_sECxUx}!{1z<4&%MxBqMww5;TY#UJ?wPG!%H0(mYfo zyA!v&J=QdnKamZz;Gmf z;sexXHra@oGeoi#hrBgxql`IP;cJjnNKweP`<)4CnRvqoCDA0;Ah--Y37>&m*mUZj zGnAj!nSGtPe3oI1%>p@ob%s4Fu( zZ43m}6K1?de_z-L%Tm1Yc3P#IA#W}HZ zhR}wRRpU50TmMac@0&w6CbmNL9@c(}F&rJgC7kxZj`qmW31^Fh=aFdojG-m%lR|G& z_AbH@`u&n?UsO_}Z{xw-HE(p8_mpE%OOpB~S72|kw_<8(G5#EO>6?j?K%KOr z!@U}0!OfJK;C0lMcTXM85L{4j9h$@Xwrmo*Bf?9=VUVrQG4>X|{!E+!ap03de8ViE zLUJcEnia1C=TSWvIgiDQaYW1>qTEZ4Vdn0P=si6ezkb!-l3UyTuN3A>FeGI$)>umL}bloG3DJ)qH=h#24PYoYA#`V*~=?l?0TP@9d{;yBr>{+lGuxyO)0CJL@dh;SB&Lt`iQ1S2~CKxOj> zn*g5wN!e!YE&%}nqW(kz?kJ$4j;QSthUJc=-hA+B7UV-g=1&IHuYn8l<9dc}v7Y(S z&K&46+yy~Z#M#EBKjaV;g)EcAKj600Yb7xyi)EE$=zP+ z?~(2J+o7@N)oyo0KbYwocsnq{`ocw+eTi!2a3gfZ<=XRlNT(Yq^GnkiJ;cV-9TeBj z??#|7w1=`*T;MiAj%t{WryR1GNCJ!GwnSDz%!U%Utq9N|HG!!60eias{A3*}^Z#Em zIasJk&?fs&qXsk-LOYvv5&jK&i%0B7E%a=?1VuG))ne zo08NexAWVTE>t4!98RJWar|0KAGg1QjvX0z!dWKQ_IAj7W6}pYE%i3cf!FWUx5-tGh&D+-?yhRfrF9|H=1is%1>r=YlV7!PRs)JTskJ$ zmiwO?nXpQg+ihM_e5#jkh_^Hd*$t<|2Irzya5E4MOhn5XESPXmh_E3-U_~?pQ5s;t z25d~AoZoQCL^SU}y%sd@E}=>ud?o~`zw8A<6v9Ub5oS&+mKv(~)qiJ9|nOW702lPCjhnPKIJw+)p7nTr4n;DLmw{KPEVH zs6!Jv{D#!3@qfpA|MI=cNn~J%OCa{g13 zA#2nJua)L}B?s5~R98QmE-&1=;wFOaN`Hcu9B1*47?Th z7g=iu-q}>q+>YlI@{`YRLNEyyG0IWHgR=S)pMU0@;&{$L6;x@=F;ed-6uj*@679wg&EFl3!Rr! z1ur5Y^S9W3*bmXmb?1~6wMpRcr^!^Zb(vn;IxWyD{Von@hG6>X5u%#!JtM6T3T4=x z!{pw$DcMxFl(ki~ZdNn<>+J9jVbEes!1%?IrGUS3mLyHTepdS;LltfNF^hdPs zVOqbmu}XpTqS#@Z$Wv}hWoD--^bA>OfIDgFOa zOhW8#Q2ro=Jd3z5B5rqxOe8o~bbyF5kNr3wOeI`GA#SnYc!5O7iO-Jz>|hb+F=$de zVNZVGP=g8NzN>WJ8$5_A84_I(FHzGZ{hH;&ZNtbDq?r`pyMMn;3k2hh^Uz&qDyvTyof<8ZDWSD zLB=hk-n{Kt=o+0lG~px+p>-W;YX~_qG606h$%}C*{Nm4@y!skaCm&i=^MoI2t-us- zxjIqUxCO}Y0VN%H*~MjnIYZe8wdv*}>qdG~#3ZhtB~Z0#N*LOMvsVSsm7ZJPu2Ghe zF}nVSNgZ~BSGx6aM`R@i5ejl!se^{k()dT_LWk(XCVtK{YQlva7Jh%}ZoF^6@HsX? z`9pJfAI{%t=C`{g7^&8unddX3NKSXvQK$)<$2m)#eiHm?gih*AOu}4|=*Ft7NvZce zLSM*m^WU6=?Kgl1Nn-r<9B`4~ccvG+JmS248O7qeM@Ks2!}*mYBzE<)X`INiu;ony zZ20dmevxU2JP}Yj->2S4{3g7ycAfPW;mbp@@Y>?CAdblJizU2;=@WOzcwGi4h)Fc- zWJu1xUTa~3s({sX^?0{lvHytkh*H39du9Tv5?iwf7B z!F938Y&wr0Uti@qpUG1mE=nUfJVRA%WU_$6X;p{C%0R}(okTt#?q?LcmcG==Gq+bJ z2Bw}>q)vPVw-Zb9rXA|FM^nQOIWaL4wKdLXnXRjja8VM!1kj&5vVgJ^QLWl^i{JYJTl95WlQBsrN1A$|_RLWq+zNhF0Rxeq`x zpZkI)M^QruH@h?Zu)ffFUk<2*e(MibnK}Z+;%S**VcSx6UX0sR?!0RS{lSjSSvwf4 zJ%vqwsH^4aLcVsQ741lvfulG*ISy#Enf`e9BY>cG-)cKPzx zdh(u&Ga{KxqAgANhuh5R*-q!uB)_jux&Dn{H$F!fm5=dX_`v*lKs2xZ&us=OY~!J`@uzwSfaIS`(ZPG3iJL;KS?LyIoi8ai+Cwn zcB@Vva&)v?*bi{>9$RczEPi->NQsj8GvUavoKXXae%m#JnY>~y`5)4|@!rcfxwobx zvU;N7lt>SJ`8-F-vu9k zeqq>DYKCYM0fLqa=#OTHvEJy5$De94?SD6VfXn3MpQ)KIb^pQDHI)>NW>IBS(6WQG@h6` z3nfhZ;8`>iEthxY?!BYb^qwy*O>=xgP(dFe&PowFXtBUmO_tMpwR1M2u(z8R@EHvm z5?D#IuM?LCROOn^OzEM9>>2|-`y6wB(2D^bFl$7aXMDxUB9=5 zhVCTZSQXog@%Jb2erW7tTz6m3m_nbcaCEA5t@hJRi;${y!=KZq<5!H|vJZ-^irwki zd!;=sejS5}0WIOHipRa5FFAW&-MMopab0NHeQVj%|Gwf?RZ3Gi>%nvJiA}4blB|W! zS5y-d*e_`1H%kw*9&q{SR54&Ts77{i3-IR%U6a8glI^*zl8%QN$bh|C(nHTWV`c6V z&pGz?Z;6W#5yipl`?AU_f`8@dqRML`UKh}_9>!y7essoG5#k!NLNhCylsUK)J9o6y zgtER)X3zFoWqtK=Zp~!R%`&VNJsN_alQJHA_nnrf!{+N8KYV?yHr4l;lvaRgZ1Js_ z^Wt?UI&Z4eoNbiGoi~-Qozd*O-e7mWxuA|sd8zF^Ax1v)oZzZ*ipJBQnT4lQnRTwF zlEhk>4!mTyxjJXaC>T$207|N6&g&+{SeuS24$D4M!#nzhL&; zSn9g%jhb_%v;tGLiQi31Q^&ztsgq00r!@sn8!q&IEq7VBySMgKs)-QYyyKig$0_V` zx5}?J@t3$!EWBoS)8Q@ZvIbeBMatlFsRWIW6$3e%Tog3imB--(bdd?^Y`zz`u-vUC zQrE`t&Z1ZbTvk=kPt_%3x^C2Nx~Fn*p48*l^vQqACDOciW@JR)6q{#*K`0s=8J3av zdyVGAwEE-AmDy~azGJq4OGI*dzZUx5NVkaj$>D}27#ohq{oOMC9EO7Gu+ns>wBX^ckf*!1vX8^v(@>`iQ`wYXNs z=$khSg@llu+xJb;O%Yb|EHX7nUV+~tJo)?WRXxrszxtrT^|EH82dV=bH18TuefOeG z(qb9ty7tc}EF1Q2N8h`Rif@s&5%Lqx_F>z8v-vwAczfYaI6l2%i}7cRva-Crw5xn3 zJa`xJUDxYslO7s0CBK%Z-+1l+;J4*~({x8AJwFA0D4kDP^PKzu6=A}~ta$gy;m1Nk ztVZpE{S{~Iz_{nNH-kLlDIPkLeWJfYLc<;IVIx#K_IhIw_9=$s3MSJm$;r*W#r&mD z-s}xqP9-!yG(DE>Y#+~zeI)BG;&^5HT_EPTlrcx}0K ziA3ejO&z<=&!lkAeX%|*D%+fFQmi~GPe{zJ3fXu}*LK{4rBEC5NMK&%7~fD`r0x)1 zG3%_Fj0XdKL3AIxM*XYwM-l6b4xEOA=Yb3?5nQlu?pjVmBcqhJ87|J72A}q+dQWTSu8&eamp&MZH6N>F{B4xM1xG6L z)5BQGVzRT~H79NF^(o7SBYcC~qCx9HpUX>(W#I}SDzQhL?ZhBf~KFdA0#SK zM?@l#OL(_dKMJMQ7i7M;wv)L31#dy@$h|TeA3cn2jIAHO|I8rohV>QYob&=8l7WDr zh?JzrCVfSgkT$CE2@NMF?|N-*Slv;Ph^95ECQ4d?z}oZ+nF0IHvw!!blU^Gcew#QG zk}v7?V_9C6FTZJu>u>vcUTo9uIa@}cL)E^{*ja3g#JW%uBd-%arr+6}ANx;k)Y%Hd zHKwxD9F%BmJTp)!^Yf>6teLF?I)kVMdEd}&HeL&t%#j@=^PyAcL6HLQ54j&p<;Rp3A+kH3Vdu-cJJMex**vXrwGha@{wMt=*cpyGE zA|;uvju-YvHa#&~><4{p)qDP(oMo)A+zI=GAKRUGt;M(6jlJ-9^9d})&)8$O8_^W- z-ySz<|IYBeVwnF?@XJ<;)TvtjpYtyE>UBN4;$&@?(`_3uS3@S3^=18pQqJV~(-rCa zKT9weGSdH@(YqVn3w=W@ihSRysfDOmc6%>0Ji6%L)oi|(>D)+s?FD<))$q~vw7$@H z<%AE@V^?Mw+wr1gDHR>HbfZgeQmxx^3kWiHE-KtMni8JphQy~tXw%{YZ%`WG#Yi@kN zeA!W6Fc$l&R}y)InVn6mj&VrKx~yP#;Vr>h{`b!G+V=eUsx%QX)F0h%ePO^3WZ0uB zSMj1(N?BYzY2#fL$y;BTI@E{TIqXrnhEG?6h*9I@?CvkmRfEaxhKM|N*wFW0C!3lo z)aRAlF5dciZMTWR@tYWxlq5u?lXX9JkH77fDI?4a8pQognQdpCz1_d>*0K!vetlN? z_k?M4->z4&VMFmgB2@Z`|%89GbiY}Ha#kO zm%sCE?7l#md)%~|TeV*%QgwPJu1<(~ zqj8nGWc?>`KYY>*tP{Jz$CAVe3O{)~9>g<~SXeE#UnZ3Lyg#kvdp5Xaet+MUDxF$5 z%-kmC>l?Qvs?qo#_6-aiNdp`c)yV2Id zl}}N2;#^FJ&btyRw$&kQPB^JCgWvqXG`a zB`vQ|3i|wV@X772VGVhgW`+ebV#Fo3{Fj#Dx4Q7=q_*||dwOTz zzxQg0W}>b|k-*}e=Z`5G7~ATAcqWEQXDV%_crB>eo_Di}5247Ax?oD6H9Z&?zA6%_m4rqYi(({GEGO zm}BXl;_PgjY;_{WX4f_O5%DEbPL7u0VTGO-`g30Ex(Wkah6kS$ce^ho^;e_1+)Z

    p9t}P0pA$LWtHgIlCA}84b+{0ToCva-_li7sxueDM`ri`cB?PA>My<2rX?Ed+G^(CkE%9`wXZZYgOeH}n zgdBpj(DE7_7Fb)E61!%TV-bl+8SYO4js^tE$-;VV<00nvr?S~osn;W-Y31vyD<9K8 zAP%Nu6ZQz!VMfommvqaqq~RtkcWT+Z*D1dfeP&c1dwZl(Vcnu0q_}KV*H7JN;&zXW zzVhp$WO}g%MbDh1$gZ=#FEg<;u6g}y#yINQi`h&ks(rz868uoh6jp30`UGi7{AsYwV1=lF-tN^&96?Rpe7{cuQ#RoGXY!0#fJ_#(dprSMBjM}6-H+YHHRB*CpGB0$t;c))xWuW^bO zzxabkY?!(0`l_+RfOz5zdBP%V)knPCrAM~A!Fk6`lI@2LebH4#Di zGDpam;c&qGBTKgBqD4`e3VtjZhNMDZS{n5?kYTC#__2Jg zi8cNEi&C-VK5FISF)IWPytH1`%~JRI-~Xg{Rw6rhJl5KeieVDr1`*h~!ULkM0KO|*S>vOV7v*NmiVM{s>F!Pg^mK1=OW zES80n0j3RBU`=%GSvyHRm`*|;tpe2cMa8dXoJN`c4Frg|V%Iw=wU=*IrkNRA>Lkvp ze&`!BuLU2bUjuD#=YEojE6$6bld1Oy8w*y1V=jEvz9n9?4{H!fSgt%x%QscC+`A`s zC~8x9mO397gyux=6aLyyEZ~v*_XEEI7NoQ|NgGh8&!Vd73v(TdrK&fv2)fLs7pR1l z7TPiqS>8yfEiLB67oD)mWTG+Y{zh0N+tTV`(fbY^ZB@J3EXx#TD4-TVB|pEivQpUt zY!9044?f=K0;w05bsjM~A}v9Eb_aX=O_S_afq$9eX56UD7uBJ&3|`2HSlgf}UT0xx!QwU@HQ$DV@|$~FABv%f2({2;E0fzk`mT6KL-wE3!tgQCgOb>wFmv*g5CAx~5;tYM0_T3ZZZrVf`mEwQ7w0lcV zwS%+voy<^ornBHTb#a+HuL>LX9a`rPRNZvFv2;6(YH<4EU!`)&yxzmPAq95_zhGAN zM=0>quqP8o`abS+mvmlUP{8h(lj(KI|LJ|5u4{N$!ebI6sr8qoK5SmS!JD%NV2#|- z@xV8BqcEt;PT-EsAPZ2+*T2~V1>3SE5EHEI1t)xB2xtVjJ$B3xzf?qiBD1t>?kQr; z%Wc^mcWdHj=>w$ug@b`!_vcS=>Bb-8Qjl{`10e>d0a;2=(hQ?@qe7a|(6|SiMv-eE zp3$I@4**0ACXs0B7c@8#%XW~SY4M%P8TJdu{;*lz^cYlEW!@bk>hWCSfixc#EFb&U z=44SOEM}!`Z77v%=;_FQcQ!+ez6fZ5TZ8~c$d45-*wO_`U+HQ*w6eMcn9nphC zMN&%snHQ)zmzzB*b2>rWz zWJ(5Ij!#T%gDD#~>K*8Q?Si?m6Bt9djh(}vK$kS-yI9?|o%%mtIA4RyEebJk17o3h zV2J#F?{^k8bGGFUc5qEyQREPRu0qkf)+DB|B~IVI-!fq-e!=&NqPMW={IGDVY%1i3 zm2$Vw0wXLOin#xF-f@mH&NUb7FW+e5EAZvk9FH!^`qjRQW{tX$;ln)Q-p42)p@Ka= zq*67qAj(73C3t};aVI@qhr%G@VOd$Lk#W`3=?#Oihz|uHs_*QLT|nMLGU9-Y@$b#y}x55mrudXAhoSfl= zG>p@qA@CI4(9Q?Lp|x8RKq-;-^gJfqhUpAdWo5jO5D`X@xZNB?qU9_GZJW+@Y1eosZkBs5BMpWON!dFf${it^k z7>rfBmJL<*`Kbb1GJWj&Y^RFmAMeV`QzfO$+*XSYVHx6!?o(xuv}1b8(!Y|b~k9d z@ib<2s9+Z^+o#`zmWi=35G5!fxOi@`vzq}qWAbSm0Vwk%-!dLAT^wvWJ9x0wbm0re zFgPs2!Qc!zcJ&Cm?s3Ycj6Z*z5YI|DyX?@q?go)KAs9R`XnZaN{*&Bb+x*#9)fc5qkn+26re?q8W{ONoB5 zUr0wZ=W{@TR>F|ye@?xFLhh1DxS>jn>yqJ;=6&*`l`;CvWOTm-ph;yPskXt zgZt;u%udYAoJqeeI~rk3=m7?t;)p6EE*>6Eh!oPDkLqY8Qx`?}7PW1PDHtR>*ixp6 zt&D%RFKAwwo)A-IIfxLqf~yJil98+drhf zDam5o2+?63=zGXVLVGvWL-7WcyZtBsO@cNpk)I@2g+h<~1A5Bjh!4EZ zgl1Q5>UakWM0PQ7CSZ=$x&bZ~;I%x1(CvQiFA5P29Eg4Qi%s`E;?HC`>dR}TF+`=B za@OyPdth~4oJVa3Cz7#sTWkfISlJck?wxS*eBvX!DiFBV^f!0LRCoJEei1HG2l%vH z{2u^$buU}1cizLE^*;01cV+p#+}yd_%XO}y#-KKYt%Lj2LnNo5@|$Aq>*kxx}+PV8>CA@x)G3;E%-zm%#AGU>8b~>S=oQaoSkv|u#rbn|2b-VJ+t#@E={U9+>UjDf6)Z$ ziZD%xsC4X}BA*Xmu+P|-kyVML@>}>emX2+R{;Fw?ni3}e?7^kno)b}Gg<`5>105Bm zzGjpBxP}p-`V%-yZZq{urH21J$TFRXS9Si$I;M`t!c4>Nxvfv+cuTYx8!p}(@m*CAfgLk8_Oh+!l}=tx2yzII95EWE)e>U0Dgg zwR8Qc6z0R~O_Ih}c^65|=Rsh@lnPa>&?%0_j}1}-;Dv(s2JmncDAQTHF}~RwG29D( zT!l`Zb_)!D^e+sn_@H{*S2#)GNKXupg5$={Y2Mw3Qa(vv`ek##-=zd}ZxN^Z;V0~@W2%N0hdCyz zFRV&_kp|!EWx>y$bKNk*OdSjN7`dUUNYJqH{{A(}ek70Q90Ep7+Jf&i0ci~X{{2Iw z?!xim2rV34V^eiaFX|wqw6;Npb*qvjSqG3lrs};Ry$7OQizOpq`ojLM>w9)NBEX6*WIh)7QkMHOKY)tUSP;Kf5xRL&-!KHH?-^=pW<%F21Bxn{5|ag zJQ~@OueDE#=`fva?-hKLZx4==a^-~^J$nqUVFz0VSE*nV7Sa)MA1_J*)xz2ue8zSc zKA+6VItFc8Ljizs5nLE6`(5QnLc5j)mEQuMIOKcngg-P`i#z_Rwt2y4{f??6ZE5q| zS%csmTcOGf@BhYc{(4|ZoH`u%OQUd6@Q{?FkqXvkH{!$G9d7L}*{!64Qdb`ngx}%J2_BpWSTZGBM9DEIt z1W6=!IeofNE~Ry+c0Qy1+xL0qlb#r2&Tzym-HdZY`-kEna@kn-5R88O@|y8^HqiR z2(#Ii-{dMeX8624U|??jWa3cSix-$T^n_hxoYj5`g+FCR7yBBe8t8{p#qJ6^r|mE& zVP+1FpIkqpYMf~~1Q)Vc=u$G_PIAaE1J}tIf~=4vT%-zpR?0iMivY|G<+nd<$DP@Z4_;yp-X`B>5=wyHg zkloKpq874?D2QOe)4ScOFWEEDp=%JLtRdD^EikzXH)2~Ah?v0HG={uoy-!z=Z*4l1 zwZjO*&or~!-uX|B<|VkBYw?OgEq1m4t~`N3;{fiuQy*K`Z;2?lm7>Cnf)_U0is?5* z=Foh*_Q%$xOABkE$IJh-X8q`IF9qxPSdM$8McrSC;@xz**7S@A(tlzE62pCk0-$aT znWpry2<4y087%u8-g_=i7x3{u8=(?uN;0>d$gXCTBHYRZ`Anho4`mJE_K>wK9rwPp zbQPTNmK(OpjKQ(7hnb~x=Z9xa2&p4FgiJdqjz2^oZnwB+y#PK?Vt+kaE$*9Q>bd_)>9L)j?%ObTC-gWUu_)9}#cRP$K zUP54;11M5y;Xt6>Y$&5^4E-z)WXAmbd?>L>%9T6U;)+DaITD4hxEczK`f*Bk;o|>O z%U`gsjXzyAw;;ge^u1(=9X_LOES{z9$f=um4=V8$jv&QCTM+&&mFnvhrny;EZb3Y7 zcb;awNRrjrnXQ`aP!@jUR%&nh%+$5)yHdlCZrC%#I^aD&==eqUbOTfV^3f?XW^ROT z5A&*d{!b4JMgn6<&4hqdm_vfvDA#CaRAzrJ^nCkf1euDE{k*X6{>EpmSj5`eI_4f7 za(`8BpdD4&J;e(8$a0>Tqhnw2cYqgx$z4qwCB_}jPn_T(4JoQX_3Qo^%OT&a>m2i& zQ>);j?uyENh|)y(6dl2ij`qEHE>8?n2QwAUMwg$?t;TNpzu|I@xISyq-sC`5JRM+H zLET6V_-CdmR~iwgm1<@0hDO7^J%r+h5JaI;yqhaACjn~>5NH~u?Ih{B5`p<2cC1t& zm_sK*Kw+!}$2SO6^?=~_p25LiGqshKaYRqd{sk<)2-Ex27{oEZaD;c&3dQ;VqAri(dl+g8+@335hS5oHME$O_584i7Kw4E;6 zU|TJ&GPN2gS}Oksi%2CsyZ z3%rx*^7y0ecv$wqI$PHAY_;6t^eD(8y3Zu(5xSsaqLLta-@UZwRgTXEGfXt7!Rw4V zQDj~Kw|iA)hthV_rgm*%m?H`jVTUIsLJKVQ?55{Dj|DfO;;p5-%^B`Y)l}Ek#;2wA z!nr(XS(tv~D`bu%3G)a>bCdKX3fRXA(Y<^5UrkL-x}G3{>vWRX=RqDu)np%7MRr5z zd~c;`FJGoPFq!|n5)%5efQE8B@9PUf>^_)6Cr<63YioZ49(IpB_v~otl#0vtvSJvo zJFH)&DvSinkT|*uhUd@XsDa7;On`iS1MGNb z%-ch8Aj5Yba#m6H;1^cc?FnYFPk_$JczN+d66miP^R2FlropwY&<-OAmw(?YRLSTB zKHqM;Rf5A7Z;y|U2ktf-FzV5x`+pQH?v?M~@uka1i>WUN&k@$m-Am-~Ce4#V(?J^Zv5<(y1$l53lDh{BnE#>JZ=oF4{(c zryCA33gn%go^nSuJJx`iZ=Tqd5AL>o|_Un@N ziXYG6`&&3XC(*6(_v?rdL1hQss{X?_vXGsHo;vBeQ_d!-Ts+3Wuj7!;A#%iOkvC-y(W^jL4OF z-fkaU%U&mpvLJHpBN?X(@<-;hYuOQigT{lJ2t02j_W@Rf1}$Dsxw!(m%&8jddT7*; zC)TdEQPyvG+IW*3N+I-aJP`ZtdF0{w4Zb=#9UYzZF0e?5(}S!_QJIMQNy>-o%{fy$ z{{tcmiwexGyAYCW(bt`E$&@#eZlxwzaFO({D;6$g4r24HptF_GMQzePflX<)(XPrh ztYrVZVw2B*AFd{4#28=R|F}gpew~u0h?yIPF=YGU1Vjg!)5Q=9O@KsmC1ci#Ka}NU zW%;*R;`_${pdjzgw_86__GeWIsV#v`1sfn9eby*^p0&U zEVAH-Q)X~*u&v#{?`GMV4^|dXoL;aJe){*_kOPH!WOMs`q6s$z+Nh7l6;H+9UySHk z5HK8z&nxZKHh)!*-#MYBCw+L9()H+S$HTxxe2GZz_|2~qT>IIom476;J|Ba1U|bn@Igj@ z{5SyeJAhODZ|PMg%rm{~0Dgf^TGlnp(h@poaQKZwN)yOo!o?#9_Q9#w^>l+tQRtK! z^cbYR=lki?v->}q3{VJJ2D zaQTFY^+LB27RCp7Qg!)|Z&j!7yr zyl|zfBQY%%YPDNl$lV?b??4V3^j0osJv#Cjyoin=7qXbHHaPaAASIdQ^Ka$KURnOe zrtm~Y`?Ooqae-x9QgNfE(uWy2mc(c`u~vZdzf{(^`_pk6LIK<%GT0pq?_ctz>w2sv zpdiu+5u=pfU<<9Hs@g7iG9%{gE!cc{R9+9yNF!ss5U8k-*mXq1bqNz0E5tO+0pFgv zHxEPvr~igDK(vgZG@YN#UztHV{B&P`71buYS3OVyu>(~X|NL6VpYbM%D_9gAKUjZLP~L5}ghAK(DNRjToxF5I~;p+ZA094Cex;UWED0XYkbBq|>oM^v4p2E=CZW7{$lbY8AZR{0R^DGywz@jkAicWqpOK_! z*ENvc-zK?5>W(g-r29H<{4NmdFEU|$v8h#d2t0jMNtq+i#@GeSzXBShp^{O!kYimlaF3n2G@nDF_ zXzmtpF}g1PHurcl;>>Xm)P;Y-Q<&T7g5|LQi%`T_zs8#co(9H|H0o}R#OS&+i2RVfelTu*mvwk0kh#$+x@gWU*>n;wNK;t_2 zwLL+cR=`21hdFqjH|`SHW(w1d&1v%IZ1G*`%!iXl z#Huvj0@gvhpw`BxNRuR5xW$ZH28wSkmY$%D8l3Q-OOjSu-_0uK5%!GP_7#k-=)d_7 z0X5(VnDBcls9QQ@kj!oS;MbxT!ub-Zu6|e0TSnV77)Y%_i{AL?-)6=nbH6=8`GiLm z`+FEVEaj_u#j1tQ_r#FY4aiR)gkuQ>Y5b7$7@6*pja~QsbfmNzdY(CNymZdR>HS;t zJ~i0P?cZ+mSh;ll@`f0z-`UQ1_f=OqR3+d%jh3EG`Di{v){K+Ys6f`G2eNKPvW|FP z71enpTq=N>!YP?PQUiF0A63|tz+w@1xoR9w_r=}FVj@~BJ`!~cyy zu_&P64(Iklsr?d1WG6rw&go^YoLBsTskrR3?n135&P}*S=8Icuo*9$4DW|+B>T9S~ z72Xu`tE0h{6D9Vkm_@@m@k1&Jx_b7f6TI}eokMdH?&r@&-_0PKV@r8}Vv8qT`w!E> z-e(o|q!VUmkasMiudlB-N}cym`k}tE1Z=RSHVD&5;`L$y?PLgu{Y!EsWij)mdy%!n zw+YorybB{H+<$9loRIZ`6gX;7)~_A&zX=b?%sZ{s2!AQLfdky1_kYjYIP_ib6wkhP zY2%YA|NO4$>?(X_E)iapMe|K{k_R-wC7sJX%#sK%^l9UaqJZ~bXC(OrWJ+J3-lSO* zLY_OsJRO4OfA0SmG@65tkIO||QKlVTQGrEMD^h)e;XkzQTop7mKd;d9tE{8JjHaWx zIU4AcEr$n(nh^dGns_(QyYbtIk33jzN1@P1ahP<#g~ZXv~r6t z3%FA;r!?J-ugK)F|3bM23K4;dJm)?tT0By(yi!onZoFI!y6*^Fhv(|*iQA5U6ZFV) z^0)Y$*7_E~+m9dGeH6%Qaexx^1gZ+PLuIqr=6B-SSxRkT!#&T667A^hSxJFrDbjZM zs_`qE(-9E4XkxTp-l4(b;wY$EUQoX;;^A+itxAd>uRr>XWV0rVIJp*0+r&lzA-gLX z{%=ST+&T;|l~ua0{1JMi^zGp(LFDf*D$GFQnGjY3VzKz{)j^LYW8%M#$vWkC|GAGa zN=izKp!##)L@WCevQ34rXkln*&~_4P>x8b~55ug8Vf#O23Y3Dl(Qo zFOdPlg|bw|BV|Tfe=#%?Im=AgW@L00Xe}fAs^V-y7IkkKLi_UIehm)`m zdV(If?|zKE2;PYxAd!R>t8PQ!0?@b86CbZ>>iJXs>l3fz?YS~BDW`@>Ip;r8ti){g zpej2?77cod$R$uG*s(9CyOIM2N_mobvixV4q*CAGbsx*6*a(dVw!q#CHXB(fX6c8! zJuSLwuYtFgnvlL74sY~2GR?Aek+vagzs8;ZP!rqv)(jJx*1)~zjD0t z5H9Gv5q^1a(?1?7YyW$S(Ip;b5fD=LY7OV=GCq#btf_9J#@2mvBhhg%O`a&6pjpGg z2`sgl`1tzZAd{lZrgqxnpoi}4ea@wElCKvx7Z*FIMuo1@O^ ze=OIR#`WOlc~2SbPN4DQa;CDiC3Av<_H+3^q7IIvW_>qO)Q)^E_tx0$e7xyIth^EXIBD}XDG6yFk>#!*DjFfr%NNkRTQ@ezHT13`UFoD*Yc8@*M$&}< z)Q&$oVkr6|Fl*LWDff4Pkc8x8iS}#!i0qZMFpnDu>)z11A$qy@>do0i8=;O4%AO+c z+qF#%>PtHeQHm$9^$UXIUhg1OdI$F`+SMJF!2ui(B@9W%Ht)rHSnzKGdIw`-3N;ST_9M~wyAQS| z=^Wr-OgU_B2O=@Dte=-IeEqa9Mt;LDmbo%y%=G@Eh9!0su3uzY;*O+XkH< zU$L3ze{}md8&_K>C8<>fW>moSMhhHBA{v!(q(W@*oQ#|sj zyQ#fFMP)ZsIVWju!S##E46|=@7&u->W;gd0!WF5&8M-wk&)IvRzlqb!_;`P~pMWF& z)?ufMRIC(SIq&QDtr3`y>o+!o1kRc<&Xt0UYNM>9$vbD9XdQodpAWn=x8}vdOd=Bs z^jKF|Nme@T#$_z~?YPq`TX!*g&&C3SdT|V0)G-p4D{E$KQIhr(tCZRh#P!a7DGYh2 zzkmNeU<=UvB3LiVge8`%CRmj^@PCgNtNuiL6HQZ{scT|XN}&0sj9RbBUad)_oFaBKN znpX=nXL{03XzmK8h~J*Sa*nT;q%eR(1N$!~pqQs8SN9MF7k%c7gn3Q^>8+!*cb3`0J&hU&Vi{ zZ1MOWpoZM;H=Ob@ee217e10AMv&=PtM#)4xJv-raFUfHiYH87XR6?%PcGm@3ccp8% ze?jdA?zPR4?ZY-iXk^s=s;-Z@O9>qoz=-Q6siV%?2UQ&1;~ zqdHrn2X*BfJz&l-;FC$YQ2AQ_`V9#7+2C&T1lF^*! z784*Z6Q*a-@E`^)MP+5X|6gx^B>fc)rhD$Pu1X&!s{*`!N_A}Hs}Cgm&Y}D3vpCE- zZ*p-sJ|qB8FyuNDW)vioJx)0F3MKF)JrG8z+GPEeJ00#9XT)@RTdX?Pag$B3)!d+d5x9n>r-;h1l2^ytjcc@#5(4*lv(g*(H~^yrhbG(lhA8hx)d+eM?4ei?uZ7DekC#eR znP%~Jkbq_UQ*58;qOxEZoH}7?0U`q0VfV2+&^IBsH_4eyMUS(h^7S*x=v_C%9B#tp zv5v8(=B5ly$&XK{$6K_{64*UNesDPj{;pAT*%3I=qY+j;MPdDh+f1nUbu(V3r!u0R zF&>7KM)SqiAeig!rS*6EobBBF3hN2O!SH}qiYg!9$Ml8oe3bl2cjejaN_ zBD`Kf>AS8zR$B5TgWftVl~b-LP$`!?@n250j=~+1t(#!{QC36bs%1VBBas zd0titpZUulBV@P%-=mZjjFEBX!9*_WAB^xZFj7-fc@Da%Q2#)D=qUhC%xm+I90sMG z8797e6Hh%3jiheSzt2DxXA0b0g_qwiSLVI$e^O)UZvI71YTzr~mN1@ewoctBnoTiW zs*X;`iga_1g-8Dp^}l{p&Ro3KcJHWttledI@igUKjRDbFV!aCU#H5W}MFhVBd2bA- zt-wh$hWd{)4<~6R3dZvFK<{uK4^g(VFLkU8=z=fc%h78kL&+WPzQaB96+$QDG`0RB zxH)VBsEMNv5O#*})#)J0Z9-PRdZ%^AIgj-t_t&j+V)T!wZMM-ph_{|QVz#SEAusG7 zqWw5_WVbVD%@PX>n~D49F$cXqVk7xa_9=X-|L{NlO-RFV6O<$csgHrlzkQBHU(iFb zn$R)!s=A3>T=p726=wQ7&ic3e`9&n#Hu7=Qoe6c5>#FzXHU7FEPhLGX5)RJ9Nj$h8~6KPw7{wLbRrI?bzn%%(^8o3&ZcSdQRz(8Y0$K=<@aBh0Ds zLS`GV>lv88Jm$vY+jxMoHkdhhG;S~mv*2Ti8#}N6XVOB(J!v>IADm5Bl<7u;P7)w$ z!gh*B|ISQ$amuaL^&ZbfOMn(&3T@aX{x5_yWBXg6Pphhdm_YfP?g@t%tkjL~$cpV_ z_6}Mf3+au8PT_2Ct85!httfXU)_JW<udJ= zs@vakg$Iboy17!H|5nn)4q;jv+mA6Li<4{;`S%JM<91~7Vpt(>0-ol%-=4J*t>S+U zK%%Z4@K+l8KS{b+Gz^@(^b1_+(TvTpq9}ZbRXJf=Oftr-NPRXmGV<(emAPm(_SQJv zrNSL@fn+d@qSknO`RwaRi1Ja?kxCKno`})djo#D*fTENf4~P06_TNKFhFw@!kI$l| z0E;llp&!}ZjndGU-1DRFDYN;N|H#DWh$utDpdCJN1GUmoO#QQvsEJc=72q^tNT7kp zH+NcjIk4o%{k8lcwO3ynVxx6KZspq{CHlRn`Jixi&Wqolj7rMeCT0Rj@8nKBQ6fv3 z{b>`o#0IJ?UeasS&L3b`^|XJkxY3-OKTlPDy|+fbX-|*F#TExefQVKhP4gRz#Qhgs z;hT3o!x8-Oe?>j2815)}nzs+9VDpBIv{^bQ+dn~Z1K_PZqqTbMRSbWHsv63W&q@V{ zo+C|aa(Cq*s6or_&UajNGJw#kVTOSCNpx!CTHbizL<3Zx)Cs>9gluiKGd73K!c?-< z%P9}9Q@i8c5!wXyocsP{yo6teru>TvFapZ&=p`!Yl?h@taNOa=Rd7CO&)F!5-p$x1 z<*2>M`NXM~++fUENN21Y6Z5g5FasATb?J`Z=z&rPoEwBv z$IZ4TF69AAW*&D|V!U3b20;s=V?=HQ&z&VDpUpM36JgOGRf#ZXcMvb#vZ$K&A6rI$q%4SM@(5liDmHGGWy5zwkZ01M$6vIk+t)sf#eWk-&h54XFP3muv2Fh z1caN-*TUYKf|hH2zZ5@)GDK99tMsP4WbNehcXp%iNJr)Fr?w537GXlqFr0h9YvazG zS!S~Wj|RuhoW2Vq!E(m3wLX|jI3M24MfVI8T5!yFMgL*2t$uUxo`!CVZSAatdZK26 zp+=sl;}luZkCqYX5nwU-neGs)N*2@|)TQNF;PVoSL`!_CMnT3Uuj^akrbv-mo3cWg zDj-(`5GM?iPOwi^C1}0IH~w_ z@D7;24e2t220@%V?QDgYLEFEn`eXQ2neFav*JFz04(KUw_iRljc;~+)G`44;Fhed7Jj?-UA(2sc2uXg%2B30$xHGo-p9%)){jOyYI5_eI z=2>p2GZc>m#l=S?Zi@Ez%~(DsR8tkwR3BuBDBcgkLp7Ii`_S|I5Z5EcrHNhoO?^fSa84TKWCMBU9Ef9D7~Qsh+KYl zGq!q<_SNlNn&WCM?rjPOx2*;7anM!U#ZOsy55L#*ew=>|w>P4Dqe7TpGHUBHcaPVG zzG`8-e2ieG>wR625?12UaTqF>mwf+}P5(6lv-po$TjC4zZwt>pK4C3fzbu7UKnxzj z2JPFWOj592#)LoT~8WmI5VG8e3kxK~}+F(|<#L1O*~>5L8b97Q9BBrGi5{ev(S~ z2C{kbFQu4wuB;(x%mmhG+c}L)PZSw_F=BtBScZL2uP${5RcSZ7idSQ#l z3oEf?emA=~204RSEO*cWaOoHwJ%pWhj(EiT4b(zOnh>QvpMVRIX6sCf?&)Voa3I%IbL@uBoMnGGl^ z!qJP{yZFfg3TwhyBWYJldP%J74qvXgcDW5&M!(){eW*Brmm3Se$FD-%5`0K2BjgHYfI(n<57&TQ*$zWz>y!$@@2F3L5DM)!Yw5 zi05>bWgjJ?d)`=|;x)f=q)qTT4$qPtahVczNJUdh4Pev$Z@7K@H6e^KOs@%+y^eUA24Uqeq@{XD?=ZSe zYD8oDh_`;4!pWWkmqY-6)~Kb@Ozq)q+&1FtPydAdgZ6)4SeGW18k``ALa z?ZKNOvZ9PYtnu!wg^VutR?O1^>TDg`_v$2%{fZxih$a^^uxZ$caO(`eQ+T`GzMs3+ z-EPO`bbPsbK413`-k{)G-x5=Al{eFKS}l9$aszYCk+<@9tM7QK%6E}W;f~s1*=hTe zWuhr*`?IN*dRb$8u*=oi&>o~;?5!6j1&Lu48Xv%%S3B@dxGQyyKjiMp{jCP&ZfpGfb^p3= zFwn#rzET-FOH0(6Q#W`CkXJ|7hfF=hKrs9Ce3$mO?E>_<80oN2AUbLWS!ckEW7E_7f$kAd zvn)VMiiNO4My95|Axsnms<2~<-`#ir1B6hmdPf?B^LhRHbqKuwIPY@?3{QjK66qJB z2=GZw2Hg;&sioFuTov0pGCn?kDMBA(1iwJx#lJ?)5fb2TN1jTDIkx$8A+$?}U11?n{=U+O#e!+74-nDE=@NTHT zYN7xI1R6FIg$Tf>pl=Z9NjM_g3eN`)Bu-cDA%AUi&Jz{WkTMfmo^o9&aOh@m;~Yt}8E4#AKfo zOj+Ij!sV?+;qo2{j8IAp0wF*wZwR4dF$DJ(310d-j4^eCX@Xu6a6bD+TEXYx*eSF*b5M? z*_BhnggaXW9-IhWl7rY3#2+Y(T9wy6jD3SMt$SlQ$I01k$MtI!fnaR!)5D^v#20k@<}u|wGT9Fj$3C!*jR72%oi?)V z{cs33QhAoRK!6UdmZ`tZhBAM$`82%g=GE)rb@3!q?LnTTAC}DuQL8y#0R@Ivu0n{u z_>&bcN&_{Hzzd8yl>!_h&H|0hIdH`}{p}QM%x2|#W$u5I{QHN&aS|}Md9S4vcrxkM zC`>17J>|aNDC1LNiH1uzBk6LD|9Y9AKmoX5z|a%yDJOsD-_R5N(>WZIxDiYY@DBMU zS|9WvutNr8DifBz*7|zsot^fhXDIC1qhOuz_6eh~Q*8zVt_EH@_jJlu0dMl3nI9Ez z&jtuhi)5e2FSEMc;F-k2glz_MT9IVZ>-&IDV+M&LrrZA);|D>c^S~LycE&7*dvS3w z6b^|*Q_vN(o&9Q7w6wGuB+bD1hof$i?xA4EfP)qR!r&Qsu}er#AdYqI4HczxE)U1d{nN>tv>7{$ z0FrG{t`Do@mz66>|LL4=WsscDY0LP*GWQeHf7G-TWN}+BzN6fQ1K?w-^7cv45KFhM z5Xch5)_jF;K47;%zf)yL%k}c5Bj(mqWk#7bbBbk;BO1h613V-ya|@OPS8p%Tn0l+r z!Xy%lI4^+_hx?zN-IyfL|+48^PArkg95h|2tq@1re zZ;8goGPbepR8@)EKBUaf=7Vu)C?l&lOif#iY*x_h3DXTs`>{u_o|EMFn^0MCJn`@g zsXAdWmzqnge=o|GUv+5a^rFgiLe(fuxY+r_?J6Y&=UE#;n{S4cZXfnKEjf=*&qY9j zSX5NB2wVP@i<5aed<-^|Zfs=VPAi{!je3B{d@!RQ@vk0SH-?d;FP%RrTP);wO%})1 z2$nL2Cy0km(PMChs3-yU^JK+iQH>bNnYK`Wx!Xq3G}$4%U;aiS zES{mcXgiMYjz3P_6@?i}`Ke5rDaOz27eVb3`K5j3OYtl?^U*DyHLKt@2b?9tXMgdR zm(W|E*q1;46Q1JcA@T9snYrMS;=tqd_HSA3RrBi3SRL%&aJwR9uJL=Mcwui_5CerA zV1vjzMRe=scI~p!rv*X)_x1uZOlK`|LQ((y7286360B`XUQu6wN zHQxi|)c&up(N5baF29050T=*?uQ&1WJ3=Li%gh`Mx~~t56i~uGRZ+nMtK#L|=84bm z(B1#OfuG3*hQ%dcD_!q_!BclguCM<&LHSYJ-f|Vt@;-c$y_IbBp`t|p`o<$(kIz@{TCv2JFh2aeU@WyW zHudITtoz}SHu-=p=WEY|(R~1yCzvFfS{_9_{>(VDvV(g((SL*Xtw*xzZngje)y~>J zwsKO-w9H%p2$`DOn>fI632#=w6fI6?f*Bkomf%a%rD%!*?G5%|PlwxgA|Ut(ZR$l0 zoXkJGYVpnDOSkd-UH`W6`50O0hw*)x_}3bvHqO!jY78W+%0wHV#Nhn@X34r_bGOiW z7jOBIH*J(nQKfwbN?mcC4^XS3KDPK9vEn`9h^6T=UKLV&}_&mRR zS8nN#5^Z<0%jgU3FGWYEQ=jVsbLeB4{%g|P*n&j=Hrefqf64Q3#mwR=s0l1`A_C0P6e zhN*^bWWFOf^eE)6w#ouBRLl8?3Rx(vrlodc)l`(cd}K@;V=}c;IZF|qztz2C3$Qbk zT%cuan8_N^C^@`~WlzY0_yMp`EvR&$6g`AM|ciqTVLU zl&9s$z13&NQAHF<>l_ei$Kh|YaogWn>qc(H@|WPe>(4d`_DVD>{Fj!N26iBuc~G5+u_WQM7}<{I8~Y!w|AgU;x(xqr>MD zIdmo85*Ubp^O3XzF~2WH-zzmXIO*4BB^UVA4DC3&oD80e zD%3)PHlmmpNiK3&{4xs6R(5s|M|(b=ls`AO2BWO>fS)}w*96DZfKDQk_*`HzN6(W% znc9DN+@G1`IYva-{UmBW*SJ4bU?+jg71PyVb-mzk>a*_n$8>xbQDrLgnExNaJ6%mYqueefh zQDZBpP=4MHjoi3Vzbr&{!byA*o>`=nE8%kL15wTAn~J_uX3dB>i`%ZQS$}E=Q|%0* zBTI(Oy;)TXB3J$U_u04){75=mU0-*bJ9YwvT#B&oB^T--96I!mA5V2?(Adb6&fc1K zU+>cXQoe_y#6cZaM#ioa!lL(IQrTie@sYQ2a?b-pHsX(jrhO7b5lRZL?Bm!-1bABO zZx>IC1QXD`O9+^>Xg7JwN@Q}oQjWR|JM!_h+{Z1NOIspc3+y54vb1iuJY1?yeK{q^Q`%W(FfB(mPf|gsa`tmw zp@$s^JXY#lorz|0Y6-BD7`}4@U-5@N*>9;>RtbB|1~78^NX>@dyCa=~huOdRP{38U z3qyxG7mJW z4mJXpD4hzz)$~9SJ^S8jVz&IHo)mDBT|my~wKQ5~GRK36;)5O%}HI=b>ud z9;hf>p-vRVh^L+^Bv-U(r9Sx87!pZA5PLFs^X01xnmZb^p~@2{8b6Et&D`-&({nYj+Vj&>%Xk+V%hHVC6%UTz9;}OddiC9g>lzM67KXF z%=fK{W#C-LiY8H!()s~Y;%EtDUqTvR<10vmVfEC(o8^;_>aIX97L0fIG5mJ-0`IS; zxyW0d#FQ;XJCrr96}#L^44+3AMWw;~w)Ad=n+%_V^z zs~Sge#c~8R$?aqneVTF&aYSUlIoMx*(fzmc0c}8Fo7EI;=;n4b8xdb?^3F9*va^)i z%HPr%yDwc4)}MtfWro4f#h9?_bzbbR*cg7y*`|E3@_jC-HT}65KkP%b>Xq3iCW8wM%O(OnX04nfIEO8%w^bh$f6Vz51ruJ0-JTnfgw>Ot z$j6TCpSt_^{*zQr;wZPrtoqp6n}fmfWiRoDXKjBwtU}{&m?(V==_SDQqSWgGH&F0g zy3dRIv`X9Zi^UD_8K0nQK3O^Dn)%iAdMkaL?b9h@vGPZOCk4bWGSl4rY?4=$R>`nfZ_@X=VtYq13WZ%Oj(@o3!S;|ks?z&{jL2*>BFAk?q?+yg^wNL3Q*6JcRxk zfWf~u?lufWryU==Ld19jXU~DzYY{&X${1Bm67o53VDX0s?#iC}6&4f(lh`-Kp3M7Z zK7Z5>>L_=h;-zp{;=W17c84k@0Fh^)tp&DcD-e*0_?#`)jjKO>as+ifVo5;N%MOyd z$4K-VR#&31sPN?8{WJQ>1TCBT zb`@#-(+Qlb65I`O_H&kg>-y`Cv;7!1()*07dWVLNdy|f!=shpCp_V*I5okT%uY)>+%E^~DUFGc5T) z<2x`5`>+2*Uba#bmp7o&)Vir}KH(Z&^tdpEf)he2FV{yj*xTiGkWx+IMcOd-gJE!5 zBeFm0t-*mcP+g|xFH#ns_VC6=w%_}rJKbmgfrQ^zk#F$O^z(LY%rHpA0Mj z`OEn4?@a;VNWBBk5k%t$56XvL_D%TajB696?|UlB+!W9+Pr8Li`?4KJlGV8Lwxg4i zR--FZz|Fg6dkZZhOEpvHOgJF~E67nvI=gh3&iKhO&trp=!R_r%j3f?5_W ztlDAXqamsH?_tF0iBYfNEuvxIby|DbLz9HE2WO4bMs^4?y*jquqT7T2#R(pzD))UO zz=B3f$AJYg`cV8Kuq)dE3yDh`uP>>Eh5XI`x)&cbw1lp8%ay!Z?Gf#FE*K?cFD}4~ zbPW{3F};~Rq&_dXbS-x}TAYi-w3DDQS#!rE0 zy}J!2$^nBBcAMy~7!i_ zx!8z`4(9OLPt~_N@YRexZ22)6w6(Ox=XjHX8C!+~ZpMGBBGlP#HJa+Zx(eDI=9sZ> zmN-_4dC+C_p2!u61~_BuI-2lm1!g0{JlP*J52GXyG1+_GRH#7pa?jB6;$)?;^74ph zlI1c&QwbR8!efP9581>`FB{B&JtW1N$P@g?QH$5k2Gtm&aX!InW1~1c;qF&e2;2P! z8u1fkgNOF00UEgvAU|U-!>j~g*^g^)SO%WX(64;5Rml`r?l$pS^!l?N%t7>Z;8t0V^3}WhYsgMx(CD81@039gGJBTENKcv9lf%d^Z;IN%Yn-IV;I8ox7$s z4sw%{v>eaRdXSKsdTIK>6=R*(xbCk%e7V0^7!PvSvgIXA{ridXa@HnVAXM-iEzwOQ zeu{ENAS0T)@%w!o^GKs8PUm>bTjvKqWOe4kt};BkYB)Ybx;o`3awF;*08f(7%&=0X z@6D-?^s1-dy1L3AO(mlPp~}M! zx9&p)wJTjuV%+t*)wbsHkS_}Ugr32_5@5D+wX+fTMi_k`s3U+dlFPVdk{eqXl2XE^ z^#Pp-BQ_WD_2On^w2^pyOL7Nu)Y$tP=*R83D`^)S79f&JNXrva69;XEJ%9#XH}~L( zc?_#$U}7S&?Puo4k5M4j@fgud+=Q+dd%&0ofPXMhF!}c)s zS%wa|JRWK|QqBz-`qRy}S9Eor-qsIJ{Ja;jHt-U})`1>!$BjbGU2}rSdo1O~eKX6n z4CHkG=(Hu^)A1nTvi5fiU}9>AXbN=yIb_L!sIDCn6GBm7qVWpul`_3_m0=-Do$}rOUF_P-7Fr_%DmFj<>VOE0(gW_XVYi(c z`DH!0V84BpAk92oY=+^o^vx0k6{noLuEFLBND;JtAd)HunkXQPfWs&wQ{VMxcW+O^ zDZi+QowsN$*(tmKhOVw|k}oufRP~tK*Y*6|(K0bPFYEoQ^#Hko^Mqf$zn*bjpI(&m zgJxyoNp&J|7S$}tNzEq}X?G5;F_GUnDyhCka-`$+a98EHuCwj%t~CA0mhx^I<-xT* zK7dfASvS+yHuk$7@2y%pbgsSR#~ z-gO4P1<;s@<$rQ9`q*T^^H^A>rZk=$@8{{V6ygB^YUQX`U)3gue(t2XQmcU_&(`ED za>8y_8h-_-9~z5tjr~H8fUITQ9Rqg9VN9>W5p}^4SIf- z)j8?5K~M--xm6(VfJ){wL+?twW{xOcL1(*aq2tnK?VhINm;DioBqrCS>&qy{X8ZX7 zxp7)P4jQA;4+o(V&FPlH4npNBPy7v}ws`Z~H~^=1c6U9r&|X~$+@uEyE^WM>sZ+(i zJ0*B`6t2DMNyqhyA2tBk3Qb1YpXODMro~vhVsTmJH6}+PQZPpbG2K!>VIU76U153d z8HIO7Da{PpI`!_(JW5L46TB9YsrOa0v+TA7-s79ieKVo7_yH_Im>|t=Rq64Kb%d+p zLXf|3T{yHMQR;dc7!N83$sk;rCms)_f?PH%$P`o@i2aP! z7@km2QVQ4(7_N7HtI0PO`?P{~3;Rzgncc#JXH*ViXzkq;^st*xy*F~DmrC@4rf zSvI&7+>IR;b-R+f(jf*&;TzeGws zdA~|?vtEWCaH!`^>ffGjCEF8?OHEncOwr#o1Bkviv;ZCZx@kNjjHN$IZUGztJ<7X+@2>OLx>#hESr?vNTIX20 zqazfMt7j+?Lv-8Em8m5}ego3WHU|H0_;^+G?`xD76AK6xCnhHkzndr!$M;%^AY1l; zCOM>#D6937)nm&Co9QsCLdV$%x<{16UhS<+AwFJd&UvuA9yPt{*Vkk9<7*Db=VOpr z;lHcP_LRQn3csAWQ<~7KICKIlcuRmqNgPQws1Ce&_EK7$6DuV68YOqWt||28rkf<+ zR#>T^yrZKl%Cb0UpglSBnG`=jI~2(OQJk8Xlqn>wNVX8w|E z`f?sr9kB^DH4ZkM+WID-+V$%4w=BDe&2)STFWzegw!&27PNpI!1l_HdB1@_Ux?rML zC$6NS6;E53`lO^rEYM?HO%Af*lY8B=?<2mtm8Js9w#;j@z44$?X2JcN5a=|k$@BsO z_KFXbK4K85j?Z56)r_~Pw!yX(d=Elq{@Z7(LRnYb|NNM%R+a$*zqxrE%PM7dH!yz0 zd^`)6YY{bib55y_UBDf$FTV-;D^dG1O7IBsvt(&s@fgWn+@;qpgt7W;e+oe@1R4%w zWX`I31Xf^YcBhIKxupD3eZl6&^I~RXq;-3)SqzjUJ_9`wX^lbD8o+K0L|sT8r&ZQT^yD%RIKC ztaU{xo9;zGCAfddLWwzx1PFH5ngbKf)}~qCx}{B2@LlApqS9_`N0n)@|LUbE@sgi;UGv!Y zRC-R^JhyHs5NsAVnvXJ~9Q35;LebjC{UjXUC;?|1lQmrHOzr z6!eih!wvA~BYUa`i1v;1@j_CWX(PI`vvU>n#Uc|{Gla;L?Lp5>`pr}ke%EC!a2lug zJMJ=ZKludoTy>B!lz1I-7LDd(*YdW-+Gzl6$#Zu<4SCoVK(wx?gQv0R{p_AOoj^Y z9rf4(0lHEFji`;wUcwxsan$U?QUY-5PT9D9(DxkUtsjxL@-|va1!DqJ-+lZw;3ciciGRUynqi+GwH% zs3V<@rO8?IT%}HhK0JPBZ`joOk@>2mQadSh{#|~xWqPA9C{WD3yOkXO!Hbr@sg?ls zZ%Wb1AHFPzfThBp@jv-rm}X3L+ajx5o-$zL5mLWy?!U74wIrQ!9Sv!2V_U#TKVvbP z(Fa*(FGC$|IC5wBJz|omO-3W^%LKaD?`>K^Q!1I7)b)?k^^qJ(%$L{J#Glg3Hf+p#7I0K5aPE-A!*GVB9an%>VLH?awRkNF(fmDRRtf zl&=?(MtsomY8EQ@*r4Uw(WkmIZv{0NX1!J3g)dJ+M26E&)kPhC4d2A=mIr0rjO@xx@=p_MPIx$W9u?w8??m=jl#QtU0bCDD zexxz}LLsB6j4A2M@$X>X^Yvya8FCIuVjZsI(fehI7kcS>ivFS%RF9y!Z+f*nwrNgL z<!g4E zUQ51NzS`?b=g&g&-4g~BJ+(RY@{DQJh*s2*COR$Nqlu`9?N-ND7*+?-pB*=R+^v)O zsof>RUWs0|G%^qPbQ5hv7<)VPhmoUbr&hXywT&^G!Y*xswe`9i*%KgUVem-fWcR9r zzQFgB;fHCJ!Z^&x`S|svw2;)!d5Kd>s!0?NqYD0W@?iQa|Ko~;>~xdJeCjT{Nduk! z&MY;Cy9Jp%l{F6UV6QLG!*=rcEyxLy@~d!|-ZjPjt^InlFpcFNmPB3`h@6tM7MT{A zq%6D#WvX|!NFga%o-dDh_0%ihf&Znc&dL;hBqwIpRjPvL2_udzq%i~Y+i%pp-G5l} zcaCXb+p}TlmZ7DpZXQjH9lIq?cLO8R-n-Q69>a?uG<*kRK>bVNOXrLFC}YfVkHEGH z6ju1lE3YUqFPBDHtu1ekYbG_M+it7q*LHM4HOR11JkDc0N`rfkuSD`0bLDd08t3mt zly!dQof*^DBYlfZcT3Vj^GPGlGq`K8ZiPm0*Mx9;w=Ln5Io5n$Lce76p7pZ1!;1_z z0vK*An~PjV?)+3Na4=KFZ<*Q@1_8?)-&^kc&(rU8y9`G(w(o%AF0GQ^*rd|6cI5Y6i4Wq5+hy3b?+plllUVvrY-ENjv6Fs#gu4D?pus~ z_w%4(WU}IdV}j9o`Z1?9OGELy3(i>^M^aDpKU#fMrb-WS9$WKYp~kg}(&J z!G|0>kC;K*_4Up1%I+XL37MkX9N`}dDP7zsUX5$`>}hek*na#~E_`#8Od;XH)y(La zN0R*%gP#lb4q7T&HtuZUcaoZ~H$uk)vVZQ4Os*%kj2`ruq&~OM z$G5nuEihWps&5h&pA_b}nGtB{p_)moY{FIjRjoER+4HgLDwc#q7Dsy^3frG1bkQnm zLmDU@7I-~Y@Sv-W6hq`U%`Fk^u@-n4*)(^mPq_`U1j*HcW$DafORnGxurx82X}4O$ z^3f2aWz+;Kr=7S;>Z*iWh_qi`sKbjB!MUEcH|vUd{T@;F#CSc7dY2Wm-5%}rgKG*O zN(H*B1T#4Psd)W)hx9!Uu6^=n+MD?INCTrX zuO#sQD8Agz=Y(e|ATm2cGBtKBf+tl<3NQX2F!95b;#68lddZ>D%|vhjozVrcBhSbD zJ6ZAcDZ%0?A|8jp@I$1^Gf}s>qa7>WjBnWJ()`krC646eF4&nPXpP9H*1pSLnA=kE zoA!>-k340K;c%{qUVf#?pQbi?Hv-11+&mMGYQ>04?FnP>?}ex+f3VYwH&b7VBlJ`# zxt4aF&P>w-gSN6K0oUG-^an6ktL)$TNd&8ox~)zyf3({zt6*yQ{Z2N?kq?!sYW1iv z+x%sr#s#AhBjX}^kTaZB{u|>Kd z2Ns?qW?Xa}d98U~{>34vE7D5#1NHT?;W{>0%yZW4{2O=j z5NY=Awb9IRdmA2)Qm$1p@Lj`o*I@gh#M<&Kvj24<_;l^*2$z)CK!&A$Q90uhCn>g( zO4su8rt0m(#5^}lnMh5IyAm>Om4qSW4*3B$*bDO%U$!hIms-{@k1!4B9ckuHK1O)LQCOBep}F;#30s4t4GhX_j8O zz`fF83nd1V~@4pj5#c5=mlRn^C5^Yyt98879MpuZC(w_Y>V;#oPOfA zc#6k$18q%eyfQjZ@RV!Zo5^b&I3^OctZywP9dqJ|FGZ%(&PP6}kgqlHb5%@>#F?f`b@G3h|Wy>%FTwR92-M zY?5>@sA}w)8^(=Z72eq(D1pUO%_c*W8l?EL(4S1;nlkp1n0TnGSi6gUJoOQ*g;5&A zBMVCmXpE}MJk_{ZfB8;(73rmTmN@XQ0~1OW&@jn6|1GPAt@E^R_OH?4O4(322u$|2 zyX#-~(ven)=~NkZ)fI(fK&QO4j`PNI-rDIC0|{Nz3EFo1&1l%46|0Hkq~9)At`F{f z`O5O_ML}8|3*_A(1UfRz1r8X%B3svE{|(NE{gYA9M$E;dUTa(_0j@1#)3!<_hD@R{ zV-1av9|MO}T@X8i=#DSl8;`>7mzyurXe_9LxXmd>6$hSjt0q{Eb9R-w47K~{+|14s zZkc$80*t zm{7Nn&g1WaxKM&e2+m}u<@LI=crZ@%`XUWo-Atcg7>I-Y+8EWNuDS~3^>q{xakSAy zYLAnuaew;rV)IqO(hAA%&{r?i$0X_3@(SeX&AraW;w8Nhz<^3XBz9hyd<4R)RY732(mbPag_bOdJ{v6p$=f8|ONQYVxRJ{hikpB@3Ozx<=aKl}~}K&qkc zo*U99yrPOJ3ICD5y-M>SeWm1M5wP!V9MFtzVM=_>$u$^f9vi<~ z8kM*LHd^2teC6wdh`IX?Kn|qgKl*c{;N~*6`I1G?<(AB6eU%#63M!s2@L1TyXU1qP zjP3*g$uX}MObs6!id5`wv?_j2U4tXW$C=Jz(_T}-$Xdx)V(VIdb}J1UW3$Egc9JL1 z!i7^-;%(#r?#+mI>)9XwD{CRvHZrT1Y*JEc&VPUgS8zFVG)SBg2ha1TgcH(0?h4s3 zHMG;NX_VsoN zsB@hm;&J=k7car%-%bZlG~_MfEgxWDXBj{PUQx@~PQim_SuDDRDIKE8rLapkbi(}6;R4E3;0CR@P}r5wCG*PlMyBdU z**zseje*y8)`^0F zEvcgft&7`sg0?E7F}QQVI&o$qP-p2GBNasj+Awb$jFLB4#9p_sAxw`-&#gkQJJ~K|sSbzrZQ|{#`!LFYP5Z z4_>~H7f6_rBw2rZ^#vX)F9@d-{c96xM6meV5QwtFEApc6XIJgz&lig?Q|YZ*-TzRd zm%%Rbh!0#{!`8A7+n=nP<((gx+7kF8Y7Ab$NkLiW7^aCf+=Q3uW|w(kV{U-sYA zp@336?Q=wSi-#@^*FEY-uZ3YO3xv<)L8aO%XbQfFc=F z7duXW$c%x|7617~bR33sL`aZ0*qG&a60+-tEKbi4HYKGycV}qMmu9Tg1;#~7pW=qw zqoaSA80pMnR^igMD=<`yx#*QQv~VOrpOpSSrY-%>C;A-6yHnS^^4y?jRQIcjl9rs3 z61n_=8(Yf4OyMkphX9LgENdBShKC7fNB7H=t+YuED`^*_Q9Y$!+a=*qbVOo98|ADF z_K8?I1r&v?Ubq=Va~Li;w>3b#Wg9;#MN^Qo&aN?KAk4O%ga+X}G^2J7lw%=v`H z*JF`%BY{uX4{hR7Iu@$k|H$t~X!?9)csNJ;zmSQNh=L zO@4B)PE;|c3vPS9{gzXzQIjetEmJ_n3Us9=zwecHF)?Rdf6$S)M8R=V)D)K zR`8=5l9cOMnGXfcqBw4Sv-*}m+_V;=4KhddHNKqItM@uOX3oOe7)NoqeqT zez?Z#sO@qpzRs(c*YVjS(YfkT{X1l@4Wv{wgCBik$laW9AqaziJka5-rw4n=X%a>|-h_Om&{HIjq3 z%d^cA^yI7VM{vHn9iJA5mz_tQxgtm+Z7bgWgOtNa&c;oG(Zd~8k+x16fgO|e#&RbI z74SMK-G!bkBHX6k3>mD4N>$V0(KIp3%OzS+tf-rk#cfZc>sz%&Gmy79RSbUD6QHe) zHD@(xzncAi*vsMvdGNblMb~bUSPQ(uQ1RTJo3X!aU_PkHGe4+gd$0D#YLFdwF@RN& zq9QrYlxjS@NKBr*%=#nTN}5gH`hd4<#k&_@o3dXHAjNGsux4^@!Axe&AqL4au6H_z zz6B#?rDoQp!{RxWiC>eNDj!Rg&iIkhWjMgo1Y0C2Dk=tr3wpw0l2Rp&ioB}GrirFQ zVd#79KD;Yl;4+Ddcq+SIj760K4)=)dpWKxi!-9Lhh6OarrRpr=9A5hzn2QjXIF9y8 z8&}kBz+wsd``Zdql)e@lIaXEr;c@XYD64V?k0z~`+Hl0O=zsoP?CfHuqa){F7g$k7 zX=`_pWvuvAtk{>TqcDCsp!{qX-Qvq<>KR^Xg~ds`ez&QZ7e=HcBm|`2zQd9%w_ciO zl-##jzCvVPrSN#?Pr(SXLCQ@&*7}rZ?6{z08=DX5^i|}UnbjWR!;9J2e4pV+z{RLA zbh5~IQ={272?Mp8 z?&Z2QjT;fpvB3vl&&(`No;OiH{CjN2{*xvr@1rJ3MHPDNoSKVIZb`jbcZRPc{^#FO z<9{g_QK1j*`(=Q8GyMWAZ8a5%@@hl4=+{tcuWFH(bJvlhVnJCK*2atb#3UqiSFt5w zIuwKK_44;0!Z=S--YdAHhDRq%H$7-2D{yn3*Prq4^D_P2mWt%OQUxRX{6C3bNt408 zVH6O|tPoPL8^aSDN?X71Fxl?&cT!vf#p_V!uQ->8O|n7b`e0m`QB)GU-^b&LMswoNJv<3&+4uXS~ClnF$Yg#6~q;caEclF zf5xq7!`MpfjXOR_?cjmkMM#Q455tqiQX(i|rlWgB$d|I|j`zI+kCI_=)`XWyF$W>m z7^n;Mbqw*D?4OZ=yo}6FczAq)N&Y@niSC-=v}XIXQAc5PXyCzMZ*YnUs-T2^oL4#t z8P;XSe}+|!!uMXmt<;F+vB$B^X1N4z>$OUcStX6j(`zoHVh?|r$6}=YjVXlW|2z*l zizNMW7+v(X_MjQ%OIbTdR}u3?wkmS=z>IDs*LgFo>Kgc1_CN1H{O@P178aQW9t$wP zc!$bE*PA8;=5c9PR^|=uzS^VPDA{l7y$X{Csq;_axn%!+F1JW@b44-vJ2A?xLvvcy z=vt}NV}@ziMn}0T%jwc&@s>>IaVIZ~G$(G0OT-?|Uuiem!5mtAhs;WI@T+xnWGHOT zaf^uh`G1;Hk~i&d=-NErFBbSy{Aav_=Xq#s;zgdot!$#${crb{$4>E>RW#MyRacrT z=KMD-$+_zp)bxl^vFFP{xUgOV$ut!`dP;~LJ>s9SWMxMFGwI@SEc(Y-xF=0hFl@I@Wqw|-DT;D_rfy{pY2;?k52?-{$v4bzIGQqi{dWsH)#@>#*mju8SBlASxmB| zPYW)S=2TQrQczHgm6+pnc6Gfl`W6sO?CE4jW6$*c(Dv^dVM8x@=IBOM4Ox9f+W0x5L`9pX^u` zU$}5c>omFTS50zuw}^Rfx{^^P`&&=Dfc&5pBj1UlYwsyq@S@thb{`Y2Ly=Nzu3A*O z_x)1!@%OGz=+wfZkr)YqJdLH1`)cURGz^C&!m7FxO0{A#WjX#gJ3X&-Se3FlzkDqG z^WK{IWcbn>VG+iYuS7V*zXHoZu?KEGv>ExKr!e^Ua0Nz12an_(oc!@=kNaD46RrqqizrhN&Hi7Su zP4Y3;w;9QOx8iAf{m)N)GLx^`(>U{?K5?P$>6)GR6qmWg8x0%d#o%09;!*BMt7O{Z zjbY+jdTUmnSxFwj==Akx`=8nOOet*kNf#Zg|B%vM^!Jk$bXt$nz+6mw+E9Dv&9Gyb z|Gr(j;UDVq5z6`6U$oA~UWBl)m>xAn;L^*`=xRFB#zcmPUf}6hd*hly-NtGNAyFZ~ zK><#9yGfDUGzUKCi;O;X7J9-y25br6G~4Hh?dus@!!O8=J#spxReor&x|wQWkbAl> z)BMGOYvTMNlOazX^Ed_T&DN8xtnHZ^7)%tZ`hBnbAnQ4LnQP1UsX)s{I2cch>La7v zoD@XxQ2|=yt_)Ha1IO7jPnHb=IuDocU?tgT=gnnfKuGM@V(H>j?=oGOmz&(7yDw3P zQ7sNT3H?F_I$Pvhl}y)ig;IMs=fY{Fv907tU~E-KGev}DS8Q%g-*l(I>bYbby6b;J z;B4$ipZ5NgTzP!kD==3?_|5iNP2A^A2ULKze(<7y9s0Cz8{ua6btO5Q34G+{K#R}3 zRv^4xe|A;U#4oV>a7J#?d#j=Qo80!17;d*1p4WbEV~rCtHR;i48WK-%$&7iSJ zi6^3ughd)U+k;zU1TFTZklY#n=YDi|I`AJni;Msm7iKW1=NHKL%n!X$hi zi5xWjZ%TJ}Ne--=?Q?_dCPn*J-63WKZ+pfYP4qEg&KEK!n6d{?Ui{+B(j9->`aA*6 z$}3rkmG4<(X2qul?yIVg8c&KAo<5s9S@yMny(F0`Eoag6)*^{qZ|0WBn@8hmkG75o zQN*wKsCtr&@V?kuG}-m%D`&wa&PME<*}~_SG;9{;pMN~&j(@9r)}4`J5uM>p3;G8% zynaFaN<2;QS9oX%xzYMs)$w8~lj`mI7!W)DT8Ma>mRjHeS1%5vVnQxn$|@--nRT$A zt)tsp>J95%Qqa~WLEJ!+-;FzU12ZWCyxE&J+|7S2_v_dB9MgXSb1$jf!otwDpN$}a zvjfbSwuR&fn7<#&ci}?HEa@ixD^FWXd@@r+6fN=Pdgnl@rQAci5XcWYDoCV!Xypg3 z8NFKKX6qY2Wi{mHqTAEN)8D+`gL9*ZI-+6f7!}YY!;4`r(LwPwY+xqz$N3puXHory zO}g1eSUSy4XEN)jy%H}-H-Ba4EvN5b44qFp?et{#X080-BBm0iE`7+jmiCFG=GcUP zSI?U1JoDtuKIR=oq1v~u4HzgD`X?-_Yis5Vz%p=OuLiR~=%F}bPJgmU1*X1~zzIi; z+094qC59aDEh&t;)q;u=!Z@B4mWeAb9@+*v8ME z1NY$UDOf-J0QPW`3WIMj(8>`Wo{g=oS~pQ3vdoFcsZx+TcYDIa;b~)DvE|eEA!9o-L_cb3=w(kn zTr~S#28)n+%RfVYpLHqwR5YpaeDz{%%~8!wq5E%LFBQPFQz1RSB92p4ZEk64X&l_# zEuiTg0Ups9sBO^v_#S>Gx&b`L`9Q<8_V;Q&;t{8%rxylIq^JgP0e!YsSVIVkE{{In zuL2IuHqbQ8p>Mck^6a?RKRP;^5RraIAr3qU(Y^}C7!6h7ke!uSNfA z+IiPLpqIVb4w#T4Qn}57pOa08LgK|`Z9>6%R3G8llNVF{ zXtOF?&AXQGTr10_Kc(!|yeA-1q(!?JRg>3P6tm-6m zf}7rTf?qFVBL@$1O8#s+0tkf{W$#8H0->+z2k{VEI;@WvGwi5nJs zQq9eO&nRyt&rE_7(%NXzmMADnbf-&6h*&Z9+mHv!G9Hl3OPIrvlJFq73(I$&BRKjM zp}8W}(4rMb!8HYUyl--A<0dNk`5^-o!3Kt*kagnTO2ICB`zsc-T8mwrO%v|QIyh0i zefl%|XStx+{3TgCTSee8u-3d*V8#jJs9hq|;r>FNUQ{3aGA{6)dQnUCXpZgd8AdfDrt`PyHO?B`{EGnQ9RSm>!MK8^)GH-rPk z5fPbM|KEcd#SW7qv>=|1iydTRV-wJ|Ag`&ZS--^zx)}-z7)Tdarb*SHx9^tQ2{jom zCNW`H|G)rxSLuQHyF(Fd=e2@LW(f(21Af2LBaAbuznA-`8@;j$F*fs+`x~+MVYHVT;ldRXCaGh*m2pO_KnHhOBf7o!M_B#5Z(KXkc~sh zs11*qXVJ&+8{t?QnF_A0myBM0<`=PRR}^r*RU~^MB;JUJgdjd)=E0x0FEk^4r5_Hk zfK)#jG&|{+Jir1=Ia01k8SqY&0{?XC6R)LjY4}edB5=5M2y_pS6g%%B7Y@6VO2`V} zpu1fW;xU!X2A~3m7x_CGoVY9OP25)_?Y!+Ju8?_I3QuJ?Jxxn_>3mZ6>jJ$Dj+nnU zWx7+H^4Xo3tmAlpRd>~sp8aVNa-JHpx|<9bD7b;z)UB%pv(vqt@BE<{PYj{>6%j*N z;zeGi)^qPmu;!a8=M+3e{V!}S-qQBmGFlctP(kpCIlLD*!sWD-*C*p{-!S}>^R1(! zF`3^SX@x<|vS97PpFdVRLLwqrZ(APn8{EEKs#2Lh!*kEKZGGlRen|<5Up<3y(WS^N zS?z=`(JNn`2ZB*})pX4WD-QaH6Gwa`$>W{dk!6s=*7ak$KUpDfXB)8574S0cMQLWU zDQI+X&^g4~qjAYFWR^PXABPYZwydjLBt!?m8cbX~Zev zqGF&_nm@tLNh=ShKhxncMJ)Hlipd~2{S{6g%1F#FxUI-nO)ZOWdb-kiNG2p&9gUvS z!6l&SlMBvizDW>V{rDo)Ns^_A0?8H|xp{87cc`+iXmdC?XiXZvsi=^D=oB(Bf&QuI zSP#y(fq|$#B7gkXN7)uh61k3b$5seg{tpk0ggbZL(T|I$h8X`-b2wxwX7|Bhf*;Jf zW`c)rcqi$i-O|&$RN*)s2`B3%h>}6?9_oMb5~k$2kBb^BwY*s2G#d>jz$n?9Hwlmi zl}zxHR8mqx1>DWoZQMF+vl)1h4pP2~>vy?e}OZ_IFwmKAoC3&CrN$uERAg!+V((TNfOLDkyVd@DE%*yd9XJUW$D2 zv;9g;3+M*ZpBPR%P%bH5G71JwM;odX?SXML;+)3QlWgUS1+tqR81}Yio-fYN!Ti9fZ*1`5NrTkHFwHCNva#>QOTR z+@4hJt$J9K?mvabG#aEEg{SH}`bUE@Y%bl84KT*E`Q|GFIf!2@Ke!r!{2vDNrm$Dn z)RfrtXT3eW4?8}bR9PEBb3=Dekll$#pKT>ZV8Ed8)#<~lB@Up>GE|7NH^Kgu7svNZ z-E3i=#qC|ZwhsEWdX%kqYMCUD(x>~6@O;*0RTiuL8_HJ971=a2-BthO?z?eRAM#lE z9MPj1IC$jtzMenbOp&?aY{?0`UF^pV#pvs#J?B1R0;7L0kllXLfqmp9{n1j|mG00S zfU)3q60+MKlo@7lWUS#mG(42vdsl$fiS{wCSeQW97_Ix%Ct2#;@bfX>-bK^Jg={X{ zCSglv<*z%%@k)1xeGBz>j(uipvO-9CfpR@DVffnjVBE&RLCMUFDO&14zZQ74aFM`7 zO+9X-i?yV>c!@_*i27^olf7d5@zSwFuE?iJ#$I^vmlGx-HZCp@@x476|$D`#cxa)Vwjgl+U{x9R{dh#bcDiu|hi|ejzRm$aJLk$DJ z?Wj-G(RZi9;ft}s^M=~vc5wVAKRdoPwi9N_S>pf9V!8cz_I=!8QXA8ncyL~p?_6)c z`ywxsWV%ICQYjoV-*;SyCH)A8-eDi<^QN=stmb&818-17mlnO~_-Tu?NAlX=(>?W`Q@$R_5+0-poa%~gN6hd!2)a)Mu; zHEEamuJdQBADpd!DhS4X)#K{CY79Ud4v7TNIH_c5X}SKJJ>3%>sL$8I)el@W(N9n6 z&n2vP-l9}-nc|IF9%J)b54kS+f;$#}-$H7F!c$E-F2A zQrK5ok|hk&_V20BUTb4#`9wb(N~B%2u36beRg3NahM4H_>mj2<;=~?LoRjOV3zb9jKiBj*l2sS{!AE6Md73=fIaXp z%-FBRjDzvWw}!xQ`dfMq{xK(ikh#Zg4$Mzw1oFCohc(h_FLLv%?|d@_#HNJ%6)=+}Dg(2o{D z{6dV2p%vSX)_u$@$WVeVdFU)(8FrB(XV{eO-z@JZjczVgk&!jZ;QxlJ`n1WddyJxCiRwBU+p7*0_OTVscGGlaq{YuYt_BzKr?Xo!-?!E#d%T=LBp(lj z?|B>b7bRsD_bkOPtHOi@TRySz$l;t2L9hI@ohNSHql6Q0UQ2Ynn_H2H0jDf?%pg9_ zkp&O#jpgsK0p#VR(Z`L!DOfTIj-PZ=+BBh8S$h4#)OxAqkDpYAlXAaQB?8@`7$pyI zg?J4jm(9Z3{?vs@WS8SREExw>xcFghvD19__hl8B_2n9QqSh|(@%5C^$;7Ym+_6=f z8H=U2=T;ldva^mO-er$}Dx+i{K3wHtr{nnt(e7s=a}@p6Oc<78f~(id)?G20R0Xyj zXrHp_;xn5&zsXq)nZa$5v36y8X8gcffww4lDWCVviNJ0518qQB+Mk?JdDb0MAK#LG zx~T3?S9ubTk;b9#CsS(TQaxjsVqjz7%8%}HYmqxf@r5Mzd#QvX8DP zzTeKVs-DmjT`Ra(`2)5^3;c~bJ@r8haQ?<*5cVPl84or0m1cVXHRO1+=^GOhgEAO? zelBjI!)(J{lZ#hG8JcJ^Hn0Adv@I+(U)Dw|d&4JI7WSisgDY%A3rDOkB{qd0M=7!2 zdCrpK{5%l>6Z=ZOzYnS}DRF47U%d;!4)4fnwad2-8>3&n-!zETu1+R3j^9yesjD_n zVJ4|P`@L2LF75r()6XHaao?{Z7M*&eP};@z4|JH-_>O~5IidN#gSQ?7Jxz04;PTe$ zMYPW~7uDX7H7z`adk^GTAE#=W#DWw&ePMM&MdFV22ZKm@bI)BJ*PdLt#gjFy;#1_} zjVKnRWJj;7C;P6=wD!^v=hS0Uo7r;B)Jiw+{3eW@$V?Ax{K z!4o_hwmf#ll#)^`l}~h}xwBpT$bh4Qfb}xqX7UymNFoDuys@+O1fyypeI!3vwaYB8 zZ0zKP>KcZvfh(SX^r?UQ{X>!33`a%J9|;Q8Qes2TYugxBV~{0Y6d}rZ>YI0p!m&&j}#aNVKvckU%q#vpB^B zK#}Zs@?%YXp_XPk6fw^wI2FOTra=gSsG~Zsx~6+xfa*)HKl(vg>HvMP?4rz!>@e%n zl|!dq`BDeWm_Ph=HHRdwr@u5pB@`9C8&#CyJYkNMxf`NwfW^g2G~qETpP!FKj%DR| z7GUHGa%XBPG%WWTI(t>B>?J>*%Ht++HGX}MU6zY!rOgjlKY-7WGs_&!O={H-W?whi68E4^91Pth?UjrmIb@QXRH#4YWoFl?R@&Bn*CGfdhQD*&Q zZ@9|+)NWGOW?#b0a;fQCXXNuZg=sBu2}T_(tH*fV0|LoUFmU9WL$hRyK89B2P{q>& z()hxt-`GIxv(5Q9uh#Z*P`k+)s@gU>=#jsF0nnqSC~h$xj=yJ2#kRkxaFVk0=1)}F zodf-d@Y{I*L?1P7)u#qJ_+0FlCce=jSfiQ(szMY)&4ak2?IM&jx_{h$KfTMR|MXKm zq^-$0mI$86aqSk&^y>9}{J#+tDJIPM_n(!Sth>~1HJ^ty$^0RKA}mVwa45UqXQjw2 z>c+G=3$vQ=ze|ksFJ@rIx3`-X%YIqbV%;-2M5$P?tnM5;^or_JV{NQYpGn}8cOwziI#d7| z{~cEycXvW&GB%7vEE_{`u6p9GNf=dnp{nlqLTHh|_yRu1(a-U}QK-T%q?SD?`*?uM z!|36w_T$O2c7JEF`5Tz>iT#gPscimyExIjI4y91H^(-ai;OSuR!uKEy&^AV!>k6jD zXQ@dD>=1x74;$6)w}1t81vFIpO@{1U6CTAmg+uvhMPhmxw8`@&x$^s-RLykESqcqQ zf2)*=4_m*r2OAp@99~LITd?P>e$6R)%;DN|geEZSe<|ef57Ead$s@gbY!u(0aT};a zV%|z#!t_y8biMIU6eh`G%67#puTIkvp8#S4;3sIGxT`NyG1P@c#Ym%2xT^A|Gn_WZ z!%D?vr>cd~;Wo>rI-1BkB!vExKB-;D)VC__qKefv2#Lm$!9pn#O3;2f_Z59rctn6a zt6b}U&)UgxH84@{;-@bJR&v_#5v{Heb)?$)tMjVtoH{XcmgjeTq$cczU41I_t&hUOIiml2Z2q!hTqtNKQ~=RUUQtoC1tAvz=8)DQ0J~T=kx_}c zqc9W-o56p}ZY0{T%AEI16A~31>{Q)3;qh7iSxtY-KO98?+n$Ub9;`LgFiYtF%s$(+U1!cB+9C3;EC`(CL!RM0X1sU9l|1>+`N^cud=-j8eg>Tg|)^xr4$ zCpM>i36Q$gq$_il*?<32E1RQ_D<5q#l>9l{-={_W_q4GuO;Ba!__p_4{`mq^ga`q- z0=X*bugI&oJy@LNYVN|oU$Fl7%|kgP*m0B%u!f@l8Ngg)rxuOI60_wpWn*UA*!DHnW+_5uS4uGC`LI5-W?{SIQq3}CA4ELc1 zfxiRt744tMk!98Zs{zW(pT1lh&w;U}{pTcOrY00302GL&IoM+P?+jv7{r8C`Ztkbr z_tA5nI}AejqyG2Bn?typb3dY6-~s7*-4+3&|C=RcSp1iB768?VH@X1l1M`2Mh+t{_ zJLOFOPC4~|iy@S1GK1htEvc;v4Wr^;@{L@>zf*fzptIA=@;DPy{Kem2_TMULj@|zK zMo&j!^8z|l1&|{7|M&gx{-R$lP>Eu%A%~GGGAVDgCNPOkg~6;yZh=G0E?L<^!#YAP_S5%C0c* z^Cb08(ODldP)-b)+-L=hHNZS~r8dvgy*K6D+=M0RiQwiL0pdh5^kJ%h1Au-!=9jDs z@-A`+LP!9CGq@bjQ~KyT#uTWVCks8iUEfs%PL8!;Q}4N$VqNUMVK_8AJO_4QF-A@X zlwj^eWHh=1-K{_3ROlOb7rGvUx>akd{bU6J)NI;z+8AP<(}@1)WwcQE+=A^|aVL|YB8BhE9NTgY>fTmKWNbLk2?cr0!B@L^HLGMmYUBV*Sr zYltanWMp(5I%&abf(Vq6MBSfQTeF`*L-bEjQEI#8w@apxDnbAr(tL=8Jd)m{0_xBI zY#jl(vVHV32GQWX4)(9x4CgxxRZHpKZ`Q<7-)FqHzJi+9PMFLonhNb>OrH8v=hu&0 zsSxFY2ZwGa8;#zh-t>xxTCI zIZYV&fPK7INr);2fF5b~2AB2{{{IE%-Rn1C$i6y48R(-)eckM3gG7FC%^ger5}}-p zi-}$mW6I|lD}(ko6d(QnH~m1&L;3uo5c|n+S}_uY!zN@-DSzi(V=grw$AyGw5gQ2) zSqIzTDGE$(uJOBM{luAUH33_DFzG)*!MF+h4~yH}pkWy*DD52`D;`fCKjx>VrhZ`l zJ5=J!=%I0C5r3d8YVOfx@PjSpwkt9RjPV(oUH$&Zy~kbGD%WQNfrSJ#H543ML%+pg zZUJA82S!J15L#}a<}zF{ROql_7o&=YHGnI}r>=(9^>m6N7%B+^BNuYAF>LQ#VKHlT z_l8nB(BK$VRi&w!)l@)f0s#!_&-RN-Y=^IUB8Z1eLt*`y7f2-u9qfNglRyxA7F}eC zDV93{POp6zYwJBjGlCuFm&V9=Z`lqWBQ;@^)b_N2s`LhFuA{k4mgNNO+!$=NB5a2jsI=AcV)4G&C40Fzn zon2uslZb$Kcl$bKPX0ybH)OWzFUnNQ3KeXq?Td&idfOVFhhrxUcyGUc)P#rl`;|Zu zcC78!%HU&A6K|0o6(Y#jD~k5*O}uum*!RR8&>IvAz%NAW@L9dU|sm;{j6%^tzdN%~_mAHr$JM8zhGHAB<&bV8p9l;2#ZJcHRa z#lAnXCW^k5DisPC`K!B(fJznscr4!CE=GQJTJmCK(*%gGskXx-}@AD$bN5ba-9 zTFM8e%zjChkcr61$haSa(`AY4%I*1u1%RA?MsgJ*Xf%j2VWGeQg{L)!AqGLOk?oJb za3G+Drk=>JKp;VuRSAtRyu}wAA^=*d)noo&+F@-@8O#Qu zaQ}cG{;a8oH8T`&QIvh?5J-(HyK0Yv8l&e0EHyZ_>vMQ$SpuQw0Z4yMp&2BWJereN z%+>}y03wh|d1h3^alzPYh4sGIN>1*F4|2-N*xzK%eNGQ5>z_ZT5_4uT_B*z`?>2n* z2)rr6cXyp7kG=;bi#i$GcN+b2TJz-YIro=#&yMW<%lvHK_%avL(gP z2-}Ug;g`hz^${RZ{tIi%b0Xhek%Spjay5zApRZ$rI#ONsPYb;1F~T^VIkn za#BJ;r4$$Ka48k3nYM;UTIjtHf>rwI6NRoET2>exAy+-)IP1RkWURt;Y|yuKSs*sP z)e^Pn3NHAZ*3h(if24${Z4f)VU9xEjU;4~gdb?enCLb$`QEF*7y77n|tqkbMMUk<1)u_ z4xHF~?X}l>;un7N|Da^L$Ak<6|KlU`APjY-@;AlLDJcU`kVyy`9?YOLHzdghumTNd zPgr=J{YV@$6EB9Ui|OVKsSq(DFN=7`KAfNmrxhpln<&kNuLTEZ<}X~n{3M_P0&dbT z?{6q(qWEo z9hF3yn3&?Y_~g{&N-vJLJRF6dtpdvSDS8*5bQ+MGG7v$=2P-zS6Jx3$htDM%A8yq9 z_hg0=q%Z5KQU$P_dG!0$7jAO#^8OpVYfql9wuMBc8Mmoda?ZE2Vk&)GcraZMYaJHd z!8!fe{T_d2dQ#kCw4&JnG53@uV~{QRPwDy%wCuhN(L`>9Gk2LN&%j&Wfw%emqXYwG zeH`y;5?NhWeVq4X0$EC8B5cg2d|z(3ND!rw^DhH z#T5V_(>x*`eT+9cPxRpF<|MvZ?W{L1vVPL8o-8k7{x4;Q`P5UZo~eBH+W)-nwYZX$ z+I7d3n;Z|8jj29{@6Oe!%f5=zzP98a9^wC@aULy7Nc6~q2j-_OSAL;%-3t--{O2MG zFo3%yRAdpCeDS$59(|azZOOnJ$iQP@)Z&s29`-5T4S=pDAp5vSm^?CGxRg6H;?r>( zMer*d)m4AEE6npJXLwHA#YDO&s98(IgGv!>EjV@a^(S;yMjVD#Clc~mZzJhvt}?PV zm~|2nx=2@7_1;yT5_i$-5w|Q#bqOMaewSBAR zr9o|Ok0;Lo$)B$!?Zeor@yh6#$X?1T_$)1Q3GUQTtsHRXPeN@)7e zL{rfxd|%m-;2kEgNbBS5?|b{$b-5CyfAh7;)cwIj_BdDl@}Csf($kUstDr(2W%E*H{QlJCH8B+XRJP99VkQN*zz^G%*nRuFJVJK%rb(M#M zW1RSMUCtqT>=pfPke%Vr+&p(y$cSJ~mN@;IM~4^s93`IfTBx*zLtFJST*$<{54L{T zI>Jd~=~slOB9GbnaQa+g%*}@3GVamcVs!&7nk-{CsB&E)_2x^VYu{9Frk#_SH%o|h!f4e4&#l0!tuA8T%#$MrPoZcf;=x)Tv zFPsa}Hl~=)-5J8T@wtD4sqiNE329S=M(XJir{DUcV)1BoY)LQ2`(6&&URtR>M%mterxrT=gzut~8}5cb3-{^!dU*|?zzIQs zCV31171xh*wHHT7t>rzn&#<)wq+hNvXUR%XHwjc8i?QzgXnZHoT$bU?`>Q8Dl|_rD zVBpd3Ax_z)8#t&f;gJ8B zW6y<68HBFid!AdOv&dD;zM?#me&(8$+&P=33J>P=2)9v*Gm&wn8Qh&~WKn=d zBfSu;Cd8Y-%+yjFQ{twX&L3oVTK9V}-1t0Q1w5_KS9ZwIlYwZ8a*!G@8(1QX6D4dR zR?;NKr{yrasGgoZhpIQKW7ehbYcBE4PBtp`yxOYo(B$~dB(q@ebN4-d^^4c5Em&$; zyx>0S7JzPh=<&*jN9Qo(+9xfao6105T&b^zH75`QfYA#Vyd2PDI=T zM@B}fp^tj&VDZH)i1Qfez8oYW;8b!Yh?S{RJ4u6jhNbMBDAA3Nk(IK2B>nm$nR|Bl z9%EclnV&w}D2K36G)uL#=DScLje7A)UIIdm)a<-_{F0=+tYX0~i_w14a$nV23-YBV z+0a$H*YY0JS-=*mkxVVzwW+k{WJRiz<96gZuB2HT(+#VL`a^*rbh>{#`W+cBs}eL3 zi;}1yHNjeMQlAUXxV%^x;bo0N>D-&T!0>%PyTiCjP#LfC8-2oK!QNg}kV@0{PwEyH zqU_A%!5QCwxYU|GTvr(i)H&ye$$4&@L(72?cw%^=N3id7-bK!Y@fLy6Gnm2f^Pw+a zC8VXP%3oMtS!v5V{_Udj>-+uvPv^t%Q9=9Dv9~}xb_!q_t!TpnH{8MwR&mU#7w_)T z5#n{z$-wQoDCB+_PCYBUj55g1q-*TMxl3=c4yChj1 ztBtmb9Vx%}!sy}j+>bBX71RN`f^JjV&bh~yL3+DKi7Oia3`zGg%ntWM7EO-a~1F_Q0NlDwKCgAJUytNZ!|VHfA5R|@E^6;8ozD%O48Dcq_z z&Gpf4dbR-{{HKvo+^q~yTVFtTGs7x>c`{47kmlwoIw@7w(?37JZVy{k_1EtowuW)V z-d8Xbj2q1r9?_IS5#+j*6|sKNelD-ha!*~z-Xv&9g;L)qVGg|a4JQm;NT649r-7rZ z(h)t+Tu6oL4bF}Iv5!u_{E~d^(eJ~Q$Ax4vvUrb(&t;REUm{rAK#%Zs(f#J63QNJz zDs~^K)~{kmYyJH&R4#%q)IG|bF$XxkIJ?)({hz?|0v8%OU@VU)Sxq>O{R?qR-LIt`y7&a`+5uPTAf48Ow(R=+7%l_?K-W`!B$ZnP`qR(Ml@p?EG?* zN8WMxNEOzb=90*CFYs@|?QMH?=fyE?zEs~HanJYO8xP~SjgHEmQ0Q3fT~qN6c;45u zP~M}aWo>P}vK;BWp6%CfP}(D8{3sf&DV0-NVGcc`Kcx=(z| zW6>a3rES~Ylo=awxYQvsz|_m&qG+yDeA4>Le2ih4^CEjf!^OjUWad9`PaX%XSmju& z5!dnx=BICY)!E!bPvAM<4alEvLrUh2^zLZ3&r$iR#Xy2mbiZ8cbo^+>WBW?#V$|^4 zrUIoi|4=KLmWa9xC5sZ!3!?b+l%#`P)$64dDWt}W#ArwtO{NA|q#zPUr>~M1m2K@c zEgK$o>>g6xh%Pr4j!?5t;@|O5o%WmbUoF6SO=83rx8>DDL@18#V6UkN36VH{Ol$^t zUlNE#s}KA8`T1=>ZXdv6tA|z5!liK1RP-eDgsYxzR#t(vm_^)(+Lh%)ts;HODA&$j z^wB6a3ll%;N=6iKBik?77=q2O7cPkAXw6;7slQzo%8C+S$rW%NuZ>@eD~~-NIH<|( z(So6}@VU}-JN8pulXh!*p$2rU0%!G7w}tb|$m{2C-=XPVVXs;eCHvxcqf{*HP9=L$ z9h<8gUc%iRYh@y$*s#Z~iTnngH($d;co%(b1RpN>xEcNGxYD;);zxJj-r)R7wl!NH z-ot61w6NI8)=^Rzm|`lXv-S?sEt@K@_L}+JyKV!88Ur$KuGF&vriTy(Xda@`DsMgT z-%Jw`fLiik&k?Z(Nxzz!!#4?kwsa!w0vDlMU7&#@jrOUcNl^|X^@}-y(t7hj_f`i| zM+Pu~)%WJ?#7R?$65EOc*5QoRvFa|J+Im*8_9LkRWNW$gA!Cm|Px|KbG%$52 z6n|!~c3^BbA= zJ6W{X6}nm}U%xQIh&gDamTS>G(MPXQJv%*yeLT}uk}Xso>axh-TyqaX^C6nt=e|Y3 zFMiKES4Y^+OL9MZOuA_4VSPzozK^z&C%XJx>uC8fab7h2bF~4ViRyS}Ccgm;Kc1Jd zF6NTf^mo3gV;Rcx#l(S@&LLcUT0Bo`ScFCWoL3oEYh)6MQ>5>dA0MeU$I*YUit+Q) zJ692t4+{Ee*&Sgh9LG>K1B;jOh$C0$I9si7$XW)?`}gk^a4Y3~prqW=qREb4DGge$ z-!rwcB1ItuTkb9?fGNhg$|OLc)PAJQ$)NZVN}Z1POXZP?BfPh$sHiEKL)rAom0T$K zUoiBh8Du-!9v2sO$c)RZlZ%t{WJ_PQt-8^r{4$*8S?9`zF3Gb!yM?tPqVcjPFQuex zPm@d8b?(+WJPzxBN~_83fGzEPq56!ES&~*RyI%3SL6jcH_c=Cgzh1wA0{w-WhV^+>$GP0mXM@gGl>-8X z@^}j6=YLAu33vMN{mEzxe`C@Xb<-fg>~2u`g*yE+fooOBQD7%Q}^pv~+u%>%{!UrPugBxfx9Kq6qJ(TMkVz zF~=(y0ZAp>TDiSll|$oH7QaEl;TO?Q&RE?C=b$tq{I)28(xN$%L?fNbMxk7WF#F51 z7!+Z^TU@0FUKg>4{oe1oWhEO_OTfobdwumkMa)(vse<%Eh!-QDk4ooH*Nqy6eOnTm z02dbm3yUU~JiM%|JM>MY(-mqdx{-YaInZ;K-8F8V&76p^g+zUS|hBG!kROw-0yFNedgobnkzho(N^lP+hP~xCawh$$P#>_w5I zf!hOXGA}kjJhie@BC{274>4iHOgHjfQ z`mW(!T25T*(c~ z(8!4I%LqtvEbAts8gSiYZox|HEAnRe1B)Takw5E_WB*cZC@J zP4W~`ndYrmx=qMIv`-K(#n?~sh`HM-1d;_OhAq2-Q1>* ztX2AcV?sU?iamAh*uH_7^Y@-%C)C7rOg>Y_@w^JmE1j?osn2^{NniF!)kt;3GWP{ldk{HIWjf|6gKm${Cv za}V)&=uUTj-0sRIecS@6Zg$q$+EY_2Yj?uXxatSn?z3WT6VAii(Q>MJ1l>MzJV>=B zU!gqvL2hc-vXADwi7%y$?ISCfSLv68>#v5NSMReqKk1Z{UN5r0XxHyHTIVlNL6kT# zmrX#VThBp(Bh+p3vLneUh)J}=>utaT!ZgGW*N4lR=ct{d?1v$ikkk z7t`~$CF9MUWo&*)FPT@RccAm!w$r2THyrOyW=gfQ1WK?;(bLlY3v9rh8T!&STKBn& zWOQxdZPAMyG!$f%-Sb5pG^;#F6*S`N&TriB%sLsGp)pc9VBb^WA;eya$7a$Yx&6Cw zjJ`p*jL;$tM<{3FT5!59>e0lldg)B_+c)>lr16uzk_xICmT#iNFI6wPdTo$ic=h1J zdHq3p<{gY){@%Qz`ZfMw`M{Q9(>H;wLHZE_9z|)CDS~|Bt=3+$uB-oCjO54r`c*x& zzP!pr7vp=|<%P8Gi~N?w)Q34apHBlsf$%TjAXYtHAjs|?PB!$O-4Di9x7i66xom-} z_Vk4UDAFRIp2BX`>7FCettDln_6oF1#dgR9y`ef?X{T;__LNR?j3k}ZxLCEhkX7#k zyK;9K>ow_F-Q>_o(>^w4s-gQ+6DU{j$iCtc9W=2nW^P6CyD!AOr#5QLs|Ojbc=-$a z_~sbjZ~RSnvo7a^wU@la?K0nAM_x?;B*(SsU4&jvz5=srR)*Kw(sxE#4?;dD_R!l8 zXmj&AbVbXwk0h&9?okHsX3^p&h-#(hSZ*e)L~E*5m9u|_qU|Ze#u3?9yz7z!7-GHk zkDDPE4pm>hil|k3QpqGNLhv!!KMKm_tTMlCkfzrI^?IX<-??_sjyZ`1k3ePqOEzF0_@Cm6n8yPR|EXI#C9>QbTVZ%54iPE76ndfZ}5y zfwyt>Y$9)~*!+D0`INs;&%G4%e{t{cfx)4L{T25>&H}kGy_{oS@?N!zg4N?|fHAt& z^1nX_m5vAQ)g;KOhWwa4n*9q8L#C_@)SUmc>i~uHA3z!Sy`k^Fy)pP(KRZD#&(hnf z3B<`!!l8{+KP`GbFT7!LCn+gu|LeQ37+OBvrunVuHv02zm#&6>_5M8c)@E}c?}#BL zCT0V7sIc`}x(|!RdVdBVt@w-QRT;q{9{D{8s{=2?yA8L2skia2X9Pm5Oj%i(skwRd zfQd4dO{K@8ydYitwNGgRojpBz&d!36O;mUM8U-pP0(;5piOtXFwe|fXD`8wdnfbrs zZi2Wtd2Y?`zY9MU`SCf69;f>5<;&(9@9NW29og6Dexb*fq0k9P_e?1#!w)C!9_W8p zOx7*fuL{S>n_E~kuLcy<*0NHoZkvv!+^RPEt{65GFC=mM=XC)5JV;NUiJ}lwzj5OR z{854J%@$7l_@{WLoG0s;*Iq@t9?&&M1l1#pmk}>z_D`-`->pr{~_gB3Z);RoikfC5lrFx<8w1O zr$s@Xa2B9H9Wawh>{~I>oa;9q6#0(5E+`-X$1F}0h3V*Mb}oTk_B?P@LRfAHp2!h8 z@If$M5&`#&9iycfO+5cX?e z@u0B&VQZt`NW6U&>zYX?^Bs?-M|ID3W%-OvB`L}QAuM-^cG1Bkp8;P78coto05OnR zr|Y=5xOkk?(~C{zHvoHhLsA}XU*B>RHy}~oVl&mbxlwH&O&w%pWyw$upnk7OI&bUt zNDw&YS=dbARokLymWSTb!^Z(+ixfUiOH0e+bKcRm(DWWoM~0PAlN9k|PT)&XDVq$< zffIB92KlBM|2N|g-J27MTxYK!#Fbl0bgcRxdNu)nAmCL!O?(T=l<`0}?>LTdrQTHP zc-L_7s4;6nHgo+&@EDMC9%sj~N$#`1aLp0|j*Rj?i3X10o$m*Ep}deXKxOnj88jZeD;MBEy+6Yo9?YeG_ z0UR9oXK=9b8PJV+1$rcQ%tnfKl}du;7Bi3^IYYP2`~m}8WsDKLoABw=2se=~NPBQ( zgbdZ$)kT0p<}b$n8u$W~N&=%^%gIRq78nwgRh1WqphRk|cZr#&#rfr#hy}Qzr@J=)K5T0$Zp9M#-eYo;BVK4+{OkGhh5aJ&;@WIwNdGh#Z z4^FuixT`n842qBagwRrNk=}>yTL5K&sTT=QKq5_2ps~&XS*9K4NOqAHAN$y^aW1%C zt<>TBTGh72SSL7yRsihuPE4rje;qiA8&>38XxISEA}Fb8zH0XaN#qGT7>JLp2c!?^Tmw z%9h2p@nd6S*EwfO97g4eKm0Ug_x&u1So$aLI*U0~`>d3O{Lx&dKTR$jhW z%aAuSd#z{vNFlRvSY{vj;wp!BaxiEkLFUZU2j?nCh*ers3*GjYuO26WuOc0wRuEVp z02y!g8whEn=N$8sQ&4PvmhPE?wx2fa1n|Lqz)}MFiH{#ic}lK-qC+5tqOn>qTCe(#UhuZ2l$ov(VQ;s`Djq81T0Cora>upd81pvW>e} zf8$q;`A~papL9``F^OPqV@IW@RvN#`W*a@s3}O?tU)K>{6e9Y-{87kMrDqd~0j9mA@+26GiC(TCrB>NMC4L3NY#t{!8Xyk4p(GYVbGFFFWCBRRg`eO<269!K4mB0j>N@OQTz;1$Bkwuvs=X zHnR&C=-A59BoPzu8od)I*JFp5IaXSq*2nEBuI(T=!xjqhwgg6zU8{7xO~xKyc1q&S z=~%8A&}xVUuB-)P<$x8(~bX36kA~CBC`RRsIAmz+g`rNt?kH+io*Z?{rj~qk7Pki1GooB()9uH5UXnASJLbCbBD*P44_BquPI^3>NllxZPDi zc;QXGnLmb6=o=hlU@QLvvQo7N+BuFWWLqk6?c-J18N8TzHasjl zB{5iFh8=ep76NTlZ1pY2mDw~Sv1aI31GY~W=>F1@B+BOmmiG2D9g{We>^N#`YaJXL ze*ZM;EE`*oA*X799n(~}qGRifj+uk3X$a*7z}jh&@>ssH z;z4}wO8u8DH^HOwF0lQO#_wKTQY>e%KHy$WLJoI^XG%Lb>0$0T0Asmy`SIh&I$>cA zhyqIc$0W9PSmfH^8k~_are~A)I=8TSLLS(;FOf~fyWv+Mgxo2i(V9=OnMPtY+UAy) z2@s{k0Up>CaEx&@MZV6z@83$W)0zi}#z|0jXBj18=?)V7qn({64Tk$uFYji`v z@_7aj)U*ltaquER*x?IcoPfZpS@h~OT+ZCEy@9^Id%d$9$uKB^9b%W`?-wCcR_FHZ z8U=9wX#+Wp_HXZRw8In@6Z^2y@^9z?`vEnDg++UrQ&$^oD(x^%XJ9iB1GFLXX9S(^Ul|G8H!POK7tzti{kulc;YBjqj>?}kO- zz}x$u8{z8JpYB8W+yKfhZO|5t8D3_5{`~n2D4)Xv;B>d?sfI>8&#g8Ol(`Q zZrpWDQMCl22Qy1c!K1CS$I=>liXQ})*z*AJiLO7=J9}U@b0Qr>WI)=z%nvyU@?+>S zcIW>fU-`p+ftUXurZ@l1%kz1@l!;=2rXhu7Ni%;1;RHSd20H;bj@ku%VHtU_*C;@+ zj)w}zjZPvfF@*fEdXppj$hm>Ur250%QOR2~+SjjNe*&mX#D^NW>xad!Hn77c9R%t? z2$mg&0(6#CB}qVd@;`Vr!uDai<$29zqA+7AO1t2uL9}vaA@OKBd$dW7*jn!IybDk2 zQNvNfoz0alel>aWa4oQOvrKdr+^t$*+HZmi02W2kH{ebH6CF4XbjWE=BhiSNl~r6Z;6M}T*nr#s@E%BWrni1=z?aVg4H|a;5P&0~ z24rw{ji4rD3*Mk{+Pta!r{eVtk#SRSFQWh+K>qYxQ9*Lc_fPjX7Yb4wkZttCZD|Ch zi&6)Iw^z*^Q+C+FB03}wgsLE(x_i+?kqFTiKom51K<@#unF9F-O1okBb`%QigQtOq zL`x;|CovYDhBZWU4E$aZezB>|`ckyC=p2>Lu48j06OBLHj#@V`b@4Mb-F=&&!S6$Mdq3q+H{;zci<8(wN4EceA!+&!}BFn)4T%Y*AdimHfwL|HS U^TiUu7!>>%=$L31YhH``AJ=-@u>b%7 literal 88368 zcmdSBcR1H=A2<|B2mGxOGp<+4`QR`CTiFn)y8!2j_bZwic`&R(IWOot-Z6iSS+I zVYRt;&&5rgpWpGnFW_^&dxxL%7p(<+2%(Fzz8eNZZjS!J%Ds|fi^0NRRODr~y;7FO zJ^iSx4)ND|K7QWfsGFz8dg3HonxQ17K-vA!hbvx=NzkB@ z(^O)(&*)EHRmPrgaERm83JARJp`sjg|Jk^j^s4Xd?K{?kDbN`d{_n3jKdQ9w1^x2}pYv+{ ztlbx>6bL;o$eZ_=3CP585QOyp48W6=KmHk*tvBJ1jEwB^zue460j%UZZ;QhYiuFVnOspyZoF3txDyUWq}W0DW{s1sR=(RP1c z5S}_`wzc$4%0N%=R->O-iu#>|iJux*4sc~DZWtSnzpff({_iqkuBS;eg|JRNQDU|& z^`HIl+~0$`sYD z%Omo*VEk@zlliy%+qZAm6Por<9PDi?IXF0+)*X~cync@3?Aa4%DQ-8*{j;Fs>it4O zUbD~tF;tBFA`vNCV zotnNUzTS*OE)#Dx7O=M*@$jLnfdPFyui@8)txFd#x_r2h(`->X)x{p$-gD(>%;M;4 zp`oDn@7wUTtb&4+M?0NYZkU)b4_`5F#r>EhO#JpvkD`$g<2kjYfu9FAbg0QC*Dznc zd@&PA7PK4S^xGWN3qA;8HERna^_mLCXC=U<;ki{Z*(o1yh2BjTj^pa;T77i5XDGSF z9ElGptf_vD zD;y<~55|4)x4{I28{kMi~F z?UP4`+c;mVuY6%Mj`}A%a&hSWi4;HX)pqtIA2xFgUtd1@WiLRxw$?^I^ShhBlecOt zq`bUbPI?=bKB&B0sKB6tC||Gm-6Oh7YopFh=3~{ax9U82Cm=?Q0uMGtXC7TLNSWIj zb?$^4i>72(oO*vgt=)U>Wq3*oWBa>znYFd_IWIlviyF2JBsT}NY#bcgUwTeFROPF| zy|TY1Hzi^cc;LSOC+()Dumc&wPE{v^yP`5p~a5Vrhb&eS0F@To2DTPWwo`bR_gz#r}%Gu zQ`XQ3@3V1m_hkv(7j$aa)RjEg=zk&VdPaJ0>5`HE=Ag2wYMbfN?ohKU@oB#HxU;Hj z!Fz?GIsPda;+U$@Xjp6#Mo|hV2bkWe=W^0hiPHY!dHMOJcW1A`*5R=$K5EV{Zj5}+ zt@k~In2+F*GNc@qZjsTqOuFA_=W@~l=xb_ff=74fbJ9xehxj5grM<0(OU#v(m7DW) z@-djm%;ssAsponoEdy_~o+Kwn1>@jN>_zBBs} zPdmGd4Y5`M0n)phi{T$XUMHcuhduw%I@g`) zaLetLab*=1LL=wz?GHuQ+fS{dfF7|ge$Zmptjga&HGH&K++?x8vkqxUULTVrG5bu* z1>QJQST$i+!OzW2EEh)70uks6#RP-l;^OLsysd|@s^0k?RqFTm?#EOq34xKH16mp# zT~FB8;pXt2=HgWOWc~f6q>uL9FuMe)dnV{MS29SMM(5KS@iA?ds|}kbW27=Qs&Oz6A3hZQ-NlZRK#GTBVQHypU@-FC$MW4H!hORy z4#vR!_2EW;35;2Pw%X2mC(9_K+S8XWquJ!bFc`&HX8-09J9~T0Tel*#G^8pzw&35? z$s&$+b5diAP*I%vJgq;z5cK-~@O(NaQKiE-Yz0m1iof2HsWPT%YRMwze|~=Q+FP!| z*%MX^g+BTIeaqT(o8e2hnRn5_lvnpg;Hx=QT2;=!q#CASV2H|)3&&&bt}MFb_VXjn zsJhgqw&b6Wmv}3g{5Sf714oxV*SJeod>&X8=ZPO^lv1c-hXU*tjA89Z;w z)bXEwU;C1kfGLTK+5x_+?Ul+?m+f&+%iWE6-mQn3!+BM)J#+T%414N0Cvh`AIp*b6 z*6}5DKlt-mf*h97Cg1=4`}gP@w>&1TJ>6=I1ZYVh%yCG<;)9c~VKsLkP1ZhLo-~`N_r3+G1TAN1`s`TST-|>v zExr`&4Xv;pRTvr5h=ngeh{&j@3|j-Ufop%}4PI_G9UYLv4dA3}^o_vxTYpMAfe~G) zo>`j?XR&Aw!g~Bl?ns%1n)<=BXH*3y4fHdevE&Y>4L-tzIwATI}oRTRs<{5_kXMsq+?)S1+yvN~frw57?Q; zH}aZ(z$AWJukT;XV%Mgr#Poo>s2W=}fzPqjALT1IcNvO0EIE+Og-eF*VeZ?I8~Q!cTpI* zc2J|vD!u!Q{l||VQ`?h)o!>j6a2gy@z21km1$CZA#Az&|pnzw8yXlA&*U&K$?sLL_ z+xTPJ6_(K|=S~0`*zC!uRs89>!ZKv+$rNy~spl|KPN-+%efFl7mMip#)$MhJyHLwU zT>&*gB^LjIH?}_bb*5?lTXgY!#*xtsm(TF?lRMY1<7w+SQgc<}{|C-y9w4Y;pw>hu z?I)TVc<3#;J?19*^M&Qw-fEL47w+&7d#q%L60u+UNXu+K7mPJUI#HqBhuea2?FJku>$3X7v1H6Fv!haXT z6lEDJMFTa!zVDg0DU|f)NNVmixNEb4TussC@_uyPRibmh`m$W1m|H+8=@lY1^;=g+ z=C;9VhO)l)@lwweBvL1;re9R~&Cxdtm|qQNA#VyD=g;YX2-!-2phFlrOAKnctBren ziZP7errlhrdH)H#g`4;W^WhO>`5l|5gd= zQsPsB{W%()a8u$sdYp*@=GfLfsZ2{3cRBvcIp%DW!cZE0d8JagC3Up_$3^@lYUTp4 zL9E(J_gwyiuXB4&;bL{i^R_{Hqh&c!IR|kYBeBx_wnsWD;9$4K`t6C*4@EP7{)QN1 zy9@s38{{#l#okHv#zS~iU7buwtqmIgaa^z*?I`76Fc=&htOhVe$-)wwo6DKvF=9Jh zZrdN=Y^q81G4T?}w18#duq=1U)GB%tex)q@+BmTdB?O@ZJI-{J^$9n@wDtUL=|H>3I!BU0vP$z3t5* zQ_G#TX#ji8`gdMF$jm&0L7>D;h+fmkXzaVkou1U_Qp--}wbDg<+O>aJq~> zCbE<1ON)8=MXgY>W9*A+@BkGzmAWr}rD69;s)P0pjWd$JY5ydHh(j|foPdXz0Bkuj zAGM#-F#G#^)@!+9Xbk{FW?9)uz;)}g_I5Tl&2r>Y_b*R);Q%~VbaxldR)0x9eALa~ zWHwT6TfOX+9X0N6a!ymff6XRjf(`7GNu zX$x-EMpIKWX>{4ibzC+S&lVti9Q=hy;Gy603(FY7B~^9xukk$kC##qK`~_Aav<#a* z>C6k^-H)+3f+)fst#qC&!s`86WSnoCl>IVbcYdUe{L0vOALquu+3|pCt4U;%rF^%r zRz0n)v+-p1pk$AZ1@=g7+W;jR)Yc(&@P+zP9uYyHrb(sNFXRXqZv;SH9(>&LaH$+l zdZ9^!xQm~+ca3$0K?R_*^p1nk8n-)9qt~xrCou}x=u@hgZVSif3j{c5ATNLar}+Ij zk+F)u4TJaD|06sksQ?OwAdH1qu6jPmhplUwy~`#dLIZFuxEQYU_MJOb;*HtacnS&% zqVunwVvhp)f$|pE>jVD*gbzrq!?1wpOLd3IMyVU!IOLMOnK6i;z#D9AYzT~2&E`g` zUD-+SaNfnTO#VECkg$ZZNrB5&vJ9y6LHF#{fPjGHPSv=9@6w&`-dX(W%?KXBLM*U1 zT{gHIU=8$tQlnHr{vIo1504I312G%6#tBAu370(fuvRrp*-zAA{w?lzd8uK?NMW-tgikJDENR~TK~M{D>r5?fK8Cw-yx|TDtatRaS#1VWZLa2JiHy3 z&4uUM6r^M*uw6p$=W`FK^~d9n9Bbzj*Pat*xyiGk^E-$0PED zxuK~U44?OiRxnep!q|7YqI#*U`*D1H7)0(gtgqC4-{CsfNVK8wqlvEu`UGI<7SyT$ z=doVCe7fmii(#c<+XNV9Qd$8FfG_HznxFIq zMl~nJ#Kew4W(z(G2IEw}t_ZCi|MH|CC>|HrfZ3n^GuP9ZBId>#Svd0mO7sjQSEu`s zaky#V0YdVvK-C@sy-Eo@{L7T*2-Q0xGO{&OA<6{=4$oh;{wMwmKFChuVnJ^{@h+Mn z99SYf;zEezB_xCc8x<*b8+ELjhAx6%RJ*{1=;V_pPY@|4^Wg*WOk%bERDx-M7y|Vm zxl92>BVS4rvOS3?FA&1ZqSNR$-U8tVzPOt>2Y?*$(fArG}K^!Y9E2N=>7+>pU{N)=Z^`E5Y zygfKDUs-$LLg~w zi}r5QB=em5C!#1Hi2b)$%bUkw{fFogd*HGy7~t=wTKp$pj6c{2VPoj&=|hYNHCMkM zrTz|#74Fpe?`PAI;6WLA79Wp|aS&m^l_j{VBR{PQ+M1A1dU-h&^l`kuU)gdBruD_Od>I8 zTb+Y?rqR$Sr-7?GR|Fzd&(GfpR44R?@esX$8Rqxz-`EK=Gc$tse%(MA0venw1@|I7 zG?SgFP;vp#NJwY}Schk)!Wf*I?TZ`2t{m>*0F1pIc*L0aml6i z%(bBo92SP>FkVZon_tm!I5uVkNsB#~;zp)haEtO4*F(->Tv=2)PM$nDgzO(^Vd_LHtGc7#Hu$W2G@71+J)`h^%uQdQ-7f` z`qZZ)aE)r_@s2_~+pZ54=cM`&8CE*9%%uf>c9~;+q{wapJSN3w;f>c?3qBGVs)nzC zy!7JwIUeI$A!X{5nw)~PB>4L`uE`sR9_zdzJP^@{C=}KIzBUFocMB*Sz@t?7kOLE? zcq^}l3Fd;bMc|bnK{HF`^v|~=4Giko%+cX0v`Ej@iD*=YL2PINooIa7{eJ(SswTWQ zs63Hg9t(ml!#G;$NbGO~7qtF&F3ocNdj}Nrm95={#l^YycXXlH`qHfc^X|wQaP&yI6dT%t~(^D6WMF3>tzy0=z zJw_B8X%gBxC(^fRXwf^N9P19b*NwY~G9m&k;b$5b7bgIu5_lJ;H>Zvu7!TR*&aPYvz*6qs z{XY;OVSP4eTTWG*4jH+Tf+h{XRq*Z)Wh77XI(05?T7VEhE9E1^NQMu)ix?96(5B7G z&HakkQpIzy%%?%o@Jb$HxnzAke?Ho|VUq@Q7}ET~$QLhYufG(h_T5^tb^Ums@RSR* z6$_A`X)il5LW%>xNj>;l_QQj9A1kQBe&~C_+s`3w(?OrC z+jiDxN_{pLXsVt<^=5Fcrv#kzV9-v%!GVXbamV7v&!3f|PJn4CaIsJaMU91ngM*cq z*Rg36D%IxMluQMAdA59jGPAR@g_Tvpu}2`JbpZU00m)*udbx76#ADfj$E2PXv116n zvG2n#B|N{c1|CU(W)z%XR7+Icutkp=UtgAz<&Ul>m<>&0&@Yr^WwDBy4t*FshRt`D zt0s|fla-rGfOLP@Sk$o2s>Y`S$`%w940iJaEi$*TumgVoZF+C{&)tG)!U(i%obku77~KJKX>IwR!$BFbw$LbLE7k$ z+8zr942UB$)wE{^QZ{T>iQAky@&$14$=ZPgqnZbxWd`wS*L~=Xp|!Q*NGgW~SB>Xs zd2re!!nn?(qUN5B8@Lscz-S)^9xR$x|A+e8{rt2ardE&q9U^5#$7J3HSU9j!-RYx*Uy!yO$W9; zi+_Pib^zNeaT*s#xfQ(lb9Qz*@Mw>P*>|b5xiXyDhXBNpD||ISP8tC?Lh217oPf-x z;VSR<&yz430)l$~^t|Q5z?*9LUh*A!S5d}Wwf8QdxI$L~f~*pVu#Nk_RUzA10(P)~ z!M%f)EeMPtA~V9OJAS&nU%d?wVhCDp47!?Q5k}md3k(==xS~#*cwr%h*vCiQLBufX z&xF@ZG}^Ly??1-`ze@w!I+5Tpghu8|9x$HESi`5Gb!w5~)CC?Qj(x5FM5xA9` ztCOaH{|zd*N(#%%wJ#-q8iB4rGrR?@$s}bMIk`&Bt!slRhiEPx6oh0N0-C^5 zjoP_ArW|xI?vhW7n|9C>kSJF^GBQFV{O;X5J0P;bmWXTFVag%T$_HykenUHl_dwM_ z#Da7{5~7M%OiZ7fpWoSaAAp~5cv}Y0Nt>i>+cF+|=GdGLL15+v78aQvpM-~SE17=% zwO92u?GY9hE;OlvS3zL+0T7WK0t+Fj#jF=`f0|CmZ)FNkIo@<^t8Z=VYO6(jh&qq*sZE?Uz?HllY{hq$AD2I2D&Zi)M9H`WNcIRm4ee zSbxV5?0A?)8u+){R7gKwLYo~hx^w3RAZ%1+slF>>en4sq8$qP{MbnAIbxe?$+t2dh z6=$P;XoywA(iZIm&}>9pzBSz)EHbXc9tAKF44T0i&>Eo71s8)nb5)ZH`CS+RkPcJs zeNj0UxQ7Z03fch=JOp_&^V3@Kkp-{}C59BDdDp*2Rt#E=vGBZ(0^#i2C8($N6bg=CT1qnZO5eaj7c?gf#x(1>y z@3l6itM%cd^`)Z5-31S+umIrajL?gbBn3Jk3kFO0X zr4pm7eAEnl{S@e(JaS~|3SE8sBKdiF*a>gT%1XTd{5%L?-QIS>3Iat5S$bf>%K`f+ zh5g#`lSW%+Gjt#cTphVp1R)rpGEmy9UR<2H>@w9%lW?$Y4-~sFh6yBDBt{Pm4P`-% z1<@43)g^xhbbWdPD)G#M0+Nb~io$sM)kk38fx1eYIsAK7Xe&Hm3{{9Ze8L)h2wWK$OCt;n+jSrx}z4PJnm z0_|&Lbrb%Yf{7{m-8)6px}ku|$;!$`HRok#XAf?U?A4pE55)au=-lvNzCXwE!?O$3AnreT{1_A3 z64ViOnq5MoZg5k4cfVq8({I9i4g}BXP;%+!3pptvAm3mzIq{MV_g0^>5}=Ma>h}@K zow&~2;SNi8C$n#X&Xr969)HBYK~N6H`vi79c==GKgGc9M=wa}}=M>^$R9m~-tK>R5 zPo6&?%nWvhwgql!UsK=_+2l_E$5VG}MyTrn9ZaRTeQrT_ip&jA`kVwqGV69$^{lO} z^Zn`Q=s<21RrtJDGsST)?Z`YUl~#|w-tbFeh<3rg9wD&R|F zKP6w5(;1}6@&Y1{y;o-l&d?cl_6*JsvT1uq06LDvI;a;F)oDQSSG7r*yrsY(OM$h% zRcdh})$g}TJxm|aN_g{^9t?Ch#frGUme(gJobd@VMe%o91{q^}z%OLsRLhzHog z(9zN11@#7J^tS#x1VcdHd&F|(FukfzA1@T^wDCPkX;3sp+VacF%4j;Vd6h^Cjq7Oa zzZT5HYWYi{x`?PBL|X{--DvX&(*fq=oIkp=`} zU3mAbT}9wz=iSMXR1j4kGm0rfq~sj~kJbr97ZA2Zc?-cJ7_jfPf4H~m1(_>o^?_=C zvp8^h&2a)IRFItD0&Na2{zh?eF*1T2%lp-~TLg51bF1bZwLXd^H(WL;L;$oqoWJOf1P9msY9&J&Wa zUcWYn4}y^vJL)y04k9V4C-4x;-3|s}XMi2wxSpw~sda!IG(rdA>>NtD=biT~XU@yJ{Q%p?< z%gzWW3A%o77hxF%%6vRa0g5UTkFk$^Da4!u_eLkhbryrKzYxHJOl^Uii~s^M2}~Ar zCp0N=AC^YiWei@71FfKHGJwIUiUA}Tu11IlIg?rND{}cymVdr?21Z{pgAi--0xc6P zAVvbwW8uvQ+ZVY%?pPrC0VF0ym7oJTNAbkD$H6n}02?-Sd88xBC(EFhK z$sX%_;%rh9|L4E_R}!SueDPoHT%PLZfBY=U{|^Q6 z|DKl*ROWHX#D^N6I9|+Kan#g0n&l!^VA>td=0AvwXMX z2U^*=Tlk_Qd_Z+A53Hz=QN){C$E`bwVj=VK9J%LjE_wqN4J9<2 z%#|{%nJaBU;amJ7G@QIA%HD3;8XoWWK=w~|&+qI!0xG*oyiYmKT=)Fi-8QuerYV>Q0CCY`=Rc!gEx zntTHt4zsvGGN}OV#v6m^=$4`|blaS-mLz!XCtW%&pX}#{ed4fgP1YF)yreHd?VIZ@9SSxbY;4zYB&9SkU95R#4a{^ zM^#&kuK;xUD7a5lCfvHfE`&7Pm#^7oW!*KTyaxGp1)`#AAU?9b!- zSiq@eM>p;i@`;lzE0;z>)p+d!qo9U76YQcmpE$jZO|KktA}R8YBXT{7uXpDyrMh(T zxAL&Pb9z^F_w*NH`@UZ~wX>4)0}_H$8FEjbz0&9(X^U%kpFr(7`l`Z78?|E}-C-N-z){8vSt@V57? zXFALk)I!M(f9Go&bfQ}UzyDXS7-LXpmd4=kb$;UGCG*|b=z8h@FeIp*llZnm8*Ka1 zn}YD{QrP!p798e>_5{j<(gdS(n>*bAGSyq1NR#R9m{&mTz878>I6Nfdg;6ALs z5b_beq?`p7*^PrRB6={#?s)?Kzago<9xfp^>r-thh{r#+9#u|DX?cmQ?&E`vOoM8F zwEKmy44!DO!Q3xkZWt`)-Lg*#1DL`lCPt^5PkrjVx;z;AQI-G?U@}LKm5YlA zq~A-{AAXs0Wmd7 z-b>)o4|%Pc@ExSKc4(~TRilEoUpT7Aee1eR;kt$^9T^%AwhaAXj_6i}9kuo66uMzk zL>4#$d#`69hsuwQ1fGa>DEHYywUv60wjD2Tm0U(i>h}v?9vBo)}VSSmlu$FRexu zyyGP`1;D~X_;}}*X~?Ey(l`l}BgCMf`kAZ~=& zpuBY9!Ud$d3V^hQkx^4a>NA>1M3OO5U;%m|Aq@@uVS+#bBtpXjzyJJs5*HVOplZ31Z0Fl=p* zAn7!IwLd5=09%{dMO?yT{L9T|YaDe+$`XUREb-$~$M^Q~*c+vSajGxVpBwEM{B73W z)6(AQ47w%3fg|B^!`}Rl*fVk7+kx0%2&9AW1i?V!;3mq5-0~9ZPxKgs(16S1Op{@* zgZY}tX#oyuuqDW^rwKeUX#Aw><41WAqNZN_oLgs^xuW4~XB*WyBkSnsI0bZN3A$be~T6i8bY6jS|`4KzZ)3+l43D&;qbCIw>isS90Z^C&>(Y#Ys%xz=c{^dhL@>2@iK)JSO!*4nBN|A7IU3N02qpus7gJ z91QIxYZ5e23}$V!AWUxKXzO&K=}uAW!91O{zguKFC<%}eD6gc1A7dN9d?a}Ir#y#d zBs?%r*M#|T8q1O$y4?sUrylyNM4tQL;`zOzi{m^4t+(#OLPjo$cf@XFI-Vq70x`p7 zr*_zRtY4oVfxH_rUgwFF@Kh;=C>q{YH2cD9ScwL0(9~~1xiI)lXiT&kR3kKbX1TdA zh$j1BCMOccCo#=1YDM<+{e8Mi)@I<8A#S-2^JiwCQ^bPB(UdkC`bV>_=v>7KVj8o9 z-A(j_0R?{#ieoA=mF>Z|=Hs->M^DqP@b+|j!gvYlhmw>1w@>rQX$ATdXk(UAf z!%ny9VF*fMny9lbFA)ZQYyAmLE|Fvv4GE6cz5Ym!3d1OoJpXAK!sVEi77K~RIq902DpuEC)U zT)t6VUVO8Jx`R$UpjibN!D!*Tb0kE%Gk?CpGp7IB-_fU5K+$N0i9q7` zJc%ZxDK#bDb;|vm1B06-^sQ^^msi!thy5^2MdO-fwU3%zzLe z2YMD5Mc}#!z)1}>T5oL1<9@AcYbwJ;K5ir3rjsna?BehsYTcSFeM4UYwI^g-1{l7av3Msp?1O);Xc1fHfe=D$7e1!9#eoaykeoE-1Px-_lds1Pk$R=ng=dx+#+rM|yDCp=O=H}*lu%v;*2m@?n zEHJ~36)ORC9D|YYT)EwR>h>f1H+K}|e;s}Lh&v)U_w+c#8nkuVitdI<;9JJYb13L* z8ZEwyhf+7_3;gRrI+#OjY;0H{6MV*s9R=YW!zw0LgP)g)W8N$$#m|QI4;-hiL!T8P zet}};*~Kwi@=#9J4)X`yyq2o6q>=VxEqo8JMu3VAEEmnHD1VutH2L=J8*=NRa^Zpd z`5k6)TEGbta2gY3gbSA~c!9x_q$0`8)#&-~8SmP)5Mxplm=DClB*GN|f-CA{FbISi zu7rH}*^N6@x7yf-jvas#QaOU&C`(4b6a6kjVkPVws68!`3DS5qb5 zFbS$@d9yAUUHgBRSKtS^XBpiJW0_4d;U+U3G$ofkZANC6mY?1JV~KZC2@9jY(LfDq z14_<#KQdQp$5^%H6l!e%GE?%vpp}>hbdv zxppP_^9R?i1#K<{lQIMq8q)oSJk-1ecvC`kajHC#cI6&U>6^c0dDw9{E z0?DD;tZ++x!GdFiF$7V#?^(_CYKWcmTc++S$0VI0(qwFr%U}o2;DGC~gt_gpyn0bb zXE*m{3L`6l z`ls3;A)b8&z^|DLQJww%t{w71bGEHd#Zeiecz2! z>0l1L7%ck?@9LQndb$X_l5w7kh?58R;-%o3So}xt z%=D;CjQGsCc&P+VU$Ha(VTa88$Mukh_c~#HhKApQ0OXcaomSrtL zfzM>`DWom&wRJ-CY;OpW=0#c`eNDFu`ciH>D0DE%m7dFWTPIYb?}$5}%daf#zVao! zcS^W>e3V$g?=!d{i#ahK%h+LLfJmmZ%Bhq!hH`Gd&R$@56VLSSVvhvd0zd%tqfTfG zV?<#R89ZMs?)R};=p_*)$|TsWyo5j&Q)d8teVEwdb6lvT5w(7kzCC{PHCP=^>hRFl#;r zb#}VlhT_Rmd1m?N=udxzOOi=~DKF)H6>3%N$CiB*cul+8rk$nt*U_mHGE^rBWVBeb zoS(|Ou5!ZM>>(yR0=Rars&cRI`=v3$N3^cLvTpk1FWC8C({(Lv#MajfGb8bC)zhRb zaZGMpYUl%b0j~}sIy3Y)WcxK^my2VB+?lMbf?q-msveCfdav5h$_Cj`n1x_8<@5V4 z$`4fRXg$4}%(>A2)?@igjssA}y3F2mTOam?jeF^(nk=u)e}#$l?1f1xF~83q%J_Ii z$9Zq7;UMAS#SKkkUHcoVFb5z`0e1;9iD-denljb(>HdY3UA|S6 zRtKd!GvrdgRMeJ%_V?J}#y#D9d}mSDpU{Iys;nSf%&_v;wq4gC4=VZ$t^?00Xx z%xb|;wpi9*Qr@D*+&gx58@+|)+G*-lt8Nyhzxv-^ytH{k;NnG5cMvF-<@$ww=m?Cl zomt?5IyK#Ptj}x=2JaF4+}s;4Hthixa`^bp5MRSXex={IdMXbOYdQIc_5_ys zU7{Xh+1Up(NnjM_zab}VWQyF=<5@L@m3cK>C^fp(htVe%7C?>ipAOCI%!>UCH*Ctr zec{3m_d~%Sgwkp_AlHyGV2bs~J=<~iMNi`%h>bQFHUX5=q*!KH8U94#84*#74Ktf-j>x2{NWt>Z|#2@!1+`#KI)rKB=RH#c|J5i!|!) z0w?v)(PE*Ff6_7sc9DOpNaW#H(uiQLT`UEd;p>KlB zD$i4uG?Aa=-ah?qly(@)T#qZ6|?h?HCaLxaoVm0rT6>@J-CLiBvCkT@?mhIo5a2plzm)Eni8xr~!6Va=8 zyBmZX34_9yO=_^3A_Km+Z$BT%sQwxaIN{?>g4pZl&JekQ9zM;>b#3)*T;iMJb5u^+ zI?lA?euNt?#Gd;};ga+7DMf?&k(nApdw(>fcor9^2Tq>cFms(#mr{o7Ua$b|*5N{~ ztZN~Iil%OuguMLtBWQh1_i-C?VD_+td!Dvfk0r6xHH&%Se(T9!FRertrA$0lZg=(5 zG51VZe^AenzFL_7F!Ru8dF1uw&2#XXXJ8^VH=8nk@}R@Sh;zKmxw1)9aE zs1B31sUAM;OQ0fmuc+7!-)_BnAm_nZ6z871&+hH9GQjUvtJ_&^D`(xo*|y zAD%7BINiSu;eItfbAj7xnJYhB|Kt;j!RV$==rbo`rZOg4j#`A+4?$Ysa*VH*?qk*Q?i?D^GZ7x+fmr+4BgK#Q*M`T_4cE zT)FYXUXEg8&UV|$tS2>9>^wLT;vkl8v>GfGImm!IEuzIA5GyB7mAUgY!G~OPKrVI3 z!C(98&6{<_2K`f^P=&3Y*XCfES!PMsa-LTzE-b$OU_Bgw!|v>Ko3CfCJIraWhQ9T$ zJM=nxe%p`q+|!8?NoXc{gG^F^um(eU1=|)%u1t3H{>qUSO-yGp&8E-uE*KZ+Hki9A zh8+eET1!k#o9K6>e!yFL;}B%1OJOc}M!NMrZ5l zF{=5i%pAm~;bu~NXfR%(O0E+^w=ec`moxL@b+e6MYsR0z%JF$Las69#L7aG3UfAvM z6IZMGX=UZ9-tAn7@=4qA@~>6VrEwY1-0e#Bw@C`Sn{c{@dNbF>d%B#S((!UeOO~0Z z6%Jrt3iEi-i51Joal;1*vNA%=W3%VAOe&p+u5{(RuFzLaGb{a-m7jFkL}X+A_07e_ zP3sRQPGt1kNL)}UJ}*vBD=vhvu_l3*Hfhc5=CFI#zjQ#0j@{2w1PJkpQ`L;q^}fQ@`wAhMcDdVKT^EX#oD`&%&Jhx7TFZ}a zlqiYc8lKr)!0P|}ayR!;b+uFNTk}_datI)`8|i;*>n?Ps>*>sYdM0NjuO(Wf41GiD z^RiY+{>KO7&q*UH6NjC{BRJ*Pas)TkX`-Z!xna+IPEum&4Bjx9lU1)F7ABQ$SA1bE zSji+nE03kA%br=F$eD+iprq)bFC{O;`sECp^p{7pb%dI_mW$p$K?{0T5CYf;M7yKI zFyg?j{`&J8ro`Sv#KDfE8-o*HzHF3mKa-dLrCM?4Hs;Bb48by}eODDLdNi8MK`yi^EigCAg(o76&h|=4VJ9qS% zNM_HR;W-(X`O#(MdPEs5TYUVlX?0^`o9K@OXQ5ejl1YuxiWE5Cm(0t%{B5Gqc-8sT zBkK>#&mX62@Q>A;q7}Qiag`Is{vz)t;On1t&voy1$i6O56|yt`)Q4X-i1Bo69&cjT zo4y;=2_e-4ZaMVlFO&P;R(Q}2!!*@oaoKE*^%#|oI`gVTb5-@=t|pu1w5IjD*4Y6y zRpFA-X#u95D+5Z;6cq95GI9PCD_7YkFh9$Fg^K_U(HXV=8@FZ@bzPZ+Fz+>wzc&)@ zy;x^%E2HFH6n!j#y}HN}q3ey;Mag_;>EuNn&&d-LwZGKA@z#@Vh=#D`c1Xi3vQm#r zOV)&x);N>66&)vEfktQtSzd%^7o-Lx0%ld(vj zAJ2x`?4C`PlqFuI)XW8osUb!~7nrl6N+CmJUdt0ka#a;Jzi$%L(hD#6UW!=d=7orH zWhOuP`wj)jBuEwz0qNQnFxv zYqP8Pj`SvUL=+B!x51R=?o9V&bA^hP)!Cxz??f;K11I0n@HP0oyfNSE zy)VIxG%@(caHi4xecahXJAD{#0c9Nzes_Fa6%LDTkJ*ZIKvT$@h++bNPwN}zEytO6 zPGPcC(@`2BrLQR7?MoTEU!*1eV?Mr*-=1XW^|U{oP7NMlLq%yNd`9{UcAd)AP(4%I zGYz?Ti4ekX+_PG^<@(Eu-kcp1CilL05d+VOQ83P`roGi3DyiBhv%nFCrW^mNhgby8~hoI#y=^(^R5xoEDfS!LT(JD!T`J)m50=851Wi9*24ecm5wUumrgl z8+C-hhkt-#0tg+a%c(b&?DxjA-V3+OlpI*dhi`gGgvFG}WP zaP$ccPr^_Y27`v?;ON6T9G5t;APO^1=)o@aU>+^kUitg?@2{a^78s!pg)@nK-j8Y@ zWMf@9cvZYRa}TdB3FoE`>2p#OD&5Piv+>g<^yYC}N2kxdc|`!wZcK@ZxNyE^g`jle zgw|Iw+9)E{&UdnJ84Wa8iVMD#|O-Qkut`35QK9#}<7V&ega>FRpz= zRCPfXD2KMbz7OYj7u>qcqNi!au|LIDME$7+i0Jh-+4AXuJmB(?H8ib zzI-PC6&W^e`>@*n->dg9R_@Fk;vZ=fPmZkqZT;!S>29DL828MI4j#`@rlEBcQV*T~ zf{__cKE8MGpcI@vIFW#!OjDr$7Edcjz2kr7vY^9U$b)&raG8%{1=9=sFhA6v8Kd&_oH^Kf<8E{F=?hX9BkjgG^WEAU1X!h8{d#9pW~*^&qlnGN zp5m{jw=jvPY3mZ9WwOhkR=vJ5@QmT7kCkJ`@_7B2@KK|%v8J}9|mlxP%oA?`4Zl1hxBfU6JxY}}3;-1-Iv!bSOS0tXk z&Sv0c<1H>C$ugqYf@bc^OgVWsbVxIExBo^~B%4(!tFa0C`crClzK@Jdx!aIfHqOBo z`RUoih*ouFd`URNhCB^szcpDB7HLL!n1&Y|M<|6=V1$E)uzGkH2*=856AKFqGgCOY z2=gEYO9>o=U>5Pl(22U3<&UndM#aP^y1K4o_4L!kcH+c#o~ky|(;IqHr?JPz&Go_9 z1a!96WgQT|SSvh#m9${aisNOEIdFcq;VgB)55JSaJ^qHdRgGoo7GUK1~F2=Y6Fb$W_aTZqzusnUNcmXNwWC!K4#X zC}82q2FZ@?Sv}_f01=s&F_D#?IdQ^<9xeg;Ri6lZCXeFq$CD09w^=N)uZjVZOMFb`g_(k}=yrIRLnxd%gh4?@&oNhIiGnH`W|rV_1I;JF z7+a{ZV)0GXI%_GZ`S=UY5xPEMGQDe1@r|w4NMLm=SkV`^9EZn{w|ZQ_>P}1fdGc$o zaO`g1zVqRVfNW3)=X^tGQfn%}fY72#h-6S3tue&ObdqXeh3jdQQ({F$Hp8u=#@mH4pKD*;qOzpY|gYiuKa~ZQN5n^}T zj0mGVKlIRu(CCyW;Qjb%ROFRcN2W9Fr#+etWty3s zj0f$xuA{sN4yT}Vtn8j?NlSGb-jBv{<<3hhce}0&(9kqLOTg)QZ0;D-MVX&({{BOd zwh57`-x;B&HJ3ayER!Bc8E6e_=`PBuR4~xI#m&(P>9>QKkr2&=*Us$)y8i9T0QmPw z=uR3;Kg`Ce^IYsN!}z~0Xk-=CG!>VUV1TbxReHNg6=;?fTi$1YD|*;>*(r^l!0E@& z;OJ~wO`+z%Dq(O!A~G98QZsDJqnU>Z!l{NCxlmQ3H`t#YXXgg3`$zm`nL%yZvy{3j zSIfsEIP)nz-s0B1?>*FfEI*L{>}ySFR{I0R;zvLXENBm}pFfk?a8-J0{q5*-$>=hA zY6zU$iiWd7W-#@NrpI86jfLPIta2$FO+rtT!o{F-s$i(0Be>|86$XxXv!v&7K`DII zEQmaDKWUanYFgaL=|_*cfI=5+*?4s5i=OmzqaUodC^&AjRAv448_8R5XU-djhND)o zN~RgM^mz<^oCUV>FwyaZ=FRNFt?+A9Y@Hn~FA{J%=t#v%^>5_ZK8_?d|2%@#GEU%p z7lhaoaQngwpAz68x{(GF5 zAUw)5@{|Gu*c_p`M|vl*v0^w`9el=KoW=PVCp~@&;};o;R~!NihVwb8Km@kK;e5Ks zsiku`4(AB7C+HbZQDP3}tO4?Q#MiK1mAR?SzsR5@KcMu$ulWxQ0fGdDmI_Rsb{IsA zK?ir?X%1nm1n6ua4X?p{IEQQrTY{dBhQ<$IfD?m3&+mBqS)3R>ImHA(9Sq;2^HR`@ z6yR}Om?@az?u5#K&Nhv~gTsbv-MLe}f6}3+h5cjB!ssuvhU7XfjLkCE!_M7m3h8 zn=kw0e!LSZB}p8)Nnwh`A<&BmgriI7&$bUo{}0mMI;zSqiWWU|NOw1ibfa`P0tyI7 zmw>ftZw_rSNXoQxl2elqWaSV%eA9CBr)-Ad(D{alXu7Go zs0ktYv-(zajUp)XPVvR9WR|xO@pnf+WOp!-S3nh7bR&ew&p?I_;+}#Jz@l;m@>eTB(5n;Rl93R(KNJnOci;n? zGnhyOiRPGso7>jOFAXy@Q}%(#r*BF9BF`di-ln!8`>2-FT!wLL;$@2aZJ8!KR30NP zRApg3Df$TwqvSd9jlarR7=<$-1Lxxitl{^=Rfld2(cgd?o3AvCHsmzpC>fA-RT=WwdkZ@h9RCcVmdmb|jFr)qr9g+j51Z6D|K3WZ z=Ij2E5d}cSgr*7$!d=>N)Q|vQR%4PT$EW7t_XgP7^S*xQG`I!PE-adw+!IqBX^9gh z%%h>hwCCUad1a-7hAkvx7sEjCYH)I_m>Y!w=E-2ugI@U19Y$0R`J`M5O?a8jp{armHAthF0Nq)?^u{BzY6m2x&oTaH=D>#d338`%XJ!x{{X^j@Nd;AL@x{snq%7=XOXnMY?sH8Jrkmv z;_r{9A!8j_8muWrzMkzbMa_K?etmLKEUX_fLV_YNI&9_0mGzH4PAQp=Jgm@2u=T=u zm*X^t@>)?!GEnTBKc+3E1xRk_(S!5|O!-v6-Qn4MFcDI!%D}?%gG(#ge5C{@>dJYE zqOWmlP_ONs=H_DF|DUj#oo3cHPC}F{E%a@npu1S+|EKI;mG2z>Cq(xMz^(C^HZvKqG zO)0CZhWbOEpJUkJcbXM$vt&jwDM&$mGc%v6gus6ke+o3H@+DB^YDqJjNu2S3ND=@a_$BNd-NzqZxH$2au7S?u3? zr7^xK0}dP-z2Lkp$75o(@Y3yk?o7h)Rz_PaH8K04}Q`4}{E_`lc#7fhu?$gd{jKTcGUMw+W5+Gf3cgl=Il!Ne32wCJn`1w9t*KN58upFH7=Qn1?P$C^H~il z92TBxaBoC{=h%L*4z@Du)2B0rv*_AiBblPAlu@7U$v^x0*k3tq7RGoJjOU(#S{YkT zkapjk4Q=9Utbo!&n#o0#oL7D5!`EkEKLYfhKJ?KoD=U(|Nh=^vu2m~XZlcHT5La|5F)D!Uc3HE9l6X! zWuV8+Qtx0MIw(7G{V#!N(Pv4=!rc=D8yosN`kGF*{HD&BV_~lCR$eAe*_2tb387;b zJJDFVaPIZ}khlF+i2=98kt~?VdZn4gQU-L>@|8cQ2m?4^R#h!8>%Knuf`Xmw0h>mB02 zA}kg)Jyu?K`0+Ds@&*aP?p@oUt4&6P_fJ`H(KL%SwXvJocB*U3X&!6JO5>4~(=p_& z0CxT2<8-ieHUQUFF$O=$3L~xt$^=p-zOUA0B91pomnv=NMu-|!ieCdLjZRpYDeI}P zMXQaAUN)M$134lr>nAKy;8c9UR)@0g+9$onQ#vX-#Ht>pndx|(-(NOPqBzMCJ-X>) zxm285InfebJcnlD($B{_Uoc#_v=mLC22<)CrY*8mJGdt+Zde|=8b2~3<*>y>Bl)TQ zUWUAl?KR?Q;fj%7@E}LNvL=18j_j=?AyznX6}2nB9nTBdbY|UHv(4}kSuwD6`Z>#F zjO38OK4lp4^HrCfczq-UbC1!`z5dt)r|YmyF%eKc9KZywz){ZJm>A!3d?dQ2g;rc%@*`kKRt*6x{I&JFkd@-8ReJ z8(}#c3XU~e!~8lN+ZH2qBV5@^(nBA5YuoWnN|e!*R4Ht{%K#gi3G4eL0W0%Y){G4z z#aozpbo^@clU(mI$!W642lf$(UJHB<=;tOg%QF>HfkWl`rhiX)FCLY>;zSQc3$F*! zbZ+rf+$BJ)a*uD);qZ_U1YGy0oc>GA8B9oKOh`o9;e+{=qo#b3GrT*)pd^N&V%v)R zEh$HCu*3LnH2?yeVLmRn8QTRT&@9MOk~VmzW>19N?~K8{eh{(k)|EELHA8$RZ00U7 z)a=ovVK~WKd<4!qL`GZwF+4Jddg3O6{A|FSB3eWi~5u6ekb>HU>rzatp^|{<6HYjw@wm$oq^Qr_N7w z{_WIz+043O$VaBua>|@R6^izt$98L#{9Y$YwyL`6< zl{r2MMlZKLQ(4B4#@B|z5`CQFB+X9F63;|SvXhIBk6GBAJHflL;g6L}$tT=0S)^Ym z2j{k6jgh}Gr4+_$O992cXieM8*V?V56tG$;tW$!Ry6xbExM1~uFd$5$2gT`0Sd3ZIwEKcoEKV7sk~ccDLd;ht!3&KFCuR&!_o~v{EAf>k zt~Qb?s+6OK10Vf>ZP=n+&@huTvMlc50P8{xVxxL+Us2w#J(;g>A{2C1-U}3GqP}P9 zGUKNk09AQjs!}?VhWGf6O7H}G*(Ko(kT#O3LrqM&Gy0;2G<`m-?a_- z7>@JqBy}2D`7bB-ts&IZz={arvAb73nO<3$kJFk(i|tc#Z7CRr2=dr-r}@9v`W;1a zlaNX}%XbTzm;mu?b#YqND_@g=MU=~yL*~awsQ1?nFWjFYZwFI_M?eaubI)U~VcwzJ_n;Lmp)VBl`&I#+ zT>-Sf@Jhe@yUYs4!AKJ?y0Za~C{#iIMaCnmd<18FDSfL}@BVxisdt4fjW#u;>t{ya zT6saqqiH(I|NRvchH?SnKSPmRVJeM0^AJN#T^=p%&Xiihmr6V-EKeqM)N(&Sf7)1%_Pjoh7o3wVHHeO{5*aZWhSccehMB0H+%}dZUjzp5s{ybSEJuJN zY8tFXpmqR4N-CBb!gu5>z26EqWZ2wFtvlaKFZ!WFJXv1|%=@(N-{Wgq>oq!114Vg* zB~Y6}^0WqiM?J9r2GB0S;2$(m{)`F-Dry1Wo?fTYh`Kzv1Osp@@i;*S#f*u_z%DNv z*2TMnkAHni_wX7Qj6T&n(6SmBX$kqz4^n_mK(&W!&Q``}d3k9&x6Y5*;k_X1#|IQw$wg`3Ze+0-_pm-7j>Tw-%=CPp>R3N_iunGobapZqa zgdLES)Q2FNOtP+U1=>_+sN{^(+n8sZfd(HyGyi0z>K!Cm8v1%oyvSFVR|}1;5f(C_ z(Zg*SB2b+=ybT)DbFo8=?Fr}px85P*#iDRa9h6&2P-v)^sH~Fv?4t%_h)^~+yApw) zQVDk|NoSKKStSJ#=(Vw+!9m zFj);aK{1Dh_P#*k?R|;bRAHOAl@iu$l_6;5Pku|%eu<_xnYddOX7^Q=h-Q0x8+4T@ zzu5_9nTq$*E&<7eC7&G*NJ$IK&j10S!z({9P-?c44s}|px^cQe^PcPw8O)8@megtC zdYtbf{2M|0^*j9{=G-~d?=qd=Oj--wHCL=18l zb)8(PAf|1EC_Msv(`0F%zZDjE^yIQLS^h>x%OjxsvW-fsr51{g@Hii)GOpE%KDadc zgh=P`<$qv2z|$jptU-lMHsJ$Cw;-9~m_bPN4#@Z5cx3}lJ0va-lvmMU|A9cf0AOr* z#>vBj55`svbvdXp+guA$|EvX%zd%am2yL*&H_+sn5wk`H5sY))*orzc!lyE1krvJ+!1XZ1X?UyxPyQ^81Yv%ElJOuf7bBg~9o9?Ty%u1$z=OxzQz;_?CK4dv$!EC9)#2%FaOa|K*Wf;jbS6kY- z9dwvg8B8;oXVtF-uxWAt-a*%1ieFQTDu2Csml4t!lBS@OXt>?AKY%JbuUeIHxfBC$ zk_U79U{V+<4Oh?y4F+k5LckjsCtB2_aL2#z{hW%7;I+lfk|APpX)j=Rv4AmT95TbG z;DU_k-s+#GSLvEx{=(Qwj8i(Njd(zeb6c!tiGOxou2msIa~nzRy@*m&Txf|Cu4;45 zD!F)#inv`QU*}G^vpS8c_w%5RZvFW~ZwLmBgD{{};Wz-0wBwkh7( z({%iQt-%TNMe0f%70xn5XT86YNLn9Khs%Xf_v1S@Rt6Jy@?BI>@jXE<>ySv3Vir)1A(GqHx8Gjjp%n8-S8JdPhUQ&uTz+;tYr?;1d&1?ysF3 zAOAtKIZ_LhMo7Lz=#%`HfZ!1UL$Jz+gD#D3GloZP_0vO}Knb$IN^<`*R$^?L?}mek zwNeN77{J;D(@0z{@E)8dMB2>=rU#ft9`BJO>)+`dmO6P?GnT3h{O#>E~ zaDqnh5$BWk1k_CsRq+xV?e1y%O2fe^XAw-*103%LamB?iw1mE}GofK8kple#jO`BI_6aJOPXKyc?p`d;5 zrGS5!x?z4SsCkhQ0G_&g-_e(sfLcR=J<4CFAJOuQBY%mpo2~4Sm9-9sQ|86q6Ldt? zWO4U0?`GErOruF`qm+qyqfWMgn#PQiPMt#_^$@N$oT5#v7;naB$$%-Ytz8ZD!wlRf zwG%VHO7A#5gU0rtpbL;aIMB!hKvpd1Mpt#Zpaa(O%@=)p7C#e=-wy5Mg&|^!t&W`M z?0T4!t5_a36KK25Lq4YNjLHTMvTxKt51M|!Z1-F~2VmuD6{Qz>c}p?!m58+#LE{7R zYuR6(<(sk(MLzX?vY#I#2I?$^ZrNMDX(4v*&|>B_R2X`}?=Fr+!Fb>CE}BqERiB)Ni_qUzin}{YhfiEuC=5 zBW@!jlnD|JVWf>T1eMf_wET6 zF>#`~8F^wPB48!uz+~Ks+206t@0@qc2TJzy-#N@ais+gJOVaj~6`oM#q)ZL83NY>k zb3Klzr)W_grAgN7n#`Y~5zxLtW>Kyh%o87=+b+}YkxQqy?f~RFJFe263SLssWzv{D z$5qwR!Ul_dm(|nM*ObF$V28d;5|H)B1o>jAEXTf1^s`8wgNs5#t`wSCcYE5o7vZgd z%AR!}wCU2BmOS9}c5$D&Hdw!CuKLSr3yNk@s)C5 z5MBA*BDWF)Aj-qJRs0=(u9zgR5zu`|1+cf!%ojIowNStj*y%kBmjCVIC*2>5lbfpL zi~KkJS-QtwnB|QQIv9%w^C@unW};IxiM!%j@fb_nS^$$o4J^J=B9dTTvgb6TlQRY# z)FI$kO=;J9lIEhuv~7lat4$5aFK`D8ea0<79cU^b{U`EZg@=qzp|1;+8KvFiQ)Oou z4np9l^3k>A?f{R(vPr9e2l=CzCKCtd}c_>!Zl*6?&aRyU|xwUluW1unQ z;jD_N3p3Tf|0U-=-k*IrZ6rIzH)hWtpzueV=7zKL-rWn54-~M1w}T+24fb#3#{* zJ&^gqCnpfNw_`dAe_l z|6|=*w*#`@200VavacnoJF-HNi%5rk*mk!l@pXN zsJXc`|Muoh7F+NSy;oIUgjxxreIdc*4Mk`xAcCK9>IylAX&Hd7EVx>@J~#jkm7Sky z9x`$bGalb>AFDbfqlNQ^9OMQxJ(vVkiI#r zij+%Wl5hsw)^{~*;WCLgu$=02)8|!vp4)}Vrh8gRTifmS5|(h2{Oi8n@JT=aD;*!R zR!lv|CBRGIqKY*%t9On0hDIIYa5LnI1BqsLO2DLGX>r8Y`U&r!EK59GcuzI(LN-!1 zJ}y*C8{?JHi^f|j{2jw8yLrUHRJEYI?N$#}s(Kl;LcQ`tLITr)kxg%6~6? z!Xa}E+3_W7!EXZa*28j3|A!upCM|HpX)?SkSJf1YxHL*+W5{zV&|}va zwgREW{ih==6<+Mvj^!dJOB4_CR=B%6AmmW{7<0)5SDWCL2Re)@?EQEGI$o|5IPURu zk}nidwTM%{W|=I!@3Z*{?sg&{?3{#>>l@4B7Hd`*o#~c&Rpk|PKQX@M3_f!I5e7t7 z(M?}oEsJrl2T!p4Vh&+NMJd#Z-`)MgMC2Bmot~-E^3-=aKre(Bhe97#`t90h;-j-5 zvbNmseB6$vtr6(Kn#%KKg3#2}^6trx?d@|zB~6o|<*x~IPuamGKKr<+_xQ}z)`G~Q zi11%_2KUBT@)cKn1ionDRSFU}<4#Wkdt@!!6VrC1MIaqezmdvth( z<5jNvCLcV(Ch|-=rwN=h^kLgjsv;rOM)2BmbH$Mw5 zCppj}0};A%3&T+n+R-cl-OQ6Vr73&WpF)3F|)@8A1lqu0m!bKq!k)}M~f>Oaw8?wVRkXSaTSaGB6s+h$$0_?B?t7E zRZ%VUj7`}Bg;4t`~S5N#KVFVP1(U4lkf94?mHy)73p>B-@1|$U6!2>Dx z{{EtJ1V-N>RSG~t0+O8s3l5$u>5woW&=lx~2tz>53=7g<1H}Z=&AWH+oPk_yUf{z$ zL_&h(-5?VXARp(llD-^pgPmsRK@JHf107~UNDdTO4O9WO^-td1K0MFq@u7QTX2ndU zCRfyRqeadUnz6*!{03SyAWkgR6ZY1afub^naYh@zUMbE+(&HImdxbrB6+z|-T!vQU zG#)>PTOWE3pm6||iyx4%|BMHa5ao6j#9GVAmJ~qQB+$6!~~u*no>+S{hjBdJQ%<~ zwDd8Jm03a8N~(4)1XA>J*8pf;6b_$!Vc0osYS%j8${H!Q6N&@tw?m-ZZ{8PA4GV(g z0U@(SFe;A#`(IeI(?Hw!|A#Wk8&FgMHX4#K=rd${Kl2g$za1pInxo-A<|uw}29hIL z8AQxnEJ@z7jnJQcdY(8iyO8OF5g|e(f6Hb^9`opwxM3zV9z;Rmrv=N{%Yf(%5u_oi zJSgBHA0}XE*$dnQ5n%sctW}#G!OR@qt%aBI*eSF65K6)d6{*x2xZ18l5s^0d|F)^1NFtCg z0D7ZqKpqv$QW3yD10E*i4Y%_lB?Ypvf(8Ajw$gALlg>U^3{+kXB!CzTXc=+D9~q0! z@Z8_o^JEPJSEJxTAe6G#cHnQgSKw+=Tqd_rlZN*&7o(9+RV-%iQZ8kHLm13@#}5@D?1a47%paPUz$K1=gJ4#Jc)bQSdJh1&XgKh_cVSsktipe zc=%_}l?_C}bVGWheK;tV=L6|{3!ohy8Fq^P33w&IZ%(y-}6Qvdx<&)v><|Y8~@Fct5f66BS%{aqQw9S4~ZLA zgQ9rH#rz-EvRCy&c_y8ViTPAjyK_<94%t!t2kkh&vgsJMyR{+-ZMBGoM0ib>k~;rO z;fiIXg;$;*w45A{%HXa7r!@r!2TsVV6Ot%}_~|eh=!pZ?K4jDh*_Z*TY!slT4Ow~u zsU<`hge^dJfd)Y12y*5CD)_elSDs!D`~=9Dj*^n`A+H0#UA>uYYXj;&8ZvXiTOplv0V39pR`+Z(&=9_Ch>c`u!snn zCQ``ksdO0Uxgbs9f+2U2WB6!)PB(Nsi_^EN`hY2${q~0dKcMCae0?CQBxmz3FJS6% zRsH!;Xal+NL1q+?)-zY&)g#C>4%lllIf(#yVMx11{O5M77#sDW}lbnLG{hwEBl zmO~eq*TEwtjRaOv<@)`}BAa;4xAFE#>nfOPTp*@)}&-%?j@pku6vRTlQV+ zlx%+yX<#AKp(!Yy-5{Co*TnfNac;M~N0{Fazg>OvqwNMYmRSy%U<=}WNHd65DhtZyirY7cCWzZdO$x9edKfJ;h9MJnbsRH z-$elwENm}1gS$ekc=He2iT0{dC-x0o7wuNq=Jm3slh;I(NUDhROvNT;Fq};m-YUShOw^vF%WL1W{ z^W6Z6i!&wxUQ8DQ(IM|dNvU1GLD3 zCD1c{;aPG zD#tifVT&UzVgI!YY~cO}*aeGsm2E<5oLJz8&~2@HKl7Vg9&_9u#@jK3Znr5KN>n2r zQvl>KL!|`x@Mt~)&z$}0`b?p-i&^8V&Wzw)@Q*$cglK}@8exTT6OiWq{X&kCUxCh4X zWN%&7a~~v%7+ua-VL_IC9-v#0e-ZD(xSbEuRTouu)mgnNyIJ(=hR6S-Zh%_Mri1@= z*xn#(^D=<%V-mfvn8A77=r9Yf6LFN=_IEWMR*bY2%-`-(NxGTyE&jHx{~rN_r$b=X zZP)w!VTFbl3-vYiOOnONOVUrlD`&{fb>d2(1R0tiaG@`%4r}JIx5;IVXMpqAhgRwTmz2V` zCnY<4rZJTsDEPu)nJjtdu|JDHUgP#-C`nc9kMdIm5_mk^Xfui3CobV`Z7G;8enYSn zx_eYQOtX9JLp(S&41aUZP)@!DgUznWuCKq&{a1bhE7_yn*f(X=tUA;zSPDej4J?;A z?mp4(4P;# zrU%Ew&!2b} zHD>teoDvgXlWZKUi~)LU%$7*ph>I$OpiVqce8YX1!H~a3cTf>p_@I!^Gc?grekPF2 z#5=YH+4AQ(trGClxY~^l@ccWF-xaB3G@Hc5k!!I*D?_NI(=SRUEnD9+Z?w` zS07O=Swr0aap}l|2whE)uLAkNAl}V6udM$CF|u~}4mCT{9rrnc2L<~Ks-xl-Kj9W6oP#lapG@B$ zNi(gd#7v?$WDKt>r9m~(-QbL*{BHrf2Vhm+rc&je^w$yxU02HwlBb(x@4vqwk324` z2O9&=sh`Td4j+Sj(t>SK~7ML zf^aJI2mKQb5$8`E-Gmhz1}`!2N`&kHz(BPwd2c@Au^sB{tMsJ@?tP#p>wjZOH{+b` zg~?jkLIEbDn(uDu<;L;OCX3*KSIc;3vYgZ~`Fl;D!96Ndxe3sEE~t4aNwiANPu3O? zd2}O2#DWRF0-&lx9N`eP>ZmRv1t4l;+A$sq5{xn-WYM6uJjFS&hY)5q!nRA~zYh|= z7t~8S{sK<7zRZT$>OXz04qDT5HFUaIEz?r*(Zi&Js|KteS*Fy?wPBa-PNueE_&T!C z(+4NEwls1KHvFSLpmq89EOaKyUg`WwG=X;h_3PIPQT4yX+FkEGaP>V7REuk-rjw3# z1C;>Tk4O#av;FlF|3~q((c<96(B3v1B=5#Wcz!wZD@|+Rb$*H$A}Xn<_QTwYcc(JE z4|m+QY67s_Kb`y^-D&J^c9+=*f4&sINpBHxkmkY4Ot?j#R2T*}wUqS&vNsM11Ad4#lQ`B-cNU26$fcA{U_@&M4p#F`QCPuTHZ(V<9h%$Oy7zGyC|EOT3|Uw zscI_c?jwaEClZNB|JZS_tWQADmjfEQPPun%mC_@rBMyx-7C zWIvosF3T*(HJHg8T)%2_s8axbLlcF;G8a9+8BtOQgZI$IEbevI&6|^d#gm33Kf$0GJFt2FU2EaiGrF>gY$H>fXu*%;gV55{ z(Z5m=@NPx9#3FC%Nvn`UVaW0cUyfp357jd`9g{tC&)%XDQaz6VOQNgZhZ&{umi$1o zz2JUf*;JUS8mCfy#T*M4c^^{o{-e6g!3{Z&BUqQ(6NKCh7%#YI--AN?aF?bpWY z78(y!)VL-`0`HF&-WPEBk;jl2{+f0f&7H_`#?cRuQZ+xJcE*Y(q2Fi|`3bN}RqZcF zLT`KcAJfYo{2pHq#H(pSUveBgm|Mkz~o+}|HO*?unjtLz&FGTLmJ*>W|B9x3#0 z3)|4Psq_ZY%6+XwqT_dacJ?+qGVprI`3hmc_x2}?epq=QEz?d^WZq!ki%aeQ?&NXV z2gLyVsb18NgK78<@0dlsSc+}S8CA%@L)AA7Z>>X)X(t}e4o*s%+*`BOn=StE!Fu*P zPvtI=G$jP-uU|96l;-&XEwHIg`4FyW5ZWq!1F=$OLEqhS4KAq8xoc1qN0=!{p z>r*jPBET&+emnhpK33T4{E5m=_)3T+2|YtyT>hN#!gNk6GeL}g$`pg%C*xC66v5$| zZZn0-JGNDPMxK{1&8c+^UWG{6O=^ReQgx|6IzB#ziMDrsq&gYD>SVH9hp_mbK7ThH zPueYu$?HeZ-z!NYL zA?Nh-A2tk&mpgo#b?D?H_h}!|_Pey~FXKf8|HmzCDKjL$Q}|k8NBc!wU*7W|hycgD z>}#*l%aEQ8IdvuGmot3h{ch^0ww5Ti-cMKY^L^;_>BI1lqWo-$k#xqD+I#<;Bpv-3 z|GRV&NIlOu`<(xN8_O?}nx1*vpZ%GY=oe2h*)WJ`333os3CkLzVvBO5Xwk(;7WS=;Hu#;6+dH**P#8%GtVE4`th0k5R{_Qux1@1Ux zOYx&6|6OL@ipU?b5c9tGo;PvNlm#`t7C-Q3-%^5Pg3_+qfBPk3fGC$l!p4`kRmh02 zy5X6~>)Kz8qHbQQ<~y3v(swN}8VnTsLdMJ&IgO^JtY0NWoLbxwUUM{{2ntok~G?1FqmENbWGptx;YxNhOL z4Oeko5oAidpZr?#F+83AT5pet=XCrn@uyWc)*#yE{Dv$SlX$^`zw6t7s?)*Wo zoRLua6h)gk**NTL1<7>H0XjCVQh}F7*QxwGM`2WbH9~zkQGFrBxGi&X_I%?LQZ3@{ z4`KdmsQl`^9bZ3zxJvnmgnje!dv0zp=#OOp<>6WY)*u{CzBWDrK5CHFVh>B#y%dky zc&s}flAO2qbHF!E`S3wgi>UprxoY=HUlEBJh48QPA>BwuWZ2W3K-FJ{f!%Xc5uZM) z?%lH4h^=h+yRH=~9jE0ao&AuRVH<#; zC_BG&(WmQL7^-3rhQ2z|Am=jJjJ zxRw^+AxRplz!%)m)*k&fryfwB%O1%Ejwc5GXOk^wQ*SQs0sz3%3Gf3T$}^UV@iyC? z1WZ}W7VUrm_$+{C`KI-WgLde1;N<%q%nl3Nw*x~TNIKgah!r<^^!@NSztjq=*a1#V zxRC2v0)Gg2^vP350WZLtI^O?AK3z)tv;7PeN=@BQIJYOixc{PUf3h=%=JfR%AI8Cv z-D^COd)04@RsMKEhfN^OC_GON;xOW}l_R%xM~SY;_pUK(w|k=r_u|zYR2i*t9p(F5kcF4$$S)uOSq9;VUz$Ly z>YCbGy=IR+kDQByXMfNE8dn{^Ol|15wu%AR8&j z=tz?PyX&YF8V~Se1UmXx0Lkzb7N-x}{Jj3}RlrR)|0frU!o0-$Dd}h~5nA7$y)^9{ z^>tylS@*I>+9%H7R=ZaVRwwvay#GE0$AqZ~v!`I~TyfhU^}78)IuZ`)`{C(7`VCA| znqZqH+IZsq;_CXn+jDkDFcHnGxMJo6(v!YYVkV9&RA29>KDNS1EnPEDJm)ehn7CDU zDW^jVdxWXzf54o92@lY;AA;WKlJCLrXs%2K=mU30dhQEsIXwgRcRQEcww(%AR*!+e z__oJ9P}I@p zjQcGOao`nY<`X1^pYq^tbLtw650Y@nry_h@_OB^JxkR&49{huCsz?2PaLt?^zUTks zj3fWj1$Q9|*{W94ebT*dzf~gDDLsVp0q%NrQ5~<0K9TSbF9o&Tl~x5fPj{&cM#e1)!QI zF~+wc&{l_j8{hsRg&2|x!0gG_jTWuR;bO&EIJ^8!V|-p71LUI!v^yY&Ss+kv0qmzP z{o0nI1y+@CY3O}YC+B7NB^>C%0Rhtw@Zhc|H4aYt_Z%+THq`lI^`4RhvSo^xHyZI>XV%X?k~Eo%4THai2Q!TM9NO&wlx+jJ1kX4$ z*S7Y}0qOf+0D>I?&hL=NEQHZ#@V&)>jfkFLDJdxdJ%^ODo#~T4iTfmg>p~z%xy}x! z`8BYZ?=$pV>;a%I0^~IZnD@X~;(RvLmlZ4*a)1)xik;#C<5(8pFuV>dn%00~&_7@- z`8Nm&=QGeNXf#vvN?yUwBPB!KPs?EhDW8U0wxR>g{6UWvpyI}D$fyu^WbXt|o^X4F$1CYdv~Wjx8RxS_Nv zj%?G7y1s&<`-7_W50<(Xzs)}^3vGGev6YrprKOo1)qgH(=6OlDS#6$Kti2wFhReur zWw3B}gUO@8tRM0gczO|$ka*a6KBE%Z%`$JC&)_jfH3pzcU&GbOMlG;~1dpSPdZ`y+ ztq{Bf$kO8AhOI}IF~*n|9cm!w3`j8{5n$qZERd_QBtMdnRcuQ&sq`sN3<^j=3DUVU zT14(cTAPyd%KnWz^*-m%_S*jS#DE<2X^y|_6d`W@lorTLSqtyWPpmOMa>jM+NpGCRM&h$sN0Jz}2(RV7C*z<5jBZQS%xNtD?dylbm0ahsGF6Po>Pa1QuBV-UPV$Nh z2%fSlw`_RHNe%YPb8yLx49E}uigK3)WoSxfrZTXx<-8ai8F{<#%{jXvj#?xYSdBRs zO_K}Sk?HB_fnDJciScQ_{B%n>)~pXKi|?xul^(VQyYAO-#V`FXXj_Gnm` zpxjr~z)6xP`vq%d`-d(Gl`E#eRh_J z;QFt`JJ$lwrYmPx&+3NQ8NPdu{ZMxh*I)XFtRW5>5N^4#`tXWTF>)3JiTL_5s1l^% z;q@T4`rp#Uy1rj8-rr+%xCwW@g#u9KJRvCtKfUY&KR8mrgx8|YJT!|V>a}72Xkc*A z#@ZUlmj_0sH7`1(7&1+(jmv5hxfvb=j3Um&G3&p1gc?e{bMm9&CjkdYrEHSV_p>Y{ zoJdnO(1-VOLGJq}r-Aewd#B%LH#q*2SQA@R;rkaoz6(E{XLb3Kbm#P+wwzx)n=Y4j z^<`;yM@W+T-CX=cmy)vIZ`=9zk~dNhH#Y}~UnH$ux6NBqP%lhrDYTceRZnW=>bwT) z3;f*_13BP$rf^uENuEd zR-2)q9L?r*YkZPRD3ZM?3~Kw%YC<>`ImM237}+6#eU#2?iAYZUIyk^ubAZu!(yJHG z!-1{{LL_<_3U&e1FuFPl`rHG&|Fk8vt$3`|>3mxYC+N4z>Xx_dREy zFF0M@ckZJ&zzQ03&jx1O;Q+tR0fKPAwzV55NI||HWV{yWU~=JwV^8KGDEVZUtJ549 z4$iZj?B>8I-ft}f33fRiHIOm=V+1Xc>9=`B&E}NW5@t3wxrgd$YXDqR0f zXiZG@V8r;W<`v=3ca`_EwixMK%G<%dtk=xrKjvnF%&fyA21hB*wz>n zG%c&_)7aajQEx9Fr~{dsHO0LRANNa3@=(0$31dQ07;w)N4!rE9g-lkUAPSUl-U1tW z7&4IU5!rtRVyXxj2}40a0XTF_`|Uc{-+$+(FOBVr<}p5HIW&Q%>JC`kY5!vtyA$)wXum=j0-U#b;b>HK+uImY3 zn=tEh1EzBezj*2&PgWzd3neIeRItbRB6 ziN&b{?^B%O59_j+F&ObVGl8Y=!xSa&o_CJVi{I?>(Ri&O0DIdGfd8wTn$ka9jRcYj zyRo2AIZ2jxtLQEUoZW!&!C~MX*q<9oGXQ2&m#h83F$}VmQiV`LX}B0@bWPmtzq}nk zXSfP99`*ZM&AVQbMsBmEb$dojWaRoZzJ?(B-iv&_aXBjWJ?YNqpB$Uy+x52=Vn=xA z(Y&xOlyLr`427McP@jO3l*#DSY(o1fVdnu4QnppRhPljNA0#ICCM71db>Fq0$fJGDQ`+9%aBBap^Q%N^K!n8&t~4!s=S+w+pRG&`ptbp z-aF17BTe~LTF#=|bCI#y8gpv>1(%A;;BtlizWQwiSe=_tTziJh34S|Vk2wV7pHC@d z3#>}tOD&68m1rY-gkdlxF>26S@Q$V^?>F!cQX%JAlQ>3J&B?JKh0qO1r z>4vw@ym#NMnY-q$JG1WjpV;5tzuIf?yOv;?>M|_SSbzl>t0TftXKflzmIx$bj%zN8 z?BN7Lj@xnPKR!sO%I|Cufkp$vyZtI*{HN(%UtC>pX(y)(GM3!)O0>SO_xcRSJ2XDD zNDu7L&I|3l49!{~kUSa)UBGQ_k;Enyb~w8uk7KD~EV zi>3mC4Jk>)y1Nysi;4!j0-i}) zOGP>{n8^q}G(j|6>)K%c3G#Y_JZkC@+ii0AGCb6{A68Y;xCIZ^qTzt8N= zSzd>RP^lO75H6Y!C5{kf^vuZ4xPFm&--qv9s+;%H#&Mo)etybri!)ToUGQkA>4P(g zItLS8LIm#z049v2-tGIF03yi0!Q07gXl)tBJi2?n@939Z_)uG%@37P1lL1zDH2J-T zYp{vUiRZ8%yS%{49Y8~D38ab-6&nBgNS<8j3rooFKH_HNes+K}sqpU{qNhw?o#_ND zKcb?g-CGv9iig$PC3dr-n6NNvDp2VbxtL$S!!BLpVk)k#BL;klx38Sg7OO6C0EkU| zaESMFyM3>}%uR2qyF=sRefNhU;m-`L?ql%nH9fYlK3h3DT!?^*1%Of8#gb)~&o24B z+}`Yy72~tTPg$2e=_(0 z;=MCc?mgq+b!p1T{(l!eF8}um)Pvlkcz^ve;?ER12Eg2cwhW~l(4)!Ew>td zXiuDnK9aTal>d5kPFjb*6#3~VxxO)>9CHUK26nKHb?)fw8p!z0!BxEsG9cN|Oj)a_ znbqezhd;&$rT;-mc&DW$+DFFxbIF>5*W&I&o+}bcKI$REgQA9%P%f+$et>-ymV8N@ z*7mObskwUlH`(zTAjzTcaB81p+$;gkXmKgcbkT@~<>#EGgranq+F8fENi482aW3d@ z^9I;-ivZ?meM63sA_S{;5vP1%VIc&GhJX6xbJ_6iJ~)q}BO{xjTl&@6**w3KcHVl& z+Su4Q;^s(d>-r5#ZI}^6_wmkh?%`g{Di;Woy)D7{@_iNach=>oY|F{~k%`dhQyuxX zHAP@P*i*fd_IdQ4vE99^n!VbpVh%WLoWjYQM7#e60jC?3d}u}{t?*owQnW}^yTm*sVV_RXDrh~7={Ty;XRO@<0OCg=1#Uq1gx5n^L6 z{_5l5<@n!JZ{b385(*4IF{29Xj_5`4T6ra?3;_N1l{rG&SrRUFi=3Zt)*r_Wq+Qao zvh)5p3dbGZ2-+YV{Pk*8*$*UXd;;g1w*X@(`u8sqh#;QZS8iz1U9n1b1F2u?F4g1$ zD2LKFBS{q65}ci!*keKiwz+1>TfQ8xi%4DWa+H#t-~(BB;(K=IEsuWsR@ELx$MI{n zrv%a+8d_c>JT{L%#$c*h7Cgrm4a8hsT_s_7+dnX0J4YY6sdk^Vg;fKdB4`>3KJ=}Y zl603%<2?UxH$5xMq;|9MY;qgX{bJmFha?#bLh7-Gdp^e{M};UEe1rbUCFN`?k@O+YO`be-HqlT10f;6>0Y6 z?dD7<-v2BKmk9JxjCmd8Hn6FQq~~(Mv1$MsbfjpX!$S7$V}8KEJOzJoUA|j_tyL z8!RA$GIYphu**#co;tGG9g)bAoC$)!TF2*PQOEbkY62xvs-R_!U!L;fK%Ibno0A<@G|JLR8SHCx+BAlIUB7(N zkxT&CS%QL4bQJofeAnB6v^bhoTNaalbpz7Ao8o`UH3I0wwo6A@qoPV|bt2|$L!3E9 zZl6G_$rYBvb9*PhdU}@f za#QBAq7@*};j3yWOp8bbg(SgPkXMGl`pplJY8w7E1?lZUjh;|b!@uDopsw%DWm~s% z6L#Tke@}+B(GQD|+O;W!TGItL z&;1Mu5~Dz{0g^M2o_>IM3}lu2e|R#oGFw5m5(!i9U7m-JVq@ghy0O*Nt39^nSyo8Q z-71gxX@mqntdG2s6ivqxPA#6#&(1dOy?Wq}m63`emm)D(!DBq~Qn}&$Q=RX`bq_B! zEneUAl#FS8sY|9|<6=fhSyvU$ChAWUNB*Hg5zm`2qUp5%p>W~rzKw|q&ve2OAHGaE zPb~harb@W}&wqs^*e@pXy_Q~ZMG5&(AJBv@G0eK1fE^Kt_z1@8IAFNDyCeJD8MVsk zhSI6)Y-rt}D%d*Vxe}%VQsYUR_DvVpF%}-4SV+1E_pVgfvTE?! zGZm?b=v}77y7dAq0!8Zr6Yz6g7KXHKH$R;d@!058ZI@w*-bDrQSLGu25t}u)vdG29 z2{hL?MeY0rm@x03_@3bWRPS!Dut0+buO;tQ>FR9mYvHBi<04+7l>#*{$xFW|^efo` z7RA3nhSYuG z0ZjApe2z5HH1cx*_hnUA^9_;HWWn!bhRvu*ls&2Mxji0>-fzg9onFo75dwsm*nJ@q zg5USoHupb?oX_5eZr#9=pDZ-aWvN!@JWhdG05FUqpJI(2*@V%7`d+g`bk^^XVRQ&VGs{aQxxa*yQuo zSM0}CucA)-JpWw8&01k=?>nyx{o*(ZFPO`DiIBQC{LUPI;hRkQI=?Pau^A zdYDnq!0EpPoN9-o05H{1HlOYf%~xUoxgH%aq$6Wz>Y_K@>e%7 zh9KDS$THxgt4;;5$TYl*+jqLodfmIfzaQfK!R`Z)A?DGjS11YCCX$D+PrVv!CXC7b z3EajG&j<(A^(3cAcp`zQ`A_AcJGLyFYQnB|^^jEXQ*h#y!tQWt^u?dX7nWatot^1R z`|b^{XdFDqG$P5s5^Aw{uBh-+uk?Ws2M#4Q*U$sFp@?jM4;Jw5K(gt)9WN5SUk#@P zA)65@itDsD4?va6>W!zWp_KBBlSMP5-|gpJ^dE6stsGBjBQ_id2M1oT_Xt!XJML9g zPoNg_R~G8kC-nC#L!`e53i2O55E!g5Pz0r32!1Aij2y`0eUigV+*7;T!T%$dDqKGx z{J{`53z9i)P{QZ2ysdT}qmihk(9?LNv-CmuZCM;0A4dCKr?!(fj>DePD* zwV#*x@8#_5L{5Dk=+4iL-KZ z9U(N=4t5kn3kG|9i2%N11Db#gwB9Tzuvydy#;PP(>N#QGP6A4D$IXgi2NS8LZcPBhVWnmgz{B2W5q*+! z`425E@5B-IbH2RQx2%OJOf3GNOeRHLzZDb=Nf+Z&p2B0ZCIu7#yU@a&VH?;=TLp63 zVTF;M%=2S;#5C(V<6u6zt;FvLku`HBm zu-b{A;I0EKqy7gk6VC1TNRsgt>}cg@N`695KZ`Un(6!L;@j+2oLY5Uc%iwuK zYFeOC;s>k%Sf6Ub&3Y0i;dcG6iGk!}I|w{30SlDViBIdeTTL>Xe6%fo;m;B?YV#&F zfF%t+^L!T#Y=}J^5_Q-td%H?L|3M(Fe&VKnoc zJWQJ4s=#a~^<)H-nISwi6iBbahcJ-P_jm9e;4MFrNxOKKA^1&hU}60r49o^5p9@>m zbi-nz-|-Gy8+QTI6mS7 z7>!X&9XH~Oq7N^%O@wz?E6rF?3eSFL`AlsGE^MF6Wn$UO4=d#}V1yAWx~+WEkfaoA zB*!3qU<<%sJb0Smu`EIS*n0Uzf@RSxEY>uI%^*TV2EI{r_Y1l)NLx6is|ZGhi+}3X zU^W>pcUP+Rvp+NC`~XV>zhT;pH2aKeY_ zr1vS2qblSfsISbe$>;NE?HVuHgNxw&tfNg5ou|(=tf9I_haHifjV4Rw4>A`5^PLOB zmw{scyGCGw5VkXvn6Gr;kjrw271oCPH5nkI3{~e1%XL)61X(oQcDTB;8ZMZRYG^5k z$ZwP1d<+VdD4=>#{w8~pPt7ZC4IMmeB@W{NI36nJyWw-<;jyJu2jY+;Tu zdVliyZj|^_r+udj&E-Caf3y9G(p1D1U;U(>kvHu`|LEV;WDpIs28gdU(S`>fdM~7z z9H(}J(^^JBK>@Ilxxhggw-vj)xpzQ72BgWKQisK`w^$j9T*(eZAdiB((*bs2xj_j~ z7;T>h1MoL~r^9V6D4d$-E!+H;R8OD%=iyi)bc<`_Bo4R_`QG~XX z@4V_-Ph;F4&~0KW1u_q?m%U(k0tiXp?yfOOIDDO?Lz}3*;QQo-w-50@Lf0pPwb|qd z<;M{U5`2jiKCe&EP?MO6E!EQ0)Ui4`VsB;v?KOD3&PVqkEOhx&w#VDmXzZnzByrh% zGSboslkWuun6k%=a0H8v`=HOHHsEim>ph+yy_(TFp!^xD`)2zarFooV(aWk}e}gd+ z0!;M7u=T!4Qn_3XD0%(IsNGh|m+69KH8RQGmh%gbjxzzsTmQhF(mE?e5>s+t6fU0S+~Mc8A2JD8BA6vu;TYnJ{nH!L-Y5ec17YtsXbC1 ze>(iv0oTAOYp28p)O@puaVp>ut%_yk6-F4S8TVo*w_vIlYmP$gP0<7wY=p=qucF8W zXHC&w;`I3kFpRQWkHO>+^X-tXiL!=Pk4$5HP1z4Uu@Rv+H)c&6;xZ>EAq++VlGi#{KA6 zA@6_9kjF9OhjTGh?Jq_ybwQO)qx*ZgRr(rd@o0)-u}kq9as_ce{cMMn%6kMqhUQ*{ zfuK_QWQidv#w+CLd-Ut`K|*CAnmJ`E4)lr|Y$007s7TSkxIi(Ay7S#G!NU<_B#C|l z7BaxXV!ltYvHuaM&=RKRrg%IVGNk#$Ozj3B{&zjh=Tz)WwD>KvKdQ|h9)5Lb<~!+s z_w-gD4%D-nJA&q{2_8`>ehLk=ja8wl zu{e(@QocO-z<_bqcJFn{UAb5)iuYLF#!w`YD?;{RYcS&V2=2*U0?NT|_B*EI6HFC? zu&PM?Zl;`EsaXE~pPuFuX1aPA75AvIew5g7S-2BwN#xWiVTs;iV~wZjnD!DMdVXY3 z9E_QDE0k1r@+20Eh}w8ioR|#(RQx}LQE_@$0iZ%L`wP2p(zrs44=N%o_HpFh`ab`{ z^#$>tp`kW$eBD;WnELJ(&ah1cwq~6h8-scgssZEzLbqMf?uQ-J;Z%JqJo(M6)9lDM zQX%3tDc5#>Mu37dZ0T=v*1)7+o$HZos zF8`X&hH_>#^6hQYJ6{iaZwH4`Dp!~1aNq%Uk>s(Khj{0{kJoN_*6Sf(6tYzSR3M)G z5|L6?+|85{6-SGjVc89M&{<^h#X!xv*7kA}5leXm{H6fDTIy^j`E}!$UXgU*ljejD z#WedFje4A@pUH9@%0If5mHp1Ts`u(Pxmc`~!j^xFAG2PGi2jigDPvp@U?}7K@G2PJPY`+W*hZmS(p24 zzaOtsdzIJVO@1sQ5Vfj=T{b?4WvR0c|C#!LVKN1KCzu5N)1L>l@z?neZIZ&C$5q4% zInE_`3K%?M9MmhWqMct?pR?Ya@7b`qpF&bner#8u2`rdAl>q+0)=D}ZNEHK7O$f5Q z|6#^Qh>WnQ)ms;P=Owy6h-^Ogwtajm0&?p&KgtOSI_OL8(L5VG_N&{~McXbaATMw( zlKLg<=+M7Ufk_zs&f@cj^^5oWGowPVexTK?4B4s;YlR=i?R2HB!<$5MEvzmh zsM4x~n=<+StjYto6yicldftOhzI(GtN+uk{5`ZjQX)qpRia2y>9H{F*cJCXe@;+jc zZxjs5QR)3SEd2n-LyOwXq%@C2j4%K;pXoQ^Q4>qJdK!_yi+1Y)hlDcw!Lkk( zN&e-ZdMe*D5q3Q<8h$nJ9ziY4WO(t#r&q{ATv=vXe+pLs>yr_ST!10b$0uxOTs@ zt}7Eqtw?j0idi0cK}U)#SDOHc8|u7$?L$#>b91&}#vNyYrW<{awAM zDX{U4^nOueP!;-6&%TylZgNH5gZ8zD8ufbrb=deEP*VJ)P>(EGqE7a406RpflO&UD z(cCi`jad<>3D?qj9dLdTd1Y z>P@oZqWP1brZ2hCui53Pg~xyDWy!^jn!2;yD8Bs>wRfweT>Xp9xMw@3Jg)e&*lR+y z)>YVoMn|pVH!NRyz_lBIq^ZQ?VP(RT@&aPH08V{8xTh$9q$6SobF#V{PpJd~#_q7R zHx4(jh0EQ=#nb1&(`^^AzA3TxLpYi=bj9mi>4(^c{ItsYwYF?6J_k|Kb_M3g9HvLp zEo&b-@YmPex5n9Jh%%)q1G<|Z%`=Xz$;X{fRV;V*mMB{{D;wD}fGDvrk!-6e{BEuW%-NL_-$eos(ZJd>LIA)CjcQmN2 z!ikN~_3DP_*^0$<@BK_b(OCN@OYX_ty#*gxWb-prS~;SRvTNG!h-?{)jb=+_5^g*| z>DPS%*E{nC<0OmMv*`LHtNdkEN#ru#=aQnLhk~on zoCKOwG&FtzRNS_|Iv`-J58Vhd%K$?0zrmnE<{ydy!Ix}m-l5{Q@~TZWEej?(_p$SLiV}4V<3cn-^rUW zZsk$b%&50sajYb%yFUbzUT5_=cU$U7mi6%Py3%f|1@s6qPN4F?Y7KmlTv-fv8Uu$0 z>+VfY&L5Xlq+}Wb{ka$^E|m!u&@c$W&`ltzk?H@{|58e#bALVW} z%l4Hz7!k*>^cEaA$8~g|=E!Xyb*(bgU(?f4?m^GD=o@>Le7{3(uGL)p+{%PoO?I04 zrTl=2dv?Tf1Cz0NJU&Xub@b3*a|^3K?{-9`=% z>@n61GJ%bio3n+p+B?@)+QG%wfl^Y(sZTt)vJo_-!2T7qU&px-5|bD(Yd5D;hFwwP zC*_hNX9G2keC$1#Q}%n%JKQem!4-6$e%dR@@`QbD`4Vq>!+4=JaOI(g1dW9%8b~=o zwe8~l9<{uv@-u$Sr@h4*5AM_h(%95Cq|&jCl0y+M1XlfC?P<;Md&NOL z(_Z4j1uhp*66L7KC?O|d;ixQkl;iNUU7^;sH@QikUZRaik?{bPRAxWU{y zTeKIcFkhbqo9SujOevAy_%@7npH=}f8ZGXI42OV7pfC?XIDpRm&kN+b?)GR+%iYF) zS?q85GaH3?CE}w&%8U4y|29ZtyM6-7)eeCU{MP!gG?T;Z_mAzP|9e>8PJ!MW`}X_e zb^WVO{mWf^ln-|an*oDw2UdM_{#x+cpH9>dhy|{-tTvYz3VB$py-A&V4E`1?CU9LW zx=w_h9mIBc%^61dXtbq;EcL^@U)P?DI+S90`NTgmD!5`Wpx%TMU}T&ct>3Kj4O4%9 z+zIK@)P7`bW~DUqLuoXLx8jRrjIg!B2522{2Th1WHbEL#bgc1j zs_K!RN7K?;H3V;F0+s&iIH)%2Do`4M6Al>82XUManHnDt%{pm|@f^E3GqEt|r8Pf7 z`C(JRYN^BAF3+?PNv|4X#)9}ARMBLp{FV+4YN9GP($+Q3tu@BAe!TpnGVo`2_m5Eg zin+PLrrzGt+R|edM*8J%i9Cm9j=D@Zfy6>4I zJ$7areekCqu7RykEkWUwD=atVt@-wJn7#OP3HS%bNKkVW+MTG|uswV=<|oN4-Av8V z?pYh6M3KM&rtyOWG!YcT<9kI%HLLt zU!$AEo*8&U(#*JwW~;x(jRt7!`J*#UfDchx0`Ak&oAZ!9&%pWb2Y4G;GfW|8BJ0SM zS2b>TauEG}A9%ft0+bt${WpA>ek@rxzr;<55Do`4XQ4u6gDs@-UPxmY*hE0&s1Z<> ztfddBGiv{~f{B{7$`i8xY|iQ@}jISzyDO|CyJ{QCH!dze-AGh$nL zId7!xOzokD`L;u4-fY!N`uQUkX8Pr5F6Z*9OhYl3+qCj5M$?AzLZxzfDn_)#V42(3 zFnT5V$pFPt_Kpm%|Efc}sad+|vIMO?pX(&YFR~%Gy#Nb6O|55+kFP&9D^149dB|?5 zL#n_fe7TLCOyyRy1r+$oZUYOHW)_M5#*R3&NM4xGS|ki=ba;mfn$@)5#UxX9$0F6% znjkOlub#(4CUg=}a4Sj{=H>i5&EFy6PponD#oyc`KaDY;JKymXEEZG*%qp!s)%e~r ze!s(UBpYVYI&@xt$1K2}0>m#{n5pXL2;{hF3=1O}hkC;YJE5Y3`#rPzzJW4BOEpMK zvw^xKdhl$}E@$BVlG9uB4Akr3p)67Vlu1jSX=pOdYUOj?#%pp8c`Ii!or&)CZmTqJUbFqN8Vbv2i=9(1>o0?S`cJ{eqPL7nH z&zH&><|_SOF@Ot>IA7h!`VhOLJ38_k9HXrYbWJGnS3XD+n-NEoF#de_@eaeEZUi9Rp%h>en{+sqbIlXNJhy&AlBQM^(FXY3_Mo@vtjAE~jIz zp9YSgo`}!FD7XfVv++rsg@KXPLL5f!0YS;a4aMVZ@{HDn8d};f`S)IwFmBZsc$+ujkmSmux!=!6BJx-GDn2xFmoTyc#u5^e_b* z&9w&Aoh&8d;F8s>EBCj+fNLx>9+cws?)mN32 z??biR(>O~viTZRM2>pvm)0KG5l6wWIrN;@yINUp9*3eL1{GQdCW4uYlv!sQ2JP$&`$s5fBh)dqCa594mxyzQ2FV zne`+|vl3(#6odi+Tw*>zLlG%u+eX)lN!US;+OF8T}m|a%Iu3U#*_McR0yTLKM2@*Oo8B5!1!;;PMVY;n1FV{X3No7Nw%RQ&ES@B#^5f z?N2Tb=T$}BzOK9EVvuYFyQddvyFC44j_g+o|Eyz2>|Ys}{oDzV4?&~kx<|=XXuMHl zyt#H*vTiQsa3{lfSY?3!z^zmZ7v}nwXPKoZ7SC_=GCwg@d6$YG`>D)Mle(;Z*`c|d zqSRw$S~ZZw+|qI$;`Ek4Va4;|fpwq_KuHLZ2h@~l!Vu|-16o9mIU<4p3gtf+3ar=w zeaUFKISynN(b6W_U5B)ydJNy`7;E}<3|klUcz4d{|W1#&Fr>3B@ZdbRtCO)qA9 zQDROzFKRuBKX3*rs=dstyG1Cn3JD&X!bnI?Tq+z zeEKp5nT0_;5&$~F>;FIv%i(+J1!6lp2v%$Oufa{4!9cwZT|Ej=!5}Ee`T8}u1ydjt zrVj*?Qr6L#P%@&f#J9a)kSzTjRZ&3O`C-o>139*6SEu}!AY8Web$gBr(T!^Zp)@X9 z+N}Nk;4}=4i4Ir|OmQz88lKguzYb!^$Rw{55qwdr^!4xho{_(=1fl6|w&Q)x>&-l+ zpF&r^StErJAa$|gJyG27CewrxB`4!g<+fZxxIp~Ov2?9mQGPb{-G+;A)n=W<>)_(c4xLF^@c$=8>Nn&&^zDiPG-j5#(1128Z+P*wcfnIBW3A3S5ana+XXcljGe=H?624IrXou_a7sz2MNV$v1`CvxQJ zs3df^4?zoNL}EBm%FP8f?tI8?c!E%I9|nT9|7HFo^%Sjol1}mN=Dg678#q&+0^qC6 z@2)jh=UX!NCt9V%cI-_`)=eNu~IHk+vOU>3%6^ymxzS%gfx~Yk;9(z92T|PQ< z{eDVION-t(P4+JEG=f?E-{0ZkJ;ag;_NHCmt0P~K+8|mXo@uWZaDR1_w3CK-(;AB z(EA6H3{Y)O@^pAC=xdCRu@s3^9-T)dbx11@T(ZdZ_=%=b<9g}*eQsoN~! z?L22IlL~fl;1URKJ6ScDt@YI2+GbH)>-grGtfeXO-R)MoJxIdU*q+gGdC>ML?E6XlRbK~ zFEyHEb9}>uW*o!(=7~)%r{-1;fSaG-NV~k)_MNx#z5nPIDk3-t3kySlWCSbN9Ex*_ zXm80)_2~rn7*f?cy1FuRaz4}_O(g;hmBll+fj_tTwt^!lW#-yr?4}Y!-ThEy86pV_ zulie?Y`V`e-k114r<=tJ#`7*=-*kaA5FvU(N+uFYdW?a1|5+yq925b!XcO}t!~DW$ zg$03X@2GO&A$2IHxRp5@(Qs?nF_y#Yt@df|>!h%AW@O!N5KgM1t_ITex zR6&pVJ8KW4@^6Kckj?)x`o$`Bd1yINT=%rUl$s>*hH=}h(3XkT(UoQdqq(f7C3*GH z`3)hy_^5!C(C~T%EEzigioCZopH^S<)oyi|C(wwza+_ICcvUle7Z-U*Cx+sR$384TSmdf_1Uy52K;`lw5eXr#Xbl5 zQ-Njrf&YQ1A*lD?7^cO1p3|rz8ZeUo&Gs!P2s>PDfiC^~U8yH#C^h31NK6EdOR|))?OlhUZ*)EpD0rzTtZ$M;BO}0^PJ?+>Q zv0@=z^imhbZ%+Bng!7l2Xaq^|a?eh~qpKieV}NQgMDbU{wu03Z4ajIbH!wJp?0epP zy;SkL)(?qP&;lD3)7=0<|8=rE*3`TL1#eD($eR`ZpRt#CAnAi{=MDr>WW0))?y_>O zfKdVPvGxgR)kedFb6aCd7G~yG&hmG#HuoH6epxBRskQzoSRm1}b(J#8O{|25FDf`D zcG!HwLtNzz3d$8xK)Izm<^lGHUm~XRufdBL|c(P3UKO_SVhY}4& zIY8eLdF0&O+*Dw(eo#C5Q22f#auQqL0|K+;cs#?~eXio9G)J7lLA38HaY&J22F&$+ zUy~MaL-(ET=H^qz8}kzjT{bCzwU7I+VKH6%*q=A%N`EE^lVx1Q$wv4~q7!7YUSmbp zolh!mSUpc*p^Y&RGj?`{9Ogt#r9n|yJJ}$2o3HQk-U-T)EYQ$8zhRVq=-u2uM+soR z^w|sv3I$*FU%hiraMc9co78uy>C2ur$4dL2ITsZ6QTeANh1wpnx%t|Q#y)xJ66<)v z9$ef2Ax3odd(Xgb0if{#FU0i}QE{3H&ZZ}y@vMI6ptZDc_p#?&l)r|up>_u-mc{RR z?-#NUCLCj_Ts+E)tEGx;YeRJj`i7A;OcfvoN~)jy0ZViLq<^ zIpX1GVeY>b8MX%&o8L6)oNDQ;t)7pswVI`mcYHG9Q9*bAB^Q%butErKXL2w|rVS0D z%m{4UTI;zWk+9GTrCiqp-9g5Mv+xyxc!YxO?PdHKp+hP#{Pn#Wl!eSFskK*Rv#GrC z!P@v#FW;wtekBC2O~m=8gckpU$(hW-3c)LDzQKmaC><^g(2FjQbfA5Y_9$wMhFcw! zV`#mzX}94);-aUi)}h^%k5SP`kj-z6+Uybg=>9lkCuTGkXmava&4mg@Xx*MXd4jO; z?x5-ZcXkmVJWM%eD1E)5AO{vgY{3A9Lrdx~?R~`Nuuz0EfaI$}w+=$Gs)0jE zGVf0S-W7qlc57Ptnv@?bfbyfQ{PYy1y@tzs+=Lr@^y?Ga&S9RHR9-Tbcb3hi`ZIGEUnN*bj&PxE zGm56#s2AL!|IOUZu`maNNps6Jwx545O(UT4l~eLUapRA@wY~2?=jp~}fcVxm3dUE~ zAFc1&T|4&4eAf=AmM zD6|+U!c^e(9k>_$%?zu5f5mn3aRK4x_}%7&sZ03VNB$Jr+c@A zr-X+FBV+jvI?O=V{9af%q*h~=3*eZI`3VhDMsyW7kBNfJmPRa-ODeqOiN*8@BlJ(g zXf6~-`cMWbV=o^f%~}ngLA?Is^yV(t zY`vku3Kt7*K0)Yo#BFHsYo(nJQ(Nm-JbNB?b=2=+LV_4d`PLDKg|92UhlCk?grorF zmAg*2UX00p;ZjA3<9@`1PU?3QOZ$L`?Mcp#so)7gyrR%EDuGx~+LQRw`nphLtTSrq zcK2@&?Y{S61U|FcOz?tC4Szd+B*sbc;iOUAl3K^-?x4?`IP~e^+sQZ_ ziP7xIM{Jd2xqGI%OxqiH1JB>e8jI=D<7t^oJG{%l3M6o={f0M^W68VEsvsnqVD!AY#OCz81Ip4eiZpy&@h@}3IAh1M!_Rj*rKG8oqGYnt=*B)) z*WInixjkSbDSPw_JJqJNyxhQY$LM<$C>&&|8q;iX1QJKB`~xCdo%rnw5M_p10?ScU z_q{0fm!}#^iA+|ZhVR6l%KUI{?Jo#n3L+Y(Fao6NE|ITn${Slsp?mh4hBQ|5m z)=R}5a%#|-{vnxfxr4^VPH{W>dPS(96?T9EiGRybS5PwViSHvRXp{=;Wu9XkmkbU? zDQSkce-1S-Gwi?AN&B|w-jpH6LnkAtC^wKHcBG2?f^l=2M?cqFM7(L@l)rQ7qRMLh zyG{Gz=3ASF&F(YXitY)oMU$OZr%DKf#aY_t_<$;h3n*LYSCY!REZ(84w**KiWk&6wH+A*MTM?;L)3|-&2{@zHd6`FiBDTJb_rTvYI$B-%; zivp7szXs$qsnswrEe{|xpySOR`L%sly)J=i~d$yv-$@V9Cxb9IN z3neLQFZm2ixY0v@x2@kVEC1cqUrHlGbfX~8+EgCqF-GQBPI^yNLWJb#LrSDqh zSmf@6R+p37VO6_My>;BQaM-SU_cvlXcWG`qbFqCi(Q%-)+JSFNJ%x5LzgH>rb+*nI zH&%d2#JZXS+9%gzAdXPv$ZOZO5utGlDK z99I685YODrFn#UsNmpHFZ6xXH$x2m%gDR%C?s{8^L9|dVxKHHy|hjz~wW-D&sX0b_4Cfu<*m!Rw z{zQDdvX9>&`emCVo9USBpHoe&c zspGW5s4IB6Pf}5ulvI1E(0^a{+ATP%AR82$lzk(&c;pTv6H``W{m1=beF?}r1Yf%r zX8e1kB_I`a!j}vr3qP==Z&(n-9mv`Uue}wXiaX$TZWyLG^cS8U|Mkd~v*@Ik=m8Pk zhGR3Kn+k2#MK|v$Bu#Ak>o2z|piCx{2a!B*JKrK5VO$gD3#7w-_A%oArWEQ!bu8+c@1AvLukouIBoqlI6Q z0&?6zTR~?Y8z}_6Ln9-%-Rzu%kmrmfz1-$$79mC&= z#H#-2<2Sn7^a_vYd$uMeG&p?N3IA3b(RpZUdse)7oPiU#LW0BSVj^XRjWpp*E*wRV zt$T?cKe_#3T>jT4jq=M-2y?5*xC;glNNY>k3cnzn6#g4IVqbIX-lHJ37X-<|F(_~f zfDfKP;Z^yG0~JMgY}Kr#?Z-L?+Ivxw3t6n(jh6SKjLCThJ2rOQf0M?_nmT^m?o2o? z`YZcfJ8paI?1)$O4$gSAP^N=QN!v3cnbusXXAd4$T}GF?PCZ_aJhLm(>`0UC$%JUY z*Mf`t!g;7K89MD6Pbti|8^fq^3ttROkS0X%r7UHJhc(=!j{Ea35||nJQ-R{>iyuOt zF7_JY>cT5Oa0=_`b}g^338bt$3?#vYbS)SiDdZPW#`A$-;&pZP>y!83iPHwM;FmHZ z`RQL+CZt*K;hbx2IaFZyZ>9+aiEOH?6BGthYB(xb>E?Z}&dBg}?4HHi(t_a@La_4N z=kV-PX3Q-ti~x)#_WIX^B)*Z%j|!41whOyX*rP-5ub#VO1%`_)&J+M96f%Js07Y|z z6jd{P(%tY5w1XEDP3(%`Rd>Qq!vK;tcpG}b1%x=q>}w~JfP_Ku0tv%8$g-D^u_Dem zd=@c)exDCV6v+T=q;Fr@i}fmh(v#oXz^LuUCSi*2KM1WfOelX}o=o+Q)9dXmOAGCh z7sG8JxJx8D2kGVYL~%o%XGAK&lX6Ultc(KgRk3Z(oF+XiR<^%%_zj5IwLx)FABGV> zvf64!DQJY7)AioC`^l$M{{4at4atWbwH6&cpg!;f690<ZA+IBmw!BCl201vxgNqXsZflVO_?`N~cAhAM&1j7bdfG%|jrP%rRjnb|W->Zx2#Tac~*j985!dy3)>D=M3YXGMszFQ=#ERs^v#S4># zj&25Sd5ATH*6FbHtp)8^f!5jt#y0S1e#u;0hOcw!OJ;aRU0sr&-*sSygfI7VMU?(C zXl{SsRM&HVubQ7>S?PO_uippaZ6tld{tR)5fnR7ABpuuR7t)`owRSjZboYyvo;vmS z^dFWT926!qcq=D!)8JRfD-&OI%8$Q$;xB~?A*B}L^g|ycUOZLY*1s1ofGvQDAL%Db zf%d*{(fr~Ke8=qxpCKbAvpW`Dids_r5mf|>ROX+};C!)1t(hR1?*7ViQKtt9S?FEROzXiiHyVJ@GFv0DH z(`$V*rA7j20*BWZA^B`Z|LPP!QzC4wu$H{$aS@InWa$}$vJNZ)+jfH5>O+@8U_C@; zH^?V+)+sV4Qpk;l-McA3$E9%e3gV>pwu6hdzoZvnl2-BnVo}hHlSTvpZEO!;nQS^QIZ9f&gluPF$!fi{L(=xh^Euj4f zt2ePQz!fSGX)5t z4xbgheqk^CH&QmjT=@FW4Aw#?`BN%JWltX!Bay-oD|F-n*2nFClt4sbBZ6_?3Q39w zH}yI3J>3cA+fzj^svFloCz|gD92=N2>D#_uaoc*76xq75Qytnpe&OR0JRMO{_#P3} z5XQfuauK`wlZqoq!S>Vn!c8&sRen(s4Q=k8hIC@L1pJZf{Q;AtW|ECte`&|P=&r6xcEplpxSg}tUX?-ORh*uBPk*7=U^(n0{<*s&EXLznGY^V%ilzfRV?O%PXUgo>v?4L0o2&n9!Gta-(yiob3bI$ z6;^0gR$W`t6`MU!pZD1mN5WyG`qD@Ryq;SI9;pv~dkyJ0Mz7pl*vr}$*`CmvMv!%x zDPxy&8Uu6w@n>*hC6T8opUjIGBXHy@2Ct(=7!n|jBcyksy#W-e6nsp`0wXwpaOPKB zHt+i$-+-CHy?r~8!3_$9T1fNAIcM8a?#_BW`s{tn^A~-@$u%lV+0Bm(oaM`_H_Adf zL1s;Zo8!!B#k{*=RNYy5FW%BpiJ{8oR}$vXu~#r;*;>hmfzJ-;&NFZLa7nsjAtvlLo345g_MfEVjx?XKDt~?1_OY zQ*~Z=cxQ@`))f6I+Eu7G-N~>q5(>3yTPJ$zX&ZIEIs8}8j^3K%{>0AbyYI57L+l!N z1t9=?yo8U}Law~A=l8q0N?$$Of4w6Cm4s)=zhEMA&ho_eyLCi_<}mg`{bw#lX7dbh zYCL$I;<$t(9*hcUYv!Ap85b9}tyxY*jdXl$1?${?)^{J(-@U!l%;fB#ao6+O5l7kG z-9`D5mq#ul(r669XbIue+Tg_hJ2d3N{~^bmlbhQ`M}&nX0{$0;GpkE)^)qnVOA=#B z<|^3=r*7wNf5Wn8?65ITO^@H;;MCI69mn2SnTByTgyl=gYZaUjZgJTqj_6I2dQV_# z?XOyST_C;c-yd9x6SNVcwHIA7@N%)K3e=2~@Z4jsqH@`QFvTz$7i_yHU8H5Bw<3s1 ztQ+cFoJBeHr)r+dwk9*L8JU`fuKy2Nsi8mBmIxO#(<{ML;1sk zFBUmD)U5&x7H+S^@4>m4gBi?iyRFdT*4G#({eKuc?{KQ$KmH$kZwaAnArvBe?^!al zvNMwv*)l^$6j{gK*|J9&*`s8ylueQ?zt^eH_xfGG|9;n{E5$kI{l4G#{kmWGYdoIH zZ-bQLhk@}1S+D>cfFgT+vD}xSU$!sNTxlc#)kMCcu@W)V;Rs2RhSI^A z{-m0$QT?)-L>nZaVl0P_f&}Plx4N5BG}z-h9s9Vr6wkF#UfsB~9`v}qI_c&^u>w(ZJ^Q;|L-O;=$aP^SQKZMO+_~bKH z`}|yikFCX>hZ{^e)j0M-q0UQ4(*(9YrnwL9K{(#lVn*OoTsC$i z1J>_{hZQbM5$vwetR5F%xgraCLjFTg?$QIy4*)hTp-QwMEVxbC2TZ=9nhBG>JoQxS zJFYCKQ-mVDyH4_sDx}kZ$mnh8*;S!=!y}=}v6c95p#+pqG#8;qwceO|c}K8Rk5d7- zVn+AG^VC`6^`vs%>642#W@4fXe<_nG<=A=iy)RE$UkF!$5IseM14)6qfys<5tGVtuZ13S5OF7wrTHyKhwvW`0GRsZfLWvF%j<{V46AJbNvP*3xQ^Qv-hqS(Hv zTb)hV=_`TipWBg-baiSFnTUj_*?!to)fUm8sox05?7mrqq6b}O)yla^-U&TcWhYi4LrhbjjBum*E_ zKSlD=!Ed$?*~rz~Fh%{oAR|%^9NWX^;&Sjp+-1muGxI#xFqUeub%HI&FgwHl_&WVj zxi%2!BCuw(o|`i=Uol(MR?wuANA>=Vej?BPE549~Hw-fLsZkHft0h%WEp|aSZ*nA? z>Nw$vwa~sco4cf3xvYHmG5ch8@7r&yw>{$<&M!*s6fR=a6HdO6Zmb(k!r?8nL6>%l zX?j)xQpk{OA?%A`^Ti&Imo&~lsw6-ig??>X6r^38YFu_MuwR+I^tq(W4hwm4^uHecd ztvxXu-@8=;bppjiv&)mEq5Ucxl%TK8OVN@nDnnh}SLhlOD0Mjygf$zw-bjS7qIHUZD)$f{-g)A_X9T-%nf z$R^KQr7OwtEbN@R03$W!FhcT?jpOx5hUiw)!2Ir)WUgUtnXwAfeSHpmwp0qmRNnc$ z#)!%l?@zZSxm5Pw89Cb&FT2tC^hrej;p_Y4%U!yAcQIP`=uKpheBjOFHAuLdKa-~Q zXl!EJDtwpc$>PxT=Z0!NJO$eG5l3U?G7$%=Tk)G-wJKk|rV@nHEnm4M`*y23dnO2x zZYv#>l-p-dU7m5uc)?P`Jju^3`ur`WVyhp6=bs~S6e9tPLqJep>QU+&SRF}=D!-xzIc=GUu>EEPLLUjBLP z)#4_B>JU+Ky&`!=NqPAvtP~omoz_)ZhL<*Vxr**f*BHE;<}OGYn7^cxdZ|%ey2eoC zpvHM_;t_oJ&Vao9#Lh--EJv_lWW2?pDEr5NZnJZPp>M)>ou4ezKkJe6v#G_-4@NLG zN+=3T8Kc#ImzI=A=^iKgU`&hq=ZZKG_Gwt_d*F9g#$R`7^cGm7B-z_OA}GvwCe_*V zcxE?Bb@D4|X=oMayTg}+#Pq3L2^#>ZLfMl%|BUaHGAwT`!=in|tSWcjrNvrYSl?rY zUMS3KT&yB7zOK?_{9RP>D**B^iXQzMke7z;9W zOPM-NN^Y9-dezhG2`#}P12L^Q%-*rA*4IuJ2d(Pj9qQsN>*A|FA6j-N%_nT>#?z%8 zPP)=_9n@02MOCU7Fvq7|Zv5UC!A;%{Ma$%bW-R$YXC}NM%AOMb;?PeOouoM|W{jHR(*_+wKhSTpf{g6}}(Wu`3C7rs` z=*CwEBi7)Ot=?;?x#vFy@Ujo&;?*bPbso)o{u&y|xqCWvyN`kWGE+m$#MP|ct6NW( zx0IHu^%jphZM({1m){wPa5~!Z1aOjau1bEj(}g5^2wLr^I2 zWuorx=&*vSl7+!j{=QGCfwtMd%?)}92UM(~-$9;6Ibt@sPvCfO)%3~k<&60E9$518 zej01<>^6nOqGY=)mzCpDjys{i-S)9Ca@HrDm&BM%wruHqEK_SRA$~C_)cHvw=9-23 z)fh7bv*0C=r;(2`bBtsQt)6LGy<5V=<{>cqmFNA^{EVJ8PQ>Mlm|ExGRdWe6Z%XTR z?Dvbsdn>a)^d~vqj@RK*jv4Hw%YU?15w|El_w4DlugWzsNpTTtw6DjU)W$6D$zE~4 z!6@L5@PW&|WJTS6ZQ!~SdSrCC6X^(HM}xGS&~)pSkebyUGGq3VRQhS}HO8Za5`21P zmYVD-C79RRj;RUKBlBBdRxMom_6u=K86A`B$Vyu(+zokFJRD6_R@xFumMRTS)jy98 z+J;Ko1!oZb9$_`UvN4V8m~ejg27WMqf@qREQLkEuQ&ktoQW?K`!pfzArpC&Yy}WDr zJU*#o$t}^m;tB2--Y;}K4NGJxfzF5z6c_+Kgh7u0$VSC+h(ufP{;JGs`6YZHApW66 zne3pd=B7+^=A?r_uFc5HIK^zP=r-NHlv>SCwrS+IrrF}XBRj3zt>)tsCq<;IW{0-s z6GZ&#+^4p+4x3~$^{RzTJsk97(^F{E{Mc&i)M3z4lZ8Kv+%&U0c*r{$Zg~HBR?&!M zY0bvfLHABuO?<~!grh_q4H0>ceq3%+3R-*)** zIipN0wsl{Krq_s;+9zITlp^zljf!wAXY|Ud{%B20nS0~PBVDXWv9i_pvQ5iStK65C zu^A6NI|YtgX8L@%9u+vm99*k3xt}V91zjO2Mi@w&HN|0S zUR6oNNrLZ@dncXr%&(J^o{B11PuJk4OYxHxt7LOI#tuFx*0oB_=}Tf!9o3yqn`W_& z_jp2+MVPLq0n@Wl=l;1tBD$Dp^-8w=Dy;@+MG8ojB!UjxnB zYF@)y)o&jZep%y*!nz?uGMf-sT8R!i7A3D%Y-tQ$4<5ay&f&oKNPQ*DiAjctlyNFb zn9*TBB^pA{EWGjIMuzB6`gDTFHZ!}5}h(nc+77s-g%K28q|L<-?=1y!#GJW!b$aUks7Bfe_;=i9J{+?iL-^Q@0E>> zDGo>5>^lWNjo&2id}>0l6zYarv+_6jiuuHKe_lyfN^#o#-K8L*Z!lKzfcvBQ^1{gE zrli=Dp zJ2^faDv3lDmR&7=CRL5M_p;x%5)~%{yQfvB+z=v|RxWgV7lO+v7$eGdb{bc3VtdUm z%-_tWY<>m-h@599WP?N-NoT`+ zowU*K@`%VR8y=e#NcW(cB$<=_-g-6fw~b`ClJeGj(Hro<%X&rW;DJ|UbI4&6b^Wc> zi70I#zroI1K}+OZ_QlRFMx(>k2RDZL`e%{H9cn6U0^Zz)9>ic*wC#&;LRMGb-Jq7$ z`{n0{=2{B3f^WqiAFr-r*3bf8%6&vaVq?R|j@Z`0VYjNHeF&$x_JI(y^2%_<`%Q5H zjA;gmi>J_DSzSl9#KFb5yykxo1Wm=8P!f>j&p}m+ROZ9mq=cwNmxTw-w;reP+8b8a z4Ss)=CM}z5$Q}cz@DVE`2-v3H&eBcH_7OwzNr=_=??obCCT}zG&VKACGcZemrVvO2 zj^xBXs&QE;;D%MS>RO&|Tsc{g;mP>izXkuWBiT0Hmk`yL^8G7(^is;dkH%u2RX1Bo zJaTH8DKzX3TJ%sXcE5ECNRAftX*f9$DQ<(t7FglN5dIumgsG zNj})}x~{)P1!zH1yl%J*+?EPkbC8Ei)Zze1vWjkC+R_67#>5~H*iHYSV4nfR{7DPwAXNSxc#Hg|0 zg##BX{`$K2$F5#qaUqxucxE3rF);N;?kfkMMV8r=YGM$e&NA38X(a;WH!Va>QIkzV zl+6C6sOJsygE-f=&g)!Cj4v$*pstnb@3krs!nMZIwE92}yzol|B@q*!W2nwXc-p=D zz~skMOO*!5ZOM%RsC1JWdr1F=be5b>lmW84vNzR%45r9A3Xdz}-?e=(uOOun%P|^A z7Sh`Q;U)UdA`nfLD|WA}%r#Wpj0agb+kJiXdxt%y0fF_1-`&M!W|sJo3^*JuG}r zY1@_WwOMzX7=(VDr`iBKFS$5ZYS%ptjBCF}POW;g;BIA6=x_jpAqSG#;ov=?1LzD6 zKmTgO{93B96&B&g5$P_BS`MHm3**VcJ@#sRbgu3d|iPhpmBRjIqP*2c;HOA4P86 zM65E9!0q9xrAMy0f>?l=ogI`H$!zLO|B>vJwBt-t3ITP7*ngMu^53OMM4^BNMeZoj z5sI6aw=HkmFU)O74K)#fm~gk0anRH*5Zz%?i+VoJE74xF*{J__-G%)fb{K!0*TguB zS)D&M)1-6WQQO~R2FZir-}+%}a_sQmb`pE~h{~%CIBt%YCjj3OhYK+o7z5mq;1|_y zu*%8a-h#HzOF%<5DcFNQ2Q^m`e%y(5w|s~ofTz0Qhm%Q- zZ9p>1rK|`K&+LCMQoVfzqTMKE5#eW)y8c|X>nh=LuzaX9*N5ICI`iVsX6slkcKZI# z_J=}$%^hr**ieqQsBM9(HcN1WousCP3Tz#CR7f4B#p@bHus4U`Bbm zqW=v$nQTM1ED*{ef&EZ~uHgP9eM2i`+^SJ@{#(>}uepf)kc;;Na6Usw8>Rnl46rF% z*C1CelfD)S9xk{E%?wa>p6CL`G6D_uVI(L_A$q(HBu5_If*0Y*|M#ND9d05hooFzK za`=&;60Im{tGaA7f&<*vw+jUo08Of7@aF>*9}L_-V+h+UbYrD097SNVX@0C0MUK^? z-*QylzZLZym{5dLQ#d;SuDSJh&{v87t^s%nb5ySH_(tr7C&&5WD^6?Ud-Gdt;s}!~RI4DX9E~5v^i;HH6N_rLT zJLZkjnXGnuF%Bp~wv$4jE-1k(9u(`vpZq-itF+0;N@(v(kCIZI>fZ5mP(9wexBrdO z(BFfvC76U=*a=<#n^+?$^2h%k78>-LV~&o3V#(t~hc?*J;ByM6z<{sX?Dum6rVksX zHuc4VWEfQ3UYF(Qhh3UTbisv3@e*XcL6P}&Bnm3HT4)Cv%My=#=>fIQa=!Ik&h^(W z{WIYkI9D}tY_&>cK_HCzzj>uZS)^jwqqYBn5QSON)itY+AD(5OAEXu0L}wFd0bE`3T_wfRc;FZ$XOQ ze#k{Vq<{4lipD+id;F8erUYD9 zOGz)1-l$eI;MwK)Z68;koxMwAd+^Ha<+lr8>8Y@txax0L5)T*@^F9XopUfQ*zmcDo z;J-;9Bhh&E;o-4rpEASkaIz{tstql_yU1t6mwYrhQHC4b!MKkyIhnWv34zU)6aWne zK@BU*pwF}$s~>K|nh@EWd&DSaiyMc0NU7erVjMzF_)sLRg7~qh<0(Uc|0g%l7-2h& zJ1uB9;H@CO&I6zqOR?XW+Y=^oBkqK$k%vbKc48}T{W%#XpR7gFsu|okK=mOK6aYWv zUyVOlY!sd-V?$Bscu#0&U&(Et;Q+;z8?23LD+BNX|2N$NLBtV2pa8`&pZ_`+atD~U z@w6Mmm;rg__9ZxDa(#X5cg4K=;zhN&i*DN)JKyo7l+9jPU>BZF=HjOV(kZ>as+ zLy&Rq7Ag9Alkl#jR~QH^fB5c*p6R}GULbiW!}NT%JQ8LUXivs{x6lMk0OMBnA#`Jl zk5AE#&ih2|0}~Sp1NwmDwer#ctnb#E4@=0Z&3}d{Zj}=2hA0m3b`7;dea94ljlg8^ z-YlWc2fD*SUamr}!*=ox$b4s8S-Y2YX;A`N17zAc{4RKkB_A?^I{bj*Ir-rRZ^HS4 zI0#3R>f_AKCtCbgf${)g)4oE45JVNiz6CInwYX))NSra3@9#lh{_>B=l^owA9+_oZ8r#GE$^}#D;h46{mVMd2JEjXd3>!`%S zfz&1Nflx(_kT`S`0gBLdR4x!?55Il;<^segq@7{Duf(4t3rK2(b}pI$;Y#e!(em_1 z*PZ6WTb4bffbD{mFUkC~U+U#EHZbR9!e_0fwoq~{&|d|8??4kN88CU76y@8^hf?e< zFYHiLW(4;ouy+h_xE}T6T`r9glvL)wZhyG;wG6fS?T-t9pfsQ?%u71g?g8+_m1<@% z6N-%ATeF7t$51}5W2JH9-YrR-O8|Uq4w9xZ^NvPo&l{kc48$yjyg;o-SyS@|GKyyj za4QQ?;g67-aF3BVv4!G-qrE=f!lI%j&|i|fe;=i3fa(zF0U3({zzPhZTB>obK5Kjb zBVE-t$tb`6E0 z!5E(DB2LA={a&Xw8J`}N=y^uno$S=OxjryyGqw$pG+s?Xl5;Xzpm)p3(t+6j9 zHMRHuOT|LP^~ptRvuJE=QOjZXg~+r+Z@;B!4>l#5Hkx$%gDoV}`$!$G+Ajy3my?U+ zjdFQ@dp0vQ&r6gXd?{6_F_hoX-7Gc!u!J6dzoG`0GgC*~vR9_Ix1Xiz?aHsy<$glE zRPHx7o{C?Mefh25X7HH?@tgjqL#O9|bkGqD&vvCz0!y~e&S8L*RTr8KflglY&QPL4 zU;oqTd4+4FZF?(yXo#_V&2DJ)3J2`+RfL%V70^jg+O`Xz^Z8Tys%DED?+;ExIXOAm zu$e2NwZHjoMLneoihLh`$}0_4Ar8wtaO>PZAuV?d&=y~M8EhAG<7(&cauTwu+R3S^ zbE(+t{=4GBb$*d;lRuE>MfO$V+0{SKe(iAhANdJ;IN%`UVrjz;xcmcFk1Q(1_*1_$ zVa&<3rhgmV3}}wjTP@CK_FAV2k7YYOevZkL@3rbHYxyYif98xAs67*=LU%)hR4T4%=p5iuL$LJ?awQ^ zs<~eM=|yKhQAW?FkYoi_Nz8)Q{tqjtp$Tf8nG&DAT{9>=JbZQ70PA_Ux-ivL3Jo*VL6H6FOME?x{(USZ0B`>Rc1wc-MmBzB(`-HiR(LdB7SyeFctzXIt9+5<;6?>8Yo@s%B7X_VYZ6^n(!gP(0`KfX1r#B14h*joCBfn># z9-S@bzdQH8Dz#AZ#LU}Qt5HPz?Ch?<*@El%P%GxgR)6eA-DM7%$>Fy+@>Q$zG&5pY zRg+M4eYSRX?U0n;UE%eofog9ldwVWAVw}jxNbH&X%1UxjT|xwW`SJy=J?-08?=-Oh z8#N&lc|>Mo8BUI)?RYu zz|AgsrhmI%{O(J)@&6oqdg(R42x=`4{Pk;S;n^l*BG0iP6Gg1z?l?cG#BuSR$)413Y)y>| zc}c(s+%wgDD@+DcTTxaP15oGqb<=4d-_XB>YFHYe{VVylKKY>mg~yCh{7g(t$VIjK z2jQ_asfKrFN2buThY9*j6SoRiu#{tE*Ve1`T8ql$o669>FgV|4z{~c=?Ejvo<&Dl4 zrHbv?8eDijTDtJG_%wGFJGfm|)C_g!0&o|kKTpgAc0w#R@?mDT zad3sXyuD@smpPGVS}(ZBH*} ze)H5sp2dA!6*V_B`P2H?>6m(jWRBpFt&t?(#31^h???7wPQotJa_<43>--J87Pd6tEv2ig3++@X zMtQq)(Zy_iybz;HKk4};F5R3iQkc~%^!J~e%m?)Ryq7gGF1@w-uIiqv=XrELzdA=6 z{qU5bIn^=Q9Y0Pa1$!s=4b^F^3KMOt>>NrJPd&o}N$Q4{V|wabEBHOF{j(>N>4S`M zKIjGY7nci87Y`Tas?n0hp2tM-cK#sYk#=6bF3U4)u5&;8bo%n*FPx0F+QzGLhZ8^A zb}vg4xn&;>U4)(3m&72FwXyCvtVik8~pVJW4DveV92@S;txflx&&O>Qd z+;*G_+1qnPscv|IN<)QZFZt0k36vr=A^@7G2?CncPQLXf+>*)9qVA~XVnOW!6NCPJ20RNG85EuXQ%VKbgLcM!)X9>R2~htH(R}c)2Ur zd)RNw-n0{>6me$!K-OacaGrEc%46oe1Fh6}q8^)V;24Gv4r;(zXF2hnMmyB`Men(u zlJo%Vl*l0ICN!~qcz6?vv(0}leJniXiVV7J;)SMX?0$*%$`x%btpEUQF0o4|3ZtYLq6Lwvka30AN`z&7cK<$~a>)MJ+;K)c*=dRo_U`x~h1Dwl_=ravjt)MX1(UldZqe%l8N zl~@(G_WgZzd%5{)g&yB#j%UBzz4X8`;cP5U?lOp7nUg&(-F zhNx>;LOY7e*D64zpzf%_9qpKy)Lu{!GBt;tT`4j>HktqR>(A9Y z%W6la$6TMTp0L(lJbbLdy~87)&GDzzM(ga<=34hMY2}ObszK=={{2^|+COz#CF*6K zrp`+r9$)VGxyFuKLvs@*&!=XeBdz@9Mk*zlz*EV(Hzc(>&Y!7g!}dfzaz8hS{}EC^ zWs++nk3i)e&M4zIp4TQI!7G*M;q81T4Owv z_(b|gHbe4(C#N7zfwDV56N7r=C7=l?`uh5=9{@7|AG(WKii(Q(K&IIs+bzNVxH(>gkMwXtkTO@b37Ye$l7=$2?1*57 zb)0XD^7+b>^61s(S81x~u`BrPNM2K9vTfe(#vM31+*DV^Ug#2BVvq!R~yG)E6v3H$}wi)Fmc65PU*gDM;HwRmku^s!DmZb6Y4;`ligGPQ+ z^Z)8oY$|tCF$vqY19OcMVmg@mGtv6z5^QA9<{=Ao9{?wZq=|Yy1cw}ohmU@j`=bmz zP%_X_;_)crqgv{1B7YElzU3m|c8ze?k`&|b7$u`DFTq=o?_>Rn(OgZ}@v3<*ml?UC z)hLSA7o>fksJV>MGgw!q?Y$iaIG0x3MoTV~7k_9H#SchdERj2$|4tw^@VY!-@%vt) zFn2@RDMg(Zx-%s}hiMM#7*0(2K*ZcSCcwS~16I<=BeZV8Cm4G|?)pY0Q`y9%=iR2OP%4Y<-4pY^5 zf`W}1s>F%yW2VW_RdTB`###hTikpRHg5| za`7P*ab%Op9|#%!jJLCXX}9bdO_`>oG>m~({r70ux%|anBphMu7w`S0*!3=Ueq1S^ zAjsGm?xT!~j6~7pLBXE=w8{5me+|)w&?GhsKv}eK;z)SoE1m-Vqql@5rqN4lX!2S) z>XPr(a&rVaag5-;h`$T>(7{pOliHSeUk9@}4?AY4R%&P@>Ot0>;m4qocGP7teA7hXjWj+=U6^b{3lr*uHK5n5Hjln_jUP&EAuk&CkPz5UAB|o zw)9)1MG%g>SJ`;yX8?mxL`f=gDXT_gf|QCltiq~~3WeuBZ4#e+@xCFY)n~E`K>|Jz z8NHZtkhTfhm?@^?4-Yu7KxK1?i7sBjo&C|fxIOI*0Nd(EK9q~0C1^%+^73;0P7$#! zz45X$>n%~PaJ!3mpW! zAChhuq4c+wOR5He_J19s7rv-n_2`pcOAtt)S^KPanh>8~VnfZKXN+{j9~6D@6do7O zhPcGlKGFVl(&sbom+DLyIor(H9Znp~To;sFh=@rT_21ZEbJ| zd`$Gxr|kXl_Yv;1 z<?M(sn;J_!@Yd@Qaq=M9R+v5<0f7d4q@w;ky^u( z+9v4a=8?BN8{zx(#KGV|ZA1WNuFmHg`G}Zp{ITPf*_hovO)U5>3npHi_-!_wZ=YN1 z-;taOi460@n`o85M0~JcAO6!^JmT50ucq-PoMUI@yD27WUeSu^eCEmKydJn*rJ1!g zgVwilvQ){*cr7eQOGa8>LK4}n5u~k+wdi8$w0)-s+#qce;+kR#1$isDVN?3#2Z2HU zO;|%X8`^Mu4$(ZG3YdOXrjaQAhwoWA4-VqB6G;P46Lnzu5SqXZ0)958PtO0{u!8<` z6S>$s#0pQb=rWuFv!9CY$5;CDSn(W&W??s&QF)PF@h9A0Cj+;F$~rBW63cs5i6d=C zW^|d<&v=bVF~5LAIWuv1&>ZvyS2*a0ib(-TIqn zOrA!=9zgJKRwdr4bSTGO;jK*NbDqZ!3F1@fLz54rjF#G34{>=4$8LGfwo<&ML3)2yvWvLnA*WgYs36D6NX!rqR7Kw5NLOk9$b zaySd&9!d=7xVYK&*U_Y5pK};%Ne=UfNF#&V zCVpgYbVQk7qO|sT1kptN|K80w1-seYveqWfp9RlboxZx3O3BxkG`-n}W(8AOrZ3hx z_+sTUnaFW5Dt02y%!Fi&_-C4sVpf+fNtYKsU#_|_{6w$~L-bxTd_a{r5&TXxRyoSw zmV2sJUKs4+b1h7EG990c%!=&ar^-F;=iFy9F(RqSze371J;um{$y%F+Vb+ zI)SP9?%$PvXOV~|NDLBJ{U@bau8*-wa;z%Y_$J@Zm6Tl!>)(*0^?f>UgO4Wq z-$!G=D0-yd!o(pS=%D#LJbX0Zze!;(1(7@<0jZdM^t?A)Youf&*Zw!=um9gM7wGxl zd+`Vm{XB_#X`$W5S1Eo4?n~}}7sd=`0&H)=tnuF`OT_eVdkPPwfWVOudAzyQ=oKKA@~k#IS;4o%gq5M z>>`pz&2LSZ1pMoXWy#$(3{=Mzs9m7K!6@j?ny?z`Q6a1ORaH=Ng01bI10C34Nx!KF z0Pth39Tn;U$BFo>A8s=Vt;&fiUqqwnCjWQ0GfF&GZ+j2KkF$k{7`^3|@$z z^|LzL5Z?I!ahTmG(=&8bZV#w}k5JmR^#Cxq7YlFfxd=(BZV;m6Gw;AewHNMsiFxgh zDDt0nUi&-US#-6@_Q`6r8YiQ|!a3$wx}mIPi*p zDKWr6=vP@2fx4ftj;?NA7sQGfsRV)1Q1g*_kj%G>p0rK z<~uPK3^i`@6<1*hL&IDl)2b2=mI;G!wVqKpcgoPgRlw}2mTKFJeA}iKy;d zYDcSEq94~V^nD<;!g2aG1SilD5UcwMQ-e@{YaLWo0*8L6T8+aGh`;_#4iSf8+{@RX z=j*EE2KphBptULFd7nv`u6J(yW;iAR%Y!mX|JkDUbO%k=i#3tzq%8xfWPB3H#ff)ayAL|qjkHML`vH6XXavKb{a9_FN)|RfA{h$ zvD7P;BXQcdMe!@yf5VSri>{1w!-$E{Lr6dcbWF&F$wI~t6JuC$T&DaA9;8R$pU}*W z7j_M+0gch@j`6!02Ha$VmrqW7J()gH+@W8%LyZ#JwlwH^d*=yh)JIeT4n(>0o%ATN zc$;?7%No`>;f9f!nFv(iS<`PXVf?jrwu1R&rBywI30xq(j;yVviWS?#g`V}h7CiL} z=+$*~%V2)wA+d#8>nnZ9JD*tRika$GM zcukqyQW>2^DhWYD&H^4$ZwpZXld6^_UJ;XYoF&Jt%${2U@T9!0{N_1O`)P(#o zOm*0?%sc+#sOL-^0Ul|U7fzy-5VVmxXtKBJQ;o-XNF~7;pK!_jcR-4lxPf-WQ30=X zq(Wv$=gUrWj#+vw8FM9ZG%0;jVjS)|oTR>i1zIwCDrMa7xYnOy=tZ^Q__sA(mt9+X z8;&i!jF@wCqt9QPcWi0hm8KG1a9!Z0#ygOdL6BpHG=C&+PYOy1ZbDJ~I;|{^3pAv_><^WTxBJo6UY7 zQJl$J=5`wTJVM-csXrJMfB)Z5*JS!9w3R-04*EM1_l70z2+}+rlbfl=wruZ-Ps7Uo z)L3P4-aJ42xN&dGd(<|iQS|}iEs@9U8ZRyIu`pE0x7i1z-Ky$KqE|5y{C2Wn?mkH zMA@9Mp*PZ&q}$8@-S1!x7AKPN6J+X446tgNi4?5dVNjl+!UMBue4NFkH13og+cNvl zm-)B}i0><8smdBhTyYAEEO5$Xe|U|Kf0#a^6F~el8uFp{?k(K4DmW!Lv84rX4vy1p z;f5awEj&Xt`EYZKDPa8WiV^pab0^PsDhj8y@jbOj3inw4e0@Y(>k`c+iOZjwH84-y zsxg_rUV4$$s2MhtiyST_PTfRBU}&-7lwmABesEi<;x#?rH7Q)ktMR$fH$GBi)-ong ze%wYB$k|H3`ka_jzz)m+8u}zQla;oBfIAP*5GR*Sv zu-%&066+qtj?C>09|ex+y1%^6SHTH%1rS z?Fz1YWQ$XF4oYDm&kx}#Dmj5Qmny| zrcyk+pA7w{TvxP{{_u$mNBBO{>?~Q!Yx5=t$M5X6EV{?ob+WG(wXBY2ePAR#NHSd1 z6f-py<%Gy0Y5AT9ypYq(@Wt|F!PAvyED4f9yb6z{Bf3soae5RYqtzg~H6$+Hm~5?C zHlDjX`jTV*XWi>n-1h=l?yL+t$HuGc(b;!MrEP?X5xb3o^#ZJY{4B_KLeO7Q%ORN$|k`4vXwqCD=+1>~O8P3htZu3L~Qw@=s!8(8JKnqkO%?SKE*c5pezee2X3&1$)!#b5UZnZ`a#A zW6qt3{OUp*$VpC?uw}F{(wc9&{a&{vQ8YIQn9j<4nfpM_?KO8f$c4k;8@r~H zuy6_9VY1-1kvFz#KEuW|Gk6)I^g?rnjnAdzot{hrGOp>5Z)R2)8Us>b@4dj$1KLNC zVzwmmBXr?NLF(uH+V%rcH<(mL)d?000wrbx?!D6f_BeC&hkTr3aQ9;u|1xpnOAKL= zDj5WiJ7qY2F13i$RjIyLBhZi!>^3+3z*qb-oHz-5TSHa;Z(5|Nq|+K*lU$O9KwNHi z5BW?{5SgD4Y#3r1?q+wI%@Lw0fkEhI>pGcvY|cCjhr}oKj3H7wbv}5k^O&m8ZxX-T zq;aX}j%vo>>Fw6QG(9;t+Z=d_xbu^-_aKZL?d3JgQ+qTTt^2t0%Dz%bX!6gM9Kw)N zJ^0tq79}uZ);Fy@$hII>f+Tbir5sPD%KWsWVB_4sJvMeF3=_5x+QImNc%NkvO6Ab` zY;&EbXlD#WCi&iSXw+ex`IUHzuP$AqUnT4&TaC&F)6S&I;qtZF=e2>791fEh z*0BA?;+buB^TT_@IN~pKcFd%-E72KM zJ)oFt%UAW_kf~x|u3W&Sk!9zmf=JHikH{=)HUD(0TO%(a*`bYnM~CLKpAcsgkK5rS z0O&ek`gbjQ+H<(<>BZX?OjjAWX32KGcI8zepx=Ej&|`;N-BX#!xl(jv&iK>k*(-`R z&NDnKI;%4aJd!jVE3RN^ zT*A_DFW>tj?t$2xvhtVsPHnbtD>Zf?DKXSrnfU2Q?R&a@((JDr$mzfgGdV>**sp8) zo-?AQIM^K53t$;anxlC!BXN5#b8iMYKwtIufecf+q_PNF*Ows zPcCY2^V%fyQ)ME4DC?UfST9x2z*I@G#Atnx;-gjUf0ud}w%ji(t_@jF@hiPB1-{1I z`A*#g{GP&{&wj;4#*q2Z2c;5J#Nz1O4@HtiMJ#sV&}eN@G)@9rtO1KM`5A+#RekM; z=mRZ6(MD!lB83H=&C8ser~9NUrRRdGgSn&qe{vrXZ{2?{()k#Z3BE)ul{j1~ z6QjZr*+_irpSK|r|2o%-#^(Xot6YnYYPq72f|(8JtUlsZIzCk!Q*^Xzl;{f4m8sW# zLJw~3hN(<4uinEU>6gpX1j8=il-0-^14j57d6?7xsqH(UvF`uBFMD4`L|iC)m5{Qx zvdT(QX12=CNLI2}$;uv?C81%JO(>%zQ6ZJRBH}Wh_eb5o^Lzf|InO!I|M{MCpA)z1 z`mWFCJzuZan^I}0iL0(EcKZU*5BzEHVc*#9F)&yZwPP3<)~9!`ece&Y%ZqlAyPsKF zx(Dj=)77O7SVz#rQxH=?b-p3D9h8*W}MkoGvj?gplVudAzE+YDpAC zRhi>bUZh+QG9J`^t6d6IXJ$?^gqUDPGLT%P*@JNq(zeu$aoqm+;qG##T+(i~k$b54tBFFPA~8$wYCrS4n|8Od$V7YsKZbV~CYjB6pl z11JB;LArFL@yl_5oh z+Mb<=di=@^7D0Ghds?YV9tbrbw@mB z{O0C$(0mFb$P($EH%?P)xov24H1Aa`7=CbfPl)rtHa8ue5OAN|A>rzGePUl_lYOzR z*nKzWn08O0jdc%YHdU?TAx25MnAU!dxO{%raA$IdsMiKZ@~qnbW+e|GD{0G_|G+?4 zp~lJ5&7fygXRK2&8cA4`Sui2>_C!4weckApYfsG*j51_j-1?bR`f5o?y#A5u;zgcY zkC}UCm_KQ@>m*pv4rP%qMC`1eCW)9UH^k3AKTTe@v6dCgFI*v&LPC{nyDPuQ=~Kyh zV#B9yl7iqoT@bZ^@9J|=MoOqE6~6SA$#h+?uEB!{8Io0Hfnn|-^Zpn#d2eiVTeOGK zu=NcOQ--$$=jG)Qtd~4|sCN1CXZNeIQ%_pF}K?%{)A%3w@MGnnWXFX6aa{*O34YI%D0;0P?J zj|?(0N||)2AG=>7v|4*dPj(PBQPL(Jdo$@CI~AAC$D`pY!fkz08^ z@L?bSnO2zjjk?7J+9}QRUPXRsp2Sez?Q%=t$$d4Ubf+VDn1OaUM1O8BGOvK2Fr~10 zaWHH+ED4lVV2||s|$Un@n+1L47U%e8U>|VDc_yEm*_aUoVFOAbPEJuOqwVlm{0EYEw<$!u&TZ4K*~EAw=dGFZIQ zaK3x{#^$JTcC@^o31)lKe6F9!x);CCpZ-socp&aL3)6cte?{$~SU>JsibHcEO7W`7 zPdi}okj57(vCUE0nUP(%NKno!wIC(y7rxs&jY;T@bdMv+iW`8sj-H|6-OT`tkFt1! zvuAHrSa*B{1b)*2`;1^HEGiv5dN8`Etn6yGyq`c7dLG=NXP832hZY}k&#yWWm-*R$ zh$%|t4liR3yXrH}F#ihcdHPm*FDH>X#g}PZ%0@iJQPkNZcbuM0owap{qBgoi7nu(B zv;RHYDPs$2$k9I(VAG@BWo{6q@m{7B+CFpE$4vUYh;+JX8exiEihHa$6s=cQPPw`>U5pjZyqU*6jOyPOQv>Y4s%nnc^Z1W_>Jy6=Wj}F;P^D_Mh_o1 zgfKyoO8b1I0dXUvm#=c=w}U2Hmb}``B4Rmb2|5i(E!Wq#UBWfYFxqS0brcYB{^VJk zG7RRvTq>l^z-Yp{=3@Gd#3anzm=^Y-MvP2^f1*qaZ3t3PF9j6NrAuq z2n`7qzrlSqxJ{3IYT+4vE{4sX%r_!T5Wzfpy@N2dr8jeOwCz;f~zgJ8O$Azzc~n zjPi>LFlycu8X>@i3$-lj>5b`)57CKhO-X&l zv$n2*gmg7)YIHqsH^3m6U%Qd9PIQTkIGdP3Ui7hSb>fiQZeeNXSdycO*EjwOuJ~l~ z&Em={f#>G34_C#C3*U3IOO3?Dy`xGgryh=*k2n{Hu_T*iBq{Ou?&jcH3bheRqY6Ko zT6V3?QPT>Mx({(YA5CPrPZ0`b*F|F6e|@lshY4l*xw!<;gh1T`M)f8@W0E(F#{ZY~ z(#j@x>{t~}pTqD^O@cC$T+QAz|cw&kw3sYCSVf3t$olr_2^f^LO}x; zVkq`GX>n;3@)4?}aY?XE(amjyMZ>O14&oKz`M_qt&?I>}dEBi;0H;X0<3oG4oVv~M zHsyuV$n3y#Sts)KWvdO(*_|*rBHFu!i}*PN)kfFxQ0BZUNQJ+DM|#nyb&@Z)T;~bZ zc~zi4+>;>tS77LtY=0VaFfzCP*~Pez71m@x3wi91_W~hNJ3pCYYOtUG6jY#^H0~y_ zRP%PEsAG<~y8p27uSd@`9=eshij2-wyWL*aDd1Y{>OcvlRYU!p5(6$Ge%Zwz9n|}R z71*yvKFlh1Zq6?eu%Y;H`+2!tCzArd7A0<}qQhvIrPHV;Pi9zE>{dSMr9u*;@ZDbgQ(79ins%Lp3yadL>K&7;+Iv$q z$>b+j+fKK7`qkLI8#e1nr|gOR%xhUE@n8-E6}oM{txDg%@@lFn+>~7WR1y(y$+mxcFmjU#S5?Yo}mg1TQkG5j3qN_zXcaxt$t-E|zL9G2`;8ex%L!$Hsc zl`f>^Tb7Tdjlc|%ByDR|U%1XCGR~R@nOTcI(aAg$ce4sI+b`qDqz(iWnEv9;IxA>w zUvAdLL_Kqx=Z2M_aiwXO#%gtc*=JkBWQ{~^UQyHUY7J~AVIKrr3Wj@)E|j)bS^PMS zRkWb7_wpjgrp_mcaI?}8YpuFQv+d`q4KB`ljjimnKj39@UZ^klES*DdOpfVcs*wkt zr51D&8)qI-Q^Odlzi3dWKD4j^>EXWrB(ZW4}$z!cAqqKap@rAb4%l z9-Hh_)h0GnV5pGI{%vDPH7DobityQAYlQ6VjS=)-n&%pl{3D8T6?P&u~2Cd;uzO{c0!mbe@m$M9yp{R|7ib70VDyZJ^6R zlLTyyXIE|)nT1S}=Cx~$Yx7FFx<3d-REC1t&B*w4Fel?ladEHZj??R7zY1T>vr*B>Y?zn`?(!2QCEe@A0a9KJ zvL71NfajzQ7rWPv{d}8Mz*EBT$dd7}yv(ssUek}2_Eq0hilW56n;+Na%X@N{hXQMK zlSte(h&VxByUf#Y=)jX{q0Fu)!xt<^j@R|OX=-kA6cu&sI5=S1W2-{6)zlE+qJMnG zqS?s!t7cjAp8^0iM>u8qU0&1ay!8E-YD0^yxa?AIV;H53&{;AHUNJEGk~a{Hxf57y zGCcMw%WTW1{#kJ$IrC}0W8-~IuOR!!oFNec@d&najNCNsrclF8t!#;>l*S&qjO^o5 z#KcfbB{{>}FnaF|SIZMWvsTZ2V($no*W=tvD8W(+tVxZzzj~bo58&C1Q_d5{sTsnq zZZemK{$ln|B@cUSV8fEHlXCsw&L@14a<=L0vcz?Tz-xAc7Von-f$cE3gkSRvV94PqAA{Zcam zvWC#0Swn~o{WO7X){Fec<4#m4LbRqZzR9cBATHdE{qc$cSNh`hB6&Pj=ouR4)4{S8 zm2A*{t}YeA=jXTV+^D8*=@}Ljz!aV#adH~cxEC>nLEwz8pdDV*Tr~<~ZFm?j+{h0> zv0T8FdY<9PA>vDsOg2zEZmB$|&5)5s{k$-zYf>dwJG3MBesU)tSDxJc(#BVJ8XuXh zG5i>|5}BjJj@*-#l=RX}?maQ}j)#lYY3~dNH7m8B+&Drb8EI54(=0Ye+1AGpqk5Og z$IR&q*@;_p5$l(4UP&dqjVTgpDG)3c^lX_m72AW1k(X!D`E{@6&8g~+q?ElQ%@yPOu5=BaH5@)yH;$?MV zhyV*pi&v$`y=CXJq_HGWGS49EfcC^GrQ~4!{5g#7vFon>9+$-YZfH^*4X9`5f$mQT zLhI^dT^%V)x1G;!m=bAK54Y%JlyW7!wW_gR>JMzZ&L|KUqwaK9SJ2*~#;*hu6DkSV zkcGC#k;rAm=-i2L5I|TVf$%w#W~PX#De|^HjxT1--#s3b+V`jK8$=+R8#ZZL(_EWmvZGl?2D{a;XgU!MPYnVm(k4M ztuyCsgHs#_0)ajKV( zCJT-Kl#%qo=H9y8%T%UgrA%o21n&HphTSsqJGq~gYO3}{bj+K}TDN1)*gvz^R7+gn zd#T*p+SN|c^05ESa#;xF-K32Cm>$7W+Pjg;uF0wpx%A^7gEI!tHO`X6$@Z8#MhALC zM39mo;FhnG5{2v6r4p^(owgOJ>Z_4>6Kr{ohvtw z1&lWu6H|i!{{c1n5y0~IiK^ib!3ct9{B8nTT3Smh*}FKHr=if*-Mx$;gG8kG;X`5!0tQu27pC`p`GSR7O1g6`1)87?)fI#I z<$0GtwqPYpcZw((MkiZ=oj=Qm3yn6w1lgJtKX}k0`N1@VbN6=#nfyAttXIyXN7#|) zE~l-EvEp1vudBlhepG%uC3+4y917L=%d+G5Hojr{d;*r-@+nZ z^70@C11O`Ai8$FKh)Y&j$VVK~basCqFrG>0xTX1O{u8{YN)aObCd;G0=qW?v=E9Z! zKA9)9(wt)(VNVUHHeu8($*3mh)Yqr-$#@F$NoPb`D`ZmG;cU5k3!ATB4S!%G{ zBEA9UhE~InsH5HsrU2X$9C;@r05jPou3x`yz_}sr^3O^Zb$Z6Xqz?S$_Lu`im{gf- zLSMiSeezp;Q9X8(iY~r`o}8G}X8Fm#qlui1JB^-g#((tqUIw@dphZ@Hb{2>tRM%hI zyF522l*we4EQU0V9l}Zfvuv9>H>k7ZO_D>;i-f^c3YB-q5aQ?B$p0BEl%y^B--3n0 z{=Cr$fpmA7kVz;?x8JkRiiCpXEtNxZ+pF(<=AV98f|++si|c6gUE56(Dm?=O!tCDg z%a3YEVNANz^!>XS49rq%y+yIlwO^fi9Hw+b)lL}6F2EjEOfvBRZHliTtk40<_!0lG zIf1fS0RvwKrS$9Jx<-*TQmXNH@S`U)I(zFIe~B23 zwP^+vk}HA~!rTLOum&8y-{=AVR?u$h+C&1P1Ra1SjDoeKlO=Zm_RHvlW$}Lu+;PyE zyECsz%?u<=B{MVjXD*|0KytpKyT_`5cw5Rm9LwqZVUIVs_l!xqrWwj|0i=ad($>~a zwg-GHI$D%}Zc6ydYpF65$sI^Eb@Cs6;%JgZ@#j1={8z7DEiNzbT{|WaI~2knLfz6> zdu>+F#Dv16=krXpo&Y>_K1;xz0YB?w7Pf$(ce$^_LvD2$M|)MSL6!6GkKencpNUYx zcS(UBNN(xtWtJ|4Eg=q3hL*(Y>T2WU3ZUl_N##2J`3MLgVEzB~qfQN<_dAWhOC@3| z=P!;HE+1L++!p}#Lj0FAMG_;1xyQz(IW~Rb!WFV6a$_gGrzZaS(Yi}=?hnUs?}MrT z_V0gp3&>ghIlfE(MXbV^f8vPbR0m+3Qyf%XtU=o3HV*{?kCJ`*GB_BvyVbi3zvBka zu(Y_lv-lh6ePl6!&!T#{9P5%(UyoDBrXAfJe7@&LUN`Lg63y`FkrogZ4(Xk25iH8M zY4qS+0e&g$1uD@alUQ#q3d5mY7iuOi!BQk@SNo41X-y{Z|JEHPEVOXjEZ}y>X#*Rf z?0IKX-UX=OX!6w^YutkPhF``i>^wjr!a|ca3s>K^`HAbeB)0V-aGRNxm37Qh1_n=S z$brdsRBRtVa(D7Kj3#TouXz_aLKuC8_EctOCid<6pR-=0Cj}(#U%immskIbSCb>*2r{iPkYl=$`f7X88=Hv^Cy zfeC^!?{pRAxjRnXlkY&Q2Dto`TR%=TG=ZUA22~lPU~xcpa9qf6@;BUWEBXW~`mvpG zZUsJVI9iz1TR*!c;9K8VW{loPZwQ9kH7RiN1GpA&(+&;}jetR2Mh+fL^$38lr)YlY zRdR{P7QhCrzP3jGZrH^u*6;4%0T0P>Rhq^1Lrl&PyDToPG5_pzj#1?4SfLUY4w8E3fLQat+ zXn>_F1_TKxFqeMKyjLN|n>vC^2O#D^DvZa|!_dK;K9D6`hRGR}Cdq(iyzKP4Jm8n` z_{xTw$o_pQgQgseU4k*_Zf* zeUg%r(+WH@lde53fq1_ivwEKjz+7`I)%(9YeIgQ=@-#cjeFO!wxW#T0`%GSVOD6fI!2?-1s^u}^wg(3{J1n3eCeE4AfCJn?4Aj&~w>r`!R zZJl%s4fow_ItW2zD(kyI&Q7sTf4v{~;nF%QMQ*9&4otvLD>y|!hX00$uEKS^SqDcs zf2y`;84Y^LaBZfjUg?q5H#7`Eof04!p5kHX9LUvIsqJxtNhiqBfD?pw0^!8?dc&@K zkId{t9d_37rJltm1m%ADGpW3B-1Yu5cxqO#KBg8HIPQOZ*MwflsP*!%{WQl(eZq3T z-F*v7H)dhMxpl$~q-WTNpn?jn6@%f=^kkrBNwAJPGE>vuDlYt~tfU4vj-y zU0sj_qNt4d?!N%w-$GSM3s!K8(}BC|f%Mq$=FdT6G#DKF>u%K#x8zTcST=6a9XZ|Kl=tUW`f9* z0|Fgd)Hg>LN9_d_3OdHKMnl}B0?Qqj(1{(V-xl})%iyTXmwN7d;{E0Hoo?aW zSt8qlz*+@B&vG2J=gKaGBD{X(mE9BpQPB>x%NxL|LV9v*bnz5ejYL611M6FKsfvLL z;5e3^H*C{D6s@@DL11KF$w9h;QJ6qmVbww^2P#}Z)+o>fn*@d?7WRl0Tt;zmvBs=* zzY=VTLdUPNqZ?R6z=l!$d%IAgdO-<2QZFa@eztOIv< zup@6goFL1}3DidrLxM0E0}J6X%slh-@xt?qId8yn{r7Lo=uC`$gA%8w7DBZN>* zqvKFN2bdxlhvk(4jA$4F&2|(5$-fF2h)S_hc!3nxxgpOI{&PL;E%)b1DMzr3sq%iu z7hd9>O>Zo>oszkl_u^=y#Osai03^JDmZ{?IhAxUI{9*-#g;n+S>Cu2%u&d*+gk&%| zu#GSV2jn#?MQG1EMw4dK5dytdGAnQgc%d~65Q?(8;s;6$bN`_KhoAYb*j*WUMg#FR zX72h9t-^0io!7iptS`98v6T%Vf7}{K-Pse333nGN*c?SEK?m*{MBWW!@{aCSZ^g*y|w0sMawlVmc} z;=Zx&0qKR=*^${_$$0`L(t6ja+u@nO1^K|Z#@yNKP9u3qA6h>Z+Z_Hvxh!OvwAd1xEgctW_8i;#SB%44%Ug{r0Va8)R9Lz@LZ) za~};J&D$ZgPGYTNuZ+Xkv*>b|};)f+$34XqWnR}IIPeOhTwd^)JGwWPY-NJLAn zuHOoOgd9AC4a*Qo@SZhdqLo`}4C(-XdqDonxPalLkFKe@um|io)!f^~Wo1l|%D)_{ zcFP9_^HZsr;`~1rQpvv2n}@fC(fi3Ta<@d zJ2(SH(Bpel{gqP8Yi?-Z^6IxzlVBw!An!y)AF0*2GW1v(*_Y;t<%n>O>jL>5vN(7> z<)$?TK5`sxD{oHF`rsY~XoSQPWF2yPUus0yXwC_=1}1Rjz+;FS9=?$4n1&t_3>fP+ z*Pi(T0&RJfl?L!|<78$8mVuk3az0to@-@&sxFJ{*gx7NG!z>ecjRd6fBXKRYW$BMVA&!4IdCvdM`H$tkh|z$_r`&DN2CsLnt1Z?mXeVa5tEyFd0c43c{^m3 zkZ=I^=-F%BLCC}OlmBFU2Ugy=1ndLH)El_t;WYBdtZq*($i0*I_sHl@7$`8ZATkyj zqb;}Er+U89h9Uqa3l_F_SH=K+jTXhmU@7BJiqOvHf?JY;EeS!B?9walcuPP4g8O?l zB*p-zv<>08MfWj_82(AaIl8;EUU6;qT>bB_(U`fI3`CX#lR(iUH9?J3IrjGG1pG$x z6YLqVWM3wC0w5BYfOuE!)G0EIY=}L~;zNFo?{r$?4iT!_bp0We>YpsT_#BJUJ!FnR zR?`y2-4N(ULJqlm($`nIdHg7&x@PQ&)BE}z7$Fiud^_-GZlIGeksq(1a+Kwk6$_EG z1>7y#l8_~8BqX+R^P+R$BuDlE87y!7J47-akghGY?$fn|;2%r?H#k#L3_N@QK+;3S zr2fUiqdBN9gM4h@{d)pTq0YUVU>2=`^oOq>g}BwqWPbqcU8Ustb2q{0z8R`VOWBqC3R81Wf+8>fJDxKKTTCG|!h zCZ&+rlXTeoB3!x%5NY;~|5$%OUxSYSsf}H;%lUA-Lejy`h!F#arurGRM=F*#{}=2) B2^9bU diff --git a/_sources/assignments/deep-learning/cnn/image-classification.ipynb b/_sources/assignments/deep-learning/cnn/image-classification.ipynb new file mode 100644 index 0000000000..7f3a631caf --- /dev/null +++ b/_sources/assignments/deep-learning/cnn/image-classification.ipynb @@ -0,0 +1,1396 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "# Install the necessary dependencies\n", + "\n", + "import os\n", + "import sys\n", + "!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "license:\n", + " code: MIT\n", + " content: CC-BY-4.0\n", + "github: https://github.com/ocademy-ai/machine-learning\n", + "venue: By Ocademy\n", + "open_access: true\n", + "bibliography:\n", + " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FE7KNzPPVrVV" + }, + "source": [ + "# Image classification" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gN7G9GFmVrVY" + }, + "source": [ + "This tutorial shows how to classify images of flowers using a `tf.keras.Sequential` model and load data using `tf.keras.utils.image_dataset_from_directory`. It demonstrates the following concepts:\n", + "\n", + "\n", + "* Efficiently loading a dataset off disk.\n", + "* Identifying overfitting and applying techniques to mitigate it, including data augmentation and dropout.\n", + "\n", + "This tutorial follows a basic machine learning workflow:\n", + "\n", + "1. Examine and understand data\n", + "2. Build an input pipeline\n", + "3. Build the model\n", + "4. Train the model\n", + "5. Test the model\n", + "6. Improve the model and repeat the process\n", + "\n", + "In addition, the notebook demonstrates how to convert a saved model to a TensorFlow Lite model for on-device machine learning on mobile, embedded, and IoT devices." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zF9uvbXNVrVY" + }, + "source": [ + "## Setup\n", + "\n", + "Import TensorFlow and other necessary libraries:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:37.838594Z", + "iopub.status.busy": "2023-10-27T06:06:37.838012Z", + "iopub.status.idle": "2023-10-27T06:06:40.429734Z", + "shell.execute_reply": "2023-10-27T06:06:40.429024Z" + }, + "id": "L1WtoaOHVrVh" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import PIL\n", + "import tensorflow as tf\n", + "\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.models import Sequential" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UZZI6lNkVrVm" + }, + "source": [ + "## Download and explore the dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DPHx8-t-VrVo" + }, + "source": [ + "This tutorial uses a dataset of about 3,700 photos of flowers. The dataset contains five sub-directories, one per class:\n", + "\n", + "```\n", + "flower_photo/\n", + " daisy/\n", + " dandelion/\n", + " roses/\n", + " sunflowers/\n", + " tulips/\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:40.434690Z", + "iopub.status.busy": "2023-10-27T06:06:40.433828Z", + "iopub.status.idle": "2023-10-27T06:06:43.613076Z", + "shell.execute_reply": "2023-10-27T06:06:43.612374Z" + }, + "id": "57CcilYSG0zv" + }, + "outputs": [], + "source": [ + "import pathlib\n", + "\n", + "dataset_url = \"https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/flower_photos.tgz\"\n", + "data_dir = tf.keras.utils.get_file('flower_photos.tar', origin=dataset_url, extract=True)\n", + "data_dir = pathlib.Path(data_dir).with_suffix('')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VpmywIlsVrVx" + }, + "source": [ + "After downloading, you should now have a copy of the dataset available. There are 3,670 total images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.617178Z", + "iopub.status.busy": "2023-10-27T06:06:43.616929Z", + "iopub.status.idle": "2023-10-27T06:06:43.630586Z", + "shell.execute_reply": "2023-10-27T06:06:43.629991Z" + }, + "id": "SbtTDYhOHZb6" + }, + "outputs": [], + "source": [ + "image_count = len(list(data_dir.glob('*/*.jpg')))\n", + "print(image_count)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PVmwkOSdHZ5A" + }, + "source": [ + "Here are some roses:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.633873Z", + "iopub.status.busy": "2023-10-27T06:06:43.633337Z", + "iopub.status.idle": "2023-10-27T06:06:43.663732Z", + "shell.execute_reply": "2023-10-27T06:06:43.663159Z" + }, + "id": "N1loMlbYHeiJ" + }, + "outputs": [], + "source": [ + "roses = list(data_dir.glob('roses/*'))\n", + "PIL.Image.open(str(roses[0]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.669205Z", + "iopub.status.busy": "2023-10-27T06:06:43.668553Z", + "iopub.status.idle": "2023-10-27T06:06:43.706526Z", + "shell.execute_reply": "2023-10-27T06:06:43.705970Z" + }, + "id": "RQbZBOTLHiUP" + }, + "outputs": [], + "source": [ + "PIL.Image.open(str(roses[1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DGEqiBbRHnyI" + }, + "source": [ + "And some tulips:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.713651Z", + "iopub.status.busy": "2023-10-27T06:06:43.712988Z", + "iopub.status.idle": "2023-10-27T06:06:43.732316Z", + "shell.execute_reply": "2023-10-27T06:06:43.731754Z" + }, + "id": "HyQkfPGdHilw" + }, + "outputs": [], + "source": [ + "tulips = list(data_dir.glob('tulips/*'))\n", + "PIL.Image.open(str(tulips[0]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.736431Z", + "iopub.status.busy": "2023-10-27T06:06:43.735919Z", + "iopub.status.idle": "2023-10-27T06:06:43.758890Z", + "shell.execute_reply": "2023-10-27T06:06:43.758290Z" + }, + "id": "wtlhWJPAHivf" + }, + "outputs": [], + "source": [ + "PIL.Image.open(str(tulips[1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gIjgz7_JIo_m" + }, + "source": [ + "## Load data using a Keras utility\n", + "\n", + "Next, load these images off disk using the helpful `tf.keras.utils.image_dataset_from_directory` utility. This will take you from a directory of images on disk to a `tf.data.Dataset` in just a couple lines of code. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xyDNn9MbIzfT" + }, + "source": [ + "### Create a dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "anqiK_AGI086" + }, + "source": [ + "Define some parameters for the loader:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.764214Z", + "iopub.status.busy": "2023-10-27T06:06:43.763806Z", + "iopub.status.idle": "2023-10-27T06:06:43.766863Z", + "shell.execute_reply": "2023-10-27T06:06:43.766310Z" + }, + "id": "H74l2DoDI2XD" + }, + "outputs": [], + "source": [ + "batch_size = 32\n", + "img_height = 180\n", + "img_width = 180" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pFBhRrrEI49z" + }, + "source": [ + "It's good practice to use a validation split when developing your model. Use 80% of the images for training and 20% for validation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.770270Z", + "iopub.status.busy": "2023-10-27T06:06:43.769868Z", + "iopub.status.idle": "2023-10-27T06:06:47.127119Z", + "shell.execute_reply": "2023-10-27T06:06:47.126368Z" + }, + "id": "fIR0kRZiI_AT" + }, + "outputs": [], + "source": [ + "train_ds = tf.keras.utils.image_dataset_from_directory(\n", + " data_dir,\n", + " validation_split=0.2,\n", + " subset=\"training\",\n", + " seed=123,\n", + " image_size=(img_height, img_width),\n", + " batch_size=batch_size)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:47.131037Z", + "iopub.status.busy": "2023-10-27T06:06:47.130765Z", + "iopub.status.idle": "2023-10-27T06:06:47.287395Z", + "shell.execute_reply": "2023-10-27T06:06:47.286778Z" + }, + "id": "iscU3UoVJBXj" + }, + "outputs": [], + "source": [ + "val_ds = tf.keras.utils.image_dataset_from_directory(\n", + " data_dir,\n", + " validation_split=0.2,\n", + " subset=\"validation\",\n", + " seed=123,\n", + " image_size=(img_height, img_width),\n", + " batch_size=batch_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WLQULyAvJC3X" + }, + "source": [ + "You can find the class names in the `class_names` attribute on these datasets. These correspond to the directory names in alphabetical order." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:47.291072Z", + "iopub.status.busy": "2023-10-27T06:06:47.290824Z", + "iopub.status.idle": "2023-10-27T06:06:47.294420Z", + "shell.execute_reply": "2023-10-27T06:06:47.293799Z" + }, + "id": "ZHAxkHX5JD3k" + }, + "outputs": [], + "source": [ + "class_names = train_ds.class_names\n", + "print(class_names)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_uoVvxSLJW9m" + }, + "source": [ + "## Visualize the data\n", + "\n", + "Here are the first nine images from the training dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:47.297749Z", + "iopub.status.busy": "2023-10-27T06:06:47.297476Z", + "iopub.status.idle": "2023-10-27T06:06:48.298425Z", + "shell.execute_reply": "2023-10-27T06:06:48.297546Z" + }, + "id": "wBmEA9c0JYes" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.figure(figsize=(10, 10))\n", + "for images, labels in train_ds.take(1):\n", + " for i in range(9):\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(images[i].numpy().astype(\"uint8\"))\n", + " plt.title(class_names[labels[i]])\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5M6BXtXFJdW0" + }, + "source": [ + "You will pass these datasets to the Keras `Model.fit` method for training later in this tutorial. If you like, you can also manually iterate over the dataset and retrieve batches of images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.314518Z", + "iopub.status.busy": "2023-10-27T06:06:48.314267Z", + "iopub.status.idle": "2023-10-27T06:06:48.383826Z", + "shell.execute_reply": "2023-10-27T06:06:48.383086Z" + }, + "id": "2-MfMoenJi8s" + }, + "outputs": [], + "source": [ + "for image_batch, labels_batch in train_ds:\n", + " print(image_batch.shape)\n", + " print(labels_batch.shape)\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wj4FrKxxJkoW" + }, + "source": [ + "The `image_batch` is a tensor of the shape `(32, 180, 180, 3)`. This is a batch of 32 images of shape `180x180x3` (the last dimension refers to color channels RGB). The `label_batch` is a tensor of the shape `(32,)`, these are corresponding labels to the 32 images.\n", + "\n", + "You can call `.numpy()` on the `image_batch` and `labels_batch` tensors to convert them to a `numpy.ndarray`.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4Dr0at41KcAU" + }, + "source": [ + "## Configure the dataset for performance\n", + "\n", + "Make sure to use buffered prefetching, so you can yield data from disk without having I/O become blocking. These are two important methods you should use when loading data:\n", + "\n", + "- `Dataset.cache` keeps the images in memory after they're loaded off disk during the first epoch. This will ensure the dataset does not become a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this method to create a performant on-disk cache.\n", + "- `Dataset.prefetch` overlaps data preprocessing and model execution while training.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.387326Z", + "iopub.status.busy": "2023-10-27T06:06:48.387053Z", + "iopub.status.idle": "2023-10-27T06:06:48.399552Z", + "shell.execute_reply": "2023-10-27T06:06:48.398861Z" + }, + "id": "nOjJSm7DKoZA" + }, + "outputs": [], + "source": [ + "AUTOTUNE = tf.data.AUTOTUNE\n", + "\n", + "train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)\n", + "val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8GUnmPF4JvEf" + }, + "source": [ + "## Standardize the data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e56VXHMWJxYT" + }, + "source": [ + "The RGB channel values are in the `[0, 255]` range. This is not ideal for a neural network; in general you should seek to make your input values small.\n", + "\n", + "Here, you will standardize values to be in the `[0, 1]` range by using `tf.keras.layers.Rescaling`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.403081Z", + "iopub.status.busy": "2023-10-27T06:06:48.402855Z", + "iopub.status.idle": "2023-10-27T06:06:48.409847Z", + "shell.execute_reply": "2023-10-27T06:06:48.409235Z" + }, + "id": "PEYxo2CTJvY9" + }, + "outputs": [], + "source": [ + "normalization_layer = layers.Rescaling(1./255)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bl4RmanbJ4g0" + }, + "source": [ + "There are two ways to use this layer. You can apply it to the dataset by calling `Dataset.map`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.413451Z", + "iopub.status.busy": "2023-10-27T06:06:48.412874Z", + "iopub.status.idle": "2023-10-27T06:06:48.874337Z", + "shell.execute_reply": "2023-10-27T06:06:48.873622Z" + }, + "id": "X9o9ESaJJ502" + }, + "outputs": [], + "source": [ + "normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))\n", + "image_batch, labels_batch = next(iter(normalized_ds))\n", + "first_image = image_batch[0]\n", + "# Notice the pixel values are now in `[0,1]`.\n", + "print(np.min(first_image), np.max(first_image))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XWEOmRSBJ9J8" + }, + "source": [ + "Or, you can include the layer inside your model definition, which can simplify deployment. Use the second approach here." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XsRk1xCwKZR4" + }, + "source": [ + "Note: You previously resized images using the `image_size` argument of `tf.keras.utils.image_dataset_from_directory`. If you want to include the resizing logic in your model as well, you can use the `tf.keras.layers.Resizing` layer." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WcUTyDOPKucd" + }, + "source": [ + "## A basic Keras model\n", + "\n", + "### Create the model\n", + "\n", + "The Keras [Sequential](https://www.tensorflow.org/guide/keras/sequential_model) model consists of three convolution blocks (`tf.keras.layers.Conv2D`) with a max pooling layer (`tf.keras.layers.MaxPooling2D`) in each of them. There's a fully-connected layer (`tf.keras.layers.Dense`) with 128 units on top of it that is activated by a ReLU activation function (`'relu'`). This model has not been tuned for high accuracy; the goal of this tutorial is to show a standard approach." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.878528Z", + "iopub.status.busy": "2023-10-27T06:06:48.878247Z", + "iopub.status.idle": "2023-10-27T06:06:48.977446Z", + "shell.execute_reply": "2023-10-27T06:06:48.976699Z" + }, + "id": "QR6argA1K074" + }, + "outputs": [], + "source": [ + "num_classes = len(class_names)\n", + "\n", + "model = Sequential([\n", + " layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),\n", + " layers.Conv2D(16, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(32, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(64, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Flatten(),\n", + " layers.Dense(128, activation='relu'),\n", + " layers.Dense(num_classes)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EaKFzz72Lqpg" + }, + "source": [ + "### Compile the model\n", + "\n", + "For this tutorial, choose the `tf.keras.optimizers.Adam` optimizer and `tf.keras.losses.SparseCategoricalCrossentropy` loss function. To view training and validation accuracy for each training epoch, pass the `metrics` argument to `Model.compile`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.981686Z", + "iopub.status.busy": "2023-10-27T06:06:48.981407Z", + "iopub.status.idle": "2023-10-27T06:06:49.130037Z", + "shell.execute_reply": "2023-10-27T06:06:49.129313Z" + }, + "id": "jloGNS1MLx3A" + }, + "outputs": [], + "source": [ + "model.compile(optimizer='adam',\n", + " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aMJ4DnuJL55A" + }, + "source": [ + "### Model summary\n", + "\n", + "View all the layers of the network using the Keras `Model.summary` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:49.134092Z", + "iopub.status.busy": "2023-10-27T06:06:49.133829Z", + "iopub.status.idle": "2023-10-27T06:06:49.152889Z", + "shell.execute_reply": "2023-10-27T06:06:49.152297Z" + }, + "id": "llLYH-BXL7Xe" + }, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NiYHcbvaL9H-" + }, + "source": [ + "### Train the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j30F69T4sIVN" + }, + "source": [ + "Train the model for 10 epochs with the Keras `Model.fit` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:49.166383Z", + "iopub.status.busy": "2023-10-27T06:06:49.166146Z", + "iopub.status.idle": "2023-10-27T06:07:12.242819Z", + "shell.execute_reply": "2023-10-27T06:07:12.242097Z" + }, + "id": "5fWToCqYMErH" + }, + "outputs": [], + "source": [ + "epochs=10\n", + "history = model.fit(\n", + " train_ds,\n", + " validation_data=val_ds,\n", + " epochs=epochs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SyFKdQpXMJT4" + }, + "source": [ + "## Visualize training results" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dFvOvmAmMK9w" + }, + "source": [ + "Create plots of the loss and accuracy on the training and validation sets:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:12.247018Z", + "iopub.status.busy": "2023-10-27T06:07:12.246357Z", + "iopub.status.idle": "2023-10-27T06:07:12.534186Z", + "shell.execute_reply": "2023-10-27T06:07:12.533543Z" + }, + "id": "jWnopEChMMCn" + }, + "outputs": [], + "source": [ + "acc = history.history['accuracy']\n", + "val_acc = history.history['val_accuracy']\n", + "\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs_range = range(epochs)\n", + "\n", + "plt.figure(figsize=(8, 8))\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs_range, acc, label='Training Accuracy')\n", + "plt.plot(epochs_range, val_acc, label='Validation Accuracy')\n", + "plt.legend(loc='lower right')\n", + "plt.title('Training and Validation Accuracy')\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs_range, loss, label='Training Loss')\n", + "plt.plot(epochs_range, val_loss, label='Validation Loss')\n", + "plt.legend(loc='upper right')\n", + "plt.title('Training and Validation Loss')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hO_jT7HwMrEn" + }, + "source": [ + "The plots show that training accuracy and validation accuracy are off by large margins, and the model has achieved only around 60% accuracy on the validation set.\n", + "\n", + "The following tutorial sections show how to inspect what went wrong and try to increase the overall performance of the model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hqtyGodAMvNV" + }, + "source": [ + "## Overfitting" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ixsz9XFfMxcu" + }, + "source": [ + "In the plots above, the training accuracy is increasing linearly over time, whereas validation accuracy stalls around 60% in the training process. Also, the difference in accuracy between training and validation accuracy is noticeable—a sign of [overfitting](https://www.tensorflow.org/tutorials/keras/overfit_and_underfit).\n", + "\n", + "When there are a small number of training examples, the model sometimes learns from noises or unwanted details from training examples—to an extent that it negatively impacts the performance of the model on new examples. This phenomenon is known as overfitting. It means that the model will have a difficult time generalizing on a new dataset.\n", + "\n", + "There are multiple ways to fight overfitting in the training process. In this tutorial, you'll use *data augmentation* and add *dropout* to your model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BDMfYqwmM1C-" + }, + "source": [ + "## Data augmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxYwix81M2YO" + }, + "source": [ + "Overfitting generally occurs when there are a small number of training examples. **Data augmentation** takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.\n", + "\n", + "You will implement data augmentation using the following Keras preprocessing layers: `tf.keras.layers.RandomFlip`, `tf.keras.layers.RandomRotation`, and `tf.keras.layers.RandomZoom`. These can be included inside your model like other layers, and run on the GPU." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:12.537963Z", + "iopub.status.busy": "2023-10-27T06:07:12.537729Z", + "iopub.status.idle": "2023-10-27T06:07:12.684248Z", + "shell.execute_reply": "2023-10-27T06:07:12.683621Z" + }, + "id": "9J80BAbIMs21" + }, + "outputs": [], + "source": [ + "data_augmentation = keras.Sequential(\n", + " [\n", + " layers.RandomFlip(\"horizontal\",\n", + " input_shape=(img_height,\n", + " img_width,\n", + " 3)),\n", + " layers.RandomRotation(0.1),\n", + " layers.RandomZoom(0.1),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PN4k1dK3S6eV" + }, + "source": [ + "Visualize a few augmented examples by applying data augmentation to the same image several times:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:12.687482Z", + "iopub.status.busy": "2023-10-27T06:07:12.687256Z", + "iopub.status.idle": "2023-10-27T06:07:13.738634Z", + "shell.execute_reply": "2023-10-27T06:07:13.737939Z" + }, + "id": "7Z90k539S838" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 10))\n", + "for images, _ in train_ds.take(1):\n", + " for i in range(9):\n", + " augmented_images = data_augmentation(images)\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(augmented_images[0].numpy().astype(\"uint8\"))\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tsjXCBLYYNs5" + }, + "source": [ + "You will add data augmentation to your model before training in the next step." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZeD3bXepYKXs" + }, + "source": [ + "## Dropout\n", + "\n", + "Another technique to reduce overfitting is to introduce [dropout](https://developers.google.com/machine-learning/glossary#dropout_regularization) regularization to the network.\n", + "\n", + "When you apply dropout to a layer, it randomly drops out (by setting the activation to zero) a number of output units from the layer during the training process. Dropout takes a fractional number as its input value, in the form such as 0.1, 0.2, 0.4, etc. This means dropping out 10%, 20% or 40% of the output units randomly from the applied layer.\n", + "\n", + "Create a new neural network with `tf.keras.layers.Dropout` before training it using the augmented images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:13.750960Z", + "iopub.status.busy": "2023-10-27T06:07:13.750684Z", + "iopub.status.idle": "2023-10-27T06:07:13.952738Z", + "shell.execute_reply": "2023-10-27T06:07:13.952076Z" + }, + "id": "2Zeg8zsqXCsm" + }, + "outputs": [], + "source": [ + "model = Sequential([\n", + " data_augmentation,\n", + " layers.Rescaling(1./255),\n", + " layers.Conv2D(16, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(32, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(64, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Dropout(0.2),\n", + " layers.Flatten(),\n", + " layers.Dense(128, activation='relu'),\n", + " layers.Dense(num_classes, name=\"outputs\")\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L4nEcuqgZLbi" + }, + "source": [ + "## Compile and train the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:13.956252Z", + "iopub.status.busy": "2023-10-27T06:07:13.955872Z", + "iopub.status.idle": "2023-10-27T06:07:13.965125Z", + "shell.execute_reply": "2023-10-27T06:07:13.964525Z" + }, + "id": "EvyAINs9ZOmJ" + }, + "outputs": [], + "source": [ + "model.compile(optimizer='adam',\n", + " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:13.968257Z", + "iopub.status.busy": "2023-10-27T06:07:13.967902Z", + "iopub.status.idle": "2023-10-27T06:07:13.987989Z", + "shell.execute_reply": "2023-10-27T06:07:13.987423Z" + }, + "id": "wWLkKoKjZSoC" + }, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:14.004029Z", + "iopub.status.busy": "2023-10-27T06:07:14.003575Z", + "iopub.status.idle": "2023-10-27T06:07:55.642484Z", + "shell.execute_reply": "2023-10-27T06:07:55.641736Z" + }, + "id": "LWS-vvNaZDag" + }, + "outputs": [], + "source": [ + "epochs = 15\n", + "history = model.fit(\n", + " train_ds,\n", + " validation_data=val_ds,\n", + " epochs=epochs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lkdl8VsBbZOu" + }, + "source": [ + "## Visualize training results\n", + "\n", + "After applying data augmentation and `tf.keras.layers.Dropout`, there is less overfitting than before, and training and validation accuracy are closer aligned:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:55.646327Z", + "iopub.status.busy": "2023-10-27T06:07:55.646069Z", + "iopub.status.idle": "2023-10-27T06:07:55.930762Z", + "shell.execute_reply": "2023-10-27T06:07:55.930040Z" + }, + "id": "dduoLfKsZVIA" + }, + "outputs": [], + "source": [ + "acc = history.history['accuracy']\n", + "val_acc = history.history['val_accuracy']\n", + "\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs_range = range(epochs)\n", + "\n", + "plt.figure(figsize=(8, 8))\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs_range, acc, label='Training Accuracy')\n", + "plt.plot(epochs_range, val_acc, label='Validation Accuracy')\n", + "plt.legend(loc='lower right')\n", + "plt.title('Training and Validation Accuracy')\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs_range, loss, label='Training Loss')\n", + "plt.plot(epochs_range, val_loss, label='Validation Loss')\n", + "plt.legend(loc='upper right')\n", + "plt.title('Training and Validation Loss')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dtv5VbaVb-3W" + }, + "source": [ + "## Predict on new data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "10buWpJbcCQz" + }, + "source": [ + "Use your model to classify an image that wasn't included in the training or validation sets." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NKgMZ4bDcHf7" + }, + "source": [ + "Note: Data augmentation and dropout layers are inactive at inference time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:55.935151Z", + "iopub.status.busy": "2023-10-27T06:07:55.934521Z", + "iopub.status.idle": "2023-10-27T06:07:56.295539Z", + "shell.execute_reply": "2023-10-27T06:07:56.294784Z" + }, + "id": "dC40sRITBSsQ" + }, + "outputs": [], + "source": [ + "sunflower_url = \"https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/592px-Red_sunflower.jpg\"\n", + "sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)\n", + "\n", + "img = tf.keras.utils.load_img(\n", + " sunflower_path, target_size=(img_height, img_width)\n", + ")\n", + "img_array = tf.keras.utils.img_to_array(img)\n", + "img_array = tf.expand_dims(img_array, 0) # Create a batch\n", + "\n", + "predictions = model.predict(img_array)\n", + "score = tf.nn.softmax(predictions[0])\n", + "\n", + "print(\n", + " \"This image most likely belongs to {} with a {:.2f} percent confidence.\"\n", + " .format(class_names[np.argmax(score)], 100 * np.max(score))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aOc3PZ2N2r18" + }, + "source": [ + "## Use TensorFlow Lite\n", + "\n", + "TensorFlow Lite is a set of tools that enables on-device machine learning by helping developers run their models on mobile, embedded, and edge devices." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cThu25rh4LPP" + }, + "source": [ + "### Convert the Keras Sequential model to a TensorFlow Lite model\n", + "\n", + "To use the trained model with on-device applications, first [convert it](https://www.tensorflow.org/lite/models/convert) to a smaller and more efficient model format called a [TensorFlow Lite](https://www.tensorflow.org/lite/) model.\n", + "\n", + "In this example, take the trained Keras Sequential model and use `tf.lite.TFLiteConverter.from_keras_model` to generate a [TensorFlow Lite](https://www.tensorflow.org/lite/) model:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:56.299091Z", + "iopub.status.busy": "2023-10-27T06:07:56.298832Z", + "iopub.status.idle": "2023-10-27T06:07:59.418375Z", + "shell.execute_reply": "2023-10-27T06:07:59.417577Z" + }, + "id": "mXo6ftuL2ufx" + }, + "outputs": [], + "source": [ + "# Convert the model.\n", + "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", + "tflite_model = converter.convert()\n", + "\n", + "# Save the model.\n", + "with open('model.tflite', 'wb') as f:\n", + " f.write(tflite_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4R26OU4gGKhh" + }, + "source": [ + "The TensorFlow Lite model you saved in the previous step can contain several function signatures. The Keras model converter API uses the default signature automatically. Learn more about [TensorFlow Lite signatures](https://www.tensorflow.org/lite/guide/signatures)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7fjQfXaV2l-5" + }, + "source": [ + "### Run the TensorFlow Lite model\n", + "\n", + "You can access the TensorFlow Lite saved model signatures in Python via the `tf.lite.Interpreter` class.\n", + "\n", + "Load the model with the `Interpreter`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.422492Z", + "iopub.status.busy": "2023-10-27T06:07:59.421837Z", + "iopub.status.idle": "2023-10-27T06:07:59.426824Z", + "shell.execute_reply": "2023-10-27T06:07:59.426189Z" + }, + "id": "cHYcip_FOaHq" + }, + "outputs": [], + "source": [ + "TF_MODEL_FILE_PATH = 'model.tflite' # The default path to the saved TensorFlow Lite model\n", + "\n", + "interpreter = tf.lite.Interpreter(model_path=TF_MODEL_FILE_PATH)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nPUXY6BdHDHo" + }, + "source": [ + "Print the signatures from the converted model to obtain the names of the inputs (and outputs):\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.430202Z", + "iopub.status.busy": "2023-10-27T06:07:59.429564Z", + "iopub.status.idle": "2023-10-27T06:07:59.434156Z", + "shell.execute_reply": "2023-10-27T06:07:59.433471Z" + }, + "id": "ZdDl00E2OaHq" + }, + "outputs": [], + "source": [ + "interpreter.get_signature_list()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4eVFqT0je3YG" + }, + "source": [ + "In this example, you have one default signature called `serving_default`. In addition, the name of the `'inputs'` is `'sequential_1_input'`, while the `'outputs'` are called `'outputs'`. You can look up these first and last Keras layer names when running `Model.summary`, as demonstrated earlier in this tutorial.\n", + "\n", + "Now you can test the loaded TensorFlow Model by performing inference on a sample image with `tf.lite.Interpreter.get_signature_runner` by passing the signature name as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.437162Z", + "iopub.status.busy": "2023-10-27T06:07:59.436928Z", + "iopub.status.idle": "2023-10-27T06:07:59.441228Z", + "shell.execute_reply": "2023-10-27T06:07:59.440621Z" + }, + "id": "yFoT_7W_OaHq" + }, + "outputs": [], + "source": [ + "classify_lite = interpreter.get_signature_runner('serving_default')\n", + "classify_lite" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b1mfRcBOnEx0" + }, + "source": [ + "Similar to what you did earlier in the tutorial, you can use the TensorFlow Lite model to classify images that weren't included in the training or validation sets.\n", + "\n", + "You have already tensorized that image and saved it as `img_array`. Now, pass it to the first argument (the name of the `'inputs'`) of the loaded TensorFlow Lite model (`predictions_lite`), compute softmax activations, and then print the prediction for the class with the highest computed probability." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.444546Z", + "iopub.status.busy": "2023-10-27T06:07:59.444034Z", + "iopub.status.idle": "2023-10-27T06:07:59.455152Z", + "shell.execute_reply": "2023-10-27T06:07:59.454445Z" + }, + "id": "sEqR27YcnFvc" + }, + "outputs": [], + "source": [ + "predictions_lite = classify_lite(sequential_1_input=img_array)['outputs']\n", + "score_lite = tf.nn.softmax(predictions_lite)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.458120Z", + "iopub.status.busy": "2023-10-27T06:07:59.457878Z", + "iopub.status.idle": "2023-10-27T06:07:59.462008Z", + "shell.execute_reply": "2023-10-27T06:07:59.461371Z" + }, + "id": "ZKP_GFeKUWb5" + }, + "outputs": [], + "source": [ + "print(\n", + " \"This image most likely belongs to {} with a {:.2f} percent confidence.\"\n", + " .format(class_names[np.argmax(score_lite)], 100 * np.max(score_lite))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Poz_iYgeUg_U" + }, + "source": [ + "The prediction generated by the lite model should be almost identical to the predictions generated by the original model:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.465227Z", + "iopub.status.busy": "2023-10-27T06:07:59.464844Z", + "iopub.status.idle": "2023-10-27T06:07:59.468274Z", + "shell.execute_reply": "2023-10-27T06:07:59.467738Z" + }, + "id": "InXXDJL8UYC1" + }, + "outputs": [], + "source": [ + "print(np.max(np.abs(predictions - predictions_lite)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5hJzY8XijM7N" + }, + "source": [ + "Of the five classes—`'daisy'`, `'dandelion'`, `'roses'`, `'sunflowers'`, and `'tulips'`—the model should predict the image belongs to sunflowers, which is the same result as before the TensorFlow Lite conversion.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1RlfCY9v2_ir" + }, + "source": [ + "## Acknowledgments\n", + "\n", + "Thanks to Tensorflow for creating the tutorial notebook [Image classification](https://www.tensorflow.org/tutorials/images/classification). It inspires the majority of the content in this chapter." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "classification.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb b/_sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb new file mode 100644 index 0000000000..3fe2073a9c --- /dev/null +++ b/_sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb @@ -0,0 +1,332 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "# Install the necessary dependencies\n", + "\n", + "import os\n", + "import sys\n", + "!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython skimage" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "license:\n", + " code: MIT\n", + " content: CC-BY-4.0\n", + "github: https://github.com/ocademy-ai/machine-learning\n", + "venue: By Ocademy\n", + "open_access: true\n", + "bibliography:\n", + " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparing edge-based and region-based segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we will try how to segment objects from a background. We use the coins image from skimage.data, which shows several coins outlined against a darker background." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from skimage import data\n", + "from skimage.exposure import histogram\n", + "\n", + "coins = data.coins()\n", + "hist, hist_centers = histogram(coins)\n", + "\n", + "fig, axes = plt.subplots(1, 2, figsize=(8, 3))\n", + "axes[0].imshow(coins, cmap=plt.cm.gray)\n", + "axes[0].axis('off')\n", + "axes[1].plot(hist_centers, hist, lw=2)\n", + "axes[1].set_title('histogram of gray values')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Thresholding" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A simple way to segment the coins is to choose a threshold based on the histogram of gray values. Unfortunately, thresholding this image gives a binary image that either misses significant parts of the coins or merges parts of the background with the coins:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)\n", + "\n", + "axes[0].imshow(coins > 100, cmap=plt.cm.gray)\n", + "axes[0].set_title('coins > 100')\n", + "\n", + "axes[1].imshow(coins > 150, cmap=plt.cm.gray)\n", + "axes[1].set_title('coins > 150')\n", + "\n", + "for a in axes:\n", + " a.axis('off')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Edge-based segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we try to delineate the contours of the coins using edge-based segmentation. To do this, we first get the edges of features using the Canny edge-detector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.feature import canny\n", + "\n", + "edges = canny(coins)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(edges, cmap=plt.cm.gray)\n", + "ax.set_title('Canny detector')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These contours are then filled using mathematical morphology." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy import ndimage as ndi\n", + "\n", + "fill_coins = ndi.binary_fill_holes(edges)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(fill_coins, cmap=plt.cm.gray)\n", + "ax.set_title('filling the holes')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Small spurious objects are easily removed by setting a minimum size for valid objects." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage import morphology\n", + "\n", + "coins_cleaned = morphology.remove_small_objects(fill_coins, 21)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(coins_cleaned, cmap=plt.cm.gray)\n", + "ax.set_title('removing small objects')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, this method is not very robust, since contours that are not perfectly closed are not filled correctly, as is the case for one unfilled coin above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Region-based segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We therefore try a region-based method using the watershed transform. First, we find an elevation map using the Sobel gradient of the image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.filters import sobel\n", + "\n", + "elevation_map = sobel(coins)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(elevation_map, cmap=plt.cm.gray)\n", + "ax.set_title('elevation map')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we find markers of the background and the coins based on the extreme parts of the histogram of gray values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "markers = np.zeros_like(coins)\n", + "markers[coins < 30] = 1\n", + "markers[coins > 150] = 2\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(markers, cmap=plt.cm.nipy_spectral)\n", + "ax.set_title('markers')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we use the watershed transform to fill regions of the elevation map starting from the markers determined above:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage import segmentation\n", + "\n", + "segmentation_coins = segmentation.watershed(elevation_map, markers)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(segmentation_coins, cmap=plt.cm.gray)\n", + "ax.set_title('segmentation')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This last method works even better, and the coins can be segmented and labeled individually." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.color import label2rgb\n", + "\n", + "segmentation_coins = ndi.binary_fill_holes(segmentation_coins - 1)\n", + "labeled_coins, _ = ndi.label(segmentation_coins)\n", + "image_label_overlay = label2rgb(labeled_coins, image=coins, bg_label=0)\n", + "\n", + "fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)\n", + "axes[0].imshow(coins, cmap=plt.cm.gray)\n", + "axes[0].contour(segmentation_coins, [0.5], linewidths=1.2, colors='y')\n", + "axes[1].imshow(image_label_overlay)\n", + "\n", + "for a in axes:\n", + " a.axis('off')\n", + "\n", + "plt.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Acknowledgments\n", + "\n", + "Thanks to [Scikit-image](https://scikit-image.org/) for creating the open-source project [Comparing edge-based and region-based segmentation](https://scikit-image.org/docs/stable/auto_examples/applications/plot_coins_segmentation.html). This inspires the majority of the content in this chapter." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "open-machine-learning-jupyter-book", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb b/_sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb new file mode 100644 index 0000000000..457d84b138 --- /dev/null +++ b/_sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb @@ -0,0 +1,1152 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6e14052d-5eec-449a-b6d5-bcc100456aba", + "metadata": {}, + "source": [ + "# Getting Start NLP with classification task" + ] + }, + { + "cell_type": "markdown", + "id": "259d0ecc-b734-44ef-b989-49a6e127a944", + "metadata": {}, + "source": [ + "One area where deep learning has dramatically improved in the last couple of years is natural language processing (NLP). Computers can now generate text, translate automatically from one language to another, analyze comments, label words in sentences, and much more.\n", + "\n", + "Perhaps the most widely practically useful application of NLP is classification -- that is, classifying a document automatically into some category. This can be used, for instance, for:\n", + "\n", + "- Sentiment analysis (e.g are people saying positive or negative things about your product)\n", + "- Author identification (what author most likely wrote some document)\n", + "- Legal discovery (which documents are in scope for a trial)\n", + "- Organizing documents by topic\n", + "- Triaging inbound emails\n", + "- ...and much more!\n", + "\n", + "Today, we are tasked with comparing two words or short phrases, and scoring them based on whether they're similar or not, based on which patent class they were used in. With a score of 1 it is considered that the two inputs have identical meaning, and 0 means they have totally different meaning. For instance, abatement and eliminating process have a score of 0.5, meaning they're somewhat similar, but not identical.\n", + "\n", + "It turns out that this can be represented as a classification problem. How? By representing the question like this:\n", + "\n", + "> For the following text...: \"TEXT1: abatement; TEXT2: eliminating process\" ...chose a category of meaning similarity: \"Different; Similar; Identical\".\n", + "\n", + "In this assignment section we'll see how to solve the Patent Phrase Matching problem by treating it as a classification task, by representing it in a very similar way to that shown above." + ] + }, + { + "cell_type": "markdown", + "id": "12389d2f-c08d-4941-a759-d8bbd8fa44ba", + "metadata": {}, + "source": [ + "## Import and EDA" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "4e4e3c06-4292-40a7-bb1a-66207159c604", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from datasets import Dataset,DatasetDict\n", + "from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer\n", + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "f3085076-3dbc-4eab-941c-9c7e2a4b740e", + "metadata": {}, + "source": [ + "First of all, let's import the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "cbd450f6-31dd-46c9-918e-e0f3984d1436", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    idanchortargetcontextscore
    037d61fd2272659b1abatementabatement of pollutionA470.50
    17b9652b17b68b7a4abatementact of abatingA470.75
    236d72442aefd8232abatementactive catalystA470.25
    35296b0c19e1ce60eabatementeliminating processA470.50
    454c1e3b9184cb5b6abatementforest regionA470.00
    \n", + "
    " + ], + "text/plain": [ + " id anchor target context score\n", + "0 37d61fd2272659b1 abatement abatement of pollution A47 0.50\n", + "1 7b9652b17b68b7a4 abatement act of abating A47 0.75\n", + "2 36d72442aefd8232 abatement active catalyst A47 0.25\n", + "3 5296b0c19e1ce60e abatement eliminating process A47 0.50\n", + "4 54c1e3b9184cb5b6 abatement forest region A47 0.00" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/nlp/phrase_matching_train.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "8c3283b2-2a18-447f-8400-f6d6efc95f4d", + "metadata": {}, + "source": [ + "As you see, there are 5 columns, where **anchor** and **target** are a pair phrases, **context** is the common context they are in, **score** is the similarity score of anchor and target." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "69b58088-6d15-4b11-85dd-bf5b86d9df64", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    idanchortargetcontext
    count36473364733647336473
    unique3647373329340106
    top37d61fd2272659b1component composite coatingcompositionH01
    freq1152242186
    \n", + "
    " + ], + "text/plain": [ + " id anchor target context\n", + "count 36473 36473 36473 36473\n", + "unique 36473 733 29340 106\n", + "top 37d61fd2272659b1 component composite coating composition H01\n", + "freq 1 152 24 2186" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe(include='object')" + ] + }, + { + "cell_type": "markdown", + "id": "00f5b5c7-bcb7-4bf0-875e-45fbf8a2ba65", + "metadata": {}, + "source": [ + "We can see that in the 36473 rows, there are 733 unique anchors, 106 contexts, and nearly 30000 targets. Some anchors are very common, with \"component composite coating\" for instance appearing 152 times.\n", + "\n", + "Earlier, I suggested we could represent the input to the model as something like \"TEXT1: abatement; TEXT2: eliminating process\". We'll need to add the context to this too. In Pandas, we just use + to concatenate, like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a89091d6-771a-4b7e-a540-b20d6f03e9aa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
    \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    idanchortargetcontextscoreinput
    037d61fd2272659b1abatementabatement of pollutionA470.50TEXT1: A47; TEXT2: abatement of pollution; ANC...
    17b9652b17b68b7a4abatementact of abatingA470.75TEXT1: A47; TEXT2: act of abating; ANC1: abate...
    236d72442aefd8232abatementactive catalystA470.25TEXT1: A47; TEXT2: active catalyst; ANC1: abat...
    35296b0c19e1ce60eabatementeliminating processA470.50TEXT1: A47; TEXT2: eliminating process; ANC1: ...
    454c1e3b9184cb5b6abatementforest regionA470.00TEXT1: A47; TEXT2: forest region; ANC1: abatement
    \n", + "
    " + ], + "text/plain": [ + " id anchor target context score \\\n", + "0 37d61fd2272659b1 abatement abatement of pollution A47 0.50 \n", + "1 7b9652b17b68b7a4 abatement act of abating A47 0.75 \n", + "2 36d72442aefd8232 abatement active catalyst A47 0.25 \n", + "3 5296b0c19e1ce60e abatement eliminating process A47 0.50 \n", + "4 54c1e3b9184cb5b6 abatement forest region A47 0.00 \n", + "\n", + " input \n", + "0 TEXT1: A47; TEXT2: abatement of pollution; ANC... \n", + "1 TEXT1: A47; TEXT2: act of abating; ANC1: abate... \n", + "2 TEXT1: A47; TEXT2: active catalyst; ANC1: abat... \n", + "3 TEXT1: A47; TEXT2: eliminating process; ANC1: ... \n", + "4 TEXT1: A47; TEXT2: forest region; ANC1: abatement " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor\n", + "df.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "0fc9e71f-aed8-40b0-821d-c352331f4a89", + "metadata": {}, + "source": [ + "## Tokenization" + ] + }, + { + "cell_type": "markdown", + "id": "0d9c20bb-a146-497b-a503-edfc6372c084", + "metadata": {}, + "source": [ + "Transformers uses a `Dataset` object for storing their dataset, of course! We can create one like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a3dcc05b-e170-43ed-92f5-8805d3dbac7f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['id', 'anchor', 'target', 'context', 'score', 'input'],\n", + " num_rows: 36473\n", + "})" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = Dataset.from_pandas(df)\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "107fe0be-b9a4-4c30-a141-41fcfb3beab4", + "metadata": {}, + "source": [ + "But we can't pass the texts directly into a model. A deep learning model expects numbers as inputs, not English sentences! So we need to do two things:\n", + "\n", + "- Tokenization: Split each text up into words (or actually, as we'll see, into tokens)\n", + "- Numericalization: Convert each word (or token) into a number.\n", + "\n", + "The details about how this is done actually depend on the particular model we use. So first we'll need to pick a model. There are thousands of models available, but a reasonable starting point for nearly any NLP problem is to use this (replace \"small\" with \"large\" for a slower but more accurate model, once you've finished exploring):" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9bd4fdd3-f881-486b-9d75-ccbb6286b525", + "metadata": {}, + "outputs": [], + "source": [ + "model_nm = 'microsoft/deberta-v3-small'" + ] + }, + { + "cell_type": "markdown", + "id": "3f60c3b5-a0a5-4dd5-b512-549cb4242579", + "metadata": {}, + "source": [ + "`AutoTokenizer` will create a tokenizer appropriate for a given model:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "96aca66f-0663-4dfd-97f6-169f8a0fcb1d", + "metadata": {}, + "outputs": [], + "source": [ + "tokz = AutoTokenizer.from_pretrained(model_nm)" + ] + }, + { + "cell_type": "markdown", + "id": "5335cfec-7a71-481a-8c18-e934a90194ad", + "metadata": {}, + "source": [ + "Here's an example of how the tokenizer splits a text into \"tokens\" (which are like words, but can be sub-word pieces, as you see below):" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6fd61beb-a5a8-4f89-9659-8470faf62fb4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['▁G',\n", + " \"'\",\n", + " 'day',\n", + " '▁folks',\n", + " ',',\n", + " '▁I',\n", + " \"'\",\n", + " 'm',\n", + " '▁Jeremy',\n", + " '▁from',\n", + " '▁fast',\n", + " '.',\n", + " 'ai',\n", + " '!']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokz.tokenize(\"G'day folks, I'm Jeremy from fast.ai!\")" + ] + }, + { + "cell_type": "markdown", + "id": "0a2a6a56-2e10-403a-9533-b65afb974425", + "metadata": {}, + "source": [ + "Uncommon words will be split into pieces just like `ornithorhynchus`. The start of a new word is represented by `▁`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "92e0189f-c8f1-405f-83fb-bd01c483710c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['▁A',\n", + " '▁platypus',\n", + " '▁is',\n", + " '▁an',\n", + " '▁or',\n", + " 'ni',\n", + " 'tho',\n", + " 'rhynch',\n", + " 'us',\n", + " '▁an',\n", + " 'at',\n", + " 'inus',\n", + " '.']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokz.tokenize(\"A platypus is an ornithorhynchus anatinus.\")" + ] + }, + { + "cell_type": "markdown", + "id": "a4e253e5-e098-4253-b401-57f0cf753325", + "metadata": {}, + "source": [ + "## Numericalization" + ] + }, + { + "cell_type": "markdown", + "id": "83ee57e9-54d7-45cb-a23d-68156b0350f8", + "metadata": {}, + "source": [ + "After completing Tokenization, we need to convert each token into a number, because the model only accepts numbers as input. But ... how to do it?\n", + "We need a large token dictionary to map each token to a number!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7d56000f-9137-4f7f-b3b6-93624efddc50", + "metadata": {}, + "outputs": [], + "source": [ + "vocab = tokz.get_vocab()" + ] + }, + { + "cell_type": "markdown", + "id": "f062775c-83b5-48cb-be62-70d9e1355d05", + "metadata": {}, + "source": [ + "The above is the token dictionary that comes with the `deberta-v3-small` model. You can print it out to check." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "dd749eeb-17da-4bd9-b229-c96270a0d415", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'input_ids': [1, 336, 114224, 269, 299, 289, 4840, 34765, 102530, 1867, 299, 2401, 26835, 260, 2], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokz(\"A platypus is an ornithorhynchus anatinus.\")" + ] + }, + { + "cell_type": "markdown", + "id": "95028988-a530-46d2-96a9-b11c2e9ab3d7", + "metadata": {}, + "source": [ + "According to this token dictionary, we can convert the original token sequence into a digital sequence. Input_ids is the number we need, token_type_ids represents whether all tokens belong to the same sentence, and attention_mask represents whether the token exists in the token dictionary.\n", + "\n", + "Here's a simple function which tokenizes our inputs:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8c6da089-a612-499b-8a00-e448a0eee212", + "metadata": {}, + "outputs": [], + "source": [ + "def tok_func(x): return tokz(x[\"input\"])" + ] + }, + { + "cell_type": "markdown", + "id": "681d176d-f055-42fd-87de-88dcee8ec18a", + "metadata": {}, + "source": [ + "To run this quickly in parallel on every row in our dataset, use map:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "fec0c346-3726-42d2-87c6-2260b7d4c80c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "42f7bd84ff414f0cb23b9b1bb44b8ad5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map: 0%| | 0/36473 [00:00\n", + " \n", + " \n", + " [856/856 00:53, Epoch 4/4]\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
    EpochTraining LossValidation Loss
    1No log0.026275
    2No log0.021973
    30.0396000.022443
    40.0396000.023286

    " + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "trainer.train();" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "3c35b83e-0320-4ea6-89df-342f9d3fb36e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([[-1.50489807e-03],\n", + " [ 4.90570068e-03],\n", + " [-5.05447388e-04],\n", + " [ 2.69412994e-04],\n", + " [-1.44767761e-03],\n", + " [ 4.85897064e-04],\n", + " [-1.81484222e-03],\n", + " [ 8.22067261e-04],\n", + " [ 4.36019897e-03],\n", + " [ 4.40216064e-03],\n", + " [-6.16550446e-04],\n", + " [-4.18424606e-05],\n", + " [-1.20639801e-03],\n", + " [ 3.18288803e-04],\n", + " [-6.15119934e-04],\n", + " [-8.05377960e-04],\n", + " [-2.66265869e-03],\n", + " [ 2.60114670e-04],\n", + " [ 3.48281860e-03],\n", + " [ 1.68323517e-03],\n", + " [ 1.38378143e-03],\n", + " [-2.48527527e-03],\n", + " [ 7.53879547e-04],\n", + " [ 8.55922699e-04],\n", + " [-2.27355957e-03],\n", + " [-2.88581848e-03],\n", + " [ 3.29780579e-03],\n", + " [ 9.42707062e-04],\n", + " [ 4.26769257e-04],\n", + " [-1.19447708e-04],\n", + " [-2.77519226e-03],\n", + " [ 5.27381897e-04],\n", + " [-8.44001770e-04],\n", + " [ 4.88281250e-04],\n", + " [-2.11715698e-04],\n", + " [-1.00421906e-03]])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds = trainer.predict(eval_ds).predictions.astype(float)\n", + "preds" + ] + }, + { + "cell_type": "markdown", + "id": "138c6cd1-e0cb-405e-8b15-952e90c6a954", + "metadata": {}, + "source": [ + "Look out - some of our predictions are <0, or >1! Let's fix those out-of-bounds predictions:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d6cfff69-3178-4afb-858e-5653a938e3af", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0. ],\n", + " [0.0049057 ],\n", + " [0. ],\n", + " [0.00026941],\n", + " [0. ],\n", + " [0.0004859 ],\n", + " [0. ],\n", + " [0.00082207],\n", + " [0.0043602 ],\n", + " [0.00440216],\n", + " [0. ],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00031829],\n", + " [0. ],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00026011],\n", + " [0.00348282],\n", + " [0.00168324],\n", + " [0.00138378],\n", + " [0. ],\n", + " [0.00075388],\n", + " [0.00085592],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00329781],\n", + " [0.00094271],\n", + " [0.00042677],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00052738],\n", + " [0. ],\n", + " [0.00048828],\n", + " [0. ],\n", + " [0. ]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds = np.clip(preds, 0, 1)\n", + "preds" + ] + }, + { + "cell_type": "markdown", + "id": "464c75ad-e4c3-4c6a-a776-c98011ed5eba", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "# Acknowledgments\n", + "\n", + "Thanks to [Jeremy Howard](https://www.kaggle.com/jhoward) for creating [Getting started with NLP for absolute beginners](https://www.kaggle.com/code/jhoward/getting-started-with-nlp-for-absolute-beginners). It inspires the majority of the content in this chapter." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "vmamba", + "language": "python", + "name": "vmamba" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb b/_sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb new file mode 100644 index 0000000000..16f232bd58 --- /dev/null +++ b/_sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"markdown","metadata":{},"source":["

    LICENSE\n","\n","Copyright 2018 Google LLC.\n","\n","Licensed under the Apache License, Version 2.0 (the \"License\");\n","you may not use this file except in compliance with the License.\n","You may obtain a copy of the License at\n","\n","https://www.apache.org/licenses/LICENSE-2.0\n","\n","Unless required by applicable law or agreed to in writing, software\n","distributed under the License is distributed on an \"AS IS\" BASIS,\n","WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n","See the License for the specific language governing permissions and\n","limitations under the License.\n","
    "]},{"cell_type":"markdown","metadata":{},"source":["# Introduction"]},{"cell_type":"markdown","metadata":{},"source":["Climate Prediction-Random Forest is a model that uses a combination of climate variables and machine learning algorithms to predict future climate conditions. The model is trained on a large dataset of climate observations and uses a random forest approach to generate predictions. The predictions are based on the relationships between the climate variables and the random forest algorithm is able to capture complex patterns in the data."]},{"cell_type":"markdown","metadata":{},"source":["## Importing Libraries"]},{"cell_type":"code","execution_count":1,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:09.977471Z","iopub.status.busy":"2021-09-12T07:42:09.976692Z","iopub.status.idle":"2021-09-12T07:42:11.175857Z","shell.execute_reply":"2021-09-12T07:42:11.174872Z","shell.execute_reply.started":"2021-09-12T07:42:09.977341Z"},"hideCode":false,"hidePrompt":false,"id":"d4a2uASN7jbm","outputId":"a31fc9d2-6d41-4f32-f935-4de1392fb75d","trusted":true},"outputs":[],"source":["# Pandas is used for data manipulation\n","import pandas as pd\n","\n","# Use numpy to convert to arrays\n","import numpy as np\n","\n","# Import tools needed for visualization\n","\n","import matplotlib.pyplot as plt\n","%matplotlib inline"]},{"cell_type":"markdown","metadata":{"execution":{"iopub.execute_input":"2021-06-05T03:15:54.659441Z","iopub.status.busy":"2021-06-05T03:15:54.658886Z","iopub.status.idle":"2021-06-05T03:15:54.679235Z","shell.execute_reply":"2021-06-05T03:15:54.677744Z","shell.execute_reply.started":"2021-06-05T03:15:54.659396Z"}},"source":["## Data Exploration"]},{"cell_type":"code","execution_count":2,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.178015Z","iopub.status.busy":"2021-09-12T07:42:11.177625Z","iopub.status.idle":"2021-09-12T07:42:11.198022Z","shell.execute_reply":"2021-09-12T07:42:11.197162Z","shell.execute_reply.started":"2021-09-12T07:42:11.177971Z"},"trusted":true},"outputs":[],"source":["# Reading the data to a dataframe \n","df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/classification/temps.csv')"]},{"cell_type":"code","execution_count":3,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.201049Z","iopub.status.busy":"2021-09-12T07:42:11.200281Z","iopub.status.idle":"2021-09-12T07:42:11.230628Z","shell.execute_reply":"2021-09-12T07:42:11.229917Z","shell.execute_reply.started":"2021-09-12T07:42:11.200999Z"},"trusted":true},"outputs":[{"data":{"text/html":["
    \n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
    yearmonthdayweektemp_2temp_1averageactualfriend
    0201911Fri454545.64529
    1201912Sat444545.74461
    2201913Sun454445.84156
    3201914Mon444145.94053
    4201915Tues414046.04441
    \n","
    "],"text/plain":[" year month day week temp_2 temp_1 average actual friend\n","0 2019 1 1 Fri 45 45 45.6 45 29\n","1 2019 1 2 Sat 44 45 45.7 44 61\n","2 2019 1 3 Sun 45 44 45.8 41 56\n","3 2019 1 4 Mon 44 41 45.9 40 53\n","4 2019 1 5 Tues 41 40 46.0 44 41"]},"execution_count":3,"metadata":{},"output_type":"execute_result"}],"source":["# displaying first 5 rows\n","df.head(5)"]},{"cell_type":"code","execution_count":4,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.232535Z","iopub.status.busy":"2021-09-12T07:42:11.232032Z","iopub.status.idle":"2021-09-12T07:42:11.237917Z","shell.execute_reply":"2021-09-12T07:42:11.236766Z","shell.execute_reply.started":"2021-09-12T07:42:11.232503Z"},"hideCode":false,"hidePrompt":false,"id":"5aXM1w987jbq","outputId":"c9eabdf4-30d9-4df4-b890-b28df3c5287b","trusted":true},"outputs":[{"data":{"text/plain":["(348, 9)"]},"execution_count":4,"metadata":{},"output_type":"execute_result"}],"source":["# the shape of our features\n","df.shape"]},{"cell_type":"code","execution_count":5,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.239954Z","iopub.status.busy":"2021-09-12T07:42:11.239514Z","iopub.status.idle":"2021-09-12T07:42:11.253434Z","shell.execute_reply":"2021-09-12T07:42:11.252149Z","shell.execute_reply.started":"2021-09-12T07:42:11.239913Z"},"trusted":true},"outputs":[{"data":{"text/plain":["Index(['year', 'month', 'day', 'week', 'temp_2', 'temp_1', 'average', 'actual',\n"," 'friend'],\n"," dtype='object')"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["# column names\n","df.columns"]},{"cell_type":"code","execution_count":6,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.256082Z","iopub.status.busy":"2021-09-12T07:42:11.255489Z","iopub.status.idle":"2021-09-12T07:42:11.271869Z","shell.execute_reply":"2021-09-12T07:42:11.270748Z","shell.execute_reply.started":"2021-09-12T07:42:11.256038Z"},"trusted":true},"outputs":[{"data":{"text/plain":["year 0\n","month 0\n","day 0\n","week 0\n","temp_2 0\n","temp_1 0\n","average 0\n","actual 0\n","friend 0\n","dtype: int64"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["# checking for null values\n","df.isnull().sum()"]},{"cell_type":"markdown","metadata":{},"source":["There are no null values"]},{"cell_type":"markdown","metadata":{"id":"Nzu0v5mQ7jbs"},"source":["## One-Hot Encoding"]},{"cell_type":"markdown","metadata":{"execution":{"iopub.execute_input":"2021-06-05T03:26:04.246284Z","iopub.status.busy":"2021-06-05T03:26:04.245896Z","iopub.status.idle":"2021-06-05T03:26:04.252279Z","shell.execute_reply":"2021-06-05T03:26:04.250937Z","shell.execute_reply.started":"2021-06-05T03:26:04.246247Z"}},"source":["A one hot encoding allows the representation of categorical data to be more expressive. "]},{"cell_type":"code","execution_count":7,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.273448Z","iopub.status.busy":"2021-09-12T07:42:11.273117Z","iopub.status.idle":"2021-09-12T07:42:11.308893Z","shell.execute_reply":"2021-09-12T07:42:11.307365Z","shell.execute_reply.started":"2021-09-12T07:42:11.273418Z"},"hideCode":false,"hidePrompt":false,"id":"VURjcTE27jbu","outputId":"12cc15a3-072a-4e40-89c8-009ea27c2622","trusted":true},"outputs":[{"data":{"text/html":["
    \n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
    yearmonthdaytemp_2temp_1averageactualfriendweek_Friweek_Monweek_Satweek_Sunweek_Thursweek_Tuesweek_Wed
    0201911454545.64529TrueFalseFalseFalseFalseFalseFalse
    1201912444545.74461FalseFalseTrueFalseFalseFalseFalse
    2201913454445.84156FalseFalseFalseTrueFalseFalseFalse
    3201914444145.94053FalseTrueFalseFalseFalseFalseFalse
    4201915414046.04441FalseFalseFalseFalseFalseTrueFalse
    \n","
    "],"text/plain":[" year month day temp_2 temp_1 average actual friend week_Fri \\\n","0 2019 1 1 45 45 45.6 45 29 True \n","1 2019 1 2 44 45 45.7 44 61 False \n","2 2019 1 3 45 44 45.8 41 56 False \n","3 2019 1 4 44 41 45.9 40 53 False \n","4 2019 1 5 41 40 46.0 44 41 False \n","\n"," week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed \n","0 False False False False False False \n","1 False True False False False False \n","2 False False True False False False \n","3 True False False False False False \n","4 False False False False True False "]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["# One-hot encode categorical features\n","df = pd.get_dummies(df)\n","df.head(5)"]},{"cell_type":"code","execution_count":8,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.312525Z","iopub.status.busy":"2021-09-12T07:42:11.312019Z","iopub.status.idle":"2021-09-12T07:42:11.320042Z","shell.execute_reply":"2021-09-12T07:42:11.318836Z","shell.execute_reply.started":"2021-09-12T07:42:11.312458Z"},"id":"zgYBtUrr7jbv","outputId":"69df322f-2e24-4576-9fd2-d34773ac406c","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Shape of features after one-hot encoding: (348, 15)\n"]}],"source":["print('Shape of features after one-hot encoding:', df.shape)"]},{"cell_type":"markdown","metadata":{"id":"mtd7DqrQ7jbw"},"source":["## Features and Labels"]},{"cell_type":"code","execution_count":9,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.322293Z","iopub.status.busy":"2021-09-12T07:42:11.321937Z","iopub.status.idle":"2021-09-12T07:42:11.33496Z","shell.execute_reply":"2021-09-12T07:42:11.333645Z","shell.execute_reply.started":"2021-09-12T07:42:11.322261Z"},"id":"2rYCVrfV7jbx","trusted":true},"outputs":[],"source":["# Labels are the values we want to predict\n","labels = df['actual']\n","\n","# Remove the labels from the features\n","df = df.drop('actual', axis = 1)\n","\n","# Saving feature names for later use\n","feature_list = list(df.columns)"]},{"cell_type":"markdown","metadata":{"id":"Q6SSjx5p7jb0"},"source":["## Train Test Split"]},{"cell_type":"code","execution_count":10,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.336918Z","iopub.status.busy":"2021-09-12T07:42:11.336569Z","iopub.status.idle":"2021-09-12T07:42:11.348348Z","shell.execute_reply":"2021-09-12T07:42:11.347294Z","shell.execute_reply.started":"2021-09-12T07:42:11.336886Z"},"id":"11BJUq0s7jb0","trusted":true},"outputs":[],"source":["# Using Skicit-learn to split data into training and testing sets\n","from sklearn.model_selection import train_test_split\n","\n","# Split the data into training and testing sets\n","train_features, test_features, train_labels, test_labels = train_test_split(df,\n"," labels,\n"," test_size = 0.20,\n"," random_state = 42)"]},{"cell_type":"code","execution_count":11,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.350455Z","iopub.status.busy":"2021-09-12T07:42:11.350066Z","iopub.status.idle":"2021-09-12T07:42:11.358556Z","shell.execute_reply":"2021-09-12T07:42:11.357489Z","shell.execute_reply.started":"2021-09-12T07:42:11.350426Z"},"id":"KkVnZf4H7jb2","outputId":"3c0a9db7-0f71-44be-bd0a-946fddc7d048","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Training Features Shape: (278, 14)\n","Training Labels Shape: (278,)\n","Testing Features Shape: (70, 14)\n","Testing Labels Shape: (70,)\n"]}],"source":["print('Training Features Shape:', train_features.shape)\n","print('Training Labels Shape:', train_labels.shape)\n","print('Testing Features Shape:', test_features.shape)\n","print('Testing Labels Shape:', test_labels.shape)"]},{"cell_type":"markdown","metadata":{"id":"ny3qdq-i7jb4"},"source":["## Training the Forest"]},{"cell_type":"code","execution_count":12,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.360258Z","iopub.status.busy":"2021-09-12T07:42:11.359962Z","iopub.status.idle":"2021-09-12T07:42:13.842601Z","shell.execute_reply":"2021-09-12T07:42:13.841175Z","shell.execute_reply.started":"2021-09-12T07:42:11.360229Z"},"hideCode":false,"hidePrompt":false,"id":"d_Vboxs77jb5","trusted":true},"outputs":[],"source":["# Import the model we are using\n","from sklearn.ensemble import RandomForestRegressor\n","\n","# Instantiate model \n","rf = RandomForestRegressor(n_estimators= 1000, random_state=42)\n","\n","# Train the model on training data\n","rf.fit(train_features, train_labels);"]},{"cell_type":"markdown","metadata":{"id":"rJz8X7b77jb6"},"source":["## Make Predictions on Test Data"]},{"cell_type":"code","execution_count":13,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:13.844914Z","iopub.status.busy":"2021-09-12T07:42:13.844471Z","iopub.status.idle":"2021-09-12T07:42:13.975596Z","shell.execute_reply":"2021-09-12T07:42:13.974317Z","shell.execute_reply.started":"2021-09-12T07:42:13.84487Z"},"id":"pssgaBC67jb6","outputId":"5a3a9029-c98b-4ac8-c081-2f7e17c3ca86","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Mean Absolute Error: 3.78 degrees.\n"]}],"source":["# Use the forest's predict method on the test data\n","predictions = rf.predict(test_features)\n","\n","# Calculate the absolute errors\n","errors = abs(predictions - test_labels)\n","\n","# Print out the mean absolute error (mae)\n","print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.')\n"]},{"cell_type":"code","execution_count":14,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:13.978583Z","iopub.status.busy":"2021-09-12T07:42:13.97822Z","iopub.status.idle":"2021-09-12T07:42:13.985832Z","shell.execute_reply":"2021-09-12T07:42:13.984493Z","shell.execute_reply.started":"2021-09-12T07:42:13.978549Z"},"id":"fDaM3Z677jb7","outputId":"2307bab3-cb96-4a7a-f57d-3a9d80cec129","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Accuracy: 94.02 %.\n"]}],"source":["# Calculate mean absolute percentage error (MAPE)\n","mape = 100 * (errors / test_labels)\n","\n","# Calculate and display accuracy\n","accuracy = 100 - np.mean(mape)\n","print('Accuracy:', round(accuracy, 2), '%.')"]},{"cell_type":"markdown","metadata":{"id":"9U2KQYmS7jb7"},"source":["## Visualizing a Single Decision Tree"]},{"cell_type":"markdown","metadata":{"id":"Cnbb-pTt7jb9"},"source":["![Decision Tree](https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/assignment/deep-learning/nn/tree.png)"]},{"cell_type":"markdown","metadata":{},"source":["## Your turn! 🚀\n","You can practice your random-forest skills by following the assignment [Climate Prediction-Random Forest](../../assignments/machine-learning-productionization/random-forest-classifier.ipynb)."]},{"cell_type":"markdown","metadata":{},"source":["## Acknowledgments\n","\n","Thanks to Kaggle for creating the open source course [Climate Prediction-Random Forest](https://www.kaggle.com/code/anandhuh/climate-prediction-random-forest-94-accuracy?scriptVersionId=74560159&cellId=26). It contributes some of the content in this chapter."]}],"metadata":{"kaggle":{"accelerator":"none","dataSources":[{"datasetId":1018620,"sourceId":1717426,"sourceType":"datasetVersion"}],"dockerImageVersionId":30096,"isGpuEnabled":false,"isInternetEnabled":false,"language":"python","sourceType":"notebook"},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.5"}},"nbformat":4,"nbformat_minor":4} diff --git a/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb b/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb index a5ecb1db0a..5b96cb622c 100644 --- a/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb +++ b/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "ee2af449", + "id": "6e4ad8e0", "metadata": {}, "source": [ "# Create a regression model\n", diff --git a/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb b/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb index 1f287345e2..2b91d3a104 100644 --- a/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb +++ b/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "70c3fb3a", + "id": "8633a20a", "metadata": {}, "source": [ "# Exploring visualizations\n", diff --git a/_sources/assignments/ml-fundamentals/parameter-play.ipynb b/_sources/assignments/ml-fundamentals/parameter-play.ipynb index 7290324945..8c808e78eb 100644 --- a/_sources/assignments/ml-fundamentals/parameter-play.ipynb +++ b/_sources/assignments/ml-fundamentals/parameter-play.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b62869bf", + "id": "ccc592ea", "metadata": {}, "source": [ "# Parameter play\n", diff --git a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb index 4b58aa3f21..48bcd3b714 100644 --- a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb +++ b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2812ba9a", + "id": "d5e8515c", "metadata": {}, "source": [ "# Regression with Scikit-learn\n", diff --git a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb index 7db5432d06..1c55b67f0e 100644 --- a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb +++ b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4e729fc1", + "id": "441cd1b1", "metadata": {}, "source": [ "# Retrying some regression\n", diff --git a/_sources/data-science/working-with-data/numpy.ipynb b/_sources/data-science/working-with-data/numpy.ipynb index 13cc19f4b8..26b6ec9650 100644 --- a/_sources/data-science/working-with-data/numpy.ipynb +++ b/_sources/data-science/working-with-data/numpy.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "1816b909", + "id": "1824344d", "metadata": {}, "source": [ "# NumPy\n", @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "16db2570", + "id": "524f2024", "metadata": {}, "outputs": [ { @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "0ea8e4d9", + "id": "0ecaa4a1", "metadata": {}, "source": [ "### Create a basic array\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "f3a97a93", + "id": "fdbbbc0b", "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "db97ae62", + "id": "52e94fbd", "metadata": {}, "source": [ "Besides creating an array from a sequence of elements, you can easily create an array filled with `0`’s:" @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "03b948d2", + "id": "e00c2e09", "metadata": {}, "outputs": [ { @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "9d11a2b8", + "id": "754873dd", "metadata": {}, "source": [ "Or an array filled with 1’s:" @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "f31d9d52", + "id": "a4fcd2e2", "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "a44b0e87", + "id": "4c6327c9", "metadata": {}, "source": [ "Or even an empty array! The function `empty` creates an array whose initial content is random and depends on the state of the memory. The reason to use `empty` over `zeros` (or something similar) is speed - just make sure to fill every element afterwards!" @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "d02a7123", + "id": "453ab575", "metadata": {}, "outputs": [ { @@ -162,7 +162,7 @@ }, { "cell_type": "markdown", - "id": "c4546a55", + "id": "ef83f671", "metadata": {}, "source": [ "You can create an array with a range of elements:" @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "cbad5e9e", + "id": "a3d25666", "metadata": {}, "outputs": [ { @@ -191,7 +191,7 @@ }, { "cell_type": "markdown", - "id": "c4ae3281", + "id": "a1e4a408", "metadata": {}, "source": [ "And even an array that contains a range of evenly spaced intervals. To do this, you will specify the **first number**, **last number**, and the **step size**." @@ -200,7 +200,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "796953a0", + "id": "6851463b", "metadata": {}, "outputs": [ { @@ -220,7 +220,7 @@ }, { "cell_type": "markdown", - "id": "41299cfe", + "id": "214052a9", "metadata": {}, "source": [ "You can also use `np.linspace()` to create an array with values that are spaced linearly in a specified interval:" @@ -229,7 +229,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "411e39bd", + "id": "392ba480", "metadata": {}, "outputs": [ { @@ -249,7 +249,7 @@ }, { "cell_type": "markdown", - "id": "d416d0be", + "id": "758d340d", "metadata": {}, "source": [ "While the default data type is floating point (`np.float64`), you can explicitly specify which data type you want using the `dtype` keyword." @@ -258,7 +258,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "0cfcf49d", + "id": "4956e399", "metadata": {}, "outputs": [ { @@ -278,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "58557c57", + "id": "424fc3cf", "metadata": {}, "source": [ "### Adding, removing, and sorting elements\n", @@ -291,7 +291,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "c5680f41", + "id": "82acaac3", "metadata": {}, "outputs": [], "source": [ @@ -300,7 +300,7 @@ }, { "cell_type": "markdown", - "id": "03ca1110", + "id": "d1b1a4a4", "metadata": {}, "source": [ "You can quickly sort the numbers in ascending order with:" @@ -309,7 +309,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "6bfee14a", + "id": "33f1d0f9", "metadata": {}, "outputs": [ { @@ -329,7 +329,7 @@ }, { "cell_type": "markdown", - "id": "312788c4", + "id": "290dc695", "metadata": {}, "source": [ "In addition to sort, which returns a sorted copy of an array, you can use:\n", @@ -345,7 +345,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "3b8ccf7d", + "id": "59a365e9", "metadata": {}, "outputs": [], "source": [ @@ -355,7 +355,7 @@ }, { "cell_type": "markdown", - "id": "e0b12155", + "id": "abfb3a12", "metadata": {}, "source": [ "You can concatenate them with `np.concatenate()`." @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "47e4d2d7", + "id": "178dc1a9", "metadata": {}, "outputs": [ { @@ -384,7 +384,7 @@ }, { "cell_type": "markdown", - "id": "14f32192", + "id": "81c2d2cc", "metadata": {}, "source": [ "Or, if you start with these arrays:" @@ -393,7 +393,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "03035494", + "id": "0041f9cb", "metadata": {}, "outputs": [], "source": [ @@ -403,7 +403,7 @@ }, { "cell_type": "markdown", - "id": "f1177f1f", + "id": "62a5fda3", "metadata": {}, "source": [ "You can concatenate them with:" @@ -412,7 +412,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "b55eb0c6", + "id": "c5b2ad7f", "metadata": {}, "outputs": [ { @@ -434,7 +434,7 @@ }, { "cell_type": "markdown", - "id": "bebaef59", + "id": "023eed3d", "metadata": {}, "source": [ "In order to remove elements from an array, it’s simple to use indexing to select the elements that you want to keep.\n", @@ -450,7 +450,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "e0ae6518", + "id": "7e0508c9", "metadata": {}, "outputs": [ { @@ -475,7 +475,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "d88c14eb", + "id": "72bcb260", "metadata": {}, "outputs": [ { @@ -495,7 +495,7 @@ }, { "cell_type": "markdown", - "id": "42651f1a", + "id": "a64eea9d", "metadata": {}, "source": [ "- ndarray.shape\n", @@ -505,7 +505,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "034505ee", + "id": "6f45f950", "metadata": {}, "outputs": [ { @@ -525,7 +525,7 @@ }, { "cell_type": "markdown", - "id": "6319a33f", + "id": "68585758", "metadata": {}, "source": [ "- ndarray.size\n", @@ -535,7 +535,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "b02dad23", + "id": "7e313856", "metadata": {}, "outputs": [ { @@ -555,7 +555,7 @@ }, { "cell_type": "markdown", - "id": "40df55da", + "id": "3a2d0042", "metadata": {}, "source": [ "- ndarray.dtype\n", @@ -565,7 +565,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "d0ee25cc", + "id": "a23efb5c", "metadata": {}, "outputs": [ { @@ -586,7 +586,7 @@ { "cell_type": "code", "execution_count": 21, - "id": "ce5388d2", + "id": "587a63a9", "metadata": {}, "outputs": [ { @@ -606,7 +606,7 @@ }, { "cell_type": "markdown", - "id": "13f9ecb1", + "id": "5c23cb2e", "metadata": {}, "source": [ "- ndarray.itemsize\n", @@ -616,7 +616,7 @@ { "cell_type": "code", "execution_count": 22, - "id": "a37e6226", + "id": "00a5ec05", "metadata": {}, "outputs": [ { @@ -636,7 +636,7 @@ }, { "cell_type": "markdown", - "id": "2f645661", + "id": "021373f2", "metadata": {}, "source": [ "- ndarray.data\n", @@ -646,13 +646,13 @@ { "cell_type": "code", "execution_count": 23, - "id": "230eb0a8", + "id": "246a9ae5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 23, @@ -666,7 +666,7 @@ }, { "cell_type": "markdown", - "id": "c1391da9", + "id": "c8c621a6", "metadata": {}, "source": [ "### Reshape an array\n", @@ -679,7 +679,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "eb269161", + "id": "f303592f", "metadata": {}, "outputs": [ { @@ -700,7 +700,7 @@ }, { "cell_type": "markdown", - "id": "e1799fdd", + "id": "9966b1c7", "metadata": {}, "source": [ "You can use `reshape()` to reshape your array. For example, you can reshape this array to an array with three rows and two columns:" @@ -709,7 +709,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "474b905b", + "id": "ca2f6ae0", "metadata": {}, "outputs": [ { @@ -732,7 +732,7 @@ }, { "cell_type": "markdown", - "id": "b652bd10", + "id": "3cba7acb", "metadata": {}, "source": [ "With `np.reshape`, you can specify a few optional parameters:" @@ -741,7 +741,7 @@ { "cell_type": "code", "execution_count": 26, - "id": "2111b540", + "id": "91843f24", "metadata": {}, "outputs": [ { @@ -761,7 +761,7 @@ }, { "cell_type": "markdown", - "id": "3fe6825e", + "id": "1a0a17fc", "metadata": {}, "source": [ "`a` is the array to be reshaped.\n", @@ -782,7 +782,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "9c7d4be6", + "id": "dc26bcaa", "metadata": {}, "outputs": [ { @@ -803,7 +803,7 @@ }, { "cell_type": "markdown", - "id": "b8f5cdba", + "id": "c9c3ad13", "metadata": {}, "source": [ "You can use `np.newaxis` to add a new axis:" @@ -812,7 +812,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "ecc8a5a1", + "id": "222e3bbc", "metadata": {}, "outputs": [ { @@ -833,7 +833,7 @@ }, { "cell_type": "markdown", - "id": "2136fbc5", + "id": "5aca6723", "metadata": {}, "source": [ "You can explicitly convert a 1D array with either a row vector or a column vector using `np.newaxis`. For example, you can convert a 1D array to a row vector by inserting an axis along the first dimension:" @@ -842,7 +842,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "5f5c0256", + "id": "78686b80", "metadata": {}, "outputs": [ { @@ -863,7 +863,7 @@ }, { "cell_type": "markdown", - "id": "f446042c", + "id": "1880a2bc", "metadata": {}, "source": [ "Or, for a column vector, you can insert an axis along the second dimension:" @@ -872,7 +872,7 @@ { "cell_type": "code", "execution_count": 30, - "id": "085bcaea", + "id": "79e0afad", "metadata": {}, "outputs": [ { @@ -893,7 +893,7 @@ }, { "cell_type": "markdown", - "id": "e14b2290", + "id": "39c555ff", "metadata": {}, "source": [ "You can also expand an array by inserting a new axis at a specified position with `np.expand_dims`.\n", @@ -904,7 +904,7 @@ { "cell_type": "code", "execution_count": 31, - "id": "43063c3a", + "id": "2702b9e5", "metadata": {}, "outputs": [ { @@ -925,7 +925,7 @@ }, { "cell_type": "markdown", - "id": "f1ca9224", + "id": "02d4d8ad", "metadata": {}, "source": [ "You can use np.expand_dims to add an axis at index position 1 with:" @@ -934,7 +934,7 @@ { "cell_type": "code", "execution_count": 32, - "id": "54426fa5", + "id": "f399bc85", "metadata": {}, "outputs": [ { @@ -955,7 +955,7 @@ }, { "cell_type": "markdown", - "id": "ad62b973", + "id": "1d3afbaa", "metadata": {}, "source": [ "You can add an axis at index position 0 with:" @@ -964,7 +964,7 @@ { "cell_type": "code", "execution_count": 33, - "id": "e5b4e1db", + "id": "8b5f3d80", "metadata": {}, "outputs": [ { @@ -985,7 +985,7 @@ }, { "cell_type": "markdown", - "id": "a7d628d0", + "id": "f5643a8d", "metadata": {}, "source": [ "### Indexing and slicing\n", @@ -996,7 +996,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "7744b04c", + "id": "989b5895", "metadata": {}, "outputs": [], "source": [ @@ -1006,7 +1006,7 @@ { "cell_type": "code", "execution_count": 35, - "id": "e57b89ed", + "id": "5b691c28", "metadata": {}, "outputs": [ { @@ -1027,7 +1027,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "871490cb", + "id": "0215274d", "metadata": {}, "outputs": [ { @@ -1048,7 +1048,7 @@ { "cell_type": "code", "execution_count": 37, - "id": "b1edf739", + "id": "bf45b2af", "metadata": {}, "outputs": [ { @@ -1069,7 +1069,7 @@ { "cell_type": "code", "execution_count": 38, - "id": "4f445c63", + "id": "e7bdb1d6", "metadata": {}, "outputs": [ { @@ -1089,7 +1089,7 @@ }, { "cell_type": "markdown", - "id": "abe25bce", + "id": "b6be28c4", "metadata": {}, "source": [ "You may want to take a section of your array or specific array elements to use in further analysis or additional operations. To do that, you’ll need to subset, slice, and/or index your arrays.\n", @@ -1102,7 +1102,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "4ff5af74", + "id": "6c11e978", "metadata": {}, "outputs": [], "source": [ @@ -1111,7 +1111,7 @@ }, { "cell_type": "markdown", - "id": "46e9a9e4", + "id": "71c0d6dd", "metadata": {}, "source": [ "You can easily print all of the values in the array that are less than 5." @@ -1120,7 +1120,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "315c2a6d", + "id": "d8a5e5b6", "metadata": {}, "outputs": [ { @@ -1140,7 +1140,7 @@ }, { "cell_type": "markdown", - "id": "48eb2ce0", + "id": "62ca2bd5", "metadata": {}, "source": [ "You can also select, for example, numbers that are equal to or greater than 5, and use that condition to index an array." @@ -1149,7 +1149,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "72f77806", + "id": "88160ef6", "metadata": {}, "outputs": [ { @@ -1170,7 +1170,7 @@ }, { "cell_type": "markdown", - "id": "a9d85724", + "id": "93c0082f", "metadata": {}, "source": [ "You can select elements that are divisible by 2:" @@ -1179,7 +1179,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "2eb963d0", + "id": "bd315251", "metadata": {}, "outputs": [ { @@ -1200,7 +1200,7 @@ }, { "cell_type": "markdown", - "id": "e413ed52", + "id": "f0317012", "metadata": {}, "source": [ "Or you can select elements that satisfy two conditions using the `&` and `|` operators:" @@ -1209,7 +1209,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "3cbbcb78", + "id": "b232c963", "metadata": {}, "outputs": [ { @@ -1230,7 +1230,7 @@ }, { "cell_type": "markdown", - "id": "15d9f972", + "id": "c19ab5ad", "metadata": {}, "source": [ "You can also make use of the logical operators `&` and `|` in order to return boolean values that specify whether or not the values in an array fulfill a certain condition. This can be useful with arrays that contain names or other categorical values." @@ -1239,7 +1239,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "71107b1d", + "id": "cc3ee644", "metadata": {}, "outputs": [ { @@ -1262,7 +1262,7 @@ }, { "cell_type": "markdown", - "id": "f33cf954", + "id": "c1edf600", "metadata": {}, "source": [ "You can also use `np.nonzero()` to select elements or indices from an array.\n", @@ -1273,7 +1273,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "4c70a74d", + "id": "cfa0a483", "metadata": {}, "outputs": [], "source": [ @@ -1282,7 +1282,7 @@ }, { "cell_type": "markdown", - "id": "ffe2a170", + "id": "8af96f8e", "metadata": {}, "source": [ "You can use `np.nonzero()` to print the indices of elements that are, for example, less than 5:" @@ -1291,7 +1291,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "8b4b45b8", + "id": "f27a3cb8", "metadata": {}, "outputs": [ { @@ -1312,7 +1312,7 @@ }, { "cell_type": "markdown", - "id": "55e88a39", + "id": "2334c12d", "metadata": {}, "source": [ "In this example, a tuple of arrays was returned: one for each dimension. The first array represents the row indices where these values are found, and the second array represents the column indices where the values are found.\n", @@ -1323,7 +1323,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "b66242da", + "id": "8b52d868", "metadata": {}, "outputs": [ { @@ -1345,7 +1345,7 @@ }, { "cell_type": "markdown", - "id": "0b59a31e", + "id": "97416f45", "metadata": {}, "source": [ "You can also use `np.nonzero()` to print the elements in an array that are less than 5 with:" @@ -1354,7 +1354,7 @@ { "cell_type": "code", "execution_count": 48, - "id": "dbb5def2", + "id": "7f6736f7", "metadata": {}, "outputs": [ { @@ -1374,7 +1374,7 @@ }, { "cell_type": "markdown", - "id": "e8e58650", + "id": "fa8447ee", "metadata": {}, "source": [ "If the element you’re looking for doesn’t exist in the array, then the returned array of indices will be empty. For example:" @@ -1383,7 +1383,7 @@ { "cell_type": "code", "execution_count": 49, - "id": "9c70546d", + "id": "30f0472b", "metadata": {}, "outputs": [ { @@ -1404,7 +1404,7 @@ }, { "cell_type": "markdown", - "id": "9453b1a1", + "id": "dabfad61", "metadata": {}, "source": [ "### Create an array from existing data\n", @@ -1417,7 +1417,7 @@ { "cell_type": "code", "execution_count": 50, - "id": "e78ed6f3", + "id": "a6842649", "metadata": {}, "outputs": [], "source": [ @@ -1426,7 +1426,7 @@ }, { "cell_type": "markdown", - "id": "acda1ab2", + "id": "8b614389", "metadata": {}, "source": [ "You can create a new array from a section of your array any time by specifying where you want to slice your array." @@ -1435,7 +1435,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "94e882ca", + "id": "6989fa4f", "metadata": {}, "outputs": [ { @@ -1456,7 +1456,7 @@ }, { "cell_type": "markdown", - "id": "2f306341", + "id": "f289eda6", "metadata": {}, "source": [ "Here, you grabbed a section of your array from index position 3 through index position 8.\n", @@ -1467,7 +1467,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "da7cf18e", + "id": "e210134f", "metadata": {}, "outputs": [], "source": [ @@ -1479,7 +1479,7 @@ }, { "cell_type": "markdown", - "id": "defa57a1", + "id": "2afdac4f", "metadata": {}, "source": [ "You can stack them vertically with `vstack`:" @@ -1488,7 +1488,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "c5e69457", + "id": "26755e66", "metadata": {}, "outputs": [ { @@ -1511,7 +1511,7 @@ }, { "cell_type": "markdown", - "id": "012e163b", + "id": "fef26743", "metadata": {}, "source": [ "Or stack them horizontally with hstack:" @@ -1520,7 +1520,7 @@ { "cell_type": "code", "execution_count": 54, - "id": "570dc433", + "id": "6644a131", "metadata": {}, "outputs": [ { @@ -1541,7 +1541,7 @@ }, { "cell_type": "markdown", - "id": "4ff18130", + "id": "9c076954", "metadata": {}, "source": [ "You can split an array into several smaller arrays using `hsplit`. You can specify either the number of equally shaped arrays to return or the columns after which the division should occur.\n", @@ -1552,7 +1552,7 @@ { "cell_type": "code", "execution_count": 55, - "id": "1347c4a4", + "id": "bc4467b4", "metadata": {}, "outputs": [ { @@ -1574,7 +1574,7 @@ }, { "cell_type": "markdown", - "id": "0191a5a0", + "id": "0c66f90e", "metadata": {}, "source": [ "If you wanted to split this array into three equally shaped arrays, you would run:" @@ -1583,7 +1583,7 @@ { "cell_type": "code", "execution_count": 56, - "id": "c5c5352f", + "id": "c085a4c4", "metadata": {}, "outputs": [ { @@ -1608,7 +1608,7 @@ }, { "cell_type": "markdown", - "id": "4553dec2", + "id": "09d10de4", "metadata": {}, "source": [ "If you wanted to split your array after the third and fourth column, you’d run:" @@ -1617,7 +1617,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "bff5cc21", + "id": "6f735a83", "metadata": {}, "outputs": [ { @@ -1642,7 +1642,7 @@ }, { "cell_type": "markdown", - "id": "6672a1d9", + "id": "10d069a1", "metadata": {}, "source": [ "You can use the `view` method to create a new array object that looks at the same data as the original array (a shallow copy).\n", @@ -1655,7 +1655,7 @@ { "cell_type": "code", "execution_count": 58, - "id": "84d6807a", + "id": "681e767a", "metadata": {}, "outputs": [], "source": [ @@ -1664,7 +1664,7 @@ }, { "cell_type": "markdown", - "id": "7743a4b6", + "id": "d793698b", "metadata": {}, "source": [ "Now we create an array `b1` by slicing `a` and modify the first element of `b1`. This will modify the corresponding element in `a` as well!" @@ -1673,7 +1673,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "fb7cea7e", + "id": "03f7af11", "metadata": {}, "outputs": [ { @@ -1695,7 +1695,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "a14c10fa", + "id": "29abfd98", "metadata": {}, "outputs": [ { @@ -1717,7 +1717,7 @@ { "cell_type": "code", "execution_count": 61, - "id": "e21fbebe", + "id": "1cb28f3b", "metadata": {}, "outputs": [ { @@ -1739,7 +1739,7 @@ }, { "cell_type": "markdown", - "id": "2fa50f1c", + "id": "6fa60f89", "metadata": {}, "source": [ "Using the `copy` method will make a complete copy of the array and its data (a deep copy). To use this on your array, you could run:" @@ -1748,7 +1748,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "ab07c948", + "id": "8dd1dbb7", "metadata": {}, "outputs": [], "source": [ @@ -1757,7 +1757,7 @@ }, { "cell_type": "markdown", - "id": "5bfb0e9a", + "id": "3c1bf5b9", "metadata": {}, "source": [ "## Array operations\n", @@ -1770,7 +1770,7 @@ { "cell_type": "code", "execution_count": 63, - "id": "f63f7a98", + "id": "0df0d146", "metadata": {}, "outputs": [], "source": [ @@ -1780,7 +1780,7 @@ }, { "cell_type": "markdown", - "id": "edb26bed", + "id": "6096c489", "metadata": {}, "source": [ "You can add the arrays together with the plus sign." @@ -1789,7 +1789,7 @@ { "cell_type": "code", "execution_count": 64, - "id": "a12628ca", + "id": "a3da3376", "metadata": {}, "outputs": [ { @@ -1809,7 +1809,7 @@ }, { "cell_type": "markdown", - "id": "10a78453", + "id": "857ceeca", "metadata": {}, "source": [ "You can, of course, do more than just addition!" @@ -1818,7 +1818,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "0a1ab57e", + "id": "c34fbb3d", "metadata": {}, "outputs": [ { @@ -1839,7 +1839,7 @@ }, { "cell_type": "markdown", - "id": "3a7fe8c5", + "id": "db7b0009", "metadata": {}, "source": [ "Basic operations are simple with NumPy. If you want to find the sum of the elements in an array, you’d use `sum()`. This works for 1D arrays, 2D arrays, and arrays in higher dimensions." @@ -1848,7 +1848,7 @@ { "cell_type": "code", "execution_count": 66, - "id": "4765fbea", + "id": "3ccef6f8", "metadata": {}, "outputs": [ { @@ -1869,7 +1869,7 @@ }, { "cell_type": "markdown", - "id": "c795d2ae", + "id": "92cbcee9", "metadata": {}, "source": [ "To add the rows or the columns in a 2D array, you would specify the axis.\n", @@ -1880,7 +1880,7 @@ { "cell_type": "code", "execution_count": 67, - "id": "22774bc3", + "id": "c97288df", "metadata": {}, "outputs": [], "source": [ @@ -1889,7 +1889,7 @@ }, { "cell_type": "markdown", - "id": "ca4b6372", + "id": "17f5f516", "metadata": {}, "source": [ "You can sum over the axis of rows with:" @@ -1898,7 +1898,7 @@ { "cell_type": "code", "execution_count": 68, - "id": "8547d72c", + "id": "4eea7e0a", "metadata": {}, "outputs": [ { @@ -1918,7 +1918,7 @@ }, { "cell_type": "markdown", - "id": "0ac60ab0", + "id": "be1de269", "metadata": {}, "source": [ "You can sum over the axis of columns with:" @@ -1927,7 +1927,7 @@ { "cell_type": "code", "execution_count": 69, - "id": "85ac759f", + "id": "3a987410", "metadata": {}, "outputs": [ { @@ -1947,7 +1947,7 @@ }, { "cell_type": "markdown", - "id": "25b5d4f4", + "id": "369fb67d", "metadata": {}, "source": [ "### Universal functions(ufunc)\n", @@ -2038,7 +2038,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "e169b883", + "id": "bf6e23ee", "metadata": {}, "outputs": [ { @@ -2060,7 +2060,7 @@ }, { "cell_type": "markdown", - "id": "2cc7a971", + "id": "434fd9bf", "metadata": {}, "source": [ "NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest broadcasting example occurs when an array and a scalar value are combined in an operation:" @@ -2069,7 +2069,7 @@ { "cell_type": "code", "execution_count": 71, - "id": "3741d36a", + "id": "a469d37a", "metadata": {}, "outputs": [ { @@ -2091,7 +2091,7 @@ }, { "cell_type": "markdown", - "id": "c0dac40e", + "id": "1ee6b52f", "metadata": {}, "source": [ "The result is equivalent to the previous example where `b` was an array. NumPy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible.\n", @@ -2133,7 +2133,7 @@ { "cell_type": "code", "execution_count": 72, - "id": "76014f7f", + "id": "35e1c26c", "metadata": {}, "outputs": [ { @@ -2154,7 +2154,7 @@ { "cell_type": "code", "execution_count": 73, - "id": "12e9b800", + "id": "26aefd82", "metadata": {}, "outputs": [ { @@ -2175,7 +2175,7 @@ { "cell_type": "code", "execution_count": 74, - "id": "538e8b0f", + "id": "d37ad687", "metadata": {}, "outputs": [ { @@ -2195,7 +2195,7 @@ }, { "cell_type": "markdown", - "id": "6c450279", + "id": "273886fa", "metadata": {}, "source": [ "Let’s start with this array, called “a”." @@ -2204,7 +2204,7 @@ { "cell_type": "code", "execution_count": 75, - "id": "df7e5735", + "id": "34183eda", "metadata": {}, "outputs": [], "source": [ @@ -2215,7 +2215,7 @@ }, { "cell_type": "markdown", - "id": "80b524b9", + "id": "c0f61cfa", "metadata": {}, "source": [ "It’s very common to want to aggregate along a row or column. By default, every NumPy aggregation function will return the aggregate of the entire array. To find the sum or the minimum of the elements in your array, run:" @@ -2224,7 +2224,7 @@ { "cell_type": "code", "execution_count": 76, - "id": "66c67ac4", + "id": "cb0a6d59", "metadata": {}, "outputs": [ { @@ -2244,7 +2244,7 @@ }, { "cell_type": "markdown", - "id": "5c440ff4", + "id": "9e3b702e", "metadata": {}, "source": [ "Or:" @@ -2253,7 +2253,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "0064a683", + "id": "ab98f982", "metadata": {}, "outputs": [ { @@ -2273,7 +2273,7 @@ }, { "cell_type": "markdown", - "id": "77adcfae", + "id": "e4b23885", "metadata": {}, "source": [ "You can specify on which axis you want the aggregation function to be computed. For example, you can find the minimum value within each column by specifying `axis=0`." @@ -2282,7 +2282,7 @@ { "cell_type": "code", "execution_count": 78, - "id": "406f149a", + "id": "555a5494", "metadata": {}, "outputs": [ { @@ -2302,7 +2302,7 @@ }, { "cell_type": "markdown", - "id": "c6150b00", + "id": "3cf31cb7", "metadata": {}, "source": [ "The four values listed above correspond to the number of columns in your array. With a four-column array, you will get four values as your result.\n", @@ -2325,7 +2325,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "c82893ba", + "id": "b8db9ba4", "metadata": {}, "outputs": [], "source": [ @@ -2335,7 +2335,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "5bbf1fa8", + "id": "c38ea3cb", "metadata": {}, "outputs": [ { @@ -2356,7 +2356,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "046bdefe", + "id": "6ff1d893", "metadata": {}, "outputs": [ { @@ -2376,7 +2376,7 @@ }, { "cell_type": "markdown", - "id": "a5569c55", + "id": "d7c505e0", "metadata": {}, "source": [ "It is not necessary to separate each dimension’s index into its own set of square brackets." @@ -2385,7 +2385,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "6d2ddea2", + "id": "73771785", "metadata": {}, "outputs": [], "source": [ @@ -2395,7 +2395,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "94aa2b0d", + "id": "c087f055", "metadata": {}, "outputs": [ { @@ -2416,7 +2416,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "8f19e665", + "id": "55e3a5ae", "metadata": {}, "outputs": [ { @@ -2436,7 +2436,7 @@ }, { "cell_type": "markdown", - "id": "b5948b7d", + "id": "254c4056", "metadata": {}, "source": [ "Note that If one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array. For example:" @@ -2445,7 +2445,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "707ba14b", + "id": "bc3f0df1", "metadata": {}, "outputs": [ { @@ -2465,7 +2465,7 @@ }, { "cell_type": "markdown", - "id": "03ccae92", + "id": "60e0fea3", "metadata": {}, "source": [ "That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above example, choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned is an array of that dimensionality and size. It must be noted that the returned array is a view, i.e., it is not a copy of the original, but points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is returned. So using a single index on the returned array, results in a single element being returned. That is:" @@ -2474,7 +2474,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "0d7943d1", + "id": "17ca9933", "metadata": {}, "outputs": [ { @@ -2494,7 +2494,7 @@ }, { "cell_type": "markdown", - "id": "9bfe60fd", + "id": "b1540b46", "metadata": {}, "source": [ "So note that `x[0, 2] == x[0][2]` though the second case is more inefficient as a new temporary array is created after the first index that is subsequently indexed by 2.\n", @@ -2521,7 +2521,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "39736de3", + "id": "5d59ce09", "metadata": {}, "outputs": [ { @@ -2542,7 +2542,7 @@ }, { "cell_type": "markdown", - "id": "cae23acf", + "id": "0ad4af78", "metadata": {}, "source": [ "- Negative *i* and *j* are interpreted as *n + i* and *n + j* where *n* is the number of elements in the corresponding dimension. Negative *k* makes stepping go towards smaller indices. From the above example:" @@ -2551,7 +2551,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "9b7f09b1", + "id": "0b8d903a", "metadata": {}, "outputs": [ { @@ -2572,7 +2572,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "a917329c", + "id": "0dccd35c", "metadata": {}, "outputs": [ { @@ -2592,7 +2592,7 @@ }, { "cell_type": "markdown", - "id": "817f1318", + "id": "fdf27673", "metadata": {}, "source": [ "- Assume *n* is the number of elements in the dimension being sliced. Then, if *i* is not given it defaults to 0 for *k > 0* and *n - 1* for *k < 0*. If *j* is not given it defaults to *n* for *k > 0* and *-n-1* for *k < 0*. If *k* is not given it defaults to 1. Note that `::` is the same as : and means select all indices along this axis. From the above example:" @@ -2601,7 +2601,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "aa2480ef", + "id": "9c58ff87", "metadata": {}, "outputs": [ { @@ -2621,7 +2621,7 @@ }, { "cell_type": "markdown", - "id": "cdb21dd3", + "id": "36552e98", "metadata": {}, "source": [ "- If the number of objects in the selection tuple is less than N, then `:` is assumed for any subsequent dimensions. For example:" @@ -2630,7 +2630,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "c3dcf26b", + "id": "a50bd245", "metadata": {}, "outputs": [ { @@ -2652,7 +2652,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "e3dc5a91", + "id": "0486952f", "metadata": {}, "outputs": [ { @@ -2674,7 +2674,7 @@ }, { "cell_type": "markdown", - "id": "24d6064c", + "id": "fddbb9d3", "metadata": {}, "source": [ "- An integer, *i*, returns the same values as `i:i+1` **except** the dimensionality of the returned object is reduced by 1. In particular, a selection tuple with the *p*-th element an integer (and all other entries *:*) returns the corresponding sub-array with dimension *N - 1*. If *N = 1* then the returned object is an array scalar.\n", @@ -2699,7 +2699,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "d93749f7", + "id": "12c63082", "metadata": {}, "outputs": [ { @@ -2720,7 +2720,7 @@ }, { "cell_type": "markdown", - "id": "ca8798f4", + "id": "0078053e", "metadata": {}, "source": [ "This is equivalent to:" @@ -2729,7 +2729,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "cd4c7a2e", + "id": "340be6f0", "metadata": {}, "outputs": [ { @@ -2750,7 +2750,7 @@ }, { "cell_type": "markdown", - "id": "32625800", + "id": "9d18f154", "metadata": {}, "source": [ "Each `newaxis` object in the selection tuple serves to expand the dimensions of the resulting selection by one unit-length dimension. The added dimension is the position of the `newaxis` object in the selection tuple. `newaxis` is an alias for `None`, and `None` can be used in place of this with the same result. From the above example:" @@ -2759,7 +2759,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "20fe2be5", + "id": "6d7c70b3", "metadata": {}, "outputs": [ { @@ -2780,7 +2780,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "63240821", + "id": "2ac0fede", "metadata": {}, "outputs": [ { @@ -2800,7 +2800,7 @@ }, { "cell_type": "markdown", - "id": "0a220928", + "id": "c33c4d8f", "metadata": {}, "source": [ "This can be handy to combine two arrays in a way that otherwise would require explicit reshaping operations. For example:" @@ -2809,7 +2809,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "20ae9d4b", + "id": "af1e4760", "metadata": {}, "outputs": [ { @@ -2834,7 +2834,7 @@ }, { "cell_type": "markdown", - "id": "8616dbbc", + "id": "a682dfca", "metadata": {}, "source": [ "### Advanced indexing\n", @@ -2857,7 +2857,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "4cade501", + "id": "09f60290", "metadata": {}, "outputs": [], "source": [ @@ -2867,7 +2867,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "8cb265f3", + "id": "c6215f55", "metadata": {}, "outputs": [ { @@ -2888,7 +2888,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "6a678867", + "id": "4c78bcbf", "metadata": {}, "outputs": [ { @@ -2909,7 +2909,7 @@ { "cell_type": "code", "execution_count": 101, - "id": "76ffa3ab", + "id": "712d9208", "metadata": {}, "outputs": [ { @@ -2929,7 +2929,7 @@ }, { "cell_type": "markdown", - "id": "3046f1aa", + "id": "e5d75aa2", "metadata": {}, "source": [ "If the index values are out of bounds then an `IndexError` is thrown:" @@ -2938,7 +2938,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "69ad05d6", + "id": "3f885a84", "metadata": {}, "outputs": [], "source": [ @@ -2948,7 +2948,7 @@ { "cell_type": "code", "execution_count": 103, - "id": "a94a5db2", + "id": "eed86f9e", "metadata": {}, "outputs": [ { @@ -2969,7 +2969,7 @@ }, { "cell_type": "markdown", - "id": "fe1eb07f", + "id": "6dd9de97", "metadata": {}, "source": [ "```py\n", @@ -2999,7 +2999,7 @@ { "cell_type": "code", "execution_count": 104, - "id": "534eaca5", + "id": "804a6e1c", "metadata": {}, "outputs": [], "source": [ @@ -3009,7 +3009,7 @@ { "cell_type": "code", "execution_count": 105, - "id": "48bf6028", + "id": "2a4c6d27", "metadata": {}, "outputs": [ { @@ -3034,7 +3034,7 @@ { "cell_type": "code", "execution_count": 106, - "id": "3d30a489", + "id": "34937c0b", "metadata": {}, "outputs": [ { @@ -3054,7 +3054,7 @@ }, { "cell_type": "markdown", - "id": "237662eb", + "id": "72afe642", "metadata": {}, "source": [ "In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array being indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set for each position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first value of the resultant array is `y[0, 0]`. The next value is `y[2, 1]`, and the last is `y[4, 2]`.\n", @@ -3077,7 +3077,7 @@ { "cell_type": "code", "execution_count": 107, - "id": "4af2f4e9", + "id": "746a8a2a", "metadata": {}, "outputs": [ { @@ -3097,7 +3097,7 @@ }, { "cell_type": "markdown", - "id": "cfb6a961", + "id": "c806293b", "metadata": {}, "source": [ "Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit of thought to understand what happens in such cases. For example if we just use one index array with y:" @@ -3106,7 +3106,7 @@ { "cell_type": "code", "execution_count": 108, - "id": "970c577f", + "id": "8d24f98b", "metadata": {}, "outputs": [ { @@ -3128,7 +3128,7 @@ }, { "cell_type": "markdown", - "id": "8f83cd68", + "id": "75a6a88c", "metadata": {}, "source": [ "It results in the construction of a new array where each value of the index array selects one row from the array being indexed and the resultant array has the resulting shape (number of index elements, size of row).\n", @@ -3143,7 +3143,7 @@ { "cell_type": "code", "execution_count": 109, - "id": "7845e084", + "id": "843d2d9d", "metadata": {}, "outputs": [ { @@ -3164,7 +3164,7 @@ }, { "cell_type": "markdown", - "id": "9d716b3d", + "id": "b53bec85", "metadata": {}, "source": [ "To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function `ix_` can help with this broadcasting. This is best understood with an example.\n", @@ -3177,7 +3177,7 @@ { "cell_type": "code", "execution_count": 110, - "id": "9d028c17", + "id": "8b3486a3", "metadata": {}, "outputs": [ { @@ -3206,7 +3206,7 @@ }, { "cell_type": "markdown", - "id": "758b4a35", + "id": "6b649b71", "metadata": {}, "source": [ "However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such as `rows[:, np.newaxis] + columns`) to simplify this:" @@ -3215,7 +3215,7 @@ { "cell_type": "code", "execution_count": 111, - "id": "ec7b51df", + "id": "e499d3c0", "metadata": {}, "outputs": [], "source": [ @@ -3226,7 +3226,7 @@ { "cell_type": "code", "execution_count": 112, - "id": "edbf9768", + "id": "8c259488", "metadata": {}, "outputs": [ { @@ -3248,7 +3248,7 @@ { "cell_type": "code", "execution_count": 113, - "id": "eb31dd1f", + "id": "162b4cf4", "metadata": {}, "outputs": [ { @@ -3269,7 +3269,7 @@ }, { "cell_type": "markdown", - "id": "7ff7c435", + "id": "6804676b", "metadata": {}, "source": [ "This broadcasting can also be achieved using the function `ix_`:" @@ -3278,7 +3278,7 @@ { "cell_type": "code", "execution_count": 114, - "id": "b5b937a5", + "id": "9be46052", "metadata": {}, "outputs": [ { @@ -3299,7 +3299,7 @@ }, { "cell_type": "markdown", - "id": "0a8f070c", + "id": "e9ff09f5", "metadata": {}, "source": [ "Note that without the `np.ix_` call, only the diagonal elements would be selected:" @@ -3308,7 +3308,7 @@ { "cell_type": "code", "execution_count": 115, - "id": "05619cd7", + "id": "e796de41", "metadata": {}, "outputs": [ { @@ -3328,7 +3328,7 @@ }, { "cell_type": "markdown", - "id": "9d77ccdb", + "id": "12406154", "metadata": {}, "source": [ "This difference is the most important thing to remember about indexing with multiple advanced indices.\n", @@ -3349,7 +3349,7 @@ { "cell_type": "code", "execution_count": 116, - "id": "d73844ae", + "id": "0c1a1859", "metadata": {}, "outputs": [ { @@ -3370,7 +3370,7 @@ }, { "cell_type": "markdown", - "id": "985d5493", + "id": "cfda58c9", "metadata": {}, "source": [ "Or wish to add a constant to all negative elements:" @@ -3379,7 +3379,7 @@ { "cell_type": "code", "execution_count": 117, - "id": "75ee7fe3", + "id": "84b58448", "metadata": {}, "outputs": [ { @@ -3401,7 +3401,7 @@ }, { "cell_type": "markdown", - "id": "d9247246", + "id": "ac73a2b4", "metadata": {}, "source": [ "In general if an index includes a Boolean array, the result will be identical to inserting `obj.nonzero()` into the same position and using the integer array indexing mechanism described above. `x[ind_1, boolean_array, ind_2]` is equivalent to `x[(ind_1,) + boolean_array.nonzero() + (ind_2,)]`.\n", @@ -3414,7 +3414,7 @@ { "cell_type": "code", "execution_count": 118, - "id": "e691a204", + "id": "030806a6", "metadata": {}, "outputs": [], "source": [ @@ -3425,7 +3425,7 @@ { "cell_type": "code", "execution_count": 119, - "id": "6730d9e8", + "id": "419f7088", "metadata": {}, "outputs": [ { @@ -3446,7 +3446,7 @@ { "cell_type": "code", "execution_count": 120, - "id": "716092f9", + "id": "356547dd", "metadata": {}, "outputs": [ { @@ -3467,7 +3467,7 @@ }, { "cell_type": "markdown", - "id": "657b732f", + "id": "5ead70ba", "metadata": {}, "source": [ "Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.\n", @@ -3480,7 +3480,7 @@ { "cell_type": "code", "execution_count": 121, - "id": "24e80f01", + "id": "59f2584c", "metadata": {}, "outputs": [ { @@ -3503,7 +3503,7 @@ }, { "cell_type": "markdown", - "id": "2e9c7a50", + "id": "fde47f24", "metadata": {}, "source": [ "Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with the `obj.nonzero()` analogy. The function `ix_` also supports boolean arrays and will work without any surprises.\n", @@ -3516,7 +3516,7 @@ { "cell_type": "code", "execution_count": 122, - "id": "0aee987f", + "id": "ad475641", "metadata": {}, "outputs": [], "source": [ @@ -3530,7 +3530,7 @@ { "cell_type": "code", "execution_count": 123, - "id": "43d73458", + "id": "57e1caef", "metadata": {}, "outputs": [ { @@ -3551,7 +3551,7 @@ { "cell_type": "code", "execution_count": 124, - "id": "4544e60c", + "id": "f711ea9e", "metadata": {}, "outputs": [], "source": [ @@ -3561,7 +3561,7 @@ { "cell_type": "code", "execution_count": 125, - "id": "084a72fa", + "id": "afb6793d", "metadata": {}, "outputs": [ { @@ -3582,7 +3582,7 @@ }, { "cell_type": "markdown", - "id": "54d115d4", + "id": "20bb0f03", "metadata": {}, "source": [ "Without the n`p.ix_` call, only the diagonal elements would be selected.\n", @@ -3593,7 +3593,7 @@ { "cell_type": "code", "execution_count": 126, - "id": "492e0749", + "id": "fec999aa", "metadata": {}, "outputs": [ { @@ -3615,7 +3615,7 @@ }, { "cell_type": "markdown", - "id": "9794683e", + "id": "5f069d0e", "metadata": {}, "source": [ "##### Example 3\n", @@ -3626,7 +3626,7 @@ { "cell_type": "code", "execution_count": 127, - "id": "27a94206", + "id": "78014573", "metadata": {}, "outputs": [ { @@ -3654,7 +3654,7 @@ { "cell_type": "code", "execution_count": 128, - "id": "602decb2", + "id": "5f18d1f1", "metadata": {}, "outputs": [ { @@ -3678,7 +3678,7 @@ }, { "cell_type": "markdown", - "id": "822f10a9", + "id": "a0d3b147", "metadata": {}, "source": [ "#### Combining advanced and basic indexing\n", @@ -3691,7 +3691,7 @@ { "cell_type": "code", "execution_count": 129, - "id": "2fd94f53", + "id": "9313ab71", "metadata": {}, "outputs": [ { @@ -3714,7 +3714,7 @@ }, { "cell_type": "markdown", - "id": "61fb52dd", + "id": "2ae88709", "metadata": {}, "source": [ "In effect, the slice and index array operation are independent. The slice operation extracts columns with index 1 and 2, (i.e. the 2nd and 3rd columns), followed by the index array operation which extracts rows with index 0, 2 and 4 (i.e the first, third and fifth rows). This is equivalent to:" @@ -3723,7 +3723,7 @@ { "cell_type": "code", "execution_count": 130, - "id": "6b417598", + "id": "56b1f695", "metadata": {}, "outputs": [ { @@ -3745,7 +3745,7 @@ }, { "cell_type": "markdown", - "id": "e1c85d79", + "id": "0e6dddf9", "metadata": {}, "source": [ "A single advanced index can, for example, replace a slice and the result array will be the same. However, it is a copy and may have a different memory layout. A slice is preferable when it is possible. For example:" @@ -3754,7 +3754,7 @@ { "cell_type": "code", "execution_count": 131, - "id": "0ff42fd8", + "id": "607ce968", "metadata": {}, "outputs": [], "source": [ @@ -3767,7 +3767,7 @@ { "cell_type": "code", "execution_count": 132, - "id": "58013488", + "id": "f04d4d21", "metadata": {}, "outputs": [ { @@ -3788,7 +3788,7 @@ { "cell_type": "code", "execution_count": 133, - "id": "5e4c2001", + "id": "7bdee1ce", "metadata": {}, "outputs": [ { @@ -3808,7 +3808,7 @@ }, { "cell_type": "markdown", - "id": "381fc0be", + "id": "df8272ed", "metadata": {}, "source": [ "The easiest way to understand a combination of multiple advanced indices may be to think in terms of the resulting shape. There are two parts to the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the advanced indexing part. Two cases of index combination need to be distinguished:\n", @@ -3834,7 +3834,7 @@ { "cell_type": "code", "execution_count": 134, - "id": "1731247e", + "id": "e665163b", "metadata": {}, "outputs": [], "source": [ @@ -3845,7 +3845,7 @@ { "cell_type": "code", "execution_count": 135, - "id": "baefc549", + "id": "8a0eeb3f", "metadata": {}, "outputs": [ { @@ -3870,7 +3870,7 @@ { "cell_type": "code", "execution_count": 136, - "id": "e6e1c108", + "id": "211ae299", "metadata": {}, "outputs": [ { @@ -3891,7 +3891,7 @@ }, { "cell_type": "markdown", - "id": "eaa10183", + "id": "ac489faf", "metadata": {}, "source": [ "### Field access\n", @@ -3908,7 +3908,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "8c715588", + "id": "87082d2b", "metadata": {}, "outputs": [], "source": [ @@ -3918,7 +3918,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "7b5d745d", + "id": "25797dbf", "metadata": {}, "outputs": [ { @@ -3939,7 +3939,7 @@ { "cell_type": "code", "execution_count": 139, - "id": "473385a9", + "id": "d362383b", "metadata": {}, "outputs": [ { @@ -3960,7 +3960,7 @@ { "cell_type": "code", "execution_count": 140, - "id": "38df66f1", + "id": "d277a47b", "metadata": {}, "outputs": [ { @@ -3981,7 +3981,7 @@ { "cell_type": "code", "execution_count": 141, - "id": "6b405005", + "id": "bb59101a", "metadata": {}, "outputs": [ { @@ -4001,7 +4001,7 @@ }, { "cell_type": "markdown", - "id": "ceaa6265", + "id": "81e86d2a", "metadata": {}, "source": [ "### Flat Iterator indexing\n", @@ -4016,7 +4016,7 @@ { "cell_type": "code", "execution_count": 142, - "id": "60df60bc", + "id": "651d8796", "metadata": {}, "outputs": [], "source": [ @@ -4026,7 +4026,7 @@ }, { "cell_type": "markdown", - "id": "e35ad0a7", + "id": "f0bf23cc", "metadata": {}, "source": [ "Or an array of the right size:" @@ -4035,7 +4035,7 @@ { "cell_type": "code", "execution_count": 143, - "id": "36c7a028", + "id": "3f734843", "metadata": {}, "outputs": [], "source": [ @@ -4044,7 +4044,7 @@ }, { "cell_type": "markdown", - "id": "d6bb68ea", + "id": "7577483a", "metadata": {}, "source": [ "Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even exceptions (assigning complex to floats or ints):" @@ -4053,7 +4053,7 @@ { "cell_type": "code", "execution_count": 144, - "id": "9f3a644a", + "id": "4a2f112c", "metadata": {}, "outputs": [ { @@ -4074,7 +4074,7 @@ }, { "cell_type": "markdown", - "id": "a9daf9ca", + "id": "47e09f84", "metadata": {}, "source": [ "```py\n", @@ -4093,7 +4093,7 @@ { "cell_type": "code", "execution_count": 145, - "id": "152f86ff", + "id": "b1b83b6d", "metadata": {}, "outputs": [ { @@ -4115,7 +4115,7 @@ { "cell_type": "code", "execution_count": 146, - "id": "8a4b69d7", + "id": "c2ed584e", "metadata": {}, "outputs": [ { @@ -4136,7 +4136,7 @@ }, { "cell_type": "markdown", - "id": "94071121", + "id": "26367fa1", "metadata": {}, "source": [ "Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason is that a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then the value 1 is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of the array at `x[1] + 1` is assigned to `x[1]` three times, rather than being incremented 3 times.\n", @@ -4149,7 +4149,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "f8f02799", + "id": "361dad28", "metadata": {}, "outputs": [ { @@ -4171,7 +4171,7 @@ }, { "cell_type": "markdown", - "id": "0c35b2c7", + "id": "e214f199", "metadata": {}, "source": [ "So one can use code to construct tuples of any number of indices and then use these within an index.\n", @@ -4182,7 +4182,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "b05c46a5", + "id": "956f5a69", "metadata": {}, "outputs": [ { @@ -4203,7 +4203,7 @@ }, { "cell_type": "markdown", - "id": "32f2990f", + "id": "7d68302b", "metadata": {}, "source": [ "Likewise, ellipsis can be specified by code by using the Ellipsis object:" @@ -4212,7 +4212,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "0c52b1c9", + "id": "8e19d081", "metadata": {}, "outputs": [ { @@ -4235,7 +4235,7 @@ }, { "cell_type": "markdown", - "id": "2cf9e8ae", + "id": "30b1c106", "metadata": {}, "source": [ "For this reason, it is possible to use the output from the `np.nonzero()` function directly as an index since it always returns a tuple of index arrays.\n", @@ -4246,7 +4246,7 @@ { "cell_type": "code", "execution_count": 150, - "id": "0e5cedd0", + "id": "bc878720", "metadata": {}, "outputs": [ { @@ -4316,7 +4316,7 @@ { "cell_type": "code", "execution_count": 151, - "id": "93461eca", + "id": "8d0c8879", "metadata": {}, "outputs": [ { @@ -4336,7 +4336,7 @@ }, { "cell_type": "markdown", - "id": "860ceada", + "id": "b900ab4b", "metadata": {}, "source": [ "## Structured arrays\n", @@ -4349,7 +4349,7 @@ { "cell_type": "code", "execution_count": 152, - "id": "bbccc513", + "id": "731cfdd6", "metadata": {}, "outputs": [ { @@ -4372,7 +4372,7 @@ }, { "cell_type": "markdown", - "id": "599c24ca", + "id": "148197cf", "metadata": {}, "source": [ "Here `x` is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length 10 or less named `'name'`, 2. a 32-bit integer named `'age'`, and 3. a 32-bit float named `'weight'`.\n", @@ -4383,7 +4383,7 @@ { "cell_type": "code", "execution_count": 153, - "id": "745967eb", + "id": "9616caaa", "metadata": {}, "outputs": [ { @@ -4403,7 +4403,7 @@ }, { "cell_type": "markdown", - "id": "d2f00026", + "id": "de516267", "metadata": {}, "source": [ "You can access and modify individual fields of a structured array by indexing with the field name:" @@ -4412,7 +4412,7 @@ { "cell_type": "code", "execution_count": 154, - "id": "fec68e48", + "id": "d43c6311", "metadata": {}, "outputs": [ { @@ -4433,7 +4433,7 @@ { "cell_type": "code", "execution_count": 155, - "id": "25eb0464", + "id": "0be2975e", "metadata": {}, "outputs": [ { @@ -4454,7 +4454,7 @@ { "cell_type": "code", "execution_count": 156, - "id": "d1f77685", + "id": "80a499fb", "metadata": {}, "outputs": [ { @@ -4475,7 +4475,7 @@ }, { "cell_type": "markdown", - "id": "d8d5a893", + "id": "3b028ec2", "metadata": {}, "source": [ "Structured datatypes are designed to be able to mimic 'structs' in the C language, and share a similar memory layout. They are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for interpreting binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes, and unions, and allow control over the memory layout of the structure.\n", @@ -4498,7 +4498,7 @@ { "cell_type": "code", "execution_count": 157, - "id": "797dd050", + "id": "74ebd158", "metadata": {}, "outputs": [ { @@ -4518,7 +4518,7 @@ }, { "cell_type": "markdown", - "id": "32712a39", + "id": "e34b6ce2", "metadata": {}, "source": [ "If `fieldname` is the empty string `''`, the field will be given a default name of the form `f#`, where `#` is the integer index of the field, counting from 0 from the left:" @@ -4527,7 +4527,7 @@ { "cell_type": "code", "execution_count": 158, - "id": "09d05c4f", + "id": "0f6e526b", "metadata": {}, "outputs": [ { @@ -4547,7 +4547,7 @@ }, { "cell_type": "markdown", - "id": "4f6bb0fd", + "id": "53d95bbc", "metadata": {}, "source": [ "The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.\n", @@ -4560,7 +4560,7 @@ { "cell_type": "code", "execution_count": 159, - "id": "28c8a822", + "id": "b2287306", "metadata": {}, "outputs": [ { @@ -4581,7 +4581,7 @@ { "cell_type": "code", "execution_count": 160, - "id": "f7b83bcf", + "id": "79eff3e6", "metadata": {}, "outputs": [ { @@ -4601,7 +4601,7 @@ }, { "cell_type": "markdown", - "id": "5c960b91", + "id": "257bd476", "metadata": {}, "source": [ "- A dictionary of field parameter arrays\n", @@ -4614,7 +4614,7 @@ { "cell_type": "code", "execution_count": 161, - "id": "434ca05a", + "id": "ab42e01a", "metadata": {}, "outputs": [ { @@ -4635,7 +4635,7 @@ { "cell_type": "code", "execution_count": 162, - "id": "e2a4528d", + "id": "9fd55ad4", "metadata": {}, "outputs": [ { @@ -4658,7 +4658,7 @@ }, { "cell_type": "markdown", - "id": "36a35aeb", + "id": "64c2856f", "metadata": {}, "source": [ "Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber any overlapping field’s data. As an exception, fields of `numpy.object_` type cannot overlap with other fields, because of the risk of clobbering the internal object pointer and then dereferencing it.\n", @@ -4673,7 +4673,7 @@ { "cell_type": "code", "execution_count": 163, - "id": "d9f02eba", + "id": "d9c1f88a", "metadata": {}, "outputs": [ { @@ -4693,7 +4693,7 @@ }, { "cell_type": "markdown", - "id": "a436abe7", + "id": "86448c29", "metadata": {}, "source": [ "#### Manipulating and Displaying Structured Datatypes\n", @@ -4704,7 +4704,7 @@ { "cell_type": "code", "execution_count": 164, - "id": "f69590d4", + "id": "b9033bda", "metadata": {}, "outputs": [ { @@ -4725,7 +4725,7 @@ }, { "cell_type": "markdown", - "id": "4e7b9a5d", + "id": "178065ea", "metadata": {}, "source": [ "The field names may be modified by assigning to the `names` attribute using a sequence of strings of the same length.\n", @@ -4736,7 +4736,7 @@ { "cell_type": "code", "execution_count": 165, - "id": "43f8a0f5", + "id": "2ab6061b", "metadata": {}, "outputs": [ { @@ -4756,7 +4756,7 @@ }, { "cell_type": "markdown", - "id": "1232b323", + "id": "ec92a2d5", "metadata": {}, "source": [ "Both the `names` and `fields` attributes will equal `None` for unstructured arrays. The recommended way to test if a dtype is structured is with `if dt.names is not None` rather than `if dt.names`, to account for dtypes with 0 fields.\n", @@ -4773,7 +4773,7 @@ { "cell_type": "code", "execution_count": 166, - "id": "a0ed1548", + "id": "655b8383", "metadata": {}, "outputs": [ { @@ -4793,7 +4793,7 @@ }, { "cell_type": "markdown", - "id": "7828e2b3", + "id": "6ff6765b", "metadata": {}, "source": [ "When using the first form of dictionary-based specification, the titles may be supplied as an extra `'titles'` key as described above. When using the second (discouraged) dictionary-based specification, the title can be supplied by providing a 3-element tuple `(datatype, offset, title)` instead of the usual 2-element tuple:" @@ -4802,7 +4802,7 @@ { "cell_type": "code", "execution_count": 167, - "id": "a92fe7b9", + "id": "054229c3", "metadata": {}, "outputs": [ { @@ -4822,7 +4822,7 @@ }, { "cell_type": "markdown", - "id": "a03df07f", + "id": "8cb7b0c3", "metadata": {}, "source": [ "The `dtype.fields` dictionary will contain titles as keys, if any titles are used. This means effectively that a field with a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third element, the field title. Because of this, and because the `names` attribute preserves the field order while the `fields` attribute may not, it is recommended to iterate through the fields of a dtype using the `names` attribute of the dtype, which will not list titles, as in:" @@ -4831,7 +4831,7 @@ { "cell_type": "code", "execution_count": 168, - "id": "7d79d449", + "id": "46fa0789", "metadata": {}, "outputs": [ { @@ -4850,7 +4850,7 @@ }, { "cell_type": "markdown", - "id": "f326f48c", + "id": "90027ceb", "metadata": {}, "source": [ "### Indexing and Assignment to Structured arrays\n", @@ -4867,7 +4867,7 @@ { "cell_type": "code", "execution_count": 169, - "id": "0bcff25e", + "id": "3acd25ac", "metadata": {}, "outputs": [ { @@ -4890,7 +4890,7 @@ }, { "cell_type": "markdown", - "id": "c6036a27", + "id": "71abc223", "metadata": {}, "source": [ "##### Assignment from Scalars\n", @@ -4901,7 +4901,7 @@ { "cell_type": "code", "execution_count": 170, - "id": "5f8180c1", + "id": "09ad3720", "metadata": {}, "outputs": [], "source": [ @@ -4911,7 +4911,7 @@ { "cell_type": "code", "execution_count": 171, - "id": "1d2f184e", + "id": "b4e9d99e", "metadata": {}, "outputs": [ { @@ -4934,7 +4934,7 @@ { "cell_type": "code", "execution_count": 172, - "id": "38fa378b", + "id": "17e3e19a", "metadata": {}, "outputs": [ { @@ -4956,7 +4956,7 @@ }, { "cell_type": "markdown", - "id": "31872854", + "id": "bfc7d2c2", "metadata": {}, "source": [ "Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:" @@ -4965,7 +4965,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "2ad8f17d", + "id": "e27b36d3", "metadata": {}, "outputs": [], "source": [ @@ -4976,7 +4976,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "59d06d12", + "id": "bbda13b9", "metadata": {}, "outputs": [], "source": [ @@ -4985,7 +4985,7 @@ }, { "cell_type": "markdown", - "id": "254ad34d", + "id": "ce6b3e7e", "metadata": {}, "source": [ "```py\n", @@ -5006,7 +5006,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "a1e63a89", + "id": "4c1918c7", "metadata": {}, "outputs": [], "source": [ @@ -5017,7 +5017,7 @@ { "cell_type": "code", "execution_count": 176, - "id": "ac4e538d", + "id": "00d0a5f3", "metadata": {}, "outputs": [ { @@ -5039,7 +5039,7 @@ }, { "cell_type": "markdown", - "id": "695a3ae3", + "id": "2c3d7598", "metadata": {}, "source": [ "##### Assignment involving subarrays\n", @@ -5056,7 +5056,7 @@ { "cell_type": "code", "execution_count": 177, - "id": "78eb2d91", + "id": "095efc01", "metadata": {}, "outputs": [ { @@ -5078,7 +5078,7 @@ { "cell_type": "code", "execution_count": 178, - "id": "bd39cd14", + "id": "4aba895c", "metadata": {}, "outputs": [ { @@ -5099,7 +5099,7 @@ }, { "cell_type": "markdown", - "id": "65aa6b1c", + "id": "b41a3c7a", "metadata": {}, "source": [ "The resulting array is a view into the original array. It shares the same memory locations and writing to the view will modify the original array." @@ -5108,7 +5108,7 @@ { "cell_type": "code", "execution_count": 179, - "id": "98b4398f", + "id": "748ea7c0", "metadata": {}, "outputs": [ { @@ -5130,7 +5130,7 @@ }, { "cell_type": "markdown", - "id": "eb5964c9", + "id": "dd634134", "metadata": {}, "source": [ "This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the case of nested structures." @@ -5139,7 +5139,7 @@ { "cell_type": "code", "execution_count": 180, - "id": "f1fc17d5", + "id": "da053c07", "metadata": {}, "outputs": [ { @@ -5159,7 +5159,7 @@ }, { "cell_type": "markdown", - "id": "2ce4b583", + "id": "527b2bfe", "metadata": {}, "source": [ "If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:" @@ -5168,7 +5168,7 @@ { "cell_type": "code", "execution_count": 181, - "id": "511e4a07", + "id": "4aab2047", "metadata": {}, "outputs": [], "source": [ @@ -5178,7 +5178,7 @@ { "cell_type": "code", "execution_count": 182, - "id": "6a2b3394", + "id": "aa1fe97d", "metadata": {}, "outputs": [ { @@ -5199,7 +5199,7 @@ { "cell_type": "code", "execution_count": 183, - "id": "13a0bed3", + "id": "347a151d", "metadata": {}, "outputs": [ { @@ -5219,7 +5219,7 @@ }, { "cell_type": "markdown", - "id": "2fcb6413", + "id": "16ef12a4", "metadata": {}, "source": [ "##### Accessing multiple fields\n", @@ -5232,7 +5232,7 @@ { "cell_type": "code", "execution_count": 184, - "id": "1fbf406d", + "id": "7d571104", "metadata": {}, "outputs": [ { @@ -5254,7 +5254,7 @@ }, { "cell_type": "markdown", - "id": "446cb17a", + "id": "fd414843", "metadata": {}, "source": [ "Assignment to the view modifies the original array. The view’s fields will be in the order they were indexed. Note that unlike for single-field indexing, the dtype of the view has the same itemsize as the original array, and has fields at the same offsets as in the original array, and unindexed fields are merely missing.\n", @@ -5265,7 +5265,7 @@ { "cell_type": "code", "execution_count": 185, - "id": "9b1533fb", + "id": "63fc9305", "metadata": {}, "outputs": [ { @@ -5287,7 +5287,7 @@ }, { "cell_type": "markdown", - "id": "1ab777da", + "id": "3bebf5bb", "metadata": {}, "source": [ "This obeys the structured array assignment rules described above. For example, this means that one can swap the values of two fields using appropriate multi-field indexes:" @@ -5296,7 +5296,7 @@ { "cell_type": "code", "execution_count": 186, - "id": "92f9299f", + "id": "d012c47a", "metadata": {}, "outputs": [], "source": [ @@ -5305,7 +5305,7 @@ }, { "cell_type": "markdown", - "id": "ff11badf", + "id": "3a06e1be", "metadata": {}, "source": [ "##### Indexing with an integer to get a structured scalar\n", @@ -5316,7 +5316,7 @@ { "cell_type": "code", "execution_count": 187, - "id": "3c4458fb", + "id": "57a2317e", "metadata": {}, "outputs": [ { @@ -5339,7 +5339,7 @@ { "cell_type": "code", "execution_count": 188, - "id": "9d02156e", + "id": "68e825bd", "metadata": {}, "outputs": [ { @@ -5359,7 +5359,7 @@ }, { "cell_type": "markdown", - "id": "091a49db", + "id": "76996871", "metadata": {}, "source": [ "Unlike other numpy scalars, structured scalars are mutable and act like views into the original array, such that modifying the scalar will modify the original array. Structured scalars also support access and assignment by field name:" @@ -5368,7 +5368,7 @@ { "cell_type": "code", "execution_count": 189, - "id": "fce3539a", + "id": "7717de35", "metadata": {}, "outputs": [ { @@ -5391,7 +5391,7 @@ }, { "cell_type": "markdown", - "id": "ec2ee51b", + "id": "0c60396e", "metadata": {}, "source": [ "Similarly to tuples, structured scalars can also be indexed with an integer:" @@ -5400,7 +5400,7 @@ { "cell_type": "code", "execution_count": 190, - "id": "7892151e", + "id": "f15636e2", "metadata": {}, "outputs": [ { @@ -5422,7 +5422,7 @@ { "cell_type": "code", "execution_count": 191, - "id": "1f5b258b", + "id": "f36c37e1", "metadata": {}, "outputs": [], "source": [ @@ -5431,7 +5431,7 @@ }, { "cell_type": "markdown", - "id": "fc2974b3", + "id": "902b6b77", "metadata": {}, "source": [ "Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native python integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling `numpy.ndarray.item`:" @@ -5440,7 +5440,7 @@ { "cell_type": "code", "execution_count": 192, - "id": "75900109", + "id": "501e7ddc", "metadata": {}, "outputs": [ { @@ -5460,7 +5460,7 @@ }, { "cell_type": "markdown", - "id": "675d25e0", + "id": "701d3646", "metadata": {}, "source": [ "#### Viewing structured arrays containing objects\n", @@ -5475,7 +5475,7 @@ { "cell_type": "code", "execution_count": 193, - "id": "4e0d5322", + "id": "3a2ffa4c", "metadata": {}, "outputs": [ { @@ -5497,7 +5497,7 @@ }, { "cell_type": "markdown", - "id": "bf1f00b0", + "id": "bd9211ed", "metadata": {}, "source": [ "NumPy will promote individual field datatypes to perform the comparison. So the following is also valid (note the `'f4'` dtype for the `'a'` field):" @@ -5506,7 +5506,7 @@ { "cell_type": "code", "execution_count": 194, - "id": "afc92f87", + "id": "06be69c9", "metadata": {}, "outputs": [ { @@ -5527,7 +5527,7 @@ }, { "cell_type": "markdown", - "id": "580de1f6", + "id": "b6da70a8", "metadata": {}, "source": [ "To compare two structured arrays, it must be possible to promote them to a common dtype as returned by `numpy.result_type` and `np.promote_types`. This enforces that the number of fields, the field names, and the field titles must match precisely. When promotion is not possible, for example due to mismatching field names, NumPy will raise an error. Promotion between two structured dtypes results in a canonical dtype that ensures native byte-order for all fields:" @@ -5536,7 +5536,7 @@ { "cell_type": "code", "execution_count": 195, - "id": "ca2a66a5", + "id": "337df658", "metadata": {}, "outputs": [ { @@ -5557,7 +5557,7 @@ { "cell_type": "code", "execution_count": 196, - "id": "ef7f384f", + "id": "51141e9f", "metadata": {}, "outputs": [ { @@ -5577,7 +5577,7 @@ }, { "cell_type": "markdown", - "id": "93698d5e", + "id": "04f4a521", "metadata": {}, "source": [ "The resulting dtype from promotion is also guaranteed to be packed, meaning that all fields are ordered contiguously and any unnecessary padding is removed:" @@ -5586,7 +5586,7 @@ { "cell_type": "code", "execution_count": 197, - "id": "fb8d6547", + "id": "a4837e21", "metadata": {}, "outputs": [ { @@ -5608,7 +5608,7 @@ { "cell_type": "code", "execution_count": 198, - "id": "76a68ed4", + "id": "b4e5acc1", "metadata": {}, "outputs": [ { @@ -5628,7 +5628,7 @@ }, { "cell_type": "markdown", - "id": "3c61f81d", + "id": "2635d41b", "metadata": {}, "source": [ "Note that the result prints without `offsets` or `itemsize` indicating no additional padding. If a structured dtype is created with `align=True` ensuring that `dtype.isalignedstruct` is true, this property is preserved:" @@ -5637,7 +5637,7 @@ { "cell_type": "code", "execution_count": 199, - "id": "c471ee7c", + "id": "ec117194", "metadata": {}, "outputs": [ { @@ -5659,7 +5659,7 @@ { "cell_type": "code", "execution_count": 200, - "id": "cf6d9f72", + "id": "c20a5317", "metadata": {}, "outputs": [ { @@ -5680,7 +5680,7 @@ { "cell_type": "code", "execution_count": 201, - "id": "77b637fe", + "id": "0648deaa", "metadata": {}, "outputs": [ { @@ -5700,7 +5700,7 @@ }, { "cell_type": "markdown", - "id": "f7bae0a4", + "id": "462d8b57", "metadata": {}, "source": [ "When promoting multiple dtypes, the result is aligned if any of the inputs is:" @@ -5709,7 +5709,7 @@ { "cell_type": "code", "execution_count": 202, - "id": "56b42f94", + "id": "53ca495a", "metadata": {}, "outputs": [ { @@ -5729,7 +5729,7 @@ }, { "cell_type": "markdown", - "id": "7253081d", + "id": "fab01908", "metadata": {}, "source": [ "The `<` and `>` operators always return `False` when comparing void structured arrays, and arithmetic and bitwise operations are not supported.\n", @@ -5816,7 +5816,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.19" }, "source_map": [ 14, diff --git a/_sources/deep-learning/cnn/cnn-deepdream.ipynb b/_sources/deep-learning/cnn/cnn-deepdream.ipynb index 49ef8353bf..bc578fe39e 100644 --- a/_sources/deep-learning/cnn/cnn-deepdream.ipynb +++ b/_sources/deep-learning/cnn/cnn-deepdream.ipynb @@ -352,7 +352,7 @@ "source": [ "## Your turn! 🚀\n", "\n", - "TBD." + "You can practice your cnn skills by following the assignment [sign language digits classification with cnn](../../assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb)" ] }, { diff --git a/_sources/deep-learning/cnn/cnn-vgg.ipynb b/_sources/deep-learning/cnn/cnn-vgg.ipynb index 4e67c7e724..188b31cdbd 100644 --- a/_sources/deep-learning/cnn/cnn-vgg.ipynb +++ b/_sources/deep-learning/cnn/cnn-vgg.ipynb @@ -440,8 +440,7 @@ "metadata": {}, "source": [ "## Your turn! 🚀\n", - "\n", - "TBD." + "You can practice your cnn skills by following the assignment [object recognition in images using cnn](../../assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb)." ] }, { diff --git a/_sources/deep-learning/cnn/cnn.ipynb b/_sources/deep-learning/cnn/cnn.ipynb index 29bb544d7b..5ac8402b46 100644 --- a/_sources/deep-learning/cnn/cnn.ipynb +++ b/_sources/deep-learning/cnn/cnn.ipynb @@ -162,6 +162,42 @@ "\"\"\"))" ] }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "

    \n", + "\n", + "A demo of CNN. [source]\n", + "

    \n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import HTML\n", + "display(HTML(\"\"\"\n", + "

    \n", + "\n", + "A demo of CNN. [source]\n", + "

    \n", + "\"\"\"))" + ] + }, { "cell_type": "code", "execution_count": 4, @@ -861,8 +897,7 @@ "metadata": {}, "source": [ "## Your turn! 🚀\n", - "\n", - "TBD." + "You can practice your cnn skills by following the assignment [how to choose cnn architecture mnist](../../assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb)." ] }, { diff --git a/_sources/deep-learning/image-classification.ipynb b/_sources/deep-learning/image-classification.ipynb index 56f4d51c5e..2486078d3d 100644 --- a/_sources/deep-learning/image-classification.ipynb +++ b/_sources/deep-learning/image-classification.ipynb @@ -219,8 +219,8 @@ "source": [ "- Using small 3×3 filters to replace large convolutional kernels.\n", "- After replacing the convolution kernel, the convolution layers have the same perceptual field. \n", - "- Each layer is trained by Re LU activation function and batch gradient descent after convolution operation.\n", - "- It is verified that increasing the network depth can improve the model performance Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming." + "- Each layer is trained by ReLU activation function and batch gradient descent after convolution operation.\n", + "- It is verified that increasing the network depth can improve the model performance. Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming." ] }, { @@ -1156,7 +1156,7 @@ "id": "b4552758", "metadata": {}, "source": [ - "TBD." + "Assignment - [Image classification](../../assignments/deep-learning/cnn/image-classification.ipynb)" ] }, { diff --git a/_sources/deep-learning/image-segmentation.ipynb b/_sources/deep-learning/image-segmentation.ipynb index 7c2d3556dc..abbe6c89a3 100644 --- a/_sources/deep-learning/image-segmentation.ipynb +++ b/_sources/deep-learning/image-segmentation.ipynb @@ -2045,7 +2045,7 @@ "id": "a0994ed1", "metadata": {}, "source": [ - "TBD." + "Assignment - [Comparing edge-based and region-based segmentation](../../assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb)" ] }, { diff --git a/_sources/deep-learning/lstm.ipynb b/_sources/deep-learning/lstm.ipynb index c920b28b04..6ea5b6e8f9 100644 --- a/_sources/deep-learning/lstm.ipynb +++ b/_sources/deep-learning/lstm.ipynb @@ -4770,7 +4770,7 @@ "source": [ "## Your turn! 🚀\n", "\n", - "Practice the Long-Short Term Memory Networks by following this TBD.\n", + "Assignment - [Bitcoin lstm model with tweet volume and sentiment](../../assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb)\n", "\n", "## Acknowledgments\n", "\n", diff --git a/_sources/deep-learning/nlp.ipynb b/_sources/deep-learning/nlp.ipynb index 839b75e674..efcff10fd5 100644 --- a/_sources/deep-learning/nlp.ipynb +++ b/_sources/deep-learning/nlp.ipynb @@ -786,8 +786,7 @@ }, "source": [ "## Your turn! 🚀\n", - "\n", - "TBD." + "You can practice your nlp skills by following the assignment [getting start nlp with classification task](../assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb)." ] }, { diff --git a/_sources/deep-learning/rnn.ipynb b/_sources/deep-learning/rnn.ipynb index d436b6048b..7c1bf555d2 100644 --- a/_sources/deep-learning/rnn.ipynb +++ b/_sources/deep-learning/rnn.ipynb @@ -2,14 +2,23 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "4f92eda8", "metadata": { "tags": [ "hide-input" ] }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -fds-nightly (c:\\users\\16111\\.conda\\envs\\open-machine-learning-jupyter-book\\lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution -fds-nightly (c:\\users\\16111\\.conda\\envs\\open-machine-learning-jupyter-book\\lib\\site-packages)\n" + ] + } + ], "source": [ "# Install the necessary dependencies\n", "\n", @@ -159,9 +168,21 @@ "## Code" ] }, + { + "cell_type": "markdown", + "id": "6b52f47d", + "metadata": {}, + "source": [ + "A text classifier implemented in TensorFlow to classify SMS spam messages.\n", + "Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow.\n", + "The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function.\n", + "The output of the # code is the accuracy of the classifier along with some statistics\n", + "We implement an RNN in TensorFlow to predict spam/ham from texts" + ] + }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "id": "b8241ee1", "metadata": { "attributes": { @@ -171,294 +192,303 @@ "id": "" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']\n", - "(5574, 25)\n", - "[[ 191 3 17 ... 2725 0 0]\n", - " [ 365 1206 41 ... 0 0 0]\n", - " [ 81 40 4 ... 0 0 0]\n", - " ...\n", - " [7814 7815 533 ... 0 0 0]\n", - " [ 2 28 1439 ... 7 161 3]\n", - " [ 51 20 3 ... 0 0 0]]\n", - "Vocabulary Size: 8629\n", - "80-20 Train Test split: 4459 -- 1115\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\fuqiongying\\AppData\\Local\\Temp\\ipykernel_1816\\2116000173.py:115: UserWarning: `tf.nn.rnn_cell.BasicRNNCell` is deprecated and will be removed in a future version. This class is equivalent as `tf.keras.layers.SimpleRNNCell`, and will be replaced by that in Tensorflow 2.0.\n", - " cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensor(\"Mean:0\", shape=(), dtype=float32)\n", - "Tensor(\"Mean_1:0\", shape=(), dtype=float32)\n", - "Epoch: 1, Test Loss: 0.69, Test Acc: 0.81\n", - "Epoch: 2, Test Loss: 0.65, Test Acc: 0.82\n", - "Epoch: 3, Test Loss: 0.6, Test Acc: 0.82\n", - "Epoch: 4, Test Loss: 0.55, Test Acc: 0.82\n", - "Epoch: 5, Test Loss: 0.51, Test Acc: 0.83\n", - "Epoch: 6, Test Loss: 0.47, Test Acc: 0.83\n", - "Epoch: 7, Test Loss: 0.45, Test Acc: 0.83\n", - "Epoch: 8, Test Loss: 0.43, Test Acc: 0.84\n", - "Epoch: 9, Test Loss: 0.42, Test Acc: 0.84\n", - "Epoch: 10, Test Loss: 0.41, Test Acc: 0.84\n", - "Epoch: 11, Test Loss: 0.41, Test Acc: 0.84\n", - "Epoch: 12, Test Loss: 0.4, Test Acc: 0.85\n", - "Epoch: 13, Test Loss: 0.4, Test Acc: 0.85\n", - "Epoch: 14, Test Loss: 0.4, Test Acc: 0.85\n", - "Epoch: 15, Test Loss: 0.4, Test Acc: 0.86\n", - "Epoch: 16, Test Loss: 0.39, Test Acc: 0.86\n", - "Epoch: 17, Test Loss: 0.39, Test Acc: 0.87\n", - "Epoch: 18, Test Loss: 0.38, Test Acc: 0.87\n", - "Epoch: 19, Test Loss: 0.38, Test Acc: 0.87\n", - "Epoch: 20, Test Loss: 0.37, Test Acc: 0.87\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2IklEQVR4nO3dd3gU1dvG8e+mNyBASAECCaF3aRFBEUEDKIKKgCJNFEWKvogUC8VCUBFRpChK94cIdqUIURAhFCnSO6Gm0EIKpJDM+8ea1SUJkMam3J/rmovszJnZZ1jj3pyZOcdkGIaBiIiISAliZ+sCRERERG43BSAREREpcRSAREREpMRRABIREZESRwFIREREShwFIBERESlxFIBERESkxFEAEhERkRJHAUhERERKHAUgEbnt3n//fapVq4a9vT2NGze2dTkiUgIpAInIDe3evZtu3bpRtWpVXFxcqFSpEvfffz/Tpk3L1fF+/fVXRo4cSatWrZg7dy4TJ07k7NmzjB8/np07d+Zv8bdJREQEJpOJyZMn27oUEblFDrYuQEQKr40bN9K2bVuqVKnCs88+i6+vL6dOnWLTpk189NFHDB06NMfH/O2337Czs+OLL77AyckJgL/++osJEyYQEBCgHiERuS0UgEQkW++88w5lypRh69ateHp6Wm2LiYnJ1TFjYmJwdXW1hB8REVvQJTARydbRo0epV69epvAD4O3tbfX62rVrvPXWWwQFBeHs7ExAQACvvvoqycnJljYmk4m5c+eSmJiIyWTCZDIxb948mjdvDkD//v2t1gPce++91K9fn127dtGmTRvc3NyoXr06y5YtA2DdunUEBwfj6upKrVq1WLNmjVVdJ06c4IUXXqBWrVq4urpSvnx5Hn/8cSIiIixtDMOgbdu2VKhQwSrYpaSk0KBBA4KCgkhMTMzLXyVgDn8DBgzAx8cHFxcXGjVqxPz58zO1++qrr2jatCmlSpWidOnSNGjQgI8++siyPTU1lQkTJlCjRg1cXFwoX748rVu3ZvXq1XmuUaSkUAASkWxVrVqVbdu2sWfPnpu2feaZZxg7dixNmjThww8/pE2bNoSGhtKzZ09Lm4ULF3L33Xfj7OzMwoULWbhwIXXq1OHNN98EYODAgZb199xzj2W/S5cu8dBDDxEcHMx7772Hs7MzPXv2ZMmSJfTs2ZNOnToxadIkEhMT6datG/Hx8ZZ9t27dysaNG+nZsycff/wxzz//PGFhYdx7771cuXIFMAezOXPmkJSUxPPPP2/Zd9y4cezdu5e5c+fi7u6ep7/Lq1evcu+997Jw4UJ69erF+++/T5kyZejXr59VuFm9ejVPPPEEZcuW5d1332XSpEnce++9bNiwwdJm/PjxTJgwgbZt2/LJJ5/w2muvUaVKFbZv356nGkVKFENEJBu//vqrYW9vb9jb2xstW7Y0Ro4caaxatcpISUmxardz504DMJ555hmr9SNGjDAA47fffrOs69u3r+Hu7m7VbuvWrQZgzJ07N1MNbdq0MQDjf//7n2XdgQMHDMCws7MzNm3aZFm/atWqTMe5cuVKpmOGh4cbgLFgwQKr9Z9++qkBGIsWLTI2bdpk2NvbGy+99FL2f0H/OH78uAEY77//frZtpk6dajl2hpSUFKNly5aGh4eHERcXZxiGYbz44otG6dKljWvXrmV7rEaNGhkPPvjgTesSkeypB0hEsnX//fcTHh7Oww8/zN9//817771HSEgIlSpV4scff7S0W758OQDDhw+32v/ll18G4JdffslTHR4eHlY9SbVq1cLT05M6deoQHBxsWZ/x87FjxyzrXF1dLT+npqZy4cIFqlevjqenZ6Yek4EDBxISEsLQoUPp3bs3QUFBTJw4MU+1Z1i+fDm+vr488cQTlnWOjo4MGzaMhIQE1q1bB4CnpyeJiYk3vJzl6enJ3r17OXz4cL7UJlISKQCJyA01b96cb7/9lkuXLrFlyxbGjBlDfHw83bp1Y9++fYD5Phs7OzuqV69uta+vry+enp6cOHEiTzVUrlwZk8lkta5MmTL4+/tnWgfmS2YZrl69ytixY/H398fZ2RkvLy8qVKhAbGwsly9fzvReX3zxBVeuXOHw4cPMmzfPKkDlxYkTJ6hRowZ2dtb/261Tp45lO8ALL7xAzZo16dixI5UrV+bpp59m5cqVVvu8+eabxMbGUrNmTRo0aMArr7zCrl278qVOkZJCAUhEbomTkxPNmzdn4sSJzJw5k9TUVJYuXWrV5vqQkl/s7e1ztN4wDMvPQ4cO5Z133qF79+58/fXX/Prrr6xevZry5cuTnp6ead+1a9dabtzevXt3PlSfM97e3uzcuZMff/yRhx9+mN9//52OHTvSt29fS5t77rmHo0ePMmfOHOrXr8/nn39OkyZN+Pzzz297vSJFlQKQiORYs2bNAIiMjATMN0unp6dnuiQTHR1NbGwsVatWveHxCio4ASxbtoy+ffvywQcf0K1bN+6//35at25NbGxspraRkZEMHTqUBx54gIceeogRI0bkufcqQ9WqVTl8+HCm0HXgwAHL9gxOTk507tyZGTNmcPToUZ577jkWLFjAkSNHLG3KlStH//79Wbx4MadOnaJhw4aMHz8+X2oVKQkUgEQkW7///rtVb0qGjHt+atWqBUCnTp0AmDp1qlW7KVOmAPDggw/e8H0ynrDKKpTklb29faZzmDZtGmlpaZnaPvvss6Snp/PFF1/w2Wef4eDgwIABA7L8O8ipTp06ERUVxZIlSyzrrl27xrRp0/Dw8KBNmzYAXLhwwWo/Ozs7GjZsCGDpmbq+jYeHB9WrV7cackBEbkwDIYpItoYOHcqVK1d45JFHqF27NikpKWzcuJElS5YQEBBA//79AWjUqBF9+/bls88+IzY2ljZt2rBlyxbmz59P165dadu27Q3fJygoCE9PT2bNmkWpUqVwd3cnODiYwMDAPJ/DQw89xMKFCylTpgx169YlPDycNWvWUL58eat2c+fO5ZdffmHevHlUrlwZMAelp556ipkzZ/LCCy/c9L3CwsJISkrKtL5r164MHDiQTz/9lH79+rFt2zYCAgJYtmwZGzZsYOrUqZQqVQowDydw8eJF7rvvPipXrsyJEyeYNm0ajRs3ttwvVLduXe69916aNm1KuXLl+Ouvv1i2bBlDhgzJ61+XSMlh24fQRKQwW7FihfH0008btWvXNjw8PAwnJyejevXqxtChQ43o6GirtqmpqcaECROMwMBAw9HR0fD39zfGjBljJCUlWbXL6jF4wzCMH374wahbt67h4OBg9Sh7mzZtjHr16mVqX7Vq1SwfBQeMwYMHW15funTJ6N+/v+Hl5WV4eHgYISEhxoEDB4yqVasaffv2NQzDME6dOmWUKVPG6Ny5c6bjPfLII4a7u7tx7NixbP+eMh6Dz25ZuHChYRiGER0dbanFycnJaNCgQaZH/5ctW2Y88MADhre3t+Hk5GRUqVLFeO6554zIyEhLm7ffftto0aKF4enpabi6uhq1a9c23nnnnUzDE4hI9kyGkQ99uyIiIiJFiO4BEhERkRJHAUhERERKHAUgERERKXEUgERERKTEUQASERGREkcBSEREREocDYSYhfT0dM6ePUupUqUKdIh+ERERyT+GYRAfH0/FihUzTTycVWOb++STT4yqVasazs7ORosWLYzNmzdn27ZNmzZZDjTWqVMnS5v09HTjjTfeMHx9fQ0XFxejXbt2xqFDh265nlOnTt1wUDMtWrRo0aJFS+FdTp06ddPvepv3AC1ZsoThw4cza9YsgoODmTp1KiEhIRw8eBBvb+9M7b/99ltSUlIsry9cuECjRo14/PHHLevee+89Pv74Y+bPn09gYCBvvPEGISEh7Nu3DxcXl5vWlDEk/alTpyhdunQ+nKWIiIgUtLi4OPz9/S3f4zdi85Ggg4ODad68OZ988glgvvzk7+/P0KFDGT169E33nzp1KmPHjiUyMhJ3d3cMw6BixYq8/PLLjBgxAoDLly/j4+PDvHnz6Nmz502PGRcXR5kyZbh8+bICkIiISBGRk+9vm94EnZKSwrZt22jfvr1lnZ2dHe3btyc8PPyWjvHFF1/Qs2dPy2zSx48fJyoqyuqYZcqUITg4ONtjJicnExcXZ7WIiIhI8WXTAHT+/HnS0tLw8fGxWu/j40NUVNRN99+yZQt79uzhmWeesazL2C8nxwwNDaVMmTKWxd/fP6enIiIiIkVIkX4M/osvvqBBgwa0aNEiT8cZM2YMly9ftiynTp3KpwpFRESkMLLpTdBeXl7Y29sTHR1ttT46OhpfX98b7puYmMhXX33Fm2++abU+Y7/o6Gj8/Pysjtm4ceMsj+Xs7Iyzs3OO609LSyM1NTXH+8nt5+joiL29va3LEBGRQsKmAcjJyYmmTZsSFhZG165dAfNN0GFhYQwZMuSG+y5dupTk5GSeeuopq/WBgYH4+voSFhZmCTxxcXFs3ryZQYMG5UvdhmEQFRVFbGxsvhxPbg9PT098fX01tpOIiNh+IMThw4fTt29fmjVrRosWLZg6dSqJiYn0798fgD59+lCpUiVCQ0Ot9vviiy/o2rUr5cuXt1pvMpl46aWXePvtt6lRo4blMfiKFStaQlZeZYQfb29v3Nzc9IVayBmGwZUrV4iJiQGw6hkUEZGSyeYBqEePHpw7d46xY8cSFRVF48aNWblypeUm5pMnT2YazfHgwYP8+eef/Prrr1kec+TIkSQmJjJw4EBiY2Np3bo1K1euvKUxgG4mLS3NEn6uD19SeLm6ugIQExODt7e3LoeJiJRwNh8HqDC60TgCSUlJHD9+nICAAMuXqhQNV69eJSIigsDAwHwJwyIiUrgUmXGAijJd9ip69JmJiEgGBSAREREpcRSAJNcCAgKYOnWqrcsQERHJMQWgEsBkMt1wGT9+fK6Ou3XrVgYOHJin2o4fP86TTz5JxYoVcXFxoXLlynTp0oUDBw7c8jH69euXb0/4iYhIyWDzp8BKnLg4cHeH2/gUUmRkpOXnJUuWMHbsWA4ePGhZ5+HhYfnZMAzS0tJwcLj5fxoVKlTIU12pqancf//91KpVi2+//RY/Pz9Onz7NihUrNMaSiIgUKPUA3U6nT8OhQxj/CSS3g6+vr2UpU6YMJpPJ8vrAgQOUKlWKFStW0LRpU5ydnfnzzz85evQoXbp0wcfHBw8PD5o3b86aNWusjnv9JTCTycTnn3/OI488gpubGzVq1ODHH3/Mtq69e/dy9OhRZsyYwZ133knVqlVp1aoVb7/9Nnfeeael3alTp+jevTuenp6UK1eOLl26EBERAcD48eOZP38+P/zwg6VHa+3atfn51yciIsWQAlA+SkxMzHZJSkrC+GfGeqKiSIiJybbt1atXb3rc/DZ69GgmTZrE/v37adiwIQkJCXTq1ImwsDB27NhBhw4d6Ny5MydPnrzhcSZMmED37t3ZtWsXnTp1olevXly8eDHLthUqVMDOzo5ly5aRlpaWZZvU1FRCQkIoVaoU69evZ8OGDXh4eNChQwdSUlIYMWIE3bt3p0OHDkRGRhIZGcldd92V578PEREp3hSA8pGHh0e2y2OPPcY1Dw9iTSZMgE/Vqtm27dixo9VxAwICMrXJb2+++Sb3338/QUFBlCtXjkaNGvHcc89Rv359atSowVtvvUVQUNANe3TAfD/OE088QfXq1Zk4cSIJCQls2bIly7aVKlXi448/ZuzYsZQtW5b77ruPt956i2PHjlnaLFmyhPT0dD7//HMaNGhAnTp1mDt3LidPnmTt2rV4eHjg6uqKs7OzpVfLyckpX/9uRESk+FEAuo0cHR25VrEiWfd12FazZs2sXickJDBixAjq1KmDp6cnHh4e7N+//6Y9QA0bNrT87O7uTunSpS1TUGRl8ODBREVF8eWXX9KyZUuWLl1KvXr1WL16NQB///03R44coVSpUpbwV65cOZKSkjh69GgezlhEREoy3QSdjxISErLdljH1QnlfX6LOnSPm119JN5mwq1cPruuxuH7qj4z7XQqSe8bluX+MGDGC1atXM3nyZKpXr46rqyvdunUjJSXlhsdxdHS0em0ymUhPT7/hPqVKlaJz58507tyZt99+m5CQEN5++23uv/9+EhISaNq0KV9++WWm/fJ6E7aIiJRcCkD56PoQkRWTyUTpatUwDhygFJAaHY1j7dp5Pm5+27BhA/369eORRx4BzOHudgQxk8lE7dq12bhxIwBNmjRhyZIleHt7ZzusuZOTU7b3EImIiGRFl8BswN3Dg/hy5TAAx4QE0i9dsnVJmdSoUYNvv/2WnTt38vfff/Pkk0/etCcnp3bu3EmXLl1YtmwZ+/bt48iRI3zxxRfMmTOHLl26ANCrVy+8vLzo0qUL69ev5/jx46xdu5Zhw4Zx+vRpwHyP1K5duzh48CDnz58nNTU1X+sUEZHiRwHIRipUqcK5jEtdJ05AIevBmDJlCmXLluWuu+6ic+fOhISE0KRJk3x9j8qVKxMQEMCECRMIDg6mSZMmfPTRR0yYMIHXXnsNADc3N/744w+qVKnCo48+Sp06dRgwYABJSUmWHqFnn32WWrVq0axZMypUqMCGDRvytU4RESl+NBt8Fm5lNvj8mFE8LjYWjxMnsEtNBR8f8PfP0/HkxvLzsxMRkcJHs8EXEaU9PbELCDC/iI6GK1dsWo+IiEhJoQBka2XKQNmyAFw7dgzUISciIlLgFIAKgThPT64BDklJpEdH27ocERGRYk8BqBDwKFuW6IzJR8+cgZuMtSMiIiJ5owBUCNjZ2VEqMJAEwM4wuHb8uK1LEhERKdYUgAqJ0mXKEFumDOmAQ3w8RiEcG0hERKS4UAAqRHwCAogxmQBIj4godGMDiYiIFBcKQIWIo6MjdpUrkwTYp6WRduqUrUsSEREplhSACpkK3t6cd3MDwO78eUhMtHFFIiIixY8CUCFjMpmoVKcOlCuHCczTZGhsIBERkXylAFQImUwm87QY9vZw5QpGHscGMplMN1zGjx+fp2N///33N223bt067rvvPsqVK4ebmxs1atSgb9++pOTgkf+AgACmTp2a61pFREQyKAAVVo6OXPXyAsA4cwaSk3N9qMjISMsydepUSpcubbVuxIgR+VV1lvbt20eHDh1o1qwZf/zxB7t372batGk4OTmRphu9RUTEBhSACrGrbm7EYx4bKC0iIteXwnx9fS1LmTJlMJlMVuu++uor6tSpg4uLC7Vr12bGjBmWfVNSUhgyZAh+fn64uLhQtWpVQkNDAXOPDMAjjzyCyWSyvL7er7/+iq+vL++99x7169cnKCiIDh06MHv2bFxdXS3t/vzzT+6++25cXV3x9/dn2LBhJP5zD9S9997LiRMn+L//+z9Lz5WIiEhuOdi6gGLBMApkItOyzs6cNJlwv3IF+6tXMdzcMJUr928DNzfIYxD48ssvGTt2LJ988gl33HEHO3bs4Nlnn8Xd3Z2+ffvy8ccf8+OPP/L1119TpUoVTp06xal/nk7bunUr3t7ezJ07lw4dOmBvb5/le/j6+hIZGckff/zBPffck2Wbo0eP0qFDB95++23mzJnDuXPnGDJkCEOGDGHu3Ll8++23NGrUiIEDB/Lss8/m6ZxFREQUgPLDlSvg4ZHvhzUBVa97bSUhAdzd8/Qe48aN44MPPuDRRx8FIDAwkH379vHpp5/St29fTp48SY0aNWjdujUmk4mqVf+tqEKFCgB4enri6+ub7Xs8/vjjrFq1ijZt2uDr68udd95Ju3bt6NOnD6VLlwYgNDSUXr168dJLLwFQo0YNPv74Y9q0acPMmTMpV64c9vb2lCpV6obvJSIicit0CawES0xM5OjRowwYMAAPDw/L8vbbb3P06FEA+vXrx86dO6lVqxbDhg3j119/zfH72NvbM3fuXE6fPs17771HpUqVmDhxIvXq1SMyMhKAv//+m3nz5lnVERISQnp6Osc1NYiIiOQz9QDlBzc3c29MAUlPT+fk3r0EpKZiAKaaNc09Tv+MF5RbCf/UPHv2bIKDg622ZVzOatKkCcePH2fFihWsWbOG7t270759e5YtW5bj96tUqRK9e/emd+/evPXWW9SsWZNZs2YxYcIEEhISeO655xg2bFim/apUqZKLsxMREcmeAlB+MJnyfCnqRuyAcnXrcv7QIbwA4/x5TBUq5Pn+Hx8fHypWrMixY8fo1atXtu1Kly5Njx496NGjB926daNDhw5cvHiRcuXK4ejomKsnucqWLYufn5/lJucmTZqwb98+qlevnu0+empMRETyiwJQEVG6dGmu1KwJx45hunoVYmIgH+6FmTBhAsOGDaNMmTJ06NCB5ORk/vrrLy5dusTw4cOZMmUKfn5+3HHHHdjZ2bF06VJ8fX3x9PQEzE+ChYWF0apVK5ydnSlbtmym9/j000/ZuXMnjzzyCEFBQSQlJbFgwQL27t3LtGnTABg1ahR33nknQ4YM4ZlnnsHd3Z19+/axevVqPvnkE8t7/fHHH/Ts2RNnZ2e8/hkmQEREJKd0D1AR4la6NFSubH5x9myexgbK8Mwzz/D5558zd+5cGjRoQJs2bZg3bx6BgYEAlCpVivfee49mzZrRvHlzIiIiWL58OXZ25v90PvjgA1avXo2/vz933HFHlu/RokULEhISeP7556lXrx5t2rRh06ZNfP/997Rp0waAhg0bsm7dOg4dOsTdd9/NHXfcwdixY6lYsaLlOG+++SYREREEBQVZbsAWERHJDZNhaJ6F68XFxVGmTBkuX75seUopQ1JSEsePHycwMBAXF5fbX5xhkH7wIHYJCaSXKoVdzZp5vhRWUtj8sxMRkQJ1o+/v66kHqKgxmThhGKQDdvHxcOmSrSsSEREpchSAiiDvKlWI/Ofn9BMn4No1m9YjIiJS1CgAFUHu7u6kV6jAVcAuLQ3j9GlblyQiIlKkKAAVUX6VKnHGwfwQn+n8+QIdh0hERKS4sXkAmj59OgEBAbi4uBAcHMyWLVtu2D42NpbBgwfj5+eHs7MzNWvWZPny5Zbt48ePt0yWmbHUrl073+u29b3jDg4OlKtShXP/vE4/fhzS021aU2Fn689MREQKD5uOA7RkyRKGDx/OrFmzCA4OZurUqYSEhHDw4EG8vb0ztU9JSeH+++/H29ubZcuWUalSJU6cOGEZkyZDvXr1WLNmjeW1g0P+naajoyMAV65csZrJ3BbKli3LsVKl8IyPxzE5GaKjwc/PpjUVZlf+mbA24zMUEZGSy6YBaMqUKTz77LP0798fgFmzZvHLL78wZ84cRo8enan9nDlzuHjxIhs3brR8iQUEBGRq5+DgUGATZtrb2+Pp6UlMTAwAbm5umGz4GLqXry/n09Mpm5hoHhvIzQ2cnW1WT2FkGAZXrlwhJiYGT0/PbGetFxGRksNmASglJYVt27YxZswYyzo7Ozvat29PeHh4lvv8+OOPtGzZksGDB/PDDz9QoUIFnnzySUaNGmX1pXb48GEqVqyIi4sLLVu2JDQ09IbzSSUnJ5P8n0EF4+Liblh7RrjKCEGFQWxCAiQlQXw8+PjYupxC6Waz1ouISMlhswB0/vx50tLS8Lnuy9rHx4cDBw5kuc+xY8f47bff6NWrF8uXL+fIkSO88MILpKamMm7cOACCg4OZN28etWrVIjIykgkTJnD33XezZ88eSpUqleVxQ0NDmTBhwi3XbjKZ8PPzw9vbm9TU1Fver0DZ2WE8/DCm5GT4+GN44AFbV1SoODo6qudHREQsbDYS9NmzZ6lUqRIbN26kZcuWlvUjR45k3bp1bN68OdM+NWvWtIzmm/FlNmXKFN5//30iIyMztQfzTdNVq1ZlypQpDBgwIMs2WfUA+fv739JIkoVFUlISS2vVovfJk1ypXRu3ffs0QrSIiJQoRWIkaC8vL+zt7YmOjrZaHx0dne1lCj8/P2rWrGn1L/k6deoQFRVFSkpKlvt4enpSs2ZNjhw5km0tzs7OlC5d2mopalxcXFh3xx0kAm4HDsCKFbYuSUREpNCyWQBycnKiadOmhIWFWdalp6cTFhZm1SP0X61ateLIkSOk/+dx70OHDuHn54eTk1OW+yQkJHD06FH8SsDTUS+9/Taz/vn56uuvgx77FhERyZJNxwEaPnw4s2fPZv78+ezfv59BgwaRmJhoeSqsT58+VjdJDxo0iIsXL/Liiy9y6NAhfvnlFyZOnMjgwYMtbUaMGMG6deuIiIhg48aNPPLII9jb2/PEE0/c9vO73erXr8/u++8nGXDdsQPWrbN1SSIiIoWSTR+D79GjB+fOnWPs2LFERUXRuHFjVq5cabkx+uTJk9jZ/ZvR/P39WbVqFf/3f/9Hw4YNqVSpEi+++CKjRo2ytDl9+jRPPPEEFy5coEKFCrRu3ZpNmzZRoUKF235+tjBw/HjmrF7NICBp7Fhc/vjD1iWJiIgUOja7Cbowy8lNVIVRjxYt+HLrVnO63bwZWrSwdUkiIiIFrkjcBC0Fp9+ECXz5z8/GO+/YtBYREZHCSAGoGOrQoQPVPvsMw2TC9OOPsHu3rUsSEREpVBSAiiGTycTdzz6L6bHHzCtCQ21bkIiISCGjAFScvfoqAMaSJXCDcZBERERKGgWgYmynycRqJydM6emkT5xo63JEREQKDQWgYqx27dp85O4OgLFgAZw6ZeOKRERECgcFoGLMxcWFu0eN4nfAPi0N4733bF2SiIhIoaAAVMwNGjSIqf/0AqV/9hlcN/eaiIhISaQAVMyVLl2aekOHshmwT0nBmDLF1iWJiIjYnAJQCfDiSy/xvoN51pO0Tz6BS5dsXJGIiIhtKQCVAD4+Pvg88wy7AYcrV2DaNFuXJCIiYlMKQCXEmNdeo8ykSeYXH30ECQm2LUhERMSGFIBKiMqVK1NlxAioXh0uXoRPP7V1SSIiIjajAFSS2NvD6NEApL33HiQl2bggERER21AAKmGmx8VxErCPiYG5c21djoiIiE0oAJUwjVu04P1/fr42cSKkptq0HhEREVtQACphWrVqxb6WLYkGHE6fhv/9z9YliYiI3HYKQCXQy6+/TsZwiGnvvANpaTatR0RE5HZTACqBOnbsyB9163IJsD98GL791tYliYiI3FYKQCWQyWRi6Guv8fE/r9PfegsMw6Y1iYiI3E4KQCVU9+7d+aFKFRIAu927YflyW5ckIiJy2ygAlVAODg589s032A8ZYl7xzjvqBRIRkRJDAagEa9asGa6vvgrOzhAeDmvX2rokERGR20IBqKTz88N4+mkAjHfesXExIiIit4cCUAlnGAb99+8nFTCFhcGWLbYuSUREpMApAJVwJpMJ3+BgvvzntXqBRESkJFAAEl566SU+cHQkHTD9+CPs3m3rkkRERAqUApDg6+tL6wEDWJaxYuJEW5YjIiJS4BSABIARI0YwyWQCwPj6azh82MYViYiIFBwFIAEgKCiI2j178jNgSk+HSZNsXZKIiEiBUQASi1GjRpFxC7SxYAGcPGnTekRERAqKApBYNGrUiElr12Lcey+ma9fg/fdtXZKIiEiBUAASK23atMH0+uvmF59/DtHRti1IRESkACgASWb33Ud6ixaQlARTpti6GhERkXynACSZRJw4wdNHjgBgzJgBly7ZuCIREZH8pQAkmVSpUoVtfn78DZgSEmDaNFuXJCIikq8UgCQTOzs7Ro0eTcZwiMZHH0FCgk1rEhERyU8KQJKlnj178lfVqhwETBcvwqxZti5JREQk3ygASZYcHBwY/sorZAyHaHzwgfmmaBERkWLA5gFo+vTpBAQE4OLiQnBwMFu2bLlh+9jYWAYPHoyfnx/Ozs7UrFmT5cuX5+mYkrWnn36aVV5enABMUVEwZ46tSxIREckXNg1AS5YsYfjw4YwbN47t27fTqFEjQkJCiImJybJ9SkoK999/PxERESxbtoyDBw8ye/ZsKlWqlOtjSvZcXV0Z8n//h2U4xPfeg9RUW5YkIiKSL0yGYRi2evPg4GCaN2/OJ598AkB6ejr+/v4MHTqU0aNHZ2o/a9Ys3n//fQ4cOICjo2O+HDMrcXFxlClThsuXL1O6dOlcnl3xEBsbS8T+/TR+5BHzoIhz50K/frYuS0REJJOcfH/brAcoJSWFbdu20b59+3+LsbOjffv2hIeHZ7nPjz/+SMuWLRk8eDA+Pj7Ur1+fiRMnkpaWlutjAiQnJxMXF2e1iJmnpyeNW7aE4cPNK0JD4Z+/bxERkaLKZgHo/PnzpKWl4ePjY7Xex8eHqKioLPc5duwYy5YtIy0tjeXLl/PGG2/wwQcf8Pbbb+f6mAChoaGUKVPGsvj7++fx7IqhQYNI9/SEQ4fg229tXY2IiEie2Pwm6JxIT0/H29ubzz77jKZNm9KjRw9ee+01ZuXxEe0xY8Zw+fJly3Lq1Kl8qrj4+PLHH3kno2ds4kSw3ZVTERGRPLNZAPLy8sLe3p7o6ybbjI6OxtfXN8t9/Pz8qFmzJvb29pZ1derUISoqipSUlFwdE8DZ2ZnSpUtbLWLtzjvv5GPDIAFg505YudLGFYmIiOSezQKQk5MTTZs2JSwszLIuPT2dsLAwWrZsmeU+rVq14siRI6Snp1vWHTp0CD8/P5ycnHJ1TLk1QUFBtOveHUtf28SJN2ouIiJSqNn0Etjw4cOZPXs28+fPZ//+/QwaNIjExET69+8PQJ8+fRgzZoyl/aBBg7h48SIvvvgihw4d4pdffmHixIkMHjz4lo8puTdq1CimAMkAf/4J69fbuCIREZHccbDlm/fo0YNz584xduxYoqKiaNy4MStXrrTcxHzy5Ens7P7NaP7+/qxatYr/+7//o2HDhlSqVIkXX3yRUaNG3fIxJffuuOMO6t9/P3NXr+Z5MPcCrVhh67JERERyzKbjABVWGgcoe2FhYTzbvj2HAXuAbdugSRMbVyUiIlJExgGSoum+++6jXNOmfJ1xI3poqG0LEhERyQUFIMkRk8nEvHnzCPntN/OKb76BAwdsW5SIiEgOKQBJjtWvX59y99wDXbuaxwN6911blyQiIpIjCkCSe/88oWcsWgQnTti4GBERkVunACS51nPKFFYDpmvXYPJkW5cjIiJyyxSAJNcaN25MxnCIxuefm2eLFxERKQIUgCTXnn/+ebZ5eBAOmJKS4MMPbV2SiIjILVEAklzz9PTk+UGDLL1AzJgBly7ZsiQREZFbogAkefLSSy+x2tGRXQDx8TB9uq1LEhERuSkFIMmTihUr8lSfPliGQ5w6FRITbViRiIjIzSkASZ698sorLAMiHBzgwgWYPdvWJYmIiNyQApDkWa1atVj9++9UnjbNvGLyZEhOtm1RIiIiN6AAJPni3nvvxaF/f6hYEc6cgYULbV2SiIhIthSAJP84O5P2f/9n/nnSJLh2zbb1iIiIZEMBSPLNqVOnqDt1KhcAjh6FZctsXZKIiEiWFIAk31SuXBlXLy8swyFOnGieLFVERKSQUQCSfGMymRg5ciTTgXiTCXbvhl9+sXVZIiIimSgASb7q3r07ngEBTM/o+XnnHfUCiYhIoaMAJPnKwcGBl19+mQ+BJJMJNm2CtWttXZaIiIgVBSDJd08//TTpXl58ntHzM3HijXcQERG5zRSAJN+5ubkxbNgw3gfS7OxgzRrYssXWZYmIiFgoAEmBGDx4MEs3b8a+d2/zitDQG+8gIiJyG5kMQ3eoXi8uLo4yZcpw+fJlSpcubetyirb9+6FePfON0Hv2mH8WEREpADn5/lYPkBSsOnVIevBB88+TJtm2FhERkX8oAEmBWrhwIff9+qv5xeLFcOyYbQsSERFBAUgKWJMmTQhPSWElQFoavP++rUsSERFRAJKCVa9ePR566CEsD8LPmQORkbYsSURERAFICt7o0aNZD2wwmSAlBaZMsXVJIiJSwikASYFr1aoVrVq14u2MBw5nzoSLF21blIiIlGg5DkArV67kzz//tLyePn06jRs35sknn+TSpUv5WpwUH6NGjWIlsMvODhITYdo0W5ckIiIlWI4D0CuvvEJcXBwAu3fv5uWXX6ZTp04cP36c4cOH53uBUjw8+OCD1K1bl0l2//wn99FHEB9v26JERKTEynEAOn78OHXr1gXgm2++Md/gOnEi06dPZ8WKFfleoBQPdnZ2LFiwgCkREVCzJly6BJ9+auuyRESkhMpxAHJycuLKlSsArFmzhgceeACAcuXKWXqGRLLStGlTfCtVgtGjzSs++ACSkmxblIiIlEg5DkCtW7dm+PDhvPXWW2zZsoUH/xnl99ChQ1SuXDnfC5RiqFcvUnx9ISoK5s2zdTUiIlIC5TgAffLJJzg4OLBs2TJmzpxJpUqVAFixYgUdOnTI9wKl+OnRuzcvR0WZX7z7Lly7ZtuCRESkxHHI6Q5VqlTh559/zrT+ww8/zJeCpPirWbMmHwATHBwoFxEBX30FTz1l67JERKQEyXEP0Pbt29m9e7fl9Q8//EDXrl159dVXSUlJydfipHgaOnQohosL72f0/ISGQnq6bYsSEZESJccB6LnnnuPQoUMAHDt2jJ49e+Lm5sbSpUsZOXJkvhcoxY+3tzcDBgxgBpDo4AD79sGPP9q6LBERKUFyHIAOHTpE48aNAVi6dCn33HMP//vf/5g3bx7ffPNNroqYPn06AQEBuLi4EBwczJYtW7JtO2/ePEwmk9Xi4uJi1aZfv36Z2uj+pMLl5ZdfJtHenqkZvUATJ0LGSNEiIiIFLMcByDAM0v+5XLFmzRo6deoEgL+/P+fPn89xAUuWLGH48OGMGzeO7du306hRI0JCQoiJicl2n9KlSxMZGWlZTpw4kalNhw4drNosXrw4x7VJwQkMDKR79+58BCTb28PWrRAWZuuyRESkhMhxAGrWrBlvv/02CxcuZN26dZbH4I8fP46Pj0+OC5gyZQrPPvss/fv3p27dusyaNQs3NzfmzJmT7T4mkwlfX1/LktX7Ojs7W7UpW7ZsjmuTgjVy5EjOAf9zczOvmDjxhu1FRETyS44D0NSpU9m+fTtDhgzhtddeo3r16gAsW7aMu+66K0fHSklJYdu2bbRv3/7fguzsaN++PeHh4dnul5CQQNWqVfH396dLly7s3bs3U5u1a9fi7e1NrVq1GDRoEBcuXMhRbVLwGjduzIoVK+i1Ywc4OsLvv8MNPncREZH8YjKM/LnxIikpCXt7exwdHW95n7Nnz1KpUiU2btxIy5YtLetHjhzJunXr2Lx5c6Z9wsPDOXz4MA0bNuTy5ctMnjyZP/74g71791oGYvzqq69wc3MjMDCQo0eP8uqrr+Lh4UF4eDj29vaZjpmcnExycrLldVxcHP7+/ly+fJnSpUvn5K9BcuuZZ+CLL6BjR1i+3NbViIhIERQXF0eZMmVu6fs7x+MAZdi2bRv79+8HoG7dujRp0iS3h8qRli1bWoWlu+66izp16vDpp5/y1ltvAdCzZ0/L9gYNGtCwYUOCgoJYu3Yt7dq1y3TM0NBQJkyYUPDFS7aujRiB/fz5mFasgN9+g/vus3VJIiJSjOX4ElhMTAxt27alefPmDBs2jGHDhtGsWTPatWvHuXPncnQsLy8v7O3tiY6OtlofHR2Nr6/vLR3D0dGRO+64gyNHjmTbplq1anh5eWXbZsyYMVy+fNmynDp16tZPQvIsIiKCmp06MTujd27ECI0LJCIiBSrHAWjo0KEkJCSwd+9eLl68yMWLF9mzZw9xcXEMGzYsR8dycnKiadOmhP3n6Z/09HTCwsKsenluJC0tjd27d+Pn55dtm9OnT3PhwoVs2zg7O1O6dGmrRW4ff39/HB0deS05mWQXF9ixA7780tZliYhIMZbjALRy5UpmzJhBnTp1LOvq1q3L9OnTWbFiRY4LGD58OLNnz2b+/Pns37+fQYMGkZiYSP/+/QHo06cPY8aMsbR/8803+fXXXzl27Bjbt2/nqaee4sSJEzzzzDOA+QbpV155hU2bNhEREUFYWBhdunShevXqhISE5Lg+KXj29va88sornAfed/jnquyrr8KVKzatS0REiq8cB6D09PQsb3R2dHS0jA+UEz169GDy5MmMHTuWxo0bs3PnTlauXGl5tP3kyZNERkZa2l+6dIlnn32WOnXq0KlTJ+Li4ti4cSN169YFzF+mu3bt4uGHH6ZmzZoMGDCApk2bsn79epydnXNcn9weffr0oVq1arydkMDlMmXg9GmYOtXWZYmISDGV46fAunTpQmxsLIsXL6ZixYoAnDlzhl69elG2bFm+++67Ain0dsrJXeSSf7766iueeOIJnnZx4YukJPDwgCNHIBfjS4mISMmTk+/vHPcAffLJJ8TFxREQEEBQUBBBQUEEBgYSFxfHxx9/nOuiRbp3784dd9zB3KQkTvr4QEIC6Ok8EREpALkaB8gwDNasWcOBAwcAqFOnjtVghkWdeoBsZ/Xq1TzwwAOMatmSSeHhYG8Pu3fDf+45ExERyUpOvr/zbSDEAwcO8PDDD1tmii/KFIBsa+vWrTRv3hweeQS+/x4eegh++snWZYmISCFXoJfAspOcnMzRo0fz63BSgjVv3tz8w7vvgoMD/PyzeXBEERGRfJJvAUgkv50rW5ZdrVqZX2hwRBERyUcKQFIoJSQkULt2bdqtW8c1d3fz4IiLFtm6LBERKSYUgKRQ8vDw4Mknn+Q8MNPT07zytdc0OKKIiOSLW74JumzZsphMpmy3X7t2jcTERNLS0vKtOFvRTdCFQ0xMDEFBQaQmJHDBywv38+fhnXfMo0SLiIhcp0Bmg5+qUXnlNvP29mbEiBGMHz+eN+ztmQIQGgoDBmhwRBERyZN8ewy+OFEPUOERHx9P9erVORcTQ1TVqnifOAHPPw8zZ9q6NBERKWRs8hi8SEEoVaoUY8eOxQAGxsWZV86eDfv22bQuEREp2hSApNDLmPzWv1cvUh58ENLSYNQoW5clIiJF2C3fAyRiK05OTuzcuRMnJyc4dAhWrfp3cMT77rN1eSIiUgSpB0iKBCcnJ/MPNWua7wECDY4oIiK5luMAlJSUlO22yMjIPBUjcjN///03vQ4eJN3DQ4MjiohIruU4ADVp0oSdO3dmWv/NN9/QsGHD/KhJJFujRo3if6tXs6R6dfMKDY4oIiK5kOMAdO+993LnnXfy7rvvApCYmEi/fv3o3bs3r2qAOilgoaGhAPTfuZMUX184fRo0RpWIiORQrsYB+uWXX3jmmWeoXr06kZGReHh4sGjRIurXr18QNd52GgeocOvVqxf/+9//CG3QgNG7d4OHBxw5osERRURKuAIfB6hjx448+uijbNiwgZMnT/Luu+8Wm/Ajhd9bb72Fo6Mjr+7eTVzNmpCQAOPH27osEREpQnIcgI4ePUrLli35+eefWbVqFSNHjuThhx9m5MiRpKamFkSNIlaqVavGoEGDMICXM1ZqcEQREcmBHF8CK1WqFA8++CCzZs3C859Zujdu3EifPn0oVaoUO3bsKIg6bytdAiv8MiZKTUhI4EyLFlTcsgUeegh++snWpYmIiI0UyGSoGWbMmEHv3r2t1t11113s2LGDl156KaeHE8kVb29v3nnnHezs7PC691644w4NjigiIrdMk6FmQT1ARdDQofDJJ9C4MWzbBnYa41NEpKTJyfd3rgPQvn37OHnyJCkpKf8ezGSic+fOuTlcoaIAVPSkRkbiULs2prg4mD8f+vSxdUkiInKbFeglsGPHjvHII4+we/duTCYTGfnJZDIBkJaWlouSRXJv1apVDB06lBnBwbRfvdo8OGK3buDmZuvSRESkkMrxdYIXX3yRwMBAYmJicHNzY+/evfzxxx80a9aMtWvXFkCJIjcWFxfH4cOH6blxI2mVK5sHR/zwQ1uXJSIihViOA1B4eDhvvvkmXl5e2NnZYWdnR+vWrQkNDWXYsGEFUaPIDXXr1o1mzZpxITGRRXXrmldOmgTR0bYtTERECq0cB6C0tDRKlSoFgJeXF2fPngWgatWqHDx4MH+rE7kFJpPJMjXLwN9+I6lBAw2OKCIiN5TjAFS/fn3+/vtvAIKDg3nvvffYsGEDb775JtWqVcv3AkVuxX333UdISAgp167xnre3eaUGRxQRkWzkOAC9/vrrpKenA/Dmm29y/Phx7r77bpYvX87HH3+c7wWK3KpJkyYBMC4sjNh774W0NBg50rZFiYhIoZTjABQSEsKjjz4KQPXq1Tlw4ADnz58nJiaG+zQAndhQ48aN6dWrFwBf1KwJDg7wyy8QFmbjykREpLDRQIhZ0DhARVdERASHDx/m/vvv1+CIIiIlTIEOhJiUlMS0adP4/fffiYmJsVwOy7B9+/acV1zIKAAVE+fPQ1AQaHBEEZESoUAHQhwwYAC//vor3bp1o0WLFpYBEEUKm3OGQXLfvlSeNg1efVWDI4qIiEWOA9DPP//M8uXLadWqVUHUI5Iv/vzzTzp16kSl8uXZV6UKppMnzYMjvvaarUsTEZFCIMc3RVSqVMkyDpBIYXXHHXfg5ubGgYgIVrdta16pwRFFROQfOQ5AH3zwAaNGjeLEiRMFUY9IvnB3d2f8PwMh9lm+nLQmTcyDI/7f/9m2MBERKRRyHICaNWtGUlIS1apVo1SpUpQrV85qESksBgwYQI0aNYg+d445TZqAvT0sXgxffWXr0kRExMZy/BRY+/btOXnyJAMGDMDHxyfTTdB9+/bN1wJtQU+BFR/Lli3j8ccfx8PDg8iBA/GYMgU8PWH3bqhc2dbliYhIPsrJ93eOe4A2btzI0qVLGTVqFP369aNv375WS25Mnz6dgIAAXFxcCA4OZsuWLdm2nTdvHiaTyWpxcXGxamMYBmPHjsXPzw9XV1fat2/P4cOHc1WbFG2PPfYYLVq0ICEhgdeuXoXmzSE2Fvr1g+uGcBARkZIjxwGodu3aXL16Nd8KWLJkCcOHD2fcuHFs376dRo0aERISQkxMTLb7lC5dmsjISMty/f1I7733Hh9//DGzZs1i8+bNuLu7ExISQlJSUr7VLUVDxkSpDg4OmJycMBYsAFdX8+jQ06bZujwREbEVI4dWrVpl3HXXXcbvv/9unD9/3rh8+bLVklMtWrQwBg8ebHmdlpZmVKxY0QgNDc2y/dy5c40yZcpke7z09HTD19fXeP/99y3rYmNjDWdnZ2Px4sW3VNPly5cNIFfnI4XT6dOn/30xY4ZhgGE4OxvG3r22K0pERPJVTr6/c9wD1KFDB8LDw2nXrh3e3t6ULVuWsmXL4unpSdmyZXN0rJSUFLZt20b79u0t6+zs7Gjfvj3h4eHZ7peQkEDVqlXx9/enS5cu7N2717Lt+PHjREVFWR2zTJkyBAcHZ3vM5ORk4uLirBYpXipVqvTvi+efh44dITkZevWClBTbFSYiIjaR44EQf//993x78/Pnz5OWloaPj4/Veh8fHw4cOJDlPrVq1WLOnDk0bNiQy5cvM3nyZO666y727t1L5cqViYqKshzj+mNmbLteaGgoEyZMyIczksJu3759DBs2jHmhoVTesgV27oTx42HiRFuXJiIit1GOA1BgYCD+/v6Znv4yDINTp07lW2HZadmyJS1btrS8vuuuu6hTpw6ffvopb731Vq6OOWbMGIYPH255HRcXh7+/f55rlcJnyJAh/P777zz92mus+vRTTN26wbvvQqdO0Lq1rcsTEZHbJMeXwAIDAzl37lym9RcvXiQwMDBHx/Ly8sLe3p7o60bnjY6OxtfX95aO4ejoyB133MGRI0cALPvl5JjOzs6ULl3aapHiadasWbi4uLB69Wo+v3gR+vY1Pw3Wu7d50lQRESkRchyADMPIcgLUhISETI+j34yTkxNNmzYlLCzMsi49PZ2wsDCrXp4bSUtLY/fu3fj5+QHmgObr62t1zLi4ODZv3nzLx5Tiq2bNmkz853LX8OHDOTliBFStChERGiVaRKQEueVLYBmXiEwmE2+88QZu/5lVOy0tjc2bN9O4ceMcFzB8+HD69u1Ls2bNaNGiBVOnTiUxMZH+/fsD0KdPHypVqkRoaCgAb775JnfeeSfVq1cnNjaW999/nxMnTvDMM89Y6nvppZd4++23qVGjBoGBgbzxxhtUrFiRrl275rg+KX6GDRvGN998w4YNG3j6pZdYvWABpnvvhTlzoHNn0H8nIiLF3i0HoB07dgDmHqDdu3fj5ORk2ebk5ESjRo0YMWJEjgvo0aMH586dY+zYsURFRdG4cWNWrlxpuYn55MmT2Nn921F16dIlnn32WaKioihbtixNmzZl48aN1K1b19Jm5MiRJCYmMnDgQGJjY2ndujUrV67McQ+VFE/29vbMnTuXRo0aERYWxqfduvH8yJHme4GefRbuvBNu8RKsiIgUTbc0FcbHH3/Ms88+i6urK/379+ejjz4q1vfJaCqMkuGjjz7ipZdeol27dqz++WdMd94Jf/9tviH6558hi0u9IiJSeOXk+/uWApCDgwNnz57F29sbe3t7IiMj8fb2zreCCxsFoJIhPT2dRYsW8eSTT+Lg4AB79kCzZubxgWbNguees3WJIiKSA/k+F1jFihX55ptvOHHiBIZhcPr0aU6ePJnlIlJU2NnZ0adPH3P4AahfH/6514zhw+HQIdsVJyIiBeqWeoA+++wzhg4dyrVr17Jtk/F0WFpaWr4WaAvqASp5kpKSePPNN3nm6aep9txz8Ntv0KIFbNgADjkeLktERGwg3y+BAcTHx3PixAkaNmzImjVrKF++fJbtGjVqlPOKCxkFoJJnwIABzJkzhzZt2vDb/PnYNWoEly+bR4keN87W5YmIyC0okACUYf78+fTs2RNnZ+c8FVmYKQCVPMeOHaNBgwZcuXKFjz/+mKHly5vnCbO3h40bzb1BIiJSqBVoAMqwbds29u/fD0DdunVp0qRJbg5TKCkAlUzTp09nyJAhuLm58ffff1P9jTfgq6+gRg3YsQPc3W1dooiI3ECBBqCYmBh69uzJ2rVr8fT0BCA2Npa2bdvy1VdfUaFChVwXXlgoAJVM6enptGvXjrVr13L33Xez9rvvzJfCzpyBQYNgxgxblygiIjeQ70+B/dfQoUOJj49n7969XLx4kYsXL7Jnzx7i4uIYNmxYrosWsTU7OzvmzJmDu7s769evZ9qiRTBvnnnjzJmwYoVN6xMRkfyT4x6gMmXKsGbNGpo3b261fsuWLTzwwAPExsbmZ302oR6gkm3mzJm88MIL+Pj4cPz4cVzHjIGPPjKPDr17N3h52bpEERHJQoH2AKWnp+Po6JhpvaOjI+np6Tk9nEih89xzzzFmzBg2b96Mq6ureWygunUhKgoGDoTc3TYnIiKFSI57gLp06UJsbCyLFy+mYsWKAJw5c4ZevXpRtmxZvvvuuwIp9HZSD5BksmMHBAdDairMnQv9+tm6IhERuU6B9gB98sknxMXFERAQQFBQEEFBQQQGBhIXF8e0adNyXbRIYbV69WoOubvDhAnmFcOGwfHjti1KRETyJMdD3Pr7+7N9+3bWrFnDgQMHAKhTpw7t27fP9+JEbC3j0fi77rqLP37/HftffjGPDt2nD6xdax4nSEREipxcjwNUnOkSmGQ4efIk9evXJz4+nsmTJ/Pyo49Cw4aQkACTJsGoUbYuUURE/lEgl8DCw8P5+eefrdYtWLCAwMBAvL29GThwIMnJybmrWKSQqlKlClOmTAHg9ddf52BKCnz8sXnjG2/Azp22K05ERHLtlgPQm2++yd69ey2vd+/ezYABA2jfvj2jR4/mp59+IjRjJm2RYmTAgAGEhISQlJREv379SOvdG7p2Nd8Q/dRTkJRk6xJFRCSHbjkA7dy5k3bt2llef/XVVwQHBzN79myGDx/Oxx9/zNdff10gRYrYkslkYvbs2ZQuXZpNmzYx5cMP4bPPwMcH9u6FV1+1dYkiIpJDtxyALl26hI+Pj+X1unXr6Nixo+V18+bNOXXqVP5WJ1JI+Pv78+GHHwLwxhtvcCopCb74wrzxww8hLMyG1YmISE7dcgDKGBUXICUlhe3bt3PnnXdatsfHx2c5QKJIcdG/f3969+7NggUL8Pf3hwcfhOeeM2/s1w8uXbJpfSIicutuOQB16tSJ0aNHs379esaMGYObmxt33323ZfuuXbsICgoqkCJFCgOTycSCBQvo3r37vys/+ACqV4fTp2HwYNsVJyIiOXLLAeitt97CwcGBNm3aMHv2bGbPno2Tk5Nl+5w5c3jggQcKpEiRwujcuXMci46GRYvM4wEtXgzvv2/rskRE5BbkeBygy5cv4+Hhgf11A8BdvHgRDw8Pq1BUVGkcILmZ9evX89hjj1G1alXCw8NxmDoVXnnFvHHmTHj+eZvWJyJSEhXoVBhlypTJFH4AypUrVyzCj8itCAoKIjU1lb/++ov33nsPRoyA0aPNG194ARYutG2BIiJyQzkOQCICFStW5ON/BkQcP348u3fvhokTYcgQ82zx/frBt9/atkgREcmWApBILj311FN07tyZ1NRU+vXrR+q1a/DRR+bwk54OPXvCypW2LlNERLKgACSSSyaTiU8//ZSyZcuyfft23n33XbCzg88/h8cfN48U/cgj8Mcfti5VRESuowAkkgd+fn5MmzYNME8X8/fff5ufCFu0yDxOUFISPPQQbN1q40pFROS/FIBE8ujJJ5+kW7du9OjRgzp16phXOjnB0qXQti3Ex0NICOzebdtCRUTEIsePwZcEegxeciopKQknJyfs7K77N0V8PNx/P2zebJ477I8/oGZN2xQpIlLMFehj8CKSmYuLiyX8pKWlERoaSmxsLJQqBStWQKNGEB0N7dvDiRO2LVZERBSARPLbsGHDePXVV+natStJSUlQtiz8+ivUqgWnTplDUGSkrcsUESnRFIBE8tnAgQMpXbo069ato3fv3qSlpYG3N6xZAwEBcOSI+bLYhQu2LlVEpMRSABLJZ40aNeL777/HycmJZcuW8dJLL2EYBlSubA5Bfn6wdy906ABxcbYuV0SkRFIAEikAbdu2ZeHChZhMJj755BPzGEEAQUHmEOTlBX/9ZX5E/soV2xYrIlICKQCJFJDu3bvz4YcfAjBmzBjmzZtn3lC3LqxaBaVLw/r15sESk5NtV6iISAmkACRSgF588UVGjhyJi4sLnp6e/25o0sT8dJibm/kG6SeegGvXbFaniEhJo3GAsqBxgCQ/paenc+jQIWrXrp15Y1iYecTo5GR46imYP988nYaIiOSYxgESKUTs7Oyswk9ERASHDx82v2jXzjxitIODefqMwYPNs8mLiEiBUgASuY327t1Ly5YtCQkJISoqyryyc2dYuBBMJpg1C0aOVAgSESlghSIATZ8+nYCAAFxcXAgODmbLli23tN9XX32FyWSia9euVuv79euHyWSyWjp06FAAlYvkjJeXF+7u7hw/fpxOnToRl/EYfM+eMHu2+efJk+Gtt2xXpIhICWDzALRkyRKGDx/OuHHj2L59O40aNSIkJISYmJgb7hcREcGIESO4++67s9zeoUMHIiMjLcvixYsLonyRHPHx8WHVqlV4e3uzY8cOHn30UVJSUswbBwyAqVPNP48bB/88QSYiIvnP5gFoypQpPPvss/Tv35+6desya9Ys3NzcmDNnTrb7pKWl0atXLyZMmEC1atWybOPs7Iyvr69lKVu2bEGdgkiOBAUF8csvv+Du7k5YWBj9+vUjPT3dvPHFF//t/Rk+/N9eIRERyVc2DUApKSls27aN9u3bW9bZ2dnRvn17wsPDs93vzTffxNvbmwEDBmTbZu3atXh7e1OrVi0GDRrEhRtMO5CcnExcXJzVIlKQmjVrxjfffIODgwOLFy9m5MiR/2587TXzfUAAzz0H//ufbYoUESnGbBqAzp8/T1paGj4+PlbrfXx8/r1B9Dp//vknX3zxBbNv8C/jDh06sGDBAsLCwnj33XdZt24dHTt2NM/JlIXQ0FDKlCljWfz9/XN/UiK3KCQkxNLT+fvvv5OYmGjeYDLBpEnwwgvmm6H79IEffrBhpSIixY+DrQvIifj4eHr37s3s2bPx8vLKtl3Pnj0tPzdo0ICGDRsSFBTE2rVradeuXab2Y8aMYfjw4ZbXcXFxCkFyW/Tu3RsXFxc6dOiAu7v7vxtMJpg2DRISYMEC6N4dfvoJHnjAdsWKiBQjNg1AXl5e2NvbEx0dbbU+OjoaX1/fTO2PHj1KREQEnTt3tqzLuHfCwcGBgwcPEhQUlGm/atWq4eXlxZEjR7IMQM7Ozjg7O+f1dERy5fHHH7d6HR0dbe4VtbODL76AxET45hvzgInjxsHo0eZxg0REJNdsegnMycmJpk2bEhYWZlmXnp5OWFgYLVu2zNS+du3a7N69m507d1qWhx9+mLZt27Jz585se21Onz7NhQsX8PPzK7BzEckrwzCYNGkSNWrUYMeOHeaVDg7me4B69DBPlfHGG3D33ZAxkKKIiOSKzZ8CGz58OLNnz2b+/Pns37+fQYMGkZiYSP/+/QHo06cPY8aMAcDFxYX69etbLZ6enpQqVYr69evj5OREQkICr7zyCps2bSIiIoKwsDC6dOlC9erVCQkJseWpitxQWloav/76K/Hx8XTs2JFjx46ZNzg5weLF5kthpUvDpk3QuDHMnKkBE0VEcsnmAahHjx5MnjyZsWPH0rhxY3bu3MnKlSstN0afPHmSyMjIWz6evb09u3bt4uGHH6ZmzZoMGDCApk2bsn79el3mkkLNwcGB7777jkaNGhEdHU1ISAjnzp0zbzSZoHdv2L0b7rsPrlwx3yTdqROcPWvbwkVEiiBNhpoFTYYqthQZGUnLli05ceIEzZs357fffsPDw+PfBunp5hukR4+GpCQoV848hcZ19xKJiJQ0mgxVpAjz8/Nj1apVlC9fnq1bt9K9e3dSU1P/bWBnZx4wcds2aNIELl40PyX21FNw6ZLtChcRKUIUgEQKoVq1avHzzz/j6urKihUr+OWXXzI3qlsXwsPh9dfNoejLL6FBA1iz5vYXLCJSxOgSWBZ0CUwKi19++YVTp07x/PPP37jhpk3me4SOHDG/HjrUPJiim1vBFykiUkjk5PtbASgLCkBSWB07dozSpUtnPRBoYiK88or56TCA2rVh4UJo1uz2FikiYiO6B0ikGLp69Spdu3alcePG/Pnnn5kbuLvDjBmwYgX4+cGBA9CyJbz5pnkMIRERsVAAEikioqKiSE5O5syZM9x7771MmjTp31nk/6tDB/Pj8t27m4PPuHHQqhUcOnT7ixYRKaQUgESKiMDAQP766y969epFWloaY8aM4cEHH/x3rKD/Kl8evvrKfGO0pyds2WIePHH6dA2eKCKCApBIkVKqVCkWLlzI559/jouLCytXruSOO+7I+pKYyQRPPmnuDWrfHq5ehSFDzD1EZ87c/uJFRAoRBSCRIsZkMjFgwAC2bNlCrVq1OHPmDK+//jrZPs9QuTKsWgUffwwuLvDrr+bH5b/66vYWLiJSiCgAiRRRDRo04K+//mLQoEEsXLgQk8mUfWM7O/Oj8Tt2mJ8Ku3QJnnjCvFy8ePuKFhEpJBSARIowDw8PZsyYgb+/v2VdaGgo69evz3qH2rVh40bzjdH29uZeoAYNzL1CIiIliAKQSDGycuVKXn31Vdq2bUtoaGjWT4k5OsL48eYgVLOmeTLVkBDo1Qv27r3tNYuI2IICkEgx0rp1a5566inS0tJ49dVX6dSpU9ZPiQG0aGG+JDZkiPn1//4H9etD166wefNtq1lExBYUgESKEQ8PDxYsWMAXX3yBi4sLq1atonHjxvzxxx9Z7+DmZp5Z/q+/4LHHzE+O/fAD3HkntGtnnldMj82LSDGkACRSzJhMJp5++mm2bNlC7dq1OXv2LG3btuXDDz/MfqemTWHZMti3D/r1AwcH+O03uP9+CA6G77+HrC6niYgUUQpAIsVUgwYN2Lp1K7179yY9PZ2KFSvefKfatWHuXDh61PzUmIsLbN0Kjzxivll64UJITS344kVECpgmQ82CJkOV4sQwDMLDw7nrrrss6xITE3F3d7/5zjEx8NFH5hGkL182r6ta1Tzp6tNPg6trAVUtIpJzmgxVRCxMJpNV+ImKiqJWrVpMnDgx66fE/svbG955B06cgNBQ8+sTJ8w3TgcEwLvvQlxcwZ6AiEgBUAASKWG+/PJLzpw5w2uvvUbHjh2JiYm5+U5lysDo0RARAZ98AlWqmHuHRo82//z665Dd02YiIoWQApBICTN8+HDmzJmDq6srv/76K3fccUf2T4ldz9UVBg+GI0dg/nyoU8d8aeydd8yXxl58EU6dKtgTEBHJBwpAIiWMyWSif//+bN26lTp16lieEhs5ciSXLl26tYM4OkKfPrBnD3z7rXl6jatXzfONVatmvj/o4MGCPRERkTxQABIpoerVq8fWrVvp27cv6enpvP/++0yfPj1nB7GzMz8htmULrF4NbdvCtWvmJ8nq1IHHH4ft2wvmBERE8kABSKQEc3d3Z968efz000/cd999vPjii5ZtZ86c4dq1a7d2IJMJ2rc3jx0UHg4PP2weQHHZMvMYQyEhsGiReRJWEZFCQI/BZ0GPwUtJZxgGwcHBXL58mXfeeYfHHnvsxrPNZ2XPHpg0yTzhalqaeZ29PdxzD3TpYl4CAvK9dhEpuXLy/a0AlAUFICnpjh07xp133mmZR6xZs2ZMmjSJdu3a5eZgMGeOeYqNPXustzVs+G8YatLE3JMkIpJLCkB5pAAkAvHx8UyZMoXJkyeTkJAAQPv27Zk0aRJNmzbN3UGPHoUffzSHofXrrafXqFzZfOmsSxe4915wcsr7SYhIiaIAlEcKQCL/iomJYeLEicyYMYPUf6bB+OOPP7j77rvzduALF+CXX8xhaNUqSEz8d1vp0tCxozkMdepkHodIROQmFIDySAFIJLOIiAjGjh3L3r172bp1K3Z25mcoUlNTcXR0zNvBk5IgLMwchn78EaKj/93m4GDuEcq4VObvn7f3EpFiSwEojxSARLKXnJyMs7MzYJ5TrGHDhjz++OOMGjWKsmXL5v0N0tPNj9V//705EB04YL29SZN/w1DDhrpvSEQsFIDySAFI5NbMnTuXp59+GgBPT0/GjBnD0KFDcc3PSVIPHTIHoR9+gI0bzY/XZ6ha9d/LZE2bgpdX/r2viBQ5CkB5pAAkcmsMw+Dnn39mzJgx7N27F4CKFSsyfvx4+vfvj4ODQ/6+YUwM/PyzOQytXm0effq//P3hjjusF39/9RKJlBAKQHmkACSSM2lpaXz55ZeMHTuWEydOAFC7dm22bt2Kh4dHwbzplSvmEJTxRNmRI1m3K1cucyiqWdM8JpGIFCsKQHmkACSSO8nJycyaNYu3336btm3b8vXXX1u2GYaR88EUcyIuDnbuhB07/l327TNPzXE9Nzdo1Mg6FNWvD//c2yQiRZMCUB4pAInkTVxcHFeuXMHX1xeAXbt20bNnT5566imefPJJAm7XCNBJSbB3r3Uo+vtvc+/R9RwcoG5d61DUuLH5kXwRKRIUgPJIAUgkf40aNYr33nvP8vruu++md+/edOvWLX+eHMuJtDQ4fNg6FG3fDhcvZt0+KMjcO1SjBlSvbv6zRg2oVMk8GayIFBoKQHmkACSSv+Li4vj2229ZuHAhv//+Oxn/23FycuKhhx5ixowZ+Pj42K5Aw4BTp6xD0Y4d5nXZcXExh6Prg1H16gpHIjaiAJRHCkAiBef06dMsXryYRYsWsWvXLry8vDh79qxlMMWTJ09SuXJly0CLNnX+vPm+ooMHzb1Ghw+bb7Y+dizre4sy/DccXR+QKlZUOBIpIApAeaQAJHJ77Nq1i2PHjtG1a1cA0tPTCQgIwN7enl69evHUU09Ru3Zt2xaZlWvX4ORJ61B0q+HI1dUcjv4bigIDISDA/Mi+bsQWyTUFoDxSABKxjcOHD9O0aVPi4+Mt65o2bUrv3r3p2bOnbS+T3apr1+DECetQlBGUjh+/cTgymcDPzxyGqlY1//nfn6tUMQcoEclSkQtA06dP5/333ycqKopGjRoxbdo0WrRocdP9vvrqK5544gm6dOnC999/b1lvGAbjxo1j9uzZxMbG0qpVK2bOnEmNGjVuqR4FIBHbuXLlCj/99BOLFi1i5cqVXPsnMNjb2/Phhx8ydOhQG1eYB9eHo4yAFBFhXrJ6Ou16Pj7/BqOsgpKbWwGegEjhVqQC0JIlS+jTpw+zZs0iODiYqVOnsnTpUg4ePIi3t3e2+0VERNC6dWuqVatGuXLlrALQu+++S2hoKPPnzycwMJA33niD3bt3s2/fPlxcXG5akwKQSOFw7tw5vv76axYuXMjmzZv5888/adWqFQD79+/n5MmTtGvXLv9HnLYFw4ALF/4NQydOWP98/DgkJNz8OBUqWAejqlXNS5Uq5sXTUyNjS7FVpAJQcHAwzZs355NPPgHM9wD4+/szdOhQRo8eneU+aWlp3HPPPTz99NOsX7+e2NhYSwAyDIOKFSvy8ssvM2LECAAuX76Mj48P8+bNo2fPnjetSQFIpPA5cuQIQUFBlsEUBw0axKxZs/Dx8aFbt260adOGVq1aUbFiRRtXWkAMAy5dyjocRUSYA1Jc3M2P4+FhDkL/DUX/XSpVgn9uSBcpanLy/W3TfzalpKSwbds2xowZY1lnZ2dH+/btCQ8Pz3a/N998E29vbwYMGMD69eutth0/fpyoqCjat29vWVemTBmCg4MJDw/PMgAlJyeTnJxseR13K/8TEZHbqnr16lavy5cvT/ny5YmOjmb69OlMnz4dgICAAFq3bs3cuXOLR89QBpPJPK1HuXLQpEnWbWJjsw5HJ0+al3PnzL1I+/aZl+zep2LFzMFIvUhSzNj0/w7nz58nLS0t042NPj4+HDhwIMt9/vzzT7744gt27tyZ5faoqCjLMa4/Zsa264WGhjJhwoQcVi8itvT2228zduxYfv31V1auXMmGDRvYtWsXERERODk5WYWfMWPG4OrqSqtWrQgODi64+clszdPTvDRqlPX2q1fNYxtlBKL/LidOmLclJ8OZM+Ylu3+IZvQiZQSj6+9F8vHRo/5S6BWpfx7Fx8fTu3dvZs+ejZeXV74dd8yYMQwfPtzyOi4uDn9//3w7vogUjIyBFB966CHA/P+IzZs3k5iYaGlz7do1pk2bZllnb29Po0aNaNWqFa1ataJ169ZUqlTJJvXfdq6u5olga9bMent6urmXKKuAlLHExNy8F8nZ2ToQXb8oIEkhYNMA5OXlhb29PdHR0Vbro6OjLXMI/dfRo0eJiIigc+fOlnXp6ekAODg4cPDgQct+0dHR+Pn5WR2zcePGWdbh7OyMs8beECnySpUqZXX5GyA1NZVJkyaxYcMGNmzYwKlTp9i+fTvbt29n2rRphISEsHLlSkv7vXv3Urt2bexL4mzxdnbmcOLjA82bZ93m6lU4ffrfXqP/XnKLiDBvS06GQ4fMS1b+G5CyCkq+vgpIUuBsGoCcnJxo2rQpYWFhVgOhhYWFMWTIkEzta9euze7du63Wvf7668THx/PRRx/h7++Po6Mjvr6+hIWFWQJPXFwcmzdvZtCgQQV9SiJSyLi6ujJkyBDL/1NOnTplCUMbNmygTZs2lrZRUVHUr1+fUqVKceedd1p6iZo3b06ZMmVsdQqFi6vrvwM4ZiU11Xz57L+h6L9LxmW2GwUkJ6d/g1FgoHngyP8upUoVwIlJSWPzp8CWLFlC3759+fTTT2nRogVTp07l66+/5sCBA/j4+NCnTx8qVapEaGholvv369fP6ikwMD8GP2nSJKvH4Hft2qXH4EUkE8MwLE+WrV+/ngcffNBqIMYMlStXZvz48QwYMAAw9yxdu3YNVw1MmDO3EpD+6dnPVoUKmUNRxuLjoxu0S7Ai8xQYQI8ePTh37hxjx44lKiqKxo0bs3LlSstNzCdPnszxnEAjR44kMTGRgQMHEhsbS+vWrVm5cuUthR8RKVlM//myvPvuu7l06RJ79uyx9BBt3LiRiIgITp8+jZOTk6Xt+vXruf/++wkKCqJ+/fpWS40aNSxzm8l1HB3/vdSVlesD0rFjcPSoecDIo0fNYyWdO2deNm3KvL+7O1SrZp5q5PpwVKUKFKcnAyVPbN4DVBipB0hE/is2Npa9e/dSo0YNywCtM2bMYPDgwVm2d3JyYtGiRTz++OMAXLx4kcuXL1O1atXCMclrUXb5sjkIZbWcOmUeLyk7Dg7mS2v/DUW1akGdOuZAVhLv+ypmitRAiIWRApCI3IxhGERHR7Nnz55MS2JiIhs3bqRly5YAzJ49m4EDB+Lu7k69evUsPUUNGjSgfv36+Pj4WPVESS4lJ5t7jbIKR8eOmbdnx9nZ/HRc7drmpU4d85+1aml6kSKkSF0CExEpikwmE76+vvj6+lo9eZaens7JkyetnkI9f/48Tk5OJCYmsmXLFrZs2WJ1rD/++IO7774bgG3btnHgwAFq1KhBzZo18fT0vC3nUyw4O5sDS61ambelp8PZs9ah6PBhOHjQvCQnw+7d5uV6Vatah6KMPytU0P1GRZh6gLKgHiARyW+pqakcOXIkU2/RkSNHOHPmjGUIj1deeYXJkydb9vPy8qJmzZqWQPTss89SoUIFW51G8ZSWZn6c/8AB2L/f/GfGzxcuZL9f2bKZQ1Ht2uYn13Q5zSZ0CSyPFIBE5HZJSkrC2dnZcglsxowZfP311xw6dIjIyMhM7U+fPm0ZuPG9995j+fLlVgGpRo0aBAUFaWyz/HL+fOZQdOCA+VJbdl+fTk7my2l165qnLWna1PxnuXK3tfSSSAEojxSARKQwiI+P58iRIxw+fJjDhw9z7NgxPv/8c0tYeuyxx/j2228z7WcymahatSpbtmyx9Bbt27ePa9euERgYSCmNo5N3V6+axzG6vtfo4EFISsp6n8BAcxhq2hSaNVMoKgAKQHmkACQiRcHu3bv5+++/OXTokCUkHTp0iPj4eJydnbly5YrlqbMePXrw9ddfA1ChQgWqVatmtTz11FNWj/lLLqWlmUfJPnDAfD/Rtm3w11/mm7Cz8t9QlLEoFOWaAlAeKQCJSFFlGAYxMTGcPn2apk2bWtb369ePn3/+mQtZ3NPi5OTElStXLNN/vPzyy+zduzdTSKpWrZr+n5hbly7B9u3mQJSxHD2adduAgMw9ReXL39ZyiyoFoDxSABKR4ury5cscP36cY8eOWZakpCTmzJljadOiRQu2bt2a5f6+vr6cOXPG0rP0+++/AxAUFESlSpVK5hxquZXbUJSxKBRlogCURwpAIlKSbdy4kQMHDnD06FGroHT+/HmqV6/O4cOHLW2Dg4Mtj/U7OTkREBBg6S2qVasWw4YNs9VpFE2xsdah6K+/sg9FNWtC587mpVUrjXKNAlCeKQCJiGQWFxfH+fPnqVatmmXdk08+ybZt2zh+/DipqalW7YOCgjhy5Ijl9cMPP8z58+cJCgqyhKSMn/38/DQYZHauD0XbtpmnBvmvsmXhwQfNYSgkBEro5L0KQHmkACQikjNpaWmcOXOGY8eOWXqO3NzceO211yxtfHx8iImJyXL/OnXqsG/fPsvrr7/+Gjc3N6pXr061atV0g/b1Ll2CNWvgp5/gl1/g4sV/tzk6Qps28PDD5kCU3bxrxZACUB4pAImI5L/t27dbBaSMn0+ePEnbtm1ZvXq1pa2vry/R0dEA2NnZERgYaBnrqFmzZvTu3dtWp1H4XLsG4eHw44/mQHTwoPX2Bg3MQejhh6F5cyjG89EpAOWRApCIyO2TmppKXFwc5f+5qTctLY0ePXpw9OhRDh8+TGJiolX7tm3b8ttvv1le33fffZQuXZqaNWtaDQrp6+tbMi+rHTpkDkI//gh//mmeBiSDjw889JA5ELVvD+7utquzACgA5ZECkIhI4WAYBlFRURw6dMgy3lFgYCCDBg0CICEhIduBHT08POjZsyezZ8+2rNu+fTuBgYGULVv2ttRvcxcuwIoV5kC0YgXEx/+7zcXFHII6dzaHoooVbVdnPlEAyiMFIBGRoiE5OZm1a9daBoHMCEkRERGkp6czYMAAPv/8cwCuXr2K2z8zu5cvX56aNWtSr1496tevT/369WnYsGHxnmctJQX++OPfS2UREdbbmzX7976hRo2K5ESvCkB5pAAkIlK0JScnc/z4cRwcHKhevToAERERtG7dmjNnzmS5T+/evVmwYAFgviw3Z84c6tevT7169fD09Lxdpd8ehgF79vx7qWzLFuu5zfz9oVcvGDwYKle2XZ05pACURwpAIiLFV0JCAkeOHOHgwYPs3buXPXv2sGfPHgYOHMiIESMA2L9/P3Xr1rXsU7lyZerXr0+DBg2oX78+rVq1IigoyFankP+iosxPk/30E/z6q3muMzDPat+tG7z0Etx5p01LvBUKQHmkACQiUvIYhmG5aXrXrl2MHj2aPXv2cOrUqUxtJ0yYwNixYwGIjIxkxowZlktpNWvWxNHR8bbWnq+uXjXfLzRtGqxd++/64GBzEHrsMfOj9oWQAlAeKQCJiEiG2NhY9u3bZ+kp2rNnD6+88godO3YE4Oeff6Zz586W9o6OjtSqVYsGDRrQokULHnroIctluCJn50746CP43//M9xABVKpkvjQ2cGChm45DASiPFIBERORWbd26lc8++8wSjhISEqy2L1iwwDJu0aFDh/jjjz9o0aIFdevWxaGoTF8RHQ2ffgozZph/BnB1hd694cUX4T+XC21JASiPFIBERCQ3DMPg5MmT7Nmzhx07drB161Y++OADSw/QlClTePnllwFwc3OjadOmtGjRghYtWtC8eXMCAgIK99hFycmwZAlMnQo7dvy7/oEHzEGoQwebDrSoAJRHCkAiIlIQFi9ezOzZs/nrr7+I/++YPP8IDw/nzn9uNj579ixOTk54eXnd7jJvzjBg/Xrz5bHvv/93sMWaNc1BqE8f8PC47WUpAOWRApCIiBSk9PR0Dh48yJYtWyzLvn37OH/+PK6urgAMHjyYGTNmEBgYaOklatGiBXfccQfuhWkE5+PH4ZNP4PPPIS7OvM7TE555BoYMgapVb1spCkB5pAAkIiK3W2pqqtXTY926deObb77J1M7Ozo769esTHh5uGdixUIiPh/nzzb1CGbPV29nBo4+anx67664CH1xRASiPFIBERKQwiI2N5a+//mLr1q2WnqKzZ89StWpVIv4zkvPs2bPx8/Ojffv2uLi42K5gMF8OW77cfJ9QWNi/65s1Mwehxx8HJ6cCeWsFoDxSABIRkcLqzJkznDlzhhYtWgDmUa+9vb2Ji4ujVKlSPPjggzz66KN07NgRDxvch2Nl925zj9CiReYbqAH8/OCFF+C55yCfpx5RAMojBSARESkqLl68yLhx4/juu++spvlwdnYmJCSEgQMH8uCDD9qwQuDcOfjsM5g+HSIjzeu6dYOlS/P1bXLy/W27Z9VEREQkz8qVK8e0adM4efIkmzZtYuTIkQQFBZGcnMyPP/7Itm3bLG2vXr1KVFTU7S+yQgV47TXzBKyLFpkvhw0Zcvvr+A/1AGVBPUAiIlKUGYbBnj17+Oabb3jiiSeoVasWAEuXLqVHjx60atWKRx99lEceeYSAgABbFGj+M59vitYlsDxSABIRkeLotddeY+LEiVbrmjRpwmOPPcajjz5K7dq1bVRZ/lAAyiMFIBERKa5OnTrF999/zzfffMP69etJzxjEEDhx4gRVqlSxYXV5owCURwpAIiJSEsTExPDjjz/yzTffcOnSJTZt2mTZNnHiRKpWrUr37t2LzOz2CkB5pAAkIiIlTVpaGvb29oB5Go7AwEBSUlKoUqUKw4cPZ8CAAbZ/rP4m9BSYiIiI5EhG+AFwd3dn3LhxeHt7c/LkSV566SWqVKnCG2+8QUxMjA2rzD/qAcqCeoBEREQgKSmJBQsWMHnyZA4fPgyAi4sLS5cu5aGHHrJxdZmpB0hERETyzMXFhYEDB7J//36++eYbWrRogclkssxYD5CYmGjDCnNPAUhERERuyN7enkcffZRNmzaxZ88evLy8LNs6duxI27ZtWbFiBUXpopICkIiIiNwSk8lEtWrVLK+PHTtGeHg4a9eupVOnTjRs2JAFCxaQkpJiwypvTaEIQNOnTycgIAAXFxeCg4PZsmVLtm2//fZbmjVrhqenJ+7u7jRu3JiFCxdatenXrx8mk8lq6dChQ0GfhoiISIlSrVo1jh8/zssvv4yHhwd79uyhb9++BAUFMWXKFOLj421dYrZsHoCWLFnC8OHDGTduHNu3b6dRo0aEhIRke5d5uXLleO211wgPD2fXrl3079+f/v37s2rVKqt2HTp0IDIy0rIsXrz4dpyOiIhIiVK5cmUmT57MqVOnCA0NxdfXl9OnT/Pyyy/z008/2bq8bNn8KbDg4GCaN2/OJ598AkB6ejr+/v4MHTqU0aNH39IxmjRpwoMPPshbb70FmHuAYmNj+f7773NVk54CExERyZ3k5GQWLVrE119/zc8//2wZRHHNmjVUqVKFmjVrFth7F5mnwFJSUti2bRvt27e3rLOzs6N9+/aEh4ffdH/DMAgLC+PgwYPcc889VtvWrl2Lt7c3tWrVYtCgQVy4cCHf6xcRERFrzs7ODBgwgFWrVlnCT2pqKv3796d27dqWm6ltzcGWb37+/HnS0tLw8fGxWu/j48OBAwey3e/y5ctUqlSJ5ORk7O3tmTFjBvfff79le4cOHXj00UcJDAzk6NGjvPrqq3Ts2JHw8HCrgZ4yJCcnk5ycbHkdFxeXD2cnIiIiABcvXqRJkyacPn2a7777DpPJxDfffGPTmmwagHKrVKlS7Ny5k4SEBMLCwhg+fDjVqlXj3nvvBaBnz56Wtg0aNKBhw4YEBQWxdu1a2rVrl+l4oaGhTJgw4XaVLyIiUqL4+Pjwww8/sH//fiZPnszAgQNtXZJt7wFKSUnBzc2NZcuW0bVrV8v6vn37Ehsbyw8//HBLx3nmmWc4depUphuh/6tChQq8/fbbPPfcc5m2ZdUD5O/vr3uAREREipAicw+Qk5MTTZs2JSwszLIuPT2dsLAwWrZsecvHSU9Ptwow1zt9+jQXLlzAz88vy+3Ozs6ULl3aahEREZHiy+aXwIYPH07fvn1p1qwZLVq0YOrUqSQmJtK/f38A+vTpQ6VKlQgNDQXMl6uaNWtGUFAQycnJLF++nIULFzJz5kwAEhISmDBhAo899hi+vr4cPXqUkSNHUr16dUJCQmx2niIiIlJ42DwA9ejRg3PnzjF27FiioqJo3LgxK1eutNwYffLkSezs/u2oSkxM5IUXXuD06dO4urpSu3ZtFi1aRI8ePQDzcN27du1i/vz5xMbGUrFiRR544AHeeustnJ2dbXKOIiIiUrjYfBygwkjjAImIiBQ9ReYeIBERERFbUAASERGREkcBSEREREocBSAREREpcRSAREREpMRRABIREZESRwFIREREShwFIBERESlxFIBERESkxFEAEhERkRLH5nOBFUYZs4PExcXZuBIRERG5VRnf27cyy5cCUBbi4+MB8Pf3t3ElIiIiklPx8fGUKVPmhm00GWoW0tPTOXv2LKVKlcJkMtm6nAITFxeHv78/p06dKhGTvpak89W5Fk8l6VyhZJ2vzjV/GIZBfHw8FStWxM7uxnf5qAcoC3Z2dlSuXNnWZdw2pUuXLva/cP9Vks5X51o8laRzhZJ1vjrXvLtZz08G3QQtIiIiJY4CkIiIiJQ4CkAlmLOzM+PGjcPZ2dnWpdwWJel8da7FU0k6VyhZ56tzvf10E7SIiIiUOOoBEhERkRJHAUhERERKHAUgERERKXEUgERERKTEUQAqpkJDQ2nevDmlSpXC29ubrl27cvDgwRvuM2/ePEwmk9Xi4uJymyrOm/Hjx2eqvXbt2jfcZ+nSpdSuXRsXFxcaNGjA8uXLb1O1eRMQEJDpXE0mE4MHD86yfVH6XP/44w86d+5MxYoVMZlMfP/991bbDcNg7Nix+Pn54erqSvv27Tl8+PBNjzt9+nQCAgJwcXEhODiYLVu2FNAZ5MyNzjc1NZVRo0bRoEED3N3dqVixIn369OHs2bM3PGZufhduh5t9tv369ctUd4cOHW563ML42d7sXLP6/TWZTLz//vvZHrOwfq638l2TlJTE4MGDKV++PB4eHjz22GNER0ff8Li5/V3PCQWgYmrdunUMHjyYTZs2sXr1alJTU3nggQdITEy84X6lS5cmMjLSspw4ceI2VZx39erVs6r9zz//zLbtxo0beeKJJxgwYAA7duyga9eudO3alT179tzGinNn69atVue5evVqAB5//PFs9ykqn2tiYiKNGjVi+vTpWW5/7733+Pjjj5k1axabN2/G3d2dkJAQkpKSsj3mkiVLGD58OOPGjWP79u00atSIkJAQYmJiCuo0btmNzvfKlSts376dN954g+3bt/Ptt99y8OBBHn744ZseNye/C7fLzT5bgA4dOljVvXjx4hses7B+tjc71/+eY2RkJHPmzMFkMvHYY4/d8LiF8XO9le+a//u//+Onn35i6dKlrFu3jrNnz/Loo4/e8Li5+V3PMUNKhJiYGAMw1q1bl22buXPnGmXKlLl9ReWjcePGGY0aNbrl9t27dzcefPBBq3XBwcHGc889l8+VFbwXX3zRCAoKMtLT07PcXlQ/V8D47rvvLK/T09MNX19f4/3337esi42NNZydnY3Fixdne5wWLVoYgwcPtrxOS0szKlasaISGhhZI3bl1/flmZcuWLQZgnDhxIts2Of1dsIWszrVv375Gly5dcnScovDZ3srn2qVLF+O+++67YZui8LkaRubvmtjYWMPR0dFYunSppc3+/fsNwAgPD8/yGLn9Xc8p9QCVEJcvXwagXLlyN2yXkJBA1apV8ff3p0uXLuzdu/d2lJcvDh8+TMWKFalWrRq9evXi5MmT2bYNDw+nffv2VutCQkIIDw8v6DLzVUpKCosWLeLpp5++4cS9RflzzXD8+HGioqKsPrcyZcoQHByc7eeWkpLCtm3brPaxs7Ojffv2Re6zBvPvsclkwtPT84btcvK7UJisXbsWb29vatWqxaBBg7hw4UK2bYvLZxsdHc0vv/zCgAEDbtq2KHyu13/XbNu2jdTUVKvPqXbt2lSpUiXbzyk3v+u5oQBUAqSnp/PSSy/RqlUr6tevn227WrVqMWfOHH744QcWLVpEeno6d911F6dPn76N1eZOcHAw8+bNY+XKlcycOZPjx49z9913Ex8fn2X7qKgofHx8rNb5+PgQFRV1O8rNN99//z2xsbH069cv2zZF+XP9r4zPJief2/nz50lLSysWn3VSUhKjRo3iiSeeuOEEkjn9XSgsOnTowIIFCwgLC+Pdd99l3bp1dOzYkbS0tCzbF5fPdv78+ZQqVeqml4SKwuea1XdNVFQUTk5OmUL7jT6n3Pyu54Zmgy8BBg8ezJ49e256vbhly5a0bNnS8vquu+6iTp06fPrpp7z11lsFXWaedOzY0fJzw4YNCQ4OpmrVqnz99de39C+rouqLL76gY8eOVKxYMds2RflzFbPU1FS6d++OYRjMnDnzhm2L6u9Cz549LT83aNCAhg0bEhQUxNq1a2nXrp0NKytYc+bMoVevXjd9MKEofK63+l1TWKgHqJgbMmQIP//8M7///juVK1fO0b6Ojo7ccccdHDlypICqKzienp7UrFkz29p9fX0zPYUQHR2Nr6/v7SgvX5w4cYI1a9bwzDPP5Gi/ovq5Znw2OfncvLy8sLe3L9KfdUb4OXHiBKtXr75h709Wbva7UFhVq1YNLy+vbOsuDp/t+vXrOXjwYI5/h6Hwfa7Zfdf4+vqSkpJCbGysVfsbfU65+V3PDQWgYsowDIYMGcJ3333Hb7/9RmBgYI6PkZaWxu7du/Hz8yuACgtWQkICR48ezbb2li1bEhYWZrVu9erVVj0lhd3cuXPx9vbmwQcfzNF+RfVzDQwMxNfX1+pzi4uLY/Pmzdl+bk5OTjRt2tRqn/T0dMLCworEZ50Rfg4fPsyaNWsoX758jo9xs9+Fwur06dNcuHAh27qL+mcL5h7cpk2b0qhRoxzvW1g+15t91zRt2hRHR0erz+ngwYOcPHky288pN7/ruS1eiqFBgwYZZcqUMdauXWtERkZalitXrlja9O7d2xg9erTl9YQJE4xVq1YZR48eNbZt22b07NnTcHFxMfbu3WuLU8iRl19+2Vi7dq1x/PhxY8OGDUb79u0NLy8vIyYmxjCMzOe6YcMGw8HBwZg8ebKxf/9+Y9y4cYajo6Oxe/duW51CjqSlpRlVqlQxRo0alWlbUf5c4+PjjR07dhg7duwwAGPKlCnGjh07LE89TZo0yfD09DR++OEHY9euXUaXLl2MwMBA4+rVq5Zj3Hfffca0adMsr7/66ivD2dnZmDdvnrFv3z5j4MCBhqenpxEVFXXbz+96NzrflJQU4+GHHzYqV65s7Ny50+r3ODk52XKM68/3Zr8LtnKjc42PjzdGjBhhhIeHG8ePHzfWrFljNGnSxKhRo4aRlJRkOUZR+Wxv9t+xYRjG5cuXDTc3N2PmzJlZHqOofK638l3z/PPPG1WqVDF+++0346+//jJatmxptGzZ0uo4tWrVMr799lvL61v5Xc8rBaBiCshymTt3rqVNmzZtjL59+1pev/TSS0aVKlUMJycnw8fHx+jUqZOxffv22198LvTo0cPw8/MznJycjEqVKhk9evQwjhw5Ytl+/bkahmF8/fXXRs2aNQ0nJyejXr16xi+//HKbq869VatWGYBx8ODBTNuK8uf6+++/Z/nfbcb5pKenG2+88Ybh4+NjODs7G+3atcv0d1C1alVj3LhxVuumTZtm+Tto0aKFsWnTptt0Rjd2o/M9fvx4tr/Hv//+u+UY15/vzX4XbOVG53rlyhXjgQceMCpUqGA4OjoaVatWNZ599tlMQaaofLY3++/YMAzj008/NVxdXY3Y2Ngsj1FUPtdb+a65evWq8cILLxhly5Y13NzcjEceecSIjIzMdJz/7nMrv+t5ZfrnjUVERERKDN0DJCIiIiWOApCIiIiUOApAIiIiUuIoAImIiEiJowAkIiIiJY4CkIiIiJQ4CkAiIiJS4igAiYhkw2Qy8f3339u6DBEpAApAIlIo9evXD5PJlGnp0KGDrUsTkWLAwdYFiIhkp0OHDsydO9dqnbOzs42qEZHiRD1AIlJoOTs74+vra7WULVsWMF+emjlzJh07dsTV1ZVq1aqxbNkyq/13797Nfffdh6urK+XLl2fgwIEkJCRYtZkzZw716tXD2dkZPz8/hgwZYrX9/PnzPPLII7i5uVGjRg1+/PFHy7ZLly7Rq1cvKlSogKurKzVq1MgU2ESkcFIAEpEi64033uCxxx7j77//plevXvTs2ZP9+/cDkJiYSEhICGXLlmXr1q0sXbqUNWvWWAWcmTNnMnjwYAYOHMju3bv58ccfqV69utV7TJgwge7du7Nr1y46depEr169uHjxouX99+3bx4oVK9i/fz8zZ87Ey8vr9v0FiEju5evUqiIi+aRv376Gvb294e7ubrW88847hmGYZ49+/vnnrfYJDg42Bg0aZBiGYXz22WdG2bJljYSEBMv2X375xbCzs7PMMl6xYkXjtddey7YGwHj99dctrxMSEgzAWLFihWEYhtG5c2ejf//++XPCInJb6R4gESm02rZty8yZM63WlStXzvJzy5Ytrba1bNmSnTt3ArB//34aNWqEu7u7ZXurVq1IT0/n4MGDmEwmzp49S7t27W5YQ8OGDS0/u7u7U7p0aWJiYgAYNGgQjz32GNu3b+eBBx6ga9eu3HXXXbk6VxG5vRSARKTQcnd3z3RJKr+4urreUjtHR0er1yaTifT0dAA6duzIiRMnWL58OatXr6Zdu3YMHjyYyZMn53u9IpK/dA+QiBRZmzZtyvS6Tp06ANSpU4e///6bxMREy/YNGzZgZ2dHrVq1KFWqFAEBAYSFheWphgoVKtC3b18WLVrE1KlT+eyzz/J0PBG5PdQDJCKFVnJyMlFRUVbrHBwcLDcaL126lGbNmtG6dWu+/PJLtmzZwhdffAFAr169GDduHH379mX8+PGcO3eOoUOH0rt3b3x8fAAYP348zz//PN7e3nTs2JH4+Hg2bNjA0KFDb6m+sWPH0rRpU+rVq0dycjI///yzJYCJSOGmACQihdbKlSvx8/OzWlerVi0OHDgAmJ/Q+uqrr3jhhRfw8/Nj8eLF1K1bFwA3NzdWrVrFiy++SPPmzXFzc+Oxxx5jypQplmP17duXpKQkPvzwQ0aMGIGXlxfdunW75fqcnJwYM2YMERERuLq6cvfdd/PVV1/lw5mLSEEzGYZh2LoIEZGcMplMfPfdd3Tt2tXWpYhIEaR7gERERKTEUQASERGREkf3AIlIkaSr9yKSF+oBEhERkRJHAUhERERKHAUgERERKXEUgERERKTEUQASERGREkcBSEREREocBSAREREpcRSAREREpMRRABIREZES5/8BiG/pcGBB9D0AAAAASUVORK5CYII=", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8c0lEQVR4nO3dd1QUVxvH8e+CdCkqil3UGFvsBbuJvWHvxm6MisZY8trFEktiYkzsGmtsRGOLNYq9d2PvvSEWEJS69/1j4hoCqCAwwD6fc/ZkZ3Z29hkmuD/u3LnXoJRSCCGEEEKYEQu9CxBCCCGESGoSgIQQQghhdiQACSGEEMLsSAASQgghhNmRACSEEEIIsyMBSAghhBBmRwKQEEIIIcyOBCAhhBBCmB0JQEIIIYQwOxKAhBBCCGF2JAAJIaIwGAzv9di1a9cHf9bLly8ZNWpUvPa1adMmDAYDWbNmxWg0fnAtQgjzkkbvAoQQyctvv/0WZXnx4sVs27Yt2vqCBQt+8Ge9fPmS0aNHA/Dpp5/G6b1Lly7F3d2dmzdvsmPHDmrUqPHB9QghzIcEICFEFJ9//nmU5UOHDrFt27Zo6/UUHBzMunXrmDBhAgsWLGDp0qXJNgAFBwfj4OCgdxlCiP+QS2BCiDgzGo1MmTKFwoULY2tri5ubG19++SXPnj2Lst2xY8eoXbs2rq6u2NnZkTt3brp06QLAzZs3yZgxIwCjR482XVobNWrUOz9/zZo1vHr1ihYtWtC6dWtWr15NSEhItO1CQkIYNWoUH3/8Mba2tmTJkoWmTZty7dq1KMfy888/U6RIEWxtbcmYMSN16tTh2LFjpjoNBgMLFy6Mtv//1jtq1CgMBgPnz5+nbdu2pEuXjkqVKgHw999/06lTJ/LkyYOtrS2ZM2emS5cuPHnyJNp+7927R9euXcmaNSs2Njbkzp2bnj17EhYWxvXr1zEYDPz000/R3nfgwAEMBgPLly9/589QCHMnLUBCiDj78ssvWbhwIZ07d+arr77ixo0bTJs2jZMnT7J//36srKzw8/OjVq1aZMyYkcGDB+Pi4sLNmzdZvXo1ABkzZmTmzJn07NmTJk2a0LRpUwCKFi36zs9funQpn332GZkzZ6Z169YMHjyYP//8kxYtWpi2iYyMpEGDBvj6+tK6dWv69u3Lixcv2LZtG2fPniVv3rwAdO3alYULF1K3bl26detGREQEe/fu5dChQ5QuXTpeP58WLVqQL18+xo8fj1IKgG3btnH9+nU6d+5M5syZOXfuHHPmzOHcuXMcOnQIg8EAwP379ylbtizPnz+ne/fuFChQgHv37rFq1SpevnxJnjx5qFixIkuXLqVfv37Rfi6Ojo40atQoXnULYVaUEEK8hZeXl/r3PxV79+5VgFq6dGmU7bZs2RJl/Zo1axSgjh49Guu+Hz9+rADl7e393vU8evRIpUmTRs2dO9e0rkKFCqpRo0ZRtps/f74C1OTJk6Ptw2g0KqWU2rFjhwLUV199Fes2N27cUIBasGBBtG3+W7u3t7cCVJs2baJt+/Lly2jrli9frgC1Z88e07oOHTooCwuLGH9ur2uaPXu2AtSFCxdMr4WFhSlXV1fVsWPHaO8TQkQnl8CEEHGycuVKnJ2dqVmzJv7+/qZHqVKlSJs2LTt37gTAxcUFgA0bNhAeHp5gn79ixQosLCxo1qyZaV2bNm3YvHlzlEtwf/zxB66urvTp0yfaPl63tvzxxx8YDAa8vb1j3SY+evToEW2dnZ2d6XlISAj+/v6UK1cOgBMnTgDa5bi1a9fi6ekZY+vT65patmyJra0tS5cuNb22detW/P39k1VfLSGSMwlAQog4uXLlCgEBAWTKlImMGTNGeQQFBeHn5wdA1apVadasGaNHj8bV1ZVGjRqxYMECQkNDP+jzlyxZQtmyZXny5AlXr17l6tWrlChRgrCwMFauXGna7tq1a+TPn580aWK/0n/t2jWyZs1K+vTpP6im/8qdO3e0dU+fPqVv3764ublhZ2dHxowZTdsFBAQA8PjxYwIDA/nkk0/eun8XFxc8PT1ZtmyZad3SpUvJli0b1apVS8AjESL1kj5AQog4MRqNZMqUKUrrw7+97thsMBhYtWoVhw4d4s8//2Tr1q106dKFH3/8kUOHDpE2bdo4f/aVK1c4evQoAPny5Yv2+tKlS+nevXuc9/s2sbUERUZGxvqef7f2vNayZUsOHDjAN998Q/HixUmbNi1Go5E6derEaxyjDh06sHLlSg4cOECRIkVYv349vXr1wsJC/q4V4n1IABJCxEnevHnZvn07FStWjPGL/r/KlStHuXLlGDduHMuWLaNdu3asWLGCbt26xfky09KlS7GysuK3337D0tIyymv79u3jl19+4fbt2+TMmZO8efNy+PBhwsPDsbKyivVYtm7dytOnT2NtBUqXLh0Az58/j7L+1q1b7133s2fP8PX1ZfTo0YwcOdK0/sqVK1G2y5gxI05OTpw9e/ad+6xTpw4ZM2Zk6dKleHh48PLlS9q3b//eNQlh7uRPBSFEnLRs2ZLIyEjGjh0b7bWIiAhTUHj27JnpDqjXihcvDmC6DGZvbw9EDxexWbp0KZUrV6ZVq1Y0b948yuObb74BMN0C3qxZM/z9/Zk2bVq0/byuq1mzZiilTIMxxrSNk5MTrq6u7NmzJ8rrM2bMeK+aAVNY++/PY8qUKVGWLSwsaNy4MX/++afpNvyYagJIkyYNbdq04ffff2fhwoUUKVLkve6gE0JopAVICBEnVatW5csvv2TChAmcOnWKWrVqYWVlxZUrV1i5ciU///wzzZs3Z9GiRcyYMYMmTZqQN29eXrx4wdy5c3FycqJevXqAdqmoUKFC+Pj48PHHH5M+fXo++eSTGPvAHD58mKtXr9K7d+8Y68qWLRslS5Zk6dKlDBo0iA4dOrB48WL69+/PkSNHqFy5MsHBwWzfvp1evXrRqFEjPvvsM9q3b88vv/zClStXTJej9u7dy2effWb6rG7dujFx4kS6detG6dKl2bNnD5cvX37vn5mTkxNVqlTh+++/Jzw8nGzZsvHXX39x48aNaNuOHz+ev/76i6pVq9K9e3cKFizIgwcPWLlyJfv27TN1LgftMtgvv/zCzp07+e677967HiEEchu8EOLt/nsb/Gtz5sxRpUqVUnZ2dsrR0VEVKVJE/e9//1P3799XSil14sQJ1aZNG5UzZ05lY2OjMmXKpBo0aKCOHTsWZT8HDhxQpUqVUtbW1m+9Jb5Pnz4KUNeuXYu11lGjRilAnT59Wiml3Xo+bNgwlTt3bmVlZaUyZ86smjdvHmUfERERatKkSapAgQLK2tpaZcyYUdWtW1cdP37ctM3Lly9V165dlbOzs3J0dFQtW7ZUfn5+sd4G//jx42i13b17VzVp0kS5uLgoZ2dn1aJFC3X//v0Yj/nWrVuqQ4cOKmPGjMrGxkblyZNHeXl5qdDQ0Gj7LVy4sLKwsFB3796N9ecihIjOoNR/2mSFEEKkGCVKlCB9+vT4+vrqXYoQKYr0ARJCiBTq2LFjnDp1ig4dOuhdihApjrQACSFECnP27FmOHz/Ojz/+iL+/P9evX8fW1lbvsoRIUaQFSAghUphVq1bRuXNnwsPDWb58uYQfIeJBWoCEEEIIYXakBUgIIYQQZkcCkBBCCCHMjgyEGAOj0cj9+/dxdHT8oBmhhRBCCJF0lFK8ePGCrFmzvnNePAlAMbh//z45cuTQuwwhhBBCxMOdO3fInj37W7eRABQDR0dHQPsBOjk56VyNEEIIId5HYGAgOXLkMH2Pv40EoBi8vuzl5OQkAUgIIYRIYd6n+4p0ghZCCCGE2ZEAJIQQQgizIwFICCGEEGZH+gB9gMjISMLDw/UuQ7wHKysrLC0t9S5DCCFEMiEBKB6UUjx8+JDnz5/rXYqIAxcXFzJnzixjOwkhhJAAFB+vw0+mTJmwt7eXL9RkTinFy5cv8fPzAyBLliw6VySEEEJvEoDiKDIy0hR+MmTIoHc54j3Z2dkB4OfnR6ZMmeRymBBCmDnpBB1Hr/v82Nvb61yJiKvX50z6bQkhhJAAFE9y2SvlkXMmhBDiNQlAQgghhDA7EoDEB3F3d2fKlCl6lyGEEELEiQQgM2EwGN76GDVqVLz2e/ToUbp37/5Btd24cYO2bduSNWtWbG1tyZ49O40aNeLixYvvvY9OnTrRuHHjD6pDCCGE+ZC7wMzEgwcPTM99fHwYOXIkly5dMq1Lmzat6blSisjISNKkeff/HhkzZvygusLDw6lZsyb58+dn9erVZMmShbt377J582YZZ0kIIVKpyMhI3e/GlRYgM5E5c2bTw9nZGYPBYFq+ePEijo6ObN68mVKlSmFjY8O+ffu4du0ajRo1ws3NjbRp01KmTBm2b98eZb//vQRmMBj49ddfadKkCfb29uTLl4/169fHWte5c+e4du0aM2bMoFy5cuTKlYuKFSvy7bffUq5cOdN2d+7coWXLlri4uJA+fXoaNWrEzZs3ARg1ahSLFi1i3bp1phatXbt2JeSPTwghxAdQSnHixAlGjBhBkSJF+P777/UuSQJQQgoODo71ERIS8t7bvnr16p3bJobBgwczceJELly4QNGiRQkKCqJevXr4+vpy8uRJ6tSpg6enJ7dv337rfkaPHk3Lli35+++/qVevHu3atePp06cxbpsxY0YsLCxYtWoVkZGRMW4THh5O7dq1cXR0ZO/evezfv5+0adNSp04dwsLCGDhwIC1btqROnTo8ePCABw8eUKFChQ/+eQghhPhwv/76K7ly5aJUqVJ8++23nD179q1/GCcZJaIJCAhQgAoICIj22qtXr9T58+fVq1evor0GxPqoV69elG3t7e1j3bZq1apRtnV1dY22zYdYsGCBcnZ2Ni3v3LlTAWrt2rXvfG/hwoXV1KlTTcu5cuVSP/30k2kZUMOHDzctBwUFKUBt3rw51n1OmzZN2dvbK0dHR/XZZ5+pMWPGqGvXrple/+2331T+/PmV0Wg0rQsNDVV2dnZq69atSimlOnbsqBo1avTW2t927oQQQny44OBgtWbNGnX37l3Tuvnz5ytA2dvbq6ZNm6rffvtNPXnyJFE+/23f3/8lLUDCpHTp0lGWg4KCGDhwIAULFsTFxYW0adNy4cKFd7YAFS1a1PTcwcEBJycn0zQUMfHy8uLhw4csXbqU8uXLs3LlSgoXLsy2bdsAOH36NFevXsXR0ZG0adOSNm1a0qdPT0hICNeuXfuAIxZCCPGhnjx5wsKFC2ncuDGurq40adKE33//3fR6o0aNWL9+Pf7+/vzxxx98/vnnpE+fXseKNdIJOgEFBQXF+tp/O3u9LRBYWETNpa/7uiQ2BweHKMsDBw5k27Zt/PDDD3z00UfY2dnRvHlzwsLC3rofKyurKMsGgwGj0fjW9zg6OuLp6YmnpyfffvsttWvX5ttvv6VmzZoEBQVRqlQpli5dGu19H9oJWwghRNy9ePGC+fPns3btWvbs2RPl33h3d3dsbW1Ny+nTp8fT01OPMt9KAlAC+m+A0GPbhLR//346depEkyZNAC3gJUUYMxgMFChQgAMHDgBQsmRJfHx8yJQpE05OTjG+x9raOtY+REIIIT6MUoqnT5+a5sC0sLBg8ODBpv6txYsXp3HjxjRu3JiiRYumiJH35RKYiFW+fPlYvXo1p06d4vTp07Rt2/adLTlxderUKRo1asSqVas4f/48V69eZd68ecyfP59GjRoB0K5dO1xdXWnUqBF79+7lxo0b7Nq1i6+++oq7d+8C2l8cf//9N5cuXcLf31/m+xJCiA8UGRnJ3r17GTBgAB999BHVq1c3vebg4MCAAQP46aefuH79OidPnsTb25tixYqliPAD0gIk3mLy5Ml06dKFChUq4OrqyqBBgwgMDEzQz8iePTvu7u6MHj2amzdvYjAYTMv9+vUDtElM9+zZw6BBg2jatCkvXrwgW7ZsVK9e3dQi9MUXX7Br1y5Kly5NUFAQO3fu5NNPP03QWoUQwhycPHmSWbNmsWbNGh4/fmxab2try+PHj01dD7799lu9SkwQBqWU0ruI5CYwMBBnZ2cCAgKiXXIJCQnhxo0b5M6dO8o1TpH8ybkTQoi3GzhwID/++KNp2cXFBU9PTxo3bkzt2rV165Lxvt72/f1fcglMCCGEMFN37tzB39/ftPzpp5+SJk0aWrduzV9//YWfnx+LFy+madOmyT78xJUEICGEEMKMKKXYvn07TZo0wd3dnZ9//tn0Wt26dblz5w7Lly+nZs2a0e7qTU2kD5AQQghhBgICAli0aBEzZsyIMhfk1atXTc8tLS3JnDmzHuUlOQlAQgghRCr3zTffMHPmTNNUSmnTpqVjx4706tWLQoUK6VydPiQACSGEEKlMeHg4adKkMd2SHhQURHBwMIUKFcLLy4vPP//8nZ2EUzvpAySEEEKkEvfv32fUqFHkypWLI0eOmNYPHDiQnTt3cvbsWXr16mX24QekBUgIIYRI0ZRS7Nmzh+nTp7NmzRoiIiIAWLRoER4eHgDkzZuXvHnz6llmsiMBSAghhEiBwsLCmD9/PtOnT+fs2bOm9ZUqVcLLy4umTZvqWF3yJwFICCGESIEsLS2ZOHEit27dwt7ens8//5xevXpRrFgxvUtLESQACSGEEMlcREQEf/75J8uXL2fJkiVYW1tjaWmJt7c3AQEBdOrUCRcXF73LTFGkE7SZMBgMb32MGjXqg/a9du3ad263e/duqlWrRvr06bG3tydfvnx07NiRsLCw9/4sd3d3pkyZEu9ahRAiJXn06BHjxo0jT548NG3alJUrV7JmzRrT6507d+brr7+W8BMPySIATZ8+HXd3d2xtbfHw8IjScz0mU6ZMIX/+/NjZ2ZEjRw769etHSEiI6XV3d/cYv+S9vLwS+1CSrQcPHpgeU6ZMwcnJKcq6gQMHJurnnz9/njp16lC6dGn27NnDmTNnmDp1KtbW1kRGRibqZwshREqilOLAgQO0a9eOHDlyMHz4cO7cuYOrqyuDBw+mQoUKepeYOiidrVixQllbW6v58+erc+fOqS+++EK5uLioR48exbj90qVLlY2NjVq6dKm6ceOG2rp1q8qSJYvq16+faRs/Pz/14MED02Pbtm0KUDt37nyvmgICAhSgAgICor326tUrdf78efXq1at4HW9ysGDBAuXs7Bxl3dy5c1WBAgWUjY2Nyp8/v5o+fbrptdDQUOXl5aUyZ86sbGxsVM6cOdX48eOVUkrlypVLAaZHrly5YvzMn376Sbm7u7+ztr1796pKlSopW1tblT17dtWnTx8VFBSklFKqatWqUT4rrv/7poZzJ4RI/c6fPx/l3zkPDw+1ePFi+bfrPbzt+/u/dA9AZcuWVV5eXqblyMhIlTVrVjVhwoQYt/fy8lLVqlWLsq5///6qYsWKsX5G3759Vd68eZXRaHyvmuIcgIxGpYKCkv7xnsfzX/8NQEuWLFFZsmRRf/zxh7p+/br6448/VPr06dXChQuVUkpNmjRJ5ciRQ+3Zs0fdvHlT7d27Vy1btkwppYVNQC1YsEA9ePBA+fn5xfiZy5cvVzY2Nmr37t2x1nX16lXl4OCgfvrpJ3X58mW1f/9+VaJECdWpUyellFJPnjxR2bNnV2PGjDGF27iQACSESI6uXLli+jf1tRo1aqjOnTurY8eO6VRVypRiAlBoaKiytLRUa9asibK+Q4cOqmHDhjG+Z+nSpcrZ2VkdPnxYKaXUtWvXVIECBdS4ceNi/YwMGTLE+rpSSoWEhKiAgADT486dO3ELQEFBSkHSP/5pGYmr/wagvHnzRvvlGzt2rCpfvrxSSqk+ffqoatWqxRoggWjn8L8iIiJUp06dFKAyZ86sGjdurKZOnRrlZ9y1a1fVvXv3KO/bu3evsrCwMP28c+XKpX766af3PNKoJAAJIZKLiIgItX79elWnTh0FKBsbG/X48WPT6+/7B3uiuH9fqV69lBoyRKkbN/SrIx5STAC6d++eAtSBAweirP/mm29U2bJlY33fzz//rKysrFSaNGkUoHr06BHrtj4+PsrS0lLdu3cv1m28vb2jXVoxlwAUFBSkAGVnZ6ccHBxMDxsbG5UpUyallFLHjx9X6dOnV/ny5VN9+vRRW7dujbK/9wlAr929e1ctXrxYeXl5qSxZsqjs2bOr+/fvK6WUKl26tLK2to5Sh729vQLU+fPnlVISgIQQKdvjx4/VxIkTlbu7u+m7xmAwqLp166orV67oW1xkpFIzZijl5PTme8ZgUKpBA6U2b9ZeT+biEoBS3G3wu3btYvz48cyYMQMPDw+uXr1K3759GTt2LCNGjIi2/bx586hbty5Zs2aNdZ9Dhgyhf//+puXAwEBy5Mjx/kXZ20NQUJyOI0HY23/wLoL+qXvu3LmmEUNfs7S0BKBkyZLcuHGDzZs3s337dlq2bEmNGjVYtWpVnD8vW7ZstG/fnvbt2zN27Fg+/vhjZs2axejRowkKCuLLL7/kq6++iva+nDlzxuPohBAi+Vi/fj0tW7YkNDQUgHTp0tG1a1d69Oih/yjNZ85A9+5w6JC2XLo0pE8Pf/0FGzZoj48+gp49oXNnSJdO33oTgK4ByNXVFUtLSx49ehRl/aNHj8icOXOM7xkxYgTt27enW7duABQpUoTg4GC6d+/OsGHDsLB4c2PbrVu32L59O6tXr35rHTY2NtjY2MT/QAwGcHCI//t15ObmRtasWbl+/Trt2rWLdTsnJydatWpFq1ataN68OXXq1OHp06ekT58eKyureN3JlS5dOrJkyWKanbhkyZKcP3+ejz76KNb3yF1jQoiUIiQkhEePHpErVy4APDw8MBqNlCxZkt69e9O6dWvs7Oz0LfLlSxg7Fn74ASIiIG1aGD8eevUCS0u4fBlmzICFC+HqVRgwAIYPh7ZtwcsLSpTQt/4PoOtt8NbW1pQqVQpfX1/TOqPRiK+vL+XLl4/xPS9fvowScuBNS4VSKsr6BQsWkClTJurXr5/Alacuo0ePZsKECfzyyy9cvnyZM2fOsGDBAiZPngzA5MmTWb58ORcvXuTy5cusXLmSzJkzm8adcHd3x9fXl4cPH/Ls2bMYP2P27Nn07NmTv/76i2vXrnHu3DkGDRrEuXPn8PT0BGDQoEEcOHCA3r17c+rUKa5cucK6devo3bu3aT/u7u7s2bOHe/fu4e/vn7g/GCGEiAej0cjUqVPJnj07HTt2NK13c3PjwoULHDt2jM6dO+sffv76C4oUgYkTtfDTpAlcuAB9+mjhB+Djj2HKFLh3D2bPhqJF4dUrmDcPSpaEChVg2TL4p1UrRUn8K3Jvt2LFCmVjY6MWLlyozp8/r7p3765cXFzUw4cPlVJKtW/fXg0ePNi0vbe3t3J0dFTLly9X169fV3/99ZfKmzevatmyZZT9RkZGqpw5c6pBgwbFuSZzvA1+6dKlqnjx4sra2lqlS5dOValSRa1evVoppdScOXNU8eLFlYODg3JyclLVq1dXJ06cML13/fr16qOPPlJp0qSJ9Tb4EydOqM8//1zlzp1b2djYqAwZMqgqVaqo9evXR9nuyJEjqmbNmipt2rTKwcFBFS1aNEoH9oMHD6qiRYsqGxsbuQ1eCJHs3LhxQ3322Wem/j05c+ZUz54907usqB4+VKpt2zf9fLJnV2rt2vd7r9Go1N69SrVurVSaNG/2kSmTUsOGKXX7duLW/g4pphP0a1OnTlU5c+ZU1tbWqmzZsurQoUOm16pWrao6duxoWg4PD1ejRo1SefPmVba2tipHjhyqV69e0f4H27p1qwLUpUuX4lxPag9A5krOnRAisRiNRvXrr78qR0dHBSh7e3s1ffp0FRERoXdpb0RGKjV3rlLp0mmhxcJCqb59lQoMjN/+HjxQaswYpbJlexOELCyUatJEqe3b4z1Uy4eISwAyKPWf60aCwMBAnJ2dCQgIwMnJKcprISEh3Lhxg9y5c2Nra6tThSI+5NwJIRLDkydP6NChA5s2bQKgYsWKLFy48K39GZPchQvw5Zewd6+2XKIEzJmjdXb+UOHhsH49TJ8OO3e+WV+ggNaXqEMHcHb+8M95D2/7/v6vZDEVhhBCCJFSOTg4cOvWLWxsbJg0aRK7d+9OPuEnJARGjoRixbTw4+AAkyfDkSMJE34ArKygWTPYsQPOndM6R6dNCxcvwldfQbZs2t1jZ88mzOclEGkBioG0AKVOcu6EEAnF398fFxcX0qTRbqY+c+YMFhYWFC5cWOfK/mXHDujRA65c0ZYbNIBp0+Cfu9IS1YsX8NtvWqvQ+fNv1lepogWkJk204JTApAVICCGESCRr166lcOHCTJo0ybSuSJEiySf8+PtDp05QvboWfrJkgVWrtMtUSRF+ABwdtctfZ89ql8WaN9fuLNuzB1q10uqYMCFpaomFBKB4koazlEfOmRDiQzx//pyOHTvSpEkT/Pz8WLVqFREREXqX9YZS2ng9BQrAokXaGHVeXlr/n2bNtOWkZjDAp5/CypVw8yaMGAFubvDggVaXjiQAxZHVP012L1++1LkSEVevz5lVIjS7CiFSt7/++otPPvmExYsXY2FhYRq37PUlMN1dvqy1+HTuDE+eaOP1HDigXfJKog7I75Q9O4wZA7dvw/LlMHCgruUkkzOXclhaWuLi4oKfnx8A9vb2GPRI1eK9KaV4+fIlfn5+uLi4mAbOFEKIdwkKCuKbb75h1qxZAHz00UcsWrSIChUq6FzZP0JD4bvvYNw4CAsDOzsYNQr69UuUPjYJwtoaWrfWuwoJQPHxepqO1yFIpAwuLi6xTrEihBAxuXPnDgsWLACgT58+TJgwAYfkMvXR3r3a/F0XL2rLdepo01bkzq1vXSmEBKB4MBgMZMmShUyZMhEeHq53OeI9WFlZScuPEOK9GI1G05RLBQsWZMaMGbi7u1OtWjWdK0Pr53PoEPzyC6xYoa1zc4Off4aWLfXp55NCSQD6AJaWlvKlKoQQqcjRo0fp0qULc+fOpVy5cgB06dJF56rQJi1dtkxr4Tl58s36L7/U7qZKBbOzJzXpBC2EEMLshYWFMWLECMqXL8/Zs2cZPHiw3iVprl6F/v21wQS/+EILP7a2WmfnEydg1iwJP/EkLUBCCCHM2t9//02HDh04ffo0AG3atGHq1Kn6FRQZCZs3a4MIbtnyZn2ePNqIyp07Q4YM+tWXSkgAEkIIYZYiIiKYNGkS3t7ehIeHkyFDBmbOnEmLFi30KcjfH+bPh5kztTFzQOvTU7euNp5PnTpgIRduEooEICGEEGZpzZo1DB06FIBGjRoxe/Zs3Nzckr6Qo0e11p4VK7Tb2kG7rNW1qzaVRd68SV+TGZAAJIQQwiw1b96cVq1aUa9ePdq3b5+0Y7qFhICPjxZ8jh59s75kSejdWxsnx84u6eoxQxKAhBBCmI0rV66QM2dObGxsMBgMrHh9K3lSuXlTu8Q1b542YjNoAwO2bKld5vLwkFvZk4gEICGEEGbh6NGj1KlTh6pVq/L7778n3TQWRiP89ZfW2rNxozaWD0DOnNolrq5dIVOmpKlFmEgAEkIIkert2rULT09PgoKCePDgAcHBwTgn9hxZz57BggVai8/Vq2/W16yptfY0aKDNkC50IQFICCFEqrZx40aaN29OSEgI1apVY926daRNmzbxPvDkSa21Z9kyePVKW+fsDJ06Qa9e8PHHiffZ4r1JABJCCJFq+fj48PnnnxMREUHDhg3x8fHB1tY24T8oNBRWrdKCz8GDb9YXLaq19rRrB8llDjEBSAASQgiRSi1cuJAuXbqglKJt27YsXLgQq4SeIf3OHW005l9/hdcTZKdJA82ba8GnYkXp1JxMSQASQgiRKuXLlw87Ozs6dOjA9OnTTROcfjClYMcOmDYN1q/XOjkDZM2qdWr+4gvInDlhPkskGglAQgghUqWKFSty4sQJPv7444QZ4ycgABYt0iYkvXTpzfrPPtNaexo2hIRuYRKJRsbUFkIIkSoYjUaGDBnCqVOnTOvy58//4eHnzBmtZSdbNujbVws/adNqoefcOa01qFkzCT8pjLQACSGESPEiIiL44osvWLhwIQsWLODy5cs4OTnFf4fh4bBmjdapec+eN+sLFtSCT/v28CH7F7qTACSEECJFCw0NpV27dvzxxx9YWlryww8/xD/83L8Pc+ZojwcPtHWWltC4sRZ8Pv1UOjWnEhKAhBBCpFjBwcE0bdqUv/76C2tra3x8fGjcuHHcdqKU1sozfbrW6hMRoa13c4Pu3bVH9uwJXrvQlwQgIYQQKVJAQAD169dn//792Nvbs27dOmrUqPH+O3jxApYs0YLPuXNv1leqpLX2NG2qzdMlUiUJQEIIIVKkkSNHsn//fpydndm0aRMVKlR4/ze/7rj8/Lm2bG8Pn3+ujdRcrFii1CuSFwlAQgghUqRx48Zx69YtRo0aRfHixd//jQcOaLesBwdDvnxaa0/HjuDiklilimRIApAQQogUw9/fnwwZMmAwGEibNi1r166N2w6OH4e6dbXwU6uWNpChjU2i1CqSNxkHSAghRIpw9uxZihQpwrhx4+K7Ay30BAZClSpah2cJP2ZLApAQQohk78iRI1StWpWHDx+ycuVKXr2eZf19Xb4MNWrA06dQtixs2KD1+xFmSwKQEEKIZG3Xrl1Ur16dp0+fUq5cOXbt2oWdnd377+DmTaheHR490jo4b9kCjo6JVq9IGSQACSGESLY2bNhAnTp1CAoKolq1amzbto106dK9/w7u39fCz927UKAA/PUXxOX9ItWSACSEECJZWrVqFU2aNCE0NJSGDRuyceNG0qZN+/47ePxYu+x1/TrkyQPbt0OmTIlXsEhRJAAJIYRIliwtLYmIiKBdu3asWrUKW1vb93/zs2dQsyZcuKCN4uzrq01mKsQ/JAAJIYRIFoxGI5cvXzYtN2nShMWLF7N48WKs4jLT+osX2q3up09r01n4+oK7e8IXLFI0CUBCCCF0d/78eapWrUr58uV5/PixaX379u2xsIjDV9XLl9CgARw+DOnTa5e9Pv44ESoWKZ0EICGEELoJCQlhxIgRFC9enH379hEaGsrx48fjt7PQUGjSRJvY1MlJ6/D8yScJW7BINWQkaCGEELrYsWMHPXr04MqVKwB4enoybdo0cubMGfedhYdDq1Za6LG3h02boFSpBK5YpCYSgIQQQiQpo9FI165dWbhwIQBZsmRh6tSpNG3aFIPBEPcdRkZChw6wbp02svP69VCxYsIWLVIduQQmhBAiSVlYWGBnZ4fBYKBXr15cuHCBZs2axS/8GI3QvTusWAFWVvDHH9q4P0K8g0EppfQuIrkJDAzE2dmZgIAAnJyc9C5HCCFSvMuXL2NlZUXu3LkBCAgI4MKFC5QrVy7+O1UK+vaFqVPBwgJ8fKB58wSqWKREcfn+lhYgIYQQiSY0NJSxY8dStGhRunXrxuu/uZ2dnT88/AwdqoUfgwEWLpTwI+JE9wA0ffp03N3dsbW1xcPDgyNHjrx1+ylTppA/f37s7OzIkSMH/fr1IyQkJMo29+7d4/PPPydDhgzY2dlRpEgRjh07lpiHIYQQ4j/27t1L8eLFGTlyJKGhoVhZWREUFJQwOx83DiZO1J7PnAnt2yfMfoXZ0DUA+fj40L9/f7y9vTlx4gTFihWjdu3a+Pn5xbj9smXLGDx4MN7e3ly4cIF58+bh4+PD0KFDTds8e/aMihUrYmVlxebNmzl//jw//vhj3OaOEUIIEW9Pnz6lW7duVKlShYsXL+Lm5sby5cvZvHkzjgkxCelPP8GIEdrzyZPhyy8/fJ/C7OjaB8jDw4MyZcowbdo0QLszIEeOHPTp04fBgwdH2753795cuHABX19f07oBAwZw+PBh9u3bB8DgwYPZv38/e/fujXdd0gdICCHi58yZM1SvXt00mGH37t2ZOHFiwv0ROns29OihPR87FoYPT5j9ilQhRfQBCgsL4/jx49SoUeNNMRYW1KhRg4MHD8b4ngoVKnD8+HHTZbLr16+zadMm6tWrZ9pm/fr1lC5dmhYtWpApUyZKlCjB3Llz31pLaGgogYGBUR5CCCHiLn/+/Li6ulKoUCH27t3L7NmzEy78/PYb9OypPR88GIYNS5j9CrOkWwDy9/cnMjISNze3KOvd3Nx4+PBhjO9p27YtY8aMoVKlSlhZWZE3b14+/fTTKJfArl+/zsyZM8mXLx9bt26lZ8+efPXVVyxatCjWWiZMmICzs7PpkSNHjoQ5SCGESOXCw8OZNWsW4eHhAFhbW7Np0yZOnjxJpUqVEu6DVq2CTp20zs99+sD48VrnZyHiSfdO0HGxa9cuxo8fz4wZMzhx4gSrV69m48aNjB071rSN0WikZMmSjB8/nhIlStC9e3e++OILZs2aFet+hwwZQkBAgOlx586dpDgcIYRI0Q4ePEjJkiXp2bMnkydPNq13d3fH2to64T5o40Zo00Yb86dLF5gyRcKP+GC6jQTt6uqKpaUljx49irL+0aNHZM6cOcb3jBgxgvbt29OtWzcAihQpQnBwMN27d2fYsGFYWFiQJUsWChUqFOV9BQsW5I8//oi1FhsbG2xsbD7wiIQQwjw8f/6cIUOGMHv2bJRSuLq6xm/6ivexYwc0awYREVoImjNHG/NHiA+k2/9F1tbWlCpVKkqHZqPRiK+vL+XLl4/xPS9fvow2K7ClpSWAaWyJihUrcunSpSjbXL58mVy5ciVk+UIIYXaUUvz+++8ULFiQWbNmoZSic+fOXLx4kTZt2iT8Bx44AA0bapOcNmoEixbBP//mC/HBlI5WrFihbGxs1MKFC9X58+dV9+7dlYuLi3r48KFSSqn27durwYMHm7b39vZWjo6Oavny5er69evqr7/+Unnz5lUtW7Y0bXPkyBGVJk0aNW7cOHXlyhW1dOlSZW9vr5YsWfLedQUEBChABQQEJNzBCiFECjd8+HAFKEB9/PHHaufOnYn3YceOKeXkpBQoVbu2UiEhifdZItWIy/e3rgFIKaWmTp2qcubMqaytrVXZsmXVoUOHTK9VrVpVdezY0bQcHh6uRo0apfLmzatsbW1Vjhw5VK9evdSzZ8+i7PPPP/9Un3zyibKxsVEFChRQc+bMiVNNEoCEECK6CxcuKEdHR+Xt7a1CEjOQnDmjVPr0WvipUkWp4ODE+yyRqsTl+1vmAouBjAMkhBBw9OhR9u3bR79+/Uzrnj9/jouLS+J96OXLUKUKPHoEHh6wbRskxOCJwiykiHGAhBBCJE+BgYF89dVXeHh4MGDAAI4ePWp6LVHDz82b2kzujx5B8eKwebOEH5FodLsLTAghRPKzdu1aevfuzb179wD4/PPPk+Ymknv3tPBz9y4ULAh//QUyhZFIRBKAhBBCcOfOHfr06cO6desAyJs3LzNnzqRmzZqJ/+F+flCjBly/DnnywPbtkDFj4n+uMGsSgIQQwsyFh4dTsWJF7ty5Q5o0afjf//7H8OHDsbOzS/wPf/oUatWCixchRw7w9YWsWRP/c4XZkz5AQghh5qysrBg+fDgVKlTg1KlTjBs3LmnCT2Ag1K0Lp0+Dm5vW8uPunvifKwQ6zwafXMldYEKI1CwoKAhvb28+++wzGjRoAGgD0QLRBptNNC9fauFnzx7IkAF27YJPPkmazxapltwFJoQQIkYbNmygcOHCTJ48GS8vL0JCQgAt+CRZ+AkNhSZNtPDj5ARbt0r4EUlOApAQQpiB+/fv06JFCzw9Pbl9+za5cuVi1qxZ2NraJm0h4eHQqpV2l5eDg3are6lSSVuDEEgAEkKIVC0yMpIZM2ZQsGBBVq1ahaWlJd988w3nzp2jbt26SV0MdOgA69aBjQ2sXw8VKiRtDUL8Q+4CE0KIVGzfvn14eXkBULZsWebMmUOxYsWSvhCjEbp3hxUrwMoKVq+GatWSvg4h/iEBSAghUpknT56QIUMGAKpWrUqXLl0oUaIEPXv2xFKP2dSVgr59Yf58sLCAZcugXr2kr0OIf5FLYEIIkUpcvXrVNHLzgwcPTOvnzZtH79699Qs/Q4bAtGlgMMDChdC8edLXIcR/SAASQogU7t69e/To0YOCBQuydOlSgoOD2bhxo95lab79Fr77Tns+cya0b69vPUL8QwKQEEKkUI8fP2bAgAHkzZuX2bNnExERQd26dTl+/DjdunXTuzyYPBlGjnzz/Msv9a1HiH+RPkBCCJECvXr1isKFC/P48WMAKlWqxPjx46lcubLOlf1j1iwYMEB7PnYs9Ounbz1C/Ie0AAkhRAoRFhZmem5nZ0f79u0pUaIEmzdvZs+ePckn/CxeDD17as8HD4Zhw/StR4gYSAASQohkLiwsjJkzZ5I7d26OHDliWv/tt99y7Ngx6tSpg8Fg0LHCf1m5Ejp31p736QPjx2udn4VIZiQACSFEMhUZGcnixYspUKAAvXr14v79+0ydOtX0up2dXdJNX/E+Nm6Etm21MX+6dIEpUyT8iGQrGf3mCCGEAFBKsXr1aooWLUrHjh25ceMGbm5uTJs2jV9//VXv8mLm6wvNmkFEBLRpA3PmaGP+CJFMSSdoIYRIZpo2bcratWsBSJcuHYMGDaJ37944ODjoW1hs9u+Hhg21SU4bNYJFi0CPMYeEiAOJ50IIkQwopUzP69ati4ODAyNGjOD69esMGjQo+YafY8e0UZ1fvoTatcHHR5vqQohkTgKQEELo6NSpU9SvX58lS5aY1nXu3Jnr168zZswYXFxc9CvuXc6c0UJPYCBUqaLN72Vjo3dVQrwXCUBCCKGDS5cu0apVK0qUKMGmTZsYO3YsRqMRACsrKzJlyqRzhe/g56e1/Dx9Ch4esGED2NvrXZUQ700CkBBCJKFbt27RpUsXChUqxO+//47BYKBNmzZs3Lgxed3R9Tbh4dCiBdy9C/nzw+bN4Oiod1VCxIl0ghZCiCQyffp0+vXrR3h4OACNGjVi7NixFClSROfK4mjgQNizRws9a9dCunR6VyREnEkAEkKIJFKkSBHCw8OpXr063377LeXKldO7pLhbvBh++UV7/ttvUKCAvvUIEU8SgIQQIhEEBQXxyy+/YGlpyaBBgwCoUqUKx44do1SpUjpXF0/Hj7+Z0HTkSO2WdyFSKIP6972XAoDAwECcnZ0JCAjAyclJ73KEEClISEgIs2fPZvz48fj5+WFvb8+NGzeSf6fmd3n8GEqXhtu3oUEDWLdOBjoUyU5cvr/l/14hhEgAERERzJs3j48//pivv/4aPz8/PvroI3799VdcXV31Lu/DRERAq1Za+MmXT7v0JeFHpHByCUwIIT7Q4cOHad++PVeuXAEgW7ZseHt706lTJ6xSw6CAgwbBzp2QNq3W6Tk5j00kxHuSACSEEB8oc+bM3Lp1C1dXV4YOHUrPnj2xtbXVu6yEsWwZTJ6sPV+0CAoV0rceIRKIBCAhhIijnTt3smvXLkaPHg1Arly5WLduHRUrVsQxNY2Hc+oUdOumPR82DJo21bUcIRKSdIKOgXSCFkLE5MiRIwwbNozt27cDcPToUUqXLq1zVYnkyROt0/PNm1C3Lvz5p0xwKpK9uHx/SwuQEEK8w9mzZxkxYoRphnYrKyu6d+9O9uzZ9S0ssUREQOvWWvjJmxeWLpXwI1IdCUBCCBGLwMBA+vXrx4IFC1BKYWFhQYcOHfD29sbd3V3v8hLP0KGwfTs4OMhIzyLVkgAkhBCxePXqFRs3bkQpRfPmzRkzZgwFCxbUu6zE5eMDkyZpzxcsgE8+0bceIRKJBCAhhPgXpRQGgwEANzc3VqxYQZo0aahUqZLOlSWBv/+GLl2054MGaROeCpFKyUhWQgjxDz8/P+rXr4+Pj49p3aeffmoe4efpU2jSBF6+hFq1YNw4vSsSIlFJABJCCMDX15dixYqxefNm+vbty6tXr/QuKelERkLbtnD9OuTODcuXS6dnkepJABJCmLXw8HCGDh1KzZo1efjwIYUKFWL79u3Y2dnpXVrSGTECtm4FOztYswbSp9e7IiESnfQBEkKYrZs3b9K2bVsOHjwIQPfu3fnpp5+wt7fXubIktGoVTJigPZ8/H4oV07ceIZKIBCAhhFl6/PgxJUuW5NmzZzg7OzN37lxamFun33PnoFMn7fnAgdrYP0KYCQlAQgizlDFjRjp16sSBAwdYvnw5uXPn1rukpPX8OTRuDMHBUL36m1YgIcyEBCAhhNk4d+4cjo6O5MyZE4CJEydiMBhSx4ztcWE0Qrt2cPUq5MoFK1ZAGvk6EOYlWXSCnj59Ou7u7tja2uLh4cGRI0feuv2UKVPInz8/dnZ25MiRg379+hESEmJ6fdSoURgMhiiPAgUKJPZhCCGSKaUUs2fPpnTp0rRt25aIiAgArK2tzS/8AIwaBZs2ga2t1unZ1VXvioRIcrpHfh8fH/r378+sWbPw8PBgypQp1K5dm0uXLpEpU6Zo2y9btozBgwczf/58KlSowOXLl+nUqRMGg4HJkyebtitcuLBpwkKANPLXjRBm6fnz53zxxResWrUKgLRp0xIUFISLi4u+hellzRoYO1Z7PnculCihbz1C6ET3FqDJkyfzxRdf0LlzZwoVKsSsWbOwt7dn/vz5MW5/4MABKlasSNu2bXF3d6dWrVq0adMmWqtRmjRpyJw5s+nhKn/hCGF2Dh48SPHixVm1ahVp0qRh0qRJbNq0yXzDz4UL0KGD9vzrr+Hzz3UtRwg96RqAwsLCOH78ODVq1DCts7CwoEaNGqbbUv+rQoUKHD9+3BR4rl+/zqZNm6hXr16U7a5cuULWrFnJkycP7dq14/bt24l3IEKIZMVoNDJx4kQqV67MrVu3yJMnD/v372fgwIFYWOj+d58+AgK0Ts9BQfDpp/D993pXJISudL0u5O/vT2RkJG5ublHWu7m5cfHixRjf07ZtW/z9/alUqRJKKSIiIujRowdDhw41bePh4cHChQvJnz8/Dx48YPTo0VSuXJmzZ8/i6OgYbZ+hoaGEhoaalgMDAxPoCIUQeggLC2P58uVERkbSunVrZs+ejZOTk95l6cdohPbt4fJlyJFDm/DUHPs+CfEvKe5PoV27djF+/HhmzJjBiRMnWL16NRs3bmTs62vaQN26dWnRogVFixaldu3abNq0iefPn/P777/HuM8JEybg7OxseuTIkSOpDkcIkQhsbW3x8fFh3rx5LFu2zLzDD2h9fv78E2xsYPVqiKF/pRDmRtcWIFdXVywtLXn06FGU9Y8ePSJz5swxvmfEiBG0b9+ebt26AVCkSBGCg4Pp3r07w4YNi7F528XFhY8//pirV6/GuM8hQ4bQv39/03JgYKCEICFSkLCwMIYNG4azszPDhw8HoECBAnL3J8D69dpdXwCzZ0Pp0rqWI0RyoWsLkLW1NaVKlcLX19e0zmg04uvrS/ny5WN8z8uXL6OFHMt/Ju1TSsX4nqCgIK5du0aWLFlifN3GxgYnJ6coDyFEynDmzBkqVarEDz/8wKhRo7h+/breJSUf585pl74A+vSBjh31rUeIZET3S2D9+/dn7ty5LFq0iAsXLtCzZ0+Cg4Pp3LkzAB06dGDIkCGm7T09PZk5cyYrVqzgxo0bbNu2jREjRuDp6WkKQgMHDmT37t3cvHmTAwcO0KRJEywtLWnTpo0uxyiESFjh4eGsWrWKzz77jKJFi3L06FHSpUvHqlWryJMnj97lJQ/bt0OlShAYCJUrw48/6l2REMmK7oPjtGrVisePHzNy5EgePnxI8eLF2bJli6lj9O3bt6O0+AwfPhyDwcDw4cO5d+8eGTNmxNPTk3Hjxpm2uXv3Lm3atOHJkydkzJiRSpUqcejQITJmzJjkxyeESFjHjx+nUaNG3Lt3D9DuHG3SpAk//fSTXLp+bcYM+OoriIyEChW0fj/S6VmIKAwqtutGsXB3d6dLly506tTJNJx8ahMYGIizszMBAQFyOUwInSmlePLkiWksrxcvXpAtWzbs7Oz44osv+PLLLyX4vBYRoY3vM326tty+PcyZo434LIQZiMv3d5wvgX399desXr2aPHnyULNmTVasWBHlFnIhhEgIwcHBzJkzh+LFi1OjRg1THz9HR0d27NjB7du3+fbbbyX8vPb8OdSr9yb8TJgAixZJ+BEiFnFuAXrtxIkTLFy40DTWRtu2benSpQslS5ZM6BqTnLQACaGfy5cvM2PGDBYuXEhAQAAAdnZ2nD17Vvr3xObqVWjQAC5dAnt7WLIEmjTRuyohklxcvr/jHYBeCw8PZ8aMGQwaNIjw8HCKFCnCV199RefOnTEYDB+ya91IABIi6R08eBBvb2+2bdtmWpc3b168vLzo1KkT6dKl07G6ZGznTmjWDJ49g+zZtdveZX4vYabi8v0d707Q4eHhrFmzhgULFrBt2zbKlStH165duXv3LkOHDmX79u0sW7YsvrsXQpiZp0+fsm3bNgwGA/Xr18fLy4tatWqZ79QV72PuXOjVS+v74+GhTXQay3AfQoio4hyATpw4wYIFC1i+fDkWFhZ06NCBn376KcqAY02aNKFMmTIJWqgQInVQSnHkyBGmT59Ovnz5GDFiBAB16tRh7NixtGvXjty5c+tcZTIXGQkDB8KUKdpymzYwbx7Y2elalhApSZwvgVlaWlKzZk26du1K48aNsYrh1srg4GB69+7NggULEqzQpCSXwIRIeK9evWLFihVMnz6d48ePA5ApUybu3LmDtbW1ztWlIIGB0Lo1bN6sLY8dC8OGQQrtciBEQkrUS2DXr18nV65cb93GwcEhxYYfIUTCevToET/88APz58/n6dOngDb6euvWrfHy8pLwExfXr4OnJ5w/r7X2LF4MzZvrXZUQKVKcA5Cfnx8PHz7Ew8MjyvrDhw9jaWlJaZlnRgjxL9988w2//fYbALly5aJnz5507drVNK6PeE9790LTpuDvD1mzwrp1Mq+XEB8gzr0Lvby8uHPnTrT19+7dw8vLK0GKEkKkXEopXr16ZVoeM2YMlSpVYv369Vy7do1BgwZJ+ImrBQugenUt/JQqBUeOSPgR4gPFuQXo/PnzMY71U6JECc6fP58gRQkhUqazZ8/y9ddfkzlzZpYsWQJoo8fv3btX58pSqMhIGDwYfvhBW27eXBvc0N5e37qESAXi3AJkY2PDo0ePoq1/8OABadLoPrWYEEIH/v7+eHl5UaxYMXx9ffnjjz+4f/++3mWlbC9eaIMZvg4/I0eCj4+EHyESSJwDUK1atRgyZIhphFaA58+fM3ToUGrWrJmgxQkhkrfw8HB+/vln8uXLx4wZMzAajTRr1ozz58+TNWtWvctLuW7dgooV4c8/wcYGli2D0aNBxkQSIsHEucnmhx9+oEqVKuTKlYsS/4w2eurUKdzc3EwdHYUQqd+FCxdo2rQpFy9eBKBYsWJMmTKFTz/9VN/CUroDB7SWHz8/yJwZ1q7VBjkUQiSoeE2FERwczNKlSzl9+jR2dnYULVqUNm3axDgmUEok4wAJ8W4vXrwgX758GI1Gvv32W7p27YqlpaXeZaVsv/0G3bpBWBgUL65NayGTvQrx3pJ0LrDUSAKQENE9f/6cBQsW8PXXX5vm+Tt8+DAFChTA2dlZ5+pSOKMRhg/XZnAHrQXot9/AwUHfuoRIYZJkLrDz589z+/ZtwsLCoqxv2LBhfHcphEiGIiMjmTt3LiNGjMDf3x83Nzfatm0LEG08MBEPwcHQvr02jxfA0KHa6M7S30eIRBWvkaCbNGnCmTNnMBgMvG5Aev0XYWRkZMJWKITQzY4dO/j66685c+YMAIUKFZLOzQklMhI2bNDu7vr7b7C2hl9/1cKQECLRxflPjL59+5I7d278/Pywt7fn3Llz7Nmzh9KlS7Nr165EKFEIkdSuXbtGkyZNqF69OmfOnCFdunRMnTqV06dPSyfnD/X4sXapK08eaNxYCz8ZM8LOnRJ+hEhCcW4BOnjwIDt27MDV1RULCwssLCyoVKkSEyZM4KuvvuLkyZOJUacQIgl9/vnnHDp0CEtLS3r27MmoUaPIkCGD3mWlXErB4cMwfTr8/rvWyRkgQwbo2hX69tWmtxBCJJk4B6DIyEgcHR0BcHV15f79++TPn59cuXJx6dKlBC9QCJH4jEYjERERpolJv/vuO8aNG8fkyZMpXLiwztWlYK9ewfLlWvA5ceLN+jJlwMsLWrUCW1v96hPCjMU5AH3yySecPn2a3Llz4+Hhwffff4+1tTVz5swhT548iVGjECKRXLp0ibVr17J06VJatGjBiBEjAKhSpQpVqlTRuboU7No1mDkT5s+HZ8+0dTY20Lq1FnzKlNG3PiFE3APQ8OHDCQ4OBrRJDhs0aEDlypXJkCEDPj4+CV6gECLhGI1Gjh49ytq1a1m7dq1pEEPQprP43//+h42NjY4VpmCRkbBli9bas2WLdtkLwN0devaELl1AJoEVItlIkHGAnj59Srp06Ux3gqV0Mg6QSK0qVqzIgQMHTMtWVlZUq1aNJk2a0KxZM5mlPT6ePNFaembOhBs33qyvU0dr7albF2SASCGSRKKNAxQeHo6dnR2nTp3ik08+Ma1Pnz59/CoVQiSKoKAgtmzZwpYtW5g5c6ZplPYyZcrw999/U69ePZo0aULdunVlEMP4OnZMa+1ZsQJCQrR1Li5aS0/PnvDRR7qWJ4R4uzgFICsrK3LmzClj/QiRDPn5+fHnn3+yZs0atm/fTmhoKABt2rShevXqAIwcOZLvvvtOLnPFV0iIdhfX9Olw5Mib9SVKaK09bdrIbO1CpBBx7gM0bNgwhg4dym+//SYtP0IkAwcOHGDQoEHs37+ff1/Rzps3L02aNCFnzpymdfI7G083b8KsWTBvHvj7a+usrKBlSy34lCsHqaQLgBDmIs4BaNq0aVy9epWsWbOSK1cuHP4zV82Jf9/qKYRIUEopTp06hY2NDYUKFQLAzs6Offv2AVCqVCkaN25MkyZNKFSoUKrpl6ebO3dgwAD44w9tvi6A7NmhRw9t0lI3N33rE0LEW5wDUOPGjROhDCHE25w9e5a5c+eydu1abt++TYcOHVi0aBEAxYsXZ86cOdSuXTtKa4/4AJGRMG2aNkFpUJC2rnp1rbXH0xPSxHsaRSFEMhHn32Jvb+/EqEMIEYuDBw9SvXp1Xr16BWgtPmn+9QVsMBj44osv9Cov9Tl5Erp31zo5A5Qvr93hVayYvnUJIRKUTDcsRDJ2/vx56tevz6tXr6hcuTLr1q3D39+fefPm6V1a6hMUpF3uKl1aCz/Ozlrw2bdPwo8QqVCcW4AsLCze2q9A7hATImHcu3eP2rVr8+zZM8qVK8fmzZuj9bkTCWTDBu3y1u3b2nLLljBlCmTJomtZQojEE+cAtGbNmijL4eHhnDx5kkWLFjF69OgEK0wIc5chQwbKlCmDo6MjGzZskPCTGO7f1yYiXbVKW86VC2bMgHr19K1LCJHoEmQkaIBly5bh4+PDunXrEmJ3upKRoEVyERkZydOnT8mYMaPepaQukZEwezYMGQKBgdpIzf37g7c3SNAUIsWKy/d3gvUBKleuHL6+vgm1OyHMUnh4OPPnzzeN52NpaSnhJ6H9/TdUrKhd8goM1CYmPXYMvv9ewo8QZiRBAtCrV6/45ZdfyJYtW0LsTgizZDQa6dKlC127dsXLy0vvclKfly9h8GAoVQoOHwZHR5g6FQ4ehOLF9a5OCJHE4twH6L+TniqlePHiBfb29ixZsiRBixPCXCil+Oabb1iyZAmWlpY0aNBA75JSl61btfm5Xk9W2rQp/PyzNqihEMIsxTkA/fTTT1ECkIWFBRkzZsTDw4N06dIlaHFCmItJkyYxefJkABYsWEA96YSbMB4+1Pr2LF+uLWfPrs3j1bChvnUJIXQX5wDUqVOnRChDCPO1YMECBg0aBMCPP/5I+/btda4oFTAa4ddfYdAgeP4cLCzgq69gzBjt0pcQwuzFOQAtWLCAtGnT0qJFiyjrV65cycuXL+nYsWOCFSdEavfnn3+aRnH+3//+R//+/XWuKBU4dw6+/BL279eWS5aEOXO0vj9CCPGPOHeCnjBhAq6urtHWZ8qUifHjxydIUUKYi+DgYCwsLOjUqRMTJ07Uu5yU7dUrbe6uEiW08OPgAJMnax2eJfwIIf4jzi1At2/fJnfu3NHW58qVi9uvR1EVQryX1q1bkzdvXkqUKCEzt38IX19thvarV7VlT09tMlOZHFYIEYs4twBlypSJv//+O9r606dPkyFDhgQpSojU7NatW9y/f9+0XKZMmSiTm4r3ZDRqd3d5ekKNGlr4yZoV/vgD1q2T8COEeKs4/6vbpk0bvvrqKxwdHalSpQoAu3fvpm/fvrRu3TrBCxQiNXn8+DG1atUiNDSUbdu2kS9fPr1LSnmePYOFC7UpK163+BgM0KsXjBunTWIqhBDvEOcANHbsWG7evEn16tVNf7UajUY6dOggfYCEeIsXL15Qr149Ll++TK5cubC3t9e7pJTl1CntFvalS7X+PgBOTtCpkxZ+8ufXszohRAoT77nArly5wqlTp7Czs6NIkSLkypUroWvTjcwFJhJaWFgY9evXZ/v27bi6urJv3z7yyxf2u4WFaROVTp8OBw68WV+kiDaVRbt2kDatfvUJIZKVJJkLLF++fLRo0YIGDRp8cPiZPn067u7u2Nra4uHhwZEjR966/ZQpU8ifPz92dnbkyJGDfv36ERISEuO2EydOxGAw8PXXX39QjULE1+sW0u3bt+Pg4MCmTZsk/LzLnTvaHV05cmgh58ABSJMGWrWCPXvg9GntVncJP0KIeIpzAGrWrBnfffddtPXff/99tLGB3oePjw/9+/fH29ubEydOUKxYMWrXro2fn1+M2y9btozBgwfj7e3NhQsXmDdvHj4+PgwdOjTatkePHmX27NkULVo0znUJkRCUUvTt2xcfHx+srKxYvXo1ZcqU0bus5Ekp7W6upk0hd26tP4+fn9axefRouH0bVqyAypW1Pj9CCPEB4hyA9uzZE+Mw/XXr1mXPnj1xLmDy5Ml88cUXdO7cmUKFCjFr1izs7e2ZP39+jNsfOHCAihUr0rZtW9zd3alVqxZt2rSJ1moUFBREu3btmDt3rkzRIXQTGBjIjh07AFi0aBG1atXSuaJkKDBQm5S0UCHtbq41ayAyEj79FFauhJs3YeRIyJJF70qFEKlInANQUFAQ1tbW0dZbWVkRGBgYp32FhYVx/PhxatSo8aYgCwtq1KjBwYMHY3xPhQoVOH78uCnwXL9+nU2bNkULZV5eXtSvXz/KvmMTGhpKYGBglIcQCcHZ2Zm9e/fi4+NDmzZt9C4neTl7VpugNGtWbZqKixe1S1q9emmv7dwJzZuDlZXelQohUqE43wVWpEgRfHx8GDlyZJT1K1asoFChQnHal7+/P5GRkbi5uUVZ7+bmxsWLF2N8T9u2bfH396dSpUoopYiIiKBHjx5RLoGtWLGCEydOcPTo0feqY8KECYwePTpOtQvxNg8ePCDLPy0W6dOnp2XLljpXlEyEh8Patdoghf9uMS5YUOvU3L69dmeXEEIksjgHoBEjRtC0aVOuXbtGtWrVAPD19WXZsmWsWrUqwQv8r127djF+/HhmzJiBh4cHV69epW/fvowdO5YRI0Zw584d+vbty7Zt27C1tX2vfQ4ZMiTKHEyBgYHkyJEjsQ5BpHK7du2iXr16TJo0CS8vL73LSR4ePNDm45ozB14PAmlpCY0bay0+n30m/XqEEElLxcOGDRtUhQoVlL29vcqQIYOqVq2a2r17tzpz5kyc9hMaGqosLS3VmjVroqzv0KGDatiwYYzvqVSpkho4cGCUdb/99puys7NTkZGRas2aNQpQlpaWpgegDAaDsrS0VBEREe+sKyAgQAEqICAgTscjxMmTJ5WTk5MCVOPGjZXRaNS7JP0YjUrt3q1Uy5ZKpUmjlNbNWSk3N6VGjFDqzh29KxRCpDJx+f6O1/j79evXp379+oDWWrJ8+XIGDhzI8ePHiYyMfO/9WFtbU6pUKXx9fWncuDGg3TLs6+tL7969Y3zPy5cvsbCI2nXJ0tIS0O64qV69OmfOnInyeufOnSlQoACDBg0ybStEQrt27Rp16tQhMDCQKlWqsHz5cvOc3ysoCJYs0cbuOXv2zfqKFbXLXM2aQQz9CIUQIinFewKiPXv2MG/ePP744w+yZs1K06ZNmT59epz3079/fzp27Ejp0qUpW7YsU6ZMITg4mM6dOwPQoUMHsmXLxoQJEwDw9PRk8uTJlChRwnQJbMSIEXh6emJpaYmjoyOffPJJlM9wcHAgQ4YM0dYLkVAePHhA7dq1efToEcWKFWP9+vXvfQk21bh4UZueYtEi7c4uAHt7bRwfLy8oVkzf+oQQ4l/iFIAePnzIwoULmTdvHoGBgbRs2ZLQ0FDWrl0b5w7Qr7Vq1YrHjx8zcuRIHj58SPHixdmyZYupY/Tt27ejtPgMHz4cg8HA8OHDuXfvHhkzZsTT05Nx48bF6/OF+FBz5sxh4MCBvHjxgty5c7N582aczWU+qogI+PNPrbXH1/fN+nz5tL49nTqBi4te1QkhRKzeeyoMT09P9uzZQ/369WnXrh116tTB0tISKysrTp8+He8AlBzJVBgiLn7//XdatWpF8eLFWblyJR999JHeJSU+Pz+YOxdmz9ZGbQawsIAGDbTWnho1tGUhhEhCcfn+fu8WoM2bN/PVV1/Rs2dPmcFamK3w8HDmz5+PnZ0dHTp0AKB58+Zs2LCBunXrRuuflqooBYcOabewr1yp3dIO4OoK3bpBjx6QiuYEFEKkbu/9r/W+fft48eIFpUqVwsPDg2nTpuHv75+YtQmRbERGRrJkyRIKFChAjx49+OabbwgODga0wTvr16+fesPPy5cwbx6UKgUVKsCyZVr48fCAxYu1FqAJEyT8CCFSlPf+F7tcuXLMnTuXBw8e8OWXX7JixQqyZs2K0Whk27ZtvHjxIjHrFEIXSinWrl1LsWLFaN++PdevXydTpkwMGzaMNGnifQ9BynD1KgwYANmzay08J0+CrS107gzHjmmtQe3ba+uEECKFee8+QDG5dOkS8+bN47fffuP58+fUrFmT9evXJ2R9upA+QALg2LFj9OrVyzSiuIuLC//73//o06cPaVPrLOSRkbB5s9apecuWN+vz5NGmrejcGTJk0K8+IYR4i7h8f39Qm33+/Pn5/vvvuXv3LsuXL/+QXQmR7FhaWnL06FHs7e0ZOnQo169fZ8iQIakz/Dx5ApMmaXdveXpq4cdggLp1YeNGuHIFBg6U8COESDU+qAUotZIWIPP0999/c/jwYb744gvTuoULF1K3bt1o89WlGhER8Msv2mzr//RpIl066NJFa/HJm1ff+oQQIg7i8v0tASgGEoDMy5UrV/D29mbFihWkSZOGS5cukTt3br3LSnzHjkH37lrfHoDixaFPH2jdWhvAUAghUphEuQ1eiNTmzp07jBkzhgULFpimcGnatGnqvZvrtRcvYPhw7XZ2o1Fr8Zk0Sevfk9qPXQgh/iEBSJidp0+fMnbsWGbMmEFYWBgADRo0YOzYsRQvXlzf4hLb2rXQuzfcu6ctt2sHkydDpky6liWEEElNApAwO5GRkfz666+EhYXx6aefMn78eMqXL693WYnr7l3t8tbatdpy3rwwcybUrKlrWUIIoRcJQMIs+Pn5kemfVo6MGTPy888/kzNnTqpXr566Z2yPjNRuaR82TJulPU0a+N//tEtgdnZ6VyeEELqRC/4i1fvjjz9wd3dn7evWD6BLly7UqFEjdYefkyehXDno21cLPxUqaOvGjZPwI4QwexKARKq2cOFCWrZsyatXr1izZo3e5SSNoCBtBOfSpbU7vZydYdYs2LsXPvlE7+qEECJZkEtgItX65Zdf6Nu3LwDdunVj1qxZOleUBDZs0GZjv31bW27ZEqZMgSxZdC1LCCGSG2kBEqmOUoqxY8eaws+AAQOYM2cOlpaWOleWiO7fhxYttFGcb9/WJibduBF8fCT8CCFEDCQAiVRFKcXAgQMZOXIkAGPGjGHSpEmpt69PZCTMmAEFC8KqVWBpCd98A+fOQb16elcnhBDJllwCE6nOq1evAJgyZYqpFShV+vtvbSTnw4e15TJlYM4cbURnIYQQbyVTYcRApsJI2YxGI3v27OHTTz/Vu5TE8fIljBkDP/6ozeXl6Ajjx2tzd6Xmy3xCCPEOSTYbvBDJwatXrxg3bhzh4eEAWFhYpN7ws2ULFC4M332nhZ+mTeHCBW10Zwk/Qgjx3uQSmEjRAgMDadiwIbt37+batWvMnz9f75ISx6NH8PXXsGKFtpw9uzbAYcOGupYlhBAplQQgkWI9efKEOnXqcOzYMZycnOjcubPeJSWOgwehcWPw89MmK/3qK+0SmKOj3pUJIUSKJQFIpEj379+nZs2anD9/HldXV7Zu3UrJkiX1LivhLV0KXbtCaKg2iOHChVCqlN5VCSFEiid9gESKc+PGDSpXrsz58+fJmjUre/bsSX3hx2jU5u/6/HMt/DRqpLUESfgRQogEIQFIpCgRERHUrVuX69evkydPHvbt20fBggX1LithBQdrgxqOH68tDx4Mq1dD2rT61iWEEKmIBCCRoqRJk4aZM2dSqlQp9u7dS+7cufUuKWHdvQuVK2uBx9oaFi2CCRO0vj9CCCESjPQBEilCaGgoNjY2AHz22WccOXIEi9QWCo4c0S51PXwIGTPCmjVQsaLeVQkhRKqUyr5BRGq0ZcsW8uXLx/nz503rUl348fGBqlW18PPJJ1oYkvAjhBCJJpV9i4jUZtWqVTRs2JA7d+7w448/6l1OwlMKRo2C1q0hJAQaNIADB8DdXe/KhBAiVZMAJJKtBQsW0KpVK8LDw2nVqhUzZ87Uu6SE9eqVFnxGj9aWBw6EtWtlfB8hhEgCEoBEsvTzzz/TpUsXjEYj3bp1Y+nSpVhbW+tdVsK5f1+75PX772BlBfPmwaRJMp2FEEIkEQlAIllRSjFmzBi+/vprAAYMGMCcOXOwTE3B4MQJKFsWjh6FDBlg2zbo0kXvqoQQwqxIABLJSnh4ONu2bQNgzJgxTJo0CYPBoHNVCeiPP6BSJbh3DwoV0jo7V62qd1VCCGF25DZ4kaxYW1uzYcMGNmzYQLt27fQuJ+EopQ1sOHy4tlynjjaxqbOzvnUJIYSZkhYgoTulFNu3bzctOzs7p67wExIC7du/CT9ffw1//inhRwghdCQBSOhKKcWAAQOoWbMm48aN07uchPfwIXz2mTapaZo0MGsW/PST9lwIIYRu5F9hoStvb29++uknALJkyaJzNQns9Gnw9IQ7dyBdOli1CqpV07sqIYQQSAuQ0NF3333H2LFjAfjll1/okpruhFq3ThvJ+c4d+PhjOHxYwo8QQiQjEoCELqZOncrgwYMBmDBhAn369NG5ogSiFHz3HTRpos3qXqMGHDoE+fLpXZkQQoh/kQAkktz8+fP56quvABg+fLgpCKV4oaHQuTMMHqwFoV69YNMm7fKXEEKIZEX6AIkkFxAQAEC/fv0YM2aMztUkkMePtVaf/fu10Zx//hm8vPSuSgghRCwkAIkk169fP0qWLEmVKlVSxyCHkZFvwo+zM6xcCTVr6l2VEEKIt5BLYCJJ7N+/39TyA1C1atXUEX4AfvxRCz+OjnDwoIQfIYRIASQAiUS3e/duatSoQbVq1Xj27Jne5SSsM2dgxAjt+ZQpULCgruUIIYR4PxKARKI6fPgwDRo0ICQkhMyZM+Pg4KB3SQknLAw6dND+26CB1gFaCCFEipAsAtD06dNxd3fH1tYWDw8Pjhw58tbtp0yZQv78+bGzsyNHjhz069ePkJAQ0+szZ86kaNGiODk54eTkRPny5dm8eXNiH4b4j1OnTlGnTh2CgoKoVq0aq1atwtraWu+yEs6338KpU9qM7nPnQmq5pCeEEGZA9wDk4+ND//798fb25sSJExQrVozatWvj5+cX4/bLli1j8ODBeHt7c+HCBebNm4ePjw9Dhw41bZM9e3YmTpzI8ePHOXbsGNWqVaNRo0acO3cuqQ7L7F24cIGaNWvy/PlzKlSowLp167Czs9O7rIRz9Kg2uSnAzJmQObO+9QghhIgTg1JK6VmAh4cHZcqUYdq0aQAYjUZy5MhBnz59Yhwfpnfv3ly4cAFfX1/TugEDBnD48GH27dsX6+ekT5+eSZMm0bVr13fWFBgYiLOzMwEBATg5OcXjqMzbtWvXqFy5Mg8ePKBkyZLs2LED59Q08eerV1CyJFy8CG3awLJlelckhBCCuH1/69oCFBYWxvHjx6lRo4ZpnYWFBTVq1ODgwYMxvqdChQocP37cdJns+vXrbNq0iXr16sW4fWRkJCtWrCA4OJjy5cvHuE1oaCiBgYFRHiL+wsLCAChcuDBbt25NXeEHYOhQLfxkyQL/BHchhBApi67jAPn7+xMZGYmbm1uU9W5ubly8eDHG97Rt2xZ/f38qVaqEUoqIiAh69OgR5RIYwJkzZyhfvjwhISGkTZuWNWvWUKhQoRj3OWHCBEaPHp0wByUoWLAge/fuxcHBAVdXV73LSVi7dml3ewHMmwfp0+tZjRBCiHjSvQ9QXO3atYvx48czY8YMTpw4werVq9m4caNpUs3X8ufPz6lTpzh8+DA9e/akY8eOnD9/PsZ9DhkyhICAANPjzp07SXEoqcqTJ0/Yu3evaTlv3rxkTm39YgIDoVMn7Xn37lC3rq7lCCGEiD9dW4BcXV2xtLTk0aNHUdY/evQo1i/PESNG0L59e7p16wZAkSJFCA4Opnv37gwbNgwLCy3TWVtb89FHHwFQqlQpjh49ys8//8zs2bOj7dPGxgYbG5uEPDSzEhAQQO3atTl79ixr1qyhbmoNBv37w61bkDs3/PCD3tUIIYT4ALq2AFlbW1OqVKkoHZqNRiO+vr6x9td5+fKlKeS8ZmlpCcDb+nMbjUZCQ0MToGrxb8HBwdSvX5/jx4/j5OSEu7u73iUljo0btUteBgMsXKiN+iyEECLF0n0usP79+9OxY0dKly5N2bJlmTJlCsHBwXT+Z1C5Dh06kC1bNiZMmACAp6cnkydPpkSJEnh4eHD16lVGjBiBp6enKQgNGTKEunXrkjNnTl68eMGyZcvYtWsXW7du1e04U6OQkBAaNWrE/v37cXFxYdu2bRRMjSMhP3kC/7Q40q8fVKmibz1CCCE+mO4BqFWrVjx+/JiRI0fy8OFDihcvzpYtW0wdo2/fvh2lxWf48OEYDAaGDx/OvXv3yJgxI56enowbN860jZ+fHx06dODBgwc4OztTtGhRtm7dSk2ZoynBhIWF0bx5c3x9fUmbNi1btmyhWLFiepeVOHr1gocPtWku/vX/mRBCiJRL93GAkiMZB+jtIiIiaNOmDatWrcLOzo4tW7ZQJbW2iqxYoY31Y2kJhw5B6dJ6VySEECIWKWYcIJEyKaWwsrLC2tqatWvXpt7wc/++1voDMHy4hB8hhEhFpAUoBtIC9G6RkZGcOnWKUqVK6V1K4lAK6teHzZuhVCk4eBCsrPSuSgghxFtIC5BIcBERESxbtgyj0Qhod96l2vAD8OuvWvixsYHFiyX8CCFEKiMBSLyTn58fNWvWpF27dnTq1Omtww2kCjduaGP+gNbpOZYRxIUQQqRcut8FJpK3Q4cO0bx5c+7du0fatGlp2LAhBoNB77ISj9GojfYcFASVK8PXX+tdkRBCiEQgLUAiRkopZs2aRZUqVbh37x758+fnyJEjNG/eXO/SEteUKbBnDzg4aAMe/jO2lBBCiNRFApCI5tWrV3Tu3JmePXsSHh5O06ZNOXLkSOoc5PDfzp/XZnoHmDwZ8uTRtx4hhBCJRgKQiObu3busXr0aCwsLvvvuO1atWpX674YLD4cOHSA0VJvk9Isv9K5ICCFEIpI+QCKafPnysWTJEhwcHKhevbre5SSNCRPg+HFIl067Ayw193MSQgghAUhoE8VOmDCBChUq8NlnnwHQsGFDnatKQsePw9ix2vNp0yBrVn3rEUIIkegkAJm558+f06FDB/78808yZszIpUuXSJcund5lJZ2QEO3SV0QENG+uTXshhBAi1ZMAZMbOnDlD06ZNuXr1KjY2NkycONG8wg/AiBFa52c3N5g5Uy59CSGEmZAAZKaWL19Ot27dePnyJbly5eKPP/5I3SM7x2TvXvjxR+353Lng6qpvPUIIIZKM3AVmZiIjI/n6669p27YtL1++pGbNmhw7dsz8wk9QkDbgoVLQuTN4eupdkRBCiCQkAcjMWFhY8PjxYwCGDRvG5s2bcTXHlo+BA+H6dciZUxv8UAghhFmR2eBjkBpng1dKmaawCA4OZv/+/dSqVUvnqnSyZYs21g/Ajh3wz51vQgghUjaZDV6YKKWYOnUqLVu2NM3k7uDgYL7h59kz6NpVe/7VVxJ+hBDCTEkn6FQsODiYL7/8kqVLlwKwdu1amjZtqnNVOuvdG+7fh48/1gY/FEIIYZYkAKVSV69epWnTppw5cwZLS0smTZpEkyZN9C5LX6tWwbJlYGEBixeDvb3eFQkhhNCJBKBUaMOGDXz++ecEBASQKVMmfv/9d6pWrap3Wfp69Ah69NCeDxkCHh761iOEEEJX0gcolfn555/x9PQkICCA8uXLc+LECQk/ACNHwpMnUKyY9lwIIYRZkwCUypQrVw5ra2u8vLzYtWsX2bJl07sk/V2+DPPmac+nTQNra33rEUIIoTu5BJbKeHh4cO7cOT766CO9S0k+RoyAyEho0AAqVdK7GiGEEMmAtAClcAEBATRs2JDTp0+b1kn4+Zfjx+H337U5vsaN07saIYQQyYS0AKVgjx8/pk6dOpw4cYJLly5x7tw50qSRUxrF0KHaf9u1g6JF9a1FCCFEsiHflinUvXv3qFGjBhcvXiRjxoz4+PhI+PmvHTvgr7/AygpGj9a7GiGEEMmIfGOmQNeuXaNGjRrcvHmT7Nmzs337dvLnz693WcmLUtrt7gBffgl58uhbjxBCiGRF+gClMGfPnqVy5crcvHmTjz76iH379kn4icnatXDkCDg4wPDhelcjhBAimZEAlMKMGTOGBw8e8Mknn7B3715y5cqld0nJT0TEm74//fqBm5u+9QghhEh25BJYCjN//nxcXV359ttvSZ8+vd7lJE+LF8PFi5A+PQwcqHc1QgghkiFpAUoBLly4gFIKgLRp0zJjxgwJP7EJCQFvb+350KHg7KxvPUIIIZIlCUDJnI+PD0WLFmX8+PF6l5IyzJgBd+9C9uzg5aV3NUIIIZIpCUDJ2Ny5c2nTpg0RERGcP38eo9God0nJW0AAvA6Ko0eDra2+9QghhEi2JAAlUz/++CPdu3dHKUWPHj347bffsLCQ0/VWP/6oTXhaoAB06KB3NUIIIZIx+UZNZpRSjBw5koH/dN793//+x4wZMyT8vMujRzB5svZ83DiQQSGFEEK8hXxLJDMDBgzgp59+AmD8+PEMeT2Yn3i7ceMgOBjKlIEmTfSuRgghRDInASiZKVCgAAaDgalTp+IlnXjfz40bMGuW9nziRG3iUyGEEOItJAAlM927d6dSpUoUKlRI71JSDm9vCA+HmjWhWjW9qxFCCJECSMcSnQUHB+Pl5YW/v79pnYSfODhzBpYs0Z7LUAFCCCHekwQgHQUEBFC7dm1mzJhBs2bNTIMdxtvevdCwoRYKzMWwYdrEpy1aQOnSelcjhBAihZBLYDp5/PgxtWvX5uTJkzg7OzNhwgQMH9J3JTwcOneGa9fg77/h2DFwdU24gpOj/fvhzz/B0hLGjtW7GiGEECmItADp4O7du1SpUoWTJ0+SMWNGdu3aRYUKFT5sp/PmaeEH4NYtaN1amxQ0tVIKBg/WnnfpAvnz61uPEEKIFEUCUBK7du0alStX5uLFi2TPnp29e/dSvHjxD9vpy5fayMegTf/g4AC+vpCab6HfvBn27dNGex45Uu9qhBBCpDASgJKQUooOHTpw8+ZN8uXLx759+8ifEC0Xv/wCDx+Cu7s2GODChdr6H36AFSs+fP/JjdH4Jtz16aPN+yWEEELEQbIIQNOnT8fd3R1bW1s8PDw4cuTIW7efMmUK+fPnx87Ojhw5ctCvXz9CQkJMr0+YMIEyZcrg6OhIpkyZaNy4MZcuXUrsw3gng8HA4sWLqVOnDnv37iVXrlwfvtNnz+C777TnY8eCtTU0bx718tDp0x/+OcnJihVaPydn5zfHKYQQQsSB7gHIx8eH/v374+3tzYkTJyhWrBi1a9fGz88vxu2XLVvG4MGD8fb25sKFC8ybNw8fHx+GDh1q2mb37t14eXlx6NAhtm3bRnh4OLVq1SI4ODipDitWefPmZfPmzbi5uSXMDr/7Dp4/hyJFoE2bN+u//RZq1YJXr7SRkZ8+TZjP01tYGIwYoT0fNAjSp9e3HiGEECmSQX3wvdcfxsPDgzJlyjBt2jQAjEYjOXLkoE+fPgyO4a/73r17c+HCBXx9fU3rBgwYwOHDh9m3b1+Mn/H48WMyZcrE7t27qVKlyjtrCgwMxNnZmYCAAJycnOJ5ZEng3j346CMICdHuhmrQIOrrT59qt4bfuKGFoU2btDumUrIZM7R+Tpkzw9WrWn8nIYQQgrh9f+vaAhQWFsbx48epUaOGaZ2FhQU1atTg4MGDMb6nQoUKHD9+3HSZ7Pr162zatIl69erF+jkBAQEApE9trQVjx2rhp2JFqF8/+uvp08PatWBvD3/9BcOHJ3mJCSo4GMaM0Z6PHCnhRwghRLzpOg6Qv78/kZGR0S4Hubm5cfHixRjf07ZtW/z9/alUqRJKKSIiIujRo0eUS2D/ZjQa+frrr6lYsSKffPJJjNuEhoYSGhpqWg4MDIznESWhK1fg11+152+b/6poUe0W+TZttO1KltQGDUyJpkzRZn3Pmxe6ddO7GiGEECmY7n2A4mrXrl2MHz+eGTNmcOLECVavXs3GjRsZG8tAeF5eXpw9e5YVb7kbasKECTg7O5seOXLkSKzyE86IERAZqV32qlTp7du2bg0DB2rPO3eGs2cTv76E9uQJfP+99nzsWLCy0rceIYQQKZqufYDCwsKwt7dn1apVNG7c2LS+Y8eOPH/+nHXr1kV7T+XKlSlXrhyTJk0yrVuyZAndu3cnKCgIC4s3ma53796sW7eOPXv2kDt37ljriKkFKEeOHMm3D9CJE1CqlNbqc+qU1srzLhERUKeONj5Q3rxw9CikS5fopSaYb77RbusvVkw7fosUl92FEEIkshTTB8ja2ppSpUpF6dBsNBrx9fWlfPnyMb7n5cuXUUIOgOU/HXtfZzmlFL1792bNmjXs2LHjreEHwMbGBicnpyiPZO31GDjt2r1f+AFIk0a7fTxXLm3E6HbttBaklODuXZg6VXs+YYKEHyGEEB9M92+S/v37M3fuXBYtWsSFCxfo2bMnwcHBdO7cGYAOHTow5F8jGnt6ejJz5kxWrFjBjRs32LZtGyNGjMDT09MUhLy8vFiyZAnLli3D0dGRhw8f8vDhQ169eqXLMSaoHTu0Ds1WVm9Gf35frq6wZo02evLmzeDtnTg1JrTRoyE0FKpU0VqxhBBCiA+lkoGpU6eqnDlzKmtra1W2bFl16NAh02tVq1ZVHTt2NC2Hh4erUaNGqbx58ypbW1uVI0cO1atXL/Xs2TPTNkCMjwULFrxXPQEBAQpQAQEBCXSECcRoVKpsWaVAqd6947+f337T9gFK/fFHwtWXGC5cUMrCQqt1/369qxFCCJGMxeX7W/dxgJKjZDsO0Jo10LSpdvv3tWvwIYMp9uun3VWVNi0cPgyFCiVYmQmqRQtYtQoaNoQY+oQJIYQQr6WYPkAiDiIiYNgw7Xm/fh8WfkC7o+rTTyEoCBo3hn/GSkpWjh7Vwo/BAOPG6V2NEEKIVEQCUErx229w4YI2uOHrW9o/hJUV+PhAjhzamEKff65NMpqcvB7bqX17iGUMJyGEECI+JAClBCEhbzosDx2qTQKaEDJlgtWrwcYGNmx4M8pycrB9u/aIT2dvIYQQ4h0kAKUEM2fCnTuQPTv06pWw+y5dGubM0Z6PHg3r1yfs/uNDqTe3+vfsCe7uupYjhBAi9ZEAlNwFBr7p/zJqFNjZJfxndOgAffpozz//HGKZhiTJrF4Nx45pHbRf93sSQgghEpAEoOTuxx+1aSDy54eOHRP3cypXhhcvoEkTLXjp4d+dvQcM0C7TCSGEEAlMAlBy5uenBRPQWoHSJOLctVZWsHIlZMumtQB17KhPp+hFi+DSJW3Qxv79k/7zhRBCmAUJQMnZuHEQHKz102naNPE/z81Nu/xkbQ1r18L48Yn/mf/26pV2mQ+0VqDkNAaTEEKIVEUCUHJ186bW+Rlg4kRtLJykULbsm88dORI2bkyazwWYMUOb9ytnTujRI+k+VwghhNlJxGsq4oN4e0N4ONSoAdWrJ+1nd+midUKeOVObNPXoUciXL+E/58kTbd9Hjmj/fT0p7ujR2nxlQgghRCKRqTBioPtUGGfParO8K6WFgzJlkr6GsDD47DM4cECbJuPQIXB0jP/+goPhxImogef69ejbVa4MO3fCPxPbCiGEEO8rLt/f0gKUHA0dqoWf5s31CT+g9QNatQpKlYLz56FzZ62T9PtcigsP10Lcv8PO2bMxd6r++GPtsluZMtp/S5WS8COEECLRSQtQDHRtAdq/HypV0kLAuXPa7e96OngQqlbVQs348W8GKHxNKbh69U3QOXIETp7URq/+r2zZ3gSdMmW0zt0uLklyGEIIIVI/aQFKqZSCwYO155076x9+AMqXh2nT4MsvtTuzcufWBmN8HXiOHoXnz6O/z8VFCzn/DjxZsyZ19UIIIUSMpAUoBrq1AG3aBPXrax2Ar1zRpr5ILrp3h7lzY37N1hZKlIh6KStvXrCQmwyFEEIkHWkBSomMxjeXl/r0SV7hB2DqVLh8Gfbu1WZm/3fLziefaAMpCiGEECmEBKDkYsUK+Ptvbab315fBkhMbG9ixQ5uqwtpa72qEEEKIDyLXKJKDsDAYMUJ7/r//Qfr0+tYTGwsLCT9CCCFSBQlAycGvv2pj4ri5Qd++elcjhBBCpHoSgPQWHAxjxmjPR44EBwd96xFCCCHMgAQgvf38Mzx6BHnyQLduelcjhBBCmAUJQHp68gS++057Pnas9K8RQgghkogEID199x0EBmrzfrVurXc1QgghhNmQAKSXu3e1sXUAJkyQQQOFEEKIJCTfunoZM0abL6tyZahbV+9qhBBCCLMiAUgPly7B/Pna8wkT3m+GdSGEEEIkGAlAehgxAiIjwdMTKlbUuxohhBDC7EgASmrHjsHKlVqrz7hxelcjhBBCmCUJQEnt9YSnn38ORYroW4sQQghhpiQAJaXt27WHlRWMHq13NUIIIYTZktngk9KjR+DiAu3bQ+7celcjhBBCmC0JQEmpXTuoVw+U0rsSIYQQwqxJAEpq6dLpXYEQQghh9qQPkBBCCCHMjgQgIYQQQpgdCUBCCCGEMDsSgIQQQghhdiQACSGEEMLsSAASQgghhNmRACSEEEIIsyMBSAghhBBmRwKQEEIIIcyOBCAhhBBCmB0JQEIIIYQwOxKAhBBCCGF2JAAJIYQQwuzIbPAxUEoBEBgYqHMlQgghhHhfr7+3X3+Pv40EoBi8ePECgBw5cuhciRBCCCHi6sWLFzg7O791G4N6n5hkZoxGI/fv38fR0RGDwaB3OYkmMDCQHDlycOfOHZycnPQuJ9GZ0/HKsaZe5nS8cqypV2Idr1KKFy9ekDVrViws3t7LR1qAYmBhYUH27Nn1LiPJODk5mcUv3GvmdLxyrKmXOR2vHGvqlRjH+66Wn9ekE7QQQgghzI4EICGEEEKYHQlAZszGxgZvb29sbGz0LiVJmNPxyrGmXuZ0vHKsqVdyOF7pBC2EEEIIsyMtQEIIIYQwOxKAhBBCCGF2JAAJIYQQwuxIABJCCCGE2ZEAlEpNmDCBMmXK4OjoSKZMmWjcuDGXLl1663sWLlyIwWCI8rC1tU2iij/MqFGjotVeoECBt75n5cqVFChQAFtbW4oUKcKmTZuSqNoP4+7uHu1YDQYDXl5eMW6fks7rnj178PT0JGvWrBgMBtauXRvldaUUI0eOJEuWLNjZ2VGjRg2uXLnyzv1Onz4dd3d3bG1t8fDw4MiRI4l0BHHztuMNDw9n0KBBFClSBAcHB7JmzUqHDh24f//+W/cZn9+FpPCuc9upU6doddepU+ed+02O5/ZdxxrT76/BYGDSpEmx7jO5ntf3+a4JCQnBy8uLDBkykDZtWpo1a8ajR4/eut/4/q7HhQSgVGr37t14eXlx6NAhtm3bRnh4OLVq1SI4OPit73NycuLBgwemx61bt5Ko4g9XuHDhKLXv27cv1m0PHDhAmzZt6Nq1KydPnqRx48Y0btyYs2fPJmHF8XP06NEox7lt2zYAWrRoEet7Usp5DQ4OplixYkyfPj3G17///nt++eUXZs2axeHDh3FwcKB27dqEhITEuk8fHx/69++Pt7c3J06coFixYtSuXRs/P7/EOoz39rbjffnyJSdOnGDEiBGcOHGC1atXc+nSJRo2bPjO/cbldyGpvOvcAtSpUydK3cuXL3/rPpPruX3Xsf77GB88eMD8+fMxGAw0a9bsrftNjuf1fb5r+vXrx59//snKlSvZvXs39+/fp2nTpm/db3x+1+NMCbPg5+enALV79+5Yt1mwYIFydnZOuqISkLe3typWrNh7b9+yZUtVv379KOs8PDzUl19+mcCVJb6+ffuqvHnzKqPRGOPrKfW8AmrNmjWmZaPRqDJnzqwmTZpkWvf8+XNlY2Ojli9fHut+ypYtq7y8vEzLkZGRKmvWrGrChAmJUnd8/fd4Y3LkyBEFqFu3bsW6TVx/F/QQ07F27NhRNWrUKE77SQnn9n3Oa6NGjVS1atXeuk1KOK9KRf+uef78ubKyslIrV640bXPhwgUFqIMHD8a4j/j+rseVtACZiYCAAADSp0//1u2CgoLIlSsXOXLkoFGjRpw7dy4pyksQV65cIWvWrOTJk4d27dpx+/btWLc9ePAgNWrUiLKudu3aHDx4MLHLTFBhYWEsWbKELl26vHXi3pR8Xl+7ceMGDx8+jHLenJ2d8fDwiPW8hYWFcfz48SjvsbCwoEaNGinuXIP2e2wwGHBxcXnrdnH5XUhOdu3aRaZMmcifPz89e/bkyZMnsW6bWs7to0eP2LhxI127dn3ntinhvP73u+b48eOEh4dHOU8FChQgZ86csZ6n+Pyux4cEIDNgNBr5+uuvqVixIp988kms2+XPn5/58+ezbt06lixZgtFopEKFCty9ezcJq40fDw8PFi5cyJYtW5g5cyY3btygcuXKvHjxIsbtHz58iJubW5R1bm5uPHz4MCnKTTBr167l+fPndOrUKdZtUvJ5/bfX5yYu583f35/IyMhUca5DQkIYNGgQbdq0eevkkXH9XUgu6tSpw+LFi/H19eW7775j9+7d1K1bl8jIyBi3Ty3ndtGiRTg6Or7zklBKOK8xfdc8fPgQa2vraKH9becpPr/r8SGzwZsBLy8vzp49+87rxeXLl6d8+fKm5QoVKlCwYEFmz57N2LFjE7vMD1K3bl3T86JFi+Lh4UGuXLn4/fff3+svq5Rq3rx51K1bl6xZs8a6TUo+r0ITHh5Oy5YtUUoxc+bMt26bUn8XWrdubXpepEgRihYtSt68edm1axfVq1fXsbLENX/+fNq1a/fOGxNSwnl93++a5EJagFK53r17s2HDBnbu3En27Nnj9F4rKytKlCjB1atXE6m6xOPi4sLHH38ca+2ZM2eOdhfCo0ePyJw5c1KUlyBu3brF9u3b6datW5zel1LP6+tzE5fz5urqiqWlZYo+16/Dz61bt9i2bdtbW39i8q7fheQqT548uLq6xlp3aji3e/fu5dKlS3H+HYbkd15j+67JnDkzYWFhPH/+PMr2bztP8fldjw8JQKmUUorevXuzZs0aduzYQe7cueO8j8jISM6cOUOWLFkSocLEFRQUxLVr12KtvXz58vj6+kZZt23btigtJcndggULyJQpE/Xr14/T+1Lqec2dOzeZM2eOct4CAwM5fPhwrOfN2tqaUqVKRXmP0WjE19c3RZzr1+HnypUrbN++nQwZMsR5H+/6XUiu7t69y5MnT2KtO6WfW9BacEuVKkWxYsXi/N7kcl7f9V1TqlQprKysopynS5cucfv27VjPU3x+1+NbvEiFevbsqZydndWuXbvUgwcPTI+XL1+atmnfvr0aPHiwaXn06NFq69at6tq1a+r48eOqdevWytbWVp07d06PQ4iTAQMGqF27dqkbN26o/fv3qxo1aihXV1fl5+enlIp+rPv371dp0qRRP/zwg7pw4YLy9vZWVlZW6syZM3odQpxERkaqnDlzqkGDBkV7LSWf1xcvXqiTJ0+qkydPKkBNnjxZnTx50nTX08SJE5WLi4tat26d+vvvv1WjRo1U7ty51atXr0z7qFatmpo6dappecWKFcrGxkYtXLhQnT9/XnXv3l25uLiohw8fJvnx/dfbjjcsLEw1bNhQZc+eXZ06dSrK73FoaKhpH/893nf9Lujlbcf64sULNXDgQHXw4EF148YNtX37dlWyZEmVL18+FRISYtpHSjm37/r/WCmlAgIClL29vZo5c2aM+0gp5/V9vmt69OihcubMqXbs2KGOHTumypcvr8qXLx9lP/nz51erV682Lb/P7/qHkgCUSgExPhYsWGDapmrVqqpjx46m5a+//lrlzJlTWVtbKzc3N1WvXj114sSJpC8+Hlq1aqWyZMmirK2tVbZs2VSrVq3U1atXTa//91iVUur3339XH3/8sbK2tlaFCxdWGzduTOKq42/r1q0KUJcuXYr2Wko+rzt37ozx/9vXx2M0GtWIESOUm5ubsrGxUdWrV4/2M8iVK5fy9vaOsm7q1Kmmn0HZsmXVoUOHkuiI3u5tx3vjxo1Yf4937txp2sd/j/ddvwt6eduxvnz5UtWqVUtlzJhRWVlZqVy5cqkvvvgiWpBJKef2Xf8fK6XU7NmzlZ2dnXr+/HmM+0gp5/V9vmtevXqlevXqpdKlS6fs7e1VkyZN1IMHD6Lt59/veZ/f9Q9l+OeDhRBCCCHMhvQBEkIIIYTZkQAkhBBCCLMjAUgIIYQQZkcCkBBCCCHMjgQgIYQQQpgdCUBCCCGEMDsSgIQQQghhdiQACSFELAwGA2vXrtW7DCFEIpAAJIRIljp16oTBYIj2qFOnjt6lCSFSgTR6FyCEELGpU6cOCxYsiLLOxsZGp2qEEKmJtAAJIZItGxsbMmfOHOWRLl06QLs8NXPmTOrWrYudnR158uRh1apVUd5/5swZqlWrhp2dHRkyZKB79+4EBQVF2Wb+/PkULlwYGxsbsmTJQu/evaO87u/vT5MmTbC3tydfvnysX7/e9NqzZ89o164dGTNmxM7Ojnz58kULbEKI5EkCkBAixRoxYgTNmjXj9OnTtGvXjtatW3PhwgUAgoODqV27NunSpePo0aOsXLmS7du3Rwk4M2fOxMvLi+7du3PmzBnWr1/PRx99FOUzRo8eTcuWLfn777+pV68e7dq14+nTp6bPP3/+PJs3b+bChQvMnDkTV1fXpPsBCCHiL0GnVhVCiATSsWNHZWlpqRwcHKI8xo0bp5TSZo/u0aNHlPd4eHionj17KqWUmjNnjkqXLp0KCgoyvb5x40ZlYWFhmmU8a9asatiwYbHWAKjhw4ebloOCghSgNm/erJRSytPTU3Xu3DlhDlgIkaSkD5AQItn67LPPmDlzZpR16dOnNz0vX758lNfKly/PqVOnALhw4QLFihXDwcHB9HrFihUxGo1cunQJg8HA/fv3qV69+ltrKFq0qOm5g4MDTk5O+Pn5AdCzZ0+aNWvGiRMnqFWrFo0bN6ZChQrxOlYhRNKSACSESLYcHByiXZJKKHZ2du+1nZWVVZRlg8GA0WgEoG7duty6dYtNmzaxbds2qlevjpeXFz/88EOC1yuESFjSB0gIkWIdOnQo2nLBggUBKFiwIKdPnyY4ONj0+v79+7GwsCB//vw4Ojri7u6Or6/vB9WQMWNGOnbsyJIlS5gyZQpz5sz5oP0JIZKGtAAJIZKt0NBQHj58GGVdmjRpTB2NV65cSenSpalUqRJLly7lyJEjzJs3D4B27drh7e1Nx44dGTVqFI8fP6ZPnz60b98eNzc3AEaNGkWPHj3IlCkTdevW5cWLF+zfv58+ffq8V30jR46kVKlSFC5cmNDQUDZs2GAKYEKI5E0CkBAi2dqyZQtZsmSJsi5//vxcvHgR0O7QWrFiBb169SJLliwsX76cQoUKAWBvb8/WrVvp27cvZcqUwd7enmbNmjF58mTTvjp27EhISAg//fQTAwcOxNXVlebNm793fdbW1gwZMoSbN29iZ2dH5cqVWbFiRQIcuRAisRmUUkrvIoQQIq4MBgNr1qyhcePGepcihEiBpA+QEEIIIcyOBCAhhBBCmB3pAySESJHk6r0Q4kNIC5AQQgghzI4EICGEEEKYHQlAQgghhDA7EoCEEEIIYXYkAAkhhBDC7EgAEkIIIYTZkQAkhBBCCLMjAUgIIYQQZkcCkBBCCCHMzv8BHMFwk67OIgIAAAAASUVORK5CYII=", - "text/plain": [ - "
    " - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# A text classifier implemented in TensorFlow to classify SMS spam messages.\n", - "\n", - "# Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow.\n", - "\n", - "# The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function.\n", - "\n", - "#The output of the # code is the accuracy of the classifier along with some statistics\n", - "\n", - "# We implement an RNN in TensorFlow to predict spam/ham from texts\n", - "\n", "import os\n", "import re\n", "import io\n", "import requests\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "import tensorflow.compat.v1 as tf\n", + "import tensorflow as tf\n", "from zipfile import ZipFile\n", - "from tensorflow.python.framework import ops\n", - "tf.disable_v2_behavior()\n", - "ops.reset_default_graph()\n", - "\n", - "# Start a graph\n", - "sess = tf.Session()\n", - "\n", - "# Set RNN parameters\n", - "epochs = 20\n", - "batch_size = 250\n", - "max_sequence_length =25 \n", - "rnn_size = 10\n", - "embedding_size = 50\n", - "min_word_frequency = 10\n", - "learning_rate = 0.0005\n", - "dropout_keep_prob = tf.placeholder(tf.float32,name='dropout_keep_prob')\n", - "\n", + "from tensorflow.keras.preprocessing.text import Tokenizer\n", + "from tensorflow.keras.preprocessing.sequence import pad_sequences" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b3fa5d09", + "metadata": {}, + "outputs": [], + "source": [ + "# Set random seed for reproducibility\n", + "tf.random.set_seed(42)\n", "\n", "# Download or open data\n", - "data_dir = 'tmp'\n", - "data_file = 'text_data.txt'\n", + "data_dir = \"tmp\"\n", + "data_file = \"text_data.txt\"\n", "if not os.path.exists(data_dir):\n", " os.makedirs(data_dir)\n", "\n", "if not os.path.isfile(os.path.join(data_dir, data_file)):\n", - " zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'\n", + " zip_url = \"http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip\"\n", " r = requests.get(zip_url)\n", " z = ZipFile(io.BytesIO(r.content))\n", - " file = z.read('SMSSpamCollection')\n", + " file = z.read(\"SMSSpamCollection\")\n", " # Format Data\n", " text_data = file.decode()\n", - " text_data = text_data.encode('ascii', errors='ignore')\n", - " text_data = text_data.decode().split('\\n')\n", + " text_data = text_data.encode(\"ascii\", errors=\"ignore\")\n", + " text_data = text_data.decode().split(\"\\n\")\n", "\n", " # Save data to text file\n", - " with open(os.path.join(data_dir, data_file), 'w') as file_conn:\n", + " with open(os.path.join(data_dir, data_file), \"w\") as file_conn:\n", " for text in text_data:\n", " file_conn.write(\"{}\\n\".format(text))\n", "else:\n", " # Open data from text file\n", " text_data = []\n", - " with open(os.path.join(data_dir, data_file), 'r') as file_conn:\n", + " with open(os.path.join(data_dir, data_file), \"r\") as file_conn:\n", " for row in file_conn:\n", " text_data.append(row)\n", " text_data = text_data[:-1]\n", "\n", - "text_data = [x.split('\\t') for x in text_data if len(x) >= 1]\n", - "[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]\n", - "\n", - "\n", + "text_data = [x.split(\"\\t\") for x in text_data if len(x) >= 1]\n", + "[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d2d94450", + "metadata": {}, + "outputs": [], + "source": [ "# Create a text cleaning function\n", "def clean_text(text_string):\n", - " text_string = re.sub(r'([^\\s\\w]|_|[0-9])+', '', text_string)\n", + " text_string = re.sub(r\"([^\\s\\w]|_|[0-9])+\", \"\", text_string)\n", " text_string = \" \".join(text_string.split())\n", " text_string = text_string.lower()\n", - " return text_string\n", - "\n", + " return text_string" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7c01c5b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']\n", + "(5574, 25)\n" + ] + } + ], + "source": [ "# Clean texts\n", "text_data_train = [clean_text(x) for x in text_data_train]\n", - "#print(text_data[:5])\n", "print(text_data_train[:5])\n", "\n", "# Tokenize and pad sequences\n", - "vocab_processor = tf.keras.preprocessing.text.Tokenizer()\n", - "vocab_processor.fit_on_texts(text_data_train)\n", - "text_processed = vocab_processor.texts_to_sequences(text_data_train)\n", - "max_document_length = max([len(x) for x in text_processed])\n", - "#pads the text data to ensure all sequences have the same length (max_sequence_length).\n", - "text_processed = tf.keras.preprocessing.sequence.pad_sequences(text_processed, maxlen=max_sequence_length, padding='post')\n", - "print(text_processed.shape)\n", + "tokenizer = Tokenizer()\n", + "tokenizer.fit_on_texts(text_data_train)\n", + "text_processed = tokenizer.texts_to_sequences(text_data_train)\n", + "max_sequence_length = 25\n", + "text_processed = pad_sequences(\n", + " text_processed, maxlen=max_sequence_length, padding=\"post\"\n", + ")\n", + "print(text_processed.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fe65852c", + "metadata": {}, + "outputs": [], + "source": [ "# Shuffle and split data\n", "text_processed = np.array(text_processed)\n", - "text_data_target = np.array([1 if x == 'ham' else 0 for x in text_data_target])\n", + "text_data_target = np.array([1 if x == \"ham\" else 0 for x in text_data_target])\n", "shuffled_ix = np.random.permutation(np.arange(len(text_data_target)))\n", "x_shuffled = text_processed[shuffled_ix]\n", - "y_shuffled = text_data_target[shuffled_ix]\n", - "\n", + "y_shuffled = text_data_target[shuffled_ix]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b107bb0b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vocabulary Size: 8630\n", + "80-20 Train Test split: 4459 -- 1115\n" + ] + } + ], + "source": [ "# Split train/test set\n", - "ix_cutoff = int(len(y_shuffled)*0.80)\n", + "ix_cutoff = int(len(y_shuffled) * 0.80)\n", "x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:]\n", - "print(x_train)\n", "y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:]\n", - "vocab_size = len(vocab_processor.word_counts)\n", + "vocab_size = len(tokenizer.word_index) + 1\n", "print(\"Vocabulary Size: {:d}\".format(vocab_size))\n", - "print(\"80-20 Train Test split: {:d} -- {:d}\".format(len(y_train), len(y_test)))\n", - "\n", - "# Create placeholders\n", - "x_data = tf.placeholder(tf.int32, [None, max_sequence_length])\n", - "y_output = tf.placeholder(tf.int32, [None])\n", - "\n", - "# Create embedding\n", - "embedding_mat = tf.Variable(tf.random_uniform([vocab_size+1, embedding_size], -1.0, 1.0))\n", - "embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data)\n", - "\n", - "# Define the RNN cell\n", - "# tensorflow change >= 1.0, rnn is put into tensorflow.contrib directory. Prior version not test.\n", - "cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)\n", - "\n", - "output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)\n", - "output = tf.nn.dropout(output, dropout_keep_prob)\n", - "\n", - "# Get output of RNN sequence\n", - "output = tf.transpose(output, [1, 0, 2])\n", - "last = tf.gather(output, int(output.get_shape()[0]) - 1)\n", - "\n", - "weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1))\n", - "bias = tf.Variable(tf.constant(0.1, shape=[2]))\n", - "logits_out = tf.matmul(last, weight) + bias\n", - "\n", - "\n", - "# Loss function\n", - "losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output)\n", - "loss = tf.reduce_mean(losses)\n", - "print(loss)\n", - "accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32))\n", - "print(accuracy)\n", - "optimizer = tf.train.RMSPropOptimizer(learning_rate)\n", - "train_step = optimizer.minimize(loss)\n", - "init = tf.global_variables_initializer()\n", - "sess.run(init)\n", - "\n", - "train_loss = []\n", - "test_loss = []\n", - "train_accuracy = []\n", - "test_accuracy = []\n", - "# Start training\n", - "for epoch in range(epochs):\n", - " # Shuffle training data\n", - " shuffled_ix = np.random.permutation(np.arange(len(x_train)))\n", - " x_train = x_train[shuffled_ix]\n", - " y_train = y_train[shuffled_ix]\n", - " num_batches = int(len(x_train)/batch_size) + 1\n", - " # TO DO CALCULATE GENERATIONS ExACTLY\n", - " for i in range(num_batches):\n", - " # Select train data\n", - " min_ix = i * batch_size\n", - " max_ix = np.min([len(x_train), ((i+1) * batch_size)])\n", - " x_train_batch = x_train[min_ix:max_ix]\n", - " y_train_batch = y_train[min_ix:max_ix]\n", - " max_len = max([len(x) for x in x_train_batch])\n", - " x_train_batch = np.array([np.pad(x, (0, max_len - len(x)), 'constant') for x in x_train_batch])\n", - " # Run train step\n", - " train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5}\n", - " sess.run(train_step, feed_dict=train_dict)\n", - " # Run loss and accuracy for training\n", - " train_dict = {x_data: x_train, y_output: y_train, dropout_keep_prob:1.0}\n", - " temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict)\n", - " train_loss.append(temp_train_loss)\n", - " train_accuracy.append(temp_train_acc)\n", - " # Run Eval Step\n", - " test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0}\n", - " temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict)\n", - " test_loss.append(temp_test_loss)\n", - " test_accuracy.append(temp_test_acc)\n", - " print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc))\n", - " \n", - "# Plot loss over time\n", - "epoch_seq = np.arange(1, epochs+1)\n", - "plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')\n", - "plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')\n", - "plt.title('Softmax Loss')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Softmax Loss')\n", - "plt.legend(loc='upper left')\n", - "plt.show()\n", + "print(\"80-20 Train Test split: {:d} -- {:d}\".format(len(y_train), len(y_test)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fdd3ca65", + "metadata": {}, + "outputs": [], + "source": [ + "# Create the model using the Sequential API\n", + "embedding_size = 50\n", + "model = tf.keras.Sequential(\n", + " [\n", + " tf.keras.layers.Embedding(\n", + " input_dim=vocab_size,\n", + " output_dim=embedding_size,\n", + " input_length=max_sequence_length,\n", + " ),\n", + " tf.keras.layers.SimpleRNN(units=10),\n", + " tf.keras.layers.Dropout(0.5),\n", + " tf.keras.layers.Dense(units=2, activation=\"softmax\"),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "34b221e2", + "metadata": {}, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(\n", + " optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0005),\n", + " loss=\"sparse_categorical_crossentropy\",\n", + " metrics=[\"accuracy\"],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e7bef8d5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "15/15 [==============================] - 3s 65ms/step - loss: 0.5753 - accuracy: 0.7575 - val_loss: 0.4707 - val_accuracy: 0.8756\n", + "Epoch 2/20\n", + "15/15 [==============================] - 0s 33ms/step - loss: 0.4656 - accuracy: 0.8433 - val_loss: 0.3906 - val_accuracy: 0.9283\n", + "Epoch 3/20\n", + "15/15 [==============================] - 0s 24ms/step - loss: 0.3762 - accuracy: 0.9162 - val_loss: 0.3093 - val_accuracy: 0.9574\n", + "Epoch 4/20\n", + "15/15 [==============================] - 0s 9ms/step - loss: 0.3103 - accuracy: 0.9422 - val_loss: 0.2595 - val_accuracy: 0.9652\n", + "Epoch 5/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.2693 - accuracy: 0.9498 - val_loss: 0.2225 - val_accuracy: 0.9664\n", + "Epoch 6/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.2285 - accuracy: 0.9686 - val_loss: 0.1987 - val_accuracy: 0.9664\n", + "Epoch 7/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.2024 - accuracy: 0.9795 - val_loss: 0.1820 - val_accuracy: 0.9619\n", + "Epoch 8/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.1825 - accuracy: 0.9748 - val_loss: 0.1675 - val_accuracy: 0.9630\n", + "Epoch 9/20\n", + "15/15 [==============================] - 0s 9ms/step - loss: 0.1647 - accuracy: 0.9821 - val_loss: 0.1631 - val_accuracy: 0.9608\n", + "Epoch 10/20\n", + "15/15 [==============================] - 0s 14ms/step - loss: 0.1546 - accuracy: 0.9837 - val_loss: 0.1623 - val_accuracy: 0.9574\n", + "Epoch 11/20\n", + "15/15 [==============================] - 0s 12ms/step - loss: 0.1400 - accuracy: 0.9865 - val_loss: 0.1622 - val_accuracy: 0.9552\n", + "Epoch 12/20\n", + "15/15 [==============================] - 0s 13ms/step - loss: 0.1302 - accuracy: 0.9868 - val_loss: 0.1632 - val_accuracy: 0.9552\n", + "Epoch 13/20\n", + "15/15 [==============================] - 0s 14ms/step - loss: 0.1285 - accuracy: 0.9865 - val_loss: 0.1640 - val_accuracy: 0.9540\n", + "Epoch 14/20\n", + "15/15 [==============================] - 0s 17ms/step - loss: 0.1194 - accuracy: 0.9871 - val_loss: 0.1579 - val_accuracy: 0.9552\n", + "Epoch 15/20\n", + "15/15 [==============================] - 0s 15ms/step - loss: 0.1190 - accuracy: 0.9874 - val_loss: 0.1647 - val_accuracy: 0.9518\n", + "Epoch 16/20\n", + "15/15 [==============================] - 0s 17ms/step - loss: 0.1103 - accuracy: 0.9874 - val_loss: 0.1596 - val_accuracy: 0.9563\n", + "Epoch 17/20\n", + "15/15 [==============================] - 0s 11ms/step - loss: 0.1033 - accuracy: 0.9879 - val_loss: 0.1530 - val_accuracy: 0.9585\n", + "Epoch 18/20\n", + "15/15 [==============================] - 0s 11ms/step - loss: 0.0954 - accuracy: 0.9905 - val_loss: 0.1611 - val_accuracy: 0.9552\n", + "Epoch 19/20\n", + "15/15 [==============================] - 0s 17ms/step - loss: 0.0937 - accuracy: 0.9896 - val_loss: 0.1640 - val_accuracy: 0.9552\n", + "Epoch 20/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.0924 - accuracy: 0.9907 - val_loss: 0.1848 - val_accuracy: 0.9484\n" + ] + } + ], + "source": [ + "# Train the model\n", + "epochs = 20\n", + "batch_size = 250\n", "\n", - "# Plot accuracy over time\n", - "plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')\n", - "plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')\n", - "plt.title('Test Accuracy')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.legend(loc='upper left')\n", - "plt.show()" + "history = model.fit(\n", + " x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2\n", + ")" ] }, { - "cell_type": "markdown", - "id": "3bc90f40", + "cell_type": "code", + "execution_count": 11, + "id": "e8d94dcc", "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwoElEQVR4nO3dd3hUVeLG8e9Meg8hkIQQCL0ThEAERYpIURFUFFlWiihWLMiq/FxFdFd0bYhYsFCUVVGsawEBwUKRJr230BNqKmkz9/fHJSOhhITcSX0/zzNPZu7cOedMJiEv555iMwzDQERERKSSsJd1A0RERESspHAjIiIilYrCjYiIiFQqCjciIiJSqSjciIiISKWicCMiIiKVisKNiIiIVCoKNyIiIlKpKNyIiIhIpaJwIyKWeumll6hfvz4eHh60adOmrJsjIlWQwo1IFbZ+/XoGDBhA3bp18fX1JTo6mmuuuYY33njjksr76aefeOyxx7jiiiuYNm0azz//PAcPHuSZZ55hzZo11ja+lOzZswebzcbLL79c1k0RkSLyLOsGiEjZWLJkCd26daNOnTrcddddREZGsm/fPpYtW8brr7/OqFGjil3mzz//jN1u54MPPsDb2xuAlStXMn78eGJjY9WTIyKlQuFGpIr697//TUhICCtWrCA0NLTAc8nJyZdUZnJyMn5+fq5gIyJSFnRZSqSK2rlzJy1atDgn2ADUrFmzwOO8vDyee+45GjRogI+PD7Gxsfzf//0f2dnZrnNsNhvTpk0jIyMDm82GzWZj+vTptG/fHoDhw4cXOA7QtWtXWrZsybp16+jSpQv+/v40bNiQ2bNnA/DLL7+QkJCAn58fTZo0Yf78+QXalZiYyH333UeTJk3w8/OjevXq3HLLLezZs8d1jmEYdOvWjRo1ahQIbTk5ObRq1YoGDRqQkZFRkm8lYAa7ESNGEBERga+vL3FxccyYMeOc8z799FPatWtHUFAQwcHBtGrVitdff931fG5uLuPHj6dRo0b4+vpSvXp1rrzySubNm1fiNopUFQo3IlVU3bp1WbVqFRs2bLjouXfeeSdPP/00bdu25bXXXqNLly5MmDCB2267zXXORx99ROfOnfHx8eGjjz7io48+olmzZjz77LMAjBw50nX8qquucr3uxIkTXH/99SQkJPCf//wHHx8fbrvtNmbNmsVtt93GtddeywsvvEBGRgYDBgwgLS3N9doVK1awZMkSbrvtNiZNmsQ999zDggUL6Nq1K5mZmYAZuqZOnUpWVhb33HOP67Xjxo1j48aNTJs2jYCAgBJ9L0+dOkXXrl356KOPGDx4MC+99BIhISEMGzasQHCZN28egwYNolq1arz44ou88MILdO3alcWLF7vOeeaZZxg/fjzdunVj8uTJPPnkk9SpU4fVq1eXqI0iVYohIlXSTz/9ZHh4eBgeHh5Gx44djccee8yYO3eukZOTU+C8NWvWGIBx5513Fjg+ZswYAzB+/vln17GhQ4caAQEBBc5bsWKFARjTpk07pw1dunQxAOPjjz92HduyZYsBGHa73Vi2bJnr+Ny5c88pJzMz85wyly5dagDGhx9+WOD4lClTDMCYOXOmsWzZMsPDw8N4+OGHL/wNOm337t0GYLz00ksXPGfixImusvPl5OQYHTt2NAIDA43U1FTDMAzjoYceMoKDg428vLwLlhUXF2dcd911F22XiFyYem5EqqhrrrmGpUuXcsMNN7B27Vr+85//0KtXL6Kjo/n2229d5/3www8AjB49usDrH330UQC+//77ErUjMDCwQA9QkyZNCA0NpVmzZiQkJLiO59/ftWuX65ifn5/rfm5uLseOHaNhw4aEhoae09MxcuRIevXqxahRo7j99ttp0KABzz//fInanu+HH34gMjKSQYMGuY55eXnx4IMPkp6ezi+//AJAaGgoGRkZhV5iCg0NZePGjWzfvt2StolURQo3IlVY+/bt+fLLLzlx4gTLly9n7NixpKWlMWDAADZt2gSY41rsdjsNGzYs8NrIyEhCQ0NJTEwsURtq166NzWYrcCwkJISYmJhzjoF5GSvfqVOnePrpp4mJicHHx4fw8HBq1KjByZMnSUlJOaeuDz74gMzMTLZv38706dMLhKOSSExMpFGjRtjtBf9Jbdasmet5gPvuu4/GjRvTp08fateuzR133MGcOXMKvObZZ5/l5MmTNG7cmFatWvGPf/yDdevWWdJOkapC4UZE8Pb2pn379jz//PO8/fbb5Obm8vnnnxc45+wAYhUPD49iHTcMw3V/1KhR/Pvf/+bWW2/ls88+46effmLevHlUr14dp9N5zmsXLVrkGgS9fv16C1pfPDVr1mTNmjV8++233HDDDSxcuJA+ffowdOhQ1zlXXXUVO3fuZOrUqbRs2ZL333+ftm3b8v7775d6e0UqKoUbESkgPj4egEOHDgHmwGOn03nOZZKkpCROnjxJ3bp1Cy3PXaEIYPbs2QwdOpRXXnmFAQMGcM0113DllVdy8uTJc849dOgQo0aNomfPnlx//fWMGTOmxL1O+erWrcv27dvPCVRbtmxxPZ/P29ubvn378tZbb7Fz507uvvtuPvzwQ3bs2OE6JywsjOHDh/PJJ5+wb98+WrduzTPPPGNJW0WqAoUbkSpq4cKFBXpB8uWPsWnSpAkA1157LQATJ04scN6rr74KwHXXXVdoPfkzkc4XOErKw8PjnPfwxhtv4HA4zjn3rrvuwul08sEHH/Duu+/i6enJiBEjzvs9KK5rr72Ww4cPM2vWLNexvLw83njjDQIDA+nSpQsAx44dK/A6u91O69atAVw9SmefExgYSMOGDQtMuxeRwmkRP5EqatSoUWRmZnLjjTfStGlTcnJyWLJkCbNmzSI2Npbhw4cDEBcXx9ChQ3n33Xc5efIkXbp0Yfny5cyYMYP+/fvTrVu3Qutp0KABoaGhvPPOOwQFBREQEEBCQgL16tUr8Xu4/vrr+eijjwgJCaF58+YsXbqU+fPnU7169QLnTZs2je+//57p06dTu3ZtwAxBf//733n77be57777LlrXggULyMrKOud4//79GTlyJFOmTGHYsGGsWrWK2NhYZs+ezeLFi5k4cSJBQUGAOaX++PHjdO/endq1a5OYmMgbb7xBmzZtXONzmjdvTteuXWnXrh1hYWGsXLmS2bNn88ADD5T02yVSdZTtZC0RKSs//vijcccddxhNmzY1AgMDDW9vb6Nhw4bGqFGjjKSkpALn5ubmGuPHjzfq1atneHl5GTExMcbYsWONrKysAuedbyq4YRjGN998YzRv3tzw9PQsMJ27S5cuRosWLc45v27duuedDg0Y999/v+vxiRMnjOHDhxvh4eFGYGCg0atXL2PLli1G3bp1jaFDhxqGYRj79u0zQkJCjL59+55T3o033mgEBAQYu3btuuD3KX8q+IVuH330kWEYhpGUlORqi7e3t9GqVatzpr/Pnj3b6Nmzp1GzZk3D29vbqFOnjnH33Xcbhw4dcp3zr3/9y+jQoYMRGhpq+Pn5GU2bNjX+/e9/nzNFX0QuzGYYFvTJioiIiJQTGnMjIiIilYrCjYiIiFQqCjciIiJSqSjciIiISKWicCMiIiKVisKNiIiIVCpVbhE/p9PJwYMHCQoKcuuy8CIiImIdwzBIS0ujVq1a52xSe7YqF24OHjx4zm7DIiIiUjHs27fPtdL4hVS5cJO/DPq+ffsIDg4u49aIiIhIUaSmphITE+P6O16YKhdu8i9FBQcHK9yIiIhUMEUZUqIBxSIiIlKpKNyIiIhIpaJwIyIiIpVKlRtzU1QOh4Pc3NyyboZUMF5eXnh4eJR1M0REqjSFm7MYhsHhw4c5efJkWTdFKqjQ0FAiIyO1jpKISBlRuDlLfrCpWbMm/v7++gMlRWYYBpmZmSQnJwMQFRVVxi0SEamaFG7O4HA4XMGmevXqZd0cqYD8/PwASE5OpmbNmrpEJSJSBjSg+Az5Y2z8/f3LuCVSkeX//GjMlohI2VC4OQ9dipKS0M+PiEjZUrgRERGRSkXhRi4oNjaWiRMnlnUzREREikXhphKw2WyF3p555plLKnfFihWMHDmyRG3bvXs3f/vb36hVqxa+vr7Url2bfv36sWXLliKXMWzYMPr371+idoiISNWh2VIWynM4yXUY+HmX7gyZQ4cOue7PmjWLp59+mq1bt7qOBQYGuu4bhoHD4cDT8+IffY0aNUrUrtzcXK655hqaNGnCl19+SVRUFPv37+fHH3/UOkIiIuI26rmxSMqpXDYfSuXAyVOlXndkZKTrFhISgs1mcz3esmULQUFB/Pjjj7Rr1w4fHx9+//13du7cSb9+/YiIiCAwMJD27dszf/78AuWefVnKZrPx/vvvc+ONN+Lv70+jRo349ttvL9iujRs3snPnTt566y0uv/xy6tatyxVXXMG//vUvLr/8ctd5+/bt49ZbbyU0NJSwsDD69evHnj17AHjmmWeYMWMG33zzjasnatGiRVZ++0REpJJRuLkIwzDIzMm76A0MTuU6OJ6RTcqpnCK95mI3wzAsex9PPPEEL7zwAps3b6Z169akp6dz7bXXsmDBAv7880969+5N37592bt3b6HljB8/nltvvZV169Zx7bXXMnjwYI4fP37ec2vUqIHdbmf27Nk4HI7znpObm0uvXr0ICgrit99+Y/HixQQGBtK7d29ycnIYM2YMt956K7179+bQoUMcOnSITp06lfj7ISIilZcuS13EqVwHzZ+eWyZ1b3q2F/7e1nxEzz77LNdcc43rcVhYGHFxca7Hzz33HF999RXffvstDzzwwAXLGTZsGIMGDQLg+eefZ9KkSSxfvpzevXufc250dDSTJk3iscceY/z48cTHx9OtWzcGDx5M/fr1AfMymtPp5P3333dNoZ42bRqhoaEsWrSInj174ufnR3Z2NpGRkZZ8L0REpHJTz00VER8fX+Bxeno6Y8aMoVmzZoSGhhIYGMjmzZsv2nPTunVr1/2AgACCg4Nd2w2cz/3338/hw4f573//S8eOHfn8889p0aIF8+bNA2Dt2rXs2LGDoKAgAgMDCQwMJCwsjKysLHbu3FmCdywiIlWVem4uws/Lg03P9irSuVm5DnYkp2Oz2WgaGYiHvWTZ0c/LuoHJAQEBBR6PGTOGefPm8fLLL9OwYUP8/PwYMGAAOTk5hZbj5eVV4LHNZsPpdBb6mqCgIPr27Uvfvn3517/+Ra9evfjXv/7FNddcQ3p6Ou3ateO///3vOa8r6YBmERGpmhRuLsJmsxX50pC/tychfjlk5zlwOCHIt/x+excvXsywYcO48cYbAbMnJ38QrzvZbDaaNm3KkiVLAGjbti2zZs2iZs2aBAcHn/c13t7eFxyzIyIicjZdlrJYsJ8ZaFJP5ZVxSwrXqFEjvvzyS9asWcPatWv529/+dtEemOJas2YN/fr1Y/bs2WzatIkdO3bwwQcfMHXqVPr16wfA4MGDCQ8Pp1+/fvz222/s3r2bRYsW8eCDD7J//37AnLW1bt06tm7dytGjR7Vnk4iIFErhxmLBvuZlm7TsXJwWznay2quvvkq1atXo1KkTffv2pVevXrRt29bSOmrXrk1sbCzjx48nISGBtm3b8vrrrzN+/HiefPJJwNxk8tdff6VOnTrcdNNNNGvWjBEjRpCVleXqybnrrrto0qQJ8fHx1KhRg8WLF1vaThERqVxshpXzjSuA1NRUQkJCSElJOecySFZWFrt376ZevXr4+vpeUvmGYbD5UBp5Tif1wgMI8vW6+IukUrHi50hERAoq7O/32dRzYzGbzVZhLk2JiIhURgo3bpB/aSo1K9fShfhERETk4hRu3CDQxxO7zUauw8mpXM3yERERKU0KN25gt9tc08B1aUpERKR0Kdy4SbDfX5emREREpPQo3LhJkI8nNmxk5TrIztOlKRERkdKicOMmnh52AnzM7RN0aUpERKT0KNy4kevS1CldmhIRESktCjdulD8lPDMnjzyHtVsbiIiIyPkp3LiRt6cdPy8PDCA1q/xfmuratSsPP/yw63FsbCwTJ04s9DU2m42vv/66xHVbVY6IiIjCjZuVxqWpvn370rt37/M+99tvv2Gz2Vi3bl2xy12xYgUjR44safMKeOaZZ2jTps05xw8dOkSfPn0sretsDoeDF154gaZNm+Ln50dYWBgJCQm8//77RS5j0aJF2Gw2Tp486b6GiohIiXiWdQMqu2BfL5JSs0jPzsPpNLDbbZbXMWLECG6++Wb2799P7dq1Czw3bdo04uPjad26dbHLrVGjhlVNvKjIyEi31zF+/HimTJnC5MmTiY+PJzU1lZUrV3LixAm31y0iIqVHPTdu5utlx9vDjtMwSMt2z6Wp66+/nho1ajB9+vQCx9PT0/n8888ZMWIEx44dY9CgQURHR+Pv70+rVq345JNPCi337MtS27dv56qrrsLX15fmzZszb968c17z+OOP07hxY/z9/alfvz5PPfUUublmr9X06dMZP348a9euxWazYbPZXG0++7LU+vXr6d69O35+flSvXp2RI0eSnp7uen7YsGH079+fl19+maioKKpXr87999/vqut8vv32W+677z5uueUW6tWrR1xcHCNGjGDMmDGuc5xOJxMmTKBevXr4+fkRFxfH7NmzAdizZw/dunUDoFq1athsNoYNG1bo91BEREqfem4uxjAgN/OSX24DQjxzOJqVQ1pqHiEefkV/sZc/2C7e0+Pp6cmQIUOYPn06Tz75JLbTr/n8889xOBwMGjSI9PR02rVrx+OPP05wcDDff/89t99+Ow0aNKBDhw4XrcPpdHLTTTcRERHBH3/8QUpKSoHxOfmCgoKYPn06tWrVYv369dx1110EBQXx2GOPMXDgQDZs2MCcOXOYP38+ACEhIeeUkZGRQa9evejYsSMrVqwgOTmZO++8kwceeKBAgFu4cCFRUVEsXLiQHTt2MHDgQNq0acNdd9113vcQGRnJzz//zH333XfBXqkJEyYwc+ZM3nnnHRo1asSvv/7K3//+d2rUqMGVV17JF198wc0338zWrVsJDg7Gz68Yn6eIiJQKhZuLyc2E52uVqIio07di+7+D4B1QpFPvuOMOXnrpJX755Re6du0KmJekbr75ZkJCQggJCSnQQzFq1Cjmzp3LZ599VqRwM3/+fLZs2cLcuXOpVcv8fjz//PPnjJP55z//6bofGxvLmDFj+PTTT3nsscfw8/MjMDAQT0/PQi9Dffzxx2RlZfHhhx8SEGC+/8mTJ9O3b19efPFFIiIiALP3ZPLkyXh4eNC0aVOuu+46FixYcMFw8+qrrzJgwAAiIyNp0aIFnTp1ol+/fq73kJ2dzfPPP8/8+fPp2LEjAPXr1+f3339nypQpdOnShbCwMABq1qxJaGjoRb9vIiJS+nRZqpJo2rQpnTp1YurUqQDs2LGD3377jREjRgDmYNrnnnuOVq1aERYWRmBgIHPnzmXv3r1FKn/z5s3ExMS4gg3gCgBnmjVrFldccQWRkZEEBgbyz3/+s8h1nFlXXFycK9gAXHHFFTidTrZu3eo61qJFCzw8PFyPo6KiSE5OvmC5zZs3Z8OGDSxbtow77riD5ORk+vbty5133gmY37PMzEyuueYaAgMDXbcPP/yQnTt3Fus9iIhI2VHPzcV4+Zs9KCW0/8QpTmTmEB7oTVRIES9lePkXq44RI0YwatQo3nzzTaZNm0aDBg3o0qULAC+99BKvv/46EydOpFWrVgQEBPDwww+Tk5NT3LdyQUuXLmXw4MGMHz+eXr16ERISwqeffsorr7xiWR1n8vLyKvDYZrPhdBa+npDdbqd9+/a0b9+ehx9+mJkzZ3L77bfz5JNPusb0fP/990RHRxd4nY+Pj7WNFxERt1G4uRibrciXhgoTFOzN8dwMUhx2Ir38XeNirHTrrbfy0EMP8fHHH/Phhx9y7733uupZvHgx/fr14+9//ztgjqHZtm0bzZs3L1LZzZo1Y9++fRw6dIioKPMi27Jlywqcs2TJEurWrcuTTz7pOpaYmFjgHG9vbxyOwvfaatasGdOnTycjI8PVe7N48WLsdjtNmjQpUnuLKv/9Z2Rk0Lx5c3x8fNi7d68rFJ7N29sb4KLvQUREyo4uS5WSQB9P7DYbOXlOsnLds1pxYGAgAwcOZOzYsRw6dKjATJ5GjRoxb948lixZwubNm7n77rtJSkoqctk9evSgcePGDB06lLVr1/Lbb78VCDH5dezdu5dPP/2UnTt3MmnSJL766qsC58TGxrJ7927WrFnD0aNHyc7OPqeuwYMH4+vry9ChQ9mwYQMLFy5k1KhR3H777a7xNpdiwIABvPbaa/zxxx8kJiayaNEi7r//fho3bkzTpk0JCgpizJgxPPLII8yYMYOdO3eyevVq3njjDWbMmAFA3bp1sdlsfPfddxw5cqTADC4RESkfFG5KiYfdRqCP2VGWmuW+Bf1GjBjBiRMn6NWrV4HxMf/85z9p27YtvXr1omvXrkRGRtK/f/8il2u32/nqq684deoUHTp04M477+Tf//53gXNuuOEGHnnkER544AHatGnDkiVLeOqppwqcc/PNN9O7d2+6detGjRo1zjsd3d/fn7lz53L8+HHat2/PgAEDuPrqq5k8eXLxvhln6dWrF//73//o27evK6g1bdqUn376CU9P87N57rnneOqpp5gwYQLNmjWjd+/efP/999SrVw+A6Ohoxo8fzxNPPEFERAQPPPBAidokIiLWsxmGYZR1I0pTamoqISEhpKSkEBwcXOC5rKwsdu/eTb169fD19bW87uMZOew/kYmflweNIoIsL1/KB3f/HImIVEWF/f0+m3puSlGwryc24FSug5w8baQpIiLiDgo3pcjTw46/t/svTYmIiFRlCjelrDQ20hQREanKFG5KWbCv2XOTke0gz6FLUyIiIlZTuDkPd46x9vHywNfLAwP3baQpZauKjdEXESl3FG7OkL/ibWbmpW+UWRTBvro0VZnl//ycvYKyiIiUDq1QfAYPDw9CQ0Nd+xP5+7tnJWEfWx5GXg4p6blk+tmx262vQ0qfYRhkZmaSnJxMaGhogX2vRESk9CjcnCV/t+rCNmC0wrGULBxOA0eKN75e+iNYmYSGhha667mIiLiXws1ZbDYbUVFR1KxZk9xc9102+nb+Nr5de5DrWkUxumdDt9UjpcvLy0s9NiIiZUzh5gI8PDzc+keqU5Mo3v59H1+uO8IT17fWpSkRERGLaEBxGUmoV50gH0+Opmfz576TZd0cERGRSkPhpox4e9rp1rQmAPM2FX13bhERESmcwk0ZuqZ5BAA/bTpcxi0RERGpPBRuylDXJjXw8rCx60gGO5LTy7o5IiIilYLCTRkK8vWiU4NwQJemRERErKJwU8Z0aUpERMRaCjdlLD/c/Ln3JMmpWWXcGhERkYpP4aaMRQT70iYmFID5m927KrKIiEhVoHBTDujSlIiIiHXKRbh58803iY2NxdfXl4SEBJYvX37Bc6dPn47NZitw8/X1LcXWWq9XCzPcLNlxjPTsvDJujYiISMVW5uFm1qxZjB49mnHjxrF69Wri4uLo1atXoRtXBgcHc+jQIdctMTGxFFtsvQY1AqkXHkCOw8kvW4+UdXNEREQqtDIPN6+++ip33XUXw4cPp3nz5rzzzjv4+/szderUC77GZrMRGRnpukVERJRii61ns9noqUtTIiIilijTcJOTk8OqVavo0aOH65jdbqdHjx4sXbr0gq9LT0+nbt26xMTE0K9fPzZu3HjBc7Ozs0lNTS1wK496nr409fOWZHIdzjJujYiISMVVpuHm6NGjOByOc3peIiIiOHz4/D0YTZo0YerUqXzzzTfMnDkTp9NJp06d2L9//3nPnzBhAiEhIa5bTEyM5e/DCm1iqhEe6E1aVh5/7Dpe1s0RERGpsMr8slRxdezYkSFDhtCmTRu6dOnCl19+SY0aNZgyZcp5zx87diwpKSmu2759+0q5xUXjYbfRo5kuTYmIiJRUmYab8PBwPDw8SEoquPVAUlISkZGRRSrDy8uLyy67jB07dpz3eR8fH4KDgwvcyqv8S1PzNiVhGEYZt0ZERKRiKtNw4+3tTbt27ViwYIHrmNPpZMGCBXTs2LFIZTgcDtavX09UVJS7mllqOjUIx9/bg0MpWWw4UD7HBomIiJR3ZX5ZavTo0bz33nvMmDGDzZs3c++995KRkcHw4cMBGDJkCGPHjnWd/+yzz/LTTz+xa9cuVq9ezd///ncSExO58847y+otWMbXy4MujWsAME+XpkRERC6JZ1k3YODAgRw5coSnn36aw4cP06ZNG+bMmeMaZLx3717s9r8y2IkTJ7jrrrs4fPgw1apVo127dixZsoTmzZuX1Vuw1DXNI/hxw2F+2pTE6J5Nyro5IiIiFY7NqGKDO1JTUwkJCSElJaVcjr85mZlDu3/Nx+E0+PUf3ahT3b+smyQiIlLmivP3u8wvS0lBof7eJNQLAzRrSkRE5FIo3JRDf22kmXSRM0VERORsCjflUH64WbnnOMczcsq4NSIiIhWLwk05VLuaPy1qBeM0YMFm9d6IiIgUh8JNOaVLUyIiIpdG4aac6tncXKH5t+1HOJXjKOPWiIiIVBwKN+VUs6ggokP9yMp18tv2I2XdHBERkQpD4aacstlsrr2mdGlKRESk6BRuyrH8S1MLNieR53CWcWtEREQqBoWbcqx9bDVC/b04kZnLqsQTZd0cERGRCkHhphzz9LDTvWlNAObp0pSIiEiRKNyUc/mXpn7alEQV2wZMRETkkijcWMXphG0/wZbvLS32qsbh+Hja2Xs8k61JaZaWLSIiUhkp3Fhl3Sz4+BaY+6QZdCzi7+1J50bhAMzbqEtTIiIiF6NwY5XmN4BvCJzYDTvmWVq0VisWEREpOoUbq3gHwGW3m/f/mGJp0Vc3i8Bmg/UHUjh48pSlZYuIiFQ2CjdWan8nYIOdC+DodsuKDQ/0Ib5uNUCzpkRERC5G4cZKYfWgcW/z/vJ3LS26Vwtz1tQ3aw5YWq6IiEhlo3BjtYSR5tc1H0NWqmXF3tCmFh52G6v3nmRHsmZNiYiIXIjCjdXqd4PwxpCTDms/sazYmkG+dGtSA4DPV+23rFwREZHKRuHGajYbdDjde7P8XUunhd8SHwPAF6sOkKu9pkRERM5L4cYd4m4D7yA4tgN2/WxZsd2b1iQ80Juj6dn8svWIZeWKiIhUJgo37uATBJcNNu//Yd3AYi8PO/3bRAPw+ap9lpUrIiJSmSjcuEv7u8yv23+C47ssKzb/0tSCzckcTc+2rFwREZHKQuHGXcIbQsMegAHL37es2CaRQcTFhJLnNPj6T00LFxEROZvCjTt1uNv8+udMyE63rNhb2tUG4LOV+7RTuIiIyFkUbtypYQ8Iqw/ZKebGmhbpG1cLH08725LSWbc/xbJyRUREKgOFG3ey2wtOC7eolyXEz4veLc0VizWwWEREpCCFG3dr8zfwCoAjW2D3L5YVe+vpgcXfrDlIVq7DsnJFREQqOoUbd/MNgTaDzPsWTgvvWL860aF+pGXlMXfjYcvKFRERqegUbkpD/qWpbT/CiURLirTbbQw4PbD485XajkFERCSfwk1pqNEE6ncFwwkrrJsWnh9uFu88yr7jmZaVKyIiUpEp3JSW/Gnhqz+EHGuCSEyYP1c0rI5hwBer1XsjIiICCjelp3EvCK0DWSdh/eeWFXtLO3Ng8exV+3E6teaNiIiIwk1psXv8tSWDhdPCe7eMJMjXk/0nTrFs1zFLyhQREanIFG5KU9vbwcsfkjZA4hJLivT18qBvXC0APl+lS1MiIiIKN6XJrxq0vtW8v3yKZcXmr3nzw/pDpGblWlauiIhIRaRwU9ryp4Vv/g5SrOlpiasdQuOIQLLznPxv7UFLyhQREamoFG5KW0QLiO0MhgNWfGBJkTabzTWwWGveiIhIVadwUxbye29Wz4DcLEuK7H9ZNJ52G2v2nWRbUpolZYqIiFRECjdlocm1EFwbMo/Bhi8sKbJGkA/dm9YE4POV2kxTRESqLoWbsuDhCe1HmPeXT7FsWvgtpwcWf/XnAXIdTkvKFBERqWgUbspK26Hg4QOH1sK+5ZYU2bVJDcIDfTiansPCLcmWlCkiIlLRKNyUlYDq0OoW875F08K9POzc1DYagM80sFhERKoohZuylHB6YPGmbyD1kCVF3nJ6M82FW5NJTrNmsLKIiEhFonBTlqLioE5HcObBqmmWFNkoIojL6oTicBp8/ecBS8oUERGpSBRuylr+tPCV0yAv25Iiz1zzxrBosLKIiEhFoXBT1pr1haBakJEMG7+2pMjr46Lw9bKzPTmdNftOWlKmiIhIRaFwU9Y8vCD+DvO+RQOLg329uLZlFKCBxSIiUvUo3JQH7YaBhzccWAX7V1lS5IB4c2Dxd2sPcirHYUmZIiIiFYHCTXkQWANa3GTet6j35vJ61YkJ8yMtO485G62ZiSUiIlIRKNyUF/nTwjd8CeklX4DPbv9rM83PVujSlIiIVB0KN+VFdDuIjgdnLqyabkmRN7erjc0GS3cdY9/xTEvKFBERKe8UbsqThLvNryungiO3xMVFh/pxZcNwAD5fpd4bERGpGhRuypPm/SEwAtIOweZvLSlywOkVi79YtR+nU2veiIhI5adwU554ekO74eb9P961pMheLSIJ9vXkwMlTLNl5zJIyRUREyjOFm/ImfjjYPWHfMji4psTF+Xp50K9N/maa+0pcnoiISHmncFPeBEWal6cAllvTe3PL6TVv5mw8TEpmycfyiIiIlGcKN+VR/sDi9bMh42iJi2sVHULTyCBy8px8u+5gicsTEREpz8pFuHnzzTeJjY3F19eXhIQEli9fXqTXffrpp9hsNvr37+/eBpa22u0hqg04smH1jBIXZ7PZuCU+fzNNXZoSEZHKrczDzaxZsxg9ejTjxo1j9erVxMXF0atXL5KTC1/Ibs+ePYwZM4bOnTuXUktLkc32V+/NiqngyCtxkf3b1MLTbmPd/hS2HE4tcXkiIiLlVZmHm1dffZW77rqL4cOH07x5c9555x38/f2ZOnXqBV/jcDgYPHgw48ePp379+qXY2lLU4ibwrw6p+2Hr9yUurnqgDz2aRQDwuTbTFBGRSqxMw01OTg6rVq2iR48ermN2u50ePXqwdOnSC77u2WefpWbNmowYMeKidWRnZ5OamlrgViF4+ZobaoJl08LzBxZ/9ecBcvKclpQpIiJS3pRpuDl69CgOh4OIiIgCxyMiIjh8+PB5X/P777/zwQcf8N577xWpjgkTJhASEuK6xcTElLjdpSZ+BNg8IPF3OLyhxMV1aVyDGkE+HM/I4ectJd+/SkREpDwqdriZM2cOv//+u+vxm2++SZs2bfjb3/7GiRMnLG3c2dLS0rj99tt57733CA8PL9Jrxo4dS0pKiuu2b18FGlAbEg3N+pr3LZgW7ulh5+a2Zu+NBhaLiEhlVexw849//MN1aWf9+vU8+uijXHvttezevZvRo0cXq6zw8HA8PDxISkoqcDwpKYnIyMhzzt+5cyd79uyhb9++eHp64unpyYcffsi3336Lp6cnO3fuPOc1Pj4+BAcHF7hVKPkDi9d9BpnHS1xc/qWphVuTSU7NKnF5IiIi5U2xw83u3btp3rw5AF988QXXX389zz//PG+++SY//vhjscry9vamXbt2LFiwwHXM6XSyYMECOnbseM75TZs2Zf369axZs8Z1u+GGG+jWrRtr1qypWJeciqpOR4hoBXmn4M+ZJS6uQY1A2tWthtOAL/88YEEDRUREypdihxtvb28yMzMBmD9/Pj179gQgLCzskgbrjh49mvfee48ZM2awefNm7r33XjIyMhg+3NxjaciQIYwdOxYAX19fWrZsWeAWGhpKUFAQLVu2xNvbu9j1l3s2GySMNO+veA+cjhIXeevp3pvPVu7DMLSZpoiIVC7FDjdXXnklo0eP5rnnnmP58uVcd911AGzbto3atWsXuwEDBw7k5Zdf5umnn6ZNmzasWbOGOXPmuAYZ7927l0OHDhW73Eql1S3gVw1O7oVtc0pc3HWta+Hn5cGuIxms3uvecVIiIiKlzWYU87/ue/fu5b777mPfvn08+OCDrunYjzzyCA6Hg0mTJrmloVZJTU0lJCSElJSUijX+Zt7TsPh1qN8VhnxT4uIe/WwtX6zez23tY3jh5tYlb5+IiIgbFefvd7HDTUVXYcPNiUR4PQ4w4IGVEN6oRMUt23WM295dRoC3Byv+2QN/b09r2ikiIuIGxfn7XezLUqtXr2b9+vWux9988w39+/fn//7v/8jJySl+a6VoqtWFJn3M+yveL3FxCfXCqFvdn4wcBz+uP/+aQiIiIhVRscPN3XffzbZt2wDYtWsXt912G/7+/nz++ec89thjljdQztD+TvPrmo8hO71ERdlsNm5p99fAYhERkcqi2OFm27ZttGnTBoDPP/+cq666io8//pjp06fzxRdfWN0+OVP9bhDWALJTYd2sEhd3U9va2Gzwx+7jJB7LsKCBIiIiZa/Y4cYwDJxOc1+i+fPnc+211wIQExPD0aNHrW2dFGS3/9V7s+J9KOFwqVqhfnRuVAOA2au0maaIiFQOxQ438fHx/Otf/+Kjjz7il19+cU0F37179zl7RIkbtPkbePlD8iZIXFzi4vLXvJm9aj8OZ5UaWy4iIpVUscPNxIkTWb16NQ888ABPPvkkDRs2BGD27Nl06tTJ8gbKWfxCofWt5v3lRds8tDA9mkUQ4ufFoZQsft+hnjcREan4LJsKnpWVhYeHB15eXlYU5zYVdir4mQ5vgHeuALsnPLwegmuVqLhx32xgxtJErm8dxeS/tbWokSIiItZx61TwfKtWrWLmzJnMnDmT1atX4+vrW+6DTaUR2RLqdAJnHqyaXuLibok39+T6aWMSJzM1nV9ERCq2Yoeb5ORkunXrRvv27XnwwQd58MEHiY+P5+qrr+bIkSPuaKOcT4fTA4tXTYe8kgWSFrWCaRYVTI7DyYdLE0veNhERkTJU7HAzatQo0tPT2bhxI8ePH+f48eNs2LCB1NRUHnzwQXe0Uc6naV8IjID0JNjyvxIVZbPZuLdrAwDe+20XKZm5VrRQRESkTBQ73MyZM4e33nqLZs2auY41b96cN998kx9//NHSxkkhPL2hnblzuhUDi69vFUXTyCDSsvKY8uvOEpcnIiJSVoodbpxO53nH1nh5ebnWv5FS0m6YOah471JzkHEJ2O02Rl/TGIBpi/dwND3bggaKiIiUvmKHm+7du/PQQw9x8OBB17EDBw7wyCOPcPXVV1vaOLmI4Choer15f0XJe2+uaR5BXEwop3IdvLVQvTciIlIxFTvcTJ48mdTUVGJjY2nQoAENGjSgXr16pKamMmnSJHe0UQrTYaT5dd1ncOpkiYqy2WyM6Wn23sz8I5FDKadK2DgREZHS51ncF8TExLB69Wrmz5/Pli1bAGjWrBk9evSwvHFSBHU7Qc3m5orFaz6GjveVqLgrG4bToV4Yy3cf542fd/D8ja0saqiIiEjpsGwRvy1btnDDDTe4dgwvryrFIn5nW/EBfD/a3FTzgZXmHlQlsHz3cW6dshRPu42fH+1Kner+FjVURETk0pTKIn5ny87OZudOjdMoE60Hgk8wHN8JuxaWuLgO9cK4qnEN8pwGExeU77AqIiJyNsvCjZQhn0BzQ02wZFo44Bp78/WfB9iRnGZJmSIiIqVB4aayaH96xeJtc+BEyVcZbl07lJ7NI3Aa8Nq87SUuT0REpLQo3FQW4Y2gfjfAgJVTLSny0Z5NsNng+/WH2HAgxZIyRURE3K3I4aZatWqEhYVd8Na5c2d3tlOKosNd5tfVH0JuVomLaxIZxA1x5o7jr83T2BsREakYijwVfOLEiW5shliicW8IiYGUfbDxy7/G4ZTAwz0a8926QyzYkszqvSdoW6eaBQ0VERFxH8umglcUlXIq+Jl+exUWjIdabWFkyWdOATw+ex2zVu6jU4PqfHzX5ZaUKSIiUhxlMhVcyom2Q8DDGw6uhv2rLCly1NUN8fKwsWTnMZbsOGpJmSIiIu6icFPZBIRDi5vM+xbsNwVQu5o/f+tQB4CXf9pKFevsExGRCkbhpjLK329qw5eQYU1Py/3dGuLrZWf13pMs2nrEkjJFRETcQeGmMqrdDmpdBo5sc+aUBWoG+zK0Yyxg9t44neq9ERGR8qnY4SYr68JTjA8dOlSixoiF2p+eFr5yGjgdlhR5T5cGBPp4svFgKnM3HrakTBEREasVO9y0bduWNWvWnHP8iy++oHXr1la0SazQ8ibwC4OUvbBtriVFVgvw5o4r6wHwyrxtONR7IyIi5VCxw03Xrl25/PLLefHFFwHIyMhg2LBh3H777fzf//2f5Q2US+TlB21vN+8vf9eyYu/sXI8QPy92JKfzzZoDlpUrIiJilWKHm7feeosvvviCiRMn0rlzZ+Li4lizZg3Lly/nkUcecUcb5VLF3wHYzJ3Cj+6wpMhgXy/u7lIfgInzt5PrcFpSroiIiFUuaUBxnz59uOmmm1i8eDF79+7lxRdfpGXLlla3TUqqWiw07mXeX/G+ZcUO6xRLeKA3e49n8vnK/ZaVKyIiYoVih5udO3fSsWNHvvvuO+bOnctjjz3GDTfcwGOPPUZubq472iglkb/f1JqPITvdkiL9vT25r2tDAN74eTtZudYMWBYREbFCscNNmzZtqFevHmvXruWaa67hX//6FwsXLuTLL7+kQ4cO7mijlET97hBWH7JTYP1nlhX7t4Q6RIX4cigli4//2GtZuSIiIiV1SWNuPv30U0JDQ13HOnXqxJ9//knbtm2tbJtYwW6H9nea95e/DxatLuzr5cGDVzcC4K1FO8jMybOkXBERkZIqdri5/fbbz3s8KCiIDz74oMQNEjdo8zfw8ofkjbB3qWXFDmhXm7rV/TmansP0JXssK1dERKQkPC/1hZs2bWLv3r3k5OS4jtlsNvr27WtJw8RCftWg1S2weoY5LbxuJ0uK9fKw83CPRjwyay1TftnF4IS6hPh5WVK2iIjIpSp2uNm1axc33ngj69evx2azuTZRtNlsADgcGlxaLnW4yww3m/8HaYchKNKSYm+Ii+athTvZnpzOB7/vZvQ1jS0pV0RE5FIV+7LUQw89RL169UhOTsbf35+NGzfy66+/Eh8fz6JFi9zQRLFEZCuo0xGcebBqumXFethtrkDzwW+7OJ6Rc5FXiIiIuFexw83SpUt59tlnCQ8Px263Y7fbufLKK5kwYQIPPvigO9ooVskfWLxyGjism7bfq0UkLWoFk5HjYMovOy0rV0RE5FIUO9w4HA6CgoIACA8P5+DBgwDUrVuXrVu3Wts6sVazGyCgJqQfNi9PWcRutzGmZxMAZizdQ3LqhTdXFRERcbdih5uWLVuydu1aABISEvjPf/7D4sWLefbZZ6lfv77lDRQLeXpD/HDzvoUrFgN0bVKDdnWrkZXr5M2F1mz1ICIicimKHW7++c9/4nSa+wk9++yz7N69m86dO/PDDz8wadIkyxsoFms3DGwekLgYkjZaVqzNZuPRnubYm4+X72X/iUzLyhYRESmOYoebXr16cdNNNwHQsGFDtmzZwtGjR0lOTqZ79+6WN1AsFlwLml1v3l/+nqVFd2oQzhUNq5PrMJi0YLulZYuIiBTVJW2cebawsDDXVHCpADqMNL+umwWnTlpa9KOnx958sfoAu45Ys5eViIhIcRR7nZusrCzeeOMNFi5cSHJysusSVb7Vq1db1jhxk7pXQI1mcGQzrP0ELr/XsqLb1qnG1U1rsmBLMhPnb2fSoMssK1tERKQoih1uRowYwU8//cSAAQPo0KGDemwqIpsNOtwJ3z9qDizucLe5B5VFRvdszIItyfxv3UHu69aAppHBlpUtIiJyMTbDKN5OiiEhIfzwww9cccUV7mqTW6WmphISEkJKSgrBwVX4j252OrzaDLJT4favoIG146Xu/+9qvl9/iJ7NI3h3SLylZYuISNVTnL/fxf7venR0tGudG6nAfAIhbpB53+KBxQCPXNMIuw1+2pTE2n0nLS9fRETkQoodbl555RUef/xxEhMT3dEeKU35KxZvmwMn91padMOaQfS/LBqAV+Zts7RsERGRwhQ73MTHx5OVlUX9+vUJCgoiLCyswE0qkBqNoX5XMJywcqrlxT98dWM87TZ+3XaE5buPW16+iIjI+RR7QPGgQYM4cOAAzz//PBERERpQXNG1vwt2LYLVH0KXJ8DL17Ki61T359b2MXz8x15enruVWXdfrp8XERFxu2KHmyVLlrB06VLi4uLc0R4pbY17Q3BtSN0PG7+CNoMsLX5U94bMXrWf5XuO89v2o1zVuIal5YuIiJyt2JelmjZtyqlTp9zRFikLHp7Q/g7z/grrBxZHhfjx94S6ALz801byHM6LvEJERKRkih1uXnjhBR599FEWLVrEsWPHSE1NLXCTCqjtUPDwhgOrIHGJ5cXf160BAd4erNufwr9/2Gx5+SIiImcq9jo39tOLvZ09dsIwDGw2Gw6Hw7rWuYHWubmAbx+E1TMgrAHc8zt4+1ta/JwNh7hnprl69YSbWjGoQx1LyxcRkcqtOH+/iz3mZuHChZfcMCnHrnkWts+D4zth/ji49iVLi+/dMopHr2nMK/O28dTXG4itHkDHBtUtrUNERAQu4bJUvXr1uOqqq+jSpUuB21VXXUW9evUuqRFvvvkmsbGx+Pr6kpCQwPLlyy947pdffkl8fDyhoaEEBATQpk0bPvroo0uqV87gFwr9Jpv3l79rzqCy2APdG9I3rhZ5ToN7/7uKvccyLa9DRETkksLNkSNHzjl+/PjxSwo3s2bNYvTo0YwbN47Vq1cTFxdHr169SE5OPu/5YWFhPPnkkyxdupR169YxfPhwhg8fzty5c4tdt5yl4dV/Lez39X2W7xhus9l4aUBr4mqHcDIzlxEzVpCWlWtpHSIiIpc05iYpKYkaNQpO6U1MTKR58+ZkZGQUqwEJCQm0b9+eyZPNXgOn00lMTAyjRo3iiSeeKFIZbdu25brrruO555676Lkac3MRORnwzpVwfJe5PcON71heRVJqFv0mL+ZwahbdmtTg/aHt8bBr/RsREbkwt4y5GT16NGD+7/upp57C3/+vAacOh4M//viDNm3aFKuhOTk5rFq1irFjx7qO2e12evTowdKlSy/6esMw+Pnnn9m6dSsvvvjiec/Jzs4mOzvb9Vgzui7COwD6vwPTesPaT6Dp9dDsekuriAj25b0h8dwyZQkLtx5hwg+b+ef1zS2tQ0REqq4ih5s///wTMAPF+vXr8fb2dj3n7e1NXFwcY8aMKVblR48exeFwEBERUeB4REQEW7ZsueDrUlJSiI6OJjs7Gw8PD9566y2uueaa8547YcIExo8fX6x2VXl1EqDTg7B4IvzvIYhJgEBrF99rVTuEV25pw/0fr+b933fTKCKQge01g0pEREquSOFm0qRJ/PDDD/j5+TF8+HBef/31Mr2kExQUxJo1a0hPT2fBggWMHj2a+vXr07Vr13POHTt2rKvXCcyem5iYmFJsbQXV7f/M2VPJG+G7h2HgTLB464TrWkexPbkRE+dv55+nZ1Al1NcMKhERKZkiDSgePXo0aWlpAHz44YdkZWVZUnl4eDgeHh4kJSUVOJ6UlERkZOQFX2e322nYsCFt2rTh0UcfZcCAAUyYMOG85/r4+BAcHFzgJkXg6QM3TQG7F2z5DtZ+6pZqHrq6Ede1jiLXYXDvf1ez77hmUImISMkUKdzUqlWLL774gsTERAzDYP/+/ezdu/e8t+Lw9vamXbt2LFiwwHXM6XSyYMECOnbsWORynE5ngXE1YpHIVtD19KDuHx+DlP2WV2Gz2Xh5QBytokM4npHDnTNWkp6dZ3k9IiJSdRRpttS7777LqFGjyMu78B+dS12heNasWQwdOpQpU6bQoUMHJk6cyGeffcaWLVuIiIhgyJAhREdHu3pmJkyYQHx8PA0aNCA7O5sffviBJ554grfffps777zzovVptlQxOfLMwcX7V0C9LnD712Av9goCF3U4JYsbJv9Oclo2VzetybtD4jWDSkREXCyfLTVy5EgGDRpEYmIirVu3Zv78+VSvbs3YiIEDB3LkyBGefvppDh8+TJs2bZgzZ45rkPHevXtdWz4AZGRkcN9997F//378/Pxo2rQpM2fOZODAgZa0R87i4Qk3ToG3r4Ddv8CK9yFhpOXVRIaYM6hunbKUBVuS+c+cLYy9tpnl9YiISOVX7HVuZsyYwW233YaPj4+72uRW6rm5RH+8Cz/+Azz9zL2nwhu6pZpv1x7kwU/MmXkvDWjNLfEa/C0iIsX7+13scJNv1apVbN5s7vDcvHlz2rZteynFlDqFm0vkdMLMG81tGWq3h+FzzF4dN3j1p61M+nkH3h52Pr4rgfjYMLfUIyIiFUdx/n4Xe/BEcnIy3bt3p3379jz44IM8+OCDxMfHc/XVV593WwapJOx26Pcm+ISY428WT3RbVQ/3aEyflpHkOJzc/dEq9p/QDCoRESm6YoebUaNGkZaWxsaNGzl+/DjHjx9nw4YNpKam8uCDD7qjjVJehNSGPqdXgl70Ahxe75Zq7HYbr9waR4tawRw7PYMqQzOoRESkiIodbubMmcNbb71Fs2Z/DfZs3rw5b775Jj/++KOljZNyKO42c0sGZy58eTfkuWcKvr+3J+8NiSc80Icth9N4eNYanM5LuoIqIiJVTLHDjdPpxMvL65zjXl5eOJ1OSxol5ZjNBtdPBP9wc/XiRedfPNEKtUL9eG9IO7w97czblMRLP211W10iIlJ5FDvcdO/enYceeoiDBw+6jh04cIBHHnmEq6++2tLGSTkVWAP6vm7eX/w67P3DbVVdVqcaLw1oDcDbi3by5WrrFxIUEZHKpdjhZvLkyaSmphIbG0uDBg1o0KAB9erVIzU1lTfeeMMdbZTyqNn1EDcIDCd8dTfkZLitqn5torm/WwMAnvhiPav3nnBbXSIiUvFd0lRwwzCYP3++a+fuZs2a0aNHD8sb5w6aCm6hUyfNxf1S90P7O+G6V9xWldNpcO9/VzF3YxLhgT5888AVRIf6ua0+EREpX0plnZuKSuHGYrsWwYf9zPt//xIauu/SZEZ2HgPeWcrmQ6k0jwpm9r0d8fd2z1o7IiJSvrhlnZulS5fy3XffFTj24YcfUq9ePWrWrMnIkSO1eWVVVL8rdDi9HcM3D8Ap910yCvDx5P2h8YQHerPpUCqPaAaViIicR5HDzbPPPsvGjRtdj9evX8+IESPo0aMHTzzxBP/73/9cm1tKFdNjPIQ1gLSD8OPjbq0qOtSPKbfH4+1hZ+7GJF6dt82t9YmISMVT5HCzZs2aArOhPv30UxISEnjvvfcYPXo0kyZN4rPPPnNLI6Wc8/Y3N9e02WHdLNj0jVura1e3Gi/c3AqAyQt38M2aA26tT0REKpYih5sTJ064duoG+OWXX+jTp4/rcfv27dm3b5+1rZOKI6Y9XPmIef9/D0N6sluru6ltbe7pYs6g+sfsdazZd9Kt9YmISMVR5HATERHB7t27AcjJyWH16tVcfvnlrufT0tLOu7ifVCFdnoCIVnDqOPzvIXDzWPXHejWhR7MIcvKc3PXhSg6lnHJrfSIiUjEUOdxce+21PPHEE/z222+MHTsWf39/Onfu7Hp+3bp1NGjQwC2NlArC0xtufAc8vGHrD7DmY7dWZ7fbmHhbG5pGBnEkLZs7Z6wkM0d7UImIVHVFDjfPPfccnp6edOnShffee4/33nsPb29v1/NTp06lZ8+ebmmkVCCRLaHb/5n3f3wcTu51a3WBPuYeVNUDvNl4MJVHP1urGVQiIlVcsde5SUlJITAwEA8PjwLHjx8/TmBgYIHAUx5pnZtS4HTAtD6w7w+I7QxDvgV7sRfDLpaVe47zt/f+IMfhZFT3hjzas4lb6xMRkdLllnVu8oWEhJwTbADCwsLKfbCRUmL3gP5vg5c/7PkNlr/r9irjY8OYcJM5g+qNnzWDSkSkKnPvf6el6qreAHo+Z96fPw6OuH89mpvb1ebern/NoNIeVCIiVZPCjbhP/Aho0B3ysuDre8Dh/sG+/+jZhJ7NzRlUIz9cxYGTmkElIlLVKNyI+9hscMNk8AmBA6vg99fcXqXdbuO1gW1oFhXM0XRzBlVGtmZQiYhUJQo34l4h0XDdy+b9RRNgyw9ur/KvPah82HwolYe1B5WISJWicCPu1+oWuOzvYDjg82Gw53e3Vxkd6se7Q9rh7Wln3qYkXvppq9vrFBGR8kHhRtzPZoPrX4cm14IjGz4ZBIfWur3atnWq8dKA1gC8vWgnX6za7/Y6RUSk7CncSOnw8IQBU6HuFZCdCjNvhmM73V5tvzbRjOreEICxX65n5Z7jbq9TRETKlsKNlB4vPxj0CUS2gowj8FF/SD3k9mof6dGYPi0jyXE4ufujVew7nun2OkVEpOwo3Ejp8g2Bv38JYfXNrRlm3gSZ7u1NsdttvHJrHC2jgzmWkcOdM1aSrhlUIiKVlsKNlL7AmnD71xAUBcmb4OOBkJPh1ir9vc09qGoG+bA1KY0HP/kTh2ZQiYhUSgo3Ujaq1TV7cHxDYf9y+GwI5OW4tcqoED/eGxKPj6edn7ck88KPm91an4iIlA2FGyk7Ec1h8OfmHlQ75purGDudbq0yLiaUV26NA+C933Yza4V7dy0XEZHSp3AjZSumAwz8COxesOEL+PExKN5G9cV2fetaPNyjEQD//HoDy3Ydc2t9IiJSuhRupOw17AE3vgPYYMV7sOgFt1f50NWNuL51FLkOg3tnriLxmHvH/IiISOlRuJHyodUAuPYl8/4vL8AfU9xanc1m4+Vb4oirHcKJzFxGzFhJalauW+sUEZHSoXAj5UeHu6Dr/5n3f3wM1n3u1up8vTx4d0g8kcG+7EhO54GP/yTP4d4xPyIi4n4KN1K+dHkMOtxt3v/6Htg+z63VRQT78v7QeHy97Py67Qj//kEzqEREKjqFGylfbDbo/YK52aYzD2bdDnv/cGuVLaNDeO3WNgBMW7yH//6R6Nb6RETEvRRupPyx26H/29DwGsg7BR/fAkkb3Vpln1ZRjOnZGIBx32xkyY6jbq1PRETcR+FGyicPL7j1Q4i5HLJS4KOb4Phut1Z5f7eG9GtTizynwb3/Xc3uo5pBJSJSESncSPnl7Q9/+xRqtoD0w/DRjZCW5LbqbDYbL97cmjYxoaScymXE9BWkZGoGlYhIRaNwI+WbXzX4+xcQWhdO7IaZN8Opk26rzpxB1Y5aIb7sOprB/R+vJlczqEREKhSFGyn/gqPg9q8goCYkrYdPboOcTLdVVzPIl/eHtsff24Pfdxzlue82ua0uERGxnsKNVAzVG8DtX4JPCOxdCrOHg8N9l4ya1wrmtYFtsNngw6WJfLh0j9vqEhERayncSMUR2cocg+PpC9vmwDcPuHWjzV4tInmsV1MAxv9vE9+uPei2ukRExDoKN1Kx1O0Et8wAmwes+xR+etKtG23e06U+N7etjcNp8OAnf/LMtxvJydMYHBGR8kzhRiqeJr2h/1vm/WVvwW+vuK0qcwZVK+7t2gCA6Uv2cOuUpRw4ecptdYqISMko3EjFFHcb9Jpg3v/5OVg51W1VeXrYebx3U94fEk+wrydr9p3k+km/sWhrstvqFBGRS6dwIxVXx/ug8xjz/nejYc3Hbq2uR/MIvn+wM62izZ3Eh09fwas/bcXhdN9lMRERKT6FG6nYuv8T2g0HDPj6XvhypLmisZvEhPnz+T0dGZxQB8OAST/vYMjUPzianu22OkVEpHgUbqRis9ngulfgqn+AzQ7rZsHbV8Ce391Wpa+XB/++sRUTB7bBz8uDxTuOcd2k31i557jb6hQRkaJTuJGKz+5h9uAMnwPVYiFlH0y/Hn56CvLc16PS/7Jovn3gChrUCCApNZuB7y7jvV93Ybhx9paIiFycwo1UHnUS4J7foe0QwIAlk+C97m7dUbxRRBDfPnAlfeNq4XAa/PuHzdwzcxWpWdqTSkSkrCjcSOXiEwQ3vAG3fQz+4ZC0Ad7tCksmu23BvwAfTybd1obn+rXAy8PG3I1J9H3jdzYedN/YHxERuTCFG6mcml4H9y2Fxr3BkWMu9vfhDXByn1uqs9ls3N4xltn3dCI61I/EY5nc+NYSZq3Y65b6RETkwhRupPIKrAmDPoXrJ4KXP+z5zRxsvO4zt61qHBcTynejrqRbkxrk5Dl5/Iv1jPl8LadyHG6pT0REzqVwI5WbzQbxw82xONHxkJ0CX94Fs++ATPfMbqoW4M0HQ9vzj15NsNtg9qr93PjWYnYdSXdLfSIiUpDCjVQN1RvAHXOh6/+Z+1Jt/NLsxdm50C3V2e027u/WkJl3JhAe6M2Ww2ncMHkxP6w/5Jb6RETkLwo3UnV4eELXx2HEPAhrAGkH4aP+8OMTkOuevaI6NQjn+wc70yE2jPTsPO7772rG/0+bb4qIuJPCjVQ9tdvBPb9B/Ajz8R9vmzOqDq11S3URwb58fFcCd3epD8C0xXsY+O5SDmrzTRERt1C4karJOwCufxUGz4bACDiyBd672txh3Gn94F9PDztj+zTjvSHxBPl68ufek1w36Td+2XbE8rpERKq6chFu3nzzTWJjY/H19SUhIYHly5df8Nz33nuPzp07U61aNapVq0aPHj0KPV+kUI2ugXuXQtPrwZkLC56FadfCiT1uqe6a5hF8P6ozLaODOZGZy7Bpy3lt3jZtvikiYqEyDzezZs1i9OjRjBs3jtWrVxMXF0evXr1ITk4+7/mLFi1i0KBBLFy4kKVLlxITE0PPnj05cOBAKbdcKo2A6jBwJvR7C7yDYN8yc7DxnzPdMmW8TnV/Zt/Tib+d3nzz9QXbGTp1OXuPZVpel4hIVWQzyngjnISEBNq3b8/kyZMBcDqdxMTEMGrUKJ544omLvt7hcFCtWjUmT57MkCFDLnp+amoqISEhpKSkEBwcXOL2SyVzYg98ebcZcMDs0ek7yQxAbvDl6v08+dUGTuU68Pa0M7Jzfe7r1gB/b0+31CciUlEV5+93mfbc5OTksGrVKnr06OE6Zrfb6dGjB0uXLi1SGZmZmeTm5hIWFnbe57Ozs0lNTS1wE7mgarEw/Ae4ehzYvWDLd/DW5bDtJ7dUd1Pb2vxv1JVc2TCcnDwnkxfuoPvLv/DNmgPagFNE5BKVabg5evQoDoeDiIiIAscjIiI4fPhwkcp4/PHHqVWrVoGAdKYJEyYQEhLiusXExJS43VLJ2T2g82i4awGEN4GMZPj4FvhkEBxYbXl1DWsG8tGIDky5vR0xYX4cTs3ioU/XcOuUpWw4oP2pRESKq8zH3JTECy+8wKeffspXX32Fr6/vec8ZO3YsKSkprtu+fe7ZW0gqoag4uPsXSLgXsMHWH+C9bjDzZtj7h6VV2Ww2erWIZN4jXRjTszF+Xh6s2HOCvpN/Z+yX6zmWnm1pfSIilVmZhpvw8HA8PDxISkoqcDwpKYnIyMhCX/vyyy/zwgsv8NNPP9G6desLnufj40NwcHCBm0iReflBnxfg/uXQ+jZzdeMd82FqT5jRF3b/ZumgY18vDx7o3oifx3ThhrhaGAZ8snwv3V5exLTFu8l1aPE/EZGLKdNw4+3tTbt27ViwYIHrmNPpZMGCBXTs2PGCr/vPf/7Dc889x5w5c4iPjy+NpkpVV6Mx3DQFRq2EtkPA7gm7f4UZ18O0PmbgsTDkRIX4MWnQZXx2d0eaRwWTmpXH+P9t4trXf+P37Uctq0dEpDIq89lSs2bNYujQoUyZMoUOHTowceJEPvvsM7Zs2UJERARDhgwhOjqaCRMmAPDiiy/y9NNP8/HHH3PFFVe4ygkMDCQwMPCi9Wm2lFji5D5YPBFWfwiOHPNYdDu46h/QuLe5YadFHE6DWSv28dLcLZzIzAWgV4sI/nldc2LC/C2rR0SkPCvO3+8yDzcAkydP5qWXXuLw4cO0adOGSZMmkZCQAEDXrl2JjY1l+vTpAMTGxpKYmHhOGePGjeOZZ565aF0KN2Kp1EOwZBKsnAZ5p7dTiGxlhpymfcFuXedoSmYur83fxkfLEnE4Dbw97dx9VX3u7aqp4yJS+VW4cFOaFG7ELdKPwNLJsOJ9yEk3j9VoCp3HQMubzBlYFtmWlMb4/21k8Y5jAESF+DL22mb0bR2FzcIeIxGR8kThphAKN+JWmcdh2dvwxxTIPj2NO6wBdH4UWt8KHl6WVGMYBnM3JvGv7zex/4TZY9QhNoyn+zanZXSIJXWIiJQnCjeFULiRUnHqJCx/D5a9CadOmMdC68CVo6HN38DTx5JqsnIdvPfrLt5atJNTuQ5sNhjUoQ5jejYhLMDbkjpERMoDhZtCKNxIqcpOh5UfwJI3IOP0DuDB0XDFQ+asKy8/S6o5ePIUE37cwv/WHjSr8PXkkWsa8/fL6+LlUaGXsxKRiiQ3y5xsEd3O3JjYQgo3hVC4kTKRkwmrZ8Di1yHtkHksMAI6jYL4O8A7wJJq/th1jGf+t4nNh8xtRhpHBDKubwuuaBhuSfkiIhe0YwH8MAaO74LQuub6YF7nX2D3UijcFELhRspUXra52/jvEyFlr3nMvzpcfp8ZcvzPv0dacTicBp+u2MvLc7e6po5f0zyCf/RqQuOIoBKXLyJSQOpBmDMWNn1tPg6Kgt4ToHl/S5fFULgphMKNlAuOXFj7Kfz2CpzYbR7z9IVWA6DD3RB14VW3i+rsqeM2G/RvE83DPRpRt7o1PUUiUoU58mD5FFj4vDlL1GaHhHug61jwtf7vq8JNIRRupFxx5MHGL81p5IfW/nU85nJIGAnNbijxDKsdyWm88tM2ftxgbkbrabcxsH0Mo7o3IjLEui5jEalC9v4B34+GpA3m49od4LpXLPmP2YUo3BRC4UbKJcOAfcvN/wVt+gaceebxoCjzclW7YRBYs0RVrNt/kpd/2sav28yBzT6edoZ0rMu9XRtqZpWIFE3mcZg/zlydHcCvGvQYD5fdbumipeejcFMIhRsp99IOmyser5wKGcnmMQ9vaHEjdBgJtUu2n9ofu47x8k9bWbHHnKIe6OPJHVfW487O9Qj2tWYdHhGpZJxOWPNfmPc0nDpuHrvs79DjWQioXipNULgphMKNVBh5OWYvzvIpsH/FX8drtYWEu82wc4nr5RiGwS/bjvDS3K1sPGjOrAr19+LeLg0Y0jEWP2/rVlQWkQru8Ab4/lHYt8x8XLM5XPcq1L3wBtfuoHBTCIUbqZAOrDYXBdww+6+NOgNqmJer4u+A4FqXVKzTaTBn42Fe+WkrO49kAFAzyIdR3RsysH0dvD21Ro5IlZWdBoteMFddNxzgFQDdxpqDhi1abb04FG4KoXAjFVrGUVg13bxklXrAPGbzgGZ9zd6cOh0vaeplnsPJ12sO8tq8bRw4aW7nULuaH4/0aEz/y6LxsGvPKpEqwzDMXuM5YyHNXBiUZjdA7xcgJLrMmqVwUwiFG6kUHHmw5TtY/i4kLv7reEQr6HAXtLoFvP2LXWx2noNZK/bxxs87OJKWDUDDmoE8ek1jereM1MacIpXd8V3wwz9gx3zzcbVYuPZly1cbvhQKN4VQuJFK5/AGM+Ss+wzyzF4X/KqZsxfa3wnV6ha7yFM5DmYs3cPbi3aScspcCLBVdAhjejXhqkbhCjkilU1ulrmC+m+vgCPbnMRw5SPmzaJtYkpK4aYQCjdSaWUeN1c/XvEenDy9+rHNDo37QIv+UK2e+b+wgPAiX7pKzcrl/V938cHvu8nIcQDQoV4Y/+jVhPaxJV9NWUTKgZ0/w/dj4PhO83H9rnDtKxDesEybdTaFm0Io3Eil53TA9p/gjymwa+G5z3v5m/u+VKt71tdY877PuVs0HEvP5u1FO/lwWSI5eU4AujapwZieTWgZHeLmNyQibpF6COb+n7mQKEBgJPR+HlrcZOm2CVZRuCmEwo1UKUe2wappcHANnEw094DhIr/yfmEXCD6xHLKF88Yve/lsxT7ynGY517aKZGjHWNrVrYandiCXi3HkwZEt5orcuZlQvQFUbwTB0W5fBE5Oc+SZPbw//xty0swe3g53Q7f/c8u2CVZRuCmEwo1UaXnZkLIfTuwxbycT4UTiX1/zF+e6IBsE1yIrsDbr0kNZcjyAfc6apOOHp7cPzWqH07puOG3q1iQ40N+8bu/hY04b9fA+fTvjfkX6Y+Z0mmMR8rLN6fh5WeZaRBc75sgx9xIr9H5u0c5x5hY85nRAaB2IaGHeajY3vwaUk13gXUFmDRz80wzZSRvM79PZPP2gekMz7IQ3MgNPeEPzmK96By/KMMz9nTKOmLMqM46ccTta8H7aIThlLuJJdDxc/ypExZVt+4tA4aYQCjcihchKPTfwnPk1N9Pa+mwe54YeT++Cx+xeZ3SR24pwP/+QzTx+sftOx+lgkn06lJwOKa5jp786c6197+4UGPFX0MkPPTWagpcb9xJz5JpB5uCa02FmzYWDjHcQ1GpjXgI9tgOO7y78+xtQ83TgOR128sNPtbplst5KqcnL/iuYZB49N6Scff983+sL8Q2FHs9A26EV5j8ZCjeFULgRuUSGYf4D6go8e8yvJ/dh5GSSmXWKjMxMsrKyMPJy8LLl4UUe3uThbXPgTR4eOMr6XVjHw8dcIdrD+4yvvqfD2dnPXajnyvM8xy9wboH7p18HZjhI2gRJGyF5o/m5nI/NbgaD/NCT/zW0bvH/uBUnyPgEm70CUXFQ6zKIagNh9QvW6cgzf5aObjffz7HtcPT01/SkC7fD7mleMj2zl6d6IzP8BNQol+NGLujUSXN/ub1LzVvSJshOKX45XgFmz11AjdO3M++f8Tis/iUtF1GWFG4KoXAj4n4HT57i5y3JLNySzOKdR8nKNQch23AS4GlwVf0QujUMoXP9ECID7Be/JJM/Tsj1z5Vx4fsFzsu/b1zgPuYffVcgOTuYXCiseJffP5zZ6WbwSNpg/oFM3mTez78McTavAKjZ7NxLW/6nZ8OdE2T+NINUUYJMrcvMWXol6RnISj0deHYUDD/Hdhbek+gTYr6vqNZmeyJbm71XnuVkk9jUg5C4BPYuOx1mNnLe8XB2z/OHFP/q5wkt4eAdUOpvpbQo3BRC4UakdGXlOli68xgLtiSxcMsR1wrI+ZpGBtG9aU2ublaTNjHVtBqyOxiGuSFr8saCvTxHtv61ncfZgqLMP5pHtpqX687mjiBTHE6nuXrumaEn/+vJvZw3KHh4m4EnsvVfbY9o4f5AYBhwdNsZYWbJX8s1nCmsgbnKeN2OEN0OgiLNy0flNUiXMoWbQijciJQdwzDYmpTGz1uS+XlzMqv3nsB5xr9A1fy96NqkJt2a1qRLoxqE+Ffi8RTlgSPPXNukQC/PRvMS0Znyg0ytNuZlpdIOMsWVm2W+r8Mb4PA6c2bWoXXnv8xjs5uXsqJanxF6WpsLYV4qR65Z55k9M2cP1rfZzfryw0zM5RAUcel1VgEKN4VQuBEpP05k5PDLtiMs2JLML1uTSc3Kcz3nYbfRrm41ejSryY2X1aZG0KXtgC6XIDsNkjeb411qNi/fQaaoDMMMbflB59BaM/hcaExPaJ2CPTyRrc2elPP1omSnwf4VkHh6vMz+lX+tFp7P0w9qx/8VZmq3P++aUnJhCjeFULgRKZ/yHE5WJZ7g561mr8725HTXc94edq5vHcWwK2JpXTu07BoplU/aYTPsHD4j9Jzdc5UvoMZfQad6A7OXK3EJHF5v7pp9Jr9qZpDJv0XFlZ/xPhWUwk0hFG5EKoZ9xzP5eUsyX685wJ97T7qOt60TyvAr6tG7ZSReWjRQ3OHUCTOwHFr312Wto9vAcF74NaF1CoaZ8MYVv7ernFG4KYTCjUjFs3bfSaYv2cN36w6S6zD/yYoI9uH2y+syqEMdqgfqkpW4WU6m2VOT38NzfBfUaPJXmAmJLusWVnoKN4VQuBGpuJLTsvj4j73MXLaXo+nmDB5vTzs3xNViWKdY7XMlUokp3BRC4Uak4svOc/DD+kNMW7yHdfv/mgHTPrYaw6+oR8/mEdrnSqSSUbgphMKNSOVhGAZ/7jvJ9MV7+GH9IddmnlEhvtzesS63ta9DWIAGcYpUBgo3hVC4EamcklKz+O+yRP77x16OZZgL0/l42unfJpphV8TSLEq/7yIVmcJNIRRuRCq3rFwH3607xLTFu9l4MNV1PKFeGMOvqEePZjV1yUqkAlK4KYTCjUjVYBgGqxJPMG3JHuZsOIzj9CWr6FA/hnSsy8D2MYT665KVSEWhcFMIhRuRqudQyilmLkvk4z/2ciIzFwBfLzs3Xlabv19eh+ZRwdi0f49IuaZwUwiFG5GqKyvXwbdrDjJ18W62HE5zHa8V4kuXJjXp2qQGVzQMJ9DHswxbKSLno3BTCIUbETEMg+W7jzN9yR5+3pJMdt5fK896ediIrxtG1yY16Na0Jo1qBqpXR6QcULgphMKNiJwpK9fB0l3H+GXrERZuTSbxWGaB59WrI1I+KNwUQuFGRAqz+2gGi7Yms2jrEZbtOnZOr077WLNXp2sT9eqIlCaFm0Io3IhIUZ3KcbBs9zEWbUlm0bYj6tURKUMKN4VQuBGRS5Xfq7PwdK9Ojnp1REqNwk0hFG5ExAqnchws23XMvIRVSK9Os6ggArw9CfDxIMDH07ydfhzo44m/tyfenlpUUORiFG4KoXAjIu6w+2gGC09fvjq7V+divD3sBPh44O/tSaDPGUHI+3QYcj0uGJCCfD1pGR2i/bOkSlC4KYTCjYi4W36vzi/bjpCUmkV6dh4Z2Xlk5jhIP+NrcQLQhdhs0KJWMFc2rMGVDcOJj62Gr5eHBe9CpHxRuCmEwo2IlBe5DieZ2Q7Sc8zwY94cZJz5OMfx1/HsPNJz8sg8/fhoRja7jmQUKNPH006HemFc2TCcKxuF0ywyGLtdY3+k4lO4KYTCjYhUJslpWSzecZTftx/j9x1HSErNLvB89QBvOjUMp/PpsFMr1K+MWipSMgo3hVC4EZHKyjAMdiSn89v2o/y+4yjLdh0jM8dR4Jz6NQJOB50aXF4/jCBfrzJqrUjxKNwUQuFGRKqKnDwnf+49we87zLCzdt9JnGf8i+9ht9EmJpQrG4bTuVE4cTGheHlo5paUTwo3hVC4EZGqKuVULkt3mpevft9+lD1nTV8P9PHk8vrV6dwonCsahtOgRoDW6pFyQ+GmEAo3IiKmfcczzV6d7UdZvPMoJzNzCzwfFuCNn5cHdjvYbTY8bDbsdvOrzWb2/HjYbdhtNuynH9ttZxyz2/A447jrudPHqwf6cHn96nSoF0aIny6PSeEUbgqhcCMici6n02DjwVR+O92rs3LPCXIcJZ+qXhR2G7SMDqFjg+p0rF+d9rFhBGgrCzmLwk0hFG5ERC7uVI6DnUfScTgNHIaB02ngNMDhNHAahuured88bhjmua7nnLhe6zDM1zudfz2/62gGy3YeY9fRgtPZPe024mJC6dSgOh0bVKdtHa3dIwo3hVK4EREpXw6lnGLpzmMs3XmMJTuPceDkqQLPe3vaaVenGh0bVKdTg+q0rh2qLSuqIIWbQijciIiUb/uOZ7Jk51FX2ElOK7h2j5+XB+3rhdGxvhl2WkaH4KGFCis9hZtCKNyIiFQcxunLV0t2HmPZzmMs3XWM4xk5Bc4J8vUkoV4YHRuE07F+dZpGBmlV5kpI4aYQCjciIhWX02mwNSnN1avzx+5jpGXlFTinmr8Xl9evTnxsGK1rh9A8KlgDlCsBhZtCKNyIiFQeDqfBxoMprrCzYs/xc1ZlttugQY1AWtUOoXV0CK1qh9I8Khg/bw1SrkgUbgqhcCMiUnnlOpys23+SZbuOs2bfSdbvT+FwatY553nYbTSqGUjr2mbYaR0dQpPIIM3KKscUbgqhcCMiUrUkp2ax/kCKedufwtr9KRxNzz7nPE+7jSaRQWbgiQ6lde0QGkcEaWZWOVGhws2bb77JSy+9xOHDh4mLi+ONN96gQ4cO5z1348aNPP3006xatYrExERee+01Hn744WLVp3AjIlK1GYZBUmo26/afZP2BFNbtN4PP2QOVAbw97DSLCjp9SSuUltEhNIoI1B5cZaA4f7/LdITVrFmzGD16NO+88w4JCQlMnDiRXr16sXXrVmrWrHnO+ZmZmdSvX59bbrmFRx55pAxaLCIiFZ3NZiMyxJfIkEh6togEzMBz4OQpNpwRdtbtTyHlVC5rT/f2wF4AfDztNK8VTLs61YiPrUa7umHUCPIpw3ckZyvTnpuEhATat2/P5MmTAXA6ncTExDBq1CieeOKJQl8bGxvLww8/rJ4bERFxC8Mw2Hf8FOsOmGN38i9rpWXnnXNubHV/4mPDiK9bjfjYMG066gYVoucmJyeHVatWMXbsWNcxu91Ojx49WLp0aVk1S0REBDB7eOpU96dOdX+ub10LMKeiJx7PZO2+k6xMPM7KPSfYmpTGnmOZ7DmWyexV+wFzOnq7umG0jzV7d1pGh+DjqcHKpaXMws3Ro0dxOBxEREQUOB4REcGWLVssqyc7O5vs7L8GjqWmplpWtoiIVC12u4164QHUCw+g/2XRAKScymX13hOs3GOGnTX7TnIiM5f5m5OYvzkJMLeQiKsd4urdaVe3GqH+3mX5Viq1Sr+q0YQJExg/fnxZN0NERCqpED8vujWpSbcm5ljRnDwnGw+msHLPCVfvzrGMHFbsOcGKPSdcr2scEfhX707dMGLC/HQpyyJlFm7Cw8Px8PAgKSmpwPGkpCQiIyMtq2fs2LGMHj3a9Tg1NZWYmBjLyhcRETmTt6edy+pU47I61biL+hiGwe6jGaxM/Kt3Z9fRDLYlpbMtKZ1PlpsDlWsG+RB/Oui0qh1CiJ8XAT6eBHp74u/joRlaxVBm4cbb25t27dqxYMEC+vfvD5gDihcsWMADDzxgWT0+Pj74+GgUu4iIlA2bzUb9GoHUrxHIrfHmf66PpmezKvEEqxJPsGLPcTYcSCE5LZsf1h/mh/WHz1uOt6edQB9PAnw8CPD2JNDHE38fTwJPPw7w8Tz9/F/n/HXM4/TxqhGWyvSy1OjRoxk6dCjx8fF06NCBiRMnkpGRwfDhwwEYMmQI0dHRTJgwATAHIW/atMl1/8CBA6xZs4bAwEAaNmxYZu9DRESkOMIDfejVIpJep6eiZ+U6Tg9SNnt3tienk5njID07j5w8J2Be7jqel8PxDGva4Gm34eflga+3h/nVy376qwd+p4+d+Xz+OYU97+ftga+nB4G+noQFlN2YojINNwMHDuTIkSM8/fTTHD58mDZt2jBnzhzXIOO9e/dit/+VLA8ePMhll13mevzyyy/z8ssv06VLFxYtWlTazRcREbGEr5cHCfWrk1C/+jnP5TqcZGTnkZ6dR0a2GXgyc/JOH3Oc8VyeKxCdeazgaxzkOMywlOc0SMvOO+/U9pKKqx3CNw9caXm5RVXmKxSXNq1zIyIiVVl2noOsHCench3mLcf8mp3/+PSxLNd989ys3DOPOVzH/jrf6XrcunYIn47saGm7K8Q6NyIiIlL6fDw98PH0IAQvt9VR1v0mlXc0kYiIiJSJsp7SrnAjIiIilYrCjYiIiFQqCjciIiJSqSjciIiISKWicCMiIiKVisKNiIiIVCoKNyIiIlKpKNyIiIhIpaJwIyIiIpWKwo2IiIhUKgo3IiIiUqko3IiIiEilonAjIiIilYpnWTegtOVvw56amlrGLREREZGiyv+7nf93vDBVLtykpaUBEBMTU8YtERERkeJKS0sjJCSk0HNsRlEiUCXidDo5ePAgQUFB2Gw2S8tOTU0lJiaGffv2ERwcbGnZ5Y3ea+VVld6v3mvlVZXeb1V5r4ZhkJaWRq1atbDbCx9VU+V6bux2O7Vr13ZrHcHBwZX6B+xMeq+VV1V6v3qvlVdVer9V4b1erMcmnwYUi4iISKWicCMiIiKVisKNhXx8fBg3bhw+Pj5l3RS303utvKrS+9V7rbyq0vutSu+1qKrcgGIRERGp3NRzIyIiIpWKwo2IiIhUKgo3IiIiUqko3IiIiEilonBTTG+++SaxsbH4+vqSkJDA8uXLCz3/888/p2nTpvj6+tKqVSt++OGHUmrppZswYQLt27cnKCiImjVr0r9/f7Zu3Vroa6ZPn47NZitw8/X1LaUWl8wzzzxzTtubNm1a6Gsq4ucKEBsbe857tdls3H///ec9vyJ9rr/++it9+/alVq1a2Gw2vv766wLPG4bB008/TVRUFH5+fvTo0YPt27dftNzi/s6XlsLeb25uLo8//jitWrUiICCAWrVqMWTIEA4ePFhomZfyu1AaLvbZDhs27Jx29+7d+6LllsfP9mLv9Xy/vzabjZdeeumCZZbXz9WdFG6KYdasWYwePZpx48axevVq4uLi6NWrF8nJyec9f8mSJQwaNIgRI0bw559/0r9/f/r378+GDRtKueXF88svv3D//fezbNky5s2bR25uLj179iQjI6PQ1wUHB3Po0CHXLTExsZRaXHItWrQo0Pbff//9gudW1M8VYMWKFQXe57x58wC45ZZbLviaivK5ZmRkEBcXx5tvvnne5//zn/8wadIk3nnnHf744w8CAgLo1asXWVlZFyyzuL/zpamw95uZmcnq1at56qmnWL16NV9++SVbt27lhhtuuGi5xfldKC0X+2wBevfuXaDdn3zySaFlltfP9mLv9cz3eOjQIaZOnYrNZuPmm28utNzy+Lm6lSFF1qFDB+P+++93PXY4HEatWrWMCRMmnPf8W2+91bjuuusKHEtISDDuvvtut7bTasnJyQZg/PLLLxc8Z9q0aUZISEjpNcpC48aNM+Li4op8fmX5XA3DMB566CGjQYMGhtPpPO/zFfVzBYyvvvrK9djpdBqRkZHGSy+95Dp28uRJw8fHx/jkk08uWE5xf+fLytnv93yWL19uAEZiYuIFzynu70JZON97HTp0qNGvX79ilVMRPtuifK79+vUzunfvXug5FeFztZp6boooJyeHVatW0aNHD9cxu91Ojx49WLp06Xlfs3Tp0gLnA/Tq1euC55dXKSkpAISFhRV6Xnp6OnXr1iUmJoZ+/fqxcePG0mieJbZv306tWrWoX78+gwcPZu/evRc8t7J8rjk5OcycOZM77rij0E1kK/Lnmm/37t0cPny4wOcWEhJCQkLCBT+3S/mdL89SUlKw2WyEhoYWel5xfhfKk0WLFlGzZk2aNGnCvffey7Fjxy54bmX5bJOSkvj+++8ZMWLERc+tqJ/rpVK4KaKjR4/icDiIiIgocDwiIoLDhw+f9zWHDx8u1vnlkdPp5OGHH+aKK66gZcuWFzyvSZMmTJ06lW+++YaZM2fidDrp1KkT+/fvL8XWXpqEhASmT5/OnDlzePvtt9m9ezedO3cmLS3tvOdXhs8V4Ouvv+bkyZMMGzbsgudU5M/1TPmfTXE+t0v5nS+vsrKyePzxxxk0aFChGysW93ehvOjduzcffvghCxYs4MUXX+SXX36hT58+OByO855fWT7bGTNmEBQUxE033VToeRX1cy2JKrcruBTP/fffz4YNGy56fbZjx4507NjR9bhTp040a9aMKVOm8Nxzz7m7mSXSp08f1/3WrVuTkJBA3bp1+eyzz4r0P6KK6oMPPqBPnz7UqlXrgudU5M9VTLm5udx6660YhsHbb79d6LkV9Xfhtttuc91v1aoVrVu3pkGDBixatIirr766DFvmXlOnTmXw4MEXHeRfUT/XklDPTRGFh4fj4eFBUlJSgeNJSUlERkae9zWRkZHFOr+8eeCBB/juu+9YuHAhtWvXLtZrvby8uOyyy9ixY4ebWuc+oaGhNG7c+IJtr+ifK0BiYiLz58/nzjvvLNbrKurnmv/ZFOdzu5Tf+fImP9gkJiYyb968QnttzudivwvlVf369QkPD79guyvDZ/vbb7+xdevWYv8OQ8X9XItD4aaIvL29adeuHQsWLHAdczqdLFiwoMD/bM/UsWPHAucDzJs374LnlxeGYfDAAw/w1Vdf8fPPP1OvXr1il+FwOFi/fj1RUVFuaKF7paens3Pnzgu2vaJ+rmeaNm0aNWvW5LrrrivW6yrq51qvXj0iIyMLfG6pqan88ccfF/zcLuV3vjzJDzbbt29n/vz5VK9evdhlXOx3obzav38/x44du2C7K/pnC2bPa7t27YiLiyv2ayvq51osZT2iuSL59NNPDR8fH2P69OnGpk2bjJEjRxqhoaHG4cOHDcMwjNtvv9144oknXOcvXrzY8PT0NF5++WVj8+bNxrhx4wwvLy9j/fr1ZfUWiuTee+81QkJCjEWLFhmHDh1y3TIzM13nnP1ex48fb8ydO9fYuXOnsWrVKuO2224zfH19jY0bN5bFWyiWRx991Fi0aJGxe/duY/HixUaPHj2M8PBwIzk52TCMyvO55nM4HEadOnWMxx9//JznKvLnmpaWZvz555/Gn3/+aQDGq6++avz555+u2UEvvPCCERoaanzzzTfGunXrjH79+hn16tUzTp065Sqje/fuxhtvvOF6fLHf+bJU2PvNyckxbrjhBqN27drGmjVrCvweZ2dnu8o4+/1e7HehrBT2XtPS0owxY8YYS5cuNXbv3m3Mnz/faNu2rdGoUSMjKyvLVUZF+Wwv9nNsGIaRkpJi+Pv7G2+//fZ5y6gon6s7KdwU0xtvvGHUqVPH8Pb2Njp06GAsW7bM9VyXLl2MoUOHFjj/s88+Mxo3bmx4e3sbLVq0ML7//vtSbnHxAee9TZs2zXXO2e/14Ycfdn1fIiIijGuvvdZYvXp16Tf+EgwcONCIiooyvL29jejoaGPgwIHGjh07XM9Xls8139y5cw3A2Lp16znPVeTPdeHChef9uc1/P06n03jqqaeMiIgIw8fHx7j66qvP+R7UrVvXGDduXIFjhf3Ol6XC3u/u3bsv+Hu8cOFCVxlnv9+L/S6UlcLea2ZmptGzZ0+jRo0ahpeXl1G3bl3jrrvuOiekVJTP9mI/x4ZhGFOmTDH8/PyMkydPnreMivK5upPNMAzDrV1DIiIiIqVIY25ERESkUlG4ERERkUpF4UZEREQqFYUbERERqVQUbkRERKRSUbgRERGRSkXhRkRERCoVhRsRqZJsNhtff/11WTdDRNxA4UZESt2wYcOw2Wzn3Hr37l3WTRORSsCzrBsgIlVT7969mTZtWoFjPj4+ZdQaEalM1HMjImXCx8eHyMjIArdq1aoB5iWjt99+mz59+uDn50f9+vWZPXt2gdevX7+e7t274+fnR/Xq1Rk5ciTp6ekFzpk6dSotWrTAx8eHqKgoHnjggQLPHz16lBtvvBF/f38aNWrEt99+63ruxIkTDB48mBo1auDn50ejRo3OCWMiUj4p3IhIufTUU09x8803s3btWgYPHsxtt93G5s2bAcjIyKBXr15Uq1aNFStW8PnnnzN//vwC4eXtt9/m/vvvZ+TIkaxfv55vv/2Whg0bFqhj/Pjx3Hrrraxbt45rr72WwYMHc/z4cVf9mzZt4scff2Tz5s28/fbbhIeHl943QEQuXVnv3CkiVc/QoUMNDw8PIyAgoMDt3//+t2EY5s7099xzT4HXJCQkGPfee69hGIbx7rvvGtWqVTPS09Ndz3///feG3W537QZdq1Yt48knn7xgGwDjn//8p+txenq6ARg//vijYRiG0bdvX2P48OHWvGERKVUacyMiZaJbt268/fbbBY6FhYW57nfs2LHAcx07dmTNmjUAbN68mbi4OAICAlzPX3HFFTidTrZu3YrNZuPgwYNcffXVhbahdevWrvsBAQEEBweTnJwMwL333svNN9/M6tWr6dmzJ/3796dTp06X9F5FpHQp3IhImQgICDjnMpFV/Pz8inSel5dXgcc2mw2n0wlAnz59SExM5IcffmDevHlcffXV3H///bz88suWt1dErKUxNyJSLi1btuycx82aNQOgWbNmrF27loyMDNfzixcvxm6306RJE4KCgoiNjWXBggUlakONGjUYOnQoM2fOZOLEibz77rslKk9ESod6bkSkTGRnZ3P48OECxzw9PV2Ddj///HPi4+O58sor+e9//8vy5cv54IMPABg8eDDjxo1j6NChPPPMMxw5coRRo0Zx++23ExERAcAzzzzDPffcQ82aNenTpw9paWksXryYUaNGFal9Tz/9NO3ataNFixZkZ2fz3XffucKViJRvCjciUibmzJlDVFRUgWNNmjRhy5YtgDmT6dNPP+W+++4jKiqKTz75hObNmwPg7+/P3Llzeeihh2jfvj3+/v7cfPPNvPrqq66yhg4dSlZWFq+99hpjxowhPDycAQMGFLl93t7ejB07lj179uDn50fnzp359NNPLXjnIuJuNsMwjLJuhIjImWw2G1999RX9+/cv66aISAWkMTciIiJSqSjciIiISKWiMTciUu7oarmIlIR6bkRERKRSUbgRERGRSkXhRkRERCoVhRsRERGpVBRuREREpFJRuBEREZFKReFGREREKhWFGxEREalUFG5ERESkUvl/si3q3HgHsLMAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpxUlEQVR4nO3dd3hTZf8G8DtJ26S7lO5SOhgtIJRdWSpaKKCVpQx52YIiqMjLqyLbQX+KIiKK42WpCIgCrwqCpYBs0LJXKaVQ6C7QTds0Ob8/QgKhg6ZNc5Lm/lxXriYnZ3wPac3t8zznORJBEAQQERERWRGp2AUQERERmRoDEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIqvDAERERERWhwGIiIiIrA4DEBEREVkdBiAi0iORSGr02Lt3b52PVVxcjAULFtRqX9u3b4dEIoGfnx/UanWdayEi62IjdgFEZF6+//57vdffffcdYmNjKyxv1apVnY9VXFyMhQsXAgCeeOIJg7Zdt24dgoKCcPXqVezevRuRkZF1roeIrAcDEBHp+de//qX3+siRI4iNja2wXExFRUX43//+h5iYGKxevRrr1q0z2wBUVFQER0dHscsgogewC4yIDKZWq7F06VK0adMGCoUC3t7eeOmll3D79m299f755x9ERUXBw8MD9vb2CA4OxoQJEwAAV69ehaenJwBg4cKFuq61BQsWPPT4W7ZswZ07d/D8889jxIgR2Lx5M0pKSiqsV1JSggULFqBly5ZQKBTw9fXFkCFDkJSUpHcun332Gdq2bQuFQgFPT0/069cP//zzj65OiUSCNWvWVNj/g/UuWLAAEokE58+fxwsvvIBGjRqhZ8+eAIDTp09j3LhxCAkJgUKhgI+PDyZMmICbN29W2G9qaiomTpwIPz8/yOVyBAcHY8qUKSgrK8OVK1cgkUjw6aefVtju0KFDkEgkWL9+/UP/DYmsHVuAiMhgL730EtasWYPx48fjtddeQ3JyMpYvX44TJ07g4MGDsLW1RVZWFvr27QtPT0+8/fbbcHNzw9WrV7F582YAgKenJ1asWIEpU6Zg8ODBGDJkCACgXbt2Dz3+unXr0Lt3b/j4+GDEiBF4++238dtvv+H555/XraNSqfDMM88gLi4OI0aMwOuvv46CggLExsbi7NmzaNasGQBg4sSJWLNmDfr3748XX3wR5eXl2L9/P44cOYLOnTvX6t/n+eefR4sWLbBo0SIIggAAiI2NxZUrVzB+/Hj4+Pjg3Llz+Oabb3Du3DkcOXIEEokEAJCWloauXbsiNzcXkydPRlhYGFJTU/Hzzz+juLgYISEh6NGjB9atW4c33nijwr+Ls7MzBg4cWKu6iayKQERUjalTpwr3/6di//79AgBh3bp1euvt2LFDb/mWLVsEAMLff/9d5b6zs7MFAML8+fNrXE9mZqZgY2MjfPvtt7pl3bt3FwYOHKi33qpVqwQAwpIlSyrsQ61WC4IgCLt37xYACK+99lqV6yQnJwsAhNWrV1dY58Ha58+fLwAQRo4cWWHd4uLiCsvWr18vABD27dunWzZmzBhBKpVW+u+mrenrr78WAAgXLlzQvVdWViZ4eHgIY8eOrbAdEVXELjAiMsimTZvg6uqKPn36ICcnR/fo1KkTnJycsGfPHgCAm5sbAOD333+HUqk02vE3bNgAqVSKoUOH6paNHDkSf/zxh14X3C+//AIPDw+8+uqrFfahbW355ZdfIJFIMH/+/CrXqY2XX365wjJ7e3vd85KSEuTk5ODRRx8FABw/fhyApjtu69atiI6OrrT1SVvTsGHDoFAosG7dOt17O3fuRE5OjlmN1SIyZwxARGSQxMRE5OXlwcvLC56ennqPwsJCZGVlAQAef/xxDB06FAsXLoSHhwcGDhyI1atXo7S0tE7H/+GHH9C1a1fcvHkTly9fxuXLl9GhQweUlZVh06ZNuvWSkpIQGhoKG5uqe/qTkpLg5+cHd3f3OtX0oODg4ArLbt26hddffx3e3t6wt7eHp6enbr28vDwAQHZ2NvLz8/HII49Uu383NzdER0fjxx9/1C1bt24d/P398eSTTxrxTIgaLo4BIiKDqNVqeHl56bU+3E87sFkikeDnn3/GkSNH8Ntvv2Hnzp2YMGECPvnkExw5cgROTk4GHzsxMRF///03AKBFixYV3l+3bh0mT55s8H6rU1VLkEqlqnKb+1t7tIYNG4ZDhw7hP//5D9q3bw8nJyeo1Wr069evVvMYjRkzBps2bcKhQ4fQtm1b/Prrr3jllVcglfL/a4lqggGIiAzSrFkz7Nq1Cz169Kj0i/5Bjz76KB599FF88MEH+PHHHzFq1Chs2LABL774osHdTOvWrYOtrS2+//57yGQyvfcOHDiAZcuWISUlBU2bNkWzZs1w9OhRKJVK2NraVnkuO3fuxK1bt6psBWrUqBEAIDc3V2/5tWvXalz37du3ERcXh4ULF2LevHm65YmJiXrreXp6wsXFBWfPnn3oPvv16wdPT0+sW7cOERERKC4uxujRo2tcE5G14/8qEJFBhg0bBpVKhffee6/Ce+Xl5bqgcPv2bd0VUFrt27cHAF03mIODA4CK4aIq69atQ69evTB8+HA899xzeo///Oc/AKC7BHzo0KHIycnB8uXLK+xHW9fQoUMhCIJuMsbK1nFxcYGHhwf27dun9/6XX35Zo5oB6MLag/8eS5cu1XstlUoxaNAg/Pbbb7rL8CurCQBsbGwwcuRI/PTTT1izZg3atm1boyvoiEiDLUBEZJDHH38cL730EmJiYnDy5En07dsXtra2SExMxKZNm/DZZ5/hueeew9q1a/Hll19i8ODBaNasGQoKCvDtt9/CxcUFAwYMAKDpKmrdujU2btyIli1bwt3dHY888kilY2COHj2Ky5cvY9q0aZXW5e/vj44dO2LdunV46623MGbMGHz33XeYMWMGjh07hl69eqGoqAi7du3CK6+8goEDB6J3794YPXo0li1bhsTERF131P79+9G7d2/dsV588UX83//9H1588UV07twZ+/btw6VLl2r8b+bi4oLHHnsMH330EZRKJfz9/fHnn38iOTm5wrqLFi3Cn3/+iccffxyTJ09Gq1atkJ6ejk2bNuHAgQO6weWAphts2bJl2LNnDz788MMa10NE4GXwRFS9By+D1/rmm2+ETp06Cfb29oKzs7PQtm1b4c033xTS0tIEQRCE48ePCyNHjhSaNm0qyOVywcvLS3jmmWeEf/75R28/hw4dEjp16iTY2dlVe0n8q6++KgAQkpKSqqx1wYIFAgDh1KlTgiBoLj2fPXu2EBwcLNja2go+Pj7Cc889p7eP8vJyYfHixUJYWJhgZ2cneHp6Cv379xfi4+N16xQXFwsTJ04UXF1dBWdnZ2HYsGFCVlZWlZfBZ2dnV6jtxo0bwuDBgwU3NzfB1dVVeP7554W0tLRKz/natWvCmDFjBE9PT0EulwshISHC1KlThdLS0gr7bdOmjSCVSoUbN25U+e9CRBVJBOGBNlkiIrIYHTp0gLu7O+Li4sQuhciicAwQEZGF+ueff3Dy5EmMGTNG7FKILA5bgIiILMzZs2cRHx+PTz75BDk5Obhy5QoUCoXYZRFZFLYAERFZmJ9//hnjx4+HUqnE+vXrGX6IaoEtQERERGR12AJEREREVocBiIiIiKyOqBMh7tu3D4sXL0Z8fDzS09OxZcsWDBo0qNpt9u7dixkzZuDcuXMICAjAnDlzMG7cOL11vvjiCyxevBgZGRkIDw/H559/jq5du9a4LrVajbS0NDg7O9fpjtBERERkOoIgoKCgAH5+fg+/L56IcxAJ27dvF2bPni1s3rxZACBs2bKl2vWvXLkiODg4CDNmzBDOnz8vfP7554JMJhN27NihW2fDhg2CnZ2dsGrVKuHcuXPCpEmTBDc3NyEzM7PGdV2/fl0AwAcffPDBBx98WODj+vXrD/2uN5tB0BKJ5KEtQG+99Ra2bdumd6PAESNGIDc3Fzt27AAAREREoEuXLrr7/6jVagQEBODVV1/F22+/XaNa8vLy4ObmhuvXr8PFxaX2J0VEREQmk5+fj4CAAOTm5sLV1bXadS3qXmCHDx9GZGSk3rKoqChMnz4dAFBWVob4+HjMmjVL975UKkVkZCQOHz5c4+Nou71cXFwYgIiIiCxMTYavWFQAysjIgLe3t94yb29v5Ofn486dO7h9+zZUKlWl61y8eLHK/ZaWluruTg1oEiQRERE1XLwKDEBMTAxcXV11j4CAALFLIiIionpkUQHIx8cHmZmZessyMzPh4uICe3t7eHh4QCaTVbqOj49PlfudNWsW8vLydI/r16/XS/1ERERkHiyqC6xbt27Yvn273rLY2Fh069YNAGBnZ4dOnTohLi5ON5harVYjLi4O06ZNq3K/crkccrnc4HpUKhWUSqXB25F1s7W1hUwmE7sMIiKrJmoAKiwsxOXLl3Wvk5OTcfLkSbi7u6Np06aYNWsWUlNT8d133wEAXn75ZSxfvhxvvvkmJkyYgN27d+Onn37Ctm3bdPuYMWMGxo4di86dO6Nr165YunQpioqKMH78eKPVLQgCMjIykJuba7R9knVxc3ODj48P55kiIhKJqAHon3/+Qe/evXWvZ8yYAQAYO3Ys1qxZg/T0dKSkpOjeDw4OxrZt2/DGG2/gs88+Q5MmTfDf//4XUVFRunWGDx+O7OxszJs3DxkZGWjfvj127NhRYWB0XWjDj5eXFxwcHPglRjUmCAKKi4uRlZUFAPD19RW5IiIi62Q28wCZk/z8fLi6uiIvL6/CZfAqlQqXLl2Cl5cXGjduLFKFZOlu3ryJrKwstGzZkt1hRERGUt3394MsahC0OdCO+XFwcBC5ErJk2t8fjiEjIhIHA1AtsduL6oK/P0RE4mIAIiIiIqvDAES1FhQUhKVLl4pdBhERkcEYgKyARCKp9rFgwYJa7ffvv//G5MmT61RbcnIyXnjhBfj5+UGhUKBJkyYYOHBgtbcuedC4ceOqvYkuERHRgyxqIkSqnfT0dN3zjRs3Yt68eUhISNAtc3Jy0j0XBAEqlQo2Ng//1fD09KxTXUqlEn369EFoaCg2b94MX19f3LhxA3/88QfnWCIiaoAEQUBBaTnyipVwsJOhsZPhkxAbCwOQFbj/NiCurq6QSCS6ZXv37kXv3r2xfft2zJkzB2fOnMGff/6JgIAAzJgxA0eOHEFRURFatWqFmJgYREZG6vYVFBSE6dOnY/r06QA0LU3ffvsttm3bhp07d8Lf3x+ffPIJnn322UrrOnfuHJKSkhAXF4fAwEAAQGBgIHr06KG33vXr1/Hvf/8bf/75J6RSKXr16oXPPvsMQUFBWLBgAdauXas7PgDs2bMHTzzxhFH+7YiIzEFxWTmuZBfhSk4RkrIKkZxThOKycjjKbeAot4GT3AaOdjZwlMs0z+8uc1JolmuWyeAot4HcRlrnCzFKlCrkFiuRd0fzyC0u0z3XvL778+7r/Lvr5JeUQ6XWzL4zPbIFpke2NMY/T60wABmBIAi4o1SZ/Lj2tjKjXU309ttv4+OPP0ZISAgaNWqE69evY8CAAfjggw8gl8vx3XffITo6GgkJCWjatGmV+1m4cCE++ugjLF68GJ9//jlGjRqFa9euwd3dvcK6np6ekEql+PnnnzF9+vRK58NRKpWIiopCt27dsH//ftjY2OD9999Hv379cPr0acycORMXLlxAfn4+Vq9eDQCVHouIyNyp1QLS8u5ogk52oSbsZBfiSnYR0vNKjHYcG6nkXmi6G4qcdK81Px3sZChRqu8GmrIKoaasXF2nGuQ2UpSrxJ2GkAHICO4oVWg9b6fJj3v+3Sg42BnnI3z33XfRp08f3Wt3d3eEh4frXr/33nvYsmULfv3112rvqzZu3DiMHDkSALBo0SIsW7YMx44dQ79+/Sqs6+/vj2XLluHNN9/EwoUL0blzZ/Tu3RujRo1CSEgIAE2XnVqtxn//+19d2Fu9ejXc3Nywd+9e9O3bF/b29igtLa32hrdEROaisLRcE3DuBp2knCJcyS5Cck4hSpRVBwt3RzuEeDiimacTQjwd4WJvi6LSchSWlt/9qUKR7nk5isrKUVSq0r1fXKb5H/VytaBrqakLmVQCV3tbuNnbwsXeVvPcwVZvmZuDHVwfeM/V3hYKW/EngGUAIgBA586d9V4XFhZiwYIF2LZtG9LT01FeXo47d+7o3ZqkMu3atdM9d3R0hIuLi+62D5WZOnUqxowZg7179+LIkSPYtGkTFi1ahF9//RV9+vTBqVOncPnyZTg7O+ttV1JSgqSkpFqcKRFR/REEAUqVgJJyFfKKlUjKLkSStkUnuwhXcgqRmV9a5fa2MgkCGzsixMMRIXeDTjNPJzTzdISbg12dalOphbuhSD8waQPSg8sUtjK90HIv1GheO8ltLHpOMwYgI7C3leH8u1EPX7Eejmssjo6Oeq9nzpyJ2NhYfPzxx2jevDns7e3x3HPPoaysrNr92Nra6r2WSCRQq6tvKnV2dkZ0dDSio6Px/vvvIyoqCu+//z769OmDwsJCdOrUCevWrauwXV0HYRNR/RIEASq1gHL13Z8qAeVqNcq1y1QClGp1xffuPlepBdTnzZrUgoCycjVKytUoUapQWq5GqVKFEqUKJUo1Sss1P7XvlShVKNGuc9+6uvfubqOuQc0eTnYI8bgXcEI8NYEnoJE9bGT1c4G2TCqBi8IWLgrbh69sBRiAjEAikRitK8pcHDx4EOPGjcPgwYMBaFqErl69Wu/HlUgkCAsLw6FDhwAAHTt2xMaNG+Hl5VXlfV3s7OygUpl+DBZZh7JyNYpKyx/4ohag0vuy1rxWqu594Zer1LovfqVKfd/yitvKpIBMKoWtTAKZVAIbqQQ2UilsZJqfumX3vb63rnY9yd3l968vhQTQfUHf+6Ku+gu90nWqCAGl5WqUlat1YUV7/vefrzWzk0kR5OGgCzq6Fh0PJ7g6MISIrWF9a5PRtGjRAps3b0Z0dDQkEgnmzp370JYcQ508eRLz58/H6NGj0bp1a9jZ2eGvv/7CqlWr8NZbbwEARo0ahcWLF2PgwIF499130aRJE1y7dg2bN2/Gm2++iSZNmiAoKAg7d+5EQkICGjduDFdX1wotUUQPo1SpcTWnCJcyC5GQWYDEzAIkZBbg2s1i3VUrZBwybVirIrRpw5xMKoG0nrtY5LZSKGxkUNhKIb/7U2Erg8JWBrmNFHLbB96zufee4sH3bGWQ3/faTlb3q62o/jAAUaWWLFmCCRMmoHv37vDw8MBbb72F/Px8ox5DG14WLlyIq1evQiKR6F6/8cYbADQ3Dd23bx/eeustDBkyBAUFBfD398dTTz2laxGaNGkS9u7di86dO6OwsJCXwVO1VGoB128V3xdyCpGYWYCk7EIoH3JViu3dFhgbqQSy+59X0SJjU8UXu2bde6/V93UT6bUWqdW6ViJdq5Oq4rrKB1qVVGpN15K2+0gmlUCh/TK30X5Ra7/Epfpf6NowcHddud6XfcUvfNu756UNMTVpmWIoIHMgEYT67GG1TPn5+XB1dUVeXl6FbpeSkhIkJycjODgYCoVCpArJ0vH3qP4JgoDU3Du4lFmAS5mFuJRRgEtZBUjMLERpFZfwOtrJ0MLbGS29ndDS21n38HKWQyq1vC9ttVqAWhDqbUwJkbmp7vv7QWwBIiKLJggCsgpKcSmzAAkZmoCTkFmAy1mFKCwtr3QbuY0Uzb2cEOrtjBbezgj10QQeP1d7iww6VZFKJdCMAiKiBzEAEZHZKiotR2Z+CTLzS5FVUKJ7npFfgqy7zzPzS6ps0bGVSRDi4YSWPs5o6XX3p7czmro7QNaAgg4RGY4BiIhMrrRchSxdqClFRl4JMgtKkHU30GTma54XVNGC8yCpBAjycERLL+e7IUfTuhPk4Qhbdv8QUSUYgIio3qjVAvZeysKf5zKRnleiCze3i2s+A62jnQzergp4Oyvg7SKHt4sCXi73nvu4KODlIofcRvyZZYnIcjAAEZHR3SlT4ZfjN7DqYDKuZBdVuo6djVQTYpwV8HbRPrQBR65b5iTnf6aIyPj4XxYiMprM/BKsPXQVPx5LQe7dVh5nuQ2GdmqC1n4u8Lkv6Lja2/JyaCISDQMQEdXZ2dQ8rDyQjN9Pp+nm0glwt8f47sEY1iWArThEZHb4XyUiM3c85Tbe//08cu8o8VgLT/QO80JEsLvod1NWqQXEXcjEygPJOJp8S7e8a5A7JvQMRp/W3rzSiojMFgMQkZkqUaqwJPYS/rv/iu7mileyi7Dm0FUobKXo0cwDT4R5oXeoJ5o0cjBZXUWl5fg5XjO+59rNYgCAjVSCp9v5YmLPYLRr4mayWoiIaosBiGrsiSeeQPv27bF06VIAQFBQEKZPn47p06dXuY1EIsGWLVswaNCgOh3bWPuxFPHXbuE/m07jSo5mAPGQDv7o09ob+xKzsediNjLySxB3MQtxF7MAAC28nNA7zAu9Q73QOahRvVz6nZZ7B2sPXcX6YynIL9Fcnu5qb4uRXZtibPdA+LraG/2YRET1hQHICkRHR0OpVGLHjh0V3tu/fz8ee+wxnDp1Cu3atTNov3///TccHR2NVSYAYMGCBdi6dStOnjyptzw9PR2NGjUy6rEepFKpsHjxYqxZswbXrl2Dvb09WrRogUmTJuHFF1+s0T727t2L3r174/bt23BzczO4hjtlKnzyZwJWHkyGIABeznIsGtwWka29AQD92/pCEARczCjAnoQs7L2YjfiU20jMKkRiViG+2XcFTnIb9Grhgd6hXng81BPeLnW71cbJ67n47/4r+ONshu6moMEejpjQIwhDOzWBgx3/M0JElof/5bICEydOxNChQ3Hjxg00adJE773Vq1ejc+fOBocfAPD09DRWiQ/l4+NT78dYuHAhvv76ayxfvhydO3dGfn4+/vnnH9y+fbvejw0Af1+9hTd/Po3ku60+Qzs2wbxnWsPVQf/O9hKJBK18XdDK1wWvPNEcecVKTctQQhb+SsjGzaIy/HE2A3+czQAAtPFzQe9QL/QO80T7gEY1GpdTrlLjz/Oa8T3x1+6df7eQxpjYMxhPhnk1qFtGEJH14RSpVuCZZ56Bp6cn1qxZo7e8sLAQmzZtwsSJE3Hz5k2MHDkS/v7+cHBwQNu2bbF+/fpq9xsUFKTrDgOAxMREPPbYY1AoFGjdujViY2MrbPPWW2+hZcuWcHBwQEhICObOnQulUnO59Jo1a7Bw4UKcOnUKEonmjtHamiUSCbZu3arbz5kzZ/Dkk0/C3t4ejRs3xuTJk1FYWKh7f9y4cRg0aBA+/vhj+Pr6onHjxpg6daruWJX59ddf8corr+D5559HcHAwwsPDMXHiRMycOVO3jlqtRkxMDIKDg2Fvb4/w8HD8/PPPAICrV6+id+/eAIBGjRpBIpFg3Lhx1f4bAppWn4W/ncOwrw8jOacI3i5yrBrXGZ8MC68Qfirj6mCL6HA/LBnWHn/PjsT/pvbA9MgWCA9wg0QCnEvLx/I9lzF0xWF0ej8Wr60/gS0nbuBmYWmFfRWUKPHf/VfwxMd78cq644i/dhu2MgmGdmyCba/1xPrJjyKytTfDDxFZPLYAGYMgAMpi0x/X1gGowTwqNjY2GDNmDNasWYPZs2fr5l7ZtGkTVCoVRo4cicLCQnTq1AlvvfUWXFxcsG3bNowePRrNmjVD165dH3oMtVqNIUOGwNvbG0ePHkVeXl6lY4OcnZ2xZs0a+Pn54cyZM5g0aRKcnZ3x5ptvYvjw4Th79ix27NiBXbt2AQBcXV0r7KOoqAhRUVHo1q0b/v77b2RlZeHFF1/EtGnT9ELenj174Ovriz179uDy5csYPnw42rdvj0mTJlV6Dj4+Pti9ezdeeeWVKlu3YmJi8MMPP+Crr75CixYtsG/fPvzrX/+Cp6cnevbsiV9++QVDhw5FQkICXFxcYG9f/biYU9dv482tF3WDiYd1boLZT7eGq/3Dg09lpFIJwgPcEB7ghumRLZFTWIp9l7KxJyEbfyVkIbdYiV9PpeHXU2mQSIDwJm7oHeqFLsGNEHchCxv/vq67gWgjB1v869FAjH40EF517EYjIjI3DEDGoCwGFvmZ/rjvpAF2NRuDM2HCBCxevBh//fUXnnjiCQCa7q+hQ4fC1dUVrq6uei0dr776Knbu3ImffvqpRgFo165duHjxInbu3Ak/P82/xaJFi9C/f3+99ebMmaN7HhQUhJkzZ2LDhg148803YW9vDycnJ9jY2FTb5fXjjz+ipKQE3333nW4M0vLlyxEdHY0PP/wQ3t6a8TKNGjXC8uXLIZPJEBYWhqeffhpxcXFVBqAlS5bgueeeg4+PD9q0aYPu3btj4MCBunMoLS3FokWLsGvXLnTr1g0AEBISggMHDuDrr7/G448/Dnd3dwCAl5dXtWOAVGoBucVKzNxxCqkFKvi6KhAzpC2eCPWq7p/ZYB5Ocgzp2ARDOjZBuUqNk9dzsSchC7svZuNCej5OXs/Fyeu5ets093LChB7BGNLRX/RL7YmI6gsDkJUICwtD9+7dsWrVKjzxxBO4fPky9u/fj3fffReAZgDwokWL8NNPPyE1NRVlZWUoLS2Fg0PNLq++cOECAgICdOEHgC4k3G/jxo1YtmwZkpKSUFhYiPLycri4uBh0LhcuXEB4eLjeAOwePXpArVYjISFBF4DatGkDmezeF7ivry/OnDlT5X5bt26Ns2fPIj4+HgcPHsS+ffsQHR2NcePG4b///S8uX76M4uJi9OnTR2+7srIydOjQocb1F5aUI+Vmka6lZUSXALzzdCu4KGrX6lNTNjIpOge5o3OQO/4TFYaMvBL8dSkLey5m459rt9HK1xkTewbjsRae7OIiogaPAcgYbB00rTFiHNcAEydOxKuvvoovvvgCq1evRrNmzfD4448DABYvXozPPvsMS5cuRdu2beHo6Ijp06ejrKzMaOUePnwYo0aNwsKFCxEVFQVXV1ds2LABn3zyidGOcT9b24qDh9VqdbXbSKVSdOnSBV26dMH06dPxww8/YPTo0Zg9e7ZujNG2bdvg7++vt51cLn9oPSq1gIz8EtwsLIWgUsNGKkHMkHZ4rJUIrYcAfFwVGN6lKYZ3aSrK8YmIxMQAZAwSSY27osQ0bNgwvP766/jxxx/x3XffYcqUKbrxQAcPHsTAgQPxr3/9C4BmTM+lS5fQunXrGu27VatWuH79OtLT0+Hr6wsAOHLkiN46hw4dQmBgIGbPnq1bdu3aNb117OzsoFKpHnqsNWvWoKioSNcKdPDgQUilUoSGhtao3prSnn9RURFat24NuVyOlJQUXXB8kJ2dHQBUOIfCEiVu3L6DMpUmgLna28LGRY5mwe5GrZeIiGqGV4FZEScnJwwfPhyzZs1Cenq63hVKLVq0QGxsLA4dOoQLFy7gpZdeQmZmZo33HRkZiZYtW2Ls2LE4deoU9u/frxd0tMdISUnBhg0bkJSUhGXLlmHLli166wQFBSE5ORknT55ETk4OSksrXqk0atQoKBQKjB07FmfPnsWePXvw6quvYvTo0brur9p47rnn8Omnn+Lo0aO4du0a9u7di6lTp6Jly5YICwuDs7MzZs6ciTfeeANr165FUlISjh8/js8//xxr164FAAQGBkIikeD3339HdnY28vILkHq7GFdyilCmUsNOJkWwhyN8XO0h5Y1AiYhEwwBkZSZOnIjbt28jKipKb7zOnDlz0LFjR0RFReGJJ56Aj4+PQbMuS6VSbNmyBXfu3EHXrl3x4osv4oMPPtBb59lnn8Ubb7yBadOmoX379jh06BDmzp2rt87QoUPRr18/9O7dG56enpVeiu/g4ICdO3fi1q1b6NKlC5577jk89dRTWL58uWH/GA+IiorCb7/9hujoaF2YCwsLw59//gkbG01j6XvvvYe5c+ciJiYGrVq1Qr9+/bBt2zYEBwcDAPz9/bFw4UK8/fbb8Pb2xrhJL+NmkaYbsbGjHVp4O8O5nsf6EBHRw0kEQRDELsLc5Ofnw9XVFXl5eRUG6JaUlCA5ORnBwcFQKHhpMFWkUquRnleCW3eDj51MiiaN7OF0X/Dh7xERkfFV9/39II4BIjKigrtjfZR3x/o0dpLDx0XBu6ITEZkZBiAiI6jQ6mMjRRM3Bzgp+CdGRGSO+F9nojpSqdVIyi5CiVJz5ZeHkxzebPUhIjJrDEBEdaAWBFy7WYwSpQo2UimaNnaAk5x/VkRE5o7/pa4ljh0nQRCQevsOCkvLIZVIEOThAAe7mv1J8feHiEhcDEAG0s4uXFxc/NAbXVI9EARAUAPqckCtAgSV5qfe6/J7y3Tv333PiCQAAgAEaCeTuCkF7JwB+d2HjbzKm9UWF2tufvrgbNVERGQaDEAGkslkcHNzQ1ZWFgDNnDQSTmhXd4IaKC0EVMp7oUVQ64ccQQ0I5WJXWg0VoMwFinI1L6W2mhnC7RwBW0dAZgNBEFBcXIysrCy4ubnp3auMiIhMhwGoFrR3KteGIKoDQQDKCoHSAk2LTY1JAKkUkBj4MILScrXuai8nhQ2ctWN+BBWgLAHKS4DyUgAPdHPJ5JpWIRs53Bp7VXvHeyIiql8MQLUgkUjg6+sLLy8vKJVKscuxTKWFwNmfgZM/AnduaZbZNwaadALkrpouJIULIHe5+9z13k87Z8BWUWX3Un1KzCrAzA0ncUepQmQrb7zdP7TyFsCyYiDtBHD9KJByFLidpFkuCLAtualp+QnqCTR7UvNo3FyU8yEislacCboShswkSQYqugkcXQEc+wYoydMsc20K9HgN6PAvwNZ8x1Wl5t7B4C8OIqugFN1CGmPthK6ws6lhq1J+GnBlL5C0G0jaAxTn6L/v0gRo1lsThkKeABxMdJNUVbnmcyjNAxwaawImEZGFMuT7mwGoEgxA9SAvFTi8HIhfAyg1A4Dh0RLoOQNo+xwgM+/BwHl3lHj+q0O4lFmIlt5O2PRyd7ja17JmtRrIPHs3DO0GUg4DqrL7VpAAfu3vhqHeQEAEYGNX9f4EQdOFeOc2UJKr+Xknt5rXdx8luUBpvv6+7N0B92CgUfDdn0H3njv5aLodiYjMFANQHTEAGdHNJODgUuDkekB9t7vQtz3Q699A2DMW8YVaVq7G2FXHcPjKTXi7yLH5lR7wdzNiS1VZMZBySNMylLQbyDqv/76to6a7zC3gXnDRCzV5db/CzdbhXjCtio3iXiBqFKQflNyaasY3ERGJiAGojhiAjCDjLHBgCXBui+bqLQAI7An0mqFp2bCQ8S6CIGDGT6ew5UQqHO1k+OnlbmjjV8/dRPnpmu6yK3cDUVF2zbaTyQH7RncfbpqfCrcHnj/4XiNNt5fMRtOKdPsqcCsZuJ189+dVzfPc6w8JWRLAtcndgBT0QCtSsOaYRET1jAGojhiA6uD6MWD/J8ClHfeWteyn6epqGiFeXbX08c4ELN9zGTKpBKvGdcHjLT1NW4BaDWSd0wSikrxqgoxb/Y6fUimBvOv3wpEuKN39qSyqfnt7d8C3HeDXAfDrqPnp2sRigjARWQYGoDpiADKQIGhaKg58Clzdr1kmkQJtBgM93wB82opbXy39eDQF72w5AwD4aGg7DOsSIHJFZkoQNK1U97cY3d+KVFTFdBEOHpog5H83EPl1AJw5NQAR1Z4h39+8DJ5qT60GLv6uafFJP6lZJrUF2o8EekwHGjcTs7o62XMxC3P/dxYA8NpTLRh+qiORAE5emkdlrXylhcDNRCDtpGZqgLQTmnFOxTnA5VjNQ8vZ714Y0j4cG5vsVIjIerAFqBJsAXoIlRI487OmxScnQbPMxh7oPB7oNg1w9Re3vjo6cyMPw785jOIyFYZ2bIKPn2/H2b6NTVmiuRJOG4hSj2t+l7Tjxe7n1vS+QNQR8A3nmCIyPyX5+q2ft69qxtV5P3L3d7e9psua6hW7wOqIAagKyjvAiR+Ag8uAvBTNMrkrEDEZiHgZcPQQtz4juH6rGIO/PIScwlL0bO6BVeO61HyuH6qb0kIg48zdUHRc8/Pm5crXdW92LxT5d9R0s8qdTVsvWRdBAAoyKnbxart9i28+fB/uIQ+E+Xb8vTUyBqA6YgCqhLIE+PZJzYBcAHD0BLpNBTpP1MzY3ADkFSsxZMVBJGUXIczHGZte7gZnhXnPT9TgleQB6ac0LUTa1qLca5Wv6+hZ+SX6jYI13XNsxaOHKS8DclMqCTnJwO1rQPmd6rd38ND/3bO1B9JPawL97auVbCDRzId2/1g470cAO4f6ODurwABURwxAldi/BIhbqLmap/c7Zj9rs6FKy1UYvfIYjiXfgq+rAlte6QEfV4XYZVFlim/d10p0UhOOCtKq38bW8b5gFKQfktyamv1EnGRkapXmd+jqAeBW0r2WnPzUyrthtSQyzdWLDwZs7e9Vda05xbc0YyW1Xb5pJ4H8G5Ufw6uV/jg47zacZ6uGGIDqiAHoAYVZwLKOQFkBMPhrIHyE2BUZlVot4PWNJ/HbqTQ4y22waUo3hPnwc7coJXmVXKKfDNy6qvmSMeRL7cEWJHZRNAy3r96bbDT5r3u34nmQrYN+qLn/d8E1wLhhuTDr7sUBx+8Fo8qumpTZaULQ/d1nnmGa+btIDwNQHTEAPeC31zW3sPDrALy42yJmbzZEzB8X8PVfV2AjlWDthK7o0dzyxzLRfSrr1rh/HqOadGvU96BrubP+/E5VzfWkfW7nWD9demq15r5w2pnGq7u1Ssnd9WzkmtndtV04HqHm8cVckgck7783oeitK/rvK1yBoF6aLqf7w6+Y3aWCoLlvoLa7VxuM7tyuuK6NPeDiV4+1SoAmnYHOE4AmXSymC5kBqI4YgO6TeQ74qqfm/6DH/wEEdhe7IqP6/vBVzP2fZlzTJ8+HY2inJiJXRCZljIGtYpDaVgxKVT23tddcoaS7D1w194gryQNQx68EG/u7k17eN79T4+b1/z9OqnJNYNC28tz4W3/2cqkN0KTrvZsO+3UApLL6rckYBEEz7k3XdXZCMy7uwfv41SfvtpqrfNsNM/sWUQagOmIAuksQgO8HaWYhbj0QGPad2BUZVez5TLz0/T9QC8C/+7TEq0+1ELskMjcleZowVPaQ+6TVhaDWXC6t17qSW3XLi/aeevXJ1qGaVig3/ffu5N4d23L3UVZQcX92zprLwP3a3+vCaRRU91aFW8masHNlD3Bln6b16n6Nm9+7qXBQzwZzwQbUak2LVk1vk1MbyiLgzC/Auc1AeYlmmZ2TJgR1ngj4PFJ/x64DBqA6YgC669JO4Mdhmv7nqcc0zcQNxKnruRj+zWGUKNUY0SUAMUPacq4fMn+CoLlpbWWtN1W17JQVa7p7KrsnXFUhp7YDbtVqzdQF93fhpJ+uvJtR4aY/lYFfB8DFv/pQdCdXM9t80m5NS8/t5Ir7DHlCE3qa9dYMcKe6Kb4FnFoP/LNKf1qKJl2BLhOB1oMAW/O5YMSiAtAXX3yBxYsXIyMjA+Hh4fj888/RtWvXStdVKpWIiYnB2rVrkZqaitDQUHz44Yfo16+fbp0FCxZg4cKFetuFhobi4sWLNa6JAQiayQ6/7KaZwbf7a0Df98SuyGhSbhZjyIqDyCksw+MtPfHfsZ1hK2tY45qIzIaqXDPJ5f1dOJlnAVVZxXUdPfW7znzbaW7Em7Rb80iNr9itFRChCTshT2pamCyhW8sSCQKQvE8ThC7+DqjLNcvtGwHtR2nGCpnB7P8WcyuMjRs3YsaMGfjqq68QERGBpUuXIioqCgkJCfDy8qqw/pw5c/DDDz/g22+/RVhYGHbu3InBgwfj0KFD6NChg269Nm3aYNeuXbrXNjZmMCDP0vyzShN+HDyAx2aKXY3R3C4qw7jVx5BTWIY2fi74YlRHhh+i+iSz0VzB5N1GM30GoBmYnnX+3iDftBNA5nlNl07iTs2jKo1b3G3heRII6mH2Y1IaDIkECHlc8yjIAE58D8Sv1dwk+fByzSPkCU33WGh/i5haQtQWoIiICHTp0gXLly8HAKjVagQEBODVV1/F22+/XWF9Pz8/zJ49G1OnTtUtGzp0KOzt7fHDDz8A0LQAbd26FSdPnqx1XVbfAnTnNrCsg+bn00s0zZwNQIlShX/99yj+uXYb/m722PxKd3i7mE/TLZFVU94BMs7qd59lJ2i65LTdWiG9ATfel89sqFVA4p+a/2FOjIVuAL2zL9BxDNBxrMlvjWQRLUBlZWWIj4/HrFmzdMukUikiIyNx+PDhSrcpLS2FQqH/hWVvb48DBw7oLUtMTISfnx8UCgW6deuGmJgYNG3KvuAa+2uxJvx4ttL8AjcAarWAGT+dxD/XbsNZYYPV47sw/BCZE1t7IKCL5qGlLNGMQWxgU280GFKZprUntL/mYoH4tZqWoYJ04K8PgX2LgZb9gS4TNF2UZvY5ilZNTk4OVCoVvL299ZZ7e3sjIyOj0m2ioqKwZMkSJCYmQq1WIzY2Fps3b0Z6erpunYiICKxZswY7duzAihUrkJycjF69eqGgoJIrE+4qLS1Ffn6+3sNq3UwCjn2jeR71vnnM51EH5So1fj2VhujlB7D9TAZsZRJ8M7ozWnqz2ZzI7NkqzO5Lk6rQKAiInA+8cR54bhUQeHf6lIRtwA9Dgc87AAeWAkU5YleqY1Hfbp999hkmTZqEsLAwSCQSNGvWDOPHj8eqVat06/Tv31/3vF27doiIiEBgYCB++uknTJxYeVdOTExMhYHTVit2nuYy2+Z9gOaRYldTa8Vl5dj493WsPJCMG7c1V6AobKX4+PlwdGvWWOTqiIgaKBs74JGhmkd2gqZ77OR6TQvRrvnAng8006p0ngA07SbqBIuiRWsPDw/IZDJkZmbqLc/MzISPj0+l23h6emLr1q0oKirCtWvXcPHiRTg5OSEkJKTK47i5uaFly5a4fLmKu0oDmDVrFvLy8nSP69ev1+6kLF3yPs3ofokM6Pu+2NXUSk5hKZb8mYDu/7cbC387jxu378Dd0Q5vRLbEobefwjPt/MQukYjIOniGAv0/BP59EXh2ueYKP1UZcGYTsLo/sPUVUcsTrQXIzs4OnTp1QlxcHAYNGgRAMwg6Li4O06ZNq3ZbhUIBf39/KJVK/PLLLxg2bFiV6xYWFiIpKQmjR4+uch25XA653MpvNKdWATvf0TzvPB7wChO3HgNdzSnCt/uv4Of4Gygt19z3KbCxA17sFYLnOjaBvR0vjSUiEoWdA9BxtOaRdkLTKnTmZ830BSIStQtsxowZGDt2LDp37oyuXbti6dKlKCoqwvjx4wEAY8aMgb+/P2JiYgAAR48eRWpqKtq3b4/U1FQsWLAAarUab775pm6fM2fORHR0NAIDA5GWlob58+dDJpNh5MiRopyjxTi1Hsg4A8hdgSfeEbuaGjt5PRdf/5WEHecyoL2eMbyJK156vBmi2vhAJuXkhkREZsOvA/Ds50Cf9zQD30UkagAaPnw4srOzMW/ePGRkZKB9+/bYsWOHbmB0SkoKpPcNgCspKcGcOXNw5coVODk5YcCAAfj+++/h5uamW+fGjRsYOXIkbt68CU9PT/Ts2RNHjhyBp6enqU/PcpQWAnHvap4//h/A0bzHyKjVAvZeysJXf13BseRbuuW9Qz3x0uPNEBHszlmdiYjMWX3fYLgGRJ8J2hxZ3TxAu9/XXK7YKBiYerT20+DXs7JyNf53MhXf7r+CS5mFAABbmQTPhvtj8mMhCPXhlV1ERNbMIuYBIjORdwM49LnmeZ93zTL8FJQosf5YClYduIqMfM1N+ZzkNnghoinG9wiCr6u4zahERGR5GICs3a6Fmjv9BvYAWkWLXY2ezPwSrDqYjB+PpKCgVHPfGS9nOSb0DMYLEU3hojD/qdaJiMg8MQBZsxvxwJmfAEiAqA9EnY/hfomZBfhm3xVsPZkKpUrTQ9vcywmTe4VgYAc/yG14RRcREdUNA5C1EgRg593bkISP1IzMF1n8tVv4ck8S4i5m6ZZ1DXLH5MdC8GSYF6S8oouIiIyEAchandsCXD8K2DoAT80TuxrsTcjC+DV/QxA0DVFRrX0w+fEQdGzaSOzSiIioAWIAskbKEs2U5ADQYzrg4itqOcVl5Zi95SwEAejT2huz+ochxNNJ1JqIiKhhYwCyRke+BHJTAGc/oHv1s26bwqexl5Caewf+bvZYOrw9HOX8tSQiovrF2+xam8IsYP8SzfPI+YCdo6jlnE3Nw8oDyQCA9wc9wvBDREQmwQBkbfZ8AJQVaAY9t636HmqmUK5SY9bmM1ALQHS4H3qHeYlaDxERWQ8GIGuSeQ44/p3medQiQCrux7/m0FWcSc2Di8IG855pLWotRERkXRiArIUgaO72LqiB1gOBwO6ilnP9VjE++fMSAOCdAa3g6Wx+M1ATEVHDxQBkLRL/BK7sBWR2QORCUUsRBAHz/ncWd5QqdA12x7DOAaLWQ0RE1ocByBqolMDO2ZrnES8D7sGilrPtTDr2JGTDTibFosFtOcEhERGZHAOQNfhnNXAzEXDwAB6bKWopecVKLPj1PADgld7N0NyL8/0QEZHpMQA1dHduA3sXaZ73fgdQuIpazv/tuICcwlI083TElCeaiVoLERFZLwaghu6vxZoQ5NkK6DhW1FKOXrmJ9ceuAwBihrTjTU2JiEg0DEAN2c0k4Ng3mudR7wMy8SYZLC1XYdaWMwCAkV2bomuwu2i1EBERMQA1ZLHzALUSaN4HaB4paikr9ibhSnYRPJzkeLtfmKi1EBERMQA1VMn7gIu/AxIZ0Pd9UUu5nFWAL/ckAQAWPNsarg62otZDRETEANQQqVWaSQ8BoPN4wEu8Fhe1WsA7m8+iTKXGk2FeeLqtuHeeJyIiAhiAGqZT64GMM4DcFXjiHVFL2fjPdRy7egsOdjK8O7ANJBLO+UNEROJjAGpoSguBuHc1zx//D+DYWLRSsgpKELP9AgBgRp+WaNLIQbRaiIiI7scA1NAcXAoUZgKNgoGuk0Ut5d3fziO/pBxt/V0xrnuQqLUQERHdjwGoIcm7ARz6XPO8z7uAjXg3GN19MRO/n06HTCpBzJC2sJHxV42IiMwHv5Uakr3/B5SXAIE9gFbRopVRVFqOuVvPAQAm9AjCI/7izj5NRET0IAaghqK8DDj/q+Z579mAiIONP429hNTcO/B3s8cbfVqKVgcREVFVGIAaimsHgNI8wNELaNpNtDLO3MjDqoPJAID3Bz8CBzvxZp8mIiKqCgNQQ3Fxm+Zn2ABAKs7HWq5S4+3Np6EWgGfD/dA71EuUOoiIiB6GAaghUKuBi9s1z8OeEa2M1Qev4lxaPlwUNpj7TGvR6iAiInoYBqCGIP0EUJAG2DkBwY+JUsL1W8VYEnsJADD76VbwdBbvCjQiIqKHYQBqCC78rvnZoo8ol74LgoA5W8/ijlKFiGB3DOscYPIaiIiIDMEA1BDoxv+I0/312+l0/HUpG3YyKRYNacvbXRARkdljALJ0OYlATgIgtdW0AJlYbnEZ3v1NM+fP1N7N0czTyeQ1EBERGYoByNJpW3+CewEK0084GLP9InIKy9DcywkvPxFi8uMTERHVBgOQpdN1fz1t8kMfuXITG/+5DgCIGdIWchuZyWsgIiKqDQYgS1aQAdz4W/M8dIBJD12iVOGdLWcAAC9ENEWXIHeTHp+IiKguGIAsWcIfAATAvzPg4mfSQ3+5NwlXsovg6SzHW/3CTHpsIiKiumIAsmQidX8lZhZgxd7LAIAF0W3gam9r0uMTERHVFQOQpSrJB5L/0jw34eXvarWAWZvPQKkS8FSYFwa09THZsYmIiIyFAchSXd4FqMqAxi0AT9PdcX3D39fxz7XbcLCT4d1Bj3DOHyIiskgMQJZKhO6vrPwSxPxxAQDw776h8HezN9mxiYiIjIkByBKVlwGJf2qem7D7a+Hv51FQUo52TVwxrnuQyY5LRERkbAxAlujqfqA0H3DyBvw7meSQt4vKsO10OgBg0eC2kEnZ9UVERJaLAcgSabu/QgcAUtN8hMdTbgMAQjwd8Yi/6WecJiIiMiYGIEujVgMJ2zXPTdj9pQ1AnZo2MtkxiYiI6gsDkKVJOwEUpAN2zpr7f5lI/LW7ASiQAYiIiCwfA5Clufi75meLPoCN3CSHVKrUOHU9DwDQkQGIiIgaAAYgSyPC5e8X0wtwR6mCs8IGzT2dTHZcIiKi+sIAZElyEoGcBEBqq2kBMpH4a7cAAB2bNoKUV38REVEDwABkSbStP8GPAQrTXYkVn5ILgON/iIio4WAAsiQi3fz0OAdAExFRA8MAZCkKMoAbf2uehw4w2WEz8kqQmnsHUgkQHuBmsuMSERHVJwYgS5GwHYAA+HcGXHxNdljt/D9hPi5wktuY7LhERET1iQHIUojU/cX5f4iIqCFiALIEJfnAlb80z004+zNwLwB1DHQz6XGJiIjqEwOQJbgcC6iVQOMWgGdLkx22RKnCuTTNBIidmrqb7LhERET1jQHIEojU/XUmNQ9KlQAPJzkC3O1NemwiIqL6xABk7spLgUt/ap6L1P3VKdANEgknQCQiooaDAcjcXd0PlBUATt6AfyeTHprz/xARUUPFAGTutN1foQMAqek+LkEQdJfAMwAREVFDwwBkztRq4OJ2zXMTd3+l3CpGTmEZ7GRStPEz3W03iIiITEH0APTFF18gKCgICoUCEREROHbsWJXrKpVKvPvuu2jWrBkUCgXCw8OxY8eOOu3TrKUdBwozADtnILiXSQ+tHf/Txt8FCluZSY9NRERU30QNQBs3bsSMGTMwf/58HD9+HOHh4YiKikJWVlal68+ZMwdff/01Pv/8c5w/fx4vv/wyBg8ejBMnTtR6n2bt4u+any36ADZykx5aNwC6Kbu/iIio4RE1AC1ZsgSTJk3C+PHj0bp1a3z11VdwcHDAqlWrKl3/+++/xzvvvIMBAwYgJCQEU6ZMwYABA/DJJ5/Uep9mTTv+p5Vpu78AzgBNREQNm2gBqKysDPHx8YiMjLxXjFSKyMhIHD58uNJtSktLoVAo9JbZ29vjwIEDtd6n2cq+BORcAqS2QPM+Jj10QYkSCZkFAICODEBERNQAiRaAcnJyoFKp4O3trbfc29sbGRkZlW4TFRWFJUuWIDExEWq1GrGxsdi8eTPS09NrvU9AE6zy8/P1HqJLuNv6E/I4oHAx6aFPXc+DIABNGtnD20Xx8A2IiIgsjOiDoA3x2WefoUWLFggLC4OdnR2mTZuG8ePHQ1rHy8NjYmLg6uqqewQEBBip4joQafZngN1fRETU8IkWgDw8PCCTyZCZmam3PDMzEz4+PpVu4+npia1bt6KoqAjXrl3DxYsX4eTkhJCQkFrvEwBmzZqFvLw83eP69et1PLs6KsgAbvyteR46wOSHj+f8P0RE1MCJFoDs7OzQqVMnxMXF6Zap1WrExcWhW7du1W6rUCjg7++P8vJy/PLLLxg4cGCd9imXy+Hi4qL3EFXC3bl/mnQBnKsObvVBrRZwQnsHeF4BRkREDZSNmAefMWMGxo4di86dO6Nr165YunQpioqKMH78eADAmDFj4O/vj5iYGADA0aNHkZqaivbt2yM1NRULFiyAWq3Gm2++WeN9WgQRu78SswpRUFoOBzsZwnycTX58IiIiUxA1AA0fPhzZ2dmYN28eMjIy0L59e+zYsUM3iDklJUVvfE9JSQnmzJmDK1euwMnJCQMGDMD3338PNze3Gu/T7JXkA1f+0jw38ezPwL3xP+FN3GAjs6ghYkRERDUmEQRBELsIc5Ofnw9XV1fk5eWZvjvs7C/AzxMAj5bAtL9Ne2wA//7pFH45fgPTejfHzKhQkx+fiIiotgz5/ub/4psbEbu/AOAEB0ATEZEVYAAyJ+WlwKU/Nc9F6P66VVSGKzlFAIAOTd1MfnwiIiJTMTgABQUF4d1330VKSkp91GPdkvcDZQWAkw/g19Hkhz9+d/xPcy8nuDnYmfz4REREpmJwAJo+fTo2b96MkJAQ9OnTBxs2bEBpaWl91GZ9tDc/DRsA1HFyx9rQzf/Dy9+JiKiBq1UAOnnyJI4dO4ZWrVrh1Vdfha+vL6ZNm4bjx4/XR43WQa2+N/+PSON/tFeAdQx0E+X4REREplLrZoaOHTti2bJlSEtLw/z58/Hf//4XXbp0Qfv27bFq1Srw4jIDpcYDhZmA3AUIeszkh1eq1Dh1PRcAB0ATEVHDV+t5gJRKJbZs2YLVq1cjNjYWjz76KCZOnIgbN27gnXfewa5du/Djjz8as9aGTdv91aIPYGP68Tfn0/JRWq6Gq70tQjycTH58IiIiUzI4AB0/fhyrV6/G+vXrIZVKMWbMGHz66acICwvTrTN48GB06dLFqIU2eCJf/n48RXv7CzdIpRJRaiAiIjIVgwNQly5d0KdPH6xYsQKDBg2Cra1thXWCg4MxYsQIoxRoFbIvATcTAakt0LyPKCXwDvBERGRNDA5AV65cQWBgYLXrODo6YvXq1bUuyupou79CHgcU4tyI9bhuADQDEBERNXwGD4LOysrC0aNHKyw/evQo/vnnH6MUZXVE7v5Ky72DtLwSyKQShDdxE6UGIiIiUzI4AE2dOhXXr1+vsDw1NRVTp041SlFWJT8dSL0bHEMHiFKCdvxPK19nOMpFvT8uERGRSRgcgM6fP4+OHSvOUtyhQwecP3/eKEVZFe3cP026AM4+opSgm/+HEyASEZGVMDgAyeVyZGZmVlienp4OGxu2HhhM5O4v4N74Hw6AJiIia2FwAOrbty9mzZqFvLw83bLc3Fy888476NNHnCuYLFZJHpC8T/NchJufAkCJUoVzafkA2AJERETWw+Amm48//hiPPfYYAgMD0aFDBwDAyZMn4e3tje+//97oBTZoibGAWgl4tAQ8WohSwukbeShXC/BylqNJI3tRaiAiIjI1gwOQv78/Tp8+jXXr1uHUqVOwt7fH+PHjMXLkyErnBKJqmEH31/3z/0gknACRiIisQ60G7Tg6OmLy5MnGrsW6lJdqWoAAICxatDI4ASIREVmjWo9aPn/+PFJSUlBWVqa3/Nlnn61zUVYheT9QVgA4+wJ+HUQpQRCEe7fAYAAiIiIrUquZoAcPHowzZ85AIpHo7vqu7T5RqVTGrbCh0s7+HDoAkBo8Ft0ort4sxq2iMtjJpGjjJ84M1ERERGIw+Jv39ddfR3BwMLKysuDg4IBz585h37596Ny5M/bu3VsPJTZAavW9+X/MYPxP2yaukNvIRKuDiIjI1AxuATp8+DB2794NDw8PSKVSSKVS9OzZEzExMXjttddw4sSJ+qizYUmNBwozAbkLENRLtDK03V8c/0NERNbG4BYglUoFZ2dnAICHhwfS0tIAAIGBgUhISDBudQ2VtvurRV/Axk60Mo5zBmgiIrJSBrcAPfLIIzh16hSCg4MRERGBjz76CHZ2dvjmm28QEhJSHzU2PGZw+Xt+iRIJmQUAgI6BbqLVQUREJAaDA9CcOXNQVFQEAHj33XfxzDPPoFevXmjcuDE2btxo9AIbnOxLwM1EQGYHNI8UrYyTKbkQBKCpuwO8nBWi1UFERCQGgwNQVFSU7nnz5s1x8eJF3Lp1C40acSK9Grn4m+Zn8OOAQrwrrzj/DxERWTODxgAplUrY2Njg7Nmzesvd3d0ZfmrKDLq/AHD+HyIismoGBSBbW1s0bdqUc/3UVn6a5gowSDTz/4hEpRZwIiUXANCxqZtodRAREYnF4KvAZs+ejXfeeQe3bt2qj3oaNu3cP026AM7eopWRmFWAwtJyONrJEOrtLFodREREYjF4DNDy5ctx+fJl+Pn5ITAwEI6OjnrvHz9+3GjFNTgqJeDgIXr3l3b8T/umbrCRiTMLNRERkZgMDkCDBg2qhzKsxKNTgK6TAVXZw9etR7oB0Jz/h4iIrJTBAWj+/Pn1UYf1kMoAqb2oJegmQOQAaCIislLs/7AyOYWluHqzGADQgS1ARERkpQxuAZJKpdVe8s4rxMybtvWnpbcTXO1tRa6GiIhIHAYHoC1btui9ViqVOHHiBNauXYuFCxcarTCqH/EpvP8XERGRwQFo4MCBFZY999xzaNOmDTZu3IiJEycapTCqHyeu5QLg+B8iIrJuRhsD9OijjyIuLs5Yu6N6UFauxqkbuQB4CwwiIrJuRglAd+7cwbJly+Dv72+M3VE9OZ+ej9JyNdwcbBHi4fjwDYiIiBoog7vAHrzpqSAIKCgogIODA3744QejFkfGdf/8P7x3GxERWTODA9Cnn36q9+UplUrh6emJiIgINGrEbhVzxvl/iIiINAwOQOPGjauHMqi+CYKAf65p7t/G8T9ERGTtDB4DtHr1amzatKnC8k2bNmHt2rVGKYqMLy2vBJn5pZBJJQhv4iZ2OURERKIyOADFxMTAw8OjwnIvLy8sWrTIKEWR8Wm7v1r7usDeTiZyNUREROIyOAClpKQgODi4wvLAwECkpKQYpSgyPt0AaHZ/ERERGR6AvLy8cPr06QrLT506hcaNGxulKDK+4ykcAE1ERKRlcAAaOXIkXnvtNezZswcqlQoqlQq7d+/G66+/jhEjRtRHjVRHxWXlOJeWD4AtQEREREAtrgJ77733cPXqVTz11FOwsdFsrlarMWbMGI4BMlOnb+RBpRbg46KAn6tC7HKIiIhEZ3AAsrOzw8aNG/H+++/j5MmTsLe3R9u2bREYGFgf9ZER3D/+hxMgEhER1SIAabVo0QItWrQwZi1UTzgBIhERkT6DxwANHToUH374YYXlH330EZ5//nmjFEXGIwjCvQHQTd3ELYaIiMhMGByA9u3bhwEDBlRY3r9/f+zbt88oRZHxJOcU4XaxEnY2UrTxcxW7HCIiIrNgcAAqLCyEnZ1dheW2trbIz883SlFkPNrxP+FNXGFnY/DHTURE1CAZ/I3Ytm1bbNy4scLyDRs2oHXr1kYpioyH8/8QERFVZPAg6Llz52LIkCFISkrCk08+CQCIi4vDjz/+iJ9//tnoBVLd6K4Aa8oAREREpGVwAIqOjsbWrVuxaNEi/Pzzz7C3t0d4eDh2794Nd3f3+qiRainvjhKXMgsBsAWIiIjofrW6DP7pp5/G008/DQDIz8/H+vXrMXPmTMTHx0OlUhm1QKq9E3e7v4IaO8DDSS5yNUREROaj1qNi9+3bh7Fjx8LPzw+ffPIJnnzySRw5csSYtVEdcf4fIiKiyhnUApSRkYE1a9Zg5cqVyM/Px7Bhw1BaWoqtW7dyALQZOp6SCwDoyPE/REREemrcAhQdHY3Q0FCcPn0aS5cuRVpaGj7//PP6rI3qQKUWdF1gvAEqERGRvhq3AP3xxx947bXXMGXKFN4CwwIkZBSgqEwFJ7kNWno7i10OERGRWalxC9CBAwdQUFCATp06ISIiAsuXL0dOTk591kZ1EH+39adDUzfIpLwBKhER0f1qHIAeffRRfPvtt0hPT8dLL72EDRs2wM/PD2q1GrGxsSgoKKhVAV988QWCgoKgUCgQERGBY8eOVbv+0qVLERoaCnt7ewQEBOCNN95ASUmJ7v0FCxZAIpHoPcLCwmpVmyXTDYDm+B8iIqIKDL4KzNHRERMmTMCBAwdw5swZ/Pvf/8b//d//wcvLC88++6xB+9q4cSNmzJiB+fPn4/jx4wgPD0dUVBSysrIqXf/HH3/E22+/jfnz5+PChQtYuXIlNm7ciHfeeUdvvTZt2iA9PV33OHDggKGnafF0EyBy/A8REVEFdbo5VGhoKD766CPcuHED69evN3j7JUuWYNKkSRg/fjxat26Nr776Cg4ODli1alWl6x86dAg9evTACy+8gKCgIPTt2xcjR46s0GpkY2MDHx8f3cPDw6NW52epsgtKkXKrGBIJ0J53gCciIqrAKHfHlMlkGDRoEH799dcab1NWVob4+HhERkbeK0YqRWRkJA4fPlzpNt27d0d8fLwu8Fy5cgXbt2+vcHf6xMRE+Pn5ISQkBKNGjUJKSkotzspyae//FertDBeFrcjVEBERmZ9azQRtDDk5OVCpVPD29tZb7u3tjYsXL1a6zQsvvICcnBz07NkTgiCgvLwcL7/8sl4XWEREBNasWYPQ0FCkp6dj4cKF6NWrF86ePQtn58qvhiotLUVpaanutaXf1V47/qcDx/8QERFVyigtQKayd+9eLFq0CF9++SWOHz+OzZs3Y9u2bXjvvfd06/Tv3x/PP/882rVrh6ioKGzfvh25ubn46aefqtxvTEwMXF1ddY+AgABTnE694fgfIiKi6onWAuTh4QGZTIbMzEy95ZmZmfDx8al0m7lz52L06NF48cUXAQBt27ZFUVERJk+ejNmzZ0MqrZjn3Nzc0LJlS1y+fLnKWmbNmoUZM2boXufn51tsCCotV+F0ah4ABiAiIqKqiNYCZGdnh06dOiEuLk63TK1WIy4uDt26dat0m+Li4gohRyaTAQAEQah0m8LCQiQlJcHX17fKWuRyOVxcXPQelupcWj7KytVwd7RDUGMHscshIiIyS6K1AAHAjBkzMHbsWHTu3Bldu3bF0qVLUVRUhPHjxwMAxowZA39/f8TExADQ3I5jyZIl6NChAyIiInD58mXMnTsX0dHRuiA0c+ZMREdHIzAwEGlpaZg/fz5kMhlGjhwp2nma0v3z/0gknACRiIioMqIGoOHDhyM7Oxvz5s1DRkYG2rdvjx07dugGRqekpOi1+MyZMwcSiQRz5sxBamoqPD09ER0djQ8++EC3zo0bNzBy5EjcvHkTnp6e6NmzJ44cOQJPT0+Tn58YOP6HiIjo4SRCVX1HViw/Px+urq7Iy8uzqO4wQRDwaEwcMvNL8dNL3dA12F3skoiIiEzGkO9vi7oKjKqXmnsHmfmlsJFK0K6Jq9jlEBERmS0GoAZE2/3Vxs8FCluZyNUQERGZLwagBkQ3AJrjf4iIiKrFANSAnLyeC4AzQBMRET0MA1ADUa5S42JGAQCgrT/H/xAREVWHAaiBSMouQmm5Gk5yGwS6cwJEIiKi6jAANRDn0jS3v2jt6wKplBMgEhERVYcBqIE4m6q5g31rP8uZt4iIiEgsDEANhLYFqA0DEBER0UMxADUAgiDgfLqmBaiNHwdAExERPQwDUANw/dYdFJSUw04mRQtvJ7HLISIiMnsMQA2Atvsr1McZtjJ+pERERA/Db8sG4FyatvuL43+IiIhqggGoATjLAdBEREQGYQBqALQtQK05AJqIiKhGGIAsXFZBCbILSiGRAK18ncUuh4iIyCIwAFk4betPiIcjHOxsRK6GiIjIMjAAWbjzdwPQI7wBKhERUY0xAFk4zgBNRERkOAYgC6e9BxhngCYiIqo5BiALll+iRMqtYgBsASIiIjIEA5AF047/8Xezh5uDncjVEBERWQ4GIAt2b/4ftv4QEREZggHIgnEANBERUe0wAFkw3SXwHABNRERkEAYgC1WiVCExqxAA0MafLUBERESGYACyUAkZBVCpBbg72sHHRSF2OURERBaFAchCaQdAt/FzgUQiEbkaIiIiy8IAZKG0A6B5BRgREZHhGIAs1L0WIA6AJiIiMhQDkAVSqQVczNBeAcYWICIiIkMxAFmgK9mFKFGq4WgnQ1BjR7HLISIisjgMQBbo7N3xP618XSCVcgA0ERGRoRiALNC51HtXgBEREZHhGIAsEAdAExER1Q0DkIURBIGXwBMREdURA5CFuXH7DvJLymErk6Clt7PY5RAREVkkBiALo+3+auntDDsbfnxERES1wW9QC6Pt/uIAaCIiotpjALIwHABNRERUdwxAFoYtQERERHXHAGRBcgpLkZlfColEMwkiERER1Q4DkAXRdn8FezjCUW4jcjVERESWiwHIgtzr/uL4HyIiorpgALIg9wZAs/uLiIioLhiALMi5VA6AJiIiMgYGIAtRUKLE1ZvFANgFRkREVFcMQBbiQnoBAMDXVQF3RzuRqyEiIrJsDEAWggOgiYiIjIcByEJwADQREZHxMABZCAYgIiIi42EAsgCl5SokZmrGALXxZxcYERFRXTEAWYBLGYUoVwtwc7CFn6tC7HKIiIgsHgOQBbj/BqgSiUTkaoiIiCwfA5AF0I7/eYRXgBERERkFA5AF0LYAteYAaCIiIqNgADJzKrWgmwSRcwAREREZBwOQmUvOKcQdpQr2tjIEeziKXQ4REVGDwABk5rTjf1r5OkMm5QBoIiIiY2AAMnP3JkBk9xcREZGxMACZOe0A6Ef8OQCaiIjIWEQPQF988QWCgoKgUCgQERGBY8eOVbv+0qVLERoaCnt7ewQEBOCNN95ASUlJnfZprgRBYAsQERFRPRA1AG3cuBEzZszA/Pnzcfz4cYSHhyMqKgpZWVmVrv/jjz/i7bffxvz583HhwgWsXLkSGzduxDvvvFPrfZqztLwS5BYrYSOVoIW3k9jlEBERNRiiBqAlS5Zg0qRJGD9+PFq3bo2vvvoKDg4OWLVqVaXrHzp0CD169MALL7yAoKAg9O3bFyNHjtRr4TF0n+bsXKqm+6uFtzPkNjKRqyEiImo4RAtAZWVliI+PR2Rk5L1ipFJERkbi8OHDlW7TvXt3xMfH6wLPlStXsH37dgwYMKDW+zRnZ3kHeCIionphI9aBc3JyoFKp4O3trbfc29sbFy9erHSbF154ATk5OejZsycEQUB5eTlefvllXRdYbfYJAKWlpSgtLdW9zs/Pr+1pGdX5++4BRkRERMYj+iBoQ+zduxeLFi3Cl19+iePHj2Pz5s3Ytm0b3nvvvTrtNyYmBq6urrpHQECAkSquG909wPw5AJqIiMiYRGsB8vDwgEwmQ2Zmpt7yzMxM+Pj4VLrN3LlzMXr0aLz44osAgLZt26KoqAiTJ0/G7Nmza7VPAJg1axZmzJihe52fny96CLpVVIb0vBJIJEArX7YAERERGZNoLUB2dnbo1KkT4uLidMvUajXi4uLQrVu3SrcpLi6GVKpfskymGRwsCEKt9gkAcrkcLi4ueg+xaef/CWrsCCe5aDmViIioQRL1m3XGjBkYO3YsOnfujK5du2Lp0qUoKirC+PHjAQBjxoyBv78/YmJiAADR0dFYsmQJOnTogIiICFy+fBlz585FdHS0Lgg9bJ+WQtv9xTvAExERGZ+oAWj48OHIzs7GvHnzkJGRgfbt22PHjh26QcwpKSl6LT5z5syBRCLBnDlzkJqaCk9PT0RHR+ODDz6o8T4txdlUDoAmIiKqLxJBEASxizA3+fn5cHV1RV5enmjdYU9+vBdXcoqwdkJXPN7SU5QaiIiILIkh398WdRWYtSgqLUfyzSIAbAEiIiKqDwxAZuhCej4EAfBxUcDDSS52OURERA0OA5AZOscZoImIiOoVA5AZOscZoImIiOoVA5AZOpuqvQSeM0ATERHVBwYgM1NWrkZiVgEAtgARERHVFwYgM3MpswBKlQBXe1s0aWQvdjlEREQNEgOQmTl/3wBoiUQicjVEREQNEwOQmeEAaCIiovrHAGRm7l0CzwHQRERE9YUByIyo1QLOp3MOICIiovrGAGRGkm8WobhMBYWtFCGeTmKXQ0RE1GAxAJkRbfdXK18XyKQcAE1ERFRfGIDMCAdAExERmQYDkBk5zwHQREREJsEAZCYEQeBNUImIiEyEAchMZOSX4FZRGWRSCVp6O4tdDhERUYPGAGQmtDdAbeHlBIWtTORqiIiIGjYGIDNxbwA0x/8QERHVNwYgM8HxP0RERKbDAGQmzjMAERERmQwDkBm4XVSG1Nw7AIDWDEBERET1jgHIDGjv/xXY2AHOCluRqyEiImr4GIDMwNlUzgBNRERkSgxAZuAcZ4AmIiIyKQYgM8B7gBEREZkWA5DIisvKcSWnCABbgIiIiEyFAUhkF9ILIAiAl7Mcns5yscshIiKyCgxAIjvP7i8iIiKTYwASmfYeYOz+IiIiMh0GIJGdS2cLEBERkakxAIlIqVLjUkYhAOARf7YAERERmQoDkIgSMwtRplLDRWGDJo3sxS6HiIjIajAAiUg7/09rPxdIJBKRqyEiIrIeDEAi4gzQRERE4mAAEtF5XQDiAGgiIiJTYgASiVot3HcLDLYAERERmRIDkEiu3SpGUZkKchspmnk6il0OERGRVWEAEom29SfM1wU2Mn4MREREpsRvXpGc4/gfIiIi0TAAiYQBiIiISDwMQCIQBAHnUjkAmoiISCwMQCLIzC/FzaIyyKQShPk4i10OERGR1WEAEoF2AHRzTycobGUiV0NERGR9GIBEwPE/RERE4mIAEsH99wAjIiIi02MAEgHvAUZERCQuBiATyytW4sbtOwDYAkRERCQWBiAT03Z/Bbjbw9XeVuRqiIiIrBMDkIlpu78eYfcXERGRaBiATOzeHeDZ/UVERCQWBiAT4wBoIiIi8TEAmdCdMhWSsgsBsAWIiIhITAxAJnQxIx9qAfBwksPLRSF2OURERFaLAciEOAM0ERGReWAAMqG8O0oobKV4xJ8BiIiISEwSQRAEsYswN/n5+XB1dUVeXh5cXIwbVlRqAaXlKjjY2Rh1v0RERNbOkO9vtgCZmEwqYfghIiISGQMQERERWR0GICIiIrI6DEBERERkdcwiAH3xxRcICgqCQqFAREQEjh07VuW6TzzxBCQSSYXH008/rVtn3LhxFd7v16+fKU6FiIiILIDoo3E3btyIGTNm4KuvvkJERASWLl2KqKgoJCQkwMvLq8L6mzdvRllZme71zZs3ER4ejueff15vvX79+mH16tW613K5vP5OgoiIiCyK6C1AS5YswaRJkzB+/Hi0bt0aX331FRwcHLBq1apK13d3d4ePj4/uERsbCwcHhwoBSC6X663XqFEjU5wOERERWQBRA1BZWRni4+MRGRmpWyaVShEZGYnDhw/XaB8rV67EiBEj4OjoqLd879698PLyQmhoKKZMmYKbN28atXYiIiKyXKJ2geXk5EClUsHb21tvube3Ny5evPjQ7Y8dO4azZ89i5cqVesv79euHIUOGIDg4GElJSXjnnXfQv39/HD58GDKZrMJ+SktLUVpaqnudn59fyzMiIiIiSyD6GKC6WLlyJdq2bYuuXbvqLR8xYoTuedu2bdGuXTs0a9YMe/fuxVNPPVVhPzExMVi4cGG910tERETmQdQuMA8PD8hkMmRmZuotz8zMhI+PT7XbFhUVYcOGDZg4ceJDjxMSEgIPDw9cvny50vdnzZqFvLw83eP69es1PwkiIiKyOKIGIDs7O3Tq1AlxcXG6ZWq1GnFxcejWrVu1227atAmlpaX417/+9dDj3LhxAzdv3oSvr2+l78vlcri4uOg9iIiIqOES/SqwGTNm4Ntvv8XatWtx4cIFTJkyBUVFRRg/fjwAYMyYMZg1a1aF7VauXIlBgwahcePGessLCwvxn//8B0eOHMHVq1cRFxeHgQMHonnz5oiKijLJOREREZF5E30M0PDhw5GdnY158+YhIyMD7du3x44dO3QDo1NSUiCV6ue0hIQEHDhwAH/++WeF/clkMpw+fRpr165Fbm4u/Pz80LdvX7z33nucC4iIiIgAABJBEASxizA3eXl5cHNzw/Xr19kdRkREZCHy8/MREBCA3NxcuLq6Vruu6C1A5qigoAAAEBAQIHIlREREZKiCgoKHBiC2AFVCrVYjLS0Nzs7OkEgkRt23Np1aQ+sSz7Xhsqbz5bk2XNZ0vtZyroIgoKCgAH5+fhWGzzyILUCVkEqlaNKkSb0ew5quNuO5NlzWdL4814bLms7XGs71YS0/WqJfBUZERERkagxAREREZHUYgExMLpdj/vz5VnFJPs+14bKm8+W5NlzWdL7WdK41xUHQREREZHXYAkRERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxA9eCLL75AUFAQFAoFIiIicOzYsWrX37RpE8LCwqBQKNC2bVts377dRJXWXkxMDLp06QJnZ2d4eXlh0KBBSEhIqHabNWvWQCKR6D0UCoWJKq69BQsWVKg7LCys2m0s8TPVCgoKqnC+EokEU6dOrXR9S/pc9+3bh+joaPj5+UEikWDr1q167wuCgHnz5sHX1xf29vaIjIxEYmLiQ/dr6N+8KVR3rkqlEm+99Rbatm0LR0dH+Pn5YcyYMUhLS6t2n7X5WzCVh32248aNq1B7v379HrpfS/tsAVT69yuRSLB48eIq92nOn219YQAyso0bN2LGjBmYP38+jh8/jvDwcERFRSErK6vS9Q8dOoSRI0di4sSJOHHiBAYNGoRBgwbh7NmzJq7cMH/99RemTp2KI0eOIDY2FkqlEn379kVRUVG127m4uCA9PV33uHbtmokqrps2bdro1X3gwIEq17XUz1Tr77//1jvX2NhYAMDzzz9f5TaW8rkWFRUhPDwcX3zxRaXvf/TRR1i2bBm++uorHD16FI6OjoiKikJJSUmV+zT0b95UqjvX4uJiHD9+HHPnzsXx48exefNmJCQk4Nlnn33ofg35WzClh322ANCvXz+92tevX1/tPi3xswWgd47p6elYtWoVJBIJhg4dWu1+zfWzrTcCGVXXrl2FqVOn6l6rVCrBz89PiImJqXT9YcOGCU8//bTesoiICOGll16q1zqNLSsrSwAg/PXXX1Wus3r1asHV1dV0RRnJ/PnzhfDw8Bqv31A+U63XX39daNasmaBWqyt931I/VwDCli1bdK/VarXg4+MjLF68WLcsNzdXkMvlwvr166vcj6F/82J48Fwrc+zYMQGAcO3atSrXMfRvQSyVne/YsWOFgQMHGrSfhvLZDhw4UHjyySerXcdSPltjYguQEZWVlSE+Ph6RkZG6ZVKpFJGRkTh8+HCl2xw+fFhvfQCIioqqcn1zlZeXBwBwd3evdr3CwkIEBgYiICAAAwcOxLlz50xRXp0lJibCz88PISEhGDVqFFJSUqpct6F8poDmd/qHH37AhAkTqr0xsKV+rvdLTk5GRkaG3mfn6uqKiIiIKj+72vzNm6u8vDxIJBK4ublVu54hfwvmZu/evfDy8kJoaCimTJmCmzdvVrluQ/lsMzMzsW3bNkycOPGh61ryZ1sbDEBGlJOTA5VKBW9vb73l3t7eyMjIqHSbjIwMg9Y3R2q1GtOnT0ePHj3wyCOPVLleaGgoVq1ahf/973/44YcfoFar0b17d9y4ccOE1RouIiICa9aswY4dO7BixQokJyejV69eKCgoqHT9hvCZam3duhW5ubkYN25cletY6uf6IO3nY8hnV5u/eXNUUlKCt956CyNHjqz2RpmG/i2Yk379+uG7775DXFwcPvzwQ/z111/o378/VCpVpes3lM927dq1cHZ2xpAhQ6pdz5I/29ri3eCpzqZOnYqzZ88+tL+4W7du6Natm+519+7d0apVK3z99dd477336rvMWuvfv7/uebt27RAREYHAwED89NNPNfq/Kku2cuVK9O/fH35+flWuY6mfK2kolUoMGzYMgiBgxYoV1a5ryX8LI0aM0D1v27Yt2rVrh2bNmmHv3r146qmnRKysfq1atQqjRo166IUJlvzZ1hZbgIzIw8MDMpkMmZmZesszMzPh4+NT6TY+Pj4GrW9upk2bht9//x179uxBkyZNDNrW1tYWHTp0wOXLl+upuvrh5uaGli1bVlm3pX+mWteuXcOuXbvw4osvGrSdpX6u2s/HkM+uNn/z5kQbfq5du4bY2NhqW38q87C/BXMWEhICDw+PKmu39M8WAPbv34+EhASD/4YBy/5sa4oByIjs7OzQqVMnxMXF6Zap1WrExcXp/R/y/bp166a3PgDExsZWub65EAQB06ZNw5YtW7B7924EBwcbvA+VSoUzZ87A19e3HiqsP4WFhUhKSqqybkv9TB+0evVqeHl54emnnzZoO0v9XIODg+Hj46P32eXn5+Po0aNVfna1+Zs3F9rwk5iYiF27dqFx48YG7+Nhfwvm7MaNG7h582aVtVvyZ6u1cuVKdOrUCeHh4QZva8mfbY2JPQq7odmwYYMgl8uFNWvWCOfPnxcmT54suLm5CRkZGYIgCMLo0aOFt99+W7f+wYMHBRsbG+Hjjz8WLly4IMyfP1+wtbUVzpw5I9Yp1MiUKVMEV1dXYe/evUJ6erruUVxcrFvnwXNduHChsHPnTiEpKUmIj48XRowYISgUCuHcuXNinEKN/fvf/xb27t0rJCcnCwcPHhQiIyMFDw8PISsrSxCEhvOZ3k+lUglNmzYV3nrrrQrvWfLnWlBQIJw4cUI4ceKEAEBYsmSJcOLECd2VT//3f/8nuLm5Cf/73/+E06dPCwMHDhSCg4OFO3fu6Pbx5JNPCp9//rnu9cP+5sVS3bmWlZUJzz77rNCkSRPh5MmTen/DpaWlun08eK4P+1sQU3XnW1BQIMycOVM4fPiwkJycLOzatUvo2LGj0KJFC6GkpES3j4bw2Wrl5eUJDg4OwooVKyrdhyV9tvWFAagefP7550LTpk0FOzs7oWvXrsKRI0d07z3++OPC2LFj9db/6aefhJYtWwp2dnZCmzZthG3btpm4YsMBqPSxevVq3ToPnuv06dN1/y7e3t7CgAEDhOPHj5u+eAMNHz5c8PX1Fezs7AR/f39h+PDhwuXLl3XvN5TP9H47d+4UAAgJCQkV3rPkz3XPnj2V/t5qz0etVgtz584VvL29BblcLjz11FMV/g0CAwOF+fPn6y2r7m9eLNWda3JycpV/w3v27NHt48FzfdjfgpiqO9/i4mKhb9++gqenp2BraysEBgYKkyZNqhBkGsJnq/X1118L9vb2Qm5ubqX7sKTPtr5IBEEQ6rWJiYiIiMjMcAwQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIqAoSiQRbt24VuwwiqgcMQERklsaNGweJRFLh0a9fP7FLI6IGwEbsAoiIqtKvXz+sXr1ab5lcLhepGiJqSNgCRERmSy6Xw8fHR+/RqFEjAJruqRUrVqB///6wt7dHSEgIfv75Z73tz5w5gyeffBL29vZo3LgxJk+ejMLCQr11Vq1ahTZt2kAul8PX1xfTpk3Tez8nJweDBw+Gg4MDWrRogV9//VX33u3btzFq1Ch4enrC3t4eLVq0qBDYiMg8MQARkcWaO3cuhg4dilOnTmHUqFEYMWIELly4AAAoKipCVFQUGjVqhL///hubNm3Crl279ALOihUrMHXqVEyePBlnzpzBr7/+iubNm+sdY+HChRg2bBhOnz6NAQMGYNSoUbh165bu+OfPn8cff/yBCxcuYMWKFfDw8DDdPwAR1Z7Yd2MlIqrM2LFjBZlMJjg6Ouo9PvjgA0EQBAGA8PLLL+ttExERIUyZMkUQBEH45ptvhEaNGgmFhYW697dt2yZIpVLdXcD9/PyE2bNnV1kDAGHOnDm614WFhQIA4Y8//hAEQRCio6OF8ePHG+eEicikOAaIiMxW7969sWLFCr1l7u7uuufdunXTe69bt244efIkAODChQsIDw+Ho6Oj7v0ePXpArVYjISEBEokEaWlpeOqpp6qtoV27drrnjo6OcHFxQVZWFgBgypQpGDp0KI4fP46+ffti0KBB6N69e63OlYhMiwGIiMyWo6NjhS4pY7G3t6/Rera2tnqvJRIJ1Go1AKB///64du0atm/fjtjYWDz11FOYOnUqPv74Y6PXS0TGxTFARGSxjhw5UuF1q1atAACtWrXCqVOnUFRUpHv/4MGDkEqlCA0NhbOzM4KCghAXF1enGjw9PTF27Fj88MMPWLp0Kb755ps67Y+ITIMtQERktkpLS5GRkaG3zMbGRjfQeNOmTejcuTN69uyJdevW4dixY1i5ciUAYNSoUZg/fz7Gjh2LBQsWIDs7G6+++ipGjx4Nb29vAMCCBQvw8ssvw8vLC/3790dBQQEOHjyIV199tUb1zZs3D506dUKbNm1QWlqK33//XRfAiMi8MQARkdnasWMHfH199ZaFhobi4sWLADRXaG3YsAGvvPIKfH19sX79erRu3RoA4ODggJ07d+L1119Hly5d4ODggKFDh2LJkiW6fY0dOxYlJSX49NNPMXPmTHh4eOC5556rcX12dnaYNWsWrl69Cnt7e/Tq1QsbNmwwwpkTUX2TCIIgiF0EEZGhJBIJtmzZgkGDBoldChFZII4BIiIiIqvDAERERERWh2OAiMgisfeeiOqCLUBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdf4f85/lUTEjm9sAAAAASUVORK5CYII=", + "text/plain": [ + "
    " + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "## Your turn! 🚀\n", + "# Plot loss and accuracy over time\n", + "plt.plot(history.history[\"loss\"], label=\"Train Set\")\n", + "plt.plot(history.history[\"val_loss\"], label=\"Validation Set\")\n", + "plt.title(\"Softmax Loss\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"Softmax Loss\")\n", + "plt.legend(loc=\"upper left\")\n", + "plt.show()\n", "\n", - "Practice the Recurrent Neural Networks by following this TBD." + "plt.plot(history.history[\"accuracy\"], label=\"Train Set\")\n", + "plt.plot(history.history[\"val_accuracy\"], label=\"Validation Set\")\n", + "plt.title(\"Test Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"Accuracy\")\n", + "plt.legend(loc=\"upper left\")\n", + "plt.show()" ] }, { "cell_type": "markdown", - "id": "863d18f5", + "id": "3bc90f40", "metadata": {}, "source": [ - "## Self study\n", + "## Your turn! 🚀\n", "\n", - "TBD" + "You can practice your rnn skills by following the assignment [google stock price prediction rnn](../assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb)" ] }, { @@ -488,7 +518,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/_sources/deep-learning/time-series.ipynb b/_sources/deep-learning/time-series.ipynb index 2947c75e1b..35bd8f304b 100644 --- a/_sources/deep-learning/time-series.ipynb +++ b/_sources/deep-learning/time-series.ipynb @@ -1700,12 +1700,18 @@ "\n", "## Your turn! 🚀\n", "\n", - "TBD.\n", + "You can practice your time series skills by following the assignment [time series forecasting assignment](../assignments/deep-learning/time-series-forecasting-assignment.ipynb)\n", "\n", "## Acknowledgments\n", "\n", "Thanks to [kaggle](https://www.kaggle.com/) for creating the open-source course [Time Series](https://www.kaggle.com/learn/time-series). It inspires the majority of the content in this chapter.\n" ] + }, + { + "cell_type": "markdown", + "id": "f258c933", + "metadata": {}, + "source": [] } ], "metadata": { diff --git a/assignments/README.html b/assignments/README.html index 96b07d8a02..91b898373f 100644 --- a/assignments/README.html +++ b/assignments/README.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1. + + 40.89. Introduction + +
  2. - 40.89. Study the solvers + 40.90. Study the solvers
  3. - 40.90. Build classification models + 40.91. Build classification models
  4. - 40.91. Build Classification Model + 40.92. Build Classification Model
  5. - 40.92. Parameter play + 40.93. Parameter play
  6. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  7. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  8. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  9. +
  10. + + 40.99. Image classification
  11. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  12. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  13. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  14. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  15. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  16. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  17. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  18. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  19. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  20. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  21. - 40.116. Art by gan + 40.118. Art by gan
  22. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  23. +
  24. + + 40.121. Comparing edge-based and region-based segmentation
  25. - 40.119. Summary + 40.122. Summary
  26. - 40.120. Car Object Detection + 40.123. Car Object Detection
  27. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  28. +
  29. + + 40.126. Getting Start NLP with classification task
  30. diff --git a/assignments/data-science/analyzing-COVID-19-papers.html b/assignments/data-science/analyzing-COVID-19-papers.html index 6453757aca..1aa79f0cf0 100644 --- a/assignments/data-science/analyzing-COVID-19-papers.html +++ b/assignments/data-science/analyzing-COVID-19-papers.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  31. + + 40.89. Introduction + +
  32. - 40.89. Study the solvers + 40.90. Study the solvers
  33. - 40.90. Build classification models + 40.91. Build classification models
  34. - 40.91. Build Classification Model + 40.92. Build Classification Model
  35. - 40.92. Parameter play + 40.93. Parameter play
  36. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  37. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  38. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  39. +
  40. + + 40.99. Image classification
  41. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  42. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  43. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  44. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  45. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  46. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  47. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  48. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  49. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  50. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  51. - 40.116. Art by gan + 40.118. Art by gan
  52. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  53. +
  54. + + 40.121. Comparing edge-based and region-based segmentation
  55. - 40.119. Summary + 40.122. Summary
  56. - 40.120. Car Object Detection + 40.123. Car Object Detection
  57. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  58. +
  59. + + 40.126. Getting Start NLP with classification task
  60. diff --git a/assignments/data-science/analyzing-data.html b/assignments/data-science/analyzing-data.html index 77a97545c8..17478978d9 100644 --- a/assignments/data-science/analyzing-data.html +++ b/assignments/data-science/analyzing-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  61. + + 40.89. Introduction + +
  62. - 40.89. Study the solvers + 40.90. Study the solvers
  63. - 40.90. Build classification models + 40.91. Build classification models
  64. - 40.91. Build Classification Model + 40.92. Build Classification Model
  65. - 40.92. Parameter play + 40.93. Parameter play
  66. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  67. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  68. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  69. +
  70. + + 40.99. Image classification
  71. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  72. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  73. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  74. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  75. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  76. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  77. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  78. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  79. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  80. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  81. - 40.116. Art by gan + 40.118. Art by gan
  82. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  83. +
  84. + + 40.121. Comparing edge-based and region-based segmentation
  85. - 40.119. Summary + 40.122. Summary
  86. - 40.120. Car Object Detection + 40.123. Car Object Detection
  87. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  88. +
  89. + + 40.126. Getting Start NLP with classification task
  90. diff --git a/assignments/data-science/analyzing-text-about-data-science.html b/assignments/data-science/analyzing-text-about-data-science.html index 3ce31fb077..96c3b63814 100644 --- a/assignments/data-science/analyzing-text-about-data-science.html +++ b/assignments/data-science/analyzing-text-about-data-science.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  91. + + 40.89. Introduction + +
  92. - 40.89. Study the solvers + 40.90. Study the solvers
  93. - 40.90. Build classification models + 40.91. Build classification models
  94. - 40.91. Build Classification Model + 40.92. Build Classification Model
  95. - 40.92. Parameter play + 40.93. Parameter play
  96. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  97. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  98. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  99. +
  100. + + 40.99. Image classification
  101. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  102. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  103. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  104. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  105. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  106. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  107. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  108. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  109. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  110. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  111. - 40.116. Art by gan + 40.118. Art by gan
  112. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  113. +
  114. + + 40.121. Comparing edge-based and region-based segmentation
  115. - 40.119. Summary + 40.122. Summary
  116. - 40.120. Car Object Detection + 40.123. Car Object Detection
  117. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  118. +
  119. + + 40.126. Getting Start NLP with classification task
  120. diff --git a/assignments/data-science/apply-your-skills.html b/assignments/data-science/apply-your-skills.html index 8300aa9569..4117ee79bb 100644 --- a/assignments/data-science/apply-your-skills.html +++ b/assignments/data-science/apply-your-skills.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  121. + + 40.89. Introduction + +
  122. - 40.89. Study the solvers + 40.90. Study the solvers
  123. - 40.90. Build classification models + 40.91. Build classification models
  124. - 40.91. Build Classification Model + 40.92. Build Classification Model
  125. - 40.92. Parameter play + 40.93. Parameter play
  126. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  127. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  128. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  129. +
  130. + + 40.99. Image classification
  131. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  132. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  133. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  134. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  135. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  136. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  137. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  138. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  139. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  140. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  141. - 40.116. Art by gan + 40.118. Art by gan
  142. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  143. +
  144. + + 40.121. Comparing edge-based and region-based segmentation
  145. - 40.119. Summary + 40.122. Summary
  146. - 40.120. Car Object Detection + 40.123. Car Object Detection
  147. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  148. +
  149. + + 40.126. Getting Start NLP with classification task
  150. diff --git a/assignments/data-science/build-your-own-custom-vis.html b/assignments/data-science/build-your-own-custom-vis.html index 702a95fe68..a5e53858c3 100644 --- a/assignments/data-science/build-your-own-custom-vis.html +++ b/assignments/data-science/build-your-own-custom-vis.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  151. + + 40.89. Introduction + +
  152. - 40.89. Study the solvers + 40.90. Study the solvers
  153. - 40.90. Build classification models + 40.91. Build classification models
  154. - 40.91. Build Classification Model + 40.92. Build Classification Model
  155. - 40.92. Parameter play + 40.93. Parameter play
  156. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  157. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  158. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  159. +
  160. + + 40.99. Image classification
  161. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  162. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  163. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  164. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  165. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  166. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  167. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  168. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  169. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  170. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  171. - 40.116. Art by gan + 40.118. Art by gan
  172. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  173. +
  174. + + 40.121. Comparing edge-based and region-based segmentation
  175. - 40.119. Summary + 40.122. Summary
  176. - 40.120. Car Object Detection + 40.123. Car Object Detection
  177. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  178. +
  179. + + 40.126. Getting Start NLP with classification task
  180. diff --git a/assignments/data-science/classifying-datasets.html b/assignments/data-science/classifying-datasets.html index 505dca5f30..c9860e3f46 100644 --- a/assignments/data-science/classifying-datasets.html +++ b/assignments/data-science/classifying-datasets.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  181. + + 40.89. Introduction + +
  182. - 40.89. Study the solvers + 40.90. Study the solvers
  183. - 40.90. Build classification models + 40.91. Build classification models
  184. - 40.91. Build Classification Model + 40.92. Build Classification Model
  185. - 40.92. Parameter play + 40.93. Parameter play
  186. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  187. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  188. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  189. +
  190. + + 40.99. Image classification
  191. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  192. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  193. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  194. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  195. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  196. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  197. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  198. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  199. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  200. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  201. - 40.116. Art by gan + 40.118. Art by gan
  202. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  203. +
  204. + + 40.121. Comparing edge-based and region-based segmentation
  205. - 40.119. Summary + 40.122. Summary
  206. - 40.120. Car Object Detection + 40.123. Car Object Detection
  207. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  208. +
  209. + + 40.126. Getting Start NLP with classification task
  210. diff --git a/assignments/data-science/data-preparation.html b/assignments/data-science/data-preparation.html index 196b614e7e..e8501dbc15 100644 --- a/assignments/data-science/data-preparation.html +++ b/assignments/data-science/data-preparation.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  211. + + 40.89. Introduction + +
  212. - 40.89. Study the solvers + 40.90. Study the solvers
  213. - 40.90. Build classification models + 40.91. Build classification models
  214. - 40.91. Build Classification Model + 40.92. Build Classification Model
  215. - 40.92. Parameter play + 40.93. Parameter play
  216. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  217. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  218. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  219. +
  220. + + 40.99. Image classification
  221. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  222. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  223. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  224. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  225. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  226. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  227. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  228. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  229. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  230. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  231. - 40.116. Art by gan + 40.118. Art by gan
  232. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  233. +
  234. + + 40.121. Comparing edge-based and region-based segmentation
  235. - 40.119. Summary + 40.122. Summary
  236. - 40.120. Car Object Detection + 40.123. Car Object Detection
  237. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  238. +
  239. + + 40.126. Getting Start NLP with classification task
  240. diff --git a/assignments/data-science/data-processing-in-python.html b/assignments/data-science/data-processing-in-python.html index 66f846f4cc..bf225e8b7d 100644 --- a/assignments/data-science/data-processing-in-python.html +++ b/assignments/data-science/data-processing-in-python.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  241. + + 40.89. Introduction + +
  242. - 40.89. Study the solvers + 40.90. Study the solvers
  243. - 40.90. Build classification models + 40.91. Build classification models
  244. - 40.91. Build Classification Model + 40.92. Build Classification Model
  245. - 40.92. Parameter play + 40.93. Parameter play
  246. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  247. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  248. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  249. +
  250. + + 40.99. Image classification
  251. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  252. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  253. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  254. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  255. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  256. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  257. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  258. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  259. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  260. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  261. - 40.116. Art by gan + 40.118. Art by gan
  262. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  263. +
  264. + + 40.121. Comparing edge-based and region-based segmentation
  265. - 40.119. Summary + 40.122. Summary
  266. - 40.120. Car Object Detection + 40.123. Car Object Detection
  267. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  268. +
  269. + + 40.126. Getting Start NLP with classification task
  270. diff --git a/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html b/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html index e2b91df6a4..3bded09c9a 100644 --- a/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html +++ b/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  271. + + 40.89. Introduction + +
  272. - 40.89. Study the solvers + 40.90. Study the solvers
  273. - 40.90. Build classification models + 40.91. Build classification models
  274. - 40.91. Build Classification Model + 40.92. Build Classification Model
  275. - 40.92. Parameter play + 40.93. Parameter play
  276. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  277. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  278. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  279. +
  280. + + 40.99. Image classification
  281. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  282. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  283. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  284. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  285. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  286. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  287. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  288. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  289. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  290. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  291. - 40.116. Art by gan + 40.118. Art by gan
  292. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  293. +
  294. + + 40.121. Comparing edge-based and region-based segmentation
  295. - 40.119. Summary + 40.122. Summary
  296. - 40.120. Car Object Detection + 40.123. Car Object Detection
  297. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  298. +
  299. + + 40.126. Getting Start NLP with classification task
  300. diff --git a/assignments/data-science/data-science-project-using-azure-ml-sdk.html b/assignments/data-science/data-science-project-using-azure-ml-sdk.html index 8b6f850f49..ea2aa35f57 100644 --- a/assignments/data-science/data-science-project-using-azure-ml-sdk.html +++ b/assignments/data-science/data-science-project-using-azure-ml-sdk.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  301. + + 40.89. Introduction + +
  302. - 40.89. Study the solvers + 40.90. Study the solvers
  303. - 40.90. Build classification models + 40.91. Build classification models
  304. - 40.91. Build Classification Model + 40.92. Build Classification Model
  305. - 40.92. Parameter play + 40.93. Parameter play
  306. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  307. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  308. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  309. +
  310. + + 40.99. Image classification
  311. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  312. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  313. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  314. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  315. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  316. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  317. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  318. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  319. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  320. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  321. - 40.116. Art by gan + 40.118. Art by gan
  322. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  323. +
  324. + + 40.121. Comparing edge-based and region-based segmentation
  325. - 40.119. Summary + 40.122. Summary
  326. - 40.120. Car Object Detection + 40.123. Car Object Detection
  327. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  328. +
  329. + + 40.126. Getting Start NLP with classification task
  330. diff --git a/assignments/data-science/data-science-scenarios.html b/assignments/data-science/data-science-scenarios.html index cde8054331..46e17dc79c 100644 --- a/assignments/data-science/data-science-scenarios.html +++ b/assignments/data-science/data-science-scenarios.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  331. + + 40.89. Introduction + +
  332. - 40.89. Study the solvers + 40.90. Study the solvers
  333. - 40.90. Build classification models + 40.91. Build classification models
  334. - 40.91. Build Classification Model + 40.92. Build Classification Model
  335. - 40.92. Parameter play + 40.93. Parameter play
  336. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  337. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  338. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  339. +
  340. + + 40.99. Image classification
  341. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  342. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  343. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  344. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  345. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  346. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  347. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  348. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  349. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  350. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  351. - 40.116. Art by gan + 40.118. Art by gan
  352. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  353. +
  354. + + 40.121. Comparing edge-based and region-based segmentation
  355. - 40.119. Summary + 40.122. Summary
  356. - 40.120. Car Object Detection + 40.123. Car Object Detection
  357. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  358. +
  359. + + 40.126. Getting Start NLP with classification task
  360. diff --git a/assignments/data-science/displaying-airport-data.html b/assignments/data-science/displaying-airport-data.html index d4111b697b..6192f3ae34 100644 --- a/assignments/data-science/displaying-airport-data.html +++ b/assignments/data-science/displaying-airport-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  361. + + 40.89. Introduction + +
  362. - 40.89. Study the solvers + 40.90. Study the solvers
  363. - 40.90. Build classification models + 40.91. Build classification models
  364. - 40.91. Build Classification Model + 40.92. Build Classification Model
  365. - 40.92. Parameter play + 40.93. Parameter play
  366. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  367. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  368. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  369. +
  370. + + 40.99. Image classification
  371. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  372. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  373. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  374. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  375. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  376. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  377. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  378. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  379. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  380. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  381. - 40.116. Art by gan + 40.118. Art by gan
  382. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  383. +
  384. + + 40.121. Comparing edge-based and region-based segmentation
  385. - 40.119. Summary + 40.122. Summary
  386. - 40.120. Car Object Detection + 40.123. Car Object Detection
  387. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  388. +
  389. + + 40.126. Getting Start NLP with classification task
  390. diff --git a/assignments/data-science/dive-into-the-beehive.html b/assignments/data-science/dive-into-the-beehive.html index a111204f8e..a49b073d70 100644 --- a/assignments/data-science/dive-into-the-beehive.html +++ b/assignments/data-science/dive-into-the-beehive.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  391. + + 40.89. Introduction + +
  392. - 40.89. Study the solvers + 40.90. Study the solvers
  393. - 40.90. Build classification models + 40.91. Build classification models
  394. - 40.91. Build Classification Model + 40.92. Build Classification Model
  395. - 40.92. Parameter play + 40.93. Parameter play
  396. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  397. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  398. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  399. +
  400. + + 40.99. Image classification
  401. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  402. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  403. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  404. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  405. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  406. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  407. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  408. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  409. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  410. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  411. - 40.116. Art by gan + 40.118. Art by gan
  412. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  413. +
  414. + + 40.121. Comparing edge-based and region-based segmentation
  415. - 40.119. Summary + 40.122. Summary
  416. - 40.120. Car Object Detection + 40.123. Car Object Detection
  417. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  418. +
  419. + + 40.126. Getting Start NLP with classification task
  420. diff --git a/assignments/data-science/estimation-of-COVID-19-pandemic.html b/assignments/data-science/estimation-of-COVID-19-pandemic.html index e23cbfe4fe..210cd96cba 100644 --- a/assignments/data-science/estimation-of-COVID-19-pandemic.html +++ b/assignments/data-science/estimation-of-COVID-19-pandemic.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  421. + + 40.89. Introduction + +
  422. - 40.89. Study the solvers + 40.90. Study the solvers
  423. - 40.90. Build classification models + 40.91. Build classification models
  424. - 40.91. Build Classification Model + 40.92. Build Classification Model
  425. - 40.92. Parameter play + 40.93. Parameter play
  426. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  427. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  428. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  429. +
  430. + + 40.99. Image classification
  431. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  432. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  433. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  434. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  435. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  436. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  437. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  438. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  439. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  440. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  441. - 40.116. Art by gan + 40.118. Art by gan
  442. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  443. +
  444. + + 40.121. Comparing edge-based and region-based segmentation
  445. - 40.119. Summary + 40.122. Summary
  446. - 40.120. Car Object Detection + 40.123. Car Object Detection
  447. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  448. +
  449. + + 40.126. Getting Start NLP with classification task
  450. diff --git a/assignments/data-science/evaluating-data-from-a-form.html b/assignments/data-science/evaluating-data-from-a-form.html index 452a1ef790..3808cbebf7 100644 --- a/assignments/data-science/evaluating-data-from-a-form.html +++ b/assignments/data-science/evaluating-data-from-a-form.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  451. + + 40.89. Introduction + +
  452. - 40.89. Study the solvers + 40.90. Study the solvers
  453. - 40.90. Build classification models + 40.91. Build classification models
  454. - 40.91. Build Classification Model + 40.92. Build Classification Model
  455. - 40.92. Parameter play + 40.93. Parameter play
  456. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  457. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  458. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  459. +
  460. + + 40.99. Image classification
  461. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  462. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  463. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  464. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  465. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  466. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  467. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  468. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  469. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  470. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  471. - 40.116. Art by gan + 40.118. Art by gan
  472. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  473. +
  474. + + 40.121. Comparing edge-based and region-based segmentation
  475. - 40.119. Summary + 40.122. Summary
  476. - 40.120. Car Object Detection + 40.123. Car Object Detection
  477. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  478. +
  479. + + 40.126. Getting Start NLP with classification task
  480. diff --git a/assignments/data-science/explore-a-planetary-computer-dataset.html b/assignments/data-science/explore-a-planetary-computer-dataset.html index 4037597907..940ddfa9d9 100644 --- a/assignments/data-science/explore-a-planetary-computer-dataset.html +++ b/assignments/data-science/explore-a-planetary-computer-dataset.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  481. + + 40.89. Introduction + +
  482. - 40.89. Study the solvers + 40.90. Study the solvers
  483. - 40.90. Build classification models + 40.91. Build classification models
  484. - 40.91. Build Classification Model + 40.92. Build Classification Model
  485. - 40.92. Parameter play + 40.93. Parameter play
  486. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  487. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  488. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  489. +
  490. + + 40.99. Image classification
  491. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  492. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  493. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  494. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  495. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  496. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  497. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  498. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  499. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  500. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  501. - 40.116. Art by gan + 40.118. Art by gan
  502. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  503. +
  504. + + 40.121. Comparing edge-based and region-based segmentation
  505. - 40.119. Summary + 40.122. Summary
  506. - 40.120. Car Object Detection + 40.123. Car Object Detection
  507. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  508. +
  509. + + 40.126. Getting Start NLP with classification task
  510. diff --git a/assignments/data-science/exploring-for-anwser.html b/assignments/data-science/exploring-for-anwser.html index f3b9503a79..fb2cf956ff 100644 --- a/assignments/data-science/exploring-for-anwser.html +++ b/assignments/data-science/exploring-for-anwser.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  511. + + 40.89. Introduction + +
  512. - 40.89. Study the solvers + 40.90. Study the solvers
  513. - 40.90. Build classification models + 40.91. Build classification models
  514. - 40.91. Build Classification Model + 40.92. Build Classification Model
  515. - 40.92. Parameter play + 40.93. Parameter play
  516. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  517. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  518. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  519. +
  520. + + 40.99. Image classification
  521. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  522. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  523. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  524. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  525. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  526. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  527. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  528. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  529. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  530. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  531. - 40.116. Art by gan + 40.118. Art by gan
  532. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  533. +
  534. + + 40.121. Comparing edge-based and region-based segmentation
  535. - 40.119. Summary + 40.122. Summary
  536. - 40.120. Car Object Detection + 40.123. Car Object Detection
  537. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  538. +
  539. + + 40.126. Getting Start NLP with classification task
  540. diff --git a/assignments/data-science/introduction-to-statistics-and-probability.html b/assignments/data-science/introduction-to-statistics-and-probability.html index f7feddab58..ac31c813a9 100644 --- a/assignments/data-science/introduction-to-statistics-and-probability.html +++ b/assignments/data-science/introduction-to-statistics-and-probability.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  541. + + 40.89. Introduction + +
  542. - 40.89. Study the solvers + 40.90. Study the solvers
  543. - 40.90. Build classification models + 40.91. Build classification models
  544. - 40.91. Build Classification Model + 40.92. Build Classification Model
  545. - 40.92. Parameter play + 40.93. Parameter play
  546. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  547. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  548. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  549. +
  550. + + 40.99. Image classification
  551. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  552. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  553. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  554. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  555. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  556. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  557. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  558. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  559. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  560. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  561. - 40.116. Art by gan + 40.118. Art by gan
  562. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  563. +
  564. + + 40.121. Comparing edge-based and region-based segmentation
  565. - 40.119. Summary + 40.122. Summary
  566. - 40.120. Car Object Detection + 40.123. Car Object Detection
  567. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  568. +
  569. + + 40.126. Getting Start NLP with classification task
  570. diff --git a/assignments/data-science/lines-scatters-and-bars.html b/assignments/data-science/lines-scatters-and-bars.html index d157d06026..7a0c566b42 100644 --- a/assignments/data-science/lines-scatters-and-bars.html +++ b/assignments/data-science/lines-scatters-and-bars.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  571. + + 40.89. Introduction + +
  572. - 40.89. Study the solvers + 40.90. Study the solvers
  573. - 40.90. Build classification models + 40.91. Build classification models
  574. - 40.91. Build Classification Model + 40.92. Build Classification Model
  575. - 40.92. Parameter play + 40.93. Parameter play
  576. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  577. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  578. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  579. +
  580. + + 40.99. Image classification
  581. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  582. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  583. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  584. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  585. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  586. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  587. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  588. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  589. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  590. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  591. - 40.116. Art by gan + 40.118. Art by gan
  592. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  593. +
  594. + + 40.121. Comparing edge-based and region-based segmentation
  595. - 40.119. Summary + 40.122. Summary
  596. - 40.120. Car Object Detection + 40.123. Car Object Detection
  597. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  598. +
  599. + + 40.126. Getting Start NLP with classification task
  600. diff --git a/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html b/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html index 1f7222a1b0..1645c2560b 100644 --- a/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html +++ b/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  601. + + 40.89. Introduction + +
  602. - 40.89. Study the solvers + 40.90. Study the solvers
  603. - 40.90. Build classification models + 40.91. Build classification models
  604. - 40.91. Build Classification Model + 40.92. Build Classification Model
  605. - 40.92. Parameter play + 40.93. Parameter play
  606. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  607. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  608. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  609. +
  610. + + 40.99. Image classification
  611. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  612. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  613. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  614. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  615. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  616. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  617. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  618. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  619. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  620. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  621. - 40.116. Art by gan + 40.118. Art by gan
  622. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  623. +
  624. + + 40.121. Comparing edge-based and region-based segmentation
  625. - 40.119. Summary + 40.122. Summary
  626. - 40.120. Car Object Detection + 40.123. Car Object Detection
  627. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  628. +
  629. + + 40.126. Getting Start NLP with classification task
  630. diff --git a/assignments/data-science/market-research.html b/assignments/data-science/market-research.html index fae414a259..fad34f25f6 100644 --- a/assignments/data-science/market-research.html +++ b/assignments/data-science/market-research.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  631. + + 40.89. Introduction + +
  632. - 40.89. Study the solvers + 40.90. Study the solvers
  633. - 40.90. Build classification models + 40.91. Build classification models
  634. - 40.91. Build Classification Model + 40.92. Build Classification Model
  635. - 40.92. Parameter play + 40.93. Parameter play
  636. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  637. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  638. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  639. +
  640. + + 40.99. Image classification
  641. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  642. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  643. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  644. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  645. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  646. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  647. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  648. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  649. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  650. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  651. - 40.116. Art by gan + 40.118. Art by gan
  652. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  653. +
  654. + + 40.121. Comparing edge-based and region-based segmentation
  655. - 40.119. Summary + 40.122. Summary
  656. - 40.120. Car Object Detection + 40.123. Car Object Detection
  657. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  658. +
  659. + + 40.126. Getting Start NLP with classification task
  660. diff --git a/assignments/data-science/matplotlib-applied.html b/assignments/data-science/matplotlib-applied.html index 772e3ae76a..450d44a205 100644 --- a/assignments/data-science/matplotlib-applied.html +++ b/assignments/data-science/matplotlib-applied.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  661. + + 40.89. Introduction + +
  662. - 40.89. Study the solvers + 40.90. Study the solvers
  663. - 40.90. Build classification models + 40.91. Build classification models
  664. - 40.91. Build Classification Model + 40.92. Build Classification Model
  665. - 40.92. Parameter play + 40.93. Parameter play
  666. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  667. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  668. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  669. +
  670. + + 40.99. Image classification
  671. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  672. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  673. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  674. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  675. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  676. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  677. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  678. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  679. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  680. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  681. - 40.116. Art by gan + 40.118. Art by gan
  682. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  683. +
  684. + + 40.121. Comparing edge-based and region-based segmentation
  685. - 40.119. Summary + 40.122. Summary
  686. - 40.120. Car Object Detection + 40.123. Car Object Detection
  687. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  688. +
  689. + + 40.126. Getting Start NLP with classification task
  690. diff --git a/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html b/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html index 09e96c6e8c..c9a1a493aa 100644 --- a/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html +++ b/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  691. + + 40.89. Introduction + +
  692. - 40.89. Study the solvers + 40.90. Study the solvers
  693. - 40.90. Build classification models + 40.91. Build classification models
  694. - 40.91. Build Classification Model + 40.92. Build Classification Model
  695. - 40.92. Parameter play + 40.93. Parameter play
  696. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  697. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  698. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  699. +
  700. + + 40.99. Image classification
  701. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  702. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  703. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  704. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  705. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  706. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  707. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  708. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  709. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  710. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  711. - 40.116. Art by gan + 40.118. Art by gan
  712. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  713. +
  714. + + 40.121. Comparing edge-based and region-based segmentation
  715. - 40.119. Summary + 40.122. Summary
  716. - 40.120. Car Object Detection + 40.123. Car Object Detection
  717. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  718. +
  719. + + 40.126. Getting Start NLP with classification task
  720. diff --git a/assignments/data-science/small-diabetes-study.html b/assignments/data-science/small-diabetes-study.html index 393a1a7bfb..d89a37a0e2 100644 --- a/assignments/data-science/small-diabetes-study.html +++ b/assignments/data-science/small-diabetes-study.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  721. + + 40.89. Introduction + +
  722. - 40.89. Study the solvers + 40.90. Study the solvers
  723. - 40.90. Build classification models + 40.91. Build classification models
  724. - 40.91. Build Classification Model + 40.92. Build Classification Model
  725. - 40.92. Parameter play + 40.93. Parameter play
  726. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  727. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  728. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  729. +
  730. + + 40.99. Image classification
  731. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  732. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  733. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  734. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  735. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  736. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  737. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  738. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  739. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  740. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  741. - 40.116. Art by gan + 40.118. Art by gan
  742. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  743. +
  744. + + 40.121. Comparing edge-based and region-based segmentation
  745. - 40.119. Summary + 40.122. Summary
  746. - 40.120. Car Object Detection + 40.123. Car Object Detection
  747. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  748. +
  749. + + 40.126. Getting Start NLP with classification task
  750. diff --git a/assignments/data-science/soda-profits.html b/assignments/data-science/soda-profits.html index 781f096a1d..5732e0d8d7 100644 --- a/assignments/data-science/soda-profits.html +++ b/assignments/data-science/soda-profits.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  751. + + 40.89. Introduction + +
  752. - 40.89. Study the solvers + 40.90. Study the solvers
  753. - 40.90. Build classification models + 40.91. Build classification models
  754. - 40.91. Build Classification Model + 40.92. Build Classification Model
  755. - 40.92. Parameter play + 40.93. Parameter play
  756. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  757. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  758. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  759. +
  760. + + 40.99. Image classification
  761. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  762. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  763. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  764. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  765. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  766. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  767. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  768. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  769. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  770. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  771. - 40.116. Art by gan + 40.118. Art by gan
  772. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  773. +
  774. + + 40.121. Comparing edge-based and region-based segmentation
  775. - 40.119. Summary + 40.122. Summary
  776. - 40.120. Car Object Detection + 40.123. Car Object Detection
  777. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  778. +
  779. + + 40.126. Getting Start NLP with classification task
  780. diff --git a/assignments/data-science/tell-a-story.html b/assignments/data-science/tell-a-story.html index 92afd1d949..e89a7530ca 100644 --- a/assignments/data-science/tell-a-story.html +++ b/assignments/data-science/tell-a-story.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  781. + + 40.89. Introduction + +
  782. - 40.89. Study the solvers + 40.90. Study the solvers
  783. - 40.90. Build classification models + 40.91. Build classification models
  784. - 40.91. Build Classification Model + 40.92. Build Classification Model
  785. - 40.92. Parameter play + 40.93. Parameter play
  786. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  787. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  788. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  789. +
  790. + + 40.99. Image classification
  791. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  792. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  793. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  794. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  795. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  796. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  797. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  798. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  799. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  800. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  801. - 40.116. Art by gan + 40.118. Art by gan
  802. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  803. +
  804. + + 40.121. Comparing edge-based and region-based segmentation
  805. - 40.119. Summary + 40.122. Summary
  806. - 40.120. Car Object Detection + 40.123. Car Object Detection
  807. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  808. +
  809. + + 40.126. Getting Start NLP with classification task
  810. diff --git a/assignments/data-science/try-it-in-excel.html b/assignments/data-science/try-it-in-excel.html index 8f741a6da6..03bafa4f22 100644 --- a/assignments/data-science/try-it-in-excel.html +++ b/assignments/data-science/try-it-in-excel.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  811. + + 40.89. Introduction + +
  812. - 40.89. Study the solvers + 40.90. Study the solvers
  813. - 40.90. Build classification models + 40.91. Build classification models
  814. - 40.91. Build Classification Model + 40.92. Build Classification Model
  815. - 40.92. Parameter play + 40.93. Parameter play
  816. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  817. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  818. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  819. +
  820. + + 40.99. Image classification
  821. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  822. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  823. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  824. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  825. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  826. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  827. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  828. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  829. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  830. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  831. - 40.116. Art by gan + 40.118. Art by gan
  832. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  833. +
  834. + + 40.121. Comparing edge-based and region-based segmentation
  835. - 40.119. Summary + 40.122. Summary
  836. - 40.120. Car Object Detection + 40.123. Car Object Detection
  837. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  838. +
  839. + + 40.126. Getting Start NLP with classification task
  840. diff --git a/assignments/data-science/write-a-data-ethics-case-study.html b/assignments/data-science/write-a-data-ethics-case-study.html index 17e93fcf77..7e819dfdc0 100644 --- a/assignments/data-science/write-a-data-ethics-case-study.html +++ b/assignments/data-science/write-a-data-ethics-case-study.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  841. + + 40.89. Introduction + +
  842. - 40.89. Study the solvers + 40.90. Study the solvers
  843. - 40.90. Build classification models + 40.91. Build classification models
  844. - 40.91. Build Classification Model + 40.92. Build Classification Model
  845. - 40.92. Parameter play + 40.93. Parameter play
  846. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  847. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  848. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  849. +
  850. + + 40.99. Image classification
  851. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  852. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  853. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  854. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  855. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  856. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  857. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  858. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  859. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  860. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  861. - 40.116. Art by gan + 40.118. Art by gan
  862. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  863. +
  864. + + 40.121. Comparing edge-based and region-based segmentation
  865. - 40.119. Summary + 40.122. Summary
  866. - 40.120. Car Object Detection + 40.123. Car Object Detection
  867. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  868. +
  869. + + 40.126. Getting Start NLP with classification task
  870. diff --git a/assignments/deep-learning/autoencoder/autoencoder.html b/assignments/deep-learning/autoencoder/autoencoder.html index e42ae9eeeb..f81f57c752 100644 --- a/assignments/deep-learning/autoencoder/autoencoder.html +++ b/assignments/deep-learning/autoencoder/autoencoder.html @@ -6,7 +6,7 @@ - 40.104. Intro to Autoencoders — Ocademy Open Machine Learning Book + 40.106. Intro to Autoencoders — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  871. + + 40.89. Introduction + +
  872. - 40.89. Study the solvers + 40.90. Study the solvers
  873. - 40.90. Build classification models + 40.91. Build classification models
  874. - 40.91. Build Classification Model + 40.92. Build Classification Model
  875. - 40.92. Parameter play + 40.93. Parameter play
  876. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  877. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  878. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  879. +
  880. + + 40.99. Image classification
  881. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  882. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  883. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  884. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  885. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  886. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  887. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  888. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  889. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  890. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  891. - 40.116. Art by gan + 40.118. Art by gan
  892. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  893. +
  894. + + 40.121. Comparing edge-based and region-based segmentation
  895. - 40.119. Summary + 40.122. Summary
  896. - 40.120. Car Object Detection + 40.123. Car Object Detection
  897. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  898. +
  899. + + 40.126. Getting Start NLP with classification task
  900. @@ -1600,71 +1620,71 @@

    Ocademy Open Machine Learning Book

    @@ -1688,71 +1708,71 @@

    Contents

    @@ -1766,12 +1786,12 @@

    Contents

    -

    40.104. Intro to Autoencoders#

    +

    40.106. Intro to Autoencoders#

    This tutorial introduces autoencoders with three examples: the basics, image denoising, and anomaly detection.

    An autoencoder is a special type of neural network that is trained to copy its input to its output. For example, given an image of a handwritten digit, an autoencoder first encodes the image into a lower dimensional latent representation, then decodes the latent representation back to an image. An autoencoder learns to compress the data while minimizing the reconstruction error.

    To learn more about autoencoders, please consider reading chapter 14 from Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

    -

    40.104.1. Import TensorFlow and other libraries#

    +

    40.106.1. Import TensorFlow and other libraries#

    import matplotlib.pyplot as plt
    @@ -1790,7 +1810,7 @@ 

    40.104.1. Import TensorFlow and other li

    -

    40.104.2. Download models#

    +

    40.106.2. Download models#

    import os
    @@ -1875,7 +1895,7 @@ 

    40.104.2. Download models -

    40.104.3. Load the dataset#

    +

    40.106.3. Load the dataset#

    To start, you will train the basic autoencoder using the Fashion MNIST dataset. Each image in this dataset is 28x28 pixels.

    @@ -1898,7 +1918,7 @@

    40.104.3. Load the dataset -

    40.104.4. First example: Basic autoencoder#

    +

    40.106.4. First example: Basic autoencoder#

    Basic autoencoder results

    Define an autoencoder with two Dense layers: an encoder, which compresses the images into a 64 dimensional latent vector, and a decoder, that reconstructs the original image from the latent space.

    To define your model, use the Keras Model Subclassing API.

    @@ -1995,7 +2015,7 @@

    40.104.4. First example: Basic autoencod

    -

    40.104.5. Second example: Image denoising#

    +

    40.106.5. Second example: Image denoising#

    Image denoising results

    An autoencoder can also be trained to remove noise from images. In the following section, you will create a noisy version of the Fashion MNIST dataset by applying random noise to each image. You will then train an autoencoder using the noisy image as input, and the original image as the target.

    Let’s reimport the dataset to omit the modifications made earlier.

    @@ -2056,7 +2076,7 @@

    40.104.5. Second example: Image denoisin

    -

    40.104.5.1. Define a convolutional autoencoder#

    +

    40.106.5.1. Define a convolutional autoencoder#

    In this example, you will train a convolutional autoencoder using Conv2D layers in the encoder, and Conv2DTranspose layers in the decoder.

    @@ -2204,15 +2224,15 @@

    40.104.5.1. Define a convolutional autoe

    -

    40.104.6. Third example: Anomaly detection#

    +

    40.106.6. Third example: Anomaly detection#

    -

    40.104.7. Overview#

    +

    40.106.7. Overview#

    In this example, you will train an autoencoder to detect anomalies on the ECG5000 dataset. This dataset contains 5,000 Electrocardiograms, each with 140 data points. You will use a simplified version of the dataset, where each example has been labeled either 0 (corresponding to an abnormal rhythm), or 1 (corresponding to a normal rhythm). You are interested in identifying the abnormal rhythms.

    Note: This is a labeled dataset, so you could phrase this as a supervised learning problem. The goal of this example is to illustrate anomaly detection concepts you can apply to larger datasets, where you do not have labels available (for example, if you had many thousands of normal rhythms, and only a small number of abnormal rhythms).

    How will you detect anomalies using an autoencoder? Recall that an autoencoder is trained to minimize reconstruction error. You will train an autoencoder on the normal rhythms only, then use it to reconstruct all the data. Our hypothesis is that the abnormal rhythms will have higher reconstruction error. You will then classify a rhythm as an anomaly if the reconstruction error surpasses a fixed threshold.

    -

    40.104.7.1. Load ECG data#

    +

    40.106.7.1. Load ECG data#

    The dataset you will use is based on one from timeseriesclassification.com.

    @@ -2510,7 +2530,7 @@

    40.104.7.1. Load ECG data -

    40.104.7.2. Build the model#

    +

    40.106.7.2. Build the model#

    class AnomalyDetector(Model):
    @@ -2602,7 +2622,7 @@ 

    40.104.7.2. Build the model -

    40.104.7.3. Detect anomalies#

    +

    40.106.7.3. Detect anomalies#

    Detect anomalies by calculating whether the reconstruction loss is greater than a fixed threshold. In this tutorial, you will calculate the mean average error for normal examples from the training set, then classify future examples as anomalous if the reconstruction error is higher than one standard deviation from the training set.

    Plot the reconstruction error on normal ECGs from the training set

    @@ -2693,11 +2713,11 @@

    40.104.7.3. Detect anomalies -

    40.104.8. Next steps#

    +

    40.106.8. Next steps#

    To learn more about anomaly detection with autoencoders, check out this excellent interactive example built with TensorFlow.js by Victor Dibia. For a real-world use case, you can learn how Airbus Detects Anomalies in ISS Telemetry Data using TensorFlow. To learn more about the basics, consider reading this blog post by François Chollet. For more details, check out chapter 14 from Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

    -

    40.104.9. Acknowledgments#

    +

    40.106.9. Acknowledgments#

    Thanks to TensorFlow Core for creating the open-source course autoencoder. It inspires the majority of the content in this chapter.

    @@ -2739,13 +2759,13 @@

    40.104.9. Acknowledgments

    previous

    -

    40.102. Google Stock Price Prediction RNN

    +

    40.104. Google Stock Price Prediction RNN

    next

    -

    40.105. Base/Denoising Autoencoder & Dimension Reduction

    +

    40.107. Base/Denoising Autoencoder & Dimension Reduction

    diff --git a/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html b/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html index 401488de1f..798090dc80 100644 --- a/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html +++ b/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html @@ -6,7 +6,7 @@ - 40.105. Base/Denoising Autoencoder & Dimension Reduction — Ocademy Open Machine Learning Book + 40.107. Base/Denoising Autoencoder & Dimension Reduction — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -100,8 +100,8 @@ - - + + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  901. + + 40.89. Introduction + +
  902. - 40.89. Study the solvers + 40.90. Study the solvers
  903. - 40.90. Build classification models + 40.91. Build classification models
  904. - 40.91. Build Classification Model + 40.92. Build Classification Model
  905. - 40.92. Parameter play + 40.93. Parameter play
  906. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  907. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  908. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  909. +
  910. + + 40.99. Image classification
  911. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  912. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  913. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  914. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  915. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  916. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  917. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  918. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  919. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  920. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  921. - 40.116. Art by gan + 40.118. Art by gan
  922. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  923. +
  924. + + 40.121. Comparing edge-based and region-based segmentation
  925. - 40.119. Summary + 40.122. Summary
  926. - 40.120. Car Object Detection + 40.123. Car Object Detection
  927. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  928. +
  929. + + 40.126. Getting Start NLP with classification task
  930. @@ -1602,110 +1622,110 @@

    Ocademy Open Machine Learning Book

    @@ -1729,110 +1749,110 @@

    Contents

    @@ -1846,9 +1866,9 @@

    Contents

    -

    40.105. Base/Denoising Autoencoder & Dimension Reduction#

    +

    40.107. Base/Denoising Autoencoder & Dimension Reduction#

    -

    40.105.1. Introduction#

    +

    40.107.1. Introduction#

    Autoencoder is a neural network that simply copies input to output. In some ways, it looks like a simple neural network, but it makes a difficult neural network by constraining the network in various ways. For example, the number of neurons in the hidden layer is smaller than that of the input layer to compress the data (reduce the dimension), or add noise to the input data and then restore the original input. There are various autoencoders, such as learning These constraints prevent the autoencoder from simply copying the input directly to the output, and control it to learn how to represent the data efficiently.

    In this notebook, we will cover two autoencoders:

    @@ -1883,7 +1903,7 @@

    40.105.1. Introduction -

    40.105.2. Loading and Scaling Datasets#

    +

    40.107.2. Loading and Scaling Datasets#

    Train a basic autoencoder using the Fashon MNIST dataset. Each image in this dataset is 28x28 pixels. Inputs are scaled for training.

    @@ -1907,7 +1927,7 @@

    40.105.2. Loading and Scaling Datasets

    -

    40.105.3. Load model#

    +

    40.107.3. Load model#

    import os
    @@ -1963,7 +1983,7 @@ 

    40.105.3. Load model -

    40.105.3.1. Checking dataset by 2D plot#

    +

    40.107.3.1. Checking dataset by 2D plot#

    Autoencoding can be thought of as a kind of dimensionality reduction process. Therefore, after compressing the fashion MNIST dataset through UMAP in two dimensions, let’s check how it is mapped for each label.

    @@ -2023,7 +2043,7 @@

    40.105.3.1. Checking dataset by 2D plot<

    Ref: https://umap-learn.readthedocs.io/en

    -

    40.105.3.2. Checking dataset by 3D plot#

    +

    40.107.3.2. Checking dataset by 3D plot#

    import plotly.express as px
    @@ -2054,9 +2074,9 @@ 

    40.105.3.2. Checking dataset by 3D plot<

    -

    40.105.4. Base Autoencoder#

    +

    40.107.4. Base Autoencoder#

    -

    40.105.4.1. Modeling#

    +

    40.107.4.1. Modeling#

    An autoencoder always consists of two parts: an encoder and a decoder.

    • Encoder (Recognition network): it transforms an input into an internal representation.

    • @@ -2100,7 +2120,7 @@

      40.105.4.1. Modeling -

      40.105.4.2. Training#

      +

      40.107.4.2. Training#

      Train the model using x_train as input and target. The encoder learns to compress the dataset into a latent space in 784 dimensions, and the decoder learns to reconstruct the original image.

      @@ -2131,7 +2151,7 @@

      40.105.4.2. Training -

      40.105.4.3. Plotting the latent space after Dimension Reduction#

      +

      40.107.4.3. Plotting the latent space after Dimension Reduction#

      y_test = pd.DataFrame(y_test,columns=['class'])
      @@ -2157,7 +2177,7 @@ 

      40.105.4.3. Plotting the latent space af

      The \(28*28\) dimension input is compressed into the \(7*7\) latent space by the encoder. The latent space is compressed into 2D using Dimension Reduction. Although it is an approximate expression, it can be seen that each class is well clustered in the compressed latent space.

    -

    40.105.4.4. Checking results#

    +

    40.107.4.4. Checking results#

    n = 4
    @@ -2190,7 +2210,7 @@ 

    40.105.4.4. Checking results -

    40.105.5. Denoising Autoencoder#

    +

    40.107.5. Denoising Autoencoder#

    Another way to constrain the autoencoder to learn meaningful features is to add noise to the input and train it to reconstruct the original noise-free input. Noise can be generated by adding Gaussian noise to the input as shown in the figure below, or by randomly turning off the input unit (node) like a dropout.

    @@ -2218,7 +2238,7 @@

    40.105.5. Denoising Autoencoder

    -

    40.105.5.1. Adding random noise to the image.#

    +

    40.107.5.1. Adding random noise to the image.#

    noise_factor = 0.2
    @@ -2233,7 +2253,7 @@ 

    40.105.5.1. Adding random noise to the i

    -

    40.105.5.2. Plotting a noisy image.#

    +

    40.107.5.2. Plotting a noisy image.#

    n = 4
    @@ -2253,9 +2273,9 @@ 

    40.105.5.2. Plotting a noisy image.

    -

    40.105.5.3. Checking Noisy Dataset using Demension Reduction#

    +

    40.107.5.3. Checking Noisy Dataset using Demension Reduction#

    -

    40.105.5.3.1. 1) Noisy Dataset#

    +

    40.107.5.3.1. 1) Noisy Dataset#

    x_train_noisy_flat = x_train.reshape(x_train_noisy.shape[0], -1)
    @@ -2287,7 +2307,7 @@ 

    40.105.5.3.1. 1) Noisy Dataset -

    40.105.5.3.2. 2) Orignal Dataset#

    +

    40.107.5.3.2. 2) Orignal Dataset#

    x_train_flat = x_train.reshape(x_train.shape[0], -1)
    @@ -2316,7 +2336,7 @@ 

    40.105.5.3.2. 2) Orignal Dataset

    -

    40.105.5.4. Modeling#

    +

    40.107.5.4. Modeling#

    class Denoise(Model):
    @@ -2351,7 +2371,7 @@ 

    40.105.5.4. Modeling -

    40.105.5.5. Training#

    +

    40.107.5.5. Training#

    autoencoder.fit(x_train_noisy, x_train,
    @@ -2471,7 +2491,7 @@ 

    40.105.5.5. Training -

    40.105.5.6. Checking results#

    +

    40.107.5.6. Checking results#

    Plots both the noisy and denoised images generated by the autoencoder.

    @@ -2513,7 +2533,7 @@

    40.105.5.6. Checking results -

    40.105.6. Acknowledgments#

    +

    40.107.6. Acknowledgments#

    Thanks to TOH SEOK KIM for creating the Kaggle open-source project Base/Denoising Autoencoder + Dimension Reduction. It inspires the majority of the content in this chapter.

    @@ -2555,13 +2575,13 @@

    40.105.6. Acknowledgments

    previous

    -

    40.104. Intro to Autoencoders

    +

    40.106. Intro to Autoencoders

    next

    -

    40.106. Fun with Variational Autoencoders

    +

    40.108. Fun with Variational Autoencoders

    diff --git a/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html b/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html index 2175d5259f..2e446a58c2 100644 --- a/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html +++ b/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html @@ -6,7 +6,7 @@ - 40.106. Fun with Variational Autoencoders — Ocademy Open Machine Learning Book + 40.108. Fun with Variational Autoencoders — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  931. + + 40.89. Introduction + +
  932. - 40.89. Study the solvers + 40.90. Study the solvers
  933. - 40.90. Build classification models + 40.91. Build classification models
  934. - 40.91. Build Classification Model + 40.92. Build Classification Model
  935. - 40.92. Parameter play + 40.93. Parameter play
  936. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  937. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  938. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  939. +
  940. + + 40.99. Image classification
  941. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  942. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  943. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  944. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  945. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  946. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  947. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  948. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  949. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  950. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  951. - 40.116. Art by gan + 40.118. Art by gan
  952. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  953. +
  954. + + 40.121. Comparing edge-based and region-based segmentation
  955. - 40.119. Summary + 40.122. Summary
  956. - 40.120. Car Object Detection + 40.123. Car Object Detection
  957. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  958. +
  959. + + 40.126. Getting Start NLP with classification task
  960. @@ -1600,62 +1620,62 @@

    Ocademy Open Machine Learning Book

    @@ -1679,62 +1699,62 @@

    Contents

    @@ -1748,10 +1768,10 @@

    Contents

    -

    40.106. Fun with Variational Autoencoders#

    +

    40.108. Fun with Variational Autoencoders#

    This is a starter kernel to use Labelled Faces in the Wild (LFW) Dataset in order to maintain knowledge about main Autoencoder principles. PyTorch will be used for modelling.

    -

    40.106.1. Fork it and give it an upvote.#

    +

    40.108.1. Fork it and give it an upvote.#

    architecture

    Useful links:

      @@ -1764,7 +1784,7 @@

      40.106.1. Fork it and give it an upvote.

    -

    40.106.2. A bit of theory#

    +

    40.108.2. A bit of theory#

    “Autoencoding” is a data compression algorithm where the compression and decompression functions are 1) data-specific, 2) lossy, and 3) learned automatically from examples rather than engineered by a human. Additionally, in almost all contexts where the term “autoencoder” is used, the compression and decompression functions are implemented with neural networks.

    1. Autoencoders are data-specific, which means that they will only be able to compress data similar to what they have been trained on. This is different from, say, the MPEG-2 Audio Layer III (MP3) compression algorithm, which only holds assumptions about “sound” in general, but not about specific types of sounds. An autoencoder trained on pictures of faces would do a rather poor job of compressing pictures of trees, because the features it would learn would be face-specific.

    2. @@ -1806,7 +1826,7 @@

      40.106.2. A bit of theory -

      40.106.3. Load datasets#

      +

      40.108.3. Load datasets#

      datasets_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/autoencoder/variational-autoencoder-and-faces-generation/lfw-deepfunneled.zip"
      @@ -1882,7 +1902,7 @@ 

      40.106.3. Load datasets -

      40.106.4. Explore the data#

      +

      40.108.4. Explore the data#

      Image data is collected from DATASET_PATH and a dataset is created in which the person information for each image is extracted and used for subsequent data analysis or processing. Finally, the filter() function is used to limit the size of the dataset by retaining only information about people who appear less than 25 times.

      @@ -1927,7 +1947,7 @@

      40.106.4. Explore the data -

      40.106.5. Prepare the dataset#

      +

      40.108.5. Prepare the dataset#

      • Reads the attribute data from the txt file at the specified path and stores it in a DataFrame object called df_attrs. The txt file is tab delimited, skipping the first line.

      • @@ -2010,7 +2030,7 @@

        40.106.5. Prepare the dataset -

        40.106.6. Building simple autoencoder#

        +

        40.108.6. Building simple autoencoder#

        dim_z=100
        @@ -2116,7 +2136,7 @@ 

        40.106.6. Building simple autoencoder

    -

    40.106.7. Train autoencoder#

    +

    40.108.7. Train autoencoder#

    • get_batch: It uses the Generator method to generate batches of a specified size by iterating over them. The amount of data generated is batch_size each time, until the entire data set is traversed.

    • @@ -2282,7 +2302,7 @@

      40.106.7. Train autoencoder -

      40.106.8. Sampling#

      +

      40.108.8. Sampling#

      Let’s generate some samples from random vectors

      @@ -2301,7 +2321,7 @@

      40.106.8. Sampling

    -

    40.106.9. Adding smile and glasses#

    +

    40.108.9. Adding smile and glasses#

    Let’s find some attributes like smiles or glasses on the photo and try to add it to the photos which don’t have it. We will use the second dataset for it. It contains a bunch of such attributes.

    -

    40.106.10. Variational autoencoder#

    +

    40.108.10. Variational autoencoder#

    So far we have trained our encoder to reconstruct the very same image that we’ve transfered to latent space. That means that when we’re trying to generate new image from the point decoder never met we’re getting the best image it can produce, but the quelity is not good enough.

    In other words the encoded vectors may not be continuous in the latent space.

    @@ -2607,12 +2627,12 @@

    40.106.10. Variational autoencoder

    -

    40.106.11. Conclusion#

    +

    40.108.11. Conclusion#

    Variational autoencoders are cool. Although models in this particular notebook are simple they let us design complex generative models of data, and fit them to large datasets. They can generate images of fictional celebrity faces and high-resolution digital artwork. These models also yield state-of-the-art machine learning results in image generation and reinforcement learning. Variational autoencoders (VAEs) were defined in 2013 by Kingma et al. and Rezende et al.

    -

    40.106.12. Acknowledgments#

    +

    40.108.12. Acknowledgments#

    Thanks to SERGEI AVERKIEV for creating the Kaggle open-source project Variational Autoencoder and Faces Generation. It inspires the majority of the content in this chapter.

    @@ -2654,13 +2674,13 @@

    40.106.12. Acknowledgments

    previous

    -

    40.105. Base/Denoising Autoencoder & Dimension Reduction

    +

    40.107. Base/Denoising Autoencoder & Dimension Reduction

    next

    -

    40.107. Time Series Forecasting Assignment

    +

    40.109. Time Series Forecasting Assignment

    diff --git a/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html b/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html index 710634ff2d..85badd7a0f 100644 --- a/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html +++ b/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html @@ -6,7 +6,7 @@ - 40.93. How to choose cnn architecture mnist — Ocademy Open Machine Learning Book + 40.94. How to choose cnn architecture mnist — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  961. + + 40.89. Introduction + +
  962. - 40.89. Study the solvers + 40.90. Study the solvers
  963. - 40.90. Build classification models + 40.91. Build classification models
  964. - 40.91. Build Classification Model + 40.92. Build Classification Model
  965. - 40.92. Parameter play + 40.93. Parameter play
  966. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  967. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  968. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  969. +
  970. + + 40.99. Image classification
  971. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  972. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  973. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  974. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  975. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  976. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  977. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  978. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  979. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  980. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  981. - 40.116. Art by gan + 40.118. Art by gan
  982. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  983. +
  984. + + 40.121. Comparing edge-based and region-based segmentation
  985. - 40.119. Summary + 40.122. Summary
  986. - 40.120. Car Object Detection + 40.123. Car Object Detection
  987. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  988. +
  989. + + 40.126. Getting Start NLP with classification task
  990. @@ -1600,207 +1620,207 @@

    Ocademy Open Machine Learning Book

    @@ -1824,207 +1844,207 @@

    Contents

    @@ -2038,19 +2058,19 @@

    Contents

    -

    40.93. How to choose cnn architecture mnist#

    +

    40.94. How to choose cnn architecture mnist#

    -

    40.93.1. What is the best CNN architecture for MNIST?#

    +

    40.94.1. What is the best CNN architecture for MNIST?#

    There are so many choices for CNN architecture. How do we choose the best one? First we must define what best means. The best may be the simplest, or it may be the most efficient at producing accuracy while minimizing computational complexity. In this kernel, we will run experiments to find the most accurate and efficient CNN architecture for classifying MNIST handwritten digits.

    The best known MNIST classifier found on the internet achieves 99.8% accuracy!! That’s amazing. The best Kaggle kernel MNIST classifier achieves 99.75% [posted here][https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist]. This kernel demostrates the experiments used to determine that kernel’s CNN architecture.

    -

    40.93.2. Basic CNN structure#

    +

    40.94.2. Basic CNN structure#

    A typical CNN design begins with feature extraction and finishes with classification. Feature extraction is performed by alternating convolution layers with subsambling layers. Classification is performed with dense layers followed by a final softmax layer. For image classification, this architecture performs better than an entirely fully connected feed forward neural network. extract

    -

    40.93.3. Load libraries#

    +

    40.94.3. Load libraries#

    import pandas as pd
    @@ -2077,7 +2097,7 @@ 

    40.93.3. Load libraries -

    40.93.4. Load the data#

    +

    40.94.4. Load the data#

    train = pd.read_csv("https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/cnn/mnist_train.csv")
    @@ -2088,7 +2108,7 @@ 

    40.93.4. Load the data -

    40.93.5. Prepare data for neural network#

    +

    40.94.5. Prepare data for neural network#

    Y_train = train["label"]
    @@ -2109,7 +2129,7 @@ 

    40.93.5. Prepare data for neural network

    -

    40.93.6. Global variables#

    +

    40.94.6. Global variables#

    annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95**x, verbose=0)
    @@ -2120,7 +2140,7 @@ 

    40.93.6. Global variables -

    40.93.7. 1. How many convolution-subsambling pairs?#

    +

    40.94.7. 1. How many convolution-subsambling pairs?#

    First question, how many pairs of convolution-subsampling should we use? For example, our network could have 1, 2, or 3:

    • 784 - [24C5-P2] - 256 - 10

    • @@ -2130,10 +2150,10 @@

      40.93.7. 1. How many convolution-subsamb

      It’s typical to increase the number of feature maps for each subsequent pair as shown here.

    -

    40.93.8. Experiment 1#

    +

    40.94.8. Experiment 1#

    Let’s see whether one, two, or three pairs is best. We are not doing four pairs since the image will be reduced too small before then. The input image is 28x28. After one pair, it’s 14x14. After two, it’s 7x7. After three it’s 4x4 (or 3x3 if we don’t use padding=‘same’). It doesn’t make sense to do a fourth convolution.

    -

    40.93.8.1. Build convolutional neural networks#

    +

    40.94.8.1. Build convolutional neural networks#

    nets = 3
    @@ -2169,7 +2189,7 @@ 

    40.93.8.1. Build convolutional neural ne

    -

    40.93.8.2. Create validation set and train networks#

    +

    40.94.8.2. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2200,7 +2220,7 @@ 

    40.93.8.2. Create validation set and tra

    -

    40.93.8.3. Plot accuracies#

    +

    40.94.8.3. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2219,12 +2239,12 @@ 

    40.93.8.3. Plot accuracies -

    40.93.8.4. Summary#

    +

    40.94.8.4. Summary#

    From the above experiment, it seems that 3 pairs of convolution-subsambling is slightly better than 2 pairs. However for efficiency, the improvement doesn’t warrant the additional computional cost, so let’s use 2.

    -

    40.93.9. 2. How many feature maps?#

    +

    40.94.9. 2. How many feature maps?#

    In the previous experiement, we decided that two pairs is sufficient. How many feature maps should we include? For example, we could do

    • 784 - [8C5-P2] - [16C5-P2] - 256 - 10

    • @@ -2236,9 +2256,9 @@

      40.93.9. 2. How many feature maps?

    -

    40.93.10. Experiment 2#

    +

    40.94.10. Experiment 2#

    -

    40.93.10.1. Build convolutional neural networks#

    +

    40.94.10.1. Build convolutional neural networks#

    nets = 6
    @@ -2263,7 +2283,7 @@ 

    40.93.10.1. Build convolutional neural n

    -

    40.93.10.2. Create validation set and train networks#

    +

    40.94.10.2. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2294,7 +2314,7 @@ 

    40.93.10.2. Create validation set and tr

    -

    40.93.10.3. Plot accuracies#

    +

    40.94.10.3. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2313,12 +2333,12 @@ 

    40.93.10.3. Plot accuracies -

    40.93.10.4. Summary#

    +

    40.94.10.4. Summary#

    From the above experiement, it appears that 32 maps in the first convolutional layer and 64 maps in the second convolutional layer is the best. Architectures with more maps only perform slightly better and are not worth the additonal computation cost.

    -

    40.93.11. 3. How large a dense layer?#

    +

    40.94.11. 3. How large a dense layer?#

    In our previous experiment, we decided on 32 and 64 maps in our convolutional layers. How many dense units should we use? For example we could use

    • 784 - [32C5-P2] - [64C5-P2] - 0 - 10

    • @@ -2332,10 +2352,10 @@

      40.93.11. 3. How large a dense layer?

    -

    40.93.12. Experiment 3#

    +

    40.94.12. Experiment 3#

    -

    40.93.13. Build convolutional neural networks#

    +

    40.94.13. Build convolutional neural networks#

    nets = 8
    @@ -2360,7 +2380,7 @@ 

    40.93.13. Build convolutional neural net

    -

    40.93.14. Create validation set and train networks#

    +

    40.94.14. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2392,7 +2412,7 @@ 

    40.93.14. Create validation set and trai

    -

    40.93.15. Plot accuracies#

    +

    40.94.15. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2410,22 +2430,22 @@ 

    40.93.15. Plot accuracies -

    40.93.15.1. Summary#

    +

    40.94.15.1. Summary#

    From this experiment, it appears that 128 units is the best. Dense layers with more units only perform slightly better and are not worth the additional computational cost. (We also tested using two consecutive dense layers instead of one, but that showed no benefit over a single dense layer.)

    -

    40.93.16. 4. How much dropout?#

    +

    40.94.16. 4. How much dropout?#

    Dropout will prevent our network from overfitting thus helping our network generalize better. How much dropout should we add after each layer?

    • 0%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%

    -

    40.93.17. Experiment 4#

    +

    40.94.17. Experiment 4#

    -

    40.93.18. Build convolutional neural networks#

    +

    40.94.18. Build convolutional neural networks#

    nets = 8
    @@ -2452,7 +2472,7 @@ 

    40.93.18. Build convolutional neural net

    -

    40.93.19. Create validation set and train networks#

    +

    40.94.19. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2484,7 +2504,7 @@ 

    40.93.19. Create validation set and trai

    -

    40.93.20. Plot accuracies#

    +

    40.94.20. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2503,11 +2523,11 @@ 

    40.93.20. Plot accuracies -

    40.93.21. Summary#

    +

    40.94.21. Summary#

    From this experiment, it appears that 40% dropout is the best.

    -

    40.93.22. 5. Advanced features#

    +

    40.94.22. 5. Advanced features#

    Instead of using one convolution layer of size 5x5, you can mimic 5x5 by using two consecutive 3x3 layers and it will be more nonlinear. Instead of using a max pooling layer, you can subsample by using a convolution layer with strides=2 and it will be learnable. Lastly, does batch normalization help? And does data augmentation help? Let’s test all four of these

    • replace ‘32C5’ with ‘32C3-32C3’

    • @@ -2517,7 +2537,7 @@

      40.93.22. 5. Advanced features -

      40.93.23. Build convolutional neural networks#

      +

      40.94.23. Build convolutional neural networks#

      nets = 5
      @@ -2636,7 +2656,7 @@ 

      40.93.23. Build convolutional neural net

    -

    40.93.24. Create validation set and train networks#

    +

    40.94.24. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.2)
    @@ -2668,7 +2688,7 @@ 

    40.93.24. Create validation set and trai

    -

    40.93.25. Create more training images via data augmentation and train network#

    +

    40.94.25. Create more training images via data augmentation and train network#

    datagen = ImageDataGenerator(
    @@ -2698,7 +2718,7 @@ 

    40.93.25. Create more training images vi

    -

    40.93.26. Plot accuracies#

    +

    40.94.26. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2716,12 +2736,12 @@ 

    40.93.26. Plot accuracies -

    40.93.26.1. Summary#

    +

    40.94.26.1. Summary#

    From this experiment, we see that each of the four advanced features improve accuracy. The first model uses no advanced features. The second uses only the double convolution layer trick. The third uses only the learnable subsambling layer trick. The third model uses both of those techniques plus batch normalization. The last model employs all three of those techniques plus data augmentation and achieves the best accuracy of 99.5%! (Or more if we train longer.) (Experiments determing the best data augmentation hyper-parameters are posted at the end of the kernel here.)

    -

    40.93.27. Conclusion#

    +

    40.94.27. Conclusion#

    Training convolutional neural networks is a random process. This makes experiments difficult because each time you run the same experiment, you get different results. Therefore, you must run your experiments dozens of times and take an average. This kernel was run dozens of times and it seems that the best CNN architecture for classifying MNIST handwritten digits is 784 - [32C5-P2] - [64C5-P2] - 128 - 10 with 40% dropout. Afterward, more experiments show that replacing ‘32C5’ with ‘32C3-32C3’ improves accuracy. And replacing ‘P2’ with ‘32C5S2’ improves accuracy. And adding batch normalizaiton and data augmentation improve the CNN. The best CNN found from the experiments here becomes

    @@ -2771,13 +2791,13 @@

    40.94. Acknowledgments

    previous

    -

    40.92. Parameter play

    +

    40.93. Parameter play

    next

    -

    40.95. Sign Language Digits Classification with CNN

    +

    40.96. Sign Language Digits Classification with CNN

    diff --git a/assignments/deep-learning/cnn/image-classification.html b/assignments/deep-learning/cnn/image-classification.html new file mode 100644 index 0000000000..df11facb29 --- /dev/null +++ b/assignments/deep-learning/cnn/image-classification.html @@ -0,0 +1,2554 @@ + + + + + + + + + 40.99. Image classification — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +
    +
    # Install the necessary dependencies
    +
    +import os
    +import sys
    +!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython
    +
    +
    +
    +
    +
    +

    40.99. Image classification#

    +

    This tutorial shows how to classify images of flowers using a tf.keras.Sequential model and load data using tf.keras.utils.image_dataset_from_directory. It demonstrates the following concepts:

    +
      +
    • Efficiently loading a dataset off disk.

    • +
    • Identifying overfitting and applying techniques to mitigate it, including data augmentation and dropout.

    • +
    +

    This tutorial follows a basic machine learning workflow:

    +
      +
    1. Examine and understand data

    2. +
    3. Build an input pipeline

    4. +
    5. Build the model

    6. +
    7. Train the model

    8. +
    9. Test the model

    10. +
    11. Improve the model and repeat the process

    12. +
    +

    In addition, the notebook demonstrates how to convert a saved model to a TensorFlow Lite model for on-device machine learning on mobile, embedded, and IoT devices.

    +
    +

    40.99.1. Setup#

    +

    Import TensorFlow and other necessary libraries:

    +
    +
    +
    import matplotlib.pyplot as plt
    +import numpy as np
    +import PIL
    +import tensorflow as tf
    +
    +from tensorflow import keras
    +from tensorflow.keras import layers
    +from tensorflow.keras.models import Sequential
    +
    +
    +
    +
    +
    +
    +

    40.99.2. Download and explore the dataset#

    +

    This tutorial uses a dataset of about 3,700 photos of flowers. The dataset contains five sub-directories, one per class:

    +
    flower_photo/
    +  daisy/
    +  dandelion/
    +  roses/
    +  sunflowers/
    +  tulips/
    +
    +
    +
    +
    +
    import pathlib
    +
    +dataset_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/flower_photos.tgz"
    +data_dir = tf.keras.utils.get_file('flower_photos.tar', origin=dataset_url, extract=True)
    +data_dir = pathlib.Path(data_dir).with_suffix('')
    +
    +
    +
    +
    +

    After downloading, you should now have a copy of the dataset available. There are 3,670 total images:

    +
    +
    +
    image_count = len(list(data_dir.glob('*/*.jpg')))
    +print(image_count)
    +
    +
    +
    +
    +

    Here are some roses:

    +
    +
    +
    roses = list(data_dir.glob('roses/*'))
    +PIL.Image.open(str(roses[0]))
    +
    +
    +
    +
    +
    +
    +
    PIL.Image.open(str(roses[1]))
    +
    +
    +
    +
    +

    And some tulips:

    +
    +
    +
    tulips = list(data_dir.glob('tulips/*'))
    +PIL.Image.open(str(tulips[0]))
    +
    +
    +
    +
    +
    +
    +
    PIL.Image.open(str(tulips[1]))
    +
    +
    +
    +
    +
    +
    +

    40.99.3. Load data using a Keras utility#

    +

    Next, load these images off disk using the helpful tf.keras.utils.image_dataset_from_directory utility. This will take you from a directory of images on disk to a tf.data.Dataset in just a couple lines of code.

    +
    +

    40.99.3.1. Create a dataset#

    +

    Define some parameters for the loader:

    +
    +
    +
    batch_size = 32
    +img_height = 180
    +img_width = 180
    +
    +
    +
    +
    +

    It’s good practice to use a validation split when developing your model. Use 80% of the images for training and 20% for validation.

    +
    +
    +
    train_ds = tf.keras.utils.image_dataset_from_directory(
    +  data_dir,
    +  validation_split=0.2,
    +  subset="training",
    +  seed=123,
    +  image_size=(img_height, img_width),
    +  batch_size=batch_size)
    +
    +
    +
    +
    +
    +
    +
    val_ds = tf.keras.utils.image_dataset_from_directory(
    +  data_dir,
    +  validation_split=0.2,
    +  subset="validation",
    +  seed=123,
    +  image_size=(img_height, img_width),
    +  batch_size=batch_size)
    +
    +
    +
    +
    +

    You can find the class names in the class_names attribute on these datasets. These correspond to the directory names in alphabetical order.

    +
    +
    +
    class_names = train_ds.class_names
    +print(class_names)
    +
    +
    +
    +
    +
    +
    +
    +

    40.99.4. Visualize the data#

    +

    Here are the first nine images from the training dataset:

    +
    +
    +
    import matplotlib.pyplot as plt
    +
    +plt.figure(figsize=(10, 10))
    +for images, labels in train_ds.take(1):
    +  for i in range(9):
    +    ax = plt.subplot(3, 3, i + 1)
    +    plt.imshow(images[i].numpy().astype("uint8"))
    +    plt.title(class_names[labels[i]])
    +    plt.axis("off")
    +
    +
    +
    +
    +

    You will pass these datasets to the Keras Model.fit method for training later in this tutorial. If you like, you can also manually iterate over the dataset and retrieve batches of images:

    +
    +
    +
    for image_batch, labels_batch in train_ds:
    +  print(image_batch.shape)
    +  print(labels_batch.shape)
    +  break
    +
    +
    +
    +
    +

    The image_batch is a tensor of the shape (32, 180, 180, 3). This is a batch of 32 images of shape 180x180x3 (the last dimension refers to color channels RGB). The label_batch is a tensor of the shape (32,), these are corresponding labels to the 32 images.

    +

    You can call .numpy() on the image_batch and labels_batch tensors to convert them to a numpy.ndarray.

    +
    +
    +

    40.99.5. Configure the dataset for performance#

    +

    Make sure to use buffered prefetching, so you can yield data from disk without having I/O become blocking. These are two important methods you should use when loading data:

    +
      +
    • Dataset.cache keeps the images in memory after they’re loaded off disk during the first epoch. This will ensure the dataset does not become a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this method to create a performant on-disk cache.

    • +
    • Dataset.prefetch overlaps data preprocessing and model execution while training.

    • +
    +
    +
    +
    AUTOTUNE = tf.data.AUTOTUNE
    +
    +train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
    +val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
    +
    +
    +
    +
    +
    +
    +

    40.99.6. Standardize the data#

    +

    The RGB channel values are in the [0, 255] range. This is not ideal for a neural network; in general you should seek to make your input values small.

    +

    Here, you will standardize values to be in the [0, 1] range by using tf.keras.layers.Rescaling:

    +
    +
    +
    normalization_layer = layers.Rescaling(1./255)
    +
    +
    +
    +
    +

    There are two ways to use this layer. You can apply it to the dataset by calling Dataset.map:

    +
    +
    +
    normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
    +image_batch, labels_batch = next(iter(normalized_ds))
    +first_image = image_batch[0]
    +# Notice the pixel values are now in `[0,1]`.
    +print(np.min(first_image), np.max(first_image))
    +
    +
    +
    +
    +

    Or, you can include the layer inside your model definition, which can simplify deployment. Use the second approach here.

    +

    Note: You previously resized images using the image_size argument of tf.keras.utils.image_dataset_from_directory. If you want to include the resizing logic in your model as well, you can use the tf.keras.layers.Resizing layer.

    +
    +
    +

    40.99.7. A basic Keras model#

    +
    +

    40.99.7.1. Create the model#

    +

    The Keras Sequential model consists of three convolution blocks (tf.keras.layers.Conv2D) with a max pooling layer (tf.keras.layers.MaxPooling2D) in each of them. There’s a fully-connected layer (tf.keras.layers.Dense) with 128 units on top of it that is activated by a ReLU activation function ('relu'). This model has not been tuned for high accuracy; the goal of this tutorial is to show a standard approach.

    +
    +
    +
    num_classes = len(class_names)
    +
    +model = Sequential([
    +  layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    +  layers.Conv2D(16, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(32, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(64, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Flatten(),
    +  layers.Dense(128, activation='relu'),
    +  layers.Dense(num_classes)
    +])
    +
    +
    +
    +
    +
    +
    +

    40.99.7.2. Compile the model#

    +

    For this tutorial, choose the tf.keras.optimizers.Adam optimizer and tf.keras.losses.SparseCategoricalCrossentropy loss function. To view training and validation accuracy for each training epoch, pass the metrics argument to Model.compile.

    +
    +
    +
    model.compile(optimizer='adam',
    +              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    +              metrics=['accuracy'])
    +
    +
    +
    +
    +
    +
    +

    40.99.7.3. Model summary#

    +

    View all the layers of the network using the Keras Model.summary method:

    +
    +
    +
    model.summary()
    +
    +
    +
    +
    +
    +
    +

    40.99.7.4. Train the model#

    +

    Train the model for 10 epochs with the Keras Model.fit method:

    +
    +
    +
    epochs=10
    +history = model.fit(
    +  train_ds,
    +  validation_data=val_ds,
    +  epochs=epochs
    +)
    +
    +
    +
    +
    +
    +
    +
    +

    40.99.8. Visualize training results#

    +

    Create plots of the loss and accuracy on the training and validation sets:

    +
    +
    +
    acc = history.history['accuracy']
    +val_acc = history.history['val_accuracy']
    +
    +loss = history.history['loss']
    +val_loss = history.history['val_loss']
    +
    +epochs_range = range(epochs)
    +
    +plt.figure(figsize=(8, 8))
    +plt.subplot(1, 2, 1)
    +plt.plot(epochs_range, acc, label='Training Accuracy')
    +plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    +plt.legend(loc='lower right')
    +plt.title('Training and Validation Accuracy')
    +
    +plt.subplot(1, 2, 2)
    +plt.plot(epochs_range, loss, label='Training Loss')
    +plt.plot(epochs_range, val_loss, label='Validation Loss')
    +plt.legend(loc='upper right')
    +plt.title('Training and Validation Loss')
    +plt.show()
    +
    +
    +
    +
    +

    The plots show that training accuracy and validation accuracy are off by large margins, and the model has achieved only around 60% accuracy on the validation set.

    +

    The following tutorial sections show how to inspect what went wrong and try to increase the overall performance of the model.

    +
    +
    +

    40.99.9. Overfitting#

    +

    In the plots above, the training accuracy is increasing linearly over time, whereas validation accuracy stalls around 60% in the training process. Also, the difference in accuracy between training and validation accuracy is noticeable—a sign of overfitting.

    +

    When there are a small number of training examples, the model sometimes learns from noises or unwanted details from training examples—to an extent that it negatively impacts the performance of the model on new examples. This phenomenon is known as overfitting. It means that the model will have a difficult time generalizing on a new dataset.

    +

    There are multiple ways to fight overfitting in the training process. In this tutorial, you’ll use data augmentation and add dropout to your model.

    +
    +
    +

    40.99.10. Data augmentation#

    +

    Overfitting generally occurs when there are a small number of training examples. Data augmentation takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.

    +

    You will implement data augmentation using the following Keras preprocessing layers: tf.keras.layers.RandomFlip, tf.keras.layers.RandomRotation, and tf.keras.layers.RandomZoom. These can be included inside your model like other layers, and run on the GPU.

    +
    +
    +
    data_augmentation = keras.Sequential(
    +  [
    +    layers.RandomFlip("horizontal",
    +                      input_shape=(img_height,
    +                                  img_width,
    +                                  3)),
    +    layers.RandomRotation(0.1),
    +    layers.RandomZoom(0.1),
    +  ]
    +)
    +
    +
    +
    +
    +

    Visualize a few augmented examples by applying data augmentation to the same image several times:

    +
    +
    +
    plt.figure(figsize=(10, 10))
    +for images, _ in train_ds.take(1):
    +  for i in range(9):
    +    augmented_images = data_augmentation(images)
    +    ax = plt.subplot(3, 3, i + 1)
    +    plt.imshow(augmented_images[0].numpy().astype("uint8"))
    +    plt.axis("off")
    +
    +
    +
    +
    +

    You will add data augmentation to your model before training in the next step.

    +
    +
    +

    40.99.11. Dropout#

    +

    Another technique to reduce overfitting is to introduce dropout regularization to the network.

    +

    When you apply dropout to a layer, it randomly drops out (by setting the activation to zero) a number of output units from the layer during the training process. Dropout takes a fractional number as its input value, in the form such as 0.1, 0.2, 0.4, etc. This means dropping out 10%, 20% or 40% of the output units randomly from the applied layer.

    +

    Create a new neural network with tf.keras.layers.Dropout before training it using the augmented images:

    +
    +
    +
    model = Sequential([
    +  data_augmentation,
    +  layers.Rescaling(1./255),
    +  layers.Conv2D(16, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(32, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(64, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Dropout(0.2),
    +  layers.Flatten(),
    +  layers.Dense(128, activation='relu'),
    +  layers.Dense(num_classes, name="outputs")
    +])
    +
    +
    +
    +
    +
    +
    +

    40.99.12. Compile and train the model#

    +
    +
    +
    model.compile(optimizer='adam',
    +              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    +              metrics=['accuracy'])
    +
    +
    +
    +
    +
    +
    +
    model.summary()
    +
    +
    +
    +
    +
    +
    +
    epochs = 15
    +history = model.fit(
    +  train_ds,
    +  validation_data=val_ds,
    +  epochs=epochs
    +)
    +
    +
    +
    +
    +
    +
    +

    40.99.13. Visualize training results#

    +

    After applying data augmentation and tf.keras.layers.Dropout, there is less overfitting than before, and training and validation accuracy are closer aligned:

    +
    +
    +
    acc = history.history['accuracy']
    +val_acc = history.history['val_accuracy']
    +
    +loss = history.history['loss']
    +val_loss = history.history['val_loss']
    +
    +epochs_range = range(epochs)
    +
    +plt.figure(figsize=(8, 8))
    +plt.subplot(1, 2, 1)
    +plt.plot(epochs_range, acc, label='Training Accuracy')
    +plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    +plt.legend(loc='lower right')
    +plt.title('Training and Validation Accuracy')
    +
    +plt.subplot(1, 2, 2)
    +plt.plot(epochs_range, loss, label='Training Loss')
    +plt.plot(epochs_range, val_loss, label='Validation Loss')
    +plt.legend(loc='upper right')
    +plt.title('Training and Validation Loss')
    +plt.show()
    +
    +
    +
    +
    +
    +
    +

    40.99.14. Predict on new data#

    +

    Use your model to classify an image that wasn’t included in the training or validation sets.

    +

    Note: Data augmentation and dropout layers are inactive at inference time.

    +
    +
    +
    sunflower_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/592px-Red_sunflower.jpg"
    +sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)
    +
    +img = tf.keras.utils.load_img(
    +    sunflower_path, target_size=(img_height, img_width)
    +)
    +img_array = tf.keras.utils.img_to_array(img)
    +img_array = tf.expand_dims(img_array, 0) # Create a batch
    +
    +predictions = model.predict(img_array)
    +score = tf.nn.softmax(predictions[0])
    +
    +print(
    +    "This image most likely belongs to {} with a {:.2f} percent confidence."
    +    .format(class_names[np.argmax(score)], 100 * np.max(score))
    +)
    +
    +
    +
    +
    +
    +
    +

    40.99.15. Use TensorFlow Lite#

    +

    TensorFlow Lite is a set of tools that enables on-device machine learning by helping developers run their models on mobile, embedded, and edge devices.

    +
    +

    40.99.15.1. Convert the Keras Sequential model to a TensorFlow Lite model#

    +

    To use the trained model with on-device applications, first convert it to a smaller and more efficient model format called a TensorFlow Lite model.

    +

    In this example, take the trained Keras Sequential model and use tf.lite.TFLiteConverter.from_keras_model to generate a TensorFlow Lite model:

    +
    +
    +
    # Convert the model.
    +converter = tf.lite.TFLiteConverter.from_keras_model(model)
    +tflite_model = converter.convert()
    +
    +# Save the model.
    +with open('model.tflite', 'wb') as f:
    +  f.write(tflite_model)
    +
    +
    +
    +
    +

    The TensorFlow Lite model you saved in the previous step can contain several function signatures. The Keras model converter API uses the default signature automatically. Learn more about TensorFlow Lite signatures.

    +
    +
    +

    40.99.15.2. Run the TensorFlow Lite model#

    +

    You can access the TensorFlow Lite saved model signatures in Python via the tf.lite.Interpreter class.

    +

    Load the model with the Interpreter:

    +
    +
    +
    TF_MODEL_FILE_PATH = 'model.tflite' # The default path to the saved TensorFlow Lite model
    +
    +interpreter = tf.lite.Interpreter(model_path=TF_MODEL_FILE_PATH)
    +
    +
    +
    +
    +

    Print the signatures from the converted model to obtain the names of the inputs (and outputs):

    +
    +
    +
    interpreter.get_signature_list()
    +
    +
    +
    +
    +

    In this example, you have one default signature called serving_default. In addition, the name of the 'inputs' is 'sequential_1_input', while the 'outputs' are called 'outputs'. You can look up these first and last Keras layer names when running Model.summary, as demonstrated earlier in this tutorial.

    +

    Now you can test the loaded TensorFlow Model by performing inference on a sample image with tf.lite.Interpreter.get_signature_runner by passing the signature name as follows:

    +
    +
    +
    classify_lite = interpreter.get_signature_runner('serving_default')
    +classify_lite
    +
    +
    +
    +
    +

    Similar to what you did earlier in the tutorial, you can use the TensorFlow Lite model to classify images that weren’t included in the training or validation sets.

    +

    You have already tensorized that image and saved it as img_array. Now, pass it to the first argument (the name of the 'inputs') of the loaded TensorFlow Lite model (predictions_lite), compute softmax activations, and then print the prediction for the class with the highest computed probability.

    +
    +
    +
    predictions_lite = classify_lite(sequential_1_input=img_array)['outputs']
    +score_lite = tf.nn.softmax(predictions_lite)
    +
    +
    +
    +
    +
    +
    +
    print(
    +    "This image most likely belongs to {} with a {:.2f} percent confidence."
    +    .format(class_names[np.argmax(score_lite)], 100 * np.max(score_lite))
    +)
    +
    +
    +
    +
    +

    The prediction generated by the lite model should be almost identical to the predictions generated by the original model:

    +
    +
    +
    print(np.max(np.abs(predictions - predictions_lite)))
    +
    +
    +
    +
    +

    Of the five classes—'daisy', 'dandelion', 'roses', 'sunflowers', and 'tulips'—the model should predict the image belongs to sunflowers, which is the same result as before the TensorFlow Lite conversion.

    +
    +
    +
    +

    40.99.16. Acknowledgments#

    +

    Thanks to Tensorflow for creating the tutorial notebook Image classification. It inspires the majority of the content in this chapter.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html b/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html index 7dc0f2e259..6634627100 100644 --- a/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html +++ b/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html @@ -6,7 +6,7 @@ - 40.97. Object Recognition in Images using CNN — Ocademy Open Machine Learning Book + 40.98. Object Recognition in Images using CNN — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  991. + + 40.89. Introduction + +
  992. - 40.89. Study the solvers + 40.90. Study the solvers
  993. - 40.90. Build classification models + 40.91. Build classification models
  994. - 40.91. Build Classification Model + 40.92. Build Classification Model
  995. - 40.92. Parameter play + 40.93. Parameter play
  996. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  997. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  998. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  999. +
  1000. + + 40.99. Image classification
  1001. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1002. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1003. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1004. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1005. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1006. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1007. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1008. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1009. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1010. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1011. - 40.116. Art by gan + 40.118. Art by gan
  1012. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1013. +
  1014. + + 40.121. Comparing edge-based and region-based segmentation
  1015. - 40.119. Summary + 40.122. Summary
  1016. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1017. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1018. +
  1019. + + 40.126. Getting Start NLP with classification task
  1020. @@ -1600,63 +1620,63 @@

    Ocademy Open Machine Learning Book

    @@ -1680,63 +1700,63 @@

    Contents

    @@ -1750,18 +1770,18 @@

    Contents

    -

    40.97. Object Recognition in Images using CNN#

    +

    40.98. Object Recognition in Images using CNN#

    -

    40.97.1. About Dataset#

    +

    40.98.1. About Dataset#

    CIFAR-10 is an established computer-vision dataset used for object recognition. It is a subset of the 80 million tiny images dataset and consists of 60,000 32x32 color images containing one of 10 object classes, with 6000 images per class. It was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

    cifar10

    -

    40.97.2. Table of Contents#

    +

    40.98.2. Table of Contents#

    -

    40.97.2.1. Import Libaries#

    +

    40.98.2.1. Import Libaries#

    import os
    @@ -1784,7 +1804,7 @@ 

    40.97.2.1. Import Libaries -

    40.97.2.2. Exploring the Data#

    +

    40.98.2.2. Exploring the Data#

    Extract from tar archive file

    The dataset is extracted to the directory tmp/object-recognition-in-images-using-cnn/cifar10. It contains 2 folders train and test, containing the training set (50000 images) and test set (10000 images) respectively. Each of them contains 10 folders, one for each class of images. Let’s verify this using os.listdir.

    @@ -1955,7 +1975,7 @@

    40.97.2.2. Exploring the Data -

    40.97.3. Training and Validation Datasets#

    +

    40.98.3. Training and Validation Datasets#

    While building real world machine learning models, it is quite common to split the dataset into 3 parts:

    1. Training set - used to train the model i.e. compute the loss and adjust the weights of the model using gradient descent.

    2. @@ -2015,7 +2035,7 @@

      40.97.3. Training and Validation Dataset

    -

    40.97.3.1. training data single batch images#

    +

    40.98.3.1. training data single batch images#

    show_images_batch(train_dl)
    @@ -2033,9 +2053,9 @@ 

    40.97.3.1. training data single batch im

    -

    40.97.4. Convolutional Neural Network#

    +

    40.98.4. Convolutional Neural Network#

    -

    40.97.4.1. Defining the Model (Convolutional Neural Network)#

    +

    40.98.4.1. Defining the Model (Convolutional Neural Network)#

    The 2D convolution is a fairly simple operation at heart: you start with a kernel, which is simply a small matrix of weights. This kernel “slides” over the 2D input data, performing an elementwise multiplication with the part of the input it is currently on, and then summing up the results into a single output pixel.

    Let us implement a convolution operation on a 1 channel image with a 3x3 kernel.

    @@ -2244,7 +2264,7 @@

    40.97.4.1. Defining the Model (Convoluti

    -

    40.97.5. Training the Model#

    +

    40.98.5. Training the Model#

    In this mode, the result of every computation will have requires_grad=False, even when the inputs have requires_grad=True.

    @@ -2360,7 +2380,7 @@

    40.97.5. Training the Model -

    40.97.6. Testing with individual images#

    +

    40.98.6. Testing with individual images#

    test_dataset = ImageFolder(data_dir+'/test', transform=ToTensor())
    @@ -2465,7 +2485,7 @@ 

    40.97.6. Testing with individual images<

    -

    40.97.7. Acknowledgments#

    +

    40.98.7. Acknowledgments#

    Thanks to datajameson for creating the Kaggle notebook Cifar-10 Object Recognition(CNN) Explained. It inspires the majority of the content in this chapter.

    @@ -2507,13 +2527,13 @@

    40.97.7. Acknowledgments

    previous

    -

    40.95. Sign Language Digits Classification with CNN

    +

    40.96. Sign Language Digits Classification with CNN

    - +

    next

    -

    40.98. Intro to TensorFlow for Deep Learning

    +

    40.99. Image classification

    diff --git a/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html b/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html index f5cb56e29c..1c7cb30616 100644 --- a/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html +++ b/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html @@ -6,7 +6,7 @@ - 40.95. Sign Language Digits Classification with CNN — Ocademy Open Machine Learning Book + 40.96. Sign Language Digits Classification with CNN — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1021. + + 40.89. Introduction + +
  1022. - 40.89. Study the solvers + 40.90. Study the solvers
  1023. - 40.90. Build classification models + 40.91. Build classification models
  1024. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1025. - 40.92. Parameter play + 40.93. Parameter play
  1026. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1027. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1028. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1029. +
  1030. + + 40.99. Image classification
  1031. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1032. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1033. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1034. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1035. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1036. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1037. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1038. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1039. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1040. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1041. - 40.116. Art by gan + 40.118. Art by gan
  1042. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1043. +
  1044. + + 40.121. Comparing edge-based and region-based segmentation
  1045. - 40.119. Summary + 40.122. Summary
  1046. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1047. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1048. +
  1049. + + 40.126. Getting Start NLP with classification task
  1050. @@ -1600,69 +1620,69 @@

    Ocademy Open Machine Learning Book

    @@ -1686,69 +1706,69 @@

    Contents

    @@ -1762,9 +1782,9 @@

    Contents

    -

    40.95. Sign Language Digits Classification with CNN#

    +

    40.96. Sign Language Digits Classification with CNN#

    -

    40.95.1. Load libraries#

    +

    40.96.1. Load libraries#

    import numpy as np
    @@ -1783,7 +1803,7 @@ 

    40.95.1. Load libraries -

    40.95.2. Load data from numpy file#

    +

    40.96.2. Load data from numpy file#

    X = np.load(
    @@ -1848,7 +1868,7 @@ 

    40.95.2. Load data from numpy file

    -

    40.95.3. Preparing Data#

    +

    40.96.3. Preparing Data#

    We will re-organize data to match labels and images correctly.

    -

    40.95.6. Data Augmentation With Keras API#

    +

    40.96.6. Data Augmentation With Keras API#

    Data augmentation is a technique which generates new training samples without changing labels of images. To generate new samples, some features of images are changed like brightness, rotation or zoom level. To apply it, ImageDataGenerator class is used in KERAS API. This class refers parameters and changes images. After complete the changing process, it returns new samples. This is important! ImageDataGenerator returns only new images. It means that out training dataset consists of different from original dataset. It provides more generalizaton for model anf of course it is desirable.

    So, in implementation of CNN part, we will use data augmentation and we will change rotation and zoom level of images. we chose these parameters with a simple logic. Think of test data that we might encounter in real life. we don’t always hold our hand at 90 degrees. So it is quite possible that we have a rotational change when using sign language. Likewise, the zoom level of the photo to be taken may also change. So we thought we could train my model better by creating a more general data set with these two parameters. Let’s take a closer look at these parameters.

      @@ -1961,7 +1981,7 @@

      40.95.6. Data Augmentation With Keras AP

    -

    40.95.7. Changin zoom level#

    +

    40.96.7. Changin zoom level#

    datagen = ImageDataGenerator(zoom_range=0.5)
    @@ -1973,7 +1993,7 @@ 

    40.95.7. Changin zoom level -

    40.95.8. Changing rotaion#

    +

    40.96.8. Changing rotaion#

    datagen = ImageDataGenerator(rotation_range=45)
    @@ -1985,7 +2005,7 @@ 

    40.95.8. Changing rotaion -

    40.95.9. Changing rotaion, zoom#

    +

    40.96.9. Changing rotaion, zoom#

    datagen = ImageDataGenerator(zoom_range=0.5, rotation_range=45)
    @@ -1997,7 +2017,7 @@ 

    40.95.9. Changing rotaion, zoom

    -

    40.95.10. Model Implementation#

    +

    40.96.10. Model Implementation#

    model = Sequential()
    @@ -2047,7 +2067,7 @@ 

    40.95.10. Model Implementation -

    40.95.11. Conclusion#

    +

    40.96.11. Conclusion#

    plt.figure(figsize=(10, 5))
    @@ -2080,7 +2100,7 @@ 

    40.95.11. Conclusion -

    40.96. Acknowledgments#

    +

    40.97. Acknowledgments#

    Thanks to Görkem Günay for creating sign-language-digits-classification-with-cnn. It inspires the majority of the content in this chapter.

    @@ -2121,13 +2141,13 @@

    40.96. Acknowledgments

    previous

    -

    40.93. How to choose cnn architecture mnist

    +

    40.94. How to choose cnn architecture mnist

    next

    -

    40.97. Object Recognition in Images using CNN

    +

    40.98. Object Recognition in Images using CNN

    diff --git a/assignments/deep-learning/difussion-model/denoising-difussion-model.html b/assignments/deep-learning/difussion-model/denoising-difussion-model.html index 0862a234be..786f14823f 100644 --- a/assignments/deep-learning/difussion-model/denoising-difussion-model.html +++ b/assignments/deep-learning/difussion-model/denoising-difussion-model.html @@ -6,7 +6,7 @@ - 40.119. Summary — Ocademy Open Machine Learning Book + 40.122. Summary — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1051. + + 40.89. Introduction + +
  1052. - 40.89. Study the solvers + 40.90. Study the solvers
  1053. - 40.90. Build classification models + 40.91. Build classification models
  1054. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1055. - 40.92. Parameter play + 40.93. Parameter play
  1056. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1057. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1058. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1059. +
  1060. + + 40.99. Image classification
  1061. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1062. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1063. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1064. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1065. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1066. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1067. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1068. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1069. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1070. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1071. - 40.116. Art by gan + 40.118. Art by gan
  1072. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1073. +
  1074. + + 40.121. Comparing edge-based and region-based segmentation
  1075. - 40.119. Summary + 40.122. Summary
  1076. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1077. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1078. +
  1079. + + 40.126. Getting Start NLP with classification task
  1080. @@ -1600,52 +1620,52 @@

    Ocademy Open Machine Learning Book

    @@ -1669,52 +1689,52 @@

    Contents

    @@ -1728,11 +1748,11 @@

    Contents

    -

    40.119. Summary#

    +

    40.122. Summary#

    This notebook shows how to train Denoising Difussion Models.

    The code has been adapted and curated from this tutorial by Andras Beres.

    -

    40.119.1. Hyperparams#

    +

    40.122.1. Hyperparams#

    import numpy as np
    @@ -1763,7 +1783,7 @@ 

    40.119.1. Hyperparams -

    40.119.2. Dataset#

    +

    40.122.2. Dataset#

    def preprocess_image(data):
    @@ -1803,11 +1823,11 @@ 

    40.119.2. Dataset

    -

    40.119.3. Denoising Network#

    +

    40.122.3. Denoising Network#

    We will use the Residual U-Net model.

    -

    40.119.4. TODO: can we use something simpler?#

    +

    40.122.4. TODO: can we use something simpler?#

    embedding_max_frequency = 1000.0
    @@ -1833,7 +1853,7 @@ 

    40.119.4. TODO: can we use something sim

    -

    40.119.5. Custom Residual Network#

    +

    40.122.5. Custom Residual Network#

    def get_network_custom(image_size, block_depth=17, output_channels=1):
    @@ -1864,7 +1884,7 @@ 

    40.119.5. Custom Residual Network

    -

    40.119.6. Residual U-Net#

    +

    40.122.6. Residual U-Net#

    widths = [32, 64, 96, 128]
    @@ -1942,7 +1962,7 @@ 

    40.119.6. Residual U-Net -

    40.119.7. Difussion Model#

    +

    40.122.7. Difussion Model#

    class DiffusionModel(tf.keras.Model):
    @@ -2059,7 +2079,7 @@ 

    40.119.7. Difussion Model -

    40.119.8. Complete Model#

    +

    40.122.8. Complete Model#

    Chose one of the residual networks.

    @@ -2191,7 +2211,7 @@

    40.119.8. Complete Model -

    40.119.9. Visualize#

    +

    40.122.9. Visualize#

    num_rows = 2
    @@ -2220,7 +2240,7 @@ 

    40.119.9. Visualize

    -

    40.119.10. Acknowledgments#

    +

    40.122.10. Acknowledgments#

    Thanks to Maciej Skorski for creating Denoising Difussion Model. It inspires the majority of the content in this chapter.

    @@ -2258,17 +2278,17 @@

    40.119.10. Acknowledgments

    previous

    -

    40.118. Generative Adversarial Networks (GANs)

    +

    40.121. Comparing edge-based and region-based segmentation

    next

    -

    40.120. Car Object Detection

    +

    40.123. Car Object Detection

    diff --git a/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html b/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html index 43814b4075..419886796d 100644 --- a/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html +++ b/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html @@ -6,7 +6,7 @@ - 40.115. DQN On Foreign Exchange Market — Ocademy Open Machine Learning Book + 40.117. DQN On Foreign Exchange Market — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1081. + + 40.89. Introduction + +
  1082. - 40.89. Study the solvers + 40.90. Study the solvers
  1083. - 40.90. Build classification models + 40.91. Build classification models
  1084. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1085. - 40.92. Parameter play + 40.93. Parameter play
  1086. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1087. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1088. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1089. +
  1090. + + 40.99. Image classification
  1091. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1092. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1093. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1094. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1095. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1096. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1097. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1098. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1099. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1100. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1101. - 40.116. Art by gan + 40.118. Art by gan
  1102. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1103. +
  1104. + + 40.121. Comparing edge-based and region-based segmentation
  1105. - 40.119. Summary + 40.122. Summary
  1106. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1107. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1108. +
  1109. + + 40.126. Getting Start NLP with classification task
  1110. @@ -1600,27 +1620,27 @@

    Ocademy Open Machine Learning Book

    @@ -1644,27 +1664,27 @@

    Contents

    @@ -1678,9 +1698,9 @@

    Contents

    -

    40.115. DQN On Foreign Exchange Market#

    +

    40.117. DQN On Foreign Exchange Market#

    -

    40.115.1. Load dataset#

    +

    40.117.1. Load dataset#

    # This Python 3 environment comes with many helpful analytics libraries installed
    @@ -1884,7 +1904,7 @@ 

    40.115.1. Load dataset -

    40.115.2. Define envireonment#

    +

    40.117.2. Define envireonment#

    class Environment:
    @@ -1977,7 +1997,7 @@ 

    40.115.2. Define envireonment -

    40.115.3. Agent class#

    +

    40.117.3. Agent class#

    # Deep Q-learning Agent
    @@ -2041,7 +2061,7 @@ 

    40.115.3. Agent class -

    40.115.4. Train the DQN#

    +

    40.117.4. Train the DQN#

    if __name__ == "__main__":
    @@ -2498,7 +2518,7 @@ 

    40.115.4. Train the DQN -

    40.115.5. Acknowledgement#

    +

    40.117.5. Acknowledgement#

    Thanks to emrebulbul23 for creating DQN on foreign exchange market. It inspired the majority of the content in this article.

    @@ -2540,13 +2560,13 @@

    40.115.5. Acknowledgement

    previous

    -

    40.110. NN Classify 15 Fruits Assignment

    +

    40.112. NN Classify 15 Fruits Assignment

    next

    -

    40.116. Art by gan

    +

    40.118. Art by gan

    diff --git a/assignments/deep-learning/gan/art-by-gan.html b/assignments/deep-learning/gan/art-by-gan.html index 5487735130..365a38cf65 100644 --- a/assignments/deep-learning/gan/art-by-gan.html +++ b/assignments/deep-learning/gan/art-by-gan.html @@ -6,7 +6,7 @@ - 40.116. Art by gan — Ocademy Open Machine Learning Book + 40.118. Art by gan — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1111. + + 40.89. Introduction + +
  1112. - 40.89. Study the solvers + 40.90. Study the solvers
  1113. - 40.90. Build classification models + 40.91. Build classification models
  1114. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1115. - 40.92. Parameter play + 40.93. Parameter play
  1116. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1117. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1118. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1119. +
  1120. + + 40.99. Image classification
  1121. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1122. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1123. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1124. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1125. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1126. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1127. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1128. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1129. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1130. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1131. - 40.116. Art by gan + 40.118. Art by gan
  1132. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1133. +
  1134. + + 40.121. Comparing edge-based and region-based segmentation
  1135. - 40.119. Summary + 40.122. Summary
  1136. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1137. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1138. +
  1139. + + 40.126. Getting Start NLP with classification task
  1140. @@ -1600,79 +1620,79 @@

    Ocademy Open Machine Learning Book

    @@ -1696,79 +1716,79 @@

    Contents

    @@ -1782,7 +1802,7 @@

    Contents

    -

    40.116. Art by gan#

    +

    40.118. Art by gan#

    In this Notebook, we will build a Generative Adversarial Network (GAN) to illustrate the workings of a Generative Adversarial Network and to generate images. Generative modelling is an unsupervised learning task in machine learning that involves automatically discovering and learning the regularities or patterns in input data. As GANs work by identifying the patterns in the data, we will be using oil painted portraits. However, glancing over the dataset gives me an idea that it is going to be a long shot. The orientation and poses in the dataset vary vastly. Keeping that in mind we are still willing to give it a try. Only because portraits are our jam. We basically love oil painted portraits.

    @@ -1819,11 +1839,11 @@

    40.116. Art by gan

    -

    40.116.1. Data loading & Prepreprocessing#

    +

    40.118.1. Data loading & Prepreprocessing#

    For this project, We are using .jpg files of images of portraits. The dataset includes various artists. We are loading data as TensorFlow.Dataset, with a batch size of 64. We have reduced the image size to (64,64), presuming, it will be computationally less taxing on the GPU.

    -

    40.116.2. Loading the data#

    +

    40.118.2. Loading the data#

    import os
    @@ -1891,7 +1911,7 @@ 

    40.116.2. Loading the data -

    40.116.3. Preprocessing the data#

    +

    40.118.3. Preprocessing the data#

    Normalization: For the data normalization, we will convert the data in the range between 0 to 1. This helps in fast convergence and makes it easy for the computer to do calculations faster. Each of the three RGB channels in the image can take pixel values ranging from 0 to 256. Dividing it by 255 converts it to a range between 0 to 1.

    -

    40.116.4. Building GAN#

    +

    40.118.4. Building GAN#

    GANs employs deep learning methods. It is a dexterous way of posing the problem as a supervised learning problem. It is composed of two models namely Generator and a Discriminator.

    Two models are trained simultaneously by an adversarial process. A generator (“the artist”) learns to create images that look like the dataset while a discriminator (“the art critic”) learns to tell real images apart from fakes.

    During training, the generator progressively becomes better at creating images that look real, while the discriminator becomes better at telling them apart. The process reaches equilibrium when the discriminator can no longer distinguish real images from fakes.

    @@ -1922,7 +1942,7 @@

    40.116.4. Building GAN -

    40.116.5. The generator#

    +

    40.118.5. The generator#

    The Generator is a neural network that generates the images. It takes in a random noise as seed and outputs sample data. As the GAN’s training progresses the Generator output becomes more and more like the training set, as the Generator tries to improve the output so that the discrimination passes the output as a real image.

    Following steps are involved in the models building

      @@ -1931,7 +1951,7 @@

      40.116.5. The generator -

      40.116.6. Building a generator#

      +

      40.118.6. Building a generator#

      latent_dim = 100
      @@ -2046,12 +2066,12 @@ 

      40.116.6. Building a generator -

      40.116.7. The discriminator#

      +

      40.118.7. The discriminator#

      In GANs the Generator works along with the Discriminator.

      The Discriminator network decided whether the data is fake aka created by the Generator or real i.e. from the original input data. To do so it applies a binary classification method using a sigmoid function to get an output in the range of 0 to 1.

    -

    40.116.8. Building a discriminator#

    +

    40.118.8. Building a discriminator#

    discriminator = Sequential()
    @@ -2167,7 +2187,7 @@ 

    40.116.8. Building a discriminatorLet us proceed and build the GAN architecture to train.

    -

    40.116.9. GAN compilation#

    +

    40.118.9. GAN compilation#

    GAN training has two sections:

    Section 1: The Discriminator is trained while the Generator is idle. The discriminator is trained real images and random noise (from an untrained generator). This trains it to tell between fake and real. This accommodates the discriminator to predict as fakes.

    @@ -2244,7 +2264,7 @@

    40.116.9. GAN compilation -

    40.116.10. Training the model#

    +

    40.118.10. Training the model#

    Calling the above created GAN function trains the generator and discriminator simultaneously. To implement the GAN we must define:

      @@ -2303,7 +2323,7 @@

      40.116.10. Training the model -

      40.116.11. Ploting the Learning Curves#

      +

      40.118.11. Ploting the Learning Curves#

      import pandas as pd
      @@ -2320,7 +2340,7 @@ 

      40.116.11. Ploting the Learning Curves

    -

    40.116.12. AI makes artwork#

    +

    40.118.12. AI makes artwork#

    # Number of images to be generate
    @@ -2366,12 +2386,12 @@ 

    40.116.12. AI makes artwork -

    40.116.13. Conculsion#

    +

    40.118.13. Conculsion#

    In the evaluation of the model: We can see that the GAN picked up the patterns in the portraits. It worked quite well. For further improvement, as GANs are notorious for being data-hungry, I would consider increasing the dataset. There are many inconsistencies in the data which is rather complicated for the GAN to learn. Cleaning the data with some consistencies in the portrait styles would certainly help. Training it longer i.e. for more epochs would also help. Lastly, one can always strive to make a more robust architecture for the Neural Networks.

    -

    40.117. Acknowledgments#

    +

    40.119. Acknowledgments#

    Thanks to Karnika Kapoor for creating art-by-gan. It inspires the majority of the content in this chapter.

    @@ -2412,13 +2432,13 @@

    40.117. Acknowledgments

    previous

    -

    40.115. DQN On Foreign Exchange Market

    +

    40.117. DQN On Foreign Exchange Market

    next

    -

    40.118. Generative Adversarial Networks (GANs)

    +

    40.120. Generative Adversarial Networks (GANs)

    diff --git a/assignments/deep-learning/gan/gan-introduction.html b/assignments/deep-learning/gan/gan-introduction.html index 4916345a13..44a7df05d7 100644 --- a/assignments/deep-learning/gan/gan-introduction.html +++ b/assignments/deep-learning/gan/gan-introduction.html @@ -6,7 +6,7 @@ - 40.118. Generative Adversarial Networks (GANs) — Ocademy Open Machine Learning Book + 40.120. Generative Adversarial Networks (GANs) — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1141. + + 40.89. Introduction + +
  1142. - 40.89. Study the solvers + 40.90. Study the solvers
  1143. - 40.90. Build classification models + 40.91. Build classification models
  1144. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1145. - 40.92. Parameter play + 40.93. Parameter play
  1146. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1147. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1148. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1149. +
  1150. + + 40.99. Image classification
  1151. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1152. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1153. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1154. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1155. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1156. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1157. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1158. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1159. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1160. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1161. - 40.116. Art by gan + 40.118. Art by gan
  1162. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1163. +
  1164. + + 40.121. Comparing edge-based and region-based segmentation
  1165. - 40.119. Summary + 40.122. Summary
  1166. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1167. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1168. +
  1169. + + 40.126. Getting Start NLP with classification task
  1170. @@ -1600,91 +1620,91 @@

    Ocademy Open Machine Learning Book

    @@ -1708,91 +1728,91 @@

    Contents

    @@ -1806,9 +1826,9 @@

    Contents

    -

    40.118. Generative Adversarial Networks (GANs)#

    +

    40.120. Generative Adversarial Networks (GANs)#

    -

    40.118.1. Loading data#

    +

    40.120.1. Loading data#

    import os
    @@ -1843,7 +1863,7 @@ 

    40.118.1. Loading data -

    40.118.2. Importing the libraries#

    +

    40.120.2. Importing the libraries#

    from __future__ import print_function
    @@ -1872,7 +1892,7 @@ 

    40.118.2. Importing the libraries

    -

    40.118.3. Some dogs#

    +

    40.120.3. Some dogs#

    The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world.

    @@ -1895,7 +1915,7 @@

    40.118.3. Some dogs

    -

    40.118.4. Image Preprocessing#

    +

    40.120.4. Image Preprocessing#

    batch_size = 32
    @@ -1930,7 +1950,7 @@ 

    40.118.4. Image Preprocessing -

    40.118.5. Weights#

    +

    40.120.5. Weights#

    def weights_init(m):
    @@ -1946,7 +1966,7 @@ 

    40.118.5. Weights

    -

    40.118.6. Generator#

    +

    40.120.6. Generator#

    class G(nn.Module):
    @@ -1984,7 +2004,7 @@ 

    40.118.6. Generator

    -

    40.118.7. Discriminator#

    +

    40.120.7. Discriminator#

    class D(nn.Module):
    @@ -2017,7 +2037,7 @@ 

    40.118.7. Discriminator -

    40.118.8. Another setup#

    +

    40.120.8. Another setup#

    class Generator(nn.Module):
    @@ -2083,7 +2103,7 @@ 

    40.118.8. Another setup -

    40.118.9. Training#

    +

    40.120.9. Training#

    EPOCH = 0
    @@ -2141,9 +2161,9 @@ 

    40.118.9. Training

    -

    40.118.10. Best public training#

    +

    40.120.10. Best public training#

    -

    40.118.10.1. Parameters#

    +

    40.120.10.1. Parameters#

    batch_size = 32
    @@ -2164,7 +2184,7 @@ 

    40.118.10.1. Parameters -

    40.118.10.2. Initialize models and optimizers#

    +

    40.120.10.2. Initialize models and optimizers#

    netG = Generator(nz).to(device)
    @@ -2202,7 +2222,7 @@ 

    40.118.10.2. Initialize models and optim

    -

    40.118.11. Show generated images#

    +

    40.120.11. Show generated images#

    def show_generated_img(n_images=5):
    @@ -2227,7 +2247,7 @@ 

    40.118.11. Show generated images

    -

    40.118.12. Training Loop#

    +

    40.120.12. Training Loop#

    for epoch in range(epochs):
    @@ -2299,7 +2319,7 @@ 

    40.118.12. Training Loop -

    40.118.13. Generation example#

    +

    40.120.13. Generation example#

    show_generated_img(7)
    @@ -2338,7 +2358,7 @@ 

    40.118.13. Generation example -

    40.118.13.1. Save models#

    +

    40.120.13.1. Save models#

    torch.save(netG.state_dict(), 'generator.pth')
    @@ -2350,7 +2370,7 @@ 

    40.118.13.1. Save models -

    40.118.14. Acknowledgement#

    +

    40.120.14. Acknowledgement#

    Thanks to jesucristo for creating GAN Introduction. It inspired the majority of the content in this article.

    @@ -2392,13 +2412,13 @@

    40.118.14. Acknowledgement

    previous

    -

    40.116. Art by gan

    +

    40.118. Art by gan

    - +

    next

    -

    40.119. Summary

    +

    40.121. Comparing edge-based and region-based segmentation

    diff --git a/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html b/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html new file mode 100644 index 0000000000..15d4c1c215 --- /dev/null +++ b/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html @@ -0,0 +1,1949 @@ + + + + + + + + + 40.121. Comparing edge-based and region-based segmentation — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + +
    +

    Comparing edge-based and region-based segmentation

    + +
    + +
    +
    +
    + +
    + +
    +
    +
    # Install the necessary dependencies
    +
    +import os
    +import sys
    +!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython skimage
    +
    +
    +
    +
    +
    +

    40.121. Comparing edge-based and region-based segmentation#

    +

    In this example, we will try how to segment objects from a background. We use the coins image from skimage.data, which shows several coins outlined against a darker background.

    +
    +
    +
    import numpy as np
    +import matplotlib.pyplot as plt
    +
    +from skimage import data
    +from skimage.exposure import histogram
    +
    +coins = data.coins()
    +hist, hist_centers = histogram(coins)
    +
    +fig, axes = plt.subplots(1, 2, figsize=(8, 3))
    +axes[0].imshow(coins, cmap=plt.cm.gray)
    +axes[0].axis('off')
    +axes[1].plot(hist_centers, hist, lw=2)
    +axes[1].set_title('histogram of gray values')
    +
    +
    +
    +
    +
    +

    40.121.1. Thresholding#

    +

    A simple way to segment the coins is to choose a threshold based on the histogram of gray values. Unfortunately, thresholding this image gives a binary image that either misses significant parts of the coins or merges parts of the background with the coins:

    +
    +
    +
    fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)
    +
    +axes[0].imshow(coins > 100, cmap=plt.cm.gray)
    +axes[0].set_title('coins > 100')
    +
    +axes[1].imshow(coins > 150, cmap=plt.cm.gray)
    +axes[1].set_title('coins > 150')
    +
    +for a in axes:
    +    a.axis('off')
    +
    +plt.tight_layout()
    +
    +
    +
    +
    +
    +
    +

    40.121.2. Edge-based segmentation#

    +

    Next, we try to delineate the contours of the coins using edge-based segmentation. To do this, we first get the edges of features using the Canny edge-detector.

    +
    +
    +
    from skimage.feature import canny
    +
    +edges = canny(coins)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(edges, cmap=plt.cm.gray)
    +ax.set_title('Canny detector')
    +ax.axis('off')
    +
    +
    +
    +
    +

    These contours are then filled using mathematical morphology.

    +
    +
    +
    from scipy import ndimage as ndi
    +
    +fill_coins = ndi.binary_fill_holes(edges)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(fill_coins, cmap=plt.cm.gray)
    +ax.set_title('filling the holes')
    +ax.axis('off')
    +
    +
    +
    +
    +

    Small spurious objects are easily removed by setting a minimum size for valid objects.

    +
    +
    +
    from skimage import morphology
    +
    +coins_cleaned = morphology.remove_small_objects(fill_coins, 21)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(coins_cleaned, cmap=plt.cm.gray)
    +ax.set_title('removing small objects')
    +ax.axis('off')
    +
    +
    +
    +
    +

    However, this method is not very robust, since contours that are not perfectly closed are not filled correctly, as is the case for one unfilled coin above.

    +
    +
    +

    40.121.3. Region-based segmentation#

    +

    We therefore try a region-based method using the watershed transform. First, we find an elevation map using the Sobel gradient of the image.

    +
    +
    +
    from skimage.filters import sobel
    +
    +elevation_map = sobel(coins)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(elevation_map, cmap=plt.cm.gray)
    +ax.set_title('elevation map')
    +ax.axis('off')
    +
    +
    +
    +
    +

    Next we find markers of the background and the coins based on the extreme parts of the histogram of gray values.

    +
    +
    +
    markers = np.zeros_like(coins)
    +markers[coins < 30] = 1
    +markers[coins > 150] = 2
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(markers, cmap=plt.cm.nipy_spectral)
    +ax.set_title('markers')
    +ax.axis('off')
    +
    +
    +
    +
    +

    Finally, we use the watershed transform to fill regions of the elevation map starting from the markers determined above:

    +
    +
    +
    from skimage import segmentation
    +
    +segmentation_coins = segmentation.watershed(elevation_map, markers)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(segmentation_coins, cmap=plt.cm.gray)
    +ax.set_title('segmentation')
    +ax.axis('off')
    +
    +
    +
    +
    +

    This last method works even better, and the coins can be segmented and labeled individually.

    +
    +
    +
    from skimage.color import label2rgb
    +
    +segmentation_coins = ndi.binary_fill_holes(segmentation_coins - 1)
    +labeled_coins, _ = ndi.label(segmentation_coins)
    +image_label_overlay = label2rgb(labeled_coins, image=coins, bg_label=0)
    +
    +fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)
    +axes[0].imshow(coins, cmap=plt.cm.gray)
    +axes[0].contour(segmentation_coins, [0.5], linewidths=1.2, colors='y')
    +axes[1].imshow(image_label_overlay)
    +
    +for a in axes:
    +    a.axis('off')
    +
    +plt.tight_layout()
    +
    +plt.show()
    +
    +
    +
    +
    +
    +
    +

    40.121.4. Acknowledgments#

    +

    Thanks to Scikit-image for creating the open-source project Comparing edge-based and region-based segmentation. This inspires the majority of the content in this chapter.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html b/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html index 7e8bff53c3..e4b3468e84 100644 --- a/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html +++ b/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html @@ -6,7 +6,7 @@ - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment — Ocademy Open Machine Learning Book + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1171. + + 40.89. Introduction + +
  1172. - 40.89. Study the solvers + 40.90. Study the solvers
  1173. - 40.90. Build classification models + 40.91. Build classification models
  1174. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1175. - 40.92. Parameter play + 40.93. Parameter play
  1176. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1177. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1178. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1179. +
  1180. + + 40.99. Image classification
  1181. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1182. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1183. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1184. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1185. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1186. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1187. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1188. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1189. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1190. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1191. - 40.116. Art by gan + 40.118. Art by gan
  1192. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1193. +
  1194. + + 40.121. Comparing edge-based and region-based segmentation
  1195. - 40.119. Summary + 40.122. Summary
  1196. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1197. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1198. +
  1199. + + 40.126. Getting Start NLP with classification task
  1200. @@ -1600,34 +1620,34 @@

    Ocademy Open Machine Learning Book

    @@ -1651,34 +1671,34 @@

    Contents

    @@ -1692,9 +1712,9 @@

    Contents

    -

    40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment#

    +

    40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment#

    -

    40.100.1. Load libraries#

    +

    40.102.1. Load libraries#

    import pandas as pd
    @@ -1725,7 +1745,7 @@ 

    40.100.1. Load libraries -

    40.100.2. Data Pre-processing#

    +

    40.102.2. Data Pre-processing#

    notclean = pd.read_csv(
    @@ -3424,7 +3444,7 @@ 

    40.100.2. Data Pre-processing -

    40.100.3. Exploratory Analysis#

    +

    40.102.3. Exploratory Analysis#

    # --------------Analysis----------------------------#
    @@ -4764,7 +4784,7 @@ 

    40.100.3. Exploratory Analysis -

    40.100.4. LSTM Model#

    +

    40.102.4. LSTM Model#

    from math import sqrt
    @@ -5585,7 +5605,7 @@ 

    40.100.4. LSTM Model -

    40.101. Acknowledgements#

    +

    40.103. Acknowledgements#

    Thanks to Paul Simpson for creating Bitcoin Lstm Model with Tweet Volume and Sentiment. It inspires the majority of the content in this chapter.

    @@ -5626,13 +5646,13 @@

    40.101. Acknowledgements

    previous

    -

    40.98. Intro to TensorFlow for Deep Learning

    +

    40.100. Intro to TensorFlow for Deep Learning

    next

    -

    40.102. Google Stock Price Prediction RNN

    +

    40.104. Google Stock Price Prediction RNN

    diff --git a/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html b/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html new file mode 100644 index 0000000000..adb93071a3 --- /dev/null +++ b/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html @@ -0,0 +1,2504 @@ + + + + + + + + + 40.126. Getting Start NLP with classification task — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +

    40.126. Getting Start NLP with classification task#

    +

    One area where deep learning has dramatically improved in the last couple of years is natural language processing (NLP). Computers can now generate text, translate automatically from one language to another, analyze comments, label words in sentences, and much more.

    +

    Perhaps the most widely practically useful application of NLP is classification – that is, classifying a document automatically into some category. This can be used, for instance, for:

    +
      +
    • Sentiment analysis (e.g are people saying positive or negative things about your product)

    • +
    • Author identification (what author most likely wrote some document)

    • +
    • Legal discovery (which documents are in scope for a trial)

    • +
    • Organizing documents by topic

    • +
    • Triaging inbound emails

    • +
    • …and much more!

    • +
    +

    Today, we are tasked with comparing two words or short phrases, and scoring them based on whether they’re similar or not, based on which patent class they were used in. With a score of 1 it is considered that the two inputs have identical meaning, and 0 means they have totally different meaning. For instance, abatement and eliminating process have a score of 0.5, meaning they’re somewhat similar, but not identical.

    +

    It turns out that this can be represented as a classification problem. How? By representing the question like this:

    +
    +

    For the following text…: “TEXT1: abatement; TEXT2: eliminating process” …chose a category of meaning similarity: “Different; Similar; Identical”.

    +
    +

    In this assignment section we’ll see how to solve the Patent Phrase Matching problem by treating it as a classification task, by representing it in a very similar way to that shown above.

    +
    +

    40.126.1. Import and EDA#

    +
    +
    +
    import pandas as pd
    +import numpy as np
    +from datasets import Dataset,DatasetDict
    +from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer
    +import warnings
    +
    +warnings.filterwarnings("ignore")
    +
    +
    +
    +
    +

    First of all, let’s import the dataset.

    +
    +
    +
    df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/nlp/phrase_matching_train.csv')
    +df.head()
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    idanchortargetcontextscore
    037d61fd2272659b1abatementabatement of pollutionA470.50
    17b9652b17b68b7a4abatementact of abatingA470.75
    236d72442aefd8232abatementactive catalystA470.25
    35296b0c19e1ce60eabatementeliminating processA470.50
    454c1e3b9184cb5b6abatementforest regionA470.00
    +
    +
    +

    As you see, there are 5 columns, where anchor and target are a pair phrases, context is the common context they are in, score is the similarity score of anchor and target.

    +
    +
    +
    df.describe(include='object')
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    idanchortargetcontext
    count36473364733647336473
    unique3647373329340106
    top37d61fd2272659b1component composite coatingcompositionH01
    freq1152242186
    +
    +
    +

    We can see that in the 36473 rows, there are 733 unique anchors, 106 contexts, and nearly 30000 targets. Some anchors are very common, with “component composite coating” for instance appearing 152 times.

    +

    Earlier, I suggested we could represent the input to the model as something like “TEXT1: abatement; TEXT2: eliminating process”. We’ll need to add the context to this too. In Pandas, we just use + to concatenate, like so:

    +
    +
    +
    df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor
    +df.head(5)
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    idanchortargetcontextscoreinput
    037d61fd2272659b1abatementabatement of pollutionA470.50TEXT1: A47; TEXT2: abatement of pollution; ANC...
    17b9652b17b68b7a4abatementact of abatingA470.75TEXT1: A47; TEXT2: act of abating; ANC1: abate...
    236d72442aefd8232abatementactive catalystA470.25TEXT1: A47; TEXT2: active catalyst; ANC1: abat...
    35296b0c19e1ce60eabatementeliminating processA470.50TEXT1: A47; TEXT2: eliminating process; ANC1: ...
    454c1e3b9184cb5b6abatementforest regionA470.00TEXT1: A47; TEXT2: forest region; ANC1: abatement
    +
    +
    +
    +
    +

    40.126.2. Tokenization#

    +

    Transformers uses a Dataset object for storing their dataset, of course! We can create one like so:

    +
    +
    +
    ds = Dataset.from_pandas(df)
    +ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'score', 'input'],
    +    num_rows: 36473
    +})
    +
    +
    +
    +
    +

    But we can’t pass the texts directly into a model. A deep learning model expects numbers as inputs, not English sentences! So we need to do two things:

    +
      +
    • Tokenization: Split each text up into words (or actually, as we’ll see, into tokens)

    • +
    • Numericalization: Convert each word (or token) into a number.

    • +
    +

    The details about how this is done actually depend on the particular model we use. So first we’ll need to pick a model. There are thousands of models available, but a reasonable starting point for nearly any NLP problem is to use this (replace “small” with “large” for a slower but more accurate model, once you’ve finished exploring):

    +
    +
    +
    model_nm = 'microsoft/deberta-v3-small'
    +
    +
    +
    +
    +

    AutoTokenizer will create a tokenizer appropriate for a given model:

    +
    +
    +
    tokz = AutoTokenizer.from_pretrained(model_nm)
    +
    +
    +
    +
    +

    Here’s an example of how the tokenizer splits a text into “tokens” (which are like words, but can be sub-word pieces, as you see below):

    +
    +
    +
    tokz.tokenize("G'day folks, I'm Jeremy from fast.ai!")
    +
    +
    +
    +
    +
    ['▁G',
    + "'",
    + 'day',
    + '▁folks',
    + ',',
    + '▁I',
    + "'",
    + 'm',
    + '▁Jeremy',
    + '▁from',
    + '▁fast',
    + '.',
    + 'ai',
    + '!']
    +
    +
    +
    +
    +

    Uncommon words will be split into pieces just like ornithorhynchus. The start of a new word is represented by :

    +
    +
    +
    tokz.tokenize("A platypus is an ornithorhynchus anatinus.")
    +
    +
    +
    +
    +
    ['▁A',
    + '▁platypus',
    + '▁is',
    + '▁an',
    + '▁or',
    + 'ni',
    + 'tho',
    + 'rhynch',
    + 'us',
    + '▁an',
    + 'at',
    + 'inus',
    + '.']
    +
    +
    +
    +
    +
    +
    +

    40.126.3. Numericalization#

    +

    After completing Tokenization, we need to convert each token into a number, because the model only accepts numbers as input. But … how to do it? +We need a large token dictionary to map each token to a number!

    +
    +
    +
    vocab = tokz.get_vocab()
    +
    +
    +
    +
    +

    The above is the token dictionary that comes with the deberta-v3-small model. You can print it out to check.

    +
    +
    +
    tokz("A platypus is an ornithorhynchus anatinus.")
    +
    +
    +
    +
    +
    {'input_ids': [1, 336, 114224, 269, 299, 289, 4840, 34765, 102530, 1867, 299, 2401, 26835, 260, 2], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
    +
    +
    +
    +
    +

    According to this token dictionary, we can convert the original token sequence into a digital sequence. Input_ids is the number we need, token_type_ids represents whether all tokens belong to the same sentence, and attention_mask represents whether the token exists in the token dictionary.

    +

    Here’s a simple function which tokenizes our inputs:

    +
    +
    +
    def tok_func(x): return tokz(x["input"])
    +
    +
    +
    +
    +

    To run this quickly in parallel on every row in our dataset, use map:

    +
    +
    +
    tok_ds = ds.map(tok_func, batched=True)
    +tok_ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'score', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +    num_rows: 36473
    +})
    +
    +
    +
    +
    +

    This adds a new item to our dataset called input_ids. For instance, here is the input and IDs for the first row of our data:

    +
    +
    +
    row = tok_ds[0]
    +row['input'], row['input_ids']
    +
    +
    +
    +
    +
    ('TEXT1: A47; TEXT2: abatement of pollution; ANC1: abatement',
    + [1,
    +  54453,
    +  435,
    +  294,
    +  336,
    +  5753,
    +  346,
    +  54453,
    +  445,
    +  294,
    +  47284,
    +  265,
    +  6435,
    +  346,
    +  23702,
    +  435,
    +  294,
    +  47284,
    +  2])
    +
    +
    +
    +
    +

    Finally, we need to prepare our labels. Transformers always assumes that your labels has the column name labels, but in our dataset it’s currently score. Therefore, we need to rename it:

    +
    +
    +
    tok_ds = tok_ds.rename_columns({'score':'labels'})
    +tok_ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'labels', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +    num_rows: 36473
    +})
    +
    +
    +
    +
    +

    Now that we’ve prepared our tokens and labels, we need to create our validation set.

    +
    +
    +

    40.126.4. Test and validation sets#

    +
    +
    +
    eval_df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/nlp/phrase_matching_test.csv')
    +eval_df['input'] = 'TEXT1: ' + eval_df.context + '; TEXT2: ' + eval_df.target + '; ANC1: ' + eval_df.anchor
    +eval_ds = Dataset.from_pandas(eval_df).map(tok_func, batched=True)
    +eval_ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +    num_rows: 36
    +})
    +
    +
    +
    +
    +

    This is the test set. Possibly the most important idea in machine learning is that of having separate training, validation, and test data sets.

    +
    +
    +
    dds = tok_ds.train_test_split(0.25, seed=42)
    +dds
    +
    +
    +
    +
    +
    DatasetDict({
    +    train: Dataset({
    +        features: ['id', 'anchor', 'target', 'context', 'labels', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +        num_rows: 27354
    +    })
    +    test: Dataset({
    +        features: ['id', 'anchor', 'target', 'context', 'labels', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +        num_rows: 9119
    +    })
    +})
    +
    +
    +
    +
    +

    This is the validation set. We use train_test_split to separate it from the training set with a separation ratio of 25%.

    +
    +
    +

    40.126.5. Training our model#

    +

    Before starting training, we need to set some hyperparameters for our model. Here’s a concise explanation:

    +
      +
    • Batch Size (bs): 128 examples processed in each iteration.

    • +
    • Epochs (epochs): The model will be trained through the entire dataset 4 times.

    • +
    • Learning Rate (lr): The step size for adjusting model weights during optimization is set to 8e-5.

    • +
    • TrainingArguments (args):

      +
        +
      • Warmup Ratio: 10% of training steps used for learning rate warm-up.

      • +
      • Learning Rate Scheduler: Cosine learning rate scheduler.

      • +
      • Mixed Precision (fp16): Training with mixed-precision for faster computation.

      • +
      • Evaluation Strategy: Model evaluation after each epoch.

      • +
      • Batch Sizes: 128 examples per training device, 256 for evaluation.

      • +
      • Number of Training Epochs: Training for 4 epochs.

      • +
      • Weight Decay: L2 regularization with a rate of 0.01.

      • +
      • Report To: No reports sent during training (set to ‘none’). to ‘none’).

      • +
      +
    • +
    +
    +
    +
    bs = 128
    +epochs = 4
    +lr = 8e-5
    +args = TrainingArguments('outputs', learning_rate=lr, warmup_ratio=0.1, lr_scheduler_type='cosine', fp16=True,
    +    evaluation_strategy="epoch", per_device_train_batch_size=bs, per_device_eval_batch_size=bs*2,
    +    num_train_epochs=epochs, weight_decay=0.01, report_to='none')
    +
    +
    +
    +
    +

    Now, we can initialize a pre-trained sequence classification model and sets up a training environment using Hugging Face’s Trainer. The model is loaded with AutoModelForSequenceClassification.from_pretrained and configured with training parameters in the Trainer object.

    +
    +
    +
    model = AutoModelForSequenceClassification.from_pretrained(model_nm, num_labels=1)
    +trainer = Trainer(model, args, train_dataset=dds['train'], eval_dataset=dds['test'],
    +                  tokenizer=tokz)
    +
    +
    +
    +
    +
    Some weights of DebertaV2ForSequenceClassification were not initialized from the model checkpoint at deberta-v3-small and are newly initialized: ['classifier.bias', 'classifier.weight', 'pooler.dense.bias', 'pooler.dense.weight']
    +You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    +
    +
    +
    +
    +
    +
    +
    trainer.train();
    +
    +
    +
    +
    +
    +
    + + + [856/856 00:53, Epoch 4/4] +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    EpochTraining LossValidation Loss
    1No log0.026275
    2No log0.021973
    30.0396000.022443
    40.0396000.023286

    +
    +
    +
    +
    preds = trainer.predict(eval_ds).predictions.astype(float)
    +preds
    +
    +
    +
    +
    +
    array([[-1.50489807e-03],
    +       [ 4.90570068e-03],
    +       [-5.05447388e-04],
    +       [ 2.69412994e-04],
    +       [-1.44767761e-03],
    +       [ 4.85897064e-04],
    +       [-1.81484222e-03],
    +       [ 8.22067261e-04],
    +       [ 4.36019897e-03],
    +       [ 4.40216064e-03],
    +       [-6.16550446e-04],
    +       [-4.18424606e-05],
    +       [-1.20639801e-03],
    +       [ 3.18288803e-04],
    +       [-6.15119934e-04],
    +       [-8.05377960e-04],
    +       [-2.66265869e-03],
    +       [ 2.60114670e-04],
    +       [ 3.48281860e-03],
    +       [ 1.68323517e-03],
    +       [ 1.38378143e-03],
    +       [-2.48527527e-03],
    +       [ 7.53879547e-04],
    +       [ 8.55922699e-04],
    +       [-2.27355957e-03],
    +       [-2.88581848e-03],
    +       [ 3.29780579e-03],
    +       [ 9.42707062e-04],
    +       [ 4.26769257e-04],
    +       [-1.19447708e-04],
    +       [-2.77519226e-03],
    +       [ 5.27381897e-04],
    +       [-8.44001770e-04],
    +       [ 4.88281250e-04],
    +       [-2.11715698e-04],
    +       [-1.00421906e-03]])
    +
    +
    +
    +
    +

    Look out - some of our predictions are <0, or >1! Let’s fix those out-of-bounds predictions:

    +
    +
    +
    preds = np.clip(preds, 0, 1)
    +preds
    +
    +
    +
    +
    +
    array([[0.        ],
    +       [0.0049057 ],
    +       [0.        ],
    +       [0.00026941],
    +       [0.        ],
    +       [0.0004859 ],
    +       [0.        ],
    +       [0.00082207],
    +       [0.0043602 ],
    +       [0.00440216],
    +       [0.        ],
    +       [0.        ],
    +       [0.        ],
    +       [0.00031829],
    +       [0.        ],
    +       [0.        ],
    +       [0.        ],
    +       [0.00026011],
    +       [0.00348282],
    +       [0.00168324],
    +       [0.00138378],
    +       [0.        ],
    +       [0.00075388],
    +       [0.00085592],
    +       [0.        ],
    +       [0.        ],
    +       [0.00329781],
    +       [0.00094271],
    +       [0.00042677],
    +       [0.        ],
    +       [0.        ],
    +       [0.00052738],
    +       [0.        ],
    +       [0.00048828],
    +       [0.        ],
    +       [0.        ]])
    +
    +
    +
    +
    +
    +
    +
    +

    40.127. Acknowledgments#

    +

    Thanks to Jeremy Howard for creating Getting started with NLP for absolute beginners. It inspires the majority of the content in this chapter.

    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/deep-learning/nn-classify-15-fruits-assignment.html b/assignments/deep-learning/nn-classify-15-fruits-assignment.html index 7879be1f52..780b82d6e1 100644 --- a/assignments/deep-learning/nn-classify-15-fruits-assignment.html +++ b/assignments/deep-learning/nn-classify-15-fruits-assignment.html @@ -6,7 +6,7 @@ - 40.110. NN Classify 15 Fruits Assignment — Ocademy Open Machine Learning Book + 40.112. NN Classify 15 Fruits Assignment — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1201. + + 40.89. Introduction + +
  1202. - 40.89. Study the solvers + 40.90. Study the solvers
  1203. - 40.90. Build classification models + 40.91. Build classification models
  1204. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1205. - 40.92. Parameter play + 40.93. Parameter play
  1206. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1207. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1208. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1209. +
  1210. + + 40.99. Image classification
  1211. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1212. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1213. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1214. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1215. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1216. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1217. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1218. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1219. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1220. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1221. - 40.116. Art by gan + 40.118. Art by gan
  1222. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1223. +
  1224. + + 40.121. Comparing edge-based and region-based segmentation
  1225. - 40.119. Summary + 40.122. Summary
  1226. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1227. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1228. +
  1229. + + 40.126. Getting Start NLP with classification task
  1230. @@ -1600,46 +1620,46 @@

    Ocademy Open Machine Learning Book

    @@ -1663,46 +1683,46 @@

    Contents

    @@ -1716,11 +1736,11 @@

    Contents

    -

    40.110. NN Classify 15 Fruits Assignment#

    +

    40.112. NN Classify 15 Fruits Assignment#

    Fruit Example

    -

    40.111. Data collection#

    +

    40.113. Data collection#

    The database used in this study is comprising of 44406 fruit images, which we collected in a period of 6 months. The images where made with in our lab’s environment under different scenarios which we mention below. We captured all the images on a clear background with @@ -1759,7 +1779,7 @@

    40.111. Data collection -

    40.112. Load and visualize the dataset#

    +

    40.114. Load and visualize the dataset#

    The database used in this study is comprising of 70549 fruit images, which were collected in a period of 6 months. The images where made with in a lab’s environment under different scenarios which we mention below. All the images were captured on a clear background with resolution of 320×258 pixels.

    Type of fruits in the dataset:

      @@ -1935,7 +1955,7 @@

      40.112. Load and visualize the dataset

    -

    40.113. Train the neural network from scratch with Keras and w/o generator#

    +

    40.115. Train the neural network from scratch with Keras and w/o generator#

    # The pictures will be resized to have the same size for the neural network
    @@ -1952,7 +1972,7 @@ 

    40.113. Train the neural network from sc

    -

    40.113.1. Create and train the NN Model#

    +

    40.115.1. Create and train the NN Model#

    def cut_df(df, number_of_parts, part):
    @@ -2131,7 +2151,7 @@ 

    40.113.1. Create and train the NN Model<

    -

    40.113.2. Predictions#

    +

    40.115.2. Predictions#

    import warnings
    @@ -2182,7 +2202,7 @@ 

    40.113.2. Predictions

    -

    40.113.3. Visualize the result with pictures of fruits#

    +

    40.115.3. Visualize the result with pictures of fruits#

    fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
    @@ -2201,7 +2221,7 @@ 

    40.113.3. Visualize the result with pict

    -

    40.114. Acknowledgments#

    +

    40.116. Acknowledgments#

    Thanks to DATALIRA for creating the open-source course Classify 15 Fruits with TensorFlow . It inspires the majority of the content in this chapter.

    @@ -2242,13 +2262,13 @@

    40.114. Acknowledgments

    previous

    -

    40.109. Neural Networks for Classification with TensorFlow

    +

    40.111. Neural Networks for Classification with TensorFlow

    next

    -

    40.115. DQN On Foreign Exchange Market

    +

    40.117. DQN On Foreign Exchange Market

    diff --git a/assignments/deep-learning/nn-for-classification-assignment.html b/assignments/deep-learning/nn-for-classification-assignment.html index fba1decde4..767fcdbb70 100644 --- a/assignments/deep-learning/nn-for-classification-assignment.html +++ b/assignments/deep-learning/nn-for-classification-assignment.html @@ -6,7 +6,7 @@ - 40.109. Neural Networks for Classification with TensorFlow — Ocademy Open Machine Learning Book + 40.111. Neural Networks for Classification with TensorFlow — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1231. + + 40.89. Introduction + +
  1232. - 40.89. Study the solvers + 40.90. Study the solvers
  1233. - 40.90. Build classification models + 40.91. Build classification models
  1234. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1235. - 40.92. Parameter play + 40.93. Parameter play
  1236. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1237. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1238. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1239. +
  1240. + + 40.99. Image classification
  1241. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1242. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1243. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1244. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1245. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1246. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1247. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1248. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1249. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1250. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1251. - 40.116. Art by gan + 40.118. Art by gan
  1252. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1253. +
  1254. + + 40.121. Comparing edge-based and region-based segmentation
  1255. - 40.119. Summary + 40.122. Summary
  1256. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1257. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1258. +
  1259. + + 40.126. Getting Start NLP with classification task
  1260. @@ -1600,101 +1620,101 @@

    Ocademy Open Machine Learning Book

    @@ -1718,101 +1738,101 @@

    Contents

    @@ -1826,14 +1846,14 @@

    Contents

    -

    40.109. Neural Networks for Classification with TensorFlow#

    +

    40.111. Neural Networks for Classification with TensorFlow#

    -

    40.109.1. Getting Started: Binary Classifier#

    +

    40.111.1. Getting Started: Binary Classifier#

    We will first practice building neural networks for binary classifier. In binary classification, we have two classes.

    We will use a classical cancer dataset to predict if a given patient has a malignant or benign based on their medical information. We will get it from sklearn datasets. You can read more about the dataset.

    The dataset contains two labels: malignant, benign.

    -

    40.109.1.1. Getting the data#

    +

    40.111.1.1. Getting the data#

    We will get the data from sklearn datasets.

    @@ -1912,7 +1932,7 @@

    40.109.1.1. Getting the data -

    40.109.2. Taking a look in the data#

    +

    40.111.2. Taking a look in the data#

    # Looking from the head 
    @@ -1942,7 +1962,7 @@ 

    40.109.2. Taking a look in the data

    -

    40.109.3. Preparing the Data#

    +

    40.111.3. Preparing the Data#

    The data from sklearn is reasonably cleaned. Let’s split the data into train and test sets, and we will follow with scaling the values to be between 0 and 1.

    @@ -1985,7 +2005,7 @@

    40.109.3. Preparing the Data -

    40.109.4. Creating, Compiling and Training a Model#

    +

    40.111.4. Creating, Compiling and Training a Model#

    In TensorFlow, creating a model is only putting together an empty graphs. We are going to use Sequential API to stack the layers, from the input to output.

    In model compilaton, it’s where we specify the optimizer and loss function. Loss function is there for calculating the difference between the predictions and the actual output, and optimizer is there for reducing the loss.

    Also, if we are interested in tracking other metrics during training, we can specify them in metric.

    @@ -2038,7 +2058,7 @@

    40.109.4. Creating, Compiling and Traini

    ‼️ If you retrain again, it will continue where it left. So, for example, if you train for 30 epochs, and you rerun the cell, it will train for same more epochs again.

    -

    40.109.5. Visualizing the Results#

    +

    40.111.5. Visualizing the Results#

    Visualizing the model results after training is always a good way to learn what you can do to improve the performance.

    Let’s get a Pandas dataframe containing training loss and accuracy, and validation loss and accuracy.

    @@ -2056,7 +2076,7 @@

    40.109.5. Visualizing the ResultsLet’s evaluate the model on the test set.

    -

    40.109.6. Evaluating the Model#

    +

    40.111.6. Evaluating the Model#

    Quite often, you will want to test your model on the data that it never saw. This data is normally called test set and in more applied practice, you will only feed the test to the model after you have done your best to improve it.

    Let’s now evaluate the model on the test set. One thing to note here is that the test set must be preprocessed the same way we preprocessed the training set. The training set was rescaled and that was applied to the test set.

    If this is not obeyed, you would not know why you’re having poor results. Just look up on the next next cell how poor the accuracy will be if I evaluate the model on unscaled data when I trained it on scaled data.

    @@ -2174,13 +2194,13 @@

    40.109.6. Evaluating the Model -

    40.109.7. Going Beyond Binary Classifier to Multiclass Classifier: 10 Fashions Classifier#

    +

    40.111.7. Going Beyond Binary Classifier to Multiclass Classifier: 10 Fashions Classifier#

    So far, we have built a neural network for regression(in previous labs) and binary classification. And we have only been working with structured datasets(datasets in tabular format).

    Can the same neural networks we used be able to recognize images? In this next practice, we will turn the page to image classification. We will build a neural network for recognizing 10 different fashions and along the way, we will learn other things such as stopping the training upon a given condition is met, and using TensorBoard to visualize model.

    That is going to be cool! Let’s get started!

    -

    40.109.8. Getting the Fashion data#

    +

    40.111.8. Getting the Fashion data#

    Let’s get the dataset from Keras.

    @@ -2195,7 +2215,7 @@

    40.109.8. Getting the Fashion data

    -

    40.109.9. Looking in the Fashion Data#

    +

    40.111.9. Looking in the Fashion Data#

    As always, it is a best practice to peep into the images to see how they like.

    Let’s display the pixels values of a given image, image, and its corresponding label.

    -

    40.109.10. Preparing the Data#

    +

    40.111.10. Preparing the Data#

    In many cases, real world images datasets are not that clean like fashion mnist.

    You may have to correct images that were incorrectly labeled, or you have labels in texts that need to be converted to numbers(most machine learning models accept numeric input), or scale the pixels values.

    The latter is what we are going to do. It is inarguable that scaling the images pixels to value between 0 and 1 increase the performance of the neural network, and hence the results. Let’s do it!!

    @@ -2285,7 +2305,7 @@

    40.109.10. Preparing the Data -

    40.109.11. Creating, Compiling, and Training a Model#

    +

    40.111.11. Creating, Compiling, and Training a Model#

    There are few points to note before creating a model:

    • When working with images, the shape of the input images has to be correctly provided. This is a common error done by many people, including me (before I learned it).

    • @@ -2335,7 +2355,7 @@

      40.109.11. Creating, Compiling, and Trai

      But also, training mnist for 20 epochs is not slow that we would need to activate GPU. We will take an advantage of GPU in later labs.

    -

    40.109.12. Visualizing the Model Results#

    +

    40.111.12. Visualizing the Model Results#

    Let’s visualize the model results to see how training went.

    @@ -2354,7 +2374,7 @@

    40.109.12. Visualizing the Model Results

    Let’s see how the model performs on unseed data: test set.

    -

    40.109.13. Model Evaluation#

    +

    40.111.13. Model Evaluation#

    # if you need a model trained, you can use this cell
    @@ -2385,11 +2405,11 @@ 

    40.109.13. Model Evaluation -

    40.109.14. Controlling Training with Callbacks#

    +

    40.111.14. Controlling Training with Callbacks#

    We can use Callbacks functions to control the training.

    Take an example: we can stop training when the model is lo longer showing significant improvements on validation set. Or we can terminate training when a certain condition is met.

    -

    40.109.14.1. Implementing Callbacks#

    +

    40.111.14.1. Implementing Callbacks#

    There are various functionalities available in Keras Callbacks.

    Let’s start with how to use ModelCheckpoint to save the model when the performance on the validation set is best so far. By saving the best model on the validation set, we avoid things like overfitting which is a common issue in machine learning model training, neural network specifically. We also train for less time.

    I will rebuild a same model again.

    @@ -2565,7 +2585,7 @@

    40.109.14.1. Implementing Callbacks

    -

    40.109.14.2. Custom Callback#

    +

    40.111.14.2. Custom Callback#

    Keras offers various functions for implementing custom callbacks that are very handy when you want to control the model training with a little bit of customization.

    You can do certain actions on almost every step of the training. Let’s stop the training when the accuracy is 95%.

    @@ -2630,7 +2650,7 @@

    40.109.14.2. Custom Callback -

    40.109.15. Using TensorBoard for Model Visualization#

    +

    40.111.15. Using TensorBoard for Model Visualization#

    Tensorboard is incredible tool used by many people (and not just only TensorFlow developers) to experiment with machine learning.

    With TensorBoard, you can:

      @@ -2721,7 +2741,7 @@

      40.109.15. Using TensorBoard for Model V

      As you can see, TensorBoard is very useful. The fact that you can use it to visualize the performance metrics, model graphs, and datasets as well.

    -

    40.109.16. Acknowledgments#

    +

    40.111.16. Acknowledgments#

    Thanks to Jean de Dieu Nyandwi for creating the open-source course machine learning complete . It inspires the majority of the content in this chapter.

    @@ -2763,13 +2783,13 @@

    40.109.16. Acknowledgments

    previous

    -

    40.107. Time Series Forecasting Assignment

    +

    40.109. Time Series Forecasting Assignment

    next

    -

    40.110. NN Classify 15 Fruits Assignment

    +

    40.112. NN Classify 15 Fruits Assignment

    diff --git a/assignments/deep-learning/object-detection/car-object-detection.html b/assignments/deep-learning/object-detection/car-object-detection.html index e7c303b30f..a73140b98c 100644 --- a/assignments/deep-learning/object-detection/car-object-detection.html +++ b/assignments/deep-learning/object-detection/car-object-detection.html @@ -6,7 +6,7 @@ - 40.120. Car Object Detection — Ocademy Open Machine Learning Book + 40.123. Car Object Detection — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1261. + + 40.89. Introduction + +
  1262. - 40.89. Study the solvers + 40.90. Study the solvers
  1263. - 40.90. Build classification models + 40.91. Build classification models
  1264. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1265. - 40.92. Parameter play + 40.93. Parameter play
  1266. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1267. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1268. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1269. +
  1270. + + 40.99. Image classification
  1271. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1272. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1273. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1274. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1275. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1276. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1277. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1278. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1279. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1280. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1281. - 40.116. Art by gan + 40.118. Art by gan
  1282. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1283. +
  1284. + + 40.121. Comparing edge-based and region-based segmentation
  1285. - 40.119. Summary + 40.122. Summary
  1286. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1287. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1288. +
  1289. + + 40.126. Getting Start NLP with classification task
  1290. @@ -1600,44 +1620,44 @@

    Ocademy Open Machine Learning Book

    diff --git a/data-science/working-with-data/relational-databases.html b/data-science/working-with-data/relational-databases.html index 16b8b2eb89..de4bb8a83d 100644 --- a/data-science/working-with-data/relational-databases.html +++ b/data-science/working-with-data/relational-databases.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1291. + + 40.89. Introduction + +
  1292. - 40.89. Study the solvers + 40.90. Study the solvers
  1293. - 40.90. Build classification models + 40.91. Build classification models
  1294. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1295. - 40.92. Parameter play + 40.93. Parameter play
  1296. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1297. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1298. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1299. +
  1300. + + 40.99. Image classification
  1301. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1302. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1303. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1304. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1305. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1306. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1307. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1308. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1309. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1310. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1311. - 40.116. Art by gan + 40.118. Art by gan
  1312. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1313. +
  1314. + + 40.121. Comparing edge-based and region-based segmentation
  1315. - 40.119. Summary + 40.122. Summary
  1316. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1317. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1318. +
  1319. + + 40.126. Getting Start NLP with classification task
  1320. diff --git a/data-science/working-with-data/working-with-data.html b/data-science/working-with-data/working-with-data.html index bfdd8f9710..a8666c714d 100644 --- a/data-science/working-with-data/working-with-data.html +++ b/data-science/working-with-data/working-with-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1321. + + 40.89. Introduction + +
  1322. - 40.89. Study the solvers + 40.90. Study the solvers
  1323. - 40.90. Build classification models + 40.91. Build classification models
  1324. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1325. - 40.92. Parameter play + 40.93. Parameter play
  1326. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1327. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1328. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1329. +
  1330. + + 40.99. Image classification
  1331. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1332. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1333. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1334. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1335. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1336. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1337. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1338. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1339. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1340. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1341. - 40.116. Art by gan + 40.118. Art by gan
  1342. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1343. +
  1344. + + 40.121. Comparing edge-based and region-based segmentation
  1345. - 40.119. Summary + 40.122. Summary
  1346. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1347. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1348. +
  1349. + + 40.126. Getting Start NLP with classification task
  1350. diff --git a/deep-learning/autoencoder.html b/deep-learning/autoencoder.html index 568f2e2a81..3b55978560 100644 --- a/deep-learning/autoencoder.html +++ b/deep-learning/autoencoder.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1351. + + 40.89. Introduction + +
  1352. - 40.89. Study the solvers + 40.90. Study the solvers
  1353. - 40.90. Build classification models + 40.91. Build classification models
  1354. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1355. - 40.92. Parameter play + 40.93. Parameter play
  1356. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1357. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1358. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1359. +
  1360. + + 40.99. Image classification
  1361. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1362. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1363. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1364. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1365. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1366. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1367. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1368. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1369. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1370. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1371. - 40.116. Art by gan + 40.118. Art by gan
  1372. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1373. +
  1374. + + 40.121. Comparing edge-based and region-based segmentation
  1375. - 40.119. Summary + 40.122. Summary
  1376. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1377. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1378. +
  1379. + + 40.126. Getting Start NLP with classification task
  1380. diff --git a/deep-learning/cnn/cnn-deepdream.html b/deep-learning/cnn/cnn-deepdream.html index 5b03d3d5c2..75eb8d9c4f 100644 --- a/deep-learning/cnn/cnn-deepdream.html +++ b/deep-learning/cnn/cnn-deepdream.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1381. + + 40.89. Introduction + +
  1382. - 40.89. Study the solvers + 40.90. Study the solvers
  1383. - 40.90. Build classification models + 40.91. Build classification models
  1384. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1385. - 40.92. Parameter play + 40.93. Parameter play
  1386. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1387. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1388. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1389. +
  1390. + + 40.99. Image classification
  1391. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1392. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1393. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1394. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1395. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1396. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1397. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1398. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1399. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1400. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1401. - 40.116. Art by gan + 40.118. Art by gan
  1402. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1403. +
  1404. + + 40.121. Comparing edge-based and region-based segmentation
  1405. - 40.119. Summary + 40.122. Summary
  1406. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1407. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1408. +
  1409. + + 40.126. Getting Start NLP with classification task
  1410. @@ -1899,7 +1919,7 @@

    23.3.1.2.1. Code

    23.3.1.2.2. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your cnn skills by following the assignment sign language digits classification with cnn

    23.3.1.2.3. Acknowledgments#

    diff --git a/deep-learning/cnn/cnn-vgg.html b/deep-learning/cnn/cnn-vgg.html index 224cd5e214..75b4faf4ce 100644 --- a/deep-learning/cnn/cnn-vgg.html +++ b/deep-learning/cnn/cnn-vgg.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1411. + + 40.89. Introduction + +
  1412. - 40.89. Study the solvers + 40.90. Study the solvers
  1413. - 40.90. Build classification models + 40.91. Build classification models
  1414. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1415. - 40.92. Parameter play + 40.93. Parameter play
  1416. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1417. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1418. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1419. +
  1420. + + 40.99. Image classification
  1421. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1422. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1423. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1424. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1425. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1426. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1427. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1428. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1429. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1430. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1431. - 40.116. Art by gan + 40.118. Art by gan
  1432. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1433. +
  1434. + + 40.121. Comparing edge-based and region-based segmentation
  1435. - 40.119. Summary + 40.122. Summary
  1436. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1437. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1438. +
  1439. + + 40.126. Getting Start NLP with classification task
  1440. @@ -2038,7 +2058,7 @@

    23.3.1.1.1.4. Style Transfer Implementat

    23.3.1.1.2. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your cnn skills by following the assignment object recognition in images using cnn.

    23.3.1.1.3. Self study#

    diff --git a/deep-learning/cnn/cnn.html b/deep-learning/cnn/cnn.html index cbb5d79d26..08dc345f39 100644 --- a/deep-learning/cnn/cnn.html +++ b/deep-learning/cnn/cnn.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1441. + + 40.89. Introduction + +
  1442. - 40.89. Study the solvers + 40.90. Study the solvers
  1443. - 40.90. Build classification models + 40.91. Build classification models
  1444. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1445. - 40.92. Parameter play + 40.93. Parameter play
  1446. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1447. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1448. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1449. +
  1450. + + 40.99. Image classification
  1451. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1452. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1453. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1454. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1455. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1456. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1457. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1458. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1459. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1460. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1461. - 40.116. Art by gan + 40.118. Art by gan
  1462. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1463. +
  1464. + + 40.121. Comparing edge-based and region-based segmentation
  1465. - 40.119. Summary + 40.122. Summary
  1466. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1467. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1468. +
  1469. + + 40.126. Getting Start NLP with classification task
  1470. @@ -1827,6 +1847,30 @@

    23.1. MNIST handwritten digits
    from IPython.display import HTML
     display(HTML("""
     <p style="text-align: center;">
    +<iframe src="https://static-1300131294.cos.ap-shanghai.myqcloud.com/html/cnn-vis-3/index.html" width="105%" height="600px;"
    +style="border:none;" scrolling="auto"></iframe>
    +A demo of CNN. <a
    +href="https://poloclub.github.io/cnn-explainer/"> [source]</a>
    +</p>
    +"""))
    +
    +

    +
    + +
    +
    +
    +
    from IPython.display import HTML
    +display(HTML("""
    +<p style="text-align: center;">
     <iframe src="https://static-1300131294.cos.ap-shanghai.myqcloud.com/html/cnn-vis-2/index.html" width="105%" height="600px;"
     style="border:none;" scrolling="auto"></iframe>
     A demo of CNN. <a
    @@ -1907,7 +1951,7 @@ 

    23.1.1. Code +../../_images/cnn_11_1.png

    @@ -2410,7 +2454,7 @@

    23.3.1. Code

    23.4. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your cnn skills by following the assignment how to choose cnn architecture mnist.

    23.5. Self study#

    diff --git a/deep-learning/difussion-model.html b/deep-learning/difussion-model.html index a2a13748a6..6e0a59ed76 100644 --- a/deep-learning/difussion-model.html +++ b/deep-learning/difussion-model.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1471. + + 40.89. Introduction + +
  1472. - 40.89. Study the solvers + 40.90. Study the solvers
  1473. - 40.90. Build classification models + 40.91. Build classification models
  1474. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1475. - 40.92. Parameter play + 40.93. Parameter play
  1476. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1477. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1478. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1479. +
  1480. + + 40.99. Image classification
  1481. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1482. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1483. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1484. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1485. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1486. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1487. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1488. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1489. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1490. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1491. - 40.116. Art by gan + 40.118. Art by gan
  1492. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1493. +
  1494. + + 40.121. Comparing edge-based and region-based segmentation
  1495. - 40.119. Summary + 40.122. Summary
  1496. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1497. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1498. +
  1499. + + 40.126. Getting Start NLP with classification task
  1500. diff --git a/deep-learning/dl-overview.html b/deep-learning/dl-overview.html index c7d80d0a18..e9e82d8ce9 100644 --- a/deep-learning/dl-overview.html +++ b/deep-learning/dl-overview.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1501. + + 40.89. Introduction + +
  1502. - 40.89. Study the solvers + 40.90. Study the solvers
  1503. - 40.90. Build classification models + 40.91. Build classification models
  1504. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1505. - 40.92. Parameter play + 40.93. Parameter play
  1506. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1507. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1508. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1509. +
  1510. + + 40.99. Image classification
  1511. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1512. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1513. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1514. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1515. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1516. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1517. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1518. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1519. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1520. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1521. - 40.116. Art by gan + 40.118. Art by gan
  1522. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1523. +
  1524. + + 40.121. Comparing edge-based and region-based segmentation
  1525. - 40.119. Summary + 40.122. Summary
  1526. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1527. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1528. +
  1529. + + 40.126. Getting Start NLP with classification task
  1530. diff --git a/deep-learning/dqn.html b/deep-learning/dqn.html index fd7c3e81e4..88c4942f14 100644 --- a/deep-learning/dqn.html +++ b/deep-learning/dqn.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1531. + + 40.89. Introduction + +
  1532. - 40.89. Study the solvers + 40.90. Study the solvers
  1533. - 40.90. Build classification models + 40.91. Build classification models
  1534. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1535. - 40.92. Parameter play + 40.93. Parameter play
  1536. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1537. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1538. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1539. +
  1540. + + 40.99. Image classification
  1541. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1542. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1543. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1544. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1545. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1546. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1547. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1548. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1549. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1550. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1551. - 40.116. Art by gan + 40.118. Art by gan
  1552. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1553. +
  1554. + + 40.121. Comparing edge-based and region-based segmentation
  1555. - 40.119. Summary + 40.122. Summary
  1556. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1557. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1558. +
  1559. + + 40.126. Getting Start NLP with classification task
  1560. diff --git a/deep-learning/gan.html b/deep-learning/gan.html index 2eced21695..6b2eafca88 100644 --- a/deep-learning/gan.html +++ b/deep-learning/gan.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1561. + + 40.89. Introduction + +
  1562. - 40.89. Study the solvers + 40.90. Study the solvers
  1563. - 40.90. Build classification models + 40.91. Build classification models
  1564. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1565. - 40.92. Parameter play + 40.93. Parameter play
  1566. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1567. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1568. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1569. +
  1570. + + 40.99. Image classification
  1571. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1572. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1573. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1574. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1575. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1576. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1577. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1578. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1579. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1580. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1581. - 40.116. Art by gan + 40.118. Art by gan
  1582. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1583. +
  1584. + + 40.121. Comparing edge-based and region-based segmentation
  1585. - 40.119. Summary + 40.122. Summary
  1586. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1587. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1588. +
  1589. + + 40.126. Getting Start NLP with classification task
  1590. diff --git a/deep-learning/image-classification.html b/deep-learning/image-classification.html index 90c77a6fbe..f91d94831e 100644 --- a/deep-learning/image-classification.html +++ b/deep-learning/image-classification.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1591. + + 40.89. Introduction + +
  1592. - 40.89. Study the solvers + 40.90. Study the solvers
  1593. - 40.90. Build classification models + 40.91. Build classification models
  1594. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1595. - 40.92. Parameter play + 40.93. Parameter play
  1596. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1597. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1598. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1599. +
  1600. + + 40.99. Image classification
  1601. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1602. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1603. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1604. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1605. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1606. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1607. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1608. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1609. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1610. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1611. - 40.116. Art by gan + 40.118. Art by gan
  1612. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1613. +
  1614. + + 40.121. Comparing edge-based and region-based segmentation
  1615. - 40.119. Summary + 40.122. Summary
  1616. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1617. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1618. +
  1619. + + 40.126. Getting Start NLP with classification task
  1620. @@ -1956,8 +1976,8 @@

    31.4.1. VGGNet
  1621. Using small 3×3 filters to replace large convolutional kernels.

  1622. After replacing the convolution kernel, the convolution layers have the same perceptual field.

  1623. -
  1624. Each layer is trained by Re LU activation function and batch gradient descent after convolution operation.

  1625. -
  1626. It is verified that increasing the network depth can improve the model performance Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming.

  1627. +
  1628. Each layer is trained by ReLU activation function and batch gradient descent after convolution operation.

  1629. +
  1630. It is verified that increasing the network depth can improve the model performance. Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming.

  1631. https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/imgcls/02_VGG.png @@ -2585,7 +2605,7 @@

    31.6.2. Top-5 accuracy

    31.7. Your turn! 🚀#

    -

    TBD.

    +

    Assignment - Image classification

    31.8. Acknowledgments#

    diff --git a/deep-learning/image-segmentation.html b/deep-learning/image-segmentation.html index c1f29672f9..edf0f5ca61 100644 --- a/deep-learning/image-segmentation.html +++ b/deep-learning/image-segmentation.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1632. + + 40.89. Introduction + +
  1633. - 40.89. Study the solvers + 40.90. Study the solvers
  1634. - 40.90. Build classification models + 40.91. Build classification models
  1635. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1636. - 40.92. Parameter play + 40.93. Parameter play
  1637. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1638. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1639. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1640. +
  1641. + + 40.99. Image classification
  1642. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1643. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1644. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1645. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1646. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1647. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1648. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1649. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1650. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1651. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1652. - 40.116. Art by gan + 40.118. Art by gan
  1653. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1654. +
  1655. + + 40.121. Comparing edge-based and region-based segmentation
  1656. - 40.119. Summary + 40.122. Summary
  1657. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1658. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1659. +
  1660. + + 40.126. Getting Start NLP with classification task
  1661. @@ -3338,7 +3358,7 @@

    32.3.4.1. Code

    32.4. Your turn! 🚀#

    -

    TBD.

    +

    Assignment - Comparing edge-based and region-based segmentation

    32.5. Acknowledgments#

    diff --git a/deep-learning/lstm.html b/deep-learning/lstm.html index cc046448ab..d348ce152e 100644 --- a/deep-learning/lstm.html +++ b/deep-learning/lstm.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1662. + + 40.89. Introduction + +
  1663. - 40.89. Study the solvers + 40.90. Study the solvers
  1664. - 40.90. Build classification models + 40.91. Build classification models
  1665. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1666. - 40.92. Parameter play + 40.93. Parameter play
  1667. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1668. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1669. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1670. +
  1671. + + 40.99. Image classification
  1672. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1673. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1674. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1675. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1676. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1677. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1678. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1679. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1680. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1681. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1682. - 40.116. Art by gan + 40.118. Art by gan
  1683. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1684. +
  1685. + + 40.121. Comparing edge-based and region-based segmentation
  1686. - 40.119. Summary + 40.122. Summary
  1687. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1688. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1689. +
  1690. + + 40.126. Getting Start NLP with classification task
  1691. @@ -6248,7 +6268,7 @@

    28.2.1. Code

    28.3. Your turn! 🚀#

    -

    Practice the Long-Short Term Memory Networks by following this TBD.

    +

    Assignment - Bitcoin lstm model with tweet volume and sentiment

    28.4. Acknowledgments#

    diff --git a/deep-learning/nlp.html b/deep-learning/nlp.html index 565d92a3c5..7696ec0256 100644 --- a/deep-learning/nlp.html +++ b/deep-learning/nlp.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1692. + + 40.89. Introduction + +
  1693. - 40.89. Study the solvers + 40.90. Study the solvers
  1694. - 40.90. Build classification models + 40.91. Build classification models
  1695. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1696. - 40.92. Parameter play + 40.93. Parameter play
  1697. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1698. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1699. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1700. +
  1701. + + 40.99. Image classification
  1702. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1703. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1704. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1705. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1706. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1707. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1708. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1709. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1710. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1711. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1712. - 40.116. Art by gan + 40.118. Art by gan
  1713. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1714. +
  1715. + + 40.121. Comparing edge-based and region-based segmentation
  1716. - 40.119. Summary + 40.122. Summary
  1717. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1718. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1719. +
  1720. + + 40.126. Getting Start NLP with classification task
  1721. @@ -2206,7 +2226,7 @@

    26.5.2. Model

    26.6. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your nlp skills by following the assignment getting start nlp with classification task.

    26.7. Acknowledgments#

    diff --git a/deep-learning/nn.html b/deep-learning/nn.html index 94e8a40e0e..c96b6d24d5 100644 --- a/deep-learning/nn.html +++ b/deep-learning/nn.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1722. + + 40.89. Introduction + +
  1723. - 40.89. Study the solvers + 40.90. Study the solvers
  1724. - 40.90. Build classification models + 40.91. Build classification models
  1725. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1726. - 40.92. Parameter play + 40.93. Parameter play
  1727. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1728. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1729. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1730. +
  1731. + + 40.99. Image classification
  1732. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1733. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1734. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1735. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1736. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1737. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1738. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1739. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1740. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1741. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1742. - 40.116. Art by gan + 40.118. Art by gan
  1743. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1744. +
  1745. + + 40.121. Comparing edge-based and region-based segmentation
  1746. - 40.119. Summary + 40.122. Summary
  1747. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1748. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1749. +
  1750. + + 40.126. Getting Start NLP with classification task
  1751. diff --git a/deep-learning/object-detection.html b/deep-learning/object-detection.html index e4ea5a56f5..cde938572f 100644 --- a/deep-learning/object-detection.html +++ b/deep-learning/object-detection.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1752. + + 40.89. Introduction + +
  1753. - 40.89. Study the solvers + 40.90. Study the solvers
  1754. - 40.90. Build classification models + 40.91. Build classification models
  1755. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1756. - 40.92. Parameter play + 40.93. Parameter play
  1757. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1758. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1759. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1760. +
  1761. + + 40.99. Image classification
  1762. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1763. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1764. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1765. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1766. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1767. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1768. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1769. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1770. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1771. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1772. - 40.116. Art by gan + 40.118. Art by gan
  1773. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1774. +
  1775. + + 40.121. Comparing edge-based and region-based segmentation
  1776. - 40.119. Summary + 40.122. Summary
  1777. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1778. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1779. +
  1780. + + 40.126. Getting Start NLP with classification task
  1781. diff --git a/deep-learning/rnn.html b/deep-learning/rnn.html index c7631b9f19..aa492b2ef4 100644 --- a/deep-learning/rnn.html +++ b/deep-learning/rnn.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1782. + + 40.89. Introduction + +
  1783. - 40.89. Study the solvers + 40.90. Study the solvers
  1784. - 40.90. Build classification models + 40.91. Build classification models
  1785. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1786. - 40.92. Parameter play + 40.93. Parameter play
  1787. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1788. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1789. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1790. +
  1791. + + 40.99. Image classification
  1792. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1793. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1794. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1795. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1796. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1797. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1798. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1799. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1800. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1801. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1802. - 40.116. Art by gan + 40.118. Art by gan
  1803. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1804. +
  1805. + + 40.121. Comparing edge-based and region-based segmentation
  1806. - 40.119. Summary + 40.122. Summary
  1807. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1808. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1809. +
  1810. + + 40.126. Getting Start NLP with classification task
  1811. @@ -1610,14 +1630,9 @@

    Ocademy Open Machine Learning Book

    25.2. Your turn! 🚀 -
  1812. - - 25.3. Self study - -
  1813. - 25.4. Acknowledgments + 25.3. Acknowledgments
  1814. @@ -1649,14 +1664,9 @@

    Contents

    25.2. Your turn! 🚀 -
  1815. - - 25.3. Self study - -
  1816. - 25.4. Acknowledgments + 25.3. Acknowledgments
  1817. @@ -1679,6 +1689,12 @@

    Contents

    +
    +
    WARNING: Ignoring invalid distribution -fds-nightly (c:\users\16111\.conda\envs\open-machine-learning-jupyter-book\lib\site-packages)
    +WARNING: Ignoring invalid distribution -fds-nightly (c:\users\16111\.conda\envs\open-machine-learning-jupyter-book\lib\site-packages)
    +
    +
    +

    25. Recurrent Neural Networks#

    @@ -1750,260 +1766,256 @@

    25. Recurrent Neural Networks

    25.1. Code#

    +

    A text classifier implemented in TensorFlow to classify SMS spam messages. +Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow. +The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function. +The output of the # code is the accuracy of the classifier along with some statistics +We implement an RNN in TensorFlow to predict spam/ham from texts

    -
    # A text classifier implemented in TensorFlow to classify SMS spam messages.
    -
    -# Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow.
    -
    -# The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function.
    -
    -#The output of the # code is the accuracy of the classifier along with some statistics
    -
    -# We implement an RNN in TensorFlow to predict spam/ham from texts
    -
    -import os
    +
    import os
     import re
     import io
     import requests
     import numpy as np
     import matplotlib.pyplot as plt
    -import tensorflow.compat.v1 as tf
    +import tensorflow as tf
     from zipfile import ZipFile
    -from tensorflow.python.framework import ops
    -tf.disable_v2_behavior()
    -ops.reset_default_graph()
    -
    -# Start a graph
    -sess = tf.Session()
    -
    -# Set RNN parameters
    -epochs = 20
    -batch_size = 250
    -max_sequence_length =25 
    -rnn_size = 10
    -embedding_size = 50
    -min_word_frequency = 10
    -learning_rate = 0.0005
    -dropout_keep_prob = tf.placeholder(tf.float32,name='dropout_keep_prob')
    -
    +from tensorflow.keras.preprocessing.text import Tokenizer
    +from tensorflow.keras.preprocessing.sequence import pad_sequences
    +
    +
    +
    +
    +
    +
    +
    # Set random seed for reproducibility
    +tf.random.set_seed(42)
     
     # Download or open data
    -data_dir = 'tmp'
    -data_file = 'text_data.txt'
    +data_dir = "tmp"
    +data_file = "text_data.txt"
     if not os.path.exists(data_dir):
         os.makedirs(data_dir)
     
     if not os.path.isfile(os.path.join(data_dir, data_file)):
    -    zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
    +    zip_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
         r = requests.get(zip_url)
         z = ZipFile(io.BytesIO(r.content))
    -    file = z.read('SMSSpamCollection')
    +    file = z.read("SMSSpamCollection")
         # Format Data
         text_data = file.decode()
    -    text_data = text_data.encode('ascii', errors='ignore')
    -    text_data = text_data.decode().split('\n')
    +    text_data = text_data.encode("ascii", errors="ignore")
    +    text_data = text_data.decode().split("\n")
     
         # Save data to text file
    -    with open(os.path.join(data_dir, data_file), 'w') as file_conn:
    +    with open(os.path.join(data_dir, data_file), "w") as file_conn:
             for text in text_data:
                 file_conn.write("{}\n".format(text))
     else:
         # Open data from text file
         text_data = []
    -    with open(os.path.join(data_dir, data_file), 'r') as file_conn:
    +    with open(os.path.join(data_dir, data_file), "r") as file_conn:
             for row in file_conn:
                 text_data.append(row)
         text_data = text_data[:-1]
     
    -text_data = [x.split('\t') for x in text_data if len(x) >= 1]
    +text_data = [x.split("\t") for x in text_data if len(x) >= 1]
     [text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
    -
    -
    -# Create a text cleaning function
    +
    +
    +
    +
    +
    +
    +
    # Create a text cleaning function
     def clean_text(text_string):
    -    text_string = re.sub(r'([^\s\w]|_|[0-9])+', '', text_string)
    +    text_string = re.sub(r"([^\s\w]|_|[0-9])+", "", text_string)
         text_string = " ".join(text_string.split())
         text_string = text_string.lower()
         return text_string
    -
    -# Clean texts
    +
    +
    +
    +
    +
    +
    +
    # Clean texts
     text_data_train = [clean_text(x) for x in text_data_train]
    -#print(text_data[:5])
     print(text_data_train[:5])
     
     # Tokenize and pad sequences
    -vocab_processor = tf.keras.preprocessing.text.Tokenizer()
    -vocab_processor.fit_on_texts(text_data_train)
    -text_processed = vocab_processor.texts_to_sequences(text_data_train)
    -max_document_length = max([len(x) for x in text_processed])
    -#pads the text data to ensure all sequences have the same length (max_sequence_length).
    -text_processed = tf.keras.preprocessing.sequence.pad_sequences(text_processed, maxlen=max_sequence_length, padding='post')
    +tokenizer = Tokenizer()
    +tokenizer.fit_on_texts(text_data_train)
    +text_processed = tokenizer.texts_to_sequences(text_data_train)
    +max_sequence_length = 25
    +text_processed = pad_sequences(
    +    text_processed, maxlen=max_sequence_length, padding="post"
    +)
     print(text_processed.shape)
    -# Shuffle and split data
    +
    +
    +
    +
    +
    ['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']
    +(5574, 25)
    +
    +
    +
    +
    +
    +
    +
    # Shuffle and split data
     text_processed = np.array(text_processed)
    -text_data_target = np.array([1 if x == 'ham' else 0 for x in text_data_target])
    +text_data_target = np.array([1 if x == "ham" else 0 for x in text_data_target])
     shuffled_ix = np.random.permutation(np.arange(len(text_data_target)))
     x_shuffled = text_processed[shuffled_ix]
     y_shuffled = text_data_target[shuffled_ix]
    -
    -# Split train/test set
    -ix_cutoff = int(len(y_shuffled)*0.80)
    +
    +
    +
    +
    +
    +
    +
    # Split train/test set
    +ix_cutoff = int(len(y_shuffled) * 0.80)
     x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:]
    -print(x_train)
     y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:]
    -vocab_size = len(vocab_processor.word_counts)
    +vocab_size = len(tokenizer.word_index) + 1
     print("Vocabulary Size: {:d}".format(vocab_size))
     print("80-20 Train Test split: {:d} -- {:d}".format(len(y_train), len(y_test)))
    -
    -# Create placeholders
    -x_data = tf.placeholder(tf.int32, [None, max_sequence_length])
    -y_output = tf.placeholder(tf.int32, [None])
    -
    -# Create embedding
    -embedding_mat = tf.Variable(tf.random_uniform([vocab_size+1, embedding_size], -1.0, 1.0))
    -embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data)
    -
    -# Define the RNN cell
    -# tensorflow change >= 1.0, rnn is put into tensorflow.contrib directory. Prior version not test.
    -cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)
    -
    -output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)
    -output = tf.nn.dropout(output, dropout_keep_prob)
    -
    -# Get output of RNN sequence
    -output = tf.transpose(output, [1, 0, 2])
    -last = tf.gather(output, int(output.get_shape()[0]) - 1)
    -
    -weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1))
    -bias = tf.Variable(tf.constant(0.1, shape=[2]))
    -logits_out = tf.matmul(last, weight) + bias
    -
    -
    -# Loss function
    -losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output)
    -loss = tf.reduce_mean(losses)
    -print(loss)
    -accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32))
    -print(accuracy)
    -optimizer = tf.train.RMSPropOptimizer(learning_rate)
    -train_step = optimizer.minimize(loss)
    -init = tf.global_variables_initializer()
    -sess.run(init)
    -
    -train_loss = []
    -test_loss = []
    -train_accuracy = []
    -test_accuracy = []
    -# Start training
    -for epoch in range(epochs):
    -    # Shuffle training data
    -    shuffled_ix = np.random.permutation(np.arange(len(x_train)))
    -    x_train = x_train[shuffled_ix]
    -    y_train = y_train[shuffled_ix]
    -    num_batches = int(len(x_train)/batch_size) + 1
    -    # TO DO CALCULATE GENERATIONS ExACTLY
    -    for i in range(num_batches):
    -        # Select train data
    -        min_ix = i * batch_size
    -        max_ix = np.min([len(x_train), ((i+1) * batch_size)])
    -        x_train_batch = x_train[min_ix:max_ix]
    -        y_train_batch = y_train[min_ix:max_ix]
    -        max_len = max([len(x) for x in x_train_batch])
    -        x_train_batch = np.array([np.pad(x, (0, max_len - len(x)), 'constant') for x in x_train_batch])
    -        # Run train step
    -        train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5}
    -        sess.run(train_step, feed_dict=train_dict)
    -    # Run loss and accuracy for training
    -    train_dict = {x_data: x_train, y_output: y_train, dropout_keep_prob:1.0}
    -    temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict)
    -    train_loss.append(temp_train_loss)
    -    train_accuracy.append(temp_train_acc)
    -    # Run Eval Step
    -    test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0}
    -    temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict)
    -    test_loss.append(temp_test_loss)
    -    test_accuracy.append(temp_test_acc)
    -    print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc))
    -    
    -# Plot loss over time
    -epoch_seq = np.arange(1, epochs+1)
    -plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')
    -plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')
    -plt.title('Softmax Loss')
    -plt.xlabel('Epochs')
    -plt.ylabel('Softmax Loss')
    -plt.legend(loc='upper left')
    -plt.show()
    -
    -# Plot accuracy over time
    -plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')
    -plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')
    -plt.title('Test Accuracy')
    -plt.xlabel('Epochs')
    -plt.ylabel('Accuracy')
    -plt.legend(loc='upper left')
    -plt.show()
     
    -
    ['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']
    -(5574, 25)
    -[[ 191    3   17 ... 2725    0    0]
    - [ 365 1206   41 ...    0    0    0]
    - [  81   40    4 ...    0    0    0]
    - ...
    - [7814 7815  533 ...    0    0    0]
    - [   2   28 1439 ...    7  161    3]
    - [  51   20    3 ...    0    0    0]]
    -Vocabulary Size: 8629
    +
    Vocabulary Size: 8630
     80-20 Train Test split: 4459 -- 1115
     
    -
    C:\Users\fuqiongying\AppData\Local\Temp\ipykernel_1816\2116000173.py:115: UserWarning: `tf.nn.rnn_cell.BasicRNNCell` is deprecated and will be removed in a future version. This class is equivalent as `tf.keras.layers.SimpleRNNCell`, and will be replaced by that in Tensorflow 2.0.
    -  cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)
    +
    +
    +
    +
    +
    # Create the model using the Sequential API
    +embedding_size = 50
    +model = tf.keras.Sequential(
    +    [
    +        tf.keras.layers.Embedding(
    +            input_dim=vocab_size,
    +            output_dim=embedding_size,
    +            input_length=max_sequence_length,
    +        ),
    +        tf.keras.layers.SimpleRNN(units=10),
    +        tf.keras.layers.Dropout(0.5),
    +        tf.keras.layers.Dense(units=2, activation="softmax"),
    +    ]
    +)
    +
    +
    +
    +
    +
    +
    +
    # Compile the model
    +model.compile(
    +    optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0005),
    +    loss="sparse_categorical_crossentropy",
    +    metrics=["accuracy"],
    +)
     
    -
    Tensor("Mean:0", shape=(), dtype=float32)
    -Tensor("Mean_1:0", shape=(), dtype=float32)
    -Epoch: 1, Test Loss: 0.69, Test Acc: 0.81
    -Epoch: 2, Test Loss: 0.65, Test Acc: 0.82
    -Epoch: 3, Test Loss: 0.6, Test Acc: 0.82
    -Epoch: 4, Test Loss: 0.55, Test Acc: 0.82
    -Epoch: 5, Test Loss: 0.51, Test Acc: 0.83
    -Epoch: 6, Test Loss: 0.47, Test Acc: 0.83
    -Epoch: 7, Test Loss: 0.45, Test Acc: 0.83
    -Epoch: 8, Test Loss: 0.43, Test Acc: 0.84
    -Epoch: 9, Test Loss: 0.42, Test Acc: 0.84
    -Epoch: 10, Test Loss: 0.41, Test Acc: 0.84
    -Epoch: 11, Test Loss: 0.41, Test Acc: 0.84
    -Epoch: 12, Test Loss: 0.4, Test Acc: 0.85
    -Epoch: 13, Test Loss: 0.4, Test Acc: 0.85
    -Epoch: 14, Test Loss: 0.4, Test Acc: 0.85
    -Epoch: 15, Test Loss: 0.4, Test Acc: 0.86
    -Epoch: 16, Test Loss: 0.39, Test Acc: 0.86
    -Epoch: 17, Test Loss: 0.39, Test Acc: 0.87
    -Epoch: 18, Test Loss: 0.38, Test Acc: 0.87
    -Epoch: 19, Test Loss: 0.38, Test Acc: 0.87
    -Epoch: 20, Test Loss: 0.37, Test Acc: 0.87
    +
    +
    +
    +
    +
    # Train the model
    +epochs = 20
    +batch_size = 250
    +
    +history = model.fit(
    +    x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2
    +)
     
    -../_images/rnn_7_3.png -../_images/rnn_7_4.png +
    +
    +
    Epoch 1/20
    +15/15 [==============================] - 3s 65ms/step - loss: 0.5753 - accuracy: 0.7575 - val_loss: 0.4707 - val_accuracy: 0.8756
    +Epoch 2/20
    +15/15 [==============================] - 0s 33ms/step - loss: 0.4656 - accuracy: 0.8433 - val_loss: 0.3906 - val_accuracy: 0.9283
    +Epoch 3/20
    +15/15 [==============================] - 0s 24ms/step - loss: 0.3762 - accuracy: 0.9162 - val_loss: 0.3093 - val_accuracy: 0.9574
    +Epoch 4/20
    +15/15 [==============================] - 0s 9ms/step - loss: 0.3103 - accuracy: 0.9422 - val_loss: 0.2595 - val_accuracy: 0.9652
    +Epoch 5/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.2693 - accuracy: 0.9498 - val_loss: 0.2225 - val_accuracy: 0.9664
    +Epoch 6/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.2285 - accuracy: 0.9686 - val_loss: 0.1987 - val_accuracy: 0.9664
    +Epoch 7/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.2024 - accuracy: 0.9795 - val_loss: 0.1820 - val_accuracy: 0.9619
    +Epoch 8/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.1825 - accuracy: 0.9748 - val_loss: 0.1675 - val_accuracy: 0.9630
    +Epoch 9/20
    +15/15 [==============================] - 0s 9ms/step - loss: 0.1647 - accuracy: 0.9821 - val_loss: 0.1631 - val_accuracy: 0.9608
    +Epoch 10/20
    +15/15 [==============================] - 0s 14ms/step - loss: 0.1546 - accuracy: 0.9837 - val_loss: 0.1623 - val_accuracy: 0.9574
    +Epoch 11/20
    +15/15 [==============================] - 0s 12ms/step - loss: 0.1400 - accuracy: 0.9865 - val_loss: 0.1622 - val_accuracy: 0.9552
    +Epoch 12/20
    +15/15 [==============================] - 0s 13ms/step - loss: 0.1302 - accuracy: 0.9868 - val_loss: 0.1632 - val_accuracy: 0.9552
    +Epoch 13/20
    +15/15 [==============================] - 0s 14ms/step - loss: 0.1285 - accuracy: 0.9865 - val_loss: 0.1640 - val_accuracy: 0.9540
    +Epoch 14/20
    +15/15 [==============================] - 0s 17ms/step - loss: 0.1194 - accuracy: 0.9871 - val_loss: 0.1579 - val_accuracy: 0.9552
    +Epoch 15/20
    +15/15 [==============================] - 0s 15ms/step - loss: 0.1190 - accuracy: 0.9874 - val_loss: 0.1647 - val_accuracy: 0.9518
    +Epoch 16/20
    +15/15 [==============================] - 0s 17ms/step - loss: 0.1103 - accuracy: 0.9874 - val_loss: 0.1596 - val_accuracy: 0.9563
    +Epoch 17/20
    +15/15 [==============================] - 0s 11ms/step - loss: 0.1033 - accuracy: 0.9879 - val_loss: 0.1530 - val_accuracy: 0.9585
    +Epoch 18/20
    +15/15 [==============================] - 0s 11ms/step - loss: 0.0954 - accuracy: 0.9905 - val_loss: 0.1611 - val_accuracy: 0.9552
    +Epoch 19/20
    +15/15 [==============================] - 0s 17ms/step - loss: 0.0937 - accuracy: 0.9896 - val_loss: 0.1640 - val_accuracy: 0.9552
    +Epoch 20/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.0924 - accuracy: 0.9907 - val_loss: 0.1848 - val_accuracy: 0.9484
    +
    +
    +
    +
    +
    +
    +
    # Plot loss and accuracy over time
    +plt.plot(history.history["loss"], label="Train Set")
    +plt.plot(history.history["val_loss"], label="Validation Set")
    +plt.title("Softmax Loss")
    +plt.xlabel("Epochs")
    +plt.ylabel("Softmax Loss")
    +plt.legend(loc="upper left")
    +plt.show()
    +
    +plt.plot(history.history["accuracy"], label="Train Set")
    +plt.plot(history.history["val_accuracy"], label="Validation Set")
    +plt.title("Test Accuracy")
    +plt.xlabel("Epochs")
    +plt.ylabel("Accuracy")
    +plt.legend(loc="upper left")
    +plt.show()
    +
    +
    +
    +
    +../_images/rnn_17_0.png +../_images/rnn_17_1.png

    25.2. Your turn! 🚀#

    -

    Practice the Recurrent Neural Networks by following this TBD.

    -
    -
    -

    25.3. Self study#

    -

    TBD

    +

    You can practice your rnn skills by following the assignment google stock price prediction rnn

    -

    25.4. Acknowledgments#

    +

    25.3. Acknowledgments#

    Thanks to Nick for creating the open-source course tensorflow_cookbook and Sebastian Raschka for creating the open-sourse stat453-deep-learning-ss20. It inspires the majority of the content in this chapter.

    diff --git a/deep-learning/time-series.html b/deep-learning/time-series.html index 895fb24ffa..fc37d26ba3 100644 --- a/deep-learning/time-series.html +++ b/deep-learning/time-series.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1818. + + 40.89. Introduction + +
  1819. - 40.89. Study the solvers + 40.90. Study the solvers
  1820. - 40.90. Build classification models + 40.91. Build classification models
  1821. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1822. - 40.92. Parameter play + 40.93. Parameter play
  1823. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1824. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1825. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1826. +
  1827. + + 40.99. Image classification
  1828. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1829. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1830. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1831. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1832. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1833. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1834. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1835. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1836. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1837. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1838. - 40.116. Art by gan + 40.118. Art by gan
  1839. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1840. +
  1841. + + 40.121. Comparing edge-based and region-based segmentation
  1842. - 40.119. Summary + 40.122. Summary
  1843. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1844. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1845. +
  1846. + + 40.126. Getting Start NLP with classification task
  1847. @@ -2956,7 +2976,7 @@

    29.5.4.2. Direct strategy

    29.6. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your time series skills by following the assignment time series forecasting assignment

    29.7. Acknowledgments#

    diff --git a/genindex.html b/genindex.html index 41bc5a1ea2..90986e64cf 100644 --- a/genindex.html +++ b/genindex.html @@ -26,8 +26,8 @@ - + @@ -1107,114 +1107,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1848. + + 40.89. Introduction + +
  1849. - 40.89. Study the solvers + 40.90. Study the solvers
  1850. - 40.90. Build classification models + 40.91. Build classification models
  1851. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1852. - 40.92. Parameter play + 40.93. Parameter play
  1853. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1854. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1855. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1856. +
  1857. + + 40.99. Image classification
  1858. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1859. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1860. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1861. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1862. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1863. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1864. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1865. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1866. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1867. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1868. - 40.116. Art by gan + 40.118. Art by gan
  1869. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1870. +
  1871. + + 40.121. Comparing edge-based and region-based segmentation
  1872. - 40.119. Summary + 40.122. Summary
  1873. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1874. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1875. +
  1876. + + 40.126. Getting Start NLP with classification task
  1877. diff --git a/intro.html b/intro.html index 6ef1449c1d..ad1dd28f2c 100644 --- a/intro.html +++ b/intro.html @@ -27,8 +27,8 @@ - + @@ -1109,114 +1109,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1878. + + 40.89. Introduction + +
  1879. - 40.89. Study the solvers + 40.90. Study the solvers
  1880. - 40.90. Build classification models + 40.91. Build classification models
  1881. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1882. - 40.92. Parameter play + 40.93. Parameter play
  1883. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1884. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1885. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1886. +
  1887. + + 40.99. Image classification
  1888. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1889. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1890. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1891. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1892. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1893. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1894. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1895. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1896. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1897. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1898. - 40.116. Art by gan + 40.118. Art by gan
  1899. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1900. +
  1901. + + 40.121. Comparing edge-based and region-based segmentation
  1902. - 40.119. Summary + 40.122. Summary
  1903. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1904. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1905. +
  1906. + + 40.126. Getting Start NLP with classification task
  1907. diff --git a/machine-learning-productionization/data-engineering.html b/machine-learning-productionization/data-engineering.html index 246cde3689..3b8c685dfe 100644 --- a/machine-learning-productionization/data-engineering.html +++ b/machine-learning-productionization/data-engineering.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1908. + + 40.89. Introduction + +
  1909. - 40.89. Study the solvers + 40.90. Study the solvers
  1910. - 40.90. Build classification models + 40.91. Build classification models
  1911. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1912. - 40.92. Parameter play + 40.93. Parameter play
  1913. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1914. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1915. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1916. +
  1917. + + 40.99. Image classification
  1918. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1919. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1920. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1921. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1922. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1923. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1924. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1925. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1926. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1927. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1928. - 40.116. Art by gan + 40.118. Art by gan
  1929. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1930. +
  1931. + + 40.121. Comparing edge-based and region-based segmentation
  1932. - 40.119. Summary + 40.122. Summary
  1933. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1934. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1935. +
  1936. + + 40.126. Getting Start NLP with classification task
  1937. diff --git a/machine-learning-productionization/model-deployment.html b/machine-learning-productionization/model-deployment.html index e46fba8b34..fc455fccdf 100644 --- a/machine-learning-productionization/model-deployment.html +++ b/machine-learning-productionization/model-deployment.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1938. + + 40.89. Introduction + +
  1939. - 40.89. Study the solvers + 40.90. Study the solvers
  1940. - 40.90. Build classification models + 40.91. Build classification models
  1941. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1942. - 40.92. Parameter play + 40.93. Parameter play
  1943. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1944. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1945. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1946. +
  1947. + + 40.99. Image classification
  1948. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1949. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1950. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1951. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1952. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1953. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1954. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1955. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1956. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1957. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1958. - 40.116. Art by gan + 40.118. Art by gan
  1959. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1960. +
  1961. + + 40.121. Comparing edge-based and region-based segmentation
  1962. - 40.119. Summary + 40.122. Summary
  1963. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1964. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1965. +
  1966. + + 40.126. Getting Start NLP with classification task
  1967. diff --git a/machine-learning-productionization/model-training-and-evaluation.html b/machine-learning-productionization/model-training-and-evaluation.html index a45a9f49c1..6308a50773 100644 --- a/machine-learning-productionization/model-training-and-evaluation.html +++ b/machine-learning-productionization/model-training-and-evaluation.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1968. + + 40.89. Introduction + +
  1969. - 40.89. Study the solvers + 40.90. Study the solvers
  1970. - 40.90. Build classification models + 40.91. Build classification models
  1971. - 40.91. Build Classification Model + 40.92. Build Classification Model
  1972. - 40.92. Parameter play + 40.93. Parameter play
  1973. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  1974. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  1975. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  1976. +
  1977. + + 40.99. Image classification
  1978. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  1979. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  1980. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  1981. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  1982. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  1983. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  1984. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  1985. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  1986. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  1987. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  1988. - 40.116. Art by gan + 40.118. Art by gan
  1989. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  1990. +
  1991. + + 40.121. Comparing edge-based and region-based segmentation
  1992. - 40.119. Summary + 40.122. Summary
  1993. - 40.120. Car Object Detection + 40.123. Car Object Detection
  1994. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  1995. +
  1996. + + 40.126. Getting Start NLP with classification task
  1997. diff --git a/machine-learning-productionization/overview.html b/machine-learning-productionization/overview.html index 4aafc03a50..b2e99231be 100644 --- a/machine-learning-productionization/overview.html +++ b/machine-learning-productionization/overview.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  1998. + + 40.89. Introduction + +
  1999. - 40.89. Study the solvers + 40.90. Study the solvers
  2000. - 40.90. Build classification models + 40.91. Build classification models
  2001. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2002. - 40.92. Parameter play + 40.93. Parameter play
  2003. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2004. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2005. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2006. +
  2007. + + 40.99. Image classification
  2008. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2009. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2010. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2011. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2012. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2013. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2014. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2015. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2016. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2017. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2018. - 40.116. Art by gan + 40.118. Art by gan
  2019. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2020. +
  2021. + + 40.121. Comparing edge-based and region-based segmentation
  2022. - 40.119. Summary + 40.122. Summary
  2023. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2024. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2025. +
  2026. + + 40.126. Getting Start NLP with classification task
  2027. diff --git a/machine-learning-productionization/problem-framing.html b/machine-learning-productionization/problem-framing.html index 04862a0b8d..fef9e34520 100644 --- a/machine-learning-productionization/problem-framing.html +++ b/machine-learning-productionization/problem-framing.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2028. + + 40.89. Introduction + +
  2029. - 40.89. Study the solvers + 40.90. Study the solvers
  2030. - 40.90. Build classification models + 40.91. Build classification models
  2031. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2032. - 40.92. Parameter play + 40.93. Parameter play
  2033. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2034. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2035. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2036. +
  2037. + + 40.99. Image classification
  2038. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2039. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2040. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2041. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2042. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2043. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2044. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2045. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2046. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2047. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2048. - 40.116. Art by gan + 40.118. Art by gan
  2049. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2050. +
  2051. + + 40.121. Comparing edge-based and region-based segmentation
  2052. - 40.119. Summary + 40.122. Summary
  2053. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2054. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2055. +
  2056. + + 40.126. Getting Start NLP with classification task
  2057. diff --git a/ml-advanced/clustering/clustering-models-for-machine-learning.html b/ml-advanced/clustering/clustering-models-for-machine-learning.html index 947bbaba84..88f25394bb 100644 --- a/ml-advanced/clustering/clustering-models-for-machine-learning.html +++ b/ml-advanced/clustering/clustering-models-for-machine-learning.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2058. + + 40.89. Introduction + +
  2059. - 40.89. Study the solvers + 40.90. Study the solvers
  2060. - 40.90. Build classification models + 40.91. Build classification models
  2061. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2062. - 40.92. Parameter play + 40.93. Parameter play
  2063. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2064. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2065. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2066. +
  2067. + + 40.99. Image classification
  2068. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2069. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2070. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2071. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2072. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2073. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2074. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2075. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2076. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2077. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2078. - 40.116. Art by gan + 40.118. Art by gan
  2079. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2080. +
  2081. + + 40.121. Comparing edge-based and region-based segmentation
  2082. - 40.119. Summary + 40.122. Summary
  2083. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2084. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2085. +
  2086. + + 40.126. Getting Start NLP with classification task
  2087. diff --git a/ml-advanced/clustering/introduction-to-clustering.html b/ml-advanced/clustering/introduction-to-clustering.html index 831af03dec..683116dc99 100644 --- a/ml-advanced/clustering/introduction-to-clustering.html +++ b/ml-advanced/clustering/introduction-to-clustering.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2088. + + 40.89. Introduction + +
  2089. - 40.89. Study the solvers + 40.90. Study the solvers
  2090. - 40.90. Build classification models + 40.91. Build classification models
  2091. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2092. - 40.92. Parameter play + 40.93. Parameter play
  2093. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2094. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2095. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2096. +
  2097. + + 40.99. Image classification
  2098. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2099. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2100. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2101. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2102. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2103. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2104. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2105. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2106. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2107. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2108. - 40.116. Art by gan + 40.118. Art by gan
  2109. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2110. +
  2111. + + 40.121. Comparing edge-based and region-based segmentation
  2112. - 40.119. Summary + 40.122. Summary
  2113. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2114. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2115. +
  2116. + + 40.126. Getting Start NLP with classification task
  2117. diff --git a/ml-advanced/clustering/k-means-clustering.html b/ml-advanced/clustering/k-means-clustering.html index 6dad1580cc..f94a948d84 100644 --- a/ml-advanced/clustering/k-means-clustering.html +++ b/ml-advanced/clustering/k-means-clustering.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2118. + + 40.89. Introduction + +
  2119. - 40.89. Study the solvers + 40.90. Study the solvers
  2120. - 40.90. Build classification models + 40.91. Build classification models
  2121. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2122. - 40.92. Parameter play + 40.93. Parameter play
  2123. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2124. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2125. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2126. +
  2127. + + 40.99. Image classification
  2128. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2129. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2130. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2131. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2132. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2133. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2134. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2135. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2136. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2137. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2138. - 40.116. Art by gan + 40.118. Art by gan
  2139. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2140. +
  2141. + + 40.121. Comparing edge-based and region-based segmentation
  2142. - 40.119. Summary + 40.122. Summary
  2143. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2144. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2145. +
  2146. + + 40.126. Getting Start NLP with classification task
  2147. diff --git a/ml-advanced/ensemble-learning/bagging.html b/ml-advanced/ensemble-learning/bagging.html index 08883c2f06..e00168729e 100644 --- a/ml-advanced/ensemble-learning/bagging.html +++ b/ml-advanced/ensemble-learning/bagging.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2148. + + 40.89. Introduction + +
  2149. - 40.89. Study the solvers + 40.90. Study the solvers
  2150. - 40.90. Build classification models + 40.91. Build classification models
  2151. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2152. - 40.92. Parameter play + 40.93. Parameter play
  2153. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2154. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2155. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2156. +
  2157. + + 40.99. Image classification
  2158. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2159. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2160. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2161. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2162. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2163. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2164. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2165. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2166. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2167. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2168. - 40.116. Art by gan + 40.118. Art by gan
  2169. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2170. +
  2171. + + 40.121. Comparing edge-based and region-based segmentation
  2172. - 40.119. Summary + 40.122. Summary
  2173. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2174. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2175. +
  2176. + + 40.126. Getting Start NLP with classification task
  2177. @@ -1938,7 +1958,7 @@

    15.1.2. Bootstrapping -
    <matplotlib.legend.Legend at 0x7fda965d69d0>
    +
    <matplotlib.legend.Legend at 0x7f9b21c61670>
     
    ../../_images/bagging_10_1.png diff --git a/ml-advanced/ensemble-learning/feature-importance.html b/ml-advanced/ensemble-learning/feature-importance.html index cf5ac634f6..b4236acc2b 100644 --- a/ml-advanced/ensemble-learning/feature-importance.html +++ b/ml-advanced/ensemble-learning/feature-importance.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2178. + + 40.89. Introduction + +
  2179. - 40.89. Study the solvers + 40.90. Study the solvers
  2180. - 40.90. Build classification models + 40.91. Build classification models
  2181. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2182. - 40.92. Parameter play + 40.93. Parameter play
  2183. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2184. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2185. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2186. +
  2187. + + 40.99. Image classification
  2188. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2189. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2190. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2191. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2192. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2193. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2194. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2195. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2196. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2197. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2198. - 40.116. Art by gan + 40.118. Art by gan
  2199. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2200. +
  2201. + + 40.121. Comparing edge-based and region-based segmentation
  2202. - 40.119. Summary + 40.122. Summary
  2203. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2204. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2205. +
  2206. + + 40.126. Getting Start NLP with classification task
  2207. diff --git a/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html b/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html index 19f75b3e59..6f64e577d6 100644 --- a/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html +++ b/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2208. + + 40.89. Introduction + +
  2209. - 40.89. Study the solvers + 40.90. Study the solvers
  2210. - 40.90. Build classification models + 40.91. Build classification models
  2211. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2212. - 40.92. Parameter play + 40.93. Parameter play
  2213. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2214. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2215. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2216. +
  2217. + + 40.99. Image classification
  2218. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2219. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2220. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2221. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2222. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2223. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2224. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2225. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2226. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2227. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2228. - 40.116. Art by gan + 40.118. Art by gan
  2229. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2230. +
  2231. + + 40.121. Comparing edge-based and region-based segmentation
  2232. - 40.119. Summary + 40.122. Summary
  2233. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2234. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2235. +
  2236. + + 40.126. Getting Start NLP with classification task
  2237. diff --git a/ml-advanced/ensemble-learning/random-forest.html b/ml-advanced/ensemble-learning/random-forest.html index 47556b5e7f..107cc09f8e 100644 --- a/ml-advanced/ensemble-learning/random-forest.html +++ b/ml-advanced/ensemble-learning/random-forest.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2238. + + 40.89. Introduction + +
  2239. - 40.89. Study the solvers + 40.90. Study the solvers
  2240. - 40.90. Build classification models + 40.91. Build classification models
  2241. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2242. - 40.92. Parameter play + 40.93. Parameter play
  2243. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2244. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2245. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2246. +
  2247. + + 40.99. Image classification
  2248. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2249. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2250. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2251. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2252. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2253. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2254. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2255. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2256. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2257. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2258. - 40.116. Art by gan + 40.118. Art by gan
  2259. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2260. +
  2261. + + 40.121. Comparing edge-based and region-based segmentation
  2262. - 40.119. Summary + 40.122. Summary
  2263. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2264. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2265. +
  2266. + + 40.126. Getting Start NLP with classification task
  2267. diff --git a/ml-advanced/gradient-boosting/gradient-boosting-example.html b/ml-advanced/gradient-boosting/gradient-boosting-example.html index 4c4d684ce1..82a41519ca 100644 --- a/ml-advanced/gradient-boosting/gradient-boosting-example.html +++ b/ml-advanced/gradient-boosting/gradient-boosting-example.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2268. + + 40.89. Introduction + +
  2269. - 40.89. Study the solvers + 40.90. Study the solvers
  2270. - 40.90. Build classification models + 40.91. Build classification models
  2271. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2272. - 40.92. Parameter play + 40.93. Parameter play
  2273. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2274. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2275. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2276. +
  2277. + + 40.99. Image classification
  2278. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2279. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2280. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2281. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2282. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2283. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2284. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2285. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2286. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2287. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2288. - 40.116. Art by gan + 40.118. Art by gan
  2289. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2290. +
  2291. + + 40.121. Comparing edge-based and region-based segmentation
  2292. - 40.119. Summary + 40.122. Summary
  2293. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2294. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2295. +
  2296. + + 40.126. Getting Start NLP with classification task
  2297. diff --git a/ml-advanced/gradient-boosting/gradient-boosting.html b/ml-advanced/gradient-boosting/gradient-boosting.html index debd4517ea..59970fa598 100644 --- a/ml-advanced/gradient-boosting/gradient-boosting.html +++ b/ml-advanced/gradient-boosting/gradient-boosting.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2298. + + 40.89. Introduction + +
  2299. - 40.89. Study the solvers + 40.90. Study the solvers
  2300. - 40.90. Build classification models + 40.91. Build classification models
  2301. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2302. - 40.92. Parameter play + 40.93. Parameter play
  2303. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2304. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2305. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2306. +
  2307. + + 40.99. Image classification
  2308. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2309. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2310. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2311. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2312. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2313. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2314. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2315. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2316. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2317. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2318. - 40.116. Art by gan + 40.118. Art by gan
  2319. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2320. +
  2321. + + 40.121. Comparing edge-based and region-based segmentation
  2322. - 40.119. Summary + 40.122. Summary
  2323. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2324. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2325. +
  2326. + + 40.126. Getting Start NLP with classification task
  2327. diff --git a/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html b/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html index 5c9a6ec64e..b0088f2cae 100644 --- a/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html +++ b/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2328. + + 40.89. Introduction + +
  2329. - 40.89. Study the solvers + 40.90. Study the solvers
  2330. - 40.90. Build classification models + 40.91. Build classification models
  2331. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2332. - 40.92. Parameter play + 40.93. Parameter play
  2333. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2334. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2335. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2336. +
  2337. + + 40.99. Image classification
  2338. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2339. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2340. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2341. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2342. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2343. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2344. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2345. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2346. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2347. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2348. - 40.116. Art by gan + 40.118. Art by gan
  2349. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2350. +
  2351. + + 40.121. Comparing edge-based and region-based segmentation
  2352. - 40.119. Summary + 40.122. Summary
  2353. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2354. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2355. +
  2356. + + 40.126. Getting Start NLP with classification task
  2357. diff --git a/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html b/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html index 78594ec788..3381625259 100644 --- a/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html +++ b/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2358. + + 40.89. Introduction + +
  2359. - 40.89. Study the solvers + 40.90. Study the solvers
  2360. - 40.90. Build classification models + 40.91. Build classification models
  2361. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2362. - 40.92. Parameter play + 40.93. Parameter play
  2363. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2364. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2365. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2366. +
  2367. + + 40.99. Image classification
  2368. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2369. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2370. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2371. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2372. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2373. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2374. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2375. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2376. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2377. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2378. - 40.116. Art by gan + 40.118. Art by gan
  2379. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2380. +
  2381. + + 40.121. Comparing edge-based and region-based segmentation
  2382. - 40.119. Summary + 40.122. Summary
  2383. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2384. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2385. +
  2386. + + 40.126. Getting Start NLP with classification task
  2387. diff --git a/ml-advanced/gradient-boosting/xgboost.html b/ml-advanced/gradient-boosting/xgboost.html index 3f4ec55989..094be52aab 100644 --- a/ml-advanced/gradient-boosting/xgboost.html +++ b/ml-advanced/gradient-boosting/xgboost.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2388. + + 40.89. Introduction + +
  2389. - 40.89. Study the solvers + 40.90. Study the solvers
  2390. - 40.90. Build classification models + 40.91. Build classification models
  2391. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2392. - 40.92. Parameter play + 40.93. Parameter play
  2393. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2394. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2395. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2396. +
  2397. + + 40.99. Image classification
  2398. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2399. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2400. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2401. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2402. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2403. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2404. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2405. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2406. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2407. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2408. - 40.116. Art by gan + 40.118. Art by gan
  2409. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2410. +
  2411. + + 40.121. Comparing edge-based and region-based segmentation
  2412. - 40.119. Summary + 40.122. Summary
  2413. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2414. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2415. +
  2416. + + 40.126. Getting Start NLP with classification task
  2417. @@ -1854,7 +1874,7 @@

    16.3.2. Example

    -
    Mean Absolute Error : 17878.656881421233
    +
    Mean Absolute Error : 19123.337178938356
     
    diff --git a/ml-advanced/kernel-method.html b/ml-advanced/kernel-method.html index 569c005a3f..142f4b0f2b 100644 --- a/ml-advanced/kernel-method.html +++ b/ml-advanced/kernel-method.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2418. + + 40.89. Introduction + +
  2419. - 40.89. Study the solvers + 40.90. Study the solvers
  2420. - 40.90. Build classification models + 40.91. Build classification models
  2421. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2422. - 40.92. Parameter play + 40.93. Parameter play
  2423. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2424. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2425. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2426. +
  2427. + + 40.99. Image classification
  2428. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2429. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2430. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2431. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2432. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2433. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2434. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2435. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2436. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2437. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2438. - 40.116. Art by gan + 40.118. Art by gan
  2439. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2440. +
  2441. + + 40.121. Comparing edge-based and region-based segmentation
  2442. - 40.119. Summary + 40.122. Summary
  2443. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2444. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2445. +
  2446. + + 40.126. Getting Start NLP with classification task
  2447. @@ -1882,7 +1902,7 @@

    18.1. Motivating Support Vector Machines

    -
    <matplotlib.collections.PathCollection at 0x7f5e393fbf70>
    +
    <matplotlib.collections.PathCollection at 0x7fe83267c070>
     
    ../_images/kernel-method_9_1.png @@ -2069,7 +2089,7 @@

    18.3. Fitting a support vector machine
    <function __main__.plot_svm(N=10, ax=None)>
     
    @@ -2127,111 +2147,111 @@

    18.4. Beyond linear boundaries: Kernel S

    <function __main__.plot_3D(elev=30, azim=30, X=array([[ 5.95705480e-02, -4.38163860e-02],
    -       [-1.62477454e-01,  8.65543325e-02],
    -       [-2.40660274e-03, -2.98693918e-02],
    -       [-6.52889119e-01,  5.69147803e-01],
    -       [-4.65872906e-02, -1.08106401e-01],
    -       [-8.01057247e-01,  7.61571016e-01],
    -       [ 3.12592925e-01,  1.08662089e+00],
    -       [ 1.09721540e-01,  5.76700042e-02],
    -       [-7.51393182e-02, -7.31722824e-02],
    -       [-1.42577697e-01,  4.20453655e-02],
    -       [-8.96984417e-02,  2.13129353e-02],
    -       [-1.60611176e-04,  1.41867679e-01],
    -       [ 7.74871473e-01,  5.33837964e-01],
    -       [-1.47178350e-01,  3.92483335e-02],
    -       [-6.85461521e-01, -6.37446555e-01],
    -       [ 5.15858217e-02, -1.71140282e-01],
    -       [ 6.07499715e-01, -6.69710373e-01],
    -       [ 8.07161290e-01, -6.22003671e-01],
    -       [-1.06568076e+00, -3.71069972e-02],
    -       [ 1.03681898e+00, -9.26129238e-02],
    -       [ 5.32911502e-03,  1.27811128e-01],
    -       [ 7.66867670e-02,  5.83709456e-02],
    -       [-5.21018933e-02,  1.38616702e-01],
    -       [-7.28924647e-02,  6.37284549e-02],
    -       [ 1.63424116e-01,  5.22065768e-02],
    -       [ 1.03328308e-02, -2.02673422e-01],
    -       [-1.36178972e-01,  1.76014705e-01],
    -       [ 8.81485948e-01,  4.87699381e-01],
    -       [ 6.44468627e-02, -4.96658114e-02],
    -       [ 5.74038093e-01, -7.00584401e-01],
    -       [ 2.05311586e-02, -1.68543687e-01],
    -       [-2.85885311e-02, -1.40815161e-01],
    -       [ 2.72973067e-01, -8.37114243e-01],
    -       [-2.23356147e-01, -6.37381055e-02],
    -       [ 1.15409465e-02, -1.11047708e+00],
    -       [ 6.29098517e-02,  8.71327164e-02],
    -       [ 9.72645393e-01, -4.06293699e-01],
    -       [ 9.10711052e-01,  3.24153448e-01],
    -       [-1.50409232e-01, -9.06474761e-02],
    -       [-5.59908764e-01, -9.82774910e-01],
    -       [-9.55588338e-01,  3.89779848e-01],
    -       [ 2.13957641e-01,  1.10059785e-01],
    -       [ 1.16272558e+00, -1.17338595e-01],
    -       [ 1.88114261e-01,  1.04690013e+00],
    -       [ 6.83892432e-01,  5.17684239e-01],
    -       [-1.61510254e-02, -8.64061041e-01],
    -       [ 2.21178094e-02,  1.03265407e-01],
    -       [ 8.01461712e-01, -4.27437630e-01],
    -       [-1.00897398e+00,  9.17312490e-02],
    -       [ 6.39810246e-01,  5.17387827e-01],
    -       [ 1.75404635e-01,  8.83715245e-02],
    -       [ 1.94250252e-01, -1.93695094e-02],
    -       [-5.18575038e-01,  1.11571171e+00],
    -       [-4.59024648e-01, -8.80949747e-01],
    -       [-7.80936101e-02,  8.32483282e-02],
    -       [-1.10944131e+00, -2.99959714e-01],
    -       [-1.04294934e-02, -8.97009000e-02],
    -       [-8.49715067e-01, -3.80304767e-01],
    -       [ 4.53662042e-01,  1.01249051e+00],
    -       [ 3.28964919e-02,  8.24968114e-02],
    -       [ 3.00009609e-01,  4.39051546e-02],
    -       [-6.26190327e-01, -7.85097502e-01],
    -       [-3.38176979e-01, -9.88268548e-01],
    -       [ 9.97085104e-02, -2.15280148e-02],
    -       [ 2.58087908e-01, -1.60665929e-01],
    -       [ 1.05129232e-01,  5.13054062e-02],
    -       [ 1.33107226e-01,  3.11048534e-02],
    -       [ 5.99235819e-02,  5.20964977e-02],
    -       [ 4.59282124e-01, -8.35979533e-01],
    -       [ 7.31461064e-01,  7.22083016e-01],
    -       [ 1.48832919e-02, -1.03925315e+00],
    -       [-1.69276335e-01,  2.03021648e-01],
    -       [-5.29691915e-02,  2.01187949e-03],
    -       [-8.64536975e-01, -2.56366747e-01],
    -       [-9.16997346e-01, -3.42367235e-01],
    -       [-1.81655049e-02,  9.89720787e-02],
    -       [-4.68123130e-02, -2.37265943e-01],
    -       [-3.24597409e-02, -8.75880184e-02],
    -       [ 9.76750129e-01,  4.69301037e-02],
    -       [-3.98901172e-02, -2.12944592e-02],
    -       [ 1.75449424e-01, -9.27242692e-01],
    -       [-1.57094815e-01,  3.43420830e-03],
    -       [-3.16158268e-01,  1.02429656e+00],
    -       [-5.28528881e-01,  8.45520541e-01],
    -       [ 2.07057328e-01,  1.06279592e-01],
    -       [-1.10411186e-01,  9.67819323e-01],
    -       [ 5.19932988e-01,  7.05623794e-01],
    -       [-8.72038896e-01,  3.41140729e-01],
    -       [-8.53067604e-01,  4.68006699e-01],
    -       [-3.05375897e-02, -1.41331878e-02],
    -       [-1.73640977e-01,  2.35751418e-01],
    -       [-3.19071257e-01,  8.35991534e-01],
    -       [ 1.28255050e-01,  3.14759957e-02],
    -       [-9.13470853e-01,  1.59028151e-01],
    -       [-8.02406323e-01, -6.13680487e-01],
    -       [ 9.56112253e-01, -3.15611466e-01],
    -       [ 7.57887324e-02,  5.55284461e-04],
    -       [-4.12335207e-03, -4.10032834e-02],
    -       [-1.06756605e-02,  1.06192831e+00],
    -       [ 2.36953161e-01, -9.73781752e-01]]), y=array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1,
    -       1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
    -       0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
    -       1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
    -       0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0]))>
    +{"version_major": 2, "version_minor": 0, "model_id": "6cbe9f6c6e5e4a33b96bb66957fdf94e"}
    +
    <function __main__.plot_3D(elev=30, azim=30, X=array([[-1.86057123e-01,  6.13997155e-02],
    +       [-7.88819707e-01, -6.94038234e-01],
    +       [-7.51612345e-04, -5.78709665e-02],
    +       [ 4.60220868e-01,  7.58181501e-01],
    +       [ 1.11111749e-01, -5.80864142e-02],
    +       [ 7.65670227e-02, -1.04922013e+00],
    +       [-1.59420865e-01,  9.52187305e-02],
    +       [-1.06866593e+00,  5.12147502e-01],
    +       [ 2.03530027e-01, -7.79028106e-02],
    +       [ 9.74989164e-01, -1.18237040e-01],
    +       [ 7.95089302e-01,  4.42932572e-01],
    +       [-1.17449102e-01,  2.80336271e-01],
    +       [-5.35650803e-01,  1.08207602e+00],
    +       [ 5.98925569e-01, -7.90998233e-01],
    +       [ 9.54900465e-01, -6.28393465e-02],
    +       [-4.74108070e-02, -1.18844927e-01],
    +       [-1.24364250e+00,  1.35775710e-01],
    +       [-1.09759183e+00,  6.22708941e-02],
    +       [-1.71747425e-01,  1.84983913e-01],
    +       [ 1.87381744e-01,  1.01304349e-01],
    +       [-8.63726835e-02,  9.19991344e-01],
    +       [-6.22611444e-02, -8.88172306e-01],
    +       [-1.10639190e-01, -1.21845922e-01],
    +       [ 2.60332519e-01,  1.09091988e+00],
    +       [ 3.77909926e-02,  4.59525364e-03],
    +       [-1.05736295e-02, -6.78892774e-03],
    +       [-5.62557666e-02,  1.03446420e-01],
    +       [-5.30404801e-01, -6.09531643e-01],
    +       [ 3.58549785e-02, -7.74307116e-02],
    +       [-1.78428669e-01, -8.63958699e-02],
    +       [ 2.08963869e-01,  9.96537550e-01],
    +       [ 2.25931094e-02,  5.18647253e-02],
    +       [ 8.73307516e-02,  1.49322154e-02],
    +       [-9.94465006e-02,  1.20583705e-01],
    +       [ 1.14234563e+00, -2.83130016e-01],
    +       [ 2.05345990e-01, -9.13502571e-01],
    +       [-4.71578957e-02,  2.13554822e-02],
    +       [ 4.92615075e-02, -8.32622333e-02],
    +       [ 9.05729737e-01,  5.13669937e-01],
    +       [ 2.17339829e-02,  1.56749644e-01],
    +       [ 2.28813776e-01,  1.30189633e-01],
    +       [-9.40996577e-01,  4.74875226e-01],
    +       [-9.55422993e-01, -2.21753011e-01],
    +       [-6.96430733e-02, -7.76170674e-03],
    +       [-1.99713160e-01, -9.45266050e-02],
    +       [-1.81746018e-01,  1.29630879e-01],
    +       [-1.26989269e-02, -4.40675528e-02],
    +       [-7.10553714e-01, -5.06468739e-01],
    +       [-3.36644657e-01, -8.60548791e-01],
    +       [-4.12966134e-01, -9.89217494e-01],
    +       [ 2.18517844e-01,  9.21783545e-03],
    +       [-6.49630006e-02, -8.15973821e-03],
    +       [ 7.83300943e-01,  7.48772751e-01],
    +       [ 1.41800805e-01, -7.47191825e-01],
    +       [-5.63420490e-01,  7.75548704e-01],
    +       [ 3.60381281e-02, -4.81845995e-02],
    +       [ 7.65907190e-01,  7.45299624e-01],
    +       [ 1.35903936e-01, -4.14160174e-02],
    +       [-6.17067697e-02,  1.56792380e-03],
    +       [-8.56215161e-02,  1.56319105e-01],
    +       [-1.13982857e+00,  5.07117926e-02],
    +       [-8.59849616e-01, -2.70895915e-01],
    +       [-5.60357230e-01,  8.89342825e-01],
    +       [ 9.03501685e-01,  3.29518659e-01],
    +       [ 8.81860620e-01, -7.91034463e-01],
    +       [ 6.22545290e-02, -9.45025583e-02],
    +       [ 4.80614819e-01,  9.02749798e-01],
    +       [-8.83334957e-02,  1.64982451e-01],
    +       [ 4.09941497e-02, -2.04218550e-01],
    +       [-1.91505991e-01,  6.79997071e-02],
    +       [ 9.27735919e-01, -5.15615109e-01],
    +       [ 2.83115470e-01, -1.11683491e+00],
    +       [ 8.84402835e-01,  6.41915124e-01],
    +       [ 2.66952876e-02,  8.31754741e-02],
    +       [-7.54119856e-01, -8.61158124e-01],
    +       [ 6.21447655e-02, -1.79692861e-03],
    +       [ 8.35313706e-02,  1.02935816e+00],
    +       [-4.92162351e-01,  8.67372042e-01],
    +       [ 8.55095091e-01,  1.83425452e-01],
    +       [ 4.68667298e-02, -1.19437386e-03],
    +       [ 8.29340409e-01, -5.01273177e-01],
    +       [-8.22969874e-03,  1.81307829e-02],
    +       [-7.73625860e-01,  5.90671616e-01],
    +       [-1.03121360e+00, -1.54153669e-01],
    +       [-1.54643578e-01, -8.48168319e-03],
    +       [ 1.80634378e-01, -3.16024654e-02],
    +       [ 3.15190726e-01,  2.81864488e-01],
    +       [-5.88807373e-01, -9.00978788e-01],
    +       [ 4.83094042e-01, -7.17533917e-01],
    +       [ 1.80933237e-01, -5.41473335e-02],
    +       [-5.07769945e-02,  8.47861920e-02],
    +       [-6.17925531e-01,  5.64211531e-01],
    +       [ 4.92086185e-02,  1.02497744e+00],
    +       [ 8.44221823e-01, -4.39972045e-01],
    +       [ 1.42685419e-01, -8.50276894e-02],
    +       [-2.49527669e-02,  8.73825064e-03],
    +       [ 2.18441446e-01,  1.59591482e-02],
    +       [-4.91312281e-02, -9.56430225e-01],
    +       [ 2.09772872e-02, -4.67209274e-02],
    +       [ 8.72627890e-02,  3.72226459e-03]]), y=array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
    +       1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,
    +       1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,
    +       0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,
    +       0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1]))>
     
    @@ -2264,7 +2284,7 @@

    18.4. Beyond linear boundaries: Kernel S

    -
    <matplotlib.collections.PathCollection at 0x7f5e36f43ca0>
    +
    <matplotlib.collections.PathCollection at 0x7fe8301c2fa0>
     
    ../_images/kernel-method_39_1.png @@ -2391,7 +2411,7 @@

    18.15. Acknowledgement -{"state": {"6400956cf7d94cb488705f5a5534273b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe7acd583b384a31997968f591cd6427": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_d1d5b6e673d143ec963c4792e710b06d", "IPY_MODEL_ac8fe88446cc47f9b8d77ee8bdb7af7e"], "layout": "IPY_MODEL_6400956cf7d94cb488705f5a5534273b"}}, "8b16c470f5f846cd8946cf1a602319eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3303caed879b4c0ea4021331f71d9723": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d1d5b6e673d143ec963c4792e710b06d": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_8b16c470f5f846cd8946cf1a602319eb", "style": "IPY_MODEL_3303caed879b4c0ea4021331f71d9723"}}, "084349da469546ec9ec570e704565505": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac8fe88446cc47f9b8d77ee8bdb7af7e": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_084349da469546ec9ec570e704565505", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABksklEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXa6KjOvdPfLsyvE8K+5BXVbPkXWfc55nl1U4qHhhWRUVV1dxvAAiC6KCMCJMV1Wnc79n0kknne5Od1c9f3RSTGQumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYvve97+HP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+KLX/wiPvShD2Hv3r2Ix+P41a9+hXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+SeiRRx5Be3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF26++WYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W7cd999UBQFP/3pT1FfX7+m59V1HYIgrHO1REREVIqKvuhW13UsLCzgn/7pnxAOhwEAe/bswYEDB/Cv//qv+Ou//us1Pa8gCEgkUsjntfUsl86Q1WqB1+vmsSgBPBalg8eidPBYlJbqajcslrVd3Cl6YPF6vaipqTHCCgDU1NRgx44diEajZ/Xc+byGXI6/gKWAx6J08FiUDh6L0sFjURrO5ppO0dewBIPBkz6WyWSK/fJERES0CRQ9sFx++eWYmZnB0aNHjbF4PI6XX34ZO3fuLPbLExER0SZQ9EtCBw8exDnnnIO/+qu/wu233w6n04n7778fDocD73jHO4r98kRERLQJFP0Mi8Viwf3334+9e/fik5/8JP7rf/2vqKysxEMPPYTGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zrGx8fxn//5Szz00NeRzS6e1fPZ1qkuIiIiIszNzUFVZShKBPF43Bjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3j66acwMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9+9TSOHHnBWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9OnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrprBF/hjGxkaxd+95AAC73YH29nYkk0lIUhjBYMjYT6VUMbAQERFtQonELGQ5AlWVMTs7CwDw+4PGHikHD77JuB25HDCwEBERbRKZTAY9PYV1KaOjI8a43W6H3x+ArmsrxsoJAwsR0enoOmwvPA+rqgB2O7L79kNraze7KqLX6O/vw5NPPgEAEAQB7e0dEMUwuru7Ybebv3D2bDCwEG1StpeOwPXAF+F4/OcQslnkgkGk/+J9yFxzLVACK/7LheOxn8Lzd5+ATT5qjOmCgMU3XY35//E5aB2dJlZHW5Wu65icnICiyKitrcXOnYVbkLu7u9HcvA3d3QGEQiIqKytNrnT9CPry1nVlKB5PIpfTTv+NVDQ2mwW1tR4eixJgHIvpeTj+x6fh+d+fg261QcjnAAC6xQJB05DbuQszD38femOjyRWXPue/fxdVH3wPAED4o7dK3WqFXlOL+E+egNbpW/EY50Xp2GzHYm5uDtGoAlmOIB6fBgDU1dXjxhvfDkEQTK7u9OrqPLBaLWv6WZ5hIdpkHF/5Ejz/+3MAYIQVABC0wpu1NXIU1e+4HjM/eQKwrO2NYysQZuKo+r8+VPjnE3yuE/J5YCaOqo/+FWa//f2NLo+2mGhUwSuvvIyRkWFji3ybzYaurm6IYvH695QSBhaizSSXg/sfPgsdwMk+awn5POxHXoD9F48je+DgRlZXVlzfeAhYXDxhWFkm5PNwPPkELLEeaP7ABlZHm52mabAc94GitzeG4eEhAEBraxskKYzu7gCcTqdZJW44BhaizeRnP4NlcuK036ZbrXD924MMLKdgf/JxYBVXzHVBgOOpJ5FmYKF1cOzYFGQ5gmhUwTXXXIu6unoAwM6d56Curh6hkGTclrzVMLAQbSYDA6c8u7JMyOdh7e/bgILKl5BKnfa/Y+EbBQiLmWKXQ5vYwkISqqpAUWRMTU0a49GoigsvLASW1tY2tLa2mVViSWBgIdpMPJ5V/ZHVAeib6O6BYsgHQ9B/82xhrcopCJqGfFf3BlVFm0kyOY9f/OIJDA72G+tSrFYrfL4uiGIYnX+0mHurY2Ah2kyuvBK61XraP7IQBCxe9eaNqalMpd/5Lrgf/Oopv0cHoDU1Y/FyXlqj09N1HfPz86iqqgIAuFxuTEyMQdd1bNvWAlGUEAiE4HK5TK60NDGwEG0mzc1YfNt1cHzvuycNLbogAC4X0je9Y4OLKy+5c1+HzJ9cDcfPf2LcYfXHBADJ//4poAQbxVHpiMfjUJQIFEWGIAi45ZZDEAQBVqsVBw4cRHV1DWpqas0us+RxlhFtMql/+H9gffEFWHtjrwktusUKCEDi/q9C5xvkaSX+zwPwvvcQnI//bOWeNlYroGlIfuozyLz9nSZXSaUolUohGlWhKBFMTIwb4w6HA4nELKqrawAAPh8vJ65W0QPLI488go9//OOvGX//+9+P//bf/luxX55oy9Fr6zDz6M/hufszcH3jIQipBeOx7P7XI/mxO5G7aL+JFZYRjweJb3wH9mefgetrD8AWOQrdbkf2sjci9a73vGbDOCIAeOml3+OZZ56CtnRmzmKxoKOjE6IYhs/XVXY9fErFhp1h+dKXvmRctwOA5ubmjXppoi1Hr6nF/N3/C8k7/w62F18AFheR7/ZD6/abXVr5EQRk91+M7P6Lza6ESpCu6xgfH4Pb7TbOmtTX10PTNDQ2NkIUwwiFRLjdFeYWuglsWGDZuXMn6urqNurliAiAXlmF7CWXmV0G0aaTSMxCUWQoSgSzs7PYtWs3Lr30DQCAlpZW3HTTLfybt864hoWIiGgVMpkMenpUKIqM0dERY9xut6/YlVYQBIaVItiwwHLNNdcgHo+jtbUVN954I973vvfBarWe1XOutYESrZ/lY8BjYT4ei9LBY1E61utY6LqO733v25idnTGer729Y+lW5ADsdnZAX42z6c9Y9G7NTz31FI4cOYI9e/ZAEAQ8/vjj+MY3voG3v/3t+OQnP1nMlyYiIjpjuq5jYmICsizjkksuMc6e/PKXv0QsFsPOnTsRDodXrMuk4it6YDmRf/iHf8DXvvY1/OIXv0BTU9OanyeRSCGfL/924eXMarXA63XzWJQAHovSwWNROs7kWMzPz0NRIpDlCKanpwEA11zzp/D5ugAA+XweFosFwtmcJtjiqqvdKy6fnQlT1rBcffXVeOCBB3D06NGzCiz5vIZcjm8GpYDHonTwWJQOHovScbJjkc0uIhaLQVEiGB4eMrbIt9ls6Orqht3uPO7nBOTzOgp7HNNanM0pEi66JSKiLWtmZgaPP/4z4+uWllZIUhh+fxBOp9PEyuiPmRJYHn30UVitVuzYscOMlycioi1oevoYZDkCANi/tK9OQ0Mjurq60djYBFGU4PVWm1kinULRA8t73/te7Nu3D5IkAQAee+wxPPzwwzh06BAaGxuL/fJERLSFLSwk0dNzFM899yImJiYAFG5DPv/8C2C3OyAIAq6++hqTq6TVKHpg6e7uxne/+12MjY1B0zR0dXXhb//2b3HrrbcW+6WJiGiL6u/vwx/+8BJGRgbhdNqQSi3CarXC5+tCKCTBYjm7bTVo4xU9sNx5553FfgkiItridF2HruvGHSiTkxMYGOiDxSKgpaUF7e3d6OoKwO12m1wprRUX3RIRUdmamYkvbZEv46KLXo9gMAQAEMUwNE3Djh3b0d3djng8yTu2yhwDCxERlZVUKoWenigUJYLx8TFjvKcnagQWr9eLCy+8CDYbdxveLBhYiIioLORyOfz85z/BwEA/8vk8AMBisaCjoxOiKMHn6za5QiomBhYiIipJuq5jdnYGNTW1AAqbuS0sLCCfz6OxsRGiGEYwGEJFhcfkSmkjMLAQEVFJSSRmoSgyVFXG3NwcDh16D1wuFwDg9a+/BA6HA3V19SZXSRuNgYWIiEyXyWQQi0UhyxGMjo4Y4zabHVNTk2hv7wAAbNvWYlaJZDIGFiIiMlV/fy9++tPDyOVyAABBENDW1g5RDMPv98Nud5hcIZUCBhYiItowuq5jamoSmqahuXkbAKCxsQn5fB61tXWQpDBCIQmVlZUmV0qlhoGF1kSIT8P5wx/ANjUBtDRBeOOVwLY2s8siohI1Pz8PVS3slzI9fQxtbe340z99GwCgosKDt7/9nfB6qyEIgsmVUqliYKEzs7gIz9/dCffXHgByWcBqBfJ5VANYfPNbMfe//xl6bZ3ZVRJRCchmFxGLxaAoEQwPD0HXdQCFu33cbjc0TTN2pq2urjGxUioHDCy0evk8vO89BMdPD0PQl3aMXL7mDMBx+Eeo6VEx86OfQa/ymlcnEZWEn/70JxgY6DO+bmlphSSF4fcH4XQ6zSuMyhIDC62a84ffh/Mnj570cSGfh1VR4P78P2PhDvaQItpKpqePQZYj2L17DzyewvqTYDCE2dk4RDEMUZTg9VabXCWVMwYWWjXXl/4PdIsVgpY/6fcIWh7ur34ZCx/9GGC3b2B1RLTRFhaSUFUFqipjcnISAOB2u7F373kAgFBIhChKXJdC64KBhVZH12F/7jenDCvLLNPHYO3vQ36ppwcRbR65XA59fTHIsoyhoQFoWuHysNVqRWenD42NTcb3Lq9PIVoPDCy0OroOaGfQ6XRpbQsRlb/lxbJAIbA88cRjxp4pzc3bIIphBAJBuN1us0qkLYCBhVbHYkE+EIS1JwrhuDevE9FdLuSXdqUkovI1MxOHosiIx+N405uuBgC4XC7s2LELdrsdoigZfX6Iio2BhVYt9d4PoPJv/+aU36NbrUjfdAvATZ+IylIqlUJPTxSKEsH4+JgxHo/HUVtbCCcXX3ypWeXRFsbAQquWvukWuL/ypcJZlvxr17LoViv0qios/F8f2fjiiGjNdF3H+PgYXnzxdxgY6Ed+aX5bLBa0t3dCkrjzLJmPgYVWr7ISM9/9IaoP3QT7C7+DbrMBuRyEpc3jtJZWzD70bWidPrMrJaLT0HUd+XweNlvhz0AymURvbwwA0NDQCFGUEAqJqKjwmFkmkYGBhc6I3tyMmcNPwP7sM3B+51uwTk7A0VCH+auuQerAnwA2/koRlbJEIrG0RX4EwaCICy7YB0EQ4PN14bzzzkcwGEJ9fYPZZRK9Bv+60JkTBGT3X4zs/oths1ngqPUgG08CuTO4i4iINkwmk0EsFoUsRzA6OmKM9/bGcMEF+wAUtsvft2+/WSUSnRYDCxHRJvbkk49DUWTjNmRBENDW1g5RDMPv95tcHdHqMbAQEW0Suq4jHp9GbW2dsbuspunI5XKora2DJIURCnEBLZUnBhYiojI3Pz8PVVWgKBFMTx/DddfdiKamZgDA3r3nYefOXWhsbOIW+VTWGFiIiMpQNruIWCwGVZUxNDRo7EZrs9kwPX3MCCzLe6cQlTsGFiKiMjM9fQyPPPJtZLNZY6ylpRWiKCEQCMHpdJpYHVFxMLAQEZW46eljmJubg8/XBQCoqamFw+FARUUFRDEMUZTg9VabWyRRkTGwEBGVoFRqwViXMjk5CY/Hg3e+8y9gsVhgsVjwtrfdgMrKSq5LoS2DgYWIqERks1n09/dBUSIYHByAttQh3WKxoKmpGZlMGm53BQCgqqrKzFKJNhwDCxFRifjtb5/FkSMvGl83NTVDFMMIBkNwu93mFUZUAhhYiIhMMDMTh6rK6OzsQnPzNgBAICCip6fH2C+Fd/gQvYqBhYhog6TTaUSjKhQlgvHxMQDA/HzSCCxNTU145zvfxXUpRCfAwEJEVES6rqOvrxeKEkF/fx/y+TyAwhb5HR0+486f5TEiOjEGFiKiInvmmf9EIjELAGhoaIQoSgiFRFRUeEyujKh8MLAQnUwyCedPfwzL5AQ0bzUWD74JekOD2VVRCUskElBVGYOD/Xj3u28FUDhrsnv3HszNzUGSwqiv5+8Q0VowsBD9sXweFf/4P+H+P1+AJZmEbrFA0DToNhvS19+E5P/8HPRK3lJKBZlMBrFYFIoiY2RkGABgsQjo7e1FQ0MrAOCcc/aYWSLRpsDAQnQ8XUfVbR+E85FvQ1jqzSIs7YUh5HJwffubsL3yMma+/2PAw9P5W9n09DSef/436OvrRS6XA1A4m9LW1o7t28Po7OzEwkLO5CqJNg8GFqLjOA4/Ctd3Hz7p40I+D9sffo+K+/4FCx/92AZWRmbTdR25XA52u90Yi0ZVAEBtbR0kKYxgUERVVRVsNgucTicDC9E6YmAhOo77S/dBt1ohLN3JcSKCpsH9wBex8NcfBWycQptdMjkPRSlskV9XV4crr7wKAFBXV4eLLno92tra0djYxDt8iIqM77ZEy3Qd9l89fcqwsswyOQFrXy/ywdAGFEYbLZtdRG9v4VbkoaFB6EuXB5PJeeRyOdiWguq5577OzDKJykI2m0VfXwyKIuPmm6+D1epa0/NseGBJJpO4+uqrMT4+ju985zs455xzNroEopNbRVgxLC4Wrw4yzW9/+2scOfICstmsMdbS0gpRlOD3B42wQkQnp+s6RkaGoSgyYrEoFpfeL7PZLFyuMgksX/jCF4yNk4hKiiAg39UNa1+vseD2ZHS7A1pHxwYVRsU0PT2NqqpK2O0OAIDNZkc2m0V1dTVEMQxRlOD1VptcJVF5iMfjUJQIFEXG/PycMe71VkMURbhca++JtaGBpaenB//2b/+Gj33sY/jUpz61kS9NtCrpd78Pnk/991N+j261In3djdCrvBtUFa23VGoB0agKWY5gcnICBw5cCUkKAwDC4TC2bduGbdtauC6FaBVSqZTRcmJiYtwYdzqdCASCCIUktLS0QhAEWCyWNb/OhgaWz3zmM7j55pvR3d29kS9LtGrpWw7B/eX7YRkaPOFaFt1ihe5yIfXXt5tQHZ2NXC5nbJE/ODgAbel2dYvFYuxCCwBudwXc7gqzyiQqC7lcDv39fVCUCAYG+lfMp46OTohiGF1d3et6CXXDAsvhw4ehKAruuecevPzyy+vynFbr2pMarY/lY7BpjkVtDeb+4zCqbnwbrJGjxh1DxuZxdbWY/8Z3IEhSya1Y33THYh1lMhk89NDXkE6njbGWlm3Grchu99pPU58Ij0Xp4LFYP7quY2xsDLIcQU+PumI+bdvWDEnajmAwhIqKkwf+szlpuSHvualUCnfffTduv/12VFZWrtvzer3r+yZDa7epjkWtBPzhJeAnP4Hw4IPA8DCE2lrg+uthueEGeNe4YGyjbKpjsUbxeBwjIyPYuXPn0ogHHR2tmJ2dxfbt27Fz507U1dUVvQ4ei9LBY7F2MzMzeOWVV3D06FHMzMwAKASPxsY6Yz7V19cXvY4NCSz33nsv6uvrcd11163r8yYSKeTz2ro+J50Zq9UCr9e9OY/F/jcU/ne8VB5IJc2p5zQ29bFYhXQ6baxLGRsbhcViQU1No9Fg8JJLDsDtdhvrUuLx4h3HrX4sSgmPxdpkMhljPo2OjhjjdrsdgUAQoiihra3dWJOy2vlUXe1e8zqWogeW4eFhPPDAA/j85z+PubnCiuGFhQXj/5PJJDxr3OI8n9eQy/EXsBTwWJSOrXQs8vk8Bgb6oSgR9Pf3GXcgCoKA1tZ2JJNpOByFT9YOhwv5vA7g1HeArW99W+dYlDoei9PL5/MYHOyHoijo71/ZcqK9vQOhkAS/32/cUadpMNaurNZpbsA8paIHlqGhIWSzWXzgAx94zWOHDh3Cnj178PDDJ98KnYjoZGT5KJ588gnj6/r6BoiihFBIhMezfpefiTYrXdcxOTkBRZERjapIpRaMx+rq6iGKYYRC4rou51irogeW7du34+tf//qKsaNHj+Kzn/0s7rrrLm4cR0SrkkgkoKoyqqtrEFzaYdjvD+J3v3sefn8AoiihoaHR5CqJysPc3BxUVYaiyIjHp43xiooKhEIiRDGM+vqGkrq1v+iBxev1Yt++fSd8bOfOncctiiMiWmlxcRGxWBSyHMHIyDAAoLl5mxFYXC4XbrnlUEm9qRKVqsJ86oGiFObTcssJm82Grq5uiGIYHR2dZ7VXSjGV2p2ZREQYHByALB9Fb29sxXX01tY2iGIYuq4bIYVhhejkNE3D0NAgVFVGLBZDLvdqy4nW1jZIUhjd3QE4nU4Tq1wdUwLLvn37IMuyGS9NRGXgpZeOoL+/DwBQW1u7dB1dQlVVlbmFEZWJY8emIMsRRKMKkslX7+Cpqakx5pPXW167dfMMCxGZJpmch6oqUFUFb3rTm4030J07dy31HpHQ2NjEsyhEq7CwkISqKlAUGVNTk8a4y+VCIBCCJG1HU1P5zicGFiLaUNnsInp7C1vkDw0NGtfRVVXG6153AQDA5+uGz8cWHkSnk81m0dcXg6LIGBwcMOaT1WqFz9cFUQyjs9MHq9VqcqVnj4GFiDZEMjmPX//6WcRiUWSzr15Hb2lphShK8PuDJlZHVD50XcfIyDAURUYsFsXi4qLx2LZtLRBFCYFACK4S35X7TDGwEFHRLC4uwuEobDLlcDiMsLJ8uUcUJVRX15hbJFGZiMfjUJQIFEXG/PycMV5V5YUkSQiFJNTU1JpYYXExsBDRukqlFowtvfP5PG688e0QBAF2uwOXXPIGVFdXY9u2lrK9jk60kVKpFKJRFYoSwcTEuDHudDoRCAQRCkloaWndEvOJgYWIztqpWs3PzSXg9VYDAMLh7WaWSVQWlueTqsro7+9bMZ86OjohimH4fF2w2+0mV7qxGFiI6KwcPfoyfvWrp5HJZIyxxsYmSFIYwWAIbvfJW80TUYGu6xgfH4OiRNDTE0U6nTYea2xsNLbI38rziYGFiM7I7OwMbDab0aunosKDTCaDyspKY3+Huro6k6skKg+JxCwURYaiRDA7O2uMV1ZWIhQqrPOqq6s3scLSwcBCRKeVTqfR06NCUWSMjY3i3HNfh4suej0AoKOjE3/6p29Da2vblriOTnS2MpmMMZ9GR0eMcbvdvtQXK4zW1raS3SLfLAwsRHRC+XweAwP9UBQZ/f29yOfzAApb4S8svNrR1WKxoK2t3awyicpCPp/H0NAAZLkwn45vOdHe3gFRDKO7uxt2u8PkSksXAwsRvYau6/j2t7+BeDxujNXXN0AUJYRConE5iIhOTtd1TE5OGLs5p1KvBv26unpjXUplJefTajCwEBHm5ubQ1xfDrl27IQjCUqPBdmQyGeM6ekNDo9llEpWF+fl5qKoMWY4gHp82xt3uCoRCojGfeAn1zDCwEG1RJ2o139DQiJaWVgDAvn37cckll/E6OtEqZLOLiMViUJQIhoeHjC3ybTYburq6IYphdHR0cj6dBQYWoi1kudW8okTQ29u7otX8H69DKYd280Rm0jQNw8NDUJQIYrHYivnU0tIKSQrD7w9yLq0TBhaiLWRsbBQ/+tEPjK9ra2sRCkll2WqeyCzT08cgyxGoqoxkMmmM19TULF1CDXM+FQEDC9EmlUzOQ1UVAMDevecBKHzqa2xsQnPzNohiuKxbzRNtpIWFJFRVgaLImJqaNMZdLhcCgRAkKYympmbOpyJiYCHaRLLZLBRFxtGjR41W8y6XG+ecswdWqxWCIOC6627kmyrRKmSzWfT390KWZQwNDRhb5FutVvh8XQiFJHR2+mCz8U/pRuB/ZaJNYGxsFLL8CkZGBpBIJKFphQV/y63mlxcAAmBYIToFXdcxMjIMVVXQ06NicXHReGz5zGQgEITb7Taxyq2JgYWoTOm6boSP3t4YIpGjcLsd8HqrEQwWbp2srq4xt0iiMhGPx6GqMhRFxtxcwhivqvJCFAu39tfU1JpYITGwEJWRVGoB0agKWY7gwgsvQmenDwAgSWHk81lceOF5cLurkc/rp3kmIkqlUohGVaiqjPHxMWPc4XAgEAghFBLZcqKEMLAQlbjlVvOKEsHAQL9xHV1RIkZgqaurxxvfeAC1tR7E40kADCxEJ5LL5ZZaThTm03LLCYvFgvb2TkiSBJ+vG3a73eRK6Y8xsBCVqFwuh6ef/iV6eqLIZDLGeGNjEyQpjGAwZGJ1ROVD13WMjo7i6NGj6OlRkU6njccaGxshioX5VFHhMbFKOh0GFqISkk6n4XK5ABTuRBgbG0Mmkzmu1XwYdXV1JldJVB4SiVn09KgYHIxhdHTCWIzu8XgQCkmQpDDq6upNrpJWi4GFyGTpdBqxWBSKIuPYsSkcOvQe2O12CIKAiy56PaxWK1vNE61SJpNBLBaFLEcwOjoCi0WA2+2AzWZHd7cfohjmfCpTDCxEJsjn8xgc7DdazS9fRxcEAePjY2hv7wAA+HxdJlZJVB7y+TyGhgaM+ZTL5QAU5lN7ewcuuOBcNDa2QhD4J6+c8egRbbCBgX489tjPkE6njLG6unpIUqHVvMfDVvNEp6PrOqamJqEoMlRVQSq1YDxWW1u3NJ8k1NR4jcXouZxmYsV0thhYiIpsbm4O2WzWWHtSU1ODdDqFiorlVvNh1Nc38NZJolWYn59f2iI/gunpY8a42708nyQ0NDRyPm1CDCxERbC4uIhYrAeKEsHIyDB8vi5cffU1AACvtxpve9v1aGpq5nV0olXIZhcRi8WgKBEMDw8ZOzfbbDZ0dXVDFCW0t3fCarWaXCkVEwML0TrRNA1DQ4NQlAh6e3tXtJrP5/PQNM0IKNu2tZhVJlFZ0DQNw8NDUFUZPT09K+ZTS0srJCkMvz8Ip9NpYpW0kRhYiNbJ4cM/Qn9/n/F1bW0tQiEJoZDEVvNEqzQ9fQyyHIGqykgmk8Z4TU3N0q39ErzeahMrJLMwsBCtQTJZuI4eDu8w9k3p6PBhfHwcwWAIohhGU1MTr6MTrcLCQhKqqkBVZUxOThrjLpcLgUAIkhRGU1Mz59MWx8BCtErZbBZ9fTEoiozBwQHoug6Hw4EdO3YBAMLh7dixYyevoxOtQjabRX9/L2RZxtDQgNFywmq1orPTB1EMo7PTB5uNf6aogL8JtHXk8xASs9CdLqCiYlU/stxqXlFkxGLRFa3mt21rQcVxz8PeI0SnVtgifwSKIqOnR10xn5qbt0EUwwgEgnC73SZWSaWKgYU2PcvIMNz33wvXg1+FZaltfPa885F6/4eQedv1wCnu1EmlFvAf//Hvxl0JXm+10Wq+urpmI8onKnszM3EoigxFkTG3NAcBoKrKa8ynmppaEyukcsDAQpua7aUjqP7zt0KYn4OwtJssANhe/B28f/k+pH96GHNf+CJgtRqt5mdnZ3DJJZcBACoqPAgGQ7Db7RDFMLZta+F1dKJVSKVS6OmJQlEiGB8fM8YdDgcCgRBEUUJLSyvnE60aAwttXskkqm9622vCCgAIy9fL//27GGluxpH9F2NgoB+apkEQBOzZcy6qqqoAAAcPvmnDSycqR/l8HgMD/VCUCPr7+4yWExaLBe3tnZAkCT5fNy+f0powsNCm5Xrk2xCmpnCiz2+TFgtetNuh2O1IffdhLDQ1A1ar0Wre4XBseL1E5UjXdUxMjEOWI+jpUZFOp43HludTMBhCRYXHxCppM2BgoU3L+Z1vAYIALK0/0QEjvIxbLPj9UiipWljATqsV/pvewVbzRKuUSMwu9fGRMTMzY4x7PB5jv5T6+gbzCqRNh4GFNi3L1CTSug7VbscrNhuCuRzOzxZ2ywzlchjOZhHOZtGRz2O+rh4ZhhWiU8pkMojFopDlCEZHR4xxm80Ov98PUQyjra2dLSeoKIoeWJ588kl88YtfRDQaxfz8PJqbm3Hw4EHcdtttxhoBovWUz+cxONiPp1xuDFRVYXn1SlYQjMDiBPCm405d60uNCYloJU3TMDg4AEWJoK+vF7lcDgAgCALa2tohimH4/X7Y7byMSsVV9MAyMzOD3bt349Zbb0VNTQ1UVcU999wDVVXxwAMPFPvlaYv51a+eRiRyFOl0CrZgCI6+GBryeezM5RDOZk/4M5q3GouXvnFjCyUqYbquY2pqcumSj4JUasF4rLa2DpIURjAo8kMnbaiiB5Zrr712xdf79u2Dw+HAJz7xCYyPj6O5ubnYJdAmtrCQXLGYL5FIIJ1OoaKiAqEbb8a+XzyOpuQCLFr+hD+vCwJS7/8QsLS9PtFWNj9faDmhKBFMTx8zxt3uCoRCIkIhEY2NbDlB5jBlDUtNTQ2AwtbMRGdqcXERsVgPVFXG8PAQbrrpFtTWFjadOvfc8xAOb0dHRycsFgts3/gOcMO10BcWVtzarFssgKZh8eprsPDRj5n1r0Jkumx2EbFYDKoqY2ho0Ngk0WazwefrhiRJaG/vZMsJMt2GBZZ8Po9cLodoNIrPf/7zOHDgANrb2zfq5anMLbeaV5QIYrHYilbzo6PDRmBpalp5xi533vmIP/403P/n83D/24MQFgqntvPhHUh94C+RvukdAN+IaYvRNG2p5UQEsVjPig+PLS2tEEUJgUAITqfTxCqJVhL05ThdZJdddhnGx8cBAJdeein++Z//eUUflrVIJFLI57X1KI/WyGq1wOt1F/VYTE1N4Yc//P5rWs1L0valVvPe1T3R4iKEY8cAlxN6TW3hludNZCOOBa1OqR6LY8eOQVEiUBQZ8/Pzxnh1dQ1EUYIkhVFdXW1iheuvVI/FVlVd7V7zXWQbFlgikcjS1udR3HvvvWhvb8dXvvIVnmak10gmk5idnUVraysAIJfL4b777oMgCJAkCTt27EBLC7fIJ1qNhYUFHD16FK+88gomJiaMcafTacyn1lZukU+lb8MCy/EikQiuvfZa/NM//ROuuuqqNT8PE7P51uvTSzabRV9fL2Q5gsHBAVRVeXHLLbcab6JTU5Oora1jwD0FfpIsHWYfi+X5pCiy0XICKGyR7/N1QZLC8Pm6YLNt/q24zD4WtNLZnGEx5bdVkiTY7XYMDAyc1fPk8xpyOf4CloK1HAtd15euo8uIxaIrWs07HE7Mzy8YbeZrauqh6+DxXgXOi9KxkcdC13WMjo5AUWT09Kgr5lNTU7OxRf7ynAK21nzivCgNZ3OKxJTAcuTIEWSzWS663eKeeeY/8fvfv2h8XVXlhSRJCIXYap5otWZm4lBVGbIsY24uYYxXVlZBksIIhSRjUTpROSt6YLntttuwa9cuSJIEl8uFSCSCL3/5y5AkCQcPHiz2y1OJKKxfUtHW1mb06+nq6kYk8gpbzROdoXQ6jWhUhaJEMD4+Zow7HA74/UGIooTW1jbOJ9pUih5Ydu/ejUcffRT3338/dF1HW1sbbrjhBrz3ve9lR9xNLpfLrWg1r2kadu/ei4svvhQA0NrahkOH3sNW80SrkM/nV8yn/NK+QoIgoKOjE6IooavLz/lEm1bRA8sHPvABfOADHyj2y1CJ0HUd4+NjUJQIenqir2k1X1//aoNBQRD45kp0CrquY2JiHIoiIxpVkU6njMcaGhohihKCwRA8nkoTqyTaGJt/iThtKF3X8ZOfPIqFpQ3allvNS1LYuBRERKeWSCSgqjIUJYKZmRlj3OPxIBgUIUlh1Nc3mFcgkQkYWGjNMpkMZLkHx46N4ZJLDgAo3Da5Y8dOzM3NQRTDaG1tY6t5olXIZDKIxaJQFBkjI8PGuM1mh9/vhyiG0dbWzvlEWxYDC52RfD6PoaEByLKM/v5eaFoebrcD3d0iWloKd31dcMFFJldJVB40TcPg4AAUJYK+vl7kcjkAhculra1tEMUw/P4A1/sRgYGFVimRmMVLL/3+Na3mGxsbcP75565Ym0JEJ6frOqamJqGqMlRVMS6fAkBtbR0kKYxgUERVVZWJVRKVHgYWOild143bIlOptLFnynKreVGUsG1bM+rqKhGPJ7kpE9EpzM/PQ1UVKEoE09PHjHGXy23Mp8bGJt6KTHQSDCy0wnKreUWJwOv14g1vKKxNaWpqwu7de9He3oH29g5ji3y+uRKdXDa7CFXtgaJEMDQ0iOVOKDabDT5fNyRJQnt7J1tOEK0CAwtB0zQMDw8ttZqPIZcrtJp3Op245JI3wGq1QhAEY/8UIjq5wrqUITz7bB9+//uXkcm8ukV+S0srRFFCIBCC0+k0sUqi8sPAssUdOfICjhx5Aclk0hirqamBKIYRCon85Ee0StPTx6AoMlRVxsJCEm63A9lsFtXV1RDFMERRgtdbbXaZRGWLgWWLWVhIwul0GUFkcTGDZDIJl8uFQCAESQqjqamZl3qIViGVWjDWpUxOThrjbrcLu3efg7a2bjQ0cF0K0XpgYNkCstks+vt7IcsyhoYGcOWVV8HvDwAAwuGdqK9vRGenb0u0mic6W7lcDn19vVCUCAYHB6BphcXmFosFPl8XQiEJgYAfjY3VXIxOtI74F2qT0nUdIyPDUFXlNa3mJybGjcBSVVXF2yeJTkPXdYyOjkBVZfT0RJHJZIzHmpqaIYphBIMhuN1uAIDNxs3diNYbA8smlE6n8Z3vfGtFq/mqKi8kSUIoJKGmhq3miVZjdnYGihKBoihIJGaN8crKKoiiBFEMo7aW84loIzCwbAKpVAqTkxPo7PQBAFwuF1wuFzKZNAKBEERRQktLK6+jE61COp1GT48KRZExNjZqjNvtdmM+tba2cT4RrUImk0FPj4q+vl686U1vPqvnYmApU7lczmg1PzDQD0EQcOjQe4xbJQ8e/BN4PJXshky0Cvl83phP/f19yOfzAAr7DHV0dEIUJXR1+TmfiFYhn89jcLAfiqKgv//VlhODg/1obDxnzc/LwFJGdF3H+PgYFEVGT4+KdDptPNbY2Ihkct4ILLzsQ3Rquq5jYmICihJBNKoinU4Zj9XXN0AUJYRCIjyeShOrJCofiUQCv//9i4hG1RUtXOrq6iGKhTtQzwYDSxl5+eU/4KmnfmF87fF4EApJkKQw6urYy4doNRKJBKLRwq3I8XjcGK+oqEAoJEEUJTQ0NJpYIVH50DTN6CCey2Xx0ktHABRauIiiCFEMo76+YV0uoTKwlKjlVvOVlVXo6OgEAHR3d+PXv34G3d2FVvOtrW1sNU+0CouLi4jFopDlCEZGho1xm82O7u5uiGIY7e0dnE9Eq1CYT4WWEx6PB1dc8ScACmdS9u49D62tbejo6Fz3+cTAUkLy+TyGhgYgy7Jx3a+jo9MILB5PJd71rvdyvxSiVdA0DUNDg1CUCHp7Y8Z1dEEQ0NraBlGU4PcH4XA4TK6UqPSdrIWLzWbHZZdljfVd+/dfXLQa+JevBExOTixt6a2suO5XW1uH9vaOFV2TGVaITm1qahKKEoGqKlhYOH4+1S61nJC49xDRGfj971/Eiy/+7iQtXKQNW4zOv34l4Jln/tM4Te12Vxit5hsaGnnrJNEqJJPzS1vkyzh2bMoYd7ncCIVEhEISmpq4RT7RaiwsJGG3O4wgks/njRYuwWDh75MZLVwYWDZQNruIWCwGVZVxxRVXwu2uAABs374TFRUVEEW2midarWx2Eb29hS3yh4YGoes6AMBqtcLn64YkSejo8HE+Ea1CNptFX18MiiJjcHAAV1xxJUIhCQAgioUNRzs7zZ1PDCxFpmkaRkaGl6779SCbLVz3U1UFu3fvBYClHTMlE6skKg/LLSdkOYJYLGrMJwBoaWlFKCQiEAjB5XKZWCVReVieT4oiIxaLrmjhMjk5YQQWj6cS3d3m397PwFIkqdQCXnzxBaiqvOK633Kr+a4uv4nVEZWX6enppXUpMubn541xr7faCPzV1TXmFUhUZrLZRXzrW99Y0cKlMJ/Ekm3hwsCyjo6/Hx0Q8NJLR5DP5+FyuRAIhCBJYVOu+xGVo1RqAdGoClmOYHJywhh3Op0IBIIQxTC2bWvhfCJahVQqhYmJMfh83QAAu92ByspKLC5mymY+MbCcpWw2i/7+XsiyjGx2EX/2Z9cBANxuNy64YB+qq2vQ2enj3T1Eq5DL5dDXV1iXMjg4AE3TAAAWiwWdnT6IYhg+XxfnE9Eq5HI59Pf3GS1cAODQofcYXcUPHDgIt7uibFpOcNavwXKr+eUt8o+/7jc3N2fcMnnuua8zq0SisqHrOsbGRqEoEfT0RJHJZIzHmpqaIYoSgsGQsUidiE7u1RYuhfl0ohYuy4HF6602q8w1YWA5Q6oq49e/fnbFdb+qKu9S3xHu70C0WrOzM1CUCBRFQSIxa4xXVlYt3dofRl1dnYkVEpUfWT6KJ554zPi6srLSaDlR7i1cGFhOI5VKQRAE464DQRAwN5eAw+GA3x9kq3miM5BOp9HTo0JRZIyNjRrjdrsdfn8QkhTmfCJapUwmg54eFRUVFcaNHD5fN5xOJ7q6ujddCxcGlhPI5XJGq/mBgX6cf/6FOO+88wEUfhmuvPJN8Pm6y+a6H5GZ8vn80nwqtJzI5/MACuG/o6MToiihq8vP+US0Cidq4dLS0moEFrfbjXe9672bcv8hBpYlhVbz45DlCHp61BXX/SYnJ41/ttvtCAZFM0okKhuF+TQBRYkgGlWRTqeMx+rrG5YuoYrweMzf24GoHExOTkCWC/Pp+BYudXX18Pm6V7Rw2YxhBWBgAVB4c/3ud7+1Iph4PB7jul99fYOJ1RGVj7m5OaiqDEWJIB6PG+MVFRXGfGpoaDSxQqLy9JvfPGvc6eN2Vxj7pWylFi5bMrBkMhkMDg4gGAwBKJyarqurRzw+A7/fD1EMo62tfdNc9yMqpkKr+ShkOWL0xAIKXVy7uwvX0dvbOzifiFZhuYWLokTwxjdeYdzIEQ7vgMPhgCiG0dHRuSXn05YJLJqmYXBwAIoSQV9f4bpfTU2N8Wlv3779uPTSN8BuZ6t5otPRNA1DQ4NQlAh6e3uNVvMA0NbWDlGU4PcH4XBwPhGdjqZpGB4eWmrhEjPmUzSqGNtjBAJBBAJBM8s03aYOLLquL7Wal6GqyorrfrW1dSvWqfBaOtHpFeZTBKqqYGHh+PlUa7Sa5639RKuTSqXw4ou/e00Ll5qaGohiGIFAyMTqSs+mDiwjI8P4wQ++Z3ztdlcgGAxBFCU0NrLVPNFqJJPzUFUFiiLj2LEpY9zlciMUKlxHb2rifCJajXw+byyKtVqt+MMfXkIul2ULl1XYNIFl+bqfrusIh7cDALZta0FlZRWam7dBkiS0t3du2tXTROspm11Eb28vVLXQal7XdQCFN1ifrxuSJKGjw9xW80Tl4vgWLqnUAq6//iYAgMPhwL59F6GqyovOTs6n0ynrwHL8dfRYrAfZbBaVlZWQpDAEQYDVasU73nErfwmIVmG51bwsRxCLRZHNvrouZdu2FoiihEAgZGyiSEQntzyfFEVGLBZd0cJlZiZudEPevXuvSRWWn7INLKlUCg8++FUkEnPGWHV1NUQxjFwuZ2xCxbBCdGrT09NLtyLLmJ9/dT4VWs0XbkWurq4xr0CiMhONKnj22V+9poWLJBVauCyHFTozZRtYMpkM5ufn4XQ6l9alhNHcvI3X/YhWIZVaQDSqQpYjmJycMMadTmfZtJonKhWpVGFjxOWmgjabzWjhEggU1k22tLRyPp2lsg0sdrsdV131ZrS1dbLVPNEq/HGreU3TAAAWiwWdnT6EQhK6uro5n4hW4Y9buOzdex4uvPAiAEBHhw9XXnkVfL4utpxYR0V/Z/rxj3+MH/zgB3j55ZeRSCTg8/lw66234rrrrjurtOnxeBAIBJHLaetYLdHmcnyr+WhURSaTMR5rbGyCJIURDIbgdleYWCVReTh+PvX0RFdsjTE9fcz4Z6vVamxMSuun6IHlq1/9Ktra2nDHHXegtrYWzzzzDD7xiU9gbGwMt912W7FfnmhLmp2dWdp/SMbs7KwxXllZaeyXUldXZ2KFROVF13U88si3MTExboxVVlYaLSfq6upNrG5rKHpguffee1e8Me7fvx8zMzP4yle+gv/yX/7LltxemKgY0uk0fv/7Hvz2ty9gePjVLfLtdjv8/iAkqdBqntfRiU4vk8mgv78PoZAIQRAgCAIaGhoQj0/D7w9AFAvziX/DNk7RA8uJPsVt374dDz/8MBYWFlBZyR1midYqn89jcLAfsixjcLAPDocVqdQiBEFAR0cnRLGwLoUtJ4hOL5/PY2hoALIso7+/0MLF6/Vi27YWAMAFF+zD619/CeeTSUxZXff888+jubn5rMOK1cpka7blY8BjsXF0XTdazRdaThTuULBYBDQ0NKOrq9BzhO0mzMN5UTpOdyyWW7jIcgSKsrKFS0NDPTQtD5ut8LNeL9tOnK2zOcG74YHlueeew6OPPoqPfexjZ/1cXq97HSqi9cBjUXyJRAJHjx7FK6+8gunpaWO8oaEW4XAYO3bsQFNTk4kV0h/jvCgdJzsWw8PD+I//eMT4ur6+ZsV84iXU0rGhgWVsbAy333479u3bh0OHDp318yUSKeTzvEvITFarBV6vm8eiSBYXFxGLRSHLEQwPDxtb5NtstqXr6JLRan75EySPhfk4L0rH8ccinU6jp6cHuVwOu3adAwBwu6vhdFagoaERkhRGR8erLVxmZhZO9dS0BtXV7jWv+9mwwJJIJPD+978fNTU1uOeee9ZloVI+r/G25hLBY7F+jm850dvba7SaB4DW1jZIUhh+fxAOh2Pp+2HsqQLwWJQSHgvzaZqGvr4+/OY3v0M02oNcLgu3uwKhUNgIJjfc8A7jb5Kug8esiJY+c63JhgSWdDqND37wg5ibm8O3vvUttp8nOoFjx6YgyxFEo8oJW82HQhK8Xq+JFRKVj+npacjyUfT0KNC0LFKpRWiajpqaGoRCEjTt1a7JvNOnPBQ9sORyOXzkIx9BLBbDQw89hObm5mK/JFHZWFhIQlUVKIqMqalJY9zlchstJ3gdnejMRSIv48iRF2GxCKit9SIQkBAMSmhqauZ8KlNFDyx33XUXnnjiCdxxxx2Yn5/Hiy++aDy2Y8cO47Q20VaRzWbR1xeDosgYHBww1qVYrVb4fF0QxTBbzROtUjabRX9/L2RZxp49e9He3gEAEMUwEokEtm/fjr17d2JuLsNLPWWu6IHl6aefBgDcfffdr3nsscceQ3t7e7FLIDLdqVrNNzdvgySFEQiE4HK5TKySqDzouo7R0REoioyeHtWYT263ywgsDQ2NuOqqt8Bmsyz1x8qc4hmpHBQ9sDz++OPFfgmikhWPx6EoESiKjPn5OWPc662GKIpsNU90BnK5HH73u+egKDLm5hLGeFWVF6JY2CKfNi+2ZSVaZ6lUCtGoCkWJrOg74nQ6EQgEIYphbNvWwuvoRKuQy+WMDuJWqxWxWBRzcwk4HA4EAiGIooSWllbOpy2AgYVoHeRyOfT39xmt5pdvM7ZYLEtb5IfR1dVtvPES0cnlcjkMDPRDUSIYGxvDLbccgt1uhyAIOP/8fQB0+HzdsNvtZpdKG4jvnkRrdHyr+WhURSbz6jXyxsYmSFIYwWAIbneFiVUSlQdd1zExMQ5ZjqCnR0U6nTYeGxkZhs/XBQAIBkMmVUhmY2AhOkOzszNQFBmqKmN2dtYYf7XVfPiETT+J6MSGh4fwy18+gZmZGWPM4/EszScJ9fUN5hVHJYOBhWgV0uk0YrEoFEXG6OiIMW632+H3ByGKElvNE61SJpNBJpMxNkL0eDyYmZmBzWaH3++HKIbR1tbO+UQrMLAQnUQ+n8fgYD9kWcbAQB9yuRwAQBAEtLd3QBTD6O7uZqt5olXI5/MYGhqAosjo6+tFZ6cPb3rTmwEANTW1uPrqt6CtrZ3ziU6KgYXoOLquY3JyYumSj4J0OmU8VldXv7RFvojKykoTqyQqD7quY2pq0phPqdSrzQQTiQQ0TTPOonR1+c0qk8oEAwsRgLm5OaiqDEWJIB6PG+MVFRUIhUSIYhj19Q28dZJoFXRdhyAI+PnPf4JoVDXGC00HRYRCIhob2XKCzgwDC21Zi4uLiMV6oCgRjIwMG1vk22w2dHV1QxQLreZ5HZ3o9LLZRcRiMXR1dRstV7Zta0FfXy98vm5IkoT29k62nKA1Y2ChLUXTNAwNDUJVZcRiMeRyWeOx1tY2SFIY3d0BOJ1OE6skKg+api21nIigp6cHuVwWl19+BcLhHQAASdoOUQxzPtG6YGChLeHYsSnIcgTRqIJkMmmM19TULK1LkYw7Fojo1Kanj0GWI1BVecV8qq6uhsXy6hkUNrel9cTAQpvWwkISqqpAUWRMTU0a4y6XC4FACJK0HU1NvI5OdCYWFpJ4+OFvGJdQC/Op0HKiuXkb5xMVDQMLbSrZbBZ9fTEoiozBwQHjTdVqtcLn64IohtHZ6eN1dKJVyGaz6O/vRTw+jQsuuAgAUFHhQUeHD1arxZhPbDlBG4G/ZVT2dF1fuo4uIxaLGq3mgcKiP1GUEAiE4HK5TKySqDzouo7R0REoioyeHhWLi4sQBAHbt+8ybud/85uv4ZkU2nAMLFS24vE4VFWGLEcwPz9njFdVeSFJEkIhCTU1tSZWSFQ+EolZyPJRyLKMubmEMV5ZWQVJCsNieTWgMKyQGRhYqKykUilEoyoUJYKJiXFjnK3mic7O8PAQnnvutwAK8+n4lhOcT1QKGFio5B3far6/vw+apgEALBYLOjo6IYph+HxdbDVPtAr5fN6YT21tHdi16xwAgN8fRF9fL4LBELq6/JxPVHIYWKgk6bqO8fGxpf0doitazTc2Nhpb5LvdFSZWSVQedF3HxMQ4ZDmCnh7VmE9zc3NGYHE6nbj66mvMLJPolBhYqKQkErNQlMIW+bOzs8Z4ZWWl0Wq+rq7exAqJyssLL/wOkcjLmJmZMcY8Ho8xn4jKBQMLmS6TyaCnR4WiyBgdHTHG7XY7/P4ARDGM1tY2bpFPtArZ7OKKjscTE2OYmZmBzWaH3++HKIbR1tbO+URlh4GFTLHcal6WZfT39yKXywEo3H3Q1tYOUQzD7/ez1TzRKmiahsHBAShKBH19fbjxxptRXV0DANi9ey98vm74/QHuPEtljYGFNoyu65icnICqKq9pNV9XV2+sS1ne64GITk7XdUxNTUJRZESjChYWXp1PfX292LPnXABAS0srWlpazSqTaN0wsFDRzc3NIRpVIMsRxOPTxvhyq3lRlNDQ0MhbJ4lWKR6P46c//TGmp48ZYy6X25hPjY1NJlZHVBwMLFQUy63mFSWC4eEhY4t8m82Grq5uiGIY7e0d3CKfaBWy2UXMzc0ZC84rKysxPz8Hm80Gn68boigubZfP+USbFwMLrRtN0zA8PARFiSAWiyGXyxqPtbS0QpLC8PuDbDVPtAqapi21nIggFutBZWUlbrrpFgiCALvdjquvvgb19Q2cT7RlMLDQWZucnMRvfvMCIpGjK1rN19TULK1LkeD1ek2skKh8TE8fg6LIUFUZ8/PzxrimaUilFlBR4QEAtLa2mVUikSkYWGhNFhaSUFUF0aiCZHIWqdQiNE1fajUfgiSF0dTUzHUpRGfgN795Fs8//1vja6fTiWAwBFEMo7l5G+cTbWkMLLRqy63mZVnG0NAANE2DxSLA43HB7w8gEBDZap5olXK5HPr6etHQ0GA06WxpaYXFYoHP14VQSILP18X5RLSEM4FOSdf1pevoMmKxKBYXF43Hmpu3Yfv27bjggr1IpzXkcpqJlRKVPl3XMTo6AlWV0dMTRSaTwZ49e/H6118KAGhra8ehQ+9mywmiE2BgoROKx+NQVRmKsrLVfFWVF6JY2NK7pqYWNpsFbrcb6XTyFM9GtLXNzs5AUSJQFAWJxPEtJ6qMNSlAoaEnwwrRiTGwkCGVSiEaVaGqMsbHx4xxh8OBQCAEUZTQ0tLK6+hEZ0DTNHzve981Nkq02+3GfGptbeN8IlolBpYtLpfLGa3mBwb6kc/nARQ+6bW3d0KSJPh83Ww1T7QK+XweAwP9GBrqx9ve9lYAhbkkihLi8WmIooSuLj/nE9EaMLBsQSdrNQ8AjY2NEMUwgsHQilPVRHRihfk0AUWJIBpVkU6nYLEIOP/8vaiqKmz0tn//xTyTQnSWGFi2kERi1tjf4USt5iUpbOykSbSVWCw9cLu/Dqv1KAA7stn9SKdvga7XnvRnFhaSOHr0FShKZMV8qqioQDi8HV6vF0sbPJdxWMnAZnsBgpCCpnUgnw+aXRBtYQwsm1wmk0EsFoUsRzA6OmKM22x2BAIBiGIYra1tbDVPW1QOlZV/A7f7S9B1K4A8AAEOxw/h8dyFubn/F5nMO0/4k4lEAr/5zbMACvPJ7/cjFJLQ3t4Bh8OGmhoP4vFyXYyeQkXFP8Lt/hIslhljNJu9EMnkx5HNXmFeabRlMbBsQvl8HkNDA1AUGX19vcjlcgAKn/La2tohimH4/X7Y7Ww1T1tbZeXfwOX6MgBAEPJLo4XTIrqegdf7XzAz40Q0egFUVYbbXYGLLy7cgtzcvA2SFEZrazv8/gAcjs0yn1KoqflT2Gy/hSCs3KrAZnsO1dV/jrm5e5HJvMOk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/dMLHdB2YnLTg5ZftOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9TXouvW4MysFf/iDDc8/78DU1HLn43lUVg6hu/sahELSJu+InILL9eUThpVlglAIdG73V5BM/t3GlUZbHgNLGcpmFxGLxaAoEQwPD0FfWtlns9nQ1dUNUZTQ3t65yd9Yic6O1foKgDwWFwGbDVhexhWPWzA1ZYXFoiMQyGHHDg2NjS1YXLzM1Ho3gt3+a1gsc6f9PkHIw+H4AQMLbSgGljKhaRqGh4eWWs3HkMtljcdaWlohSWH4/UG2midaBV3XMTioQ1VdUFUb3vzmFILBwpmWXbuyqK7WEQpl4XYDum5BMrk19k0RhIXTf5PxveW6oJjKVdEDS39/P7785S/jyJEjUFUVfr8fP/zhD4v9spvG9PQxyHIEqiojmXz1DaKmpgahUGGLfK+32sQKicrH9PQ0FCUCVVWQyVTAbrdDEIC+PpsRWGprddTWvvqBQBA0ZLP7zSp5Q2la26q+T9ct0LSOIldDtFLRA4uqqnjyySexZ88eaJpmXL6gk1tYSEJVFaiqjMnJSWPc5XIhEAhBksJoamrmuhSiVcpkMviP//h3TE5OGGNO5/nYs+cx7NiRQmvridds6LoVudwu5HKv26hSTZXL7UYuF4bVKkMQTvVerSGV+ouNKosIwAYElgMHDuDgwYMAgDvuuAN/+MMfiv2SZSmbzaK/vxeyLGNoaACaVngDtVqt6Oz0QRTD6Oz0sdU80SrkcjkcOzaF5uZtAACn0wld12GxWIz55PN1obKyBlVVf4UTfY4q7MviwPz8PRtbvKkEJJN/i+rqQyf9Dl23QtPakMn8+QbWRbQBgYUbkp2crusYGRmGqiro6VGxuLhoPNbcvA2iGEYgEITb7TaxSqLyoOs6xsZGoSgR9PREkc9reNe73mPsj/LGNx5AZWXlim7I6fRfQNfd8HjuhNU6vhRSdAiChnx+O+bmvoBcbq85/0ImWVz8M8zP3w2P5+MALMZdVLouANChaa2YmfkPAOwqTRurrD+uW63lGYZmZuKQ5QgURUYikTDGa2qqIYqFLfJrak6+JXgpWT4G5XosNpOteixmZ2cgyxHIsoxEYtYYr6qqQjKZQEVFEwCgpWXbCX8+n387EokbYLf/FBZLYWv+XO71yOdfB0DAWk5qlvuxyGZvQyJxAE7nF+Fw/AhACprWiUzmvVhcvAkWiwfl8lm03I/FZnM2KxnKOrB4veVz5iGVSkGWZbzyyisYHR01xqurKyFJErZv34729vayXZdSTsdis9tKx+IPf/gDfvKTnxhfe70eiKKIHTt2oKOj4wzn0w3rXl95H4sLlv5XYLEUbv/2lGlP1PI+FgSUeWBJJFLI50++wZHZcrkc+vv7IMsRDAz0I58vnFq1WCzo6OiEJIXR1dVttJqfmVn9LYWlwmq1wOt1l/yx2Ao2+7HI5/Po7++Dy+VCa2vhbhavtwGZTA7t7R2QpDC6u/0lMZ82+7EoJzwWpaW62r3mpSJlHVjyeQ25XGn9AhZazY9DliPo6VGRTqeNxxobGyGKYQSDIVRUvPoxpdT+HdaiFI/FVrWZjkVhPk1AUSKIRlWk0yl0dvrwlre0AADcbg9uvfU9cLlcxs+U0r/7ZjoW5Y7HojSczY3CZR1YSkkikYCqyq9pNe/xeIz9UurrG8wrkKiMJBIJRKMKFCWCeDxujFdUVKCurh66rhuXe44PK0S0eTGwnIVMJoNYLApZjmB0dMQYX241L4phtLW1804pojP0+OM/M+aUzWZHd3c3RDGM9vYOzieiLarogSWVSuHJJ58EAAwPD2N+fh6HDx8GAFx44YWoq6srdgnrStM0DA4OQFEi6OvrRS6XAwAIgoC2tnaIYhh+vx92+2ZpNU9UPJqmYWhoEKoq4/Wvv9S4hV+SwrBYLEvzKWDcmkxEW5egF3nr2aGhIVxxxRUnfOzrX/869u3bt+bnjseTG3JNUtd1TE1NQlFkqKqCVOrVxXy1tXWQpDBCIQmVlZVFr6XU2GwW1NZ6NuxY0MmV07EozKfCFvkLC4X5dMklb8A55+wGgBWXfMpROR2LzY7HorTU1XnWfIt50c+wtLe3Q5blYr9MUczPz0NVC9fRp6ePGeNudwVCIRGiKKGhobGs31iJNkomk8HRoy9DUWQcOzZljLtcbgSDIbS2thpjnFNE9Me4huWPZLOLiMViUFUZQ0ODRu8jm80Gn68bkiShvb0TVqvV5EqJSt/xZ0o0LY9f//pX0DQNVqvVmE8dHT7OJyI6LQYWFK6jj4wMQ1EiiMV6kM2+2qm1paUVoighEAjB6XSaWCVReVhuOSHLEaRSKbzlLW8FUDgzuXfveaisrEQgENpUd/cIwjSczu/Aah2ArjuRz/8JgBNfCieitdnSgWV6+tjSuhQZ8/Pzxnh1dTVEMQxRlOD1VptYIVH5mJ6eXrq1X8b8/JwxnkjMGvNo3779ZpVXJHl4PJ+B230PgCwKb6k6BOEfAeyCxfIAgLCpFRJtFlsusKRSC8a6lMnJSWPc5XIhEAhCFMNobt7Ga+hEq9TXF8Nzz/0Wk5MTxpjT6TTmU1WV18Tqiquy8r/B5XoAgrB870L2uEePoqrqIGZmnkA+HzKjPKJNZUsElmw2i/7+PihKBIODA9C0wkpxi8UCn68LohhGZ6cPtrV0OSPaYnK5HHRdM27dz2azmJycgMViQWenD6GQhK6ubpPmUx52+y9gtQ5C191YXLwcut5UlFey2Z6H2/3lU9YiCEl4PP8dicTDRamBaCvZtH+hdV3H6OgIFEVGT4+KxcVF47GmpmZji/zlfR+I6OR0XcfY2CgUJYKenijOPfd1OPfc1wEAurr8uOSSy5bmU4VpNbpcX0NFxf+A1TpmjOm6FZnM2zA//4/Q9fp1fr0vQ9dtEITcSb9HEPJwOH4Ci2UImta+rq9PtNVsusAyMxOHqsqQZRlzcwljvLKyytgvpba21sQKicrH7OwMFKWwLiWRmDXGh4YGjcBit9txzjl7zCoRAFBR8Tl4PJ95TZ8SQcjD6fwebLYXMDPz83UNLXb7r04ZVl6tQYfN9gIWF7dqYCmENofj5wDS0LQupNPvYICjM7YpAks6nUY0qkJVZYyNjRrjDocDfn8QoiihtbWN61KIVknXdfzoRz/A4OCAMWa32+H3ByFJYaNbcimwWl+Gx/MZAMCJprgg5GG19sHj+TTm5/+/dXzlM9lzs6j7c5Ysm+3X8HrfBat1BLq+/OdGR0XF/0A6/W7Mz/8jALuZJVIZKdvAous6YrEeHD16FP39fcjn8wAKG051dPggiiK6ul5tNU9EJ5fP5zE2Noq2tsKnXkEQ4HK5luZTJ0SxsC6lFFtOuN1fWtWlGZfr35BM3gVdX587/3K5c2G1DqzqLEsut2tdXrOc2GxHUFPzViwvRP7j/04u11cgCHOYm/sSAH6YpNMr28CSSCTw4x//CJpW+OTS0NAIUZQQDIbg8Wy9LfKJzpSu65icnDBaTqTTKdx00ztQV1e4bHLhhRdh//6LS34+ORw/X+WlmTRstueRzR5Yl9dNp98Hl+u7p/weXbcim70UmuZfl9csJx7PnQCyEIT8CR8XBB0u17eRSn0AudzaW7TQ1lG2gUXXdXg8Hvj9IUhSGPX1DWaXRFQW5ubmlvZLiSAejxvjFRUVmJtLGIGlfPYgyqz6OwVh9d97Otns65FOvw1O5/chCCfqUWMBYEcy+el1e81yYbH0wOF48rTfp+s2uN1fwtwcAwudXtkGFo/Hg0OH3g2NvayIVm10dATf//4jK1pOdHf7EQpJ6OjohMWytqZkZsrnRVgskyf9JL/ye4Pr+MoC5ua+CF2vgsv1IAoBpTBeOOPTjLm5B5HLmbsg2Qw220ur+j5ByMFme77I1dBmUbaBxW63w2JZNPZUIaKVNE3D0NAgstksAoHCH+qmpma4XG7U1tZCksLw+4NwOEpvXcqZSKffA4fjl6f8Hl23IJe7sAgbuDkwP/8vWFj4v+FyPQSrtR+67kY+fyUqK69HPp8BsBXfo85kTQrXr9DqlG1gIaITm5qawiuvvAJVlbGwsICqKi/8/gAEQYDVasU73nFr2YeU42Uyb0U2uwc22x9OeJZF1wUAApLJTxStBk3zYWHhb42vbTYLCm+v63cJqpzkcnuh68JxOwCfWGGNDy8H0eowsBBtAsnkPGKxKAYHYxgcHDEWo7tcbvh8XcjlssYdPpsprBTYMTv776iuvh52+/PQdSsEIb+0J4sAwIFE4gFks5eaXOfWoWk+LC4ehMPx+Ckv1QlCHun0+zawMipnDCxEm8Bzz/0GkcgrcLsdsFqt6OrqgiRJ6OjwwWq1ml1e0el6PWZmHoPd/jhcrgdhtfZC1yuwuPhmpNO3rPsut3R6yeT/hN1+OYDUSc98pdN/gVzuvI0vjsoSAwtRGdF1HSMjw1AUGTt27EJzczMAQBTDmJmJ44ILzkVTUztsts12FmU1LMhmDyKbPWh2IQQgn5cwM/MTeL1/AZtNXdo4TgCQB2BFKnUbkslPmlwllRMGFqIyEI/HoSgRKIqM+fk5AIDVajUCS0tLK6677gbU1noQjyeRy23FhZ5UavL5cxCPPwe7/Wk4HI8BSEHTfEinb+RZLzpjDCxEJSqXy+Ho0VegKBFMTIwb406nE4FAYYt8otInIJu9BNnsJWYXQmWOgYWohOi6bvS8slqtePHF5zE/Pw+LxbK0RX4YXV3dsNk4dYloa+G7HpHJdF3H+PgYFCWCkZFh3HjjO2CxWCAIAs4993xoWh6hkAi3u8LsUomITMPAQmSSRGIWshyBqsqYnZ01xoeGBtHZ6QMA7Np1jlnlERGVFAYWog02NjaKZ599BqOjI8aY3W6H3x+AKIbR2tpmYnVERKWJgYWoyPL5PBYXF+F2uwEU+veMjo5AEAS0t3dAFMPo7u42NnYjIqLXYmAhKgJd1zE5OQFFkaGqCnw+Hw4cuBIAUF/fgDe84XJ0dnahsrLS5EqJiMoDAwvROpqbm4OqylAUGfH4tDE+NjYKTdOMxbQ7duwysUoiovLDwEK0Tn7xi8cRibwCvdDEBjabDV1d3RDFMDo6OmGxWEyukIiofDGwEK2BpmkYHh7Ctm0tsNvtAICqqirouo7W1jZIUhjd3QE4nU6TKyUi2hwYWIjOwLFjU5DlCKJRBclkEldeeRWCwRAAYMeOXQiFJHi9XpOrJCLafBhYiE5jYSEJVVWgKDKmpiaNcZfLjcXFjPG12+027gQiIqL1xcBCdArJ5Dz+9V+/Bk0rNBO0Wq3w+bogimF0dvpgtVpNrpCIaGtgYCFaous6RkaGMT09jXPO2Q0A8Hgq0djYBEEQIIoSAoEQXC6XyZUSEW09DCy05cXjcShKBIoiY35+DlarFaGQaASTt771z4yFtUREZA4GFtqSUqkUolEVihLBxMS4Me5wOBAIhJDL5YwxhhUiIvMxsNCWpKoynn76KQCAxWJBR0cnRDEMn6+LAYWIqAQxsNCmpus6xsfHoCgRtLa2IRgUAQDBYAiqqiAUEhEMhlBR4TG5UiIiOhUGFtqUEolZKIoMRYlgdnYWQGGtynJgqajw4LrrbjSzRCIiOgMMLLSpRCKvIBI5itHREWPMbrfD7w9AFMMmVkZERGeDgYXKmq7rEATB+FpVFYyOjkAQBLS3d0AUw+ju7obd7jCxSiIiOlsMLFR2dF3H5OQEVFVBNKrg+utvgsdTCQDYvXsP2ts7EQqJqKysNLlSIiJaLxsSWHp6evCZz3wGL7zwAjweD6699lp85CMfgcPBT720enNzc4hGFchyBPH4tDHe0xPF7t17AQA+Xzd8vm6TKiQiomIpemCZnZ3Fu971LnR1deGee+7B+Pg47r77bqTTaXzyk58s9svTJjAzE8dTTz2J4eEh6LoOALDZbOjq6oYohtHe3mFyhUREVGxFDyzf/OY3kUwm8S//8i+oqakBAOTzedx111344Ac/iObm5mKXQGVG0zQsLCwYl3Tc7gqMjY1C13W0tLRCksLw+4NwOp0mV0pERBul6IHll7/8Jfbv32+EFQC4+uqr8alPfQpPP/00/vzP/7zYJVCZmJ4+BlmOQFVlVFR4cP31NwEAnE4nDhy4Eo2NjfB6q02ukoiIzFD0wBKLxXDdddetGPN6vWhsbEQsFjur57ZaLWf183T2lo/BWo/FwkISilJYlzI1NWmM67qGxcU0KioqAACSJJ59sZvc2R4LWj88FqWDx6K0HHdT5xkremBJJBLwer2vGa+urjY29Forr9d9Vj9P62ctx+LZZ5/Fr371K2iaBgDweFzw+/3YsWMHuru7YbPxJra14LwoHTwWpYPHovyV9V+ERCKFfF4zu4wtzWq1wOt1n/ZY6LqOkZFhVFfXGGtTbDY3ksk0mpu3QZLCCAZDcLsLbypzcxkAmY34V9g0VnssqPh4LEoHj0Vpqa52w2JZ29muogcWr9eLubm514zPzs6iuvrs1iPk8xpyOf4CloKTHYt4PA5VlaEoMubmEjj//AtxwQX7AABtbZ246aZbUFNTa3w/j+fZ47woHTwWpYPHojQs3ei5JkUPLH6//zVrVebm5jA5OQm/31/slycTpFIp9PREoSgRjI+PGeOFfXde/W212WwrwgoREdHJFD2wXHbZZbjvvvtWrGU5fPgwLBYLLr744mK/PG0wTdPwzW8+hHQ6BQCwWCzo6OiEKIbh83XBbrebXCEREZWjogeWm2++GQ8++CA+/OEP44Mf/CDGx8fxuc99DjfffDP3YClzuq5jdHQUr7wyju3b9wAoBJTubj+mpiYgioV1KRUVHpMrJSKiclf0wFJdXY2vfe1r+PSnP40Pf/jD8Hg8uP7663H77bcX+6WpSBKJWSiKDEWJYG4uAbfbgYaGFtTVNQIALrnkMt7hQ0RE62pD/qoEAgF89atf3YiXoiLJZDKIxaKQ5QhGR0eMcYfDgR07dsBme/VSD8MKERGtN/5loVWZmBjHL37xOABAEAS0tbVDFMMQxSCammoRjye5Ap+IiIqGgYVW0HUdU1OTUBQZbrcb5513PgCgra0d7e0daG/vRCgkHreXCnePJCKi4mNgIQDA/Pw8VFWGLEcQj08DACoqKrB373mwWCywWCx461v/zNwiiYhoy2Jg2eJisR68/PJLGB4egr60o4/NZoPP1w1JkkyujoiIqICBZYvRNA2CIEBY6kA1MjKMoaFBAEBLSyskKQy/Pwin02lmmURERCswsGwR09PHIMsRqKqMK674E7S1tQMAtm/fAZfLBVGU4PWeXasEIiKiYmFg2cQWFpKIRlUoSgSTk5PGeE+PagSW+voG1Nc3mFUiERHRqjCwbELpdBqPPfYzDA0NQNMKtxpbrVZ0dvogimF0dvpMrpCIiOjMMLBsArquI5GYRXV1DQDA6XRidjYOTdPQ3LwNoZCEYDAEt9ttbqFERERrxMBSxmZm4ktb5MtYXMzg0KH3wGazQRAEvOENB1BR4UFtLbshExFR+WNgKTOpVAo9PVEoSgTj42PGuMPhwPT0MTQ1FRpKLq9RISIi2gwYWMqIosj4xS8eQz6fB1DojNze3glJkuDzdcNut5/mGYiIiMoTA0uJ0nUdExPjsFqtaGgodEFubGxCPp9HY2MjRDGMYDCEigqPyZUSEREVHwNLiUkkElBVGYoSwczMDAKBEP7kT64CANTW1uLtb38namq4LoWIiLYWBpYSkMlkEItFIcsRjI6OGOM2mx0OhwO6rhs70zKsEBHRVsTAUgJ+9KMfGAtoBUFAW1s7RDEMv98Pu91hcnVERETmY2DZQLquY2pqEqoq44IL9hlhxO8PYHFxEZIURigkobKy0uRKiYiISgsDywaYn5+HqipQlAimp48BAOrrGyFJYQDA7t17sWfPucZlHyIiIlqJgaVIstksYrEeKEoEw8ND0HUdAGCz2eDzdaO6+tVGgxaLxawyiYiIygIDS5Gk02k8/vjPjK9bWlohihICgRCcTqeJlREREZUfBpZ1MD19DLIcQSaTwRvfeAAAUFVVhXB4B6qqqiCKErze6tM8CxEREZ0MA8sapVILxrqUyclJAIVLOxdeuM/YzO3yy68ws0QiIqJNg4HlDA0PD+HIkRcwODgATdMAAFarFZ2dPohiGA4HL/cQERGtNwaW09B1HZqmwWq1Aih0SO7v7wMANDU1G1vku91uE6skIiLa3BhYTmJmJg5VlSHLMvbuPQ+7dp0DAAgEQkgmkwiFJNTWctdZIiKijcDAcpx0Oo1oVIWiRIydZwEgFosagcXlcuHCCy8yq0QiIqItiYEFhcs+P//5T9DbG0M+nwdQWEDb3t4JSZLg83WbXCEREdHWtiUDi67riMenUVdXD6DQvyebzSKfz6OhoRGiKCEUEo27fYiIiMhcWyqwJBIJqKoMRYlgZmYGt9xyyNgf5cILL8K+fftRX99gcpVERET0xzZ9YMlkMojFopDlCEZHR4xxm82OqakpI7A0NDSaVSIRERGdxqYOLKOjI/jhD7+PXC4HoHDpp7W1DaIYht8fgMPhMLlCIiIiWo1NE1h0XcfU1CQWFxfR1tYOAGhoaIAgCKitrYMkhREMiqiqqjK5UiIiIjpTZR9Yksl5KEphi/zp6WOora3DTTe9A4IgwG534KabbkFlZSUEQTC7VCIiIlqjsg0si4uL+MEP/h0DAwPQdR0AYLPZUFdXj1wuC7u9cLmHZ1SIiIjKX9kGloWFBQwOFsJKS0srRFFCIBCC08lePkRERJtN2QaWQmfkixAIhIw7fYiIiGhzKtvAUlVVhQsuuBC5nGZ2KURERFRkFrMLWCsuoiUiIto6yjawEBER0dbBwEJEREQlr+iB5emnn8ZHP/pRHDx4EJIk4e///u+L/ZJERES0yRQ9sDz11FOIRCK44IIL4PV6i/1yREREtAkV/S6hv/mbv8Edd9wBAPj1r39d7JcjIiKiTajoZ1gsFi6TISIiorNTtvuwAEB1tRtLu/KTSZbvLuexMB+PRengsSgdPBalxWJZ+5YkZR1YePamdPBYlA4ei9LBY1E6eCzK3xkHlrm5OUxMTJz2+zo6OuBwONZUFBEREdHxzjiwHD58GHfeeedpv+/RRx9FIBBYU1FERERExzvjwHLDDTfghhtuKEYtRERERCfEi3pERERU8oq+6HZ4eBgvvfQSACCVSmFgYACHDx8GAFx11VXFfnkiIiLaBARdL+6NXo888gg+/vGPn/AxWZaL+dJERES0SRQ9sBARERGdLa5hISIiopLHwEJEREQlj4GFiIiISh4DCxEREZU8BhYiIiIqeQwsREREVPLKPrA8/fTT+OhHP4qDBw9CkiT8/d//vdklbQk9PT1497vfjb179+Liiy/G5z73OSwuLppd1pbU39+PT37yk7j22muxY8cOXHPNNWaXtCX9+Mc/xl/+5V/isssuw969e3HttdfiO9/5DrhzhDmefPJJvPOd78RFF12EXbt24YorrsBnP/tZzM3NmV3alpdMJnHZZZdBkiRjY9nVKPpOt8X21FNPIRKJ4IILLsDs7KzZ5WwJs7OzeNe73oWuri7cc889GB8fx9133410Oo1PfvKTZpe35aiqiieffBJ79uyBpmn8A2mSr371q2hra8Mdd9yB2tpaPPPMM/jEJz6BsbEx3HbbbWaXt+XMzMxg9+7duPXWW1FTUwNVVXHPPfdAVVU88MADZpe3pX3hC19APp8/8x/Uy1w+nzf++fLLL9fvuusuE6vZGu677z597969ejweN8a++c1v6tu3b9fHxsbMK2yLOn4OfOxjH9Pf8pa3mFjN1nXs2LHXjN155536eeedt+IYkXm+9a1v6aIo8n3KRNFoVN+7d6/+jW98QxdFUf/973+/6p8t+0tCFkvZ/yuUnV/+8pfYv38/ampqjLGrr74amqbh6aefNq+wLYpzoDTU1dW9Zmz79u2Yn5/HwsKCCRXRH1t+z8pms+YWsoV95jOfwc0334zu7u4z/lm+09EZi8Vi8Pv9K8a8Xi8aGxsRi8VMqoqo9Dz//PNobm5GZWWl2aVsWfl8HplMBi+//DI+//nP48CBA2hvbze7rC3p8OHDUBQFH/7wh9f082W/hoU2XiKRgNfrfc14dXU11xERLXnuuefw6KOP4mMf+5jZpWxpl19+OcbHxwEAl156Kf7X//pfJle0NaVSKdx99924/fbb1xzgSy6wzM3NYWJi4rTf19HRAYfDsQEVERGdmbGxMdx+++3Yt28fDh06ZHY5W9r999+PVCqFaDSKe++9Fx/60Ifwla98BVar1ezStpR7770X9fX1uO6669b8HCUXWA4fPow777zztN/36KOPIhAIbEBF9Me8Xu8Jbw2cnZ1FdXW1CRURlY5EIoH3v//9qKmpwT333MM1RiYLh8MAgHPPPRfnnHMOrr32WvzsZz/DVVddZXJlW8fw8DAeeOABfP7znzf+diyv61pYWEAymYTH4znt85RcYLnhhhtwww03mF0GnYLf73/NWpW5uTlMTk6+Zm0L0VaSTqfxwQ9+EHNzc/jWt76Fqqoqs0ui40iSBLvdjoGBAbNL2VKGhoaQzWbxgQ984DWPHTp0CHv27MHDDz982ucpucBCpe+yyy7Dfffdt2Ity+HDh2GxWHDxxRebXB2ROXK5HD7ykY8gFovhoYceQnNzs9kl0R85cuQIstksF91usO3bt+PrX//6irGjR4/is5/9LO666y6cc845q3qesg8sw8PDxk55qVQKAwMDOHz4MADwlF+R3HzzzXjwwQfx4Q9/GB/84AcxPj6Oz33uc7j55pv5Jm2CVCqFJ598EkBhPszPzxtz4MILLzzh7ba0/u666y488cQTuOOOOzA/P48XX3zReGzHjh1cc7fBbrvtNuzatQuSJMHlciESieDLX/4yJEnCwYMHzS5vS/F6vdi3b98JH9u5cyd27ty5qucRdL28t8V85JFH8PGPf/yEj8myvMHVbB09PT349Kc/jRdeeAEejwfXXnstbr/9dr4pm2BoaAhXXHHFCR/7+te/ftI3ClpfBw4cwPDw8Akfe+yxx/ipfoPdf//9ePTRRzEwMABd19HW1oYrr7wS733ve3mbeQn49a9/jUOHDuE73/nOqs+wlH1gISIios2Py9eJiIio5DGwEBERUcljYCEiIqKSx8BCREREJY+BhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUcljYCEiIqKS9/8DQLeYnUD1XxEAAAAASUVORK5CYII="}}]}}, "8395c77c7184403180f4c62f8901907e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "144bd55697404e1fb69bc9d8d7b52773": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_6212307a14184291acddcee24e3d2b3f", "IPY_MODEL_d182cfdeb4be4c709b1ef68789ac0468", "IPY_MODEL_0f8ea0f581b341de87b7713c08427bbe"], "layout": "IPY_MODEL_8395c77c7184403180f4c62f8901907e"}}, "54e1f485790e424d8b1963e05ad1cb7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c5d607aea4d4b26977c1bf3ff1ede2b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6212307a14184291acddcee24e3d2b3f": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_54e1f485790e424d8b1963e05ad1cb7f", "style": "IPY_MODEL_0c5d607aea4d4b26977c1bf3ff1ede2b"}}, "e3743025599047e9969fe1d996a5653c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91d819ef924b4aefb1504456f226545b": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "d182cfdeb4be4c709b1ef68789ac0468": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_e3743025599047e9969fe1d996a5653c", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_91d819ef924b4aefb1504456f226545b", "value": 30}}, "03f3b20d931b4ddb9b54257e4615470e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f8ea0f581b341de87b7713c08427bbe": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_03f3b20d931b4ddb9b54257e4615470e", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGFCAYAAACyvIemAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrYElEQVR4nOydd5gkZbm+769y5wmbSLtLRkBARSUcMxmULBKVKCgKInoU5aiHoAcVf2AElayASI4KgiASRQxkSQvLptlJnau7qr7fH9XdO6G7p2emu6dnqPu6vFxmu6ura3v6re/9nvd5hJRSEhAQEBAQMMMoM30CAQEBAQEBEBSkgICAgIAOIShIAQEBAQEdQVCQAgICAgI6gqAgBQQEBAR0BEFBCggICAjoCIKCFBAQEBDQEQQFKSAgICCgI9AafWBfX6qV5xEQEBAQ0GLmz4/N9CnUJVghBQQEBAR0BEFBCggICAjoCIKCFBAQEBDQEQQFKSAgICCgIwgKUkBAQEBARxAUpICAgICAjiAoSAEBAQEBHUFQkAICAgICOoKgIAUEzHIMQxAKqUjpzvSpBARMi4adGgICAjoLVRVEIiamqQPguh627SGEmOEzCwiYGkFBCgiYZQgBoZBOOGwipSSVSqNpGrFYGNtOAupMn2JAwJQIClJAwCzCNFUiERNFUbDtIrlcHscpImUe0+whGjVJp4vBKilgVhLsIQUEzAJUVRCPW8TjYaSEVCqLbReIRELMm9eDoqikUllCIQtF8ZBSzvQpBwRMmqAgBQR0MEJAOKzT3R1B11UymRypVBZd14jHI2iaiuu6JBKx0mrJJR6PAN5Mn3pAwKQJWnYBAR3K2PZcPm+jqirxeARFEdh2kXQ6BQh6e7sJhy2SyTS9vV2YphYIHAJmHcEKKSCgw6jVnguHLWKxMJ7nkUxmKRSKxGJ+vk0ulycaDeO6LtlsnlgsTLBKCphtBCukgIAOYax6LpPJUSg4WJaBZRlIKUmncziOSzhsYhg6Ukri8RiDg0ksyyQWi5BKZbAsIxA4BMw6ghVSQEAHYJoq3d1hwmET2y6STGbwPEk8HsGyDGy7yPBwBkURJBL+3lE6nWFwcAjD0LEsg1QqQyhkoaqBwCFgdhIUpICAGaTR9lyx6BCPhwmF1hUsAM+T5HJ5YrEI+XyBQqFIPB4NBA4Bs5KgZRcQMANMpT3nOC6pVBZFUYjFIqiqgmWZDAwMY5oGsVi4ImoIBA4Bs5FghRQQ0Gam0p7LZHJkMjlCIZNoNITrugwODqGqKqGQRTrtt+hABAKHgFlLUJACAtrEdNpziqKU5N4K6XSWfD5fWVlFImHy+QKO45JIREilsgDEYhHSab+1F42awV5SQMcTtOwCAlqMEBCLrVPFTbY9F49HEEJU9ohCIRPD8AtYf/8QoZBFPB6ptOjKAodEIkY2myeVyhKPR8hmbTxPCVp3AR1LsEIKCGgh5fZcuRhNpT3nOF5FxBCP+3tHqVQKgGg0XJJ5mwghAoFDwKwmWCEFBLSAkdEQjuPiOC5SSsJhC8PQKRYd0mkbRRHE4+FRbgymaRCPW3ieJJ3222/RaBhF8QtOLpfH8yRSZojHY+Rydqn4RAKBQ8CsJlghBQQ0kVrec6qqoOtaaX4oRyaTJxTyC0d5P6m8irEsg3y+QDqdxTD0ikBhaGiYbDaHlCCEwLYLJbcGv10XCBwCZjtBQQoIaBL11HNCCIpFd8rtuWQyhet6wMiVjSCdzqBpKoahk83mA4FDwKwmKEgBAdOkEfWcEALHmVg9VygUiEbDWJZBLpdnaCiJbRfxC9HoNpsQAtd1K6sgf/UkKwIHXQ8cHAJmF0FBCgiYIo1EQ6TTuVJBgXDYmlJ7bmwhGn0OCtlsDggEDgGzn6AgBQRMgckMt0YiFsA023O1kRLSaX8V5HleReCQSvnHLgscNE2tCBwMQ8c0tWCVFNBRBAUpIGASTGW41XU9PM+bVnuuHoHAIWCuEBSkgIAGaLQ9V009J6W/hzTd9twEZxgIHAJmPUFBCgiYgOl6z+n6uqFYmF57rhaBwCFgLhAUpICAGjTLe851PRzHbUp7rh6BwCFgthMUpICAMUynPVdNPacoAsPQm9ieq00gcAiYzQQFKSBgBM2IhhirnvNXKLmmtefqMRWBQz5vl1ZzQUEKmFmCghQQQHOjIcaq5xzHQdN0mtmeq8/kBA6e57frwmEjWCUFzCiBuWrA25rpJrdWj4bQKRT8YuW6ftusqyuOaRrYdqEN72m0wKG/fwjLMmtGVPitvQKhkBVEVATMKMEKKeBtSyvac9XUc47jt8UikVDbvugbFTg4josQguHhTCBwCJhxgoIU8Lajle25Wuq5TMYvDuFwqG3vsxGBQ7lFZ1lGIHAImHGCll3A24Z2tOdq7RNJKUt7OSFs28Zx3Da839ECh+HhFL29XRWBQyxWfj820WiYtWsHKw4Otp0E1JafY0DASIIVUsDbgna15+qRz9u4rkskEm7DOy5TW+AgpURKyfBwGggcHAJmnqAgBcxpZqI9V4902p9nMk2jpe+7TD0HByFExdIocHAI6ASCghQwJ2n2cGuzvOc6SeAABA4OAR1FUJAC5hyd0J6rRycIHMrtusDBIaCTCEQNAXMGVRVEIiamuU6MIKUkHLYwDJ1i0SGdtlEUQTweRlEUbLtIPm9jmgbxuIXnSdJpf2g0Gg2jKL5MOpfLl76Yp7+qmWmBQzwerazORgocslm70toLBA4BM0GwQgqY9XRqe64eMylwUFWlkokURFQEdBJBQQqY1ViWSk9PpGPbc/WYCYFD+bUURQkiKgI6jqAgBcxKyuq5WCxc+nLNz6h6biq0U+Cg6zrd3XHC4VCl/RhEVAR0GkFBCphVVGvPSSk7uj1Xj1YLHBRFIRaLkEhEcV2PoaEkmUwuiKgI6EiCghQwa6ilngPQda2j23O1KAscLMtA05orHAiFLLq742iaRjKZJplM47relCIqygKHYJUU0EqCghTQ8Uw03CqlxHHcjm7P1aPZAod17TmLXC7P4OAwhUJxzKMmF1ERCBwC2kFQkAI6lkbVc7ZdRNPUjm/P1aMZAodq7blsNl/1sfUcHAKBQ8BMERSkgI5kMsOtlmUghCCbzXd0e64e0xU41GrP1aPRiIpA4BDQLoLB2ICOYirDrYVCEdM0SvsgZluGW1tBJpPDMHTC4RCZTLah5+i6TjQaQlEUcrl8zRVRLcoODvF4jFzOrggcBgaGMU2jInDo7e2qCBx6e7swTQ3b9oIgv4CmEqyQAjqC6Qy3FosuUkoMQ5sV7blaTEbgMJn2XD0CgUNAJxEUpIAZpxnec1JS2bjv9PZcPRoROEylPVefQOAQ0BkEBSlgxmhmNITruhiG3lHqualSS+DQmHpu8gQCh4BOIShIAW2nFd5zuu5vhw4Pz472XD3GChya1Z6rRyBwCOgEgoIU0FZaFQ1RbiOZpr/nMdspOzjE49Emt+dqMzaiInBwCGg3gcouoC20IxpCCEE4HCrtw8zuu3ZN00r/r2LbNul0ruWvOVbgMDycore3K4ioCGgbwQopoKW0Mxoil/MLUTTazkiH5jKyPec4Lq7roartvG8MBA4BM0dQkAJaxkwkt2YyWXRdb1ukQzOppp5LpzNtj6gIBA4BM0VQkAKaTjPVc5P1nisWHWy7UBIEtP2tT4l66rl2RlSUCQQOATNFUJACmkanJLdmMtnKflIn06h6rtURFdUIBA4BM0FQkAKawky052rheZJsNodlmahqZ37EJzPc2sqIiloEDg4BM0Fn/rYGzBpmsj1Xj04VOEx1uLXZERWNEQgcAtpLUJACpkSntOfq0UkCh2YMtzYjomIyBAKHgHYTFKSASdNJ7bl6dIrAoVnec4HAIWCuExSkgIbp1PZcPWZS4NAK77lA4BAwlwkKUsCEzIb2XC1mQuDQSu+5QOAQMJcJClJAXWZLe64e7RQ4ND8aYjyBwCFgrhIUpICqqKqguzs0q9pz9Wi1wKFV0RC1CAQOAXORoCAFjGJke05VVTzPmzXtuXq0SuDQjmiIagQCh4C5SFCQAiqMbc+lUr4gIJGYPe25ejRb4NCO9lw9AoFDwFwjKEgBNdVzlmUghEAIQTo9e9pztWiWwKHd7blaBAKHgLlGUJDexjSqnvNzi0Kzpj1Xj+kIHGaqPVeP2SJw8Ffa4WCVFFCXoCC9TZmMek4Igaoq5PP2rGnP1WMqAoeZbs/Vo9MFDvF4FADD0AOBQ0BdgsTYtxlTTW5VVQXDMDBNY8Lk1k4tRGVGChwKhQL1vh91XScaDaEoCrlcfsZXRNUYKXAoFIpt+cIvCxwsy6wIHLq6YmSz+YrAoa9vkEjExbJMhodThMMh4vEIQ0MZgnTZgGoEK6S3CdMdblVVBSH8L7/Z0p6rx0QCh05sz9WjEwUOiUQUVVUq8fKBwCFgIoIV0tsA01SJRMzKaieft1FVtSRGENh2kVzOxjR1EokIUkoymRyO4xIOW+i6RqHg4HkupmkQj0dKcvBUSbAAs6UQlSkLHMLhUGkfZl37LRSyCIctPE+STKZnRLAwWcoCh0gkhG3bOI7b8tccK3AYHk7R29tFKGSRyeSIRsM4jkuxWCQaDbN27WBF4GDbSYJVUsBYgoI0h5lqey6ft0uFxxrVnvMVVOB5/ophNrTn6uEXYb/lNDycxli1iuhtNyPuvBM5PIy7cBHigAMR++2HjMWb/eIYf7oPddnrSFXD2XFHnPfsyHSGpPJ5G8syiETCDA+nmniy9fAFDt3diVECB9ddVxBTqSyWZRKLRUqzSwbRqEk6XWzbDFXA7EDIBtfOfX3t+oAHTBchIBTSCYd925ZczqZQcLAsA8sySnfTdmkFZGIYfsHKZvMoikI47A87loccQyH/MYVCkULBJhqNzpqVw0ToukYiEcO58Sa0009DplJIIUBRwXEAibt0KelLfom72ebTf0EpMa+/jtCPLkTpW+P/Y0lAVXDesTWZ87+Hu+22Uz68pql0dcVJpTLYdmH659sAUnpEImEsy6S/f4h587oBGB5O0dUVrxTHRCJGf/8Qmua3ifv7h/E8JShKbWT+/NhMn0JdgoI0x6jVnguHrXHtuVBoXcEa257L5fIYhq+W8jyPbDZbac/F4zFUVWFwMDnD73b6hEIW4X/9Aw4+GJnNIRMJUEZsrToOIjmMu2QpyZtv9f9+GliXX0b4/HPBdZHRKGiavxlTKCCyWWR3N8mrf4u7zTZTfo1oNIxh6AwOJtu4VyPp6enCdV10XQdgYGCYUMjENA36+gbp7o4jhKC/f4je3i6klAwNZRAiaN21i04vSIGoYY7QzmiIdDpbWklZM/22p8zI4Vb3ooshm4We7tHFCEDTkIku1DeWYdx2y7ReU6xaReiH3wcpkV1dfjECf5VkmshEAjE4SOTc70zrdWZK4JDP2+i6Ti6Xr+HgkAkcHALqEhSkWc5MREN4nkculy8ZZ86uj9BY9dzwCy+hPHA/0rIQilJ9S0z17+DN3/9+Wq9t3nKTvwqKRmudHDIUQnvq76jPPzfl12m3g4OiKCQSMcLhEJ7nVWa1xjs4EDg4BNRldn2bBIxiJqMhstk8nteeSIdmUW24Va5YCUUHqfltppoFVtNRV7w1rdfX/vEP8Lzxq7CRmCYUC2j/+te0XqtdDg7hsH9NVVVheDjF0FAyiKgImDKBym4W0mz1XGW4NZOleO+9GLfdijE4hNfTQ+Hjn6D4Xx+oqv7KZHLE49GK4KETEIODmLfdinHbrShrViOjMdx990U/+iiU3k3GD7eGLFAEeC6e56Eq/ib7uC9Iz0OGwpU/K6tWgl1Azp+HjDbYl3cnIcX2pr9qSKezdHXFMU2j6QIHw9CJRMYPDEvpVVZB/f1DWJZZcXDo7e2qODgkEv4QbSqVJR6PkM3agcAhIBA1zCZaqZ7LPf88kaOPQn3+ef8O3nX9VpXn4WyzDakrrsbbcMNx5xSPRztG4KA+8wyxL3weZcVbIARS1xGui+J5yHiczHnnk999z9FPcl0S++yF+srLyO4eFEWAEHie56vfAKREDA6QP+bTuFtvg3n9daivvAyeRIZCFPbZl/yRR+Jtulnd8wv98AeEfvpjXxhR64vXthGFAsnrfufLwKdJswUOiqJUjlkoFEmns/61GoUvcLDtArZdpKsrFggcOoROFzUEBWmW0Er1XGHFKrr23KPyRY6ilOTI0r9Tl+ButBHD9/wR2d096rwURaG7Oz7jtjqir4/EoQehrFiB19uLoukIxf/S9xwH0d+PDIVJXX4Fzg7vGvVc86oriPzv/yJDFoT8u34pJdKTfjFKJkHXKOy8K8ajfwUp8SJRUBVEPo/I5/HmzSN90Y/rFhHl9dfp2mt3f7VVbR9JSsTgEM4730nytjumNZNUuS5C0N0dx7aLZDLZuo9VXnsN65qrMW+9BZFM4vX0YB9yCPYRR+KtvwHhsFVxZchkcjVXxVJKTFMnHvcLUXkFPjAwzLx53eTzNtmsTW9vglQqQ7Ho0NvbxfBwGtv2glVSC+n0ghTsIXU47VDPWZdf5hcjRfFXReUvBCH8/1YE6ptvYF1x+bjz6xSBg3nLzSgrVyLnzUM1DITit91c10UKgdfbi8ikMa+6ctxz7SOOorDvvohcHjEwiMznEa4L+RxicABUhcJ/fQDjkYfxIlG8BQshEgErhOzqxluwENHfT/TML/vFqwbe0qXkP3McOC4inR7dlnMcxNAwhENkv3ZWU4oRNC5wMO68g67dP0bo0l+grF4Fdh51+ZuEL/p/dO32Ubr/8RShUDluI1m3RdtYREUgcAgYT1CQOpS2qedcD+vKK+pvtisKeB7WlZdX3dvoBIGDefNNoCiouo6UEs/1RreShECGQhgP3I8YGBj9ZE0j/cMfkT3rG7iLF0MuB8kkiuvivPd9pH50kd/SU1QIV3mPioLsnYeyahXG3XfVPc/sV75K7nOfB01HJJOIoSH/f+k03sKFpH7yM5xdd23CFVnHRAIH9Z//JPrFUxH5HNKykKGQL0MPh/0VYyqFcvjhDD/9r0msgicfUQGBwOHtTiBq6ECa5T1Xbs/V854Tg4Mo/f0VaXNNVBVlzRrE8PC4th3MrMAhZJlofWvANHG92vEG0jAQuRxK/1rcnp7Rf6lp5I87nvwxn0Z97jn0gk10042xF66HfOgvKKtWIeN1hmI1DZAY992Hfdinaj9OVcmd+RXyRx2NeestqK+/DrpG8d3vobDnXhBqzexQPYFD6FeXIgoFvxCVVmYj22aeZSHSaYwrLsP5n2839HpjIyoCgUNAIwQFqYNomXquXjREo2228nNrFC7fVqhYiUBoByOjIWQohMxm695dC9ctzfrUWclpGu522+ECeixCRNdIZ9MI10Vq9X9dpKoihocaOne5aBH5z57c0GObQa2ICpFOYdx9F7K8b8joYiSl9FeXgPm768me/a2G24mNRlSEQkXi8Sj9/UOEw1YQUfE2JmjZdQAzMdxaRnZ342688cQyYylxN98MGau9KdouB4dq0RD5j+2OKBapF24kMhncd2yNt8EGDb1OOaLCWG89pK5DYQLptOviLVgwmbfSVqo5OIj+Af+6leTuSqnYSClHF3dV9fe9svWFEWOZKKIicHAIGElQkGaY1gy3qo0ntwpB/tjj/T/XKkqln+ePO6Hu3fFEAgf1Py8RuvCHRM48g8g3z8K443bIT06ZVyu51T7kUGQojBgcrFqURCYDikL+8CMavsMvR1SYO++Et/EmKHUECxQLCCEo7LPvpN5PO6kmcJDRKAhR+YR4YwtRGc8DVQNrcjcbgcAhYDIEBWmGaK16bniU99xE5I86Gue97/O/dBxn3Re6lP5/ex7FnXYm/6nD1z3JdaE4vjVXVeCQyxH5ypeJH7g/oZ//DPOWmzGvu47oGV+ia+890B5/bMJzHOk95yu9hke1Bt1ttiH7ta+DqqH09fkFqFCAXM7/73ye/KcOp/CJ/Sd8rZHkcjYuAnHyZ5GKQAwPjyp4IpdFrO1DWb4cr7ub4o7vndTx281IgYNh6HRttjHsvDM4Tu0ViZQIKSnssUf1lq3joD36KMadd6D/9eEqK8lA4BDQGMEcUpsRAiKRdYOszRxuzWQyE6+IapFOE/3G1zFvutEvQqrqFx1Nwz74UNLnnQ+hEPp992H99hr0xx8H6eFusCH2EUf6K5SSE7YvpChFVORtoqd/EeOeu30FVySyboVSLKIMDyMTCZKXXYn7zneOOy1FUYhEQpimUXqP2VFhemPRH3oQ6/LL0J76G8JxkIqKu9mm2EcejX3wIY3vmY08pq6RiEexzzkX7dJLIG/7Lazk8Lo2oabh9fTiLVyIffQx5I8+Zkqv1Q7K/z7g7/3Z1/+O6GdP9GM3THP0g6X0h3WFYPh3v8d5/07r/s7zsH79K0KX/AJl5Qr/sULgLVhA/vgTyJ3y+UoBGxtR0dPTRbFYJJPJlWaQgoiKdtDpc0hBQWojI9Vz4G8027ZfVKY+3CrJZjNNS24Vq1Zh3nM3YmAA2dODvfc+yIULwXGInPU1zBt/76+kdB0pBKJ0N+xuthmpy6+quDmUHRxSd/+R+LGfxrPM6goyKVH61lLYfXfSP79k1F+NTG7NZLKTEksob7yBMtCPjERwN91s2sUhFougayqpe+/DvOwyzNtvg2IRaYXwFi5A9s4DQAwMIJwiueNPJH/K56b1mq2gPNxaFrgMDg4jPY/weecQuuQXIEHqWsWtQzgOKCqZs84if/KI9yMlka9/DevqK333cl2vjAeIYhGEwD7gQNI//umIax84OMw0QUEKGKeey2bzCKEQjVoIIXAcl0wmj6IIwmFznHquXHhyOX+/xd+jmUA912RCP7mY0A9/gDTN8fsIrj/o6W6zDcO33A6aVnFwcD57MuoNN+DN6625dyMyGfA8hu+4G2/JklHquZl2gCijKILu7gT5vA2nnopx9914G21UtYUl+vtBCJJXXYO3ySYzcLbjGes9l8vZox0cpMS45SZCl16K9tyz4ElQBMX37Eju5FMo7jHacsn4wz3Ejj/WX1WV8o9G4TgI1yX9o4uwP3kYEDg4dAKdXpAC2XcLGes959utjG7Pua6HqipEIhaaplbk3uV9olrtuWRyZHuuxb+o2SzW5Zf7d7rVNrVVFRkOoz73PPpfHqL4kY+uEzi89CJypPtDFaRloQwOoS1bhrnt1pX2XFmw0AmUBQ7htX14j/wV2d21rhgVCv48VyoJroc0DUSxiHnXHeRO/eKUXk8MDmL84R5/TyabxdtgA4p77kXx/Tuty1FqgLHec8PD6crAsL+XE8K2/VV44cCDKRxwEMrrryOSw8ieXr/oVsG67Nf+H6oVI/DP0XWxLvs19qGf9IUTYwQOw8Mpenu7KgKHWMyfQSoLHNauHawIHGw7SSADn/sEBalFTGa4NRQyK8Uom80RCtUabpVVh1tbjf7wXxAD/bVzfMD/YspmMe64neJHPgr4X3ghVUUwwSJcSoQiiHXF8ErquU5xDx9JLmdjPf88SjaLs2g9AMTgAMry5ZU2FUIgMmlwXcwrryB/5NFVB4nroT/0IOH//c66iHNVhb89iXnnnRR33JHM+d9D9vZOeJyR3nPVrmk+b2NZBpFIuLKHgxB4G29c/8C2jf7oI/7qqA5SUdCefcZv/1bO1xc4dHcnRgkc1q4dJBSySCQiDAwksSyTWMyXh1uWQTRqkk4Xg1XSHKczd11nMVNVz6VSWVTVn69R1eao55qFsnatv2E9kZuDlChr1oz6UeE9OyKkrHm2QgjUfB5iMXKbbzFOPddp5PP+Br9QBCKVRH3jDX9o1rKQpok0DP/PioLS10fk2//ji0QaRP3nP4h88xso/Wvx1lsfb4MN8Rath7fhRniJBPqjjxD5+n/XnYkyDF+R2Ij3XDrtz7uZptHwOYpigYnuMfwHlgZt7fyIH412cPBn5GTFwUHX9YqDQyhklUYYsqU2dW0XjoC5QVCQmsR0h1sjEb8VJqVECFGZbm9kuLXVyHjc/8OEeT5i3Goge+BBfksulRrzSIGiKKieB/k89t77kA1FmnjWrcFesjFeOIyaTqOsXg2uizTGfJmX/g29nh60J55Ae+KJho9vXXklYmgQb731x98AhEJ48xegP/kk+sN/Gfdcv80bJR73B4YHB5MT7r+NdHBodPUhwxG8ri7ERMPUpULtdY+2aSo7OAAVBwfL8tWjZQeHcps6Ho+Sy+UrA+DBbNLcJihITaCZw63ldpymqeTzdmPDrS2m+IEPIuNxRC5X+0GOAwIKYza/3c23IPfZU8B1UQYHfam3UFAUgchk8Nauxdl4EzKf/0KL30Vz8DbaiMLOu8DatYh02leXjcVxkKqKt956UCxi3PuHho6tvLUc/bFH6+clWRZ4HsYdd4z68cjk1vLA8PicoupUc3Cof6IK9hFHrIsoqUapKNuHfLKqujJwcAioRlCQpkErh1tzuTymaZQk4jPbN5eJhL8x7brVW0We5xeXxYsp7L7HuL/OnvI5Ct/5DmLRItRUCtG/FtaswXMcCrvvQeqKK31p+Swhe9Jn8bq7/cFgKUcPEhcK4Hl4ixb5zuCmgbr8zYaOq6xahbDz9b32AGkaqG+8DkyuPVfzeA1GVIwk/5lj8bp7fNn/2MLneb5ZazRK7sSTqj4/cHAIqEYgapgCjajn0uncuOHWyajnhBCYpr/hXL5rnEmyZ34V9aWXfNVXzo8pAPzNfNdFzl9A6ueXjh+sBBRVheOORxx7LN6995J7+RU83aD4/p0m3kDvQLxNNyNz2peIffkMhOsgHadyyyB1HW+99fDWX9//gesircZiOaRugCil9dZSrwHC9cC0Rrmrj1TPTYWqAoc6eOutT/K31xE/5sjR+4bl4djublKXXTGB7D0QOASMJihIk6Q10RDj1XNS+q0Uv59uUyw2vjHeEkIhUr+6DOva32JeczXqG8v8gchYDPugQ8gfe1zViPORw61Z2yb88Y/jdqiKbjIU9tob98rL0VatwtN0PM8Fw8Dr6VlXTFwX4bgUd9qp/sFKuFtsgbdgAUrfGrxannFSIpwi+m4fwyu155p1LetFVFQ933e+k6G//BXj5psxb74RZU0fXm8Phf0PxD74kIpzRy2CiIqAsQSDsQ1SbbhVSllZ3RSLDtms3fTh1kQiihAKQ0N1jD3bjeehrFoJhaLvbl0ltK7WcGvZwWFwsIPezxSxLr2E8K8uRay/PsWxKxopUd5a4dsiXXUNskEXcOuSXxD62U/w5s0fN/MlFIHa1wemSf7635FZtH6z3kqF8szS4GCyjXs1gYNDu+j0wdhgD2kCZjIaAvy7VlVVCIXGt8JmDEXBW38DvKVLxxWjatEQI5Ve7YqoaAf5I4+iuPPOsHIl2po1YNu+Q0Eyifr6MqRlkT3zKw0XI/CNbou77Iqytg/R11fZp1LtPNpbb4EQZL5wWkuKEUxB4FDGtjFuupH4IQfSs/WWdG/zDmLHHIVxz90TqjMDgUNAmWCFVIda7blw2Gqr91wkEsKyTAYHh/G8zv0FbNR7rjywOTiYnNa+R0eQyRC74XqM22/DW7nSd2qwLJwddljnoj5Z0mlCl/0a4/bbUAf6EVKCYeBstRXZoz9N8WO7Nf99jMCyTCKREMPDKRxnIqk/iGSS2AnHoT/+mD+epGn+nJLnP7ew9z6kL/oxjJXHj0BKj0TCXwWVHRzSaT9wMRbzTVbDYRPLMlm7dpBo1L/RW7s2GaySJkGnr5CCglSFmWrP1UII6O5OUCw6HSFwGMtUvOe6u+O4ru8gMBfoMjR49hnS/UN4Cxb4Yo1p7G8Yhk7Ec1D++U/s4SS5WAJ3m23a5iDe1RVDShoSOERPOA7z3j/iWaHxYoyCjWLb5I49nuy3v1PzGFJKVFWhu9v3sSsr7tau9dt1IBkYSDJ/fje2XSCVylT87wKBQ+MEBWkWMVY91zHREIBpGhX/rxkXOJSYbDTESEZFVMxygQOUIioSMVKpTEOCgFqM9Z5Lp7MzsorUNJWurviE70d9/jkS++3jR6Cb1duwIpsF02Dwob8i58+veawgoqL1dHpBCvaQSsx4cusE2HaBYrFIJNKYhLjV1EpubZRCoUihUCQSmeReRYdSLDrYdqHkeDC1Y0xnuLXZNOrgYN5+m79HZNTe45SWhchm/f2kOgQODgFve9n32PZcKuX3rcNhq9KeS6f99lw8Hh7XnovH/T2TdNpPvCxb6rciGqIsyw2FTHI5e9rHU59/DvXll0FVcbZ9J97ixRM+p5nREOl0tpIC2wkRE9Mlk8nS3Z0gHA5VxAGNMDYaolOuRSaTwzD00vvJVn2M6OtDSOobrSoKUlFR+vomfM2ywCEej5U6FL7AYWBguNQl8AUOvb2JisCht7cL09SCiIo5wNu2ILVjuLXZJqiu65HP24TDIWy7MGWBg/a3Jwlf+EO0v/8dCrZ/MUyLwoc+TPar/111WHVse64Z0RCViIqQRT5fmPUCh0pERThUigqv/37qRUN0AmUHh5ERFeMeE4shBZWB2BoHAunVd4svEURUvL15W7bsOr09V4+yO/JUW3f6w38hdtyxaI89itQ0ZE8vsqsbCRh/vIf4kYejvPLyqOdMtz1Xj2w2j+d5RKOd0YqcLrmcX4gmej+d1J6rh19Y3Zqft+LHdvMLUT1Hc9sGTaPQsDrQd3DQNHWUg0M+X8BxXBKJCKmUv2KLxSKk0/7vYTRqBjLwWc7bStTQaeq5qdKIwEGsXYv+0IOIdArZO4/Chz4MqkrX7h9DWbkC2d0z/o7W8xBDgzjv34nkb69rW3Lr20ng0KntuXrUFTh4Hol990J97jlkJDpeBeg6KNkshd12J/Xryxt+zckIHIaGkkQiYTRNDQQOE9Dpooa3RUHqZPXcVKnl4CDSKcLnn4d5882QzYLwz8zr7qb4/p0w7v0jMp6onTqayyFcB+euuzHeu+Ok1XNTZS45OIB/567rGoODw0jZOeq5qVLPwUF55RXiRx2OsnIlCKUSxyFsG5C4m29B8rfX1VXYVae+g8PatUP09iZQFAXP85DSbwMHDg616fSCNOdbdrO5PVePqg4O2SyxYz+D+dvfQLGAjEWR8TheJIIYHsa87VY/QqJO0J4IhxCOg/bE401vz030fuaKgwP4AgchBOFwaNa05+pRz8HB23RTkjfdQv6445GxKKJYQBQLyHm95E79AskbbpxCMarv4CCEYN68boRQKuc3PJwKHBxmOXNW1DCb1HNToZrAwbrqCrQnn0CGxgwoqioyGvWjAmwbcrnx/nNCoCii8ufscKqt7bO5KHCw7QKW5d8wzJb2XC0mEjh4661P9n++TfaMM1HfWg5C4C5ZWtX9vVFqCRx6e7tKLTnJ4GCy5AAeCBzmAnNuhTTT3nPtZJTAwXGwrrnG/4sa0QWyNCsiRqa3ClAUgaoIkOAVCkjPw9too1af/jjmisChnNxaLkbl9u9sZyKBAwDRKO6WW+FuseW0itE61gkcEokYQvhJw4ODwziOSywWDgQOc4g5VZAsS6WnJzrn2nO1KEdUmKaBuWoFyqqVlZyiqoQsEAKRz/kxBor/y40QeJ7E8zxEMoW3YCGFj3y0fW9kBOXZF8OonQfUyVRrz+m6hmnW9nGbTaTT2ba+n3IuGPjiiuHhFJ4nCYWs0rXVKxEVoZBV+n3NlgRHXlCUZhlzomU3sj0nS9HJhqGh6xqqqsz69lw9/LaQQUjXfUPLOkhVBcNAFAoouSxEo0gpkZ70FXbpNCiC3KlfGBd90C5GOjjMJsVdPfVc2cGhUCjUTPyeLYx0cCgUii39wh95TbPZHKGQ325PpTJ0dfn5SGUHh76+QUIh38Ghv3+IcNgiHo8wNJQhaN3NHmZ1Qao13OqrcPSKqlkIQSRioWnqjA+3toJ0OkvX4o2QkTAik6monMYiEAhNQ/T0IB0HuXatv2IqF1zLJHvamdiHH9HeNzCG2eTg0Mhw61QdHDqVRhwcJkJ59VXMm29EXbYMaRg4O++Cvfc+EA5Xvaau6+K6buDgMMeZtbLvRqMhfBHDurpbLDooioKmqU2JhugUIpEQ1je/gbzkEn8ifsw8iBAC4bqQyZA//7vkt9sB86bfo77wAigKzrvfg33IoTOyd1SN2RBRUT5Hz/NKN0O1V3ShkEk4HGJoKNkW1WKrmWxERYVCgcj/fBPz9zf4w7TeumLhzZtP8Sc/wdxv36rXNIiomD6dLvuedQVpqsOttl0gHPZXSX50sofjuGiaOmvac/UQArqHB2G33WH1KmQkAprmFyLwg96yWZyttyH5uxuQ0c7+YELnRlRMdbi1qyuOlB7Dw531fqbKZCIqAJCSyJe/hHXj75Ga7u93loqR8FzfFTwcxr72OtLbv6vK04OIiunS6QVp1ogapquei8X8Se58vkAq5bdNTFNHUXwVTyep56aClJCZvxDllpuRS5eiZHMoySTK8DAMD0M+T/Hd7yZ52RWzohhB5wkcyuq5eNxPwx0cTE6qpZjJZNF1/W0rcFD/9U/MW27B0w1/NKF0s6QoAkXTIBaDdBrlnHOqPt+/kXQrPnZllWk8HgkEDnOEWbGHVKs9F49HxiW3JhKRyn5SreTWaNQXMaRSKSwrRChkjWjTzV5su4D1jnegPvUU3H038o47cfr7cebNx/74J3B23rltAW/NoJMEDiPbc1O1OBoZUfF2FDhYv7veT5EN+cO1QrCuXSelfz1MC+3pv6M+9xzu1luPO0Y5osKyzEpERSBwmDt0dEFqx3Cr60oSiRiWZZLPTz/SYSbRdR1FURCaRnHf/Uh+4MMzfUrTZqYFDs32nns7CxzU556rjBuUC5EsF6IyhoFIJVH/81LVguQ/J4iomKt05O1yO4dbHcet7C/N1g+qoijEYhESCb+VZNsFdF1b57wwixnp4KC0cXU33fZcLcoRFZZloqod+es3KcoODpZloGkTrD40zW/RlYuRJ8evEss/qGdvNcbBIZlMV/aT0mm/RQdUWnuu61YcHIIgv86m434jZsJ7rnynOhvTS6tFQ2Qy2WlFVHQa7XZwaLX3XKMRFbOFRhwcwmEL/UMfLA1he3ierDo2Jwo20jRxtt9hglcNIirmIh1TkFRVEI9bxOPrVjvllUssFi717rMUiw7xeJhQaF3BKs8UKYpCOp2lUCgQjYaxLINcLs/Q0HBpj6j6TJF/l+fftU54l9ch6LpeaWXlcnkGB4cr+xojHRx0vUZXNptFeWs5Ys0aZsNmRjsEDobhX9NQqHxNky3bu3q7CBxGXtP8Jw9D6jrUau15HqJYpPCRj044fhAIHOYmMy777qRoCN8rC4aGOkPiXo2xya31oiGqRVQob7yBed21mHfegchkQBE4W26FfcihFPb7eN1WyUzTqoiKmYqGGBtRMdsZGVEhhKh6TUM/+wmh718AnkSGQ6Bq/g1RoYBSsPEWLGT4hhvxli5t8FXrR1T09fmScCEE/f1D9PZ2IaV820ZUdLrse0YLUqPDraapEwqtK1i11HPTHW4tGzhmMrmOFDiEQhbhsC/UyGSyE969q6pCV1ecbDZHLmej/vOfRM84DWXVaqRlIUMhhOsi0ilQFAr7fZzMd86pnZU0wyiKQnd3vKnO2ZMZbm02iiLo7k6Qz9tzQuAghKjMjmmaWv2aSol5zVWEL/p/KH19SEUBzwNNw9nxvaTP/x7epps2/JpSSkxTJx73C1FZuDQwMFyZQcpmbXp7/dmlYtEpBfyl35YCh6AgVaGTk1vrBZHNFLqulX7RJq/0ikRCWJbJ4BvLiR18EMqbb+Ktt954J4d0GpFKkfvymeQ/c2yz30LTaJaDQ6ckt84lB4eyeMgXHdik03WKbD6Pcf+fUN5YBoZJcaeda6rqJiJwcGicoCBVIRLRS/s7nZfcWr7LK7cZZpLJtOdqIQR0dydwr/kNyn9/FW/+gporIGXNGrz112P4ltuhhh9eJzAdB4dOTG6d7Q4OY6+poihIKRt3cJgmgYND43R6QZqR3kwmUySbLSKl/4Wp6xr5vL8CMozGhlvj8UhluLWZ3nNlgUM0GiGfHx9E1i5GtuemOogJ6wQOsT/d5wte67TjvEQCZcUKtH88jfO+90/txNtAJpMjHo9WvgAbpRnDra0gk8mSSMQwTQPbLsz06UyKatdU01S6uuKj3o9IpzDuuQf94b8gMhncDTaksN9+OO/ZsWIfNFXGChz6+4ewLLMicOjt7aoIHBIJf4g2lcoSj0fIZm08T3lbFaVOZsY2C8rrMilhcHDdSkTXGVGctErhaWc0RD5fwDT9SfB2Cxym056rhW0XiPT3IybaG9J1cFw/hqKDmayDQ6e052oxGx0c6l3TsQ4O6iOPEP3qmSirV4P0QAh06Ts3FHfZhfQPLkR2dU3rfAIHh7lBx8i+y+RyRdJpG8cB23bJ5QqlD4yv2vG89iS3ZjJZVFWtpH62mnXDrTFc12NoqDmDmGWKPb3guvWHZQsF0DVkd3fTXrdVpNPZUhu3dm5Tq4ZbW0Emk0UIQTjc2bNwjV7Tymzff14i9sXPo6xehdfdhbdgAd78+Xjz5+FZJvpDDxI9/Yu++e80KTs4lFdsZQeHVMqfQSo7OGiaWnFwMAwd09Q6Zr/47U7HFaSRuK4kkyngeX5xKofvtSO5tZ0ODtWGW5u9wW3vvgcSgeI4Na+cMjSIu3RjnO22b+prt4KJHBxaPdzabGaDg8NkrmnZwcH8xc8QQ0N48+aNbhf78x548Tj6Y4+iP/jnaZ9f4OAw++nMT34VPE+SzxfQNK1tq5ZWOzjoulZzuLUmUqI+9xzGbbdi3HUnyvLlDb1W4cMfwdlsM1i9GkWO/+UTw0MgBPZRR3f0LNJIqjk4tHO4tdl0qoPDVK9p4dVX4b77EJFo7X0i0wTPw7zpxiadbeDgMJvpzIGTGmQyBUzTN3K07db32lslcBirnmt0RaQ98TjhH/4A7R9P++01IcCyKHz0Y2S/8t94S5bUfnIoRPoHFxI/43S0V19BCoG0QuC5iFwODJP8ccdjH3RwU95juygLHEzTwDSNusmts4FOEjg0koZb9/lvvIm0bZSuLoQQNb/wpaahvvxyU845EDjMbmbNCgnKijG79IXenrvIfL5Aseg07a51qu05/cE/Ezv+WLQnHkfqOrKnB9nlT50bd91J/MhPobz2Wt1jeJtswvBlV+CcfTZi8y1AEWCaFPbZj9RPf07ui6dPW/HUbgqFIq7rEo2GZ017rh4jBQ4z+U/RlJZnybbK87xSW7XGG5ISmmgJVRY4ABWBg2X5IyNlgUN5dCQej5LL5SumzEHrbmaZceugqdDVFULXNYaGkm2RZTfDwWFa6rlslq6PfRhl9Rpkd9f4ouF5iKEhirv+F6mrfzPh4SoODkPD5IrurMpIGslIpRfQkQq6qTCTDg5NVSSm03Tt8THE0DDKvF6klOOLmpQofWvJf+YzZL9x9vROftRhAweHanT6HNKs/CZKp325d7t67dMRODRDPWf84W6/GMVj1VcwioIMhdCffAL1hecnPJ7reuTzNuGuBMosMZMdSdlMd6TSayYiKlrFTAgcWqJIjEaxDzoY4RSRto0QYtzvj0gmkSEL++BDpvdaYwgEDrOTWfnb6zgjBQ7tcRSYisChWeo5/fEnAFnfY86yoFhEe+Lxho5ZdkeebREV61pJ6qhWUrsjKlpNOwUOrVQk5k/8rK/aHByE4WEUT64zU127FuF55D73edyt3tGU1xtNIHCYbczKggSU5OAe4XB7eu2TiaiYknquDqJgTxwR4edBI4pOQ8dsKKKig2hE6dWOiIp20uqIinYoEmUiQepXl2F/8lN4moboX4uydi1KKo27eAmZ75xD/rOnNPU1ywQRFbOPzv8mqkFZ4BCLhYhEwm3xnZvIwWGq6rmJcDdaDEKh4rVUjWIRpMTbcMOGj2vbBSzLIBIJj4qo6CR8pVcIwzAmVHpN1sGh02mVg8N01XOTRXZ1kTn3PLKnnU7sX/9AKxZIRRMUd9qp5c7ygYPD7GJWihpG0ikCh8lGQ0wG5dVX6dp3LwBkJFL1MWJwEG/RIobuf9Cf7WiQsREVncRUoiFaEVExkzRb4DCTcRuwzrzYtn2z4HYQCBzWEYgaWsxMCxya3Z6rhrfJJtgHH+rPHmWzo9t3UiKSSVBVcl84bVLFCEYIHMKh+rZCbWQ6raSJHBx8XCBX+v/OplkCh04ZGC47OFiWMel0ZmX5ctR//Qvl9dcnlXIcCBxmD7N+hQQQjRqEQibpdIZ8vvXDhOW7PN/2Xp1yNMSkKBSInP0NzFtuhqLjj3SUjWVDFtnTzyB/wolTmiMqR1QUi07F92smGNuem040RLWICiHWoqovoGn/BmzAwHW3xnG2RsoFzXkTLWKqERWdGLcB0NUVQ0oaiqjQ772X0C8vQXvqb36Yn6LgbLMt+eNPoPCJ/Rv6zAcRFT6dvkKaEwVJCOjp8VtZ7YiDLrfnhBBkMtn2tbqkRH3mGcwbf4/2wvNIVcXZ8b3YhxyKt9FG0zq0aRrEYhGGh1MUGxRGNJNmt5L8iJJoJRJBUV7BMO5GUdYgZRdSWghhI8QQntdNsbg3rrtlk95N89F1jUQiRiqVadjBYabbc/UoR1RM9H6sS35B+P++C64LuuHbWrkuFGxQVPKfPZns177eYFHyiETCWJZJf/8QPT1dFItFMplcqUXnf8clEjH6+4fQND9toL9/eM44OAQFqU1YlkYsFird0bSmNz12uFXXdYSg7REVrSKRiCKE0laBQyujIeLxKKqqMDT0GqZ5LUIk8byljHUMUJRlSGlh24cj5cKmvX6zicUi6Lo24U1Xp8dtlJkonVl7/DHiR3zKXxWFwuOLTi4H0iN1yS8p7rFng68q6enpwrYL2HaRri5/XykUMjFNg74+f8UkhKC/f4jeXt8NZWgoMyfSZTu9IM36PaQy+bxDseg0JMueLLWGW9sdUdFq0uksqqoQCrX+/VQbbm32F2c5oiISeRVFWV21GAF43hIUZQBNe670kwyq+gKq+k9U9TmEGGrqeU2ViSIqZlPcBqyb7av1fqyrrgLHqV6MAEIhhOcRuuLyhl8ziKjobGat7Lsa6XSerq5IU4P16iW3jhQ4+Gavs/sDO1LgYNsFPK8176ddya2+wCFHKPQCuVw39SJLPK8HVf03Uqro+sMoymsIUQA0PG8DisWdKRY/DMxcXlFZ4BAO+52AkXuWnZqGW4+ywCESCWHbY8yLHQfjT/f6Lbo6rTKp6WhPPI4YHGwox2uswGF4OEVvb1dF4BCL+SarZYHD2rWDFYGDbScJZOCtZc6skKC5Dg6NqudaHVHRblrp4DATSq9sNoWUOQxjolaFgao+h2VdgqY9jRA2oAMOivIClnUlpnk9vhhi5hjr4NAp6rmp4hdWd/znLZ/3V0cTWUEpiu/lmJmMGCdwcOhU5lRBguk7OEzWe24yDg6zgVY4OLSjPVcbHdtW0bRi3X8fIVagqs8CBVx3IzxvPTyvF89bhOctRkoVw7gbTXuyTeddm7KDQ1dXbNa05+qRTmfRdW20I0U4jIxGYaLZQtcBw8CbRAT6VBwcyvJwTSMoSi1kzhWk6URUTNV7rtkRFTONbRcoFotNWSXV8p5rHwLbfgeO049p1rYUKu8fed5iABRlEEXpQ1H6EaKI522AEHl0/X5men5J17XKyMFsj9sAv/Wdz9ulyI3SXaSi+LN30qs9cyQlwnWx99kXotFJvWatiApVVbDtArFYFE3T8DyPnp4E8XgUIUQQUdFi5lxBgskLHJox3BoIHEbTSa0k190S2+5BiFcxjPGrPkVZhhBJpOwqiRv+g6K8hqIsR1GWoar/QVXfwPNiqOp/EGJgBt7F6GtadgmZDT6EjVBN4JA/6mhkLA7p1PiiJCVk0kjLIn/s8VN6TSn9FmgoZBGNhpBS0tUVxzSNUvalSaHgj0Bks3mGhlJomhoIHFrI3Pg0V6ERgUMzvedmWuAg1q7FuOsOjD//GZFO4663PsV99qHwoQ/7TuCTZKoCh8l4z7ULKXux7b3Q9fswjJdw3RCeV55DGsTzepGyFyGSCLEcMJEyQfl+TYgCQvQDGlJGECLf8lm3kdTyniu3pscKHDoOz0P7x9OoL74IgLvppjg7vnfU/lA1gYO38cakL7mU6MknoSSTgECqKniuX03CYdI/ugj3ne+c9Cmpqt9BMQy9EiCYyeSIREJkMjk8zyvtH2XxPBPL8gfvA4FDa5kzc0jVqOfg0ArvubKDQ3kivl3oDz1I5FtnI/r6/F9yVfU3hIXA2XobMj+8EG+Dxk1Xy0zWwaGTBzHBd2ro6noTKZ8mnx8GTFx3GxznHYTDZ6Prj5QKjoKUfvGRMoR/3+ahKG/geRuQTl+GlBMruprBRNd0qg4O7UL7+1OEfvgDtBee9w2AATQNd/PNyX7pTJyddhr1+GoODsqKtzCvuw7zxt+jDA7gxRMU9t+f/KeOwNt440mf08hrmk5ncV33bePg0OlzSHO6IFVzcJhWcmsDWJZBNBppm9mr+u9/Ezv5REQqhbdggV+MyhQKKH19uFtvQ/KyKybdZ4fGHBxmyyCmEEOY5utEo6+Sy/XjOCFcd2uk1AmHz0PTHkPK+fgFSAIOUlpI2YuUGoryOo6zLZnMJcDkV52TodFrOhUHh3ah/e1Jol86HTE4gNfTA6FSOy6fR+kfQMZjZL7/Q4q7/te65zTo4DAVDEMnErJQHrif4l8eplgo4G6zLfbuuxNJxN8WDg6dXpDm5B5SmZECh6eeepKjjjqcCy743pSTWxuh3QIH6+orEUPDeIsWjS5G4KuP5s9Hff55jHv/OKXj1xM4zKx6zkVR3kJRXkFR3gTq2x0pyhsYxs0I8UeKxSEMI4oQKQzjVizrx0jp4HnzARspQUqjtFqyEWIVirIaKbvxvI0QonV+f5Mdbh0ZUdFR34uuS/j/vosYGsTbYAMIhyuZXYRCeBusj0ilCX/3fN80uERVgcM0UdXSNf3bE4gtNkfsuSf6d88nfOEPiX/6aHq3fyfOb68FRgschBCViIp8vlAaoo2Sy+VxHDcQOLSAOV2QAF555XVOOukkvvCFL7B8+XI23XSzpuUU1aJdAgexZg36Qw8ioxFEJoOyYgXK8uUoq1atcwU3DBBg3n7blF+nmsBh5tRzElV9DtP8LaZ5FZZ1DaZ5FaZ5JZr2d6op4IQYQNf/hBBJXHcL8vn5KMp8dH0pUoZLSroCnjcPAEVZixBrSg4NNkIMI6VKsbhzS62FpprcOpGDw0ygPfYY6ssv4/X2Vh9sFQJv/jyUN99E/8tDo/5qIgeHyRAOW3R1xVEf/DNyjz0Qb7zhv7zrIhz/Jkb09RE/8XjsX/86cHCYYeasqMG2ba655gp+85srKRQK7LLLLpx11ll0d89r+Wu3S+CgrFmDyGQR6RTCHp0qq6xdi4xEcDfaCGmaKG++OeXXGSlw8DxJOGzNWHtO0x5H1+8DFDxvIb5zgo2irEFVb0eIAYrFjzLyXktVX0ZR1uK6mwMCKf0vHMMAKVfheQk07e8oShbPMxDCQYg0QoDnGUgZRcp5QBdS9iBlc9se02151nNwmCm05571TVDrCWoMA6SH9uyzFD+2W+XHdR0cGsS/pn7uUTadxTruOF8mXqXAC/wGrXXa6RQOPoRYLBY4OMwQc3aFdO21V3P55b+kq6ubc875Hj/96c/ZfPPNp+3g0CjtcHAQmRTK4AAil0OqKtIw/P/pOlIIRCqFumwZolicktJuJGVH81gsMmODmIqyHF3/C1LG8byNgTD+14mF5y3G8xaiaY+hqi+NeJaLqr6AlHFGWgf5ysECmpZF0/5DuVXnt4lUQEdKpVSc8ijKq2jao7jufHwHh2a8n+Z5z411cJhxPI96Vk2jcMcXnJoODhNQac/FoziOw+BgEueuu1CXL69ajMoIgFyW4hVXBA4OM8icXSHtvvtexOMJ9t57P0KhENlsEcsyKjLmVn9+yg4O0WiEfH5qd3kToT/xhP+LL8RoixUhQFX9opTJgJS+/HuKlFVJUspKX30mpNyq+jxCZPC86opBKRMoSh+q+kwpSkIABaCAlOMLsm27hMMrcJzhkmpuCCEG8QtSqPT8HEJkEcIBXEzzNyhKH563Ja67MVL2Tum9tMJ7LpPJkkjEME1jxgUO3tKlgPSVdXqNAl5qmblLl1b963Q6W5kLauT9jLymw8NpiiVVn/XkE0hNq7ToaqKqqI8/XlkF9fcPYVlmxcGht7er4uCQSPgx6KlUlnjcXz3NNoFDJzJnV0gbbLAhBx10KKGSsmc6Dg5TpaUCB9vGuPVW317F7y2Nf0zZ58txKHziE5N+ibHDrQMDw01zcJg8ElV9uTQfVBvP60VVlwNl4YGOf981/gvNdTO4bhohFEAgRAEpDcAE8kC69LwiUESIIpr2b1T1WTTtYQzjdlT1P5N6F60cGO4kgUPhgx/CW299lP7+mo9RBgaQvfMo7rZb1b9vVODgX9MEoZBFNutf03IxAsD1Gg+u9LyqDg6BwKE9zNmCVI1WRlTUolUCB6WvD2VoCHf+fGQ87m/SFouUJGIIz/P/W1HwojHcTTdr/Nh11HPtjKgYjQQ8pJzo300FXIQofzlouO6WKMpQlccO43n+TYqirMYvPpFSUVJK/5OV44CJECk07REUZRWq+gKm+WsM43IM4zoM42o07Y+lIjW69dauaIiOETiEQuQ+93nQdJTVq0e35VwXpa8PEOQ+e7LvxlCDegKHau25XG78NXW2fof/uzARUuK+Y+sgomIGmbMtu1q0IqKiHi0TOCgCBAgE7kYboaxdixgYWPeLJwQyHEZaFjKRaPgOcaJWUrsiKsajIGUvivJKaVaoOkKkkDKOlOtWca67Gar6DIqyfES7r4CqvowQKTzPRVEcPM8uOTKMvNOV+KssiRApIFOyFhoCLIQYLE37dyPlvNL+1gIcZwcc50N43oZtjYboJIFDYf8DfPn3xf/PV36WP/tCILu6yZ18CvZhn6p7jFoCh1rtuarnsc9+eIkEYni4/q6WEOQPPyKIqJhB3nYFqRxREQqZWJYxzsGhFWQyuYqSqlkODt7CRbgbbIj66qvISARv/gLonYfI5fz2na4hLQtlxUqcHd49oY3/ZJRe2azvBh6JhBtycGgWjrMtpvkC/kqmmjjFRYgkxeIHGPnRlnI+jvNhNO0BVPUlPC+BoryGqr4FgOdpQIx1bT0XvxCVBQ7louv/TEoFRckiZQEhikipARF8IUQUIYbR9afRdRfDOARF6WqrIjGXszFNk2g0POMODoWDDqb4sd0w/nCPbx0kJe7mm1PYcy9kT09Dx8jnbSzL/7zlcvl16rlsvuqKaBymSeZ/zyV22hcq/6rVyH75TOT88s2OH1HR3Z0YJXBYu3aQUMgikYgwMJDEskxisUiptWcQjZqz0sGhU3jbFSTwIypMU5/dAgdVxT74EMIXfA/sPJgWKAoyEqk8RGQy/uMOOqjmYabiPVeOqPD76XZNB4dm47qb4bpboqrP47pL8FV2ZWxU9TVcdymu+44qz90cz0ugqi+haY+jqm/ieeshJWjas0gZRdNiuG4Of4Uk8Vt25eIUwh++FaXXzQBhpAyV9p4cIFv68zwMI4uqrqBY/CfDw9G2i0A6SeAgEwnsTx42rWNks3ni8Si6HsW2CxW/uUaxjzgSnCLRr38NWSyO7hgIQe6ML5M786sjfjQ6oiIQOLSHOW0dVA/L0ojFQiVPqvb4ziUSMYSgea3CbJbYaV9Ae+QRZCSMjCf8lZDj+O0J26bwif3JnHPueBcHpu89l0hEEUJhaCjZnPfTAEIk0fV7Sq7bRaTUEcJBSgXPW0qhsFfdlh6Arv8RVX0Gz1sfXX8AXX+wlA4LUC5I5WIEZWm5L24oix6GSn82gCJSxpCyGyEMVHVzPG8Ix1mPQmErCoUjSrLz9hKLRdB1rWKbNVsZqfIEUXo/U3tDYmgI8/rr0P/2JHgezjbbkj/yKOTCWgPPkp6eLmy7gG0X6eqKMTAwTChkYpoGfX2+550Qgv7+IXp7u5BSMjSUQYjOa911unXQ27YgAXR1hdB1rW2+c5qmkkjEyGRylfiA6SLSKUI//AHGPfcgUqnSnZ9E9vRgH3wIuZM/5w8gjqBZ3nOqqtDVFSebzVXmlNqDi6K8iaq+iq+EC+F5S3HdpTQyI2QYN6CqL6Gqz6Oqz5bSYfOleaNC6c67LGqAdW07HSkTCJHEFy2EAAMpVYTwV1SK4uC66+N5OqDguhth26fgODs2+yJMiKIIursT5PN2RRwwmxg13JrNk8/bdHfHse0imUx7biKllJimTjzuFyLfB1MwMDBcMVnNZm16e31z1mLRKfnfpbFtr+NWSUFBaoDly9/k2muv5tlnn+G1115h8eIlXH317yZ8npSSa665kptvvoGhoSE233wLvvCFM9h228bs6DVN0NUVwXXdtggcgEqMwOBgsqmKHLF6Nfojf0Wk08juboof+KAvZhjB2Pacb60/vVZSJBLCskwGB4fbKHCYHqb5M0zzHiCDEDn8FpwKZFGUNShKP54n8FdC5fadVnJoUEbkIemlx2ioah7XjQJFPK8bz1uAL8QwcZydKBQOxfPWb/dbJRQyCYdDDA0lO8LBoRFGRkOMbc9ZlkkkEmJ4ONWWm0gAKT0SCX8VVBY4pNNZpJTEYr7JajjsR1SsXTtINBrBsgzWrk123Cqp0wtSR8i+X3vtFR599K9suOGGLF3auJ38NddcyWWXXcJhhx3BBRf8iN7eeZxxxqm89dbyhp5fFjhomjbrHRzkwoUUDjwI++hjKOz38XHFqFXec+X455mZTZoKDoqyGiEGSnZAJusEDBE8b2nJkkjH82Kl+PIo5T0kX2mnlB4vUBQLP/ZcQ0qlFFfhoShJQMPzliCEi6r+g3XiiPbRcQ4OExAOW3QlYqivvUr6vvvJPvk3vBEDrVN1cJgevsAhcHBoPR1RkHbd9YPcdNOdnHvuBWyxxVYNPcf3qrucT33qKA477Eh23PF9fOc75xOPx7n22msafu1MplAJOmvH6roscGjXLFSrk1vLAgfTNGZFeqmirCyZpVqARMoIo4dmXaQ0UVUVIQSeF0EIvzita+NZQBRFieN5/tCsr7Qrlo4rABu/qG2A666Pqr6BEKvx96iqiUAkrSpYmUwWXdcxzfbcdE2FynDrA/fj7r0P4gMfIHzYoSQO3J/Ex/fFvP66yvB3Op1F17W2vZ+xAofyTVhZ4KDrekXgEApZqKpKKpUlFLJQFC8oSpOgI75BlAkkydV45pl/kclk+OhH101567rOhz70ER588IGGj1N2cIjFQkQi4bYIHPL5QkWW26pWYTuTW227UJHltlPgMBWEyCCEg+dtWNoLKheCbOnvhgAH1wUhsqjqKlw3gpQLAAdNW4Gq9uC6Oo6zojSP5CKEi580q5bEFvNwnC3xvI3wzV//g2n+BogCGo6zOa67KULYpb0s34XadTfCdd+B5y2lWfMsIx0cCoXWq0onw8j2XPGiixDnnodSLCDDET8/yXFRX3qRyNnfQH3uObLf+jaOQ8XBoVAotuULXwilciNZdnDo6opVpOexWIS+vkFCId/Bob9/iHDYIh6PMDSUIZhNaoyOWCFNhWXLXgdg8eKlo36+ZMnGrF69CttufKN+Ljk4wMxEQ8ycg0M9PIQYLu35lD8PKv4sUQLP2wTPm4eUJoryFkKswneDCJcC+bxSfHkOVR3GMLqA9XAc3yVcUVKsU+K5QAFFSQMerrsE1922NJP0GJr2MkJkkVJHygymeSPR6KlEIl/GMG5BiLWAja4/jWleh67fSzW7o6nSMQ4OI6hEQ6gK6QceRD3/fJAS2TvPL0aaDpaF7OlFmibWdb/FKMWoNDOiolECB4fW0xErpKmQSiUxDAPTHP0FGIvFkFKSSqUwzcYdrmeDg4MYGsK443bMO25H9PUhEwkKe+5FYf/98RatN6PJrTPn4FD1bFDVl1HV51GUcpEJ4bpb4XmL8LxFqOqreN7S0iDrYCmQL1pSRWVK+UgWihLBX+EM4rpqycs2i7/f5KfLKsrakt2Q3wr1vG7AKCkB30BR1uC6i/G8TRAiiaq+hKK8jKqurJi+KkqhtDraEiFsdP0xIESx+KGmXJFOcnAYq57L5fJEfnMN2Dayp4ZZbTgCuRzWb66m8In9/TXtNCMqJkvg4NB6Zu0Kqdl0usBBfeYZEgcfQOTc/0X7x9Moa1ajPv+cn3p50IEknnpihpJb19EZAgcXTXsEw7gLRXkTKWN4Xi/goWl/RdcfLsnDiwjxGoryHKr6Gr41kIJfVPL492oRhBAIoeG6EilzCJFEiFRJtGAg5QKk7MGfR0rgq/AMpAyX3MnXIqWJ560HZNG0fyDEEEJIXHe90h5W+fEvo6ovImWkZBL7z1JbsTnMtMChpveclBj33Qu6UdfiSobCqM8+i7J6FRAIHOYis7YgxWJxCoUCtj16/iWVSiGEIBabvLyxUwUOYvVqYl/4HMry5Xi9vXgLFiC7u32bkwULUIcG0U49lfTjT7YxuXU8nSBwUNUX0PUn8bwFJd+6XMmd4XkUZXUpiG8NnjcfTXuhVIzKn6EMQvQhRLG0MlJwXR1FiSKEDuRKbTobKX1nCEV5CSkL+DEVGTyvFyl1fAXeqwgxUDqXpajq60AWKc3Sa1r4hq3DpVZeN6r6JkIMlXz7BlGUZU29PjMlcBjZnhseTpNKZdZ9Tj0PCgXkRHvJqorwJGTXzVQFAoe5xawtSEuWLAXgjTdG/8IuW/Y6CxcumlS7rkynRlSYN9+IsmIF3rx5FccFIYSvBNNU5Lz5yIEB1Msvb8s518O2CzMYUeGgqs8ipVVSyv0bXX8SRVmOL9kulJwe7keIIQqF9+PHTmRKCbFZ/EKi43lZpPQdIHyjahtFyQK++k7KbjwvgS8bV/G8DXGcTYEwipJEUdYghI3nbYTrvhMolgphAiHc0g2PKLmXe/jqvhBQQIg1lH81/Tmp5tHuiIoJoyEAVBVv3rwJHblFoeAHUM5bl/rcaERFMykLHCCIqGg2s7YgbbvtdkQiER544L7KzxzH4aGHHmCnnXad8nE7UeBg3nQjUlVLxUigKAqqoiClxHU9PCTSsjD+cA8iPfOOGjMlcBCiv/Sl34uqPoOm/Ru/Bed/8ftO3OsjRBpNex5VXYvnxfG8HiCBqnbhp8/6seh+MfCQ0kZR8pRXNH6ybBF/oDaMH+5nAzE8byFSmkjpVlZKvjjBprwq8ueVwG8Tuvi/huXPml4qjL76z9+bai7tEDg0Gg1RpnDwIeC51XO9wL9bLNgU9twTGR9twxQIHOYOHSFqyOfzPProwwCsWrWSTCZTKTQ77PAeuru7Oe20U1i1aiXXX38LAKZpctRRx3L55ZfS1dXNpptuxs0338Dw8DCHH37UtM6nowQOhQLK2n4wTRShIBT/LtD1Ri//pWEg7DxiYBAZndlp7JkSOPhx4wVU9Xl0/RGE8JAyjf/FXnbkdhGiHyGK6PrjQAhFyeN54LoO/v5REV81lym16hw8T6AoPaVAP1EqKGmEWIuqqvgtu1eQMlQyXI3heeuhKG+i625p2FbgF7go/p6TX6R8773yr6KHvwobKhXQjZp+nVotcJhMNESZ/MGHYl77W5SVq5Dd3aO9Fz0PMTSIjEbJH/OZcc+tFVHRSgKBQ2voiII0ODjA2Wd/bdTPyv998cW/oLt7R1zXxXVHf9COOurTgOS6665haGiQzTbbggsv/DEbbFA94rpROiqiQtfB0FHyeVAE0pN4cvwXiHBd3+3bmnyrshXMRESFlCZCrERVX0DKIlIuYl3YQA5VfRUp3ZLvHPiOCgk8T8E3Sy0yPgspDTilFl0MIXJI6RckP9RPR8pIqf2VR4giQuTwvEU4zk5o2isoyioUpYAvQ0+VjtWNqr5eMmXtqpxPuWApykqKxZ2ZakT6RLQioqKaeq5R5KJFpH52CbHPn4yycqUvbtA0P9jP85DxBOnv/wB3222rPn9kRMXwcLu6BEFERbPpCC+7TkQI6Onxoxza5Zbsf1gjFbPXynDrmWcif/tb3PkLaoa5KGvWUHzv+0hddU3jcc0txjSNyt1jOyIqFGUFodC5KMoyhJAjvuhBiIHS/5zSXJGL62ol6bYo7TPl8YuCU/p/Qdnd2w/860XTsjhOAfDFDWUfvHKbTcpy4mw3+fxhQBhN+2dJnOAbsPr7SHkUZRB//6kHKcMoSj8gcN0tcJwdKBT2xl/VtQZd10gkYqRSmWlFVNTznpssYmAA8/bbMG65GWXNGn+0YZ99sA86GG/9Deo+V9NUurri034/k0FKj0gkjGWZ9PcP0dPTRbFYJJPJlUxW/e/NRCJGf/8QmqYRj/v+dzMRUdHpXnZBQarDTEZUFArFStsj99BfCB11pD802NU17jkinUbYNukLfkBh3/3acp6N0s6ICk17GMO4G1V9GUVZXZJaC3z/uhUoCihKDs/L4RcTs2SCWiwN0DpIKUvFpYC/txPC86Kln0URohu/GK3AL1Zq6bHFksR8E6SMoyircZwdKBZ3AzIoypto2r/w94iSpcHZpShKvpRcuwqwKBbfT7H4MVx3K/w9q9Yy3YiKke25dDrXUHuulbTKvLg+syeiotMLUke07DqVfN7BsnyBQ9OC9SagrIAKhdR1w63v3B6+cBqhi36EsnoNXizqt/IcByWdrkQvF/bep+XnN1nS6SxdXXFCIbPlERV+EVofKaPo+p9KM0AhFMVBUbIoionnJUp7Wm5JmKAiRBrfzVvFnwkK4bfviqU/C4SQeJ6LlEU0bQjP6yqtriRCDAPDSJkoDbqaSBlBUV4vHSeC522F46gUCh9DUWw07d+lFZGH626F4+yO674Tz9ucdu4vZDJZursThMOhSUVUTKc910rKrW///bQrosIXOMTjMXI5uyJwGBgYLnUJfIFDb2+iInDo7e3CNLWOjKiYSYKCNAHtEjiM9J5zXa8kIV33BZ4/4UTcxYuxrrgc7Zl/I7I5pKrgbLEl9lFHYx98yIQx5TPBTAgcXHcrhFiBrj+PqhZQVQfX1SkWyzZBSSCOXyxS+Ian/koKBJ63CCkFipLCcbYDdBTldRRlJZ4XxfO6URQLzzNZlyIbBUwUZRDPC5UUdk7pf/6f/cHbbhxnCY6zA4rSx7o2X2Nx3s1msgKHZrbnWkEgcJjdBAVpAtohcBjZ9kgm0xSLDt3d8XECh+Iee1LcfQ+UV19BGRhAxmK4W2zZkYVoJO0SOHjeBqjqi6hqP4aRR1VVpEzjpxfYJb84Az8WYj6etwBNewMpi6V2nYWUC0sihbW47gZ43uZIqeO680sDt9143loghaJIPE/geV0libiOvw+VQ4j8CDWdL0n3vJ6S2g78duH0xDfNolGBw1TUczNBIHCYvQQFqQEymQKmqVfu8pvVmq7nPZfN5ohGI+NbhULgbboZ3qbNOYd2UHZw8AcG7ZYJHFx3MaHQajStD0XZAMfpwXUHSvNJHkL0AzEcZxd80YKF4/itNd9Fwc80Ku8nCQGq+jxAaY/HwHF2BlQM45+o6jw8z0RKDSFWIUSmNKOUQ4gcjrM9/t1vDkUZplj8MO3YF5oKmUyWRCKGaRrjBAGd2p6rR7lVXO39tIKxDg79/UNYlllxcOjt7ao4OCQSvkt4KpUlHvdXTzMhcOhEOvvWukNotoODoijE45G63nONODjMJlrt4KAoCrEYJbNdC9tOUyxKPG8errt5KdJhEaDjugvxvC3wW3USz1uvZO+zECEMhLBLooMt8bz1kFLH83pLM07LcJz34Tgb4roZFMWPKvddw0MIkUWI1XheAtddjKK8gaK8heNsX2r/dSbVHBwmO9zaSQQODrOToCA1SLMcHCYTDTGtiArPQySTkMnQFs16A7TKwWHdNX2BfH4Budx2pb2ivtIM0GqkNHCcXXGcbVHVV4ECUnaVVjNFHOedSJkoec8tQsr5CDGEoqxCyjCu+15cd0lJUm7jOB/GcWIoympUdQ2QRMry4GsXrrsdfrDf+hSLe5VWR50bkAejHRzqes/NEgIHh9lH0LKbBNMROEwlGmJKERXJJMatt2DecjPKKn/A0N1yK+yDDqawx56+Om+GaLbAYfQ1zeF5r5YEAgtKLgkDlOXbUnYhZRghUgiximLxg/g2Pib+3o9A0/5akmaH8PeCDFx3EVKWVz9DaNpKNO05isUdKRT2QFHeQtOW47oZpLQoFrcmlzsRKZfgWxaVk2Y7H8+TpbBF/4ZhtrTnahEIHGYfQUGaBFMROEw3ubWmg0MVxKpVRM84He2ZZ0BVkZEISIn21N/Q/v539Af/TOac88Bsr8fcSJohcPCvqa/0WndNXSxLKQ3Egi9cWFDl2RLfc+4dpWIxksfxvM1Krb1xZ44QNn6e0TL8FVEvhcL6KMruKEqSQiFNobAHnte5rblajFTPeZ6s7IfMdgKBw+xidty6dRCTiahoRnJroxEVeB7Rb56F9u9/4y1ciLfeesh4HJlI4K2/AV4ijvGHewj94ueTev1mM92IinXXVBlzTQWuu5iJ8oP8lpyvpBuPgl+wxpJB1/+OorxeCvibDxgI0Y+mPYbr/gFdDyHlx0vO3rOL8e25dFsjHVrNTERUlFeZsVgE09RLzi8JCoUiuq4TDvsrpiCiYjRBQZokjQgcfMv9OKGQRS7nW+4XClOXyDYicND+/hTaP/6B19tbvS0XjiAtC/OWmxHDw1M+l2YwFYFDI9fUdbcs+dkN1ThKFiEcXHdrqn30PW+D0pDsaDTtBYRYg+etD4RxnG1xnF1wnPfiOB/AdRdQLHYRCu1ITW+nDqRWNES7IypaTTsFDqOvaa5SXIpFB01TK/unsZgvapJS0tOTwDT9lWlXV4y3s8AhKEhToJbAoRH13FSZSOCgP/ggFAoQqr2BKxNdiIEB9Ef+2pRzmg6NChz8axpt6Jr6mUTvLYkZVlKOFPddGdagqm/iONvhultUfb7rblraKxqs/EyI4VKkRTe+A3gRz9sQz5uH5y3BdTehWNyOYvF1FGUV4XBnyrpH0oh6rh0RFe2k1QKHatc0m82X0mU10ukshUIRz/Po6xuo7NeVP8uapiKlh6apb2uBQ7CHNEVGChyeeeZ5nnrqSY444vBKe246K6JqTCRwEMlhSkMwtQ+i+f/cM71CgsYEDmMHhie+pgLH2QUpI+j6P1DVNyibpErZTbH4ERznPdT62Eu5EMd5L7r+MFLm8Lz5pRZgDiF0hBjC8zaqsscUQcoV5PPLCIU2IJ8vdKwirdHh1klHVHge2pNPYNx+O/pTfwPPw91iC+yP70/xwx8GY2bbf60UOITDIUIhs3RN1xkJ1xI4WJZJOp0p7R9lEQIsy2Tt2kGi0cjbWuAQFKQp4jiSwcFhrr76Sn71q19RKBR417vexeLFS1v2mvUEDjKe8ItRvaJUiu8YG3A2U9QSOExFkbgOBdd9F667NYryFkLk8WeP1mdi52yB47wHKcOo6j9R1TdKpqxDuG4c190S192EWr82tp3DMDyi0TDJZHMiHZrFVIZbG46ocF1CP/g+5k2/R9gFZMgCoaA//Bf0v/6V4i67kDn/ezP+uWu2wKGxaxoIHCZDUJCmgJSSv/71IS666IesXLmC9ddfny9+8bSWFqPy69ZycCh+8INY1/4GcjkIV9+bEUNDyO5uijvv0tLzbJSxDg6u61VRz011pWHieZtM4XkKrrsNrrs5irISVX0JXddwnK2AWk7Jvp+dlBEymRzxeLTyHmaa6XrP1XNwKGNdfhnW9dciozG8BQsrP5f0Qi6H/pe/ED7nO2Qu+EFzolGk9NvThjHp4zXDwWEy1zRwcJgcQUGaJK7r8q1vncWf//wnNE3j2GOP54tfPBVFUdsSUZHPFyp3rSNnoZz37Ijzzu3RnnoST9fHCxuyWUQuR/5Th/uJnB2CP/fi5yYJISbRnms1Bp63pDTPtBJFGcLzqhckRelDyt6Su0ORQqFIJBKa8ffQDO+5kQKHQqGKbVY6jXnD9UjdQCYS4w8QCiG7u9Ef/gvqiy/gbvWOqb0ZQFm2DOuqKzFvuB6RTIGhU9hzL/KfORbnPTs2dIyRAodCoTjpvZpa7bl6lB0cLMusODh0dcUqq6pYLEJf3yChkO/g0N8/RDhsEY9HGBrK8HZq3QWihkkipeTFF1/g/e/fhauuup7jjz8FXTem7eDQKMrrr5O//wHUZ57BGimbVhQy55+P+453oKxZjbJqFSKVQiSTKCveQhkeorD77uRO+VzLz3EyGIaOovh3gcWiM21FYvMxcJwdEaJYSogdnSgrRB9C5CgWd8QfqPXvwhVFmTGBQy313FSpJ3DQH3kEpa8P2VP7JkdGo4hcDuP+P035HPS/PkzXXrsTuvQXiMFBQEI+j3nLzSQOOhDrV79s+FhTETisu6bmiGvauCdj4ODQGMEKaZJomsYNN9w66mftiKjQH3oQ69JL0P/+FDgOqCqRJUvgsMPJH30MaBreeuuTuuRXmLfegnHzTShr1oAAZ4d3YR94EIV99p1Rp4aRjB1uLRYdTNNAUURbIiomg+u+ozQ/8hiq+p9SIqxACBspuygWP4zrrhuG9TyPXC5PKGS1VeDQqmiIegIHZaDf/7bV6nyuSnubon9gSq+vvLWc2AnHQSpd2p9a18KS0i9MkXO+g7vxxhQ/ttuEx5uMwKFZ1zRwcGiMoCA1gVZHVJi/u57It/8HCgVkKARWCOm6KK++SuS756E9/XfSF/4/0DRkVxf5T3+G/NHH+Go6VUXGYh0Taw7V1XNCrNskbmVExdQQuO72eN5SVPVVhFgNgJTzcd1NkHL86iCbzWOaRtsEDq2OhqglcJDl/UrPmyAGRSCnKLk2f/sbRHp8MfIPK8CyIJ8ndOkvGipI0JjAYSrtufoEAoeJCApSk2hVRIX68n8In/MdcBxkd8+6X0hNQ4YslHwe4+67CC1aD6EoKK+/BqZJccf3Utjv4zOubBpJPfVcuyIqpoOUCRznXQ0/vh0Ch3ZGQ1QTOBTf935kLIYYHq69N5nPga5T3GlqYhrr9zf4f6j1hSwEUlXRH38cZcVbeOtv0NBxawkcWnVNA4HDxAR7SE2i2REVZcwbfuenwya6xv1CSk8iTRORyxH+ycVYl/8a48E/Y9xzD5HzziWx714Yd9/VtHOZKo0Ot7Y6oqLdFArrBA7NZiaiIao5OMhFiyjstjsilQK7SkS966L09eFssQXO+98/pdcVAwPIiUIoFcV3uF/b3/Bxxzo4tOOaBhEV9QkKUhNpVkTFSIx7/wiqWvPuUK5dC8UiuC5eV1fJx24R3vx5iKFhImd9Hf0vDzXlXKZCbe+56rQqomKmaIXAYSajIaoJHHKnfQlnx/eirFmDsmoVZLOQyyHW9qG89RbekiW+qa82tYaMjMX8lmDdB/nzd1WVfnUoCxzi8eiIa5pq6TUNBA61CQpSk0mn80gpmxesl82BWuOfqWAjMhm/WI0tWKqKnD8PkcsS+ulP2p6JNFU/v5EODooy+9sTIwUOyjSj5putnpsKZYGDZZmopc+lTCRIX3QRuS+ehrv++ohMGpFKISNR8p/+DKmfX4K36dQjju39D/AdAut9hh0HZ5tt8RYvntSxywa/mqaSz9uTVs9NhbECh2QyjaqqFYFDKOTfvJRbe67rVgQOc32VFOwhNZlmCxy89ddHWdtX9e9EuhS+V/qiUwxj9MdVCLxEAvW5Z1H//W/c7Vofi1A9GmJyv0TNiKjoJKYrcGiVem6qVBM4yGiM/HHHkz/qaJQ330R4ru84H601TNw49pFHYV19FSKX80U9Y2++bBsB5E48sWHxzthrqqoq2hRXcFMjEDhUY84XpGXLXudHP7qAZ575F+FwhL322ocTT/wc+gTy50MO+TirVq0c9/M//emvpZjs2jRT4GAfdDDav/4JrgPqmH8up3R37HnIaBTFMJCuhxwZoWBZiKEh1DffaHlBmrz3XHVmg8BhskxV4NBq9dxUqengYBjTWg1Vw91sc9I/uJDoGacj8nl/P0lV/T0j1wUhyJ14EoUDDmroeNXUc5qmTtvBYTIEAofqzOmClEwm+eIXT2ajjRZz3nnfp69vDT/5yY/I5/OcccZ/T/j8D3/4Y3zqU0eN+pnRgElkWeAQi4WIRMLTcnAofGJ/rMsvQ339NV/YMPYuzvP8GaSeHoSUKIrAHTnHU+6tt3D+aHrec9UpOzhEImGGhupnHM0GRgocGilI7VTPTYUJHRyaTOGAA0kuXoz1y0sx/nBPpRAV3/s+8scdT2Hf/SZcHdW7ptN1cJgKgYPDeOZ0Qbr11hvJZjOcf/73icf9zU7Xdbnwwv/jmGOOY968+XWf39PTw7bbTi1wLZ93sCxf4DDWd24yyHic1KW/JHbSiajLXgcEaCq4pbtDRcFbuBAiETxPoqj+nVP5F0qkUshoDGe77af0+vVoRnuuHmVZbihkkstVUXDNMtLpLN3dccJhq2bR7rT2XD0ymSzd3QnC4VBFHNBKnHe/h/TPL0EMDyP6+5HRKHJBtVTg0TR6Tcvmxf77ab0NGKwTOMTjMXI5uyJwGBgYxjSNisChtzdRETj09nZhmhq27c25VdKcFjU89tgj7Ljj+yrFCOCjH90dz/N44onHWv76zRI4eJtuRvKWW8mccx7Ou96FN38+7qabkjvpZNwNNvRVdlIikUgp122eOw4im6Ww227IRdViuafOZNVzU+HtJnCYSfXcVKgmcGgHMpHA22SThopROBxqWD1XdnCwLKMtNmAQCBzGMqdXSMuWvc6++35i1M9isRi9vfNYtuz1CZ//xz/ew+2334KmaWy//bs45ZQvsummmzX8+s0UOMhYHPvwI7APP2L0a2y7LZHvfBtl9Wpf9m2aqIqCkkpBOoO72eZkTz9jyq87lla05+rxdhA4dHp7rh4NR1S0male02ZHVDSGL3A444zT2XDDjfj6188in8+RTGbedgKHOV2QUqkk0Soqn1gsRjJZf1/iv/7rg2y99bYsXLiIFSve4sorL+Nznzueyy77DRtssGHD59AqB4cyhQMPQsZihH72U9T/vIQYHEIKUOJx7P33J3PGl5uyOmp1e64Wc1ngYFkGhmHMivZcPRqJqGgXzWh5NiOiYjKUBQ6O43DDDb/jwx/+CBdffBHFYoHLLruSTCbJK6+8xk477TTnBQ5zuiBNh9NP/0rlz9tv/y7e+96dOPLIg7n22ms488yvNXycZgocalHcbXeKH/0Y2t+fQlm+HAyD0Af+C3WjDfGaYPbaLPXcVJmLAgfXdYlEwh2nnpsK7RY41KJZ3nPtFjjoukYkEuYb3/gGBx10EBde+AN22WUXrr76am688QZefvk/3HPPPfziF79kk02WcMUVV/LJTx5OOLx0zgkc5vQeUiwWJ5MZ30ZIpVLEJ+nxNm/ePLbbbgdefPH5SZ9HKxwcxqEoODu+l8IBB1LYZ18y3T2oqoplTeB4kM+j//GPRL56JrHPHE30i6di3HQjIpmc8nBrK5grDg7l4dbyHlLZLmm2Uy+iotVMNxqiGlOJqJgsiiKIxSIkEjFUVWHJkk05+OBDeeWVV+jq6mb+/Pn88peXstdeeyGl5OKL/x/PPPMsv/nNNVxyyc9IJtN897vnc91118wZB4c5XZCWLFk6bq8onU7T37+WJUuWtvVcmu7gMAGO42LbBcJhq+ZyXnnjDeLHfYbo176Kce8f0Z59Fv0vfyFyznfoPvoI4i8+X9d7rp3MdoFDLZ+0Zjg4dAIzIXBopfdcqwUOoZBFd3cC0zQoFBwGB7NkMjbHHXcyXV3d/OpXv+LII48ln89z222384lP7M+zzz5DMjnMdtttx1133cmLLz7Pv//9b372s5/wwgvPNv0cZ4LZ/5tQh5122oW//e0JUql1basHHrgPRVF43/t2mtSx1q7t41//+gfveMfWUzqXssBB0zQsa+JZpmZQvsurZu4pkkmiX/ky6rPP4M2fh7fhRniL1oMli1E22gjx5ps4J59C+h//6ph9jWw2h5Ry1pmv1lLPZbN5PM9r201Kq8nlSjH0dg7ryiuInn4a0c+dTOjCH6K88nJTX2sy6rmp4mc/uU39vOm6RldXnEgkhOdJkskcw8O5SsZULBbjc5/7IrlclkwmzQ47vJs//ek+3v3u9xGJRPjhDy/klFM+jxCC7373fL7yla8gpeTHP76wfvrHLEHIBtd6fX3tUpw0j2QyydFHf5KNNlrMMcccR1/fGn784x+xxx57jRqMPe20U1i1aiXXX38LAPfeew+PPPIwO++8K/PmzWfFiuVcffUVJJNJfv3rq1m/QXv7sQgBPT0RAAYHh9vSa/fVOBGGhpKjZqHM668j/L3z8RYuAl1HKAJVUXy7Ic/DKzooy98kf+RR5L7a+J5Zq/FnMyJNyqdpLY0ovQxDJx6Pdkhs+/QJ33YL4fPOxRsaGmGIKpAhC/vQT5L92lnTColstyKx7OCQSmWmJXBQFEEkEsY0DaSU5HJFslm76neAlJL777+P7bd/F8nkEMcddxT77XcAS5Ys5aKLfsAnPnEgQghuvfUmvvSlr/Dii89z11138PWvn82+++5f9zzmz5++lVMrmdMFCeD111/jRz/6Ps8888+SddC+nHTSaOugU089iVWrVvL7398OwDPP/JtLLvkJr732CqlUilgsxrvf/V5OOOGzLF68dFrnY1kasZifvNkKgUM1EokYQjAqzTZ21OFozz+Pt8EGqKqKIgSelLiuS9l5SPSvRYZCJG+9vSmeZM0ikYgihNKxAofJKr3i8SiqqjA42Jnvp1GMP9xD5MwzEI6D6OmhcvsjJSKdRtg2+aOPIfvN/5n0sWdyYLisLh0cTE5pryYUsiqt80LBIZ0enbo7EW+8sYyurm7C4TAnn3wcnufxox/9hCOOOBjHcfj5z3/NKaccj6ZpXHvtTaPmLscSFKSAcXR1hdB1bdyqpVVomkoiESOTyZHP2+B5dH30QwjPQ5k3D6TE9Tzk2OjwbBaRzZC87ga8JUtafp6NoqoKXV1xstlcxzk4jFQkptO5hgQLiqLQ3R1vy1xXy3BdEvvujfrqK8h581E0FSnlqKIhSq3z4dvuxFu6tOFDj1TPpdPZtq+MhRB0d8ex7eKkHBzK6jlNU3Fdj0zGxrand+62ncfzJKFQiD/+8W6+971zueyya3jiice4+OIfcsghh41SCI+l0wtSIPueAdLpPF1dEaLR8KhVy5RxXUQm4/vVhcbvF40UONh2Ad00UEMhSKX89lyNuzXfL0wBo3U+eFNhpMDBtgt4YwvpDDCdVtJIB4d8vtAxe3aTQX/sUdRlr+PF4yD88EihCASiYvYro1GUtWsxb7uV3BdPm/CYnTIwXBY4RCIhbHtiG7Cx7blstlCzPTdZTHNdrtYee+zNbrvtiaIobLjhRvzlL38mn5+lNzQlgoI0AzTLwUFZuQLzt7/Buv56xPBQxWzSPupoCnvsOcpssuzTVd4Idj/0IbjuOryu7pqmlCI5jLPtO/19pg6jUxwcmtVKmm5ExUyjLFvm7xmVnPA96aGijjb7FQKkRHn9tbrH6kQ/v0YdHKbbnpssZYWmpmn8+MeXALB8+Ztce+3VPPvsM7z66ssYhglIwuEIBx54AKeffnpVk2gpJb/85S/57W9/y8DAANFoFIBsNsuGG27IkUceyeGHH96y9wJzXGXXyWQy/p1wOBxqNMJlFOozzxA/YH9CP/mxv9cjBHge+sN/Ifq5k4mc/c1RKZuhkFmJac5ksqT22gcZCiMGB6oeX6TTIBTsgw6mE+U7ZQcH0zQqIWvtptnec+WbBqPDVqQNoWn+P8qIZYDn+eaf48YO6uQOtUM9N1XS6Sy6rmGa47/MJ1LPtZPXXnuFRx/9KwsXLipde8l5532fk076HNdddx277747O+ywA7vuuisXXHABhYJ/Q/zLX/6Siy++mM985jNsvPHGpFIp0uk03/nOd/jABz7At7/9bQ477DB22mkntttuO/bee29uu+22pp57533TvE0oOzgoijJ5WWk6TeyzJ6CsXoWMxfyIZ8tChsPIRAKpaZi/vQbryivGDbcWiw6maeBsvwP5409AFIoob73lx067LuTzKKtWIYaHsPfZl8J+H2/NBWgC5aHSdsvAW5XcOjKiopMRAwMoy5YhhoYqP3Pe9S6kaSKy6/ZYpJR4I81+S5ERzrvePe6YrRhubTZlB4d//vNpBks3cmOHW7PZAoODmWnvFU2HXXf9IDfddGclqWDhwkW8//0788EPfgQhBKtWreKcc87hS1/6UqVAbb/99lx44YVsvfXW7LHHHrzwwgucffbZzJs3j6effppjjz0WwzB47bXXOOecc7jkkks4/PDDKRQKXHHFFWy55ZZ89rOfnfa5By27GWRKERWui3nH7SgrVviFqNrqJRSCQpHwlVegfOk0Cq5X8Z7TtCKJRAwrZJE//gS89dbD/O1vUF/+D2JgADQVd/0NsA85BPtTR9S9m+0E2hlR0Y5WUiMRFTOF/teHMX/7G/THHwPHBU2j8IEPYh9xBM5734fzvvehP/SQn+pa+lxKTyJUgeLLPPF6e/3sohKd2J6rx+DgMCeccAJbb70NV155FdFouG3tuUYp3wA89tgj9PbOq/z3rbfeiOu6CCEoFovsvvvufPe732XVqlV89rOf5ZJLLuHFF1/kk5/8JAAXXHABixcv5sEHHySTyWBZFltttRW77747ADvvvDN9fX3stddeWJbFk08+ybve9S5isRjvfe97OeOMM9hgg8mNyHT2t83bgEYEDsqbb2JdcxXmDb9DDA4ibNuPmwiF/OTMMQghEJEwLH+TzP0PkHv3jpW/GytwKOy7H4W990F99lmUoUFkOIyz7TsrewGdTrsEDu1Kbu1UgYN1xeWE/t+PEHYeGYkgLQtRLGLecxfGg38m+41vkjnrbOL/OQZl5Ur/MeGwH4mStRGpJNK0yJ79LWTJtqtZ3nPtRNd19t13P+6443buvvtODj74EDKZ/IyuiGqxbNnr9PT0VKTqjz32CLvssgv//ve/efXVV+nr66sUqJUr/XRsVVXp6+tjiy22IJPJ8J///IdCocAdd9yBoigceeSRo17j+9//Pttuuy1PP/00CxYs4Fvf+haDg4P8/Oc/59BDD+WOO+6gp6en4XMOWnYzzEQODtqjj9K1526EfvZTlL4+f1/IccBxUNauRWTWbegLIVCUUkCfqiIdB3dN37hjjnNwUBTcd76T4gc+iPOeHWdNMSrTSgeHVrXn6tFpDg7aI48QuuhHgMRbtB4yFodQCBmP+4KXYpHw+echMhmSV1xN4SMfBddD6etDWbsWshnkttvi/eqXFPbZd1a056pRbs99/etfIxqN8oMf/IDXX3+rI4sR+GkHmrZuP3LZstfZZJNNSCQSDA8P89BDD7HLLrswf/58VqxYgaqqlX2/I488ks0337yyv+R5HgcccABXX30122yzDbvuuitf/vKXuffee/nWt77Fdtttx5IlS9h5553ZZ599+OUvf8nAwAC33HLLpM45KEgdQC2Bg7LiLeLHfwaRTCIty18Rmea6NpqUiOFhyPt7UUrpyZ4nkY4DqoqX6Br3er4UNddas9c20gqBQyt90hqhkwQO5vXXIvJ5ZFf3+L8UAtnbi8hmMG/8Pd4mm5C+9FcM33Ir6Qu+T+a875K88mpSt9yGts8+dHXFZuyaToeR3nPxeBcnnngKw8PD/OIXP53pU2uYVCo5ylT61VdfrRSofN6/Cdpll12YN28eV1xxBa+//jqf+tSnKo///e9/Tzgc5te//jXHHHMMd955J9tuuy2bbLLJOOHKokWL6OnpYc2aNZM6x6AgdQC1BA7mb3/jR5CHQqOl2SOtV6REKTmae5VBRInI5fAWLcLZcV27biT5fIFi0emYu/Dp0kyBQyckt3aKwEGkkhiP/BUZDtccD0AIpGlh/PEP4DiozzyD/re/IQpFnC23wtnxveimiZQSVVU7Tj1Xj1rquf33P5hNN92c22+/hf/858WZPs2qxGJxHGf8an54eJhEIkEyua5AGYY/M7V48WI0TeO1117j4osvZptttqk8b4MNNuD5559np512IhwOE4vF+Mc//lF19um1116jv7+fTTfddFLnHBSkDqFaRIV1w+/8vxzzRSANY7SYwbbxiiNyW0ofkPynj63rG5bJZBuLqJglTDeiYibac/VIp7MoikI4bE384BYhMhlwXaQ2wUpN0xDpNPFPHkLiwP2J/PdXiPz3V0gcfCC9nzqU0L/+URGddMKqbyImUs9pmsZXvnIW3d09o8ybO4klS5aSTq+baYvF4vT399PX18cmm2xS+fnw8DCLSiGejuNQKBQQQrDFFlvw6quvopb2qbfbbjvWrFnDW2+9xcUXX8xxxx1HoVBg2bJlo15XSsm5557LggUL2HfffSd1zkFB6iDGRlSItWuRVVR0QlEQIxV2UvpFKJdDDA8jCgXsgw8hf/wJdV+vkYiK2cRUIypmuj1Xi5ECh5mKqPBicdANRGGC4e1MGmVtH9rfn0JqKrKrC9HTg2Lo8MQTyAMPpHD/A22PqJgKtaIhxjotbLvtO7nttj/w7ndX70LMNDvttAv9/WsrK9ElS5by+OOPoygKu+66K/H4ugK1005++sFLL71EsXRz++yzz/LHP/6RcNj/Plq5ciW9vb1ccsklbLnllmy55ZYADAwM4DgOjuOQTCa56KKLeOyxx7jgggsqz22UwMuuw4hGDUIhk3Q6Q2irLRH9/RU7oJFFQ0oJnufPfTiOLwHXNJzttid/1NEUPv6JhgZayz5dhUKxbWavrUQI6O5OUCw6DTk4TMV7rt10d8dxXW/GHBwi3zzL3x9auKh6287zUF98wd+znD/fv2EqPU56Eik9xPAw3pKlDN13P13zepDSVyt2Eq3wnpsJ8vk8jz76MLlcjgsuOB8h4IgjjuHJJx/nueee4dBDD+XNN9/k6aefZpNNNuH5559ngw02YGBgANu28TyPSCSCLJktG4ZBsVgkn89z2mmn8eijj/LEE0/UPYfzzjuPQw45ZNLn3rm3KW9TRgocCh//BAJ88cLYYgR+wVFUnPfsyOBfH2PwiadI3nAjhf0PaNhd4e0qcOi09lw9ZlrgkP/UEchoDLG2j3HLBM9DeWu5P4YQi6Ooqq/yLO1nSqS/xxSJoLzxBvqfHyCTyaLrelXHg5mgE4dbp8Pg4ABnn/01zj//OzhOkWKxyJVX/prnnnumMtw6ODiIEILnn3+e+fPnA7D11lvT29sLQCaTQdd1QqEQqVQKy/Lbxv39/eyzzz4ccsghqKrKJz7xCa666iq22morli5diqIonHTSSVMqRhDMIXUcZYFDNGrx5Pbb8+5iEbNYRIvHGbeUtW0QkDvxJOSiqfvN5fMFTNNsntnrDGPbhYrv2NiIitk2iAmjBQ4zkZnkbrstmf89h8i3/sd3BzEM0HQoFhHFgq/6tCyUSBgpfR+7ceg6kEX/25Nkd9sd2y6U3k+hLblgtWi391w7WG+99Xn44b9V/btkcg3nnHMOy5YtIxz2h3qXLFnCKaecwvXXX89TTz3F/PnzMQyD+++/nxtuuIFvfvObRCIRvvWtb/Gzn/2M66+/ngULFnDaaadx0kknVW6Wly1bxmGHHcaXv/zlKZ970LLrQN588w1++tMLefjhhzkgk+Gc/n508PeTVLU0i+QiBOSOP5Hst75dWwHVIOMiKmY51SIqZkN7rhadEFGhvvwfjJtuwrzzDkQui4xG8Q4+BH1tH1x9NTIWrzh7V0Mkk+Q/cxzZs/8HRRF0dyfI5+3KXFw7mSvtuckyNn7ilVde4ZxzzuHpp58mHA6Ty+XYZpttOOWUU1i9ejXf+973sCwLXde5//77Afj0pz/NihUruPfeeyvH+PjHP45lWfzqV78atd/Z09PD4sWLGz6/YIXUQdh2niuvvIxrr72aYrHIBz/4QU762tfIvvASoV9eiv6n+xCOA0LBede7yB1/gt+ea4IgYayDw1SCyDqJkQIHz5MVocNMxhhMh5Y6OEjZ0GfI3Wxzcl/9b3Jf+SqGIoh0JdAVQeFXv0Z3r0C6TlXnkNIbAM/DLeUgeZ7fKg6HQ6Wo8PasSloZDTEb2XTTTbniiisq/10uUJ///OeJRCIccsghfOlLXxrlDu55nh/kWeKf//wnruuSyWTGuYEfeOCBfO9732v4fIIVUgdx2WWXctlll7Jo0XqcdtqX2WuvPQiHfYFDPl9A9PejDPT7d6brrd/0159rAofyKkkIMWvacxPRLIGDsnIFxq23YN52G2JgABmPUdhzb+wDD8IbIQkeS7WWpxweousDu/ozcyMGL0ciUilkOMzQgw8ju9cN2HZ1xdsmcJiL7bnJ0ukBfUFB6iDeems5Tz75OHvttS+WZSEE9PREAN/UsR13cZZlEI1G2pZm2yrK7TlZcpueLV5pE2EYOvF4lGQyPeX9JO3JJ4ieeQairw9UzQ9gdBxEoYiXiJP99v9S2Gvvcc+rl9xq/fJSwt87HxQFGYmsW3FJWZllyp35FXKfO3XUMXVdI5GIkUplsO2p5YJNxNu1PVeNoCAFTAvL0ojF/LZGu1YtiUQM35x59v2bV0sZTSSiCKGMEzjMVuLxKKqqMDg4+fejLF9O/MhPIfr6kAsWjlZjSun/PBwm9evLcd/pxxc0lNwqJaGf/pjQT3/iz8SVv1aEANMkd9LJ5E7/UlX1ZywWQde1pt90jW3P5XLFt3V7DoKCFNAEurpC6LrWtlXLbBQ41FPPVRM4zGamI3AI/fhiQj//Kd7YYlRGSsTqVRQOOJD8/10waUWisnw55u9vQPv3vwBwttkW+5BD8epsbLdC4BC056oTFKSAaaNpgq6uCK7rtm3VEo36X0SDg8mOFzg0op6LREJYlsng4HDLIiraSfk9Dw4mG98Xk5LE7h9DWbMGOW9ezYeJ4SGEYSCefBIvFhvXnmsFoZBJOBxiaCg5rcIRtOfq0+kFKRiMnQX4ERXFmhEVrWBcREUHMpnh1lZGVMwEU4qoKBZRksNg1P4MCSFQQiFEsUhuxaq2RUPkcv4KZqpmv3NtuPXtSiD7niVkMjamqVWC6Fq9aCk7OESjkcbTbNvEVIZbyw4OsZj/fuaCwCGTyRGPRzEMvTGBg677MeOpKoo2QSXCxCsWkQhyanu/HjKZLIlEDNM0JiVwaHd7bvnyN7n22qt59tlneO21V1i8eAlXX/27CZ8npeSaa67k5ptvYGhoiM0334IvfOGMStR4QLBCmjXUiqhoJZ0YUTGdaIhmRlR0ApOOqBCCwu57Iuz8KAsgRVFQS5Y/rushUymKO+6ILNnItIti0ak4ODQyWlcrGqLVe0WvvfYKjz76VzbccEOWLt244eddc82VXHbZJRx22BFccMGP6O2dxxlnnMpbby1v4dnOLoKCNIuoFlHRajoloqJZ3nPTjajoNCYbUWEffAgyEkH09yMAVVMRivCHHR0XBgdBN7AP+9SEx2oFmUwWIQThcO0iO9PtuV13/SA33XQn5557AVtssVVDz7Ftm2uuuZxPfeooDjvsSHbc8X185zvnE4/Hufbaa1p8xrOHoCBNkWXLXuf00z/Hbrv9F5/4xJ787GcXNfQFKaXk6quv4KCD9uWjH92Vz372WJ555t8Nv+7YiIpWM9MRFc2OhphqREWnMtmICnebbcif9Q0UQ0ddvQo5PIybyUAyhVi1ElyH/IknUfzwR9pw9uMpOzjUiqhoNBqilUwlCuSZZ/5FJpPhox/drfIzXdf50Ic+wmOP/bWZpzerCQrSFEgmk3zxiyfjOA7nnfd9Tjrpc9x22838+McXTvjc6S7b2yZwcByUlStQVq0kM+wr+9otcGhVcuvbWeAQDocIn3gC3pVXUth9D6TrlQZXHZyddib9gx+R+/ypTbGjmiq5nE0ul+fPf74f2/Zl+jPVnmsWy5a9DsDixUtH/XzJko1ZvXoVtj377KxaQSBqmAK33noj2WyG88//PvF4AgDXdbnwwv/jmGOOY968+VWfN3bZDrD99u/i8MMP4tprr+HMM7/W0Ou3UuAghoawrr4K89rfoPT1AeCttz7FT38a63OnkNfUlgscGhrEnAZvR4HDuGu65dbo+30cbeFCRDaH+453YB90MFgzl047koceeoivfe1rHHnkkfz3f39t1nvPpVJJDMPANEe3imOxGFJKUqkUptkZ134mCVZI+KamRxxxMEcccfCoO5Vkcpj999+Tk08+bpSZ4GOPPcKOO76vUowAPvrR3fE8jyeeeKzm6zRr2d4qgYNYtYr4Jw8mdOEPUFauRKoqUlVR3nwD/dxz8PbZl6jdOmfmdia3vl0EDtWuqXP33XTt/jFiJ3+W0K9/jXXtb4j8zzfp2u2jGHfdOUPvYDTbbbcDS5cu5brrrmPZstdnrD0X0F6CggSYpsU3vvEd3nprOZde+rPKz3/4w/8jnU5z1lnfquTKg7/8Hrv0jsVi9PbOqyzNq9HMZXvTBQ5SEvvSF1FfegkZifgmmaYJpomMx5HhMOIfT6OefnpLBA6tas/VY64LHMLh0IhrmiKVyqDe/ydinz8FZdkyZDSC7O5Cdncjo1GUlSuIfvlLGHfcPqPvQ9c1FiyYx9lnn43ruvzP/3yboaHsrGnPVSMWi1MoFCotyDKpVAohBLFYZw+stougIJXYZpttOeKIY7jhhuv45z+f5oEH7uNPf/ojn/3sqSxevGTUY1OpJNHo+A9QLBYjmaztL9bIsn0yNFPgoP7rX2hPPom0rOoRApqGp+vwhz8QXrF8YoGD541PF63CTCa3zmWBg39NzRHX1AHHIfLtb0Euj+zpLoXmldB134W7UCR87jmQbb/b+1j13Lvf/T4+/OGP8vTTT3Hvvfe0/XyayZIlSwF4441lo36+bNnrLFy4KGjXlQgK0giOO+4kNt54E84999v88If/xw47vJtDD50Z+WsjNFPgYNz7B3DdulP8WBayWIQ776wqcBCpJObVV5H4xH50v2s7und8F9FTP4f+l4fGFad2tufqMZcEDqqqoGla5WZh7DXV//wAyvLlyHisumhBCGQ8htK3BuMP7S0AtdRzp556BpZl8dOf/r9xq4vZxLbbbkckEuGBB+6r/MxxHB566AF22mnXGTyzziIQNYxA13W+/vX/4YQTjsEwTM4661tVVwKxWJxMZvy0eyqVIl4jD6b8vPKyfeQqaTrL9mYJHJThYf9Lqt7Kp/T3Tl8flmWOcnBQVrxF7KQTUF94AYTiF7ZiEeOeezDuu5f8EUeR/ebZUGoplb3nhofTM5rc2jaBQyaD8af70B99BJFO4y1aj8Kee+K8+z3VTU4nychoiEwmRyQSQtNUCoV1bS7t2WcBOXplNBZNAyHQnn2WwoEHTfu8JmK891x+1DzRokWLOPXU0/nd767FcYrjugszQT6f59FHHwZg1aqVZDKZSqHZYYf30N3dzWmnncKqVSu5/vpbADBNk6OOOpbLL7+Urq5uNt10M26++QaGh4c5/PCjZuqtdBxBQRrD448/CkChYLN8+Zusv/4G4x6zZMnScXtF6XSa/v61laV5NUYu2zfffIvKz6ezbC8LHGKxEJFIeMoRFV5Pr3+weumhpb8vxBKIkoPD0FAKXJfoqZ9DfeEFZKLL/1IbSSaDdfVViCVLME4/reOSW227gGUZRCLhlkRUaE/9jcg3zkJ56y2/lakI8CTmjTdQ3GknMud9b1Ro3WSopUj0v+hDoxV3UgINtiZbrByYTHLrAQccwgEHHNLS85kMg4MDnH32aEVs+b8vvvgXdHfviOu6o4RQAEcd9WlAct111zA0NMhmm23BhRf+mA022LBdp97xBAVpBC+//B+uuOJX7LPPx3n55Zf43vfO4aqrricajY563E477cJVV11OKpWqrGoeeOA+FEXhfe/bqebxRy7bywWpGcv2fN7Bspxxq5bJUNh7b0I/+wnYdk3pr8jnwTAo7L0PTsl3zLJM3LvvRnvmWWQsNr4YAUQjiGKB0BWXYZ94AhnH67jk1nQ6S1dXnFDIbGpEhfriC0S//CVEfz/e/PnrVidSQi6H/uBDRL96Jqmf/rx+u3TscSfw80uns3R3xwmHrUpEhbvlloCEYrH2Ksl1QcrSY1vDbI+GWG+99Xn44b/VfcxPfnLpuJ8JITj66GM5+uhjW3Vqs55gD6mE4zicf/63mTdvPqeffiZnnfVtBgcHuPjiH4577P77H0w4HObrX/8yTzzxGHfeeRs//elF7L//QaNmkE477RQOO+yAyn+Xl+3XXXcNv/vdtTz11JN8+9tnNWXZPl2Bg7vVOyh88EMI2/a/sMZSLEKhgL3PfngbbjjKwcG8+y7wXDDGt1OEIvzJ9ngc7623yN97X8cVI2idwMG64gpEXx/eokWji4AQEA7jzetFe/xx9AcfbPiY1dRzY69pNQeHwkc/hrdwESKVqrkCEskksqeHwj77TP7NTsBsH24NaD1BQSpx5ZW/5j//eYmvf/1/CIcjbLbZ5nzmMydw1123V/rFZeLxOBdd9HNUVePrX/8yv/jFT/j4xw/gC184Y9Tjai3bjz32RK677hq+8pXTWLNmTVOW7c0QOGR+cCHOu9+NyOUQw8OQy0HpzyKXo7jrf5E559x1jy9FVOj9axnXChKgqApCCKSUeEIB10VZu3aqb7EhxPAw6n9eQnnjDb89NgmaLXAQa9ag//l+ZDRae5/IssDzMG+7ZcLjrVMkjlHP1WCcg4Npkj3rG2AYiMEhcEY813URQ0OgqmS//BVkFRXpVJlp77mA2UMQ0Ae8+OILnHTSpznwwEM4/fSvVH7uui4nn3wsfX19XH317zp+VkAI6OmJAEw9DjqbxbzpRqzfXIP66isAOFtuhX3kUdgHHOjPJo3AsgyiX/wC3k03IXvn+YVICIQQeFL64X6Syhde6mc/p7jHntN8p+NRX3wB6+qrMO79I+RtUATuJptgH3oY9iGHVm8lVsE0DWKxCMPDqYkFDlKi/utfGPfdizI4gIxGKXzwwzg77QSKgvrPfxD/zDF4XV31M4j6+5ELFzF8593V39sU4jbKGIZOPB4lmUxX9pOM224lfN65KGv71u0XSons7iZ75lexP3V4Q8duhNnenptrdHpAX1CQ5hiWpRGLhcjn7SkLHCrk8+WD1n1Y171/QP3855CJBKLUlvI8zy9EJURyGBmNMvSnP/tDt01Ee/RRomd+CaW/HxkOI01/1aGkU0igsPc+ZL77f/XVZSNIJKIIodQVOIiBASJn/Tf6Y48hbNt/q0KApuG+Y2vS//d9RDpN/Jgj8WKxutdQ6evDXbyY5C3jB1JHqucmndxaKKA9/XcinouyaCGDSzddV4CyWYw/+Ht/5T2jwr77Nm1lFCS3diadXpACUcMcoxkChwoN+prld9udyOLFiGXLkD09yLHtu9K+lH3woQ0VI2XVSsTqNRCycDfdrPqgbgkxOEj0a19FDA7iLVw0qjXmhcP+iu+uu3C3egf5E05s6P1MKHDIZIh+8VT0p57Ci8eR3T3rvujzedR//YvY508h+fNL8ObPR+nrw6t1LaWEQgFnp51H/Xhafn7FIqFLfu4rG9esQXgeaBrdW2xB5qSTfTl3OEzhwIMpHHhw48dtgMmo5wICxhLsIc1B2hVRUR5ujc7vxfvVr2DhQujvRySTfhHK5xAD/YhMhuIHP0T2tNPrHk/725NEP3siXR/7CIlDDybxif1I7L0n5lVXjN7vGIFx150oa1Yj582vvk8TDiNVBfN31/nn1AATCRzMe+5Ge/rveL29EImMlslbFnL+fNRXX8G6+Sa/zVks1nxtMTgIoTD2Jw4AmjAwXCwSPfVzhH/wfcTq1UjTwotEkZqG8vzzRL/8JUI//XHjx5sEnRANETC7CQrSHKQdERVjveeGNt4MeccdeMcdjwyHELaNKBZxN92M7DfPJvWzX0CodnyFcfddxD7zaYz77vXHncJhpGGgvvoKkf/9DtEzTq9alIw/3ecXhDqrKBmL8//bu/P4qMpzD+C/c2bPzCQBwiJbEhGVQNkEEiSCLMFYwlIUqkWWyuZVBEUQkarXBQUEohe0akR2LTWA2IuySUCBBgRUGkAvWBJICIg2ySyZmTNz5tw/ThIymX2fJM/38+mnZTLLO3V5ct7ze5+HLS+H9MwPPn8/TwEHef6n4naku/tCEgkEhoHyvXfFe1p2OyTFxWCuX6+LVcNiAXvtGhibDaYZM8GnpfmUnvNGuWUz5Hv3wC5XiNtvUinAshBkciA+HgzDQLV6FaSnT/n1vp5Qeo6ECm3ZNVHhGlHhaSuput0t0Kxehcr5z8BeVgbI5LB36OCxWAAAW1YK9eJFYMwmx+0vyMT7QWYz5F/shrJXb5inz3B4LaPTQZB4+dtYKgXD82D86M/mtoOD3Q7pv392X1wFQdxyrKgA7HYw//oXwDBgeB6Sa9chVFVBiIsDZDLwySmwTJ0G4aGH0EKjDv7AMM9DuXmjuHgXxVIQBLBxcYBeD8XWrWKXiCDQ9hwJNSpITVSoOjjU8iXpZTZzUCgU0LRrg0ql78P8FPn5YPQGCImJrrtEKJWAyQTF1i0wT53mkJizt20Lybmznj+A4yDIZLC3aOnzmgD3HRwElgUjuN5CZK9fF4sRIF6ZtGgBQSoFBAFMlQ6M2QRuRBYsD/0JQvoAqBMTAkrPufzs4mKxi7ebjh+CAAgsA7As5AcPwBjwJ1F6joQHbdk1YaEaUeHPaAijsRoSicSvERXyfXvFQuShp5ugjoOkrBSSs47FhxuVI/Yb5Di3r2V1VeC73g6+Rw+f11TLaUQFy8LWpy9gdjEXymoFU1lxs6jK5GIxAsTGpYkJEBQKyAoLIR/QH4mtWwW1PdcQY7F4bv0EQLALAMuCDbBRKW3PkXCiK6QmzmAwIzFRfbPvnB+8Jr0MBih25EO5eRMkly4BUim4ewbDOnsW4rKyarYKve/fMAYDIPHyuxErEbfAGmy7ccOGw9a1K6Q//QR7UmvH80aCAKayEoJUCvPUaWCLiyE7cRzgLLB37ATrPYO9RsHrBxwsFg52uwDL+AfEDuZGoxhqqP0eVVU1vepY8VxPvIuIbXw8JJWVUBV8herRY0Paz8/etq24PWmzQXDzvQQAjNUKdOkClmV9LoLR2J4rKSlGbu4KFBWdQVycGtnZv8fMmY9D5uWv2YMPjsa1a+VOj3/11dGYaM5K3KOC1MTVBhxUKjmUSjnMZvdXErV82Z5jy68i/uGHILnwfwAAoea3csWXXwBffgHMng31G8tgqPb+L1x7u3ZgS0s9P8lqFWcytWkwHl6phOHttdA++QQkFy4ALANBoQB4OxjOAkGlgvlPUyDf9Rk0zy4ALJzYVIJhYG/fAaYn58IyYaLHj66uNkGhELfu9HojrMOGgxuVA8Xnn0OwWCAkJAASCRiOE69Q7HYIKhXs2psRdwYMWJYBI5FAYADT/10M/Wj2Vq3AZY0UB+wJStdXSjwvnpmaOhUaTRx0Oueu9Q1FY3tOp9Nh7tzH0KlTZyxd+iZu3PgFa9fmwmw2Y/78RV5ff++9w/HQQ47tuOR+9Aok0UEFqRnwJ+Dg02gInod2ymRILl4QfxOvt9UmCAJgs4F57z0oU1Jg/vN0r2ehLH8YD+nJk2KKzlVHBUEAY6qGrf8A2G/t4vRje3IydFs+hvx//wHFzh1gr1wBlApYhgwFl5kJzdJXwV6+DEGlAlq2EP9FbbWKYYolz4PR6ZzCEg0+3ingYHzlNdjb3QJF/t/B/HoDAMCYxKs3QRsPe6uWYldvACzL1o0x4XkejN0Ou4+dI/xlmvUY5Ae/AmPQQ1A3aFnE82CqjbB37ITqMeMQL5dBLpc5dgSvx9toiHDatWs7qquNeP31NxEfn1CzfB6rVy/HlCmPOvSMdKVly5bo0eN3kVgqCSG6h9QM1AYcWJZ126fNn8mtsoKDkJ47C0Eicb7vwzDiNpggQFi1ChqZ93tXXE4O+JRkMLoqMRbdYPGMTgfI5TDNnOX2/ogQHw/LnyZB9+l2VBaeQOWhb1D98itQfLFbLEaJiUBcXL37OzIILVsCEBC3epVYxDywWDhYrdab///J5TA99TSqdu+BcdkKVC96DtUzZkJISIA9IR6oKUISiUTs52cXwPM8BJMJkMlgTXffFT4YfK9e0K99F4JWC9ZoAKPXgan5b7baCHvnZOg3bgKn0YLjrC4HLcZC77nCwmPo129AXTECgGHDsmC323HiRGHE1kEiiwpSM+Eu4BDIQUzF9u3ez/7I5cCNG5AcPOg14CBotDC8nwc+OQWMrgpMxX/A6PViU9eK/wAyKYxLXoB1+Ai/vjN7rVw8B6RQuF2roNUCZhMU+Z96fT+ngAMAISEB3OgxsEyZBtPiJeBTbwVbVQUJAAnLio1leTvsgr2mnZEBtp69wPfs6dd38Yd1+AhUHjyM6kXPwdazF+zJybANvBuGFStR+eVe8Ld1rfs+paWlOHLkcN29vlg53FpSUozOnVMcHtNqtWjVKslpFpkr+/btwdChA5GVdQ8WLJiLn3++GJ6FkpCiLbtmpH7A4YcfinDq1AlMnjy5Lj3n6+RWtvyq907aDAMIAmylpYiLU3oNOPC3dYVu5y7IP98FRf6nkFwtg6CKA5eVBcuEieDv7ObPVwUASM6cAWMyifd43H4Z8Xcy6bcnvL6fq4CDA6kU/FtvQfron4EbN8Cr1RCUSvEqr7oajMkE+y3tYXhtqefJvCEgtGkD0+NzYHp8jtvn2O12bNq0GVu2bMbKlatw//33R2V7zhW9XgeNi756Wq0WOp3nIYqZmYORltYDbdu2w9WrZdi48SM8/vh0fPTRVhqGF+OoIDUjNpuAiooqrF+/DuvXr4fVakX//uno1KmzX+/j8V/wdU8S/2VtlimgBqBWq7yehRISEmCZPAWWyVP8Wo87jM3mNQYtPpERAwk+aBhwqFWXSMwcBNOWrWBXrIDs2FGw//kPAEBQqWDJGQ3TvKdhT00N+DuF2pgxY7Bt29+Qm7saw4cPA8dJG/3h1vod+3v16oP+/TMwadID+OSTLViw4DkPryTRRgWpmRAEAYcOfYW1a3Nx/fp1dOzYEU899bTfxQgAuOz7Id+//2bE2RWbDYJKBW7IvWCqTdBo1ME3e/UTn5oqdiywWDx2VoBdAH/nnT69Z8OAg91ud04kdukKvJ8H9tIlSC5eBBiA79YN9hj77VylUqJnz99h+vTpeO+99/D22+9gxozHor0sAIBWGw+j0TkBqNfrEe9nt/ikpCT07NkbP/10PlTLI2FC95CaAZ7nsXjxM3jhhedQUVGBmTNnY/fu3cjKygro/SxjxsKe1Eo8z+LqV2meByMIsDw4AUKLFjCbOVittrA3e3Vaxp3dYOvdRzy75O5XfpMJkElheeBBn9+3NuCg1ao99p6zp6bCmpUF64ismCpGDQ+3Tpo0FW3btsPWrRtRWuo53BEpyckpTveKDAYDfvvtVyQnp0RlTST8qCA1A3a7HZcu/RuDBt2DzZv/jqlTZ0IikQbewUGthj5vHQS1Wtzq4jgxHcfzYMxmMDwPW9+7YHzhpbqXBNLBIWgMg+qn54vrrKhwbM4qXuqAMZthuX8UbL37+Py2crkMLCum56xWm9fJrbGCZVmX6TmGkWHu3GdgtVrx7rv/E+1lAgAyMu7GyZMnoNffPMxdUHAALMtiwAD/Eoq//noDZ858j27d0kK9TBJiNKCvmZJKGSQmqsHzvN8dHGpJfjwP1do1kO/+X/FqCYC9TRuYJ0+FafZjYsy6Ho1G3NqqqND51MEhVGSHCqBetBDsr7+J24w1B2Mhl8OSMwbGV1712Im8VsMDw4IgQKGQo6KiyjngEKjqakiKiwG7HXxKCqDRhORtvR1uFQQBy5a9CkEQ8PzzL3l4p8jQ6XSYPHkiOnXqjClTHsWNG79gzZpcjByZ7XAwdt68/8K1a+XYtu0zAMD+/Xtw7NgRDBw4CElJrXH1aik2b94AnU6Hdes2o337DlH6RrEh1gf0UUFqxjQaBVQqOQwGo08dHNxhKirEczxyGfhbu7gdy8AwDFq0iAfHWYOfZusvgwGKL3ZDevw4GM4Ce6dOsIwdB/4O3+4duZrcyjBAixYJsFptDgGHQDC//grVu2uh/HgrmJqrAkEVB8vEiTA9ORf2W9oH9L6NeXJrcfEl5Oa+iaKiH2paB43CrFmOrYPmzJmFa9fKkZ8vTtstKvoX3n9/LS5d+hl6vR5arRZ9+/bHjBmznWLkzREVJBKzGAZo2VLsxVZRURWRZJVSKYdGo0ZlpS6iAYdAeevnp1DIodWqUVWlD3jbji2/ivg/jIXkyhXxQHHtOA2eB8MA9jZtUbV9J+y33ur7e7Is1GpVXe85k8na6NNzJHixXpDoHlIz5ksHh1CLVsDBX74eGHbq4BAAzZNPQHLlCgSJFIK85hCvRALIxW7h7C/XoZ01w30wowHxcGt81A+3EuIvKkjNXKhGVPgjKgEHP/g7udVVBwdfSc6eheyfhRAY1nWEnmEhsBJIz5+DtNBzyxwaDUEaOypIBAaDGYIgROyqxWbjYbFwdTfZY8XNfn6Kev38vG/D1e/gwLL+fR/5vr3i//A0VZdlAYaBfO+Xbn7sOj3XWO4VEVKLChKpG1EhlUqhVEamRb/RKA64c9XcM9IC6efXUHW1CYIg+L11xxgMYldwT4W55meMwfmgKG3PkaaEOjU0EkeOfI28vL/iypUStGnTDpMnT8OoUWM8vqa8/ComTHB+TlpaD3zwwQaHx/wZUREK4pC36HRwqK9+ei6YYIKrERW+sLdpU9PxwkOLI0EABEBofXPkQjRHQxASLlSQGoEffvgeS5YsRE7OWMyb9wxOnfoWy5a9iri4OAwd6r0D9uzZT6BPn351f46Lc/4tvjbgoNWqoFbHRSSWbTZzUCgUAU2zDZbXabgBsFg4KJVin7vKSs8NQGtxY8ZAvfRV8dCuu0movA1gAMv4B5zSc5GY3EpIpFBBagQ2bvwQaWndsXDh8wCAvn37oaysFOvWve9TQerYsZNPw8rMZhuUSjHgEKmrFqOxGgkJ2rrPDDdfpuEGw2CoRmJiPFQqBUwm79/Hfkt7mCdMhPJvn0DgbYCkwT+SNW2YuPuyIe/ZM+KTWwmJJLqHFOM4jsPp0yedCs+IESNRXHwJ5eVXQ/p5TTng4G96LhCBBByMr70ObvgIMDwPxsoBNf9hrBwY3gZbRgYkGzdSeo40eVSQYlxZWSlsNpvTKfPkZHGEgS/DylatWobBgwcgJycLy5e/Bp2uyu1zm2LAIdD0XKD8DjioVNB/tAH6Dz6E9e5BYhsjpRK2u/rB9uE6yPbvhyQxgdJzpMmjLbsYp9eL9yIaDivTasUW/J6Glclkcowb9yDS0zOg0Whx7lwRNm36CD/+eA55eZsglbr+y99UAg7h3p5zJ6CAg1QKLmc0uJzRAFz0nquopisi0uRRQYqC2jb63gTbCDIpKclhIFmfPnchNbULnn32KRw+XIDhw12Pn2gKAYdQpecCFUjAAYhOeq6kpBi5uStQVHSmpmfc7zFzpmPPOFcEQcCWLRuxc+enqKysRNeut+PJJ+f7dL+SEFeoIEVBQcEBLF/+mtfnbd2aX3cl1HBYWe2Vk7/DygYOHASVSoWffjrvtiABjTfgEI70XKD8CThEKz2n0+kwd+5j6NSpM5YufRM3bvyCtWtzYTabHbpqu7Jly0Z89NH7eOyxOejSpSt27PgU8+fPwfr1NCqcBIYKUhSMHj0Oo0eP8+m5HMdBKpWipKQY6ekD6x6vvXcUzmFlBoMZiYnqiMWy6wccasc7+Cpa23Oe1A84WCyc2xEV3kZDhNOuXdtRXW3E66+/ifj4hJp181i9ejmmTHkUSUmtXb7OYrFgy5b1eOihR/DHP04CII4Lf/jh8TQqnASMQg0xTi6Xo2/ffjh06CuHxw8e3I+UlFTc4udYgqNHv4HJZPJpWFljCThEIj0XKE8Bh1joPVdYeAz9+g2oK0YAMGxYFux2O06ccN87r6joDIxGI4YNu5n+lMlkGDJkKAoLj4Z1zaTpoiukRmDq1BmYO3c2Vq5chmHDRuC7705h//49ePnlNxyeN2RIOrKzR2Hx4hcBAGvW5IJlWXTv3gMajRbnz5/F5s0bcOedabjnnnt9+uxYDjjE0vacO7UBh+++OwWrlUevXr1j6nBrSUmxU8cPrVaLVq2SPCY4a3/mKv15/fonsFjMUCiUIV4taeqoIDUCvXr1xtKlK5CX91fs3r0Lbdu2w6JFf3H47RQQt1rqXxmkpqZix458fP75DpjNZrRu3QY5OWMwffpstwm7hmIx4BCL23OeWCwcVq5cicuXL2P79p249daUmDncqtfrnBKcgFiUPCU49Xod5HI5FArHDudarRaCIECv11NBIn6jgtRIZGYOQWbmEI/POXLkpMOfc3LGISdnXNCfHUsBh2in5wI1adIjePHFF/D227nIzX2Les8R4gLdQyI+iXYHh0gfbg2V2tEQEydOQL9+/bB3717s3ftVzBQjrTbeKcEJAHq93mOCU6uNB8dxsFgc04N6vR4Mw0Crje3JpCQ2UUEiPolmwCExMT6o0RDRUn80hNXKY968BZBIJFi9egU4jov28gCIKc2G94pqz8l5SnDW/uzy5RKHx0tKitG2bTvariMBoYJEfGY0WmC32xEXp/I4vidUVCrx6kgiYWEwGGMqPeeJu/RcauptGD9+Iq5cuYxdu3ZEe5kAgIyMu3Hy5Ano9Tfv1RUUHADLshgwIMPt63r06Am1Wo2CggN1j9lsNnz9dQEyMgaFdc2k6aJ7SMRnkQo4NEzPyeWymntJsXFV4Y4v6bnp02fj3/++CI1GE72F1jN27APIz9+GxYufwZQpj+LGjV/wzjtvY+zY8Q5nkObN+y9cu1aObds+AwAoFAo88sifsX79B0hMbIEuXW7Dzp2foqqqCg8//EiUvg1p7BjBx9OHN25Edl4NiV2JiSrIZFJUVupCGnBwl56TSiVISNDCaDRFZERFIKJ5uDVYxcWXkJv7JoqKfqhpHTQKs2Y5tg6aM2cWrl0rR37+P+oeE1sHbcDOnfmorKzAbbfdjrlz56NHj57R+BrEB61bx/a9PSpIxG9SKYPERDV4ng9ZB4f66TmDodopsKDRiIWqokLnVweHcHPuPWeJmcACIQ3FekGie0jEb6EMOPiangv3iAp/1abnEhK0kEjYZj8a4vTpk8jM7IfDhwucfrZv3x5kZvZDUdGZKKyMNCZUkEhAgg04SCQs4uM1Pqfnajs4KJUKSKWSIFYevPrpOY6zoaKiGkZj8x4j3qfPXWjTpi327//S6Wf793+JDh060lYe8YoKEglIbcBBvJHv39mkQHvPmc0crFZbxM5CNRQLvediFcMwuO++3+PYsSMwGG6ea6qoqMCJE4UYOfL+KK6ONBZUkEjAzGYbrFabz1ctoTjcajRWQyKRQKlUeH9yiND2nG+ys0eB4zgcOnQzCn7w4D7wPI/77vt9FFdGGgsqSCQovnRw8Hd7zpOGHRzCjbbnfJecnIJu3dKwb9+eusf27duD7t1/h44dO0VxZaSxoIJEguIt4BCO0RCRCDjQ9lxgsrNH4fvvT+OXX66jrKwUZ8/+i7briM+oIJGguQo4yGTSsPWeC2fAgbbngjN8+H1gWRYHDuzFvn1fQiqVYvjwkdFeFmkkqCCRoNUGHBiGwdGj32DChPFYsWJZWHvPhSPgQNtzwUtMTERGxt3Yu/dL7Nv3JdLTByIxMTHayyKNBBUkEhI//ngB06ZNw8KFC/Hbb78hLa172HvPhSrgQNtzoZWdPQo//3wBV65cxsiRFGYgvqNediQoJpMJ69fnYdu2reB5HsOGDcOiRYug0SR4f3GQ6gccxGm2/l3KxNLk1qZk0KDB0GrjIQh2ZGYOjvZySCNCBYkE5eOPN+HjjzehffsOeOqphRg5cjhUKjkMBmNEmqEajaaaZqwqv5q9xlrvuSNHvkZe3l9x5UoJ2rRph8mTpzmNFm+ovPwqJkxwfk5aWg988MGGMK3UO7FDuwSDBt3rNFGWEE+oIJGgZGePQtu27ZCVlQ2FQgGj0QKFQoq4OFXNVUt4P7824KDRqH2aZuvcey76k1t/+OF7LFmyEDk5YzFv3jM4depbLFv2KuLi4jB06Aivr589+wn06dOv7s9xcdE5OFzrm28OobKyAtnZo6K6DtL4UEEiQenQoSM6dOhY9+dIjaioz2zmoFAooNHEuW32Gsvbcxs3foi0tO5YuPB5AEDfvv1QVlaKdeve96kgdezYCT16/C7cy/Tq7Nki/PzzBWzY8CFuv/0O9OlzV7SXRBoZCjWQkPO3g0MoeAo4xHJ6juM4nD590qnwjBgxEsXFl1BefjVKK/PfZ5/lY9WqZWjRoiX+8peXo70c0ghRQSJh4UsHh1Cy2XiYTGb8/e9/Q2npFQCNIz1XVlYKm82Gzp1THB5PTk4FAKfx4q6sWrUMgwcPQE5OFpYvfw06XVUYVurdkiX/jcOHj2Pdus249dbborIG0rjRlh0Ji9oODiqVHEqlPCIBh6tXr2HFihW444478PHHn0Ctjou57bmG9HodAECjcZxTo9XGAwB0Op3b18pkcowb9yDS0zOg0Whx7lwRNm36CD/+eA55eZsgldI/3qRxob9jSdhEOuCQmJiIP/xhPHbs2I6dO3dg4sSHopKeMxgM+O23X70+r337DkF9TlJSEhYseK7uz3363IXU1C549tmncPhwAYYPzwrq/QmJNCpIJGwiGXCoTc8tXLgABw4cQG5uLvr3z0TLlq3C9pnuFBQcwPLlr3l93tat+XVXQkajweFntVdO8fHxfn32wIGDoFKp8NNP56kgkUaHClIz9+23hdi9+x84d64IV6+WYfz4CZg/f5FPrzUYDFizZjW+/voQbDYb0tMz8NRTzyIpKanuOWazDUqlGHDwJZbtr4bpOaVSg9mzH8ebb76B995bi+effymkn+eL0aPHYfTocT49l+M4SKVSlJQUIz19YN3jtfeOkpNTQr9AQmIUhRqaucLCf+LixQvo3buv030Mb158cTG+/fY4FixYjJdeehWXL5dgwYK5sNkcz/WEK+DgLj2XkzMOd9zRDV988Q9cvHghpJ8ZanK5HH379sOhQ185PH7w4H6kpKTillva+/V+R49+A5PJhG7d0kK5TEIigq6QmrknnpiHJ598GgBw+vRJn19XVHQGJ078E6tXr8WAARkAgM6dkzFp0gSn+xehDjh4O9wqkUjw3HMv4K233mwUnQKmTp2BuXNnY+XKZRg2bAS+++4U9u/fg5dffsPheUOGpCM7exQWL34RALBmTS5YlkX37j2g0Whx/vxZbN68AXfemYZ77rk3Ct+EkOBQQWrmWDawi+TCwmPQaLTo3z+97rHOnVPQtevtKCw86nT/IhQBB38Ot3btejveeSfP/w+Jgl69emPp0hXIy/srdu/ehbZt22HRor9g2DDHs0k8zzs0q01NTcWOHfn4/PMdMJvNaN26DXJyxmD69NmUsCONEv1dSwJSUlKMzp2Tnaa2Jienujw7E2zAIdZ6z4VaZuYQZGYO8ficI0ccr2BzcsYhJ2dcGFdFSGRRQSIB0et1Lu85abVat2dnAgk4xGLvOUJIeFBBamL8OQMjk8kisCJHBoMZiYlqj33ngNjuPUcICQ8qSE2MP2dggokUa7Xx+OWX606P6/V6j2dnfAk4NPXtOUKIa1SQmhh/zsAEIzk5BSdPnoAgCA73kUpKitGli+c+Zu4CDrQ9R0jzRueQSEAyMu6GXq/DyZMn6h67fLkEFy78hIyMQR5fWxtwELfl4sCyLLRaNRIStJBIWFRXc6ioMFIxIqSZoSukZu7atXKcP38WAGA2m1FWVoaCggMA4DASoeEZmB49emLAgIF4441XMGfO05DL5cjLexddunTFkCFDvX5u/YCDQiGn7TlCCBWk5u706ZN4/fWbs2uOHz+G48ePAXCMGTc8AwMAr7zyBtasWY0VK5aC53kMGJCOp59+1uczMLUBB0EA9HoTXRER0swxguBbbunGDfeJKEICJZWysNnoioiQSGjd2r/2YJFG95BIVFExIoTUooJECCEkJtA9JNJshHvUBiEkOHSFRJqNSIzaIIQEjq6QSLMRiVEbhJDA0RUSaTbCNWqDEBIaVJAI8cLfURuEkMBQQSLEi0BGbRBC/Ef3kEijFeujNggh/qGCRBqtWB+1QQjxDxUk0mg1hlEbhBDf0T0kQrwIZtQGIcR3dIVEmo1ojdoghPiGChJpNqI5aoMQ4h2NnyCEkGaCxk8QQgghPqCCRAghJCZQQSKEEBITqCARQgiJCVSQCCGExAQqSIQQQmICFSRCCCExgQoSIYSQmEAFiRBCSEyggkQIISQmUEEihBASE6ggEUIIiQlUkAghhMQEKkiEEEJiAhUkQgghMYEKEiGEkJhABYkQQkhM8HliLCGEEBJOdIVECCEkJlBBIoQQEhOoIBFCCIkJVJAIIYTEBCpIhBBCYgIVJEIIITGBChIhhJCYQAWJEEJITKCCRAghJCb8P+jQUp0Z+T1sAAAAAElFTkSuQmCC"}}]}}}, "version_major": 2, "version_minor": 0} +{"state": {"d796a52aef934de08dddb19cf081ad90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "917fe49570b34302a395d8b7e342a0f2": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_e24f14f80adf4d9eacd7ed6838fc20f9", "IPY_MODEL_505301c2ad514208bc9457928322a019"], "layout": "IPY_MODEL_d796a52aef934de08dddb19cf081ad90"}}, "11fadcac5b50441e9ec3ea9e6494f36b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93e2ac111efc4262b32f68afae31b030": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e24f14f80adf4d9eacd7ed6838fc20f9": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_11fadcac5b50441e9ec3ea9e6494f36b", "style": "IPY_MODEL_93e2ac111efc4262b32f68afae31b030"}}, "b94bd50054cd4825a5a9ed5e46e38928": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "505301c2ad514208bc9457928322a019": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b94bd50054cd4825a5a9ed5e46e38928", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABksklEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXa6KjOvdPfLsyvE8K+5BXVbPkXWfc55nl1U4qHhhWRUVV1dxvAAiC6KCMCJMV1Wnc79n0kknne5Od1c9f3RSTGQumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYvve97+HP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+KLX/wiPvShD2Hv3r2Ix+P41a9+hXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+SeiRRx5Be3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF26++WYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W7cd999UBQFP/3pT1FfX7+m59V1HYIgrHO1REREVIqKvuhW13UsLCzgn/7pnxAOhwEAe/bswYEDB/Cv//qv+Ou//us1Pa8gCEgkUsjntfUsl86Q1WqB1+vmsSgBPBalg8eidPBYlJbqajcslrVd3Cl6YPF6vaipqTHCCgDU1NRgx44diEajZ/Xc+byGXI6/gKWAx6J08FiUDh6L0sFjURrO5ppO0dewBIPBkz6WyWSK/fJERES0CRQ9sFx++eWYmZnB0aNHjbF4PI6XX34ZO3fuLPbLExER0SZQ9EtCBw8exDnnnIO/+qu/wu233w6n04n7778fDocD73jHO4r98kRERLQJFP0Mi8Viwf3334+9e/fik5/8JP7rf/2vqKysxEMPPYTGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zrGx8fxn//5Szz00NeRzS6e1fPZ1qkuIiIiIszNzUFVZShKBPF43Bjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3j66acwMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9+9TSOHHnBWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9OnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrprBF/hjGxkaxd+95AAC73YH29nYkk0lIUhjBYMjYT6VUMbAQERFtQonELGQ5AlWVMTs7CwDw+4PGHikHD77JuB25HDCwEBERbRKZTAY9PYV1KaOjI8a43W6H3x+ArmsrxsoJAwsR0enoOmwvPA+rqgB2O7L79kNraze7KqLX6O/vw5NPPgEAEAQB7e0dEMUwuru7Ybebv3D2bDCwEG1StpeOwPXAF+F4/OcQslnkgkGk/+J9yFxzLVACK/7LheOxn8Lzd5+ATT5qjOmCgMU3XY35//E5aB2dJlZHW5Wu65icnICiyKitrcXOnYVbkLu7u9HcvA3d3QGEQiIqKytNrnT9CPry1nVlKB5PIpfTTv+NVDQ2mwW1tR4eixJgHIvpeTj+x6fh+d+fg261QcjnAAC6xQJB05DbuQszD38femOjyRWXPue/fxdVH3wPAED4o7dK3WqFXlOL+E+egNbpW/EY50Xp2GzHYm5uDtGoAlmOIB6fBgDU1dXjxhvfDkEQTK7u9OrqPLBaLWv6WZ5hIdpkHF/5Ejz/+3MAYIQVABC0wpu1NXIU1e+4HjM/eQKwrO2NYysQZuKo+r8+VPjnE3yuE/J5YCaOqo/+FWa//f2NLo+2mGhUwSuvvIyRkWFji3ybzYaurm6IYvH695QSBhaizSSXg/sfPgsdwMk+awn5POxHXoD9F48je+DgRlZXVlzfeAhYXDxhWFkm5PNwPPkELLEeaP7ABlZHm52mabAc94GitzeG4eEhAEBraxskKYzu7gCcTqdZJW44BhaizeRnP4NlcuK036ZbrXD924MMLKdgf/JxYBVXzHVBgOOpJ5FmYKF1cOzYFGQ5gmhUwTXXXIu6unoAwM6d56Curh6hkGTclrzVMLAQbSYDA6c8u7JMyOdh7e/bgILKl5BKnfa/Y+EbBQiLmWKXQ5vYwkISqqpAUWRMTU0a49GoigsvLASW1tY2tLa2mVViSWBgIdpMPJ5V/ZHVAeib6O6BYsgHQ9B/82xhrcopCJqGfFf3BlVFm0kyOY9f/OIJDA72G+tSrFYrfL4uiGIYnX+0mHurY2Ah2kyuvBK61XraP7IQBCxe9eaNqalMpd/5Lrgf/Oopv0cHoDU1Y/FyXlqj09N1HfPz86iqqgIAuFxuTEyMQdd1bNvWAlGUEAiE4HK5TK60NDGwEG0mzc1YfNt1cHzvuycNLbogAC4X0je9Y4OLKy+5c1+HzJ9cDcfPf2LcYfXHBADJ//4poAQbxVHpiMfjUJQIFEWGIAi45ZZDEAQBVqsVBw4cRHV1DWpqas0us+RxlhFtMql/+H9gffEFWHtjrwktusUKCEDi/q9C5xvkaSX+zwPwvvcQnI//bOWeNlYroGlIfuozyLz9nSZXSaUolUohGlWhKBFMTIwb4w6HA4nELKqrawAAPh8vJ65W0QPLI488go9//OOvGX//+9+P//bf/luxX55oy9Fr6zDz6M/hufszcH3jIQipBeOx7P7XI/mxO5G7aL+JFZYRjweJb3wH9mefgetrD8AWOQrdbkf2sjci9a73vGbDOCIAeOml3+OZZ56CtnRmzmKxoKOjE6IYhs/XVXY9fErFhp1h+dKXvmRctwOA5ubmjXppoi1Hr6nF/N3/C8k7/w62F18AFheR7/ZD6/abXVr5EQRk91+M7P6Lza6ESpCu6xgfH4Pb7TbOmtTX10PTNDQ2NkIUwwiFRLjdFeYWuglsWGDZuXMn6urqNurliAiAXlmF7CWXmV0G0aaTSMxCUWQoSgSzs7PYtWs3Lr30DQCAlpZW3HTTLfybt864hoWIiGgVMpkMenpUKIqM0dERY9xut6/YlVYQBIaVItiwwHLNNdcgHo+jtbUVN954I973vvfBarWe1XOutYESrZ/lY8BjYT4ei9LBY1E61utY6LqO733v25idnTGer729Y+lW5ADsdnZAX42z6c9Y9G7NTz31FI4cOYI9e/ZAEAQ8/vjj+MY3voG3v/3t+OQnP1nMlyYiIjpjuq5jYmICsizjkksuMc6e/PKXv0QsFsPOnTsRDodXrMuk4it6YDmRf/iHf8DXvvY1/OIXv0BTU9OanyeRSCGfL/924eXMarXA63XzWJQAHovSwWNROs7kWMzPz0NRIpDlCKanpwEA11zzp/D5ugAA+XweFosFwtmcJtjiqqvdKy6fnQlT1rBcffXVeOCBB3D06NGzCiz5vIZcjm8GpYDHonTwWJQOHovScbJjkc0uIhaLQVEiGB4eMrbIt9ls6Orqht3uPO7nBOTzOgp7HNNanM0pEi66JSKiLWtmZgaPP/4z4+uWllZIUhh+fxBOp9PEyuiPmRJYHn30UVitVuzYscOMlycioi1oevoYZDkCANi/tK9OQ0Mjurq60djYBFGU4PVWm1kinULRA8t73/te7Nu3D5IkAQAee+wxPPzwwzh06BAaGxuL/fJERLSFLSwk0dNzFM899yImJiYAFG5DPv/8C2C3OyAIAq6++hqTq6TVKHpg6e7uxne/+12MjY1B0zR0dXXhb//2b3HrrbcW+6WJiGiL6u/vwx/+8BJGRgbhdNqQSi3CarXC5+tCKCTBYjm7bTVo4xU9sNx5553FfgkiItridF2HruvGHSiTkxMYGOiDxSKgpaUF7e3d6OoKwO12m1wprRUX3RIRUdmamYkvbZEv46KLXo9gMAQAEMUwNE3Djh3b0d3djng8yTu2yhwDCxERlZVUKoWenigUJYLx8TFjvKcnagQWr9eLCy+8CDYbdxveLBhYiIioLORyOfz85z/BwEA/8vk8AMBisaCjoxOiKMHn6za5QiomBhYiIipJuq5jdnYGNTW1AAqbuS0sLCCfz6OxsRGiGEYwGEJFhcfkSmkjMLAQEVFJSSRmoSgyVFXG3NwcDh16D1wuFwDg9a+/BA6HA3V19SZXSRuNgYWIiEyXyWQQi0UhyxGMjo4Y4zabHVNTk2hv7wAAbNvWYlaJZDIGFiIiMlV/fy9++tPDyOVyAABBENDW1g5RDMPv98Nud5hcIZUCBhYiItowuq5jamoSmqahuXkbAKCxsQn5fB61tXWQpDBCIQmVlZUmV0qlhoGF1kSIT8P5wx/ANjUBtDRBeOOVwLY2s8siohI1Pz8PVS3slzI9fQxtbe340z99GwCgosKDt7/9nfB6qyEIgsmVUqliYKEzs7gIz9/dCffXHgByWcBqBfJ5VANYfPNbMfe//xl6bZ3ZVRJRCchmFxGLxaAoEQwPD0HXdQCFu33cbjc0TTN2pq2urjGxUioHDCy0evk8vO89BMdPD0PQl3aMXL7mDMBx+Eeo6VEx86OfQa/ymlcnEZWEn/70JxgY6DO+bmlphSSF4fcH4XQ6zSuMyhIDC62a84ffh/Mnj570cSGfh1VR4P78P2PhDvaQItpKpqePQZYj2L17DzyewvqTYDCE2dk4RDEMUZTg9VabXCWVMwYWWjXXl/4PdIsVgpY/6fcIWh7ur34ZCx/9GGC3b2B1RLTRFhaSUFUFqipjcnISAOB2u7F373kAgFBIhChKXJdC64KBhVZH12F/7jenDCvLLNPHYO3vQ36ppwcRbR65XA59fTHIsoyhoQFoWuHysNVqRWenD42NTcb3Lq9PIVoPDCy0OroOaGfQ6XRpbQsRlb/lxbJAIbA88cRjxp4pzc3bIIphBAJBuN1us0qkLYCBhVbHYkE+EIS1JwrhuDevE9FdLuSXdqUkovI1MxOHosiIx+N405uuBgC4XC7s2LELdrsdoigZfX6Iio2BhVYt9d4PoPJv/+aU36NbrUjfdAvATZ+IylIqlUJPTxSKEsH4+JgxHo/HUVtbCCcXX3ypWeXRFsbAQquWvukWuL/ypcJZlvxr17LoViv0qios/F8f2fjiiGjNdF3H+PgYXnzxdxgY6Ed+aX5bLBa0t3dCkrjzLJmPgYVWr7ISM9/9IaoP3QT7C7+DbrMBuRyEpc3jtJZWzD70bWidPrMrJaLT0HUd+XweNlvhz0AymURvbwwA0NDQCFGUEAqJqKjwmFkmkYGBhc6I3tyMmcNPwP7sM3B+51uwTk7A0VCH+auuQerAnwA2/koRlbJEIrG0RX4EwaCICy7YB0EQ4PN14bzzzkcwGEJ9fYPZZRK9Bv+60JkTBGT3X4zs/oths1ngqPUgG08CuTO4i4iINkwmk0EsFoUsRzA6OmKM9/bGcMEF+wAUtsvft2+/WSUSnRYDCxHRJvbkk49DUWTjNmRBENDW1g5RDMPv95tcHdHqMbAQEW0Suq4jHp9GbW2dsbuspunI5XKora2DJIURCnEBLZUnBhYiojI3Pz8PVVWgKBFMTx/DddfdiKamZgDA3r3nYefOXWhsbOIW+VTWGFiIiMpQNruIWCwGVZUxNDRo7EZrs9kwPX3MCCzLe6cQlTsGFiKiMjM9fQyPPPJtZLNZY6ylpRWiKCEQCMHpdJpYHVFxMLAQEZW46eljmJubg8/XBQCoqamFw+FARUUFRDEMUZTg9VabWyRRkTGwEBGVoFRqwViXMjk5CY/Hg3e+8y9gsVhgsVjwtrfdgMrKSq5LoS2DgYWIqERks1n09/dBUSIYHByAttQh3WKxoKmpGZlMGm53BQCgqqrKzFKJNhwDCxFRifjtb5/FkSMvGl83NTVDFMMIBkNwu93mFUZUAhhYiIhMMDMTh6rK6OzsQnPzNgBAICCip6fH2C+Fd/gQvYqBhYhog6TTaUSjKhQlgvHxMQDA/HzSCCxNTU145zvfxXUpRCfAwEJEVES6rqOvrxeKEkF/fx/y+TyAwhb5HR0+486f5TEiOjEGFiKiInvmmf9EIjELAGhoaIQoSgiFRFRUeEyujKh8MLAQnUwyCedPfwzL5AQ0bzUWD74JekOD2VVRCUskElBVGYOD/Xj3u28FUDhrsnv3HszNzUGSwqiv5+8Q0VowsBD9sXweFf/4P+H+P1+AJZmEbrFA0DToNhvS19+E5P/8HPRK3lJKBZlMBrFYFIoiY2RkGABgsQjo7e1FQ0MrAOCcc/aYWSLRpsDAQnQ8XUfVbR+E85FvQ1jqzSIs7YUh5HJwffubsL3yMma+/2PAw9P5W9n09DSef/436OvrRS6XA1A4m9LW1o7t28Po7OzEwkLO5CqJNg8GFqLjOA4/Ctd3Hz7p40I+D9sffo+K+/4FCx/92AZWRmbTdR25XA52u90Yi0ZVAEBtbR0kKYxgUERVVRVsNgucTicDC9E6YmAhOo77S/dBt1ohLN3JcSKCpsH9wBex8NcfBWycQptdMjkPRSlskV9XV4crr7wKAFBXV4eLLno92tra0djYxDt8iIqM77ZEy3Qd9l89fcqwsswyOQFrXy/ywdAGFEYbLZtdRG9v4VbkoaFB6EuXB5PJeeRyOdiWguq5577OzDKJykI2m0VfXwyKIuPmm6+D1epa0/NseGBJJpO4+uqrMT4+ju985zs455xzNroEopNbRVgxLC4Wrw4yzW9/+2scOfICstmsMdbS0gpRlOD3B42wQkQnp+s6RkaGoSgyYrEoFpfeL7PZLFyuMgksX/jCF4yNk4hKiiAg39UNa1+vseD2ZHS7A1pHxwYVRsU0PT2NqqpK2O0OAIDNZkc2m0V1dTVEMQxRlOD1VptcJVF5iMfjUJQIFEXG/PycMe71VkMURbhca++JtaGBpaenB//2b/+Gj33sY/jUpz61kS9NtCrpd78Pnk/991N+j261In3djdCrvBtUFa23VGoB0agKWY5gcnICBw5cCUkKAwDC4TC2bduGbdtauC6FaBVSqZTRcmJiYtwYdzqdCASCCIUktLS0QhAEWCyWNb/OhgaWz3zmM7j55pvR3d29kS9LtGrpWw7B/eX7YRkaPOFaFt1ihe5yIfXXt5tQHZ2NXC5nbJE/ODgAbel2dYvFYuxCCwBudwXc7gqzyiQqC7lcDv39fVCUCAYG+lfMp46OTohiGF1d3et6CXXDAsvhw4ehKAruuecevPzyy+vynFbr2pMarY/lY7BpjkVtDeb+4zCqbnwbrJGjxh1DxuZxdbWY/8Z3IEhSya1Y33THYh1lMhk89NDXkE6njbGWlm3Grchu99pPU58Ij0Xp4LFYP7quY2xsDLIcQU+PumI+bdvWDEnajmAwhIqKkwf+szlpuSHvualUCnfffTduv/12VFZWrtvzer3r+yZDa7epjkWtBPzhJeAnP4Hw4IPA8DCE2lrg+uthueEGeNe4YGyjbKpjsUbxeBwjIyPYuXPn0ogHHR2tmJ2dxfbt27Fz507U1dUVvQ4ei9LBY7F2MzMzeOWVV3D06FHMzMwAKASPxsY6Yz7V19cXvY4NCSz33nsv6uvrcd11163r8yYSKeTz2ro+J50Zq9UCr9e9OY/F/jcU/ne8VB5IJc2p5zQ29bFYhXQ6baxLGRsbhcViQU1No9Fg8JJLDsDtdhvrUuLx4h3HrX4sSgmPxdpkMhljPo2OjhjjdrsdgUAQoiihra3dWJOy2vlUXe1e8zqWogeW4eFhPPDAA/j85z+PubnCiuGFhQXj/5PJJDxr3OI8n9eQy/EXsBTwWJSOrXQs8vk8Bgb6oSgR9Pf3GXcgCoKA1tZ2JJNpOByFT9YOhwv5vA7g1HeArW99W+dYlDoei9PL5/MYHOyHoijo71/ZcqK9vQOhkAS/32/cUadpMNaurNZpbsA8paIHlqGhIWSzWXzgAx94zWOHDh3Cnj178PDDJ98KnYjoZGT5KJ588gnj6/r6BoiihFBIhMezfpefiTYrXdcxOTkBRZERjapIpRaMx+rq6iGKYYRC4rou51irogeW7du34+tf//qKsaNHj+Kzn/0s7rrrLm4cR0SrkkgkoKoyqqtrEFzaYdjvD+J3v3sefn8AoiihoaHR5CqJysPc3BxUVYaiyIjHp43xiooKhEIiRDGM+vqGkrq1v+iBxev1Yt++fSd8bOfOncctiiMiWmlxcRGxWBSyHMHIyDAAoLl5mxFYXC4XbrnlUEm9qRKVqsJ86oGiFObTcssJm82Grq5uiGIYHR2dZ7VXSjGV2p2ZREQYHByALB9Fb29sxXX01tY2iGIYuq4bIYVhhejkNE3D0NAgVFVGLBZDLvdqy4nW1jZIUhjd3QE4nU4Tq1wdUwLLvn37IMuyGS9NRGXgpZeOoL+/DwBQW1u7dB1dQlVVlbmFEZWJY8emIMsRRKMKkslX7+Cpqakx5pPXW167dfMMCxGZJpmch6oqUFUFb3rTm4030J07dy31HpHQ2NjEsyhEq7CwkISqKlAUGVNTk8a4y+VCIBCCJG1HU1P5zicGFiLaUNnsInp7C1vkDw0NGtfRVVXG6153AQDA5+uGz8cWHkSnk81m0dcXg6LIGBwcMOaT1WqFz9cFUQyjs9MHq9VqcqVnj4GFiDZEMjmPX//6WcRiUWSzr15Hb2lphShK8PuDJlZHVD50XcfIyDAURUYsFsXi4qLx2LZtLRBFCYFACK4S35X7TDGwEFHRLC4uwuEobDLlcDiMsLJ8uUcUJVRX15hbJFGZiMfjUJQIFEXG/PycMV5V5YUkSQiFJNTU1JpYYXExsBDRukqlFowtvfP5PG688e0QBAF2uwOXXPIGVFdXY9u2lrK9jk60kVKpFKJRFYoSwcTEuDHudDoRCAQRCkloaWndEvOJgYWIztqpWs3PzSXg9VYDAMLh7WaWSVQWlueTqsro7+9bMZ86OjohimH4fF2w2+0mV7qxGFiI6KwcPfoyfvWrp5HJZIyxxsYmSFIYwWAIbvfJW80TUYGu6xgfH4OiRNDTE0U6nTYea2xsNLbI38rziYGFiM7I7OwMbDab0aunosKDTCaDyspKY3+Huro6k6skKg+JxCwURYaiRDA7O2uMV1ZWIhQqrPOqq6s3scLSwcBCRKeVTqfR06NCUWSMjY3i3HNfh4suej0AoKOjE3/6p29Da2vblriOTnS2MpmMMZ9GR0eMcbvdvtQXK4zW1raS3SLfLAwsRHRC+XweAwP9UBQZ/f29yOfzAApb4S8svNrR1WKxoK2t3awyicpCPp/H0NAAZLkwn45vOdHe3gFRDKO7uxt2u8PkSksXAwsRvYau6/j2t7+BeDxujNXXN0AUJYRConE5iIhOTtd1TE5OGLs5p1KvBv26unpjXUplJefTajCwEBHm5ubQ1xfDrl27IQjCUqPBdmQyGeM6ekNDo9llEpWF+fl5qKoMWY4gHp82xt3uCoRCojGfeAn1zDCwEG1RJ2o139DQiJaWVgDAvn37cckll/E6OtEqZLOLiMViUJQIhoeHjC3ybTYburq6IYphdHR0cj6dBQYWoi1kudW8okTQ29u7otX8H69DKYd280Rm0jQNw8NDUJQIYrHYivnU0tIKSQrD7w9yLq0TBhaiLWRsbBQ/+tEPjK9ra2sRCkll2WqeyCzT08cgyxGoqoxkMmmM19TULF1CDXM+FQEDC9EmlUzOQ1UVAMDevecBKHzqa2xsQnPzNohiuKxbzRNtpIWFJFRVgaLImJqaNMZdLhcCgRAkKYympmbOpyJiYCHaRLLZLBRFxtGjR41W8y6XG+ecswdWqxWCIOC6627kmyrRKmSzWfT390KWZQwNDRhb5FutVvh8XQiFJHR2+mCz8U/pRuB/ZaJNYGxsFLL8CkZGBpBIJKFphQV/y63mlxcAAmBYIToFXdcxMjIMVVXQ06NicXHReGz5zGQgEITb7Taxyq2JgYWoTOm6boSP3t4YIpGjcLsd8HqrEQwWbp2srq4xt0iiMhGPx6GqMhRFxtxcwhivqvJCFAu39tfU1JpYITGwEJWRVGoB0agKWY7gwgsvQmenDwAgSWHk81lceOF5cLurkc/rp3kmIkqlUohGVaiqjPHxMWPc4XAgEAghFBLZcqKEMLAQlbjlVvOKEsHAQL9xHV1RIkZgqaurxxvfeAC1tR7E40kADCxEJ5LL5ZZaThTm03LLCYvFgvb2TkiSBJ+vG3a73eRK6Y8xsBCVqFwuh6ef/iV6eqLIZDLGeGNjEyQpjGAwZGJ1ROVD13WMjo7i6NGj6OlRkU6njccaGxshioX5VFHhMbFKOh0GFqISkk6n4XK5ABTuRBgbG0Mmkzmu1XwYdXV1JldJVB4SiVn09KgYHIxhdHTCWIzu8XgQCkmQpDDq6upNrpJWi4GFyGTpdBqxWBSKIuPYsSkcOvQe2O12CIKAiy56PaxWK1vNE61SJpNBLBaFLEcwOjoCi0WA2+2AzWZHd7cfohjmfCpTDCxEJsjn8xgc7DdazS9fRxcEAePjY2hv7wAA+HxdJlZJVB7y+TyGhgaM+ZTL5QAU5lN7ewcuuOBcNDa2QhD4J6+c8egRbbCBgX489tjPkE6njLG6unpIUqHVvMfDVvNEp6PrOqamJqEoMlRVQSq1YDxWW1u3NJ8k1NR4jcXouZxmYsV0thhYiIpsbm4O2WzWWHtSU1ODdDqFiorlVvNh1Nc38NZJolWYn59f2iI/gunpY8a42708nyQ0NDRyPm1CDCxERbC4uIhYrAeKEsHIyDB8vi5cffU1AACvtxpve9v1aGpq5nV0olXIZhcRi8WgKBEMDw8ZOzfbbDZ0dXVDFCW0t3fCarWaXCkVEwML0TrRNA1DQ4NQlAh6e3tXtJrP5/PQNM0IKNu2tZhVJlFZ0DQNw8NDUFUZPT09K+ZTS0srJCkMvz8Ip9NpYpW0kRhYiNbJ4cM/Qn9/n/F1bW0tQiEJoZDEVvNEqzQ9fQyyHIGqykgmk8Z4TU3N0q39ErzeahMrJLMwsBCtQTJZuI4eDu8w9k3p6PBhfHwcwWAIohhGU1MTr6MTrcLCQhKqqkBVZUxOThrjLpcLgUAIkhRGU1Mz59MWx8BCtErZbBZ9fTEoiozBwQHoug6Hw4EdO3YBAMLh7dixYyevoxOtQjabRX9/L2RZxtDQgNFywmq1orPTB1EMo7PTB5uNf6aogL8JtHXk8xASs9CdLqCiYlU/stxqXlFkxGLRFa3mt21rQcVxz8PeI0SnVtgifwSKIqOnR10xn5qbt0EUwwgEgnC73SZWSaWKgYU2PcvIMNz33wvXg1+FZaltfPa885F6/4eQedv1wCnu1EmlFvAf//Hvxl0JXm+10Wq+urpmI8onKnszM3EoigxFkTG3NAcBoKrKa8ynmppaEyukcsDAQpua7aUjqP7zt0KYn4OwtJssANhe/B28f/k+pH96GHNf+CJgtRqt5mdnZ3DJJZcBACoqPAgGQ7Db7RDFMLZta+F1dKJVSKVS6OmJQlEiGB8fM8YdDgcCgRBEUUJLSyvnE60aAwttXskkqm9622vCCgAIy9fL//27GGluxpH9F2NgoB+apkEQBOzZcy6qqqoAAAcPvmnDSycqR/l8HgMD/VCUCPr7+4yWExaLBe3tnZAkCT5fNy+f0powsNCm5Xrk2xCmpnCiz2+TFgtetNuh2O1IffdhLDQ1A1ar0Wre4XBseL1E5UjXdUxMjEOWI+jpUZFOp43HludTMBhCRYXHxCppM2BgoU3L+Z1vAYIALK0/0QEjvIxbLPj9UiipWljATqsV/pvewVbzRKuUSMwu9fGRMTMzY4x7PB5jv5T6+gbzCqRNh4GFNi3L1CTSug7VbscrNhuCuRzOzxZ2ywzlchjOZhHOZtGRz2O+rh4ZhhWiU8pkMojFopDlCEZHR4xxm80Ov98PUQyjra2dLSeoKIoeWJ588kl88YtfRDQaxfz8PJqbm3Hw4EHcdtttxhoBovWUz+cxONiPp1xuDFRVYXn1SlYQjMDiBPCm405d60uNCYloJU3TMDg4AEWJoK+vF7lcDgAgCALa2tohimH4/X7Y7byMSsVV9MAyMzOD3bt349Zbb0VNTQ1UVcU999wDVVXxwAMPFPvlaYv51a+eRiRyFOl0CrZgCI6+GBryeezM5RDOZk/4M5q3GouXvnFjCyUqYbquY2pqcumSj4JUasF4rLa2DpIURjAo8kMnbaiiB5Zrr712xdf79u2Dw+HAJz7xCYyPj6O5ubnYJdAmtrCQXLGYL5FIIJ1OoaKiAqEbb8a+XzyOpuQCLFr+hD+vCwJS7/8QsLS9PtFWNj9faDmhKBFMTx8zxt3uCoRCIkIhEY2NbDlB5jBlDUtNTQ2AwtbMRGdqcXERsVgPVFXG8PAQbrrpFtTWFjadOvfc8xAOb0dHRycsFgts3/gOcMO10BcWVtzarFssgKZh8eprsPDRj5n1r0Jkumx2EbFYDKoqY2ho0Ngk0WazwefrhiRJaG/vZMsJMt2GBZZ8Po9cLodoNIrPf/7zOHDgANrb2zfq5anMLbeaV5QIYrHYilbzo6PDRmBpalp5xi533vmIP/403P/n83D/24MQFgqntvPhHUh94C+RvukdAN+IaYvRNG2p5UQEsVjPig+PLS2tEEUJgUAITqfTxCqJVhL05ThdZJdddhnGx8cBAJdeein++Z//eUUflrVIJFLI57X1KI/WyGq1wOt1F/VYTE1N4Yc//P5rWs1L0valVvPe1T3R4iKEY8cAlxN6TW3hludNZCOOBa1OqR6LY8eOQVEiUBQZ8/Pzxnh1dQ1EUYIkhVFdXW1iheuvVI/FVlVd7V7zXWQbFlgikcjS1udR3HvvvWhvb8dXvvIVnmak10gmk5idnUVraysAIJfL4b777oMgCJAkCTt27EBLC7fIJ1qNhYUFHD16FK+88gomJiaMcafTacyn1lZukU+lb8MCy/EikQiuvfZa/NM//ROuuuqqNT8PE7P51uvTSzabRV9fL2Q5gsHBAVRVeXHLLbcab6JTU5Oora1jwD0FfpIsHWYfi+X5pCiy0XICKGyR7/N1QZLC8Pm6YLNt/q24zD4WtNLZnGEx5bdVkiTY7XYMDAyc1fPk8xpyOf4CloK1HAtd15euo8uIxaIrWs07HE7Mzy8YbeZrauqh6+DxXgXOi9KxkcdC13WMjo5AUWT09Kgr5lNTU7OxRf7ynAK21nzivCgNZ3OKxJTAcuTIEWSzWS663eKeeeY/8fvfv2h8XVXlhSRJCIXYap5otWZm4lBVGbIsY24uYYxXVlZBksIIhSRjUTpROSt6YLntttuwa9cuSJIEl8uFSCSCL3/5y5AkCQcPHiz2y1OJKKxfUtHW1mb06+nq6kYk8gpbzROdoXQ6jWhUhaJEMD4+Zow7HA74/UGIooTW1jbOJ9pUih5Ydu/ejUcffRT3338/dF1HW1sbbrjhBrz3ve9lR9xNLpfLrWg1r2kadu/ei4svvhQA0NrahkOH3sNW80SrkM/nV8yn/NK+QoIgoKOjE6IooavLz/lEm1bRA8sHPvABfOADHyj2y1CJ0HUd4+NjUJQIenqir2k1X1//aoNBQRD45kp0CrquY2JiHIoiIxpVkU6njMcaGhohihKCwRA8nkoTqyTaGJt/iThtKF3X8ZOfPIqFpQ3allvNS1LYuBRERKeWSCSgqjIUJYKZmRlj3OPxIBgUIUlh1Nc3mFcgkQkYWGjNMpkMZLkHx46N4ZJLDgAo3Da5Y8dOzM3NQRTDaG1tY6t5olXIZDKIxaJQFBkjI8PGuM1mh9/vhyiG0dbWzvlEWxYDC52RfD6PoaEByLKM/v5eaFoebrcD3d0iWloKd31dcMFFJldJVB40TcPg4AAUJYK+vl7kcjkAhculra1tEMUw/P4A1/sRgYGFVimRmMVLL/3+Na3mGxsbcP75565Ym0JEJ6frOqamJqGqMlRVMS6fAkBtbR0kKYxgUERVVZWJVRKVHgYWOild143bIlOptLFnynKreVGUsG1bM+rqKhGPJ7kpE9EpzM/PQ1UVKEoE09PHjHGXy23Mp8bGJt6KTHQSDCy0wnKreUWJwOv14g1vKKxNaWpqwu7de9He3oH29g5ji3y+uRKdXDa7CFXtgaJEMDQ0iOVOKDabDT5fNyRJQnt7J1tOEK0CAwtB0zQMDw8ttZqPIZcrtJp3Op245JI3wGq1QhAEY/8UIjq5wrqUITz7bB9+//uXkcm8ukV+S0srRFFCIBCC0+k0sUqi8sPAssUdOfICjhx5Aclk0hirqamBKIYRCon85Ee0StPTx6AoMlRVxsJCEm63A9lsFtXV1RDFMERRgtdbbXaZRGWLgWWLWVhIwul0GUFkcTGDZDIJl8uFQCAESQqjqamZl3qIViGVWjDWpUxOThrjbrcLu3efg7a2bjQ0cF0K0XpgYNkCstks+vt7IcsyhoYGcOWVV8HvDwAAwuGdqK9vRGenb0u0mic6W7lcDn19vVCUCAYHB6BphcXmFosFPl8XQiEJgYAfjY3VXIxOtI74F2qT0nUdIyPDUFXlNa3mJybGjcBSVVXF2yeJTkPXdYyOjkBVZfT0RJHJZIzHmpqaIYphBIMhuN1uAIDNxs3diNYbA8smlE6n8Z3vfGtFq/mqKi8kSUIoJKGmhq3miVZjdnYGihKBoihIJGaN8crKKoiiBFEMo7aW84loIzCwbAKpVAqTkxPo7PQBAFwuF1wuFzKZNAKBEERRQktLK6+jE61COp1GT48KRZExNjZqjNvtdmM+tba2cT4RrUImk0FPj4q+vl686U1vPqvnYmApU7lczmg1PzDQD0EQcOjQe4xbJQ8e/BN4PJXshky0Cvl83phP/f19yOfzAAr7DHV0dEIUJXR1+TmfiFYhn89jcLAfiqKgv//VlhODg/1obDxnzc/LwFJGdF3H+PgYFEVGT4+KdDptPNbY2Ihkct4ILLzsQ3Rquq5jYmICihJBNKoinU4Zj9XXN0AUJYRCIjyeShOrJCofiUQCv//9i4hG1RUtXOrq6iGKhTtQzwYDSxl5+eU/4KmnfmF87fF4EApJkKQw6urYy4doNRKJBKLRwq3I8XjcGK+oqEAoJEEUJTQ0NJpYIVH50DTN6CCey2Xx0ktHABRauIiiCFEMo76+YV0uoTKwlKjlVvOVlVXo6OgEAHR3d+PXv34G3d2FVvOtrW1sNU+0CouLi4jFopDlCEZGho1xm82O7u5uiGIY7e0dnE9Eq1CYT4WWEx6PB1dc8ScACmdS9u49D62tbejo6Fz3+cTAUkLy+TyGhgYgy7Jx3a+jo9MILB5PJd71rvdyvxSiVdA0DUNDg1CUCHp7Y8Z1dEEQ0NraBlGU4PcH4XA4TK6UqPSdrIWLzWbHZZdljfVd+/dfXLQa+JevBExOTixt6a2suO5XW1uH9vaOFV2TGVaITm1qahKKEoGqKlhYOH4+1S61nJC49xDRGfj971/Eiy/+7iQtXKQNW4zOv34l4Jln/tM4Te12Vxit5hsaGnnrJNEqJJPzS1vkyzh2bMoYd7ncCIVEhEISmpq4RT7RaiwsJGG3O4wgks/njRYuwWDh75MZLVwYWDZQNruIWCwGVZVxxRVXwu2uAABs374TFRUVEEW2midarWx2Eb29hS3yh4YGoes6AMBqtcLn64YkSejo8HE+Ea1CNptFX18MiiJjcHAAV1xxJUIhCQAgioUNRzs7zZ1PDCxFpmkaRkaGl6779SCbLVz3U1UFu3fvBYClHTMlE6skKg/LLSdkOYJYLGrMJwBoaWlFKCQiEAjB5XKZWCVReVieT4oiIxaLrmjhMjk5YQQWj6cS3d3m397PwFIkqdQCXnzxBaiqvOK633Kr+a4uv4nVEZWX6enppXUpMubn541xr7faCPzV1TXmFUhUZrLZRXzrW99Y0cKlMJ/Ekm3hwsCyjo6/Hx0Q8NJLR5DP5+FyuRAIhCBJYVOu+xGVo1RqAdGoClmOYHJywhh3Op0IBIIQxTC2bWvhfCJahVQqhYmJMfh83QAAu92ByspKLC5mymY+MbCcpWw2i/7+XsiyjGx2EX/2Z9cBANxuNy64YB+qq2vQ2enj3T1Eq5DL5dDXV1iXMjg4AE3TAAAWiwWdnT6IYhg+XxfnE9Eq5HI59Pf3GS1cAODQofcYXcUPHDgIt7uibFpOcNavwXKr+eUt8o+/7jc3N2fcMnnuua8zq0SisqHrOsbGRqEoEfT0RJHJZIzHmpqaIYoSgsGQsUidiE7u1RYuhfl0ohYuy4HF6602q8w1YWA5Q6oq49e/fnbFdb+qKu9S3xHu70C0WrOzM1CUCBRFQSIxa4xXVlYt3dofRl1dnYkVEpUfWT6KJ554zPi6srLSaDlR7i1cGFhOI5VKQRAE464DQRAwN5eAw+GA3x9kq3miM5BOp9HTo0JRZIyNjRrjdrsdfn8QkhTmfCJapUwmg54eFRUVFcaNHD5fN5xOJ7q6ujddCxcGlhPI5XJGq/mBgX6cf/6FOO+88wEUfhmuvPJN8Pm6y+a6H5GZ8vn80nwqtJzI5/MACuG/o6MToiihq8vP+US0Cidq4dLS0moEFrfbjXe9672bcv8hBpYlhVbz45DlCHp61BXX/SYnJ41/ttvtCAZFM0okKhuF+TQBRYkgGlWRTqeMx+rrG5YuoYrweMzf24GoHExOTkCWC/Pp+BYudXX18Pm6V7Rw2YxhBWBgAVB4c/3ud7+1Iph4PB7jul99fYOJ1RGVj7m5OaiqDEWJIB6PG+MVFRXGfGpoaDSxQqLy9JvfPGvc6eN2Vxj7pWylFi5bMrBkMhkMDg4gGAwBKJyarqurRzw+A7/fD1EMo62tfdNc9yMqpkKr+ShkOWL0xAIKXVy7uwvX0dvbOzifiFZhuYWLokTwxjdeYdzIEQ7vgMPhgCiG0dHRuSXn05YJLJqmYXBwAIoSQV9f4bpfTU2N8Wlv3779uPTSN8BuZ6t5otPRNA1DQ4NQlAh6e3uNVvMA0NbWDlGU4PcH4XBwPhGdjqZpGB4eWmrhEjPmUzSqGNtjBAJBBAJBM8s03aYOLLquL7Wal6GqyorrfrW1dSvWqfBaOtHpFeZTBKqqYGHh+PlUa7Sa5639RKuTSqXw4ou/e00Ll5qaGohiGIFAyMTqSs+mDiwjI8P4wQ++Z3ztdlcgGAxBFCU0NrLVPNFqJJPzUFUFiiLj2LEpY9zlciMUKlxHb2rifCJajXw+byyKtVqt+MMfXkIul2ULl1XYNIFl+bqfrusIh7cDALZta0FlZRWam7dBkiS0t3du2tXTROspm11Eb28vVLXQal7XdQCFN1ifrxuSJKGjw9xW80Tl4vgWLqnUAq6//iYAgMPhwL59F6GqyovOTs6n0ynrwHL8dfRYrAfZbBaVlZWQpDAEQYDVasU73nErfwmIVmG51bwsRxCLRZHNvrouZdu2FoiihEAgZGyiSEQntzyfFEVGLBZd0cJlZiZudEPevXuvSRWWn7INLKlUCg8++FUkEnPGWHV1NUQxjFwuZ2xCxbBCdGrT09NLtyLLmJ9/dT4VWs0XbkWurq4xr0CiMhONKnj22V+9poWLJBVauCyHFTozZRtYMpkM5ufn4XQ6l9alhNHcvI3X/YhWIZVaQDSqQpYjmJycMMadTmfZtJonKhWpVGFjxOWmgjabzWjhEggU1k22tLRyPp2lsg0sdrsdV131ZrS1dbLVPNEq/HGreU3TAAAWiwWdnT6EQhK6uro5n4hW4Y9buOzdex4uvPAiAEBHhw9XXnkVfL4utpxYR0V/Z/rxj3+MH/zgB3j55ZeRSCTg8/lw66234rrrrjurtOnxeBAIBJHLaetYLdHmcnyr+WhURSaTMR5rbGyCJIURDIbgdleYWCVReTh+PvX0RFdsjTE9fcz4Z6vVamxMSuun6IHlq1/9Ktra2nDHHXegtrYWzzzzDD7xiU9gbGwMt912W7FfnmhLmp2dWdp/SMbs7KwxXllZaeyXUldXZ2KFROVF13U88si3MTExboxVVlYaLSfq6upNrG5rKHpguffee1e8Me7fvx8zMzP4yle+gv/yX/7LltxemKgY0uk0fv/7Hvz2ty9gePjVLfLtdjv8/iAkqdBqntfRiU4vk8mgv78PoZAIQRAgCAIaGhoQj0/D7w9AFAvziX/DNk7RA8uJPsVt374dDz/8MBYWFlBZyR1midYqn89jcLAfsixjcLAPDocVqdQiBEFAR0cnRLGwLoUtJ4hOL5/PY2hoALIso7+/0MLF6/Vi27YWAMAFF+zD619/CeeTSUxZXff888+jubn5rMOK1cpka7blY8BjsXF0XTdazRdaThTuULBYBDQ0NKOrq9BzhO0mzMN5UTpOdyyWW7jIcgSKsrKFS0NDPTQtD5ut8LNeL9tOnK2zOcG74YHlueeew6OPPoqPfexjZ/1cXq97HSqi9cBjUXyJRAJHjx7FK6+8gunpaWO8oaEW4XAYO3bsQFNTk4kV0h/jvCgdJzsWw8PD+I//eMT4ur6+ZsV84iXU0rGhgWVsbAy333479u3bh0OHDp318yUSKeTzvEvITFarBV6vm8eiSBYXFxGLRSHLEQwPDxtb5NtstqXr6JLRan75EySPhfk4L0rH8ccinU6jp6cHuVwOu3adAwBwu6vhdFagoaERkhRGR8erLVxmZhZO9dS0BtXV7jWv+9mwwJJIJPD+978fNTU1uOeee9ZloVI+r/G25hLBY7F+jm850dvba7SaB4DW1jZIUhh+fxAOh2Pp+2HsqQLwWJQSHgvzaZqGvr4+/OY3v0M02oNcLgu3uwKhUNgIJjfc8A7jb5Kug8esiJY+c63JhgSWdDqND37wg5ibm8O3vvUttp8nOoFjx6YgyxFEo8oJW82HQhK8Xq+JFRKVj+npacjyUfT0KNC0LFKpRWiajpqaGoRCEjTt1a7JvNOnPBQ9sORyOXzkIx9BLBbDQw89hObm5mK/JFHZWFhIQlUVKIqMqalJY9zlchstJ3gdnejMRSIv48iRF2GxCKit9SIQkBAMSmhqauZ8KlNFDyx33XUXnnjiCdxxxx2Yn5/Hiy++aDy2Y8cO47Q20VaRzWbR1xeDosgYHBww1qVYrVb4fF0QxTBbzROtUjabRX9/L2RZxp49e9He3gEAEMUwEokEtm/fjr17d2JuLsNLPWWu6IHl6aefBgDcfffdr3nsscceQ3t7e7FLIDLdqVrNNzdvgySFEQiE4HK5TKySqDzouo7R0REoioyeHtWYT263ywgsDQ2NuOqqt8Bmsyz1x8qc4hmpHBQ9sDz++OPFfgmikhWPx6EoESiKjPn5OWPc662GKIpsNU90BnK5HH73u+egKDLm5hLGeFWVF6JY2CKfNi+2ZSVaZ6lUCtGoCkWJrOg74nQ6EQgEIYphbNvWwuvoRKuQy+WMDuJWqxWxWBRzcwk4HA4EAiGIooSWllbOpy2AgYVoHeRyOfT39xmt5pdvM7ZYLEtb5IfR1dVtvPES0cnlcjkMDPRDUSIYGxvDLbccgt1uhyAIOP/8fQB0+HzdsNvtZpdKG4jvnkRrdHyr+WhURSbz6jXyxsYmSFIYwWAIbneFiVUSlQdd1zExMQ5ZjqCnR0U6nTYeGxkZhs/XBQAIBkMmVUhmY2AhOkOzszNQFBmqKmN2dtYYf7XVfPiETT+J6MSGh4fwy18+gZmZGWPM4/EszScJ9fUN5hVHJYOBhWgV0uk0YrEoFEXG6OiIMW632+H3ByGKElvNE61SJpNBJpMxNkL0eDyYmZmBzWaH3++HKIbR1tbO+UQrMLAQnUQ+n8fgYD9kWcbAQB9yuRwAQBAEtLd3QBTD6O7uZqt5olXI5/MYGhqAosjo6+tFZ6cPb3rTmwEANTW1uPrqt6CtrZ3ziU6KgYXoOLquY3JyYumSj4J0OmU8VldXv7RFvojKykoTqyQqD7quY2pq0phPqdSrzQQTiQQ0TTPOonR1+c0qk8oEAwsRgLm5OaiqDEWJIB6PG+MVFRUIhUSIYhj19Q28dZJoFXRdhyAI+PnPf4JoVDXGC00HRYRCIhob2XKCzgwDC21Zi4uLiMV6oCgRjIwMG1vk22w2dHV1QxQLreZ5HZ3o9LLZRcRiMXR1dRstV7Zta0FfXy98vm5IkoT29k62nKA1Y2ChLUXTNAwNDUJVZcRiMeRyWeOx1tY2SFIY3d0BOJ1OE6skKg+api21nIigp6cHuVwWl19+BcLhHQAASdoOUQxzPtG6YGChLeHYsSnIcgTRqIJkMmmM19TULK1LkYw7Fojo1Kanj0GWI1BVecV8qq6uhsXy6hkUNrel9cTAQpvWwkISqqpAUWRMTU0a4y6XC4FACJK0HU1NvI5OdCYWFpJ4+OFvGJdQC/Op0HKiuXkb5xMVDQMLbSrZbBZ9fTEoiozBwQHjTdVqtcLn64IohtHZ6eN1dKJVyGaz6O/vRTw+jQsuuAgAUFHhQUeHD1arxZhPbDlBG4G/ZVT2dF1fuo4uIxaLGq3mgcKiP1GUEAiE4HK5TKySqDzouo7R0REoioyeHhWLi4sQBAHbt+8ybud/85uv4ZkU2nAMLFS24vE4VFWGLEcwPz9njFdVeSFJEkIhCTU1tSZWSFQ+EolZyPJRyLKMubmEMV5ZWQVJCsNieTWgMKyQGRhYqKykUilEoyoUJYKJiXFjnK3mic7O8PAQnnvutwAK8+n4lhOcT1QKGFio5B3far6/vw+apgEALBYLOjo6IYph+HxdbDVPtAr5fN6YT21tHdi16xwAgN8fRF9fL4LBELq6/JxPVHIYWKgk6bqO8fGxpf0doitazTc2Nhpb5LvdFSZWSVQedF3HxMQ4ZDmCnh7VmE9zc3NGYHE6nbj66mvMLJPolBhYqKQkErNQlMIW+bOzs8Z4ZWWl0Wq+rq7exAqJyssLL/wOkcjLmJmZMcY8Ho8xn4jKBQMLmS6TyaCnR4WiyBgdHTHG7XY7/P4ARDGM1tY2bpFPtArZ7OKKjscTE2OYmZmBzWaH3++HKIbR1tbO+URlh4GFTLHcal6WZfT39yKXywEo3H3Q1tYOUQzD7/ez1TzRKmiahsHBAShKBH19fbjxxptRXV0DANi9ey98vm74/QHuPEtljYGFNoyu65icnICqKq9pNV9XV2+sS1ne64GITk7XdUxNTUJRZESjChYWXp1PfX292LPnXABAS0srWlpazSqTaN0wsFDRzc3NIRpVIMsRxOPTxvhyq3lRlNDQ0MhbJ4lWKR6P46c//TGmp48ZYy6X25hPjY1NJlZHVBwMLFQUy63mFSWC4eEhY4t8m82Grq5uiGIY7e0d3CKfaBWy2UXMzc0ZC84rKysxPz8Hm80Gn68boigubZfP+USbFwMLrRtN0zA8PARFiSAWiyGXyxqPtbS0QpLC8PuDbDVPtAqapi21nIggFutBZWUlbrrpFgiCALvdjquvvgb19Q2cT7RlMLDQWZucnMRvfvMCIpGjK1rN19TULK1LkeD1ek2skKh8TE8fg6LIUFUZ8/PzxrimaUilFlBR4QEAtLa2mVUikSkYWGhNFhaSUFUF0aiCZHIWqdQiNE1fajUfgiSF0dTUzHUpRGfgN795Fs8//1vja6fTiWAwBFEMo7l5G+cTbWkMLLRqy63mZVnG0NAANE2DxSLA43HB7w8gEBDZap5olXK5HPr6etHQ0GA06WxpaYXFYoHP14VQSILP18X5RLSEM4FOSdf1pevoMmKxKBYXF43Hmpu3Yfv27bjggr1IpzXkcpqJlRKVPl3XMTo6AlWV0dMTRSaTwZ49e/H6118KAGhra8ehQ+9mywmiE2BgoROKx+NQVRmKsrLVfFWVF6JY2NK7pqYWNpsFbrcb6XTyFM9GtLXNzs5AUSJQFAWJxPEtJ6qMNSlAoaEnwwrRiTGwkCGVSiEaVaGqMsbHx4xxh8OBQCAEUZTQ0tLK6+hEZ0DTNHzve981Nkq02+3GfGptbeN8IlolBpYtLpfLGa3mBwb6kc/nARQ+6bW3d0KSJPh83Ww1T7QK+XweAwP9GBrqx9ve9lYAhbkkihLi8WmIooSuLj/nE9EaMLBsQSdrNQ8AjY2NEMUwgsHQilPVRHRihfk0AUWJIBpVkU6nYLEIOP/8vaiqKmz0tn//xTyTQnSWGFi2kERi1tjf4USt5iUpbOykSbSVWCw9cLu/Dqv1KAA7stn9SKdvga7XnvRnFhaSOHr0FShKZMV8qqioQDi8HV6vF0sbPJdxWMnAZnsBgpCCpnUgnw+aXRBtYQwsm1wmk0EsFoUsRzA6OmKM22x2BAIBiGIYra1tbDVPW1QOlZV/A7f7S9B1K4A8AAEOxw/h8dyFubn/F5nMO0/4k4lEAr/5zbMACvPJ7/cjFJLQ3t4Bh8OGmhoP4vFyXYyeQkXFP8Lt/hIslhljNJu9EMnkx5HNXmFeabRlMbBsQvl8HkNDA1AUGX19vcjlcgAKn/La2tohimH4/X7Y7Ww1T1tbZeXfwOX6MgBAEPJLo4XTIrqegdf7XzAz40Q0egFUVYbbXYGLLy7cgtzcvA2SFEZrazv8/gAcjs0yn1KoqflT2Gy/hSCs3KrAZnsO1dV/jrm5e5HJvMOk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/dMLHdB2YnLTg5ZftOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9TXouvW4MysFf/iDDc8/78DU1HLn43lUVg6hu/sahELSJu+InILL9eUThpVlglAIdG73V5BM/t3GlUZbHgNLGcpmFxGLxaAoEQwPD0FfWtlns9nQ1dUNUZTQ3t65yd9Yic6O1foKgDwWFwGbDVhexhWPWzA1ZYXFoiMQyGHHDg2NjS1YXLzM1Ho3gt3+a1gsc6f9PkHIw+H4AQMLbSgGljKhaRqGh4eWWs3HkMtljcdaWlohSWH4/UG2midaBV3XMTioQ1VdUFUb3vzmFILBwpmWXbuyqK7WEQpl4XYDum5BMrk19k0RhIXTf5PxveW6oJjKVdEDS39/P7785S/jyJEjUFUVfr8fP/zhD4v9spvG9PQxyHIEqiojmXz1DaKmpgahUGGLfK+32sQKicrH9PQ0FCUCVVWQyVTAbrdDEIC+PpsRWGprddTWvvqBQBA0ZLP7zSp5Q2la26q+T9ct0LSOIldDtFLRA4uqqnjyySexZ88eaJpmXL6gk1tYSEJVFaiqjMnJSWPc5XIhEAhBksJoamrmuhSiVcpkMviP//h3TE5OGGNO5/nYs+cx7NiRQmvridds6LoVudwu5HKv26hSTZXL7UYuF4bVKkMQTvVerSGV+ouNKosIwAYElgMHDuDgwYMAgDvuuAN/+MMfiv2SZSmbzaK/vxeyLGNoaACaVngDtVqt6Oz0QRTD6Oz0sdU80SrkcjkcOzaF5uZtAACn0wld12GxWIz55PN1obKyBlVVf4UTfY4q7MviwPz8PRtbvKkEJJN/i+rqQyf9Dl23QtPakMn8+QbWRbQBgYUbkp2crusYGRmGqiro6VGxuLhoPNbcvA2iGEYgEITb7TaxSqLyoOs6xsZGoSgR9PREkc9reNe73mPsj/LGNx5AZWXlim7I6fRfQNfd8HjuhNU6vhRSdAiChnx+O+bmvoBcbq85/0ImWVz8M8zP3w2P5+MALMZdVLouANChaa2YmfkPAOwqTRurrD+uW63lGYZmZuKQ5QgURUYikTDGa2qqIYqFLfJrak6+JXgpWT4G5XosNpOteixmZ2cgyxHIsoxEYtYYr6qqQjKZQEVFEwCgpWXbCX8+n387EokbYLf/FBZLYWv+XO71yOdfB0DAWk5qlvuxyGZvQyJxAE7nF+Fw/AhACprWiUzmvVhcvAkWiwfl8lm03I/FZnM2KxnKOrB4veVz5iGVSkGWZbzyyisYHR01xqurKyFJErZv34729vayXZdSTsdis9tKx+IPf/gDfvKTnxhfe70eiKKIHTt2oKOj4wzn0w3rXl95H4sLlv5XYLEUbv/2lGlP1PI+FgSUeWBJJFLI50++wZHZcrkc+vv7IMsRDAz0I58vnFq1WCzo6OiEJIXR1dVttJqfmVn9LYWlwmq1wOt1l/yx2Ao2+7HI5/Po7++Dy+VCa2vhbhavtwGZTA7t7R2QpDC6u/0lMZ82+7EoJzwWpaW62r3mpSJlHVjyeQ25XGn9AhZazY9DliPo6VGRTqeNxxobGyGKYQSDIVRUvPoxpdT+HdaiFI/FVrWZjkVhPk1AUSKIRlWk0yl0dvrwlre0AADcbg9uvfU9cLlcxs+U0r/7ZjoW5Y7HojSczY3CZR1YSkkikYCqyq9pNe/xeIz9UurrG8wrkKiMJBIJRKMKFCWCeDxujFdUVKCurh66rhuXe44PK0S0eTGwnIVMJoNYLApZjmB0dMQYX241L4phtLW1804pojP0+OM/M+aUzWZHd3c3RDGM9vYOzieiLarogSWVSuHJJ58EAAwPD2N+fh6HDx8GAFx44YWoq6srdgnrStM0DA4OQFEi6OvrRS6XAwAIgoC2tnaIYhh+vx92+2ZpNU9UPJqmYWhoEKoq4/Wvv9S4hV+SwrBYLEvzKWDcmkxEW5egF3nr2aGhIVxxxRUnfOzrX/869u3bt+bnjseTG3JNUtd1TE1NQlFkqKqCVOrVxXy1tXWQpDBCIQmVlZVFr6XU2GwW1NZ6NuxY0MmV07EozKfCFvkLC4X5dMklb8A55+wGgBWXfMpROR2LzY7HorTU1XnWfIt50c+wtLe3Q5blYr9MUczPz0NVC9fRp6ePGeNudwVCIRGiKKGhobGs31iJNkomk8HRoy9DUWQcOzZljLtcbgSDIbS2thpjnFNE9Me4huWPZLOLiMViUFUZQ0ODRu8jm80Gn68bkiShvb0TVqvV5EqJSt/xZ0o0LY9f//pX0DQNVqvVmE8dHT7OJyI6LQYWFK6jj4wMQ1EiiMV6kM2+2qm1paUVoighEAjB6XSaWCVReVhuOSHLEaRSKbzlLW8FUDgzuXfveaisrEQgENpUd/cIwjSczu/Aah2ArjuRz/8JgBNfCieitdnSgWV6+tjSuhQZ8/Pzxnh1dTVEMQxRlOD1VptYIVH5mJ6eXrq1X8b8/JwxnkjMGvNo3779ZpVXJHl4PJ+B230PgCwKb6k6BOEfAeyCxfIAgLCpFRJtFlsusKRSC8a6lMnJSWPc5XIhEAhCFMNobt7Ga+hEq9TXF8Nzz/0Wk5MTxpjT6TTmU1WV18Tqiquy8r/B5XoAgrB870L2uEePoqrqIGZmnkA+HzKjPKJNZUsElmw2i/7+PihKBIODA9C0wkpxi8UCn68LohhGZ6cPtrV0OSPaYnK5HHRdM27dz2azmJycgMViQWenD6GQhK6ubpPmUx52+y9gtQ5C191YXLwcut5UlFey2Z6H2/3lU9YiCEl4PP8dicTDRamBaCvZtH+hdV3H6OgIFEVGT4+KxcVF47GmpmZji/zlfR+I6OR0XcfY2CgUJYKenijOPfd1OPfc1wEAurr8uOSSy5bmU4VpNbpcX0NFxf+A1TpmjOm6FZnM2zA//4/Q9fp1fr0vQ9dtEITcSb9HEPJwOH4Ci2UImta+rq9PtNVsusAyMxOHqsqQZRlzcwljvLKyytgvpba21sQKicrH7OwMFKWwLiWRmDXGh4YGjcBit9txzjl7zCoRAFBR8Tl4PJ95TZ8SQcjD6fwebLYXMDPz83UNLXb7r04ZVl6tQYfN9gIWF7dqYCmENofj5wDS0LQupNPvYICjM7YpAks6nUY0qkJVZYyNjRrjDocDfn8QoiihtbWN61KIVknXdfzoRz/A4OCAMWa32+H3ByFJYaNbcimwWl+Gx/MZAMCJprgg5GG19sHj+TTm5/+/dXzlM9lzs6j7c5Ysm+3X8HrfBat1BLq+/OdGR0XF/0A6/W7Mz/8jALuZJVIZKdvAous6YrEeHD16FP39fcjn8wAKG051dPggiiK6ul5tNU9EJ5fP5zE2Noq2tsKnXkEQ4HK5luZTJ0SxsC6lFFtOuN1fWtWlGZfr35BM3gVdX587/3K5c2G1DqzqLEsut2tdXrOc2GxHUFPzViwvRP7j/04u11cgCHOYm/sSAH6YpNMr28CSSCTw4x//CJpW+OTS0NAIUZQQDIbg8Wy9LfKJzpSu65icnDBaTqTTKdx00ztQV1e4bHLhhRdh//6LS34+ORw/X+WlmTRstueRzR5Yl9dNp98Hl+u7p/weXbcim70UmuZfl9csJx7PnQCyEIT8CR8XBB0u17eRSn0AudzaW7TQ1lG2gUXXdXg8Hvj9IUhSGPX1DWaXRFQW5ubmlvZLiSAejxvjFRUVmJtLGIGlfPYgyqz6OwVh9d97Otns65FOvw1O5/chCCfqUWMBYEcy+el1e81yYbH0wOF48rTfp+s2uN1fwtwcAwudXtkGFo/Hg0OH3g2NvayIVm10dATf//4jK1pOdHf7EQpJ6OjohMWytqZkZsrnRVgskyf9JL/ye4Pr+MoC5ua+CF2vgsv1IAoBpTBeOOPTjLm5B5HLmbsg2Qw220ur+j5ByMFme77I1dBmUbaBxW63w2JZNPZUIaKVNE3D0NAgstksAoHCH+qmpma4XG7U1tZCksLw+4NwOEpvXcqZSKffA4fjl6f8Hl23IJe7sAgbuDkwP/8vWFj4v+FyPQSrtR+67kY+fyUqK69HPp8BsBXfo85kTQrXr9DqlG1gIaITm5qawiuvvAJVlbGwsICqKi/8/gAEQYDVasU73nFr2YeU42Uyb0U2uwc22x9OeJZF1wUAApLJTxStBk3zYWHhb42vbTYLCm+v63cJqpzkcnuh68JxOwCfWGGNDy8H0eowsBBtAsnkPGKxKAYHYxgcHDEWo7tcbvh8XcjlssYdPpsprBTYMTv776iuvh52+/PQdSsEIb+0J4sAwIFE4gFks5eaXOfWoWk+LC4ehMPx+Ckv1QlCHun0+zawMipnDCxEm8Bzz/0GkcgrcLsdsFqt6OrqgiRJ6OjwwWq1ml1e0el6PWZmHoPd/jhcrgdhtfZC1yuwuPhmpNO3rPsut3R6yeT/hN1+OYDUSc98pdN/gVzuvI0vjsoSAwtRGdF1HSMjw1AUGTt27EJzczMAQBTDmJmJ44ILzkVTUztsts12FmU1LMhmDyKbPWh2IQQgn5cwM/MTeL1/AZtNXdo4TgCQB2BFKnUbkslPmlwllRMGFqIyEI/HoSgRKIqM+fk5AIDVajUCS0tLK6677gbU1noQjyeRy23FhZ5UavL5cxCPPwe7/Wk4HI8BSEHTfEinb+RZLzpjDCxEJSqXy+Ho0VegKBFMTIwb406nE4FAYYt8otInIJu9BNnsJWYXQmWOgYWohOi6bvS8slqtePHF5zE/Pw+LxbK0RX4YXV3dsNk4dYloa+G7HpHJdF3H+PgYFCWCkZFh3HjjO2CxWCAIAs4993xoWh6hkAi3u8LsUomITMPAQmSSRGIWshyBqsqYnZ01xoeGBtHZ6QMA7Np1jlnlERGVFAYWog02NjaKZ599BqOjI8aY3W6H3x+AKIbR2tpmYnVERKWJgYWoyPL5PBYXF+F2uwEU+veMjo5AEAS0t3dAFMPo7u42NnYjIqLXYmAhKgJd1zE5OQFFkaGqCnw+Hw4cuBIAUF/fgDe84XJ0dnahsrLS5EqJiMoDAwvROpqbm4OqylAUGfH4tDE+NjYKTdOMxbQ7duwysUoiovLDwEK0Tn7xi8cRibwCvdDEBjabDV1d3RDFMDo6OmGxWEyukIiofDGwEK2BpmkYHh7Ctm0tsNvtAICqqirouo7W1jZIUhjd3QE4nU6TKyUi2hwYWIjOwLFjU5DlCKJRBclkEldeeRWCwRAAYMeOXQiFJHi9XpOrJCLafBhYiE5jYSEJVVWgKDKmpiaNcZfLjcXFjPG12+027gQiIqL1xcBCdArJ5Dz+9V+/Bk0rNBO0Wq3w+bogimF0dvpgtVpNrpCIaGtgYCFaous6RkaGMT09jXPO2Q0A8Hgq0djYBEEQIIoSAoEQXC6XyZUSEW09DCy05cXjcShKBIoiY35+DlarFaGQaASTt771z4yFtUREZA4GFtqSUqkUolEVihLBxMS4Me5wOBAIhJDL5YwxhhUiIvMxsNCWpKoynn76KQCAxWJBR0cnRDEMn6+LAYWIqAQxsNCmpus6xsfHoCgRtLa2IRgUAQDBYAiqqiAUEhEMhlBR4TG5UiIiOhUGFtqUEolZKIoMRYlgdnYWQGGtynJgqajw4LrrbjSzRCIiOgMMLLSpRCKvIBI5itHREWPMbrfD7w9AFMMmVkZERGeDgYXKmq7rEATB+FpVFYyOjkAQBLS3d0AUw+ju7obd7jCxSiIiOlsMLFR2dF3H5OQEVFVBNKrg+utvgsdTCQDYvXsP2ts7EQqJqKysNLlSIiJaLxsSWHp6evCZz3wGL7zwAjweD6699lp85CMfgcPBT720enNzc4hGFchyBPH4tDHe0xPF7t17AQA+Xzd8vm6TKiQiomIpemCZnZ3Fu971LnR1deGee+7B+Pg47r77bqTTaXzyk58s9svTJjAzE8dTTz2J4eEh6LoOALDZbOjq6oYohtHe3mFyhUREVGxFDyzf/OY3kUwm8S//8i+oqakBAOTzedx111344Ac/iObm5mKXQGVG0zQsLCwYl3Tc7gqMjY1C13W0tLRCksLw+4NwOp0mV0pERBul6IHll7/8Jfbv32+EFQC4+uqr8alPfQpPP/00/vzP/7zYJVCZmJ4+BlmOQFVlVFR4cP31NwEAnE4nDhy4Eo2NjfB6q02ukoiIzFD0wBKLxXDdddetGPN6vWhsbEQsFjur57ZaLWf183T2lo/BWo/FwkISilJYlzI1NWmM67qGxcU0KioqAACSJJ59sZvc2R4LWj88FqWDx6K0HHdT5xkremBJJBLwer2vGa+urjY29Forr9d9Vj9P62ctx+LZZ5/Fr371K2iaBgDweFzw+/3YsWMHuru7YbPxJra14LwoHTwWpYPHovyV9V+ERCKFfF4zu4wtzWq1wOt1n/ZY6LqOkZFhVFfXGGtTbDY3ksk0mpu3QZLCCAZDcLsLbypzcxkAmY34V9g0VnssqPh4LEoHj0Vpqa52w2JZ29muogcWr9eLubm514zPzs6iuvrs1iPk8xpyOf4CloKTHYt4PA5VlaEoMubmEjj//AtxwQX7AABtbZ246aZbUFNTa3w/j+fZ47woHTwWpYPHojQs3ei5JkUPLH6//zVrVebm5jA5OQm/31/slycTpFIp9PREoSgRjI+PGeOFfXde/W212WwrwgoREdHJFD2wXHbZZbjvvvtWrGU5fPgwLBYLLr744mK/PG0wTdPwzW8+hHQ6BQCwWCzo6OiEKIbh83XBbrebXCEREZWjogeWm2++GQ8++CA+/OEP44Mf/CDGx8fxuc99DjfffDP3YClzuq5jdHQUr7wyju3b9wAoBJTubj+mpiYgioV1KRUVHpMrJSKiclf0wFJdXY2vfe1r+PSnP40Pf/jD8Hg8uP7663H77bcX+6WpSBKJWSiKDEWJYG4uAbfbgYaGFtTVNQIALrnkMt7hQ0RE62pD/qoEAgF89atf3YiXoiLJZDKIxaKQ5QhGR0eMcYfDgR07dsBme/VSD8MKERGtN/5loVWZmBjHL37xOABAEAS0tbVDFMMQxSCammoRjye5Ap+IiIqGgYVW0HUdU1OTUBQZbrcb5513PgCgra0d7e0daG/vRCgkHreXCnePJCKi4mNgIQDA/Pw8VFWGLEcQj08DACoqKrB373mwWCywWCx461v/zNwiiYhoy2Jg2eJisR68/PJLGB4egr60o4/NZoPP1w1JkkyujoiIqICBZYvRNA2CIEBY6kA1MjKMoaFBAEBLSyskKQy/Pwin02lmmURERCswsGwR09PHIMsRqKqMK674E7S1tQMAtm/fAZfLBVGU4PWeXasEIiKiYmFg2cQWFpKIRlUoSgSTk5PGeE+PagSW+voG1Nc3mFUiERHRqjCwbELpdBqPPfYzDA0NQNMKtxpbrVZ0dvogimF0dvpMrpCIiOjMMLBsArquI5GYRXV1DQDA6XRidjYOTdPQ3LwNoZCEYDAEt9ttbqFERERrxMBSxmZm4ktb5MtYXMzg0KH3wGazQRAEvOENB1BR4UFtLbshExFR+WNgKTOpVAo9PVEoSgTj42PGuMPhwPT0MTQ1FRpKLq9RISIi2gwYWMqIosj4xS8eQz6fB1DojNze3glJkuDzdcNut5/mGYiIiMoTA0uJ0nUdExPjsFqtaGgodEFubGxCPp9HY2MjRDGMYDCEigqPyZUSEREVHwNLiUkkElBVGYoSwczMDAKBEP7kT64CANTW1uLtb38namq4LoWIiLYWBpYSkMlkEItFIcsRjI6OGOM2mx0OhwO6rhs70zKsEBHRVsTAUgJ+9KMfGAtoBUFAW1s7RDEMv98Pu91hcnVERETmY2DZQLquY2pqEqoq44IL9hlhxO8PYHFxEZIURigkobKy0uRKiYiISgsDywaYn5+HqipQlAimp48BAOrrGyFJYQDA7t17sWfPucZlHyIiIlqJgaVIstksYrEeKEoEw8ND0HUdAGCz2eDzdaO6+tVGgxaLxawyiYiIygIDS5Gk02k8/vjPjK9bWlohihICgRCcTqeJlREREZUfBpZ1MD19DLIcQSaTwRvfeAAAUFVVhXB4B6qqqiCKErze6tM8CxEREZ0MA8sapVILxrqUyclJAIVLOxdeuM/YzO3yy68ws0QiIqJNg4HlDA0PD+HIkRcwODgATdMAAFarFZ2dPohiGA4HL/cQERGtNwaW09B1HZqmwWq1Aih0SO7v7wMANDU1G1vku91uE6skIiLa3BhYTmJmJg5VlSHLMvbuPQ+7dp0DAAgEQkgmkwiFJNTWctdZIiKijcDAcpx0Oo1oVIWiRIydZwEgFosagcXlcuHCCy8yq0QiIqItiYEFhcs+P//5T9DbG0M+nwdQWEDb3t4JSZLg83WbXCEREdHWtiUDi67riMenUVdXD6DQvyebzSKfz6OhoRGiKCEUEo27fYiIiMhcWyqwJBIJqKoMRYlgZmYGt9xyyNgf5cILL8K+fftRX99gcpVERET0xzZ9YMlkMojFopDlCEZHR4xxm82OqakpI7A0NDSaVSIRERGdxqYOLKOjI/jhD7+PXC4HoHDpp7W1DaIYht8fgMPhMLlCIiIiWo1NE1h0XcfU1CQWFxfR1tYOAGhoaIAgCKitrYMkhREMiqiqqjK5UiIiIjpTZR9Yksl5KEphi/zp6WOora3DTTe9A4IgwG534KabbkFlZSUEQTC7VCIiIlqjsg0si4uL+MEP/h0DAwPQdR0AYLPZUFdXj1wuC7u9cLmHZ1SIiIjKX9kGloWFBQwOFsJKS0srRFFCIBCC08lePkRERJtN2QaWQmfkixAIhIw7fYiIiGhzKtvAUlVVhQsuuBC5nGZ2KURERFRkFrMLWCsuoiUiIto6yjawEBER0dbBwEJEREQlr+iB5emnn8ZHP/pRHDx4EJIk4e///u+L/ZJERES0yRQ9sDz11FOIRCK44IIL4PV6i/1yREREtAkV/S6hv/mbv8Edd9wBAPj1r39d7JcjIiKiTajoZ1gsFi6TISIiorNTtvuwAEB1tRtLu/KTSZbvLuexMB+PRengsSgdPBalxWJZ+5YkZR1YePamdPBYlA4ei9LBY1E6eCzK3xkHlrm5OUxMTJz2+zo6OuBwONZUFBEREdHxzjiwHD58GHfeeedpv+/RRx9FIBBYU1FERERExzvjwHLDDTfghhtuKEYtRERERCfEi3pERERU8oq+6HZ4eBgvvfQSACCVSmFgYACHDx8GAFx11VXFfnkiIiLaBARdL+6NXo888gg+/vGPn/AxWZaL+dJERES0SRQ9sBARERGdLa5hISIiopLHwEJEREQlj4GFiIiISh4DCxEREZU8BhYiIiIqeQwsREREVPLKPrA8/fTT+OhHP4qDBw9CkiT8/d//vdklbQk9PT1497vfjb179+Liiy/G5z73OSwuLppd1pbU39+PT37yk7j22muxY8cOXHPNNWaXtCX9+Mc/xl/+5V/isssuw969e3HttdfiO9/5DrhzhDmefPJJvPOd78RFF12EXbt24YorrsBnP/tZzM3NmV3alpdMJnHZZZdBkiRjY9nVKPpOt8X21FNPIRKJ4IILLsDs7KzZ5WwJs7OzeNe73oWuri7cc889GB8fx9133410Oo1PfvKTZpe35aiqiieffBJ79uyBpmn8A2mSr371q2hra8Mdd9yB2tpaPPPMM/jEJz6BsbEx3HbbbWaXt+XMzMxg9+7duPXWW1FTUwNVVXHPPfdAVVU88MADZpe3pX3hC19APp8/8x/Uy1w+nzf++fLLL9fvuusuE6vZGu677z597969ejweN8a++c1v6tu3b9fHxsbMK2yLOn4OfOxjH9Pf8pa3mFjN1nXs2LHXjN155536eeedt+IYkXm+9a1v6aIo8n3KRNFoVN+7d6/+jW98QxdFUf/973+/6p8t+0tCFkvZ/yuUnV/+8pfYv38/ampqjLGrr74amqbh6aefNq+wLYpzoDTU1dW9Zmz79u2Yn5/HwsKCCRXRH1t+z8pms+YWsoV95jOfwc0334zu7u4z/lm+09EZi8Vi8Pv9K8a8Xi8aGxsRi8VMqoqo9Dz//PNobm5GZWWl2aVsWfl8HplMBi+//DI+//nP48CBA2hvbze7rC3p8OHDUBQFH/7wh9f082W/hoU2XiKRgNfrfc14dXU11xERLXnuuefw6KOP4mMf+5jZpWxpl19+OcbHxwEAl156Kf7X//pfJle0NaVSKdx99924/fbb1xzgSy6wzM3NYWJi4rTf19HRAYfDsQEVERGdmbGxMdx+++3Yt28fDh06ZHY5W9r999+PVCqFaDSKe++9Fx/60Ifwla98BVar1ezStpR7770X9fX1uO6669b8HCUXWA4fPow777zztN/36KOPIhAIbEBF9Me8Xu8Jbw2cnZ1FdXW1CRURlY5EIoH3v//9qKmpwT333MM1RiYLh8MAgHPPPRfnnHMOrr32WvzsZz/DVVddZXJlW8fw8DAeeOABfP7znzf+diyv61pYWEAymYTH4znt85RcYLnhhhtwww03mF0GnYLf73/NWpW5uTlMTk6+Zm0L0VaSTqfxwQ9+EHNzc/jWt76Fqqoqs0ui40iSBLvdjoGBAbNL2VKGhoaQzWbxgQ984DWPHTp0CHv27MHDDz982ucpucBCpe+yyy7Dfffdt2Ity+HDh2GxWHDxxRebXB2ROXK5HD7ykY8gFovhoYceQnNzs9kl0R85cuQIstksF91usO3bt+PrX//6irGjR4/is5/9LO666y6cc845q3qesg8sw8PDxk55qVQKAwMDOHz4MADwlF+R3HzzzXjwwQfx4Q9/GB/84AcxPj6Oz33uc7j55pv5Jm2CVCqFJ598EkBhPszPzxtz4MILLzzh7ba0/u666y488cQTuOOOOzA/P48XX3zReGzHjh1cc7fBbrvtNuzatQuSJMHlciESieDLX/4yJEnCwYMHzS5vS/F6vdi3b98JH9u5cyd27ty5qucRdL28t8V85JFH8PGPf/yEj8myvMHVbB09PT349Kc/jRdeeAEejwfXXnstbr/9dr4pm2BoaAhXXHHFCR/7+te/ftI3ClpfBw4cwPDw8Akfe+yxx/ipfoPdf//9ePTRRzEwMABd19HW1oYrr7wS733ve3mbeQn49a9/jUOHDuE73/nOqs+wlH1gISIios2Py9eJiIio5DGwEBERUcljYCEiIqKSx8BCREREJY+BhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUcljYCEiIqKS9/8DQLeYnUD1XxEAAAAASUVORK5CYII="}}]}}, "190d57b7eca94fd5965cf7c85c14e0c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cbe9f6c6e5e4a33b96bb66957fdf94e": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_f8cb5cb6f479434f92440904e3d9a825", "IPY_MODEL_aaad216f57764ae1a13abc4d66b63c11", "IPY_MODEL_2234ee95cfef46d79b5b63e450ae1642"], "layout": "IPY_MODEL_190d57b7eca94fd5965cf7c85c14e0c7"}}, "b860a5e9a735430d8a4d46f421f6a5e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "685d6392753d4454953f989bb34f3145": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f8cb5cb6f479434f92440904e3d9a825": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_b860a5e9a735430d8a4d46f421f6a5e6", "style": "IPY_MODEL_685d6392753d4454953f989bb34f3145"}}, "5703170ed9984a5a9f48833b0c4b0541": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f45d7e66f59f460093c00c2894cc057e": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "aaad216f57764ae1a13abc4d66b63c11": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_5703170ed9984a5a9f48833b0c4b0541", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_f45d7e66f59f460093c00c2894cc057e", "value": 30}}, "bb643f0cfd414dc686309016af3154af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2234ee95cfef46d79b5b63e450ae1642": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bb643f0cfd414dc686309016af3154af", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGFCAYAAABQYJzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr2klEQVR4nOydd5hjZdnGf+97WnpmtsPC7sJSVBA7VbqAivTesYvlUxH9xK4gVlCxN7qChaqoH0gRC4gFQXpfYPvMTiY9OeX9/jhJdloySSaZyQznd117wc5OknNmkvOc93nv576FUkoREBAQEBAwg8iZPoCAgICAgICgGAUEBAQEzDhBMQoICAgImHGCYhQQEBAQMOMExSggICAgYMYJilFAQEBAwIwTFKOAgICAgBknKEYBAQEBATOO3uw3btyY6eZxBAQEBAR0mYUL4zN9CHUJVkYBAQEBATNOUIwCAgICAmacoBgFBAQEBMw4QTEKCAgICJhxgmIUEBAQEDDjBMUoICAgIGDGCYpRQEBAQMCMExSjgICAgIAZJyhGAQGzHF1X6LpCKXemDyUgoG2admAICAjoLaSEcNgkHDYRQjA4OIzrKoQQM31oAQEtE6yMAgJmGUKAZWn09UUJh00KhSK2bZNIRILVUcCsJVgZBQTMIgxDEIlYmKaBbTtks0VKpSKaJpk3r59wWKdYDFZHAbOPYGUUEDALkBKiUZNkMoqua2SzBbLZAqZpMH9+P64LhUKRWCwKOCilZvqQAwJaIihGAQE9zNiWXKlkMzycQwhIJqOEQiYgSCRiZDJ5AGKxMODN6HEHBLRK0KYLCOhRxrfkSgjhFxvD0CmXbTKZLFIK+vv7KBQMMpk8yWSMQqEciBkCZhXByiggoMeo15KzLIN4PIKUgkwmT6FQIhIJ4zgOxWKZRCJKoVCkXA7EDAGzj2BlFBDQIwgBpqkRjYaQUlAq2RQKJUxTJ5mMIoSgUChRLtuEQhaWZSCEQEpJOp1lwYJ+YrEImUyOefOSgZghYFYRFKOAgB6gmZZcPl/CMDQSCb8w5fMFbLtMX18fuq6TyxWIRsMUCsWamKFYTKGUHhSkgJ4nKEYBATPIyMFVpRTZbAHbdgiH/ZWP53lkMnmUUsRiYXRdq62YNE3gOG6tRTcwMEQoZJFIxEilMoRCFrFYmGy2BGgzfaoBAQ0JilFAwAzQTkuuWpgA4vEImiYJhSxSqTQLFvQTjfotuv7+BKYZiBkCZheBgCEgYJoxDEEiESKRiOB5Hul0nnLZJhYLE42GcRyX4eEcSikSiSiWZVAolEaJGFzXJZUaRtc1LMskm81XHhuIGQJmJ0ExCgiYJqSEZDI8qUquWCzXCpNtu5W5IkEisflxxWIRpTzy+SKxWIRCoYjrepV5oyxSypqYQdd1wmE9GIQN6GmCNl1AQJcZ25LzPEU6nWupJSeloFgsUy7bhMMWphnG8zwGB4cJhy3i8SiZTJb+/mQgZgiYlQQro4CALjK2Jee6Hq7rttSS81t5OQASiSiaJslkMijlq+0ymRzhcAjPU7UWXS6XH7FSCpwZAnqfoBgFBHSBeoOrmiYxDL2lllypZBOLRQiFfIfuVCpNsWiTzfpFyHW9yt7Q5hZdVcxgWWZNzBCJhNE0EbTrAnqSoBgFBHSQybzkhBCUyw6ZTB7D0InHIwgBmYwvYojH/aJTLJbJZPKYpk4sFq4JFvL5AkpReZ4y5bK/Ekqns4GYIWBWExSjgIAOMZlKznX9FpnneS215NLpDOl0pvL4kfs9gmw2j6ZpmKYRiBkCZjVBMQoImCLNesnZtgNAOGy11JIrl238IjRaeCCEwHXdmkAhny8C1MQMlmWOEjN4nhfETAT0LEExCghok8lactWVT7UlFw5bKKVabsmNLUKjj0FWvk8FYoaAWU1QjAIC2qCdwVXXdXFdr82WXH2UIhAzBMx6gmIUENACzbbk6qnkNE221ZJrRCBmCJgLBMUoIKAJWm3JTaSSk1Lium7bLblJjjAQMwTMaoJiFBAwCZ3wkvO8qpJOTaklV49AzBAw2wmKUUBAHabakhupkiuXbYQQGIY+pZZcI9oRMwghmDcvSSBmCJhpAm+6gIAxdCLeYbyXnAFAJpPteBEaSVXMkEzGa8fo5xuNj5mwLAOlFLquoWkiiJkImFGClVFAwAg61ZKbSCXnui6WZdGNIlSlNTFDDCkltu0EYoaAGScoRgEBdLYlV08ll8sVavLq7tKcmEEIPynWL1iBmCFgZgnadAEvarrVkiuXbdLp3AhxgqBctimXbaLRcKVV161zGi1mGBxMjYuZsCyzJjUfKWYIYiYCZopgZRTwoqWbLbl6KrlsNo+UknA41NVzm0zMEIttjrQInBkCeoGgGAW86JiOllw9gUJ1FRKJhJCyux+/Rs4M1RZd4MwQ0CsExSjgRUMnBlen6iUHkM8X8TxFNBru8vlOLGaIxSI1mXngzBDQKwTFKOBFwUy05BqRy+VnTMwQClmUy3bgzBDQUwQChoA5jZQQDpuEwyZKKbLZArbtEA6PFiNU91Z0XauJGCzLIJGI1h4HEIv5bbxCoUihUKxcsFvf7J8pMUMqNVxbkVXFDCOdGarnFYgZAqabYGUUMCfplZZcI2ZCzBCPx/A8D9M0gpiJgJ4iKEYBc45ea8nVYybEDIahUyrZQcxEQM8RFKOAOcNMquTaZbrEDJomCYVMAAxDD2ImAnqOoBgFzHqEgGjUoL+/d1tyjei2mCEctip7QwbZbA5Nk0HMREDPEQgYAmY1hiGIRHzXA6UU6XQeIfz9DsPQKZdt8vkShqGRSGx2VKiKGEzTwLYdstkipukLFvwWXWaEsKC7G/jdEjMYhk40GkHTJMViiXy+gOd5lWIzsTNDIGYImCmClVHArGRsS65YLCOE6OmWXCM6KWaQUhCPR0km4yjlkUqlyeX81V07MRMQiBkCuk+wMgqYVdTzkqvuh1Rbcp3wkptORooZSqVyLYyvVcJhi0gkjFKKTCZHqVQe9z2txExUxQzJZIxCoRzETAR0jWBlFDBraKSSC4ctgNrsz0yq5NplKmIGw9Dp60sQiYQpFksMDQ1PWIig1ZiJQMwQMD0ExSig52lWJed5HpZl9XxLrhGtihkateQa01zMRCBmCJgugjZdQM/SarxDtX3U6y25RrQiZmimJVePZmImAjFDwHQSrIwCepJ2Blcdx0Upb1a05BoxmZihlZZcIwIxQ0AvEayMAnqKqXjJRSIWUmoIITruJTed1BMzSCmIRiNYlolt26RS2UpRbZ9AzBDQKwQro4CeoBNecobht45yucK0D652mrFihurgqmHoZDI5hoenXoggEDME9A5BMQqYcTrlJbe5jRSZNS25RlTFDP39U2/JNSYQMwTMPEGbLmDG6HS8QzTqb+Y7jkM6nZ0VLbl6SCmwLLPy/5JUKt2RldBEBGKGgF4gWBkFTDvdjHcol8tomkavqeRaYWRLLpv1V3umaXb1NQMxQ8BMExSjgGml2/EO1Yt3t12wu8FEKrlisTTtMRPhcAjX9YKYiYBpJShGAdPCdMU7KAX5fIFQyELXtZk+7aaYbHB1umImAjFDwEwSFKOArjITiavFYhnbdojFIjN23s3SrEqu2zETmwnEDAEzQ1CMArrGTCau5nL+BTUUsqbxjJun1cHVkc4M3WSsmCGfLwLUxAyWZY4SM1RnomKxKOAEBSmgbYJiFNBxeiFx1XFcSqUykUiop5Re7XvJdTZmohGBmCFgJgiKUUDHmImWXCNyuc2S715gqoOrI50ZAjFDwFwjKEYBHWEmW3L1UEr1hJihU15yEIgZAuYuQTEKmBK90JJrxEyKGabSkmtEIGYImIsEDgwBbdFqvMNMJq7mcnmSyTihkEWxWJry8zXDVOIdJqOVmImpEDgzBEwnwcoooGV6sSXXiOkUM3SyJdeIQMwQMNcIVkYBTdNpL7npjHfwnbwNotFwzaVhyiiFfs89hH5+FcY/7kUohXzlK3FOO43UXnvjiu7d69WLmegGQcxEwHQgVJPN3Y0bM90+loAepVFLLhy26rbk8nm/JearvyZuyeVyuWlz1Q6FTGKxKKlUGseZ4ia74xD95LlYv/wFwvP8Sg1QKQrlffYl8/0fQiw2xaNuTH9/EsdxyGRyXX0dpTySyXjFtDXD/Pl9ZDL+vl8sFmFgYIh4PIZhaGzcOMS8eUmEgE2bskgZ3PP2CgsXxmf6EOoSFKOAhhiGIBYLoes6tu2Qz5cQwt8TMQydctkmny9hGNqowlRdMZmmUXlcEdM0CIVMPM8jl8uP2O+YvjvnZDKOEJBKTe39HP7aV4l852IwDLAsQKBQoAC7jCiXKR36FrLf+8HET1AqYfz5LuTGjah4HHvvfVDJZMvHYZoGiUSMdDrb1f0jpRSaJunvT5LJ5NA0//c9MDDEvHl9uK5LOp1lwYJ+crkCpVKZefP87y0WvWB11CMExShg1jGyJQeQz5dqq5qRKx+lFJFIaFxLLhQyK9Jqf3UUDls9kbiq6xrJZJxcrtC2mEHLpunbbVdEPo+K+q1Hxn6KSkVQiuE/3IK7w46bv+55hH70Q8I/+RFy40bwFAhQsRjFY48n/78fh2i0peNJJGJommRoKN3W+TSLUh7RaIRQKMTgYIr585OUSmWKxRL9/UmGhtIYhk40GmZgYIhEIoZpGgwMpFBKCwpSD9DLxSgQMASMYqLBVaVUTSU33YOrnWaqYoZw2KLvzjsgm8ULhVDeBIUIwLTAdbFuuH7z15Qi+tlPE/3SF5EbNvhFzHXAcRCpFOFLf0ribWdCodDSMfWimCGZjNek59FoiEDMEDAZQTEKqFFPJaeUrxJzXa+nVHLt0tCZIZvF+sU1xM88ncSRhxN79zsxf3MThufWVHLOc8+DkP6fegjhCxrWrat9yfjzXVhXXYlyXSgWEcUi2DY4fkGiWMS460+ELvlJS+fTa84M2WwO0zRwXf+9EDgzBDRDsLMY0JRKznXdymZ1b6nk2qHqzODPw5RqYgb9vn8Te+9ZyPXr/KuulHC/wvrjrYjvfxf78stJLdkSQzfQlOd/T4PVlRICFd5c8KyfXYUol6Fc9h9X/TMSxyHyzW9SfPdZoDf/8czni1iWRTQa7qqYYawzQ1XMUHVmiMUitdW0EFAoFAmHLRKJCJs2ZREiuOQETEywMnoR04qXnOt66LpWc1SYDS25Rox1ZpDPPEP8nW9Hrl+HisdR/f3Q14eYPw9iMdSjjyKOPwFvYBB7//1B0/yiUg/HQQDl/Q6ofcn4y5/9ldBERQhqXxOpIfS7/9byOfWCM4NSilDIJJ0OnBkCWiMoRi9SWh1cNQy9toIIhWZPS64RI2MmQpdeghjchEokEJqOlBIh/NaSp2l48Thy1bNYv/ol7vY7YO/1er+wuBNIxD0PSkXc5Sv8wgWgFCJfmHQ1Vf038/e/b/l8ZjpmIpGI1/bhPE8FMRMBLREUoxcZU/GSs20HIQS6rnfNS246qYkZlIt10w1g6EhNR8rqBdXbfOHUfKPV0DU/ByD31a/hLV8OxQLk8/6ej+tAoYDI51D988h87webW21CoPqal27L9HBb5zRzYoY8oZCJ47iBM0NAWwTF6EVCp+IdqqsjyzJmTUuuEblcAdavRxYKCMsCAZ5SEzoaKNNErl0Hto23xZYMX3s9pTPOREWjUC4hiiUwDEpHHcPwtdfj7rzzqMfbr9u18kR1VgbVr+s6KtresOxMiRmq+43+eyaImQhonWDO6EWAYQgikZEDqFMfXAX/ojMTg6udxDB0YsMptNe8GiUlnlU/GVZksyjTYuiBBzc7LgAik0Z7/HHwPNxttkUtWDDh47V//IO+t7zJb+ON3TdSqiaaUJZF9lvfpnzU0W2f13Q6M8yb14emaaTT2YqJauDM0KsEc0YBM0K34h3K5XJlb2Dkn9nFyHgHb8livO23h2Kx8YMcB3uvvUYVIgAVT+C85rU4r9u1biECcF/3Ouzddh9tHeR5m1dEmoYyTdSSJZTf+KapnN60iBmklCQScTRNq610JouZSKcDMUPAxATFaA7S7cTVaiRCNBppuBffq4xLXE3nKJ58ij8bVE8hl8+DplE66eQpvXb2G9/E23prME3fSsg0UZaFikT8r8XiZL9+EYSnJkLotpghEgnR359A1zWGh9PjxAzVmAnLMkfFTCgViBkCJiYoRnOM6Yp3yOUKSCkIT/GiOZ00infIH3s83pvehCgUEOm0L0hQCmwbkUohbJviaWdg77vflI7BW7kdw7+8ltKb3uzvC+k6QkrQdezddid9xZXY++zbgbPtjpjBNA36+xOEwyEKhSJDQ2ls2w1iJgKmTLBnNEcYO7iaz5fGDa522ksuHA4RiYRIpdKVItUbyKeewrrhOsz/+wMim0MtXgTHH49x0knYySTZbH7C4xW2Tf+lP4Gf/hQGBsD1QNPwlm5J8W3voHj6GeNadFM6zueeQ3/gfnBd3O13wH3Zyzr23FUikRDhcIihofSUYiaqbbaq23o2mx/1fL5llEEyGWfTpmFisQhCiFrMRC7nD1L39ycYGkojpSSZjDE4OIzrisC3bpro5T2joBjNcmY63qG/P1GxfclO0xk3xrzpRqJf+Dwim0HpOkLXEbYNnoe3dCnpb357nMptJKGQSUwKsv93C15qGG/efJxdd/VbarOUqYoZqgXNd1sv1HUHrxcz4SvrwoGYoQcIilFAV+iGSq7VeAfD0Ekm412PMGgG/R/3En/3O30hwoKFSE3zHbGVwrNt5MaNeEu3YviXv24oNOhUzESv0G7MRDWMUEpJoVCs7QfVo9WYiWKxzPz5STKZLMViEMI3HfRyMQpuR2YhvZS4attOTcxg28N1R2img9AVlyNyOdhiC6SUKKU2t+M0DW/hQuSa1Vi/uYniW9827vFieBjz979D3fxb9PXr6AuFKO27H+UjjsTdbvtpPpvO4T7wAM6jjxDzXNJLluLstlttiHcixrbkhoezTbX4xjozDA6mCIetmpihvz85SsxQfb/5HoEplNKDgvQiJlgZzSJmuiVXDykl/f0JCoUS+Xxr8QedQmzYQP+bDvYvZonEaPeEkd+3cSPu9tuTvvG3o74un3qK2NkfQnv6KV9VFw4jXBevWETF4uQ/9r+Ujz5muk6nI2iPPUrkC5/H+Nc/fSGGECAlzjbbkD/nf7EPOmjcY5ptyTVG0d/fVzFUtUkm4wwOpohGIxiGxsDAEPPn91fUmRkWLuynWCyRzZYQon6RDJg6vbwyCtR0s4TpUsm1g1/wfHdmTZv+t5Rh6CTLRYTjoEwT13XrS4ZNE7l+w6gviWyG2Ec+hPbUk3iLFuFtsQVuXz8sXozYamtEuUT0Sxdg/PUv03A2nUF77FHip52KcfffULqO6u9HzZsHkQjak08S/5/3Y/7mptr3T6SSa7ft2kzMRODMEDCWoBj1ON0aXO20l1yhUMTz/CTQ6WLk4KqKhFFC4NmTXEAdx7fvGYFxyy1oTz2Ft2jRiNgG3xJIahK1cCEU8lhXXtGdE+kC0c9/Djkw4LuPh8O+N55SYFmIefOgXCb6uc+iZdIkEjESiRiu6zE0lJ50b2gyxsZMpNNZdF3Dssxai85xnJrsu1AoVgpWBKUmMJ4NeFEQFKMepduDq93wkstm85imMQ0RBhMMrvYvwNlhB2SmgapPKYTtYB98yKgvW7/9jf8DH6OY8zwPTynfYSCRwPjXv5CrVnXjdDqK9vDD6P/+FyoSHu8W4Sl/rimZRKaG6Lv9j5UVcpZ0urm9oeaYOGYiny8EzgwBExIUox6kl1tyjRgpZujWPnTdwVUhKJ58KkqTiOwEBUkpxOAgKhaldPRozze5fj3KNCd8Pa/iIyfCYbBt5OBAN06ro+j//pcfbxEaP+yqUChAGP4K0Ln77im15OpRL2YicGYIqEdQjHqI2dKSa0S3nBlGteSURyqVJpcrjFLvlQ8/gtKJJ0Gh6O8L5fNQKiEyGeSGDWCY5D71Gdztdxj13CoWQzjOhK+rlEJ5Cul5oEnftqfHEa5bN8BPCrn5t68UbmFqLbmGxzEuZiJwZgioTyDt7gEaqeSSyWhdlVz1w1stVBOp5NLDWdx0BjR9yn5nzVAVM0QiIUqlUkecGcJhi0gkjFKq5os3IVKS/+SncXbemdDPf472+GO+i4KhUz7gDRRPPwNn993HPax8wIGEH3rQNy2dwGHB9Tz0VAq2335cIetF3G228d9U5bLvd4e/UhkZfAd+u85buV3HXleuWoXxpzsQ+QLekiWUDz4EFQ6TzeZIJuO193AiEas5M1TFDP39iZqYIZmMUSiUcd1g9ujFRCDtnmG6Nri6eg3apZcSuuxS5Jo1ADg77UTxrW+ndOxxXXcU6IQzg2HoRKMRNE1SLPqycZXNYfz1L8j168C0cF796okLhFLIZ59F5POo+fPwlmxR93XkmtUkTjgOkU7jLV48bkUhsllkNou84AJSRxxVy3TqWVyX5MFvQHv2Geifh6goHJVStfaXyGYRmkb5T3eRmb9wSi8n1q8ndu7/Yt5+m+/pJ6XveNHXT/Gss8i/5yyS/cnAmaEH6GVpd1CMZohqS86yOu8lV3rqKeLHHI327LO1jByglplj77sf6Usv7+pKaSrODFIKotEIlmVi274Pmms7WNdcTejKK/xCBKAUKhzGee3ryH/s43hbbdX+8d56K9HPfgqRTqNiMVQohHAcRMZ/35cOOxzjm99E6NqscGaw/vB7Ymd/yJe7xxN4lfRalPIHg8s29jvfifX1r03JPUMMDJA8+gi0Z55BaZp/kyMEeB6i5L83C29/B8UvnBc4M/QAQTEKqFFtycViIYQQ2LZDLlfs3OCq45I85GD0hyoBcGPbTq4LnkfxtNPJfeVrXT3XeDyKruukUs07M4xsyeVyhVpLLvSjHxL+0Q9ASrx58/2LnlKIbAYxNIS7cjuy3/0e3hZbtn28+n/uw/rZVRh/vsuPkpAa7sptKR13AqWjjka3TJLJeOWCWWr7daZELod52x8xf3cz2urVqGiU8r77Uj70MLxly4DNg6vq6qvh4x+H4WG/BQn++8GyKJ58KvlzP0GiP4mmSYaG0m0dTvRTnyB0+WUoy5rYRLZUQgCpa6/H2mdvQqEQg4Mp5s9PUiqVKRZL9PcnGRpKV1bC/kopGg0TClkMDKSAwJmhUwTFKAAY35IDhWH4xUZK2REvOeOvfyVx3DH+haGe5Yttg2Gy6V/3NfRomyqtODNM2JKrvDPlU0+SOP00fyU0f/74BzsOcs1qSsceT/7Tn5nycYsNG/wZnVAIb8WKURfZqk3O0FB62hVf8vnniX30bLRHHwUEyjIRjguOjUomKX/yU1gnnjDKS04MDWH+5kaMf/8bHAd35XaUjjraPy82/47yed+apxVEOk3/rq/xhSITKPcA/4ahWKR07HFkv/HNwJlhhunlYhQ0ZKeBRl5yuu63IRzHrSjgpuYlZ954g7/8ahR1oOtQLmH+/neUTju9cydaKvn7OWvWgGVhv/Z15F/20oZihrEtuVQqO+77rJtvRuSyeFttXfd8VCyGedutFM5675QLrFq0CHfRogn/LZcr1AxEs9n8lF6nJXI5Yh/9CNrDD+MtXlITJigApdA2biBy/nnYS5cyvMsra/NCqr+f0ulnUjr9zAmf1vN8SbX/Oyq3NGekPfIwIperK4sH/GFbQL/7bzVnhkDMEDARQTHqIs2q5FzXIxYLE4uF8TzVnEouPdJLbvOHVA4O+q04vcGvVgjQNP9720SufgH9P/8B28bbaiu0p54i9JMfIVevRihAeahwGHvPvfC++hWiW2w5TszQrEpOu/8//vk0uBipRAK5YQPaE0/gdHG15+/TFSrmnqVpEzOYd9yO9ugjowoRgNQkUkrYYgu8Vc/h/vCHeN/+bkvPnc8XsSyLaDTcUsxEPTn8+G8U/v7bGGeGqphhpDPDwMBQTfa9ceMQ4bBFIhFh06YsQgSXq7lM8NvtEmNbcn6rwZ+hGKuSi0b9FofnqcqMjoWua5XHFSsRANHKIGumYbyDSib99pxS9S/eSoHnofr6Wj4vuWY14a9+BfOOOxD5yoXLcRClEl4kglq0yL9TrmyUm7f9Ee/44zGvvx4zlqBcthu25CZCeO6E5zrmu2oCjW5TLJaxLItYLDJtYgbz5psr/1ORakuBJiUI4TtFuB4imUD/5z+Qzz1X2z9qllwuTyIRo1QqNy1mcLfdFqXrvoKugQu4UAr7JS+t/o1sNk9/f3KUM8PAwBChkFWLuliwoL/mzDB/fpJwWA/EDHOcYOi1w0w0uJrLNTe4Wr0IVAtRO4Orpbcc5m9WN2q3VC4epTe+qbVzW7Oa+JmnY938W1Ae3oIFqL4+RKHg79vkcohiZd9BCFQshrdgAfLJp3C+/GViscikg6sT4e74UnDshoVGZLOoSBRvxfKWzqldcjnf6iYUsqbl9eTaNSjTAiHQdA1d01CA47h4lbamskKIcnsuEeWyTblsE402r7D0ttiS8oEHIVyv/u+msnoqnXoaEDgzBNQnKEYdopGX3EjLnma85PL5IrquteUlZ++7H+7229dfJVSKVOnIo1BLlrR0juGvfgXtmWfw5s9HxeMgR1jv6Lo/27N+fe0CVP26ioSRv/0tYuPGyl5AjuHh8XtD9Si9+VBUKIxI11F8eR5ieBj79Xvjbbm0pXNqF3+Pr0wkEpqWu3UViSA9F13XEIDjuriOO/p37LooTaKsOmKCSchm80gpCYcneXyxiP6PezH+fBelY45GxaL+TYg7omWpFJTLCNvG3nNPym/YHFcRODMETERQjDpAp73kwmHLTyf1PJTyWvOS0zTSl16Bt2ixXxTKZf8i4bq1/3de/WpyX/pyS+coV7+AecftqHB4dEumUFHJVdV7rjuqaAgEMp5A5HK4990HgNPsXkMF9+Uvp/yWwxCZNGLTptGrvmIRufoFvC22oPj2t7f0vFMll/PPvZXVRDuYpoHxpjf6+UqOg+O4KG/8jYZMpfC22tq/GWmDkWIGOZEAplgk/O2L6TtwPxKnnET8rWcQ//CHcZevQMXjiFIJkc8jKitk4SnKBxxI5ieXjNvDDGImAsYS7BlNgYlUco7jjLPsaTdx1TQN4vEYxWK5IgVvDm/lSlJ/uIXwT35M6KorasXBXb6c4plvo3j6GdCix5p+332IfB5vjDhgVImsrBBEPo+aNw8pJVII35zT88ils8QqMRMtOTMIQf5j/4uKhLGuuw65+oXNr65ruDvsSO7Tn512q55uixlGJa4efgTypz9FrF0Li5eM3w/M5UB5lI45dkruGnXFDMUi8fe+B+OuP4GQfgyHlGCX0Z58AgyD4smn1AqSu3QppaOPxd1llwlfJxAzBIwlmDNqg+lMXE0mYwghSaXaG0qkXEYObERJDbVoUWPJdwPM668j9rFz8BYuHHUhlBs3+sVO0/yvV/KCRGWOxfM8yGTAcRm+9nq0l+zYtjMDVFZof/wjcv06lGnhvOY12Lvv0XV7o0Ykk3GEoKNihokSV83/+wORL3wekcmgkglUKAyug0wNg1KUD3kjufPOn/LPwhfMxEb9jsLf+w7hiy5ERaJgjdknUwoxPIyyLIZv/A3eypVNvY5SCk2TgTPDNBLMGc0hWlHJJRKb5dtjB1ebVclls3n6+hKEwxaFQhtT/6bZkX0Ub9ky/yJXKo0acFTxuG+ZM+KeRlib24wohcxkKO+3P97KlXgjYiZsu3lnhtpxLN2K4hlnTvl8OkkulyeZjBMKWVN2ZqjOMI0cXK1SPuSNePPnY111Jca9f0cObUJJibvttpSOPobSccd3pCiPFDOUyzaUy1hXX13dGB3/ACFQySRiaBOha39F/mMfb+p1xooZBgdThMNWTczQ358cJWaodgz8lWgKpQJnhrlEUIyapNstuZGDqyNxXY9isUQkEq4MJc5Mv9x51atxtt8B/ZGH8SyrtjpSoZAfwZDJIAAlBG4i4e/r2DZi0yZUXz+F976v9ly5XKEScR2e1JlhNjBSzFAqldva0xjVkivbDA9PHHTnvPZ1OK99HXLNasTGjRAK4a7crvFcWRv48ms/hrx8/3+QG9b7q6J6CAFSw7jtNmiyGPkP88UMvlTebw0mk3Hy+WKtRTdS9p1KZQiF/O/NZktA4MwwVwgEDJPQSZVcu4mrVeXRdEZ6j0NKCv/zQd9AdISIQAqJWLwYwmGU5/nDtJuGkGvXITcNobbcksw3L8Z9xStrT1WNmQiHLTRtbrwFpyJmiERC9PcnWkpc9bZcivuKV+Lu+JKOFyIYLWbQSqW68RqjkBJRaN2VIhAzBECwMmrIdLfk6qGUf7GLx/2N8lbEDJ3EPvAN5L5wPtEvnocc3OQvjoQ/bKqiUcoHH4y740t9V23Lwt51N8oHvmFCd/BCoUgoZLYuZuhR2hEzNGrJ9QJVMYO17TZ++69cblz4HBt369aGbWEqYoYomzZlAjHDHCEQMEzA2JZcPl8a15JrN96hUUtuMqYsZugAUgqihTzWTTfi/fWv2Lk87jbbUDriKNyXvayhZc9YphIz0as0I2YY25LLZvMtecJNJ1Uxg334EWh/uhPVP2/i37FtI7IZsl/9OuWjjka//z/Ip58GXcd55asmdYRoVcygaZJQyKJQKJLN2sHeUZP0soAhKEYjmE6VXDtomqSvL0E+X2hPzDBF6sU7TIV2YiZ6GV3XGsZMTKSS63USiRja3X+D409AlEq+5dTIlp1tIzJp3B13JH/2OYS/8230hx/y3eEBQiHK++xL/hOfwlte3yFDKV/23yhmwrJMwmGr8rIOuq4FMRMtEBSjWUDXEldHxDtMpRBVqea8DA0NT5uYoVUvuVZoJWZitjBRzESvt+QaUf0dla6+BuOj5/iuGxXBAq4DQuDu+BKKp5xK9PzzoFBAxaKbDV0LBUSxiLfllqSv/DneNts0eDU1YcxELBbBMHSklCilsG2HoaF0EDPRIkEx6mF6tSVXDyGgvz+JbTstOSy3w4SJq01a+LRCOBwiEgmRSqW78vzTjRCC/v5E5QamOGtaco2oruhSDz6Ced2vMW69xR+C3mprSkcehb37HvQd+saKerIPEIhS0d9nAr9wlUvY++xL5rIr6r6OUgrTNEgm42zaNFxRncpKKoqs/Uz7+xMMDaWRUpJMxhgcHMZ1RbA6moSgGPUgvd6Sa4RlmcTjUYaHM10TM3SjJdeI/v4EruvNCTEDQChkEotFa/NWs6Ul14j+/iSOM/FNkHX1z4l+8ly/hWfbyKEh345q5OVFSlQkwvAtf8Tdrr5lkVIeyWQcKSWO4xIKWTiObxwciYQYGBgiHo9hGBobNw4xb14SIWDTpixSBmKGRvRyMZobutoW6bSXXCIRrchyM6TTma4WIoBSqYxt212RehuGTl9fgkgkTLFYYmhouOuFCPy5FtM0MM2Zc1LoFKZp+LHfSqGUYmgoPesLEfjDvVV59Vj0f/zDLzy2jRwY8PeLKrlZaJrfgnBdRDZL6Cc/nuSVBOWyjaZpmKZBqVRGSjnGPDVbE4Kk0zl0XScc1gOp9yzmRVWMphLvIIQgkdj8uHbiHTpJNptH02RtM3eqSCnainfoFPYIZ4bZ2mmRUpJIxEgkYpVVnv++ma6YiW7TKGZC2P4Nixwa8meSqvZQtW8QNWd384Yb/KjyCfBFOnFisSiu6+dYVW/6gpiJuc2Lohj1wuBqpxnpzCDl1F43HLbo709iGHrL8Q6dJJcrVMIFu+uC3Q0mGly1bXtaYyamg3oxE+6KFTXXjbrDsZXAR1HIY/7f70f9kxC+OKevL4EQkuHhDKlUOoiZeBEx54vRbG/JNWKqzgwz1ZKrx2x0ZjBNo2abUygUx7XkpitmYrqoFzNROvIo/38aJQx7nr860nX0//639mXLMujrSxIKWeTzBVKpNLbtBM4MLzJmxye+DeZSS64eVWcGyzIxjOY3bme6JdeIQqGIV4mZ6GXGtuSGhtITyrWrzgyhkB8lPxfI54t4nhpVYL2V2+Hu/PLKX8Ykv1Zi7hHCV9oJAZ6HpvlKuHg8huM4DA0Nj5qfG+vMkE5n0XVtlDOD4zi1lVKhUKwUrAhKdTbOI6D7zLliJOXca8k1olUxQ6+05BrR62KGVr3kqnlUsVhvF9hWmEjMUDjrvZtnizxvc6hjtRD196NCIVAKfaedRrXkMplcnbk5Udkf9cUMVal8Pl8IxAxzjDkl7TYMQTzuD2e6rt/yUUr13OBqp2nGmaGbg6vdoBedGaYyuDqZM8NsJJGIoWmSoaGKPVW5TN8B+yFfeB40DWHbqErshIpGQdcRqWFEIg7/+Q95s7lYlGacGfz3t+9hVx0MD5wZxhNIu7vMyJacEL4yy29FRWrFaba35CZCe+RhrGuuRr/ySsp33kkkHBonZujlllwjeknM0GxLrhEjYybmysVxnJjBNMmf+wnfGFcIvAULUIsW+bNHQiDTaaQmcT76MYaUaNrSqhozEYgZ5jazekKs0eBqdQPc8zw0Tau8McHzVO3NWt07mmhwNZ0eObjaWxcP7eGHiX7hc+j/+ieUbf/wNA122onYpz9D+nW7AaMHVzOZ3IyKE1qlKmbwM4JKM9ZKHOklN1VD11yuUFtdZbOtRy30GiPFDH7Wlkf50LeQtW2iXzwfsWkQYHPxTSYpfOjD5E44CVq0sqqKGZLJeG0Y3c83SrNgQX9NzNDfn6iJGZLJGIVCGdcNUmFnA7O2TdeOl5xSCiklnqeQUszOltxDD5E49WTE0CaUZW1O3rRtZKGACIcpfO8HGEcdOWtaco2YKWeGbnnJVZ0ZUql0UzETs4EJnRmyWaK3/h/WI48gUJRXbkf2jW/2V0ltMtKZoRozkcnkKsq6cODM0AS93KabdcWoE15yE9EtL7mOohSJIw9Hv/8/qHh8/DxHJeJbLFyI/e9/k1XCX1F4Hvp9/0Y+/zyYJs4rX9mRKPLpYLpjJqYj3qGZmInZRDVmovo70jRZMTb13RNyuXxHTH1bjZkoFsvMn58kk8lSLAarI+jtYjRrbhcateRGBtuN9ZKr15KLREIYhl6zbPELEfRsIQL0/9yH/tCDviJpTCESQiCkhFgMtXEj7nXX4R5+FMbttxH+3nfRHn8MUTGtVLEY5f0OoPCRj+BtseVMnErTjHRmsO3uihk62ZJrRC6XJ5mMEwpZc0LMMNKZwTB0QiEL1/U67p0ohMB13ZrbwuBginDYqjkz9PcnRzkzVG8w/cDDFEoFYoZeZlYUo24mrtq2Q39/H5FIuDag2Kvo//ynL5WNbJYIC7HZqVgphZISCVj/+he21Il8+pOIQhGvr88PRlMKkc1i/eYm9EceIvPTS/GWbDFDZ9QcuVyhMlga7krMxHTHO4wUM5RK5TkhQS6XyxXFm9XVvK2qmMGyrJqYIZmMk88Xa2KGgYEhQiGrsqeUIRTyvzebLQFzY9ZrLtLTarrpGFxVitpQoqb1+BvVqZhPVoqPFBJZLUSeql3UlL/bS/RLX4RyGW/xYgiFKhk0EpVI4C1ciPbkU4QvvHDGTqdZuuXM0AmVXLvMFWeG6uCq7yXntzNLpe62UwNnhrlJT66MOt2Sm0wlVyyWKndPEYaHe7eP72270l/ZuC7C8IcNPaVGf8Aq+xvu08+gb9iAO2/exE+m66hoFPOO2yisWd3ze0iFQpFQyCQajXREzDBdLbl6VJ0Z/BZSadaJGYSASCQ8uiU3nKb/3rtJPPIopVIZd8cdKe+3vy/17uhrj3ZmqIoZRjozDAwM1VZKGzcOEQ5bJBIRNm3KIkRPXvZe9PTcb6WbLblGKrlsNk9fXxzLMntWAq0OPhix5ZawZg0qmRx/l6dApFII20b7x72ochmZzaJCIdS8+b7oYeS3x2LIDRvQH3iAco8XI/B/R8lkvHZj0Q69lLhaLJYr7abIrBIzWJZBJOLf8FVbcuZvf0Pymxch1q9HkxLpeSgF4S23IH/Ox7APPqTDR+E7M/T3J0c5M4xs0VXFDFVnhvnzk4TDeiBm6FF6pk03015yvsdViWg03HNv1Nrg6sL5uOeei9I0SKdrqyAAPIUc2IgoFlGWhTKMWltOFArINasRQ0Ojn1gIwM+gmQ1MJWai8y05VfkzNXI53+pmNsRM1POSM3/7G6Kf/Qxy/Qbc+QvwttgCsdVWeAsWINeuI/bJczFu+b+OHstYMUP1dxnETMxeZnxlNN0tuUb4Q4kmkUioZ8QM4wZX33IE1qYhol/+MiKTBeUXJOG64Dj+ftCWWyI3DkChsDlHxnWRGzfgRsJgVSbmi0WUaeJtvfUMnmFrtCNm6FxLzkXTnkDT7kfTngbA85bjOK/EdXeknc3x2SBmmLAlV1XJ5fOEv3nR5r1JIWqD5tIy8RYvRq5fR+SiCxned7/Nc3EdOa5AzDCXmNFiNFMtuXpU+/jRaJhisVwJ95oZGnnJlU4/k/Ib34x13a/R//1vhOOg//MfUCqhFi/2zyWRQAynNgedaRo4DjI1jLfYN6uUwymcXV6Bs8srZuw8W6UVZ4bOtuRsTPO3GMZf8e+sk4BA1/+Brv8L296NcvkIoPWLbS87M0zUkhuJecftyHXr8RYsqAlrfJNuDyklylN48+YjV7+A8ac/YR98cEePL3BmmDvMSDEaO7iazRbGDa5mMvmaF9XYwdVEIlp7HEAs5n9YOjG4OtNiBikF0WgEyzKxbZtUamJXbbVoEcX3vBcA7dFHSBx3zKjpdhWyUPE4Iu2bWApN85tKuSy4CxCbBlGRCIX3vb9+GFqPMpmYYezg6vBwY1ftZjCM2zGMO/G8LSuFqMoShMhgGH8GopTLh7b83L0oZmh2cFV74gn/f4zRDuu+ywlITeJWnLy1p57AprPFKBAzzB1m5CpkmlpPxztks/7rW9bEbg3dou14h1IZ4Xnjioq3aDEqkQClULYNnocol5EDG1HJPnLnfRF73/26czJdpl7MRKvxDs0gRBrDuBel+scUIh+l4njeQnT9HwgxNMEzTE6vxExMlLhaP96BzfuOE+C5HlKI2vhB9whiJuYCM3JbUCy6lMv+G9zfMzKwbZdCoYSuT09LrhEjxQz+LFJ337BTjXdQixehTBNRKqHMEQVUCrwlSxB9/YhMGpHJoBYuJHf2OZQPfQuqnux7FjDWmcEwuqeS07QnEWIA192h7vcotQApH0PTHsdxdmvrdWbamWGyltxEuDvuSMUqf/zqSCmEUkjHxhMCd4cdu3LcgTPD3GDG+jPVOy2lIJUqkE4XsW2FUmDbLqmUX6xmKt7BFzAIIpFQR593JJ2Kd/CWbIH9+r0R+TwTPViFLLy+PojHEV/+MvYZZ8zqQlSlGjPR15fo8uCq/15ovOHtf5SEaF/4MlMxE5MlrjaivN/+vmBmcGDC957nujAwAMtXYO+9T6cPvUYQMzH76bnNgmLRIZ0u4jiKUsmlUCgzNOS7AcdiYTxvehJXR8ZFd8OZodOJq8W3v8OfGxoYGC35Bt/Re3ATzg47oA47rOcjvZulanorpSSbzXWkJTcxBv4Fq9FzK4RQKDW11u50OjO03JKbiFCI/Ec+CqEQct06KI+Y0SuVEGvXoiIR5Oc/hwx178YOAmeG2U5P7955niKX89/cpZJLNKoqS/KqXLu7dErMIDZuxPzD75FDQ4iFCzCPOQZtfl9H4x2cV76K7Fe+RvRTn/Bl3QKUpiEcF4TAedlLyX77exhCI26ZFIuljppYTidjVXL+xcXfS+wGrrstSvUjxBBKzZ/we4RI4XkJXHfbKb3WdIkZ2mnJ1cM++BCyCCLfuNBPeQV/G0kKvOUryJ/zUWIHvoHo2JiJDhOIGWY3sypCIhYzCYctstlc1y48Y9F1nb6+eHvhdLkc0c9+htAvr/F76pqGcF2UaVI+/ngynz9/lOlpJxDr12P95iaM2/6IyGbxttyS8uFHUD7wDb4/HZBMxhBCkkqlO/ra3aZevMN0xEyY5nWY5h04zkpg7B1+CU17Etvei3L5xI68XrdiJroV7wBAuYxx15/QnngcKntE9uv3BtMcFzPRLYKYicb0coTErCpGQsC8eVEAhoa6GycwkuoFcGgo3fxyvlQicfKJGHf/zf+7pvknoJTvvA3Yu+9B+upfdHQQsBk0TdLXl+iqu3KnGTm4mssVxl3Q4vEouq6TSnXrfZEjFPolmvYflAqhlL/nJsQQQuRx3V0olY5HqURHXk3XNZLJeOWCOfXf0djB1VwuP+0r40QihqZJhoa6exOklFdxEA8xOJhi/vwkpVKZYrFEf3+SoaF0RTTkr5SiUf/nMjCQAua2mKGXi1HP7Rk1QinI5Uq1/u900Y6YIXTN1Rh/++tmB4TqG3zE3427/0bomqu7c9ANcF2PYrFEJBJGyt7+4JmmUXFcCFEoFBkaSk94Z10VM4Q7bMq5mSjF4omUSifheVshRBYhsnjeFpRKJ1IsntyxQgSdFTNYlkFfX7IW75BKpWekRZvL5ZFSEg53d+8oEDPMTmbVyqhKX5/v0DCd0c2hkEU0GiaVykzqzCAF9O23D/LRR32PuHrYNu4OO5C688+bi9U0IYQfF23b3e3jt0s7iavhcIhIJEQqlZ6SGGRyXITwPw9KxejW1qsQgv7+RO38W6WrLbk2qa5wh4bSXRKb+CilME2DZDLOpk3DxGIRhBA1Z4ZcrlDJMkswNJRGSl9RODg4jOuKObs6ClZGHSabLVbueqZvdVQs+tYzk71mOGzRL0E8/jhqMmcDKdGeeKLmkjCd+KvMApZlYhi9tXHb7uBqoVDE87xpWDVrKNWHUn10UwM0UtGp680rOjuikusS+XwRz1NdVwuOFTOk01l0XRslZvDnCf1/LxSKFfVdBKVm3gHjxcisLEaO4y+3dV2vyXung0bODIah09eXIBIJU8zmJpy5qIszM6q2UqmMbds9I/VutiXXiHrODK2RRYh1CLEemNk4kVadGXqlJdeIXC5fk1d3l8CZYTbRW7fELZDLlSvy1HDF7bj7rzmRM8OEXnJmCHP+fOTGjb5woR6ui7dwIaqvr/sHXwc/xylBOGzNmJihk15yY50ZWnlfCLEJXX8ATXsYIXKAwPPm47ovx3FeTjsmqJ2gGWeGXmzJ1aNctimX7drnqFsEzgyzi1m5MoLeEDPUHVzVNIpnnOl7xdW7GioFUlI8862NC1aXmWkxQze85NoRMwixDtO8HsO4CwDP2wLPW4SUwxjG7zHN3+M7MUw/jcQMvdySa0QgZggYy6wtRuC7Ndi203JPfSoopSiV/GHYSCRMsVhiaGh43AxS8a1v96O8Xdf/Uy1KVWm36+JtuZTimW+bluNuRPXDOp1FvRMtuXpUYybCYQtNa+Yt7mCatyPlOlx3R5RaiL8KCuN5S/G8Fej6A+j6vzpyfO0wkTPDbGjJ1cN1/bC7SCSE7LJrfLvODKapBe26aWRWFyOYXjFD1Uuuejfnum5dLzk1fz7D116Pu8MOvj2P60Kp5P/X83B32IHha69HzZ94on86mU4xQ+cTVyemFTGDlM8h5So8bzkTfyRCeN58dP1BYGaUhyPFDL5KrD0vuV6il8QMUkocx6WvL04i4c8y+lE1gZhhupi1e0ZVqmKGcNiqxUt0g7GJq67r0dcXx7LMus4M3vLlpG7/E8af78K68QbE4CBq/nxKhx+Bvc++PZUjVCqVaxlB3XJm6FzianNks/5eS3Uvqh5SrgHcyv+vRogNgI2/MlqEUvNRaj5SPoWU6/C8lV097nr4rbow8Xh0fOLqLCWXy5NIxCiVyl1+P/hihv5+fyXpR9L4P0chBMlkrDayUS772WnJZIxwWH9RODP0ArO+GEF3xQyN4h2aipmQEnvf/WZFblC3xAydTVxtnvpihiLg4LfiDISwESI7Io9Ix3fo3oiUz+F5i3DdnRBCIcTMXPyrXnLVi+Js9hYcyXSKGaqr/lgsMuLzqshm8zU1XdWZIZ3OBmKGaWZOFKOqmCEeDxONRjoS3dxM4qofF20SiYRqPf3ZzEgxQ6lUnvImeDcSV1sllytU9qbClEp/xzD+ipSPIYTC8xbgOHsAGTTtSZSK4nmLGd2qc5ByLVBCqSUoFZ3W459IJReJhCux6+U5saeRy1Vvgvz9w06j6xrRaATD0CkWS5imUVuJJZNxSqUsuq6TSEQZGBgiFLIq0eWZilFymGy2ROMIkYCpMieKEfhihlDIqclfp+LMMLYlV68NV+3jR6NhisXypM4Ms4F83t87qm7qtst0t+Tq4YsZskQiv0DXrwUyeF4ckOj6anT9v3hetGLts4jxe0Y6nrcITXsSx1mG520xLcc91ktuZEvOvwnyV5uduPGaaUaKGfyboM7csAghKj9Ds5IG7Qs8qs4MhUKpJmaoOjNU3/f9/YmKmCFX+d4yrhu067pJ72xadICpihlGDa7WUcmNpVlnhtnCVMUM3VTJtYvjXItSv0TTojjOy/G8FXjeMlx3O5RKouuPAmWkHGS8fFshRBbQ8LwI03F3PJlKrl1nhl6m02IGyzLp70/URAqpVAbHcdtwZigFzgzTxJwqRu06M0w1cbWRM8NspB1nhulSybWKEKlK9INE07YeI/WWFXNTA3DwvHlImUXKNQgxiBADaNoahADH2RnoruqrlcTVVp0ZZgOdcGaoup3H41Hse/5O+W1vw9prD5IHHUD03I+jPfIwgTNDbzJn2nRVWhUzNNuSa8REzgyznVbEDL3SkpsIKR9Dyhdw3S1wnCKGAZ7nolR1RSFQKooQwwDY9p5IuRYh0oDAcRbieUsqf+/OzUajllwjmnFmmE1MRcwwqiVXKlF6xzswf3aVr1ittM/1hx4idOlPKbz7PeQ+89k6zgx+iy5wZph+5lwxalbM0Egl1w4vRjHDTKnkJkOINFI+hxA5NO2fCDGElB6eZ6NpOoYhcJwkSvVXsomSCDGAEAWUmo/rjp39Uki5Gsd5XcePdSqJqyOdGV7MYgZ/jzMMCHK5AtrZZxP62VWbv0GvXOYqP5/wD3+AisfJn/NRLMuqOTMkk3Hy+WKtRReIGaaXWRkh0Qz1YibGquSy2XzH4gZaiZmYDdSLmWgn3mF6cNH1f6Lr/0GIFELk0fW70fVHUMpAqT6E6EfKEK7r4HlhPG8ZYKNp9+I4O2PbR457Vn8OSadUOrZu7HirdMpLbqoxE71IszETY1VyuVwBsWY1/a95lT9oXs9my3EgFGLw/gcxFi5oIWZCkEzGZ3XMRBAhMQOMFTMopep7yXWIF4OYoRtecp1Boet/xzD+hFISpfoqq6NhlLLwfcaKKJVCqRRCWEAJKZ9HKbeS3NqPlM8CWaCMEMNo2lMA2PY+ExQiFylXo2mPommPI8TgpEfZaS+5F6OYQQj/hnJzNHuabDaPUgrrF7+o+T7WRdOgVCJ0w/WBmKGHmLPFqCpm8DyPX/zi5xxyyBu44Ybrm1bJtctcFTPEYtGeU8mNRIiN6Pq/8LwFQARNexgpN6JUP563EH+4tQQ4KFVE09YhpUF1xsi2d6dYPAPPW46Uqcq+UR7H2Zly+XBc96WjXk/K5zDNmzDN6zDN32Oav8Wyfo1h3FIZnB1Pt7zkXkxihnoquSraqmf9it9o1SIEaBpy1bMEYobeYc7tGY3kjjvu4uKLL+SZZ55hwYIFbL31sq7v53RUzOC6GPfcjXz2WdB1nFe9CneHHTt2rM1QNbHUNN+7q9sJne2iaU8jRB7P2wpNe7Yi0xZABM8LATk0rSrdjuB5LlKmEULiODtQLh8MCFx3O1x3ezxvHhCtBOiNRsqnMYzbEKKA5y2hqrITIo2u/xchNmHbb6w9djriHea6mGGiltxEny1lNhHzUX2cZU0SMxGIGaaTOVmMNm7cwLe+dSF33nkbmqZx5pln8s53vovpWgh2Qsxg3PJ/RL5xIdozz4DrgVIoy8LZ9XXkPvUZvJXbdfioxzNSJVcqlSt3qb15NyjlBpTyDWyFWItSBkIU8YvQML6DQgQ/LE9WOjleZXYoTTh8KaBQKoxSi3Gcl+E4e9QKihBDlajxEoZxF0KU8bxtRh2DUglcN1Zxc/g3jnNAWyq5dpgLYgb53HPI9etQ4QjuS15SEzMkk3F0XasNrjYaaLf32YfQZZf4bbp6rTqlQCnKe+8LbI6ZCMQMM8ucLEZf/vL5/P3vf+MVr3gVZ5/9v7zmNS+fUMzQLabqzGDecD3RT30CUSrhxRNgWaAUopDH+POfSZxxOunLr+haQZpIJVcVM0zVmaFbKCWpFkohChUF3SC+AWoR/0bE/z14XhilYkAJTSsixHrK5W1RakHlsWswjEGEGMJxdkXKTUj5LELkEGIAXX8ax3lZRX03dl9D4nmLMM1niMU8pLQaquT8eaY8VaeHqVzYZqszg/7XvxL+yY/Q/3EvwnZAStylS3FPPx3e/z50w2+fNaOuKx98CN6SLZAb1vtFZ+yqpVKk3e22x9lzz1FfzmZzgTPDDDIn1XQPPvgAQ0ObeP3r90UIga4L+vqilTur6TuPvr4ESimGh5t/TTE0RN9BByIyabz+eeM/TJ6HHBzA3ndfMj+9rKPHO5lKzrJM4vFoT7pF6/q/MYxbcN0dMM1r0bTnUEpHyo2AjRAe1QhxfwUlKs4KYWAJrhurrIIknhdDiHKtwCm1AM9bjOctQdPWo+sP4Hmhigx8l8qKy0dKQShkoutPUyodQS635YQtOSmfRdf/jaY9jV8sdTxvCY7zSlz35bRblEIhk1gsOm03XlPFvOF6op/+JKJQQEWjKMNEKA+ZzSFQOIceivjRj3GEaPomSL/7bpInHgflyr5w9TPkeSAEKhpl+PqbcF/+8lGPU8ojmYwjpSSVyjB/fh+ZTK6SeRRmYGCIeDyGYWhs3DjEvHlJhIBNm7JIOTvu6wM13TSz8867sPfe+9XuVtp1Zpgq7YgZzN/ehBhO4SX7Jt6ElRIVjaL//e9oTzzesWNtRiXXjjPDdOG626JUP1I+jRAu/oBqAr8QFfFXRbJidGpUViMAHpo2hJTrkHI1Uj6Jrv8LTfsvhnEPuv4AUm5A057GMP6BlE+glIZSixFiECmfBvxfVdXTTwiNQqFUd29I0x7Gsq5F1/+LUjE8bxmetxAp12FZN2IYt1FdxbXKbBIzyGefJfq5z0K5jLdgIUSiSMtEhsOwcAFuJIL87c2Uv/u9lpwZnD32YPj6G7F3221UmCUI7L1ez/Bvbh5XiHwCMcNMMjvKeQfoZsxEPdoRM+j33ed/gBpEkatwBDkwgH7//bjb7zD6H0sl5Nq1oBTekiUwSfR2q4Or3YqZmCpK9WHbexIKXQkUUCqOv+LQ8C/sCr9AicrXbcBEKQPXzSGEpLpy8lV3BcBFqcUolUCpxfhS8KeRclOlpdaHlBuQsoBpzkdKUSnYQwhhVqyGRiPEJgzjVsDFdUf+7gw8bzlCpDGMv+N5W+K6O7f1s5gtYgbr2l8jclm8+QsQUtTEMspTeEpBKIzI5tB/8mPKbzyE6LbbNK3gdF79GtI3/AbtsUfRHnoIBDiveBXettvWfUwgZphZXjTFqBsxE83QqphB2E3KpQUw4ntFOo31619h3nQDcsMGAFT/PEpveQul405ALVgw6uHtxjt0Omaik7juy7HtV2AYGxHCQdOGK/s6OpsVby5KmfiFRiKEwi8yBp5XzblxKt+fRspBhFiHUosAC8/btlKAXkCpZZjmMJq2DtvWyed1hFiFYdyDUpJQaD2etw2Oszuuuw1gommPI+UgrvuSCc/BL3wD6Pp/cd2X0U7zYraIGcw/3gqahqZpCAGeUihP+Tt/rosYHkZkM+iPpVB77I7YYgsSJ59C5uRTUf39Tb2Gu+NLcHec+Gc9EYGYYeZ40RQj6GzMRLO0KmZwt13p93wm2nytUi6DpuNu49/licFBYh/5MPr994Np+KIHIRCbBgn/6IeYd95J9qJv4C3dCpi6l1ynYia6gedth+etxfPm4bprMIw/VYZRTfz9HwN/v2j1iBWQg+eZSKlw3RL+gKxHpeKjaU+g1KLK6kjieVEM4wGkfBzPc7HtIRxnMaa5rpIUK3DdpUj5KEo9jK7/FdveH9s+tPJc0cpzT4xSC5HyBYRIVYZxW6fXxQxCCLRiAaHrIMD1vM3dCsdBW7tm854PgKah1q3DuPDrJG66kfQVP0MtXtyVYwvEDDPDnNwzasRUYybaoRVnhtIRR6KsECKbnfgblEJm0rjbrcR5ne+VFvn6V9H/cx/eksV4S7aAaBQiEdSixXhbLkV77FEiX/g8pqF3ZHB1qjET3cSf+/FbZJ63EtddiVILgCJC5BFiE1I+h++ykMdv2XlACc8brBiiFkZ8XSBlGl1/GCkfwjAewDDWIWUZ17VRqgCsRdf/hq4/ALjY9qtw3Z0r80rbIEQZ07wVXb+VqlihEb6Jq0e7+0b+c/SuM0N1cFUsW44ql3HdEYUIfCVcubxZni0Eygqh4nGIxdAff4LYOWd37fiCmImZ4UVXjHpdzOBtuy2lE05AlEuITIZRn1LXRQ5tQlkh8h86uzJFvgrjz39G9fXBRAN/uo63YAHWg/8l8dQTHYt36FUxg+ctxXW3RtOeRymzItXO47/VSxUFXbXQ1B6Fv1Ipo2k5/CJVZnNBKAGDGMaTGMYqfDfvBbjuEjxvBzxvEVLmauo7XX8EITYgRBkwK4F8HobxTwCEaLyaFCJXmXea2s+218QMI+MdymWb7FsO89/fzghlZqmEKBY3uyh4HpgmVAqq0jREyML4+z2VOIhuEYgZppsXXTECX8zgeR6RSLiha0gnGSlmmGwZnz/3kxTPeCsIkIMDyI0b/D9Dm1DJPnJf+jL2Gw4CwLjnbkQuh4qP3ywHkJpETyahWKR46x876iWXzRbQNEk43MTU+7ShY9t747pboOv3VVY6DlU1nY+Jvyc08vdQBApjvAqrgocSur4B2IjrbsLzCviCCAvPiyPl+so9g4a/6smi608g5TMIUQB0lAoh5QbAqjy23s2AQsoBXHcnYOoR57mcf0ENhWbud1TPS678pjfhbrc9cmioVpBELre5RV2VYsditedSSqFCIYTjYN56a1ePeaSYoXrzVhUzWJY5SsyglFf7Xt9yKihIrTLjPZYXXnieq6++koceepBnnnmKZcuWc+WVv5z0cUoprrrqcq6//lekUim2334HPvCBs9l554kkm2Mf2+NiBl0n/8lPUTz5FKybbkR75mmUruO86tWU33IYKpmsfavI50GKcdPmQgq0SovD83wHB3c43dHzcV23J8UMSi3Att+ElINI+RT+HpG/GvKzixz8AqVV/jsaKakUbF8OLGXlZ4gNOEjp4nkLUGo+QqwDXISwRgzemnheCCGySPk8rrscIYpIuRpd/w+eZ6Hr/8BxXoEvP6/iomnP4nmLcZzJ38fNMNNihrHxDlV1n8hm0B5/nMJZ7yV88bc2e8oVS/4H1PP8MYZEEmWNLqRKgZASo5Afl8vbSQIxw/Qy48XomWee4u67/8rLXrYTSnlN37VfddXlXHLJD3nPe97PypXbc911v+Lss9/PpZf+jKWVjfpGzAYxg7fNNhQ++KHG39PXt3mWQtNAgKZpSCHwlMJ1HPAUUoGa195meCN6VcygVBLPm1+RRwukjCBEGSE24LfgFH7Ca1X2vZnKdRAhHFxXw/PkiO8RKGXieQmgUFlZmyjltwJ9tZ4v8VUqjp8Wm0bK6v5UEZiHlM9jmnfgustRal6lpefguksrvnaLOvazmAkxQz0vOTE4SPgnP8a88Qbk8DBQsbna5RXgOmhPPokoFf0B2EhkcxbRCJTyEJ6HscUSpJRd9UoMxAzTx4y36fbaax+uu+5mzj//q+ywQ3MSzFKpxFVXXcqJJ57KCSecwmtfuyuf//wFJBIJrr76qsmfoEKvixmawd5nX1RfH2JoyG/J6ToCcFwX13FBgRgeRkWjlPfbvyOvOZLeEzO4bN74F/gFQgIxPG/ryuyPht+Cq7brRn8MqotM/16h+nxVBwcJhIAiUg6gVAylYpWLTplq68+Xk3sVW6JN+HlKC3Ddl+K6L6VUejOuuwyg4rywC6XSsZRKp1YyljrHdIoZGsU7iI0bib/9TEKX/ASRzeAl4njJJCiF/uB/kYODZL9+ESqZRBnGhIUI8N0aDAPviCPrxkx08nwCMcP0MOPFSDbKHanDgw8+QC6X44AD3lD7mmEY7Lvv/txzz1+bfp5eFzM0g5o/H+eYY9FKRWTW3w9yHBdVbZnl84j0MOUD34C3YsWUX28iZl7M4MuvDeM3WNblWNblGMYtgF5pzwk2D71abC5WHn5hMqi2VPwWXTWbTVQeE2FzE8GlOhDrCyM0lIrjeVZFKl51e7CRcn3Fz86uOYr7ERcAFo7zWpRK4rq7UC4fUbEB6s7PcDrEDJPFO0QuOB/9kUfw5s/354RMEwwDlUjgLVqE3LiRyMXfonzwIYhyebS0u0q5DLZN6c1vIbdwUUvODO0TiBmmgxkvRu2watWzACxbtmLU15cv34b169dRKjWvFOt1MUMjpJQkEjFC534c76ij8VLD8MwziIEBxOAg8vnnkEObKO9/APmPfqyDZzCemRMzFDGM2zDNG9G0J6nOCOn6f9G0hxAig+dZ+Ps9Np5X9eaq7hX5BUfTQvh7PZuf2XVN/EKl4xcxvyAJUUbK6v6bW/G9c/Cth9IIMYimPV6JtchU5pxU5bVHXpw0lIqiaQ8yWt3XHbolZhirkhsaGh7n/CBXrcK88w5UNArGBMVDSrz+frRnn6F0yBux99wLUSj4g6/5vP8nNYwoFLD3ej25884fFTPRTQIxw/QwK4tRJpPGNE2sMRub8XgcpRSZTPPGpFUxg2+GOH139r6AQRCJhNp6/CgvuWKZoY9/guyFF1E+6GBULIaKRLD33ofsV75G7itfgxGKpG4wUswg5fT1yQ3jb+j6/bjuUjxvG5RaUGmHraxEPHiVmwwXGADiFaNUfxUjpS/rdl3F6I+D//9SKvwC4uIXpKpQIYtSCimfQognAA/XXYbnLaq0BV2U8gue626L674cKTeg6/+lajsEoFSkIvXuflDhSDFDJ/YyGrXkxmLcc3fNDLUupulneN33bzKXXEb2wm/gvOrV/l6opuG85jVkL/oGmUsuq72fc7k8UkrC4fY+R81SFTP4bX1fzFAdHK+26HK5/IiVkr83F4uFmY4bjblALzT5Z5zZIGaoUtdLTtOw994He+99unjUjZluMYMQm9C0x0YF3I1EqTiu+xKE2ITrLsEw7kLK5ytiAYGUCs+z8Q1UtcpzSvzVkn+x9kP4RCWgz0QpCyEyKGXiui9B1+8H+nDdlYCFlM/iuksArzJcq6HUfDyvH1+JtxopF43YF6qq+qbno9gpMUM9lVw9RLGIEg0yhqooEIUiWBblo4+hfPQx1c27Cf0aXddfhVTVgoGYYfYyK1dG8XiCcrlMqTT6A5DJZBBCEI+3bpPe62KGaksukYh1bHC100y3mMG3zMlMaEhaxd+jMSmVjsNx3oQQK9G0pcBCPK8fpeIVP7g+IMbI/aOq4s7zYkCsIlboRymB4+xMsfgObPvVeF4STXsEXb8LKZ9EyjUIkcXzFuF5/ZV9Iz+zyG8JvkD1blnKIVx3e6ZLBjxVMUMzLbmJ8BYtQjBmwHX8wYEUeGNtfioro3rk80U8TwVihlnOrCxGy5evAOC551aN+vqqVc+yePESLKv1JXsvixmaiXfoFaZTzOALBjavYiZGRwhFNLqWcLgfeB/5/Lsolw/AcXaoODZsi+dth1JJ/BVWtFac/GIVqph5Fiqedh6uux26/iC6/ixSbqrEVtiV48ogxFDFB8+PPPePlcqcUxYhigixAaWiY9y7u087YoZWWnITUd5nX7wFCxHDw/VfI5dDWRblN7+56eOqksvlAzHDLGdWFqOdd96FaDTKHXf8sfY1x3G466472H33vdp+3l4TM5im0REvuelmusQM/sW+8QfcMASWZWGaqymXLXI5F8eZj23vi22/qeKMrSNlFn+GyMLzYii1FY7z2orbtsR1/cgJX4iwJVIWsKxrkHItnrcI190epZag1CI8b2sgjKZtxB+4dSsihjx+wSqiac8gRBHb3hfPW9rNH9OEtCJmmEwl1xTRKMW3vg3heYh0erTNFUChgMjmKL/hINwddmztuSEQM8wBZnzPqFgscvfdfwFg3bq15HK5WpF55StfQ39/Px/84FmsW7eWX/ziBgAsy+LUU9/KpZf+iL6+flau3I7rr/8Vw8PDnHTSqW0fS684M7Qb79ArTJczg+ctraw00uNadVLKSuLqJmw7QrFYruzbVNFQKlLxjRMoVazsG+UqSjkHyCLlJkCruCYU8bwFlEqH4K+4spXv88/Pt/wZRikqs0fpippvC1x3a6TMI8QgSvVj27vgurvgefXzdbpJM84M9QZX26V45lsRg4OErroCuWEDStd9d3nbBk2jfOCB5D5/XtvPn8tVs7ZCTUWUt0vgzNAdZrwYDQ1t4tOf/vior1X/fvHFP6C//7W4rjtug//UU88AFNdccxWp1BDbbbcDF1307abcFxox02IGgFDIajveoVeYDjGDUgtx3e3R9ftwXV9gIASYpt+u8bwshcIaSqXXoGnPsHkV5aBpD1fEDB5KhSrFYyNKhXCcvZDyKTTtSYTIVlZg4LpL0bR9UWpbNO3/KkamZaQcrGQhRYEMfoHSK0atwyj1UhxnbyCFrj9DuXwojrNHV34mrVBPzCCEIBIJEwqZuK7buQhzKSmc81HKBx+Cdf21GPfeC56Ls+NLKB99DPbr9264NzQZgZhhdiNUk7c6Gzc2L5ee7ei6oK8vWvkgTs95m6ZBPO7LXptJXJ0NWJZJPB5leDiDbTfYuJ4SOQzjNnT9UTQtimEsREpFubwBxynjOLtg23tjmrci5fN43nI07WE07Qk8bz6+XNtHynV43iKUmodt74Jh3ImmPYVS/XjeEjxvBZHIFnheHte9thKwZyDlxopQIoYQKYRIAVpln0hRLh+E674UKTfgODth24eMet2ZJBQyicWitYIzUiWXz0+ukutF+vuTOI7TdUWnUh7JZBwpJalUhvnz+8hkcpUxkTADA0PE4zEMQ2PjxiHmzUsiBGzalEXKmVkHLFzYurhrupiVe0bdZjrFDCNVco7jVnrSs6cl14jpETNE8bw3YprHEQpti+flyefTFIvLKJffgm3vD4Rw3R3x92sGkPIFPC/JyIIgRB6ldFx3W8DBMO7G3x/aprJ3tAtK9VEsljGMEEJU3bcjKNUPhGqODP7eUhmlPPx2Xh4hSjjOrtj2G+iVQgQjxQzRtlRyvUggZpidzHibrlfJ5cpYllHb9+jGe2eixNVYLEI0GqZctufEGzabLdDXFycctigUOntxE4JKO6kP113A8PBKbNsXIvgqts2tENfdFilfjmn+H0IMoNTK6r8gRAYo4nnbIOXzSPkCmrYBz4sgRKnSvluI4+yM68awbQNd3xHPewp/+DWK625XmV+qDrSKykqrj3L5KBzndRWFXm9RvfmxLAPP8zrXkptBRooZutnmrooZisUi8bi/ugyHrZqYob8/MUrMUCgUa2KGYjFVM9QN8AmKUR26KWaoO7hKCzETs4RuiRn8G4UIUgry+eKIDet6qzAd2349Uq7GNNfgh9+BUgI/FXbbyhDtc3heGKUEfqutiD+s+hyG4WDbr6FYFMRiK/C8pQjxMJ63EghVnB3Ad33YAIRxnAMrq7Pe+6iNbMk5joumyeZW5fk85p/uxLjzDkQqheqfh73//pT33gcivRHkN11ihnA4jGVZCCHo709WvhYiFLJQStHXF6+1qOfNS1IslhFC0NcXJ5XKEYgZNtN7n5AeotNihmZUcu06M/QynRQzaJr/MzQMg1KpTC6Xb6HAmTjOyxFiNUotRAin4qbdh5SDlWFUB11fVXFt2Aooo+uPVYZdC0i5BZ63klIpimXtgm0PVNR3T1UUfW5FUWdg23tTLr+ZXvuYTaSSA+jvT0zqzKA98TjRT38K+fRTCE+hTANh25i3/RFr++3JnXc+3srtputU6tJtMYOu68RiYTRNq10b4nF/ELY6GlIobB7ZsG0H0zSwLBOlFKZpoGkiEDOMIBAwTEKnxAwjW3K5XGHS9kFfXwKlFMPDc+PnPlUxw+aWnIXreuRy+TafZx2WdX1F5r3ZJ03T/o2u31/xiZP4rto7IISNlM8hxABC2LjuSmx7H4TIEg4vxHVfRrH4NLp+N0JUZeDbVNJmX4VSvbNhPFYll83mR91gjRUzjHv8unXE33cWctWzeFtu6XvJVSmX0daswV2xDZnv/xC1cOF0nNKkdFrM4A//+u9D23bIZvO4rjtrxAy9LGDorVu2HqQqZgiHLUIhk2JxAlv7BjRqyTUim83T1xfHskxKpdZesxcplcqEQv7qKJVqLXG2fkuudZRajOuuQNMersz4+B8BKQcqMm4TIWw8bx6+PFuvtPDmV6x+/GRXx9mTXG57EomVFIu7kc8fCWQQQlYk3r310WrGS65YLFdmZyIT3nhZv7kJ7dlncZdtPV6CbZq4W2+N9uwzWL+7meIZZ3bnRFokl8uTSMQolcpT3j8KhSwikTCgyGRyYz6Xvpihvz85Sswwct4onc6yYEF/Tcwwf36ScFinWAxWRxCo6ZqiHWeGqXrJdSpmopdo1ZlB0yTJZIx4PIbjOAwNDXeg/y9wnL3wvG3RtKeQcg2+Xc9QRZbt4HkL8LzNSatKGXjeAlz3ZSjVj+Psi+PsRrk8j1KpTDQaQQgd6K9YCvVOIWrVS66uM4PjYP7ut6hwqP4skKahLAvzphuhR4a0O+HMoOs6fX1xotEwpVKJoaH0uBvEwJlh6gTFqAlajZnolJfcVGMmeo1mYyaEgGg0TF9fAiEkw8MZMplcx8QPSiUolw+mXD4Iz0sg5TD+RrKG562o2PmM/2gIUaoMum4+dt8xQxAOd9eGplXa9ZKrFzMhMhlEatiPAm+AikQQQ0OIXLYj59EJ2o2ZEEIQi0Xo64ujFKRSmYYuFEHMxNTonVu4HqcZMUO7Lbl6TKuYoVj0PcMsC5VI0C1zvsnEDJ1syTUmiuu+Atd9GUIU8LwFWNbPUMpk4nu0En5G0UL8SHEfz/PI56sb5aWemBFrNd5hLBM5MyjD8OMfJnsPui5IDWVMn9nwZLQjZmjckqtP4MzQPkExaoFstkhfX3RcT72bXnLFYqniaxXpiphBPv885u9vxrz1VkQuB7qG8/JdKL/5UOw99+p4UarGTMTjUYrFUk2EMDWV3FQwUMrAcV6DYfwVITYhRKkyFKvj5xKlgULFfmgFSi0a9QyFQrG2H5ZOz9yKoFNectWbIH8epnLjFYvh7rILxl/+jNvfX/exMp2hfMCBEOqt1Xw+X8SyLKLRcEMxw1iVXD5fbOlnODZmoipmGBkzMTAwVFspbdw4RDgcIpGIsGlTttLufXEStOlaYKwzw7p1a3n++VVdj3doJmaiHbQHHiB2ztmErrwCkc2iwmGUkBh/+TORz36G0I9/NN5duQOMdGbodkuuWTxvKxxnVzxvcaV1N4SU65ByYyVI76UolazsG43PT8pm85imMQ1T/+OZarzDREwUM1E6/AiUbiBSqYmPI5VCmSblww9v+3W7SSNnhlZbco0JnBna4cVbhtvEFzM4/PjHP+KnP/0pkUiEO+/8U1e95EaKGTrlzCCGhoh85QLkurW4264clcDpzpuH2DRI6BfX4K5YgX3wIVN+vbFUnRn6+5MI0e2WXDPo2Pa+QAEp1+G6W6CUhZ8Cq5ByGMfZEdt+7YSPtm2nJmaw7eGuOHZMxFRbco3I5fIkk/Faa9reb39KxxyL9atfIHI5vHnzfHl3uYwcHEQoRfGkU7D3en3HjqGT1HNmaLclV4+xYobBwVTgzNAEQTFqAaUUd931J7797QtZu3YtW2yxBeec87FpMTWt58ygPfkE+v33g+PgLluOs+uuTTkfG3+6E+3553FXrJgwClrNm49KZ7BuvAH7DQdNHhfdAn5LbrNKMJVK98Rei+dtQbn8FnT9ATTt8crMkahEPrwSx3kFI2eTxpLLFSr5U2Hy+e66Z3Q63mEixsVMAIWzP4K3YgXWr3+FfG4VwnZQhoG7zbaUjjue8pFHjW/tFgqIdBoVjUIs1tFjbJWRzgz+yq/9llwjgpiJ1gmGXpskm83yuc99gnvu+RuGYfDWt76V9773vZRK9rR5eYVCfs87lcqgnniCyNe+gvH3exCFIgiB0jXcbbal8P7/wT7ooIbPFT3nbPR//RNvxTZ1v0dkM4h0hsz3vt+RqfqJBlfj8Si23X2H5VYRYrjiWUdl5qg5m5twOEQkEupagZ1scLUbr9ffn6Bctkc7M9g2+kMPIjIZvEQCd6edQR99b6s9/DChq3+G+YffQ7kMUsPee2+KJ56Ms+eeXTvmyYhEwoTDVs0ZoTq42mmqTgvJZJxNm4aJxSIIIWpihlyugG079PcnGBpKI6UgmYwzODiM64qurI6Codc5wH//ez/33PM3dt11Dz784Y+yzTbLCYVCGIYxbTETNTHDujXwrrcjV6+GeAJvSZ9/pS8W0Z54gtj/fpRc8QuUD6vfuxepYTAbz/so00I4mxC5qfvy1VPJTSRm6AWUSlZmhlqjm2KGbrbk6jGhmAHAMHBe+aq6jzNuuYXYuR/z9yItC2UYCNfF/L8/YNxxB4UPfZji29/R9eMfSyhk1WaoHMfpqsNJIGZojUDA0CR77LEXN9zwey688GK23nrZtMZMjCSbzWN86QK01atRi5egYrHNbZFQCLV4MdhlIl/5Ut2NZgC1YD6i1PhiJopFME1UvP27qckGV6cnZmJ66bSYodXB1U4zkZihEfKpp4h94uOIfB5v4UJUMgmRCCoex1u0CFCEv3kRxp/u7Opxj2Ts4Go2m0fX9SBmoocIilELLFiwcNTSuR1nhqniPfYY3l13Ifr6Jt7HEQI1bz5y0ybM391c93nsffb1p+Tt+hYpcmAA56Uvw1uxouXjbEUl16ozQ68zUswwlfdFN1Ry7VLXmWECrOt+jUin8ebPn3A0QPX1IcplrKuu7MahjqKeSq5qDzQVZ4ZmXz9wZmiOoBhNgWadGbQnHify2U/Tt8du9L/qFSSOPBzrF9dAofVNbv2/D0AuD7EYsp6oQNPAU+j3/6fu89j77IO7ciXaqmfBHdMeUwq5fj3KMifekJ4EyzLo60sSClnk80VSqXTDFlyzzgyziak6M1iWSX9/otbSSaUyM5ozVM+ZYSKs3/4WZegN3zcqEsH4x72IjRs7fag1QiGr5hWXyeQYHs6M2htq15mhVQJnhuYIitEUKRYdbNt3ZtD18QqY0E9/Qt+B+xP+6U/QnluF2LAe4x/3EvvwB+l748HI1S+09Hqi8mHyPA8hxUhnmjHfKMCpXwBULE7+k5/C3XYl2jPPIl94HjE4iFy/Hu2pJ0Epim9/J/be+zR9bFPxkqt+WOdKu67qzBAOW2ha8x+zmW7JNaKq4my4mvA8RCYDRuP2l9J1cF3f9aPDNOMlB6OdGere2HWIqjNDOBzCdb2aM0O1RVd1ZqjOQWUyOSKRMJomXjSro6AYdYBstli56xl9ITVv/i3Rz34aXBdlGCjL8u12LAtlmmhPPUnilJNhkr2bkbjLlvnPVSiCAm2iD1Hlzettu23j59pue7IXfoPC+z+At9XWfosvHKZ05FFkv/I1Siec2NSqqBODq1VnBssyMYy5sXFbKBTxPK+pAttLLbl6VMUM9W68AJDS3yNq0P4FEI7jG6smxg8Qt0s7g6v5fBHPU9PSrhspZkins+i6NkrM4M8T+v++2UooglKzP9OsGebGp36GmTBmQinCF10ISqFMc/xFXUqUpqE9/hjm73/nt8Oaea3XvBZ3h+3RHnoYNxRC1zWEFKgRF36RTqMiYUqHHjbp86kFCyidcCKl40/w5be63tScUpVOeslNJWaiV8lm/cHRqlXURMyESq5dJouZACgddjjhH37fLwIT3cwohcjnKR/4ho7lHk1lcLWTMRONCWImGhGsjDrEWDGD9sAD6I89itK0+quLyr+Frrm6+ReSksL7/wciEcSG9Xi2vbnF4HmI4WEoFigdf0JrwgMhwLKaLkTdiXd4cYkZerkl14jJxAylY47F6+tDbtw43k5KKcTQEMqyKJ5y2pSPpdmWXCM6ETPRDIGYoTFBMeoQY8UM2to1vlqtiYu7fP65ll7L3m9/cl+8ANU/DzZsgBdeQFu3FrlhPQDFM84kf/Y5bZ3HZHTbS+7FIGaYDS25RkwmZvCWLyf3tQvxkn5B8iMlcojhYeSGjaDr5P/3XJy99mr7GDrrJReIGXqBOdmmW7XqWb7xja/y4IMPEIlEeeMb38w73/lejEk2VY899jDWrVs77uu33fZXLGvyO/WRMRNOLOpfueu1KqoohYrUt5ipR/mNb8Lecy/M3/8O66EHMVAUl2xJ8dC34C1f3vLzNcN0xTtMFjMx2xgZM6GUV7ng9X5LrhETxUyMxN5nX9JXX0Pol7/A/M1NiHwBTIvSm99C6fjjcV79mrZfu9NectBezES7BDETEzPn7IDS6TSnnXY8W2+9jNNOeysbN27gO9/5Bgcf/CbOPvt/Gz722GMP4yUveRknnnjqqK/vtNPOTb8BdF3Q1xfFTaeRK7eDjJ8RNCFKIcpl8md/hMJHPtrU89ejry+BUqorE+UzEe9gWSbxeJTh4UxPOTO0S7UlJ4TompfcdBMKmcRiUVKpdGPZuesicjlUODypyq4RU413aIb+/iSO0317KqU8ksk4UsqaM0Mmk6t0Vnxnhng8hmFobNw4xLx5SYSATZuySNn+GiKwA5pGbrzxWvL5HBdc8DUSCd/OxXVdLrroK5x++ttYsKDxhum8efPYeeeXt/36NTFDMkn5jDMwvvNtlOuOb9dVCpGyLEonn9L261XJZvP09cWxLLMjd4ow3ktuOgvDXBEzjPSS8zwPTdM65rw+0zQjZgCmrJrz25r++9C2HVKpTFe85CAQM8wkc27P6J57/sZrX7trrRABHHDAQXiex7333jMtx1AVM+if/xzOa1+HcFzfesd1a64HoqJcy154Ed4WW075NUfGTHTijdrq4Go3mO1ihrGDq9XN9ak6M/QSrTgztMNkg6udJhAzzBxzrhitWvUsy5atGPW1eDzO/PkLWLXq2Ukff8stf2D//ffgoIP25pxz/oennnqy5WOoiRliMdzf/IbCBz6A19+PcByEbSMAe/c9SF/1c8pHHdPy89fDH0oURCLtb8J2SyXXDrNVzNBIJTdVZ4ZeoxVnhlbohEquXQIxw8ww59p0mUyaWGx8XzQej5OeZNr79a/fh5e9bGcWL17CmjWrufzyS3jve9/OJZf8jKVLt2rpOGpihnn9pD71afIf/DD6fx9AFIu4W2096UBqO1SHEqPRMMViuaU7yJlsyTViNokZxsY7TLSXMlLMUCqVeiLHaapMJmZohelsydUjEDPMDHOuGE2FD31os4jgFa94Fa973e6ccsoxXH31VZxzzsdbfr5stkhfX9TvqTsuzq67tXdgxSLmH36P/sAD4Lm4221P+bDD/Un3cd9aiZmIRZoWM0yXSq4dqs4MvRgzMZJWBle7GTMxE9SNmWiRbqjk2iWfL2JZfn5YN2+CgpiJzcydM6kQjyfI5cZ/wDOZDIkWN1EXLFjALru8kscee6StY5nQmaFFjFv+j9inPonYuGGzRNxTRL76FT8T5q1vGycdb1bMMBMquXboZTFDu4mrzTgzzCaaFjNMwHSo5NphusUMH/nIh9liiy345Cc/TaGQI5crsmzZVi8aMcOcK0bLl68YtzeUzWYZHBxg+fIV0348uVy5svII+9HNLXzGjD/eSvwD74dyyY9sriZpui4ilyXyxfPA8yi+452jHjdSzDCRcksIiDg2obv+grd2HXkhKb7mNR1Jc+0W2WyBvr444bBFoTDzsznNtOQaMdKZwbaHW3pf9Cq5nF9gQyGLYrGEWL8e475/g23jLluOu8suo26ceqEl14iRYoZuFqOqmMHzPK699lr2229/vv71r2FZFpdccjlr177A+vUb2WOPPYhGwxQKxZqYoVhMoZQ+JwrSnCtGu+++J1dccSmZTIZ4JRTujjv+iJSSXXfdvaXnGhjYyAMP/IdDDnlz28dTFTPE42Gi0UjzPXXHIXr+eX4hSiRGr340DRWPIzIZIt+8iNLRx6DmzRv1cL+PbxKJhGpuywCWoRG9/HLE5ZehNmwApbA8hRkJY+++B/mPfwK1ZEnb59stRooZ/D7+zF29O+Ull8sV6O9PEA6HyedbjxPpNWpihuEh9E98EvP3v4N8AVCg6zg77UzhI+dg77NvT7XkGpHL5enrSxAOh7rWvjYMnWg0wrnnnsvRRx/NRRddyG677cYvf/lLrr/+Wv7yl7/wr3/9k8suuwJd17jpphs588x3sPXWWxCLhclmS0DzfpK9ypxT0x1xxDFEIhHOPfcj3HvvPdx8801897vf4ogjjh41Y/TBD57FCSccWfv7rbf+gc9//lPccsvv+fe//8lvf3sD73vfO5FSGzcE2yqTxUxMhPGXPyOfew4VidR1cFDRKORyWDdcP/7fRjgsa5rmq+QSUeLfvhjx9a/hDg3hLlyEt+VSvKVLQTcwb7uN+Afe29WMmakw0zETnfaSazdmopfJP/UM4i1vwbruWrBtVCKOSiZRhoF+/3+Iv+sd9N/xxxlRybVDN2MmpBTE41GSyTiaJlm2bFuOO+4EnnnmGebPn09/fz8/+MH3OfLII3Ach+997zvcd999/PznP+fnP7+KDRsGeNe73sntt9/aE23NqTI3PgEjSCQSfOtb30fTdM499yP84Aff4bDDjuQDHzh71Pe5rjuqJbDFFksZGNjIxRdfyIc//D5+8IPvsOOOL+WHP7yELbdcOuXjqhczUQ/t0UcA1XhiXUo/RuLRCfa0lML5299QH/owfW86mL6D34B29NG43/0erhVCLVi4ue0nBCqRwNtiCdqjjxG6/LKWz286mKmYiW56ybUSMzEbiJz/BXjySUQiAdGY/x6tmPCKvj5kuYz88IcZfnrVrHGh6EbMRDgcor8/iWWZlMsOQ0N5crkSZ575LubNm89ll13GSSedRi6X4667/sw+++zL3/72NxYuXMDSpUv52c+uZGBgI4899hhf//pX2LSpN28gW2HO2QH1MrGYSThskc3mJhUzhH74AyJf+RIqHm/obSeGhykddwK5r35t8xc9j8hXv0zo6p8jymWEaeL5XiKIUgnV14e7YpsJTVzF4ABEowzf8JuOZs10kmQyhhByWsQMI1ty+Xx3vOQMQyeZjJNOZ2e1mEGuXUPf/n6cvYjFgEoIpBC1PQ3lupBOk//0Zym+7e0zebgtYZpGTUgwld9RtSWn6xqu65HLlSiVRitE//CHmzn//M/y9re/m3vu+RsPPfRfPvOZ8/jyl8+jr6+fD3/4I5x77sd4/etfz4EHHsjnP/95jjrqKP73fz+N4zSWofeyHdCcWxn1MmNjJhrh7Pxyvwg1CilzXX8F9PKdR305culPCV95BdIwUEuW4M2fj5g/379LlRKRTtd1ClexOGI4jfb0U62e3rQxHc4M0xnv0ChmYjah//3vUCyiQqFavpaUEiH8tFLP81BCgOdh/PUvM3y0rTFVZ4axLbl8vszQUG5cIQI45JA38/nPf4m3vOUIzj77f9E0jccee5RTTjmDDRvW89BDD7P77nvyl7/8hVAoxktf+jKuv/567r///qme5owSFKNpZGzMRCOcPfbAXbkSkc+Pz4SpIHI5VCJJ+fAj/b8LiCqX8JVXgKbjxuJ4lYsAVBLKhQApkcPDUJhg01wIQNV9zV6gm84MMxXvMBecGUT1xkkIhKi83wDlqdE/PyGg2DuzbM3SrjNDvZZcvbeUEIIDDzyIhQsXseOOL+HKK3/J2972Tk499QyWL1/Bk08+zoc+9FEMw+Cb37yQ97/f34L4+te/hOP05hxeMwTFaJppWswgJbnPneeH6A0Pj14hOY7/NU0jf+4nUMnkZi+5v/wZtWEDbiKOYvO73fM8CIf9IiMleB4yNTTuZUUui4pGcbde1snT7jjdEDOM9ZJLpTJtD3C2ylwQM7hbL0NoOtJ1QQi8ytV21GqvEqnibbPNzBzkFGhVzGAYOn19CaLRMJ6nSKcLDA8XWnbdWLZsOdFoDMsKccklV/GlL13IVlttzTvf+V4cx2blyu047LAjeeKJx/nd737T7unNOLPzXT/LaVbM4Oy5J5kf/xRvxTaIQgGRziAyGX9FtHAhuS99BefUU0d5yeWffsYvQfroDX6lFCSTFdFDpUiNbQG6LiKbpfyGg1ELFnTuhLtAJ8UMvZK4OpvFDLquEzvoANh+O8jl8FwXpfwVkRACUV0nlUqgaZSOOXb0E6jeXo1XaUbM0EpLrlUsK1TLZTv55NO44YY/EIvFePe7388OO+w45eefSebcnNFsoBVnBnuv15P64+0Yd/3JtwNyXdztt8c++GAi8+cRG+MlZ4UjCM9DeZ5feEbghUJoiQQqlQJvTOhfoYAcHMDbamuKZ5zZnRPvMFN1Zpjq4Go3mG3ODGMHV3P/8yEiH/wAIpNBxWIoKVGVtp0qlhClEuWDD8F55augUMC69teELrsU/fHHQErs17yW4lvfRvlNb24qJXkmaOTMEA6Haqax5bJDNttd/8GqMKSvr49LLvkZAC+88DxXX30lDz30IE8//SSmaQGKSCTKUUcdyYc+9CFM0xz3XEopfvzjH/Pzn/+cTZs2EauIUPL5PFtttRWnnHIKJ510UvfOJVDTzQxCwLx5fsLr0FBrE/iNvOTkc8+RPOIwkMJX4o1BAmLNGkin8ZJJCIVAAYaBs8MO5D//BdxZdIelaRp9fXHy+UJLzgzToZJrl3g8iq7rpFK97cwwcnA1lyvU5oWsn/+M6Plf8PcklUII6W8gSUlp/wPIfuNbiHKZxInHo//3Af/JRt4YKUX5TW8m84MfwQQXzV4gEglx3XXXsttue9Lf39+USm66+POf7+Qb3/ga22+/I/fc81cMw+CLX/waGzdu4Nvfvoh4PM7w8DDRaJQjjjiiVpx+9KMfcfHFF3POOedw/fXX8/TTTyOE4LzzzuPRRx/lkksu4ZWvfCWrVq0in8+zdOlSzjrrLA4//PCOHHdQjGaQUEgnHg9TLJaacmZo1ksu+uEPYf3+Zrz588fPKXke2sAA3tbLKBx7HHLTIMoKYe+6G85uu/Xs3WgjqnfmQ0PDkzoztOslN51IKenvT1AolHrSmaEZLzm5dg3Wr36F8be/QqmEfOlLkKefztBLdkIpReLYozHu/ltN4TmKSu5X8e3vIHf+BdN4Zs3z7LPPcMopJ7HPPvvwne98F8syUUpRKNjk8/XFCdOB53lIKbnyykv5yU9+wFZbbc3PfvZr0uk0xx9/ONlslq9//euUSiUuuOAC4vE4qVSKUqnELrvswje/+U32339/zjvvPH7wgx+wzz778N73vpcDDzyQcDjMF7/4RWKxGE888QSRSIRsNsuXvvQl9ttvP374wx+2fdxBMZph+vrCGIbesEU0Nt4hl8s3dK8WAwPE3/UO9IcfQpmm79QghL/vlM+jttwS+bOfkdp6RU95gbWLEH5ctG3Xj4se25LLZvMz3pJrRLXdk0qleyZmYmxLLpvNN/3+EULQ35+gXLYp/vkvJA99k/+Lq3fzY9tgWWz69/3jrK56AaUUH/3o2dx99918//vf5/Wv36frLblWed/73snatWuIRqNceeUvufLKS7niiksoFotccMEFHHjggRxwwAFks1ne/e5388Mf/pBQKEQ8Hmfjxo3E43GWLVvG0NAQr33ta7nzzjt56UtfyhVXXFF7jY0bN/LGN74Rx3HQNA2lFPF4nNe97nWcffbZLF3avGFAIGCYYSYTM7STuKoWLCDz00spvPNdqGQfIptFpNOgGxSPP5HhSy7HfdlOTbtB9DqTiRlmUiXXLr0mZphq4upIe6rQ9dfVRgzqoutQKmHe3HvqMMPQ6e9P8pnPfAZdNzjvvPPZsGGopwoR+EGj1X0f8FOw99xzTxYuXMjTTz/NNddcg+u6CCFYu3Yt4Le9N27cyA477EAikeCJJ55gzZo1/Pa3vyWfz3PKKaeMeo2vfe1r7LzzziilWLRoEd/73vf4+Mc/zuOPP85xxx3Hpk2bmj7eoBjNMFUxg67rhEKb++NTTVxV/f0UPvJRUn+4hfTPriFz1c9J/eEW8uedj7fNNmSzeQxDx7J6syffKqVSGdu2R128e0Ul1y7ZbB7TNDDNBpZQXaaTiavFYhnbdjA3DfqtuEYTvpVVk9zQOzY3Y1VyS5ZsxYknnsKaNau56qrLZ/rwxpHJpNH1ze+dVaueZdtttyWZTDI8PMxdd91VK05r1qxB07SaY8Ypp5zC9ttvT7ns/649z+PII4/kyiuvZKeddmKvvfbiIx/5CLfeeiuf/exn2WWXXVi+fDl77LEHb37zm/nxj3/Mpk2buOGGG5o+3qAY9QAjnRmeeeYpvv/971Ao5BBCMjycIZPJte9SHY3i7rILzitfhZo/v/blkTETc8F+HkY6M4RmZHC108ykM4MQglgsQl9fHKUglcp0ZH8tl8sjksnJ9yaVAs9Djbizn0nqDa6eccbbWbRoMT/72eUMDAzM9GE2JJNJj8p0e/rpp2vFqVj0V+J77rknCxYs4LLLLuPZZ5/lxBNPrH3/r3/9ayKRCD/96U85/fTTufnmm9l5553Zdtttx11DlixZwrx589iwYUPTxxcUox5AKVi/fpCvfOUrnHHG6Vx11VU8+ODDTbXkpoIfLSGIRFqbKO9VXNfFth0ikdCsask1YiacGabakmuE47jYbz4UPM//U4/Kyql8yBs78rrtMtngajgc5uMf/zTLl69Aqd5q08XjCRxn/HjA8PAwyWSSdHpzcTJNX4CxbNkydF3nmWee4eKLL2annXaqPW7p0qU88sgj7L777kQiEeLxOP/5z38oTuCm8cwzzzA4OMjKlSubPt6gGM0wSiluueX3HHPMEVx22WVsvfXWfOtb3+bVr37NtLz2yJiJ2Uy1JVdtadm2PatacvWYTmeGTrbkGpHZYy/Ybju/GE200qoUqfJBB+OtWNHx12+GVgZXd911dy699OcsXLhoBo60PsuXryCb3Zx6HY8nGBwcZOPGjWy77ba1rw8PD7OkkmHmOA7lchkhBDvssANPP/107dqwyy67sGHDBlavXs3FF1/M2972NsrlMqtWrRr1ukopzj//fBYtWsShhx7a9PEGxWiG+fSnP84XvvBpstksZ531Pm666Sbe8IYDpu31i0VfATRbxQz1vOSmO2aim3RbzNCtllw9lJTkr7zKN+/1PF8553n+aqjy/+7225O98Btdef3JaNVLrlfZffc9GRwcqHlTLl++gr///e9IKdlrr71IJDYXp91394NHH3/8cWzbT4d+6KGHuOWWW4hE/Pfd2rVrmT9/Pj/84Q/Zcccd2XFHfx5x06ZNOI6D4zik02m+9a1vcc899/DVr3619thmCKTdM8xnP3suIDjrrP9hyZIlLcVMdIrqHXEvJ25ORKPB1emMmZgOuhUzUW9wdTpIDg+hXfh1uOoqRKHg52r191M87XQK733/tEeY9NLg6lQoFovcffdfKBQKfPWrFyAEnHzy6fzjH3/n4Ycf5LjjjuP555/nvvvuY9ttt+WRRx5h6dKlbNq0iVKpVLnxiaKUwnVdTNOsdBqKfPCDH+Tuu+/m3nvvbXgMX/ziFzn22GMbfs9YgmLUY0zFmWEqxGIRTNNgaCjd8I5Ye+JxzBtvxLjrT4hiEW/rrSkddjjlgw+BFu6CpkIzg6vtOjP0Mp10ZmhmcLXbVFuruXUbsJ98EjQNd/kKsLoXDTIRUvqr614aXJ0Ka9eu4bjjJnZFME2TXXbZhUwmw6pVqygWiyxcuBDTNFmyZAnPPfccGytJz8lkEiEEqVSKvr4+UqkUp556Kttttx0PPvgg119/PYceeijHHnssF1xwAcVikeeee453vOMdfOQjH2n5uINi1IO06szQCfyhxCSlUqkibBiPdfXPiXzjIshlwTBRmkSU/Au9+9KXkf3WxXgdSMWte4zFItHhIaxwCHfJErJlp6E4oRVnhtlAJ5wZpjK42g2avQnqFtPtJTfTpNMbOO+887jvvvuIRCIUCgV22mknzjrrLH7xi19wyy231IrT7bffzq9+9Ss+9alPsXTpUs455xy+973v8eyzz7Jo0SJOOOEE3vWudyGE4IgjjuCxxx7jhBNO4POf/3xbxxYUox6lGWeGThMKWUSjYVKp8eop47Y/EvvYOeAp32ZopJSzXEbbuAFnl1eQvvzKjt/ZioEBor+5Eev3v4NNQ3jKw12wkNJb3kL5yKNQ8YnbOc04M8w2puLMMJMtuXqMdGaYrhsvmDstuVYZm/T61FNP1S1O69ev58tf/jKhkO8UfvvttwNwxhlnsGbNGm699dbacxx22GGEQiF+8pOfjIrXmDdvHsuWNRdHExSjHkXXBX190Yqb9PT97Pv6EiilGB4e8ZpKET/tFPT/3Ie3ZIuJhxVLJeTQJrIXfgP74EM6djzG+nXEP/Fx5COP4IXDOFF/7kQOp6BUwnnVq8ld8GVUf/+Ej7csk3g8WnM1nwv09ydwXY90Ojv5N9MbLblGhEImsVh0Wm685lpLrlUmix0fWZyqRqof/vCHR7l8n3baaaxevbpWnK677jrOPffcCZ/vqKOO4stf/nJTxxYUox4mFrMIh80ZFzNojzxM4pSTUOEIqsG+kFyzhvJBB5H75sVTPg4hBJFwiND7zoK//AVnq61RYzKaKJXQVr9A6c2Hkv9s/dbAi1XM0GstuUZsVkN27zrzYmvJTcRkxWgmCaTdPUwuV6o5M0zXBP5EzgxyYABsGzVZ+83Q0dasmfIx1LzkHnkY75//xFmwcHwh8r8Rr38exl/+gnz++brPt9mZYXo3xrtFM84M3Rxc7Qa5XB5N0wiFOv876lTiakB3CYpRD+MbgJaQUk6rYeZYZwYVDvumls4kbS7X9R3C22Ssl1z+9ttRhULD51TJJCKTRv9nfamp67oUiyUikTBSzg3ro3rODNM1uNppHMelVCrXVi6doJuJqwGdJyhGLbBq1bN86EPv5Q1veD2HH34I3/vet7DHRndPgFKKK6+8jKOPPpQDDtiLd7/7rTz44H+bes1i0cG2HUIhC12fHpeEsc4Mzs4vx1u8BJlu0OZyXVAKe7/9W369eoOrIp8HRGNDTSlBSMQk6rJ83pd/94oL9lQZ68ww3YOr3aCq4mwU6d0sc2Vw9cVEUIyaJJ1O8z//8x4cx+GLX/wa73rXe7nppuv59rcvmvSxV111OZdc8kNOOOFkvvrVbzB//gLOPvv9rF79QlOvPVnMRDcY5cwQClE65lhwbChMoHhSCrlxA2r+fEpvbt7+AxrHO3jJvpphZl1cF1B1BQwjDrFhzMRspOrMEI/HZlVLrh4jb4LavfEKWnKzl7nxqZwGbrzxWvL5HBdc8DUSiSTgt38uuugrnH7621iwYOGEjyuVSlx11aWceOKpnHCCnwXyile8ipNOOpqrr76Kc875+KSv7cdM2ITDJqGQOW1ihmw2T19fHMsyKZ75VvSHHsS443ZIZ/ASCdA0RLGAyGRRySS5L5yPWjjxz2EszQyu2nvvQ+iySxHDw3WLjRgcRM2bj73HnpO+ZqlUJhQyiUYjc0LMoFf20XRdo1wuk8nMPmfysRSLZSzLIhaLtCRmGKuSy+fLXVfJvfDC81x99ZU89NCDPPPMUyxbtpwrr/zlpI9TSnHVVZdz/fW/IpVKsf32O/CBD5zNzju/vHsHOwsIVkZNcs89f+O1r921VogADjjgIDzP495776n7uAcffIBcLscBB7yh9jXDMNh33/25556/Nv36My5mCIXIfv0iCud8DG/ZMmQ+hxxOIRSU3/QmMj/4Efa++036nPVachNdRL3ly7EPOBAxtAly4+eERDqNyOcoHXHkpCsjAFyX/L3/QvvHvURWPz+xSWcnKBbR774b49Zb0f9+j++31kFGtuQ8T1Eu22iaDszuQlSlVTHDTLXknnnmKe6++69stdVWrFixTdOPm2qnZK4SrIyaZNWqZzn00NEWG/F4nPnzF7Bq1bMNHwewbNmKUV9fvnwb1q+/mlKpiGVNHuFQFTPE42Gi0ci0DQjmcgVM0yQSCZFTiuIZZ1I8+RS0p5+CYglv8WJUxfF3MkZ6yeVyhaZctfMf/BAik8G460+wcYMvZlAgclkwTcqHH0nxzLc2fhLXxbr+Oqxf/RL57LMozyVsWWgv24niyae0tc81IY5D6MorsH55DXLdOnBcMHTcpVtROulkSiee1DjdtAlGDq5W5fdVZ4ZwONy2M0MvMVLMUCqV6672xg+uFqdVnLDXXvuw9977AfDFL36ORx99eNLHdKJTMlcJilGTZDJpYrHxGv14PE66wcZ+JpPGNE2sMbLoeDyOUopMJtNUMQJfzBAK+WKGYrE0Lc4M1T5+NBqmWCz7exGGgbvjS5p+jmZacnWJRsl94TyMv/0V83c3oz32GAD2Xq+n/KY34+y2W+MLvOcR+dIXsa6/zv9rXz+uYaC7DuY//4n2wAMUPvghSied3PT5TIjrEvn857BuugF0HW/ePD8627bRXnieyFe/jHzheQrnfKytgtRocLUqZvAv3nNjdsa/CTKIRsPjbrxmoiU3EbKN32OjTsmf/nRHJw9v1hEUo1lGNlukry/ack+9WeSqVYR+cTXmDTf4ezV9fZSOOgr3Xe8itvXWo50ZJkEIQSQSJhQyK04SbU7YGwb2vvs11QYci3nzb7FuuB4Vj4+yDXItEz0eR6xdS/g738Z5xStxX/ay1o+t+jp/+D3Wb3+DSiRGp5NaFt6SJYjhYUK/uAZn9z2w99m36ecdO7g6kVUT+GKG6n5YXWcGpdD/cS/mbX9E5HJ4ixZTOvyIGcsMakT1JmhwcIDh4TRbbrkVMPsHVzvVKZmLBMWoSeLxBLnc+A95JpMZFeU70ePK5TKlUmnU6iiTySCEIB5vbSK6m2IG49ZbiX/oA5X9GeELFFavJvLtb6Muvxx55RVYu+3R1NxKOy25jqMU1nXXguuN869TnsKTCrl4Md4zz2D+9iYK7RYjpbCu/TW4Tt2YbJVMIl5YjXn9dU0Xo4laco3IZvO1gMGxzgzy6aeJf+B96A89CEqhAAGEv3kR5cOPIHvBl6fNdb1ZisUyH//4x3niiSf45S9/zbJlW89YS65TdLJTMtcIBAxNsnz5inF7Q9lslsHBAZYvX9HwcQDPPTc6DXHVqmdZvHhJW2+8bogZtEceJv4/74NsFhWL+yuJSAQVj+PF45AeRp12GtHVzzccShw7uDo0NDxjiaty7Rq0xx5DJZMT/rvreiAlIhLFvLP9FolIpdAeeRg1yY2FikYw/nGvL2hQCopF/8+Y/lK7g6v1nBnk2jUkTjoe/b8PoAzDt3SKRmvWTtZ11xJ/z7smH2qeAQ466GAymQw//vEPg8HVOU5QjIBSqcjJJx/DyScfQ6m0Oc89nR7miCMO4T3veRu77ro7//znvWQym9tUd9zxR6SU7Lrr7nWfe+eddyEajXLHHX+sfc1xHO666w52332vto63G84Mocsvh0LBX0GMLTZCoOIJVCaD+MlPa84Mo7+leZXctFEogudObCUEoBSe5yFMAzFBUWiachk8NfleUMXFwrrmahLHHk3/7q+jf/fXkTj+WKxf/wpRKk15cHUiZ4bwd7+DtnatX3wMY/PvVwgIhVCWhfmnOzFvvaWds+8a4XCI008/jZ122onrrruOP/3p7lk/uDqyUzKSdjslc4mgGAGWFeKTn/w8q1e/wI9+9L3a1y+88Ctks1k+8YnPctRRxxGJRDj33I9w7733cPPNN/Hd736LI444etSM0Qc/eBYnnHDkiOe2OPXUt3LNNVfxy19ezb/+9Q8+97lPMDw8zEknndr2MXfUmaFYxLrpRtC0+m4HQoCUqKt/TkjX0LTNr9locHUmUQsWQCjsp4jWwXM9KBQQW23d2Omh0ev09/uppA1eB0DkcshNm4ie/wX0B//rFz+l0O//D9FPfYJ5H3gvZqk4pcHVcc4M6TTWddeipNxcLB0H8nlENgv5vH/eSmFddWU7p99xRg6uCiFrCrOvf/1LOD24emuFbnRK5gpBMaqw0047c/LJp/OrX13D/fffxx13/JHbbruFd7/7/SxbtpxEIsG3vvV9NE3n3HM/wg9+8B0OO+xIPvCBs0c9j+u64y4ip556Bm996zu55pqr+OhHP8iGDRu46KJvs3TpVlM65k45M4hUCsollNZ4C1HpOuTzuKlhYrFIT7XkJkIlk5T339+/6Na7nXYclG2jHX9c+84Mpkn58CP8oMF6BcRxEENDiFIJL5HAW7DA31+KxxFLliCSSbjzTsof+vDmllyxiPbf/6L/+1+IDRuaPpyqM0M0GkE++6xvq2Sa4HmI4WH/OHI5vwjncoihISiX0R+4v73z7xD1vOS23/6lHHbYkTzxxOP85jc3zOgxTpVudErmCkGExAhs2+Yd7zitElWdZ8WKbfj2t3/YMePGbtCJmAmRzdD/6leCp3xT1Hrfl8+DrpF55DGSixaglMJ1XbLZfE+shCZCe/QRYme9BzmcwttiC5AjVpG2jVy7FnflSsSvf4WYN79tZwa5dg3xt70V+cLzeIsX++2wKuUycvUaZCaNN2+ev4pCIKVAClFxPPIgmwEFw7/8Ndbvf4d1zdXITYN+ITVNygcdTOHdZzWl+qvGTGT//FeibzoEZRh+UR65sqisiEY8iMEnnoYpmN22y2QquVQqxdvffiqHHPJm3vWu90778U1EsVjk7rv/AsB11/2K1atf4AMf+DAAr3zla+jv7+eDHzyLdevW8otf3FB73JVXXsall/6I97znA6xcuR3XX/8r7r3371x66c+mfIM6Gb0cIREUozE8+ujDvOMdp2OaFldd9Uu27GKMdicQAubN8y8eQ0PDbffT42echvGnO+umpqIUIpvBffOhaNdcXSvQmzYN97wFjf7XvxL93GeQGzeCJlG6gSj7hdtduZLsV76K2GFH+vrilRuR9lZ32qOPEP3YR9FWPevvIemaf/GXGiocRg5sxFu0CCk1RMU93PO8zT8/z0MODODNX4DcsN5vi4ZCvsiiVIJyGZVMkvnBj3F2r79PWSUej6IXCoiX7AhDQ7VznrAdqfw9r9wXzqf47ve0df7t0Eriqud5bc32dIu1a9dw3HGHT/hvF1/8A1796tfy/ve/i3Xr1vLrX/+m9m++HdBlXH/9r0mlhthuux34n/85m5133qXrxxwUo1nE5Zf/lB//+PsAXHTRdxqKE3qFUEgnHg9TLJbadmYwbr+N+Dve7osVJpD4inwOIQTixhsp7rY7+XyRvr4EpVKp5rbcy4gNGzD/7/eYt92OyKTxFi2i/MY3YR94IKoyzFyd5xkaGsbz2iywhQLmHbdj3H4bcmgIb8ECygcehHHv3wldeQVi8SLAvyD5rzH6dbTnngPP84dmR66u/AchUsN4ixaRuu0OqCMjr1J1ZnA+9GH0b1/sF5x6hQhA13G3XUnqL38b933y+efRnn4KZZg4u+wy6WtPxos9cXWmCIrRLOHJJ5/gne88nYMOeiNPPvk4qVSKK674BbEpfvCmg76+MIahTym6OXzRhYS/c7GfS2RZ/pyR6/p31LqO98lPknnnu2vPHwpZRKPhzYOYSqH//e9Yv7wG/ZFHUJqGs/selE48EXe77Tt5ul1BCOjv///27jywiTL9A/h3cidNSoECCtgWC/w4qgJCWwRF7iJF+CGHB4eKwk9EQETYCssicp+LVVG7sHIpKCKgsAhoEYEtpZxbQATXFik30iZp7mR+fwwJTZOmaXPMpH0+f9npTOZNg336vvO8z1MHVqsNOp1nLbzqvy6D6KxPIF26BGxsAzhYFqy3OnI2G8S//w5WoeCSL7yx28HodChduBjmYcMrvbdSqYDqUgHQtu29oFM20DiPSaVgJRIwAP48le+q9Sc5fgyqBfPdUt9ZpRKm50fA8JcMsDExlf8AvI0pgjeuRjIKRhHAZrNh7NjR0Ol0WLv2C1y5csUVmN555298D69SEgmDmJiou5UOqvlZsSxku3ZCsToLktOnwTgcXIZdcjJMr4xFafceHpfExESDZVmUXLsB9ZTJkH2/G4zdAZbBvT/6pRIY35gE48RJ1c5YCxe5XAaNJgolJTpYrYFnbrk2rp7JB/r0ASuRVNi6nbl1i5tNNWgIyGUVvibz5x1Y+qZB/8mnfo2hLmuDKC7ubgq6l1/6Mhm3HGi1csHo5H/A1qsH6Y8/IHrE81ziQ7nEDFYshj0hASU7d4OtX9+vcVRlSY6EhpCDkXAWYHm2du1qXLjwKzIyZkGlikLz5i3w4ouvYNeub10PKYXMWZlBIpFAoaj4F5lPDANL/3QYtn8L+9E8MD/9BHPOEfz5+WavgQjgdv1LpRJEz3wH8l07wYolcKjV9zbOqtWAwwHl35dDsW5tAO8wPMxmC6xWa8D7tzw2rjZ+ANbUzlwSgbcq3lYrt9dJLAZkUs/vl8Vwy6b+0ktkYOLiAIkEbJQakMsBmZzbY6TRcIEIAGO3w35/Y7AxMWB0WmhefpGbiXnJEGTsdogLCqD+y7RK708dV4k/KBgBOH/+F6xbtwbPPDMMHTp0dB0fMeJFtG7dBosWzXPb7CpUgVZmcG1cjYkG0ywBxc0Soa/fwGeCgs1mg/nkKUi3bwMrlXG/6MrenGHAqqIABwtl5kqu4oDA6fVGiMUiKJX+tTAoy1fHVf38hbA99DBExSVgbt/m9voYDBDdugVRcQnsic25bEZfe2lYrpCPo3Fjv8dktTtgGzPm7ufCgpXLwSrkYGWye5+V3Q4wDEwvvgiIRJB/9RUYg4GbHVf0Xu12yL7dAebatQrPoY6rxF+0TFfDVDeZoWwtOYOharXkVAvnQ/nJx0BUFByoIArabWAMBug//hSWfk/5/dp8qU4yQ9lacqWlRq8lfBitFvIvN0O+eRNE17lf4o77G8M8bDjMgwejzoD+EF25UvGzGLMZjNkM3dr1sHbp6vf7EZWWou7ggcCZM9wGWInkXmq3zQbG4YDtf1pBu207WE00oocNgXR/Nhg/fj3oVmbC/PwLbsdoSU6YhLxMR4VSa5iqtpkIqL3DXaI//uD+shaJwLCs9796xRKAEXHnBoH41/OQb94M2Z7dYAxG2Bs3hnnoUFgGDb67jycwBoPxboBWVZrM4Ku9Q3lsdDRMr7wK00svc7MjgHvmcreihXHca4iaPQtMaSn3bKnsLNNqBWMwwtapk1+dbctyREXB8PU3UL02Dsz+/R5LhdYuXaH74CNXaj+j1/sViFiG4faf3SWU9g4k8lAwqoH8aTMRtPYOgOuZg/N1vf4iZlkwrINbxguQfOMGRM2dwy353S1zI/nzNiT5/4Fy9WroVq8JOHuPq/9nhEYTBZPJ7DWZwd/2Dl6JxWAbNvQ4bB4xEqIb16H85BMwJSWu9+dcurO1bwfdh6uq1RPJqNZA8d13cJw4AeumzWDuFIOtGwNz+tOwJyW5nWt/II6r/FDJ+2FYFo4m3F48ypIjgaBluhrKV2WGQJbkvJFt/RqaNyeBjYqCSCLhUpfL/6symcCwLEq+3xNQoJD++ANXYdpu56pkl5053E17dsTFo2TnLtf+oUDUqaMGw4g8KjP4syQXCMmJ45Bv+gLSQwfBWK2wP5gI0/BnYUnrByiqX7/MWZlBq9V7tJlwO29/NuoMfabS13PUqwfdL78iqm4MLclFACEv01EwqqG8VWYIxpKcV0Yj6j7+GJibN8FoogERA9ZRZieNwwFRqR6WJ7pBt35jQLeKHjYEktxcsDF1vKeJO/fhzFvg8RyjOsRisVtlhqosyQmVRhMFiUSC4mIfFTscDtRJ6wPJ6VM+Z0e2xYsheftt2rgaIYQcjCibroYq22aioOB3TJw4AStWLAtNewelEvoVK7nmbFrt3VmQg9ufYjSAKdXD3qQJSucvDOg2ot9+g+TkCbBKRcX7le5WHpd/vSWgeznZ7XaYTGaoVMqA2zsIhbc2Ex5EImg/3wR769YAwCU93OVsycG+9RYkU6dSlhwJCnpmVINdv34LixZ9ii1bvgLLsmjXrl1IWpUDgPXxJ6Dd8DlUy5ZCmnsE0OshAvc8yZL+NAzTpsERYBFI0Y0bgM1e+XMnkQiiK1cCuldZzucecrnMr46rQudsM6FSKWA2V/xch42NRfH3+yD/dgcU/1wN8a+/AlIZ0Kc3mAkT4OjYCaW60HdcLSwswIoVi5GffxoqVRTS0p7Cq6+Oh7R8uaRyhgwZgGvXrnoc/+GHQx6dVgn/KBjVQA6HA999tx0ff/wBtNoStGzZEjNnzkRiYsuQ3tf2aEdoP98E8cULiL56BaxYjJLEFmAbNfI8mWUhOXkC8m+2QnTtGli1GpZevWHp3cezJpvzEpUKEDHeqwiU5XCA1QRewqnskpzVaoVMJuOqa9cARqMJCgWXLajV6is+USaD+ZkhsA4d6p4lZ7TCcKc05DMhrVaLiRP/Dw88EId585bg5s0b+OCDFTCZTJgyZXql1z/5ZE88+6x73zCZrJqbwklIUTCqgbZt+xrLly9CVFQUJk58C6NGjYBGowqozURV2Ju3gK5Va8TEaCDzMpNgiouhfm0cZAd/5koGObi0cPnmTbA3bQpd1hrYH/asYGxv2xaOxk0guvwHt2HTm7sN6yx9+1V7/BVlydWpw6UtV7fNhNDo9QbUqaOBTCb1mczAZ5bc9u1fw2Aoxfz5SxAdzbWPt9vtWL58EUaNetmtsaU39erVQ1LSQ+EYKgkQPTOqgTp27ISXXnoVn3/+NYYNew5msz2gygzVYbPZYDKZ73brLHNTsxma0SMh+/kAWIYBK5OCVSq5qgBSKcRFRajz7DCIfvvN80UlEphGjnK9jgeWBaPVAioVzEOGVmvcCoUcdevWgUwm9ei4GkhlBiGyWm0wmy2IilJ5/XdRtuOqw8FCqzWipMQY1nTtnJzD6Ngx2RWIAKBHj95wOBzIzc0J2zhI6FEwqoHi4hIwZsw41K/PVX4um8wQaM21quBaSzBQqe6lIst2fQdp3lHuIbhU6p6IIBaDlcnAaEugylzp9TVNL70MS99+YEwmbh+O2cztwTEaua9lMujnL4QjPr5KY/WoJXdH6zGjK5vMIBIJu+Crv7jPiEVJSYnrmJBqyRUWFiAuLsHtmEajQf36sSgsLKj0+j17dqN7987o3ftxTJ06Eb/9djE0AyUBo2BUS5hMNlitXGUGiURc+QVBwO3AN0KhkEN8t8KAYv06AIyr4oAHhgHLMJDt2A7mzz89vy+RQJ/5AQwzZ8GRkADmblUChmVhfbI7tJ+th2XgIL/H6KuWnDcGA/e9cAb1UHI4HNi5cxf69euL7OwfBFdLTqfTQu1lv5hGo4FW63u5tGvXJzBlyjT8/e8fYcqU6bh8+TLGjx+DoqLLoRouCQA9M6pF/KnMEGwmkxkKhRxqtQolJTquz1FlkwqxGIzFAnHB77DVq+f5fYkEppfHwDRqNMQXL4AxGuFo1AiOKnblLbtx1d8sOX8qM0SaBx9MhEKhwPvvr0S/fmlwOFiUloY+Sy7UJk9+2/XfjzzSHp06peKFF57BF19swNSpf+FxZMQbmhnVIkFpM1ENzjYTcrkMEPk/K2Mrmj05SSSwt2oNW/sOVQpE/izJ+RKsNhNCIBIxaNGiOcaNG4cbN25g5cpMQbV30GiiUVrqme2n0+kQXcUahLGxsXj44XY4f/5csIZHgoiCUS0TaJuJ6iibzGBNTeXqevta97HZwEZHw94iuKnoVV2S86UmJDOUXZIbOXI0mjZ9ABs3rsd///tfvofmEh+f4PFsSK/X4/btW4iPT+BlTCQ0KBjVMnwnM+DVV7kDFfXscXBNKEzPPs9VdAgSX1ly1RHJyQzesuRMJgcmTZoKu92OFSsW8z1El9TUx5CXl+vWTyw7ex9EIhGSk1Or9Fq3bt3E6dMn0bp1m2APkwQBPTMSqIMHDyAraxX++KMQDRveh5EjX0T//k/7vObq1SsYOtTznDZtkvDpp5+5vq5qm4lgcCYzRD3VD5bhz0K26QuwDgeXUScSufXVsSc2h/GNiUG5byhryVWlzYQQcH+AKCts79C5cxc8+WRP5OQcgsViEcTm0IEDn8GWLZuRkfEWRo16GTdv3sCHH67EwIGD3fYYTZr0Gq5du4rNm7cBAPbu3Y3Dhw+ic+cuiI1tgCtXLmP9+s8gEok9NsESYaBgJECnTp3EjBlvIz19ICZNegvHjh3FwoXvQaVSoXv3XpVeP27c62jf/l7HWpWXGQafyQyijz+GsWFDKFb/A0xpKfcciXUAIhEsvftAv3gp2Lp1A7pXQO0d/BRJyQz+blydPXseiouLBRGIACA6OhorV67CihVLkJHxFlSqKAwYMAhjx453O89ut7t9vvff3wS3bt3E++8vg06ng0ajQYcOnfDKK+PQuIqJLiQ8qGq3AE2ZMgFGowGrVq1xHZs9ewYuXvwVGzZ8VeF1zpnRe+8t9Cto+WozESrO5AGdrhSWW7cg2737XjmgHj2rvD/Im1C3dyivojYTQkAdV0lZQq7aTTMjgbFYLDh+PA/jx7svU/Xq1Qf79n2Pq1ev4P77GwflXqWlZsjlEqhUSpjNlrDsJSmbzGCx1IF56LCgvTZf7R30eiNiYjRQKuUwGgPrDRUslS3JESI0lMAgMEVFl2Gz2Tx2ncfHNwMAv3adL1u2EE88kYz09N5YtGgutNoSr+fxncxQtjJDIIKZJVcdQktm4LLkogWzcZUQf9DMSGB0Om6pp/yuc42G21Pha9e5VCrDoEFDkJKSCrVag7Nn87Fu3Rr88stZZGWtg0Ti+XHzmswQpYTJZAnoWU51Nq6GghCSGTyX5CJ/4yqpPSgYhYFzX0RlAn2wGhsb67azvH37R9GsWSKmTZuMn37KRs+evSsYH/+VGapKaB1X+UxmoCU5UhNQMAqD7Ox9WLRobqXnbdy4xTUDKr/r3Dljququ886du0CpVOL8+XMVBiNnZQalUgaFQha2ZAa93oCYGA3kcpnfM5pwZMlVl9lscfUIClcyA5/tHQgJJgpGYTBgwCAMGDDIr3MtFgskEgkKCwuQktLZddz5rChUu875T2awVjqzEcqSnC/hSmagJTlS01ACg8DIZDJ06NAR+/f/4Hb8xx/3IiGhWZUz6Q4d+hlGo7HSXedCTmYItJZcOIU6mUEkEgmmvQMhwUQzIwEaPfoVTJw4DkuXLkSPHr1w4sQx7N27G+++u8DtvG7dUpCW1h8ZGbMAAJmZKyASidC2bRLUag3OnTuD9es/Q6tWbfD4409Wel+hJTMIeUnOl1AlM9CSHKnJKBgJ0COPtMO8eYuRlbUKO3duR6NG92H69Jno0cN9I6vdznVwdWrWrBm2bt2CHTu2wmQyoUGDhkhPfxpjxozzmknnjVCSGSJhSa4iwU5moCU5UhtQBQbigc/KDAaDETKZVDBZcoEItDJD+Sw5o9FKWXIkIFSBgUQUPpIZnLXFVCplRC3J+RJIMgMfS3KFhQVYsWIx8vNPQ6WKQlraU3j11fGQSqU+r2NZFhs2rMU333yF4uJitGjREm+8MQVJSQ+FdLykZqEEBuIh3MkMzvYODMOAZVnYbLaID0RA9ZIZvLV3KCkxhjwQabVaTJz4f7DZbJg3bwnGjh2PHTu+QWbm8kqv3bBhLdas+QTDhz+PxYtXoH79WEyZMoHae5MqoZkR8SocyQzeNq5yD/4Dr8wgFP4mM/C9cXX79q9hMJRi/vwliI6uA4ALpsuXL8KoUS+7tWsoy2w2Y8OGf+LZZ0dg+PAXAHAtvp97bjC19yZVQjMjUiG9nnteo1YHd3bkq5acycQtRwX7nnxxJjPI5TJIpd7/9hNCLbmcnMPo2DHZFYgAoEeP3nA4HMjNzanwuvz80ygtLXVLrpFKpejWrTtycg6FdMykZqFgRCrkrMwgkUigUASnv40/HVf1egOkUgnkcmH01AmU2WyB1WqFSqV0S8bga0nOm8LCAo/ivBqNBvXrx/oszuv8nrfCvtevX4PZbAruQEmNRcGI+FRaaobD4YBKpQQTwB7OqmxcLVuZgQnkpgKi0xmQnt4fS5YsFOTGVZ1O61GcF+ACkq/ivDqdFjKZDHK53OM6lmXd2oUT4gsFI+JToMkM1W3vEOw2E3xzOByIjY3F9u3bce5cPrV3IKQcCkakUiaTDVYrl8wgkYj9vs6fJbmKOCszKBRyiMX+31OopFIJ3nlnBsRiMd577z3cvq3lbUnOG40m2qM4LwDodDqfxXk1mmhYLBaYze6p6zqdDgzDQKMR7r4WIiwUjIhfqpLMEKxacjUhmaHsklybNq0xfPhz+P3337Fu3Vq+h+YmPj7B49mQs/WJr+K8zu9dulTodrywsACNGt0HubxmzGxJ6FEwIn7xJ5khFB1XIzmZwVuW3KhRr6BevfpYu3Y1rl+/xvcQXVJTH0NeXq7bM57s7H0QiURITk6t8LqkpIcRFRWF7Ox9rmM2mw0HDmQjNbVLSMdMahYKRsRvvpIZAlmS8yUSkxl8Zcmp1Wq8/vokGI1G/Pzzfp5Hes/Agc9ApVIhI+Mt5ObmYOfOHfjww5UYOHCw2x6jSZNew/Dhg1xfy+VyjBjxEjZt2oAvv/wCx44dxezZ76CkpATPPTeCh3dCIhVteiV+cyYzaDRKVwO5W7duoVWrFiGtJVdaaoRMJoNKpbib2CBM/m5c7dOnHxo1ug8tW7biZ6BeREdHY+XKVVixYgkyMt6CShWFAQMGYezY8W7nOcs2lTVixGgALDZt2oDi4jto3rwlli/PRJMmTcP4Dkiko0KppMpiYpQ4deokZs+ejQsXLuDrr7eiSZMHQloxQaGQIypKKdiaddTegUQCKpRKaozbt29h7tz3sXv3LjAMgyFDhiI2tmHIA4S3NhNCQO0dCAkOemZE/LZt2xY8//wz2L17F5KSHsJXX32FjIwMv3slBUpIyQxC3LjKp+PH89C1a0f89FO2x/f27NmNrl07Ij//NA8jI5GCghHxi8FQimXLFkEikWD69JlYtWo12rZtG3BlhqoQSjKDEGrJCU379o+iYcNG2Lv3Xx7f27v3X2jSpCmSkh7mYWQkUtAyHfGLShWFtWu/QGxsQ9cmyLLJDHq9ISzj4DOZgZbkKsYwDPr2fQqbN2+EXq+HWq0GANy5cwe5uTkYNeplnkdIhI5mRsRvDz7Y3G03fnUrMwSCj8oMtCTnn7S0/rBYLNi//96eox9/3AO73Y6+fZ/icWQkElAwIgEJVZsJX8JZmYGW5PwXH5+A1q3bYM+e3a5je/bsRtu2D6Fp0wd4HBmJBBSMSEBC0WbCH6FOZhBSe4dIkpbWHydPHseNG9dRVHQZZ878B3369ON7WCQCUDAiAQtWm4mqCFUyAy3JBaZnz74QiUTYt+977NnzL0gkEvTs2YfvYZEIQAkMJGDlKzNEajIDbVwNXExMDFJTH8P33/8LFosZKSmdERMTw/ewSASgmREJikhOZqAlueBKS+uP3367gD/+uIQ+fShxgfiHZka1xNGjOdi581ucPZuPK1eKMHjwUEyZMt2va/V6PTIzl+PAgf2w2WxISUnF5MnTEBsbW+48E2JioqBWq1BcHJ4qCYFUZvC3llw4HDx4AFlZq/DHH4Vo2PA+jBz5Ivr3f9rnNVevXsHQoZ7ntGmThE8//SxEI61cly5PQKOJBss60LXrE7yNg0QWCka1RE7Ov3Hx4gW0a9fBZxtpb2bNykBBwX8xdWoG5HIZPv30I0ydOhH/+Mc6t+oLzmQGpVIGhUIGk6nqPYyqQ683ICZGA7lc5nffJCEtyZ06dRIzZryN9PSBmDTpLRw7dhQLF74HlUqF7t17VXr9uHGvo337jq6vVSp++z8xDAOxWIwuXZ70aEdOSEUoGNUSr78+CW+88SYArnSLv/LzTyM3999YvvwDV1+buLh4vPDCUPz0UzZ69uztdn5pqRlyuQQqlRJmsyUss4yyyQwWi9Vn1XAhblxdu/YfaNOmLd5++x0AQIcOHVFUdBmrV3/iVzBq2vQBJCU9FOph+u3nn/ejuPgO0tL68z0UEkHomVEtIRJV76POyTkMtVqDTp1SXMfi4hLQokVL5OQc8jjfmczALYGF7y90LoGBgUrlvbOoULPkLBYLjh/P8wg6vXr1QUHB77h69QpPI6u6M2fysWPHN8jMXIGWLf8H7ds/yveQSAShYER8KiwsQFxcvEf6dHx8M4821U5CS2YQ8sbVoqLLsNlsiItLcDseH98MACr8GZe1bNlCPPFEMtLTe2PRornQaktCMNLKbdu2BcuWLUTduvUwc+a7vIyBRC5apiM+6XRaqNWePVA0Go3PZ098JTPs27cHX375JebOnY/69esLbkmuPJ2O+xmW/xlrNFzZJV8/Y6lUhkGDhiAlJRVqtQZnz+Zj3bo1+OWXs8jKWhe2aupOM2bMxowZs8N6T1JzUDCKUHq9Hrdv36r0vMaNm0AqlYZhRO74Smb4889iHDt2DJ99tgZz5szhJUuuKp9NIGJjYzF16l9cX7dv/yiaNUvEtGmTvT7PI0TIKBhFqOzsfVi0aG6l523cuAXx8QnVvo9GE40bN657HNfpdG5FU73hI5lh8ODB2Lp1C7788kv87/8+g/j45mHPkqvKZ+OcAZWW6t2+55wxVfYzLq9z5y5QKpU4f/4cBSMSUSgYRagBAwZhwIBBIb9PfHwC8vJywbKs23OjwsICJCY293ltOCszlM2S++tf/4pRo0Zhzpw5+PjjNdVO3qiuqnw2FosFEokEhYUFSEnp7DrufFYUyB8ShEQSSmAgPqWmPgadTou8vFzXsUuXCnHhwnmkpnap9PpQJzN4y5JLTGyDPn364ezZfOzatSPo9wwmmUyGDh06Yv/+H9yO//jjXiQkNMP99zeu0usdOvQzjEYjWrduE8xhEhJyNDOqJa5du4pz584AAEwmE4qKipCdzfWdKZtW3K1bCtLS+iMjYxYAICnpYSQnd8aCBXMwYcKbkMlkyMr6CImJLdCtW3e/7h2qZAZfG1fHj5+EgwcPYNOmjUhPHxS0e4bC6NGvYOLEcVi6dCF69OiFEyeOYe/e3Xj33QVu55X/bDIzV0AkEqFt2ySo1RqcO3cG69d/hlat2uDxx5/k4Z0QUn0UjGqJ48fzMH/+vXTbI0cO48iRwwCAgwfvbYK12+1wONyfscyZswCZmcuxePE82O12JCen4M03p/mdrRXsZAZ/Nq7GxsZi6dKVMBrD2w22Oh55pB3mzVuMrKxV2LlzOxo1ug/Tp89Ejx7ue4/KfzbNmjXD1q1bsGPHVphMJjRo0BDp6U9jzJhxYc+kIyRQDOtru3oZN2+GJz2X1EwMA9SrFwUAuHOnpFrJDOVryRmNVt5qyRESiRo08NymIRT05xMJi0CTGYRUS44QEnwUjEjYmEw2KBRcMoPJZIbNZq/0GiHWkiOEBB9l05Gw0utNYFkWarXvunVCrSVHCAkNmhmRsPInmYGW5AipfSgYkbCrqDIDLckRUntRMCJhVz6ZwWAwCabjKiGEHxSMCC/KJjPI5TJakiOklqMEBsIbZzIDywJarRElJUYKRITUUjQzIryx2VgUFxtgs1EAIqS2o5kR4RUFIkIIQDMjUoscPZqDnTu/xdmz+bhypQiDBw/FlCnT/bpWr9cjM3M5DhzYD5vNhpSUVEyePA2xsbEhHjUhtQPNjEitkZPzb1y8eAHt2nXw2krdl1mzMnD06BFMnZqBv/3tPVy6VIipUyfCZqPUc0KCgWZGpNZ4/fVJeOONNwFwVcz9lZ9/Grm5/8by5R8gOTkVABAXF48XXhhK7b0JCRKaGZFao7odX3NyDkOt1qBTpxTXsbi4BLRo0RI5OYeCNTxCajUKRoRUorCwAHFx8W5t1wEgPr6Zqz04ISQwFIwIqYROp/X6jEmj0UCr1fIwIkJqHnpmRCKWXq/H7du3Kj2vceMmkEqlYRgRIaS6KBiRiJWdvQ+LFs2t9LyNG7cgPj6h2vfRaKJx48Z1j+M6nQ7R0dHVfl1CyD0UjEjEGjBgEAYMGBTy+8THJyAvLxcsy7o9NyosLEBiYvOQ35+Q2oCeGRFSidTUx6DTaZGXl+s6dulSIS5cOI/U1C48joyQmoNmRqTWuHbtKs6dOwMAMJlMKCoqQnb2PgBA9+69XOd165aCtLT+yMiYBQBISnoYycmdsWDBHEyY8CZkMhmysj5CYmILdOvWPfxvhJAaiIIRqTWOH8/D/Pnvur4+cuQwjhw5DAA4ePDeJli73Q6Hw71m3pw5C5CZuRyLF8+D3W5HcnIK3nxzGiQS+l+IkGBgWNa/FmY3b+pCPRZCCCEh1KBB1cpghRM9MyKEEMI7CkaEEEJ4R8GIEEII7ygYEUII4R0FI0IIIbyjYEQIIYR3FIwIIYTwjoIRIYQQ3lEwIoQQwjsKRoQQQnhHwYgQQgjvKBgRQgjhHQUjQgghvKNgRAghhHcUjAghhPCOghEhhBDeUTAihBDCOwpGhBBCeOd323FCCCEkVGhmRAghhHcUjAghhPCOghEhhBDeUTAihBDCOwpGhBBCeEfBiBBCCO8oGBFCCOEdBSNCCCG8o2BECCGEd/8P/4Rdq+R1g8cAAAAASUVORK5CYII="}}]}}}, "version_major": 2, "version_minor": 0} diff --git a/ml-advanced/model-selection.html b/ml-advanced/model-selection.html index 96b1c54348..1dd82ced85 100644 --- a/ml-advanced/model-selection.html +++ b/ml-advanced/model-selection.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2448. + + 40.89. Introduction + +
  2449. - 40.89. Study the solvers + 40.90. Study the solvers
  2450. - 40.90. Build classification models + 40.91. Build classification models
  2451. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2452. - 40.92. Parameter play + 40.93. Parameter play
  2453. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2454. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2455. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2456. +
  2457. + + 40.99. Image classification
  2458. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2459. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2460. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2461. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2462. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2463. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2464. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2465. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2466. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2467. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2468. - 40.116. Art by gan + 40.118. Art by gan
  2469. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2470. +
  2471. + + 40.121. Comparing edge-based and region-based segmentation
  2472. - 40.119. Summary + 40.122. Summary
  2473. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2474. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2475. +
  2476. + + 40.126. Getting Start NLP with classification task
  2477. diff --git a/ml-advanced/unsupervised-learning-pca-and-clustering.html b/ml-advanced/unsupervised-learning-pca-and-clustering.html index e53fea58bc..228a6fcfc0 100644 --- a/ml-advanced/unsupervised-learning-pca-and-clustering.html +++ b/ml-advanced/unsupervised-learning-pca-and-clustering.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2478. + + 40.89. Introduction + +
  2479. - 40.89. Study the solvers + 40.90. Study the solvers
  2480. - 40.90. Build classification models + 40.91. Build classification models
  2481. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2482. - 40.92. Parameter play + 40.93. Parameter play
  2483. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2484. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2485. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2486. +
  2487. + + 40.99. Image classification
  2488. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2489. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2490. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2491. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2492. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2493. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2494. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2495. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2496. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2497. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2498. - 40.116. Art by gan + 40.118. Art by gan
  2499. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2500. +
  2501. + + 40.121. Comparing edge-based and region-based segmentation
  2502. - 40.119. Summary + 40.122. Summary
  2503. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2504. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2505. +
  2506. + + 40.126. Getting Start NLP with classification task
  2507. diff --git a/ml-advanced/unsupervised-learning.html b/ml-advanced/unsupervised-learning.html index 1211428054..3d81dab62d 100644 --- a/ml-advanced/unsupervised-learning.html +++ b/ml-advanced/unsupervised-learning.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2508. + + 40.89. Introduction + +
  2509. - 40.89. Study the solvers + 40.90. Study the solvers
  2510. - 40.90. Build classification models + 40.91. Build classification models
  2511. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2512. - 40.92. Parameter play + 40.93. Parameter play
  2513. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2514. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2515. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2516. +
  2517. + + 40.99. Image classification
  2518. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2519. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2520. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2521. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2522. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2523. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2524. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2525. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2526. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2527. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2528. - 40.116. Art by gan + 40.118. Art by gan
  2529. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2530. +
  2531. + + 40.121. Comparing edge-based and region-based segmentation
  2532. - 40.119. Summary + 40.122. Summary
  2533. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2534. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2535. +
  2536. + + 40.126. Getting Start NLP with classification task
  2537. diff --git a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html index 443a9d98d4..370dc0494c 100644 --- a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html +++ b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2538. + + 40.89. Introduction + +
  2539. - 40.89. Study the solvers + 40.90. Study the solvers
  2540. - 40.90. Build classification models + 40.91. Build classification models
  2541. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2542. - 40.92. Parameter play + 40.93. Parameter play
  2543. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2544. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2545. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2546. +
  2547. + + 40.99. Image classification
  2548. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2549. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2550. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2551. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2552. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2553. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2554. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2555. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2556. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2557. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2558. - 40.116. Art by gan + 40.118. Art by gan
  2559. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2560. +
  2561. + + 40.121. Comparing edge-based and region-based segmentation
  2562. - 40.119. Summary + 40.122. Summary
  2563. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2564. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2565. +
  2566. + + 40.126. Getting Start NLP with classification task
  2567. @@ -2079,7 +2099,7 @@

    12.4.4. Exercise - build your model

    diff --git a/ml-fundamentals/classification/getting-started-with-classification.html b/ml-fundamentals/classification/getting-started-with-classification.html index 9fb929a987..0d1c0b8448 100644 --- a/ml-fundamentals/classification/getting-started-with-classification.html +++ b/ml-fundamentals/classification/getting-started-with-classification.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2568. + + 40.89. Introduction + +
  2569. - 40.89. Study the solvers + 40.90. Study the solvers
  2570. - 40.90. Build classification models + 40.91. Build classification models
  2571. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2572. - 40.92. Parameter play + 40.93. Parameter play
  2573. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2574. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2575. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2576. +
  2577. + + 40.99. Image classification
  2578. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2579. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2580. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2581. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2582. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2583. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2584. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2585. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2586. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2587. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2588. - 40.116. Art by gan + 40.118. Art by gan
  2589. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2590. +
  2591. + + 40.121. Comparing edge-based and region-based segmentation
  2592. - 40.119. Summary + 40.122. Summary
  2593. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2594. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2595. +
  2596. + + 40.126. Getting Start NLP with classification task
  2597. diff --git a/ml-fundamentals/classification/introduction-to-classification.html b/ml-fundamentals/classification/introduction-to-classification.html index 9032c775d4..a60d80157b 100644 --- a/ml-fundamentals/classification/introduction-to-classification.html +++ b/ml-fundamentals/classification/introduction-to-classification.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2598. + + 40.89. Introduction + +
  2599. - 40.89. Study the solvers + 40.90. Study the solvers
  2600. - 40.90. Build classification models + 40.91. Build classification models
  2601. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2602. - 40.92. Parameter play + 40.93. Parameter play
  2603. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2604. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2605. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2606. +
  2607. + + 40.99. Image classification
  2608. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2609. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2610. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2611. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2612. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2613. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2614. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2615. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2616. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2617. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2618. - 40.116. Art by gan + 40.118. Art by gan
  2619. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2620. +
  2621. + + 40.121. Comparing edge-based and region-based segmentation
  2622. - 40.119. Summary + 40.122. Summary
  2623. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2624. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2625. +
  2626. + + 40.126. Getting Start NLP with classification task
  2627. diff --git a/ml-fundamentals/classification/more-classifiers.html b/ml-fundamentals/classification/more-classifiers.html index 2d317cccad..d636dcf70b 100644 --- a/ml-fundamentals/classification/more-classifiers.html +++ b/ml-fundamentals/classification/more-classifiers.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2628. + + 40.89. Introduction + +
  2629. - 40.89. Study the solvers + 40.90. Study the solvers
  2630. - 40.90. Build classification models + 40.91. Build classification models
  2631. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2632. - 40.92. Parameter play + 40.93. Parameter play
  2633. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2634. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2635. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2636. +
  2637. + + 40.99. Image classification
  2638. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2639. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2640. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2641. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2642. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2643. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2644. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2645. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2646. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2647. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2648. - 40.116. Art by gan + 40.118. Art by gan
  2649. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2650. +
  2651. + + 40.121. Comparing edge-based and region-based segmentation
  2652. - 40.119. Summary + 40.122. Summary
  2653. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2654. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2655. +
  2656. + + 40.126. Getting Start NLP with classification task
  2657. @@ -2245,7 +2265,7 @@

    12.2.4. Exercise - apply logistic regres

    -
    Accuracy is 0.8006672226855713
    +
    Accuracy is 0.7798165137614679
     
    @@ -2268,10 +2288,10 @@

    12.2.4. Exercise - apply logistic regres

    -
    ingredients: Index(['beef', 'black_pepper', 'mustard', 'sesame_oil', 'soy_sauce',
    -       'vegetable_oil', 'vinegar'],
    +
    ingredients: Index(['barley', 'cane_molasses', 'fish', 'sake', 'scallion', 'soy_sauce',
    +       'soybean', 'wine'],
           dtype='object')
    -cuisine: korean
    +cuisine: japanese
     
    @@ -2320,25 +2340,25 @@

    12.2.4. Exercise - apply logistic regres + + japanese + 0.940964 + korean - 0.685323 + 0.053126 chinese - 0.209312 + 0.004265 - japanese - 0.102098 + thai + 0.001630 indian - 0.001763 - - - thai - 0.001504 + 0.000014 @@ -2359,15 +2379,15 @@

    12.2.4. Exercise - apply logistic regres
                  precision    recall  f1-score   support
     
    -     chinese       0.73      0.74      0.74       244
    -      indian       0.92      0.91      0.92       233
    -    japanese       0.75      0.76      0.75       232
    -      korean       0.86      0.78      0.82       256
    -        thai       0.75      0.82      0.78       234
    +     chinese       0.69      0.69      0.69       231
    +      indian       0.92      0.88      0.90       250
    +    japanese       0.64      0.80      0.71       233
    +      korean       0.85      0.78      0.81       236
    +        thai       0.84      0.75      0.79       249
     
    -    accuracy                           0.80      1199
    -   macro avg       0.80      0.80      0.80      1199
    -weighted avg       0.80      0.80      0.80      1199
    +    accuracy                           0.78      1199
    +   macro avg       0.79      0.78      0.78      1199
    +weighted avg       0.79      0.78      0.78      1199
     
    diff --git a/ml-fundamentals/classification/yet-other-classifiers.html b/ml-fundamentals/classification/yet-other-classifiers.html index c9e4855ef1..08b1900344 100644 --- a/ml-fundamentals/classification/yet-other-classifiers.html +++ b/ml-fundamentals/classification/yet-other-classifiers.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2658. + + 40.89. Introduction + +
  2659. - 40.89. Study the solvers + 40.90. Study the solvers
  2660. - 40.90. Build classification models + 40.91. Build classification models
  2661. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2662. - 40.92. Parameter play + 40.93. Parameter play
  2663. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2664. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2665. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2666. +
  2667. + + 40.99. Image classification
  2668. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2669. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2670. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2671. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2672. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2673. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2674. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2675. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2676. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2677. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2678. - 40.116. Art by gan + 40.118. Art by gan
  2679. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2680. +
  2681. + + 40.121. Comparing edge-based and region-based segmentation
  2682. - 40.119. Summary + 40.122. Summary
  2683. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2684. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2685. +
  2686. + + 40.126. Getting Start NLP with classification task
  2687. @@ -1903,11 +1923,11 @@

    12.3.4.1. Exercise - apply a linear SVC<
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
    @@ -1938,28 +1958,28 @@ 

    12.3.5.1. Exercise - apply the K-Neighbo
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
     weighted avg       0.79      0.78      0.78      1199
     
    -Accuracy (train) for KNN classifier: 73.6% 
    +Accuracy (train) for KNN classifier: 70.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.62      0.78      0.69       238
    -      indian       0.86      0.75      0.81       236
    -    japanese       0.70      0.87      0.77       269
    -      korean       0.93      0.58      0.72       230
    -        thai       0.71      0.67      0.69       226
    +     chinese       0.61      0.73      0.67       230
    +      indian       0.83      0.79      0.81       251
    +    japanese       0.62      0.85      0.71       242
    +      korean       0.91      0.47      0.62       231
    +        thai       0.72      0.69      0.70       245
     
    -    accuracy                           0.74      1199
    -   macro avg       0.76      0.73      0.73      1199
    -weighted avg       0.76      0.74      0.74      1199
    +    accuracy                           0.71      1199
    +   macro avg       0.74      0.70      0.70      1199
    +weighted avg       0.74      0.71      0.70      1199
     

    @@ -1990,42 +2010,42 @@

    12.3.6.1. Exercise - apply a Support Vec
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
     weighted avg       0.79      0.78      0.78      1199
     
    -Accuracy (train) for KNN classifier: 73.6% 
    +Accuracy (train) for KNN classifier: 70.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.62      0.78      0.69       238
    -      indian       0.86      0.75      0.81       236
    -    japanese       0.70      0.87      0.77       269
    -      korean       0.93      0.58      0.72       230
    -        thai       0.71      0.67      0.69       226
    +     chinese       0.61      0.73      0.67       230
    +      indian       0.83      0.79      0.81       251
    +    japanese       0.62      0.85      0.71       242
    +      korean       0.91      0.47      0.62       231
    +        thai       0.72      0.69      0.70       245
     
    -    accuracy                           0.74      1199
    -   macro avg       0.76      0.73      0.73      1199
    -weighted avg       0.76      0.74      0.74      1199
    +    accuracy                           0.71      1199
    +   macro avg       0.74      0.70      0.70      1199
    +weighted avg       0.74      0.71      0.70      1199
     
    -
    Accuracy (train) for SVC: 82.9% 
    +
    Accuracy (train) for SVC: 81.3% 
                   precision    recall  f1-score   support
     
    -     chinese       0.74      0.81      0.77       238
    -      indian       0.92      0.87      0.90       236
    -    japanese       0.84      0.78      0.81       269
    -      korean       0.90      0.79      0.84       230
    -        thai       0.78      0.90      0.84       226
    +     chinese       0.73      0.74      0.74       230
    +      indian       0.88      0.92      0.90       251
    +    japanese       0.80      0.82      0.81       242
    +      korean       0.91      0.72      0.80       231
    +        thai       0.76      0.84      0.80       245
     
    -    accuracy                           0.83      1199
    -   macro avg       0.83      0.83      0.83      1199
    -weighted avg       0.83      0.83      0.83      1199
    +    accuracy                           0.81      1199
    +   macro avg       0.82      0.81      0.81      1199
    +weighted avg       0.82      0.81      0.81      1199
     
    @@ -2053,70 +2073,70 @@

    12.3.7. Ensemble Classifiers
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
     weighted avg       0.79      0.78      0.78      1199
     
    -Accuracy (train) for KNN classifier: 73.6% 
    +Accuracy (train) for KNN classifier: 70.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.62      0.78      0.69       238
    -      indian       0.86      0.75      0.81       236
    -    japanese       0.70      0.87      0.77       269
    -      korean       0.93      0.58      0.72       230
    -        thai       0.71      0.67      0.69       226
    +     chinese       0.61      0.73      0.67       230
    +      indian       0.83      0.79      0.81       251
    +    japanese       0.62      0.85      0.71       242
    +      korean       0.91      0.47      0.62       231
    +        thai       0.72      0.69      0.70       245
     
    -    accuracy                           0.74      1199
    -   macro avg       0.76      0.73      0.73      1199
    -weighted avg       0.76      0.74      0.74      1199
    +    accuracy                           0.71      1199
    +   macro avg       0.74      0.70      0.70      1199
    +weighted avg       0.74      0.71      0.70      1199
     

    -
    Accuracy (train) for SVC: 82.9% 
    +
    Accuracy (train) for SVC: 81.3% 
                   precision    recall  f1-score   support
     
    -     chinese       0.74      0.81      0.77       238
    -      indian       0.92      0.87      0.90       236
    -    japanese       0.84      0.78      0.81       269
    -      korean       0.90      0.79      0.84       230
    -        thai       0.78      0.90      0.84       226
    +     chinese       0.73      0.74      0.74       230
    +      indian       0.88      0.92      0.90       251
    +    japanese       0.80      0.82      0.81       242
    +      korean       0.91      0.72      0.80       231
    +        thai       0.76      0.84      0.80       245
     
    -    accuracy                           0.83      1199
    -   macro avg       0.83      0.83      0.83      1199
    -weighted avg       0.83      0.83      0.83      1199
    +    accuracy                           0.81      1199
    +   macro avg       0.82      0.81      0.81      1199
    +weighted avg       0.82      0.81      0.81      1199
     
    -
    Accuracy (train) for RFST: 84.7% 
    +
    Accuracy (train) for RFST: 82.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.78      0.84      0.81       238
    -      indian       0.94      0.88      0.91       236
    -    japanese       0.89      0.81      0.85       269
    -      korean       0.86      0.80      0.83       230
    -        thai       0.78      0.91      0.84       226
    +     chinese       0.77      0.79      0.78       230
    +      indian       0.91      0.90      0.91       251
    +    japanese       0.80      0.81      0.80       242
    +      korean       0.86      0.75      0.80       231
    +        thai       0.79      0.87      0.83       245
     
    -    accuracy                           0.85      1199
    -   macro avg       0.85      0.85      0.85      1199
    -weighted avg       0.85      0.85      0.85      1199
    +    accuracy                           0.83      1199
    +   macro avg       0.83      0.82      0.83      1199
    +weighted avg       0.83      0.83      0.83      1199
     
    -
    Accuracy (train) for ADA: 72.8% 
    +
    Accuracy (train) for ADA: 70.0% 
                   precision    recall  f1-score   support
     
    -     chinese       0.65      0.61      0.63       238
    -      indian       0.91      0.81      0.85       236
    -    japanese       0.66      0.68      0.67       269
    -      korean       0.75      0.70      0.73       230
    -        thai       0.70      0.85      0.77       226
    +     chinese       0.60      0.50      0.55       230
    +      indian       0.83      0.86      0.85       251
    +    japanese       0.64      0.70      0.67       242
    +      korean       0.75      0.71      0.73       231
    +        thai       0.67      0.71      0.69       245
     
    -    accuracy                           0.73      1199
    -   macro avg       0.73      0.73      0.73      1199
    -weighted avg       0.73      0.73      0.73      1199
    +    accuracy                           0.70      1199
    +   macro avg       0.70      0.70      0.70      1199
    +weighted avg       0.70      0.70      0.70      1199
     
    diff --git a/ml-fundamentals/ml-overview.html b/ml-fundamentals/ml-overview.html index 613f0f3e02..9a7bb4c2ee 100644 --- a/ml-fundamentals/ml-overview.html +++ b/ml-fundamentals/ml-overview.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2688. + + 40.89. Introduction + +
  2689. - 40.89. Study the solvers + 40.90. Study the solvers
  2690. - 40.90. Build classification models + 40.91. Build classification models
  2691. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2692. - 40.92. Parameter play + 40.93. Parameter play
  2693. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2694. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2695. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2696. +
  2697. + + 40.99. Image classification
  2698. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2699. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2700. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2701. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2702. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2703. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2704. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2705. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2706. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2707. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2708. - 40.116. Art by gan + 40.118. Art by gan
  2709. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2710. +
  2711. + + 40.121. Comparing edge-based and region-based segmentation
  2712. - 40.119. Summary + 40.122. Summary
  2713. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2714. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2715. +
  2716. + + 40.126. Getting Start NLP with classification task
  2717. diff --git a/ml-fundamentals/parameter-optimization/gradient-descent.html b/ml-fundamentals/parameter-optimization/gradient-descent.html index 84019e2e10..6adc36c765 100644 --- a/ml-fundamentals/parameter-optimization/gradient-descent.html +++ b/ml-fundamentals/parameter-optimization/gradient-descent.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2718. + + 40.89. Introduction + +
  2719. - 40.89. Study the solvers + 40.90. Study the solvers
  2720. - 40.90. Build classification models + 40.91. Build classification models
  2721. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2722. - 40.92. Parameter play + 40.93. Parameter play
  2723. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2724. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2725. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2726. +
  2727. + + 40.99. Image classification
  2728. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2729. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2730. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2731. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2732. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2733. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2734. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2735. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2736. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2737. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2738. - 40.116. Art by gan + 40.118. Art by gan
  2739. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2740. +
  2741. + + 40.121. Comparing edge-based and region-based segmentation
  2742. - 40.119. Summary + 40.122. Summary
  2743. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2744. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2745. +
  2746. + + 40.126. Getting Start NLP with classification task
  2747. @@ -2083,19 +2103,19 @@

    13.2.5.1. Linear regression With gradien

    -
    {'lr': 0.0003, 'n_iters': 5000, 'weights': array([ 0.44776251,  0.22740589,  0.01286507,  0.09545673,  0.14355988,
    -        0.14322558,  0.12452009, -0.00821301]), 'bias': 0.023118075851907716}
    -0    -1.883562
    -1    -1.657761
    -2    -1.897425
    -3    -1.555480
    -4    -1.982423
    +
    {'lr': 0.0003, 'n_iters': 5000, 'weights': array([0.43641024, 0.21556523, 0.00544156, 0.08104258, 0.13653559,
    +       0.13533305, 0.11569134, 0.00153348]), 'bias': 0.021057989893612013}
    +0    -1.462067
    +1    -1.175069
    +2    -1.484010
    +3    -1.075604
    +4    -1.448885
             ...   
    -92    0.759003
    -93    0.633167
    -94    1.223238
    -95    1.700592
    -96    0.917709
    +92    0.818377
    +93    0.727484
    +94    1.655365
    +95    1.608724
    +96    1.414184
     Name: lpsa, Length: 97, dtype: float64
     
    diff --git a/ml-fundamentals/parameter-optimization/loss-function.html b/ml-fundamentals/parameter-optimization/loss-function.html index 1c8cef0a84..4c93234e54 100644 --- a/ml-fundamentals/parameter-optimization/loss-function.html +++ b/ml-fundamentals/parameter-optimization/loss-function.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2748. + + 40.89. Introduction + +
  2749. - 40.89. Study the solvers + 40.90. Study the solvers
  2750. - 40.90. Build classification models + 40.91. Build classification models
  2751. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2752. - 40.92. Parameter play + 40.93. Parameter play
  2753. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2754. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2755. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2756. +
  2757. + + 40.99. Image classification
  2758. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2759. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2760. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2761. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2762. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2763. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2764. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2765. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2766. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2767. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2768. - 40.116. Art by gan + 40.118. Art by gan
  2769. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2770. +
  2771. + + 40.121. Comparing edge-based and region-based segmentation
  2772. - 40.119. Summary + 40.122. Summary
  2773. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2774. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2775. +
  2776. + + 40.126. Getting Start NLP with classification task
  2777. diff --git a/ml-fundamentals/parameter-optimization/parameter-optimization.html b/ml-fundamentals/parameter-optimization/parameter-optimization.html index e7b15cc4ff..c413b56bd7 100644 --- a/ml-fundamentals/parameter-optimization/parameter-optimization.html +++ b/ml-fundamentals/parameter-optimization/parameter-optimization.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2778. + + 40.89. Introduction + +
  2779. - 40.89. Study the solvers + 40.90. Study the solvers
  2780. - 40.90. Build classification models + 40.91. Build classification models
  2781. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2782. - 40.92. Parameter play + 40.93. Parameter play
  2783. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2784. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2785. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2786. +
  2787. + + 40.99. Image classification
  2788. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2789. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2790. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2791. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2792. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2793. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2794. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2795. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2796. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2797. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2798. - 40.116. Art by gan + 40.118. Art by gan
  2799. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2800. +
  2801. + + 40.121. Comparing edge-based and region-based segmentation
  2802. - 40.119. Summary + 40.122. Summary
  2803. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2804. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2805. +
  2806. + + 40.126. Getting Start NLP with classification task
  2807. diff --git a/ml-fundamentals/regression/linear-and-polynomial-regression.html b/ml-fundamentals/regression/linear-and-polynomial-regression.html index b00837b842..790629ab00 100644 --- a/ml-fundamentals/regression/linear-and-polynomial-regression.html +++ b/ml-fundamentals/regression/linear-and-polynomial-regression.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2808. + + 40.89. Introduction + +
  2809. - 40.89. Study the solvers + 40.90. Study the solvers
  2810. - 40.90. Build classification models + 40.91. Build classification models
  2811. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2812. - 40.92. Parameter play + 40.93. Parameter play
  2813. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2814. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2815. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2816. +
  2817. + + 40.99. Image classification
  2818. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2819. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2820. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2821. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2822. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2823. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2824. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2825. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2826. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2827. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2828. - 40.116. Art by gan + 40.118. Art by gan
  2829. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2830. +
  2831. + + 40.121. Comparing edge-based and region-based segmentation
  2832. - 40.119. Summary + 40.122. Summary
  2833. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2834. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2835. +
  2836. + + 40.126. Getting Start NLP with classification task
  2837. @@ -2287,7 +2307,7 @@

    11.3.3. Correlation

    -
    -
    [<matplotlib.lines.Line2D at 0x7fee24c9a220>]
    +
    [<matplotlib.lines.Line2D at 0x7f880645a550>]
     
    ../../_images/linear-and-polynomial-regression_34_1.png diff --git a/ml-fundamentals/regression/logistic-regression.html b/ml-fundamentals/regression/logistic-regression.html index b91ed11235..fbaab8f014 100644 --- a/ml-fundamentals/regression/logistic-regression.html +++ b/ml-fundamentals/regression/logistic-regression.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2838. + + 40.89. Introduction + +
  2839. - 40.89. Study the solvers + 40.90. Study the solvers
  2840. - 40.90. Build classification models + 40.91. Build classification models
  2841. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2842. - 40.92. Parameter play + 40.93. Parameter play
  2843. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2844. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2845. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2846. +
  2847. + + 40.99. Image classification
  2848. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2849. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2850. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2851. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2852. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2853. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2854. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2855. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2856. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2857. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2858. - 40.116. Art by gan + 40.118. Art by gan
  2859. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2860. +
  2861. + + 40.121. Comparing edge-based and region-based segmentation
  2862. - 40.119. Summary + 40.122. Summary
  2863. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2864. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2865. +
  2866. + + 40.126. Getting Start NLP with classification task
  2867. @@ -2166,7 +2186,7 @@

    11.4.5.1. Visualization - side-by-side g

    -
    <seaborn.axisgrid.PairGrid at 0x7f2ed47b3070>
    +
    <seaborn.axisgrid.PairGrid at 0x7ff23cb12580>
     
    ../../_images/logistic-regression_19_1.png @@ -2225,7 +2245,7 @@

    11.4.5.3. Violin plot -
    <seaborn.axisgrid.FacetGrid at 0x7f2eaf733550>
    +
    <seaborn.axisgrid.FacetGrid at 0x7ff214796dc0>
     
    ../../_images/logistic-regression_24_1.png diff --git a/ml-fundamentals/regression/managing-data.html b/ml-fundamentals/regression/managing-data.html index 48bdf75c71..30468fe624 100644 --- a/ml-fundamentals/regression/managing-data.html +++ b/ml-fundamentals/regression/managing-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  2868. + + 40.89. Introduction + +
  2869. - 40.89. Study the solvers + 40.90. Study the solvers
  2870. - 40.90. Build classification models + 40.91. Build classification models
  2871. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2872. - 40.92. Parameter play + 40.93. Parameter play
  2873. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2874. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2875. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2876. +
  2877. + + 40.99. Image classification
  2878. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2879. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2880. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2881. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2882. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2883. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2884. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2885. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2886. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2887. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2888. - 40.116. Art by gan + 40.118. Art by gan
  2889. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2890. +
  2891. + + 40.121. Comparing edge-based and region-based segmentation
  2892. - 40.119. Summary + 40.122. Summary
  2893. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2894. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2895. +
  2896. + + 40.126. Getting Start NLP with classification task
  2897. diff --git a/ml-fundamentals/regression/regression-models-for-machine-learning.html b/ml-fundamentals/regression/regression-models-for-machine-learning.html index 58a64f40ba..feb5c0cb41 100644 --- a/ml-fundamentals/regression/regression-models-for-machine-learning.html +++ b/ml-fundamentals/regression/regression-models-for-machine-learning.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2898. + + 40.89. Introduction + +
  2899. - 40.89. Study the solvers + 40.90. Study the solvers
  2900. - 40.90. Build classification models + 40.91. Build classification models
  2901. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2902. - 40.92. Parameter play + 40.93. Parameter play
  2903. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2904. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2905. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2906. +
  2907. + + 40.99. Image classification
  2908. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2909. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2910. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2911. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2912. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2913. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2914. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2915. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2916. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2917. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2918. - 40.116. Art by gan + 40.118. Art by gan
  2919. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2920. +
  2921. + + 40.121. Comparing edge-based and region-based segmentation
  2922. - 40.119. Summary + 40.122. Summary
  2923. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2924. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2925. +
  2926. + + 40.126. Getting Start NLP with classification task
  2927. diff --git a/ml-fundamentals/regression/tools-of-the-trade.html b/ml-fundamentals/regression/tools-of-the-trade.html index a727510f6c..d6640a7f2a 100644 --- a/ml-fundamentals/regression/tools-of-the-trade.html +++ b/ml-fundamentals/regression/tools-of-the-trade.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2928. + + 40.89. Introduction + +
  2929. - 40.89. Study the solvers + 40.90. Study the solvers
  2930. - 40.90. Build classification models + 40.91. Build classification models
  2931. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2932. - 40.92. Parameter play + 40.93. Parameter play
  2933. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2934. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2935. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2936. +
  2937. + + 40.99. Image classification
  2938. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2939. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2940. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2941. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2942. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2943. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2944. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2945. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2946. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2947. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2948. - 40.116. Art by gan + 40.118. Art by gan
  2949. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2950. +
  2951. + + 40.121. Comparing edge-based and region-based segmentation
  2952. - 40.119. Summary + 40.122. Summary
  2953. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2954. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2955. +
  2956. + + 40.126. Getting Start NLP with classification task
  2957. diff --git a/objects.inv b/objects.inv index c347cc4bf4f880915f06e5ddba3aff55efa8d3bb..7ea44a60d75a3dbf0392d7480008f8604ca57241 100644 GIT binary patch delta 10006 zcmV+xC+XPHO}0*ub$@;9ZX`K&=KpvK8r2wg!^Kib)jcy^fMKXqmyt(OX(V;E2ey%j zj9_NQC^8~DE~(01EYSZA|MCEf1#Iji>^t=n>?7e=cIiPgy9$hR4Fsl7A>!o7-v_?%?Byyz#=+8k&CLp~K z8@5O@5%_t*R%sUfoF?okDpt&A#ZxK?Kvu|5&U04gAQL#sjKx0u5Pnf+AelV?s717d zKUgL4FuRA0b964g2+%|BycbPelr%!YIHR zdd{MRrBL_`BxYg$!h3l(3!{7!`@301wpX=FDcq7`RXQSt(xqjwDGLh_>R*>J{FFIU zK7!46ZU0U~5u@PkayiS3tPHSz$IBGNex65*D6mQeB7b-#g58^+P@qpAKHP|cc`si< z6~gDAhF-C}mH&WXzYxov6ehoi(K|~Qvqf;wS2419y5J~_8e47`=l#VEl?B>e6qbHG zo5yMJxL>tt8C=S!*PG5{GShqcZFiBOG>IsVR%#{gpW7wB7fbw*|GFxQP5%1i#LqrQ z+ZSoJJb&4Qi<8suPETLFeEHpPPq(jLKmz*)5yMw2vpm|0Nguu9x--A3PmfY_z<6k* zl~Q`!t*L(?f>8j!z;`nkyaGQI@FikE6V8G(*-pXH{s>AUR}wi&v@rcMyO0D-5ilf3 zOog`b3e)~MSkE@0O8z$7U%_+In4fo2_ZKiv9BAi|R%F2QKY5LWe*uW??@IeaCs zse)CM2!mb%^?4=x+|sjIrA4~T{LKnJ_gKJ{Yao+u@7LLm2-A3 zm9ak=W$Y?lLL)?FJy7!h9uT?bhyFZG!KQ@I$v|a8z*YlT3d~ z5BuUWLGk&?-MjO**Y5~Gm2HI)9tVY!^JVl$Ztrlbf0`%|%@yK0~9NgBj0liirq% zq%=Vx86z_G7K?c=$p&z4Ht~+{VA;lD%!*^j&(q{mI53%EGLy;udgo;nhf+fNl<)xh zN4nsx%Emj;m@OC493hR@1b%xoa?VHZIa{DSHHu`UAzm>KcrPv<&H& z|1&OnU_8vjNB-pR+(9~vw2-T=gRpUtPdu+_=>7GV|2#)Nc74U}-~RE}U;c{$t7EC4 zLjD44V@~@eHT~0z(=V%|9Dj;fZPeHWa73O5BJr~*&8Gu3tR1*a-T(}_@})vX*(S{j z_d&deR{=4ZOl6J?>mjUdp%oP=wVt^UE4^4A$I-#5QEai96)80|mDP_yfWfh*j*a$( zH9sbySSwp<49$oPiR+yqLW{+kX(iDB!mS^dexZj%j+>L*M;m+XhJUV~Um-IDYGV+0 zKWTq(J%H*nn5xi2V9bhrSa|r^4%Qy)O$jRjJ#@Rla}cC(N=krcD4C`-JGCQvuoiH2 z;wMkA=AHns&S(RYJGB|uhWXQ=(FBds*!{e~O<$;VG@)}cvtdY?`>>3Q3b(P?U7SRF zY0)$29=1NTYb*Z#B7ekS4d?KeUqGEpJ#*jD3hm*Q;I1(9In%iW2y+LZq)*UJLcx<% z{@Xd2L)GY!+zsSZsS1Aj#E|?XN$KD2$pZJg)lAV}uC<>%!a5$e_F)aYazfqUk(jP2 zk?F)CjRmyhB97)9P0>h%j!K(sTCYxLD!pHIvI}_Oe~x4|gMUHs1g%{%P z<6ax_>@HjPBoM$iWLr)0n8f{KIgCqiRVY8f$~!`lQaxzx;}AjhtDsI z6tutylG(p|fw?eSqdyM&=T%Pbh-8k%3q_Jf(loBJpjiWRjx$gu^xQHT>@@jmRSG;O zZ#9oyD)t+&0Tma!(_D^4-GcE-OAxAP2&CoOo-6fBqak%W>Yev9D&}o z+wBgucdwjXVh*e4j6g}}H0@_1NS8@O1{VxKq#{@AMJ%E-I5&9`?nk1O5+%64v_j9fQ9|l)-=8Ubwic zY;sD)AJljWYyR_a3*#XUlVIq{qsyFq{o(v3|7HMG`-t)c*OWdj_(TYKI6H+jL}y}& zO+hBuEN-PZiYm1ms`*&OM^>!O$85fVDv0x9eKL=VAca8)|B#Jcc3nISDL9@Hu7$Lx zL4QI-=ZH>)-cz`mS7O=gHjYsQGaH3*T+4XuBqh#Ov5yL4=eov;A(~r1zIfB zQ~iuL6W!1|iBjF#&-8r%R_6?XR418eKu1Bde$1Cuc160tt$J9DK-+TzzOQ&=p+`ZZ zS--AYl4QfZP|Y?_(hRJPWtuKyTxO-gBP?qp+K{7Jtd$ z|BdV7-Jpq5P%B$NE0Y^_vjYBS(q_;&r7Mj-S$4ucQD|f3S2cX&Mq^I4he}d8C~@t> zO3So~y?9)XTFe6-4CqKl7LB6o8*m()D}uC4$U&umkqb`_z&wg$kzlihSqa?+#JpTC z2fo8`wdhH_&cH4V1Dg2PSMZ4x!++Eg%gu=dSOq!e98j#LDC^M4N}UW)mkg`MZH;%B zR6W4v*q_UA_qwWFtn7>a<=|AkV1i|W77fQLNhNWl6nBPjY6&v1qS7_>%e*jE*T3_0 zfXMb~L>;Wv>$MIhl)HisrE`I|q|86WkC>C$wJVN0P55IihEho_{I&*9;k$ zW?+(GLMcNLM6~KGG9mUXNnM8OwJMEK+5|v--;%4F319@^d9OdArYr0d2hZl8ap$u6+xecbJ|>C}Nk`TEP?<&C~;XRg+Yb&7hZ;V`J2zf;&q?gnFUc zIaCcg3hEzf^;iyBPSYi+9)GQJWJ8iU6Ck!y9PFh1B`P~rQ7}z00q<(J5gGb6tp%Q# z$@20R-G0y=g{v*&8nLQ*wsbDrqsS5wbKqX3p&9;WG}Mu4JiQZ76xkSLA87FAgSN#K zWz#zC1aUpMFHL8?8}F=jb+x~&_6m3>L+_U*asQF>nasCjvQtN}d4IXVSz@+@1vk`- zGHs62X53}#y=9_jpNL*NAm{As`%l;3?Aw-xKpfJj+~m3ytZHnKK(n4hqmx^Sxro)y zN|>b^bn2D9B}K5}Nt&(wSec|QC7dWybsb4W@ZTU2yRnI!@#Du;^Js+oy3;<6yENsr zg88z4WBxuBZp{Cn%zt3TTckV+aVvJQBRBg+RPZth>Bn9ra2KzNq_{2nX zkCK7?hW(&eoJ-mGd-8ZTMV|7Zk%w2B!fjM*s)6ra#(oz4EJBXXSAI5OY2++S*?Cnq z`EvQ0EJObyqfB7QRqgELHM0P4`(wOn z7O!^ML^{?t_Du)RCEX?1zWI$^Zh5(RKe74Y$ZFRH8uMrOO1MKXq&^99EF0`%Bb+vp z>njH7=#p0dgs0Qcob8R~%mvNaAetb9buBs{RYUo-_S7ptwSLNGzO_1&pKK5nmU2)GZ7L{uT-DbF#EC-hhdToZzoJTB@64_UpYneS2 zd79@)6BN_?WS7M84mDss)U%zVWC;oEmis&Gd_9vG~?aM?RmwWZCWV?o)4TwH| zh2yHaVSiog-pMKQ>y03AXd}gVu`xd3Ts-}~M zJcu5nLas{pfYFlCf<&hl_ZGznydtC9oH;Cd_b}u7_%$q<%P`l~Y@;g@bgeT_c2%+l{B{ zV1Kc#*L3Qm_BZ;_I15mnNnTC22$&|AhKszz^1V?>_Fhafdm17a2jfXXdeKFFUJUxC zAl_8vg#eQj7uLO4I*64{b#?F-vVQ&L-`Io7ttrD$hUJEfWP7rRGK|_XdgM63qAs3b zs>RZ$Fc$$jOia?);?Y4-FuAUCx0d!XtA81@2ga2#QY#brysgRB{v@L1s`x@6r0`BG z4ZWTZ0~p?%AfH9_xL>D9u^J9}(_VcHuezTpCCV{!zT;BKd8clbI-}Itd^e-iHc&Zd z@4hrtt>(N(e+#Zk_xvXq!ob!NSquu~%{>YjgBPONCfW!@G&!zQr}x}5P{u1|@_#C! zQO1q3^B?aWFnMm$pzc(NquQmdBbDeY^w_Kcjr~W#a5DkhafRB}?alq*5j1T4rEj9U zX-D3k7--r#_gRCN{ArN4OD4MNN+;$j!WKqHqsV$ki`69^o~v}GHF$H8J&IWDPJjP> zes;>&dH(>?ICs&q-x|x|U*>|EL4U|Z97mg6bLDr1!Io!E&U}4+vztGp!AewV+)Z0P4a#_GjgNE%m47mNbE(iSW0II`~@aO$+JkP2O)_M}q2g|Zo)P5-dVWPc%p*+F}N zvF9H}!miSEBQkFumx99>CXz4P6hY0&2UOGD9&N9l!{)KCjKh={_;FB@okP}k3?Rd_gKY>o|ZeJjdS{;zb^3n4<|51}PT|$ICRy|K{k;)Trl1 zy*WZrk(+WXGO1U0VjI@nc$bb<~V$m`B4psKrKH$--%4d}l8SJte3XGDAaUB2e z|NQlTElJ}=@Z1&DUFX;XUv?`OWzZT3KCyzI)6I+aBxJ!%aQkk ztaLhoQK838Jfp?{SoiQW1(sk)#3rKPqwsZO7DI!R8y7ib`5A*+NQ#Jdcm_;?@TbIr ziBe(up&-I2m7`R>VS-Y*CH2DKxV?Pqg2PicHKDhd2$5(y;t8aTzAL8Xf;U0mss zgw;~v!WET`A3oRImw$H#@H?SLU_a;%7kR(B!(u~C7hGl0Fiv7GYFgh|TG7d{0m|xR z$LOIoWVY;!UafY2tPxRR{HCM-lv=BKOm`tf71CMDrfh(H&^T)D?*uj$YT^|?l@6BA z^to5*psCmB7?^$21P5(8;+j63T^McaQcgwb%2Pf;9JuWXoHTZbk^9bD?D#mgGTBeB;nN47hD#-~!ck)yy-N_vv$K*MIo8JAqd4IbjP+}`_23H%FJCcUsjd5Ew zRZAZQvKBsC8H+L=aMIgbi1rG2#C}mxH9hvmNVC8Ukc%AANT6S1uIRkS$(T}@0IUoHDJ!#I&L5dA7m#10lJ|Neiy-e|D( z9;xCF_J1KAW9%41WX6zwv7i^nTCQJ?EZWC+QN3H{s;%oqfQhUf+O?@XfWm30?By6U zj(Qp00|_5PUiUa&(Mwm|ioRY5bpJAUZZT&tPX9#Ko@o6eQWC2x!eV5wy*hELSVXmq zjt1Nzt6Xn(Q*vad{*yTqnjZ&LW2`9Awx54E>Br5rC5 zK7UBJVkAj-vC0|runjK~Ukkw`!5Q&yNxvO?N!~~Ns0h5?2)DHg?jurzLzUpQLyI=z zkaiO26_y}K<&V{f(U61OhNVQdhFH+G_m z!70TX3|87NzcY3z`Vo|QbxW|pVl{$(xqppQqAI{xJ)&6aux3EyPf1n1>`x}cYlQ*r zmtkU&S|LGwD^Ri@u7Rp+ug z`ftDGRF z92)mw(eKvd!8R%3N{RM9VeiIZc#UV*qmKEDnLx;sAEdPq;xN)hD8nqjbA-{vn>NPp zQLLTQKoe(^s1swSY7Z}4gDo#YKdO7+9Mzj=5kc}1T}@D4ARzQfuVGCs8ou$R)17Ge0{Ib+$c03G@7wfSzVr7c_qa#%E9P!oHuHXa25Sd z3a58!-*@Z9w`!MuR)CSpFg_ZSGb+6x7BSAwUY@-in8=;BYo93v92Ia3HQb3;x#pgN@ovO`#_~|Xv6q-y_9HA~z6h~1Xlz&XG9{f$<+q-rE z%RL5qrKy%JLf#0tY3{?nQF`mK(b~B7h2u2uoVD?E!Iw)Yrbxl7uT za1x7k}+P?o_-*Wf|ui1RG^X9%jo3(~rd2O=Gh92dv+0u_r+kY4bFwdvkTTR`Ttjm5i ziy+NsW^desA<_@%J^0vP&qIH&jaM=@QI0n2aH&Ez-oHqxUWCsrVfQWcev*2B`3Q|$ z$>v73e)<`@S&vqYNBcVfQnT(j9wKeDLgiM{FZ(rnGNiAyt3e4?I6gEhigXF)iO8Ol zov}aWvD0QkOaw+k$uEG0@A3X9DAFRT5l{-5MHe+SU*v-w+LpQA3Rf?T_ zhYMbOY@{smV72y>1UvQ*2|kgWuRIw@ljYkrYkRSDRzofHrc|bqKuE(CMukMhNSgJG zuj$;vx1%XZA>X`U%JErx1EZzg8FFbaS4%e!V?_lEfqzb-Nv@bC5=!q{sTXTI!is{Y zGmOZqrV>puGixY=123t?t=Ld|Rpux_sKIueAzRf|N1PaX5ttq~VFBJ?N@*itRl5{?0rsTnTrEDMi<2%cb+z`D&J85Glf&+jtc|>9A9eCBT8p6) z+=6yxHh)VGeAVN4FL~^79d06!&f9eAjIl~}2U4g*ROJb8wjB3C)g#M>s7cswSViDX zXeJYZ)lb{ZiOTd|G*NF?AH=mDZ7`}tKoKR@fPuC_CUC5QxrCZVdth+8)P;h1B^V8o zn&6I6Acy`n9Ss!WXFO*q$_;rk3Dcs-A^wafHh;j#E5_>%X-Wmgp9y8;1Z+o*mg=UB zWXPZl*jz0c*TXuR7+{W#g55rv73X!AyrvduRO{(*FLfk>S0b*5GpnT13z5Gk;8Fdk1bnyCZbl%WjP>Q|nS~+PmYj4;|P) zeIPa7;Rgeg0gN9rXmsrFn51PFpWt`LJ6gSa5`C!J8yEE_TfBkYx;~j*n|jSh6THzk z0s5qO5=$LFSXtdePbV|q1ip-BIXX?b@({h6C5JSj_vQ8(EflFn7S%L#(x|!LpvwQepkiAr47ut z4bR4dBGgO(?GWmw!)TlWwHZBP0)M#9z!NYGS<(J6-snDyjR`3F7c1<~qF|IYh-cmH z^*a_FraxG**B@Ir-4xMU4=6)n?e`SX6VKjJT5s6&efX_->DKDhNlth29)P-&o57tw zT6x|9+xSBOr=A9kzx^<6i`*4k&*pm9mbvE|T*6WJXzcrg&!`-MOgQkeLw`??Y$o(+ zqafPa0k43bD;#0A8I|8O#rRgIx|Hro(?y1``5YCyeNK#}d0EL|+ZXu@CbBHeP=1HM z)P{EHESD(|QN}`fPEkNG3fzgYOTT24x@%igXRtcLqPo}?>MjG+^<%$-Pp2#uctE98 z*gbUYs40Q@i6Y#rqXfq*I)AfC^DpFg1=?gxrb-(pZ8repp#z2|9|o*le3!NpZZ`e> zOB%`m>Wffp|Nhj~#c$%>+-DL*?Q*`f^biDpNlc&`TFDml-b{h)CFOb!(*^XbO*xa( zI-Nw}x9qk{PnBrBW$P&y3A(hsK)d>YJ5IMo79&|q$@2Dk3gU>*KkV`3!;zkO*!yXR zFYuhhCWGlIQujX6biRL(Od|=~IZ3*;Wqex-+)Q%aBRZ+cs))+b>$nmv5l_k+`PV@EvtK%fq&K!bU6Ks&INDq*)B8a(wB zQs?ujhnwR1p{353X~(Q^Yf&?@+EE>>w&=+O22B(2JJc__Q;(^)EIsL?($9r z@W{dH!G9O-Ra_jWmQwM^?Md$C(K^Cgrp3JJP8Y<Z55z3OctU1vM0m^p|$8xTg%w?&L2s zM%(2!)4?;~Ju^;iJJD3}@jCcMeQ8{IhFoeY8C`A}35M`it{L5$$GB<^8%aCXigMx5 zJAcuAcv|;t9MH6Qdfxu-)j52+>CV+S+1yJrKDQF$+#l|Tq2iy6rpIq#oO;ZCp+`df zfolhqb%w5}R$5hi!^(BrZ!ZDkTY!_qwzmWKU?1BWoFsB&%$_d9ZOhPpvG}mpYrbOl zN|yB|OMcJ_k*=sed#nPogu7AYdcj)rW;Ul!*+Q5G>04=tfPwqQ(d32F? zpS^Z<_dZyGVsyx(uqDz7FE7_?e8i3J3h6N?mkx~iqbPz^k{0eS+4XoOJX31qJtm_D zO?$AxDmC}j&-so$q-$95vdc9L8XjI2#tkBMjkK{h_?n%CEYOCY>lI?WJB<5KYJW~@ z>8@i7 zY_ACkM9H182PMwMZSw`mO9quZYaYJW^E}TXC?WKDL5E?5e(_f+ooBXq*3=|G=K3RUCA;tP*Zl) z`}pBDmp55dxD_<#V1#*OkeM88Np5rX@E5xE`CJRdAoO#D5X8?@2_U gMsn%6*?uSHN3G4?Ob@=n11?xIP%y;*54+ZHEx3A*m;e9( delta 9904 zcmV;hCQsS6PSH(}b$?y!Zrn(A{?DhVz=O>UVp^6wp4~C92xQ6jC@aYtOXJC6chO*z z)!kgN$u=)7w}SxwALLgS2mHzvv5R!68&-sQe zl9c;ima|oohM$s{J%ss+c`ScO1Odnj7|MCfiVS1|N0G9~gCE?>ixecYI{>u^m+%Km z`391pU>SQ@d4D;3NQx+6a}FYr8;X%84=h=*JoQ4vNTp%FeEtvd1MrljASwub{6dde z7_$TlpMu0R$euV)Pi8@wZ6a?sE6FB(b|J+zq!=F^kwWQ`BHt9b0SNW4iwJ&-oH3PP z@?Dv~lYmDkc)MKAvOFz({Jz6w@*^+H!bRvCr2-LdDSv|9>Yq@c_ix@@^PD+PpTQ@D z>K}(*vYd;5K(LqdWmYXbGltqm#GmG>3?3&5~?Jf)oFPhDx z#J`{R*^~@d$f$ldmB~b=^Yq*HB136no*%5#QrsV!CBNlMtjIsD@_duMI6CsukKy)7 zk}i)n!GGfD`1$eilc!Ige|Nln_5>2xH;5Q&tw^(Q%STmu$@NbEDytr)W`J?uMk}Or zwp;!Efe1zctbyk<7`%Kh;7}70pb2Jv5^u-gXjX!h=t_w$N;EM2ft?8gCJ7i4BvC;_ z2aaFopytw>vp=z~J8I_FPrrNe^!fAO{94q^H-A`=fX5l%r|pt})`m+ty460%UJn&I zw$~#I^m=FjM%8~Oa37%Zm7LD%7o{lc{=3=6OT8%K(F}Ef!u{%9Npq#NN}b=x%!5|? zuV?FI9!B)_=1H*I_Y-PqE=n^$df2r0|G zIDhcc+P4j(9AGH!1q&(Lw2@uJhBTi_d^l- z_fV8HccWwpjVbrSs0O))0&I^YD2PA&M1LRfh%f{5CQ5ereFV_2*c&jJkL%4QZx-{9GJ{7nTh0Xz4IcB0wE!Jh+QB0N3wRe zp`HFtZh_+^W(ypU%|teX>~1`AirT5#h9$Helr~0z;;hV3tMVQI^am^<(SOj;tJNXp zbta*hYTig4RGRoa!&S8##_nd9uf}O_a#vueY+R(@Q1$>G`3H)F)ioFoNfFR5?-MS1 zU_8u%d-uWH*@LteX&{$f2VvtPpLkx-(EH2hzn&r=ySikz=fC^q^WPY-T9yhv$e&?t z?9zToMgREXbjxZfha{F8HGgISERknEkG(WZvhhGQYYQ%&*8@YWe5sIOx=GU9eh}~A zl|XbRlbHjBOmC*zwc4||w4YP+{qX`2H+|uwqY0gnnGHkA+=FFYnA?rT_TmKE3xl3P z_b~OLU0d>Z7a;;`IDdn`yd1u{&@=Zet^N@Oar zPh$@4IFG`)i>7GE152fKHlYoMTf-* zXxG0#V@M~)xe$+FkWMszqU(m5t-T1=mm#byb8N?X5!m(9Hb%J$#2lt_80GW;NCGkt z7onvwZ8AuOkiuk2x1yW_UidRlQo9nG3_{Tzq~PHart~O+p+3y9zW7I<+jYERoEycma=-P?*ML7Bp*M&Ts}wxtd!>gB>Sdu1bOD=v?ub zrDDGV8&GnwcZ$ohs9P|e$w>2}3Jx4e79K3V+$E3sz<;9hAksxKUl;P6_Y z?kCGQBr6AcJ?(*Ka*>8|t-;&L6Y$>>EuO$BS{z(1h*qxo&aSTq3V?YoSgOkcx9x*) z38QXp_kZ5Sx*b=HF;eBI4;<`LazNie4z-^mIYb-lFH#ULij2Ax(^{&>ya#_YAA!I_6>q}|m6 zbm_%Mcu+9kx$x5tRFy|=5W)g`zGLwBfHL^cHGfwN_A2X~Lh&0pNWnt;G}yu*gkuv} zSK_=dV_&~Hz0SVr0TpHW`e+{JegZuZ{}44T+AVIs=PsT~t+}w^Ktf0-S5~+u3YXK0 z;A5A!cUQtoM0AZiJVR2XX?v}=NZIjo z_J5kF*r}%KhlwlO+88ncX0H?plNYJkRB++kHWb~#{GFt)VL8?VT#o1g$7uym(R?p; z>xp*gtwhP4XfIXs!@0`o11XQ2(8>w@`uEW_E9aqPf%~aoF~SUE2Yjk{ZAOJYt8%?4 zTasYI4J*agQ_>V>r)82XBeaDR{~p#JA%88Jl_!^*+D>#Oe&uv!AcMFQQg*7K-Tel+L11gw=5 zOpjzuJu?F%V2vB+npimBbe88p@_*&LLG(<}GfDq~Ap=tkOfZZnWx)NA4F5dkd}2we zGGs@PX^hfF0IGZs-B@A8EPAl%}7gV2WY{-qmiyQ}pRrb37>!<#ii$)1X@lms@2O zV)^CS(z}9L%J)&pt ziC#HgX6)qUWI zq_Bw06E_TSLvXPp_u@sEyG0z(k4Yu47cYyXb|}t}f!!tSLNc(of`R>t{UlkeOIiDS z^msN#p7b3M=Ld?yZd9wQf%+~YFAYEOz(uDMFCDQovKA)oyfT}7SiDq}p?i^0#4vo| zo?V6#^~nx-)q<^HUVoNx%bOK8(5Fe3t5r$GOsW^m0N|RH@vL6Fij%!?D6VZq_8tw{ zOE7(sYa7SnQs*?W+5X5X?$WjSvwbDpA{bI1I62hxcCi6Y6Uo&jgLHJosaE0fI5a1d z(VWwOP&Wg(Qc5a;!|EU7V~#FS4^!M#(9?AwA)iR#NqB9ki(^sgHapBv_Vl=*?D% z@Lm`Pw^vpLvVZYKz-ZUB><2+R61ZM52OJ&S^Xahbl4=_WGIb=pMvCyQ&is^Y;mKh8 z?W=1OFbMV@3C()juKKG`KkdH7}- zdSm(dQ2$$dv9}z$8rRFD{Afi|^AbhNrABod)BM8L27g2szr=A_-Yl(jZ);yB{K9ide=A{9sXeIT;C1TFdKoU!lxQi?G~$|8Ci!~ zGV0saK&p#w!o@f0?v)zjm5NnrNw%4AI2`acJdsL&2et`6EHEX z5p;`?aDM~=(*$H05J4|Cqp##iV!y_z^Xa9o>RXg*tC~(4GC#ZzbFnI&0HYzJ0f|m6 zZVie7czH^<*fLo3PB7!T_!TUX%P`m0Y$Mljy3Up*(YEJm_aLL(cqET@yaOkbd$prm zz2~ZH@cFpaRV#DpneXZA^?A#xYLi0F2VA@49Dn|zJFR%u4i?*bO{YF`f1?YHwE)?f z#FbowfGL7;xX9run~X}ZcVZIR;}F^Sc#aa%iOwXdVH7u{@P?k7b1+G9Vcm(Pg;?s8 zSEgzB{}#_nWpMHz;0D>g2Vw?~UG#b_0SM~*!#(%~Lc4VEs28TZj)VwA=Pj|v8X z$$wRyyS1>7S;d&$GoFT)TAIkGO--iu2Och0`4<8qgtua;>2*99z|eV}+yK$(d7Z@h zsz206bM?``>V71ZNMFPG&J{{dTXoCS8KutVyBVc6fr>eM_obmKHK!f=8*pX1<2}F- z2DTPYBTyi2EK#5gya>uR;f5ok(eZ3r9e>gufikyLCazFvWv*6s`tz*?CdW=1d^;K1 zrE*#2KqdMLoggbfBk!Iw+)TiBT%tC0J9E#!2Mrr<>FKCe$~U$n_LK5=eN^Kme;VX% zlZoE1!Y{atEQC>^D5BWGViXA<;xe5n4bGgW_dMdeYGYA-uqHvS(%$bMs#=34fcx3dDJ!b3BPm?TJz(|f4ZXXk$a3~hBCk|BofIzf6 z-P-V23)-ayATJ7If0ho-LjOy^PX3uU26kxpkJ**Rep+IeUe0I83+0aS?)x@-!YIHc zZLzYJBm2$)r%KznO5PS?Oel4?P=7Y9v+f^u5idj#FK7=i_WTo%*=3S!cL4glE+-nWO%qI=q-`e-6roQBN zJ|h*a-`IyPJjdS{+Cm&>=%Wc4{w3oK$IB$n{_fz-RI7KjdVPc_!BDI4b1(DakX=FR+;}h|I{u1#dA7oP zN;vi#BLhZyhY`M&VS-X! zL+Y8vadUBQgTui9EAUaFx9G@tXgcBvq=-Ctz_mfC%ayuZsY?)+OMitkTT~`~sIIvu z-0-oU&?B%Lbc>6;S6&M-p(YDgX3;QCV$UjCUm9A`$*=~>=wyfJp%rAN?6Xd-W`C>@ zQDMBgqyLz%R`Hl_Lx?JbvzAF&1AC`%RNUVQY{ccn%Rdwrme2UPSL&dtSL^7ReUlgm zZ93u_Kb)OuZVR$>jVGAy?w^}`$DHojCPeGtf+duU}Wim1m) zZ?X{O6>yLJqNJ*O>=z8<u$YCpgOZD`+r<_l{X2694Fu&NH@X`33sv58Far5 zFA`sgY9zpE@#m!93}+L^K-RiHRwm1_iNYiHgrm%|!>NO>ym=Tv1V(gZo!$BHR89gH^W8B^( z+TIfDR?_+Mm^?wPMQRy(1#U=DsP_)u~Ry&8SJFpn39O<$nWl z@8ZTy*6@A!in)$@lf*c`HGIV7We^>9kx>18#`KApFcivjt87oppoF6jo(*sIx-|Kb zTz!Bh3=0#^tFnAAW%)`^w#H=_nv#C`{9jpl;wDUy^4u+hPo~~!l;^VOL5}aoMav`w ztE{hDn+I(lm*PbI9_%5!&%W&nIDhsi4342VL%JQ~6=xsAZ|2ZV#VuRu1Tp5&xC@JV zuNx1xNr@|!DDM;YY6yl?du}>xnZHAQn_fuVGCsFaFarKocF`dXs7mT2B6G()GdsyvzWN{V2VgVE6*H&Uik4gSXQ%~3Oe<%EG= zYN}-Oz^w(`)c4_EO1;(CXiZ#G;aJT(CrvzUFh=_G);ncar8FV|R>5G3wD*-&*n*3m z7ea3uSd`&a(q)(+G}esB#TeP1F|#rW;M@ER~mI7~wFLPJbT5OLs|A5>6uY z{0TX_;OkzYmpQ8tpy162B>#f`wx*sgpW7cgundi}E3k)g+!F!q_pe%fWCi58LLNS( z0z)Tlz-6Q>PZ-76QSS@2+}1%)G2^nsKOX3|gM9u)MELPKFWjIXnR(UWhbm}VG@WYD z=KTlrmcu_f_2#3TH-D%4Y*rd}>9xr&YI>x*WNVhxTW-qZq1Ge>1*t2P=XPT4}Z;yJXwNy!qdlOXDrYI zQI?OaSiU*PH&qf{A@QQB!TGc2-@6IE8HDXBvvw4$$I241o9m;8YFIa`1UvZ-7rgj> zN0Dd#YVE}_cI=;Gd>S@eIUdn$UAIdn~;}{dJ!;J*edYew3F_x+JKyrDADm~%#mg5vu9kNV_iiG`&l?2X+W-=03 z^|Vc&sEqGLBlWiRL0s$62BS;_6k%)(7-$=$9LE}%OQ>ly2L`)KT`1Ts1*1Vy5!^Bg zWYE9Hqkn-Se8O{nT6WV~vTCRJeknLtENz;;w?sdm~(h6u`l z&DD@`)vu$D0p{4y-%ZghIj`E})wKwtT1|(O)R73c6miw3!GR{a_BJBwUnAI(?TxY> zht&nztIca=zzOnIAVNd_)g>U?sBnWugeLZmFMphl^}4YH?=dYa{dONg(qp1r)61B@ zi!vg6d44~7i@^fs!2U$Tv#`u}tWVc0V00YGvER8@nBJwfb6wq~vVS427uaJDf$Y_F zy`H1q$0^eXK)~{icGqA?OL4=L+@cy}_Q34qDTj_+Zf+8-@V(NHD@ASXb>RM`JAed|6pJ=fZ<~Xg^v9L6SVB?J^XHYN2_yBq6<}Xvt$ROn0zir#rTAvdP1>8c_Pe+D{bG5zpRIT4&hwDf~vfbYpdDC8s@k0-*Nf zdT{5rMxL|BHhv$#v8MsUZ$FINB7e8V*0H(Xwq@?v2A8nZJsA6b?=vb(AR`XE%+S*V zn+aXoD2TRlz{{cMa!Z&^M(Hj%89WsFH0G0`y_k9c$y|D z%5U+P+R!eY;W7mxiik_kDGCTifjcpF>6eUBcV%j74OT~3WEb1Qw@U$a^?%rJ@6#zm z1s+gI6=n||I%oCUgiq343>H`q`$&MOT+SDk9)fV65)-I~RYeOrHw zX?#zAYlx#yK#vUS6g*<6nwS;+=IHq)bQ=>;MQ@HTXYZ>~tcw=-pv5Lh@ahEG)VO6v zGf-6_o`W4yBZa4W;88?M&6|;qeD3jJK}+A3@|+Dl={cLjATzcsf`8Q&tmVyy4Z~yy z7Um1=2m990O;wKh$@JIKRn$;AwU%tOR_bUIZiEBdf~nhnLq|Q51;+$rxhW-_|9I`R zJD?oa=_CxkWjAel%0%NWTSvM`(53AK+SPm9ak|m67|CK%mNV%ohyyFKcGIH4 zkxwDDKA*b3DXtz`YJHh@$O<spV`wtL;7#+>A!W-1bQiMB7MOPg?BsCSrqltJiE}?HKUSL7@*TCCh!Vb6f4r|0ooi6I6^(8$Av&FYicKA1`ysZJd(ZJ3H zu-^lfB$^@7ELqHmXa+sE?_f)UY;E{pVgD>36xHwiVrQ{LYldhA6>kx05<~w~4y%OnK++n%@Vh$-Ih37 zL;9_RG-7e#@EJFQ-65@pT910vhNMn29NVc~d@V#!7fmBl(5VqAsHR|`zchQrEoCTn zD}R|G+BUbD7M>pOnPFbj@hjJj7LT*od34 zR-_Au+KKMM)3|42fu_OJ@%DG8&i>O)d#>8a<|NJd+)99Re=rS0$v+xRhu^|5^^p5Q zhlJ__*A^2mF>3QBmu))fTP4Vw*x1z4{Z&O5;-ttj~8OMWoW)wyx;3J zUw^S%Da&}1Cd<(VNCPIGqHI}&Oj->qv2FaihCJYRt)m17mj2bAJ^lx&2Fa9bO5Kq#ALL zNvlEA9&E5u&29N}zGHXE8dkjQVhw|agMXKWaf3)+BdzTXzF;Q-^Od1zdxaS94&y$Q zoRexhf+vAX67eE2YQF5!d`_D69pWLR&km0CnI+O^b)>r(>Ivr?S_wadk#h0KIUasu z7hHKk@*oy^M1(CPY~QG#c(GNZ5V0f>gC9hs8LT#W=kX_Fne&D$h6Bi=(55hleLJc+e9-0IT{V7&;5_g!8vgpPqbweDaOc z2tl~zF-EQvK>;UtHi*yA2snshT_yIePwBt-Vb1^c1<+vGtP%A;e` z%?|4#*mHXZ!8e%b#8=730yK<{JAXuQBPqzU;R-%K)XnSUA>t{)){!r8j9Pej*uzr4 z|DD`+7YuqfQ%S?2NJw)@+Ff1MYoY4h+4Z$lYXsqF09#|Iv;)CHSskFRPz^ysA`?)u zYuN&uG$DZ~u`_ljWjZ*JhjKBzjwU>%SQS9;Dc+SycnYLVifvYlq^r*~vVZUsHZt6y z+%MWR3Sv?aijT7ew1SQ){UAp#7(Ve%Dk|smhHAA}-FW)(PzOK_46M}XRD5kFyKDSZ z@z@#gsHv%(>a1a-v*N6=rFdo&8nR%d2CU=z-$75zUNmCrK9=De&2Ysk&G$A`chKe7 z?~?-lmS07@i>sG9#^r7(!+#EDZ6P3I1^JChI2e5q4C&O_CTS8UVf$n>@*rKx(lbz9 zcG&s&;WiUDS!B2sH0NN1xo40W?`=tLGx_iry7hUk67G`l_qQcL!w_k|IK;e;c}I$1JNum)|&&2s#>aey_ux`+|=ZVeJOf8mNjR4+q1{c i7hN8aTsm$x---EIX)`yIuknBj)(jL3@&5qd-bf}%4=N4- diff --git a/prerequisites/python-programming-advanced.html b/prerequisites/python-programming-advanced.html index 6022ef77d2..6466aea631 100644 --- a/prerequisites/python-programming-advanced.html +++ b/prerequisites/python-programming-advanced.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2958. + + 40.89. Introduction + +
  2959. - 40.89. Study the solvers + 40.90. Study the solvers
  2960. - 40.90. Build classification models + 40.91. Build classification models
  2961. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2962. - 40.92. Parameter play + 40.93. Parameter play
  2963. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2964. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2965. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2966. +
  2967. + + 40.99. Image classification
  2968. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2969. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  2970. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  2971. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  2972. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  2973. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  2974. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  2975. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  2976. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  2977. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  2978. - 40.116. Art by gan + 40.118. Art by gan
  2979. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  2980. +
  2981. + + 40.121. Comparing edge-based and region-based segmentation
  2982. - 40.119. Summary + 40.122. Summary
  2983. - 40.120. Car Object Detection + 40.123. Car Object Detection
  2984. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  2985. +
  2986. + + 40.126. Getting Start NLP with classification task
  2987. diff --git a/prerequisites/python-programming-basics.html b/prerequisites/python-programming-basics.html index 2c8b6312cc..913d8be6e2 100644 --- a/prerequisites/python-programming-basics.html +++ b/prerequisites/python-programming-basics.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  2988. + + 40.89. Introduction + +
  2989. - 40.89. Study the solvers + 40.90. Study the solvers
  2990. - 40.90. Build classification models + 40.91. Build classification models
  2991. - 40.91. Build Classification Model + 40.92. Build Classification Model
  2992. - 40.92. Parameter play + 40.93. Parameter play
  2993. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  2994. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  2995. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  2996. +
  2997. + + 40.99. Image classification
  2998. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  2999. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3000. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3001. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3002. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3003. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3004. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3005. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3006. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3007. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3008. - 40.116. Art by gan + 40.118. Art by gan
  3009. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3010. +
  3011. + + 40.121. Comparing edge-based and region-based segmentation
  3012. - 40.119. Summary + 40.122. Summary
  3013. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3014. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3015. +
  3016. + + 40.126. Getting Start NLP with classification task
  3017. diff --git a/prerequisites/python-programming-introduction.html b/prerequisites/python-programming-introduction.html index c07f7e5d8b..2dd7d3a03e 100644 --- a/prerequisites/python-programming-introduction.html +++ b/prerequisites/python-programming-introduction.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3018. + + 40.89. Introduction + +
  3019. - 40.89. Study the solvers + 40.90. Study the solvers
  3020. - 40.90. Build classification models + 40.91. Build classification models
  3021. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3022. - 40.92. Parameter play + 40.93. Parameter play
  3023. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3024. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3025. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3026. +
  3027. + + 40.99. Image classification
  3028. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3029. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3030. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3031. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3032. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3033. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3034. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3035. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3036. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3037. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3038. - 40.116. Art by gan + 40.118. Art by gan
  3039. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3040. +
  3041. + + 40.121. Comparing edge-based and region-based segmentation
  3042. - 40.119. Summary + 40.122. Summary
  3043. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3044. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3045. +
  3046. + + 40.126. Getting Start NLP with classification task
  3047. diff --git a/search.html b/search.html index e2540df75a..39541014a1 100644 --- a/search.html +++ b/search.html @@ -26,8 +26,8 @@ - + @@ -1113,114 +1113,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3048. + + 40.89. Introduction + +
  3049. - 40.89. Study the solvers + 40.90. Study the solvers
  3050. - 40.90. Build classification models + 40.91. Build classification models
  3051. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3052. - 40.92. Parameter play + 40.93. Parameter play
  3053. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3054. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3055. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3056. +
  3057. + + 40.99. Image classification
  3058. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3059. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3060. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3061. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3062. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3063. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3064. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3065. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3066. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3067. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3068. - 40.116. Art by gan + 40.118. Art by gan
  3069. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3070. +
  3071. + + 40.121. Comparing edge-based and region-based segmentation
  3072. - 40.119. Summary + 40.122. Summary
  3073. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3074. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3075. +
  3076. + + 40.126. Getting Start NLP with classification task
  3077. diff --git a/searchindex.js b/searchindex.js index 2fcc2452a9..b931efbe56 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/difussion-model/denoising-difussion-model","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/object-detection/car-object-detection","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/build-ml-web-app-1","assignments/ml-fundamentals/build-ml-web-app-2","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression/california_housing","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas/advanced-pandas-techniques","data-science/working-with-data/pandas/data-selection","data-science/working-with-data/pandas/introduction-and-data-structures","data-science/working-with-data/pandas/pandas","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn/cnn","deep-learning/cnn/cnn-deepdream","deep-learning/cnn/cnn-vgg","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/nlp","deep-learning/nn","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-advanced/unsupervised-learning-pca-and-clustering","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/parameter-optimization/gradient-descent","ml-fundamentals/parameter-optimization/loss-function","ml-fundamentals/parameter-optimization/parameter-optimization","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/difussion-model/denoising-difussion-model.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/object-detection/car-object-detection.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/build-ml-web-app-1.ipynb","assignments/ml-fundamentals/build-ml-web-app-2.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression/california_housing.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.ipynb","data-science/data-science-lifecycle/analyzing.ipynb","data-science/data-science-lifecycle/communication.ipynb","data-science/data-science-lifecycle/data-science-lifecycle.ipynb","data-science/data-science-lifecycle/introduction.ipynb","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.ipynb","data-science/introduction/defining-data.ipynb","data-science/introduction/defining-data-science.ipynb","data-science/introduction/introduction.ipynb","data-science/introduction/introduction-to-statistics-and-probability.ipynb","data-science/working-with-data/data-preparation.ipynb","data-science/working-with-data/non-relational-data.ipynb","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas/advanced-pandas-techniques.ipynb","data-science/working-with-data/pandas/data-selection.ipynb","data-science/working-with-data/pandas/introduction-and-data-structures.ipynb","data-science/working-with-data/pandas/pandas.md","data-science/working-with-data/relational-databases.ipynb","data-science/working-with-data/working-with-data.ipynb","deep-learning/autoencoder.ipynb","deep-learning/cnn/cnn.ipynb","deep-learning/cnn/cnn-deepdream.ipynb","deep-learning/cnn/cnn-vgg.ipynb","deep-learning/difussion-model.ipynb","deep-learning/dl-overview.ipynb","deep-learning/dqn.ipynb","deep-learning/gan.ipynb","deep-learning/image-classification.ipynb","deep-learning/image-segmentation.ipynb","deep-learning/lstm.ipynb","deep-learning/nlp.ipynb","deep-learning/nn.ipynb","deep-learning/object-detection.ipynb","deep-learning/rnn.ipynb","deep-learning/time-series.ipynb","intro.md","machine-learning-productionization/data-engineering.ipynb","machine-learning-productionization/model-deployment.ipynb","machine-learning-productionization/model-training-and-evaluation.ipynb","machine-learning-productionization/overview.ipynb","machine-learning-productionization/problem-framing.ipynb","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.ipynb","ml-advanced/ensemble-learning/feature-importance.ipynb","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.ipynb","ml-advanced/ensemble-learning/random-forest.ipynb","ml-advanced/gradient-boosting/gradient-boosting.ipynb","ml-advanced/gradient-boosting/gradient-boosting-example.ipynb","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.ipynb","ml-advanced/gradient-boosting/xgboost.ipynb","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.ipynb","ml-advanced/kernel-method.ipynb","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-advanced/unsupervised-learning-pca-and-clustering.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.ipynb","ml-fundamentals/parameter-optimization/gradient-descent.ipynb","ml-fundamentals/parameter-optimization/loss-function.ipynb","ml-fundamentals/parameter-optimization/parameter-optimization.ipynb","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.ipynb","ml-fundamentals/regression/managing-data.ipynb","ml-fundamentals/regression/regression-models-for-machine-learning.ipynb","ml-fundamentals/regression/tools-of-the-trade.ipynb","prerequisites/python-programming-advanced.ipynb","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,79,80,81,82,83,85,86,87,88,89,97,98,99,106,113,114,115,116,121,122,124,125,126,127,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,149,150,151,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,188,190,191,194,196,198,199,200,201,202,204,205,206,207],"00":[25,29,37,39,59,61,62,69,127,132,165,169,179,184,191],"000":[7,29,33,43,52,58,65,67,122,139,169,191,204],"0000":[63,123,192],"000000":[39,60,63,66,69,72,79,88,121,125,126,127,154,157,164],"00000000":[123,192],"000000000":39,"000000001":39,"000000002":39,"000000003":39,"000000004":39,"000000e":69,"000001":97,"000004":154,"000006":127,"000035e":61,"00009609e":165,"0001":[56,58,63,66,79,135,137,150,175,194,200],"000140":127,"000169":154,"000187":154,"0002":205,"000234":154,"0003":[156,175],"00030352119521741776":14,"0004":156,"0005":[38,68,145],"000537":154,"00058":79,"000581":63,"000584":127,"0006070423904348355":14,"000665":154,"0009105635856522532":14,"000z":123,"001":[14,31,33,34,36,38,47,56,62,66,68,86,98,137,141,144,150,175,201],"001118":127,"001133":69,"001214084780869671":14,"001238e":61,"0012919896640826":79,"001413":39,"001504":172,"001667":157,"001763":172,"001768":127,"002":205,"00228":145,"00259226":182,"00270041":175,"002962":164,"003043":127,"003411e":61,"003604":131,"003652":131,"003750":164,"003900":131,"00390625":141,"00398532":79,"003990":131,"004013":131,"004016":131,"004066":131,"004198":131,"004663":131,"004767":131,"004884":131,"005":[58,132,154],"005005":131,"005355":131,"005524":131,"00561v3":140,"00584401e":165,"006":138,"00605086":140,"006220":131,"006235":127,"006323":131,"006457":164,"0067286862703357":126,"006729":126,"0068":30,"0069":30,"0070":30,"007000":154,"0071":30,"007185":[65,67],"0072":30,"007236":131,"007273":39,"0073":30,"007380":164,"0074":30,"0076":30,"0077":30,"0078125":141,"0079":30,"008080":164,"0081":30,"00821301":175,"008281":164,"008460":131,"0085":30,"008532e":69,"00856072":121,"008662":127,"008906e":61,"00897398e":165,"009":138,"0090":30,"0092":156,"009477":69,"0097":30,"0098":156,"01":[1,14,31,36,39,47,50,52,56,58,61,62,66,69,73,79,81,87,119,123,126,127,131,132,133,138,144,146,156,161,165,167,188],"010000":63,"010309":121,"01057247e":165,"010679":131,"010a691e01d7":[123,192],"01130490957":79,"011305":63,"01138062":175,"01171875":141,"01187949e":165,"012114":39,"01246024":[63,79],"01249051e":165,"012635":69,"01286507":175,"0129":37,"013":138,"013246":157,"01324612":157,"013417":164,"013538":69,"013547":164,"01355":144,"014371":164,"014542612245156494":175,"01461712e":165,"014940":39,"01497":144,"014987":126,"015":[138,154],"0152":156,"015625":[61,141],"016186":164,"016305":154,"01632993161855452":66,"016520":131,"016667":39,"016750":127,"017":178,"0170":61,"0171":132,"017174":127,"01743954":140,"017500":39,"01764613":182,"017692":39,"018059":127,"0183":36,"018352":69,"0189":39,"019181e":127,"019231":39,"0195":39,"01953125":141,"0196":[30,39,156],"019620":127,"0196warn":30,"0198":39,"01990749":182,"02":[14,35,38,39,58,61,69,126,127,135,140,146,159,165],"0204":39,"0205":39,"020545":127,"02060786":140,"0207":39,"020724e":39,"0210":39,"0212":39,"0213":39,"02137124":167,"021448":39,"0215":39,"021618":127,"0218":39,"02187239":182,"021919":29,"0220":39,"022331":[65,67],"022377":29,"0226":39,"022692":69,"022738":39,"02277928":140,"0229":[39,132],"0230":39,"0231":39,"023118075851907716":175,"0233":39,"0234":39,"0234375":141,"02356819":140,"0238":39,"02406323e":165,"02429656e":165,"024332":127,"0246":39,"024613e":61,"025304":127,"0255":[39,132,156],"025568e":61,"025820":157,"025921":127,"0260":39,"026109":79,"026389":126,"02653783":79,"02673422e":165,"0268":39,"02689146":[63,79],"02734375":141,"02744117":140,"027520":127,"0276":39,"02763018":79,"027800":154,"0283":132,"028300":154,"028881":69,"0289":14,"0292":39,"029388":127,"0296":39,"029806":127,"02d":37,"03":[14,38,39,61,69,123,126,127,146,165,192],"0301":132,"0302":39,"03021648e":165,"03026961":140,"0311":[39,132],"03125":141,"031506725":29,"032":73,"032120":126,"03265407e":165,"03265429":140,"03265986323710903":66,"03267463":140,"0327":39,"0328":39,"033114":69,"033153":127,"03328308e":165,"033892e":39,"0339":39,"0342":39,"03482076":182,"0348944":140,"035":73,"035077":157,"03515625":141,"0352":39,"0353":39,"035499e":61,"035711":[65,67],"035785":157,"0358":39,"036":138,"0362":132,"03669362":140,"03676084":79,"03681898e":165,"0372":39,"0375":39,"037540":39,"0376":39,"037692":39,"0377":39,"03807591":182,"0382":37,"0383":39,"0386":39,"038731":126,"0390":39,"0390625":141,"039105":157,"039164":39,"0392":39,"039250":154,"03925315e":165,"0393":39,"0394":39,"03942163":79,"039738":157,"039893":39,"0399":39,"03_intellij":39,"03d":[31,38],"04":[14,39,50,61,69,116,121,126,127,146,165],"0400":39,"04000000001":39,"040021":69,"04015012":140,"0402":39,"0404":39,"040414":126,"0407":39,"04124236":79,"0416":39,"0418":39,"0420":39,"042143e":61,"0423":39,"042321":29,"0424":154,"04251990648936265":167,"04294934e":165,"04296875":141,"043":138,"0430":39,"04340085":182,"043441":127,"0435":39,"0436":39,"044":154,"0440":39,"0442235":182,"0443":132,"044354":127,"044444":121,"044527":127,"04460606335028361":178,"0447":[39,154],"0447134":140,"0448":39,"045":138,"045000":39,"04555172":79,"045561":39,"045637":39,"0458":39,"04597":140,"0463":39,"0467":39,"046875":141,"04690013e":165,"04690235":79,"047":138,"0471":39,"04764906":79,"048622":79,"04915341":140,"0496":39,"049672":79,"04d":137,"04t22":59,"05":[14,37,39,49,61,68,87,125,127,138,146,150,156,163,167,175],"0500":161,"0506":39,"05068012":182,"05068934":140,"05078125":141,"05093587":124,"051":138,"051164":61,"05129013":79,"05129232e":165,"05163977794943221":66,"051695":39,"0517":39,"05174632":140,"052646":39,"0528":39,"05283644":79,"05311586e":165,"053607":39,"05375897e":165,"053899":157,"053903":39,"054000":[66,88],"05409845":140,"0541":39,"054430e":61,"0546875":141,"05504988":140,"0555621":140,"05558296":79,"05581988":140,"05587v3":140,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":61,"056":138,"05623794e":165,"05667198":140,"057":138,"0571":132,"05743935":140,"057504":[65,67],"0580":50,"05816076":140,"05856981":127,"0585698110469435":127,"058570":127,"05859375":141,"0589":39,"05899204":140,"059025":29,"059100":154,"059136e":61,"05919117":140,"0595":39,"059532":69,"059737":127,"05d":[38,137],"05vabnfa1d":165,"06":[14,36,39,61,69,127,138,178],"06040135":140,"0612":36,"06123253":121,"061476":157,"06156753":[165,196],"06164216":140,"06169621":182,"061881":157,"06192831e":165,"0621118":156,"06227022":140,"0625":[141,165,196],"06279592e":165,"062868":39,"06293699e":165,"0638174":140,"064":138,"064079":69,"06474761e":165,"06525736":140,"06537655":140,"065508":79,"06556804":140,"06568076e":165,"06576":134,"0660":36,"06640625":141,"0664977131233107":127,"066498":127,"0668":39,"06704963":140,"067239":127,"067482e":61,"06756605e":165,"0677799":140,"068415":61,"06870":144,"06870405":140,"0688":61,"0688029":140,"06886704":140,"0694":39,"069473e":61,"06948027":140,"069987":69,"07":[1,39,52,61,125,126,127,132,138,156,178,191],"070208":127,"0703125":141,"07057328e":165,"070833":39,"07103796":175,"071203171893359e":191,"071268":39,"0713":39,"0716":37,"07161290e":165,"071715":127,"071856":60,"07194882":121,"072046":69,"0721":37,"07272727":87,"073":138,"07383654":79,"07394277":140,"07421875":141,"074246":39,"07432988":79,"074776":157,"07499715e":165,"075":[138,168,198],"07534395":140,"075361":69,"0754":39,"07554621":140,"07555147":140,"075650":154,"07604103":79,"07665441":140,"076661":69,"076923":39,"07737338323":63,"077500":39,"077712":157,"0781":50,"078125":141,"07878788":87,"078843":39,"078910":[65,67],"078934e":61,"079167":39,"079437":127,"07959982":79,"079714":127,"079951":127,"08":[39,50,61,69,97,116,121,123,127,178,183,188,205],"0801":35,"080211":127,"080870":39,"081":138,"08106401e":165,"0813":35,"08157576":140,"081661":127,"0819":39,"08203125":141,"08206309":140,"0822":154,"0823":35,"0829":154,"083165":127,"083333":39,"0835":35,"08377614":140,"0839":36,"0841":35,"08421487":140,"0843":50,"08484848":87,"085":[168,198],"085537":191,"085774":127,"08588317":140,"085890e":127,"0859375":141,"086":138,"0864":35,"08662089e":165,"086798":29,"087":[138,154],"0881":35,"088730":157,"08898591":140,"088992":39,"08925183":140,"0893":39,"08946078":140,"089525":154,"08964461":140,"08984375":141,"09":[25,36,39,61,69,79,127,138],"090000":39,"090298":39,"090321":154,"090548":39,"090717":39,"09090909":87,"091":138,"091439":39,"09146885":175,"091489":39,"091574":61,"091606":69,"09207596":140,"0924":36,"092517":127,"09274592":140,"092939":154,"09312624":140,"0934":35,"09375":141,"094025":39,"094383":39,"0944":36,"094493":39,"094830":127,"095000":39,"095163":39,"09545673":175,"095922":39,"09592476":140,"096093":127,"096164":39,"0964":154,"096441":127,"096545":39,"096688":39,"096822":126,"096907":69,"09704554168":79,"097061":39,"097124":39,"09721540e":165,"09736372":79,"097565":39,"09765625":141,"097692":39,"0978":140,"097950":154,"098004":39,"098327":39,"098485":39,"0985":39,"098512":39,"09913234":140,"099139":39,"099198":39,"099369":39,"099380":39,"099428":39,"099534":39,"099587":39,"099596":39,"099674":39,"099944":127,"0a":[125,126,127,183],"0aarrai":125,"0ad":127,"0adel":127,"0adf":[125,127],"0adf1":[125,126],"0adf2":125,"0adfd":126,"0adfl":126,"0afor":183,"0aget_age_group":183,"0aimport":[125,126,127],"0aindex":125,"0al":125,"0amask":126,"0anp":126,"0aother":125,"0as1":126,"0ax":126,"0cm":48,"0f":43,"0n":32,"0nb81h2lf3u6tgo":61,"0rvhljoesr6bt4cmi":61,"0s":[29,30,36,39,42,50,56,62,63,72,79,132,140,143,167,174],"0th":[43,126],"0x0000020ad04ad280":30,"0x0000020ad0975280":30,"0x132a05eb0":190,"0x15efcfd6708":168,"0x15efe146708":168,"0x1799f6b3e80":72,"0x1799f7b00d0":72,"0x1f49b239f08":79,"0x1f4a26c7b08":79,"0x1f4a26efc48":79,"0x1f4a2788808":79,"0x1f4a27bb588":79,"0x1f4ad02ae08":79,"0x1f4ad061988":79,"0x20ad0773190":30,"0x227c78bf790":60,"0x24c343c74c8":69,"0x24c38b8cfc8":69,"0x25c6dfaf370":35,"0x28523a37dc0":154,"0x7e1538110d60":167,"0x7e3d355e1e70":50,"0x7e3d441045e0":50,"0x7f0688608450":124,"0x7f2eaf733550":179,"0x7f2ed47b3070":179,"0x7f5e36f43ca0":165,"0x7f5e393fbf70":165,"0x7f8e393be730":116,"0x7fda965d69d0":156,"0x7fee24c9a220":178,"0x7fee359bd610":178,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,53,57,64,65,66,68,69,70,73,81,82,83,86,89,97,98,99,100,101,105,106,113,114,115,116,117,119,121,122,125,126,127,129,131,132,133,134,135,136,137,138,140,141,142,143,144,145,146,148,149,150,151,154,155,156,157,159,160,161,163,164,165,166,167,169,171,172,173,174,175,176,178,179,180,182,183,184,185,198,199,201,204,205],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,40,42,43,45,46,47,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,79,80,81,85,87,88,89,97,98,106,109,114,117,119,121,124,125,126,127,134,135,136,138,141,143,145,146,150,151,154,155,156,157,159,160,164,165,167,168,169,171,173,178,182,183,184,188,190,191,196,198,199,200,201,202,204,205,206,207],"100":[7,14,18,31,34,36,37,38,41,43,48,49,50,51,52,54,55,56,58,62,64,65,66,67,68,71,73,79,80,81,82,85,87,88,97,115,124,132,133,134,137,138,140,141,143,150,151,152,154,156,159,163,164,165,167,168,169,173,178,179,180,183,184,190,191,194,196,198,199,204,205,206],"1000":[3,14,18,31,33,35,49,52,56,58,60,62,63,66,81,86,87,89,107,112,121,131,135,138,140,141,150,156,157,159,161,163,167,175,179,183,186,190,199,201,202,205],"10000":[14,29,30,33,35,38,58,66,72,87,131,135,137,139,169],"100000":[56,66,88,135],"1000000":[165,183,185,191],"10000000000":165,"1000px":159,"1001":151,"1003":151,"10032834e":165,"1004":141,"100486":39,"1005":151,"10059785e":165,"1006":141,"10061107":140,"1007":[72,79,151],"10071":125,"10072":125,"10073":125,"100795":146,"1008":42,"10086":125,"10087":125,"100878":29,"10088":125,"1009":[72,141,151],"10090":125,"10091":125,"10092":125,"10093":125,"10094":125,"100942":39,"10095":125,"10096":125,"10097":125,"10098":125,"10099":125,"100k":173,"100m":[36,150],"100tl":36,"101":[81,141,157,167],"1010":[72,154,169],"10100":125,"10101":125,"10102":125,"10103":125,"10104":125,"1011":42,"10119387961131":[65,67],"1012":72,"1012000":116,"10134804":140,"1014":141,"10143793":175,"101451":39,"1015":141,"1015625":141,"101744868":42,"101761236":42,"1018":39,"101m":36,"102":[52,61,81,141,154,157],"1020":[114,138,190],"102098":172,"1021":141,"1022":72,"10220":54,"1023":141,"102352":146,"1024":[32,33,37,38,42,64,135,138,139,140,194],"1024n":32,"1026":141,"102657":39,"1027":141,"102724":39,"1028":[34,72,141],"1029":141,"102b":151,"102k":52,"102m":36,"103":[52,58,61,81,141,156,157,180],"1030":[34,141],"103095":39,"103180":127,"1032":[72,141],"1033":141,"103500":154,"103536":146,"10359594":134,"1036":141,"1037":168,"1038":141,"103997":39,"104":[52,61,81,156,157],"1040":[115,138,141,190],"1040000":116,"10411186e":165,"1044":72,"104412":39,"10444444444444445":167,"104462":127,"10449817":140,"10452":39,"10460062":140,"1048":[39,69,141],"1048832":42,"105":[81,132,138,139,140,141,151,154,155,159,165,167,168,171,175,176,178],"1050":[114,141,190],"10509942":140,"1052":141,"105237":79,"1053":79,"10546875":141,"105586":39,"1056":141,"105651e":39,"105748":157,"105896":126,"105937":164,"105m":36,"106":[61,81,141],"1060":138,"10601041":140,"1060762990306165":81,"10613463":140,"1063":141,"1064":141,"1065":126,"10651042":140,"10655":164,"106569":146,"1066":[114,126,190],"106649":39,"1067":126,"1068":[126,141],"1069":[39,126],"106m":36,"107":[52,81,141,156],"1070":126,"1071":141,"10711052e":165,"1072":[115,126,190],"107282":39,"1073":[126,141],"1075":141,"10782758":140,"107m":36,"108":[81,125,141,194,205],"1080":138,"108004":126,"108032":39,"108257":127,"1084":141,"1085":141,"1086":127,"1087":141,"108706":126,"1088":[127,141],"1089":127,"109":[81,125,138],"1090":127,"109091":121,"1091":141,"109167":39,"10928802805393":60,"1093":141,"109327":127,"109375":141,"10944131e":165,"1096":[141,191],"1097":59,"1098":141,"1099":33,"109m":36,"10m":[117,188],"11":[14,22,25,36,39,42,49,50,52,59,61,62,64,66,69,72,73,81,88,89,97,98,106,107,116,121,124,125,132,137,141,142,143,145,146,149,154,155,156,157,159,167,171,178,179,180,183,184,186,205,206],"110":[14,52,60,61,68,81,125,132,156,159,183],"1100":[138,154],"11000":131,"110000":39,"110296":127,"1104":141,"110426":61,"11047708e":165,"11048534e":165,"1105":[63,79],"1106":[63,79,141],"1107":[50,141],"11088":25,"110m":36,"111":[36,61,69,72,80,81,125,137,138,141,154,155],"111000":154,"11109":97,"1111":[129,192],"111101":39,"11111":97,"1112":141,"1114":141,"1115":145,"1116":69,"1116058338033":66,"111618":39,"1117":141,"111700":39,"11171325":140,"111752":39,"1119":88,"111982":69,"111m":36,"112":[66,81,125,141,154],"1120":138,"112151":164,"1123":141,"11234131":140,"1123949416":192,"1124":141,"112425":39,"11250":68,"112522":29,"1127":72,"1128":141,"1129":141,"112m":36,"113":[39,52,59,81,114,141,156,190],"1130":154,"1132":141,"11328125":141,"1133":141,"113362":39,"113402":121,"1135":[39,72],"1136000":[116,190],"1137":141,"1138":[63,79],"113m":36,"114":[52,63,79,81,138,141,156],"1140":138,"11404718":140,"1142000":116,"1143":72,"1144":[115,190],"114460":127,"1145":141,"114639":[65,67],"1147":39,"114700":79,"115":[50,59,61,81,132,141,145,154],"1151":36,"115161":168,"115237":63,"115238":79,"1153":141,"11530945":[165,196],"115337":157,"115588":69,"11567072":140,"1157":141,"11571171e":165,"116":[36,66,81,114,141,154,190],"1160":[29,30,138,141,154],"1160103":39,"11609933":79,"1162":141,"1163":141,"1164":141,"1166":[63,79],"11663747":79,"1167":141,"1168":[29,30,42],"116819":157,"116m":36,"117":[63,73,81,141],"1170px":125,"117140":127,"1171875":141,"11742":79,"1175":141,"117513":63,"117522":154,"1176":[129,192],"11761":60,"11770":25,"117788":127,"118":[50,63,79,81,141],"1180":[138,141],"1180160":[37,42],"1183":141,"1184":141,"1187":141,"118m":36,"119":[42,63,79,81,138,141,167],"11903076":140,"119048":39,"1191":[61,141],"11912291":140,"1192":141,"1196":164,"119621":29,"1197":156,"1197000":116,"1198":156,"11983416102879":167,"11988789":140,"1199":[141,172,173],"11anon_oac":180,"11th":46,"12":[14,22,25,36,38,39,40,42,43,45,46,50,51,52,53,54,55,56,61,63,68,69,71,72,79,81,85,88,97,98,106,114,116,121,124,125,126,127,132,138,139,141,145,146,154,155,156,157,159,161,164,167,168,169,175,179,183,184,190,198,201,202,205,206],"120":[14,38,39,62,66,81,97,132,138,141,165,196,205],"1200":[58,138,141],"12000":[131,164],"120000":[63,79,184],"1201":141,"1202":139,"1206":145,"1207":141,"120m":36,"121":[49,52,63,66,79,81,141,156,167],"121005085892223":81,"12108":60,"12109375":141,"1211":39,"121237":61,"1213":141,"121358":39,"12145947":121,"121669":[65,67],"1218":141,"1219000":116,"12195403":79,"121m":36,"122":[49,52,63,79,81,125,138,141,156,167,169,199],"1220":[33,138,141],"122021":39,"1222":141,"122411":39,"1225673588504812":68,"1227":141,"122784":39,"122785e":61,"12280441":140,"1229":141,"122m":36,"123":[14,52,81,97,125,138,141,156,164,184],"1232":141,"12326000":[116,190],"12335207e":165,"1234":[141,184,206],"123431":29,"12345":[39,175,184],"123456789":97,"123492":61,"1235":141,"123588":154,"1236":34,"1237":34,"1238":141,"1239":141,"123m":36,"124":[39,60,63,79,81,125,141],"1240":[138,141],"124210":39,"1245":141,"124505":39,"12452009":175,"124831":127,"125":[31,60,66,81,132,141,154,184,191,206],"1250":141,"1251":79,"125115":151,"1253":141,"1254":141,"125408":175,"125457e":61,"125479":39,"1259":44,"12592925e":165,"126":[39,63,79,81],"1260":138,"126299":39,"1264085":39,"12647":164,"12669":164,"1267":141,"12693":25,"12697628":124,"126m":36,"127":[61,68,81,135,138,141,154,167,194],"127304":79,"12733734668670776":68,"1274":[63,79],"127469":39,"1275":141,"1276":141,"127696":39,"1279":141,"127m":36,"128":[31,32,33,34,35,37,38,40,42,43,52,60,69,81,87,131,132,135,138,139,140,141,146,156,184,204],"1280":[62,138],"128188":157,"1284":141,"1285":141,"1286":141,"1287":141,"1288":126,"12882135":191,"1289":126,"12890625":141,"128n":32,"128x128":140,"129":[39,48,63,79,81,141,154],"1290":[126,141],"129009":127,"1291":[35,126,141],"129154":127,"12919":39,"1292":126,"1292794":140,"1293":141,"12934355":140,"12936294":140,"12944592e":165,"1295":141,"129527":39,"1297":141,"12985994":79,"1299":50,"12e4":[184,206],"12px":169,"13":[14,25,39,42,50,51,52,54,57,69,72,81,97,98,106,117,121,124,125,126,127,132,138,139,141,145,148,149,154,156,157,159,161,167,178,183,184,205],"130":[9,14,81,105,106,114,132,154,190],"1300":[56,138,167],"13000":131,"1300131294":[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,115,116,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,190],"1301":161,"13054062e":165,"1306":141,"130634":39,"1307":141,"130748":154,"1308":141,"130824":127,"1308242893220229":127,"13082429":127,"131":[29,66,81,169],"1310":141,"1311":141,"1312":141,"13129353e":165,"1313":141,"1315":141,"131562":126,"1316":39,"131667":39,"13168":79,"131688":154,"1317":141,"131741":39,"131m":36,"132":[29,42,50,60,81],"1320":[29,138],"1321":[126,141],"1322000":116,"1323":126,"1324":126,"132500":39,"132545":69,"13255":25,"13255345":121,"1326":[126,141],"13265":164,"1327":126,"1328":141,"1328125":141,"132931":39,"13299297":140,"133":[29,81,154],"13326":79,"133260":63,"1334":[46,141],"1338":164,"13390011":79,"133927":79,"133m":36,"134":[29,48,81,88,138,167,168,198],"1340":[138,141],"134156":39,"1342":132,"13436471":140,"1345":141,"1346":141,"13470853e":165,"135":[29,81,114,132,138,141,160,167,190],"1350":141,"135000":39,"135088":39,"135117":39,"1354":141,"1356":141,"135768":127,"1358":141,"1359":141,"135m":36,"136":[29,61,81,141],"1360":138,"1361000":[116,190],"1362":141,"136302":[65,67],"1364":141,"13671875":141,"1368":141,"13680487e":165,"1369099078838":[65,67],"136m":36,"137":[9,29,52,81,105,106,138,141,156],"1371":141,"137210":39,"13725491":140,"137321189738925e":121,"1376":141,"137600":127,"137m":36,"138":[29,81,127,138,141],"1380":138,"1382":141,"1385":141,"1386":[129,192],"1387":79,"1388":141,"139":[29,59,61,81,141,146],"1391":141,"139167":39,"1393":141,"1394":141,"13957641e":165,"1396":39,"1397":141,"1399":141,"139m":36,"14":[14,25,29,30,39,50,52,56,60,61,63,66,69,72,81,97,98,106,124,126,132,141,144,145,146,154,157,159,161,167,168,169,184,198,205,206,207],"140":[14,29,42,58,61,81,132,138,139],"1400":138,"14000":131,"140000":68,"1403671649831801":81,"1405":141,"1406":138,"140625":141,"1407":141,"140769":39,"140m":[36,42],"141":[29,81,138,141],"14100":184,"1411":[140,141],"1412":141,"141297":191,"1413000":39,"1413001":39,"1414":141,"14159":[184,185,206],"141592653589793":205,"1419":141,"142":[81,141,175,184,206],"1420":138,"1422":[63,79,141],"1425":141,"142543":79,"14260":68,"142721":69,"142m":36,"143":[48,81,138],"1430":141,"14318":61,"1432":33,"14322558":175,"1432780985872142341":123,"14355988":175,"1438":141,"1439":[141,145],"143m":36,"144":[48,66,81,115,138,178,183,190],"1440":[138,141],"144000":154,"1441":141,"1442":141,"144218":39,"1443":34,"1444":[34,141],"1445":[63,79,129,192],"14453125":141,"145":[29,30,65,66,67,81,122,132,157],"145394":175,"145m":36,"146":[66,81,122,125,157],"1460":138,"1461":[141,180],"1464":[126,141],"1465":126,"1466":[126,141],"1467":[63,79,126],"1468":[79,126,141],"1469":[126,141],"146m":36,"147":[48,66,81,122,125,141,157],"1470":[126,141],"147020":127,"147184":69,"147308":154,"1475":141,"14759957e":165,"147704":157,"147m":36,"148":[52,66,81,122,125,138,141,156,157],"1480":[138,141],"14812986":175,"1484375":141,"148495":[65,67],"1485000":[116,190],"148533":154,"14857187":157,"148572":157,"1488":141,"148822":[65,67],"148884":29,"14888888888888888":167,"148m":[36,42],"149":[62,66,81,122,141,157],"1490":[39,141],"149000":106,"1492":141,"1493":69,"149781":127,"1498":141,"14999":[63,79],"149995":191,"149m":[36,42],"14x14":32,"15":[3,14,18,25,31,32,33,37,39,41,42,50,51,52,53,54,55,56,57,59,60,62,63,66,68,69,72,79,81,88,97,106,109,116,124,125,132,138,140,143,145,154,156,157,159,161,164,167,169,178,184,190,198,205,206],"150":[7,14,40,48,52,62,66,72,79,81,87,88,122,132,137,141,151,157,159,168,198],"1500":[31,56,58,60,72,115,138,190],"15000":131,"150000":39,"150271":69,"1505":140,"1506":144,"1508":[134,141],"150800":79,"1508000":116,"150m":36,"150px":169,"151":[81,141],"1510":39,"1511":140,"151462":29,"1516198":79,"15172482":175,"151882e":61,"151m":42,"152":[35,81],"1520":138,"152049":154,"1521":141,"1522":141,"1523":141,"15234375":141,"1524":164,"1525":141,"15250298660326214":127,"15250299":127,"152503":127,"152508":69,"152570":127,"1526":164,"15262765526":63,"1527":141,"15280148e":165,"152m":42,"153":[42,81,138,141],"1530":141,"1531":141,"1532":141,"1533":164,"1536936":39,"153m":36,"154":[81,141],"1540":138,"15409465e":165,"1541":141,"1544":141,"1545":141,"1548000":116,"154m":36,"155":[81,132,138],"1555":[59,126],"1556":126,"1557":126,"1558":141,"155833":39,"155m":[36,42],"156":[50,81],"1560":138,"1561":126,"15611466e":165,"15625":141,"1563":126,"1564":126,"1565":126,"1566":141,"1567":[114,190],"156m":36,"157":[81,125,141,151,169],"1570":141,"1572":141,"1576":[39,141],"157729":[65,67],"15777777777777777":167,"157m":36,"158":[39,81,125,138],"1580":[138,141],"158123":69,"1583":141,"15858217e":165,"1586":126,"1587":126,"1588":126,"1589":126,"15895659":121,"159":[81,125,138,141],"1590":[126,141],"159000":[116,190],"15900736":140,"1593":141,"1594":141,"1594000":[116,190],"1595":[141,180],"159869":126,"1599":[50,141],"159m":42,"15e":121,"16":[14,25,29,30,31,32,33,37,38,39,42,45,46,48,50,52,53,56,58,60,61,63,64,69,79,81,97,98,106,107,115,124,127,132,135,138,139,140,141,144,145,146,154,156,157,159,161,164,165,167,168,169,175,178,179,180,184,190,191,196,198,205,206],"160":[29,30,81,121,125,132,138,141,178,179,180],"1600":[56,138],"16000":[60,116,131,190],"1600000":116,"1600x1200":164,"16015625":141,"1604":141,"1605":141,"1607":141,"160m":36,"161":[52,81,125,141,145,156],"16111":[59,198],"1611969":37,"1612":141,"1613889":37,"1614":126,"1615":126,"16158268e":165,"1616":[126,141],"161677":60,"1617":39,"1618":126,"1619":126,"161m":36,"162":[52,81,141,156,179],"1620":[126,138],"16200":59,"162016":157,"1621":141,"162308":39,"16259":61,"1626":180,"1627":[63,79],"16272558e":165,"162754":127,"162829":164,"1629":141,"162m":36,"163":[39,81,138],"1630":178,"1630251618197":[65,67],"1630537000":123,"1630544034":[123,192],"1632":141,"1635":141,"1636":79,"163636":121,"16368":42,"16384":42,"1639":61,"163m":36,"163mb":132,"164":[81,138],"1640":138,"164000":154,"1640625":141,"1641":141,"1644":141,"1645":141,"1646353":39,"16465":25,"164726":126,"1648":141,"1649":34,"164m":42,"165":[81,114,127,132,141,190],"1650":34,"1653":141,"1654":[79,180],"16578108":79,"1658":141,"165m":36,"166":[52,69,81,141,156,179],"1660":[138,141],"16622185":121,"1665":79,"16666667":191,"166667":39,"1669":39,"166m":[36,42],"167":[60,81],"1671":141,"167573":39,"1676":141,"1679":141,"16796875":141,"167m":42,"168":[81,115,190],"1680":138,"1682":141,"1683":[129,141,192],"16837":79,"1685":141,"1686":141,"1687":141,"1688000":[116,190],"168m":36,"169":[42,81,138,141],"1690":[129,192],"1691":50,"1692":141,"16928":54,"16933":164,"1694":179,"1695":[141,179],"1696":179,"1697":179,"1698":179,"169811":154,"16997346e":165,"16x16":140,"17":[14,25,35,37,39,50,52,57,59,60,61,63,69,79,81,97,106,107,124,132,138,141,145,151,154,157,159,161,167,168,169,178,179,180,184,186,198,205,206],"170":[50,81,132],"1700":138,"17000":131,"1703":[141,144],"170312":191,"170446e":61,"1706":140,"1709":141,"170m":42,"171":[81,138],"1710":141,"17111912":140,"171160":69,"1712":[141,180],"1713":141,"1715":39,"17176609":140,"17176777":140,"1718":141,"171823":127,"171833":126,"171875":141,"171909":61,"172":[60,81,146],"1720":[138,141],"1723000":116,"17233455":140,"17238052":140,"1725":[63,69,79],"17259929":140,"172664":69,"17296777":124,"172m":[36,42],"173":[59,66,69,81,138,168,198],"1730":69,"1731":141,"17312490e":165,"173211":[65,67],"173287":126,"1733":141,"17338595e":165,"173400":79,"1736":138,"1738":178,"17387827e":165,"1739":178,"173m":36,"174":[39,69,81,138,141],"1740":[138,178],"1741":[141,178],"1742":[141,178],"174330":39,"174333":127,"1745":141,"1747":39,"1748":141,"17482":25,"174871":168,"1749":141,"174m":[36,42],"175":[81,132,138,191],"1750":141,"175000":39,"175135":154,"1752":141,"1757":180,"17578125":141,"175833":39,"175m":39,"176":[60,81,121],"1760":138,"1760000":116,"176114":69,"1762":164,"176277":39,"1764":141,"1765":141,"17684239e":165,"176m":[36,39,42],"177":[63,79,81,138],"1770":141,"177000":154,"17725185":140,"1775000":116,"1776":164,"1777":164,"1779":[129,192],"177m":[36,39],"178":[68,81,141],"1780":138,"1782":113,"1784":156,"178449":61,"178456":39,"178497":168,"178542":69,"17865972":140,"1787":35,"17878":163,"1788":[141,164],"178830":127,"17889":25,"178930":61,"17897":61,"17898":61,"178m":[36,39,42],"179":[81,141],"1790":[65,67],"179056":39,"179175":127,"1792":37,"1795":141,"179603":69,"1796875":141,"1798":141,"179800":[63,79],"179m":[36,39],"18":[14,25,37,39,50,52,53,56,59,60,61,63,64,69,79,81,82,97,106,121,124,132,138,139,141,145,146,151,154,161,167,178,183,185,192,200,205],"180":[81,117,121,132,137,138,165,196],"1800":138,"18000":131,"1800000":116,"180088":39,"1803":141,"18036583":140,"1805":141,"1806":141,"1807":141,"1808":141,"180833":39,"180m":36,"181":[81,138],"1810":141,"181033e":61,"1811":141,"1811000":116,"1812":141,"181231":126,"181408":29,"181500":68,"1817":[35,141],"18175551":140,"181916":39,"181m":[36,39,42],"182":[81,121],"1820":[138,164],"182097":168,"18215":25,"1823":141,"1825":35,"1827":141,"1827000":116,"182729":168,"182m":[36,39],"183":[39,81,138,141],"183150":157,"183575":126,"183580":29,"18359375":141,"1836":141,"1836633":39,"183705":127,"1839":141,"18390":[63,79],"183m":[36,39],"184":[81,121,141],"1840":[138,141],"18421":25,"184320e":69,"1847":141,"1848000":116,"18496":[37,42],"184m":[39,42],"185":[44,58,81,121,125,132],"1852":141,"185209":127,"1855":34,"18557502":[63,79],"1856":[115,141,190],"1857":141,"18575038e":165,"18576":[63,79],"1858":34,"1858320":138,"185946e":61,"185m":[36,39],"186":[50,52,63,79,81,141,156],"1860":[79,138],"1862":141,"1864":35,"18677":79,"186868":127,"1869":141,"186m":39,"187":[81,138],"1871":79,"18714815":140,"18717328":140,"1872":141,"1872000":116,"1874":[30,129,192],"1874428":140,"187449":29,"1875":[30,132,141],"1875693":39,"18772155":79,"18781619":140,"1879":141,"187m":39,"188":[81,121,138],"1880":[1,138,141],"188054e":61,"1882":[39,141],"188339":127,"1885":141,"18851821":140,"18876416":42,"1889000":116,"188m":[36,39,42],"189":[81,121,138,141],"189083":127,"1892":141,"1893":141,"1896":141,"18965517":79,"1897":29,"1899":141,"189m":[36,39],"18th":113,"19":[39,42,50,52,61,63,69,73,81,82,97,106,117,124,127,132,139,141,145,151,152,154,167,178,185,188,189,191,198],"190":[42,58,63,79,81,132],"1900":138,"19000":131,"190222":39,"1904":[138,144],"19053":25,"1906":156,"19071257e":165,"190787":127,"1908":[35,141],"190m":[39,42],"191":[81,138,145,146],"19105823":140,"19126407":39,"19140625":141,"1915":141,"19157667":79,"191m":[36,39],"192":[61,72,81,115,132,190],"1920":[37,138],"1920000":116,"1921":141,"1923":35,"192380":39,"1925":141,"1926":35,"19269777":79,"1927":35,"1929":35,"192m":39,"193":[81,138,191],"1930":[114,141,154,190],"193100":79,"193137":29,"193203":39,"1933666654":[114,190],"1936":7,"193633":157,"1939":141,"193m":[36,39],"194":[81,121,169,205],"1940":[35,138],"1941":141,"194167":39,"1943":[30,145],"1944":141,"1944000":[116,190],"1945":141,"194532e":39,"19460641":140,"19464949":140,"194763":39,"1948":35,"1949":169,"194m":[36,39,42],"195":[52,65,67,81,132,156],"1950000":116,"195256":39,"1953125":141,"1954":[69,141],"1954000":116,"19541375872382852":167,"1955":[141,169],"19552860":191,"1956":169,"1957":69,"1959":[65,67,174,203],"195m":[36,39],"196":[52,81,138,141,156],"1960":[35,138,169],"196015":126,"1963":61,"1964":141,"1965":[65,67,69],"19651127":191,"196923":39,"196m":[36,39],"197":[52,81,121,141,156],"1970":39,"1972":[117,141,188],"19722e":138,"1973":141,"197317":81,"1974":[35,117,141],"197m":[36,39],"198":[60,81,138,141],"1980":[138,149],"1981":[69,141],"198168":127,"198279":39,"1984":[69,141],"198667":[66,88],"199":[69,81,121,138,179],"19902":25,"19903924":140,"1991":[141,185,207],"1992":[52,61],"19921875":141,"1993":[61,117,188],"199305":154,"19932988e":165,"1994":156,"1995":61,"1996":[51,54,117,141],"1997":[52,174,203],"1998":[51,54,116,117,144,154,190,193],"199833":61,"1999":[116,160],"1999000":116,"199m":[36,39,42],"1\u0435":159,"1_bar":135,"1d":[39,45,46,59,127,136],"1e":[14,32,35,42,73,87,97,133,135,138,139,144,150],"1e10":[165,196],"1e6":[165,191,196],"1f":[34,47,48,49,50,53,66,115,167,173,190,204],"1h":[63,79],"1m":132,"1min":198,"1pjb":39,"1px":169,"1s":[29,36,50,63,79,167,174],"1st":[7,14,18,22,38,56,124,131,132,169],"1stflrsf":56,"1u":39,"1x":[144,184],"1x1":139,"1x3":42,"1xcxhxw":144,"1xfhxfwx":144,"1xfhxfwxna":144,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,43,44,47,48,49,50,57,61,65,66,67,68,69,70,72,79,81,82,83,87,88,97,98,99,100,101,105,106,113,114,115,116,117,119,121,122,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,154,155,156,157,159,160,161,164,165,166,167,169,171,172,173,174,175,176,178,179,180,182,183,184,185,197,198,199,201,203,204,205],"20":[7,9,14,18,29,30,31,32,34,35,38,39,40,41,42,46,49,50,51,52,54,55,56,57,58,59,60,61,62,63,65,67,68,69,71,79,81,82,85,88,97,105,106,109,113,114,119,121,124,125,126,127,132,137,138,139,140,141,145,146,148,150,151,155,159,167,168,169,180,183,185,190,191,198,199,204,207],"200":[17,31,39,48,50,52,54,55,56,58,62,66,69,81,87,106,121,125,126,132,137,138,140,141,155,165,167,168,183,196,198,204],"2000":[14,36,56,60,114,116,127,131,138,146,167],"20000":[14,116,131,132,185],"200000":169,"2000x1500":88,"2001":[116,152],"200126e":39,"2002":[36,116],"2003":[116,146],"2004":[116,169,191],"2005":[116,138,141,146,169],"2006":[68,116,149,167],"200611":39,"2007":[68,116,117,188],"2008":[52,68,116,169,191],"2009":[50,116,141,152],"201":[39,60,81,121,125,126,141],"2010":[116,126,146,183],"2011":[116,146,160],"2012":[69,116,125,126,146,191],"20123":125,"2013":[31,69,117,126,146,149,188],"20130101":126,"20130102":126,"20130104":126,"2014":[59,69,139,146,154,191,194],"2015":[22,107,139,146,152,154,186],"2016":[52,58,146,154,160,174],"2016000":116,"2017":[113,125,146,150,154],"2018":[39,47,49,50,97,98,117,129,141,146,154,183,184,185,188,192,205],"2019":[17,117,129,141,146,148,150,154,188,192],"2019\u7248\u5b89\u88c5\u6559\u7a0b":39,"201m":[36,39,42],"202":[81,125,126,127,138],"2020":[1,14,39,56,59,97,117,119,125,129,132,138,141,148,151,152,154,188,192],"2020060289":14,"2021":[1,39,69,107,117,123,141,144,186,187,188,192],"2022":[14,113,117,119,148,149,150,178,179,186,187,188,192,207],"2023":[25,39,97,125,126,127,144,187,189,192],"2024":[73,125],"2025":117,"202500":39,"2026":125,"2028":141,"202895":39,"202m":[36,42],"203":[81,121,125,126,127,138],"2030":[107,125,152,186],"203125":141,"2033":[35,125],"2033000":[116,190],"203450":39,"203488":39,"2035":[65,67],"20350":125,"203578":157,"2037":141,"20370":125,"203848":39,"203m":36,"204":[34,60,81,121,125,126,127,141,175],"2040":[138,141],"20433":79,"20439573":140,"204445":39,"2045":141,"20453655e":165,"204565":39,"2048":[32,37,42,140],"2048n":32,"205":[34,60,81,121,125,126,132,141],"2050":[114,190],"205000":39,"205244":157,"2053":141,"2054":141,"2055":141,"2056":[72,141],"206":[60,81,125,126,154],"2060":138,"2061":[63,79,141],"2062":34,"2063":[72,141],"20635":79,"20636":79,"20637":79,"20638":79,"20639":79,"2064":63,"20640":[63,79],"2065":183,"20663297":140,"206881":[63,79],"2069":141,"206937":[65,67],"206m":36,"207":[36,60,81,125,138,141],"2070":141,"207025":126,"20703125":141,"207495":39,"207526":127,"207758":154,"207m":[36,39],"208":[60,81,125,126,138,141],"2080":138,"208342":154,"208500":68,"208516":39,"20876306":167,"2089":141,"208969":39,"20899203":140,"209":[60,81,121,138,141,183],"209111":127,"209312":172,"209435":39,"20944":14,"2095":88,"20964977e":165,"2099":39,"209m":[39,42],"20a":[125,126,127,183],"20adolesc":183,"20adult":183,"20age":183,"20algorithm":168,"20an":183,"20and":183,"20are":183,"20break":183,"20c":125,"20child":183,"20column":[125,126],"20construct":183,"20df":[125,126,127],"20df1":126,"20dfd":126,"20differ":168,"20dropna":125,"20dtype":126,"20elif":183,"20els":183,"20exampl":168,"20factor":183,"20fals":126,"20fell":183,"20find":183,"20for":183,"20from":168,"20gemi":36,"20get_age_group":183,"20how":125,"20if":183,"20in":183,"20index":[125,126,127],"20io":[125,126,127],"20lambda":126,"20left_on":125,"20list":126,"20loop":183,"20lsuffix":125,"20n":183,"20name":125,"20none":125,"20np":[125,126,127],"20numpi":[125,126,127],"20of":168,"20on":125,"20outcom":168,"20panda":[125,126,127],"20pd":[125,126,127],"20period":126,"20prime":183,"20print":183,"20px":169,"20random":126,"20rang":[125,183],"20right_on":125,"20rsuffix":125,"20scikit":168,"20speed":125,"20th":57,"20the":168,"20through":183,"20true":126,"20use":183,"20verileri":36,"20without":183,"20x":183,"20x_rang":183,"21":[14,29,39,50,61,63,69,71,73,79,81,85,97,98,106,107,124,127,132,141,143,151,167,168,169,178,179,183,185,198,205],"210":[81,121,125,132],"2100":138,"210113":39,"21018933e":165,"2103":141,"210418":127,"210424":39,"2105":141,"2107":141,"2109":141,"2109375":141,"211":[52,81,167],"2112000":[116,190],"2115":141,"2116000173":145,"211667":39,"2117":141,"211714":39,"211771":39,"21178094e":165,"2118":141,"212":[42,81,141],"2120":138,"2122":72,"212514":39,"212563":39,"212626":39,"2127":[63,79,141],"21271446":140,"212782":39,"212m":[36,39],"213":[39,81,121,138],"21351941":140,"2137":141,"21384971":140,"214":[81,141,164],"2140":138,"214141":39,"2144":141,"2145":141,"214693":39,"21475352":167,"214756":39,"2148":[115,190],"214824":39,"21484375":141,"2149":141,"215":[81,121,132],"215058":39,"2152":72,"2153":164,"2155":141,"215534":127,"2156":141,"215643":39,"21567622":167,"215682":63,"21578029":79,"2158":141,"215m":36,"216":[81,141,184],"2160":[35,138],"216000e":69,"216148":39,"216332":127,"216719002155":167,"2169":[63,79],"216924":39,"217":[81,138,151],"2173424":39,"2174":[69,72],"217478":39,"2175":141,"2176":141,"217739":39,"2178":141,"218":[81,138],"2180":[79,138],"21806371":167,"218161":[65,67],"218187":127,"218217":39,"21836272":140,"218509":154,"218612":39,"218684":69,"21875":141,"218966":39,"219":[63,79,81,121,141,167],"2190":39,"219318":126,"219367":39,"219453":157,"219544":39,"2196":141,"2197":35,"2198447506":205,"219m":36,"22":[14,39,42,48,50,52,56,61,63,69,79,81,82,115,117,124,125,126,127,132,138,140,146,151,159,161,167,169,183,185,188,190,192,205],"220":[39,60,81,121,132,138,141,183],"2200":138,"22000":116,"22003671e":165,"220173":39,"2202":141,"2203":141,"2204":141,"220500":154,"22065768e":165,"2207":141,"2208":141,"22083016e":165,"2209":141,"220m":36,"221":[81,121,138,141],"22102":79,"2212":69,"2216":69,"2217":141,"2218":141,"221846":39,"2219":[79,141],"221956":69,"22199004":79,"221m":36,"222":[33,81,138],"2220":138,"2222":141,"222222":121,"222298":154,"222337":[65,67],"2224":141,"22265625":141,"223":[39,61,79,81,141],"223238":175,"223393":126,"2235":141,"223500":68,"223854":39,"2239":69,"223910":39,"224":[42,69,73,81,141],"2240":[69,138],"2241":141,"22426":25,"2243":141,"2246467991473532e":205,"224m":36,"225":[81,132,141],"2250":141,"2251":141,"2254":79,"2255":141,"2259":141,"226":[81,138,141,173],"2260":138,"22615":164,"226218":126,"2265":141,"2265625":141,"226722":175,"2268":141,"226930":127,"227":[81,138,141],"227031":39,"2272":141,"22740589":175,"227546":39,"2278":141,"228":[81,141],"2280":138,"228077":29,"228120e":39,"2282":141,"2284":[115,190],"2287":141,"2288":141,"229":81,"2290":141,"2291":141,"2292":141,"2293":141,"229673984":39,"229679":69,"22a":[125,127],"22b":[125,127],"22bar":127,"22boolean":126,"22c":[125,127],"22d":127,"22flag":127,"22foo":127,"22golden":183,"22one":127,"22one_trunc":127,"22two":127,"22type":125,"22you":183,"23":[14,39,48,50,63,69,73,79,81,82,97,114,115,124,132,138,141,151,154,167,169,178,183,184,190,192,205],"230":[61,81,132,141,173],"2300":138,"23000":116,"230000":39,"230038":127,"23046875":141,"230769":39,"230m":[36,39],"231":[39,81,121,138,141,167],"2310":141,"2313":141,"231342":39,"23157000":[116,190],"231640":39,"23170093":79,"231768":39,"2318":141,"232":[60,69,81,138,141,167,172],"2320":138,"2322137":121,"2326":141,"2327":141,"2328":141,"2329":141,"232m":36,"233":[81,138,141,172,183],"2332":141,"2333":141,"2334":141,"2335":141,"23356147e":165,"234":[81,141,172],"2340":[138,141],"234330":39,"234368":29,"234375":141,"234571":61,"234867":127,"234978":131,"234m":36,"235":[63,79,81,132,138],"235074":126,"2353":141,"2354":141,"235449e":39,"2355":141,"235636":39,"2357":141,"236":[81,138,141,173],"2360":[138,141],"236000":39,"2360000":116,"23606797749979":97,"2361":141,"2364":141,"2365":141,"2366":141,"2367":141,"2369":141,"237":[39,81,138],"237185":39,"2373":141,"2376":141,"237692":39,"2377":141,"2378":141,"2379":141,"238":[81,138,141,173],"2380":[138,141],"2381":141,"238202":126,"2383":141,"2384":[63,79],"238462":39,"2385":141,"2386":141,"2387":141,"2388":141,"2389":141,"239":[81,138,141],"239001e":61,"2392":141,"2394000":116,"2395":141,"2396":141,"2397":141,"2398":141,"239m":36,"24":[14,32,39,42,50,51,54,60,61,63,69,79,81,82,107,124,125,127,132,141,142,150,151,159,167,169,178,179,180,186],"240":[81,132,138,141],"2400":138,"24000":116,"2401":[63,79,141],"2403":141,"2404":141,"2405":164,"2408":141,"2409":141,"241":[81,138,141],"2411":141,"241108":79,"241287":39,"2413":141,"241492":127,"24153448e":165,"2416":141,"2417":72,"2418":141,"2419000":116,"242":[81,141],"2420":138,"242098":154,"2421875":141,"242225":61,"242289":69,"2426":141,"2427":141,"243":[52,81,156],"243032":126,"2430a9896ce5":[123,192],"2433":141,"243338e":39,"243422":39,"2435":141,"243534":39,"243875":39,"244":[52,81,138,156,172],"2440":138,"244215":39,"2443":141,"2444":39,"2446":141,"244655":39,"2447":[141,171],"2448":171,"244898":157,"244950":69,"245":[81,132,138,141,151],"2450":141,"2451":141,"2455":125,"2457":125,"2458":125,"245820":39,"24591009185":79,"24597409e":165,"246":[81,141],"2460":[125,138,141],"246046":39,"24609375":141,"2461":125,"2462":125,"2463":125,"2465":141,"247":[81,138,141],"2472":141,"2474":125,"2475":[125,141],"2477":141,"2479":141,"247m":36,"248":[81,139],"2480":[138,141],"2481":141,"2483":141,"2484227":37,"2486019":37,"2488":141,"2489":141,"249":[65,67,81,141],"2495":141,"24968114e":165,"2498":141,"24c5":32,"25":[7,14,31,32,36,37,38,39,40,41,43,50,51,52,54,56,57,60,61,63,66,69,79,81,87,88,97,98,106,121,124,125,127,132,134,137,138,141,145,146,151,154,156,159,160,163,164,167,178,179,180,183,184,185,191,199,201,202,204,205,206,207],"250":[34,60,62,81,132,141,145,167,169,207],"2500":[138,161],"25000":116,"250000":[39,66,68,69,164],"2503":141,"250448":39,"2505":141,"250522":29,"251":[81,138,141],"2513":141,"251354":69,"25173":69,"252":[61,81,138],"2520":138,"2520000":116,"2522":141,"2524":141,"2525":[69,141],"252580":126,"2526":141,"2528":141,"2529":141,"252973836909085":81,"253":[81,141],"253000":116,"2532":141,"25355796912855305":126,"253558":126,"253611":169,"2537000":116,"25390625":141,"254":[52,81,141,156],"2540":138,"2547":39,"255":[29,30,31,32,35,37,41,42,43,49,72,73,81,131,132,133,134,138,139,140,204],"255000":154,"2555":141,"25551336":167,"2556":141,"255880":127,"2559":141,"256":[31,32,33,34,37,38,39,40,42,60,62,64,81,124,131,134,135,138,139,140,144,163,164,172,194,204],"2560":138,"256217e":61,"256221e":61,"25641564":140,"2568":141,"256952":39,"256n":32,"256x256x3":124,"257":[81,138,205],"2574":[63,79],"2577":141,"257736":127,"257740":29,"2578125":141,"257990":127,"258":[37,40,81],"2580":138,"258394":127,"258445":[65,67],"2586":141,"2586000":116,"25863":169,"2587":141,"259":[39,61,63,69,79,81,138],"2593":141,"259303":126,"2599":141,"259m":36,"25th":56,"26":[39,50,52,60,61,66,69,79,81,116,124,125,132,138,141,151,156,161,167,178,179,180,185,188,191,200],"260":[39,81,132,138],"2600":[39,63,138],"260000":[9,105,106],"260882":69,"260c2de0a050":193,"261":[81,141],"26129238e":165,"2613":[54,141],"26150":79,"2617":141,"26171875":141,"26190327e":165,"262":[69,81,141],"2620":138,"262048":39,"262207":39,"2624":141,"2625":141,"2629":141,"263":[81,138,141],"2631":[63,79],"263611":127,"263694e":39,"263863":39,"2639":141,"264":[66,81,141],"2640":[39,138,141],"264342":127,"26448193":191,"264598":69,"264700":[63,79],"265":[35,52,81,132,138,141,156],"265056":[65,67],"265412":154,"26541833":79,"265625":141,"2659":141,"26590556":124,"265909":164,"266":[60,81,141],"2660":138,"2661":138,"2664":141,"2664364997":64,"26646":69,"2666666666666666":14,"267":[81,138,178],"2670":141,"267009":138,"267059e":61,"2671":141,"2672":141,"2673":141,"2674":[141,164],"2677":141,"268":[81,138,141],"2680":138,"268016":29,"2681":141,"2687":141,"269":[60,81,138,141,146,173,204],"2692":141,"26953125":141,"269534380":127,"269573":61,"269898":126,"27":[39,48,50,52,60,63,69,81,124,125,132,138,141,150,156,164,167,169,178,183,184,188,206],"270":[81,132,141,178,179,180],"2700":[138,169],"27000":[116,190],"2701":141,"27017952":79,"270551":39,"2706":141,"270833":39,"2709":141,"271":[39,81,138],"2710":141,"2713":141,"2716":141,"271796":39,"2719":141,"272":[81,138,141],"2720":[138,154],"2723":79,"27242692e":165,"2725":[141,145],"2727":141,"27298934":79,"273":[81,141,160],"273000":79,"2732":141,"27342931":[63,79],"2734375":141,"27358504939668":81,"2738":141,"274":[61,81,138,141,178],"2740":138,"274082":[65,67],"274170":127,"27437630e":165,"2744":72,"274785":69,"275":[81,132,141],"2751":39,"2752":141,"2753":141,"2759":141,"276":[81,138,141],"2760":138,"2761":141,"2763":141,"2768":141,"276923":39,"277":[79,81,138],"277078":63,"277273":164,"27734375":141,"277392":29,"27745":79,"277600":39,"2778":79,"277851":127,"278":[79,81,138,141],"2780":[138,141],"27811128e":165,"2784":79,"2785":79,"2787":141,"279":[63,79,81,141,180],"2794":141,"279818":69,"28":[29,30,32,39,41,43,49,50,52,59,61,63,69,71,72,79,81,85,87,89,97,121,124,125,126,127,131,132,141,142,145,152,156,161,167,169,178,183,185,194],"280":[39,63,79,81,126,132,138,141,178,179,180],"2800":138,"280110":69,"280556":126,"2807":141,"2809":[50,141],"2809000":116,"281":[39,81,125,127,138,178],"2810":[125,126],"28109":25,"28125":141,"281427e":39,"2815":141,"2816":141,"2819":42,"282":[81,138,183],"2820":[138,164],"2824":141,"282471":126,"28255050e":165,"283":[81,183],"2831":141,"2832":141,"28327":25,"283273":69,"2833":[141,161],"283431":126,"2836":141,"2838":141,"283m":36,"284":[42,81,138,141],"2840":[138,141],"28433":25,"2846":42,"284838":127,"284887e":69,"2849":141,"284m":36,"285":[81,126,132,138],"2850":183,"28515625":141,"28528881e":165,"2854":141,"2855":141,"28566":[63,79],"28571428571428414":167,"285843":29,"28585348":167,"286":[81,126,138,155],"2860":[138,141],"286283":127,"286619":127,"287":[81,126,138,141],"287105":69,"288":[39,81,141],"2880":[138,141],"288084":126,"2881":164,"2882":141,"288m":36,"289":[50,81,171],"2890625":141,"28924647e":165,"289547":69,"28964":25,"28964919e":165,"28age":183,"28arrai":125,"28by":125,"28d":127,"28df2":125,"28l":125,"28level":125,"28list":126,"28n":183,"28np":126,"28other":125,"28rang":126,"28x":126,"28x28":[29,30,32,43],"29":[14,25,39,50,52,60,61,63,69,79,81,97,124,125,126,127,132,141,156,167,169,178,179,180,183],"290":[81,132,141],"2900":[60,138],"290224":69,"2904":141,"29040966":167,"290833":39,"29098517e":165,"291":[81,141],"2911":141,"2915":141,"2916":141,"2919":141,"291m":36,"292":[81,115,141,190],"2920":138,"292181e":61,"2922":141,"292669":[65,67],"29296875":141,"293":81,"2933":141,"2938":[65,67],"293846":39,"29399768":167,"294":[39,81,138,141,167],"2940":138,"294307":69,"294314":127,"2945":141,"295":[63,79,81,132,141],"2950":72,"295040":37,"29513185":79,"295168":[37,42],"2954":141,"296":[81,138,141],"2960":138,"2962":141,"2963":141,"2966":141,"296875":141,"29691915e":165,"296m":36,"297":[81,138,139,141],"2971":141,"2974":141,"2975":141,"2976":141,"2977":141,"297727":164,"2978":141,"298":[81,138],"2980":138,"2982":72,"298650":127,"298750":154,"299":[52,79,81,106,138,141,156],"2995":141,"2998":39,"2\u5347\u7ea7\u8865\u4e01":39,"2_2":131,"2_intro_to_tensorflow_for_deeplearn":45,"2_k":137,"2_p":135,"2_q":135,"2a":140,"2b":140,"2c":140,"2d":[1,33,45,88,114,115,127,135,165,168,178,180,198],"2d2d2d":169,"2e":135,"2f":[18,52,121,132,146,155,159,161,167],"2fe":156,"2g4adil3rc2ig":61,"2j":[124,184,206],"2m":[39,50,132,143],"2n":69,"2nd":[18,22,38,56,66,124,126,131,132],"2ndflrsf":56,"2p_":52,"2s":[35,37,63,72,144,167,198],"2urviv":161,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":61,"2vtlmaj":87,"2x":[59,80,175,184],"2x_i":[80,175],"2xbdtm2l70p":61,"2yf":160,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,39,41,42,43,46,48,49,50,53,61,64,65,66,67,68,70,72,73,76,80,81,83,87,88,89,97,98,99,101,105,106,111,113,114,115,116,117,118,121,122,123,125,126,127,129,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,154,155,156,157,159,160,161,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,192,196,198,199,201,202,203,204,205],"30":[7,14,18,32,36,39,41,49,50,51,52,53,54,57,58,61,62,63,64,65,67,68,73,81,97,98,106,109,114,115,124,125,127,132,133,141,146,151,154,156,159,160,165,167,169,183,184,185,190,191,196,199,201,202,205],"300":[18,51,54,55,56,81,132,138,151,159,160,165,167,183,196],"3000":[14,18,56,131,138,141,175],"30000":[14,116,200],"300000":[66,88],"3000000000":185,"300000012":163,"3005":141,"30078125":141,"30082566":167,"300k":152,"300px":[140,169],"301":[39,81,141],"3010":141,"301227":126,"3014":[63,79],"3015":141,"3019":141,"302":[39,81,138],"3020":138,"3022":141,"3028":141,"302842":127,"303":[81,138],"303347":39,"304":[81,138],"3040":138,"3046875":141,"304888":[65,67],"3049":141,"304m":36,"305":[69,81,132,141],"305006":127,"3054":141,"3055":141,"306":[81,138],"3060":138,"3064":141,"3067":141,"306m":36,"307":[81,138],"3071":[141,164],"3075":141,"307562":69,"3078":141,"307m":36,"308":[81,138,141],"3080":[138,141],"3081":141,"3082":141,"3085":141,"30859375":141,"3086":141,"3087":141,"3089":141,"309":[37,81,138],"30927452":79,"30957512":79,"30990":25,"309988":127,"30px":169,"31":[1,39,50,52,59,61,71,79,81,85,97,106,124,132,138,141,151,154,167,168,169,198,200],"310":[81,132],"3100":[60,138,141],"310158":126,"3103":72,"310353":69,"3105":141,"3106":141,"3107":141,"3109":141,"310943":127,"311":[81,138,141],"3111":141,"3112":141,"3113":141,"311377":29,"3116":141,"31168387":79,"3117":141,"312":[51,54,81],"3120":[138,141],"312037":81,"312196":69,"3125":141,"3127":164,"3128":141,"313":[72,81,132,138],"3131":141,"3133":141,"3134":141,"313765e":39,"314":[39,81,138],"3140":[138,141],"3141":141,"3145":141,"3146":141,"31461064e":165,"3148":[115,190],"3149":[63,79],"31491977":121,"315":[81,121,132,138],"315000":39,"31501":126,"3159":141,"316":[81,141],"3160":138,"3161":141,"3163":141,"31640625":141,"316667":39,"3168":141,"317":[81,138,141],"3170":141,"317157":127,"31722824e":165,"3177":141,"3179":141,"317m":36,"318":[39,81,126,138],"3180":138,"3181":141,"3184":141,"31856":25,"318823":29,"319":[81,126,138,141],"3191":141,"3196":141,"31t19":123,"32":[29,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,50,52,57,60,63,65,67,73,79,81,87,97,109,124,132,135,138,139,140,144,151,156,167,183,184,205],"320":[30,39,40,81,126,132,138,159,171],"3200":138,"32000":[60,116],"3202":141,"3202614379084967":175,"3203125":141,"3204":72,"3208":141,"320833":39,"321":[69,81,138,167],"3210":141,"321097":29,"32137599":167,"322":[39,63,79,81,126,138,141,167,204],"3220":138,"32208":39,"3224000":116,"322403":127,"322500":39,"322727":164,"3228":[72,141],"323":[81,167],"3230":35,"323328":61,"3234":141,"3235":141,"3238":141,"324":[81,167],"3240":138,"3242":141,"32421875":141,"3245":141,"3246":141,"3248":141,"32483282e":165,"3249":141,"325":[81,125,132,138,141,167],"3252":[63,79],"325288":126,"3255522":[184,206],"32561":53,"326":[39,81,125,141,167],"3260":138,"3261":141,"326460":[65,67],"326667":39,"32674535":[63,79],"3269":141,"326m":36,"327":[81,125,138,141],"3270":141,"327500":39,"327920":69,"328":[39,81,125,138,141],"3280":138,"328086e":39,"328125":141,"328316":69,"328333":39,"3285":141,"3286":141,"3288":141,"328865":164,"3289":61,"328947":121,"329":[39,81,125,138,141],"3291":141,"32911502e":165,"329167":39,"3293":164,"329816":39,"32995317":167,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[33,139,140],"33":[39,50,52,61,63,69,79,81,124,125,132,138,141,146,151,156,165,167,175,179,182,196],"330":[79,81,125,132],"3300":138,"3300000":[116,190],"3301":141,"3306":[61,141],"3308":141,"3309":141,"331":[81,125,138,141],"3310":[114,190],"331000":154,"33107226e":165,"33146":126,"3316":141,"3319":141,"331m":36,"332":[81,138,141],"3320":138,"33203125":141,"3323":141,"332354":60,"3326":141,"3327":141,"333":[32,81,184,206],"3331":141,"33318591117858887":50,"3333":141,"333333":[39,125],"333701":154,"3338":141,"333884":29,"3339440331":198,"334":[81,141],"3340":138,"33416821":79,"3342":141,"334288":81,"334530":69,"3346":141,"3349":141,"335":[81,132,138,141],"3357":141,"3359375":141,"336":[81,138],"3360":138,"336000":116,"336342":[65,67],"336728":127,"337":[69,81,138,141],"337128":127,"33712844":127,"33712844318932483":127,"337692":39,"3377000":116,"3378712":79,"3379":141,"33790572910997085":126,"337906":126,"338":[42,81,138],"3380":138,"33812285":[165,196],"338224":29,"33837964e":165,"3385":141,"338905":126,"338m":132,"339":[79,81,141],"3394":141,"339513":69,"33984375":141,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":61,"34":[39,50,52,60,61,63,66,79,81,98,116,124,132,138,141,156,167,183,184,185,206],"340":[81,132,138],"3400":138,"3404":141,"3406":141,"340769":39,"341":[81,138,141],"34110223":79,"3412":141,"3413":138,"341300":[63,79],"3414":141,"341511":127,"34158395":121,"341649":61,"342":[81,138],"3420":138,"342200":[63,79],"3425":141,"343":[81,141,184],"343158e":127,"3432":42,"3435":42,"3436":141,"343718":127,"34375":141,"34376245":124,"3439":42,"344":[39,81,141],"3440":138,"3443":72,"3444":141,"3445000":[116,190],"344698":63,"344828":121,"345":[33,79,81,132,138],"3455":141,"3459":37,"346":[81,141],"3460":138,"3468":141,"3469":42,"346952":127,"347":[81,138],"3471":141,"347113":127,"3474":42,"3475":42,"34765625":141,"3477":141,"348":[81,138,141],"3480":[138,154],"3482":42,"3483":141,"349":[79,81,138,141],"349388":39,"349603":69,"3497":141,"349751":29,"35":[14,31,36,39,50,63,71,79,81,85,98,124,132,140,141,159,161,167,169,179,184,206],"350":[81,125,132,141,183],"3500":[63,138,184],"35000":[116,184,206],"350000":[66,88],"3502":141,"3505":42,"350816":29,"3509":141,"351":[81,138],"3510":141,"35119":25,"3513":141,"3514":141,"3515625":141,"3516":164,"3519":[61,141],"352":[81,138],"3520":138,"352100":[63,79],"3522":141,"352222":169,"3525":42,"352877":127,"353":[81,141],"35303":69,"353293":127,"3537240779558":[65,67],"354":81,"3540":138,"35410":25,"3544":179,"354534":127,"3548":141,"355":[81,132,138,141],"3554":164,"35546875":141,"3555":141,"35554":79,"3557":141,"3558":141,"356":[79,81,138,141],"3560":138,"356047":69,"35656222554887711":[184,206],"357":[81,138],"3571":141,"357417":69,"35751418e":165,"357935":69,"358":[81,138,168,198],"3580":[61,138],"358500":[63,79],"359":[81,138,141],"359375":141,"3595":141,"3596":141,"35979533e":165,"35991534e":165,"35e3":[184,206],"35m":30,"36":[36,39,50,52,65,67,79,81,105,124,125,132,141,167,184,205,206],"360":[34,68,81,132,138],"3600":[138,154],"36000":116,"3605":141,"360555e":127,"360769":39,"3609":42,"360m":36,"361":[81,138,168,198],"3611":141,"36114314":175,"3612":141,"36155096":157,"361551":157,"36159148":167,"3617":72,"36178972e":165,"3618":141,"3619":141,"362":[81,138],"3620":138,"362000":154,"362006":127,"362069":121,"3623":141,"3625":141,"362625":127,"3627":[141,164],"362759e":61,"3628800":97,"363":[81,138],"3630":141,"363270":39,"36328125":141,"363327":126,"363636":178,"36398808":79,"364":81,"3640":138,"365":[69,81,132,138,141,145],"3650":141,"365174":126,"365349":39,"366":[81,125,138],"3660":138,"3664":141,"3668":140,"367":[81,125],"3670":141,"367103":127,"3671875":141,"3672":141,"3673":141,"368":[39,81,115,125,138,190],"3680":138,"3681":141,"368430":39,"36864":35,"369":[81,125,138,141],"36953161e":165,"3697":141,"36m":30,"37":[39,50,52,61,63,65,67,69,79,81,97,124,132,138,140,141,145,156,160,167,183,191,199],"370":[81,125,132],"3700":138,"370000":39,"370056":127,"3703":[72,141],"371":[81,125,141],"37109375":141,"37114243e":165,"3715":141,"371667":39,"371682":29,"371932":126,"372":[81,125],"3720":138,"372294e":61,"3723":141,"3725":39,"37265943e":165,"37284549e":165,"373":[42,81,125,138],"3730":141,"373333":39,"37350000":[116,190],"3737":141,"37381055e":165,"374":[79,81,125,138,167],"3740":138,"37446555e":165,"374603":121,"3748":141,"375":[81,125,132,138,141],"375147":205,"3752":141,"3756":141,"37570172":[63,79],"375833":39,"3759":141,"376":[81,125,138,141],"3760":[39,138],"376041":29,"3764":141,"376458":126,"3769":141,"377":[81,125,138,141],"377175":164,"3773":141,"3776":141,"378":[81,125,138],"3780":138,"3781":141,"3782":141,"378597":127,"3788":141,"37890625":141,"379":[63,79,81,125,141],"3791":[39,141],"379601e":39,"37m":30,"38":[9,39,50,52,53,61,66,69,79,81,105,106,121,124,132,141,145,156,161,167],"380":[42,59,70,79,81,125,132,138,141,171,172],"3800":[138,141],"38000":116,"380000":39,"3801":141,"3802":[127,141],"3803":127,"380350":39,"3804":127,"3805":[127,141],"3806":127,"38063748":121,"3807":127,"3808":127,"380813":69,"3809":127,"381":[59,81,125,138,141,171],"3810":127,"38163860e":165,"3817":141,"38176979e":165,"3819":141,"382":[70,81,138,141,172],"3820":138,"382142":127,"3822":[39,141],"382308":39,"3824":39,"382571":126,"382720":127,"3828125":141,"383":81,"3830":39,"3830571":39,"383290":69,"38332521":191,"383564":29,"3836":141,"3837":141,"3838":141,"3839":141,"384":[81,132,138,141,171],"3840":138,"384210":169,"3843":141,"384352":127,"384615":39,"384761":29,"385":[39,59,81,132,138,141,171],"3852":141,"385705":175,"385733e":39,"386":[59,81],"3860":138,"3861":141,"38616702e":165,"3862":39,"38671875":141,"387":[35,59,81,141],"387129":151,"387499":126,"3877":141,"3878":39,"388":[35,42,81],"3880":138,"38828582528":63,"3884":126,"3886":[79,126],"3887":126,"3888":126,"3889":[72,126,141],"389":[59,81,141,146],"3890":126,"3891":126,"389167":39,"3892":126,"3894":141,"3895":126,"3896":126,"3897":126,"38m":30,"39":[36,39,50,61,62,65,67,69,79,81,124,132,141,145,155,167,205],"390":[59,81,125,132],"3900":[126,138],"390001":126,"3901":126,"3902":126,"3903":[126,141],"3904":[39,141],"39051546e":165,"390566":154,"390625":141,"390775":127,"3909":36,"391":[81,141],"3915":164,"3916":[115,141,190],"392":[59,72,81,138,141],"3920":138,"3922":164,"392257":69,"3925":141,"3929":141,"393":[59,81],"39320":[63,79],"393580":61,"3937":141,"3939":141,"394":[81,138,141],"3940":138,"3942":141,"394229":29,"39453125":141,"3946":72,"395":[81,132,138],"3950":141,"3952":141,"3954":141,"395594":127,"395833":39,"396":[39,69,81],"3960":138,"3966":141,"3967":141,"39696":154,"397":[39,81],"3974":141,"3975":141,"3976":39,"39761905":156,"398":[81,138,141],"3980":[39,138],"39810246e":165,"3984375":141,"399":[81,138,141],"3991":79,"3994":171,"3995":171,"399753":127,"3998":39,"3a":[125,126,127,183],"3a10":126,"3a3":126,"3a4":126,"3a5":126,"3a6":126,"3c":183,"3d":[39,69,80,124,125,126,127,132,165,168,178,180,183,191,198],"3d0":125,"3d5":126,"3ddf":127,"3dfals":125,"3dindex":125,"3dlist":126,"3dpd":126,"3e":[126,127,183],"3f":[39,168,184,198,206],"3g":[71,85],"3int8":124,"3j":207,"3ltlqmqsncb9d0rthglvb3gjj3":61,"3m":[29,50],"3rd":[22,38,56,124,168],"3s":[37,39,61,63,132,167],"3ssnporch":56,"3x3":[32,33,139],"3x4":[184,206],"3yqlb":61,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,42,43,46,49,50,61,65,66,67,68,69,70,72,73,79,80,81,87,88,89,97,98,99,106,107,113,114,115,116,117,118,121,122,123,124,125,126,127,129,131,132,135,136,137,138,139,140,141,142,143,144,145,146,149,150,151,154,155,156,157,159,160,161,163,164,165,167,169,171,172,175,178,179,180,182,183,184,185,194,196,198,199,200,201,202,205],"40":[1,7,9,14,32,39,50,52,61,65,67,69,81,87,88,89,105,106,114,115,117,123,124,132,138,141,145,154,160,167,168,175,183,188,190,198,199,200,205],"400":[7,55,58,73,81,114,122,132,138,139,178,183],"4000":[14,36,56,60,131,138,167],"40000":[14,116],"400000":[66,88],"40000000":185,"4002912":152,"40067661":124,"4007":141,"400833":39,"400919":127,"400mg":[1,8],"401":[81,141],"4012":141,"4013":141,"4016":39,"4018":141,"401983":127,"402":[59,81],"4020":138,"40234375":141,"4029":141,"403":[81,138,191],"403000":154,"403011":29,"4031":72,"403674":126,"4038":141,"4038v2":140,"404":81,"4040":138,"4041":141,"404192":127,"404572":69,"4048":141,"40480256345":79,"405":[81,132],"4050":[114,190],"405278":81,"405309e":39,"4056":39,"406":[81,141],"4060":138,"40618608":167,"40625":141,"4066":141,"40660274e":165,"406605":126,"406667":39,"4067":141,"406m":42,"407":[81,138,141],"4071":141,"4077":141,"4077193":156,"407m":36,"408":[52,81,141,156,164],"4080":[138,141],"4081":39,"40815161e":165,"40827":164,"408376":63,"4084":141,"4087":141,"409":[34,73,79,81,141,172],"4093":141,"4096":[37,42,140],"4098":[184,206],"41":[29,39,50,52,63,69,79,81,97,124,132,141,145,156,167,169],"410":[63,79,81,132],"4100":138,"410014":60,"41015625":141,"411":[34,39,81,138],"411076":127,"41140729e":165,"4117":37,"4119":141,"411m":36,"412":[81,138],"4120":[138,141],"41212121":87,"412214e":39,"41242353":[63,79],"4127":[184,206],"413":[73,81,138,141],"41331878e":165,"413696":37,"4139":[184,206],"414":81,"4140":138,"414042":127,"4140625":141,"4141":69,"414121":127,"41420614":79,"4147":141,"41472":37,"41473":37,"4148":141,"4149":141,"415":[52,81,132,156,178,180],"415217":127,"4153":141,"415385":39,"416":81,"4160":138,"4162":141,"4165":60,"417":[35,63,79,81,141],"4179":141,"41796875":141,"418":81,"4180":138,"418056":169,"418243":127,"418384":127,"41863":25,"41867679e":165,"4189":141,"419":81,"4191616766467092":36,"4192":141,"419540":69,"419621e":61,"419676":127,"4197":36,"4198":36,"419805":127,"4199":[36,141],"41m":72,"42":[31,33,34,36,39,41,45,46,50,51,54,55,58,59,60,61,62,63,66,69,81,87,109,124,132,140,141,145,155,159,167,168,175,179,183,184,191,198,205,206],"420":[81,132,138,154],"4200":[36,138],"420000":39,"4201":36,"4202":36,"4203":36,"4204":[36,141],"4205":36,"4206":36,"4208":[115,190],"421":[39,81,138,141],"421456":29,"4215":39,"421797":29,"421875":141,"4218916":79,"4219":141,"422":81,"4220":138,"4221":164,"4222":141,"4223":54,"42237836":79,"422831":127,"4229":141,"423":[81,141],"4236":141,"42367235e":165,"423735e":69,"4238":141,"423967":191,"424":[81,138,141],"4240":138,"4243":141,"424866":39,"424965632":39,"425":[81,132,138],"425684e":39,"42577697e":165,"42578125":141,"426":[69,81],"4260":138,"4261":141,"426162":127,"4265":141,"427":[81,138,141],"4270":141,"427000":116,"427075":127,"427159":127,"427500":39,"428":81,"4280":138,"428793":191,"429":81,"429055":39,"4291":141,"4296875":141,"429800":127,"429m":36,"43":[39,42,50,52,60,61,66,69,79,81,97,124,132,141,145,167,175,183],"430":[59,71,81,85,132],"4300":[138,141],"43000":116,"430003":127,"4303":141,"431":[81,141],"43116792":[165,196],"431304":127,"431800e":61,"432":[81,141],"4320":138,"432320e":69,"432x288":69,"433":[79,81],"4334":141,"43359375":141,"433594":[66,88],"4336":141,"433792":127,"434":[81,141],"4340":138,"43420830e":165,"4345":141,"435":[63,79,81,132,138],"4350":141,"43539442771396":167,"4354":39,"435833":39,"436":81,"4360":138,"4362":[42,141],"436250":29,"436517":157,"437":[81,141],"4375":141,"437m":36,"438":[81,138,141],"4380":138,"4381":141,"439":[81,141,164],"44":[39,50,59,61,69,79,81,97,115,121,123,124,132,141,159,167,169,183,190,192,205],"440":[50,81,132,138,164],"4400":[138,141],"440000":39,"4405":141,"44085502":[63,79],"4409":72,"441":[71,81,85],"44140625":141,"441787":69,"4419":141,"442":[81,141,171,182],"4420":138,"4427":141,"44294":25,"443":81,"4432":39,"4434":141,"44359863":[165,196],"444":81,"4440":138,"44406":40,"444305":69,"44468627e":165,"4448":141,"4449":141,"445":[81,132],"4450":141,"4452":39,"4453125":141,"445368":66,"445375":39,"4455":39,"445716":157,"4459":[141,145],"446":[81,141],"4460":138,"446873":[65,67],"447":81,"4475":39,"44776251":175,"447m":36,"448":81,"4480":138,"448913":126,"449":[81,141,191],"449070":69,"44921875":141,"4494":141,"45":[14,31,34,39,43,50,51,52,54,60,81,106,114,116,121,124,132,138,141,143,145,146,154,155,156,167,169,179,183,187,190,191,204],"450":[52,81,132],"4500":[33,138],"450000":[39,116,190],"45053314":124,"451":[81,141],"451196":127,"451240":127,"451667":39,"451825":69,"452":[81,138,141],"4520":138,"4522":141,"452354":126,"452600":[63,79],"4527":141,"453":81,"453125":141,"453172e":61,"453472":69,"4535":141,"4539":141,"454":[81,138],"4540":138,"454093":127,"454335":39,"4544":141,"454545":178,"455":[41,81,132],"45520541e":165,"4554":141,"4555":141,"455649e":61,"4557":141,"455745":127,"455850496":39,"45585107":[63,79],"4559":39,"456":[33,81,97,184],"4560":138,"4562":141,"4567":141,"456968":127,"457":81,"45703125":141,"457822322845459":133,"458":[59,81],"4580":138,"4586":39,"4588":141,"459":81,"4590":141,"4591":141,"459229":126,"45998":25,"46":[39,50,60,61,81,89,116,124,132,141,167,168,191,198],"460":[81,132,138,141],"4600":138,"4601":141,"4602":141,"460483":157,"4608":141,"4609375":141,"460945":126,"461":81,"4612":141,"461758453195614":191,"46175845319564":191,"461822":[65,67],"462":81,"4620":[39,138],"463":[81,141],"463333":39,"46344":69,"4635":141,"463724e":61,"463843":127,"463988":81,"464":[49,81,141],"4640":[42,138],"4641":138,"464186":154,"4646":39,"4647":141,"464776":[65,67],"46484375":141,"465":[81,132,141],"4650":39,"465318":61,"4654":141,"46542":25,"4655":141,"466":[81,141],"4660":138,"46679593":167,"467":81,"4670":141,"467164":127,"467450":63,"4676":141,"467674":39,"468":81,"4680":138,"468052":164,"4681":141,"468333":39,"46854":25,"4686":141,"468720":61,"46875":141,"469":81,"4691":[39,141],"469107":127,"4699":141,"46m":30,"47":[39,50,52,61,79,81,97,114,121,124,138,141,145,156,167,190,191],"470":[81,132,141],"470137":175,"470205":127,"4704":141,"4705882352941178":14,"471":[69,81,141],"47178350e":165,"4719616":42,"472":[81,141],"47265625":141,"473":[79,81],"4730":141,"473497":63,"474":[81,141],"4741":141,"4743":[138,169],"474610":127,"474986":29,"475":[81,132,141],"4750":141,"4755":164,"4758":141,"4759332":167,"476":81,"4760":141,"4762":141,"476333":29,"4764":141,"4765625":141,"476572":157,"476631":157,"47663104":157,"4767":[141,164],"477":81,"4771":141,"477328":[65,67],"477492":29,"4775":141,"477621e":69,"477840":126,"47797475":121,"478":[81,141],"4781":141,"4782":141,"4785":141,"4786":141,"479":[81,141],"4790":141,"47943":164,"4795":141,"47992614761185":[65,67],"48":[32,37,39,42,50,51,54,61,79,81,88,97,109,124,141,154,167,168,191,198],"480":[60,81,132,138,141,191],"48017":25,"4802":141,"4803":141,"48046875":141,"4808":39,"4809":50,"481":[69,81,141],"4815":141,"4816":50,"481696e":127,"4818":141,"482":[81,141],"482487e":127,"4825":50,"482578":157,"4829":39,"483":[81,141],"4833":141,"483713":69,"483724":81,"484":81,"4840":50,"484167":39,"4842":[50,141],"484375":141,"4844":50,"48444509506225586":50,"4846":50,"485":[79,81,132,141],"4852":50,"4854":[50,141,164],"48542":141,"4855":50,"486":81,"4860":50,"486111":63,"48624811":79,"486477":127,"4868":50,"486801":168,"4869":[50,141],"487":81,"487439":60,"4875":50,"4876":141,"487864":154,"488":[71,81,85],"4880":50,"48817":141,"48828125":141,"4883":42,"48832919e":165,"4886":50,"48868864572551":66,"489":81,"489000":39,"48909":141,"4893":50,"4896":[50,141],"48965":141,"4897":50,"4898":50,"489919":60,"48c5":32,"49":[39,50,52,58,69,79,81,124,132,139,141,157,167,179,184,206],"490":[71,81,85,132,141],"4900":63,"490000":39,"49017":141,"4903":50,"4904":50,"490473":29,"49050":141,"4906":141,"490659":29,"4907":141,"490934":127,"491":[81,141],"4914":141,"4918":141,"492":[36,81],"4921875":141,"492209":[65,67],"492230":127,"4927":50,"4928":141,"493":81,"493067":126,"493182":164,"4932":[39,50],"493213":127,"4933":50,"4937":50,"4938":141,"49381":141,"494":[81,141],"4941":50,"49416":141,"49439034":167,"4947":141,"49473684":156,"495":[52,81,132],"4951":50,"49529":141,"496":[39,63,79,81,141],"4960":50,"49609375":141,"4964":50,"4966":50,"49663":141,"4966309980255":[65,67],"497":[81,141],"497057":127,"49715067e":165,"49719":141,"4974":141,"4975":141,"497500":39,"49752":141,"49763":141,"4978":50,"49791":141,"498":[81,141],"49834":141,"49847":141,"4985":141,"499":[63,79,81],"499111":29,"49914":141,"4994":50,"4996":39,"49960":141,"49960699":[114,190],"49971":141,"49972":141,"49974":141,"49981":141,"49984":141,"4999":[58,63,79],"49998084":37,"49c57b793eef1b8e55f297e5e019fdbf":59,"4a16":[123,192],"4ac":184,"4c":98,"4d":[124,132],"4f":[31,33,38,53,61,66,164],"4g":[71,85],"4j":[185,207],"4m":[29,50],"4px":169,"4s":[63,167],"4th":[48,124],"4x3":124,"4x4":[32,140],"5":[0,1,3,4,6,7,8,14,22,29,30,31,33,34,35,36,37,38,39,40,41,42,43,46,47,48,49,50,54,57,61,65,66,67,68,69,70,72,73,76,79,80,81,82,83,86,87,89,97,98,106,111,113,114,115,116,117,118,121,122,124,125,126,127,129,132,134,135,138,140,141,142,143,144,145,146,150,151,154,155,156,157,159,160,161,163,164,165,166,167,171,172,175,178,179,180,182,183,184,185,191,194,196,198,200,201,202,204,205],"50":[7,14,29,31,32,36,37,38,39,44,46,47,48,49,50,51,52,54,55,57,60,61,62,63,64,65,66,67,68,69,79,81,88,97,107,109,113,116,124,127,132,133,134,137,139,141,145,150,151,154,156,157,159,160,161,164,165,166,167,168,169,172,173,183,191,194,196,198,199],"500":[1,9,31,42,49,51,52,54,55,56,68,81,105,106,132,133,134,138,139,141,159,167,183],"5000":[33,36,49,56,58,87,131,139,167,175,184],"50000":[18,33,65,67,139],"500000":[39,60,66,69,88,125,154,164],"5000000":73,"500001":[63,79],"5000x1000":36,"500135":39,"5002":50,"500216":191,"5006":50,"5007":141,"5008":141,"501":[81,141],"501017e":61,"50114":141,"5012":48,"5013":141,"5014":[50,141],"50159":141,"50177":141,"502":[81,141],"502056":126,"5023":50,"5024":141,"502500":39,"5027":141,"50273":141,"5029":50,"503":81,"5030":50,"50325":141,"5033":141,"503302":127,"50334":141,"503355363845":[65,67],"5033565506537":[65,67],"503371776776":[65,67],"50343":141,"5035673795078":[65,67],"503607":69,"50363":141,"50390625":141,"504":81,"50409232e":165,"5042":50,"50467":141,"5047":141,"504911":69,"505":[69,81,141],"5050":97,"50510":141,"5053":50,"50531":141,"505415":69,"5055":141,"50562":141,"50596":141,"506":[81,141],"5060":50,"5060835072245":[65,67],"5062":50,"50635":79,"50636":141,"50641":141,"5065":50,"50654":141,"506579":29,"5067":141,"5068":50,"507":[69,81,138,164],"5070":50,"5072":141,"50728":141,"50732":141,"50735":141,"50751":141,"507547":154,"50755":141,"507725":127,"50774":141,"507812":61,"5078125":141,"50783":141,"50784":141,"50797":141,"5079999999999996":82,"508":[81,141],"508128e":39,"5083":[50,141],"50832":141,"5085":141,"50859":141,"5086":50,"5089":50,"509":[81,141],"509004":126,"5091":141,"50910":141,"509290":127,"50949":141,"5095":39,"50966":141,"50982":141,"50_startup":200,"50k":[53,117,188],"51":[39,50,61,69,79,81,124,132,141,145,167,169],"510":[81,141],"5101":141,"51010":141,"51011":141,"51027":141,"51043":141,"51047":141,"5105":141,"5106":50,"510636288":39,"51070":141,"51078":141,"51095":141,"511":81,"51101":141,"51112":141,"51133":141,"51135":141,"511588":127,"51167":141,"51171":141,"51171875":141,"51173":141,"511738":154,"5118":50,"51187":141,"511893":39,"512":[29,32,33,37,38,42,60,73,81,139,140,194],"51206":141,"5121":50,"51211":141,"51212":141,"51241":141,"51249":141,"51249098777771":50,"51259":141,"5126":141,"51262":141,"51267":141,"5127":50,"5128785371780396":50,"51288":141,"51289":141,"512n":32,"513":[59,63,81],"51304":141,"51311":141,"51312":141,"5132":141,"51323":141,"513333":39,"51356":141,"51358":141,"513588e":61,"51367":141,"51368":141,"51375":141,"51378":141,"51379":141,"51381":69,"51382":141,"51385":141,"51390":141,"51391":141,"51392":141,"51393":141,"51393182e":165,"51398":141,"514":[59,81],"514000":154,"51402":141,"51406":141,"51407":141,"51408":141,"51409":141,"5142":141,"51425":141,"5143":50,"51443":141,"51445":141,"51449":141,"51461":141,"5147":50,"51470":141,"51471":141,"5149":50,"51492":141,"51498":141,"515":81,"515088":61,"51517":141,"51524":141,"51525":141,"51527":141,"5153":50,"51533":141,"51537":141,"5154":141,"51540":141,"51542":141,"51543":141,"5155":141,"51551":141,"51556":141,"51559":141,"5156":141,"515625":141,"51563":141,"51564":141,"51565":141,"51587":141,"51589":141,"5159":50,"51594":141,"516":[59,81,141],"51600":141,"51606":141,"51610":141,"51612":141,"51615":141,"51622":141,"51633":141,"51634":141,"51635":141,"51636":141,"5164":39,"5165":141,"51654":141,"51655":141,"51665":141,"51673":141,"51676":141,"51687":141,"51688":141,"5169":50,"51691":141,"51694":141,"517":[59,79,81,141],"517015":127,"51714":141,"51716":141,"5172":141,"51721":141,"51729":141,"5173":169,"51734":141,"51742":141,"51743":141,"517460":121,"51747":141,"517490":127,"51750":141,"51770":141,"51772":141,"51775":141,"51777":141,"517839":127,"51784":141,"51786":141,"518":[81,141],"5180":141,"51818":141,"51832":141,"51839":141,"5184":50,"51843":141,"51847":141,"5185":[50,164],"51851":141,"51853":141,"518601":154,"51863":141,"51865":141,"51867":141,"5187":39,"51870":141,"51874":141,"51879":141,"51886":141,"5189":141,"51891":141,"51895":141,"51896":141,"51896994":121,"519":[81,138,141],"51907":141,"5191":141,"51912":141,"51915":141,"51918":141,"5192":141,"519278":39,"51935":141,"51941":141,"51944":141,"51946":141,"51948":141,"51950":141,"51953125":141,"51955":141,"51956":141,"51969":141,"5197":50,"51974":141,"51981":141,"51985":141,"51m":140,"52":[36,39,50,55,60,63,65,67,69,79,81,116,121,124,132,138,141,167],"520":[81,138],"52000":116,"52004":141,"52005":141,"520141":127,"52018":141,"5202":141,"5203":50,"52037":141,"52049":141,"52056":141,"52063":141,"52065":141,"52066":141,"52080":141,"52081":141,"52084":141,"52096":141,"52097":141,"521":[59,81,141],"52109":141,"52110":141,"52112":141,"52113":141,"52115":141,"52116":141,"52117":141,"52120":141,"52138":141,"5214":50,"52141":141,"52142":141,"52150":141,"52153":141,"52155":141,"52156":141,"52169":141,"52171":141,"52176":141,"5218":141,"52182":141,"52183":141,"522":[59,81,141],"52205":141,"52207":141,"52213":141,"52214":141,"52216":141,"52218":141,"52223":141,"52225":141,"52226":141,"52242":141,"52244":141,"52245":141,"52246":141,"52247":[69,141],"522500":39,"52266":141,"52272":141,"52278":141,"52282":141,"52285":141,"52286":141,"5229":50,"52297":141,"52298":141,"52299":141,"523":81,"52300":141,"52303":141,"52308":141,"52310":141,"52314":141,"52317":141,"52326":141,"52329":141,"52331":141,"52333":141,"52335":141,"52339":141,"5234375":141,"52346":141,"52347":141,"52350":141,"52351":141,"52353":141,"52356":141,"52358":141,"52359":141,"52361":141,"52364":141,"52373":141,"52383":141,"52385":141,"52389":141,"52392":141,"523965":[65,67],"524":[81,141],"52408":141,"52412":141,"52421":141,"52422":141,"524245":126,"52426":141,"52427":141,"52428":141,"52429":141,"52432":141,"52436":141,"52440":141,"52442":141,"52444":141,"52447":141,"52448":141,"5245":50,"52452":141,"52457":141,"52460":141,"524601e":39,"52463":141,"52473":141,"52474":141,"52478":141,"52489":141,"5249":141,"52490":141,"52492":141,"52495":141,"52496":141,"525":81,"5250":[50,141],"52505":141,"52516":141,"52518":141,"52524":141,"52528":141,"52534":141,"52537":141,"525385":39,"52539":141,"52541":141,"52553":141,"52558":141,"52561":141,"52564":141,"52567":141,"52569":141,"52572":141,"52574":141,"52577":141,"52579":141,"52581":141,"52587":141,"52590":141,"52594":141,"52596":141,"526":[81,141,146],"52600":141,"52602":141,"52603":141,"52606":141,"52610":141,"52618":141,"52628":141,"526409":126,"52641":141,"52647":141,"52650":141,"52653":141,"52658":141,"5266":141,"52661":141,"52666":141,"526667":39,"52672":141,"52678":141,"52679":141,"52680":141,"52683":141,"52686":141,"52689":141,"52690":141,"52691":141,"52692":141,"52693":141,"52694":141,"527":[81,138],"52700":141,"52706":141,"52707":141,"52709":141,"52717":141,"52720":141,"527283":126,"52733":141,"52734375":141,"52737":141,"52738":141,"52742":141,"52743":141,"52744":141,"52748":141,"52749":141,"52750":141,"52752":141,"527625":39,"52763":141,"52764":141,"52765":141,"52769":141,"52770":141,"52771":141,"52774":141,"52776":141,"52777":141,"52778":141,"5278":141,"52783":141,"52791":141,"52795":141,"52796":141,"528":[59,81],"52800":141,"52805":141,"5281":141,"52812":141,"52819":141,"52826":141,"52828":141,"52833":141,"52836":141,"52837":141,"52839":141,"52840":141,"52841":141,"52845":141,"52847":141,"52850":141,"52853":141,"52855":141,"52861":141,"52862":141,"52863":141,"52877":141,"52886":141,"52888":141,"52889119e":165,"5289":50,"52890":141,"52893":141,"529":[81,154],"52904":141,"52906":141,"52907":141,"5291":141,"52912":141,"52914":141,"52916":141,"5292":141,"52920":141,"52922":141,"529231":39,"5293":141,"52934":141,"52935":141,"52938":141,"52939":141,"52941":141,"52945":141,"52946":141,"5295":[50,141],"52951":141,"52952":141,"52954":141,"52957":141,"52959196":121,"5296":141,"52962":141,"52963":141,"52965":141,"52967":141,"52969":141,"52970":141,"52972":141,"52975":141,"52976":141,"5298":50,"52980":141,"52981":141,"52987":141,"52988":141,"5299":141,"52996":141,"52998":141,"52999":141,"53":[39,50,59,61,81,114,116,121,124,141,155,161,167,169,190],"530":[79,81,154],"53000":[116,190],"530000":39,"53004":141,"53006":141,"53013":141,"53014":141,"53018":141,"53025":141,"53027":141,"53028":141,"53036":141,"53037":141,"53038":141,"530416":69,"53048":141,"53052":141,"53058695":167,"53060":141,"53061":141,"53062":141,"53066":141,"53067604e":165,"53068":141,"53071":141,"53076":141,"53077":141,"53079":141,"53081":141,"53087":141,"53090":141,"53094":141,"530m":[117,188],"530wv2bvx2w7ycwfpl":61,"531":81,"53101":141,"53103":141,"53105":141,"53106":141,"53108":141,"53109":141,"53110":141,"53123":141,"53125":141,"53129":141,"53130":141,"53134":141,"531452":29,"53146":141,"53151":141,"53154":141,"53157":141,"53159":141,"53161":141,"53165":141,"53166":141,"5317":50,"531702":127,"53179":141,"53183":141,"53184":141,"53189":141,"53190":141,"53192":141,"53198":141,"532":81,"53200":141,"53202":141,"53210":141,"53214":141,"53217":141,"532197":29,"53222":141,"53224":141,"53227":141,"53237":141,"53238":141,"5324":69,"53243":141,"53245":141,"53246":141,"53248":141,"53249":141,"5325":[50,141],"53255":141,"53256":141,"53259":141,"53262":141,"53265":141,"5327":50,"53276":141,"53279":141,"5328":141,"53281":141,"53282":141,"53287":141,"53292":141,"53295":141,"53296":141,"53299":141,"533":[81,145,167],"5330":141,"53301":141,"53306":141,"53315":141,"53321":141,"53324":141,"5333":141,"53333":141,"5333333333333334":14,"53334":141,"53341":141,"53346":141,"53349":141,"5335":50,"53351":141,"53352":141,"53353":141,"53354":141,"53356":141,"53358":141,"5335853695869446":50,"5336":141,"53360":141,"53363":141,"53364":141,"53366":141,"53370":141,"53380":141,"53382":141,"533846":39,"53387":141,"53388":141,"53389":141,"53391":141,"53392":141,"53393":141,"53396":141,"534":[81,141],"5340":39,"534000":154,"53401":141,"53403":141,"53409":141,"5341":[63,79],"53411":141,"53413":141,"5342":141,"53421":141,"53426":141,"53427":141,"53428":141,"53430":141,"53437":141,"53438":141,"53441":141,"5345":39,"53450":141,"534510":29,"534563":[65,67],"53458":141,"53462":141,"53465":141,"53468":141,"53470":141,"53474":141,"53475":141,"53478":141,"53482":141,"53488":141,"5349":141,"53491":141,"53494":141,"53495":141,"535":[81,141],"5350":141,"53508":141,"53513":141,"53515625":141,"53517":141,"53518":141,"53520":141,"53521":141,"53525":59,"53529":141,"53531":141,"53536":141,"53538":141,"53551":141,"53553":141,"53556":141,"53557":141,"5356":50,"53560":141,"53563":141,"53566":141,"53570":141,"53571":141,"53574":141,"53580":141,"53584":141,"53587":141,"53588":141,"53589":141,"53593":141,"53594":141,"53595":141,"53597":141,"536":[81,141],"53606":141,"53607":141,"53616":141,"53617":141,"53627":141,"53628":141,"53630":141,"53635":141,"53642":141,"53645":141,"53652":141,"53655":141,"53657":141,"53661":141,"53662":141,"53662042e":165,"53663":141,"53666312":79,"53668":141,"53672":141,"53673":141,"53674":141,"53675":141,"53686":141,"53687":141,"536879":[65,67],"536896":69,"53691":141,"536923":39,"53693":141,"53696":141,"53697":141,"53699":141,"537":[63,79,81],"5370":141,"53706":141,"53709":141,"53712":141,"53715":141,"53719":141,"53726":141,"53728":141,"53729":141,"53732":141,"53738":141,"53747":141,"53748":141,"53749":141,"53751":141,"53757":141,"53760":141,"53762":141,"53765":141,"53768":141,"53769":141,"53771":141,"53772":141,"53774":141,"53778":141,"5378":141,"53782":141,"53783":141,"53786":141,"53788":141,"53789":141,"53797":141,"53798":141,"538":81,"53807":141,"53811":141,"53812":141,"53814":141,"53818":141,"53819":141,"53826":141,"53829":141,"538356":29,"53837":141,"53842":141,"53849":141,"538491832234":[65,67],"538494":69,"53850":141,"53855":141,"53857":141,"53859":141,"53860":141,"53863":141,"53865":141,"53866":141,"53870":141,"53871":141,"53872":141,"53879":141,"53883":141,"53891":141,"53892":141,"53894":141,"53897":141,"53899":141,"539":81,"5390625":141,"53907":141,"53908":141,"53911":141,"53912":141,"53913":141,"53919":141,"53923":141,"53924":141,"53927":141,"53938":141,"53944":141,"53946":141,"53947":141,"5395":[50,141],"53952":141,"539527":151,"539534":39,"53955":141,"53957":141,"53965":141,"53967":141,"53971":141,"53974":141,"53975":141,"53976":141,"53979":141,"53986":141,"53987":141,"53989":141,"53991":141,"53993":141,"53995":141,"54":[39,50,59,61,69,79,81,98,142,167,191,205],"540":[81,138,141],"5400":[59,63],"54001":141,"54004":141,"54005":141,"54010":141,"54014":141,"54027":141,"54031":141,"54034":141,"54035":141,"54040":141,"54044":141,"5405":141,"54054":141,"54055":141,"54062":141,"54063":141,"54068":141,"54085":141,"54086":141,"54090":141,"54094":141,"54095":141,"54097":141,"541":81,"5410":164,"541112":39,"54112":141,"54119":141,"54121":141,"54128":141,"54134":141,"54135":141,"54136":141,"5414":50,"54142":141,"54146":141,"54152":141,"54155":141,"54156":141,"54158":141,"5416":141,"54165":141,"54167":141,"54171":141,"54174":141,"54177":141,"54179":141,"54184":141,"54186":141,"54188":141,"54189":141,"5419":141,"54196":141,"542":[81,106,141],"54202":141,"54205":141,"5421":72,"54210":141,"54211":141,"54213":141,"54216":141,"54219":141,"54221":141,"54222":141,"54226":141,"54228":141,"54229":141,"54230":141,"54232":141,"54236":141,"54243":141,"54244":141,"54253":141,"54261":141,"54266":141,"54273":141,"54276":141,"54279":141,"54282":141,"54283":141,"54284":141,"54288":141,"5429":[39,50],"54293":141,"54294":141,"54296875":141,"543":81,"54300":141,"54302":141,"54303":141,"54306":141,"54311":141,"54317":141,"54318":141,"543182":164,"54321":184,"54330":141,"54331":141,"54332":141,"54334":141,"54335":141,"54336":141,"54337":141,"54338":141,"54346":141,"54349":141,"54351":141,"54359":141,"54364":141,"54366":141,"54370":141,"54376":141,"54381":141,"54383":141,"54388":141,"54389":141,"54390":141,"54394":141,"54395":141,"54396":141,"54397":141,"54398":141,"544":81,"54406":141,"54407":141,"544181":69,"54421":141,"54422":141,"54423":141,"54427":141,"54434":141,"54439":141,"54440":141,"54442":141,"54444":141,"54445":141,"54447":141,"54454":141,"54456":141,"54457":141,"5446":39,"54461":141,"54464":141,"54470":141,"54473":141,"54474":141,"54479":141,"54485":141,"544908":69,"54491":141,"54494":141,"54495":141,"54497":141,"54498":141,"545":[81,141],"54501":141,"54504":141,"54505":141,"54507":141,"54509":141,"5451":[50,141],"54516":141,"54519":141,"54524":141,"54526":141,"54527":141,"54528":141,"54530":141,"54534":141,"54536":141,"54538":141,"54540":141,"54545":141,"54554":141,"54556":141,"54559":141,"5456":141,"54564":141,"54567":141,"54570":141,"54571":141,"54573":141,"54575":141,"54582":141,"54583":141,"545833":39,"54584":141,"545850":39,"54587":141,"54589":141,"5459":50,"54593":141,"54595":141,"54596":141,"54598":141,"546":[81,138,141],"546021":[65,67],"54603":141,"54605":141,"54614":141,"54621":141,"54627315":124,"5463":141,"54630":141,"54634":141,"54636":141,"54640":141,"54641":141,"54647":141,"5465":141,"54655":141,"54658":141,"54659":141,"54662":141,"54663":141,"54667":141,"5466747351275563":155,"54670":141,"54671":141,"54672":141,"54676":141,"54679":141,"5468":141,"54683":141,"546875":141,"54693":141,"54697":141,"54699":141,"547":[50,81],"5470":50,"54705":141,"54710":141,"54715":141,"54717":141,"54718":141,"54725":141,"54731":141,"54737":141,"54738":141,"54739":141,"54741244":79,"54750":141,"54752":141,"54765":141,"54769":141,"54770":141,"54782":141,"54784":141,"54789":141,"54798":141,"548":[81,141],"54803":141,"54808":141,"54808703":167,"54810":141,"5482":39,"54824":141,"54832":141,"54833":141,"54834":141,"54836":141,"54841":141,"54842":141,"54843":141,"54846":141,"54848":141,"54854":141,"54865":141,"54866":141,"54869":141,"54877":141,"54878":141,"54880":141,"54888":141,"54898":141,"549":81,"54901961":79,"54905":141,"54914":141,"5492":[50,141],"54921":141,"54925":141,"54927":141,"54930":141,"54931":141,"54941":141,"54944":141,"54945":141,"54947":141,"54949":141,"54958":141,"5496":50,"54961":141,"54966":141,"54969":141,"54970":141,"54971":141,"54972":141,"54974":141,"54976":141,"54979":141,"54980":141,"54984":141,"54988":141,"54996":141,"54997":141,"54998":141,"55":[14,39,50,52,61,66,81,97,116,121,132,140,141,145,164,165,167,183,191,196,200],"550":[81,141],"55000":[116,190],"55010":141,"55012":141,"55017":141,"55024":141,"55029":141,"55030":141,"55031":141,"55034":141,"55035":141,"55040":141,"55053":141,"55054":141,"55056":141,"55057":141,"55060":141,"550610e":61,"55062":141,"55066":141,"55071":141,"55072":141,"55074":141,"55077":141,"55078":141,"55078125":141,"55081":141,"55083":141,"55086":141,"55087":141,"550px":126,"551":81,"5510":50,"55100":141,"55103":141,"5510652":124,"55107":141,"5511":50,"55110":141,"55116":141,"55120":141,"55124":141,"55126":141,"55127":141,"55135":141,"5514":141,"55142":141,"55149":141,"55158":141,"5516":141,"55161":141,"55164":141,"55168":141,"55179":141,"5518":141,"55181":141,"55183":141,"55186":141,"55187":141,"55191":141,"552":[81,141],"55200":141,"55204":141,"552041":69,"55209":141,"55212":141,"55220":141,"55225":141,"55231":141,"55234":141,"55236":141,"5524":69,"55241":141,"55246":141,"55250":141,"55253":141,"55255":141,"55259":141,"5526":[50,141],"55263":79,"55264":141,"55265":141,"55268":141,"55276":141,"55281":141,"55284":141,"55284461e":165,"55287":141,"55288":141,"5529":50,"55290":141,"553":[50,81],"55309":141,"5531":141,"55310":141,"55329":141,"55330":141,"55348":141,"5535":50,"55350":141,"55355":141,"55359":141,"55360":35,"55364":141,"55366":141,"5537":141,"55373":141,"5538":50,"55381":141,"55386":141,"554":[81,141],"5540":50,"5540224313735962":50,"55408":141,"55415":141,"55426":141,"55428":141,"55433":141,"554453":69,"5545":50,"55454":141,"5546875":141,"55477":141,"55481":141,"55487":141,"55491":141,"555":[81,141],"55501":141,"5552":[50,141],"55523":141,"55526":141,"55527":141,"5553":50,"55531":141,"555312":39,"55535":141,"5554":141,"55546":141,"55547":141,"555480":175,"55549":141,"5555":50,"55550":141,"55552":141,"55553":141,"55556":141,"55557":141,"55559":141,"55563":141,"55567":141,"5557":141,"55570":141,"555784":29,"555814":69,"55588338e":165,"5559":141,"55592":141,"55598":141,"556":81,"55606":141,"55609":141,"55613":141,"55620":141,"55621":141,"55623":141,"5563":50,"55635":141,"55636":141,"55637":141,"55645993":124,"55649":141,"5565":39,"55653":141,"55656":141,"5566":50,"55662":141,"55666":141,"55668":141,"55670":141,"5568":79,"5569":50,"55697":141,"557":[81,141],"5570":50,"55701":141,"55703":141,"55706":141,"55713":141,"55716":141,"55718082144":79,"55727":141,"55731":141,"55737":141,"5574":145,"55748":141,"55758":141,"55761":141,"5577":50,"55782":141,"55788":141,"55791711":79,"55799":141,"558":[63,79,81],"55801":141,"5581":50,"55812":141,"5583":50,"55830":141,"55844":141,"55846":141,"558500":154,"55851":141,"55859375":141,"55866":141,"55867":141,"5587":50,"55870":141,"55881":141,"5588235294117647":14,"55884":141,"55888":141,"55892":141,"55895":141,"55896":141,"559":[39,81,141],"55902":141,"55910":141,"55912":141,"5595":50,"55954":141,"55957":141,"5596":50,"559656":126,"55976":141,"55978":141,"55981":141,"55988":141,"55989":141,"55994":141,"55995":141,"56":[50,69,81,97,114,121,132,157,167,180,190],"560":[81,121,125,138],"5600":184,"560000":39,"5600000000000002":82,"56012":141,"56015":141,"5602":50,"5603":79,"56035":141,"56039":141,"56045":141,"56048":141,"56057":141,"56058":141,"5606":50,"56060":141,"56062":141,"56065":141,"56069":141,"5609":50,"56090":141,"56093":141,"56098":141,"561":[81,125,141],"5610":141,"56102":141,"56112253e":165,"56113":141,"56115":141,"56116":141,"56119":141,"56120":141,"56125":141,"56127":141,"56135":141,"56137":141,"56139":141,"5614":50,"561442":127,"56148":141,"56152":141,"56159":141,"5616":50,"56163":141,"56171":141,"5618":50,"5619":50,"56190":141,"561961":69,"562":81,"562000":116,"56212":141,"56217":141,"5622":[50,141],"56220":141,"56226":141,"56231":141,"56242":141,"56244":141,"56245":141,"56247":141,"5625":141,"562500":61,"56255":141,"56261":141,"56262":141,"56267":141,"56276":141,"5628":141,"563":[81,125],"5630":50,"56303":141,"56306":141,"56308":141,"5631":141,"5633":50,"56335":141,"56342":141,"56352":141,"5636":50,"56366747e":165,"5637":141,"56376":141,"5638":141,"56381":141,"56390":141,"56394":141,"56396":141,"564":[39,81,141,154],"5640":141,"56424":141,"56427":141,"5643":[50,63,79,141],"56431":141,"56435":141,"56439":79,"56447":141,"56454":141,"56466":141,"5647":39,"56471":141,"56474":141,"56498283":142,"56499":141,"565":[39,63,79,81],"56504":141,"56508":141,"56509":141,"56510":141,"56521":141,"56526":141,"56538":141,"5654":141,"56544":141,"56546":141,"56550":141,"56558":141,"5657":141,"56574":141,"56576":141,"5658":39,"56596":141,"565m":36,"566":[81,141],"5660":50,"566126":29,"56624":141,"5663":50,"56636":141,"56637":141,"56639":141,"56640625":141,"56646":141,"56647":141,"56649":141,"56660":141,"5666666666666667":14,"566760":127,"5669":141,"56699":141,"567":[81,141],"5670":50,"567088":29,"56721":141,"56729":141,"567306":61,"56735":141,"56740":141,"567453":63,"5675":50,"567530":63,"56755":141,"5676":50,"5677":50,"56770":141,"56771":141,"56777":141,"5679":50,"56790":141,"567906":151,"56791":141,"568":[79,81,141],"56805":141,"56806":141,"56812":141,"5682":50,"56823":141,"5683":50,"56837":141,"5685":50,"56852":141,"56858":141,"5686":39,"56886":141,"5689":141,"56895":141,"569":[81,141],"56917101":124,"56918":141,"56919":141,"56922":141,"56928":141,"56949":141,"5695":141,"5697":50,"56982":141,"5699":141,"56993":141,"56997":141,"57":[39,50,61,79,81,114,132,139,140,167,190],"570":[81,204],"5700":[50,141],"570000":39,"57006":141,"5701":50,"57013":141,"5702":50,"57026":141,"5703":141,"5703125":141,"57033":141,"5704":141,"57046":141,"570540":69,"57060":141,"5706829878497204":82,"57070":141,"57084":141,"57085":141,"57094815e":165,"57098":141,"571":[81,141],"57110":141,"57115":141,"57123":141,"5713":50,"571340":69,"57143":141,"57147":141,"57153":141,"57157":141,"57161":141,"57163":141,"571657":69,"57166":141,"57172":141,"57178":141,"5719":50,"57196":141,"572":81,"5720":141,"57214":141,"57228":141,"5724":50,"57242":141,"5725":50,"57250":141,"5726":50,"57260":141,"57268":141,"57276":141,"57290":141,"57294":141,"57297":141,"57299":141,"573":[39,69,81,141],"57307":141,"5732":50,"57323":141,"57328":141,"573333":39,"57336":141,"5734":50,"5736":[39,50],"57389":141,"57391":141,"57395":141,"574":[37,81],"57401":141,"5741":50,"57415":141,"57417":141,"57418":141,"57421875":141,"5744":50,"5745":127,"57467":141,"57489":141,"57498":141,"575":[81,141],"57508":141,"5753":[127,141],"57538":141,"57542":141,"57547":141,"57553":141,"57554":141,"57556":141,"57560":141,"57570":141,"5758":50,"5759":50,"57593":141,"57595":141,"57597":141,"5759974718093872":50,"576":[81,141],"5761":[50,141],"57637":141,"576487":61,"5765":50,"57652":141,"57654":141,"576586":127,"5766":[50,141],"57669":141,"5767":141,"57679":141,"57685":141,"57690":141,"57693":141,"577":81,"57704":141,"57744":141,"5777":141,"5778111219406128":50,"57789":141,"57799":141,"578":[81,141],"5781":50,"578125":141,"578142e":61,"57819":141,"57840":141,"57841":141,"57852":141,"578621":29,"57887324e":165,"5789473684210527":14,"579":[37,81],"57909":141,"5791":50,"57916":141,"5792":50,"57929":141,"57942":141,"5796":164,"57961":141,"5797":50,"57987":141,"57993":141,"58":[36,50,61,69,73,81,121,132,141,167,173],"580":[81,138],"580000":39,"58000000000":185,"58001":141,"58019":141,"5802":141,"58023":141,"580280e":127,"5803":141,"58042":141,"5805":141,"5807":141,"58078":141,"58087908e":165,"580px":126,"581":[81,141],"581082":169,"5811":50,"58110":141,"5811388300841898":24,"58113883008418981":24,"581139":69,"58137":141,"58138":69,"58149":141,"5816":50,"58164":141,"58172":141,"58177":141,"58195":141,"58197":141,"582":[81,141,146],"5820":141,"582000":154,"58203125":141,"5821":50,"58260":141,"582703":127,"582778":169,"58293":69,"58294":141,"583":81,"58310":141,"58313172":79,"58330":141,"583333":39,"5834":141,"5835":50,"5836994051933289":50,"58379":141,"58380":141,"584":[29,30,81],"584095":29,"5842":72,"5843960046768188":50,"5844":50,"5845":50,"58454":141,"58468":141,"5849056603773586":14,"58494":141,"584943":39,"585":[81,141],"5850":36,"5851":72,"58516":141,"58520":141,"58525":141,"58526":141,"585335":69,"58565":141,"5857":141,"58581":141,"58585":141,"5859375":141,"586":[81,168],"586026":127,"5861":141,"58611":141,"58615":141,"5865":37,"58651":141,"587":[81,138],"58702":141,"58716":141,"58730":141,"587452":127,"587461e":61,"5875":79,"58761":141,"58768":141,"58799":141,"588":[81,141],"58800":141,"58810":141,"5882":141,"58823529":79,"58829":141,"58832":141,"588333":39,"58840":141,"588462":39,"58860":141,"5889":79,"589":[81,191],"589167":39,"589271":39,"58930337":167,"58936":141,"58941":141,"58946":141,"58952":141,"58957":141,"5896":[63,79],"5897":50,"58978":141,"58984375":141,"58986":141,"58994":141,"59":[39,50,52,73,79,81,116,132,141,167,184,190,191,205,206],"590":[81,141,191],"590000":39,"590080":37,"59024648e":165,"59026":141,"59028151e":165,"5906":50,"5908":141,"59080":141,"5909":50,"590909":39,"590px":178,"591":81,"59114":141,"59115":141,"5913425779189757":81,"59139":141,"59146":141,"59171":141,"5918":72,"5919":[50,141],"592":81,"59210":141,"59229":141,"5923":72,"592335":127,"59248":141,"59250":141,"592509":69,"59257":141,"59282124e":165,"593":[81,141],"5932":50,"59334":141,"59337":141,"59345":141,"593450":29,"593661":61,"59375":141,"5938":58,"594":81,"59421":141,"59421842":142,"59432":141,"594403":127,"594450":29,"5947":141,"5949":72,"59493":141,"595":[81,141],"5950":141,"59512":141,"5952":141,"59524":141,"59529":141,"5954":141,"59564":141,"59566":141,"5957":141,"5958":72,"596":[81,138,141],"5961":138,"596167":127,"59617":141,"59670":141,"5969":50,"597":[81,141],"5972":50,"59756":141,"59759":159,"59765625":141,"5977":50,"598":[81,167,171],"5981":141,"598150":191,"59823":141,"5983":50,"59831252":79,"59842":141,"59853725816836":167,"5985372581684":167,"59853725816868":167,"59854":141,"5988":37,"59880":141,"59886":141,"5989":50,"599":81,"59908764e":165,"599167":39,"5994521975517273":50,"59970":141,"5998":50,"59981":141,"5999":50,"5b":[117,125,126,127,183,188],"5b0":126,"5b1":[125,126,127],"5b2":125,"5b3":[125,126],"5b380":125,"5b390":125,"5b4":126,"5b5":125,"5b7":125,"5bdf":125,"5bdfd":126,"5blambda":126,"5bmask":126,"5bnone":125,"5btrue":126,"5cm":48,"5d":[125,126,127,183],"5e":37,"5f":[32,168,198],"5g":[71,85],"5k":52,"5m":[39,50],"5more":59,"5s":[63,167],"5th":[45,124,186],"5vbcssa6":61,"5x5":32,"6":[0,7,8,14,18,22,24,29,30,31,32,33,34,35,36,37,39,40,41,42,43,46,49,50,53,61,64,65,66,67,68,69,72,79,81,82,87,88,89,97,98,101,106,109,116,117,121,122,124,125,126,127,129,132,133,137,138,139,140,141,145,146,148,151,154,155,156,157,159,161,163,164,165,167,168,171,173,178,179,180,182,183,184,185,191,192,196,198,200,205,206],"60":[7,9,14,32,33,36,39,41,43,44,50,52,58,59,65,67,68,81,82,105,106,109,114,116,122,124,132,138,159,165,167,169,190,191,196,204,205],"600":[3,73,81,116,138,139,167],"6000":[33,36,50,60,87,89,131,139],"60000":[29,30,72,139],"600000":[66,69,88],"60028":141,"6003":50,"600345":29,"60045":141,"600833":39,"600866":61,"600px":[125,126,132,159,178],"601":81,"60116":141,"60122":141,"60144":141,"6015625":141,"60192":141,"602":[69,81],"60239":141,"6026":141,"603":[81,141],"60306":141,"60320":141,"60321":141,"603333":39,"60349":141,"6036":39,"60373":79,"603m":36,"604":[79,81,141],"604039":63,"60409":141,"6041":141,"6043":50,"604382":81,"604384":[65,67],"60465":141,"6047":39,"605":81,"60522":141,"60523":141,"6053":141,"60546875":141,"60550":141,"605962":63,"606":[63,79,81,191],"60611176e":165,"60623":141,"6063":37,"6065":141,"606544":126,"60654404362744":126,"60665929e":165,"606722816":39,"607":[69,81,141],"607008e":39,"6072":39,"60733":141,"60744":141,"6075":141,"6076":141,"60764":141,"6078":141,"608":81,"6080":36,"6081":141,"6082":[63,79],"6084":138,"60850":141,"60851":141,"60863":141,"60869":164,"6088":141,"609":[81,141],"6090":[36,50],"60904":141,"6092":141,"60925":141,"609375":141,"6095":141,"6096":141,"60970":141,"6098":141,"6099":141,"60m":36,"61":[39,50,52,61,66,81,132,141,154,156,167,173,191,205],"610":[81,141],"610000":39,"6105":37,"6107":141,"611":[81,154],"611105":39,"61122":141,"611222":69,"6117":141,"61184":141,"612":81,"61204":141,"61205":141,"61216":141,"612245":127,"6123":[50,141],"612364":168,"61238":141,"6124":141,"6125":141,"613":[81,141],"6131":72,"61328125":141,"61351":141,"614":81,"614392":29,"614872":126,"6149":39,"614939":127,"615":[34,81,141],"6150":36,"61501":141,"61510254e":165,"61516":141,"6153":33,"615385":39,"61547":141,"615698":126,"61571016e":165,"616":[79,81,180],"61622":141,"61630":141,"616314e":39,"616364":29,"61663286":79,"616766":60,"617":[34,81],"6170212765957446":14,"6171875":141,"6173":39,"617423":[65,67],"6175":141,"6176":50,"61760":141,"617678":127,"617802e":61,"618":[81,141],"6180":50,"6182":69,"619":81,"619047619047619":14,"61905":141,"619219":127,"61965":141,"62":[39,50,52,61,65,67,69,73,81,116,121,138,141,156,167,173,190,200,205],"620":[81,138],"6200":36,"6201":141,"62037":141,"6204":141,"62046":141,"6205":141,"62055":141,"62066":141,"6208":141,"62084":141,"620px":126,"621":[39,81,141],"6210":36,"62107":141,"62109375":141,"62110":141,"621116e":61,"6212":141,"6213":141,"62134":141,"6215":50,"622":[81,141],"6220":141,"6225":36,"62271805":79,"623":81,"6230":141,"6231532":39,"62329":141,"6233":50,"62374":141,"624":[37,81,141],"62405":141,"62419":141,"624289":39,"6244":37,"6245":[36,141],"6246":141,"624615":39,"62477454e":165,"625":[81,141],"6250":36,"625000":39,"6254":141,"62571878891146":167,"626":81,"6263":141,"6265":72,"6266":39,"626690":126,"627":[81,141],"62712":141,"627175":39,"6274":141,"62740":141,"627590e":61,"628":81,"6283":39,"6285":39,"62860":141,"628845e":127,"62890625":141,"62891":141,"629":81,"6291":39,"6294":141,"62993":141,"63":[39,42,50,61,66,81,116,132,141,156,157,160,161,167,168,173,179,198],"630":[37,81,141],"6302":79,"630217":63,"63022":141,"6303904952264":60,"6304":37,"6305506":134,"6308":141,"630px":[125,126],"631":[81,125],"63119":141,"6312":141,"6313":141,"6315":39,"63169":141,"63197":141,"632":[81,125],"63204":141,"632456":69,"63256":141,"63262":141,"6327":39,"6328125":141,"633":[81,125],"633158":191,"633167":175,"63339":141,"6334":39,"633534":175,"6339302659034729":50,"634":[81,125],"634019":69,"634057":127,"6342":39,"63424116e":165,"6345":[36,39,141],"634504":127,"6348":141,"63481":141,"635":[39,69,81,125,141],"6350":39,"6351":50,"6352":39,"6353":164,"6354":39,"6356":39,"635833":39,"6359":39,"636":[81,125,141],"63603":141,"63608":141,"6361":39,"6362":39,"636238":61,"636364":178,"636368640":39,"63637":141,"63655":141,"6366":141,"63671875":141,"6368":39,"6369":[39,141],"637":81,"6370":39,"6371":[39,141],"6374":141,"637461":69,"63752":141,"63759":141,"637635":69,"6378":39,"63792":141,"638":[37,81,141],"6380":39,"63803":141,"6381":39,"63818037":121,"63851":141,"6387":141,"6388":141,"639":[61,81,138,141],"63940":141,"639426e":39,"63960":141,"63m":36,"64":[7,29,30,31,32,33,34,35,36,37,38,39,40,41,42,50,52,60,61,81,97,114,116,122,124,127,131,132,135,139,140,141,146,159,164,167,168,173,184,190,198,206],"640":[81,138,154],"6400":36,"64000":60,"6404":164,"64061041e":165,"640625":141,"64073":141,"64082434":142,"640x480":88,"641":81,"641035e":61,"641330":127,"642":[81,141],"64206":141,"64243":141,"642485873":175,"642977":61,"643":[81,141],"64300":141,"6431":[63,79],"6435":141,"644":[81,141],"644082":151,"6442":141,"64438":141,"6445":[63,79,141],"64453125":141,"64497":141,"645":81,"6450":36,"6451":141,"6452":50,"64536975e":165,"645452":126,"64568":141,"645767":168,"645833":[39,169],"646":[37,81],"646415":127,"646705152":39,"64671":141,"64681":141,"647":81,"6471":141,"6473":141,"6479":141,"648":[63,79,81],"6482":141,"6484375":141,"64851":141,"64859406":[63,79],"648923":127,"649":[81,138],"649167":39,"6492":141,"6497":50,"649855":39,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[34,140],"65":[35,36,50,61,68,81,116,121,132,142,145,165,167,171,173,183,184,190,196,201,202,204,206],"650":81,"6500":141,"650px":126,"651":81,"651004":69,"651954":126,"652":[81,114,190],"6522":141,"652301":127,"65234375":141,"65239850433215":167,"6527":141,"653":[81,167],"6530":[36,141],"6532":141,"65334":141,"65347":141,"6535":141,"6536995137169997":81,"6538":141,"65380":141,"654":81,"654167":39,"65443":141,"654644":69,"654676":121,"65480":141,"65492":141,"655":81,"6550":36,"65526":141,"65543325e":165,"655517642572828":167,"65555":141,"655787":69,"6559":126,"656":[37,81],"6560":[50,126],"6561":126,"65611":141,"65625":141,"656881":29,"656881421233":163,"657":[81,168,198],"6571":50,"65732685":79,"657370":127,"65746":141,"657761":175,"65793":141,"658":81,"6581":141,"65872906e":165,"659":81,"6590":36,"6591692566871643":50,"6594504178995297":121,"65949":141,"6596":37,"65962":141,"6598":126,"6599":126,"66":[30,39,50,52,81,141,154,167,171,173,184,194,206],"660":[81,138,141],"6600":[36,126],"66015625":141,"6602":126,"66022":141,"66036":141,"6604":126,"6605":126,"6607019357604422":81,"660833":39,"66098":141,"660px":125,"661":81,"661054":39,"661068":63,"661092":127,"6611":79,"6615":36,"662":[81,141],"6621":39,"662185e":39,"662224":[65,67],"662295":168,"6625":39,"6627":39,"663":[81,141],"6631":39,"6632":39,"66327":141,"6635":39,"66369":141,"6638":39,"664":81,"6640":39,"6640625":141,"6641":39,"6642":37,"664593":126,"6646":141,"6647":39,"664918e":61,"66496461":79,"665":[39,81],"665000":116,"6651":[39,141],"665144":69,"6652":39,"6653":37,"6655":39,"6657":[39,141],"666":[81,154],"6660":36,"6662":39,"66623":141,"6663":39,"6664776":134,"6665":141,"6666":39,"666666":69,"6666666666666666":52,"6666666666666667":[184,206],"666666666666667":184,"666667":39,"6669":39,"667":[37,81,141],"6670":141,"6671":141,"667258":127,"6674":39,"6675":141,"6678":141,"66796875":141,"668":81,"6680":36,"6683":39,"66840":141,"66845":141,"66867670e":165,"669":[81,141],"669000":154,"6691":141,"6695":36,"66977":141,"67":[30,50,51,54,60,81,88,126,132,141,167,171,173],"670":[81,141],"6700":36,"67000":141,"67021":141,"670623":127,"670px":125,"671":81,"671131":29,"67131":141,"6714":50,"6715":126,"6717":126,"6718":126,"671875":141,"6719":126,"672":81,"6720":36,"6721":126,"6722":[126,141],"672225":61,"67225":141,"672280":127,"6725":36,"672864":63,"673":[79,81,138,141],"673333":164,"67374":141,"673913":127,"674":81,"6740":36,"6742":72,"674257":127,"67434":141,"674452224":39,"675":81,"6750":141,"6754":141,"67550":141,"67578125":141,"6758":141,"675833":39,"676":[37,42,81],"676245":69,"6765":141,"676667":39,"6767":141,"6768":141,"677":81,"6770":141,"6771":141,"677258":61,"6775":141,"6779":141,"678":81,"6780":36,"67819323e":165,"6782":138,"6783":141,"6784":141,"67843":141,"67858615":[63,79],"6786":141,"6788":141,"679":81,"67912":141,"67953":141,"6796875":141,"6797":141,"67m":36,"68":[14,50,61,63,68,69,81,126,132,141,167,171,173,191],"680":[81,138],"6800":36,"68006699e":165,"680097":126,"680470":175,"68076":141,"6808":126,"680851":127,"6809":126,"680px":126,"681":81,"6810":[36,126],"681000":154,"6811":[50,126],"6812":126,"68123130e":165,"68141":141,"681744":[65,67],"6818":141,"682":81,"68201":141,"6821":141,"682361":127,"68269":141,"682f2f":69,"683":[81,151,154],"68359375":141,"683782":61,"684":[63,81],"6842":[39,141],"68438":79,"6844":39,"684457140":39,"6845":141,"68478":63,"68491":79,"685":81,"6850":36,"6851":39,"6852":39,"68522":69,"685279":127,"685323":172,"68537":79,"685433":79,"68543687e":165,"6855":39,"68557":141,"6858":39,"686":81,"68617":141,"686275":127,"6866":141,"6868":39,"68684":63,"6869":39,"687":81,"6870":[36,39],"6872":39,"6875":141,"6878":39,"6879":72,"68796":141,"688":[81,141],"688382":127,"688422":126,"68849":141,"6885":39,"6886":39,"6887":39,"6888":39,"6889":39,"689":[81,141],"6890":39,"6891":39,"6893":[39,141],"6894":39,"68969":141,"6897":141,"6899":39,"68m":36,"69":[39,50,69,81,121,132,141,145,167,171,173,179],"690":[81,204],"6900":[36,39],"6902":39,"690293":69,"6903":39,"69037":141,"6904":39,"6905":39,"690558":127,"6907":39,"6908":39,"6909":[39,138],"690px":126,"691":[81,138,141],"6911":39,"69136631":167,"6914":39,"69140625":141,"69147803e":165,"6915":39,"6917":39,"691763":127,"69178":141,"692":[81,125,141],"6920":39,"6921":39,"69211":141,"692181":69,"6922":39,"692308":39,"6924":39,"6925":39,"692500":39,"69261":141,"69276335e":165,"6928":39,"6929":39,"693":[81,125],"6930":39,"69301037e":165,"69318":141,"6933":39,"693381":127,"6934":[39,141],"6935":39,"6936":39,"6937":39,"69378":141,"69399":141,"694":[81,125,141],"69400":141,"6941":39,"69411":141,"6942":39,"69456":141,"6946":[39,141],"6947":39,"6948":39,"695":[37,42,81,125,138,141],"6950":36,"69500":141,"695000":154,"6952":39,"6953125":141,"695662":191,"6958":39,"695833":39,"696":81,"6960":39,"6961":39,"6962":141,"6963":39,"6965":39,"6968":39,"6969":141,"697":[79,81,125,141],"6970":[36,39],"69710373e":165,"6974":50,"69764":141,"6976998904709748":179,"69779":141,"698":81,"6982":141,"6983":141,"69831":141,"6984":39,"6985":39,"6986":39,"699":[81,125,138,154],"6990":39,"69921875":141,"699648":61,"6999":141,"6a":98,"6j":[184,206],"6m":[39,72],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":61,"6qepylt4v68sypax9kxk":61,"6qwd":61,"6s":[63,132,167],"7":[3,7,14,22,24,29,30,31,32,34,35,36,37,38,39,42,43,46,50,51,56,57,61,64,65,66,67,68,69,71,72,73,79,81,82,83,85,88,89,97,98,106,115,117,121,122,124,125,126,127,129,138,139,140,141,142,144,145,146,151,154,155,156,157,159,160,161,164,165,167,168,171,173,178,183,184,185,191,192,198,200,205,206,207],"70":[14,30,32,39,43,50,52,61,65,67,68,81,116,121,132,141,156,167,173,178,183,190,200],"700":[58,81,138],"7000":[1,79,124,131],"700592":175,"7009":141,"700px":[126,139,140,159,165,168,171,175,176],"701":[81,141],"7010":[36,141],"7011":141,"7012":141,"7018823027610779":50,"702":[81,154],"7020":39,"702500":39,"70282":141,"703":[81,125],"7030":141,"703125":141,"7032":141,"7033":138,"7034":141,"7036":141,"703982":[65,67],"704":[81,125,141],"70429":141,"7048":39,"705":[81,125,141],"7054":141,"70549":40,"7057":164,"70584":141,"706":81,"70633":141,"706839":69,"70698":141,"707":81,"70703125":141,"707064":127,"7073":141,"707557":127,"70760":141,"708":[81,141],"70884":141,"709":[81,141],"7090482711792":50,"70935":141,"7099":[63,79],"71":[30,50,52,58,79,81,97,116,121,132,141,156,161,167,173,178,190,200],"710":[81,141,154],"7100":36,"710000":63,"7104":141,"71069972e":165,"7107":141,"71086031":167,"7109375":141,"711":81,"7110":[36,141],"7111":141,"71130":141,"71140282e":165,"7117":141,"712":[81,114,190],"7125":141,"7127411872482181":82,"713":81,"7131":141,"71327164e":165,"7133":39,"713683":29,"714":81,"714350":69,"714500":154,"71469":141,"71484375":141,"715":[81,141],"7153":141,"71537":141,"716":81,"71613":69,"71625":141,"716440":81,"716541":127,"7169":138,"717":81,"7171":39,"71714":79,"71733307":[63,79],"718":81,"71817":141,"718230":69,"7184":141,"7185":141,"71875":141,"7189":141,"719":81,"7190":164,"719457":121,"71977":141,"7198":164,"71995":141,"72":[36,39,50,81,97,116,121,167,173,178,190],"720":[81,138],"7200":169,"720000":[116,127],"720109":127,"7203":[50,141],"72035":141,"72038896e":165,"7209":[39,141],"72093598500494":[65,67],"721":[81,141],"72101958323096":[65,67],"72108":141,"72115":141,"72164454424515":[65,67],"722":[81,141],"722071":151,"7222":39,"7225":141,"72265625":141,"7227":138,"722717":39,"723":[81,141],"723684":121,"724":[81,138],"724046":29,"7245":39,"724590719956222":60,"7247":141,"724924":[65,67],"725":[81,141],"7255":138,"72568":141,"72581411":167,"726":[81,125],"72645393e":165,"726562":61,"7265625":141,"72663483920857":[65,67],"726845ca9638":119,"727":[81,125,141],"727361":127,"7276":[39,138],"727750":151,"72788":79,"728":[81,138],"7280":39,"7281":[39,138],"728960":127,"729":[81,125,141],"7291":138,"7293":141,"72973067e":165,"72991":141,"73":[39,50,52,81,116,121,132,154,156,167,172,173,178,205],"730":[81,125,168,198],"7302":141,"73041":141,"73046875":141,"7305":141,"730523":126,"730px":[126,127],"731":[81,125,141],"7311":[39,141],"7312":141,"731474":127,"73167":141,"73183":141,"732":[81,167],"7327":141,"7329":141,"733":[81,125],"733707e":61,"73372":141,"734":[81,125],"7340":141,"734147e":61,"7343":141,"734375":141,"7345":36,"734924":[65,67],"734970":127,"73498":164,"735":[81,125,141],"735000":39,"7351":141,"7352":138,"7354":39,"735448":168,"735822":61,"736":[81,125],"7363":141,"73640977e":165,"73645":141,"736567":168,"736769":39,"737":[81,125],"7373":138,"73779":141,"73781752e":165,"738":[81,125,138,141],"7380":164,"73828125":141,"7383":138,"73834386":121,"73856":[37,42],"7386":141,"73886":141,"739":[81,125,141],"7390":141,"73914":141,"739191":168,"7394":50,"7395":138,"7396":39,"73m":36,"74":[29,39,50,52,61,69,81,121,141,167,172,173,178,191],"740":[81,138],"740251e":39,"74038093e":165,"740959":69,"741":[79,81,138],"741066":[65,67],"7414":138,"7415":36,"741619":154,"74170":141,"742":[81,141,164],"7421875":141,"7422":[39,141],"7424":39,"742725":63,"74273":79,"7428":141,"742940":29,"742972":168,"743":81,"74306":141,"74310":141,"74340771":79,"74354":141,"74360":141,"74382":141,"744":[81,125,138,141],"744051e":61,"7442":138,"744669":61,"744769":39,"745":[81,125],"745034":39,"745567":126,"74569":141,"7457":39,"7457109493044":66,"7458":141,"746":[81,141],"74609375":141,"747":81,"74703":141,"7475":138,"74763":141,"748":[81,141],"7483":141,"7486":141,"74871473e":165,"7488":141,"749":81,"749062":69,"749080":81,"7493":141,"7495":141,"7499":141,"75":[7,32,33,39,50,52,56,58,59,60,61,63,66,68,69,79,81,88,121,132,134,141,146,154,156,157,159,160,164,167,172,173,179,184,191,199,200,201,202,206],"750":[52,60,81,141],"7500":63,"750000":[39,61,66,164],"750178363923474":66,"750px":125,"751":81,"75151515":87,"75181":141,"752":81,"752082":69,"75226":141,"752357":127,"7529":138,"753":81,"753199":29,"753636":127,"75390625":141,"754":81,"75404635e":165,"75449424e":165,"75453":141,"754680":29,"7547":138,"7549":141,"755":[79,81,141],"75501568":42,"75555":141,"75572":141,"7558":141,"756":81,"7561":164,"7563":141,"756461":168,"7567":141,"757":81,"757191":127,"75727":141,"757329":126,"757500":39,"7578":138,"7578125":141,"758":[81,141],"758359":69,"75837":141,"7584":138,"75860":141,"758667":[66,88],"75880184e":165,"7589":138,"759":[81,141],"7590":141,"759003":175,"7592":141,"75929":141,"7596":141,"7598":141,"7599":141,"75th":[56,167],"76":[39,50,59,69,81,114,121,132,141,167,172,173,190,199],"760":[81,138],"76006":141,"76014705e":165,"7603":141,"760479":60,"760623":154,"76074":141,"761":[81,141],"761000":154,"761212":126,"76150":141,"76171875":141,"76193":141,"762":[81,126],"76219":141,"7622":141,"762382":127,"763":[81,126],"763161":[66,88],"7634":138,"76349":141,"7639":138,"764":[81,126,141],"764029e":39,"764416":127,"764420":[66,88],"7645":141,"7646":138,"7647":141,"764796592":175,"7648102045059204":50,"765":[81,126],"76536":141,"765625":141,"766":81,"7660":36,"76605":141,"7666666666666667":66,"7667":141,"7668":141,"766995e":39,"767":[81,126],"76700042e":165,"76701":141,"7673":141,"76731980371954":[65,67],"7675":141,"76750129e":165,"7678":[184,206],"768":[60,81,126],"7682":141,"7684":164,"7688":141,"769":[81,126,141],"7690":39,"7691":39,"76921":141,"769231":39,"76953125":141,"76968":141,"7699":39,"77":[39,50,61,81,116,167,173,178,205],"770":[81,141],"77016":141,"77019":141,"7704":141,"7705":36,"7706":39,"77064":141,"7707":138,"770px":125,"771":[81,125],"77100":79,"7712":[39,138],"7715":39,"7719":39,"772":[81,138,141],"7721":[138,141],"7722":39,"7723":39,"772308":39,"7724":39,"77259":141,"7727":39,"7728":[36,141],"772823":60,"773":[81,125],"7730":[39,141],"77332":141,"7734375":141,"773634":126,"773820":29,"7738266430037695":50,"773897":29,"774":81,"774000":116,"77419":141,"774272":164,"774478":126,"77455":141,"7746":39,"7749":141,"775":[81,125],"7750":39,"77506":141,"7752":141,"77531":141,"7754":39,"77584":141,"7759":39,"776":[81,125],"7762":141,"776223":175,"7763":39,"777":[81,125],"777147":127,"77734375":141,"7777":39,"777777":43,"7779":138,"778":[81,125,141],"7780":141,"7784":[138,141],"77847":141,"7785":141,"7786":[138,141],"7787":138,"7788":141,"779":[81,141],"7795":138,"77m":140,"78":[39,50,52,61,81,141,156,167,172,173],"780":[81,125,138],"7800":39,"78008":141,"780421":69,"7805":141,"7807":141,"780945":126,"781":[81,138],"78100":79,"7812":141,"78125":141,"7814":145,"7815":145,"782":81,"7829":141,"782925":39,"783":[81,168],"78319":141,"7832":138,"783333":169,"783423":29,"784":[29,30,32,43,49,72,81,87,89,131,138,141,194,204],"78431373":79,"7844":[141,164],"784500":154,"78466":141,"784899":126,"785":[63,79,81,141],"7851":141,"78515625":141,"7851741":134,"7852":141,"7856":138,"78573":141,"7858":141,"785px":125,"786":[81,138],"7860":141,"786347":127,"7866":141,"7866666666666667":66,"7867":138,"7868":141,"7868852459016393":143,"787":[79,81],"7870":141,"7871":141,"787490":29,"78775":141,"788":81,"78855":141,"7888":141,"789":81,"7890625":141,"78911":141,"7898":138,"79":[39,50,54,61,79,81,114,116,141,167,173,179,190,191],"790":[81,141],"7900":63,"7903":138,"7906":141,"7908":141,"7909":141,"791":[81,141],"7910":37,"7912":141,"791419":127,"7919":138,"792":[81,204],"792168":29,"7925":79,"79260":141,"79290307":167,"79296875":141,"793":[81,168],"7934":141,"793560":39,"7936":141,"793917":69,"794":81,"794003":168,"794464":127,"794615":39,"7949":141,"7949491493525":[65,67],"795":[81,138,198],"7951":164,"7952":141,"7953":138,"7954":[138,141],"795514":69,"7958":141,"7959":141,"796":81,"7963":141,"79641063":167,"7965":138,"7968":141,"796875":141,"796958":29,"797":[81,167],"79704":141,"7971":[138,141],"798":[81,141],"7980":[141,154],"7984":141,"7986":138,"799":[81,171],"7990":141,"7991":141,"799154":39,"79948":141,"7995":39,"799895":69,"79m":[36,39],"79uxx":61,"7b":[125,126,127],"7d":[125,126,127,184,206],"7e100":184,"7m":39,"7poa":61,"7s":[42,63,167],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":61,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,42,43,45,46,49,50,51,52,53,55,56,60,61,62,63,65,66,67,68,69,72,73,79,80,81,82,88,89,97,98,106,114,117,121,122,124,125,126,127,129,133,135,138,140,141,145,146,154,155,156,157,159,161,164,165,166,167,168,169,173,178,179,183,184,190,191,192,198,200,205,206,207],"80":[14,31,32,33,50,52,54,61,65,67,68,79,81,97,132,138,139,141,145,150,167,169,172,173,174,179],"800":[3,58,81,138,156,167,183],"8000":[60,131],"800000":[66,88],"8001":50,"800232":29,"800246e":127,"80037642":167,"8005":141,"8006672226855713":172,"80078125":141,"800px":[125,132,155,167,178],"801":[81,126],"80117999":167,"8012":141,"8013":141,"8014":141,"8015":141,"8016":141,"80180":141,"8019":[138,141],"802":[81,126],"8020":141,"802422":29,"802500":39,"8027":141,"80290755":167,"803":[81,126],"80304767e":165,"8032":138,"8033":141,"80330":169,"8034810001":191,"80351":141,"80354":141,"803611":169,"80389616":167,"8039":141,"804":[81,126],"8042":138,"804221":39,"8045":141,"8046":141,"8046875":141,"80468775":79,"8049":141,"805":[81,126,198],"8057":138,"80577065":79,"8058":141,"8059":141,"806":[81,126],"8061":141,"8064":138,"8066":[138,141],"807":[81,126],"8072":138,"8072059636181399":81,"80730058":167,"8079":138,"808":[81,126,167],"808326e":39,"80859375":141,"8088":138,"809":[81,126,141],"8091":141,"8092":138,"80936101e":165,"8094":138,"80949747e":165,"81":[39,50,59,61,68,81,97,114,121,124,132,141,145,167,173,179,184,190,206,207],"810":81,"8100":141,"810032":127,"8101":[79,138],"8106":[138,141],"81093633":167,"81098":141,"810px":125,"811":[81,126,141],"811000":154,"8115":[138,141],"8116":138,"811667":39,"8117":[138,141],"8118":141,"81180":141,"812":[81,126,141],"8121":141,"8125":[138,141],"812500":39,"813":[81,138],"8132":141,"8133":141,"8133333333333334":66,"8134":[138,141],"8135":141,"8137":141,"814":81,"8140703517587939":179,"8141":141,"8143":141,"814380":126,"8145":141,"8147":141,"81485948e":165,"815":[81,141],"8154":141,"815414":69,"8155":141,"815773":127,"816":[81,138,164],"81640625":141,"81655049e":165,"8167":138,"816772":126,"816780e":127,"8169":141,"817":81,"8172":138,"818":[81,138,141],"818000":[116,190],"818286":29,"818557e":61,"819":[81,141],"8192":[42,141],"8195":141,"8196":141,"81m":36,"82":[39,50,81,98,132,141,145,167,172,173],"820":[81,138],"8200":141,"8201":138,"8203125":141,"8206":141,"820px":126,"821":[81,141],"8215":138,"8216":141,"8217":138,"8218":141,"8219":138,"822":[34,81],"8220":141,"822130":69,"8222":141,"822259":154,"8224":42,"822754":69,"823":[34,81,138,141],"8231":[63,79],"8235":141,"823889":169,"824":81,"824100":127,"8242":141,"82421875":141,"8243":141,"8248":141,"82485143":124,"825":81,"8250":141,"825000":39,"8252":138,"8256":141,"8259":141,"826":[81,141],"8260":141,"826347":60,"827":[39,81],"827204":29,"82774910e":165,"828":81,"828066":[66,88],"828125":141,"8283":141,"8285":138,"8286":141,"829":[81,141],"829067":69,"829500":154,"829756":[65,67],"82m":36,"83":[36,39,50,61,66,81,116,132,145,167,173,179,190],"830":[81,141],"830226":127,"8307692307692308":179,"830px":125,"831":81,"8313":50,"831691":168,"832":[81,115,190],"83203125":141,"8321":138,"833":[81,154],"833333":39,"8333333333333334":167,"8337":138,"833799":127,"834":[81,138],"8340":36,"8343":138,"8348":37,"835":81,"8359375":141,"836":[81,154],"836154":39,"836667":39,"8369":138,"837":81,"83709456e":165,"83715245e":165,"8373":138,"837500":39,"837735":127,"837984":157,"838":81,"83892432e":165,"839":81,"839000":116,"8392":138,"8394":138,"83984375":141,"83m":36,"84":[41,50,52,59,61,68,81,132,141,145,156,167,173,178],"840":[81,138,151],"84001001":151,"84001003":151,"84001005":151,"84001007":151,"84001009":151,"840299":126,"8407":36,"8409":138,"841":81,"84192557":167,"842":[81,141],"842069":29,"84236351":167,"8428":138,"843":81,"8431":138,"843333":[66,88],"84375":141,"8438":138,"844":81,"8448":138,"844805":127,"8449":138,"844925":157,"845":[79,81],"8450":68,"845000":39,"8456":138,"8459":36,"846":[81,138,141],"8462":[63,79],"846506":127,"846646e":61,"847":[81,138],"84700":79,"84739223":167,"8474":138,"84765625":141,"8476788564209704":81,"8476788564209705":81,"8476788564209707":81,"8476788564209713":81,"8476788564209723":81,"8476788564209757":81,"8476788564209847":81,"8476788564210102":81,"8476788564210811":81,"8476788564212772":81,"8476788564218222":81,"8476788564233363":81,"847678856427542":81,"8476788564392248":81,"8476788564716766":81,"847678856561821":81,"8476788568122215":81,"8476788575077785":81,"8476788594398821":81,"8476788648068361":81,"8476788797150412":81,"847678921126722":81,"8476790361591695":81,"8476793556937455":81,"8476802432897899":81,"8476827088343573":81,"8476895575692671":81,"8477085818329055":81,"8477614270096787":81,"8479082191673818":81,"84797838907741":[65,67],"848":81,"848298":127,"8483159751610024":81,"8488":138,"849":[81,141],"8492":138,"849422":126,"8494486306988371":81,"849811":127,"85":[18,39,42,50,58,59,63,79,81,114,115,121,132,141,145,151,167,173,190,191,200],"850":[81,141],"8504":164,"85097502e":165,"851":[81,141],"8510":154,"8515625":141,"8516":138,"851852e":39,"852":[81,141],"852040":168,"852500":39,"8525948960817107":81,"8529":36,"853":81,"853283":126,"8533":138,"853562":168,"8536":138,"854":[81,141],"8544":36,"854448":164,"85461521e":165,"855":81,"8554":36,"85546875":141,"8554913294797688":59,"856":[81,141],"856196":[65,67],"8562":138,"856667":39,"8568203376968316":52,"857":[69,81,168,198],"8572":36,"857513":168,"85796668":[63,79],"858":81,"858334":127,"8584":36,"858556":127,"85885311e":165,"859":81,"859375":141,"8595784":124,"86":[39,50,52,59,61,63,65,67,79,81,132,141,145,151,156,161,167,169,172,173],"860":[81,138,141],"860146":61,"861":81,"8613345221452491":81,"8614":138,"8617":138,"862":81,"8629":145,"863":[81,141],"86328125":141,"8636":138,"8637678":[184,206],"863846":39,"864":[81,141],"8641":37,"8644":36,"8649":36,"865":81,"8651":42,"866":[81,141],"8666666666666667":66,"866832":168,"867":81,"86713461558":63,"8671875":141,"8672":79,"867339":39,"867500":39,"8677":138,"868":[72,81],"868170":168,"868263":151,"8684":138,"8689":138,"868942":[65,67],"869":[81,141],"869231":39,"869547":[65,67],"869839":126,"869909":127,"87":[39,50,52,59,81,132,145,151,157,167,173,184,191],"870":[81,141],"87000":[201,202],"870000":39,"87005":79,"870053":63,"870455":164,"870734":127,"870815e":61,"871":[81,126],"87109375":141,"872":[81,126,141],"872618":69,"873":[36,37,81,126,141],"8734":36,"874":[81,126,141],"874230":29,"874252":29,"875":[81,126,141],"875750":154,"876":[81,126],"876604":127,"876614":168,"8767":138,"87699381e":165,"877":[81,126,141],"877372":127,"8776021588280649":82,"878":[81,126],"878377":69,"87890625":141,"879":[81,141],"879096":168,"8798":138,"88":[41,50,52,59,61,63,79,81,132,141,156,159,161,164,167,173,175],"880":[63,79,81,138],"8808":[138,164],"881":81,"881110":29,"88114261e":165,"882":81,"8823":36,"88235294":79,"882430":61,"882500":39,"88268548e":165,"8827":138,"8828125":141,"883":[81,141],"8830":36,"883056":169,"8833":138,"883562":175,"884":81,"8842":138,"8844":138,"8845":36,"884605":127,"885":[72,81,141],"8855":61,"8856112612106326":81,"8858":61,"885964":[65,67],"886":81,"886073":29,"8861":36,"88633901":167,"8864":164,"88671875":141,"887":81,"8878":138,"888":81,"8881":138,"8883":36,"888888":159,"888889":121,"88889":[168,198],"8889":138,"889":[81,141],"8892":138,"88936548":121,"8897":42,"88k":52,"89":[39,42,50,52,59,81,132,141,156,167,169,173,183],"890":[81,141],"890625":141,"891":81,"8914":138,"892":[72,81,141],"8920":42,"8923":138,"8924":36,"8926045016077171":59,"892986":127,"893":81,"893586":69,"8937":138,"894":[81,141,154],"89400":79,"8942":138,"89453125":141,"89488":154,"895":[81,141],"8954":37,"8959":138,"896":[37,81,138,141],"896291e":61,"896499":61,"896727335512334":66,"897":[30,81],"89720787e":165,"897425":175,"8977517768607695":66,"89779848e":165,"898":[81,141],"8982142857142857":29,"8984375":141,"8986":[72,140],"898983":127,"899":[81,151],"8997":138,"8998":138,"89m":36,"8aaad":61,"8b":98,"8b9":168,"8b9ae55861f22a2809e8b3a00ef815ad":168,"8c74a315":[123,192],"8j":[184,206],"8m":[50,72],"8s":[63,140,167],"8spbdlrp3lbr9j9uejdzgqul6":61,"8x8":[52,140],"9":[7,14,18,22,24,29,30,32,34,35,36,37,38,39,42,43,45,47,49,50,52,56,60,61,62,66,68,69,71,72,79,81,82,85,88,89,97,98,106,115,117,121,122,124,125,126,127,129,132,134,138,141,142,145,146,154,155,156,157,159,165,167,168,172,173,175,178,179,180,183,184,185,190,191,192,196,198,204,205,206,207],"90":[1,7,14,31,34,36,39,40,41,50,52,53,56,58,59,61,65,67,69,81,87,121,132,141,146,156,160,167,168,173,178,179,180,196,198,205],"900":[58,81,138,141,169],"9000":131,"900000":[66,88],"90022":79,"900225":63,"900476":69,"9006":138,"901":81,"901429":81,"9017":138,"901902":127,"902":81,"902000":116,"9022":138,"90234375":141,"903":81,"903846":121,"90385283885":79,"904":81,"904227":29,"9042344":167,"905":81,"905000":39,"9051":138,"905722":69,"906":[81,141],"90625":141,"907":[81,141],"907207":127,"908":[81,141],"908097":69,"908113e":61,"908426":61,"9086":36,"909":[81,141],"90909091":87,"909581":126,"90m":36,"91":[30,39,43,50,52,59,79,81,89,116,132,141,156,167,172,173,191],"910":[81,141],"910000":154,"91015625":141,"9102":50,"9104":36,"91076629230869":36,"911":[81,141],"91111":[168,198],"911208":127,"9118":138,"912":81,"912641e":39,"913":81,"913000":69,"913196":69,"9136":36,"9137407":79,"914":81,"9140625":141,"9142":36,"914407":29,"9145":138,"915":[81,141],"9151128092433933":127,"91511281":127,"915113":127,"9152":138,"915317":127,"916":[81,138],"916667":[39,169],"917":[81,141],"9171":61,"917554018630476":66,"917709":175,"91796875":141,"918":81,"9181":138,"918462":39,"918525":127,"9187":138,"9187045":[63,79],"9189":72,"919":[81,141],"91m":36,"92":[39,41,50,51,59,61,71,81,85,121,132,141,159,167,168,172,173,175,198],"920":[81,138,141],"920135":69,"92051":146,"920px":126,"921":[81,141],"921875":141,"922":[81,141],"922500":39,"922706":39,"923":[79,81],"92300":79,"923077":121,"923210":69,"9235":61,"924":81,"92483335e":165,"925":[81,141],"9250":161,"92503668":121,"925286":29,"925591":127,"925596661128895":159,"92578125":141,"926":81,"927":81,"927040e":69,"9272":138,"927331e":69,"92780":164,"928":81,"928898":127,"929":[81,141],"9296875":141,"929699":69,"92m":36,"93":[36,39,41,50,59,61,79,81,87,114,125,132,141,167,173,175,190],"930":[81,141],"9300":63,"930808":164,"930833":39,"931":81,"9312":61,"931818":164,"932":[81,141],"9324":36,"932403":127,"933":[81,141],"9335":72,"933541":29,"93359375":141,"934":81,"9342":50,"9345":72,"934649":164,"934832":164,"935":81,"935703":126,"93598814":[63,79],"936":81,"936285":175,"9368":72,"93695094e":165,"937":[35,81,141],"9375":141,"937600e":69,"9377":72,"938":[81,141],"9382":72,"9383":138,"9385":72,"9386":138,"9388":72,"938874":164,"939":[81,138,141],"93m":36,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":61,"94":[29,39,42,49,50,52,59,61,69,71,79,81,85,114,121,125,132,141,167,173,175,178,190],"940":[81,138],"940000":39,"940000e":39,"940217":164,"9403":36,"9404":138,"941":[81,141],"941111":169,"9413":138,"94140625":141,"941642":[65,67],"9417":138,"9419":72,"942":[81,129,192],"9423":138,"942500":39,"94250252e":165,"94257014456259":52,"943":[81,141],"943324":164,"9439":72,"944":81,"944167":39,"9446":138,"945":[81,141],"9453125":141,"9454":72,"945677":126,"946":[52,81,141],"946246656":39,"9463":72,"947":81,"947202":69,"9473":138,"9479":72,"948":81,"9481":72,"948352":69,"948799":164,"949":[72,81],"94921875":141,"949230e":39,"9494233119813256":52,"95":[18,32,35,36,38,39,41,42,49,50,52,59,61,71,72,79,81,85,89,97,116,121,125,132,156,165,167,168,169,175,196,198],"950":81,"9500":63,"9503":164,"9504":72,"950791":164,"950964":60,"951":[81,141],"951123":164,"9511372931045574":52,"952":[72,81,138],"952074":29,"952655":164,"953":[52,81],"953011":154,"9530466475033655":81,"953125":141,"9534":42,"9538":72,"954":[52,81,141],"954000":154,"9543":138,"955":81,"9550":68,"955556":121,"956":[81,141],"9562":138,"9564":72,"9564565636458":[65,67],"9568":164,"957":81,"95705480e":165,"957500":39,"9576":138,"9578":72,"958":[59,72,81,141],"958084":60,"958434":29,"958786":126,"958899":168,"959":[79,81],"9590":72,"9591":[36,140],"959280":61,"9595":132,"95k":52,"95m":36,"96":[32,35,49,50,52,56,61,81,88,132,138,141,167,169,175],"960":[81,138,141,204],"9600":68,"9600000000000002":66,"960304":29,"9609375":141,"961":[81,141,154],"961250":154,"962":[72,81],"962500":39,"963":[72,81,141],"96303579":79,"963242":127,"963297":69,"96349067":121,"964":81,"9640440750048328":169,"96484375":141,"965":[81,164],"965253":69,"9652659492293556":178,"9656":164,"965629":29,"966":[81,141],"966000":154,"96658114e":165,"9666666666666667":66,"9666666666666668":66,"967":[81,141],"968":81,"9681":138,"968333":39,"96875":141,"9688888888888889":167,"96896536339727":66,"969":[72,81],"96918596":[165,196],"969394":69,"9694":138,"96945":39,"969482":127,"96982397":61,"96984417e":165,"96m":36,"97":[39,40,42,49,50,52,59,66,72,81,87,132,141,167,169,175,178,200,205],"970":[72,81],"97009000e":165,"97011173":61,"97085104e":165,"9709416":61,"971":81,"971020":29,"972":[81,141,204],"972014":127,"9723201967872726":[65,67],"9725":61,"97265625":141,"9728":138,"973":[81,141],"97318436":61,"973292":29,"9733333333333334":66,"973583":69,"9739":37,"974":[72,81],"97458101":61,"9747":138,"975":[81,141],"9750":42,"975000":39,"9753462341111744":52,"975385344":39,"9754":138,"975532":61,"9756":61,"9757":79,"9759036144578314":179,"976":[81,126,141],"9765625":141,"976m":140,"977":[81,126],"977255e":39,"977660":69,"9777777777777777":167,"978":[72,81,127,141],"9783":61,"978333":169,"9784":42,"97848561":61,"97849162":61,"97876502":61,"9789":61,"97899282":[63,79],"979":[37,72,81,126,138,141,191],"97988827":61,"97m":[36,132],"98":[42,49,50,51,60,61,62,72,81,132,141,167,169,179],"980":[72,81,127,138,141],"98046875":141,"9807":[61,72],"981":[81,127],"9810":164,"981272":127,"9814":132,"9816":61,"98176":146,"982":[72,81],"982109":151,"9824":61,"982423":175,"982500":39,"9826":138,"9827":61,"98296089":61,"983":[81,127,141],"9830":61,"983000":116,"983077":39,"9832":[61,138],"9835":61,"9839":138,"984":[81,127],"984375":141,"985":[81,127],"985000":39,"985388":175,"9855":42,"985554":69,"986":[39,81,127,138,141],"9861":138,"9864":132,"9866666666666667":66,"986792":154,"9868":61,"98693918e":165,"987":[81,141],"987500":39,"9876":42,"987654321":97,"987845":126,"988":81,"9882":132,"98828125":141,"9883":42,"989":81,"9890":42,"98901172e":165,"9894":42,"98e3715f":106,"98m":36,"99":[31,32,39,49,50,52,58,61,65,67,69,72,81,121,124,127,151,156,167],"990":[81,141],"9900":132,"990000":[201,202],"990133":29,"9905999898910522":132,"9906":132,"9907":132,"990789":127,"9909":132,"991":[59,72,81,179],"992":81,"9921875":141,"992212":154,"992258":29,"99235819e":165,"9924":36,"9927":132,"993":[81,141,154],"993280":29,"994":81,"9940711462450593":29,"9943":138,"9948":132,"9949":61,"994f5f":37,"995":[36,81],"9950":36,"995000":154,"9951":138,"99529929":121,"995873":39,"995939":69,"996":[72,81,138,141],"99609181":79,"99609375":141,"996375":126,"996421":151,"996650":39,"996840":29,"997":[81,141],"997128":39,"997217":39,"997563":127,"99757":32,"9978":37,"998":81,"998058":39,"998799":39,"998816":39,"9989":138,"999":[34,35,38,58,81,134,135],"999530266023044":60,"99959714e":165,"9996615456176722":[65,67],"9999":[58,175],"9999965334550955":[65,67],"9999997207656334":191,"999999999601675":[65,67],"99m":36,"9be4c7yahuinv1h07ucme1co9p":61,"9e726f":69,"9ec22d57b796":106,"9ect":61,"9f84":123,"9f8a78":69,"9f95":[123,192],"9k":39,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":61,"9m":72,"9s":[63,167],"\u00b5":31,"\u00b5s":191,"\u015fimdi":36,"\u03b3":61,"\u03b3xit":61,"\u03bb":164,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":39,"\u5168dlc":39,"\u5b89\u88c5\u5373\u73a9":39,"\u6597\u9c7c\u89c6\u9891":39,"\u65b0\u5efa\u6587\u4ef6\u5939":39,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":39,"\u7fa4\u661f":39,"\u8c6a\u534e\u4e2d\u6587":39,"\u8d60\u54c1":39,"\u8fc5\u96f7\u4e91\u76d8":39,"\u923d":106,"\u94f6\u6cb3\u5178\u8303dlc":39,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":39,"\ud835\udc4f":175,"\ud835\udc53":175,"\ud835\udc5a":175,"a\u00e7\u0131l\u0131\u015f":36,"abstract":[1,8,119,124],"ayl\u00f8":154,"bia\u0142ecki":192,"boolean":[7,48,97,106,122,125,126,127,138,139],"break":[14,33,36,52,64,80,129,137,141,142,148,149,174,184,203,206],"byte":[29,71,85,124,184,191,206],"cach\u00e9":192,"caf\u00e9":164,"case":[3,7,8,14,18,29,30,41,45,51,54,56,59,60,61,66,68,79,80,83,87,97,98,106,107,111,113,116,119,121,122,124,125,127,129,132,136,140,143,146,148,149,150,151,152,154,155,156,157,159,160,161,164,165,167,168,171,172,174,176,178,179,183,184,186,188,191,198,200,205,206],"catch":[137,150],"char":184,"class":[3,7,14,22,24,29,30,31,33,34,35,37,38,39,41,42,43,45,51,54,55,56,57,59,60,61,62,63,66,69,71,79,83,85,86,87,88,98,99,105,115,121,122,124,125,126,127,133,135,136,137,138,139,140,141,144,145,150,154,156,157,158,159,160,161,164,165,167,168,169,171,172,174,175,178,179,180,184,185,190,194,198,200,201,204,206],"clion2020\u7834\u89e3":39,"d\u00fc\u015f\u00fck":36,"default":[7,22,33,47,48,51,52,54,55,56,59,60,64,65,67,71,85,87,90,98,106,114,122,124,125,127,133,135,136,138,139,140,146,150,159,165,167,168,172,173,176,184,196,198,199,204,205,206],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,33,37,41,42,43,45,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68,69,71,76,79,81,85,87,93,95,97,98,103,105,106,107,108,109,111,113,114,115,116,117,118,121,122,124,126,127,129,134,136,137,138,139,140,142,143,145,146,148,150,151,152,154,156,157,159,160,163,164,165,166,167,168,169,171,172,174,175,178,182,183,185,192,198,199,200,203,205,206],"export":[42,149,169,171],"final":[7,31,32,33,43,49,50,52,53,56,57,58,60,61,69,71,81,85,87,98,111,122,127,134,138,139,140,141,143,145,149,150,151,156,159,160,161,162,165,167,169,171,174,178,179,183,184,194],"float":[22,34,36,39,45,46,48,50,51,53,57,61,72,81,97,98,122,124,127,132,134,144,155,157,168,183,185,191,198,207],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,37,38,41,42,43,47,48,49,50,51,52,54,55,56,57,58,59,60,62,63,64,65,66,67,68,71,73,79,85,86,96,108,116,121,122,123,125,126,127,131,132,133,134,135,138,139,140,141,142,143,144,145,146,148,151,156,159,161,162,164,165,166,167,168,171,172,174,177,178,179,180,182,184,192,196,198,199,200,206,207],"g\u00f6rkem":34,"g\u00fcnai":34,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,34,35,36,37,39,40,41,42,44,45,47,48,49,50,52,57,64,65,67,70,71,72,73,79,80,81,82,83,85,87,89,91,97,98,99,103,104,105,106,107,108,109,110,111,112,113,114,115,116,119,121,123,124,125,126,127,129,130,131,132,133,136,137,138,139,140,141,142,143,144,145,146,148,149,151,152,153,154,155,156,158,159,160,161,162,163,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,184,185,186,188,190,191,194,196,198,199,203,205,206,207],"int":[7,14,22,31,40,42,50,52,58,73,89,97,98,124,126,127,134,135,138,139,140,141,144,145,159,169,183,184,185,191,206,207],"long":[1,8,14,33,36,37,47,49,50,55,57,58,61,66,71,85,87,105,106,109,116,119,124,136,137,145,146,150,163,166,169,174,183,184,185,199,205,206],"micha\u0142":192,"new":[7,9,14,17,22,23,31,33,34,35,36,43,45,47,49,50,51,52,54,55,56,57,61,62,63,64,66,69,71,85,89,97,98,104,105,106,107,109,111,113,114,117,118,119,121,123,125,129,131,133,136,137,138,139,142,143,146,147,149,150,152,155,156,159,160,161,162,163,164,165,166,167,168,171,174,175,178,179,180,182,183,184,186,188,189,191,192,193,194,196,198,203,206],"null":[39,46,48,50,62,69,79,122,125,127,154,164,169,178,179],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":39,"p\u03b8":135,"pikach\u00fa":12,"public":[1,14,52,58,59,104,111,117,119,121,142,144,149,151,152,174,180,183,187,188,189],"return":[2,3,7,12,14,18,22,24,25,29,30,31,33,34,35,36,37,38,39,40,41,42,43,45,46,48,49,50,51,52,54,55,56,57,58,59,60,62,65,66,67,68,71,73,79,80,81,85,86,87,89,97,98,105,106,122,123,124,125,126,127,129,131,132,133,134,135,138,139,140,141,144,145,146,150,151,156,159,160,161,164,166,167,168,169,171,175,184,185,191,192,194,198,199,200,201,202,205,206],"short":[26,47,61,105,121,124,136,137,139,152,169,176,183,184,206],"static":[1,2,5,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,115,116,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,184,190,206],"super":[29,30,31,33,35,37,38,45,65,67,126,135,139,140,141,144,160,183,205],"switch":[0,7,14,49,52,150,156,183,205],"throw":184,"transient":148,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,62,64,66,68,69,71,72,73,79,81,82,83,85,87,88,97,101,102,105,106,113,114,121,122,124,125,126,127,129,132,133,135,137,138,139,140,141,143,144,146,151,152,154,156,157,159,163,164,165,166,167,168,169,173,175,178,179,180,182,183,184,185,190,191,194,196,200,204,205,206,207],"try":[1,3,4,5,7,9,11,14,16,18,25,31,36,37,46,47,49,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,73,81,87,88,94,97,105,106,107,109,112,113,114,115,116,119,122,123,125,126,127,129,134,140,141,143,144,150,151,152,154,155,159,160,161,163,164,165,166,167,168,169,170,172,173,174,178,179,180,181,182,184,185,198,203,206],"var":[18,39,53,57,71,85,113,135,144,156,159,178,190],"void":124,"while":[0,1,7,29,31,32,33,37,41,42,48,49,50,52,55,59,60,61,62,63,66,80,90,98,104,106,107,108,109,111,113,116,117,118,119,121,122,124,125,126,127,129,132,133,137,139,140,148,150,152,159,165,166,167,168,169,172,174,178,179,184,186,187,191,192,193,194,198,199,203,204,206],"y\u00fcksek":36,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,37,41,42,43,45,47,49,50,51,52,53,54,58,59,60,61,64,65,66,67,68,69,71,77,79,80,81,82,83,85,87,90,93,94,95,97,98,104,105,106,107,109,111,113,114,115,117,118,119,121,122,123,124,125,126,127,129,131,132,137,138,139,140,143,144,145,146,148,149,150,151,153,154,155,156,157,159,160,164,165,167,168,169,171,174,176,179,180,182,183,184,185,188,189,191,192,194,196,199,200,203,204,205,206,207],AND:[97,98,113,124,126,183,184,185],AS:[22,25,47,49,50,97,98,169,183,184,185],And:[31,32,41,43,45,50,51,52,54,58,60,64,69,71,79,81,83,85,97,105,107,109,117,121,124,131,136,137,140,145,148,149,150,151,152,156,165,167,175,180,184,188,192,196,199,206],As:[1,3,7,8,33,34,37,41,42,43,45,49,50,51,52,53,54,55,56,58,59,60,61,62,63,69,71,79,83,85,87,88,104,105,111,114,117,119,121,122,124,127,129,139,140,141,142,148,149,150,156,159,160,164,165,166,167,168,171,174,178,179,180,183,184,185,189,191,194,203,205,206],At:[28,41,50,52,58,61,71,80,85,111,121,124,129,137,149,150,152,156,160,161,166,174,180,182,183,184,191,203,204],BE:[97,98,183,184,185],BUT:[97,98,183,184,185],BY:[106,150],Be:[90,96,109,113,124,169],Being:[45,64,106,109,127],But:[33,39,41,42,45,50,51,52,54,55,58,59,60,61,63,66,71,79,85,105,109,114,117,129,134,136,143,146,148,149,150,155,159,160,161,163,165,166,167,168,174,179,182,183,184,185,196,200],By:[7,18,29,41,43,48,51,54,55,56,59,61,71,79,81,82,83,85,104,106,114,119,122,124,127,129,135,146,148,149,151,154,156,157,164,167,171,174,175,178,179,183,194],FOR:[97,98,183,184,185],For:[7,19,29,30,31,32,36,37,39,40,41,42,43,45,47,48,49,50,51,52,53,56,61,62,63,66,68,69,70,71,72,74,76,77,79,80,89,90,91,93,94,95,96,105,106,107,116,117,118,119,121,122,124,125,126,127,131,136,137,140,143,144,146,148,149,150,151,152,154,155,156,157,159,160,161,164,165,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,186,196,200,203,204,206],IN:[25,87,97,98,183,184,185],IS:[22,47,49,50,56,97,98,102,154,183,184,185],IT:[56,104,149],If:[1,7,14,16,18,29,30,33,34,36,40,41,42,43,45,47,50,51,52,53,54,55,56,59,60,61,62,64,66,68,71,74,79,81,82,85,87,97,98,100,105,106,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,135,136,137,139,141,142,145,148,149,150,152,154,156,159,160,161,163,165,166,167,168,169,171,173,174,175,178,179,180,182,183,184,185,192,198,200,203,205,206,207],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,37,40,41,42,43,45,47,48,49,50,51,52,54,55,56,59,60,61,62,63,64,66,68,69,71,74,76,79,80,81,82,83,85,87,88,93,94,95,97,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,130,131,132,133,135,136,137,138,139,140,142,143,144,146,148,149,150,151,152,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,189,191,192,193,198,200,201,202,203,204,206,207],Is:[52,98,102,104,108,111,116,117,118,135,143,149,150,154,169,174,179,180,207],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,76,77,79,81,82,83,85,87,88,89,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,178,180,182,183,184,185,187,188,194,198,199,200,201,203,204,206],Its:[136,143,159,164,179],NEAR:[63,79],NO:[97,98,183,184,185],NOT:[87,97,98,124,138,142,183,184,185],Near:[114,190],No:[7,20,29,33,52,56,58,66,73,87,93,98,103,105,106,115,137,156,165,167,172,183,184,187,190],Not:[7,41,45,51,54,56,58,71,85,106,116,122,123,141,160,172,178,179,184,199,206],OF:[22,47,49,50,97,98,138,183,184,185],ON:192,ONE:7,OR:[22,47,49,50,97,98,124,183,184,185],Of:[52,69,106,107,109,119,167,185,186],On:[51,52,54,59,60,61,62,63,68,69,71,79,85,88,106,109,111,143,150,156,159,160,163,164,165,167,168,169,174,178,182,183,189,199],One:[1,7,11,28,41,45,51,52,54,55,56,57,59,60,61,68,88,103,108,109,111,113,115,119,121,124,132,136,144,150,155,157,159,165,168,174,178,180,183,184,185,189,190,191,196,198,203,206],Or:[32,41,52,60,79,107,109,124,136,137,150,154,157,174,183,184,199,203,206],Such:[1,7,30,41,45,51,52,56,121,150,151,178,183,205],THAT:87,THE:[97,98,183,184,185],TO:[56,97,98,145,183,184,185],That:[31,32,41,45,50,51,52,54,59,63,64,69,71,79,85,109,114,121,124,129,137,155,157,160,161,167,169,174,175,179,184,185,203],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,36,38,40,41,42,43,47,48,49,50,51,52,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,76,79,81,83,85,88,89,95,96,97,98,104,107,108,109,111,113,114,115,117,118,119,120,121,123,124,125,126,127,131,132,133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,162,163,164,165,168,169,171,172,174,175,176,178,179,185,186,188,189,190,194,195,197,198,199,200,201,202,203,204,207],Their:143,Then:[7,31,42,47,49,52,58,68,82,87,106,109,121,124,132,135,141,142,145,150,151,152,155,156,157,159,160,164,168,169,178,182,183,184,185,199],There:[0,1,3,7,18,28,29,30,32,34,37,38,40,41,43,45,48,49,51,52,53,56,59,61,62,64,66,69,71,77,79,85,90,105,106,109,111,113,114,115,118,119,121,122,123,124,125,129,131,132,133,136,139,141,142,143,145,146,148,149,150,151,152,154,155,157,159,160,163,167,168,169,170,171,173,174,175,178,179,181,182,183,184,185,203,204,205,206],These:[7,30,31,40,42,43,47,51,56,58,61,62,69,79,80,82,83,104,106,109,111,114,117,118,123,124,126,127,139,142,143,149,155,159,160,164,166,167,168,183,185,187,189,191,192,194,205],To:[0,1,7,14,18,22,29,30,33,34,37,41,42,43,47,48,50,51,52,54,56,60,63,64,68,69,71,79,80,81,87,97,104,105,106,107,109,114,115,116,117,119,121,122,124,125,127,129,134,135,136,139,140,141,142,146,147,148,149,150,151,152,156,157,160,161,163,164,165,167,168,169,171,174,175,178,179,180,182,183,184,185,189,190,192,195,198,199,203,205,206,207],WITH:[97,98,183,184,185],Will:[152,179,185],With:[7,41,43,45,49,52,58,62,63,64,89,104,108,109,113,114,116,117,118,119,123,124,126,127,129,136,149,150,157,159,160,165,167,168,174,176,183,192,199,204],_0:160,_1:157,_2:157,_:[18,29,31,33,35,38,42,43,53,58,73,86,131,132,135,137,138,139,140,141,145,146,157,160,167,175,183,184,194,200,201,206],____:[3,12,22,24,25,48,97,98,102],_____:[24,97],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:[29,30,37,42],__________________________________________________________________________________________________:35,____i:98,__abs__:97,__add__:97,__all__:183,__annotations__:[183,205],__builtins__:183,__cached__:183,__call__:[65,67,133,135,140],__class__:[38,183],__dict__:[175,201,202],__doc__:[183,205],__eq__:97,__file__:[73,183],__finalize__:[125,126],__future__:38,__get__:125,__getitem__:[126,127],__init__:[29,30,31,33,35,36,37,38,45,57,65,67,86,87,99,125,133,135,137,138,139,140,141,144,161,175,183,200,201,205],__iter__:[33,138],__len__:33,__loader__:183,__main__:[36,137,165,168,169],__mul__:97,__name__:[36,38,137,168,169,183],__operators__:141,__package__:183,__repr__:57,__spec__:183,__str__:97,__sub__:97,__truediv__:97,__version__:[43,137,167,205],_aspp:140,_attach:[123,192],_bin:56,_branch:140,_build_model:36,_bunch:[59,60],_caller:125,_check_indexing_error:127,_concaten:125,_consolidate_inplac:126,_constructor:126,_conv_block:140,_conv_bn_relu:140,_conv_relu:140,_data:126,_decor:125,_deeplabv3:140,_deprecate_mismatched_index:126,_deprecated_arg:126,_engin:127,_etag:[123,192],_fcn_16:140,_fcn_32:140,_fcn_8:140,_format_argument_list:125,_fuse_bn_tensor:139,_get_axi:126,_get_block_manager_axi:126,_get_comb_axi:125,_get_concat_axi:125,_get_join_info:125,_get_list_axi:126,_get_new_ax:125,_get_result_dim:125,_get_slice_axi:126,_get_valu:[126,127],_get_values_for_loc:127,_getbool_axi:126,_getitem_axi:126,_getitem_lowerdim:126,_getitem_tupl:126,_i:[82,83,157,167],_identity_block:140,_ilocindex:126,_index:58,_indicator_pre_merg:125,_info_axi:125,_invalid_index:126,_is_copi:126,_is_scalar_access:126,_items_overlap_with_suffix:125,_j:[157,167],_k:137,_kmean:168,_label:59,_left:125,_lib:[125,127],_locationindex:126,_locindex:126,_m:137,_make_concat_multiindex:125,_make_stag:139,_mapdataset:37,_maybe_cast_for_get_loc:126,_maybe_cast_slice_bound:126,_maybe_check_integr:125,_merge_doc:125,_merge_typ:125,_mergeoper:125,_method:191,_mgr:[125,126],_novalu:191,_oldcor:88,_other:125,_pad_1x1_to_3x3_tensor:139,_recognized_scalar:126,_reindex_and_concat:125,_rid:[123,192],_right:125,_sec_1:98,_segnet:140,_self:[123,192],_sigmoid:[86,175,201],_skip:3,_slice:126,_static:[126,127],_subplot:[69,79],_sum:191,_t:[123,192],_t_sne:[168,198],_take:126,_take_with_is_copi:126,_takeabl:126,_valid_typ:126,_validate_integ:126,_validate_kei:126,_validate_tuple_index:126,_valu:127,a0958ad901d7:123,a0:[125,191],a10:127,a1:[124,125,191],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:61,a21453:184,a23:[183,205],a2:[124,125,191],a3:125,a3z5kdkfn3tbq:61,a4:125,a5:125,a7yia1n5fo6efhugqfis3dhueyjsa:61,a_:[87,168],a_dict:184,a_i:[87,156],a_list:184,a_n:159,aaaaaa:[165,196],aafter:166,aaron:[29,52,83,138,176],ab:[52,65,67,73,82,97,98,126,134,138,144,167,183,184,206],abadi:138,abbrevi:[129,135],abc:[98,126,127,184,191,207],abcd:[7,122,126,191],abcdef:126,abcmous:[117,188],abil:[45,54,56,71,81,82,85,113,136,142,148,159,165,169,174,177,183,185,196,203],abl:[3,7,10,11,14,16,20,31,41,51,52,54,55,56,59,63,64,79,81,106,109,115,117,119,123,124,127,136,143,146,149,151,154,160,163,166,168,169,171,178,179,180,182,188,198,201,202,205],abnorm:29,abnorml:68,abo:39,aboslut:166,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,41,42,43,45,48,49,50,51,52,54,55,56,59,60,61,62,63,64,68,69,71,82,83,85,88,89,95,104,105,106,107,108,109,111,113,114,115,117,119,120,121,122,123,124,125,127,129,130,136,137,140,142,143,144,146,147,148,149,150,151,153,154,155,156,159,160,161,163,164,166,167,168,169,170,172,173,174,175,176,178,180,181,182,183,184,185,186,188,189,192,200,203,205,207],abov:[0,1,7,11,14,19,26,29,32,37,41,45,47,48,49,50,51,52,53,54,55,56,59,60,61,62,66,68,69,71,79,85,97,98,109,113,115,119,121,124,125,126,127,129,132,135,136,137,138,139,140,142,144,146,148,149,150,151,154,155,156,157,159,163,164,166,167,168,171,174,177,178,179,180,181,182,183,184,185,190,199,200],above_cutoff:167,abracadabra:184,abraham:207,abs_vector:[184,206],absenc:[56,168,198],absent:[126,175],absolut:[49,81,83,88,97,121,124,150,159,163,166,183,184,185,206],absolute_error:82,absolute_percentage_error:82,abspath:73,absurd:69,abund:[115,190],ac:[69,143,167],academ:[117,120,147,188],academi:205,acc:[33,40,49,51,54,59,132,145,204],acc_and_loss:132,acceler:[105,115,116,150,178,190],acceleromet:[121,168],accept:[16,41,42,59,69,71,85,88,105,108,111,117,124,126,127,139,150,160,164,174,183,189,203,204],acceptedcmp1:69,acceptedcmp2:69,acceptedcmp3:69,acceptedcmp4:69,acceptedcmp5:69,access:[6,14,16,39,43,71,79,85,104,106,107,109,111,113,117,123,126,142,148,151,152,169,176,178,183,184,188,189,191,199,205,206],accessor:127,accident:160,acclaim:164,accommod:[7,37,49,122,184],accompani:[121,150,178],accomplish:[93,150,160,168,174,198,203],accord:[18,47,52,56,65,67,69,104,113,114,115,116,121,124,126,139,148,151,154,156,159,164,168,169,172,174,178,179,180,182,198],accordingli:[35,43,57,132,154,183,205],account:[0,6,8,14,16,42,52,81,97,106,107,117,121,123,124,143,152,156,160,178,179,188,191],accumul:[1,52,97,111,146,157,174,184,203],accur:[15,32,33,43,52,56,61,71,74,82,85,95,106,111,117,118,121,136,140,142,144,148,151,156,163,166,168,171,174,177,178,179,189],accuraci:[29,33,34,40,41,42,50,51,52,53,54,56,58,59,62,66,71,72,74,81,82,83,85,87,88,89,107,117,122,132,140,142,143,145,150,151,152,155,156,157,159,160,162,163,165,167,169,172,173,178,179,186,188,194,198],accuracy_metr:132,accuracy_scor:[29,40,51,52,53,54,58,59,61,62,71,72,85,88,143,159,164,168,169,172,173,179,198,201,202],achiev:[32,33,41,50,52,56,58,61,69,108,111,124,137,139,140,148,149,150,151,152,159,160,161,162,164,165,166,167,183],achitectur:138,aci_servic:[9,105],aci_service_nam:[9,105],aciconfig:[9,105],acid:50,aciwebservic:[9,105],acm:[117,188],aco:35,acoust:[153,154,155],acquir:[6,108,111,150,189],acquisit:[3,107,111,119,146,186,188],acro:169,acronym:114,across:[33,45,49,56,71,85,107,117,119,121,124,125,127,129,132,142,146,148,149,150,160,164,167,183,184,186,188],act:[3,14,22,24,36,55,64,98,109,117,124,127,132,133,137,142,144,174,178,191,203],act_greedi:36,act_valu:36,action:[0,7,36,41,47,48,97,98,104,108,109,117,119,122,123,124,149,151,169,172,174,183,184,185,188,203],action_prob:137,action_s:36,actions_count:36,activ:[0,29,30,32,33,34,35,36,37,40,41,42,43,45,46,47,49,50,58,59,64,72,73,87,117,131,132,133,135,137,138,139,140,141,143,144,145,151,160,166,167,171,188,193,194,199,204],activateion:141,activation_1:37,activation_2:37,activation_3:37,activation_4:37,activespac:192,actor:183,actual:[7,39,41,42,45,48,49,50,52,53,54,58,59,61,62,68,71,73,79,80,81,82,83,85,87,88,89,97,106,116,118,119,121,122,123,124,126,127,132,135,136,146,148,154,160,162,164,166,167,171,174,176,178,179,183,185,187,189,193,200,203],actual_result:[3,14,22,24,55,98],actual_valu:[39,82],acut:159,ad:[1,7,18,22,29,32,37,39,43,45,47,50,52,54,56,61,66,69,71,81,85,97,98,116,118,121,123,133,135,139,147,149,150,159,160,161,163,165,168,174,175,178,184,200,206],ada:173,adaboost:[160,173],adaboost_clf:51,adaboostclassifi:[51,58,172,173],adagradoptim:150,adam:[29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,47,49,50,64,72,131,132,135,138,140,141,143,194],adamax:37,adamharlei:[132,193],adamoptim:[134,150],adamw:35,adapt:[35,49,60,64,104,117,139,146,150,160,176,188,204],adaptiveaveragepooling2d:139,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,37,39,40,43,44,45,46,47,48,49,52,54,56,63,64,65,67,68,72,81,97,98,113,115,118,121,123,125,129,131,134,135,139,140,141,143,144,149,159,160,161,163,164,165,166,169,173,174,178,179,180,182,183,184,185,192,194,196,199,200,203,204,206],add_1:141,add_:31,add_artist:[115,190],add_ax:168,add_legend:154,add_selectbox:199,add_slid:199,add_subplot:[36,38,49,69,72,80,137],add_trick:183,add_weight:139,addit:[1,7,18,23,32,43,48,56,61,66,68,79,80,81,97,108,109,111,113,117,118,121,122,123,124,129,137,139,140,141,144,146,150,152,156,160,161,163,164,165,167,175,178,184,185,191,192,206,207],addition:[31,122,124,129,149,152,154,156,160,165,192,196],additon:32,address:[80,81,95,108,109,111,117,143,146,148,149,152,156,163,174,183,188,189],adel:159,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,74,76,77,90,93,94,95,96,121,150],adher:[50,111,142,149],adjac:[168,183],adject:[184,206],adjunct:174,adjust:[29,33,37,42,47,57,59,60,80,139,149,150,159,160,165,168,173],adjusted_mutual_info_scor:168,adjusted_rand_scor:168,admin2:151,admin:192,administr:[152,185],admonit:[125,126,127],adobe_premier:39,adolesc:183,adopt:[61,90,107,117,149,150,156,160,186,188,207],adult:[183,205],advai:42,advanc:[36,45,68,107,117,121,127,128,130,142,147,149,150,152,156,168,174,184,192,195],advantag:[41,52,56,71,85,127,139,143,149,152,159,162,163,165,184],advent:[51,136,149],advers:28,adversari:[37,152,195],advertis:109,advic:150,advis:[7,48,55,60,63,122,159],advoc:117,ae5:168,ae:[31,135],aebf:[123,192],aeroplan:7,aerospik:192,aesthet:22,afb:169,affect:[7,17,33,40,51,54,56,58,60,71,81,85,87,107,109,111,117,121,122,137,139,150,157,163,165,166,175,183,186,188,196],affer:145,affin:[87,154,168],affinity_matrix_:167,affinitypropag:168,afford:[7,79,122,174],african:[117,152,188],afro:[154,155],afropop:[154,155],after:[0,7,14,29,32,33,34,36,37,40,41,43,49,50,51,52,53,56,57,58,59,62,64,66,69,72,79,81,87,109,113,119,121,122,124,129,131,132,139,140,141,145,146,149,150,151,154,155,157,159,160,163,164,168,173,174,178,180,183,184,185,199,201,202,204,205,206],afterward:[32,124],ag:[9,18,22,52,53,69,79,93,97,98,105,106,119,121,123,124,125,149,154,156,157,161,164,171,174,181,182,183,184,185,191,192,201,202,203,205,206,207],again:[7,14,17,41,43,49,51,52,53,54,55,59,60,61,71,85,87,122,127,135,155,160,164,166,168,179,180,183,184,185,198,199],against:[0,18,43,49,52,61,82,83,109,117,119,121,125,126,146,150,152,160,166,169,182,197],agaricu:115,age_distribut:24,age_median_imput:22,age_sal_tre:52,age_tre:52,agefil:22,agenc:109,agenda:[107,186],agent:[117,174,203],ageron:167,agg:[18,39,167],aggfunc:125,agglom:[69,154],agglomerativeclust:[69,167,168],aggreg:[7,14,51,111,116,132,156,159,164],agil:[148,149],agnost:149,ago:[136,160],agre:[22,47,49,50,117],agreement:142,agricultur:[107,116,180,186,203],ahead:[51,54,59,109,146],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:61,ai:[12,18,25,105,106,107,113,117,119,125,126,127,137,148,149,151,152,169,174,182,187,188,193,203,205],aid:[56,64,83,142,143,154,175,178],aim:[56,80,81,109,137,139,142,144,157,168,174,176,197],air:118,airbu:29,airflow:149,airlin:7,airplan:132,airport:[107,129,186,192],aka:[37,69,149],akkio:187,al:[31,71,85,116,117,152,190],alabama:151,alacazam:184,albeit:[47,179],albifron:[114,190],album:154,alcohol:[50,106],alekseynp:167,alert:148,alex:[33,135],alexa:[142,150],alexand:[130,133],alexandru:68,alexei:61,alexi:161,alexnet:139,alfredo:182,alg:58,algebra:[44,53,56,61,89,124,204],algo:[160,168],algorithm:[3,31,43,51,53,54,55,57,58,59,60,61,62,63,76,80,81,87,88,89,95,97,104,105,106,107,117,124,134,135,136,139,142,144,146,147,148,149,150,152,155,156,157,161,162,163,165,166,168,171,172,174,175,180,183,186,188,196,197,198,200,201,202,203],algoritm:160,algorythm:88,alia:[124,168,198],alic:[184,191],align:[22,82,117,124,132,139,140,144,146,154,155,157,159,165,167,168,169,171,175,176,178,179,198],alik:[0,152,159],aliz:35,all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,37,38,39,40,41,42,43,45,48,50,51,52,53,54,56,58,59,60,61,62,64,66,68,69,71,81,85,87,89,94,97,98,105,106,107,108,109,111,112,113,115,117,119,121,122,123,124,125,127,135,136,137,138,139,140,141,142,143,145,148,149,150,151,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,174,175,176,179,180,182,183,184,185,186,188,189,191,196,197,198,200,203,204,205,206,207],all_attr:31,all_clfs_acc:51,all_data:68,all_nod:1,all_photo:31,allah:142,allbeit:87,allclos:87,allegrograph:192,allei:[56,68],allevi:[51,54,56],allianc:111,alloc:[41,52,117,168,194,198],allow:[1,3,14,18,50,52,56,61,80,81,82,104,105,106,108,116,117,118,119,121,123,124,125,126,127,129,131,137,139,140,142,143,148,149,150,154,160,163,164,165,168,171,172,178,182,183,184,185,198,199,205,206,207],allow_arg:125,allowed_arg:125,allowfullscreen:[121,158,171,180],allpub:68,allud:52,almeida:50,almond:[70,115,171,172,190],almost:[7,31,37,41,45,52,59,64,73,107,109,122,129,159,160,174,175,178,183,184,199,203],alon:[69,111],along:[1,7,33,37,41,50,53,56,61,71,80,81,85,108,109,114,122,123,124,125,126,127,145,149,151,154,159,168,172,173,174,178,183,190,203],alongsid:[76,114,150],alot:[56,136],alpha:[37,57,68,69,80,82,88,114,135,138,143,156,159,160,164,165,166,167,168,184,190,196,198,201,202,206],alpha_:135,alpha_t:[135,160],alpha_t_bar:135,alpha_tb_t:160,alphabet:[118,123],alphago:[136,174],alphas_cumprod:135,alphas_cumprod_prev:135,alphas_t:135,alq:56,alreadi:[41,45,51,52,54,56,62,65,67,71,83,85,87,98,105,111,119,126,127,135,140,145,150,156,160,167,168,175,176,180,182,183,185,189,191],alright:[37,87],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,37,40,41,45,47,48,49,50,51,52,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,73,79,81,82,83,85,87,88,103,104,106,107,108,109,111,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,131,132,133,135,136,137,139,143,144,146,147,148,149,150,151,152,156,159,160,163,164,165,166,167,168,169,171,172,173,174,176,178,179,180,182,183,184,185,191,196,198,203,204,206],altair:199,altavista:160,alter:[80,89,111,118,183,189,205],alter_imag:89,altern:[7,16,32,47,56,61,64,116,117,122,124,143,150,154,165,166,183],although:[30,31,51,52,54,56,57,62,68,81,89,136,139,145,148,149,156,160,164,167,174,183,184],altogeh:149,altogeth:[14,166],altunyan:107,alwai:[7,14,30,33,34,35,37,41,45,47,49,50,51,54,56,57,59,60,61,63,71,85,109,114,121,124,125,127,129,135,136,137,139,146,149,150,151,152,159,160,164,165,166,167,171,174,179,183,184,185,205,206],am:[0,41,61,98,184,205],amalgam:83,amax:36,amaz:[32,106,113,140,185,186],amazon:[104,148,149,150,152,192],ambigu:[33,111,126,142,183],america:[113,181],american:[117,152,188],ami:168,aml:[9,105],aml_comput:[9,105],aml_config:[9,105],aml_nam:[9,105],amlb:150,amlcomput:[9,105],among:[7,58,61,66,69,121,124,139,149,150,159,160,164,168,174,179,197],amongst:[69,154],amor:145,amount:[7,17,31,58,61,69,80,104,105,106,115,116,119,125,129,132,136,139,142,148,150,160,161,165,166,168,169,174,180,183,184,187,188,190,191,192,196,198,203],amp:[154,169],amplifi:[107,117],amus:154,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,37,41,42,43,45,47,48,49,50,51,52,54,56,58,59,60,61,64,69,71,72,73,79,80,82,83,85,87,88,89,95,96,97,98,104,107,108,111,113,114,115,116,117,118,119,121,122,125,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,163,164,165,166,167,168,171,172,173,174,175,176,178,179,182,183,184,185,186,188,189,190,191,192,194,195,196,197,198,200,203,204,205,206,207],anaconda3:[39,88,146,168],anaconda:159,anaemia:[9,105,106],analog:[51,80,121,124,127,161],analys:[7,56,81,104,122],analysi:[1,7,16,17,18,21,31,48,69,71,81,85,105,107,110,111,118,119,122,124,125,127,129,131,136,142,143,148,154,157,160,164,167,179,186,188,189,191],analyst:106,analyt:[1,36,53,58,104,107,124,148,156,160,164,186,187],analyticsvidhya:58,analyz:[16,17,61,104,107,118,119,121,142,148,152,154,164,167,168,172,178,181,190],anatida:[114,190],ancestor:160,anchor:144,andon:117,andra:35,andrew:[113,121,148,151,174,176],android:169,anemia:106,anf:34,ang:178,angel:184,angelica:[70,171,172],angelina:52,angl:[35,89,113,159,166,193],angular_spe:35,ani:[0,3,7,14,17,18,22,26,30,31,41,45,47,49,50,51,52,53,54,55,56,57,58,59,60,62,64,66,71,79,82,85,87,97,98,104,105,109,111,114,115,117,121,122,124,125,126,127,129,136,137,139,143,145,146,148,149,150,151,152,154,156,157,159,160,163,164,166,167,168,169,171,174,179,180,182,183,184,185,188,198,199,203,205,206],anim:[125,135,156,174,194,203,205],anis:[70,115,171,172,190],anise_se:[70,171,172],ankl:[30,41,43],ann:[40,136],ann_build:46,anneal:32,anni:24,annot:[4,5,13,19,34,39,41,50,51,53,54,55,61,66,69,71,72,79,85,113,139,143,144,167],announc:87,annual:[129,192],anomal:[29,47,150],anomali:[8,14,49,51,52,150,154,167],anomalies_mask:167,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[108,117,183,188,205],anoth:[1,3,7,8,10,14,30,31,33,41,45,48,49,51,52,54,56,58,61,68,69,71,80,82,85,95,97,104,106,109,113,114,115,116,119,121,122,123,125,127,129,132,139,142,146,147,149,150,151,152,153,154,155,156,157,159,160,163,164,166,167,168,173,174,175,178,183,184,190,191,198,205,206],another_tupl:184,anser:[114,190],anseriform:[114,190],ansibl:149,anspos:29,answer:[16,23,41,51,52,53,58,87,90,107,108,113,116,121,125,136,138,139,143,147,150,151,152,156,157,160,161,169,171,174,180,182,183,189],anthropolog:154,anti:89,antialia:[35,73],antialias:35,anticip:119,antipattern:152,any_column:24,any_script_cont:3,any_style_cont:3,anymor:[166,168],anyon:[82,117,142,147],anyth:[7,13,18,45,60,63,68,109,129,154,160,174,180,182,183,189,199,203],anywai:[59,179,184],anywher:[51,52,124,174,183],ap:[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183],apach:[22,47,49,50,65,67,69,88,89,148,149,192,198,199,200,201,204],apart:[7,37,56,64,122,127,129,160],api:[6,16,29,41,42,43,47,50,59,64,104,105,106,107,118,123,125,131,149,169,171,178,179,182,186],api_doc:135,api_kei:106,apocalyps:142,apostroph:141,app:[5,6,39,45,96,104,109,113,117,121,123,151,170,188,199],appar:[160,183],apparatu:[18,121],appdata:[59,64,114,145,198,205],appeal:[51,54,55],appear:[30,31,32,49,106,114,117,121,124,139,140,141,146,150,159,160,164,166,169,178,179,180,183,184,188,194,199,206],append:[1,3,7,14,31,33,35,36,37,38,39,40,44,46,48,51,52,56,69,73,80,87,88,89,97,124,125,132,133,134,135,137,139,140,141,144,145,154,155,159,161,167,168,183,184,185,198,205,206],append_diff_column:14,appl:[40,70,117,171,172,184,188,206],apple_brandi:[70,171,172],applet:165,appli:[1,3,14,16,28,29,31,34,35,37,38,39,41,47,48,52,56,58,59,61,64,65,67,68,69,73,80,81,86,87,88,97,107,108,111,113,114,118,119,121,123,124,125,127,129,132,134,136,137,139,140,143,145,146,148,149,150,151,152,154,156,159,160,163,165,166,167,168,169,174,175,178,179,180,184,190,191,196,198,199,201,203,206],appliabl:3,applic:[0,4,16,22,40,43,47,49,50,80,82,104,105,106,107,111,117,118,119,123,124,130,133,138,139,140,144,146,148,149,150,152,156,160,164,169,174,184,185,186,188,189,195,206],apply_along_axi:89,apply_dropout:140,apply_gradi:[35,37,131,135,137,138,141],apply_if_cal:126,apply_kernel:33,appreci:37,approach:[1,23,29,33,42,47,50,52,56,60,61,68,80,87,107,111,117,119,139,142,143,148,149,150,151,152,153,154,157,159,160,165,167,168,174,175,178,179,183,184,185,186,189,203],appropri:[31,47,52,71,81,83,85,97,109,123,124,137,150,154,160,163,165,171,180,182,184,192,196],approv:[52,121,149],approx:[52,97,156,160],approxim:[7,30,50,52,86,98,142,146,156,160,164,175,178,200,201,204],apricot:[70,171,172],april:[151,178],aqi:118,aqx:56,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,77,79,80,81,82,83,85,87,88,90,93,97,98,100,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,185,187,188,189,190,191,192,193,194,195,196,198,199,200,203,204,205,206,207],arang:[29,52,57,87,124,138,145,146,167,168,191,198,201,202],arangodb:192,arbitrari:[18,49,124,125,138,160,164,184,204,205,206],arbitrarili:[167,184,206],arc:114,arcco:124,arcgi:107,architect:148,architectur:[33,37,64,106,117,123,138,139,140,141,144,148,150,151,156,166,169,188],archiv:[33,42,135,145],arcsin:124,arctan:124,are_anagram:184,area:[1,52,56,61,68,79,82,105,106,107,114,117,119,121,127,136,148,150,152,156,160,174,179,182,185,186,191,193],aren:[42,45,49,58,66,142,161,163,179],arff:59,arg:[22,40,49,50,73,97,98,125,144,160,183,205],argmax:[34,36,40,43,72,87,132,140,141,145,159,168,198],argmin:[167,168,198],argscop:144,argsort:[57,124,157],argtyp:73,argu:[57,119,150],argument2:185,argument3:185,argument:[7,41,52,64,97,108,109,123,124,125,126,127,139,140,163,166,168,184,185,204,206],arguments_dictionari:183,arguments_list:183,ari:168,aris:[28,49,97,98,117,148,152,183,184,185],aristocraci:113,arithmet:[7,31,97,121,122,124,168,183],aritifici:188,arizona:116,armagnac:[70,171,172],armi:199,around:[1,3,7,10,13,16,18,20,31,33,38,40,45,47,50,56,57,82,104,109,110,113,116,117,119,121,122,129,145,150,151,154,160,167,169,173,174,178,182,184,188,191,200,206],arous:148,arr1:124,arr2:124,arr:[49,50,73,98,124,191],arrai:[1,7,18,31,34,36,40,41,42,43,44,45,46,47,51,52,57,59,61,62,63,65,67,68,72,79,80,81,82,86,87,88,89,114,115,121,125,126,132,133,134,135,137,139,140,141,142,143,145,154,155,156,157,159,160,165,167,169,173,175,178,179,182,184,185,196,200,201,202,206,207],arrang:[14,56,66,142,146,182],array_split:141,array_to_img:[37,72,140],arriv:[69,111,121,179,189],arrow:[123,182],arrowprop:167,art:[31,132,138,139,141,147,149,150],artemisia:[70,171,172],arthur:[167,174,203],artichok:[70,171,172],articl:[28,36,38,43,51,52,54,107,109,113,115,119,121,142,154,157,160,184,186],articul:[109,152],artifact:[40,106,113,149],artifici:[18,40,43,52,89,107,119,131,136,142,143,145,147,151,152,174,201,202,204],artist:[37,154],artist_top_genr:[154,155],artistanim:135,artwork:31,arument1:185,arxiv:[134,138,140,144],as_cmap:39,as_default:134,as_fram:[62,167],as_list:[45,134,139,144],as_panda:164,asabeneh:[185,207],asarrai:159,ascend:[1,31,52,53,56,58,124,171,172],ascent:133,ascii:145,ascrib:113,asia:[170,171],asian:171,asid:[33,52,163],ask:[8,11,23,42,43,52,59,60,76,107,108,109,111,113,117,119,125,126,136,139,147,150,169,171,172,174,175,178,179,182,184,186,189,203],asp:[183,184],aspect:[11,13,56,58,87,110,111,113,116,119,144,148,150,166,180,190],aspp_siz:140,assembl:[37,183],assert:[3,14,22,24,31,48,50,55,87,97,98,99,101,102,139,140,141,144,151,167,183,184,205,206],assert_called_onc:[24,55],assert_called_once_with:[24,55],assert_frame_equ:[14,22],assert_not_cal:[24,55],assert_series_equ:14,assertalmostequ:49,assertequ:98,assertionerror:[101,102],assertrais:[14,98],assess:[23,52,81,82,103,107,108,117,143,157,166,168],asset:[12,14,15,18,22,23,24,25,48,51,52,54,55,56,58,61,62,63,64,66,69,79,87,91,106,113,169,180,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,204,206,207],assgin:56,assign:[3,6,8,11,14,16,17,19,22,24,28,35,41,42,47,48,49,51,52,54,55,56,79,81,83,95,98,105,106,107,111,113,114,115,116,121,126,129,131,135,137,138,139,140,143,144,147,148,150,151,154,155,159,160,165,166,167,171,172,173,174,176,178,179,180,182,183,184,185,198,199,200,201,205,206],assist:[106,142,168,174,198],associ:[3,7,43,97,98,105,106,109,117,121,123,124,144,149,152,157,166,174,178,182,183,184,185,187,188,192,203],assort:124,assum:[7,35,50,51,52,58,59,60,81,88,97,121,124,127,135,137,142,144,150,156,157,167,168,178,183,184,204,206],assumpt:[31,50,57,79,121,150,156,160,165,166,168,198],assur:[0,150],asterisk:[98,185],astrophysicist:6,astyp:[22,29,30,31,36,37,39,42,46,52,58,72,115,131,132,134,138,167,168,190,194,198,204],asymmetr:[148,160],asymmetri:117,asymptot:159,atlanta:[129,192],att:[139,169],attach:[43,106,115,123,190,192],attack:[105,106],attempt:[8,16,47,49,59,97,124,127,155,164,183,184,199,205,206],attend:135,attent:[69,88,127,135,136,139,141,157,159,160],attention_ax:135,attn_dim:135,attn_output:139,attr:[3,31],attract:[19,69,174],attrib:167,attribut:[7,31,52,53,60,69,88,97,106,118,119,126,143,148,157,164,168,183,198,205],attributeerror:[144,185],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,au:169,auc:[150,161,164,179],auc_weight:[9,105],auckland:[129,192],audienc:[153,189],audio:[31,43,118,160,174,203],audit:117,audubon:115,aug_test:58,aug_train:58,augment:[81,89,140,151,174,184],augment_input:140,augment_label:140,august:[149,178],aurelion:[45,51],australia:[14,169],australian:[51,54],autauga:151,authent:[106,148],author:[12,25,59,60,97,98,104,107,113,117,119,148,151,183,184,185,186],authorit:151,auto:[9,61,105,129,131,132,150,155,159,163,164,167,168,169,171,178,198],auto_add_to_figur:168,autoconfig:[3,14,22,24,55,79,97,98],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:152,autograd:[31,38],autograph:30,autokera:152,autolayout:[64,146],autom:[0,43,105,106,107,111,117,142,149,150,152,174,186,187],automat:[0,31,33,37,39,45,54,55,59,105,106,119,124,127,131,142,149,150,151,152,153,159,163,174,178,183,184,203,206],automl:[10,20,125,152,172,187],automl_config:[9,105],automl_error:[9,105],automl_set:[9,105],automlconfig:[9,105],automlrun:105,automobil:[33,132],automobile_fil:33,autonom:[144,152,203],autopct:[53,115,190],autoplai:121,autoregress:138,autotun:[35,135,139,140],autumn:[52,165,196],autumnali:[114,190],aux_loss:144,auxiliari:[52,87],av:56,avail:[1,3,7,14,29,33,39,41,52,53,54,55,56,59,64,71,77,79,85,105,106,108,111,114,115,116,117,121,122,127,129,137,145,146,148,150,151,152,154,159,160,168,171,175,180,182,183,188,189],avenu:107,averag:[7,14,18,22,24,25,29,32,33,35,38,50,51,52,54,55,61,68,69,82,83,98,109,118,119,121,124,132,135,139,154,155,156,157,159,160,164,167,168,173,176,178,179,182,198,205],average_length_of_word:97,average_method:168,average_pooling2d:139,averagepooling2d:35,averkiev:31,avg:[39,59,61,62,72,134,169,172,173,179,205],avg_pool2d:144,avg_pool:144,avgpool2d:32,avgpool:144,avil:[59,60],avocado:207,avoid:[41,49,51,52,55,56,59,60,109,116,126,127,129,141,149,150,152,159,163,167,168,173,174,180,182,183,192],aw:[41,148,149,151,152],awai:[51,66,109,115,154,165,167,174,183,184,200,203],awar:[81,107,109,113,117,124,127,174,183,186],awcmr9f:61,awesom:[97,98,106,115,136,160,183,185],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:61,ax1:[57,146],ax2:[49,57,116,146,190],ax:[1,14,22,29,30,32,33,36,37,38,39,40,41,45,49,50,52,53,56,64,66,68,69,72,79,80,88,113,114,116,124,125,126,127,132,135,137,138,146,154,159,161,164,165,167,168,178,184,190,196,198,200],axacc:49,axes3d:[69,80,88,168,198],axessubplot:[30,59,61,62,63,69,79,114,127,154,155,171,178,179,190],axhlin:[14,82,168,198],axi:[1,3,7,14,22,30,31,32,33,34,35,37,38,39,40,44,45,46,51,52,53,54,55,56,58,59,61,63,64,65,66,67,69,70,71,72,79,81,85,87,113,114,116,117,121,122,125,126,127,132,133,134,135,137,138,139,140,141,143,144,146,149,154,157,159,161,163,164,165,167,168,171,172,173,175,178,179,180,182,188,190,191,194,196,198,199,204],axisgrid:[60,79,88,116,154,179,190],axloss:49,axvlin:[167,168,198],aymer:131,az:[116,190],azim:[88,165,168,196,198],azip:[165,196],azithromycin:1,azur:[103,104,107,111,125,148,149,151,152,169,170,181,186,187,188,192],azurecontain:106,azureml:[9,104,105],b0:[125,191],b1:[124,125,137,191],b2:[124,125,137,191],b3:[123,137],b4ejbh5mczlor:61,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:61,b9c0c9:69,b:[7,14,22,29,33,34,36,39,52,56,65,67,82,87,97,98,106,121,122,123,124,125,126,127,131,135,137,138,140,141,144,145,151,154,156,157,159,165,167,168,178,183,184,185,191,196,198,199,200,205,206,207],b_1:156,b_dtree:159,b_f:141,b_g:141,b_h:145,b_i:[141,156],b_k:159,b_n:[156,159],b_o:141,b_t:160,b_y:145,ba:42,back:[1,7,29,30,31,41,45,47,48,55,79,94,98,104,105,109,119,121,124,127,129,135,146,148,149,150,156,166,169,180,182,183,184],backbon:[45,140,142,144],backend:[36,37,45,140,204],backfil:146,background:[40,100,107,139,146,169,203],background_color:[3,72],backprop:[33,145],backpropag:[33,38,87,135,145,194],backpropaget:87,backpropog:45,backtick:125,backward:[7,31,33,38,87,135,174],bad:[7,41,51,52,63,71,85,109,113,124,150,167,168,169,179,183],bad_kmeans_plot:167,bad_n_clusters_plot:167,badli:[50,52,114,150,159,200],bag:[30,41,43,56,58,157,158,171],bag_classifi:51,bagging_fract:56,bagging_freq:56,bagging_se:56,baggingclassifi:[51,156,159],baggingregressor:[156,159],baheti:143,bai:[63,79],baidunetdisk:39,baidunetdiskdownload:39,balanc:[34,51,54,59,61,65,66,67,71,83,85,105,107,149,150,152,159,160,165,166,172,186,196],balanced_subsampl:159,baldwin:151,ball:[52,156],ballback:41,baltimor:[178,179,180],bam_extract_path:29,bam_zip_file_path:29,banana:[40,184,206,207],bandwidth:104,banerje:[61,164,199,204],bank:[52,107,118,123,152,154,192,203],banko:152,bankrupt:113,bar:[1,3,15,31,41,43,53,58,66,82,105,113,114,124,125,127,157,164,171,180,185,199],bar_chart:72,barack:97,barbour:151,barchart:178,bare:[149,159],baregg:146,barh:[68,171,190],barnrais:109,barnraisersllc:109,barometr:118,barplot:[40,56,71,85,154,155],barrier:142,base64:[31,61],base:[7,11,14,15,17,18,29,31,33,36,41,43,48,51,52,54,56,57,58,59,61,62,63,68,69,71,79,81,82,85,89,98,106,107,111,113,114,117,118,119,123,124,127,129,131,135,136,137,139,140,141,142,143,144,147,148,149,150,151,152,154,156,157,159,160,161,163,165,166,168,169,172,173,174,179,180,182,183,184,185,186,187,192,193,196,199,203,204,205,206],base_estim:51,base_learn:161,base_model:[133,140],base_model_output:140,base_scor:[68,163,164],base_shap:133,base_url:14,basebal:121,baseblockmanag:126,baseclassnam:183,baselin:[150,159,164,167],baselinems:50,basemen:[18,121],basement:56,basenam:[29,30,31,33,40,43,68],basex:192,basi:[1,22,47,49,50,52,62,63,69,104,124,136,160,165,168,185,198],basic:[7,14,15,18,24,30,37,41,50,52,57,59,60,69,73,107,113,114,116,121,122,123,125,131,136,143,145,146,147,149,151,155,156,159,160,164,165,166,168,169,171,174,175,178,179,180,182,183,186,187,189,190,192,193,194,195,196,197,198,199,200,201,202,203,204,205],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basicrnncel:145,basket:[171,178],bat:37,batch:[31,32,35,37,43,46,47,50,87,131,132,133,135,138,139,140,141,148,149,150,151,152,154,168,171,194],batch_:37,batch_acc:33,batch_label:132,batch_loss:[33,141],batch_norm:[35,37,139,144],batch_normalization_1:[35,37],batch_normalization_20:42,batch_normalization_21:42,batch_normalization_22:42,batch_normalization_23:42,batch_normalization_24:42,batch_normalization_25:42,batch_normalization_26:42,batch_normalization_27:42,batch_normalization_28:42,batch_normalization_29:42,batch_normalization_2:[35,37],batch_normalization_3:[35,37],batch_normalization_4:[35,37],batch_normalization_5:[35,37],batch_normalization_6:[35,37],batch_normalization_7:[35,37],batch_normalization_8:35,batch_siz:[29,31,32,33,34,35,36,37,38,39,40,42,44,46,47,49,50,64,87,131,132,135,138,140,141,143,145,167,175,194,204],batch_x:131,batchno:35,batchnorm1d:31,batchnorm2d:38,batchnorm:[32,35,37,38,42,64,135,139,140],batchsiz:87,bathroom:56,batter_pow:[71,85],batteri:[71,85],battery_pow:[71,85],battl:115,bayesian:[135,140],baz:125,bb38:[123,192],bbox:[88,168,198],bbox_coord:42,bbox_emb:144,bc:167,bce:31,bceloss:38,bdt:159,bdt_predict:159,beam:[150,169],bear:171,beat:[49,50,174,203],beatl:185,beauti:[112,115,116,168,198],beautifuli:41,beautifulli:[45,114],becam:[119,136,160],becaus:[1,3,7,12,14,18,22,28,30,31,32,33,37,41,43,45,47,48,49,51,52,54,56,58,59,60,61,62,66,71,73,79,80,85,88,106,109,116,117,118,119,121,122,123,124,126,127,133,135,136,142,144,146,148,149,150,151,155,156,159,160,161,164,165,166,167,168,171,174,175,178,180,183,184,185,191,196,198,200,203,205],becom:[7,32,36,37,47,52,57,80,87,97,106,117,119,121,124,136,137,141,145,148,149,150,156,160,161,164,171,174,175,184,194,205],bed_room:79,bedroom:[63,79],bedroomabvgr:56,bee:[13,116,190],beef:172,beehiv:[116,190],been:[3,6,7,12,14,15,17,18,23,29,30,31,35,41,42,51,54,64,69,88,106,107,109,111,113,115,117,118,122,124,125,126,127,136,138,141,143,144,149,151,152,154,156,160,161,164,166,167,169,183,185,189,194,200,205],befor:[7,8,14,16,32,33,34,36,41,42,43,45,47,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,69,71,73,79,80,81,85,88,89,105,106,109,111,113,116,119,122,123,127,129,135,137,138,139,140,146,148,149,150,151,152,154,157,159,163,166,168,169,171,174,175,178,182,183,184,185,189,190,191,200,203,205,206],began:151,begin:[1,7,14,32,33,36,49,51,52,54,66,68,83,117,122,124,129,143,146,150,152,156,157,159,160,166,168,178,181,183,184,185,189,192,194,198,200,205,206],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,48,56,70,71,74,76,77,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,129,142,148,154,155,169,171,172,173,178,179,180,182,185,186],behav:[7,114,117,124,129,139,154,183,184,188],behavior:[17,33,64,106,107,116,117,119,121,124,127,137,143,146,150,159,166,168,172,174,185,188,198,203],behaviour:[51,54,69,124,125,165,196],behind:[31,54,55,60,62,63,64,71,80,85,117,142,143,160,162,164,165,167,168,172,175,178,184,188,199],being:[0,11,14,37,41,45,52,56,61,79,107,111,116,117,119,124,126,127,129,136,137,138,140,146,151,154,156,160,161,166,167,174,179,183,184,185,189,192,203],beings:119,believ:160,bell:[115,190],belli:[114,190],belong:[37,43,61,88,117,139,140,154,164,168,179,183,205],below:[0,3,7,12,14,15,16,17,22,24,30,40,43,45,47,48,49,50,52,55,56,59,61,62,66,73,81,97,98,101,102,107,109,115,117,121,123,124,125,132,134,136,139,143,148,149,150,151,152,156,157,159,163,164,165,166,167,168,169,173,175,178,183,185,190,200],belt:174,ben:178,benchmark:[50,107,150,152,174,186,203],bend:155,benefici:[30,152,184],benefit:[32,64,104,111,118,154,166,168,189],bengio:[29,52,83,138,176,193],benign:41,bensor:45,bere:35,bereft:183,berkelei:189,bernhard:61,bernoulli:160,bernulli:160,besid:[47,124,137,139,140,149,150,166,184,206],bespok:169,best:[1,3,10,20,22,31,33,40,41,47,49,50,51,52,54,55,56,58,59,60,61,63,68,69,79,81,87,88,89,106,113,115,118,124,125,129,137,146,148,150,156,159,160,165,166,167,171,172,174,178,179,180,184,190,191,196,197,199,200,203,206],best_estimator_:[54,55,58,59,60,61,62,63],best_k:88,best_kmean:167,best_model:40,best_model_1:41,best_model_2:41,best_model_ann:46,best_model_ann_2:46,best_model_cnn:[40,46],best_model_cnn_2:46,best_model_lstm:46,best_model_lstm_2:46,best_model_rnn:46,best_model_rnn_2:46,best_param:56,best_params_:[52,54,55,56,58,59,60,61,62,63,89,159,167],best_run:[9,105],best_score_:[52,58,61,89,159],beta16:134,beta1:[38,134,138],beta2:134,beta:[38,139,144,166],beta_1:[34,194],beta_2:34,beta_end:135,beta_start:135,beta_t:135,betas_t:135,beth:181,better:[1,3,7,14,23,30,31,32,34,37,49,50,51,52,54,56,57,58,59,61,64,68,69,71,80,81,82,85,87,104,106,108,113,116,117,119,121,122,124,131,139,142,143,146,148,149,150,151,152,154,155,156,159,160,161,163,164,166,167,168,170,171,173,174,175,178,182,183,184,188,198,199,200],bettter:63,between:[7,14,18,21,30,31,33,34,37,41,43,49,50,51,52,54,55,59,61,62,63,64,65,66,67,80,81,82,83,88,91,93,97,106,107,109,111,114,116,117,118,119,121,123,126,127,129,131,134,135,136,137,139,140,141,142,143,145,146,148,149,150,151,152,154,155,157,160,162,165,166,167,168,169,171,173,174,178,179,180,181,182,183,184,189,190,192,194,196,198,200,203,205,206],bewar:169,bewild:172,beyond:[7,48,52,62,63,121,122,136,142,146,147,150,174,183,200],bfill:7,bhwdaa:[123,192],bhwdapqz8s0:[123,192],bhwdapqz8s0baaaaaaaaaa:[123,192],bi:[104,184],bia:[38,47,56,58,65,67,79,81,86,107,117,131,134,139,143,145,146,150,152,156,165,175,186,188,200,201],bias1x1:139,bias3x3:139,bias:[41,48,51,87,107,117,122,131,149,174,186,188],bias_add:134,biasid:139,bib:106,bibb:151,bibliographi:106,bicolor:[114,190],bidirect:141,big:[3,45,58,59,64,71,85,103,104,119,136,142,148,150,160,167,168,174,179,180,185,188],big_arrai:191,big_integ:[184,206],bigger:[143,150,154,160,178,205],biggest:[69,174,203],bigodot:141,bigoplu:141,bigtabl:192,bilibili:175,bilinear:[35,139,140,144,167],bill:[183,184,185,206],bin:[18,22,29,39,49,51,54,55,56,60,61,62,114,121,123,132,144,178,179,180,190],binar:59,binari:[22,37,43,52,56,58,61,71,79,83,85,89,97,124,132,141,143,159,160,161,164,165,167,171,172,174,182,184,191,206],binary_cross_entropi:31,binary_crossentropi:[41,143,194,204],binary_search:97,binaryclass:59,binarycrossentropi:[37,138],bind:183,bing:[3,138,160],binomi:165,bio:107,biolog:[136,143],biologist:7,birch:154,birchard:185,bird:[4,19,125,132],birth:[15,69],birth_month:15,bit:[1,7,14,40,41,68,69,71,73,85,87,114,116,120,122,129,136,155,160,161,165,167,171,175,178,179,180,182,183,196],bitwis:[124,184,206],bitwise_and:124,bitwise_or:124,bitwise_xor:124,bivari:56,bizarr:113,bj:184,bla:69,black:[1,49,52,56,72,114,115,132,137,139,165,167,169,182,190],black_pepp:172,blackbox:[59,60,174],blank:[123,154,169,171,180,183],blend:[59,134,139,156],blend_models_predict:56,bleu:150,blind:113,blit:135,blob:[124,167,178,179],blob_cent:167,blob_std:167,blobs_plot:167,block:[38,43,59,60,79,87,97,135,136,139,140,142,165,169,180,182,183,184,185,199,205,206,207],block_13_expand_relu:140,block_16_project:140,block_1_expand_relu:140,block_3_expand_relu:140,block_6_expand_relu:140,block_depth:35,block_num:132,block_siz:132,blog:[1,14,28,29,31,52,58,104,107,109,115,124,125,155,160,167,186,192],blood:[24,106,182],bloom:148,blount:151,blq:56,blu:142,blue:[30,39,43,44,47,52,56,71,81,85,109,113,114,121,139,142,143,149,154,155,159,160,178,182,183,190,200],blue_count:[71,85],blueprint:[183,205],bluetooth:[71,85],bluff:200,blur:[33,73],blurri:30,bm_axi:125,bmatrix:200,bmi:182,bmi_distribut:24,bmp:168,bn:[32,38,139,140],bn_axi:140,bn_conv1:140,bn_name_bas:140,bo:[140,167,168,198],board:[22,137,174],boat:194,bob:[184,191],bodi:[15,24,114,118,121,139,169,182,183],boil:52,bold:[64,88,146],boldfac:[174,203],boldsymbol:175,bolster:152,bonu:[16,18,28],book:[0,12,18,25,51,52,98,106,109,113,117,119,121,124,125,126,127,131,134,146,147,157,159,167,172,179,183,191,205],book_cov:134,book_sal:146,bool:[14,29,122,124,125,126,127,144,167,183,184,185,191,206],bool_vec:127,boolean_arrai:124,booleanarrai:126,boost:[52,59,60,69,89,147,150,159,163,167,168,172],booster:[56,68,161,163,164],boosting_typ:56,boostrap:68,boot:[30,41,43,59],bootstrap:[51,54,55,157,159,160,164],border:[52,132,139,140,144,155,159,160,165,167,168,169,171,175,176,178],bore:39,born:160,borrow:183,boser:61,boss:52,boston:[117,188],bot:150,both:[1,7,14,29,30,31,32,33,41,43,45,48,49,51,52,54,56,58,59,60,61,62,63,64,65,66,67,68,71,74,79,80,83,85,87,97,105,107,109,113,116,117,119,121,122,124,125,126,127,129,136,137,138,140,142,144,146,148,149,150,152,159,160,162,163,164,165,166,168,169,173,174,182,183,184,188,190,192,194,203],bother:[87,180],bottleneck:135,bottom:[31,34,52,124,179,180,199],bottommost:183,bottou:193,bouhsin:46,bounc:150,bound:[42,45,49,52,97,114,124,126,127,137,144,150,167,168,174,179,183],boundari:[52,61,62,63,73,83,121,126,143,152,155,156,159,204],bounding_box_coord:42,box:[18,42,45,52,105,113,121,132,144,159,169,174,178,180,199],box_ind:144,box_logit:144,boxenplot:69,boxplot:[18,56,61,66,155],bp:182,br:15,brace:[184,206],bracket:[124,150,184,185,206],brain:[136,143,185,203],branch:[0,117,139,142,149,160,164,183,188,203],brand:[109,160,174,203],brave:183,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:61,breach:[117,188],bread:125,breakdown:[14,81,118,185],breakfast:[183,205],breakthrough:132,breathtak:[107,186],breed:[38,140],breez:150,breiman:[156,159],breinman:157,breviti:183,breweri:121,bridg:[142,152],brief:[141,174],briefli:[17,28,56,117],bright:[34,139],brighter:114,brill:152,brilliant:171,brilliantli:160,bring:[51,54,56,83,106,129,141,149,151,160,192],britannica:119,british:[7,185],broad:[64,115,117,119,121,139,146,149,152,174,183,188,190,203],broadcast:127,broaden:107,broader:[69,117,119,147,150],broadli:117,broken:[53,61,111,118,149,157,189],brook:207,brother:169,brought:[15,129],brown:[115,190],brows:[64,183],browser:[16,39,105,106,123,169],bruce:121,bruis:[115,190],brush:182,brute:151,bsmtcond:56,bsmtexposur:56,bsmtfinsf1:56,bsmtfinsf2:56,bsmtfintype1:56,bsmtfintype2:56,bsmtfullbath:56,bsmthalfbath:56,bsmtqual:56,bsmtunfsf:56,btc:39,btcdf:39,btcsave2:39,btn:169,bu:121,bubbl:190,bucket:56,buddi:183,budget:[104,187],budgetari:106,buff:[115,190],buffer:[119,124],buffer_s:[35,135,140],buffet:145,bug:[4,49,109,141,149,150,185,205],buggi:[74,90],bugi:145,bui:[36,55,59,60,104,109,117,154,178],build:[1,4,8,13,33,41,45,51,54,59,60,61,66,74,79,80,81,82,87,88,90,94,103,104,105,106,107,109,111,114,115,116,117,119,121,123,125,131,132,135,136,139,140,141,143,144,145,147,148,149,150,151,152,156,157,159,160,163,164,168,170,172,173,174,181,182,183,184,186,187,189,192,195,200,202,203,206],build_vocab:141,builder:139,built:[1,3,7,12,29,41,45,52,68,74,87,90,96,113,114,115,116,117,121,124,127,129,143,147,148,149,151,155,160,161,169,179,182,183,184,185,191,195,205,206],builtin:[168,198,205],bulk:109,bulki:149,bull:156,bullet:160,bump:[117,188],bunch:[0,1,31,52,59,60,119,138,174,184,203],bundl:149,buolamwini:[107,186],burgeon:[129,192],burn:169,bushel:[178,180],busi:[7,69,104,107,109,111,117,119,142,146,148,149,150,151,152,154,169,186,189],buss:113,butter:125,button:[15,72,105,106,123,169,182,185,199],bw_adjust:114,bwteen:41,bx8rsirp:61,bx:[29,30,33,178,184],bytearrai:[184,206],bytesio:[42,73,135,145],c0:191,c1000:14,c100:14,c1:[14,22,24,55,97,140,191],c2:[14,24,55,97,140,144,191],c3:[14,97,140],c4:[14,52,140,144],c5:[32,140],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:61,c64u:61,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:61,c:[1,14,22,32,33,47,52,56,57,59,62,63,64,66,69,82,88,97,98,109,114,121,122,123,124,125,126,127,134,141,144,145,146,151,155,157,159,164,165,167,168,173,178,179,180,183,184,191,196,198,199,201,202,205,206],c_1:167,c_:[52,81,121,159,167,168],c_i:[167,168],c_j:168,c_k:[168,198],ca:[45,116,137,169,190],cab:[107,186],cach:[35,55,60,124,140,141,152,167,192],cache_data:[73,199],cache_resourc:199,cachedproperti:125,caerulescen:[114,190],cal_data:63,calc_grad_til:73,calc_loss:133,calcul:[6,7,8,14,18,25,29,30,31,33,35,37,39,41,47,50,51,52,56,61,66,69,71,80,81,82,83,85,88,101,121,123,124,125,127,129,133,143,144,145,150,152,155,156,157,159,160,163,164,165,167,168,175,176,178,179,180,183,192,198,206],calculate_discrimin:184,calculate_sum:97,calculu:80,calendar:[183,205],calendar_clock:[183,205],calendarclock:[183,205],california:[14,117,174,191],call:[1,3,18,22,29,30,31,33,37,41,42,43,45,49,50,51,52,53,56,59,61,62,63,65,67,71,79,81,83,85,87,97,98,104,105,106,109,113,115,117,118,119,121,123,124,125,126,127,129,131,135,136,137,139,140,141,143,144,146,149,150,153,154,155,156,157,159,160,163,164,165,166,167,168,169,171,172,174,175,176,178,179,180,182,183,184,185,191,192,199,203,204,206],call_func:[183,205],callabl:[61,127],callback:[30,32,35,40,42,46,68,140,163,164,166],callout:178,cam_extract_path:29,cam_zip_file_path:29,came:[52,69,118,149,160],camera:[40,71,85,119,124,139],campaign:69,can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,37,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,76,79,80,81,82,83,85,87,88,90,96,97,98,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186,189,190,191,192,194,196,198,199,200,203,204,205,206,207],canada:[14,142,169],canari:149,cancel:[41,117,156,188],cancer:41,candi:179,candid:[52,59,60,61,62,63,159,167,180,197],canin:183,cannot:[7,14,18,22,24,30,40,47,49,52,55,61,68,114,118,119,122,124,126,154,160,166,167,168,179,183,184,190,206],canon:124,canva:72,canvas_orig:131,canvas_recon:131,canvas_result:72,cap:[69,115,190],capabl:[56,87,106,117,119,127,148,149,179,184,187,188,203,206],capac:[49,50,64,71,85,149,150],capcolor:[115,190],capit:[98,183,184],capital_gain:53,capital_loss:53,capitalize_first_lett:98,capitalize_word:98,capitalized_sent:98,capitalized_word:98,caption:[136,174],captiv:125,captur:[15,23,33,40,68,81,82,108,113,117,118,119,146,148,150,166,178,194],car:[59,60,117,118,136,137,140,142,143,144,174,188,203],car_data:59,car_label:59,car_labels_prepar:59,car_test:59,car_test_label:59,car_test_labels_prepar:59,car_test_prepar:59,car_train:59,car_train_prepar:59,carambola:40,carbon:107,card:[106,117,154,188],cardiac:143,cardiovascular:106,care:[20,47,58,59,60,71,85,96,107,113,116,117,124,127,163,164,166,169,174,183,188],carefulli:[51,160],caregor:58,carlo:121,carnam:184,carri:[7,59,122],cart:[52,159,160],carton:178,carv:[155,179,181],cascad:140,cassandra:192,cassett:154,cast:[29,124,133,135,137,140,141,144,145],casted_kei:127,cat1:1,cat2:1,cat:[15,33,56,63,79,125,132,139,142,174,183,194,205],cat_col:56,cat_feat:[63,79],cat_feats_enc:79,cat_feats_encod:79,cat_feats_hot:79,cat_feats_pip:79,cat_feats_preprocess:79,cat_fil:33,cat_list:[63,79],cat_on_snow:133,cat_train:56,catalog:[16,23,107,114,186],catastroph:165,catboost_search:56,catboostregressor:56,catcher:121,categor:[51,52,54,58,60,63,68,69,83,88,116,118,121,122,123,124,125,142,143,150,159,161,174,179,182,192,203],categori:[1,7,40,43,52,53,56,58,61,62,69,71,79,83,85,104,109,111,113,114,115,117,118,119,136,137,139,140,143,148,150,152,155,157,165,167,171,172,173,174,178,179,182,184,189,190,191,196,203,204,206],categorical_crossentropi:[32,34,40,49],categoricalcrossentropi:[41,140],category_count:190,category_encod:53,cater:69,cathi:191,catplot:[58,179],caught:126,cauliflow:171,caus:[1,14,18,28,30,48,49,51,56,59,61,64,65,66,67,71,85,106,107,116,117,119,121,122,126,127,143,148,149,150,157,159,163,165,166,183,184,186,196,205,206],causal:121,causat:154,caution:113,cb:56,cbar:[41,66,71,85,143],cbar_kw:39,cbeddd:69,cc:[45,51,106,133,150,157],ccc:157,cccc:157,ccd:116,ccp_alpha:[58,59,60],ccpa:117,cd:[0,149,151,154,169],cdata_estim:89,cdata_estimator_predict:89,cdc:151,cdeott:32,cdist:[168,198],cdot:[80,83,87,157,160],ce:53,ceil:138,celeba:135,celebr:[31,52],cell:[0,3,7,17,39,41,44,45,46,47,48,49,50,59,60,62,63,68,69,87,88,101,102,106,122,123,124,125,126,127,136,141,145,146,154,159,163,164,165,167,178,180,182,183,191,193],censor:98,censor_word:98,cent:[39,178],cent_histori:[168,198],center:[14,22,35,39,68,69,72,88,104,111,115,121,124,129,132,139,140,143,144,149,151,154,155,157,159,165,167,168,169,171,175,176,178,190,196,198,200],center_circl:[115,190],centercrop:38,centernessnet:144,centimet:[62,190],centr:165,central:[55,60,106,148],centralu:106,centric:148,centroid:[154,155,168,198],centuri:[113,169],cerdeira:50,certain:[7,14,30,33,41,43,52,56,61,79,81,83,98,111,119,121,124,137,138,143,145,148,149,150,151,152,154,159,165,166,172,174,178,182,183,184,189,203,206,207],certainli:[37,136,167],cfees8eopk:123,cg:172,cgcug0a0c6nut:61,chain:[33,43,80,87,126,143,148,175,178,183],chained_assign:143,chair:[139,150],challeng:[3,8,28,40,43,48,80,83,104,107,108,116,119,121,122,125,129,149,150,151,152,154,164,172,174,185,186,192,207],champion:199,chan:144,chanc:[37,51,58,71,85,121,129,136,163],chang:[0,7,8,14,20,30,33,41,45,47,49,50,51,52,54,55,57,58,59,64,65,67,80,88,90,96,106,107,108,111,113,114,115,116,118,121,122,123,124,126,129,135,137,140,144,145,149,150,151,152,154,157,159,160,165,168,169,170,174,175,176,178,180,183,184,185,186,191,192,196,198,205,206],changeabl:[184,206],changer:103,channel:[31,33,35,37,38,40,55,60,73,132,134,139,140,144,164,168,189],channels_first:144,channels_last:140,chao:52,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,81,85,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,151,154,155,156,157,159,160,161,163,164,167,169,171,172,173,174,178,179,180,181,182,183,184,185,191],chapter_id:167,charact:[3,49,105,113,117,118,119,123,184,185,206,207],characterist:[30,31,49,56,60,61,82,118,123,137,150,160,174,179],charg:[23,52,71,85,97,98,106,156,183,184,185],charli:184,charset:[15,169],chart:[13,19,27,81,114,115,117,155,164,178,180,188],chart_data:199,charticul:115,chase:169,chatbot:142,chatgpt:[97,98,142],cheaper:[111,117],cheat:[152,172,173,176],cheatsheet:172,check:[0,3,7,10,14,20,22,24,29,31,36,40,41,42,45,47,48,51,52,54,58,60,62,63,65,67,69,88,97,98,104,105,106,107,108,117,122,132,135,136,137,138,140,141,147,149,154,155,157,159,160,163,167,168,169,171,172,182,183,185,186,198,204,206],check_dtyp:14,check_nam:14,check_str_or_non:126,check_valu:151,check_win_condit:137,checklist:[28,188],checkout:[0,149],checkpoint:141,chef:171,chen:144,cherri:[109,184,206],chervonenki:61,chess:[136,137,174],chest_pain:143,chester:169,chicago:184,child:[157,173,183],children:[11,22,69,117,157,188],children_:167,china:[14,117,142],chines:[171,172,173,175],chinese_df:171,chinese_ingredient_df:171,chiphuyen:150,chlorid:50,chloroquin:[1,8],chmax:[55,60],chmin:[55,60],chnage:[65,67],chnormal:37,choc:136,chocol:179,choderlo:113,choic:[7,27,32,41,51,71,85,106,111,113,117,119,122,124,132,136,137,141,149,150,154,159,160,167,171,172,174,179,188,203,204],chollet:29,choos:[7,29,48,50,51,58,61,71,73,80,82,85,105,109,116,122,124,125,136,137,139,143,146,148,149,150,152,154,155,156,159,160,165,166,167,173,174,175,179,185,197,198,203],chop:171,chord:[1,8],chose:[34,35,74,104,127,167,191],chosen:[33,50,56,61,106,116,124,150,156,165,167,168,169,199],chr:140,chri:32,chrome:106,chronolog:[117,188],chuck:97,chunhua:144,chunk:[73,119,168],chunk_siz:73,churn:[156,159,160,203],churn_cal:156,churn_mean_scor:156,ci:[33,116,140,146,149,151],cid:175,cifar10:[33,132],cifar10_extract_path:33,cifar10_label:132,cifar10_mdoel_nam:33,cifar10_model_respons:33,cifar10_model_save_path:33,cifar10_model_url:33,cifar10_nam:33,cifar10_respons:33,cifar10_save_path:33,cifar10_url:[33,132],cifar10_zip_file_path:33,cifar10cnnmodel:33,cifar:33,cifar_labels_fil:132,cifar_link:132,cine:145,cinnamon:[115,190],circl:[113,115,154,159,165,169,190],circle_color:167,circu:185,circuit:[106,139],circuitri:106,circular:[145,169],circumfer:116,circumst:117,cite:[59,60,120,151,182],citi:[12,17,23,51,54,79,107,113,117,136,142,150,169,178,179,180,186,188],citizen:[117,183,188],citric:50,city_:58,city_development_index:58,city_id:[12,129,192],ck:33,cl:139,cla:[168,198],claim:[97,98,183,184,185],claremont:107,clarif:23,clarifi:[108,109,149,164],clariti:[1,69,80,109,160],clasifi:88,class_busi:7,class_economi:7,class_emb:144,class_first:7,class_label:7,class_nam:[41,43,59,157],class_report:[54,59],class_weight:[51,54,59,159],classes_:172,classfic:168,classic:[41,43,52,62,63,88,131,137,138,161,165,171,174,179,203],classif:[9,32,37,40,45,55,60,63,66,69,80,90,105,106,107,111,117,121,125,131,136,140,141,143,144,145,150,156,157,159,161,162,164,165,166,167,168,172,175,182,186,188,189,194,197,201,202,203,204],classifi:[29,32,37,49,52,58,61,66,69,71,76,85,87,88,90,118,125,136,139,143,145,150,154,156,157,159,160,161,165,167,170,174,179,194,196,201,202,203,204],classification_accuraci:61,classification_error:61,classification_model_nam:43,classification_model_respons:43,classification_model_save_path:43,classification_model_url:43,classification_report:[40,41,49,53,54,59,61,62,71,72,85,89,169,172,173,179],classnam:38,claus:[123,142,183,184,205],clean:[3,18,20,22,37,41,48,56,81,94,107,108,111,113,141,145,146,148,150,151,155,172,173,174,178,180,186,189,191],clean_data:22,clean_fresh_fruit:[184,206],clean_text:145,cleand_df:48,cleaned_cuisin:[70,171,172,173],cleaner:183,cleanli:139,cleanprep:39,cleans:111,cleanup:148,clear:[3,7,8,12,14,25,40,41,52,53,61,69,82,109,116,124,125,157,160,173,174,179,182,184,185,206],clear_output:[87,133,140],clearer:[174,203],clearli:[1,14,16,28,37,49,50,54,59,60,69,109,145,146,150,152,160,168,174,175,178,185,198,203],clees:183,clever:[14,185],clf1:51,clf2:51,clf3:51,clf:[51,53,142,165,168,196,198],clf_tree:52,cli:106,click:[0,3,39,47,49,50,53,73,105,106,113,123,171,174,177,180,181,182,185,199],client:[15,17,23,52,104,152,156,160,167,183,199],climat:[107,116,186],climax:109,climb:39,clinic:[142,182],clint:97,clion:39,clionproject:39,clip:[35,37,73,89,132,134,150,174,203],clip_by_valu:[29,30,35,133],clip_value_max:[29,30],clip_value_min:[29,30],clipart:39,clipboard:121,clipped_zoom:89,clobber:124,clock:[106,183,205],clock_spe:[71,85],clockwis:[34,89],clone:[0,38,149],clone_model:35,close:[1,7,8,29,30,31,33,38,39,40,46,51,52,54,58,61,66,69,71,79,80,81,83,85,97,106,113,115,121,122,126,132,136,137,142,155,159,164,167,168,178,185,190,200],close_pric:39,closer:[14,34,50,54,55,58,61,82,87,149,155,157,167,168,180,194],closest:[41,61,106,118,154,155,165,167,168,198],closur:[109,183],cloth:148,cloud:[1,3,21,96,106,107,111,119,123,125,148,149,150,152,169,172,186,188,189,192,195],cloud_link:146,cloud_url:169,cloudform:149,cloudmus:39,cloudwatch:148,club:93,cluster:[30,52,111,114,119,121,131,149,159,173,174,178,189,203],cluster_centers_:167,cluster_classification_plot:167,cluster_dist:167,cluster_std:[165,167,196],clusterer1:167,clusterer2:167,clusterpoint:192,clustr:[69,147],clustroid:154,clutter:[114,139],cm:[31,41,43,48,53,54,59,61,62,71,85,88,122,143,157,167,168,190,198,201,202],cm_matrix:[53,61],cmap:[1,31,39,43,51,52,53,54,55,56,61,69,71,72,79,80,85,87,88,89,131,132,138,143,159,165,167,168,196,198,201,202,204],cmd:185,cn:39,cncf:149,cnn:[40,42,134,136,139],cnn_builder:46,cnt:57,co:[1,2,8,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,107,114,115,116,121,123,124,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,160,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,186,190,198],coars:[139,140],coat:[30,41,43],coca:25,coca_cola_co:25,cocacola:25,code3:151,code:[0,1,3,5,7,8,9,12,14,18,30,31,35,39,43,47,48,49,50,52,58,68,71,81,82,83,85,87,88,90,97,101,102,103,105,107,113,114,115,119,121,122,124,125,126,127,136,138,146,147,150,151,156,159,161,163,165,167,169,170,174,176,178,179,180,181,182,183,184,186,188,191,196,199,203,206,207],codedivheight:183,codedivwidth:183,coef0:62,coef:[68,79],coef_:[68,79,178,200,201,202],coeff:167,coeffici:[56,68,79,81,82,83,146,159,160,166,167,168,178],coerc:[36,69],cognit:[1,104,124,188],coher:[26,142,155,192],coin:[174,203],coinbas:39,coincid:[113,135],col1:[69,124],col2:[69,124],col3:69,col:[35,39,46,47,53,56,58,61,115,116,127,159,190,191,199],col_nam:[53,56,61],col_vector:124,col_wrap:[116,190],cola:25,colab:[41,45,47,49,50,136],cold:[111,189],colder:148,coll:[123,192],collabor:[107,117,149,151],collaps:116,collect:[3,6,11,31,33,36,43,51,52,54,60,81,93,104,105,107,109,111,113,117,118,119,123,124,127,129,141,145,148,150,151,156,164,165,178,182,183,184,185,186,188,189,192,204,205,206,207],collector:40,collinear:68,colnam:127,colon:183,coloni:[13,116,190],color:[1,14,18,22,29,30,33,34,39,40,43,44,51,52,53,54,56,58,69,71,72,81,82,85,88,109,114,115,116,117,118,121,124,139,140,146,154,155,157,159,165,167,168,169,178,179,180,182,184,188,190,196,198,200,201,202,206],color_bgr2grai:72,color_mod:72,color_palett:146,color_threshold:168,colorbar:[43,168,198],colorblind:116,colorjitt:38,colormap:167,colour:139,cols_del:69,colsample_bylevel:[68,163,164],colsample_bynod:[68,163,164],colsample_bytre:[68,163,164],colum:56,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,39,40,41,42,45,46,47,48,49,50,54,55,57,58,59,60,61,62,66,68,69,70,71,79,81,85,88,105,106,108,115,116,118,122,123,124,125,126,129,136,143,146,151,154,155,159,161,164,168,169,171,172,175,178,179,180,184,190,191,192,200,206],column_diff:14,column_filt:14,column_index:127,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:59,column_to_diff:14,column_to_format:48,column_to_format_uniqu:48,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[123,192],columns_to_plot:24,columntransform:[63,79,200],com:[1,2,3,12,14,18,25,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,58,68,70,71,73,85,88,89,106,109,113,114,115,116,117,119,121,125,126,127,132,133,134,135,138,139,140,142,144,146,151,152,154,155,156,157,158,159,161,163,164,167,168,169,171,172,173,174,175,176,178,179,180,183,184,187,188,190,192,193,194],comapani:58,combin:[33,37,41,50,51,52,54,55,56,58,61,63,64,71,79,80,85,86,87,89,104,107,111,113,118,134,136,139,140,142,143,146,148,149,150,151,152,156,159,160,162,163,164,165,168,173,174,175,178,182,183,184,189,200,201,206],combined_imag:37,come:[7,36,45,50,53,59,64,66,68,69,71,82,85,103,108,109,111,113,114,117,118,119,121,124,125,136,139,143,146,147,151,154,156,159,161,164,166,168,174,175,178,183,184,185,191,196,198,199],comedi:185,comfort:[7,48,56,122,182],comma:[98,124,173,184,206],command:[49,53,106,117,118,129,137,142,163,182,184,185,192,206],comment:[47,50,52,109,117,118,133,169,182,188,205],commerc:154,commerci:109,commiss:[17,23],commit:[0,117],committe:64,commom:[62,71,85],common:[7,31,33,41,47,48,49,50,52,56,58,61,64,68,81,97,104,108,109,111,117,118,124,125,127,129,132,133,141,143,144,146,148,149,150,151,154,155,160,163,165,166,167,168,171,180,181,182,183,185,187,191,206],common_el:184,common_norm:[114,190],commonest:49,commonli:[43,56,63,64,71,81,85,104,127,136,143,148,149,150,151,164,166,168,174,183,204],commun:[28,45,72,73,108,110,111,117,119,136,142,147,149,151,160,174,185,194],comp:145,compact:132,compani:[6,109,118,148,152,160,184,185],company_s:58,company_typ:58,companyx:184,compar:[14,18,21,31,33,43,49,50,52,53,56,62,63,65,66,67,71,79,82,85,95,97,98,106,113,114,116,119,121,124,126,131,135,139,150,151,152,156,157,159,164,168,172,174,179,184,203,206],comparis:[65,67],comparison:[8,14,50,52,97,111,116,118,121,123,150,156,160,165,172,183],compat:[15,30,36,37,57,73,106,124,126,134,137,141,145,147],compatible_format:205,compel:83,compens:[164,167],compet:160,competit:[136,146,152,160,163,164],compexifi:52,compil:[1,7,29,30,32,34,35,36,39,40,42,44,46,47,49,50,64,72,132,140,143,149,185,191,194],compilaton:41,complain:69,complaint:[109,117,188],compleletli:[71,85],complementari:146,complet:[1,8,21,24,34,41,42,43,51,52,54,55,58,59,60,64,71,74,80,85,106,111,113,117,119,121,124,125,127,132,135,139,142,143,144,145,146,148,150,152,164,166,167,168,174,176,178,179,180,183,184,185,187,198,205,206],completeness_scor:168,complex32:124,complex:[0,1,31,32,33,51,59,60,62,63,65,66,67,68,71,81,83,85,116,119,124,129,136,139,142,143,144,146,147,148,149,150,152,156,162,165,166,167,171,174,183,185,193,194,196,197,204,207],complex_numb:183,complex_number_1:[184,206],complex_number_2:[184,206],complex_number__1:206,complexnumb:183,complexnumberwithconstructor:183,compli:117,complianc:[22,47,49,50,117,188],compliant:117,complic:[37,52,87,119,124,143,148,149,150,160,163,166,167,180,194],compon:[35,69,80,81,106,107,113,123,131,137,146,148,149,150,151,156,160,163,165,185,186],components_:[167,168,198],compos:[37,38,63,79,87,131,142,148,149,160,168,200],compose_greet_func:183,compose_greet_func_with_closur:183,composit:[124,159],compound:[184,191,206],compound_stmt:183,comprehend:51,comprehens:[98,113,127,142,143,150,178],compress:[29,30,31,111,131,136,139],compris:[40,106,149],compromis:[7,122],comput:[3,7,18,22,32,33,37,41,43,45,48,49,51,52,55,56,60,61,68,73,80,81,82,86,87,89,104,107,108,111,119,121,122,123,125,126,127,131,134,136,138,139,142,143,144,145,147,148,149,150,152,156,157,159,160,164,165,166,168,171,174,175,179,182,184,186,187,188,199,200,201,203,206,207],computation:[33,37,52,58,124,126,136,139,146,162],computationn:33,compute_reciproc:191,compute_target:[9,105],con:[7,49,58,106,117],concat:[22,30,35,37,39,44,56,58,68,135,139,140,141,143,144,146,171,183,184],concat_axi:125,concat_index:125,concaten:[34,35,39,57,81,124,125,135,140,143,144,180,184,194,200,201,202,206],concatenated_str:183,concav:135,conceiv:[151,183],concentr:154,concept:[3,18,29,31,49,52,61,80,81,82,106,107,119,121,123,124,127,132,139,147,148,149,150,151,152,157,160,164,165,166,172,177,179,182,184,193,206],conceptu:160,concern:[7,42,49,56,60,61,69,79,111,114,117,122,142,148,149,152,160,178,190,203],concis:[124,156,174,183,184,206],conclud:[58,61,69,80,107,113,121,150,157,168],conclus:[24,52,108,117,119,178],concret:[152,168,174,198],concurr:[89,105,106],conda:[0,30,36,37,114],condens:137,condit:[3,22,31,40,41,47,49,50,52,56,98,107,117,124,135,139,143,150,157,159,160,168,178,179,180,183,184,185,205,206],condition2:56,condorcet:156,conduct:[58,105,117,168,188],conf:18,conf_matrix:[54,59],confer:[109,113,125],confid:[41,43,50,71,85,116,139,150,151,154,156,160],config:[9,39,52,68,73,141,146,156,159,168,198,199],configur:[10,43,47,49,104,106,145,148,149,150,174,180,181,183],confirm:[14,30,47,49,50,61,108,111,117,167,178,188,189],conflict:[98,109,117,127],conform:[118,127,148,150],confus:[7,34,41,52,54,59,62,71,85,88,109,122,124,143,157,159,164,166,171,183],confusingli:167,confusion_matrix:[34,40,41,53,54,59,61,62,71,72,85,88,89,143,172,173,175,179,201,202],confusion_mtx:34,congratul:[105,106,178,179,182,185],conjug:97,conjunct:119,connect:[6,30,32,33,35,43,45,47,50,64,87,97,98,107,109,117,121,139,140,142,143,145,150,166,183,184,185,194],connectionist:83,conquer:160,consciou:7,consecut:[14,32,41,51,164],consent:[117,188],consequ:[28,107,117,137,188],conserv:[114,190],conservationstatu:[114,190],consid:[1,3,7,8,11,14,18,22,24,29,37,40,41,43,47,48,51,52,55,58,64,66,80,81,98,106,108,109,111,113,118,119,120,121,122,131,132,137,139,141,142,143,146,149,150,151,152,154,156,157,159,160,161,164,165,166,167,168,169,174,179,182,183,184,196,198,205,206],consider:[61,69,106,111,117,119,120,127,160,163,167,188,189],consist:[0,1,3,8,15,30,33,34,37,43,47,51,52,54,56,61,93,111,117,122,124,131,139,140,148,149,150,151,152,157,166,168,174,178,180,184,188,189,192,203],consol:127,consolid:80,conspiraci:64,constant:[52,65,67,80,83,124,133,134,135,137,138,139,143,145,150,160,164,175],constant_initi:144,constantli:119,constitut:143,constrain:[30,137,154],constraint:[30,106,111,124,139,149,150,154,166,168,172,198],construct:[30,52,124,127,131,135,138,139,143,146,148,154,156,159,160,161,164,183,184,206],constructor:[127,139,183,184,205,206],consult:[7,125],consum:[10,20,43,47,103,105,106,108,113,116,117,118,148,150,152,165,169,174,187],consumpt:[113,169,187,191],cont:56,cont_num_var:56,contact:[192,199],contagi:179,contain:[1,3,6,7,12,14,15,17,22,29,31,33,37,38,40,41,42,43,47,48,49,50,51,52,53,54,56,59,61,62,64,71,79,85,88,91,96,97,98,105,106,108,111,118,121,122,123,125,127,129,136,138,139,140,142,143,145,148,149,150,154,156,158,159,161,164,167,169,171,174,178,179,180,182,183,184,191,205,206],container:149,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,61,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,147,150,152,154,155,156,157,159,160,161,163,164,169,171,172,173,174,178,179,180,182,183,184,185,191,198,199,200,201,204,206],contest:156,context:[9,28,31,52,61,80,105,107,109,111,117,126,127,134,140,142,150,152,154,155,166,167,169,181,183,184,186,188,189,206],contigu:124,contin:[59,60],continu:[0,1,17,18,31,33,34,41,49,50,52,56,57,60,61,64,80,81,82,83,104,105,107,114,116,121,124,125,129,135,140,142,143,149,150,151,152,154,155,159,160,161,166,169,174,179,185,203],contour:[165,167,196],contourf:[159,167,201,202],contract:[97,98,106,149,183,184,185],contradictori:150,contrari:[126,127,152],contrarili:183,contrast:[7,52,95,108,124,138,150,159,165,168,194],contrib:145,contribut:[48,54,55,59,60,68,107,124,125,126,127,142,143,147,150,156,157,159,183,184,185,186],contributor:147,control:[7,11,30,45,50,58,61,63,64,65,66,67,73,104,108,109,111,117,119,122,124,136,137,139,141,148,149,151,159,160,166,175,184,189,199,206],controlflow:183,conv0:144,conv10:35,conv1:140,conv1_1:134,conv1_2:134,conv1_featur:132,conv1_pad:140,conv1d:[46,136],conv2:35,conv2_1:134,conv2_2:134,conv2_featur:132,conv2d:[29,30,31,32,33,34,35,37,38,40,42,73,132,134,135,136,139,140,144],conv2d_1:[29,30,35,37],conv2d_20:42,conv2d_21:42,conv2d_22:42,conv2d_23:42,conv2d_24:42,conv2d_25:42,conv2d_26:42,conv2d_27:42,conv2d_28:42,conv2d_29:42,conv2d_2:[29,30,35,37],conv2d_3:37,conv2d_4:37,conv2d_5:37,conv2d_6:37,conv2d_7:37,conv2d_8:37,conv2d_9:37,conv2d_transpos:[29,30],conv2d_transpose_1:[29,30],conv2dt:30,conv2dtr:29,conv2dtra:30,conv2dtranspos:[29,30,135,140,144],conv3:35,conv3_1:134,conv3_2:134,conv3_3:134,conv3_4:134,conv3d:136,conv4:35,conv4_1:134,conv4_2:134,conv4_3:134,conv4_4:134,conv5:35,conv5_1:134,conv5_2:134,conv5_3:134,conv5_4:134,conv6:35,conv7:35,conv8:35,conv9:35,conv:[35,38,132,139,140,144],conv_block:139,conv_bn:139,conv_bn_relu:139,conv_lay:134,conv_name_bas:140,convei:[109,113,142,189],conveni:[7,48,56,116,121,122,127,140,157,160,168,178,179,183],convent:[42,45,47,71,85,129,136,152,163,183,185],converg:[37,80,114,150,154,167,168,174,198],convers:[1,48,82,106,109,122,142,150,152,180],convert:[1,3,7,14,31,37,39,41,42,43,45,47,49,51,58,59,61,66,79,88,89,91,97,98,105,113,115,117,119,126,127,131,132,133,134,139,141,143,145,164,169,174,178,180,184,199,203,204,206],convert_image_dtyp:133,convert_indic:126,convert_to_tensor:[133,137,139],convex:[115,135,190],convinc:[109,185,194],convlay:38,convnet:[135,136],convolut:[42,134,135,139,140,144,174,195,203],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convtranspose2d:[31,38],cooki:154,cool:[31,41,71,79,85,98,102,154,179],cooler:109,cooper:183,coord:[42,124],coordin:[42,45,52,64,116,124,137,144,149,172,174],cope:[40,159,160],copi:[0,1,7,14,22,29,30,31,47,48,49,50,56,66,69,71,73,85,97,98,122,124,125,126,127,129,143,146,159,168,171,173,180,183,184,185,191,198,206],coppa:117,copyreg:205,copyright:[22,47,49,50,97,98,183,184,185],cor:39,cord:[1,117,124],core:[7,9,14,16,29,39,59,60,61,62,69,71,79,85,105,106,117,120,122,125,126,127,129,139,140,143,154,159,160,163,164,167,169,171,178,191],core_mask:167,core_sample_indices_:167,corinna:61,corner:124,coronaviru:[1,151],corpor:[18,117,119],corr:[24,39,50,51,54,55,56,66,69,71,79,85,154,159,178],corr_winedf:50,corrcoef:[18,121],correct:[18,29,35,41,42,43,47,50,51,52,53,54,56,58,61,64,68,71,85,87,101,102,113,115,117,121,123,127,138,139,142,150,155,156,160,164,165,166,168,173,179,183,188,198,204,205,207],correct_label:155,correcti:[54,59],correctli:[6,34,41,43,49,50,54,56,58,59,61,71,85,88,108,139,149,155,160,164,168,176,178,184,198],correl:[8,14,51,54,66,69,107,113,114,116,117,119,146,150,154,155,159,160,165,168,169,174,186,188,194,198,200,203],correspond:[0,14,29,33,41,42,43,48,49,51,52,64,79,80,83,87,88,97,98,105,117,121,122,124,127,135,140,143,146,149,150,155,156,160,168,175,176,178,183,188,204,205],correspondingli:150,corrmat:[69,154],corrupt:174,corrwith:24,cort:61,cortex:193,cortez:50,cosin:[124,160],cosmo:[104,192],cost:[25,32,38,50,54,58,59,65,67,71,80,81,83,85,106,109,111,113,119,123,140,141,144,148,149,152,166,174,175,187,189],cost_funct:[65,67],costli:167,costlier:106,couchbas:192,couchdb:192,could:[0,5,7,10,16,17,20,23,26,29,30,32,33,34,41,47,48,49,50,52,56,57,59,60,61,64,66,68,71,85,87,104,106,109,114,116,117,118,121,122,123,124,129,137,139,146,148,149,150,151,152,154,155,156,160,164,166,167,169,171,172,174,178,179,183,184,191,192,194,203,206],couldn:[117,151,188],coulumn:14,count:[1,18,22,31,34,39,50,51,54,56,58,59,60,61,62,63,66,69,79,88,108,115,119,121,122,124,138,141,142,146,154,164,169,171,178,190,204,206],count_3g:[71,85],count_4g:[71,85],count_bug:205,count_digit:97,count_occurr:98,count_param:138,count_vector:142,count_vowel:184,count_word_occurr:98,countabl:121,counter:[141,183,205],counteract:83,counterintuit:150,counterpart:143,counti:113,countplot:[34,51,53,54,56,58,59,63,69,71,79,85],countri:[8,12,14,48,113,118,122,124,129,151,156,169,192,207],countries_and_region:14,countries_dataset_url:14,country_region:[14,151],countvector:142,coupl:[33,69,104,109,129,157,166,192],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,34,40,41,46,48,49,51,52,54,55,56,57,58,59,60,61,62,63,64,66,70,71,74,76,77,79,85,87,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,127,129,132,134,135,137,139,140,142,143,145,146,150,154,155,156,160,161,163,164,167,168,169,171,172,173,174,178,179,180,182,205],courvil:[29,52,83,138,176],cov:[18,121,168],covari:[18,114,159,168,190],cover:[3,30,51,82,111,116,117,119,122,123,124,125,134,136,155,168,174,181,182,185,189,191],covert:[109,189],covid19:151,covid:[104,113,117,151,152,188],coxboost:160,cp:143,cpickl:132,cpk:106,cpu:[31,33,38,55,60,73,105,106,138,198],cpu_cor:[9,105],cr:[114,190],crabtre:142,craft:[109,160],crash:[142,150,174],crawler:151,crazi:[145,161],creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,42,43,44,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,76,77,81,82,87,88,89,90,91,93,94,95,96,104,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,125,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,178,179,180,182,183,184,185,188,190,191,192,196,198,199,200,201,203,204,205,206,207],create_discrimin:194,create_gan:194,create_gener:194,create_ingredi:171,create_ingredient_df:171,create_mask:140,create_model:[40,137],create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:123,createlink:113,creatinin:106,creatinine_phosphokinas:[9,105,106],creation:[87,105,106,117,119,157,160,199],creativ:[7,113,160,174],creator:[125,132,151,160,169],credenti:106,credit:[26,52,107,117,154,157,188],crest:[51,54,55,79,114,190],crisi:104,crisp:111,criteria:[74,76,77,90,93,94,95,96,118,152,159,168,198],criterion:[31,38,52,58,59,60,83,117,157,159,168,176,204],critic:[37,56,82,106,107,109,114,119,142,148,149,150,151,152,168,174,177,190],crop:[31,35,40,132,178,179,180],crop_and_res:144,crop_height:132,crop_shap:144,crop_siz:[35,144],crop_to_bounding_box:[35,132],crop_width:132,cross:[22,37,51,58,66,68,71,83,85,111,125,126,135,139,142,146,150,156,165,167,172],cross_color:167,cross_entropi:[33,138],cross_val_predict:[71,79,85],cross_val_scor:[52,56,58,61,66,68,71,79,85,88,89,142,159,172,173],cross_valid:58,cross_validated_roc_auc:61,crossentropi:[49,87],crosstab:22,crowd:[51,115,154,156,190],crucial:[42,58,82,106,137,142,149,159,166],cruel:154,cruis:185,crypto:39,cs231n:[132,139],cs:[109,132,139,159,165,205],csci:205,csr:79,csr_matrix:79,css:[126,127,169,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],csse:[14,124,151],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,36,39,42,44,48,49,50,51,52,53,54,55,56,58,61,62,63,64,66,68,69,70,71,79,81,85,87,88,89,91,114,115,116,118,124,127,142,143,146,151,154,155,156,157,159,161,163,164,169,171,172,173,175,178,179,180,184,190,198,200,201,202,204],ct:[9,105,107,136,200],ctc:83,cto:148,cu3tc99fx:61,cube:[184,206],cuda:[31,33,38],cuisin:[70,170,173,182],cuisines_df:[70,172,173],cuisines_feature_df:[70,172,173],cuisines_label_df:[70,172,173],culliton:142,cultur:[107,109,142,188],cumprod:135,cumsum:[168,198],cumul:[137,161,178,183],cun:193,cup:145,cur_count:138,cur_group:139,cur_layer_idx:139,curat:[35,107,117,152,186],curb:83,cure:54,curinstr:183,curl:[12,25],curli:[184,185,206],curr_scor:57,currenc:39,current:[3,14,16,33,36,42,43,53,56,58,61,80,97,98,107,109,119,124,136,137,138,140,141,160,163,164,165,172,180,183,199,205],current_directori:183,current_numb:183,current_posit:36,curriculum:[76,104,171,178,182],curtain:40,curv:[14,47,49,50,52,56,64,68,80,82,114,146,154,159,160,165,167,174,178,203],cusin:171,custom:[3,6,16,23,42,45,105,107,109,111,113,117,118,125,135,136,148,149,152,154,156,157,159,164,169,174,179,183,184,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],custom_callback:41,custom_exception_is_caught:183,custom_loss:135,customer_for:69,cut:[40,52,159,167,168],cut_df:40,cutler:159,cutoff:141,cutoff_dist:167,cv2:[31,40,42,72,135],cv:[52,54,55,56,58,59,60,62,63,66,68,71,79,85,88,89,142,159,162,167],cv_cb:56,cv_fold:58,cv_gbc0:58,cv_gbc:58,cv_lgbm:56,cv_results_:[58,89],cv_ridg:68,cv_score:[58,66,88],cv_xgb:56,cvd:106,cvtcolor:72,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:61,cycl:[47,55,60,69,106,111,117,141,146,149,150,163],cycler:146,cylind:169,d1:[33,69],d3:192,d6b2b1:69,d8ca7e:37,d:[1,14,17,25,30,32,35,36,37,38,39,40,41,50,52,53,56,61,65,67,68,69,71,85,87,88,98,108,113,114,117,121,122,124,125,126,127,131,137,138,139,140,143,145,149,150,154,155,157,159,160,165,167,168,175,180,182,184,187,189,191,192,194,196,198,199,205,206],d_:135,d_g_z1:38,d_g_z2:38,d_gradient:138,d_i:124,d_layer_d_input:87,d_loss:[37,38,138],d_loss_metr:37,d_loss_tru:138,d_model:144,d_optim:37,d_predict:159,d_solver:138,d_total_error:138,d_x:38,da:32,dai:[8,14,40,46,51,52,54,69,106,107,109,118,146,150,151,156,164,174,178,185,186,199,207],daili:[1,8,14,39,107,117,142,146,151,174,185,186,203],daisi:183,damag:[97,98,113,183,184,185],damien:131,damn:150,danb:163,danceabl:[153,154,155],dancehal:[154,155],danger:[113,166],dangereus:113,daniil:150,danmaku:175,dark:[117,152,188,199],darker:[52,107],darkgreen:[71,85],darkgrid:56,dasani:[154,178,179,180],dash:[82,105,167],dashboard:[104,107,148],dat:[51,79],data2:[52,127],data:[4,5,6,13,16,17,19,21,22,26,27,30,35,36,44,52,64,70,76,77,80,82,83,87,89,91,93,94,95,96,97,106,113,115,116,120,128,131,132,136,137,138,139,140,141,142,143,145,147,149,153,155,156,157,159,160,161,162,163,165,166,167,168,170,175,178,181,182,183,194,195,197,198,201,202,205],data_batch_1:132,data_batch_2:132,data_batch_3:132,data_batch_4:132,data_batch_5:132,data_batch_:132,data_df:41,data_dir:[33,132,134,141,145],data_dmatrix:164,data_fil:[132,141,145],data_format:144,data_gener:42,data_i:[65,67],data_loc:132,data_path:[37,46,71,85],data_prepar:46,data_sci:3,data_util:31,dataarrai:124,databas:[6,40,69,104,118,119,123,125,130,145,148,169,187,188,195],databrick:[104,106],dataconversionwarn:59,datafi:117,dataflair:186,dataflow:135,datafram:[1,8,14,17,22,23,24,29,30,31,37,39,40,41,42,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,71,79,81,85,89,91,114,115,125,126,129,143,146,154,155,163,164,167,168,169,171,172,173,178,179,180,190,199],datagen:[32,34,42],datajameson:33,datalira:40,dataload:[33,38],datanul:50,datapoint:[7,69,93,140,154,155,164,171],dataset991:59,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,34,37,38,39,41,42,46,51,52,54,55,56,58,59,60,62,63,64,65,66,67,68,69,71,72,74,76,79,81,85,89,91,93,103,107,108,115,116,117,118,119,121,122,123,124,131,132,135,136,138,142,143,145,146,148,150,152,153,154,155,156,157,160,161,163,165,166,167,172,173,174,176,178,179,180,186,188,194,196,199,203],dataset_991:59,dataset_path:[31,40],dataset_test:44,dataset_tot:44,dataset_train:44,datasets_nam:[29,31,40],datasets_respons:[29,31,40],datasets_save_path:[29,31,40],datasets_url:[29,31,40],datast:131,datastor:192,datastructur:184,datatyp:[7,50],date:[1,14,36,39,46,48,51,54,59,69,106,113,122,126,127,142,146,148,151,152,169,178,179,183,205],date_column:[39,46],date_rang:[14,39,46,126,127],date_split:36,date_train:[39,46],dateset:30,datetim:[1,14,39,41,69,126,169,178],datetime64:[39,146],datetimeindex:[39,126,146,178,180],datetimeindexopsmixin:126,datetimelik:126,daum:39,daunt:150,david:[98,138,149,152,167],day_of_year:178,dayofyear:178,db4o:192,db:[12,65,67,80,86,104,107,175,186,192,200,201],dbscan2:167,dbscan:154,dbscan_plot:167,dbscandbscan:167,dcab:[184,206],dd:180,de:[41,45,85,113,117,169,188],dead:183,deadlin:107,deal:[45,51,52,54,58,59,61,69,80,98,113,119,127,142,148,149,151,159,160,166,168,169,174,183,184,185,198,203],dealt:7,death:[1,8,14,22,106,113,143,151],death_ev:[9,105,106],deaths_dataset_url:14,deaths_df:14,deborah:148,debt:152,debug:[0,36,43,87,105,169,183,185],debug_log:[9,105],dec:113,decad:[119,136,144,148,174],decai:[138,166,174,204],deceiv:[37,113,117,188],decemb:[51,54,171,178,187],decent:[42,65,67,132,150,161],decept:117,decid:[18,32,36,37,56,68,69,108,113,115,118,119,125,143,146,150,154,156,159,160,164,172,173],decim:[97,184,185,206,207],decion:59,decis:[3,11,49,50,51,54,55,56,58,61,62,63,64,71,82,83,85,106,107,109,111,115,117,118,119,136,137,142,143,148,150,151,152,155,156,157,160,163,164,165,168,172,173,174,186,188,196,198,203,204],decision_funct:[165,196],decisiontreeclassifi:[51,59,71,85,159,161,168,172,198],decisiontreeclassifierdecisiontreeclassifi:59,decisiontreeregressor:[52,60,159,161],decisiontreeregressordecisiontreeregressor:60,declar:[134,141,183,184,206],declin:[1,14,50,113,116],decod:[29,30,31,37,131,140,141,145],decoded_data:29,decoded_img:[29,30],decoder_b1:131,decoder_b2:131,decoder_h1:131,decoder_h2:131,decompos:97,decomposit:[69,168,198],decompress:31,deconstruct:107,deconv:144,deconvolut:[131,140],decor:[30,125,199],decorate_with_div:[183,205],decorate_with_p:[183,205],decreas:[33,49,50,51,52,54,56,61,66,71,85,106,116,132,139,150,156,157,159,160,166,168,179,194],decres:161,dedic:[56,106],deduc:14,deed:142,deeeeeeep:73,deem:68,deep:[16,29,30,31,32,33,34,36,37,38,39,40,41,42,44,46,49,50,52,64,79,83,106,121,124,125,126,131,132,133,134,135,138,139,140,141,142,143,144,145,147,150,151,152,166,174,176,182,193,201,202,204],deepcopi:31,deepdream:[73,132],deepen:[56,139,179,182],deeper:[7,13,17,19,50,52,81,106,111,121,139,143,150,157,165,166,171,172,178,189,196],deepfunnel:31,deeplabv3:140,deeplearn:174,deeplearningbook:131,deepli:[119,142,148,193],deeplizard:[132,134],deepmind:174,deer:132,def:[1,3,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,43,45,46,49,50,51,52,53,54,55,56,57,58,59,60,62,65,66,67,68,71,72,73,79,80,81,85,86,87,89,97,98,99,125,126,131,132,133,134,135,137,138,139,140,141,144,145,146,151,156,159,161,165,167,169,171,173,175,184,191,194,196,200,201,202,205,207],default_image_url:73,default_target_attribut:59,defe:37,defect:[174,203],defenestr:[183,205],defin:[0,1,3,14,22,30,31,32,37,41,42,47,49,50,52,53,56,59,61,64,65,67,68,80,87,88,97,107,108,109,111,114,117,120,121,123,124,125,132,134,135,137,139,141,145,148,149,150,151,152,154,155,156,159,160,161,164,165,166,167,168,169,172,178,183,184,185,189,191,199,200,206],definit:[43,52,62,68,107,119,121,123,124,126,142,144,149,157,168,174,185,203,205],deforest:107,deform:139,degrad:[31,90,107,139,148,151,167,186],degre:[3,34,38,52,61,62,63,65,67,119,121,129,137,159,178,188,200],del:[89,127,137,183],delai:[137,146],delet:[47,58,69,105,106,117,138,184,206],deliber:[182,185],delicassen:164,delicassesn:164,delici:[115,170,171],delimit:[31,39,198],deliv:[7,58,104,109,119,122,142,148,149,183],deliveri:[104,107,149,187],dell:109,delta:[49,57,61,69,83,135,137,183],deltamean:49,deltastd:49,deltatheta:137,delv:[80,82,142],demand:[7,51,54,104,106,116,146,148],demarc:155,demis:113,demo1:165,demo2:165,demo:[132,133,139,140,144,149,151,155,159,160,165,167,171,178,179],democrat:[107,117],demoforest:159,demograph:58,demographi:151,demonstr:[3,8,18,43,47,49,50,61,64,74,81,82,114,121,122,124,137,149,154,157,159,178,180,182,183,184,191],demostr:32,dendogram:168,dendrocygna:[114,190],dendrogram:168,deni:[52,117],denois:[131,135],denoise_model:135,denomin:[7,97],denorm:35,denot:[56,80,121,135,137,157,164,183,184,206],denounc:109,dens:[29,30,34,36,37,39,40,41,42,43,44,45,46,47,49,50,64,72,132,135,137,138,139,143,144,154,155,168,194,204],dense_1:[37,45],dense_2:45,dense_3:45,dense_4:42,dense_5:42,dense_block:139,densenet121:140,densenet169:140,densenet201:140,densenet264:140,densiti:[4,50,121,135,154,156,159],deon:[28,117,188],deott:32,depart:[116,117,142,160,180,188],depend:[0,7,12,14,18,25,29,30,40,48,50,52,54,59,71,81,82,85,103,104,105,106,107,108,109,110,111,113,114,115,116,118,119,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,203,204,205],depict:[37,52,132,164],deploi:[5,10,20,43,45,72,73,96,103,104,105,106,117,136,139,149,151],deploy:[9,107,111,174,187,199,203],deploy_configur:[9,105],deprec:[36,37,64,73,88,124,125,145,167,168,198],deprecate_nonkeyword_argu:125,deprecation_mask:126,deprecationwarn:[139,168,198],deprocess:133,deprocess_img:138,depth:[7,51,52,56,58,59,60,71,85,109,113,135,139,157,159,160,161,164,168,183,198],depth_multipli:139,depthwis:[139,163,164],depthwise_separable_conv:139,depthwiseconv2d:139,dequ:36,dereferenc:124,deriv:[14,16,33,52,56,59,65,67,69,81,87,107,116,124,127,139,142,146,150,154,155,164,165,171,183,185,200,205],derivedclassnam:183,desat:146,desc:31,descend:[168,183],descent:[33,47,51,56,71,83,85,86,87,135,139,150,161,164,165,172,176,177,178,196,200,201,204],descr:[59,60],descreas:58,describ:[1,2,9,11,21,28,39,41,47,49,50,51,52,53,54,55,58,59,60,61,63,66,69,71,79,81,85,87,88,93,105,108,109,114,117,121,123,124,125,129,138,139,143,144,146,148,149,150,154,160,163,164,165,168,183,192,194,198],descript:[0,9,28,52,59,93,105,106,124,125,135,141,150,169,174,183,184,185,189,203,204],description_vers:59,desert:150,deserv:121,design:[7,12,18,31,32,39,41,45,56,80,83,96,106,107,109,113,117,118,119,122,124,136,137,139,146,148,149,150,151,152,156,164,165,172,183,184,185,188,206],designated_hitt:121,desir:[34,42,50,69,97,111,117,119,124,137,143,149,174,183],desktop:[149,185],despin:[116,190],despit:[52,139,142,152],dest:146,destin:[124,148],detach:[33,38],detail:[7,11,14,16,26,29,43,52,56,59,69,71,73,76,80,85,90,106,109,115,118,121,123,125,140,149,150,151,157,160,161,163,166,168,172,174,175,178,183,185,191,198,203,207],detect:[45,48,49,51,52,61,62,63,66,107,117,122,125,136,142,143,148,150,154,159,166,174,183,186,203,205],detector:[174,203],detergents_pap:164,deterior:163,determ:32,determin:[22,32,52,53,56,61,69,71,80,82,85,97,105,106,111,119,121,124,127,129,137,139,145,149,150,152,154,155,157,160,165,166,171,174,178,179,181,182,183,184,189,191,192,196,203,204],determinist:[117,137,146],dev:[49,50,121,126,167,191],devast:116,devdoc:[168,198],develop:[7,8,41,47,49,50,56,58,61,64,103,104,105,106,107,117,119,122,125,127,136,142,144,147,148,149,150,151,152,159,160,164,166,171,174,182,185,186,188,194,199,207],devi:[65,67],devianc:[58,161],deviat:[7,18,29,31,35,49,50,61,64,66,79,82,83,108,124,135,148,157,174],devic:[15,31,33,38,56,71,85,119,123,139,148,150,151,185],devicedataload:33,devid:58,devis:80,devot:147,dexamethason:1,dexter:37,deza:182,df1:[22,125,126,127,191],df2:[22,53,125,127,191],df3:[125,191],df4:125,df5:125,df6:125,df7:125,df:[1,9,14,17,18,22,23,24,31,39,40,42,46,50,52,53,55,61,79,80,105,115,121,125,126,127,146,151,154,155,159,164,171,175,178,190,191,199],df____:24,df_attr:31,df_boxplot:24,df_corr:55,df_corr_i:24,df_corr_sex_with_i:24,df_desc:55,df_diff:14,df_filter:14,df_heat:55,df_hist:55,df_mean:24,df_null:55,df_pairplot:55,df_plot:24,df_rolling_mean:14,df_scale:46,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,39,46,64],df_train_scal:46,df_valid:64,df_y:46,dfa:127,dfd:126,dfl:126,dfm:1,dfmt:1,dfmtp:1,dfrac:161,dfx:80,dfy:80,dg77ysplly4qtmh7trbd03p9nl1g:61,dg:73,dhamaa:123,dhamaiusa4o:123,dhamaiusa4ohaaaaaaaaaa:123,dhariw:135,di:[22,61,106,117,184,188],diabet:[1,9,105,106,121,188],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,45,47,142],diagnosi:[117,188],diagnost:30,diagnoz:203,diagon:[18,121,124,168],diagram:[1,5,8,18,52,61,111,120,121,132,148,155,162,163,164,165,167,178,188,189],diamond:183,dibia:29,dice:[83,121,126,127],dickinson:[107,186],dict1:98,dict2:98,dict3:98,dict4:98,dict5:98,dict6:98,dict7:98,dict:[1,3,22,40,73,88,114,137,139,144,146,167,168,184,185,190,198,204,206],dict_1:205,dict_2:205,dictat:[7,122,136,142],dictionari:[17,23,42,79,124,127,159,183,191,205],dictionary_for_string_kei:[184,206],dictionary_via_constructor:[184,206],dictionary_via_express:[184,206],did:[7,16,18,27,41,47,52,54,55,56,57,62,63,69,71,74,79,85,109,113,114,117,121,122,150,154,155,160,164,167,168,169,172,179,180,184,185,198],didn:[45,50,58,60,62,71,85,126,127],die:143,diego:138,diet:106,dieu:[41,45,85],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,40,41,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,64,65,67,68,69,71,77,79,80,81,82,83,85,87,89,97,103,104,105,106,107,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,131,132,135,136,137,139,140,141,142,143,144,146,148,149,150,151,152,153,154,155,156,157,159,160,162,164,165,166,167,168,171,172,173,174,175,178,179,180,181,182,183,184,185,191,192,194,197,203,205,206,207],differenti:[21,80,104,131,139,150,160,164,165],differnt:57,difficult:[30,32,64,121,143,150,159,160,165,168,183,198],difficulti:[52,119,145,149,160],diffus:35,diffusion_angl:35,diffusion_models_tutori:135,diffusion_schedul:35,diffusion_step:35,diffusion_tim:35,diffusionmodel:35,difuss:135,dig:[13,19,90,114,171,172,178,180,190],digest:168,digit:[16,29,31,32,43,49,72,87,97,107,113,117,131,148,151,167,168,174,184,186,188,198,204],digitdata:49,dilat:[139,140],dilation_r:[139,140],dilemma:117,dim:[33,131,134,135,138,204],dim_z:31,dimens:[7,29,33,45,50,61,69,114,122,124,131,135,136,138,139,148,165,168,203,204],dimension:[29,30,33,41,43,45,47,62,63,88,127,131,139,154,160,165,168,198],dimensions:33,dimenss:88,diment:[65,67,69],dimi:31,diminish:[50,152],dimx:31,dine:142,dioxid:50,dip:66,dir:[58,167,183],dir_nam:137,direct:[7,43,81,89,109,126,127,131,137,141,143,152,161,168,178],directli:[1,7,14,30,31,43,64,68,83,104,105,106,109,122,123,124,127,133,137,139,142,143,146,148,150,157,159,183,184,194,206],directori:[33,37,38,39,40,53,71,81,85,106,108,122,123,134,137,141,145,169,183,185],directory_nam:137,dirnam:[31,53,58,73],dirpath:31,dirti:[50,122],disabl:[114,116,159,183,184,190,206],disable_eager_execut:134,disable_v2_behavior:145,disadvantag:[31,51,165],disappear:[139,179],disast:[104,142],disaster_tweets_test:142,disaster_tweets_train:142,disc:169,disc_num_var:56,discard:[49,127,164,184,206],discern:154,disciplin:[3,119],disclosur:117,discount:[36,137,142],discourag:124,discov:[3,4,13,19,21,37,49,108,111,113,114,116,117,118,119,120,122,130,150,153,154,172,179,180,181,182,189],discover:148,discoveri:[109,118],discrep:[42,69,83],discret:[52,56,61,83,121,124,135,137,159,160,168,174],discrimin:[117,138,152,165,184,194,196],discriminator_loss:138,discriminator_opt:37,discriminator_verdict:37,discuss:[1,3,4,7,11,18,28,50,52,81,106,109,117,119,121,122,124,125,147,148,150,152,154,156,163,164,175,182,183,191],diseas:[8,14,106,107,143,151,171,179,182,203],dish:171,disk:[12,14,25,106,149,167],dislik:109,disord:116,dispar:[80,83],dispers:[135,139,168,198],displai:[3,7,14,29,30,33,38,40,41,42,43,45,47,49,50,51,54,57,59,60,61,62,65,66,67,71,81,85,87,114,115,116,119,121,125,126,127,129,131,132,133,137,139,140,158,159,165,167,168,169,171,175,176,178,179,180,182,183,192],display_commandlin:137,display_from_datafram:42,display_grid:42,display_imag:[42,62],display_image_from_fil:42,display_list:140,display_stat:40,display_step:131,display_t:184,displaycallback:140,displi:48,disregard:[80,131],dissatisfact:119,dissemin:117,dissimilar:[52,83],dissoci:160,dist:56,distanc:[61,89,135,154,155,165,167,168,173,176,178,198],distance_down:137,distance_left:137,distance_mat:168,distance_right:137,distance_up:137,distant:[155,165],distinct:[53,56,69,137,152,157,167,171],distinctli:113,distinguish:[7,37,52,119,124,142,165,194,196],distort:114,distplot:[56,58],distract:163,distribut:[3,7,22,30,31,47,49,50,51,52,57,58,63,66,69,71,82,83,85,88,97,98,107,113,117,119,135,137,138,139,144,145,146,148,149,150,152,156,159,160,164,165,166,167,168,171,174,176,179,180,183,184,185,194,204],district:180,div:[3,22,121,125,126,127,158,169,171,178,180,183,205],dive:[7,16,52,106,107,116,125,150,152,174,175,178,190,203],diverg:[49,50,150,155,176],diverging_palett:39,divers:[107,117,142,143,148,149,153,170,174,203],divid:[14,25,31,37,41,43,49,52,61,69,71,85,87,97,114,117,119,121,123,124,129,136,139,148,150,154,155,156,157,159,169,172,173,174,179,184,188,192,203,206],divis:[14,49,97,124,150,165,183,184,185,191,205,206,207],divisible_by_2:124,divisor:[40,97],divorc:[69,113],dl:[33,87,159,203],dll:205,dm:[61,80,111,175],dmatrix:[68,164],dmitri:[14,104,178],dn:168,dna:107,dnn:136,do_deepdream:73,do_glob:183,do_loc:183,do_nonloc:183,do_not_convert:30,do_noth:183,doc:[26,41,43,45,64,72,73,76,95,105,109,115,116,123,127,168,172,183,184,192],docker:[36,53,149],docloud:205,docstr:[79,87,126,183],doctyp:[3,15,169],document:[3,5,7,10,16,25,26,39,41,51,59,71,74,76,85,97,98,100,104,105,106,107,114,116,119,124,125,135,142,148,151,152,154,155,156,164,168,172,182,184,185,192,206],documentdb:192,docutil:[125,126,127,178],docx:39,doe:[1,3,5,7,14,16,17,30,31,32,33,43,45,49,50,51,52,54,56,59,60,61,62,68,71,79,80,82,85,87,88,96,97,98,107,109,113,116,117,119,121,122,123,124,125,126,127,139,140,143,144,146,150,154,159,160,161,163,164,167,168,169,171,172,174,178,179,180,183,184,185,192,198,207],doesn:[7,26,31,32,33,40,51,54,58,59,60,66,68,71,80,81,85,87,98,109,114,118,124,127,146,148,159,161,164,173,183,184,205,206],doesnt:56,dog:[15,125,132,139,174,183,194,205],dogwithsharedtrick:183,dogwithtrick:183,doi:14,dollar:[52,79,144],domain:[7,11,16,51,56,58,82,106,107,119,120,138,142,143,150,155,180,188],domin:[71,85,154,163,207],domino:192,don:[0,7,31,32,34,41,43,45,50,51,52,54,55,58,59,60,61,62,71,85,104,105,106,107,108,109,111,126,127,129,131,136,146,148,150,163,166,167,168,169,174,179,183,184,185,186,205,206],donald:[97,185],done:[1,3,7,14,25,36,37,41,45,51,52,54,56,58,63,69,87,105,106,113,115,123,124,125,129,131,132,143,146,149,154,157,160,164,166,167,168,169,175,178,183,184,185,192,199,206],donli:154,donn:22,dont:145,donut:[27,113],door:[59,60,174],dopmzxl:73,dosag:[1,8],dot:[18,30,52,65,67,81,86,87,116,156,159,160,167,175,182,183,200,201,205],doubl:[32,52,123,154,184,185,206,207],double_quote_str:[184,206],doubled_vector:[184,206],doubt:[105,106,152,160],doug:191,doughnut:115,douyupccli:39,down:[14,26,30,47,51,52,53,54,61,71,72,80,85,87,89,97,106,109,111,137,139,142,148,149,159,160,166,173,174,175,184,189,203,206],down_shifted_imag:89,down_stack:140,downblock:35,download:[1,3,12,25,37,38,39,59,60,71,73,85,87,106,119,123,124,132,133,135,138,139,140,141,145,167,169,172,180,183,185],download_fil:[9,105,134],download_model_from_web:73,download_read_data:[71,85],download_root:167,download_url:33,downsampl:[29,30,35,135,139,140],downsid:[59,60,146],downsiz:133,downstream:148,downward:[113,135],dozen:[32,64,106,151],dp0dtheta:137,dp1dtheta:137,dp2dtheta:137,dp3dtheta:137,dp_dtheta:137,dpi:[155,167],dprobability0_dweight:137,dprobability1_dweight:137,dprobability2_dweight:137,dprobability3_dweight:137,dqn:137,dqnagent:36,drag:[7,106,115],drain:174,dramat:[109,163],drastic:[56,139,150,168,198],draw:[1,3,8,14,18,31,42,51,52,54,61,62,63,69,71,79,80,85,114,115,116,119,121,131,137,156,160,165,169,174,178,182],drawback:[143,155,184],drawing_mod:72,drawn:[51,113,121,150,156,194],dream:133,dream_img:133,dream_model:133,dreeeeeeeeeam:73,dress:[30,41,43],drewconwai:188,drift:151,drive:[47,49,50,107,109,111,117,136,140,144,148,152,169,174],driven:[0,107,117,119,137,143,148,151,186],driver:[17,23,117,174],drop:[14,31,32,39,40,43,48,49,50,51,52,53,54,55,56,58,59,61,63,64,66,69,70,71,79,85,106,115,119,122,124,127,141,143,146,156,157,161,163,164,166,167,169,171,172,173,175,178,179,180],drop_column:14,drop_dupl:[42,48,122],drop_first:143,drop_remaind:[35,46,135],drope:137,dropna:[7,39,48,56,68,69,122,125,127,146,161,163,169,178,179,191],dropnan:39,dropoff:[107,186],dropout1:139,dropout2:139,dropout:[30,33,34,37,40,44,46,87,131,139,140,145,150,194,204],dropout_1:37,dropout_2:37,dropout_3:37,dropout_4:37,dropout_keep_prob:145,dropout_r:139,dropoutlambda:49,drug:107,ds:[36,39,46,69],ds_train:135,ds_wordcloud:3,dset:38,dsse:61,dt:[39,61,124,178],dt_custom:69,dtest:68,dtl8folder:39,dtrain:[58,68,164],dtrain_predict:58,dtrain_predprob:58,dtree:159,dtyp:53,dtype:[7,14,22,24,31,33,36,37,39,45,50,53,58,59,60,61,62,63,66,68,69,70,72,79,88,115,122,124,125,126,127,133,135,137,139,140,141,144,145,146,154,157,159,164,167,169,171,172,175,178,180,191],dual:[71,85,113],dual_sim:[71,85],duc:139,duca:192,duck:[97,114,190],due:[14,18,52,56,107,116,124,136,137,139,142,143,144,150,151,156,157,159,160,161,165,166,168,186,198],duel:113,dummi:[22,68,87,146,183],dummy_inst:183,dummyclass:183,dump:[9,89,105,154,169,205],dumpstack:39,dun:145,duplic:[39,42,125,126,127,129,148,156,174,183,192],duplicate_kei:98,durabl:148,durat:[38,107,169,186],duration_histori:137,dure:[11,14,37,40,41,43,45,51,52,54,56,59,61,62,63,64,87,97,106,109,116,124,129,136,139,140,142,146,148,150,151,156,157,163,164,165,166,174,180,183,184,203,204,205],dutch:[185,207],dw:[65,67,86,175,200,201],dx:[31,121,135],dy:31,dy_pr:87,dynam:[119,146,149,183,185,205],dynamic_rnn:145,dynamodb:192,dynload:183,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:61,e2ab30:37,e5ni7of:61,e87ckhmr4qc:61,e:[1,3,8,14,16,33,35,36,37,40,44,51,52,53,54,56,57,61,65,66,67,69,71,82,85,87,97,98,106,107,117,118,119,121,122,124,125,126,127,131,135,137,138,139,143,144,145,148,154,156,160,161,166,167,168,172,174,175,178,179,180,183,184,186,188,191,194,198,200,203,204,205,206,207],e_1:156,e_:[135,159],e_n:156,e_x:156,e_z:159,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,36,37,38,40,41,42,43,45,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,66,69,71,79,80,81,82,83,85,87,88,89,95,97,98,106,107,109,111,113,116,117,118,119,121,122,123,124,125,129,135,136,137,138,139,140,142,143,144,146,148,149,150,151,154,155,156,157,159,160,162,163,164,165,166,167,168,173,174,175,176,178,179,180,183,184,185,186,191,192,196,198,199,200,204,205,206],eagerli:166,earli:[41,52,58,59,61,105,117,145,159,163,164,169,174],earlier:[7,29,41,48,52,56,87,96,105,106,107,122,127,138,143,146,155,160,167,170,171,175,179,184],early_stop:[41,163],early_stopping_round:[68,164],earlystop:[40,41,46],earn:118,earth:[61,107,183,186,207],earthquak:142,eas:[106,122,182],easi:[0,7,31,37,41,42,45,48,49,51,52,54,61,106,109,116,117,118,121,122,124,127,136,146,149,150,151,156,159,165,166,168,175,179,185,191,192,198,199,207],easier:[1,31,41,43,52,55,60,77,87,106,107,109,117,118,122,133,139,143,146,150,166,168,180,183,184,187,205,206],easiest:[14,41,121,124,150,168,198],easili:[1,7,26,40,47,48,49,51,52,59,60,61,63,71,85,109,113,116,122,124,125,127,148,149,150,151,152,157,159,167,179,199,201,202],eastwood:97,eat:[142,180,185,207],ebook:117,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[114,149,150,183],echo_funct:183,ecolog:113,econom:[52,82,107,117,146,186,188],econometr:52,economi:7,ecosystem:[107,169],ed:1,eda:[17,105,108,131],ede9d:37,edg:[15,106,123,143,145,168,184,192],edgecolor:[52,88,165,167,168,196,198],edibl:[115,190],edibleclass:[115,190],edit:[3,114,115,116,125,182,199],editor:[23,185,199,207],edna:169,edu:[60,98,109,132,139,145,159,165,189,205],educ:[11,52,53,69,107,109,167,186],education_level:58,education_num:53,effect:[7,34,40,47,51,52,54,55,56,58,59,64,79,80,106,113,117,119,124,125,129,139,140,142,143,144,148,150,151,152,154,156,160,164,165,166,168,174,178,183,184,185,187,188,194,203,206],effectiviolog:109,effects_echo_path:183,effects_fold:183,effects_init_path:183,effects_reverse_path:183,effici:[30,32,56,61,104,106,111,119,124,125,131,136,139,142,146,149,150,156,159,164,183,185,187,189],effort:[106,107,109,118,142,150,168,186],eg8djywdmyg:171,eg:[3,7,121,178],egg:[183,184,205,206],ei:57,eigenvalu:168,eigenvector:168,eight:[89,146],either:[3,7,14,22,29,41,45,47,49,50,51,54,59,105,109,121,124,125,126,127,136,140,142,144,146,148,150,151,152,154,157,159,166,172,174,183,184,185,203],ejection_fract:[9,105,106],ejtdl1tzr2vxnvlm4pwxei:61,ekf6iw6gti6:61,el:[58,152],elabor:8,elaps:135,elast:160,elasticnet:[68,166,178],elasticsearch:192,elbow:[69,167],elbow_m:69,elec_data:[51,54],elec_df:[51,54],electr:[51,54,56],electrocadriogram:29,electrocardiogram:29,electron:[71,85,106,142],eleg:185,elem:[184,206],element:[7,13,14,18,19,29,33,40,45,52,71,85,87,97,114,118,121,123,125,126,127,135,138,139,141,142,152,156,159,182,183,185,191,199,204,205,206],element_spec:37,elementwis:[33,87],elev:[88,165,168,196,198],elif:[36,38,40,89,98,126,127,134,137,144,183,184,205],elimin:[28,68,107,117,184,186],elkan:167,ell:[52,156,159],ellips:166,ellipsi:124,ellipsoid:[168,198],els:[1,7,24,31,33,35,36,38,39,40,43,52,53,56,57,59,60,72,86,87,89,98,99,104,124,125,126,129,132,133,134,135,137,138,139,140,141,144,145,167,175,183,184,185,201,205],elsevi:50,elu:143,em:168,ema:35,ema_network:35,ema_weight:35,email:[2,108,109,118,142,171,174,199,203],email_df:2,emam:152,emb:[61,121,135,145,149,158,165,171,175,176,180,183],embark:[22,82,161],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,35,131,135,136,139,141,144,145,149,151,183],embed_dim:139,embedding_dim:[35,135],embedding_lookup:[141,145],embedding_lookup_1:141,embedding_mat:[141,145],embedding_max_frequ:35,embedding_min_frequ:35,embedding_output:[141,145],embedding_s:[141,145],emblemat:83,embodi:145,embrac:[152,174,185],emerg:[119,169],emerson:109,emili:[107,186],emiss:61,emit:137,emot:[117,124,125,142,189],empath:109,emphas:[83,107,149,154],emphasi:56,empir:[52,119,160],emploi:[32,37,51,56,61,80,83,89,106,142,159,174],employ:[58,121],employe:[6,52,58,117,183,191,205],empow:[82,142,147],empti:[3,7,14,24,31,41,51,55,73,97,98,118,122,124,126,131,167,178,183,184,191,199,206],empty_tupl:184,emrebulbul23:36,emreustundag:194,emul:192,en:[3,15,30,114,117,152,169,184,188,190,192],enabl:[0,7,43,61,81,105,106,113,122,127,139,142,144,148,149,156,159,168,169,171,174,187,203],enable_categor:[68,163,164],enable_early_stop:[9,105],encapsul:149,encircl:185,enclos:[183,184,205,206],enclosedporch:56,encod:[9,22,29,30,31,49,50,51,54,56,59,63,66,69,71,85,105,131,132,140,143,145,150,155,161,174,178,203],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:131,encoder_b2:131,encoder_h1:131,encoder_h2:131,encoding_dim:30,encompass:[7,83,143],encount:[7,34,48,109,117,121,122,154,185,205],encourag:[3,117,160,168],encrypt:[111,121,148,189],encyclopedia:119,end:[3,7,29,31,32,33,36,39,41,45,48,52,54,55,56,59,60,62,63,66,71,83,85,89,106,107,108,111,113,116,117,119,121,122,124,125,126,127,132,133,136,137,138,139,140,143,146,149,151,152,156,157,159,160,164,166,167,168,173,183,184,189,191,200,205,206],end_angl:35,end_slic:126,endang:[114,190],endpoint:[119,187],endswith:[31,167],energet:154,energi:[71,85,153,154,155],enforc:[83,107,117,119,124,186],engag:[107,109,150],engin:[14,18,31,39,49,58,69,81,82,106,117,124,125,136,140,142,146,149,150,152,154,160,166,169,174,191,192,203,207],england:169,english:[142,150,184,206],enhanc:[80,82,83,113,114,116,142,143,152,174,177,191,203],enjoi:[80,113,154,207],enlarg:[140,160],enorm:[7,122,165],enough:[7,31,33,40,47,49,50,60,62,63,71,85,97,104,106,108,111,116,117,121,124,135,139,150,160,165,166,168,174,179,184,185,203],enrich:[143,148],enrol:69,enrolled_univers:58,ensembl:[52,53,54,55,58,59,60,64,71,85,121,147,150,157,159,160,162,163,164,168,172,174,198],ensur:[31,33,49,50,81,83,109,111,113,114,117,118,122,124,129,132,137,139,142,145,148,149,150,164,166,167,173,182,188,189],entail:[42,106],entangl:152,enter:[39,50,53,100,106,119,137,183,185,195,201,202,205],entertain:125,entir:[31,32,109,114,117,124,139,140,142,146,150,151,160,165,167,169,176,180,183,184,188,206],entireti:[111,189],entiti:[1,118,123,142,152,192],entri:[7,15,39,42,48,61,62,69,79,122,124,135,142,145,148,154,164,166,169,171,178,183],entropi:[37,83,135,157,159,161,165,166,168,172],entry_script:[9,105],enumer:[1,34,38,40,42,56,66,121,126,131,132,134,135,137,138,139,141,144,167,168,173,178,183,198,201,202,205],env:[0,30,36,37,97,98,114,125,126,127,146,168,172,179,183],env_test:36,envi:113,environ:[9,30,36,40,47,49,50,53,59,60,62,63,68,88,104,105,106,107,109,127,139,149,152,159,163,164,165,167,168,174,178,180,181,183,186,203],environment:106,environment_debug:36,envis:179,enzym:106,ep:[31,139,167],epic:39,epidem:[14,124],epidemiolog:151,episod:36,epistolari:113,epoch:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,64,72,80,87,132,135,138,140,141,143,145,148,150,161,166,175,194,204],epoch_acc:33,epoch_count:36,epoch_end:33,epoch_loss:33,epoch_seq:145,epoch_tim:38,epr:57,epsilon:[36,63,135,139,160],epsilon_decai:36,epsilon_min:36,epsilon_t:160,epub:141,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:61,eq:50,equal:[7,14,18,22,24,33,49,50,52,56,61,71,81,85,88,97,121,123,124,127,135,138,145,146,150,151,152,156,157,159,160,163,166,167,168,174,180,182,183,184,205,206],equal_var:[18,121],equat:[57,61,80,81,135,146,160,161,168,178,184],equilibrium:37,equip:[111,119,149],equiprob:156,equit:[117,188],equiv:[15,126],equival:[7,31,49,79,83,124,125,126,127,139,145,146,148,150,160,183,184,204,206],eras:1,erasur:117,eratosthen:97,erc20:39,erencan:201,eros:152,erp:148,err:[126,127,156],errd:38,errd_fak:38,errd_real:38,errg:38,erro:45,erron:114,error:[0,1,7,29,30,36,38,40,41,45,47,49,50,51,52,53,56,57,59,63,65,67,68,69,80,81,83,88,107,121,124,125,126,138,139,145,146,148,149,150,152,157,159,160,162,163,164,165,166,167,175,178,179,184,185,196,197,200,206],error_r:175,errord:82,errormsg:49,errr:[55,60],erwo:97,es:192,escap:[184,206],especi:[45,51,64,68,109,113,114,115,119,148,149,150,152,159,160,164,167,173,174,183,194,203],essai:26,essenc:[52,80],essenti:[1,7,52,80,82,104,106,119,122,141,142,143,160,168,172,175,177,191],establish:[7,33,71,81,85,104,117,140,146,150,155],estim:[18,51,52,54,55,56,58,59,60,61,62,63,66,87,89,106,109,114,118,119,121,124,137,150,151,152,154,155,156,159,163,165,167,168,173,178,182,190,197,201,202],estimators_:157,estonia:207,et:[31,36,117,152],eta:[30,68],etc:[7,28,31,33,43,47,51,52,58,71,79,85,107,119,121,124,127,136,140,144,148,149,150,151,157,159,160,174,183,185,186,189,190,191,203],ethic:[107,111,120,148,152],ethiko:117,etho:117,ethos3:109,etl:148,euclidean:[97,154,168,198],euclidian:167,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:61,european:117,ev:[52,156],eva:[123,192],eval:[31,33,41,73,134,145],eval_epoch:31,eval_epoch_va:31,eval_everi:[132,141],eval_i:132,eval_index:132,eval_metr:[68,163,164],eval_set:163,eval_x:132,evalu:[29,33,35,37,42,52,61,68,82,89,107,108,111,117,122,124,125,127,132,135,139,141,142,149,156,157,159,160,163,164,165,166,167,168,174,176,182,183,184,185,186,188,196,197,198,203,206],evaluate_on_last_n_it:167,evaluation_s:132,evanesc:[115,190],evauat:62,even:[1,3,7,18,33,42,43,48,50,52,62,64,66,68,71,85,97,104,109,113,115,116,119,121,122,124,126,127,136,137,142,146,148,149,150,151,152,154,156,159,160,163,167,168,173,174,178,179,182,183,184,191,198,199,203,205,206],even_numb:[183,205],evenli:[82,124,150],event:[97,98,104,121,125,148,149,151,169,183,184,185,188],event_nam:149,eventu:[56,148,156,192],ever:[87,105,123,129,184],everi:[3,7,33,38,41,42,45,49,51,54,58,61,64,66,72,87,109,117,118,119,122,123,124,126,129,135,137,139,140,141,146,149,150,151,157,159,160,161,164,166,167,168,174,183,184,185,193,198,199,203,206,207],everydai:[52,119,160],everyon:[104,109,123,151,160,168,171,198],everyt:160,everyth:[7,52,63,106,108,109,123,125,129,141,146,147,150,154,160,174,183],everytim:45,everywher:[119,178],evid:[17,18,56,109,119,121,142],evok:109,evolv:[1,104,116,149,164],ex:[39,56,114,117,174,190],exact:[71,85,105,121,148,150,156,157,160,165,166,196],exactli:[1,7,52,79,80,83,107,109,111,121,124,127,136,139,145,150,160,161,174,175,182,183,205],exagger:52,exam:200,exam_model:200,exam_scor:200,examin:[7,29,43,48,61,63,69,82,122,143,154,156,164,174,178,191,200],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,36,39,40,41,42,43,45,47,48,49,50,51,53,54,58,59,61,66,69,71,73,79,80,82,83,85,87,98,106,107,108,109,111,113,114,116,117,118,119,121,122,123,125,126,127,129,131,132,136,139,140,141,142,143,144,145,148,149,150,151,152,154,156,159,162,164,165,167,169,171,173,176,178,179,180,182,183,184,185,186,191,193,194,204,205,206,207],example1:[7,122],example2:[7,122],example3:[7,122],example4:[7,122],example5:7,example6:7,example_imag:133,example_tensor:45,example_train_vector:142,exce:166,excel:[23,25,29,107,115,118,123,140,165,186,190,196],except:[3,9,14,22,24,30,31,42,45,47,49,50,51,52,55,65,67,73,98,105,116,124,125,126,127,136,139,141,144,159,160,161,174,175,184,185,204,206],exception:148,exception_has_been_caught:183,exception_has_been_handl:183,exception_is_caught:183,exception_messag:183,excerpt:87,excess:[61,83,168,183],exchang:[109,117,137,149,169,189],excit:[52,109,119,133,145],exclaim:150,exclud:[56,69,98,124,125,126,163,167,182,184,206],exclude_pattern:121,exclude_word:98,exclus:[104,157,183],execut:[0,3,12,14,18,22,24,25,30,49,55,56,71,80,85,97,98,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,74,76,77,90,93,94,95,96],exercis:[0,3,12,33,49,93,122,143,148,166,178,185],exhaust:[121,159,183],exhibit:[96,121,139,150,183],exhuast:58,exist:[1,7,9,14,29,30,31,33,38,40,43,47,49,52,56,58,61,66,68,72,81,87,98,105,106,107,109,117,118,119,121,123,125,127,132,134,137,141,142,145,148,149,150,151,152,154,156,157,160,166,174,183,184,186,191,192,205,206],exist_ok:[37,38,167],exit:[148,185],exogen:137,exot:[160,163],exp1:124,exp2:124,exp:[31,35,52,56,86,87,124,127,135,151,159,160,161,165,175,191,196,201,202],expand:[7,122,123,124,159,160],expand_dim:[37,43,46,73,124,132,133,141,200],expans:[165,183],expect:[7,33,36,42,43,49,50,53,59,79,87,96,114,119,121,122,124,126,127,133,137,149,150,156,160,168,178,180,183,185],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,98],expected_result:[14,22,98],expected_sequ:98,expected_sorted_list:98,expectil:160,expedi:137,expedit:[142,152],expend:106,expens:[33,51,52,58,71,79,85,106,126,136,146,148,149,152,162,180,199],experi:[1,14,16,28,36,41,43,47,49,50,52,106,107,109,113,114,115,117,119,121,139,140,142,149,150,151,152,160,163,174,179,190,200,203],experienc:[28,117],experiment:[30,36,49,139,182],experiment_nam:[9,105],experiment_timeout_minut:[9,105],expert:[51,52,109,117,150,151,152,167],expertis:[106,107,119,150,151,186,188],expir:148,explain:[5,8,24,26,33,43,52,56,74,76,81,90,94,107,109,111,117,124,127,132,133,134,149,150,155,157,159,165,166,167,168,172,174,175,176,178,186,188,193,198],explained_variance_ratio:[168,198],explained_variance_ratio_:[168,198],explan:[10,20,24,47,49,106,117,126,127,152,160,166,184,206],explanatori:[24,114,163,178],explic:59,explicit:[124,127,168,183,198],explicitli:[87,124,126,137,174,183,203],explod:[53,141,143,150],exploit:167,explor:[9,18,23,28,36,47,49,56,62,69,81,82,88,103,104,105,106,107,109,110,111,112,115,116,117,118,125,129,143,147,149,151,154,156,160,162,165,166,168,169,171,173,174,178,179,180,182,186,189,192,199],exploratori:[17,69,71,81,85,105,131,189],expm1:68,expn:124,exponenti:[35,56,124,143,160,184,185,206,207],expos:[30,56,107,117,127,151,188],expose_map:56,exposit:109,exposur:[109,117],express:[1,8,22,30,37,46,47,49,50,80,87,97,98,109,121,124,125,126,127,141,148,156,160,174,178,179,184,185,188,200,203,205,206],extend:[33,107,117,124,149,150,159,160,174,183,184,203,205,206],extens:[0,18,41,83,106,142,150,160,182,185,192,204,205,207],extensionarrai:127,extent:[121,139,165,167,168],extercond:56,exterior1st:56,exterior2nd:56,extern:[104,117,118,121,143,152,168,188],exterqu:56,extinct:[114,190],extra:[18,51,52,124,149,157,160,164,174,184],extract:[3,8,31,32,33,39,43,46,56,69,104,118,119,124,125,132,133,134,135,136,139,140,142,143,147,148,150,180,188,203],extract_fold:132,extract_net_info:134,extract_path:[29,30,31,40],extractal:[29,30,31,33,37,38,40,42,73,132,135],extracted_text:3,extractor:3,extrapol:[52,159],extratreesclassifi:159,extratreesregressor:159,extrem:[50,56,58,121,139,143,149,160,170,192],extremli:88,ey:[30,87,113,116,150,166,193,194,200],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:124,f10:157,f1:[41,49,54,59,62,71,72,85,124,142,157,161,169,172,173,179],f1_score:161,f2:[124,157],f2ac792482e3:192,f35:61,f3:[124,157],f3ab60:69,f4:[124,127,157],f4bafb1ea019:167,f50duri2g6yv8pzu8ii:61,f5:157,f6:157,f7:157,f821:[183,184],f8:[124,157,191],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:61,f9:157,f:[0,1,3,9,14,18,24,29,30,31,33,38,39,40,47,49,50,52,53,57,66,72,73,80,83,87,89,97,98,105,113,121,124,125,126,127,131,134,135,137,138,141,143,146,154,156,157,159,160,161,164,168,171,172,175,176,178,184,185,191,199,206],f_0:160,f_:159,f_i:160,f_t:[141,160],fa:[56,137,145],face:[31,37,40,104,107,109,125,136,140,142,143,149,181,185,186,188,191,194],facebook:[117,152,188],facecolor:[37,69,88,165,167,168,196,198],facemask:[174,203],facet:113,facetgrid:[116,154,179,190],facial:[107,125,186],facil:[124,183],facilit:[55,124,143,183],fact:[1,4,14,18,19,40,41,42,45,51,52,54,59,60,64,71,85,108,113,114,115,117,118,119,121,124,129,153,155,156,159,160,165,166,167,172,179,180,183,184,201,202,203,204],factor:[52,55,56,65,67,69,71,80,85,97,104,106,116,135,139,149,156,157,159,165,166,174,183,196,201],factori:[97,104,111],fad:39,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:61,fail:[1,16,49,50,52,61,63,71,85,98,117,136,148,150,174,183,188,203],failur:[9,103,132,149],fair:[54,59,60,71,85,107,117,119,150,153,156,164,186,188],fairlearn:107,fairli:[33,42,51,69,117,132,167,168,188],fairseq:135,fairytal:178,fake:[37,38,138,194],fake_imag:138,fake_label:38,fake_loss:138,fake_samples_epoch_:38,falcon:125,fall:[43,47,49,50,64,66,104,109,114,121,124,127,159,169,171,174,178,183,203],fallaci:109,fallback:150,fals:[1,3,7,9,14,18,22,24,29,30,31,33,35,36,37,38,39,40,41,42,43,48,51,53,54,55,56,58,59,66,68,71,73,79,81,85,87,89,97,105,106,114,116,121,122,124,125,126,127,132,133,137,138,139,140,141,143,144,146,150,152,156,159,163,164,165,167,168,169,171,172,173,179,183,184,185,190,191,194,196,205,206,207],false_boolean:[184,206],false_positive_r:61,falsehood:185,famhist:175,famili:[5,22,69,109,114,115,123,147,160,164,169,173,190,192],familiar:[28,42,61,64,107,114,123,127,129,156,161,166,178,179,185,186],family_s:[22,69],family_size_max:22,familys:22,famou:163,fan:[107,185],fan_out:144,fanci:[68,119,191],far:[4,7,17,31,37,41,58,66,69,71,79,82,85,114,121,122,135,154,164,165,167,174,175,178,184,196,200,204],fare:[22,161],fare_add_averag:22,fark:36,farlei:[138,149],farmer:156,farsight:137,farther:[79,154],fascin:[115,117,181],fashion:[20,29,30,103,105,106,107,114,124,136,139,164,168,178,183,198],fashion_classifi:41,fashion_classifier_21:41,fashion_classifier_22:41,fashion_classifier_23:41,fashion_classifier_24:41,fashion_classifier_2:41,fashion_classifier_3:41,fashion_classifier_4:41,fashion_classifier_vi:41,fashion_mnist:[29,30,41,43],fashion_test:41,fashion_test_label:41,fashion_train:41,fashion_train_label:41,fashon:30,fast:[7,37,41,43,47,50,52,79,106,111,124,127,143,149,164,174,175,184,189,191,199],fastai:57,fastapi:72,fasten:56,faster:[37,47,49,51,55,56,61,71,80,85,87,119,124,143,149,163,164,167,174],fastest:[124,164,167],fastgfil:73,fatal:[8,14,183,205],fater:51,father:66,fault:149,favipiravir:1,favor:[159,160,166,174,185],favorit:[105,118,121,125],favorite_hobbi:98,fayyad:52,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[71,85,115,190],fcn:144,fe:150,feasibl:[106,150,152,156,164],feat:134,feat_df:54,feat_dict:55,feat_imp:58,feat_import:[54,55],feat_map:79,featuir:56,featur:[7,9,16,20,22,30,31,33,34,39,40,41,43,46,47,51,60,62,63,64,65,66,67,68,69,73,81,82,87,89,105,106,108,117,118,119,123,124,125,127,131,132,133,134,135,136,139,140,143,144,149,151,156,158,159,160,162,165,166,168,169,171,172,179,182,183,184,187,191,198,200,204,206],feature_1:146,feature_2:146,feature_column:88,feature_df:171,feature_extract:142,feature_fract:56,feature_fraction_se:56,feature_importances_:[53,54,55,58,157],feature_indic:157,feature_nam:[7,41,59,60,122,157,168,198],feature_rang:[39,44],feature_scor:53,feature_typ:68,featurecolumn:47,featureidx:49,featuremap:144,featurespr:47,februari:[185,189,192,207],fed:[31,43,51,53,61,127,138,139,143,145,156],feder:117,feed:[3,31,32,40,41,45,56,59,87,119,124,136,146,152,167,174,203],feed_dict:[134,137,145],feedback:[109,143,147,149,152],feedforward:[136,139],feel:[3,7,109,135,154,180,185,189],feet:68,felis_catu:133,fell:183,femal:[22,58,107,174],feminin:113,fenc:[56,68],fence_map:56,fenugreek:171,fernandez:121,fetch:[59,143,168,198],fetch_california_h:79,fetch_dataset:31,fetch_openml:[59,60,167],fetch_ucirepo:143,few:[1,7,9,14,37,40,41,43,45,47,48,49,50,52,54,59,60,61,63,68,69,71,80,81,85,87,93,105,106,107,108,109,111,114,116,117,121,122,123,124,125,127,132,139,140,141,146,147,149,150,151,154,155,160,163,164,166,167,169,174,175,179,183,184,191,194,203],fewer:[3,52,59,61,64,76,118,121,124,156,166,173,183],fewest:139,ff_dim:139,fff9ed:69,fff:169,ffffff:72,ffill:[7,122,143],ffn:139,ffn_output:139,ffoutput:39,fg86ufl9igmpwtk6aurw9v5:61,fgsymyf:61,fh:141,fhxfwxna:144,fhxfwxnax4:144,fi:157,fib_sequ:98,fibonacci:183,fibonacci_at_posit:183,fibonacci_at_position_renam:183,fibonacci_function_clon:183,fibonacci_function_exampl:183,fibonacci_list:183,fibonacci_modul:183,fibonacci_module_renam:183,fibonacci_path:183,fibonacci_smaller_than:183,fiction:31,fido:[124,183],field:[7,45,51,52,54,87,114,123,127,139,140,146,147,148,154,156,165,169,174,178,184,192,193,203,206],fieldnam:124,fifth:[124,184,206],fifti:37,fig:[1,22,30,33,36,38,40,46,56,61,66,69,72,80,88,114,115,116,135,137,138,146,159,161,165,168,190,196,198],fig_dim:22,fig_extens:167,fig_id:167,fight:56,fighter:169,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,68,69,71,72,79,82,85,87,88,114,115,116,131,135,138,140,146,154,155,157,159,161,164,165,167,168,190,196,198,204],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,49,50,51,52,54,55,56,57,58,59,61,63,64,66,68,69,71,72,79,80,82,85,87,88,107,115,116,118,129,131,135,137,138,139,140,146,150,152,154,155,156,157,159,164,167,168,175,180,190,192,198,199,204],figure_format:[52,68,146,156,159,168,198],figureclass:[115,190],file:[0,1,6,9,12,17,22,23,25,29,30,31,33,37,38,39,40,42,43,44,47,49,50,53,56,61,68,76,81,95,97,98,105,106,113,118,119,123,124,125,126,127,132,133,134,137,138,141,143,145,149,154,155,169,171,172,173,178,180,182,183,184,191,204,205],file_conn:[132,141,145],file_desc:73,file_id:59,file_loc:132,file_obj:73,file_output:137,file_path:[29,30,31,33,43,68],file_upload:73,fileexistserror:73,filenam:[31,40,53,58,132,134,167,169],filepath:[40,46,132,134],fill:[1,11,14,15,18,22,24,48,50,51,53,54,58,68,71,79,85,102,106,114,122,124,125,127,135,143,146,157,163,165,169,174,178,190,196],fill_:38,fill_between:[29,159,165,196],fill_betweenx:167,fill_color:72,fill_valu:125,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,48,53,56,58,68,122,143,146,191],film:113,filter:[7,14,16,24,31,33,34,40,48,56,114,124,127,129,132,135,139,140,142,154,180,192,205,206],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[114,190],filters1:140,filters2:140,filters3:140,filterwarn:[37,40,51,52,53,54,55,56,58,59,60,61,71,85,139,140,159,161,163,167],fin:[65,67],fin_col:56,final_df:39,final_estim:51,final_featur:169,final_list:205,final_pip:[63,79],final_st:141,final_state_c:141,final_state_h:141,financ:[6,82,107,119,186],financi:[6,125,137,142,160],find:[7,8,14,15,18,31,32,38,41,48,49,50,51,52,54,55,56,59,60,61,62,63,65,67,69,74,76,81,82,88,89,97,105,106,107,111,113,114,115,116,117,118,119,121,122,123,124,125,127,129,131,136,137,142,147,150,151,153,154,156,157,159,160,161,163,164,165,166,168,171,172,174,175,178,179,180,182,183,185,188,196,200,203,206],find_better_split:57,find_common_el:184,find_prime_factor:97,find_stack_level:125,find_varsplit:57,find_wanted_peopl:97,fine:[80,82,89,131,139,140,148,150,159,163,177,178],finer:[7,122,149],finish:[0,3,32,56,106,146,149,161,166,169,175,183,185],finit:[121,137,171,179],finland:207,fintech:39,fintype_map:56,fip:151,fire:[30,142],firecolumn1:39,firecolumn2:39,firecolumn:39,firefox:106,firegod:39,firehos:148,fireplac:56,fireplacequ:56,firm:69,first:[0,1,3,7,11,14,18,31,32,34,35,40,41,43,45,46,47,48,49,50,51,52,54,55,56,58,59,60,61,62,64,66,68,69,71,81,82,85,87,98,105,106,108,109,111,115,116,117,119,121,122,123,124,125,127,129,136,137,138,139,140,141,142,143,145,146,148,149,150,151,152,154,156,157,159,160,161,163,164,165,167,168,169,171,172,174,176,178,179,181,183,184,185,188,189,191,198,199,200,203,204,205,206,207],first_baseman:[18,121],first_char_set:184,first_nam:[98,205,207],first_numb:[184,206],first_param:183,first_term:134,first_tuple_numb:184,first_word:[183,205],firstli:[48,69,88,150],firstnam:[123,185,192],fiscal:25,fish:69,fisher:7,fit:[29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,67,68,69,71,72,79,80,81,82,85,86,88,89,93,97,98,105,118,119,123,132,134,137,140,142,143,146,148,150,151,152,155,157,159,160,161,162,163,164,167,168,169,171,172,173,175,178,179,182,183,184,185,196,198,201,202],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:145,fit_predict:[69,167],fit_resampl:171,fit_transform:[30,39,41,44,46,51,53,54,55,58,59,60,61,62,63,66,69,71,79,81,85,88,142,143,155,163,167,168,169,179,198,200,201,202],fitted_model:[9,105],fiumlogtswc31vrwbvd:61,five:[7,16,48,51,54,88,97,109,112,139,142,146,171,180,184,206],five_up:124,fix:[29,47,50,51,54,64,87,117,118,124,127,135,139,141,149,150,159,161,164,165,168,171,185,188,193,196,198],fixat:109,fixed_nois:38,fixedformatt:167,fixedloc:167,fj4b:169,fk:[12,129],flag:[3,33,36,127,139,150,154],flair:186,flat:[40,66,154],flat_map:46,flatten:[29,30,32,33,34,37,38,40,41,42,43,45,46,66,72,87,98,131,132,135,138,139,168,169,172,184,198,206],flatten_2:42,flatten_nested_list:98,flatten_vector:[184,206],flattened_list:98,flavor:[7,137,166],flaw:[68,74,90,96,107,186],fledg:160,flexibl:[7,68,104,118,124,127,129,147,148,149,160,165,187,191,192,199],flip:[71,79,85,113,137,140,174,203],flipsid:7,fll:48,float32:[29,30,31,33,36,37,45,73,124,131,132,133,135,137,138,139,140,141,144,145,167,194,204],float64:[14,24,39,46,61,62,66,69,79,122,124,126,127,154,159,168,169,175,178,191,198],float_base_shap:133,float_format:[47,49,50],float_neg:[184,206],float_numb:[184,206],float_number_via_funct:[184,206],float_with_big_:[184,206],float_with_small_:[184,206],floatbox:144,floattensor:31,floor:[39,56,137,156,184,191,206,207],floppi:149,florida:[113,191],flow:[32,34,52,114,136,143,184,206],flower:[62,88,113],flowform:165,flu:[107,186],flu_trend:146,fluctuat:[14,51,54,166,178],fluoresc:40,flush:205,fluvisit:146,fly:[169,185],fmt:[34,39,41,53,61,66,71,85,143],fn:[54,61,71,85,179],fname:31,fnlwgt:53,focu:[1,14,18,51,56,61,83,87,104,107,108,111,116,118,119,124,126,127,129,148,150,157,171,172,174,175,178,186,192,199],focus:[48,80,106,107,108,109,111,115,117,118,122,123,142,143,147,149,150,151,160,173,181,182,186,188,189],foggi:137,fold:[51,52,58,59,60,62,63,66,71,85,88,159,162,167],folder:[14,31,33,40,105,113,132,154,169,171,180,185,190],folder_path:132,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,37,41,43,45,47,49,50,52,53,55,56,60,61,68,69,79,80,81,82,88,97,98,104,105,106,107,108,109,111,113,115,117,118,119,121,123,124,125,126,127,129,131,132,134,135,136,137,139,140,141,143,144,145,146,149,150,151,154,156,157,159,160,163,164,165,166,167,168,169,172,173,174,175,176,178,179,180,182,183,184,185,192,205,206],font:[61,115,169],fontsiz:[30,40,88,132,167],fontweight:88,foo:[124,125,127,185],food:[113,148,170,184,206],fool:[113,194],footbal:52,forc:[1,107,131,151,152,154,166,183],forcast:146,forcibl:205,ford:152,forecast:[39,52,82,105,111,151,189],forecasting_d:[39,46],forehead:194,foreign:[129,137],forest:[52,59,60,64,68,71,85,121,131,142,156,158,160,163,173,174],forest_best:[54,55],forest_clf:54,forest_grid:52,forest_param:52,forest_reg:55,forget:[87,105,106,107,136,141,186],forgiv:142,forgotten:[117,141,188],fork:0,form:[3,7,49,52,53,61,69,87,117,119,122,124,127,129,134,136,137,142,143,146,149,151,154,155,160,164,165,169,171,174,178,183,184,192,200,203,204,205],form_df:15,form_linearly_separable_data:52,formal:[18,52,117,121,139,152,157,159,168,183,205],format:[6,14,26,29,31,32,33,36,37,41,42,43,47,48,50,51,53,54,55,58,59,60,61,62,63,65,67,71,79,85,97,107,113,117,118,119,122,123,124,125,132,133,134,136,137,138,140,141,144,145,148,149,155,156,159,164,165,167,168,169,172,174,180,183,185,186,191,196,198,203,204,205,207],format_person_info:98,format_vers:205,formatfactori:39,formatted_column:48,formatted_info:98,formatted_str:[184,206],former:[45,51,63,119,124,135,139,150,152,156,157,174,179,203],formul:[168,174,200],formula:[18,80,81,97,123,157,160,168,175,179,184],forth:[51,109],forthcom:182,fortran:124,fortun:[7,48,71,85,122,155,160,180],forum:147,forward:[7,31,32,33,38,48,87,122,133,142,149,174],foster:142,found:[1,9,26,32,37,52,56,58,65,67,71,73,85,89,97,105,106,108,114,118,121,124,127,132,141,142,144,148,150,151,160,163,164,165,183,184,185,199,205,206],foundat:[117,119,147,148,149,151,160,174],foundationdb:192,founder:174,four:[7,32,43,52,53,61,69,71,85,97,106,122,123,124,146,157,166,171,182,183,184,205],four_g:[71,85],fourier:124,fourteen:[168,198],fourth:[14,32,88,124],fowler:151,fp:[61,71,85,144,179],fpath:31,fpcoor:144,fpn:144,fpr:[61,179],fr:14,frac:[14,49,50,52,64,80,82,83,98,135,143,144,156,157,159,160,161,164,168,175,179,200],fractal:124,fraction:[43,52,64,159,166,167,179,184,204,206],fragil:[64,183],frame:[1,7,14,36,37,39,52,59,60,61,62,69,79,122,125,127,132,136,143,150,154,164,169,171,178],framebord:[121,125,126,127,183],framework:[0,41,43,56,106,117,132,134,136,140,141,145,147,149,150,152,164,169,176],franci:156,frank:150,fraud:[107,154,186,203],free:[3,30,50,56,97,98,107,115,117,119,135,136,144,145,152,154,174,180,183,184,185,186,188,190],freecodecamp:193,freedom:[107,121,127,137,186],freedraw:72,freez:142,french:113,freq:[39,46,59,66,79,127,146],frequenc:[1,3,35,63,66,142,146,148,150,159],frequent:[51,52,53,54,55,56,61,111,121,129,141,150,160,168,171,174,198],fresh:[74,117,164,169,180],fresh_fruit:[184,206],friedman:[52,159,164],friedman_ms:58,friend:[109,118,119,125,150],friendli:[107,113,142,149,150],frog:132,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,35,36,37,38,39,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,72,73,79,80,82,85,87,88,89,93,96,97,99,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,125,126,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,185,186,187,188,189,190,191,192,194,196,199,200,202,203,205,206],from_arrai:125,from_categor:40,from_config:[9,105],from_lat:31,from_logit:[43,132,138,140],from_logitstru:140,from_se:45,from_tensor_slic:[46,131],fromarrai:[31,133],front:[71,85,114,184,190,206],frontend:183,frozen:164,frozenset:[127,184,206],fruit:[69,142,143,184,206,207],fruit_nam:40,fruits_copi:[184,206],fruits_dictionari:[184,206],fruits_set:184,fruits_set_via_constructor:184,fruits_tupl:184,fruits_tuple_via_constructor:184,frustrat:148,ftc:[117,188],fu:125,fulfil:[124,160],full:[1,7,29,31,38,43,45,50,51,63,69,71,85,98,104,105,106,114,117,122,124,125,126,127,129,144,149,150,159,160,163,167,168,171,172,178,183,184,206],full_model_dir:141,fullbath:56,fulli:[0,32,33,43,47,50,66,87,90,136,137,139,140,144,148,149,150,151,160,167,174],fully_connected_size1:132,fulvou:[114,190],fun:[59,87,124,178,179,205],func:[97,125,139,183,205],func_nam:183,func_wrapp:183,function_nam:185,function_that_receives_names_argu:183,function_wrapp:[183,205],functool:134,fund:58,fundament:[54,55,60,62,80,82,104,121,124,127,130,142,171,174,175,177],fungi:115,fuqiongi:[114,145],furnish:[97,98,183,184,185],further:[1,14,37,52,56,61,62,63,69,80,81,97,105,106,118,119,121,124,131,132,134,137,142,149,150,156,160,162,163,164,167,169,173,174,175,183,191,203],furthermor:[49,52,89,108,150,160],fuse:139,fused_batch_norm:37,futher:56,futur:[29,39,46,49,56,60,81,88,107,117,119,142,145,151,152,160,169,171,174,179,183,203],future_step:[39,46],futurewarn:[88,125,167,168,198],futurolog:[132,134],fx:141,fxbyxm:61,fy:25,fykun93:61,g2d:37,g:[3,38,39,40,44,52,53,56,58,61,73,80,82,87,98,107,117,119,124,125,126,127,131,137,138,139,144,145,148,154,159,160,166,168,172,175,179,183,184,186,188,191,194,204,206,207],g_error:138,g_fake_se:138,g_gradient:138,g_k:137,g_loss:[37,38,138],g_loss_metr:37,g_loss_tru:138,g_optim:37,g_origin:134,g_resolut:37,g_sampl:138,g_solver:138,g_style:134,g_t:141,gain:[50,52,56,61,81,104,114,125,137,142,148,150,152,157,159,160,161,164],galaxi:[6,168],gallahad:183,galleri:151,galton:156,gam:160,gambl:107,gamboost:160,game:[36,39,52,103,107,137,152,174,203],gamedownload:39,gamma:[36,61,62,63,68,137,139,144,160,163,164,167],gamma_initi:144,gan:[138,151,152],gan_input:194,gan_output:194,gan_structur:194,ganlab:194,gap:[14,22,43,52,61,109,117,139,142,150,166,180,188],garagearea:56,garagearea_mean:56,garagecar:56,garagecond:56,garagefinish:56,garagequ:56,garagetyp:56,garageyrblt:56,garbag:[40,124],garbl:148,gari:39,garlic:171,gartner:[117,148,152],gate:[136,185],gatewai:148,gather:[15,40,107,108,119,135,145,150,152,154,169,173,178,186],gaug:[82,83,142,179],gaussian:[30,61,135,154,160,172,174],gaussiannb:172,gaussianprocessclassifi:172,gave:[51,52,156],gb:[1,169],gbc:58,gbdt:[56,160],gbm:[58,164],gbm_tuned_1:58,gbm_tuned_2:58,gbm_tuned_3:58,gbrt:160,gbtree:[56,163,164],gc:40,gca:[1,32,114,115,132,165,167,190,196],gcf:[115,190],gcp:149,gcv:159,gd:[56,175],gdpr:117,gdprv:56,gdwo:56,gebru:[107,186],geeksforgeek:[165,205],gees:[19,114,142,190],gelu:135,gemston:192,gen_imag:38,gen_logits_fak:138,gen_z:38,gender:[7,22,52,107,117,119,125,164,174,186,188],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,35,43,45,47,48,49,50,51,52,54,55,59,61,62,64,73,79,81,83,89,105,106,107,108,113,114,116,117,118,119,121,122,123,125,126,127,129,131,132,133,134,135,136,137,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,171,172,173,174,176,182,183,184,185,188,191,192,195,196,200,204,207],generalis:[56,165],generalist:109,generalizaton:34,generar:37,generate_from_frequ:3,generated_imag:[35,37,194],generated_paint:37,generated_path:37,generated_portrait:37,generated_text:141,generator_loss:138,generator_opt:37,genfromtxt:198,genom:107,genr:[154,155],genu:[114,190],geoffrei:[33,168,198],geograph:[63,106],geographi:151,geoloc:14,geometr:[154,165],geometri:[139,154],georg:[125,184,185,206],georgia:[117,144,188],geospati:[107,186],geq:160,geqq:135,gerg:137,germani:169,geron:[45,51],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,33,37,38,40,42,43,45,48,49,50,51,54,55,56,58,59,60,61,62,63,64,66,68,69,71,72,73,81,82,85,87,104,105,106,107,108,109,113,114,117,121,122,123,126,127,129,131,134,135,136,137,138,139,141,142,143,145,146,148,149,150,151,155,156,157,160,161,163,164,166,167,168,169,171,172,173,174,175,178,179,180,181,183,184,185,191,194,198,203,205],get_age_by_surviv:22,get_age_group:183,get_base_model:140,get_batch:31,get_bootstrap_sampl:156,get_cmap:[168,198],get_count:183,get_dat:[183,205],get_default_devic:33,get_default_graph:[36,37],get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,56,68,143,178],get_environ:[9,105],get_equivalent_kernel_bia:139,get_fil:[39,40,41,44,46,133],get_full_id:[183,205],get_grid:52,get_imaginari:183,get_index:126,get_initial_st:141,get_item:127,get_lay:[133,139,140],get_loc:[126,127],get_messag:[183,205],get_model:135,get_nam:[183,205],get_network:35,get_network_custom:35,get_oper:73,get_output:[9,105],get_param:[54,55,59,60],get_pinfect:14,get_properti:[9,105],get_real:183,get_result:125,get_rolling_window:14,get_rt:14,get_shap:[73,134,137,139,144,145],get_slice_bound:126,get_smoothed_ax:14,get_solv:138,get_std:24,get_survival_rate_by_gend:22,get_tensor:73,get_tensor_by_nam:73,get_text:183,get_the_unique_values_of_pclass:22,get_tim:[183,205],get_timestep_embed:135,get_transition_sigmoid:151,get_valu:127,get_vari:144,get_vers:140,get_xaxi:[29,30,132],get_xlim:[165,196],get_yaxi:[29,30,132],get_ylim:[165,196],getcwd:[29,30,31,33,40,43,68,183],getpro:168,gettint:45,gfile:73,ggplot:159,gh:[126,141],ghost:179,giant:138,gif:135,gift:180,gigabyt:[71,85],gigaspac:192,gill:[115,190],ginger:171,gini:[52,59,157,159,161],giraph:192,girshick:144,gist_rainbow:[71,85],git:[0,39,97,149],github:[5,14,36,39,53,59,60,62,63,68,73,80,88,106,107,124,126,127,132,140,144,147,149,151,159,163,164,165,167,171,178,179,182,193,194],githubusercont:[12,14,18,25,71,85,106,167],give:[1,7,18,24,37,43,51,52,53,56,58,61,65,67,79,82,105,106,109,113,114,117,119,121,122,124,125,127,136,138,139,143,144,150,155,157,160,161,164,165,167,174,178,179,183,184,185,188,203],give_me_sunglass:31,given:[1,7,14,18,19,22,29,33,34,41,46,49,51,52,54,55,56,58,59,60,61,62,71,79,85,87,97,98,104,106,113,114,115,116,121,124,125,131,136,137,139,140,144,150,151,152,154,155,157,159,160,164,165,166,167,168,171,172,174,178,179,180,182,183,184,190,191,197,198,200,203,205,206],gkioxari:144,glacier:148,glanc:[37,56,63,148,160,161,174],glean:109,glenc:58,glimps:142,glinternet:160,glmboost:160,glob:[2,31],global:[14,22,52,61,106,139,140,148,151,165,167,196,205],global_variables_initi:[134,145],globalaveragepooling2d:[139,140],gloss:109,glq:56,glu:[184,206],glue:148,gluon:150,gn:144,go:[0,1,7,31,37,43,45,50,51,52,54,55,57,59,60,62,63,65,67,68,69,71,79,85,87,94,103,104,105,106,109,113,114,116,121,122,124,125,126,129,135,136,140,141,145,148,149,150,155,157,160,163,166,167,168,171,174,175,179,182,183,184,185,187,194,198,203,205,207],goal:[1,7,8,16,29,48,76,79,100,107,108,109,111,119,131,137,150,151,152,160,164,165,166,174,178,186,188,189,194,203],goali:137,goalx:137,goe:[51,52,62,64,79,87,109,119,143,145,147,156,159,160,168,172,174,180,194,205],gog:39,gold:[69,151],golden:[148,183],gomez:138,gone:[3,117,160,174,203],gonna:87,good:[1,3,7,18,19,25,31,40,41,43,45,47,49,50,51,52,54,55,56,59,61,62,63,64,65,67,68,71,85,87,89,105,107,109,113,114,116,117,119,121,122,132,135,139,142,148,150,151,152,154,155,156,159,160,161,165,167,168,169,172,173,174,176,178,179,180,183,185,190,196,197,198,199,204],good_init:167,goodby:183,goodfellow:[29,52,83,138,176,194],googl:[41,45,47,49,50,104,107,117,125,132,136,142,148,149,150,151,174,185,186,192,194,203],googleapi:[73,133],googlenet:139,goos:[114,190],gosset:121,got:[7,45,52,53,58,87,145,160,161,167,168,185,199],gov:152,govern:[22,47,49,50,80,117,119,146,152,174,203],govt:117,gp:194,gpu:[33,37,41,45,51,56,105,106],gpu_hist:56,gpu_id:[68,163,164],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:61,grab:[43,124],gracefulli:[126,184],grad:[33,37,73,137],grad_bias:87,grad_boost_clf:51,grad_input:87,grad_output:87,grad_softmax_crossentropy_with_logit:87,grad_w:87,grad_weight:87,grade:[178,179,180,199],gradient:[33,35,37,49,50,56,59,60,65,67,71,73,83,85,86,87,131,133,135,136,137,138,139,141,143,147,150,159,163,165,168,172,176,177,178,196,200,201,204],gradient_boost:161,gradient_desc:[80,81],gradient_i:80,gradient_loss:161,gradient_react_3d:178,gradient_x:80,gradientboostingclassifi:[51,58],gradientdescentanim:175,gradienttap:[35,37,131,133,135,137,138,141],gradual:[66,80,81,116,150,160,167,174,175,203],graduat:[58,69],grai:[18,29,30,31,49,72,73,87,114,119,131,138,167,168,190,198,204],grain:[7,122,148,159,178],gram:134,grammat:142,grand:139,granda:121,grant:[37,52,97,98,127,183,184,185],granular:[114,149,154,173],grape:[184,206],graph:[1,3,8,14,19,24,30,33,41,43,49,56,73,119,121,123,132,134,135,138,145,146,151,154,156,159,160,163,164,165,168,178,180,182,192],graph_def:73,graph_object:1,graphdef:73,graphic:[8,24,45,106,121,124,137,156,166,174,187,192,197],graphwin:137,grasp:[69,80,156,173],grass:[115,190],grassi:169,gratifi:115,grayscal:[43,72,167],great:[16,30,41,42,51,52,54,55,65,67,79,81,106,107,109,113,119,121,124,142,145,150,152,155,157,159,160,167,184,185,186,206],greater:[29,48,50,52,56,97,109,114,124,127,136,143,157,159,160,167,183,184,190,205,206],greater_equ:124,greatest:[52,97,124],greatli:[50,52,119,139,150,154,159,160],greedi:[52,160,164,168,198],greek:117,green:[42,51,52,53,54,109,113,114,115,121,137,139,149,160,169,178,180,184,185,190,201,202,206],greenawai:25,greengrass:151,greensock:113,greet:[183,205],greet_again:[183,205],greet_funct:183,greet_one_mor:[183,205],greet_someon:[183,205],greet_with_closur:183,greeter:183,greeting_with_div_p:183,greeting_with_p:183,greeting_with_tag:183,greetingclass:183,grei:52,gremlin:192,greys_r:132,greyscal:132,grid:[18,22,29,42,43,52,55,58,59,61,62,68,79,87,89,137,144,151,154,156,165,169,196],grid_clf:167,grid_estim:89,grid_param:89,grid_pr:62,grid_search:[54,55,59,60,61,62],gridsearch:[54,55,59,60,62,159],gridsearchcv:[52,54,55,59,60,61,62,89,159,167],gridsearchcvgridsearchcv:[59,60,62,159,167],gridspec:138,grlivarea:[56,68],groceri:[69,164,171],gross:25,ground:[68,139,184,204],groundbreak:136,groundwork:109,group:[14,18,22,31,39,51,52,56,69,79,106,107,109,111,112,113,115,116,117,118,119,121,123,135,139,141,142,144,148,150,151,153,154,155,156,159,164,168,169,171,172,174,179,180,181,182,184,186,188,189,190,191,192,198,203,205,206],group_by_categori:98,group_kei:[22,125],group_siz:144,groupbi:[1,14,18,22,31,39,56,88,115,125,180,190],groupby_sum:14,grouper:39,groupnorm:[135,144],grover:57,grow:[87,106,115,121,124,129,144,149,160,192],grow_polici:[68,163,164],grown:159,growth:[83,139,146,159],growth_rat:139,grunin:14,gryffindor:199,grzanka:133,gs:138,gsearch3:58,gsearch4:58,gsearch5:58,gt:[48,141],gt_coord:42,gu:151,guarante:[52,124,127,149,185],guardian:113,guardrail:117,guarrant:[71,85],guava:40,guess:[7,18,49,52,55,58,60,97,98,122,150,156,160,172,179,183],guesser:52,gui:[56,106,187],guid:[0,17,23,52,56,58,80,104,117,119,124,125,126,127,143,147,149,150,151,174,183,187,193,203],guidanc:[47,50,61,80,117,150,168,174,198,203],guidelin:[50,117],guido:[184,185,205,206,207],guin:121,gun:113,gust:137,gutedbanoeu:171,gutenberg:[107,141,186],guyon:61,gym:98,gyro:168,gyroscop:121,gz:[33,132,139],h0:190,h1:[1,15,18,137],h2:[1,18,137],h2o:[149,160],h5:[39,40,41,42,43,44,46],h:[18,31,33,39,73,89,98,117,135,140,141,144,145,160,164,168,184,201,206],h_:200,h_t:[145,160],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,35,37,40,41,42,43,45,47,48,49,50,51,52,54,56,58,59,64,65,66,67,69,71,79,80,81,85,87,88,93,104,106,107,108,109,111,113,114,115,116,118,119,121,122,123,124,125,126,127,129,132,136,139,140,141,142,143,144,145,146,149,150,151,152,153,154,155,156,159,160,161,163,164,165,166,167,168,169,173,174,175,178,179,182,183,184,185,189,190,191,192,194,198,199,200,203,204,205,206,207],habit:[23,69,183],habitat:[115,190],habr:168,habrastorag:168,hack:[98,117],hacker:97,had:[16,29,40,47,49,50,51,52,54,58,59,61,71,85,107,109,117,124,125,127,129,160,164,178,183,186,188],haemoglobin:106,haffner:193,haha:185,halevi:152,half:[1,31,33,51,52,54,97,121,124,146,167,178,180],half_dim:135,halfbath:56,hall:174,halloween:[178,181],halt:183,halv:[33,150],ham:[145,183,205],hamster:174,hand:[31,34,40,43,51,56,58,108,109,113,127,143,146,148,149,154,156,161,165,166,168,171,174,176,182,203],handbook:[59,60,62,63,113],handi:[41,79,124,154,183],handl:[0,7,23,40,42,51,52,56,58,60,62,63,71,81,83,85,97,98,106,109,113,114,117,119,122,124,126,127,136,143,148,149,150,151,152,154,159,162,165,172,174,182,184,187,196],handle_data:3,handle_endtag:3,handle_missing_valu:79,handle_starttag:3,handler:183,handout:155,handson:167,handwritten:[29,32,43,49,87,168,204],hang:172,hao:144,happen:[1,7,18,43,50,56,62,65,67,109,118,121,124,127,137,142,150,153,160,166,169,183,193,199],happi:[109,113,121,125,174,199,203],happier:[50,116],har:[82,104],hard:[47,51,54,61,68,109,111,136,139,160,163,167,168,174,180,203],hardcod:183,hardcov:146,harder:[47,49,52,64,69,150,151,160,183],hardest:169,hardwar:[104,106,111,149,152,167],harm:[28,106,107,117,186,188],harmon:[41,54,59,61,71,85,168],harmoni:156,harvard:109,harvest:179,hasattr:139,hash:[48,123,185,192],hashabl:184,hashablet:125,hashtabl:127,hashtable_class_help:127,hashtag:104,hasn:[66,166],hasti:[159,160],hat:[80,82,83,139,156,157,160,164,175,199],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,35,37,40,41,42,43,45,47,48,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,71,73,79,81,82,83,85,87,96,97,98,102,103,104,105,106,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,164,165,166,167,168,169,171,172,173,174,175,176,178,180,182,183,184,185,189,190,192,193,198,199,200,203,204,205,206],haven:[42,55,60,174],hay:185,hazelcast:192,hbase:192,hbr:109,hc:168,hd:40,hdbscan:154,hdf5:194,he:[18,121,125,139,144,145,146,149,156,159,169,174,203],he_norm:140,head:[1,14,15,24,29,31,36,39,40,41,46,49,50,51,52,53,54,55,56,58,59,61,62,63,65,66,67,68,69,70,71,79,81,85,88,91,114,115,116,122,127,139,142,143,144,146,151,154,156,157,161,164,169,171,172,178,179,180,190],header:[18,29,39,49,121,123,132,154,184],headlin:28,headwai:110,health:[1,13,104,117,124,142,151,188],healthcar:[82,107,143,186],healthi:106,heapprimit:183,hear:174,heard:[28,39,79,109,142,154,160,161],heart:[6,9,33,52,103,118,143,152,175],heart_diseas:143,heat:119,heatingqc:56,heatmap:[1,8,34,39,41,50,51,53,54,55,56,61,66,69,71,79,85,143,154],heav:150,heavi:[111,160,172],heavili:[133,137,149,152,155,174,180],heavyweight:172,height:[3,18,31,33,35,62,71,72,85,88,113,116,118,121,125,126,127,132,134,135,139,140,155,159,165,167,168,169,171,175,176,178,182,183,190],height_shift_rang:32,heirloom:178,held:[117,156],helicopt:137,hello:[43,98,127,132,182,183,184,185,191,205,206],hello_world_str:[184,206],helloworld:[185,207],help:[0,1,7,8,23,28,32,33,36,37,43,47,50,52,53,56,58,61,64,66,68,69,71,79,80,81,82,85,87,90,103,104,106,107,108,109,111,112,113,117,118,119,121,122,124,125,131,135,142,143,146,147,148,149,150,151,152,154,155,159,160,163,164,165,166,167,168,170,171,173,174,175,178,179,180,181,182,183,184,185,186,187,188,189,190,198,200,205],helper:[33,43,73,115,138,146],helvetica:169,henc:[7,41,50,56,61,62,63,65,67,69,79,131,148,156,168],heparin:1,her:[7,52,150],here:[1,7,11,14,18,24,28,32,36,41,43,45,47,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68,71,79,80,81,82,85,87,89,97,98,101,102,105,106,107,109,111,113,115,117,119,121,122,123,124,125,127,129,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,154,155,157,160,161,163,164,166,167,168,172,173,174,175,178,179,182,183,184,185,191,192,194,198,199,200,203,205,206],hereaft:184,herebi:[97,98,183,184,185],hessian:160,heterogen:157,heurist:[52,150,152,160,168,174],hf:[9,105],hi:[7,51,66,73,121,125,157,166,169],hidden:[30,43,49,50,64,119,131,141,143,144,145,146,150,152,166,204],hidden_dim:144,hidden_layer_s:36,hidden_unit:204,hide:[18,49,51,54,55,59,60,71,85,183],hide_result:49,hierarch:[69,119,154,193],hierarchi:[118,139,140,168,183,193],high:[14,18,31,39,42,43,45,46,49,50,51,52,55,58,59,61,62,63,65,66,67,69,71,79,85,88,97,106,119,124,129,136,139,146,148,149,150,152,160,162,163,164,165,166,168,174,178,179,180,185,191,194,198,200,207],high_blood_pressur:[9,105,106],high_qual:175,high_valu:151,higher:[18,29,33,40,47,51,52,54,56,58,59,66,68,69,79,82,106,107,109,114,121,124,140,143,146,150,157,159,163,165,166,167,168,178],highest:[33,43,49,139,140,164,180,204],highli:[50,54,56,79,121,137,148,150,151,159,168,185,198],highlight:[1,28,83,107,115,117,119,123,129,142,149,174,203],highlight_max:199,hilari:113,him:160,hing:83,hint:[3,7,14,22,24,49,55,87,97,98,105,123,155,180,182],hinton:[33,166,168,198],hipaa:117,hire:[58,107,109,117,186],hire_d:191,hist2d:[114,190],hist:[1,18,22,29,40,49,51,54,55,58,60,61,62,63,68,114,156,190],hist_df:40,histogram:[1,4,18,41,49,51,54,56,60,61,62,79,113,121],histor:[107,113,151,174,178],histori:[29,30,31,32,33,34,35,36,37,39,40,41,46,47,49,50,64,72,106,107,132,146],history_df:[37,64],history_t:36,history_va:31,histplot:[71,85],hit:[7,137],hitchhik:149,hither:183,hline:157,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:61,ho:[61,159],hoang:139,hobbi:98,hoc:149,holbrook:64,hold:[31,34,36,52,66,83,123,127,136,156,164,174,184],holder:[97,98,183,184,185],hole:115,holidai:178,hollow:180,home:[52,79,169,183,199],homeless:113,homepag:147,hometown:184,homogen:[7,124,157,168,191],homogeneity_scor:168,honei:13,honestli:117,hong:205,honor:126,hood:[97,159,160,175,200],hope:[26,56,58,81,125,139,161,166,171,185,207],hopefulli:[43,56,63,79],hopkin:[14,124,151],hoptroff:152,hor:145,horeca:164,horizon:[137,146],horizont:[14,53,113,124,125,140],horizontalalign:[72,88,168,198],horribl:[184,206],hors:132,horseradish:171,hospit:151,host:[50,104,107,111,118,148,149,186,187],hostel:157,hostel_data:157,hostel_factor:157,hot:[1,7,41,49,53,56,111,143,145,150,174,178,189],hotel:164,hour:[33,39,51,54,58,105,106,107,109,118,150,169,186,199,200],hour_df:39,hourli:[39,118],hours_per_week:53,hous:[52,56,63,136,149,150,151,152,174,199],house_price_test:56,house_price_train:[56,163],household:[63,69,79],housekeep:137,housing_median_ag:[63,79],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,35,39,40,41,42,43,45,47,48,49,50,51,54,55,56,59,60,62,63,64,65,67,68,69,71,72,74,76,79,80,81,82,83,85,87,88,93,95,104,105,106,107,108,109,111,113,114,115,116,117,119,120,121,122,123,124,125,126,127,129,130,134,135,136,137,141,143,144,146,147,148,149,150,151,154,155,156,159,161,163,164,165,167,168,169,171,172,173,174,175,178,179,180,182,183,184,186,188,189,190,192,197,198,199,200,203,205,206],howden:[178,179,180],howev:[1,3,7,28,30,32,33,37,42,47,48,49,50,52,56,58,64,68,69,80,87,106,108,117,118,119,121,122,124,126,127,129,131,133,140,141,143,144,149,150,152,157,160,162,165,166,167,168,172,174,178,180,182,183,184,185,188,198,207],hpo:150,hr:[39,58,169,191],href:[126,127,132,133,139,140,155,159,165,167,168,169,171,175,176,178,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:61,hs:[135,144],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:61,hspace:[31,138,167],hsplit:124,hstack:124,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:61,html:[3,15,31,59,60,62,63,68,88,98,118,121,125,126,127,132,133,139,140,155,158,159,163,164,165,167,168,169,171,175,176,178,180,182,183,184,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],htmlparser:3,http:[1,2,3,12,14,15,18,22,25,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,47,49,50,53,58,59,60,68,70,71,72,73,85,87,88,89,98,105,106,113,114,115,116,117,119,121,123,125,126,127,132,133,134,135,138,139,140,141,142,144,145,146,151,152,154,155,156,157,158,159,161,163,164,167,168,169,171,172,173,174,175,176,178,179,180,183,184,186,187,188,189,190,192,193,194,198,205],http_get:3,httpmessag:167,huang:[97,98],hub:[16,104,107,119,151,186],huber:[46,83,135,160],hubspot:109,hue:[51,53,54,59,62,63,66,69,71,79,85,88,114,116,154,190],hufflepuff:199,huge:[1,66,104,136,148,174,203],human:[16,31,43,49,52,111,117,118,119,136,139,142,143,149,152,174,185,188,203],humanist:107,humbl:149,hundr:[7,135,150],hungri:[37,171],hunt:[76,87],husl:146,hutter:150,huyacli:39,hw8:61,hw:73,hxfbpxg4aih7u:61,hybrid:[83,104,146,187],hydroxychloroquin:1,hype:[39,117],hypeparamet:33,hyper:[32,62,139,141,160,168,197,198],hyperparam:56,hyperparamat:[51,62],hyperparamet:[33,47,50,51,52,54,55,56,59,60,62,63,65,67,71,85,89,105,136,139,146,151,160,164,165,167,174],hyperplan:[52,165,196],hypert:192,hypertens:106,hyphen:141,hypothes:[18,119,121],hypothesi:[29,65,67,142,164,178],hyungjin:144,i1:124,i4:[124,127,191],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:61,i8:124,i:[1,3,8,14,16,18,29,30,31,32,33,34,37,38,39,40,41,42,43,44,45,46,51,52,53,54,56,57,58,59,60,61,62,66,68,69,71,72,73,79,80,81,82,83,85,86,87,97,98,105,106,107,108,109,111,113,119,121,124,125,126,127,131,132,134,135,136,137,138,139,140,141,142,143,144,145,146,148,151,155,156,157,159,160,161,164,165,166,167,168,175,178,184,191,197,198,199,200,201,202,204,205,206,207],i_1:124,i_:[14,157],i_batch:38,i_i:157,i_imag:38,i_j:164,i_loss:35,i_m:124,i_t:[14,141],i_x:141,iaa:[104,149,187],iac:149,iam:148,ian:[29,52,83,138,176,194],iat:126,ibm:[107,117,148,149,186,192],ic:[60,145],iclr:150,icml:160,icon:[7,48,106,115,122,182,185],id3:52,id:[7,12,15,31,56,58,59,65,66,67,68,69,87,105,123,125,129,142,143,169,183,192],id_out:139,id_tensor:139,id_var:66,idea:[7,31,37,39,42,48,51,52,54,55,60,62,63,64,68,69,71,85,88,107,109,121,122,124,139,142,143,147,150,151,154,156,160,161,162,164,165,167,168,171,172,174,175,178,179,183,189,199,200,204],ideal:[56,79,82,109,119,121,142,150,156,160,163,165,166,178,179,183,185,205],ident:[43,52,117,124,125,127,137,139,140,143,145,148,149,159,184,192,206],identif:[83,137,148,165],identifi:[6,11,16,23,28,29,33,37,48,51,52,54,58,59,61,64,81,83,106,107,109,111,112,117,118,119,121,122,123,127,129,136,139,142,143,144,148,150,151,160,168,174,182,185,186,188,189,190,191,192,193,198,203],idiom:142,idl:[37,106,124],idx1:40,idx2:40,idx:[31,57,138,167],ie:15,ieee:[7,122],ifram:[121,125,126,127,132,139,140,155,158,159,165,167,168,171,175,176,178,180,183],ig:52,igam:39,iglob:31,ignit:192,ignor:[37,40,51,52,53,54,55,56,58,59,60,61,66,69,71,85,87,97,109,114,123,125,139,140,145,146,159,160,161,163,167,168,175],ignore_index:[42,125,191],ih:141,ihm:151,ii:[18,38,61],iii:31,ij:[18,121],iljxqfj1omejrnpbca8g:61,ill:163,illinoi:191,illumin:[40,139,144],illus:[117,188],illustr:[3,8,24,29,37,52,61,107,117,123,127,131,132,134,135,139,144,146,156,159,160,165,166,183,188,197],iloc:[1,14,31,36,40,44,48,49,50,52,56,66,87,89,126,127,157,159,172,175,191,200,201,202],ilsvrc:139,im:[135,144],im_batch_s:38,im_shap:135,imag:[3,28,31,34,35,36,37,40,41,42,45,49,53,61,62,66,71,72,73,80,83,85,87,89,97,107,109,112,113,118,119,124,131,132,133,134,135,136,137,138,142,143,144,145,150,152,154,156,160,163,164,168,171,174,178,179,185,186,188,190,194,203,204],image_:38,image_arrai:[38,132],image_batch:194,image_data:72,image_data_format:140,image_dataset_from_directori:[37,135],image_dict:132,image_dictionari:132,image_ev:134,image_h:31,image_height:132,image_label:41,image_loss:35,image_loss_track:35,image_of_8:72,image_path:133,image_s:[35,37,38,135,139,204],image_segmentation_diagram:167,image_shap:144,image_w:31,image_widget:73,image_width:132,imageclassificationbas:33,imagedatagener:[32,34],imagefold:[33,38],imageio:[31,132,133,134,143],imagenet:[133,134,152],imagenet_mean:73,imagenum:31,imageri:[40,109],images_path:167,imagin:[52,118,129,150,154,160,166,169,171,182,192,199],imaginari:[18,97,183,184,206],imaginary_part:183,imbal:[54,71,85,148,150,171,174,179],imbalanc:[59,60,61,155,160],imbalnc:61,imblearn:171,imdb:[117,188],img:[31,33,37,38,40,42,43,72,73,131,133,135,138,144],img_batch:133,img_class:72,img_color:72,img_grei:72,img_in:73,img_label:40,img_nois:73,img_path:40,img_pool:140,img_resc:72,img_shift:73,img_to_arrai:72,imgplot:38,imgs_numpi:138,imgur:73,immedi:[7,45,48,52,79,109,122,137,160,169,180,183],immens:[52,127],immut:[45,184,185,206,207],imp_coef:68,impact:[28,43,51,54,56,107,109,117,137,142,143,150,152,178,186,197],impair:[52,113],implaus:194,implement:[0,16,31,33,37,48,49,51,52,53,54,55,56,59,60,61,63,71,79,85,87,97,101,102,109,117,124,127,135,138,139,140,141,145,149,150,152,159,163,165,167,168,174,183,184,191,206],implemet:168,impli:[22,47,49,50,61,66,97,98,105,142,145,149,150,154,168,174,179,183,184,185],implic:[16,117,145],implicit:[117,149,159,188],implicitli:[61,137,183],imporov:68,import_graph_def:73,importance_typ:[68,163,164],importantli:[106,127,187],importerror:[183,185],impos:[159,166],imposs:[119,174,203],imprecis:142,impress:[3,41,54,62,109],improb:121,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,37,41,43,45,49,50,51,52,56,61,66,68,71,74,76,77,80,81,82,85,90,93,94,95,96,98,105,107,109,117,119,122,135,137,139,141,143,147,148,149,151,152,156,159,160,163,164,165,167,168,173,174,175,178,179,188,198,203],impur:[52,157,159],imput:[7,22,53,56,58,63,68,71,79,85,163,174,203],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,38,40,42,167],imsav:72,imshap:144,imshow:[1,3,29,30,31,33,34,35,37,38,40,41,42,43,52,72,87,89,131,132,135,138,140,167,168,194,198,204],imura:182,imwrit:[132,134],in_channel:[31,139],in_clust:167,in_plan:139,inabl:136,inaccur:[7,48,107,117,122,137,146,160,163,186],inaccuraci:[48,122],inact:106,inadequ:61,inappropri:119,inargu:41,inbox:142,inc:152,incent:117,incentiv:117,incept:132,inception5h:73,inception_v3:133,inceptionv3:133,inch:[178,179,180],incid:28,incident:166,includ:[1,3,4,8,14,31,32,37,41,43,51,53,56,58,66,69,79,80,81,83,88,97,98,104,105,106,107,110,113,114,116,117,119,121,124,125,126,127,136,139,140,144,146,147,148,149,150,151,152,153,155,157,160,163,166,167,169,171,172,174,178,179,180,181,182,183,185,186,187,191,199,200,203,204,205],include_top:[133,140],inclus:[107,117,126,137,149,150,188],incom:[52,53,69,79,117,150,157,174,184,188],income_evalu:53,incompar:113,incompat:124,incomplet:[4,48,74,95,117,118,122,137],incomprehens:119,inconsist:[37,122,189],incorpor:[52,125,140,149,151],incorrect:[15,43,47,49,50,53,61,71,79,85,138,156,160,207],incorrectli:[41,54,59,61,71,85,148,150,160,173],increa:41,increas:[14,32,33,36,37,40,41,47,49,50,51,54,55,58,59,61,64,66,69,71,81,85,87,106,109,111,116,119,121,124,131,139,144,148,149,150,152,156,159,160,164,165,166,167,168,174,185,187,196,198,207],increasingli:[133,146,150,152],incred:[41,42,51,174],increment:[50,51,66,80,97,98,124,137,148,149,150,160,161,167,183],increment_count:183,increment_funct:183,incur:[106,187],ind1:124,ind2:124,ind:[124,157,191],ind_1:124,ind_2:124,ind_n:124,inde:[7,18,50,116,124,160,161,167,168,198],indefinit:145,indent:[89,125,183],independ:[0,56,81,82,121,124,135,137,145,149,156,159,164,168,179],index:[1,7,14,24,31,33,35,38,39,40,41,42,45,52,53,54,56,58,59,61,64,68,69,79,81,88,97,115,118,122,132,139,140,141,146,154,155,159,165,167,168,169,172,173,175,178,182,183,184,192,204,206],index_col:[48,56,146],index_nam:14,index_of_8:72,indexengin:127,indexerror:[65,67,124,126,127,185],indexin:[22,24],indexingerror:126,indi:154,india:[170,171],indian:[70,171,172,173],indian_df:171,indian_ingredient_df:171,indic:[1,7,14,16,22,43,48,49,50,56,58,66,69,81,82,83,87,97,104,105,107,117,118,121,122,125,126,127,129,137,139,140,141,142,155,156,157,166,168,174,178,180,183,184,185,191,203,204,206],indirect:124,indirectli:[51,183,184,204],indistinguish:165,individu:[7,14,43,51,52,56,58,64,80,107,109,117,122,123,135,143,149,150,152,156,159,174,175,183,184,186,191,203,206],induc:141,induct:[150,154],industri:[111,117,142,146,149,152,160,174,185,203],indx:38,ineffici:[106,124,160,164,184],inequ:167,inertia:[155,168,198],inertia_:[155,167,168,198],inertia_vs_k_plot:167,inexhaust:139,inf:[14,47,57,88],infect:[1,8,14,124,151],infected_dataset_url:14,infected_df:14,infecti:[14,151],infer:[9,105,106,139,140,141,148,149,150,151,152,154,169,174,176,191,203],infer_sampl:141,inference_config:[9,105],inferenceconfig:[9,105],inferior:52,infinispan:192,infinit:[14,58,109,137,160,183,184],infinitegraph:192,infinitydb:192,infix:124,inflection_idx:151,inflection_r:151,inflict:113,influenc:[17,54,56,80,83,111,117,137,155,169,173,174,184,189],influenti:117,info:[14,39,41,51,53,54,56,61,62,69,71,79,85,89,122,140,154,164,169,171,178,179,192],infocli:39,infograph:[109,113,119,154,155,171,178,179,180],inform:[1,4,12,14,15,17,22,23,24,25,31,39,41,42,43,45,48,50,51,52,54,55,56,58,59,60,69,71,79,82,85,98,104,105,106,107,108,109,111,114,115,117,118,119,121,123,124,125,127,129,136,137,139,140,141,142,143,144,146,148,150,151,152,154,157,159,160,164,165,166,167,168,174,178,182,183,184,186,188,189,192,194,205],infrastructur:[104,111,151,187],infti:[121,135,137,156],infus:173,ingest:149,ingrain:142,ingredi:[170,172],ingredient_df:171,inher:[66,140,142,168],inherit:191,init:[30,58,86,97,145,155,167,175,183,200,201],init_imag:134,init_lr:135,init_model:73,init_s:167,init_tim:135,initi:[0,3,15,33,36,42,45,50,51,52,56,57,65,66,67,69,73,80,81,87,97,98,104,107,117,118,124,131,134,137,139,140,141,144,148,150,152,155,159,160,163,168,174,178,180,183,184,186,191,198,205,206],initial_eda:53,initial_nois:35,initial_prob:161,initial_st:141,initiali:33,initialis:37,initialise_graph:137,inject:125,inland:[63,79],inlin:[51,53,54,55,57,59,60,61,62,63,64,68,79,80,87,88,89,138,143,159,167,169,196,198,200,201,202,204],inlinebackend:[52,68,146,156,159,168,198],inner:[39,80,97,125,126,127,129,146,183,192],innermost:[183,205],innov:[56,104,107,117,187],inordin:160,inplac:[1,7,14,22,30,38,39,42,48,50,52,53,56,125,143,146,163,169,171,175,179],input:[9,14,15,18,22,29,30,31,32,33,35,37,38,39,41,42,43,44,45,47,49,51,52,53,54,55,57,58,59,60,63,64,66,71,72,73,80,81,82,85,87,96,97,98,104,105,106,121,124,125,126,127,131,132,133,135,136,137,138,139,140,141,143,144,145,146,149,150,151,152,154,156,157,159,160,164,165,166,167,168,169,171,174,178,182,183,184,185,194,198,199,203,204],input_1:[35,135],input_2:[35,135],input_:42,input_data:[9,50,54,55,59,60,79,105],input_dim:[36,37,47,49,50,139,143,194,204],input_funct:50,input_imag:140,input_mask:140,input_proj:144,input_s:[137,140,204],input_shap:[32,34,37,39,40,41,43,44,46,64,72,132,137,139,140,144],input_signatur:133,input_tensor:140,input_text:98,input_unit:87,input_valu:137,input_width:35,inputlay:[35,42,138],inquir:142,inquiri:[107,114,142],insensit:[129,159,165],insert:[65,67,80,123,124,127,160,183,205,206],insertion_sort:98,insid:[0,1,3,33,52,62,63,64,71,80,85,121,124,127,129,131,137,139,141,143,149,161,167,169,175,184,185,199,206],insight:[11,16,51,54,56,61,62,79,80,82,104,106,107,109,114,117,119,125,147,148,186,188],inspect:[43,59,60,61,71,79,85,174],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,150,151,154,155,156,157,159,160,161,163,164,169,171,172,173,174,178,179,180,182,193,198,199,200,201,203,204],instabl:52,instagram:125,instal:[0,3,12,18,25,30,36,45,53,103,104,105,106,107,108,109,110,111,113,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,183,184,190,191,194,196,198,199,200,201,202,204,205],instanc:[7,31,48,51,52,53,54,56,61,83,88,106,107,109,122,123,124,126,136,138,139,142,144,146,149,150,152,157,159,164,166,167,174,179,184,194,203,205,206],instant:[58,115,142],instanti:[45,53,61,88,127,164,179,183],instantli:147,instead:[7,22,31,32,33,36,37,45,49,50,51,52,55,56,59,60,63,64,87,88,104,109,113,115,117,118,119,124,125,136,138,139,140,146,148,149,150,159,160,161,163,166,167,168,174,175,178,180,183,184,185,198,199,203,206],institut:[52,142,151],instruct:[0,52,71,85,105,106,109,113,136,182,185],instrument:[107,117,154,155,156,160,169],insuffici:[16,113],insur:117,int16:124,int32:[45,73,124,133,135,137,141,144,145,167],int64:[22,39,59,60,61,62,63,66,69,72,79,88,124,125,126,127,140,145,154,157,159,164,167,171,178,180,191],int64index:[169,178],int8:[58,159],int8dtyp:146,int_:121,int_featur:169,int_memori:[71,85],int_seri:7,int_shap:140,intact:22,intang:117,integ:[7,12,41,42,43,49,55,56,58,60,83,97,122,126,127,132,137,138,139,140,176,183,185,191,205,207],integer_vari:[184,206],integr:[0,61,83,104,106,107,109,117,118,119,127,135,142,148,149,151,186,187],intellectu:[117,188],intellig:[40,43,104,107,119,136,142,148,151,152,174,187,188],intellisens:90,intend:[43,83,109,113,127,142,148,149,176,183],intenion:161,intens:[52,106,139,150,168,194,198],intent:[109,113,117,142,188],intention:160,inter:[61,121,139,149],inter_nearest:72,interact:[5,7,16,29,30,81,104,105,106,109,113,119,122,127,137,142,147,148,149,160,165,178,182,183,185,187,196,199,205,207],interaction_constraint:[68,163,164],interactivesess:73,intercept:[79,80,146,175,178,200],intercept_:[79,178,200],interchang:[7,129],interconnect:143,interdisciplinari:[147,203],interest:[1,5,13,14,16,19,29,33,41,51,52,54,59,60,61,71,79,85,104,107,112,113,114,115,116,118,121,123,125,129,137,139,140,150,153,154,159,160,165,169,171,179,180,182,190,191,192,194],interestingli:[1,115,154],interfac:[16,103,106,115,118,124,185,187],interg:185,interleaf:182,intermedi:[18,30,140,143,167],intermediari:33,intern:[30,52,71,73,85,106,124,126,137,147,149,151,155,156,159,168],internet:[14,32,104,113,114,117,118,119,129,149,187],interpol:[1,31,35,52,72,138,139,140,167,171,194],interpret:[3,7,41,43,49,50,52,59,60,68,69,114,117,121,123,124,125,126,127,137,142,152,154,156,159,160,168,174,178,183,184,185,188,192,193,203,205,206],interquartil:56,interrelationship:109,interrupt:[106,166],intersect:[83,111,123,125,178,184],interspers:124,intersystem:192,intertwin:142,interv:[51,54,58,116,124,135,137,148,151,156,165,196],interview:160,intimid:164,intl:[52,156],intp:124,intra:[139,144,167],intric:83,intricaci:[82,109],intrins:169,intro:121,introduc:[18,29,31,49,52,56,68,80,81,100,109,114,119,125,135,136,137,139,140,143,144,149,150,154,160,166,183,193,194,205],introduct:[7,38,45,63,128,130,137,148,152,153,170,174,176,177,181,184,192,193,194,195,196,198,200,203,205],intuit:[52,57,71,82,85,127,136,139,160,165,174,193,198],inv_i:39,inv_sigmoid:151,inv_yhat:39,invalid:[14,114,146,148,183,185],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:127,invari:[139,150],invent:160,inventori:[107,148],inventoryexampl:123,invers:[40,66,68,124,151,159],inverse_transform:[39,44,201,202],invert:[39,124],invest:[104,149],investig:[23,49,56,107,117,118,150,159,164,178,188],investor:142,invis:[117,188],invit:124,invoc:[149,183],invok:80,involv:[7,37,45,48,52,56,69,80,81,82,83,106,108,109,111,117,119,122,125,127,139,142,164,174,177,179,183,187,189,203],io:[30,31,42,72,73,106,126,127,132,134,135,140,145,146,159,169,178,193,194],ioc:149,ion:137,iot:[119,148,169,188],iou:[83,150],ip:61,ipykernel_15370:190,ipykernel_1816:145,ipykernel_24432:198,ipykernel_2903:127,ipykernel_30912:205,ipykernel_3908:114,ipykernel_6984:64,ipykernel_launch:168,ipynb:[0,73,154,155,169,171,173,178,180,182,191],ipytest:[3,14,22,24,55,79,97,98],ipython:[12,22,25,30,40,57,62,66,87,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],ipywidget:[165,196],iq0d24li:168,iqr:[56,121],ir1:68,irani:52,ireland:12,iri:[7,48,62,88,122,127,157,174],iris_data:157,iris_df:[7,48,122],iris_df____:48,iris_isduplicated_df:48,iris_isnull_df:48,iris_support:62,iris_versicolor_3:62,iris_virginica:62,iris_with_drop_duplicates_on_column_df:48,iris_with_drop_duplicates_on_df:48,iris_with_dropna_1_values_on_rows_df:48,iris_with_dropna_2_values_on_rows_df:48,iris_with_dropna_on_column_df:48,iris_with_dropna_on_row_df:48,iris_with_fillna_back_df:48,iris_with_fillna_back_df____:48,iris_with_fillna_df:48,iris_with_fillna_df____:48,iris_with_fillna_forward_df:48,iris_with_fillna_forward_df____:48,iris_with_missing_value_after_fillna_back_df:48,iris_with_missing_value_after_fillna_df:48,iris_with_missing_value_after_fillna_forward_df:48,iris_with_missing_value_df:48,ironi:142,irrelev:[136,165],irrespect:[106,176],is_avail:[31,33,38],is_bool_index:126,is_cnn:31,is_empti:97,is_good_enough:98,is_hash:127,is_integ:126,is_leaf:57,is_list_like_index:126,is_marri:207,is_monotonic_increas:126,is_par:69,is_prim:97,is_scalar:126,is_uniqu:125,isabel:61,isalignedstruct:124,isalpha:184,ischoolonlin:189,isclos:97,isdecim:184,isdir:[40,132],isfil:[73,132,141,145],ish:[37,68],isinst:[14,33,53,97,98,126,134,139,140,144,183,184,206],island:[63,79],isn:[40,42,47,50,127,157,166,169,183],isna:[14,53,58,108],isnan:[48,124],isnt:56,isnul:[7,22,48,49,50,51,53,54,55,56,59,60,61,63,66,71,79,85,108,122,154,164,180,191],iso2:151,iso3:151,iso:148,isol:[7,80,122,149,152],iss:29,issu:[0,7,28,41,47,48,51,52,56,59,60,68,71,85,109,117,122,126,141,143,147,149,152,155,160,165,167,188],issubclass:183,issubset:14,isupp:184,item:[31,33,38,45,61,69,97,116,117,123,124,127,132,141,142,150,154,173,179,180,182,183,185,191,205,206,207],item_from_zerodim:126,items:[124,191],iter:[31,33,36,38,50,57,63,65,67,71,73,80,81,85,97,98,105,106,125,135,137,138,149,150,151,155,160,162,163,164,167,174,175,179,183,184,185,199,205,206],iter_cont:73,iter_count:138,iter_n:73,iterate_minibatch:87,iterated_numb:[183,205],iteration_count:141,iterrow:146,ith:[57,164],its:[4,6,7,12,18,22,26,28,29,31,33,35,40,41,42,43,45,50,51,52,56,61,63,64,69,71,79,80,81,82,85,90,98,104,106,107,108,111,113,114,116,117,118,119,122,123,124,125,126,129,131,135,136,137,139,140,141,142,143,146,148,149,150,152,154,155,156,157,159,160,161,164,165,166,167,168,169,171,173,174,175,176,179,180,182,183,184,185,186,189,190,191,194,196,198,203,206],itself:[7,14,52,56,87,113,119,123,129,148,149,150,151,159,160,168,169,174,179,183,184,198,203],itslek:56,iucn:114,ium:[184,206],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:61,ix2vocab:141,ix:[132,141],ix_:124,ix_cutoff:145,ix_to_vocab_dict:141,j7z80yoo:61,j:[1,32,33,34,38,39,50,52,58,97,98,113,124,131,137,138,139,150,156,157,159,160,164,167,168,184,185,198,201,202,206,207],jack:[184,206],jade:192,jag:[114,159],jake:[59,60,62,63,191],jakevdp:[165,196],jam:[37,119],jame:[121,205],jane:98,januari:[1,17],japan:[129,192],japanes:[171,172,173],japanese_df:171,japanese_ingredient_df:171,jar:149,jargon:[159,173],jasmin:25,java:149,javascript:[118,123,151,169,185,207],jbase:192,jci5e2ng6r4:158,jcodella:188,jean:[41,45,85,138,142],jeen:142,jehx7a7:61,jellek:103,jello:[184,206],jen:[107,155,171,178,179,186],jenna:112,jerom:[159,160],jerri:[97,98],jesucristo:38,jetbrain:39,jez:149,jgzcjvracubdwr59:61,jha:143,jian:144,jim:[109,119],jitter:160,jlwfklkcd5a5zdyvlszj0s5qme6nbl:61,joaquin:150,job:[3,31,39,61,68,89,104,106,109,118,119,143,149,150,154,159,172,174,184,203,206],joe:185,john:[14,97,98,124,151,183,184,185,205,206],johnson:98,joi:[107,186],join:[12,29,30,31,33,37,38,40,43,47,48,49,50,53,58,68,69,73,122,132,134,136,141,145,146,147,157,167,168,171,178,183,184,198,206],join_ax:191,join_index:125,joint:135,jointli:140,jointplot:[69,154],joke:145,joli:52,jone:160,journal:52,journei:[82,107,119,147],jovian:33,jp:14,jpeg:[31,39,73],jpg:[31,37,39,42,62,73,133,134],js:[29,147,151,169,183,207],json:[6,9,89,105,113,118,119,169],judgment:156,jul:[107,186],juli:[17,119,150],jump:[89,105,109,116,124,167,175,183],jun:[106,207],jungl:154,junho:139,jupit:207,jupyt:[0,12,18,25,59,60,62,63,68,71,85,88,89,105,106,121,122,125,126,127,146,147,159,163,164,165,167,172,178,179,180,182,183,185,191,198,199,200,201,204,205],jupyterlab:[0,165],jupyterlab_myst:[30,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],juri:156,jurong:145,juror:156,just:[0,1,3,7,9,14,18,28,29,31,41,42,45,46,47,48,51,52,57,58,59,61,62,64,68,80,87,98,104,105,106,109,114,115,117,119,121,122,124,125,126,127,129,136,139,140,142,143,144,146,149,151,152,154,157,159,160,163,164,165,166,167,168,171,174,175,178,180,183,184,185,198,199,200,203,206],justifi:[50,109,150,169],jython:[184,206],k0:125,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:61,k1:125,k2:125,k3:125,k4:125,k5:125,k5izpn8apjgrfovv82wjhtletgw:61,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:61,k8:149,k:[3,52,69,88,89,121,124,126,127,132,136,137,139,141,144,145,153,154,156,160,162,165,174,179,196,204],k_d:137,k_i:137,k_list:88,k_p:137,k_size:38,kaggl:[1,4,10,20,25,30,31,32,33,36,39,40,53,58,71,79,85,88,89,106,108,118,124,135,136,139,146,160,168,174,179,194,198,199,200,201,203,204],kaim:[139,144],kam:159,kaneoh:169,kapoor:[37,69],karnika:[37,69],karpathi:[159,165],karr:178,kashnitski:[52,156,157,159,160,198],kb:[29,37,39,42,52,62,69,122,154,164,169,178],kdd:148,kde:[22,56,58,69,114,154,190],kdeplot:[114,190],kdr:39,keep:[7,22,33,37,47,49,63,65,67,69,71,79,85,96,104,106,111,122,123,124,125,126,139,143,146,150,155,159,165,166,167,174,175,178,179,180,183],keep_dim:144,keepdim:[87,191],kei:[3,7,9,39,42,50,72,81,82,98,104,105,106,107,109,117,123,124,125,126,127,129,132,135,137,141,142,144,145,148,149,150,151,172,183,185,186,191,192,199,205,206,207],kelbowvisu:69,kept:[7,122,140,142,152],kera:[29,30,31,32,35,36,37,39,41,42,43,44,45,46,47,49,50,51,64,72,83,131,132,133,135,137,138,139,140,141,143,144,145,150,166,194],kernel1x1:139,kernel3x3:139,kernel:[31,32,33,58,62,63,139,140,146,154,164,173,178,195],kernel_initi:[35,140,143,144],kernel_s:[29,30,31,32,33,34,35,37,38,40,139,140],kernel_valu:139,kernelid:139,keskar:150,key_cal:125,key_dim:[135,139],key_is_scalar:127,key_oth:125,keyerror:[97,126,127,141,185],keys_list:97,keyword:[3,98,105,118,119,123,124,125,129,142,166,168,184,185,192,205,206],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:61,kfold:[58,61,66],kfold_scor:58,kfoldcv:66,khale:152,khg:144,kid:69,kidhom:69,kill:[142,185],killer:48,kilobyt:[55,60,174],kim:[30,139,144],kind:[1,7,15,22,30,31,40,45,47,49,50,51,52,53,54,56,58,61,62,63,64,66,68,69,71,85,95,97,98,106,112,113,114,116,122,124,126,127,131,136,141,146,147,149,154,160,164,165,166,171,172,174,175,179,180,182,183,184,185,190,194,203],kinesi:148,kingdom:12,kingma:31,kingpin:113,kit:[64,103],kitchen:157,kitchenabvgr:56,kitchenqu:56,kiwi:[40,184,206],kl:176,kld:31,km:[148,155],kmean:[69,155,167,168,198],kmeans_:167,kmeans__n_clust:167,kmeans_algorithm_plot:167,kmeans_bad:167,kmeans_good:167,kmeans_iter1:167,kmeans_iter2:167,kmeans_iter3:167,kmeans_k3:167,kmeans_k8:167,kmeans_per_k:167,kmeans_rnd_10_init:167,kmeans_rnd_init1:167,kmeans_rnd_init2:167,kmeans_variability_plot:167,kmeanskmean:167,kneighbor:[167,172,173],kneighborsclassifi:[58,88,89,167,173],kneighborsclassifierkneighborsclassifi:[88,167],knife:199,knight:[183,184,206],knights_nam:183,knights_properti:183,knn:[52,58,131,159,167,173,174],know:[7,17,18,23,27,33,41,45,47,48,51,52,54,55,58,60,61,71,79,85,87,89,104,106,108,109,117,119,121,122,123,127,129,135,136,140,143,146,150,155,160,164,166,168,174,175,183,184,185,200,203,206],knowledg:[7,31,43,52,56,61,74,81,104,106,111,119,121,135,137,142,150,151,152,160,163,168,174,178,187,188],known:[32,52,59,60,61,71,80,82,85,111,117,118,119,121,124,127,136,140,142,143,144,146,147,148,149,150,151,156,160,165,168,174,176,183,184,203],kogwl43x3ogqzqjpuoe8b:61,kool_kheart:39,korbut:150,korean:[171,172,173],korean_df:171,korean_ingredient_df:171,kosaciec_szczecinkowaty_iris_setosa:62,kotthoff:150,kpash:61,kqxjp1r14yggzhpqx_gpx6580000gn:190,kriz:[132,139],krizhevski:33,ks:156,ksv:66,kubeflow:149,kubernet:149,kullback:135,kumar:143,kuqvjmwrkag9whlqdvrh:61,kurtosi:61,kw:73,kwangnam:135,kwarg:[35,45,114,125,127,140,144,183,190,205],l1:[65,67,83,99,131,150,176],l1regular:[65,67],l2:[65,67,83,99,150,165,176],l2_leaf_reg:56,l2_loss:134,l2regular:[65,67],l4lsxqfk:61,l9dkgf1pchhmpqsobc9eb:61,l:[52,57,83,87,121,125,131,134,137,144,145,159,160,161,164,176,179,184,191,192],l_1:[68,160],l_2:[68,160],l_:[83,160],l_left:52,l_p:121,l_q:160,l_right:52,la:[142,145],lab:[0,40,41,45,60,62,63,71,85,107,186],label:[1,7,15,22,29,30,31,32,33,34,37,38,39,40,41,42,43,44,47,48,49,50,51,52,54,55,58,59,60,61,63,66,68,69,71,79,80,81,83,85,87,89,105,106,113,114,115,116,123,125,132,137,139,140,142,143,145,150,151,154,155,156,159,164,165,167,168,169,171,172,173,178,179,185,190,191,193,194,198,200,201,202],label_column_nam:[9,105],label_enc:[51,54,59],label_encod:[22,54,58],label_logit:144,label_mod:[37,135],labelbottom:167,labelencod:[39,51,54,58,59,66,69,88,155,169,179],labelleft:167,labels:[64,146,167],labels_:[155,167,168],labels_df:171,labels_fil:132,labelweight:[64,146],labl:3,labor:150,labori:[7,48,122],lachin:106,lack:[13,26,28,137,150,151,152,160,183],lackland:169,laclo:113,ladi:[113,154],ladybug:167,lag:39,lag_1:146,lai:[109,140],laid:109,lake:[104,119,148,188],laken:50,lamb:183,lambda:[1,14,22,31,32,35,37,39,46,49,56,58,68,125,126,127,141,151,164,178,184,197,205,206],lambda_i:168,lambda_l1:56,lambda_l2:56,lambdamart:160,lamda:[65,67],land:[56,148],landcontour:68,landmark:117,landscap:152,lang:[15,39,125,126,127],langua:142,languag:[1,22,43,45,47,49,50,61,119,123,124,127,129,136,145,147,149,150,174,183,184,185,191,192,205,206,207],laplacian:160,lar:[145,150],larg:[1,7,11,30,31,40,42,47,48,51,52,53,56,61,62,63,64,65,67,68,76,83,104,106,107,108,109,111,117,119,122,123,124,125,127,129,131,136,139,141,142,146,148,149,150,152,154,156,157,159,160,163,164,165,166,167,168,173,174,178,184,187,188,191,194,196,198,199,206],larger:[14,29,50,61,80,83,97,106,117,124,131,135,150,160,163,179,184,191,193],largest:[50,61,104,124,139,168],larxel:106,laser:109,laskoski:153,lasso:[68,83,160,166,178],lasso_pr:68,lasso_sklearn:[65,67],lassocv:68,lassolarscv:68,lassoregress:[65,67],last:[7,8,14,29,32,39,40,41,43,45,46,47,49,51,54,57,62,64,69,71,85,87,88,98,109,117,119,122,124,125,126,127,132,136,140,145,146,148,149,150,155,160,166,171,172,174,180,183,184,188,191,203,204,205,206],last_index:184,last_nam:[98,205,207],last_new_job:58,last_stat:141,last_tl:36,lastli:[32,37,47,56,69,109],lastnam:185,lastnewjob:58,lat:[14,151,199],late:113,latenc:[139,146,149,152],latent:[29,31,37,131,135,150],latent_dim:[29,30,37],latent_vec:31,later:[7,18,38,41,42,43,45,49,52,55,56,61,69,87,88,109,111,117,119,121,122,127,129,136,137,143,146,150,163,164,167,174,182,183,184,185,200,203,207],latest:[106,132,136,149,151],latest_iter:199,latin1:132,latin:50,latitud:[63,79,169],latter:[41,117,119,124,135,136,139,150,151,156,157,169,172,178,179],launch:[16,106,123,149,152,195],lavend:146,lavenderblush:146,law:[22,47,49,50,107,111,117,186],layer:[29,30,31,33,34,35,36,37,39,40,41,42,44,45,46,47,50,64,72,73,113,125,131,132,133,134,135,137,138,139,140,141,143,144,145,150,164,166,194],layer_1:131,layer_2:131,layer_activ:[87,133],layer_i:87,layer_input:87,layer_nam:140,layer_num:73,layer_regist:144,layernorm1:139,layernorm2:139,layernorm:139,layout:[124,137],lbfg:[167,172],lc:[66,114,190],ldot:[160,161],le:[41,66,69,88,113,121,155,193],lea:137,lead:[50,52,61,66,80,109,117,119,121,124,125,126,137,146,148,149,152,155,156,157,163,166,183,188,191],lead_tim:146,leader:152,leaderboard:68,leaf:[52,56,159,164],leagu:121,leak:[59,117,138,168],leakag:[56,68,174],leaki:[138,143],leaky_re_lu:37,leaky_re_lu_1:37,leaky_re_lu_2:37,leaky_re_lu_3:37,leaky_re_lu_4:37,leaky_relu:138,leakyrelu:[31,37,38,136,138],lean:150,lear:163,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,36,38,39,40,41,42,44,46,48,49,50,51,53,54,55,56,57,59,60,62,63,64,68,71,74,76,80,81,82,83,85,87,95,97,98,103,104,105,107,108,109,110,111,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,130,132,133,134,135,138,139,140,141,142,143,144,145,148,149,151,154,155,156,157,159,160,161,162,163,164,165,170,173,177,179,183,184,185,188,190,191,192,193,194,195,196,197,200,201,202,204,205,207],learn_curv:66,learnabl:[32,87,139,150],learned_paramet:167,learner:[56,58,83,161,162,164],learning_curv:66,learning_r:[35,36,50,51,56,58,65,67,68,80,81,86,87,131,132,134,135,137,138,141,145,164,175,200,201],learningrateschedul:[32,135],learnpython:184,learnt:[18,56,59,66,81,140,175],least:[4,8,11,13,16,28,40,52,53,61,114,117,119,121,124,126,146,150,157,160,165,166,167,178,179,183,184,190],leav:[51,52,54,64,68,71,80,85,106,109,115,119,127,142,156,157,159,164,169,180,185,190,207],lectur:[88,121,148,160],led:60,lee:[7,112,174],leed:52,leff:148,left:[1,7,31,32,33,41,45,52,56,57,58,80,82,89,97,106,108,111,114,123,124,125,126,127,131,132,137,140,143,145,156,157,159,160,161,165,167,174,175,179,183,184,189,196,199],left_column:199,left_i:157,left_idx:57,left_index:[39,125],left_on:125,left_output:137,left_shifted_imag:89,leftarrow:160,legaci:106,legal:[117,183],legend:[22,29,31,32,33,34,36,38,39,44,47,49,50,52,53,69,80,81,87,113,114,116,132,140,145,146,156,157,159,167,168,190,198,201,202],legibl:156,legisl:113,legitim:61,leibler:135,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:61,lemmat:142,len:[1,14,18,22,31,33,36,38,39,40,41,42,43,44,46,47,49,50,51,53,54,55,56,57,58,59,60,61,62,63,66,69,71,73,79,85,87,97,98,125,126,127,132,133,134,135,137,139,140,141,144,145,146,156,167,173,175,183,184,191,200,201,202,204,205,206],len_axi:126,lend:[152,179],lenet:139,length:[3,8,14,31,43,45,48,52,62,66,88,98,113,114,119,121,122,124,126,127,136,141,145,146,154,155,156,157,168,175,181,183,184,190,198,206],lenovo:64,leo:[156,157,159],lepiota:115,leq:[52,83,124,160,168],leqq:135,less:[1,6,7,8,18,26,29,31,33,37,40,41,43,51,52,54,56,58,61,68,82,97,104,106,109,114,116,117,123,124,136,141,148,149,150,154,156,159,160,163,164,166,167,168,174,180,183,184,188,191,205,206],less_equ:124,lesson:[56,64,77,141,146,168,178,179,180],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,33,34,37,41,42,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,64,68,69,71,79,81,82,85,87,88,91,101,102,104,105,107,108,109,111,113,114,115,116,117,119,121,122,123,124,125,126,127,129,131,135,136,139,140,141,142,143,145,146,147,150,151,152,153,154,155,156,157,159,160,161,164,166,167,168,169,170,171,172,173,174,178,179,180,181,182,183,185,186,188,189,191,192,198,199,200,203,204,206],lett:97,letter:[7,98,105,113,117,119,122,125,129,169,183,184,206],level:[7,43,45,47,49,56,59,60,61,69,106,117,121,124,125,135,136,139,142,143,149,150,152,154,159,160,164,165,174,183,185,191,196,200,203,204,207],leverag:[0,43,51,56,57,104,142,147,148,149,150,152,169,171,172,173,180],lexsort:124,lfw:31,lfw_attribut:31,lg:179,lgbm:56,lgbmregressor:56,lh:57,lhs_cnt:57,lhs_std:57,lhs_sum2:57,lhs_sum:57,li:[33,47,52,113,168,205],liabil:[97,98,183,184,185],liabl:[97,98,183,184,185],liaison:113,lib:[30,36,37,59,88,114,125,126,127,146,168,172,179,183,191,198,205],liblinear:172,librari:[0,1,3,7,8,18,33,36,37,40,42,43,47,48,49,50,58,77,79,81,82,91,106,108,113,114,115,116,122,123,124,142,143,147,150,152,154,156,157,159,160,169,172,173,178,179,180,181,185,190,191,194,199],licenc:[59,165,196],licens:[22,43,47,49,50,88,89,97,98,106,150,183,184,185,198,199,200,201,204],lidiya:207,lie:[52,113,121,168],lieu:160,life:[11,18,34,52,61,62,106,107,111,117,119,121,124,154,167,174,183,186,203],lifecycl:[17,23,105,107,108,149,151,152,195],lifetim:160,lift:111,light:[40,51,69,119,139,142,169,199,207],lightbgm:56,lightcor:29,lighter:[107,186],lightgbm:[51,161],lightgbm_search:56,lightgrai:1,lightn:164,lightweight:149,like:[7,11,14,17,18,23,28,30,31,33,34,35,37,41,43,45,48,50,51,52,54,55,56,57,58,59,60,61,62,63,64,68,71,79,80,81,85,87,104,105,107,108,111,113,114,117,118,119,121,122,123,124,125,126,129,132,134,136,139,141,142,143,145,146,147,148,149,150,151,154,155,156,157,159,160,163,164,166,167,168,169,171,172,174,178,179,180,182,183,184,185,186,189,191,192,194,199,200,203,204,205,206,207],likehood:160,likelihood:[109,135,165,168,171,176,179],likewis:[34,43,124],lili:24,limit:[7,14,16,22,28,31,47,49,50,52,58,61,71,79,81,82,85,97,98,106,111,117,123,124,127,137,141,143,144,148,150,151,156,157,160,164,174,183,184,185,206],limits_:[52,167],limits_c:168,limits_k:[52,168],limousin:[17,23],lin_pr:62,lin_reg:[178,200],lin_reg_2:200,lin_svc:62,lin_svr:63,linalg:[141,167],line2d:[50,72,168,178],line:[1,14,18,31,35,43,47,50,51,52,54,61,62,63,72,81,82,87,106,113,114,117,124,125,126,127,133,137,138,146,154,160,165,167,168,169,171,173,179,180,182,183,184,185,191,193,200,204,206,207],line_chart:199,line_kw:56,lineag:[117,151,188],linear:[18,31,33,36,42,43,44,47,51,52,53,54,56,57,58,62,63,65,67,71,74,80,83,85,86,87,89,124,131,132,136,137,139,142,143,150,155,159,160,164,167,168,171,172,174,176,180,181,182,183,184,195,198,203,204],linear_beta_schedul:135,linear_model:[51,58,65,66,67,68,71,79,85,86,142,146,167,169,172,173,175,178,179,182,200,201,202],linear_reg:[65,67],linear_reward_00011:137,linear_reward_00012:137,linear_reward_00013:137,linear_reward_00014:137,linear_reward_00015:137,linear_reward_00016:137,linear_reward_00017:137,linear_reward_00018:137,linear_reward_00019:137,linear_reward_00020:137,linear_reward_00021:137,linear_reward_00022:137,linear_reward_00023:137,linear_reward_00024:137,linear_reward_:137,linear_scor:61,linear_svc1000:61,linear_svc100:61,linear_svc:61,linearli:[61,88,124,135,150,165],linearregress:[79,146,175,178,182,200],linearregressionlinearregress:[178,182],linearregressionwithsgd:175,linearsvc:[61,62],linearsvclinearsvc:62,linearsvr:63,linearsvrlinearsvr:63,lineplot2:[116,190],lineplot:[51,54,58,66,116,155,179,190],liner:178,linestyl:[14,18,32,82,165,167,196],linewidth:[39,52,56,61,82,114,146,165,167,182,190,196],linguist:179,link:[1,28,29,31,63,106,109,111,113,119,126,127,137,140,142,150,151,154,160,161,164,169,182,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],linkag:[107,167,168],linnerud:93,linspac:[35,52,80,87,124,135,159,165,167,196,200],linux:[123,139],lisa:191,lisens:[65,67,69],lisheng:170,list1:97,list2:97,list3:97,list4:97,list5:97,list:[1,3,7,12,14,18,28,31,33,36,39,40,41,43,45,46,47,51,52,53,54,55,56,59,60,61,63,65,66,67,69,73,76,79,87,88,95,105,114,115,116,119,121,122,123,124,125,126,129,131,137,139,140,144,145,149,150,152,157,159,161,168,169,173,180,190,191,192],list_i:34,list_of_char:[184,206],list_of_coordin:124,list_of_numb:[184,206],listcomp:[125,184,206],listdir:[33,38,39,40],listedcolormap:[69,201,202],listen:[0,150,184],listlik:127,listnod:99,lite:169,liter:[142,183,205],literari:107,litig:142,litt:154,littl:[1,7,14,30,41,43,49,65,67,71,73,76,79,85,111,113,116,122,127,139,155,157,160,161,167,171,173,178,180,182,183,200],live:[50,52,69,104,106,107,117,118,142,145,146,147,154,155,169,174,195],living_with:69,ljust:184,lkei:125,ll:[16,22,28,29,33,42,43,47,49,50,52,64,66,68,76,82,87,104,107,108,110,111,113,117,118,123,124,125,126,127,129,130,135,140,142,143,146,148,150,155,156,157,160,161,163,166,168,169,171,172,180,181,182,183,184,191,192,206],llabel:125,llc:[47,49,50,109],lmdb:192,lmgr:125,ln:160,lo:[41,73,184],load:[2,7,9,15,17,18,23,33,35,41,47,50,53,68,81,87,89,91,114,122,132,136,138,140,141,143,146,148,149,154,159,163,165,167,168,169,173,178,179,182,183,198,199,204,205],load_batch_from_fil:132,load_breast_canc:41,load_data:[29,30,41,43,72,131,132,138,194,204],load_dataset:87,load_diabet:182,load_digit:[52,167,168],load_ext:[12,25,41],load_imag:140,load_images_from_fold:40,load_img:[40,72],load_iri:[7,48,122,168,198],load_model:[29,30,39,40,41,43,44,46,72,194],load_next_batch:167,loader:33,loadmat:134,loadtestsfromtestcas:49,loan:[52,203],lobe:169,loc:[1,14,18,22,31,32,39,42,49,50,52,53,56,58,64,68,87,114,121,126,127,132,145,146,155,156,159,168,178,180,190,191,194,198],local:[14,28,30,45,59,64,105,106,111,114,123,125,134,139,140,144,145,165,169,172,174,182,183,191,196,198,205],local_fil:169,localto:140,locat:[1,9,30,42,68,79,107,111,117,118,124,126,127,133,137,140,142,144,150,157,165,168,183,186,192],log1p:68,log2:[52,124,159],log:[0,9,16,35,38,39,41,42,56,68,83,87,89,105,106,119,124,135,140,148,149,160,161,188,201],log_2:52,log_classifi:51,log_dir:41,log_model:[71,85],log_reg:[51,66,167],log_reg_scor:167,log_scor:[71,85],log_shap:144,log_templ:31,log_transform:68,logaddexp:[124,161],loganberri:[184,206],logarithm:[124,150,152,204],logdir:41,logging_level:56,logic:[3,34,52,73,87,124,125,148,174,179,182,184,206],logical_and:124,logical_not:124,logical_or:124,logical_xor:124,logist:[51,58,61,80,94,107,141,160,164,167,169,171,174,176,178,181,182,195,204],logisticregress:[51,58,66,71,85,167,169,172,173,175,179,201,202],logisticregressionlogisticregress:167,logisticregressor:66,logit:[38,43,87,139,141,144,145,150],logit_output:141,logitech:40,logits_concat:144,logits_fak:138,logits_for_answ:87,logits_out:145,logits_r:138,logvar:31,lon:199,london:12,long_:151,longer:[7,32,37,41,47,50,51,52,54,56,64,79,80,106,111,118,127,150,163,167,168,175,183,198,205],longest:[71,85,109],longitud:[63,79,169],loo:179,looa:178,loob:178,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,37,43,45,48,49,50,51,52,54,56,57,60,61,62,64,66,68,69,71,76,79,81,82,85,87,88,91,93,104,105,106,107,109,111,113,114,115,116,117,119,121,122,123,124,126,129,134,139,141,142,145,150,153,154,155,156,159,160,164,166,167,168,169,170,171,172,175,179,180,182,183,184,186,190,191,192,194,198,200,206],lookback:[39,46],lookout:125,lookup:[121,123,124],loop:[33,36,58,98,113,124,127,137,143,152,155,167,174,183,184,185,191,205,206],looper:[107,155,171,178,179,186],loos:[71,85,154],lopinavir:1,lose:[68,168],loss:[13,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,50,56,57,58,64,69,72,121,127,131,132,133,134,135,136,138,140,141,143,145,159,161,162,164,166,172,177,194,196,197,200],loss_acc_metrics_df:41,loss_d:38,loss_fn:[37,132],loss_fun:141,loss_funct:[56,81],loss_g:38,loss_grad:87,loss_histori:161,loss_vae_fn:31,lossi:31,lossless:31,lost:31,lot:[3,7,14,48,50,51,52,54,58,61,68,90,104,105,106,118,119,122,139,141,146,154,157,159,160,161,163,164,166,169,171,173,174,183,203],lotarea:[56,68],lotfrontag:[56,68],lotfrontage_mean:56,lotshap:68,loud:[153,154,155],loudli:[168,198],loukid:117,love:[37,52,98,142,171,183,207],low:[18,30,39,42,43,45,46,47,50,51,58,59,61,63,65,66,67,69,71,79,85,97,103,105,107,109,121,124,139,150,163,165,166,170,178,179,180,181,184,186,194],low_valu:151,lower:[1,3,7,29,49,50,51,56,58,61,66,79,82,98,106,117,121,124,126,127,131,132,141,145,150,156,160,167,178,179,184,188],lower_cas:102,lowercas:[98,184],lowest:[7,167],lowqualfinsf:56,loyal:156,loyal_cal:156,loyal_mean_scor:156,loyalti:113,lpsa:175,lr:[31,33,34,38,50,65,66,67,80,86,165,172,175,194,196,200,201],lr_d:38,lr_g:38,lrschedul:135,ls:149,lst2:40,lst:[40,97,98,184,185],lstm:[44,136,141],lstm_builder:46,lstm_model:[39,44,141],lstm_output:141,lsuffix:125,lt:[79,169],ltd:58,ltorgo:60,ltsm:136,ltv:160,lu:[139,140],luci:[24,152],lucidchart:109,luck:[49,113],lucki:[71,85],luckili:[87,141],lug_boot:59,luggag:59,lui:60,lunch:174,lund:205,lvert:[131,166,176,197],lvl:68,lw:[52,159,165,168,196,198],lwq:56,ly:87,m1:[18,182],m2:18,m:[1,3,12,18,24,25,30,35,36,38,61,65,67,68,103,104,105,106,107,108,109,110,111,114,115,116,117,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,203,204,205],m_:18,m_dep:[71,85],mac:[106,139,182],macheads101:165,machin:[0,3,7,12,18,25,31,33,37,40,41,42,45,48,50,51,52,54,55,56,58,59,60,71,80,81,82,83,85,95,103,104,105,107,111,113,117,119,121,123,125,126,127,131,136,137,142,143,145,146,147,148,149,150,151,154,155,156,159,160,161,162,163,164,166,170,171,172,173,177,178,179,180,183,185,188,191,193,194,195,197,200,205,207],machine_cpu:60,machine_cup:55,machine_data:[55,60],machine_label:60,machine_learning_complet:85,maciej:35,maco:[123,185],macro:[36,59,61,62,72,169,172,173,179],made:[16,24,29,40,45,51,52,64,71,80,85,87,105,106,111,123,124,136,139,143,146,148,149,154,156,160,162,174,182,183,185,192,205],madip:[154,178,179,180],mae:[29,39,56,64,81,83,159,176],mae_cb:56,mae_lgbm:56,mae_xgb:56,magic:[160,174,184],magic_dict:97,magnitud:[68,82,88,121,178],mah:[71,85],mai:[1,8,12,14,22,25,28,30,31,32,34,41,47,48,49,50,51,52,54,58,59,60,61,62,64,65,66,67,71,79,80,81,83,85,87,106,107,108,109,111,114,117,118,119,121,122,123,124,125,126,127,129,132,137,139,140,142,145,146,148,149,150,151,152,154,156,157,159,160,163,164,165,166,167,168,169,174,176,178,179,183,184,185,186,189,196,205,206],mail:[52,119,156],main:[3,12,18,25,31,38,45,51,52,55,56,60,61,68,71,80,85,87,104,106,111,113,119,121,124,131,132,136,140,142,143,148,152,159,160,162,165,166,168,174,178,179,183,188,189,203],mainli:[56,131,139,145,165],maint:59,maintain:[31,59,80,104,118,136,139,147,149,151,159,174],mainten:[59,104,111,152,174,183,189,205],major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,83,85,87,88,89,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,167,169,171,172,173,174,178,179,180,182,183,184,185,193,198,199,200,201,204],major_axi:127,major_disciplin:58,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,36,39,40,42,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,68,69,71,79,81,82,85,87,89,97,104,106,107,108,109,111,114,116,117,118,119,121,122,124,125,127,129,133,134,135,136,137,138,139,141,142,143,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,165,166,167,169,171,174,175,176,177,178,182,183,184,185,186,188,191,192,199,200,203,206,207],make_blob:[165,167,196],make_circl:[159,165,196,201],make_classif:[201,202],make_dataclass:127,make_df:191,make_grid:33,make_increment_funct:183,make_lag:146,make_me_smil:31,make_moon:[167,201],make_multistep_target:146,make_pipelin:178,make_regress:[65,67],make_test_funct:30,make_train_funct:30,makedir:[29,30,31,33,37,38,40,43,68,72,81,132,134,141,145,167,183],maketran:98,makeup:113,male:[22,58,174],malici:117,malign:41,man:[106,169],manag:[0,39,104,105,106,107,108,109,118,121,126,130,142,148,149,151,159,181,185,186,192],manageri:109,mandat:117,mandi:154,maneuv:113,manfr:[184,206],mango:[40,207],mani:[1,3,7,18,29,36,37,40,41,45,46,48,49,51,52,53,54,55,56,58,59,60,61,62,63,68,69,71,72,79,80,85,88,93,104,105,106,107,108,109,111,113,115,116,117,119,121,124,125,126,127,130,132,136,137,139,140,141,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,163,164,165,166,167,169,171,172,174,175,180,182,183,184,185,187,188,191,194,203,205,206,207],manifold:[30,168,198],manipul:[42,89,113,117,119,127,129,130,137,174,184,191,199,203,206],manishmsft:192,manner:[7,30,52,61,107,117,119,122,127,142,149,151,178,184,188,206],manual:[1,142,150,151,152,166,167,168,198],manual_se:33,manufactur:[149,203],map:[1,5,7,22,30,31,33,35,37,40,43,45,46,50,53,58,61,71,72,73,85,97,107,114,119,124,125,131,135,136,137,139,140,141,143,151,154,157,165,171,174,179,183,184,187,203,204,205,206],map_data:199,map_funct:97,mapper:[30,125],mapper_fruit_nam:40,mapper_noisi:30,mapper_org:30,mappingproxi:124,mar:[150,183,207],marcela:153,march:[187,192],marco:169,margarin:113,margin:[62,63,87,125,126,127,152,169],mari:[183,205],marin:169,marit:69,marital_statu:[53,69],mark:[1,66,88,97,127,165,174,203],markdown:[40,182],marker:[69,88,127,167,168,179,198],marker_s:30,markeredgecolor:146,markeredgewidth:[165,196],markerfacecolor:146,markers:[165,167,196],market:[51,54,69,104,117,119,137,142,143,154,174,187],marketing_campaign:69,marketplac:117,marklog:192,maroon:[69,115,190],marquis:113,marri:69,mart:160,martin:[22,150,151],mask:[7,48,56,66,122,124,126,140,191],mask_logit:144,maskrcnn_upxconv_head:144,mason:117,mass:[24,109,114,160,182],massiv:[43,107,186],master:[7,14,58,69,71,73,82,85,154,167],masteri:135,masvnrarea:56,masvnrtyp:56,mat:[134,142],mat_mean:134,mat_tensor:45,match:[0,7,34,43,47,50,65,67,76,124,125,127,129,135,139,146,154,165,168,174,183,198],matconvnet:134,materi:[52,107,121,122,168],math:[18,29,31,35,39,45,48,62,63,83,97,121,133,135,140,176,178,179,180,185,205],mathbb:[121,137,160],mathbf:[157,167,168,200],mathcal:[137,160],mathemat:[56,58,61,80,81,82,97,98,118,119,121,124,132,135,136,143,151,154,160,166,168,174,176,178,184,185,191,200,206,207],mathematician:121,mathfrak:157,matlab_2016:39,matmul:[124,131,134,137,141,145],matmul_1:141,mato:50,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,72,77,79,80,81,82,85,87,88,89,103,104,105,106,107,108,109,110,111,113,114,115,116,121,122,123,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,182,186,190,191,194,196,198,199,200,201,202,204,205],matplotlibdeprecationwarn:[64,168,198],matric:[47,52,68,124,145,150,165,168,179],matrix:[1,8,18,24,33,34,40,41,45,51,52,54,59,62,66,69,71,79,85,87,88,121,124,132,134,143,154,165,168,174,182,184,198,206],matt:142,matter:[61,87,109,117,148,166,174,179,183,185,197],max:[3,7,18,22,32,33,39,40,43,49,50,52,59,60,61,62,63,66,69,72,73,79,83,88,108,114,125,132,138,143,144,145,154,159,161,164,167,168,169,184,190,201,202],max_:168,max_ag:22,max_bin:[56,68,163,164],max_cat_threshold:68,max_cat_to_onehot:[68,163,164],max_concurrent_iter:[9,105],max_delta_step:[68,163,164],max_depth:[51,52,54,56,59,60,68,157,159,161,163,164,168,198],max_depth_grid:159,max_dim:133,max_document_length:145,max_featur:[51,52,54,59,60,157,159],max_features_grid:159,max_img_height:73,max_img_width:73,max_it:[58,66,80,167,169],max_ix:145,max_leaf_nod:[54,55,58,59,60,159],max_leav:[68,163,164],max_len:[145,184],max_nod:[9,105],max_pool:134,max_pool_size1:132,max_pool_size2:132,max_pooling2d:139,max_pooling2d_20:42,max_pooling2d_21:42,max_pooling2d_22:42,max_pooling2d_23:42,max_pooling2d_24:42,max_pooling2d_25:42,max_pooling2d_26:42,max_pooling2d_27:42,max_pooling2d_28:42,max_pooling2d_29:42,max_row:[47,49,50],max_sampl:51,max_sequence_length:145,max_signal_r:35,max_val:29,max_valu:73,maxbodymass:[114,190],maxdepth:159,maxim:[38,52,61,83,133,137,168,173,176,183,198],maximis:165,maximum:[3,7,22,49,50,51,52,55,58,59,60,80,87,105,106,114,131,138,139,159,165,168,176,179],maxiter:137,maxlen:[36,145],maxlength:[114,190],maxpool2d:[31,32,33,34,42,135],maxpooli:42,maxpooling2d:[40,132,135,140],maxstep:137,maxval:[35,135,138],maxwingspan:[114,190],mayb:[7,64,109,116,126,146,155,161,173,178],maybe_cal:126,maybe_convert_indic:126,maze:137,maze_collect:137,maze_typ:137,mb:[37,39,42,61,79,171],mcculloch:145,mckinnei:[124,125],md5_checksum:59,md:[113,121,182],mdkjmpmcwjy:175,mdp:137,me:[1,37,41,111,139,161,178,179,185,189,199],meadow:[115,190],mean:[3,7,14,18,22,29,31,32,33,34,35,37,38,39,41,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,73,79,80,81,83,85,87,88,89,97,104,105,106,107,108,109,113,116,117,118,119,122,124,125,129,131,134,137,141,142,144,145,146,150,152,153,154,156,157,159,160,161,163,164,165,166,173,174,175,176,178,179,180,183,184,185,186,191,196,200,201,203,204,206],mean_1:145,mean_absolute_error:[35,56,81,163,204],mean_actu:82,mean_confidence_interv:18,mean_cross_v:56,mean_imput:79,mean_squar:131,mean_squared_error:[39,44,55,56,60,63,79,81,146,178,204],meanarr:50,meaning:[3,16,30,43,114,117,139,142,148,174,189],meansquarederror:[29,30],meant:[124,149],meantim:174,measur:[7,14,24,43,51,52,54,61,62,68,71,79,81,82,83,85,106,107,111,116,117,118,119,121,135,137,146,150,151,152,154,155,157,159,162,167,168,174,178,180,183,188,189,198,200,203],meat:69,mechan:[47,80,124,136,139,142,148,149,183,205],med:[1,59,179],media:[5,51,52,54,107,109,121,142,149,151,152,186],median:[7,18,22,56,59,79,127,160,174],median_house_valu:[63,79],median_incom:[63,79],medic:[1,8,41,104,106,107,117,140,154,182,188],medicin:[8,119,174],medium:[1,61,71,79,85,109,168,192],meet:[109,113,117,124,180,188],mega:[71,85],megapixel:[40,71,85],megatrend:117,mehdi:138,mel:150,melt:66,member:[5,43,52,69,107,109,111,117,154,156,184,186,189,206],membership:[184,185,206],memcach:192,memcachedb:192,meme:160,memmap:167,memo:109,memor:[43,71,85],memori:[33,36,39,51,55,56,60,61,62,69,71,79,85,122,124,132,136,137,140,148,149,150,154,164,165,167,168,169,171,178,184,191],memory_gb:[9,105],memory_unit:137,memorycachestoragemanag:73,memoryview:[184,206],men:[58,93,117,188],mention:[0,1,2,8,19,40,41,45,58,61,111,119,121,123,124,127,136,140,142,146,148,152,157,160,166,174,175,183,191],menu:[41,105,106,199],merchant:[97,98,183,184,185],mercuri:207,mere:124,merg:[14,31,39,69,97,122,160,168,183,184,185],merge_dict:98,merged_dict:98,merged_list:99,mergetwolist:99,merteuil:113,meshgrid:[52,80,159,165,167,196,201,202],mess:[71,85,180],messag:[52,61,97,106,109,118,126,145,156,174,183,184,189],messi:[73,148,174],met:[31,41,124],meta:[15,56,150,156,169],metadata:[1,7,48,118,122,124,127,129,148,183,205],metaflow:149,metal:149,meteorologist:146,meter:[107,186],metho:[65,66,67],method:[1,3,7,14,18,24,30,31,33,37,42,43,48,49,52,56,58,59,60,69,71,80,81,85,96,97,105,106,107,111,113,114,115,116,119,122,124,125,126,131,135,139,140,143,144,146,147,148,149,150,151,152,154,156,157,159,160,162,164,168,169,171,172,173,174,178,179,182,188,189,191,195,198,205],method_nam:183,methodnam:183,methodolog:[135,150,160],methylprednisolon:1,metric:[29,32,34,35,37,39,40,41,42,43,46,49,51,52,53,54,55,56,57,58,59,60,62,63,65,67,72,79,80,81,88,89,105,106,109,132,140,142,143,146,148,151,155,159,161,163,164,167,169,172,173,175,178,179,198,201,202],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:61,mi:[47,168],michalbialecki:192,michigan:117,mickei:97,micro:[148,163,169],microcomput:149,microphon:150,microprocessor:[71,85],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,39,43,48,51,56,70,71,74,76,77,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,129,148,152,154,155,169,171,172,173,178,179,180,182,186,188,192],mid:[97,151,168],middl:[93,97,115,140,155,165],middlenam:185,midnight:126,midpoint:[151,179],might:[1,7,11,14,18,26,33,34,40,45,49,51,56,57,61,64,66,68,71,80,82,85,104,106,113,116,118,119,121,122,124,129,137,142,143,144,146,148,150,154,156,159,166,167,172,174,175,178,179,182,183,184,185,192,194,200,203],migrat:148,mike:24,milk:164,miller:121,millimet:[129,192],million:[32,33,107,139,174,186,203],millionair:185,mimic:[32,43,119,124,143,183,203],min:[1,3,7,18,31,39,49,50,52,60,61,63,66,68,69,72,73,79,88,108,114,125,127,139,144,145,154,159,160,164,167,168,169,190,201,202],min_:[59,161,168,200],min_child_sampl:56,min_child_weight:[56,68,163,164],min_freq:141,min_impurity_decreas:[58,59,60],min_impurity_split:[58,159],min_ix:145,min_leaf:57,min_nod:[9,105],min_sampl:167,min_samples_leaf:[52,54,59,60,159],min_samples_leaf_grid:159,min_samples_split:[54,55,59,60,159],min_signal_r:35,min_val:29,min_weight_fraction_leaf:[58,59,60,159],min_word_freq:141,min_word_frequ:145,minbodymass:[114,190],mind:[7,37,47,107,111,122,125,139,150,152,155,179,189],mine:[3,50,52,111,130,165,185],minecraft:160,ming:205,mini:[150,179],miniatur:178,minibatch:[36,38,87,138,168],minibatch_kmean:167,minibatch_kmeans_vs_kmean:167,minibatchkmean:167,minibatchkmeansminibatchkmean:167,miniconda:[125,126,127,172,179,183],minim:[29,32,43,51,52,54,55,56,57,69,80,81,83,94,117,119,131,134,142,145,146,150,154,155,156,160,161,164,166,167,172,174,175,176,177,178,188,200,204],minima:[57,150,175],minimis:[165,196],minimum:[3,7,35,50,52,55,58,60,66,80,106,114,124,159,161,164,165,166,175,178,184,206],minio_url:59,minlength:[114,190],minmaxscal:[39,41,44,49,62,64,71,79,85],minnesota:[4,114,190],minor:[50,61,68,83,171],minor_axi:127,minu:[160,161],minut:[9,49,51,52,54,105,106,109,118,119,124,132,149,151,154,155,156,167,169,171,173,182],minval:[35,135,138],minwingspan:[114,190],mirza:138,misc:[134,205],miscfeatur:[56,68],misclassfi:56,misclassif:[52,66,88],misclassifi:[56,66,148,164],miscval:[56,68],misgend:107,mislead:[59,117,148,174,188,203],misleading_label:37,mismatch:[60,124],misrepresent:[117,188],miss:[14,16,18,19,22,24,25,31,51,52,54,55,58,60,63,68,69,82,108,119,124,125,126,127,143,146,148,150,154,159,161,163,174,178,183,203],miss_rinola:39,missclass:52,missing_count:56,mission:117,mistak:[52,56,64,68,109,137,148,160,164,185],mistaken:183,misus:149,mit:[43,58,97,98,106,107,117,165,183,184,185,186,188,196],mitchel:[52,174,203],mitig:[28,107,117,143,166,186],mitpress:98,mix:[35,126,127,160,178,180,184,206],mixed3:133,mixed5:133,mixed_list:[184,206],mixtur:[154,160],mkdir:[38,73,137],mkframe:14,mkl:168,ml2:167,ml:[50,51,54,62,68,70,71,74,76,77,79,90,91,93,94,95,96,103,104,121,136,143,145,146,147,149,150,152,168,169,170,171,172,173,174,175,176,178,179,180,181,182,187,203],ml_04:175,mlaa:149,mlb:18,mleap:149,mlearn:60,mlflow:[106,149],mlop:[147,151],mlp:[30,45,144,204],mlpclassifi:172,mlsummari:60,mltest:49,mlu:159,mm:180,mmax:[55,60],mmin:[55,60],mn:56,mncb:61,mnist:[29,30,35,41,72,87,131,138,167,168,174,194,204],mnist_784:167,mnist_8x8:198,mnist_test:[32,87,89],mnist_train:[32,87,89],mnist_train_smal:49,mnistdata:49,mnistdf:49,mnistdf_backup:49,mnistlabel:49,mnistpr:49,mnprv:56,mntfishproduct:69,mntfruit:69,mntgoldprod:69,mntmeatproduct:69,mntsweetproduct:69,mntwine:69,mnww:56,mo:[168,198],mobil:[71,85,109,139,149,168,169,199],mobile_price_test:[71,85],mobile_price_train:[71,85],mobile_test:[71,85],mobile_train:[71,85],mobile_wt:[71,85],mobilenetv1:140,mobilenetv2:[139,140],mock:[5,24,55],mock_df_boxplot:24,mock_df_hist:55,mock_df_pairplot:55,mock_df_plot:24,mock_pairplot:55,mod_resourc:205,mode:[0,7,33,53,56,88,106,139,140,143,144,149,150,167,169,178,179,180,183,195],modefin:48,modefined_sklearn_iris_dataset:48,model2:144,model:[7,10,14,20,31,32,36,44,57,60,62,63,64,65,73,80,82,83,89,90,93,94,95,103,107,108,111,117,118,119,121,122,124,125,131,132,133,134,136,138,141,143,147,148,154,156,157,159,160,161,162,164,165,167,168,170,171,172,173,175,177,187,188,189,192,195,196,198,199],model_1:41,model_2:42,model_auto:31,model_dir:73,model_ev:41,model_filenam:[73,169],model_histori:140,model_lasso:68,model_mean:135,model_nam:[9,30,31,105],model_new:72,model_output:141,model_path:[39,40,41,44,46,105,141],model_perform:56,model_respons:[30,31],model_ridg:68,model_save_path:[30,31],model_select:[29,31,32,34,40,41,51,52,53,54,55,56,58,59,60,61,62,63,66,68,71,79,80,81,85,88,89,142,143,146,159,161,163,164,167,168,169,172,173,175,178,179,182,198,200,201,202],model_url:[30,31,39,40,41,44,46],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:68,model_zip_url:73,modelcheckpoint:[40,41,46],modelfit:58,moder:[66,152],modern:[64,111,136,149,151],modif:[29,139,159],modifi:[1,8,47,49,50,52,69,97,98,119,124,125,127,129,133,138,140,150,151,161,163,168,175,183,184,185,191,192,198,205,207],modifii:98,modnam:183,modul:[31,33,38,61,68,87,105,106,119,123,133,140,144,149,150,151,167,168,169,179,182],modulenotfounderror:[87,185],modulo:[184,206],modulu:[184,185,206,207],moment:[106,113,138,144,146,150,151,155,160,168,171,174,178,184,185,204],momentarili:191,momentum:[37,132,204],mondai:[51,54],monei:[18,106,107,119,157,160,185,186],moneybal:107,mongodb:[119,192],monitor:[40,41,43,46,105,106,107,142,147,148,149,150,151,187],monkei:125,monolith:142,monoton:[126,152,159,183],monotone_constraint:[68,163,164],monster:87,month:[1,14,15,40,118,146,178,180,185],monthli:[1,118,146,178],mood:[107,186],moodle2:205,moon:31,moraga:161,moral:[6,113,117,188],mordvintsev:133,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,36,37,40,41,42,43,45,48,50,52,55,56,58,59,60,61,64,65,66,67,68,69,79,80,81,82,83,87,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,124,125,127,129,132,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,163,164,165,166,167,168,169,170,171,173,174,176,178,179,181,182,183,184,185,186,189,191,192,196,198,199,200,203,204,205,206,207],moreov:[52,61,64,69,139,160,161,168],mosold:[56,68],mosquera:152,most:[1,3,7,14,17,18,24,29,30,31,32,37,41,43,45,49,50,51,52,53,54,55,56,57,59,60,61,62,64,65,67,68,69,79,83,87,104,106,109,112,114,115,116,117,119,121,122,123,124,125,126,127,129,131,136,137,139,143,146,147,148,149,150,151,152,154,155,156,157,159,160,161,164,165,166,167,168,171,172,174,175,180,182,183,184,185,187,190,191,198,203,204,205,206],mostli:[7,61,119,136,150,159,160,178,179,180,203],motiv:[60,63,107,117,136],motor:137,motorcycl:52,mous:97,move:[7,14,33,35,40,42,49,51,54,80,87,109,111,113,124,135,136,142,148,150,151,156,160,163,167,168,175,184,185],move_down:137,move_left:137,move_right:137,move_up:137,movement:[137,142,160],movi:[107,113,117,174,186,188],moving_mean:139,moving_vari:139,mp3:31,mpeg:31,mpimg:38,mpl3:168,mpl:[133,167,171],mpl_toolkit:[69,80,88,113,165,168,196,198],mplot3d:[69,80,88,113,165,168,196,198],mri:[107,152],mrr:150,ms:[167,191],mse:[36,39,42,46,47,49,50,52,55,57,60,63,79,80,81,83,88,131,150,157,159,164,175,176,178,200],mse_cross_v:79,mseloss:31,msg:[49,88,125,179],msi:39,msocach:39,msr:107,msrafil:144,mssubclass:[56,68],mszone:[56,68],mtwuhpol:61,mu:[31,121,135,156,159],mu_i:168,mu_j:168,mu_k:168,mu_p:135,mu_q:135,much:[1,3,7,18,30,49,50,51,52,54,56,57,59,60,61,63,64,68,69,71,79,85,106,108,109,119,121,124,125,129,136,140,143,148,150,155,156,157,159,160,161,166,167,168,171,174,178,179,183,191,203],mudiger:150,mug:139,mul:[31,134],multi:[30,42,45,49,59,83,124,125,127,139,140,143,146,148,149,151,154,165,171,183,191,192],multi_class:[167,172],multi_grid:140,multi_line_str:[184,206],multiclass:[140,143,150,165,171,172],multicollinear:[81,168,198],multidimension:[45,124,132],multidisciplinari:142,multifield:124,multiheadattent:[135,139],multiindex:[125,127],multilabel:172,multilay:139,multilin:[116,184,185,206,207],multiline_str:184,multimod:121,multinomi:[172,179],multioutput:172,multioutputregressor:146,multipl:[0,7,12,16,18,33,43,45,47,51,54,55,58,68,73,88,93,97,98,111,114,116,119,122,125,126,127,129,132,136,139,141,142,143,146,148,149,150,152,154,160,162,164,165,166,182,185,191,192,196,205,206,207],multipli:[45,80,81,87,97,123,124,139,160,163,166,168,175,178,205],multipurpos:207,multitud:163,multivalu:192,multivari:200,munich:[117,188],muralidhar:66,muscl:185,music:[153,154,155,156],muskmelon:40,must:[0,30,32,37,41,42,43,47,50,61,66,69,79,80,87,97,105,109,111,118,120,123,124,126,127,134,139,149,150,152,154,165,167,169,174,178,183,184,196,203,205,206],mustach:169,mustard:172,mutabl:[45,124,183,184,206],mutual:168,muufdbikxdmks9nw6kt1ryvntpqvf9:61,mv:192,mvbase:192,mventerpris:192,mx:[80,175],mx_i:[80,175],mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:61,my:[34,56,124,125,141,143,144,150,151,169,183,184,199,205,206],my_dict:[97,98],my_funct:205,my_get_text:[183,205],my_imput:163,my_list:[97,205],my_mnist:167,my_model:163,my_modul:205,my_own_classifi:201,my_sum:[101,205],my_tupl:[184,206],mybind:195,mybnk3dsmcymz0gwylxxqfulhrvy5axto:61,myconda1:168,mycount:183,myct:[55,60],mycustomerror:183,myfunct:205,myhtmlpars:3,mylst:185,mymodel0:58,mymodel:58,myownlinearregress:200,myownlogisticregress:[86,201],myqcloud:[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,115,116,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,190],mysql:[129,192],myst:165,mysteri:171,mythbusting_1:59,n24wr7ee6evwkotuekcka3picccvrgxpyku:61,n:[7,9,18,25,29,30,31,33,36,39,40,41,47,52,53,54,57,58,59,61,65,66,67,69,80,82,83,89,97,98,106,113,117,121,124,126,127,131,132,133,135,137,138,139,140,141,144,145,146,149,150,156,157,159,160,165,167,168,175,176,178,179,180,183,184,185,187,189,192,196,200,205,206],n_1:52,n_2:52,n_:159,n_anchor:144,n_arrai:45,n_channel:31,n_class:[87,139],n_classifi:173,n_cluster:[69,155,167,168,198],n_clusters_:167,n_clusters_per_class:[201,202],n_col:31,n_color:[146,167],n_column:50,n_compon:[30,69,168,198],n_connected_components_:167,n_core:[71,85],n_dense_block:139,n_estim:[51,52,53,54,55,56,57,58,68,157,159,164,173],n_featur:[39,65,67,86,175,200,201,202],n_features_in_:167,n_filter:[42,139],n_group:135,n_head:135,n_hour:39,n_i:[52,124,168],n_imag:38,n_in:39,n_inform:[201,202],n_init:[155,167,168],n_input:38,n_item:42,n_iter:[56,63,86,167,175,200,201],n_iter_no_chang:58,n_j:168,n_job:[30,52,54,55,58,68,89,159,164],n_label:167,n_layer:139,n_layers_per_block:139,n_leaves_:167,n_loss:35,n_neighbor:[88,89,167],n_ob:39,n_out:39,n_output:38,n_redund:[201,202],n_resnet:135,n_row:[31,50],n_sampl:[52,59,65,67,86,156,159,165,167,175,196,200,201],n_split:[58,61,66,159],n_test:[52,159],n_train:[52,159],n_train_hour:39,n_var:39,na:[7,14,48,53,56,68,69,122,125,126,127,144,150],na_val:53,nabla:160,naftaliharri:[155,167],nah:145,nair:33,naiv:[87,124,143,160,163],name1:124,name2:124,name:[0,1,7,8,9,12,14,15,18,22,24,32,35,36,37,39,41,42,43,56,57,59,60,61,62,63,66,69,70,73,79,87,88,97,98,101,105,106,111,114,118,119,121,123,124,125,126,129,133,134,135,136,139,140,141,142,143,144,145,146,149,150,154,157,160,164,166,168,169,171,172,173,174,175,178,179,180,182,183,184,185,190,191,192,198,199,205,206,207],name_1:[184,206],name_2:[184,206],nameerror:[183,185],namespac:[183,205],nan:[1,14,18,39,47,48,49,53,56,58,66,68,79,88,121,122,124,125,127,142,146,150,163,164,169,178,179,180],nanosecond:[55,60],narr:[113,117],narrow:[47,51,52,97,115,156,173,174,190,203],nasknxwdtb4aaaaasuvork5cyii:61,nasty_list:97,nat:36,nation:[107,169,171,186],nativ:[149,191,192],native_countri:53,native_country_41:53,natur:[1,40,45,47,49,56,61,69,109,112,115,116,117,119,124,126,127,136,137,143,145,146,150,154,175,178,180,185,200],naught:87,navig:[104,106,107,169,186],nax4:144,nbmake:0,nbsp:[43,146],nbviewer:[59,60,62,63,68,88,159,163,164,165,167,178,182],nbyte:191,ncc:60,nchw:144,ncluster:155,ncol:[38,40,132],nconfus:40,ncss:144,ndarrai:79,ndf:39,ndframe:[125,126],ndim:[45,124,125,144,191],ndimag:89,nearbi:[154,159],nearer:178,nearest:[1,31,35,88,89,138,154,155,165,167,168,172,174,183,194,196],nearest_neighbor:[140,168],nearli:[51,54,71,85,144,191,200],neat:[68,178,179,183],neatli:172,necess:[136,149],necessari:[0,7,12,18,20,25,30,40,42,47,52,81,82,103,104,105,106,107,108,109,110,111,113,114,115,116,117,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,203,204,205],necessarili:[51,68,109,121,131,150,178],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,33,39,41,42,43,44,45,46,48,49,50,51,52,54,55,56,57,58,59,60,61,64,65,67,69,74,76,77,81,87,88,90,93,94,95,96,97,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,133,134,135,140,142,146,148,149,150,151,152,154,155,156,159,160,163,164,165,166,167,168,169,171,172,173,174,178,180,182,183,184,185,188,189,192,196,198,199,200,203,205,206],needless:[7,124],neg:[41,43,52,53,54,58,59,61,68,71,73,85,97,107,121,124,135,136,137,142,143,150,152,160,165,167,168,179,183,184,185,194,204,206,207],neg_mean_squared_error:68,neg_root_mean_squared_error:[56,79],negative_integ:[184,206],negative_slop:38,negativs:54,neglig:50,neigbor:168,neigh_garag:56,neigh_lot:56,neighbor:[51,54,58,88,89,137,155,167,172,174],neighborhood:56,neightborhood:56,neither:[76,161],neo4j:192,nepoch:31,neptun:207,neq:[124,137,156],ner:142,nervou:145,ness:144,nest:[58,80,98,113,124,127,183],nested_list:98,nested_tupl:184,nestim:61,net50:139,net:[6,25,32,36,49,139,140,145,160,164],netd:38,neteas:39,netflix:[117,136,174,188],netg:38,network:[5,29,30,31,37,39,42,43,45,47,49,50,51,64,66,71,85,104,107,119,124,125,131,137,139,140,141,144,146,147,148,149,150,152,160,166,169,171,172,174,182,187,188,195,202,203],network_weight:134,networth:185,neural:[29,30,31,36,37,38,42,43,45,47,49,51,64,66,71,85,124,125,131,137,139,140,141,144,146,147,150,152,160,166,169,171,172,174,182,194,195,202,203],neuralearn:135,neuralnetwork:137,neuron:[30,41,43,47,49,64,136,143,145,150,166,193],neurral:166,neutral:[143,149],neutron:61,never:[31,41,51,52,54,56,58,59,87,106,118,124,138,139,150,166,174,183,203],nevernest:183,nevertheless:[7,88,122,124],new_ax:125,new_column:[14,178,179,180],new_data:126,new_df:30,new_dict:184,new_imag:34,new_label:126,new_pumpkin:[178,179,180],new_row:125,new_shap:[133,144],newaxi:[29,30,47,65,67,124,140,182],newbi:150,newcom:142,newer:[79,150,191],newest:69,newli:[14,42,127,129,184],newlin:[141,184,205],newshap:124,newton:[97,172],next:[3,7,9,34,35,36,37,38,39,40,41,42,43,46,48,49,50,51,52,54,55,56,58,60,63,64,69,81,97,98,99,103,105,106,107,109,111,117,122,124,125,129,135,136,137,139,141,143,145,146,149,150,151,154,156,159,160,161,163,164,165,167,168,169,171,173,174,179,180,182,183,184,185,191,199,203,205,206],next_diffusion_tim:35,next_noise_r:35,next_noisy_imag:35,next_num:98,next_signal_r:35,next_stat:36,nfals:61,nfold:164,ng2017mlyearn:150,ng2d:42,ng:[113,148,151,174,176],ngo:58,nh:144,nhwc:144,ni:[184,206],nice:[49,52,68,114,161,168,171,184,198,206],nicer:[1,14,175,183],nichol:135,nick:[132,134,141,145],nigeria:153,nigerian:[154,155],night:[52,134,156,169,200],ninfav:14,ninfect:14,nipy_spectr:[168,198],niter:73,niven:200,nj:156,nl:59,nlargest:39,nleft:125,nlhlong01:159,nlookup:124,nlp:[1,61,139,150],nlp_rake:3,nltk:1,nmodel:58,nmultilin:185,nn:[31,33,35,37,38,41,131,134,135,137,138,139,141,144,145],nn_vi:[132,193],no_enrol:58,no_exceptions_has_been_fir:183,no_grad:[31,33],no_missing_data_df:48,no_missing_dup_data_df:48,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:150,node:[1,30,43,52,105,106,113,123,141,143,149,157,159,164,192,207],node_id:157,nois:[3,29,31,35,37,38,43,47,52,61,66,71,73,85,131,137,138,152,154,159,160,165,166,167,194,196,200,201],noise_dim:138,noise_factor:[29,30],noise_loss:35,noise_loss_track:35,noise_r:35,noise_s:138,noise_shap:49,noise_vari:35,noisi:[29,35,151,154,155,159,160],noisy_imag:35,nol20:119,nolli:119,nomin:[56,59,164],non:[1,14,18,29,30,35,37,39,42,46,56,58,61,62,63,69,73,79,97,98,106,117,122,124,125,126,127,130,131,135,141,142,143,150,152,154,157,159,160,164,165,166,168,169,174,178,183,188,195,205],non_block:33,non_cor:167,non_core_mask:167,none:[3,9,14,18,22,24,29,30,35,36,37,39,40,42,47,49,50,51,54,55,57,58,59,60,65,67,68,71,72,85,86,94,98,99,105,106,115,116,121,122,124,125,126,127,132,133,135,137,138,139,140,143,144,145,146,155,156,159,163,164,165,166,167,168,171,175,176,178,183,184,190,196,198,200,201,206],nonetheless:167,nonetyp:[184,191,206],nonexistent_column:14,nonflat:154,noninfring:[97,98,183,184,185],nonlin:47,nonlinear:[32,47,63,73,81,136,139,150,166,178],nonparametr:[159,172],nonzero:[35,57,124],nooooooo:185,noqa:[183,184],nor:76,norm:[42,117,144,166,167],norm_hist:56,normal:[7,29,30,31,32,35,37,38,41,42,45,47,51,52,54,61,68,71,72,79,85,87,122,124,131,132,133,134,135,136,139,140,141,143,144,148,150,155,157,159,160,166,168,174,180,183,194,198,204],normal_:38,normal_goal_i:137,normal_goal_x:137,normal_i:137,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:137,normalizaiton:32,normalization_matrix:134,normalization_mean:134,normalized_data:[71,85],normalizedata:50,norri:97,north:[79,181],northgat:192,norwai:207,norwegian:183,nosql:[119,188],nostruct:124,not_equ:124,not_existing_charact:[184,206],not_existing_vari:183,not_ther:124,notabl:[63,136,174,192],notat:[56,118,123,124,127,183,184,206],notclean:39,note:[0,1,7,8,14,18,29,30,35,37,41,42,43,49,50,52,54,55,56,59,60,63,68,69,71,73,85,88,89,105,106,108,116,117,118,121,122,124,125,126,127,133,135,136,140,142,150,152,154,156,157,159,160,161,165,167,168,178,180,182,183,184,198,200,206],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,35,37,41,42,43,51,55,56,59,60,62,63,65,66,67,68,69,71,74,77,85,87,88,89,90,94,106,107,108,121,122,131,136,138,147,154,155,159,163,164,165,167,168,169,172,175,178,179,180,181,185,186,191,195,198,199,200,201,204],notebook_path:[29,30,31,33,40,43,68],noteworthi:[83,135],notexist:3,notfittederror:161,noth:[7,43,59,62,64,69,87,116,124,138,156,160,161,163,164,167,175,183],notic:[7,29,41,42,50,97,98,107,109,111,114,115,116,121,122,123,129,146,166,169,174,180,183,184,185,189,191,192,200,203,205],notifi:[117,188],notion:[51,60,174],notnul:[7,48,53,122,191],notori:[37,113],notwithstand:[7,122],noun:139,novel:[113,140,144],novemb:[113,146,151],novic:109,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,36,37,41,42,43,45,47,48,49,50,51,52,53,54,56,58,59,60,61,62,63,64,68,69,71,79,80,85,87,88,94,96,104,105,106,107,109,115,116,117,118,119,121,122,124,125,127,129,134,138,140,141,142,143,144,145,146,149,150,155,156,157,159,160,161,164,165,166,167,168,169,171,172,174,175,178,179,180,182,183,184,185,186,192,198,199,200,206],nowadai:[119,165],nowdai:174,np:[1,7,14,18,22,24,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,72,73,79,80,81,82,86,87,89,91,121,122,124,125,126,127,131,132,133,134,135,137,138,139,141,142,143,145,146,151,156,157,159,161,164,165,167,168,169,171,172,173,175,178,179,182,191,194,196,198,199,200,201,202,204],np_util:32,npm:113,npredict:40,npy:34,npython:185,npz:138,nrow:[33,38,40,132],ns:39,nsampl:[39,46,140],nsecond:184,nshape:[65,67],nspose:30,nstandard:18,nswdeman:[51,54],nswdemand:[51,54],nswprice:[51,54],nt:[114,190,192],ntest:[41,43,204],nthe:[41,51,54,55,59,60,62,63,71,85],ntrain:66,ntree:159,ntrue:61,nu:161,nuanc:142,nudg:[117,188],nuforc:169,null_accuraci:61,nullifi:83,num1:205,num2:205,num3:205,num:[63,79,97,124,131,140,141,184,205,206],num_allow_arg:125,num_anchor:144,num_batch:[141,145],num_block:139,num_boost_round:[68,164],num_categori:144,num_channel:132,num_class:[32,139,140,144],num_col:[35,43,56],num_conv:144,num_epoch:[33,35,138],num_exampl:140,num_feat:[63,79],num_feats_imput:79,num_feats_pip:79,num_feats_preprocess:79,num_featur:[87,131],num_filt:139,num_head:[135,139],num_hidden_1:131,num_hidden_2:131,num_hours_studi:200,num_imag:[35,43],num_img:37,num_input_data:[71,85],num_iter:81,num_label:204,num_lay:[139,144],num_list:[63,79],num_memory_unit:137,num_output:87,num_parallel_cal:[35,140],num_parallel_tre:[68,163,164],num_patch:139,num_pip:63,num_preprocess:63,num_queri:144,num_row:[35,43],num_scal:79,num_target:132,num_to_plot:157,num_unit:[87,145],num_vowel:184,num_work:33,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,37,39,40,41,42,43,45,47,48,49,50,51,52,54,56,57,59,60,61,64,65,66,67,69,71,73,79,80,81,82,85,87,88,89,105,106,109,111,113,114,115,116,118,119,122,125,127,129,131,135,136,137,138,139,140,141,142,143,144,146,149,150,151,154,155,156,157,159,160,163,164,165,166,169,171,172,173,174,175,178,179,180,182,183,188,190,191,194,196,198,199,200,203,205],number_imgs_each_part:40,number_limit:183,number_of_iter:[183,205],number_of_part:40,number_to_be_found:[183,205],numbug:205,numcatalogpurchas:69,numclass:49,numcol:[116,190],numdealspurchas:69,numer:[1,8,31,33,41,45,48,51,54,59,60,63,68,69,71,85,87,97,106,108,113,114,115,116,118,121,122,123,124,129,136,137,142,150,155,157,159,173,174,178,180,182,184,190,192,203,206],numeric_:56,numeric_feat:68,numeric_train:56,numeric_v:97,numpi:[1,7,14,18,22,24,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,72,73,79,80,81,82,83,87,88,89,91,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,186,190,194,195,196,198,199,200,201,202,204,205],numstorepurchas:69,numvehicl:146,numwebpurchas:69,numwebvisitsmonth:69,nuniqu:53,nusvc:61,nvalid:66,nvarianc:18,nw:144,nx0:144,nx1:57,nx4:144,nx:[39,46,124],nxcx:144,nxn:132,ny0:144,ny:[39,46,124],nyandwi:[41,45,51,54,55,71,79,85,174],nyc:[107,111,113,186],nyu:205,nywvm6_euxq:165,nz:38,o4yuzatazi:61,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:61,o:[12,25,44,53,56,57,61,69,88,117,124,137,144,145,152,156,167,168,184,204,206],o_lay:134,o_t:141,ob:36,obama:[97,152],obei:[41,124,165],obes:106,obj:[124,125,126,183,191],object:[3,7,9,14,16,24,31,37,39,45,46,49,50,52,55,56,58,59,61,66,68,69,70,79,82,87,88,105,107,113,115,118,122,123,125,126,131,132,136,138,139,140,141,142,143,146,149,150,151,153,154,160,163,164,165,166,168,169,171,172,174,178,184,185,186,190,192,193,204,205,206,207],object_:124,object_col:69,objectdatabas:192,objectdb:192,objectstor:192,observ:[1,3,7,18,30,39,49,55,61,82,83,118,119,122,127,135,137,146,148,150,154,155,156,157,160,163,168,171,178,179,198],observablehq:178,observepoint:109,obtain:[3,22,24,47,49,50,52,60,61,69,87,97,98,119,121,124,135,149,150,157,159,162,164,178,183,184,185,188,206],obviou:[18,58,115,121,139,159],obvious:[52,58,116,165,194],ocademi:[0,12,18,25,102,106,126,127,147,185,193,205,207],occam:166,occasion:[152,183],occlud:[139,144],occlus:[40,139],occup:[53,164],occur:[1,7,8,28,51,54,61,80,117,124,133,141,146,150,166,169,180,183,184,199,205],occurr:[1,2,8,28,48,49,56,61,122,179],ocean:[63,79],ocean_proxim:[63,79],oceanproxim:79,octav:73,octave_n:73,octave_scal:[73,133],octob:[117,180,192],od:183,odaba:192,odd:[97,205],odor:[115,190],odot:135,odunsi:154,ofcours:136,off:[30,34,35,37,38,40,41,48,51,52,54,58,61,63,64,71,82,83,85,87,111,135,137,138,139,140,141,146,150,156,159,164,166,167,168,174,175,183,189,194,204],offer:[21,41,69,80,83,104,113,114,115,117,124,139,148,154,163,171,172,173,179,180,188,191],offic:[119,139,146],office16:39,offici:[45,124,164],offlin:169,offset:[124,160],often:[1,3,7,8,41,43,48,51,52,54,56,61,64,71,81,85,106,107,113,117,118,119,121,122,124,135,137,139,141,142,143,146,149,150,156,157,159,160,166,167,172,174,175,179,180,181,183,184,188,191,205,206],oftentim:119,oh:[49,141,156],ohadlight:139,ohh:[51,54,59,71,85],oil:37,ok:[123,127,129,145,156],okai:[43,59,60,143,167],old:[52,69,125,149,155,171,185,205],older:[121,124,169],oldest:69,oldid:192,oleksii:[97,98,183,184,185],ols:165,omar:58,omega_t:145,omit:[1,29,42,121,125,156,160,183,184],omp_num_thread:168,on3sx3y9kwmxfjcw:61,on_bad_lin:39,on_epoch_end:[41,42,140],onboard:[109,148],onc:[0,7,43,45,47,50,55,57,60,79,81,87,105,106,117,119,121,122,124,125,138,141,146,148,149,150,160,161,164,166,169,173,174,179,183,185,205,207],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,35,37,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,58,60,61,62,63,64,65,67,68,69,71,73,74,77,79,80,81,82,85,87,89,90,95,96,97,98,104,106,107,109,111,112,113,114,115,116,117,119,121,122,123,124,125,126,127,129,132,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,159,160,163,164,165,166,167,168,169,171,172,173,174,175,178,179,181,182,183,184,185,186,190,191,192,196,199,200,203,204,205,206,207],one_hot:[7,79],one_hot_data:7,one_hot_encod:[22,79],one_trunc:127,onefield:124,onehotencod:[53,63,79,200],ones:[7,11,35,37,38,45,48,51,52,58,65,67,68,81,83,106,107,109,113,122,124,131,135,139,148,154,155,159,164,166,168,179,180,185,186,191,194,200],ones_for_answ:87,ones_lik:138,ones_tensor:45,ones_tensor_1:45,ongo:[111,152,189],oni:145,onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,35,37,40,41,42,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,65,67,68,71,79,85,87,95,97,98,103,104,105,106,109,111,114,117,118,121,122,123,124,125,126,127,129,132,133,136,137,139,142,143,144,145,146,148,149,150,152,154,157,159,160,164,165,166,167,168,169,172,175,176,178,179,180,183,184,185,187,189,192,196,198,205,206,207],onlin:[1,28,117,119,121,124,125,142,149,152,169,174,183],only_path:40,onnx:[149,169],ontario:14,onto:[49,53,109,131,151,168,198,200],ontotext:192,onward:14,oob:156,oob_scor:159,oocademi:185,op:[73,125,132,134,141,145],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,37,38,39,40,41,43,44,45,46,48,51,52,54,55,56,57,58,59,60,61,62,63,64,66,68,70,71,73,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,149,150,152,154,155,156,157,159,160,161,163,164,168,169,171,172,173,174,178,179,180,182,183,184,185,191,198,199,200,201,203,204,205,207],open_access:106,openai:142,opencv:[39,135],openinsight:192,openlink:192,openml1:59,openml:[55,59,60],openporchsf:56,openqm:192,oper:[7,18,25,33,41,51,58,61,69,80,88,97,104,106,117,119,121,123,125,126,134,137,139,141,142,143,147,148,149,150,151,168,179,183,185,187,188,207],operand:[124,184,191,206],operation:[117,188],opinion:[142,150],opportun:[56,106,107,108,142,150,152,166,169],oppos:[127,163,168,183,184],opposit:[7,113,131,142,153,161,166,179,194],oppurtun:160,opt:[104,183],opt_func:33,optic:[149,154],optim:[29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,49,52,54,56,59,64,69,72,80,81,82,83,88,106,107,109,114,121,124,127,131,132,134,135,136,137,138,139,140,141,143,145,148,151,152,155,157,159,160,161,163,164,165,168,172,175,176,178,179,194,196,198],optimis:[81,165],optimist:[51,156],optimizerd:38,optimizerg:38,optimum:[58,155,168],option:[1,7,15,16,45,47,50,52,71,73,79,85,88,98,99,105,107,111,116,117,122,123,124,125,127,138,143,146,148,149,152,160,167,169,172,173,183,184,185,186,191,204,205,206],option_context:88,oracl:[129,192],orang:[40,52,113,114,121,137,169,171,179,184,190,206,207],orchestr:[148,149],ord:140,ord_col:56,ord_enc:59,order:[1,3,6,7,14,18,31,41,45,48,49,52,55,56,57,59,60,66,69,71,79,80,85,87,88,97,114,115,117,118,119,121,122,123,124,125,126,127,135,137,139,142,144,146,150,151,152,156,159,160,161,164,165,168,169,174,178,179,183,184,185,188,190,192,198,200,203,205,206,207],ordin:179,ordinal_map:56,ordinalencod:[59,79],ordinari:[59,79,146,179],ordinary_encod:79,oreilli:109,org:[3,22,47,49,50,59,60,62,63,68,73,88,109,127,133,134,135,140,141,144,152,159,163,164,165,167,168,178,182,183,184,192,193,198,205],organ:[34,41,104,105,107,111,114,117,118,119,122,123,124,139,142,148,149,168,174,182,186,188,189,190,192,198,199,203],organiz:117,orgin:[55,60,79],orient:[37,136,139,148,182,183,184,185,206],orientdb:192,orig_shap:144,origin:[3,7,14,29,30,31,34,37,40,47,51,52,57,59,60,61,65,67,73,85,94,97,98,116,119,124,125,127,131,133,134,138,146,148,149,154,156,157,159,160,161,164,165,167,168,171,178,179,180,183,184,192],original_featur:134,original_imag:134,original_image_path:134,original_image_url:134,original_image_weight:134,original_img:133,original_label:126,original_lay:134,original_layers_w:134,original_loss:134,original_minus_mean:134,original_norm:134,original_str:[102,184],originl:57,orign:69,ornella:107,orthogon:[131,168,198],os:[29,30,31,33,35,36,37,38,39,40,43,47,49,50,53,58,61,68,72,73,81,87,89,103,104,105,106,107,108,109,110,111,114,115,116,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],ossif:117,other:[3,7,14,17,18,20,31,33,36,41,42,43,45,46,48,50,51,53,54,55,56,58,59,60,61,64,66,68,79,81,82,83,87,88,90,93,97,98,103,105,106,107,109,114,115,116,117,118,121,122,123,125,127,129,131,135,136,139,140,142,143,144,146,147,148,149,150,151,152,153,154,155,156,157,159,160,163,164,165,166,167,168,170,171,174,175,176,178,180,181,182,183,184,185,191,192,198,200,201,202,203,204,205,206],other_nam:[183,205],otherno:183,otherwis:[33,63,83,87,97,98,124,125,126,127,129,132,139,143,150,152,154,159,163,174,178,180,183,184,185],ouch:167,our:[1,3,7,14,18,29,30,31,32,33,34,37,40,41,42,43,45,48,49,50,52,54,56,57,58,59,60,61,62,65,67,68,69,71,79,80,81,82,83,85,87,88,107,108,109,115,116,117,119,121,122,125,129,131,132,135,136,138,139,142,143,144,146,147,150,151,152,154,155,156,157,159,160,161,164,166,167,168,169,171,172,173,174,175,178,179,182,183,185,188,191,192,198,199,203,207],ourselv:[50,56,146,160,168],oustand:51,out1:139,out:[3,7,8,14,15,18,29,33,34,36,38,42,43,45,50,52,55,56,58,61,64,66,68,69,71,73,85,97,98,104,105,107,109,113,114,116,117,118,119,121,122,124,126,127,129,132,134,135,136,137,139,140,142,144,146,147,149,150,152,154,155,157,159,160,163,164,166,168,169,171,172,173,174,175,179,180,182,183,184,185,191,192,198,199,203,205],out_channel:[31,139],out_col:56,out_conn:141,out_filt:140,out_sampl:135,out_sent:141,outbreak:14,outcom:[7,16,58,61,69,83,107,111,117,119,121,122,135,148,156,168,171,178,179],outer:[80,171,183,191],outermost:[125,183],outfield:121,outli:150,outlier:[7,47,48,49,62,63,69,79,81,82,83,112,114,121,148,150,154,155,156,159,160,165,167,190],outliers_influ:[56,66],outlin:[56,109,117,146],outlook:142,outperform:[51,150],output:[7,9,29,30,31,33,35,37,38,39,41,42,43,45,48,49,50,52,53,58,69,73,80,83,87,104,105,106,122,124,126,127,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,150,151,152,154,156,157,159,160,161,164,166,167,169,171,174,178,179,183,184,185,191,192,193,194,199,203,204,206],output_channel:[35,140],output_class:140,output_dim:144,output_everi:132,output_fil:134,output_file_nam:137,output_final_layer_before_activation_funct:137,output_gener:134,output_imag:38,output_loc:132,output_memori:137,output_prepar:[39,46],output_s:139,output_scrol:140,output_stag:140,output_unit:87,outsid:[56,109,121,124,125,143,163,172,175,183,205],outwork:174,over:[1,7,8,13,14,24,31,32,33,37,41,48,50,51,53,54,56,61,69,71,73,81,83,85,87,95,98,104,107,109,113,116,117,122,124,129,131,132,136,137,138,139,141,143,144,145,146,148,149,150,151,154,156,157,159,160,161,164,167,169,171,172,173,175,176,179,181,183,184,185,186,187,190,192,205,206],over_sampl:171,overal:[7,13,14,30,31,50,51,52,56,58,69,107,108,116,118,119,122,142,150,157,160,174,178,203],overallcond:56,overallqu:56,overcom:[51,54,59,60,165],overdu:52,overexcit:166,overfit:[32,33,41,43,49,50,51,52,54,55,56,59,60,62,63,64,65,67,68,71,81,85,87,146,150,156,159,160,162,163,164,165,173,196,204],overfit_cat:56,overfit_num:56,overflow:125,overhead:[144,191],overlap:[18,121,124,125,154,155,183],overli:[51,52],overlin:[135,157],overload:165,overlook:[117,142,174],overrid:[127,183,205],overridden:30,override_groups_map:139,oversampl:171,overshadow:152,overshoot:[80,161],oversimplif:109,overtim:174,overtrain:66,overview:[52,76,106,109,114,136,148,150,168,195],overwhelm:[69,119],overwhelmingli:69,overwrit:[137,184,205,206],ovr:[167,172],owlim:192,own:[0,11,17,28,40,43,52,64,93,95,104,105,106,107,111,113,117,121,124,125,131,137,139,148,151,152,156,159,160,165,166,167,168,174,183,189,203],owner:[148,157],ownership:[52,117,188],ox:141,oxford:[117,188],oxford_iiit_pet:140,ozair:138,p1:205,p2:[32,135,205],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:61,p:[3,18,32,38,50,52,57,58,59,73,121,124,125,126,127,132,135,137,138,139,140,146,150,155,156,157,159,161,164,165,166,167,168,169,171,174,175,176,178,183,184,196,200,203,205,206],p_1:[52,121,135],p_2:[52,121],p_:[52,135],p_i:[52,135],p_k:52,p_n:[121,135],p_sampl:135,p_valu:121,paa:[104,187],pace:[43,80],pack:[124,182,184,205],packag:[18,30,36,37,53,59,88,107,114,121,124,125,126,127,146,149,154,160,168,169,171,172,174,178,179,180,182,186,191,194,198,205],package_fold:183,package_init_path:183,packed_tupl:184,pacsuta:137,pad:[1,14,18,29,30,32,33,34,35,37,38,40,42,56,124,131,135,139,140,144,145,167,169],pad_bord:144,pad_sequ:145,padding_11:139,paderborn:137,page:[3,21,26,41,45,59,60,62,63,68,88,106,107,109,118,119,125,151,159,163,164,165,167,169,175,176,178,179,182,186],pagefil:39,pai:[18,61,88,104,117,136,141,157,159,178,187,188],paid:[117,136,188],pain:167,paint:[37,123],pair:[7,52,95,98,121,123,124,143,159,160,167,168,172,183,184,185,192,205,206,207],pair_list:3,pairgrid:[60,79,179],pairplot:[60,69,71,79,85],pairwis:[88,159,168],pal:[37,69],palett:[40,53,58,69,71,85,113,114,116,146,190],palette_kwarg:146,palette_kwargs_:146,palinami:[65,67],pallet:69,palyground:178,pamphlet:52,pan:140,pancak:137,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,34,36,37,39,40,41,42,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,79,80,81,85,87,88,89,91,103,104,105,106,107,109,110,111,114,115,116,121,122,123,124,126,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,186,189,190,194,195,196,198,199,200,201,202,204,205],pandasarrai:127,pandastutor:[125,126,127],pandem:[1,11,124,151],panel:199,paper:[7,14,21,26,28,51,52,107,119,121,134,136,138,140,141,144,164,167,168,176,179,186,193],paperback:146,papercodereview:144,papiu:68,par:68,parabol:178,paradigm:[119,174,203],paragraph:[93,95,141,183],parallel:[30,38,56,104,106,140,159,163,164,168],param:[29,30,35,37,42,49,50,63,65,66,67,68,140,164,183],param_count:138,param_distribut:[56,63],param_grid:[52,58,59,60,61,62,159,167],param_lst:56,param_test1:58,param_test2:58,param_test3:58,param_test4:58,param_test5:58,paramet:[3,7,10,22,31,32,33,34,42,43,47,50,51,54,59,60,61,62,63,64,65,66,67,68,71,80,81,83,85,86,87,89,105,106,114,116,121,122,124,125,126,131,132,134,135,136,138,139,140,141,145,146,150,151,160,161,163,164,165,166,167,168,172,173,175,178,179,183,184,185,197,200,201,205,206],parameteriz:151,parameterless:183,parameters_input:185,parameters_output:185,parametr:165,params_grid:[54,55,59,60,62],paramt:[33,161],parch:22,paremet:[62,79],parent:[6,22,117,126,183,188],parenthes:[7,183,184,205,206],parenthood:69,park:169,parma:[65,67],parmet:166,parquet:119,parquet_url:59,parrot:[125,183,205],parrot_typ:183,pars:[3,69,142,146],parse_d:146,parsed_data:3,parsefromstr:73,parser:[3,183],part:[1,7,8,11,30,33,34,40,45,49,52,56,69,71,85,87,97,104,105,108,109,111,112,113,117,119,120,122,123,124,127,131,137,138,139,140,141,144,146,147,148,149,150,151,152,154,155,156,159,160,165,166,168,169,173,174,175,178,180,181,182,183,184,185,190,194,196,203,205,206,207],parti:[104,109,119],partial:[40,90,115,124,148,150,154,160,161,164,190],partial_deriv:135,partial_fit:167,partially_propag:167,particip:[52,69,117,145,156,160,188],particular:[7,31,42,45,51,52,53,59,61,79,97,98,108,111,115,116,118,122,123,124,125,127,136,142,150,156,157,160,167,174,178,183,184,185,189,203,206],particularli:[7,48,114,116,117,122,142,152,154,155,180,184,206],partit:[52,123,124,148,155,165],partner:[69,117,188],pascal:183,pass:[0,3,7,31,37,41,48,50,52,56,58,59,60,61,73,81,87,97,108,109,114,117,124,125,127,132,133,135,136,138,139,142,143,161,166,168,172,178,183,184,185,190,199,205,206],passag:113,passeng:[7,17,22,23],passenger_class:22,passengerid:161,passion:[109,184,206],passthrough:200,past:[51,52,56,69,73,117,129,132,139,144,145,146,149,151,152,169,193],pastel2:167,patch:[24,51,55,104,139,178],patch_dim:139,patch_project:139,patch_siz:139,patchifi:139,path:[0,2,15,17,23,29,30,31,33,37,38,40,42,43,47,49,50,52,53,58,68,71,72,73,81,85,105,115,117,124,132,134,135,137,140,141,145,146,152,160,161,167,173,183,190,205],path_to_param:134,pathcollect:[165,178],pathlib:[42,146],pathnam:[47,49,50],pathwai:143,patienc:[40,41,46],patient:[24,41,105,106,107,142,143,150,182],patil:42,patrick:58,pattern:[37,56,57,58,64,66,69,81,82,83,107,108,111,116,117,119,136,146,149,153,154,162,166,174,179,182,183,188,189,203],paul:[39,185],paus:137,pave:68,pavithra:[65,67],pawel:207,payment:52,pb:73,pbar_out:31,pc:[71,85],pca:[69,131],pca_d:69,pclass:[22,161],pclass_xt:22,pclass_xt_pct:22,pcolormesh:52,pctdistanc:[115,190],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,34,36,37,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,79,80,81,85,87,88,89,91,114,115,116,121,122,125,126,127,142,143,146,151,154,155,156,157,159,161,163,164,168,169,171,172,173,175,178,179,180,190,194,198,199,200,201,202,204],pdf:[140,205],pdist:168,peac:109,peach:40,peak:163,pear:[40,184,206],pearsonr:68,peek:[89,97,179],peep:41,peer:107,peke:205,penal:[136,160,174,194,203],penalti:[61,83,117,131,139,160,165,166],pendant:[115,190],peopl:[3,14,31,41,48,51,58,79,98,104,106,107,109,111,113,117,119,121,122,124,125,149,150,152,174,184,187,188,192,203,205],people_info:98,people_to_check1:97,people_to_check2:97,pep557:127,per:[33,40,47,49,50,51,52,62,69,73,114,116,124,127,132,135,138,139,140,144,150,167,171,178,180,190,191],perceiv:[154,174,203],percent:[1,168,198,204],percentag:[14,34,43,52,54,61,64,71,79,85,106,150,159,179],percentil:[121,156,167],percentile_closest:167,percept:[154,174],perceptron:30,perceptu:139,perceptualedg:109,percsampl:159,perctraindata:159,perf:175,perfect:[49,51,61,66,98,114,166,167,176,190],perfectli:[7,52,66,71,85,122,150,156,165,178,196],perform:[1,7,18,31,32,33,40,41,42,43,50,51,52,53,55,56,58,60,61,63,64,66,68,69,79,80,81,82,87,88,89,94,98,104,106,111,119,121,123,124,129,135,136,137,139,140,142,143,144,147,148,149,150,151,152,154,156,157,159,160,161,163,164,165,166,167,168,171,172,178,179,182,183,184,185,187,189,191,197,199,200,205,206],performcv:58,perhap:[4,49,50,64,69,114,135,140,146,154,167,174,194,203],period:[13,14,39,40,46,51,54,106,107,126,127,146,152,183],period_rang:146,periodindex:146,perm:98,permiss:[22,47,49,50,97,98,106,117,183,184,185],permit:[97,98,124,183,184,185],permut:[31,33,87,98,145,168],perpendicular:[52,61],perplex:150,persimmon:40,persist:[9,137,152],person:[6,7,14,28,31,37,52,53,59,69,97,98,105,107,109,117,118,119,121,123,136,142,143,146,149,174,182,183,184,185,188,203,205],person_id:31,personsdata:123,perspect:[107,117,139,160],perst:192,persuad:109,persuas:109,pertain:[69,142,143],pertin:142,pervas:[117,119,142],pet:15,petabyt:[107,186],petal:[48,62,88,122,157,168,198],petallength:[88,127,157],petallengthcm:66,petalratio:127,petalwidth:[88,127,157],petalwidthcm:66,peter:[121,184,206],petrova:14,pfa:149,pg100:141,pg4mtoh4b05qn5dt:61,ph:50,ph_delta_weights_list:137,phase:[33,58,108,109,151,154,174,203],phd:[58,69],phi:135,phil:142,phone:[6,71,85,109,117,118,119,168,184,188,199,206],phonem:141,photo:[31,34,45,103,110,112,125,130,170,181,194],photo_id:31,photo_numb:31,photo_path:31,photograph:[119,125,153],photoshopcs6:39,php:[192,205],phrase:[29,139,142,174,189],physic:[52,106,137,149],physician:142,physicochem:50,physiolog:93,pi:[35,135,137,157,184,185,205,206],pi_j:157,pi_valu:[184,206],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,33,37,66,68,71,73,85,95,109,116,123,137,155,159,161,164,167,180,182,192],pickl:[132,141,149,205],pickler:205,pickletool:205,pickup:[107,186],pictur:[1,3,14,30,31,38,52,53,61,62,119,121,124,125,136,150,156,157,160,168,174,194,198,203],pid:137,pie:[27,53,71,85,113,178,180],pie_pumpkin:178,piec:[48,53,61,102,108,119,122,142,148,151,163,182,194],piecewis:52,pii:117,pil:[31,73,133,134],pile:143,pillow:[133,183],pin:[125,199],pin_memori:33,pineappl:[184,206],pinfect:14,pink:[1,113,115,190],pinpoint:56,piotr:144,pip:[3,12,18,25,30,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],pipe:59,pipelin:[55,58,59,60,62,63,66,105,106,140,148,149,150,151,166,167,178],pipeline_scor:167,pipelinepipelin:[167,178],pipeln:66,piplin:137,pitaya:40,pitch:151,pitt:145,pivot:[39,83,119,142],pivot_t:125,pix2pix:140,pixel:[29,30,33,37,40,41,43,45,49,52,71,85,89,124,132,133,139,140,143,144,150,168,174,198],pk:[12,129],pkl:169,pktfrwjz:61,pl:[69,157],place:[7,33,48,52,56,69,97,98,106,108,109,113,119,122,124,127,136,142,148,156,169,171,179,182,183,184,185,206],placehold:[50,73,134,137,139,145,169,185,199],plai:[3,14,18,45,50,52,58,79,80,82,105,119,121,142,148,160,165,173,182,183,196,199],plain:[3,139],plainli:115,plan:[1,52,69,104,109,148,151,156],plane:[52,139,154,159,165,168,178,198],planet:[6,107,186,207],planetari:[107,186],plant:142,plastic:154,platelet:[9,105,106],platform:[10,20,45,104,106,109,142,148,149,152,160,169,174,185,187,203],plausibl:194,play:80,player:[18,107,121,149,174,175],playground:[140,151,159,160,165,171,175],playgroundn:178,pleas:[15,29,36,37,47,48,49,50,51,54,59,60,62,63,68,87,88,105,127,132,139,159,163,164,165,166,167,169,174,176,178,182,183,195],plenti:[113,148,150,152,160,167,168],plot:[1,3,8,14,15,18,19,29,31,33,34,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,56,58,59,61,62,63,64,66,68,69,71,72,80,81,82,85,87,88,93,113,119,121,127,132,137,138,140,141,145,146,150,154,157,159,161,165,166,167,168,171,172,174,175,178,180,182,196,198,200,201,202,203,204],plot_3d:[165,196],plot_accuraci:33,plot_align:22,plot_centroid:167,plot_clust:167,plot_clusterer_comparison:167,plot_color:22,plot_dat:36,plot_data:167,plot_dbscan:167,plot_decision_boundari:167,plot_galleri:31,plot_imag:43,plot_import:164,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[33,38],plot_model:204,plot_multistep:146,plot_param:146,plot_profit:36,plot_spectral_clust:167,plot_support:[165,196],plot_surfac:80,plot_svc_decision_funct:[165,196],plot_svm:[165,196],plot_titl:22,plot_train:40,plot_tre:[59,157],plot_value_arrai:43,plotli:[1,30,46],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,72,79,80,81,82,85,87,88,89,114,115,116,121,131,132,135,137,138,140,141,145,146,154,155,156,157,159,161,164,165,167,168,171,175,178,180,182,190,194,196,198,200,201,202,204],plu:[32,52,81,86,113,124,127,175,200,201],plug:175,plugin:0,pluginfil:205,plum:40,plumag:183,plymouth:156,pm:[121,183,205],pmml:149,pneumonia:1,png:[3,37,38,40,61,68,72,137,167,168,174,178,179],po:[42,56,137,144,167],poc:106,poem:107,poetic:107,poetri:[107,186],poignant:116,poin:66,point3d:127,point:[7,8,11,15,16,28,29,30,31,33,37,41,43,49,50,51,52,54,61,62,63,64,69,71,79,80,82,85,89,109,111,113,114,116,118,121,122,124,126,127,137,144,145,146,149,150,154,155,156,159,160,164,165,166,167,168,169,171,173,174,178,179,180,181,182,183,184,191,197,198,199,200,203,204,206],pointer:[97,124,129],pointwis:139,pois:125,poison:[115,190],pojo:149,polar:39,poli:[61,62,63,178],polic:107,polici:[104,111,174,203],polli:125,poloclub:[132,193,194],poly_best:62,poly_pr:62,poly_svc100:61,poly_svc:[61,62],poly_svr:63,poly_transform:200,polynomi:[62,63,74,81,165,166,181],polynomialfeatur:[178,200],polynomialfeaturespolynomialfeatur:178,pomegran:40,pond:142,ponder:80,pool1:134,pool1_pad:140,pool2:134,pool3:134,pool4:134,pool:[32,132,134,136,139,140],pool_siz:[34,35,40,132,139],poolarea:[56,68],poolqc:[56,68],poor:[31,41,42,55,60,61,66,71,79,85,124,141,150,154,160,166,174],poorer:82,poorli:[33,61,90,150,165,166,174,197],pop:[7,14,35,36,97,109,127,135,143,154,155,184,191,206],popul:[4,13,14,63,79,115,118,121,129,146,156,159,160,178,180,182,190,192],popular:[1,45,47,52,61,108,109,111,118,123,136,147,149,150,151,152,153,154,155,160,161,162,164,168,171,179,184,185,198],porch:56,port:22,portabl:[117,135,205],portal:[9,52,106],portion:[33,52,97,98,124,139,142,148,150,168,182,183,184,185],portrait:37,pose:[37,40,51],posit:[3,28,36,41,52,53,54,56,58,59,68,71,80,83,85,97,107,121,124,127,136,137,139,142,143,144,150,157,160,165,168,179,183,184,185,193,198,200,205,206,207],position_embed:139,position_salari:200,positionalembed:135,positive_integ:[184,206],positive_vector:[184,206],positv:61,possess:[56,71,79,85,203],possibl:[1,11,34,41,45,47,49,50,52,54,56,61,63,71,79,83,85,97,107,113,119,121,124,125,127,132,135,136,139,141,146,148,149,150,151,152,156,159,160,164,165,167,168,174,178,183,184,186,203,206],post:[0,1,14,28,29,32,45,52,124,125,142,144,145,169,187],post_imag:168,postdoc:185,posterior:159,posterior_vari:135,posterior_variance_t:135,postgradu:69,postur:37,potenti:[23,28,41,49,56,59,82,106,107,109,111,114,117,119,121,124,126,127,133,136,137,142,150,152,164,171,180,186,188,197],pothol:[117,188],potrait:37,potrait_gener:37,potraits_gener:37,pouget:138,pound:[116,156,180],pow:[31,131,137],power:[1,7,33,45,51,54,55,59,60,61,62,63,81,82,103,104,107,109,113,124,125,127,136,137,142,150,152,160,164,165,168,174,178,183,184,185,186,191,205,206],power_of:[183,205],ppf:18,pprint:31,ppwwyyxx:144,pq:59,practic:[4,7,16,30,41,47,49,50,52,55,60,61,63,69,107,111,117,119,121,122,124,129,131,136,139,140,141,145,146,149,150,152,156,160,163,165,166,168,169,174,179,182,183,184,185,188,198,205],practical_dl:87,practis:165,practition:[82,117,146,188],prafulla:135,pragati:143,prashant111:53,prashant:[61,164,199,204],pre:[3,9,43,49,104,106,125,140,150,151,152,163,166,178,182],preced:[49,80,124,139,143,183],precis:[29,41,48,49,54,56,59,62,68,71,72,80,82,85,87,97,108,124,145,150,151,166,169,172,173,179,183,200],precision_recall_curv:[172,173],precision_scor:[29,172,173],precison:[54,59],precomput:127,pred:[29,33,40,41,51,54,55,56,58,59,60,68,72,132,146,161,168,178,198],pred_bbox:42,pred_class:40,pred_coord:42,pred_imag:35,pred_mask:140,pred_nois:35,predefin:[33,121,123,137,154,173,177,192],predf:57,predi:57,predicit:161,predict:[9,22,29,33,34,35,36,37,39,41,42,45,46,47,49,50,51,53,54,55,57,59,60,61,62,63,64,65,66,67,68,69,71,79,80,81,82,83,86,87,89,107,111,117,119,121,132,135,136,137,139,141,142,143,144,145,146,148,149,150,151,152,155,156,157,159,160,161,162,163,165,167,169,171,173,174,175,176,177,178,179,180,181,182,183,186,187,188,189,194,203,204],predict_class:[49,72],predict_imag:33,predict_proba:[58,161,167,168,172,179,198],predict_row:57,predicted_column:[39,46],predicted_df:[39,46],predicted_label:43,predicted_nois:135,predicted_pric:44,predicted_valu:[39,82],prediction_text:169,predictions_arrai:43,predictions_on_train:[71,85],predictions_singl:43,predictor:[51,58,68,150,157,163,164,167,178],predominantli:[37,107,186],preds_test_cb:56,preds_test_lgbm:56,preds_test_xgb:56,prefer:[50,58,66,79,107,117,121,124,149,150,159,164,166,167,174,176,179,181,184,185,186,206],prefetch:[35,46,131,135,140],preffer:66,prefix:[22,58,143,183,184,206],prefrenc:69,preiousli:37,preliminari:[142,155],preload:178,premis:[104,111,149,171,189],prep:[39,171],prepackag:182,prepar:[18,22,45,51,54,55,59,60,71,79,85,105,106,108,109,111,113,130,131,148,167,168,174,187,189,198],prepare_dataset:35,prepend:183,prepocess:37,preprint:[14,52],preprints202006:14,preprocess:[32,34,39,41,44,45,46,52,53,56,61,64,66,81,88,132,139,142,143,145,149,150,155,169,178,179,182,200,201,202],preprocess_imag:35,preprocess_img:138,preprocess_input:133,preprocessor:64,prerequisit:[0,134,147,183],prescrib:142,presenc:[56,142,150],present:[1,3,4,5,7,9,13,14,19,21,26,27,36,48,51,53,54,56,59,74,76,90,94,95,97,98,107,109,113,115,121,122,124,125,126,127,139,141,144,147,148,151,152,171,172,174,175,183,185,186],preserv:[48,89,117,122,124,125,127,136,167,179,183],preset:16,press:[39,53,137,146,182,185,199],pressur:[24,106,118,119,182],presum:[37,154],pretend:[18,160,183],pretrain:[136,140,194],pretti:[7,31,56,59,60,62,66,68,142,154,155,157,163,167,168,172,173,174,179,180,200],preval:143,prevent:[28,30,32,43,45,49,52,56,106,107,124,125,135,137,150,151,156,159,165,166,183,184,196,206],preview:[61,106,107],previou:[7,14,17,32,36,41,49,50,51,52,57,58,59,80,81,87,105,108,113,114,118,121,122,123,124,125,135,139,140,141,143,146,150,152,155,156,159,160,161,162,163,164,167,168,169,172,173,174,178,180,183,184,203,206],previouli:51,previous:[18,43,56,59,80,81,122,124,149,155,156,173,179,191],previous_numb:183,prgn:[71,85],price:[22,39,51,54,56,59,68,71,79,82,107,116,136,142,150,157,171,174,178,179,186,202,203],price_add_averag:22,price_rang:[71,85],priceperlb:[116,190],pricier:180,prim:183,primari:[6,7,48,58,71,80,85,105,106,118,119,122,126,127,129,164,192,193],primarili:[7,80,83,109,127,157,182,203],primary_metr:[9,105],prime:[97,183],prime_factor:97,prime_text:141,primit:[184,206],princ:57,princip:[69,131],principl:[31,47,49,50,52,58,104,107,119,129,137,156,164,165,166,183,188],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,65,66,67,68,69,71,72,79,80,81,82,83,85,87,88,89,97,105,115,121,124,131,132,133,134,135,137,138,139,140,141,142,143,145,146,155,156,157,159,161,163,164,167,168,169,171,172,173,175,178,179,180,182,183,184,185,190,191,194,198,200,201,202,204,205,206,207],print_everi:138,print_four_numb:205,print_funct:38,print_stat:29,printfeatureimport:58,printmd:40,prior:[61,106,113,116,145,164,187],priorit:150,prioriti:106,privaci:[111,117,152,188],privat:[58,104,111,149,187,189],privileg:183,prix:139,priya:44,prize:[117,188],pro:[7,39,49,58,106,117],prob:[39,161],proba:172,probabilist:[61,135,136],probability_model:43,probabl:[7,31,33,41,43,50,51,52,54,57,58,60,83,87,103,106,107,108,109,111,114,118,119,120,129,135,136,137,139,143,150,154,155,156,159,160,161,167,173,174,176,178,180,182,184,194],probalist:136,probe:[6,61],problem:[7,11,23,29,37,43,47,48,49,50,51,54,56,58,59,60,62,64,66,69,80,81,83,89,95,105,108,109,111,113,117,119,121,122,124,125,136,137,139,140,141,143,144,146,147,149,150,155,156,157,161,164,165,166,167,168,171,172,175,176,180,184,188,189,196,197],problemat:[18,26,150],proce:[37,56,69,71,81,85,87,143,164],procedur:[49,52,56,146,152,156,159,160,164,178],proceed:52,process:[1,3,7,11,18,28,30,31,32,34,37,42,43,44,45,47,48,50,52,53,55,58,59,60,61,64,69,71,80,81,85,87,95,97,104,105,106,107,108,109,117,118,119,124,131,132,136,137,139,140,143,145,146,147,149,150,152,155,156,159,160,161,162,163,164,165,167,168,169,171,172,173,174,175,177,178,182,183,184,185,186,187,188,191,197,198,199,203,204],processed_data:31,processing_d:59,processor:[71,85,89],prod:[124,138],produc:[7,29,31,32,37,48,53,59,61,64,106,113,114,116,119,122,124,142,143,144,146,148,149,154,156,164,166,174,180,183,184,188,194],product:[11,13,51,69,81,97,104,106,107,109,116,117,118,119,121,124,127,135,139,146,147,148,149,150,151,168,169,174,179,186,187,188,190,199,203,204,205],production:[48,151,152],prodvalu:[116,190],profession:[104,142,149,154,164,185,188],professor:[160,174],profil:[61,117,189],profit:[36,123,160,192],profium:192,program:[39,43,52,59,104,106,117,118,127,129,135,136,142,147,148,149,150,165,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,204],programm:[118,174,183,185,203,207],programmat:[7,106,122],progress:[14,37,41,47,49,73,116,132,148,150,173,174,182,183,194],progress_info:132,progress_widget:73,project:[5,7,9,16,22,30,31,37,39,60,61,68,69,80,97,98,104,107,109,111,115,117,122,124,131,133,135,137,138,139,140,141,144,145,147,148,149,150,151,152,165,168,171,174,182,183,185,186,187,189,196,198,199,203],project_fold:105,project_root_dir:167,promin:52,promis:[47,87,117,188],promot:69,promote_typ:124,prompt:[6,106,169,185],prone:[68,159],pronounc:[129,182],proof:[28,106,154],propag:[7,31,87,126,127,146,154,167,168,204],propens:163,proper:[18,51,54,55,59,60,71,85,109,124,132,142,154,174],properli:[5,48,66,87,96,122,148,150,156,162,174,179,180,203],properti:[9,14,31,33,35,37,49,50,52,57,88,105,117,121,123,124,125,150,157,159,160,165,178,183,184,188,192],proport:[52,61,64,82,113,121,159,160,166],propos:[61,108,109,135,138,139,141,144,152,156,159,165,167,189,196,204],proposals2:144,proprocess:41,prose:31,prospect:109,prostat:175,protagonist:113,protect:[14,104,107,117,148,186,188],protocol:126,prototyp:[49,50,106,107],prove:[18,26,28,52,113,119,121,150,154,156,159],provid:[0,1,7,12,14,15,16,17,21,23,28,33,34,41,42,43,47,48,50,51,52,54,55,56,59,60,61,79,80,82,83,87,97,98,104,106,107,108,109,111,113,117,119,122,123,124,126,127,129,131,132,136,139,142,143,144,146,147,148,149,150,151,154,156,157,159,160,164,166,167,169,172,174,180,182,183,184,185,186,188,189,192,194,203,204,206],provinc:14,province_st:[14,151],provis:[105,149],provisioning_configur:[9,105],proxim:[79,154,159],prp:[55,60],prune:[52,139],pseudo:[18,160],pseudocod:160,pseudonym:121,psgk:61,psycholog:154,pt:60,pth:[31,33,38],public_dataset:[71,85],publicli:[106,151],publish:[52,55,60,61,97,98,106,121,148,149,183,184,185,187],publish_tim:1,pubu:[71,85],pull:[52,113,117,127],pullov:[30,41,43],puls:61,pulsar:61,pulsar_star:61,pumpkin:[77,94,96,171,178,179,181],pun:183,punctuat:[97,98,141],pungent:[115,190],purchas:[69,104,109,116,119,178],pure:[35,41,50,61,87,121,126,159,183],puriti:157,purpl:[30,113,115,190],purpos:[16,30,36,49,50,60,61,62,63,69,80,97,98,111,117,124,127,132,134,136,138,150,154,164,167,169,174,179,182,183,184,185,188,189,191,203,205,206,207],pursu:[107,150,174,203],pursuit:80,push:[0,49,97,109,113,137,142,149,183,191],pussin:[97,98],put:[39,41,45,52,57,64,69,83,106,109,117,129,136,145,156,160,166,174,182,183,184,185,203,205,206],pval:[18,121],pvt:58,pw:157,px:[30,33,46],px_height:[71,85],px_width:[71,85],pxi:127,py39:[30,36,37,114],py3:205,py:[9,30,36,37,59,64,73,88,105,114,125,126,127,132,137,145,168,169,172,179,183,184,185,190,191,198,205,206,207],pycharm:39,pycharmproject:205,pycon:125,pydata:[124,125,127],pygment:121,pylab:22,pylint:[183,184,206],pyobjecthasht:127,pypi:[184,206],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,66,68,69,71,72,79,80,81,82,85,87,88,89,114,115,116,121,131,132,135,137,138,140,141,145,146,154,155,156,157,159,161,164,165,167,168,171,175,178,180,182,190,194,196,198,200,201,202,204],pyramid:[140,151],pytest:[0,3,14,22,24,55,79,97,98,147,183,184,206],python37:205,python38:[59,198],python39:183,python3:[97,98,125,126,127,169,172,179,183,191],python3_7_4:205,python:[0,1,3,7,18,22,23,30,33,36,39,42,45,48,51,53,58,59,60,61,62,63,81,87,105,106,107,108,114,121,122,125,126,127,130,132,133,134,135,139,141,145,147,149,167,168,169,171,180,186,187,188,189,190,192,193,194,195,196,197,198,199,200,201,202,203,204],python_3_2021:205,python_cast:184,python_datatyp:184,python_dictionari:184,python_funct:205,python_numb:184,python_oper:184,python_ref_str:184,python_set:184,python_str:184,python_try_except:183,python_tupl:184,python_util:[107,108,109,110,111,180],python_vari:184,pythonista:184,pythonpath:183,pythontutor:[183,185],pythonwin:205,pytorch:[31,33,106,136,138,169],pytutor:0,pyvideo:125,pywaffl:[115,190],pyx:[125,127],q1:121,q3:121,q:[22,36,52,124,135,168,179,205],q_:[135,137],q_sampl:135,qbbc3cjsnjg:176,qbcdxtzitda:61,qgl:61,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:61,qizx:192,qmcrlph5c7vc:61,qmqvejnztng9kv28rwerdmjfiwjrgfn:61,qq:[3,14,22,24,55,97,98],qqpcmgr_docpro:39,qty:123,quad:[80,156,160,175],quadrat:[56,61,83,159,160,165,184],quadraticdiscrinationanalysi:172,qualit:[6,24,109,118,148,174,188],qualiti:[0,40,48,49,50,55,56,58,64,68,87,90,106,108,111,114,117,118,121,139,149,151,152,154,156,157,159,168,173,174,178,179,180,188,189,198],quan:59,quantifi:[61,80,82,83,111,189],quantil:[56,108,160],quantit:[6,52,56,109,118,148,174,188],quantiti:[4,111,115,119,123,137,146,174],quantiz:[139,150],quarter:139,quarterli:118,quartil:[7,18,56],quebec:14,queliti:31,queri:[2,12,16,25,48,104,118,119,122,127,129,135,142,148,169,189,192],query_emb:144,question:[0,16,17,23,28,32,49,51,52,53,59,60,61,76,80,107,108,109,111,113,116,117,119,121,125,136,142,143,147,150,151,152,160,161,165,169,171,174,178,182,188,189,191,203],questionstd:145,queue:109,quick:[41,42,50,51,54,55,56,63,69,82,88,106,127,142,150,152,154,165,168,171,174,177,180,181],quickli:[7,14,41,42,47,49,50,60,71,79,85,106,114,116,122,124,135,148,149,160,164,178,179,191,194],quicksight:148,quickstart:149,quiet:[3,12,18,25,30,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],quirk:184,quit:[1,3,7,18,33,34,37,40,41,42,52,61,62,63,69,71,85,115,116,125,129,144,150,156,157,159,167,172,173,174,175,178,182,184,203],quora:152,quot:[125,183,184,185,206,207],quotient:[97,124,168],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:61,r2:[65,67,81],r2_score:[65,67,81,82],r2_socr:[65,67],r:[22,29,30,31,33,37,38,40,42,57,61,66,79,81,87,116,121,124,132,134,135,137,140,141,145,149,154,159,160,165,167,168,169,184,190,196,198,200],r_0:14,r_:[52,89,137,160,167],r_k:137,r_p:121,r_t:[8,160],rabbit:205,race:[53,169],racial:107,radial:[62,63,165],radic:139,radio:[61,199],raffael:119,rag:36,raggedtensorvalu:36,rai:107,rainbow:116,rainfall_id:[129,192],rainforest:118,rais:[3,14,22,24,55,97,98,101,102,107,117,124,125,126,127,137,140,150,152,184,186,205,206],raise_for_statu:146,rajesh:143,rake:3,ram:[40,55,71,85,106,159],ramif:173,ran:[10,20,185],rand:[18,36,51,52,81,159,168,191],rand_i:132,rand_index:[42,132],rand_indic:42,rand_tensor:45,rand_x:132,randint:[31,38,42,52,72,73,156,175,191,194,204],randn:[31,38,81,87,126,127,199],randn_lik:31,random:[29,31,32,33,35,36,37,38,39,40,41,42,45,46,47,49,52,57,58,59,60,61,62,63,64,66,68,69,71,72,73,81,85,87,108,124,126,127,131,132,135,137,138,139,140,141,145,150,155,156,158,160,163,164,166,167,168,171,173,174,175,191,194,198,199,204],random_flip_left_right:135,random_index:[41,135],random_norm:[131,134],random_normal_initi:[140,144],random_se:33,random_split:33,random_st:[29,30,31,34,40,41,51,52,53,54,55,56,58,59,60,61,62,63,64,66,68,79,81,88,143,155,157,159,161,163,164,165,167,168,169,173,175,178,179,196,198,200,201,202],random_strength:56,random_transform:38,random_uniform:145,randomappli:38,randomflip:140,randomforest:58,randomforestclassifi:[51,52,53,54,58,157,159,168,172,173],randomforestclassifierrandomforestclassifi:159,randomforestregressor:[55,157,159],randomhorizontalflip:38,randomizedsearchcv:[56,63],randomizedsearchcvrandomizedsearchcv:63,randomli:[30,34,42,52,56,57,64,68,82,135,139,140,156,157,159,166,167,168,198],randomnorm:[131,139],randomrot:38,randomst:[159,191],randomtreesembed:159,randrang:36,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,65,66,67,71,72,73,79,80,81,86,87,88,89,98,104,106,107,114,117,119,121,124,125,126,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,155,157,161,162,163,167,168,175,179,184,187,188,191,194,198,199,200,201,202,204,205,206],rangeindex:[39,61,62,69,79,122,154,164,171,191],rank:[45,117,124,126,150,154,157,160,172,188],rankboost:160,ranspos:30,rapid:[107,185],rapidli:[124,148,168],rare:[56,61,111,150,154,159,160,191],raschka:[52,131,138,141,145],rate:[6,8,14,22,33,35,36,49,50,51,57,64,66,80,81,106,107,109,113,118,136,137,138,139,140,141,150,151,157,161,163,164,166,167,168,175,179,198,203,204],rater:49,ratetc:145,rather:[7,31,37,48,56,71,80,83,85,104,116,119,122,124,127,129,142,149,154,159,165,167,174,178,182,183,184,191,199,203,206],ratio:[14,41,48,51,54,59,61,127,150,157,167],ration:[41,109],rational:157,ravel:[52,58,59,159,161,165,167,172,173,196,201,202],ravenclaw:199,ravendb:192,raw:[6,12,14,16,18,25,45,47,59,60,64,71,83,85,106,118,119,121,122,127,139,148,150,151,167,169,174,180,191,203],raw_data:29,rawinputlstjson:183,rayleigh:168,razor:166,rb:[73,132,169],rbf:[62,63,167,196],rbf_score:61,rbf_svc:61,rbk:61,rbkzduqmatb85:61,rbr_1x1:139,rbr_dens:139,rbr_ident:139,rbr_reparam:139,rc:[22,37,64,69,146,167],rcl:[156,159],rcnn:144,rcparam:[14,61,68,138,159,190],rdbm:192,rdss:97,re:[3,7,15,31,34,39,41,42,43,47,49,50,54,59,64,66,68,71,85,87,107,109,111,122,123,124,125,126,127,129,132,133,139,140,141,142,144,145,150,151,160,161,166,169,171,174,175,178,182,183,184,186,192,199,203],re_fit:62,reach:[33,37,43,50,52,57,80,111,157,159,163,165,168,175,183,184],react:[178,207],reaction:147,read:[16,29,31,41,47,49,55,56,60,71,73,85,87,106,113,114,115,116,117,119,121,123,124,133,141,145,147,150,168,171,172,178,179,182,183,184,205],read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,36,39,42,44,46,48,49,50,51,52,53,54,55,56,58,61,62,63,64,66,68,69,70,71,79,81,85,87,88,89,91,114,115,116,121,127,142,146,151,154,155,156,157,159,161,163,164,169,171,172,173,175,178,179,180,190,200,201,202,204],read_file_from_url:73,read_tabl:175,readabl:[0,115,149,169,184,185,206,207],reader:104,readi:[34,41,43,51,53,54,61,71,85,106,148,149,150,151,152,154,161,169,172,173,174,178,180,182],readm:[5,113],readthedoc:30,real:[0,7,11,28,29,33,34,36,37,38,39,40,41,44,47,48,52,55,59,60,61,62,83,97,117,119,122,123,124,125,137,138,139,142,143,144,146,148,149,151,152,156,160,166,167,174,178,183,184,185,188,191,192,194,195,200,203,206],real_data:138,real_imag:[37,38],real_label:38,real_loss:138,real_part:183,real_sampl:38,real_stock_pric:44,realist:[40,194],realiti:[7,58,117,136,150,179,192],realiz:[111,137,145,160,179],realli:[41,51,56,58,62,63,68,71,85,105,109,116,142,164,166,172,174,179,183,184,203,206],realm:[52,82,142,143,192],realpython:183,rearrang:[80,113],reason:[7,11,14,41,48,51,52,62,64,68,71,79,85,87,104,119,121,122,124,132,142,149,150,152,156,157,161,163,164,168,174,176,182,184,187,203],reassign:184,reboot:107,rebuild:41,rec:56,recal:[29,41,49,52,54,59,62,71,72,85,108,124,150,156,161,169,172,173,179,191],recalcul:157,recall_scor:29,recap:168,receiv:[6,43,61,87,105,108,109,118,127,137,145,151,160,179,183,189],recenc:69,recent:[14,45,69,87,109,124,125,126,127,146,152,160,172,191,205],recept:193,recgon:204,recip:[160,200],recipi:118,recogn:[41,45,64,71,72,85,107,124,136,139,142,144,148,168,174,183,186,203],recognit:[30,40,43,132,136,139,141,142,143,151,174,203],recommend:[15,47,51,106,107,109,116,117,119,123,124,125,127,150,157,159,160,167,168,182,183,185,188],recomput:168,recon_x:31,reconstr_img:131,reconstruct:[29,30,31,131,152],reconstructed_imag:131,record:[9,15,69,105,117,118,124,132,135,136,142,146,148,151,154,160,174,183,191,203,205],recov:[14,151,160],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,39,104,148,151],recreat:[50,114,115,131],recruit:117,rect:[38,168,198],rectangl:[42,52,123,137],rectifi:[87,117,132,136,139,143],recur:49,recurr:[28,171],recurs:[52,97,98,145,183],recycl:39,red:[14,39,42,43,44,47,50,51,52,54,58,64,81,82,106,109,113,114,115,121,139,157,159,165,166,167,178,184,185,190,196,200,201,202,206],red_win:64,reddit:113,redefin:[49,108,111,183],redhat:149,redi:192,redo:[96,148],redshift:148,reduc:[7,30,32,37,41,47,49,51,52,54,56,58,59,60,63,66,69,80,97,106,111,124,134,136,139,140,142,143,149,150,152,154,156,159,160,163,164,166,167,168,169,174,175,179,184,198,203,204,205],reduce_max:29,reduce_mean:[73,131,133,139,141,145],reduce_min:29,reduce_std:133,reduce_sum:[133,134,141],reduct:[31,52,56,131,146,156,157,159,168,203],reduction_model:30,redund:[69,131,164,183],ref:[30,149,173],refer:[3,17,22,23,24,33,34,42,45,48,51,52,54,56,58,59,60,62,79,80,82,104,105,106,108,109,111,113,117,121,123,124,126,127,129,131,132,134,135,136,137,139,145,148,149,150,151,152,154,155,156,166,169,173,174,178,183,184,203],referenc:[52,183,184],reference_answ:87,referenti:119,refin:152,refit:[54,55,59,60],reflect:[7,28,40,41,69,83,96,117,148,154,169],reformat:43,refram:39,refresh:[42,106,151,180],refus:[47,117,188],reg:[56,68,159,174],reg_alpha:[56,163,164],reg_lambda:[56,163],reg_model:79,reg_tre:52,reg_tree_pr:52,regard:[7,33,52,116,122,124,137,142,159,160,164,179,184],regardless:[48,121,124,149,152,154,183,184],regdataset:159,regener:[50,145],regex:[178,180],regim:166,region:[14,79,106,117,144,151,155,164,170,183],regist:[9,69,105,106,205],register_model:[9,105],registr:[1,124],registri:[106,149],regplot:[56,146],regress:[41,42,45,47,49,51,54,56,57,58,59,61,62,68,80,96,105,111,121,136,142,143,150,155,156,157,159,161,162,164,167,168,169,170,171,173,189,195,197,203,204],regressor:[44,51,52,150,159,161,175,200],regressorchain:146,regul:[111,152,173],regular:[1,8,37,43,54,55,59,61,63,66,71,73,81,85,131,146,150,159,160,164,165,167,173,196,204],regularioz:[65,67],regularis:[165,196],regularization_weight:134,regularli:[151,152],rei:50,reilli:[117,152],reimport:[29,183],reindex:146,reindex_index:125,reinforc:[31,117,137,152,160],reinforcement_learning_course_materi:137,reinvent:152,reiter:[109,148],reject:121,rekognit:152,rel:[1,37,40,42,43,51,53,54,55,60,69,80,81,97,114,119,121,126,127,129,133,135,139,150,154,160,169,184,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],rel_error:138,rel_tol:97,relat:[1,3,16,18,28,49,58,100,106,109,116,117,118,121,127,130,135,142,145,150,151,159,166,174,179,183,185,190,195,203,204],relationship:[1,33,41,51,53,54,58,66,68,71,81,82,85,88,91,93,108,111,113,114,119,121,123,136,146,151,154,165,166,171,174,178,179,180,181,182,183,189,200,203],relax:[124,137,165],releas:[114,117,124,149,168,185,188,198,207],release_d:[154,155],relet:69,relev:[3,16,28,104,107,117,119,121,124,136,137,142,150,152,160,174,179,186,203],relevent_experi:58,reli:[59,64,71,85,111,118,119,122,123,174,179,184,206],reliabl:[82,104,107,117,149,159,174,187,188],relief_pitch:121,reload:[48,49,122],reloop:57,relplot:[116,190],relu1_1:134,relu1_2:134,relu2_1:134,relu2_2:134,relu3_1:134,relu3_2:134,relu3_3:134,relu3_4:134,relu4_1:134,relu4_2:134,relu4_3:134,relu4_4:134,relu5_1:134,relu5_2:134,relu5_3:134,relu5_4:134,relu:[29,30,31,32,33,34,35,36,37,38,40,41,42,43,45,46,49,50,64,72,73,87,132,134,136,138,139,140,143,144,194,204],relu_grad:87,remain:[7,52,56,61,64,71,83,85,97,98,117,122,124,127,135,139,142,143,148,152,156,164,168,183],remaind:[97,123,124,183,184,185,200,206],remark:[51,59,62,63,71,85,156,185,207],remdesivir:1,rememb:[7,36,50,54,59,71,85,109,119,124,141,146,150,156,160,161,166,168,179,182,184,193,200],remind:178,remix:107,remot:[0,149],remote_effects_echo_url:183,remote_effects_init_url:183,remote_effects_reverse_url:183,remote_fibonacci_url:183,remote_package_init_url:183,remote_run:[9,105],remov:[1,3,14,29,31,37,38,51,52,53,54,57,61,64,66,69,71,73,85,87,88,97,111,114,116,117,141,145,150,154,155,166,168,171,174,179,183,185,189,198,206],remove_dupl:[98,184],ren:144,renam:[1,18,61,69,88,125,127,183],render:[16,56,59,60,62,63,68,88,159,163,164,165,167,169,176,178,182,184,199,206],render_templ:169,rent:104,rep:109,repack:[178,179,180],reparameter:31,repay:203,repeat:[35,37,39,46,52,57,80,89,98,119,124,127,131,140,148,155,156,159,160,164,167,168,178,184,198,206],repeat_delai:135,repeatedli:[97,163,205],repetit:[51,54,55,60,150],replac:[7,14,22,30,31,32,36,43,48,50,51,53,56,57,58,68,69,82,87,106,122,124,139,141,145,146,150,156,167,175,178,183,184,206],replai:36,replec:51,replic:124,repo:[0,5,73,140,168],report:[14,33,40,41,54,58,59,62,109,117,142,151,169,172,173,179,180,183,188],repositori:[0,1,14,60,80,124,143,145,147,149,174],repres:[1,7,18,30,31,36,37,40,41,42,43,45,48,49,50,52,53,54,56,58,59,61,66,79,80,81,82,97,105,107,108,109,115,117,118,119,121,122,123,124,135,136,139,143,146,150,154,155,156,157,160,161,167,168,184,185,191,192,198,206],represent:[7,22,29,30,37,43,52,59,60,62,63,66,68,71,79,85,88,97,108,111,114,122,124,131,137,139,145,147,163,164,165,166,167,174,175,178,182,191,192,205],representative_digit_idx:167,representative_images_diagram:167,reproduc:[40,47,50,144,150,156,157,164,191],reproduct:14,reput:142,repvgg:139,repvgg_convert:139,repvggblock:139,request:[3,16,29,30,31,33,37,38,40,42,43,63,68,71,73,79,85,87,105,107,117,119,127,132,133,134,135,138,141,142,143,145,146,152,167,169,174,183,184,203,206],requir:[0,1,15,22,24,31,33,43,45,47,49,50,58,61,63,69,73,79,81,83,91,98,104,106,107,109,111,117,118,122,123,124,137,140,142,144,146,148,149,150,151,152,154,159,160,163,167,168,169,174,182,183,184,187,188,189,206],requires_grad:33,requisit:9,rerun:[41,45,59,60,62,63,68,88,159,163,164,165,167,178,180,182,199],res_block:135,resblock:135,rescal:[41,64,79,174],research:[1,16,28,104,109,114,115,116,117,127,136,143,150,151,152,160,171,173,174,182,187,188],researchg:52,resembl:[79,80,153],reserv:[52,87],reset:[36,47,49,50,125,137,141,166],reset_default_graph:[132,134,141,145],reset_index:[1,14,39,40,49,50,56,66],reshap:[29,30,31,32,34,36,37,39,44,45,46,49,52,72,81,87,89,125,131,132,134,135,138,139,141,144,159,165,167,168,172,178,191,194,196,198,200,201,202,204],reshaped_imag:89,reshuffle_each_iter:135,resid:[79,169],residu:[50,57,68,135,139,160,162,164],residual_block:139,residual_sum_squar:82,residual_unet:35,residualblock:35,resili:83,resist:50,resiz:[31,35,38,40,72,73,132,133,134,135,139,140,141,204],resize_bilinear:73,resize_with_pad:135,resizemethod:140,resnet101:140,resnet152:140,resnet50:140,resnet:[135,140],resolut:[31,40,43,71,85,126,135,144,167,183],resolv:[15,48,52,108,122,127,140,143,150,183],reson:[45,79],resourc:[28,41,42,45,80,104,105,107,111,117,119,124,125,129,143,148,149,150,152,154,174,183,184,187],resource_group:9,resp:73,respect:[1,14,30,33,36,49,51,52,54,56,68,69,79,87,117,124,127,129,131,133,135,139,141,157,164,167,168,174,182,184,203],respond:[142,146,182],respons:[3,9,17,37,38,52,69,80,81,105,106,107,117,132,134,138,141,142,143,146,148,157,159,169,178,182,188,189,200],rest:[52,59,105,106,122,123,124,142,149,160,166,167,172,178,179,183,184,192,206],rest_ecg:143,rest_of_the_numb:183,restart:169,restat:109,restecg:143,restor:[30,135,160],restore_best_weight:41,restrict:[7,50,97,98,118,122,159,183,184,185],result:[0,1,7,8,9,14,16,18,22,24,31,32,33,35,37,38,39,42,46,47,48,49,51,52,53,54,55,56,59,60,62,68,71,72,79,80,81,85,89,96,97,98,105,106,107,108,111,117,119,121,122,124,125,126,127,129,131,132,133,134,136,137,139,140,142,143,148,149,150,151,154,155,156,157,159,160,163,165,166,167,168,169,171,172,173,174,175,178,179,183,184,185,188,189,194,196,198,199,203,204,205,206],result_typ:124,resultdf:172,results_df:89,resum:118,ret:144,retail:[69,146,148,164],retain:[31,139,168,198],rethinkdb:192,retina:[52,68,146,156,159,168,198],retrain:[41,47,49,54,55,90,117,132,150,174],retri:179,retriev:[3,25,55,71,85,98,108,111,113,117,123,131,133,142,149,150,179,183,187,189,205],retrospect:160,retun:[65,67],return_count:[72,204],return_sequ:[44,46,141],return_st:141,return_valu:[24,55],return_x_i:[167,182],reus:[122,136,139,140,159,183,205],reusabl:[149,185],reveal:[26,147],revel:[26,192],reveng:113,revenu:[25,109],revers:[35,36,113,117,121,140,183,206],reverse_diffus:35,reversed_list:184,review:[47,104,106,107,109,113,117,135,142,149,154,160,173,174],revis:117,revisit:[107,109,114,140,179,186],revolution:142,revolutionari:[71,85,169],revolv:45,reward:[36,117,174,203],rewritten:[87,141,160],rex:124,rezend:31,rf:[12,25,41,159],rf_predict:159,rfc:[53,157,159],rfc_100:53,rfi:61,rfst:173,rgb:[33,37,40,124,139],rh:57,rho:[159,160],rho_t:160,rhs_cnt:57,rhs_std:57,rhs_sum2:57,rhs_sum:57,rhythm:29,ri:[33,157,168],ri_j:157,riak:192,rice:171,rich:[45,119],richard:152,richer:167,rid:[1,14,136,154,168,178,184],ridg:[68,71,81,83,85,142,166,178],ridge_sklearn:[65,67],ridge_sol:68,ridgeclassifi:142,ridgecv:68,ridgeregress:[65,67],right:[1,22,27,30,31,37,39,43,47,49,52,53,56,57,58,59,60,64,66,68,71,79,82,85,87,89,97,98,109,115,116,117,119,123,124,125,126,127,131,132,134,136,137,139,143,149,150,152,154,155,156,157,159,160,161,163,165,166,174,179,182,183,184,185,188,190,196,199,203],right_column:199,right_i:157,right_idx:57,right_index:[39,125],right_on:125,right_output:137,right_shifted_imag:89,rightarrow:[156,168],rightmost:[124,157],rigid:139,rigor:50,ring:[115,190],ringo:185,riot:39,rise:[1,109,114,116,121,147,166,179,195],risk:[105,106,107,117,124,149,152,165,196],riski:160,riskiest:149,ritonavir:1,river:192,rk:33,rkei:125,rkswahlyepd0yioe0t4oe3i3:61,rl:68,rlabel:125,rm:[12,25,41,205],rmaliz:35,rmse:[39,55,56,60,63,68,79,146],rmse_cb:56,rmse_cross_v:79,rmse_cv:68,rmse_lgbm:56,rmse_xgb:56,rmsle:68,rmsprop:204,rmspropoptim:145,rnd_indx:38,rnd_search:63,rng:191,rnn1:145,rnn2:145,rnn3:145,rnn4:145,rnn:[138,141,145],rnn_builder:46,rnn_cell:145,rnn_model:44,rnn_size:[141,145],rnplwnsp1zaqp:61,ro:[33,80,168,198],road:[71,85,119,136],roadwai:[117,188],roam:205,robert:159,robin:[97,183],roblem:155,robot:[117,144,174,203],robust:[7,37,40,51,56,62,64,83,140,159,160,164,165,168,176],robustscal:[53,56],roc3qtujlwlgnjug8xyjhmyab7mslm:61,roc:150,roc_auc:[58,61],roc_auc_scor:[58,61,161,179,198],roc_curv:[61,179],rocket:[40,192],roi:[109,144],roi_align:144,roialign:144,role:[14,18,58,79,80,81,83,100,111,119,121,124,136,142,143,148,160,165,180,193,196],roll:[14,73,121,141,149,183],rollback:[148,149],rollout:149,ronald:7,rong:142,room:[40,51,79,119,125,151,157,174],root:[52,55,60,63,65,67,81,97,113,115,117,135,142,154,157,169,180,184,204],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:61,ropsasrsaeuchxukvv2ymdhz:61,ross:[114,144,190],rossii:[114,190],rossum:[185,205,207],rotat:[1,3,18,22,34,40,43,53,56,89,137,144,154,155,167,168,190],rotate_in_all_direct:89,rotated_imag:89,rotation_rang:[32,34],rotobuf:114,roug:150,roughli:[14,47,49,52,121,167],round:[40,41,48,61,66,72,88,89,97,132,143,149,154,163,164,168,184,198,206],rout:[7,107,122,148,169,186],routin:124,row:[2,6,7,14,29,35,39,40,41,42,43,45,47,48,49,50,51,53,54,56,57,58,59,60,61,66,68,69,70,71,81,85,106,108,115,116,118,122,123,124,125,127,129,143,145,146,151,155,161,171,172,175,178,179,180,184,190,191,192,200,206],row_index:127,row_vector:124,rowsum:124,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:61,rpn:144,rpn_head:144,rrgtp8yqcvnf:61,rror:156,rsuffix:125,rt:[14,161],rt_with_na_fil:14,rtol:14,rule:[41,45,52,79,80,87,97,108,118,119,127,136,142,148,150,152,154,159,160,167,172,174,175,184,191,203,206],run:[0,5,7,14,30,32,33,39,40,41,45,47,49,50,51,53,54,55,58,59,68,71,73,80,81,85,87,88,89,96,101,102,104,105,106,113,114,119,121,122,123,124,125,131,132,133,134,137,138,140,141,144,145,148,149,150,159,160,163,164,166,167,168,169,172,175,178,183,185,191,198,199,203,205,207],run_a_gan:138,run_deep_dream_simpl:133,run_functions_eagerli:141,run_optim:131,run_step:133,rundetail:[9,105],runner:[149,183],running_loss:31,running_mean:139,running_var:139,runtim:[0,41,73,149,152,163,169],rush:[118,152,154],russian:31,rutherford:185,rvert:[131,166,176,197],rx:[33,168,198],ryan:64,ryanholbrook:146,s1:[24,57,124,125,126,182,184,206],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:61,s2:[57,125,127,185],s3:[124,148,168],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,36,37,38,40,41,42,43,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,73,74,81,82,83,85,87,88,89,91,96,97,98,101,102,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,133,136,137,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,161,163,164,166,167,169,170,171,172,173,174,177,178,181,182,183,185,186,192,197,198,199,200,203,204,206],s_0:52,s_1:[52,121],s_2:52,s_i:[52,121],s_j:121,s_n:121,s_o:52,s_text:141,s_text_ix:141,s_text_word:141,sa:127,sa_heart:175,saa:[104,148,169,187],sack:180,sacrific:52,sad:109,sadli:50,safari:106,safe:[62,149,168,174,198],safefi:59,safeti:[59,60,107,117,174,186,188],sag:[169,172],saga:172,sagemak:[148,149,151],sahara:150,sai:[7,31,33,37,50,51,52,54,59,60,61,68,71,79,85,104,117,121,122,124,136,142,145,146,150,153,156,160,166,168,174,175,179,183,184,194,198,206],said:[7,41,45,51,52,60,66,109,139,174,203],sake:[56,140,157,159],salari:[18,52,200,201,202],salary_data:200,sale:[69,82,146,174,178,179,180,184,203],salecondit:68,salepric:[68,163],saletyp:[56,68],salt:142,same:[0,1,7,9,18,29,30,31,32,33,34,35,37,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,59,60,61,63,64,65,67,69,71,79,80,81,85,88,93,98,105,109,111,115,116,118,121,122,123,124,125,127,129,131,132,133,134,135,138,139,140,141,142,143,144,145,146,148,149,150,154,156,157,159,160,161,164,166,167,168,171,173,174,175,178,179,183,184,185,189,191,199,205,206,207],samll:[65,67],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,39,41,43,49,50,51,52,55,58,59,61,62,64,65,66,67,68,71,77,82,85,87,88,98,105,106,116,117,121,122,123,132,135,137,138,140,141,144,149,151,152,155,156,157,159,160,164,165,166,168,169,171,173,174,175,178,179,182,185,189,196,203,204,207],sample_imag:[33,140],sample_kernel:33,sample_mask:140,sample_nois:138,sample_s:18,sample_submiss:142,sample_time_series_covid19_deaths_u:151,sample_weight:159,sampledb:123,sampler:33,samsung:168,samuel:[97,98,174,203],san:169,sandal:[30,41,43],sanit:[107,186],saniti:[50,141,150],sankei:1,santino:154,sape:[184,206],sar:1,sarcasm:142,sask:142,sat:142,satellit:140,satisfi:[50,56,124,151,160,168,184,206],saturn:207,save:[1,29,30,31,33,37,41,42,43,47,49,50,53,58,68,72,81,87,106,124,132,134,135,140,141,142,145,150,156,159,160,165,167,171,172,183,194,199],save_best_onli:[40,41,46],save_everi:141,save_fig:167,save_format:[29,30],save_imag:38,save_images_from_dict:132,savefig:[137,167],saw:[10,13,20,41,49,51,52,54,59,71,85,105,113,146,156,160,166,167,179,180,184,203,206],say_goodby:183,say_hello:[183,205],sc1:167,sc2:167,sc:[44,66,143,167,201,202],sc_h:[71,85],sc_w:[71,85],scalabl:[52,104,106,107,117,148,149,159,165,187,188,196],scalar:[45,137,138,140,143,160,168,198],scalar_tensor:45,scale:[0,7,15,35,39,41,42,43,47,49,51,55,58,59,60,62,63,64,66,69,72,81,104,106,107,113,117,124,139,140,143,144,149,150,155,159,166,168,174,182,187,192,194,198,203],scale_feat:[71,85],scale_pip:[55,60,62],scaled_d:69,scaler:[39,41,46,53,55,56,60,61,62,63,66,69,71,79,81,85],scaler_i:46,scali:[115,190],scan:[107,136,142,154],scari:181,scatter3d:[165,196],scatter:[18,24,47,52,62,68,69,81,82,88,113,114,115,116,121,127,154,155,159,165,167,168,175,178,180,182,190,196,198,200,201,202],scatter_3d:30,scatter_kw:146,scatterplot:[19,24,51,54,62,63,69,71,79,85,114,154,155,178,179,180,182],scaveng:76,sceipt:149,scenario:[26,40,51,54,55,80,104,109,117,119,143,149,152,174,203],scene:172,schedul:[51,54,148,151],schema:[106,119,148],schema_max:50,schema_min:50,scheme:[52,116,172],school:[11,52,58,107,205],sci:[64,182],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,48,50,56,58,59,60,62,63,88,106,108,109,113,114,115,116,118,120,121,122,123,124,125,127,129,146,147,148,160,169,174,182,185,191,195],scientif:[1,52,61,119,124,147,171,184,188,206],scientificnam:[114,190],scientist:[3,6,7,21,58,82,104,105,106,107,108,111,112,113,116,117,118,119,120,121,148,149,150,160,171,174,180,181,182,186,187,189,190],scikit:[7,41,48,49,51,53,59,60,63,64,68,74,76,81,103,104,105,106,107,108,109,110,111,114,115,116,122,123,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,173,175,179,181,190,191,194,196,198,199,200,201,202,204,205],scipi:[18,68,79,89,121,125,134,168,196,198,199],sckit:168,scoop:183,scope:[62,63,136,172,174,184,200,203,206],scope_util:144,score:[9,36,41,43,47,49,50,52,53,54,56,57,58,59,62,65,66,67,68,69,71,72,79,85,88,89,105,106,107,119,138,140,142,143,144,150,153,157,159,161,163,167,169,172,173,176,178,179,200],score_cb:56,score_lgbm:56,score_xgb:56,scoreboard:179,scoring_file_v_1_0_0:[9,105],scout:107,scrape:[107,118,186],scrapi:[107,186],scratch:[45,104,105,132,150,202],screen:[71,85,113],screenporch:56,screenshot:[16,109,144],script:[3,105,106,132,133,134,147,183,185,199,205,207],script_file_nam:[9,105],scroll:[113,125,126,127,132,155,159,167,171,178],scrollytel:113,scrutin:117,scullei:152,scylladb:192,sd:61,sdjfhhes1figky8fmsto5n:61,sdk:[103,106,125,149,187],sdpzzf8euy6hn86ydqexmfsez:61,se:18,sea:79,seaborn:[22,34,37,39,40,41,50,51,52,53,54,55,56,58,59,60,61,62,63,64,66,68,69,71,77,79,85,88,113,114,116,139,140,143,146,148,149,150,151,152,154,155,156,157,158,159,165,168,179,190,196,198,199],seali:121,seam:129,seamless:[106,142],seamlessli:149,search:[1,48,52,54,55,58,59,61,62,63,64,68,89,105,106,107,109,114,117,118,119,122,124,125,126,142,143,150,151,152,154,159,160,164,168,183,184,186,206],searchitoper:149,searchsort:124,season:[17,23,51,54,107,118,146],sebastian:[52,131,138,141,145],second:[0,7,18,31,32,40,41,43,45,50,51,52,59,106,114,117,121,123,124,127,139,142,146,150,156,157,160,161,164,167,168,169,173,174,178,183,184,185,199,204,206,207],second_baseman:[18,121],second_char_set:184,second_numb:[184,206],second_term:134,second_term_numer:134,second_tuple_numb:184,second_word:[183,205],secondari:[6,118],secondli:[160,168],secret:[26,97,152],section:[2,3,7,13,15,16,17,19,21,28,29,37,47,49,50,56,61,66,69,74,81,90,94,95,96,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,130,132,135,137,142,148,149,150,151,152,154,155,156,161,162,163,164,165,166,169,170,171,172,173,174,177,178,179,180,181,182,184,185,189,191,192,199,206,207],sector:[52,58,142],secur:[104,107,117,169,186,187,188],sedol:174,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,34,37,41,43,45,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,66,68,69,71,73,79,80,85,87,88,97,103,104,105,106,109,114,115,116,117,119,121,122,124,126,127,129,132,136,137,141,142,143,144,145,146,148,150,154,155,156,159,160,161,164,165,167,168,169,171,172,174,178,179,180,182,183,184,185,192,198,200,203,205,206],seed:[30,33,37,39,40,45,46,52,66,69,81,87,126,140,155,156,159,160,161,164,167,168,191,198],seed_numb:45,seek:[79,109,165,178,182,196,203],seem:[7,17,22,30,32,33,41,42,50,51,52,54,64,68,69,71,85,114,116,117,121,122,129,146,150,154,160,166,168,175,178,180,188],seen:[1,7,28,30,41,43,48,51,54,56,60,61,69,114,116,117,121,122,124,129,131,136,138,139,150,156,159,160,165,169,174,178,183,184,203],segment:[45,83,107,115,136,144,154,160,171,174],segmentation_mask:140,segmented_img:167,segreg:61,seir:151,select:[3,12,14,15,16,22,24,25,29,31,42,49,50,52,61,64,66,68,69,83,106,108,113,114,115,117,123,124,128,129,130,139,145,151,152,155,156,157,159,160,164,165,167,168,169,179,180,182,183,192,195,198,199],select_dtyp:[56,115,163,190],selected_featur:[169,179],selector:199,self:[3,14,18,22,24,29,30,31,33,35,36,37,38,41,42,45,49,55,57,65,67,86,87,97,98,99,126,127,133,135,138,139,140,141,144,147,148,161,165,174,175,196,200,201,205],self_dense_2:45,self_dense_3:45,sell:[36,97,98,117,178,183,184,185],selu:[46,136],selvam85:140,sem:18,semant:[119,126,127,140,183],semi:[6,118,119,154,167,174,188],semicolon:[184,206],send:[105,109,148,189],sender:[109,174,189],senet:139,sens:[1,3,7,18,32,48,51,52,55,68,71,79,85,97,106,118,119,121,122,124,127,136,156,161,174,178,180,183,192,200],sensibl:150,sensit:[39,52,61,82,129,139,148,150,152,162,168,184,193,198,206],sensor:[118,119],sent:[105,118,136,148,151,169,174],sentenc:[93,98,136,141,142,184,185,207],sentiment:[107,119,136,142,143,186],sentinel:191,seok:30,sep:[9,18,24,31,49,69,107,121,183,184,205],sepal:[62,88,122,127,157,168,198],sepal_ratio:127,sepallength:[88,127,157],sepallengthcm:66,sepalratio:127,sepalwidth:[88,127,157],sepalwidthcm:66,separ:[1,7,29,35,52,63,69,80,88,111,119,121,123,124,127,129,132,139,144,146,150,151,155,160,165,168,175,178,180,183,184,198,206],septemb:[171,180],sequel:129,sequenc:[14,18,39,43,45,51,79,83,107,121,124,136,139,141,145,146,157,183,184,185,205,206],sequenti:[29,30,31,32,33,34,36,37,38,39,40,41,43,44,46,47,49,50,56,58,64,72,87,132,136,137,138,139,140,143,145,161,162,164,168,184,194,198,204],sequential_1:37,sequential_2:[29,30],sequential_3:[29,30],sequential_window_dataset:46,ser1:191,ser2:191,ser:[127,191],sercostams:88,sergei:[31,167],seri:[7,8,14,18,22,24,31,34,39,48,51,52,53,54,58,59,60,62,68,79,81,113,122,123,125,126,136,139,140,143,145,151,155,160,172,181,183,185,192],serial:[146,149,169,205],series_to_supervis:39,seriou:61,serum:106,serum_creatinin:[9,105,106],serum_sodium:[9,105,106],serv:[45,80,82,105,111,113,124,127,150,151,152,183],server:[104,111,119,129,149,169,182,185,192],serverless:148,servic:[1,9,52,104,105,106,107,109,111,117,124,125,136,143,148,149,150,151,152,156,157,169,174,186,187,188,203],sesame_oil:172,sess1:134,sess2:134,sess:[73,134,137,141,145],session:[73,88,134,145,151,204,205],session_st:199,set1:[53,88],set2:58,set:[0,3,7,14,17,22,29,30,31,33,34,36,37,39,40,41,42,45,46,47,48,49,50,52,58,60,62,63,64,65,66,67,68,69,71,74,80,81,83,85,87,89,90,97,98,104,105,106,107,109,111,114,116,117,118,121,122,123,124,125,126,127,129,131,132,135,137,138,139,140,141,142,143,144,145,146,147,149,150,151,154,155,156,157,159,160,163,165,166,167,168,169,171,172,173,174,175,176,178,179,180,181,182,183,186,190,191,196,198,199,203,206],set_aspect:[138,146],set_axis_off:38,set_color:43,set_grad_en:31,set_index:[1,14,39,125,146],set_major_formatt:167,set_major_loc:167,set_opt:73,set_printopt:200,set_prop_cycl:146,set_properti:146,set_se:[45,46],set_styl:[56,88],set_them:154,set_ticklabel:[88,168,198],set_titl:[1,22,38,40,53,57,61,66,69,80,88,146,165,196],set_vis:[29,30,132],set_xlabel:[22,49,57,61,69,80,88,146,159,165,196],set_xlim:[165,196],set_xtick:[1,33,167],set_xticklabel:[1,53,138],set_ylabel:[22,49,57,61,66,80,88,146,159,165,196],set_ylim:[14,32,159,165,196],set_ytick:[1,33],set_yticklabel:[1,138],set_zlabel:[80,88,165,196],setfil:137,setosa:[62,66,88,127,157,168,198],settl:[117,188],settlement:[117,188],setup:[0,47,49,58,73,132,134,137,149,178,182],sever:[7,8,14,21,36,43,47,53,56,58,65,67,77,81,82,104,106,114,115,116,119,122,124,125,129,139,141,142,143,144,149,150,154,156,161,164,168,169,171,172,173,178,179,180,182,183,184,185,198,204,205,206],sew:160,sex:[9,22,53,105,106,161,182],sex_distribut:24,sex_val:22,sgd:[33,41,47,51,64,71,85,132,137,150,175,204],sgd_classifi:51,sgd_clf:[71,85],sgd_score:[71,85],sgdclassifi:[51,71,85],shade:[40,49,107,113,117,186,188],shadi:113,shadow:[40,53],shakespear:141,shakespeare_fil:141,shakespeare_model:141,shakespeare_url:141,shall:[97,98,183,184,185],shallow:[124,140,143,150,174,184,203,206],shanghai:[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,121,127,132,134,135,138,139,140,142,146,147,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,205],shannon:52,shaoq:144,shape:[29,30,31,32,33,34,35,37,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,65,66,67,68,72,73,81,86,87,89,115,121,122,124,131,132,133,134,135,137,138,139,140,141,142,143,144,145,149,155,159,165,167,168,169,171,175,178,179,180,182,190,191,193,194,196,198,200,201,202,204],shape_i:[65,67],shape_img:40,shape_y_0:[65,67],share:[28,33,52,53,59,61,107,108,109,111,116,117,118,119,122,124,125,126,127,142,144,147,149,151,156,157,160,168,172,174,179,183,186,191,203],sharei:[52,57,168],sharp:[150,156],she:[18,150,174,203],sheet:[152,172,173,176],shell:[30,183,207],shen:144,shepb1jhw5o:176,sherjil:138,shift:[8,14,39,46,53,56,64,71,73,85,89,98,143,145,146,149,151,154,165],shift_in_all_direct:89,shift_in_one_direct:89,shifted_imag:89,shine:[160,169],ship:[51,64,132],shipment:148,shirlei:113,shirt:[30,41,43],shoot:142,shop:[40,69,154],shortcom:139,shortcut:[139,140,183,185],shorten:61,shorter:[21,26,106,127,168],shorthand:[124,183],shortli:[154,182],shortsight:137,shortstop:121,shot:37,should:[7,18,29,30,32,33,37,40,43,47,48,49,50,52,53,60,61,65,66,67,69,72,87,88,97,98,105,106,108,109,111,113,117,119,121,122,124,126,127,129,132,136,137,139,140,141,145,148,149,150,151,152,154,155,159,163,164,166,167,168,169,171,172,173,174,175,178,179,181,182,183,184,185,188,189,194,199,200,204,205,206],shouldn:[58,109],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,34,35,36,39,40,41,42,43,44,46,47,49,51,52,53,54,55,57,58,59,60,61,62,63,64,66,68,69,71,72,73,80,81,82,85,87,89,105,107,108,109,114,115,116,121,122,123,124,125,127,131,132,133,135,136,137,138,140,141,144,145,146,149,150,151,154,155,157,159,160,161,163,164,165,167,168,171,172,174,175,178,179,180,182,185,190,192,194,198,200,201,202,203,204],show_centroid:167,show_everi:138,show_generated_img:38,show_imag:[33,138],show_images_batch:33,show_img:37,show_nam:205,show_new_sampl:34,show_output:[9,105],show_point:30,show_predict:140,show_xlabel:167,show_ylabel:167,showcas:[28,68,107,186],showclassificationresult:49,showdown:115,showexampl:49,showfileuploaderencod:73,showmean:18,shown:[0,7,14,16,30,32,51,52,54,61,74,106,121,124,139,151,152,159,165,167,174,179,183,203],showregressionresult:50,showtestdata:159,showtestimag:42,shp:144,shrink:[39,167],shrinkag:161,shuffl:[29,30,33,35,38,39,40,41,45,50,58,66,87,113,131,135,138,140,141,145,146,150,159,173],shuffle_fil:35,shuffle_tensor:45,shuffled_ix:145,shufflenet:139,shuga:154,shut:64,sibl:22,sibsp:[22,161],sicp:98,sid:113,side:[7,8,14,56,57,61,71,79,85,116,126,137,152,160,165,172,183,184,185,206],sidebar:73,siev:97,sieve_of_eratosthen:97,sift:142,sigh:150,sight:[169,172],sigma:[121,135,141,145,156,157,159,164,168],sigma_ix_i:121,sigma_p:135,sigma_q:135,sigma_t:135,sigmoid:[29,30,31,37,38,41,45,62,63,86,131,136,137,141,143,144,151,161,175,179,194,204],sigmoid_svc100:61,sigmoid_svc:61,sign:[52,55,58,65,67,106,109,123,124,159,160,176,184],signal:[35,50,61,68,71,85,109,150,155,157,166,174,182,189,194],signal_r:35,signatur:[107,127,184,186,206],signifi:[7,80,82],signific:[18,41,50,56,69,80,106,109,119,121,142,152,156,157,159,165,184,193],significantli:[49,52,80,142,148,150,154,159,160,167,168,178,184,198],signup:58,silenc:[30,168,198],silent:[48,56,163,184],silhouett:[167,168],silhouette_analysis_plot:167,silhouette_coeffici:167,silhouette_sampl:167,silhouette_scor:[155,167,168],silhouette_score_vs_k_plot:167,silu:135,silver:160,sim:[71,85,160],sim_count:[71,85],simcard:[71,85],similar:[3,6,7,14,29,31,40,45,49,52,54,61,65,67,69,71,81,85,109,111,117,119,121,122,123,124,127,131,132,140,143,144,145,146,149,150,151,152,154,155,156,160,165,168,169,171,173,174,178,183,184,185,189,191,203,206,207],similarli:[18,51,52,59,61,66,80,124,127,148,150,163,168,184],simpl:[1,3,15,30,33,34,35,41,43,45,49,50,51,52,56,57,61,66,69,71,79,80,81,82,85,88,89,108,116,119,124,127,131,132,136,139,140,142,143,144,146,149,159,160,164,165,167,168,174,175,182,183,184,185,190,193,194,198,203,206],simplefilt:[69,146],simpleimput:[56,63,79,163],simpler:[31,47,49,50,124,149,150,167,174,191],simplernn:46,simplernncel:145,simplest:[3,18,32,45,49,50,52,87,119,124,143,149,150,160,166,167,168,174,183,198,204],simpli:[0,7,30,33,42,45,48,49,50,51,52,53,69,80,83,87,105,109,113,122,125,127,136,140,150,156,160,163,165,166,167,174,178,183,184,191,199,203,206],simplic:[105,139,146,157,159,160],simplifi:[1,29,30,50,57,69,80,107,119,124,135,148,149,150,154,160,186],simpson:39,simul:[0,124,151,152,183],simultan:[37,121,139,144,149],sin:[18,35,124,135,160,205],sinc:[18,22,30,32,33,36,37,41,42,43,47,49,50,51,52,54,55,56,58,60,61,62,63,64,66,68,69,71,79,85,87,106,117,119,121,124,125,126,127,136,139,140,141,144,146,149,150,156,157,160,163,164,165,166,167,168,169,172,173,178,179,182,183,184,188,198,204,205,206],sine:124,singl:[7,32,34,42,43,45,49,51,52,56,58,61,69,71,85,97,104,116,118,122,125,126,127,139,143,144,145,146,150,151,159,162,163,164,167,168,174,176,183,184,185,203,206,207],single_quote_str:[184,206],singleton_tupl:184,singular:142,sink:104,sinn:130,sinusoid:135,sinusoidal_embed:35,sir:[14,151],siri:142,sirkap:107,sister:169,sit:[59,60,111,174,175,189],site:[16,30,36,37,59,88,104,113,114,117,119,125,126,127,142,146,152,154,168,172,179,182,183,191,198,205],situat:[28,56,61,69,109,119,121,137,142,148,150,152,157,160,178,183,184],situp:93,six:40,sixth:[184,206],size:[1,7,14,18,22,31,32,33,34,35,36,37,38,39,40,41,45,47,48,50,51,52,54,55,59,60,61,62,63,64,69,71,72,73,79,80,81,85,87,88,89,97,105,106,115,116,121,122,124,127,131,132,133,134,136,138,139,140,141,144,145,150,155,156,159,160,164,165,166,167,168,169,174,178,179,180,184,190,191,194,197,198,203,204,206],sjoerd:[184,206],skalskip:[88,89],skeeter:165,skeptic:160,sketch:185,sketchnot:182,skew:[7,22,56,59,61,68,71,85,114,155,171],skewed_feat:68,skf:159,skill:[39,49,106,107,113,114,119,129,186,190,207],skim:[105,180],skimag:134,skin:[107,186],skip:[0,3,31,35,39,43,45,49,50,114,140,143,183,184,190],skip_head:198,skiprow:31,skiti:[65,67],sklearn:[7,29,31,32,34,39,40,41,44,46,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,71,72,80,81,85,88,89,122,142,143,146,155,156,159,161,163,164,165,166,167,168,169,172,173,175,178,179,182,200,201,202],sklz5kcmqsshyyfixsjcin0srf5:61,skorski:35,sl:157,slate:123,slaughter:156,sleep:199,slept:200,slice:[53,61,87,183,184,191,206],slice_index:126,slice_loc:126,slice_obj:126,slicer:126,slide:[14,33,109,121,147,151,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],slider:73,slideshow:195,slight:[42,58,152,159],slightli:[18,30,32,43,51,52,58,66,68,109,133,135,143,159,160,166,175,178,183],slope:[80,143,175,178],slow:[14,41,51,64,79,124,144,149,175,191],slower:[7,80,106],slowest:167,slowli:[47,50],slytherin:199,sm:[145,179],small:[0,15,29,32,33,43,50,51,52,59,60,62,63,65,66,67,68,71,79,81,83,85,87,106,121,123,124,125,135,139,140,141,143,144,148,150,156,159,160,163,165,166,167,168,169,174,178,179,182,183,185,188,194,198],smaller:[7,18,30,33,37,50,64,80,87,97,114,122,124,131,139,150,156,159,163,168,179,191],smallest:[97,150],smart:[124,150,163],smartphon:[71,85,119,136],smartwatch:[6,118],smelyanskii:150,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:98,smo:[165,196],smoke:[9,105,106],smoker:171,smooth:[14,52,83,114,115,134,151,159,190],smoother:114,smoothli:[61,114,179],smote:171,smsspamcollect:145,smv:[62,63],sn:[34,37,39,40,41,50,51,52,53,54,55,56,58,59,60,61,62,63,66,68,69,71,79,85,88,114,116,143,146,154,155,156,157,159,165,168,179,190,196,198],sna:[168,198],snake:52,snapshot:[40,106,115],sne:[167,168,198],sneaker:[30,41,43],snippet:[7,52,81,151,184],snow:[19,114,190],snr:61,so:[1,4,7,15,17,18,29,30,31,32,33,34,37,40,41,42,43,45,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,71,79,85,87,97,98,102,106,107,109,113,114,115,116,117,121,122,124,125,126,129,131,133,135,136,139,140,141,142,143,145,146,147,148,149,150,151,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,186,191,198,203,206],social:[5,107,109,113,117,119,142,186,188],social_network_ad:[201,202],societi:[117,152],socio:[107,117,188],socr:18,socr_mlb:[18,121],soda:[123,192],sodium:106,soft:[61,167],softmax:[32,34,40,41,43,49,72,87,132,136,137,139,141,145,204],softmax_crossentropy_with_logit:87,softwar:[0,22,23,47,49,50,97,98,103,104,111,121,123,148,149,150,151,152,169,182,183,184,185,187,192,207],sold:[25,56,180],sole:[56,80,150,159,183],solid:[19,50,169],solidifi:160,soluion:[65,67],solut:[11,28,52,68,74,80,97,104,106,107,109,113,117,142,148,149,150,151,152,159,160,165,167,168,169,174,180,184,187,188,192,196,200],solv:[52,54,56,59,105,108,109,111,121,124,125,136,137,139,143,144,149,150,152,160,164,165,167,171,172,174,184,189,203],solvabl:[151,160],solver:[137,138,167,169,172],somber:109,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,37,40,41,42,43,45,47,48,49,51,52,54,56,57,58,59,60,61,62,64,66,68,69,71,73,77,79,81,82,85,87,88,90,97,104,106,107,108,109,110,111,113,114,115,116,117,118,119,121,122,123,124,125,127,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,156,159,160,161,163,164,165,166,167,168,169,171,172,173,174,178,179,180,182,183,185,187,188,189,191,192,194,196,200,203,206],some_digit:89,some_digit_imag:89,somehow:[7,121,124,180],someon:[7,51,103,104,109,111,142,148,150,160,174,178,183,189],someth:[7,45,56,64,71,85,87,109,114,118,119,123,124,127,129,136,152,161,166,174,178,183,184,192,193,194,203,206],sometim:[7,30,48,51,61,64,80,115,118,119,121,122,124,126,127,129,131,137,139,146,148,150,151,160,163,174,175,176,178,179,183,184,191,203,206],somewhat:[7,49,115,167,178,179,199],somewher:[88,121,160,174,178,179],sonali:109,song:[153,154,155],soo:71,soon:[29,41,160],sophist:[51,113,114,149,156,159,174,190,203],sore:136,sort:[22,40,47,52,56,64,97,119,125,126,132,139,154,159,167,168,171,174,180,183,184,190,199,203,205,206],sort_i:57,sort_idx:57,sort_index:126,sort_valu:[1,31,52,53,56,58,68,171,172],sort_x:57,sosa:178,sosb:178,soshnikov:[14,104,178],soudelor:142,sound:[7,18,31,47,121,122,136,156,163,174,203],sound_packag:183,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,40,41,45,46,48,51,52,54,55,56,57,58,59,60,61,62,63,64,66,68,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,112,113,114,115,116,117,119,121,122,123,124,125,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,191,193,198,199,200,201,203,204,205,207],source_indic:1,sours:145,south:[51,54],soy_sauc:172,sp:143,space:[1,6,29,31,37,40,52,87,97,98,107,113,115,121,124,125,131,137,139,142,144,150,151,157,159,160,164,165,168,169,173,179,180,183,184,185,186,190,198,205,206,207],spacing_h:144,spacing_w:144,spam:[142,145,171,174,183,184,203,206],span:[69,116,152,184,206],spanish:52,spark:[148,149],sparki:154,spars:[79,131,142,159,160,164],sparse_categorical_accuraci:132,sparse_categorical_crossentropi:[41,49,72,132,141],sparse_softmax_cross_entropy_with_logit:145,sparsecategoricalaccuraci:132,sparsecategoricalcrossentropi:[41,43,132,140],sparsiti:[83,164],spatial:[107,136,139,140,144,168,198],speak:[109,113,116,148,150,168,169,183],speaker:[142,150],speci:[62,66,88,114,115],special:[7,29,31,56,64,83,106,119,122,124,136,154,164,165,174,179,182,183,184,191,205],specialti:180,specif:[3,7,14,22,28,31,40,41,42,45,47,48,49,50,51,52,54,64,71,72,80,82,83,85,104,107,108,117,118,122,124,125,127,129,139,140,142,143,145,148,149,150,152,154,156,159,160,161,165,168,173,174,178,183,184,185,193,198,205,206],specifi:[1,7,14,22,31,33,34,41,42,45,48,50,80,81,89,104,122,124,125,127,139,149,151,159,163,164,172,174,183,184,203,206],spectral:154,spectralclust:[167,168],spectralclusteringspectralclust:167,spectrum:121,specular:40,speech:[43,83,104,136,143,174],speechi:[153,154,155],speed:[14,41,56,64,71,85,87,106,111,117,124,125,139,144,150,151,152,163,164],spend:[23,51,69,71,85,104,109,149,160,163,174],spent:[69,109,150,160],spepal:48,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:61,spike:[1,112,113,116,190],spinach:180,spine:116,spline:160,split:[31,33,35,36,39,41,51,54,57,58,62,63,64,66,73,81,87,88,124,125,129,133,134,137,139,140,141,143,144,145,146,148,150,156,157,159,160,161,165,167,168,174,178,179,182,183,184,185,191,192,196,198,205,206],split_col:57,split_data:161,split_nam:57,splitidx:50,splitted_str:184,splitted_sub_str:184,splitter:[59,60],spokan:142,sponsor:[111,149,189],spore:[115,190],sport:107,sports_hobbi:98,spot:[7,48,122,124,142,166,174,203],spotifi:154,spous:22,spread:[14,119,121,129,135,137,154,160,180],spreadsheet:[6,23,25,27,76,118,125,127,129,169,174,180,203],spring:[151,183],springer:150,spruce:180,spuriou:[61,64,113],sql:[12,25,104,119,123,125,127,129,148,192],sqlite:[12,25],sqrt:[39,54,55,56,57,58,60,63,68,79,82,98,121,135,138,139,144,157,159,168,178,198],sqrt_alphas_cumprod:135,sqrt_alphas_cumprod_t:135,sqrt_iter:98,sqrt_one_minus_alphas_cumprod:135,sqrt_one_minus_alphas_cumprod_t:135,sqrt_recip_alpha:135,sqrt_recip_alphas_t:135,sqrtimg:138,sqrtn:138,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:61,squar:[35,39,41,47,50,52,55,60,63,65,67,68,71,80,81,83,85,97,115,124,131,135,137,146,150,154,155,156,159,160,164,165,166,167,168,175,178,179,184,199,200,204,205,206],square_root:97,square_tupl:[184,206],squared_error:[60,82],squarederror:56,squeez:[29,30,31,37,38,132,144,165],sr:144,src:[36,37,113,121,125,126,127,132,139,140,144,155,158,159,165,167,168,171,175,176,178,180,183],ss20:[131,138,141,145],ssh:106,st:[72,73,145],st_canva:72,stabal:64,stabil:[87,116,143,150,155],stabl:[1,68,124,127,150,167,168,198],stack:[1,22,31,33,41,56,113,124,125,136,139,143,144,148,160,190],stack_clf:51,stackingclassifi:51,stacklevel:125,stackoverflow:18,staff:157,staff_id:[183,205],stage0:139,stage1:139,stage2:139,stage3:139,stage4:139,stage:[17,23,57,58,61,108,109,111,139,140,144,149,164,166,174,189],stai:[50,79,150,169,175,199],stakehold:[109,111,189],stalk:[115,190],stamp:[51,54],stand:[51,61,64,71,85,109,116,142,152,161,164],standard:[7,18,29,31,35,48,49,50,61,64,66,69,79,94,108,111,117,122,124,127,129,136,146,148,149,151,157,160,163,165,174,178,180,183,205],standard_d2_v2:[9,105],standardscal:[46,55,60,61,63,64,66,69,79,81,143,201,202],stanford:[38,107,139,159,160,165,174,178,179],stapl:83,star:[61,69,171,184],starri:134,starry_night:134,start:[0,1,3,8,11,13,18,29,33,34,38,42,43,45,47,48,49,50,56,58,61,63,69,71,72,73,80,81,85,87,89,97,98,104,105,106,107,108,109,113,114,116,117,119,121,123,124,126,127,132,133,134,137,138,141,142,143,145,146,147,151,155,157,159,160,161,163,164,165,166,167,168,169,171,173,174,178,179,180,183,184,185,187,191,193,194,198,199,201,202,203,206],start_angl:35,start_idx:87,start_slic:126,start_tim:40,starter:[31,113,179],starti:137,starting_pitch:121,startswith:[3,137,167],startup:[45,58],startx:137,stat453:[131,138,141,145],stat:[18,41,51,55,56,60,66,68,69,121,150,151,156,196],stat_interv:156,state:[9,13,14,15,31,36,51,52,54,61,105,107,113,116,118,124,127,129,132,136,139,141,145,148,149,150,151,156,161,168,169,171,173,180,183,190,192,199],state_c:141,state_dict:38,state_h:141,state_s:36,statement:[31,33,101,102,117,118,121,123,129,137,142,182,185,192],stationeri:39,statist:[7,40,49,52,54,56,61,63,82,111,116,117,119,120,124,135,145,147,150,151,152,154,156,159,160,165,171,174,178,189,191,194],statquest:175,statsmodel:[56,66],statu:[22,59,69,105,106,114,137,142,149,151,190],std:[18,24,29,31,39,49,50,60,61,63,66,69,79,87,88,121,124,139,154,159,164,167,191],std_agg:57,stdarr:50,stddev:[135,144,145],stderr:49,stdout:205,steam:39,steep:[151,179],steer:43,stellar:61,stem:[7,58],step:[0,7,9,16,28,30,31,33,35,36,37,38,39,40,41,42,43,45,46,49,50,51,52,54,56,61,62,63,64,66,69,72,73,80,81,82,87,97,104,105,106,107,108,109,111,114,117,119,123,124,126,129,131,132,133,135,136,137,139,140,141,143,145,148,149,150,151,152,155,156,157,164,167,168,169,171,174,175,178,180,183,184,188,191,198,201,202,203],step_siz:[35,133],steps_mean:137,steps_per_epoch:[32,42,140],steps_remain:133,steps_taken:137,stepwis:178,stereotyp:117,stick:[50,109],sticki:115,stiff:183,stikeleath:109,still:[7,18,37,50,51,54,55,59,80,121,122,124,125,126,127,136,140,141,145,146,148,149,150,160,167,174,183,184,199,206],stochast:[87,135,137,160,172,175,204],stock:[116,137,142,174,190],stockast:[51,71,85],stop:[33,40,41,52,57,80,105,124,126,127,159,163,164,168,175,183,191,201,202],stop_gradi:144,stop_train:41,storag:[11,33,73,104,106,111,119,129,133,178,179,180,187,188,189,192],store:[6,7,11,12,29,30,31,33,40,42,43,48,52,55,66,68,69,71,81,85,97,98,101,104,109,118,119,122,124,125,129,130,131,135,136,141,146,148,149,150,151,152,157,163,165,183,184,185,187,192,199,206,207],stori:[4,13,19,52,112,113,168,184,189,190,206],storymap:107,storytel:[19,26,189],stott:7,str1:[50,184],str2:184,str:[1,9,14,33,36,38,42,49,50,56,58,61,68,71,72,85,88,105,125,126,132,135,140,144,157,163,178,180,183,184,185,191,205,206,207],straight:[45,47,52,73,109,163,165,178,182,196,200,204],straightforward:[31,80,119,124,150,163,168,169,179,182,183],straightfoward:146,strang:[18,113,180],strateg:[137,174],strategi:[7,29,43,49,51,54,63,69,71,79,85,109,117,137,140,150,151,171,174,176,203],strategist:109,stratifi:[159,168,198],stratifiedkfold:[66,159],stratifiedkfoldcv:66,stream:[49,52,73,104,136,137,144,148,149,152,174,203,205],streamlin:[139,142,147],streamlit:151,streamlit_app:73,streamlit_drawable_canva:72,street:[62,63,68,117,188],strenghten:57,strength:[1,56,146,150,165,196],strengthen:[104,160],stretch:[1,8,124,168],strftime:39,strict:[111,126,150],strictli:183,stride:[29,30,31,32,33,34,37,38,131,132,135,139,140,144],string:[7,14,22,40,56,58,61,88,122,124,125,126,127,141,180],string_vari:[184,206],string_with_whitespac:[184,206],stringio:146,strip:[3,14,61,141,183,184,206],stripe:179,stripplot:179,strive:[37,83,142],stroke_color:72,stroke_width:72,strong:[18,45,51,54,56,66,68,114,116,121,139,141,154,156,160,162,164,174],stronger:[36,168],strongest:[56,117],strongli:[121,160,167,174,203],struct:124,structur:[6,7,12,22,30,31,39,41,43,52,59,60,69,95,97,117,118,119,123,128,129,130,131,132,136,137,139,140,142,143,144,148,161,164,165,168,169,172,174,178,180,183,185,188,190,192,193,196,198,203,205],struggl:[150,156],strutur:163,stubbornli:47,stuck:[64,150],student:[16,18,66,119,121,123,151,166,178,182,192],student_admiss:205,studi:[14,16,33,40,52,69,136,160,165,170,172,174,186,188,191,200,203],studio:[7,9,105,107,178,180,181,182,186],study_15:59,study_1:59,study_20:59,study_41:59,study_7:59,stuff:[87,183],stump:160,stun:59,style:[0,3,32,37,39,53,64,69,96,124,125,126,127,132,139,140,146,147,151,154,155,159,165,167,168,169,171,175,176,178,186,187,188,189,190,191,192,193,194,196,197,198,200,201,202,203,204,205,206,207],style_expect:134,style_featur:134,style_gram_matrix:134,style_imag:134,style_image_path:134,style_image_url:134,style_image_weight:134,style_lay:134,style_loss:134,style_minus_mean:134,style_norm:134,style_shap:134,style_weight:134,stylenet:132,stylesheet:[126,127,169,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],sub:[1,73,94,124,141,145,150,178,179,180],sub_str:184,subarrai:191,subclass:[3,29,141,183],subdimension:124,subgraph:168,subgroup:[52,107,117],subitem:183,subject:[1,7,31,37,47,52,97,98,107,109,117,118,124,142,183,184,185,186,188,194],sublicens:[97,98,183,184,185],sublist:98,subm:56,submiss:56,submit:[9,15,68,77,93,105,109,150,169],submodul:183,subnet:148,suboptim:167,subpackag:183,subplot:[1,29,30,31,33,34,35,37,38,39,40,41,42,43,52,53,56,57,61,66,69,87,114,116,132,135,138,140,146,154,155,159,161,165,167,168,190,196,198,204],subplot_kw:40,subplots_adjust:[31,34,165,167,196],subsampl:32,subscrib:[117,149,188],subscript:[104,106,117,188],subscription_id:9,subsect:[7,48,122],subsequ:[31,32,51,56,80,124,137,159,163,164,173,184,199,206],subset:[7,18,33,42,43,48,51,52,69,71,79,85,88,91,94,117,121,122,124,126,127,131,136,149,150,159,160,163,164],subspac:[51,124,159,168,198],substanti:[97,98,156,157,183,184,185],substitut:[7,11,125,183,205],substr:[1,184,206],subsubitem:183,subtl:[7,122,163],subtract:[81,82,97,124,140,184,185,191,206,207],subtre:52,subtyp:184,subwai:107,succe:174,succeed:164,success:[107,109,117,124,139,150,151,152,160,174,183,184,200],successfulli:[37,38,52,58,137,150,151,160],succinct:109,sudden:66,suddenli:66,sue:191,suffer:[58,59,60,136,143,146],suffici:[30,32,121,156,160,164,165,184],suffix:[125,169,182,183],sugar:[50,124,183],suggest:[11,14,18,33,42,61,82,121,143,152,157,159,160,174,178],suit:[45,49,61,62,63,126,155,174,179,190],suitabl:[3,56,62,124,136,148,152,160,172,174,183,204],sulfur:50,sulphat:50,sum:[1,7,14,18,22,25,31,33,35,39,49,50,51,52,53,54,55,56,57,58,59,60,61,63,65,67,68,69,71,79,82,85,86,87,121,123,124,125,135,137,138,143,145,146,154,155,156,157,159,160,162,164,165,167,168,171,175,178,180,183,191,196,200,201,204,205],sum_:[52,80,82,83,135,137,145,156,157,159,160,164,166,168,175,197,200],sum_i:[131,156],sum_inertia_:167,sum_of_list:97,sum_of_valu:97,sum_t:160,summar:[53,61,79,108,109,121,139,141,157,174,176],summari:[7,29,30,37,42,48,49,51,54,55,60,80,81,106,109,124,135,136,183,188,191,194],summaris:[61,81],summat:[80,139,143,175],summer16:205,summer:[17,107,111],sun:[59,144],sundai:[51,54],sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:40,sup:50,supercalifragilisticexpialidoci:[184,206],supercharg:113,superclass:139,superimpos:[47,116],superman:97,supermarket:40,superpow:60,supervis:[29,37,39,52,54,55,59,60,61,62,63,71,85,139,140,147,150,152,153,154,159,160,164,165,167,168,171,172,173,182,198],supervisor:137,suppli:[7,51,54,93,107,116,124,148,183],support:[0,1,7,18,45,49,50,51,52,54,56,59,60,71,72,83,85,87,106,107,108,109,111,113,115,117,118,121,124,126,127,140,142,147,148,149,150,154,156,159,160,164,167,169,172,174,179,182,183,184,191,199,206],support_vectors_:[165,196],suppos:[18,51,52,119,121,124,140,156,157,165,180,184],suppress:[126,143,168],supris:41,suptitl:18,sure:[0,4,9,11,48,51,52,54,87,109,113,115,117,118,121,122,124,134,146,150,152,155,161,167,171,172,174,176,178,182,183,184,188],surfac:[52,56,80,81,115,190],surmis:155,surpass:[29,152],surpris:[7,122,124,154,174,175,180,183],surprisingli:[55,179],surround:[119,140,178,184],survei:[6,7,119,148,157,188],surveil:[119,144,152],surviv:[22,151,160,203],survivor:22,suscept:151,suspect:[61,200],suspicion:148,sustain:[16,106,149],sustract:161,sv_classifi:51,svc:[51,58,61,62,165,172,196],svcsvc:[62,165],svm:[51,58,83,131,172,173,174],svmj:[159,165],svr:63,svr_rnd:63,svrsvr:63,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:61,sw:157,swap:[98,124,127,184],swarmplot:[69,179],sweden:207,sweet:[69,166],swish:35,swiss:199,switzerland:146,sx:73,sy:[3,12,18,25,30,39,49,69,73,87,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],syllabl:184,symbol:[46,58,142,183,185],symmetr:[144,148,160,168,184],symptom:142,synaps:104,sync:121,synchron:152,synonym:[61,83,139,191],synset:139,syntact:[124,183,205],syntax:[124,127,129,169,183,191],syntaxerror:[183,185],synthes:89,synthesi:89,synthet:[52,150,151,152,171],syphili:[117,188],system:[14,39,40,43,50,52,79,104,106,107,109,111,117,118,123,124,136,137,142,145,147,148,149,150,151,152,160,169,182,185,186,188,192,194,207],systemat:[117,152,174],sz:73,t:[0,1,7,14,18,24,26,30,31,32,33,34,36,37,39,40,41,42,43,45,47,49,50,51,52,53,54,55,57,58,59,60,61,62,65,66,67,68,69,71,79,80,81,85,86,87,98,104,105,106,107,108,109,111,113,114,117,118,121,123,124,125,126,127,129,131,134,135,136,137,139,141,142,144,145,146,148,150,151,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,178,179,182,183,184,185,186,188,190,191,196,198,200,201,202,203,205,206],t_1:[121,159],t_2:121,t_:137,t_dim:135,t_fix:137,t_grad:73,t_index:135,t_input:73,t_k:137,t_loss:31,t_maze:137,t_n:159,t_obj:73,t_preprocess:73,t_score:73,t_valu:121,ta:56,tab:[22,31,105,106,123,127,183],tabl:[11,12,14,48,76,113,115,119,121,123,124,127,148,150,151,154,157,172,178,179,183,184,199,206],table_data:[184,206],table_str:[184,206],tableau:[109,115],tabular:[41,53,61,106,124,136,163,174,184,192,203],tac:183,tack:124,tackl:[42,52,56,62,63,107,125,147,150,164,167,180],tag:[3,9,59,69,105,118,183],tag_nam:183,tags_decor:183,tags_to_skip:3,taha:46,tail:[39,48,51,54,56,68,71,79,85,122],tailor:83,taiwan:142,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:61,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,37,40,43,45,47,49,50,51,52,54,55,56,58,59,60,61,63,66,68,69,71,79,80,81,82,85,87,88,93,97,104,105,106,107,108,109,111,113,115,116,117,118,119,121,122,124,125,126,127,129,131,132,135,136,137,139,140,141,142,143,147,148,149,150,154,155,156,159,160,163,164,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,188,194,198,203,205,207],takeabl:[126,127],takeawai:[7,24,48,109,122],taken:[1,24,28,34,36,48,58,111,119,121,122,124,137,146,152,164,180,189,200],talent:107,talk:[16,18,52,64,71,85,107,109,113,117,119,121,147,161,164,174,179,186,188,200],talk_tim:[71,85],tall:[116,137,139],taller:[18,121],tan:[115,124,190],tandem:205,tang:150,tangent:124,tangerin:[184,206],tangibl:104,tanh:[37,38,47,138,141,143,194,204],tape:[0,35,37,133,137,138,141],tar:[33,132,139],tarantool:192,tarfil:[33,132],target:[1,9,29,30,36,38,41,51,52,54,55,57,58,59,60,62,64,65,66,67,68,69,71,79,80,81,83,85,87,93,97,105,106,131,134,141,142,143,144,146,148,149,150,155,156,157,159,160,161,165,167,168,174,176,182,183,198,200,203,204],target_class:61,target_f:36,target_fil:132,target_indic:1,target_nam:41,target_s:[72,132],target_shap:134,tarih:36,task:[7,8,9,16,37,42,43,45,48,49,53,59,60,61,62,71,81,82,83,85,100,104,105,106,108,111,112,113,114,117,119,122,123,124,125,136,139,140,142,143,144,147,148,149,150,152,153,160,161,162,164,165,166,167,168,169,170,171,172,173,174,176,179,180,181,182,185,187,190,200,203,205],task_typ:56,tast:[153,154],tasti:[115,190],taught:[56,154],tax:37,taxi:[17,111],taxicab:[107,186],taxonom:7,tbd:[130,132,133,134,139,140,141,142,145,146,155,156,157,159,160,161,163,164],tc:182,tchnormal:42,tcl:161,tdd:147,tdsp:111,teach:[41,113,139,207],team:[17,18,23,69,107,109,111,117,121,147,149,152],teammat:[100,109],tecent_fil:39,tech:[45,203],technic:[39,45,52,117,129,148,149,152,160,161,163,174,188,192,203],techniqu:[1,4,7,15,17,32,34,43,48,51,52,56,58,59,60,61,62,69,74,76,79,80,81,82,83,89,90,107,108,111,112,116,117,119,121,122,124,128,130,136,150,154,155,156,159,163,164,166,171,172,173,174,175,176,178,179,180,182,184,189,200],technolog:[58,104,107,118,142,148,152,160,169,174],tediou:[111,123,165,178],teenag:69,teenhom:69,telecom_churn:[52,156,159],telecom_data:156,telemetri:29,televis:109,tell:[4,7,13,19,37,52,56,57,58,62,71,85,107,109,112,113,117,121,136,142,146,159,166,174,175,190,194,203,205],temb:135,temp:[39,64,81,114,132,134,145,184,198,205],temp_original_loss:134,temp_output_:134,temp_test_acc:[132,145,159],temp_test_loss:145,temp_train_acc:[132,145,159],temp_train_loss:[132,145],temperatur:[118,119,181],templat:[39,123,151,169],tempo:[154,155],tempor:83,temporari:[73,124,134],temporarili:[33,80],temporary_attribut:183,tempt:[50,121],temptat:50,ten:[49,58,79,132,139,171],tencent:39,tend:[41,51,54,55,58,59,60,61,64,113,114,124,125,136,143,155,156,174,192],tendenc:[112,190],tens_reshap:45,tension:140,tensor2tensor:135,tensor:[33,37,73,132,137,138,139,140,141,145,191,204],tensor_0:45,tensor_1:45,tensor_1d:45,tensor_2:45,tensor_2d:45,tensor_3d:45,tensor_nam:45,tensor_shuffl:45,tensorflow:[30,35,36,37,39,40,42,43,44,46,47,49,50,51,59,60,64,72,73,83,106,131,132,134,135,136,137,138,139,140,141,144,145,147,149,150,151,152,169,171,175,182,194,204],tensorflow_addon:[35,135,139],tensorflow_cookbook:[132,134,141,145],tensorflow_dataset:[35,140],tensorflow_inception_graph:73,tensorpack:144,tensorspec:[37,133],term:[1,3,31,49,51,52,54,59,61,80,81,82,105,107,116,119,123,124,129,135,136,137,139,142,145,148,152,154,155,160,165,166,167,168,173,174,178,179,183,186,192,196,200,203],termin:[0,41,105,106,113,137,169,180,183,185],terminolog:[1,61,117,123,129,154,173],terribl:[49,142],territori:14,test:[0,14,15,22,29,31,32,35,36,39,40,41,42,43,52,57,60,62,63,66,68,71,81,85,89,98,104,106,107,114,117,119,124,131,132,139,140,141,142,143,145,146,149,150,154,155,156,159,160,161,166,167,168,169,172,173,174,178,179,182,183,185,194,197,198,203,204],test_absolute_valu:97,test_acc:[43,132,159],test_accuraci:[132,145],test_addit:97,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[132,140],test_calculate_happy_cas:98,test_calculate_with_invalid_c_input:98,test_calculate_with_none_input:98,test_calculate_with_str_input:98,test_capitalize_words_default:98,test_capitalize_words_exclude_word:98,test_censor_word:98,test_censor_words_no_censor:98,test_censor_words_partial_match:98,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:97,test_cont:3,test_count_occurr:98,test_count_occurrences_empty_list:98,test_count_occurrences_str:98,test_count_word_occurr:98,test_count_word_occurrences_empty_text:98,test_count_word_occurrences_same_word_rep:98,test_data:[29,51,54,55,59,63,79,131],test_data_path:[71,85],test_data_schema:50,test_dataset:33,test_df:[14,22,24,55,87,89,142],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:55,test_df_hist_with_empty_df:55,test_df_hist_with_none_df:55,test_df_pairplot_happy_cas:55,test_df_pairplot_with_empty_df:55,test_df_pairplot_with_none_df:55,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_dict:145,test_discrimin:138,test_discriminator_loss:138,test_divis:97,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:50,test_empty_list:97,test_equ:97,test_existing_el:97,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:98,test_fibonacci_sequence_single_term:98,test_fibonacci_sequence_zero_term:98,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:98,test_flatten_nested_lists_empty_list:98,test_flatten_nested_lists_no_nested_list:98,test_float_numb:97,test_fold:132,test_format_person_info:98,test_format_person_info_empty_list:98,test_format_person_info_single_person:98,test_funct:[30,183],test_function_scop:183,test_gener:138,test_generator_loss:138,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:183,test_group_by_categori:98,test_group_by_category_empty_input:98,test_group_by_category_no_categori:98,test_group_by_category_single_categori:98,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[39,163],test_imag:[43,132,140],test_img:72,test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:159,test_init:3,test_input_data:[63,79],test_input_dim:50,test_insertion_sort:98,test_insertion_sort_empty_list:98,test_insertion_sort_single_element_list:98,test_insertion_sort_sorted_list:98,test_is_empti:97,test_label:[29,43,63,79,132],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:97,test_load:33,test_loss:[29,43,132,145],test_lstm_model:141,test_merge_dicts_with_list:98,test_merge_nested_dict:98,test_merge_three_dict:98,test_merge_two_dict:98,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model:42,test_ms:[63,79],test_multipl:97,test_nam:[68,132],test_negative_numb:97,test_non_existing_el:97,test_nul:50,test_one_as_input:97,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_path:42,test_permut:98,test_permutations_empty_list:98,test_permutations_single_el:98,test_pop:97,test_positive_numb:97,test_pr:[62,63,79],test_pred_poli:62,test_preprocess:[63,79],test_push:97,test_rang:50,test_remove_dupl:98,test_remove_duplicates_empty_dict:98,test_remove_duplicates_empty_list:98,test_remove_duplicates_no_dupl:98,test_remove_duplicates_str:98,test_respons:68,test_result:33,test_rms:[63,79,146],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:97,test_sampl:[9,105],test_save_path:68,test_scal:[55,62],test_scor:[58,66],test_single_element_list:97,test_siz:[29,31,32,34,41,51,52,53,54,55,56,58,59,60,61,62,63,79,81,88,143,146,159,161,163,164,168,169,172,173,175,178,179,182,198,200,201,202],test_sqrt:98,test_sqrt_non_perfect_squar:98,test_sqrt_perfect_squar:98,test_square_funct:97,test_str:98,test_string_input:97,test_string_numb:97,test_string_upper_empty_str:98,test_string_upper_happy_cas:98,test_string_upper_none_str:98,test_subtract:97,test_url:[3,68],test_vari:183,test_vector:142,test_wrong_target_typ:97,test_x:[39,65,67,163],test_zero:97,testabl:147,testappenddiffcolumn:14,testbinarysearch:97,testcalcul:98,testcalculatesum:97,testcapitalizefirstletterp:98,testcapitalizeword:98,testcas:[3,14,22,24,49,55,98],testcensorword:98,testcleanfar:22,testcolumnfilt:14,testcomplex:97,testcountdigit:97,testcountoccurr:98,testcountwordoccurr:98,testdfboxplot:24,testdfhist:55,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:97,testfibonacci:98,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:97,testflattennestedlist:98,testformatpersoninfo:98,testgcd:97,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:98,testgroupbysum:14,testimoni:109,testing_imag:42,testinsertionsort:98,testlabelencod:22,testload:49,testmapfunct:97,testmean:49,testmergedict:98,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:98,testremovedupl:98,testrtwithnafil:14,testset:[44,56],testsieveoferatosthen:97,testsqrt:98,testsquareroot:97,teststack:97,teststd:49,teutschmann:181,texa:[117,169,191],text3d:[88,168,198],text:[1,12,15,23,39,41,43,45,50,59,60,61,68,71,72,73,79,83,85,98,104,107,109,113,118,119,123,124,132,136,139,140,141,142,143,145,146,148,150,154,155,157,159,160,161,165,167,168,169,171,174,175,176,178,180,182,183,184,185,186,187,188,189,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],text_data:145,text_data_target:145,text_data_train:145,text_process:145,text_str:145,text_templ:73,text_widget:73,textbf:157,textbook:[52,160,174],textbox:90,textcolor:166,textcoord:167,textrefer:183,textrm:[80,175],texts_to_sequ:145,texttestrunn:49,textual:[1,8,113,115,183],tf0btgg9:61,tf:[29,30,35,36,37,39,40,41,42,43,44,46,47,49,50,73,83,131,132,133,134,135,137,138,139,140,141,144,145,150,166,171,194],tf_util:36,tfa:[35,135,139],tfboard_callback:41,tfd:[35,140],tfdetect:144,tffunc:73,tfutil:144,tfv1:144,tgz:33,th:[52,82,121,124,135,143,156,159,168],thai:[171,172,173],thai_df:171,thai_ingredient_df:171,thal:143,than:[1,2,7,8,14,18,29,30,31,32,33,36,40,41,43,45,47,48,49,51,52,54,56,58,59,61,62,63,64,66,71,76,83,85,87,97,104,106,109,114,116,117,119,121,122,123,124,125,127,129,135,136,139,141,142,143,146,149,150,152,154,155,156,157,159,160,163,164,165,166,167,168,172,173,174,178,179,180,182,183,184,185,188,191,192,196,198,199,200,203,205,206,207],thang:139,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,150,154,155,156,157,159,160,161,163,164,165,169,171,172,173,174,178,179,180,182,183,184,185,198,199,200,201,204],thecodeship:183,thedatasciencevenndiagram:120,thee:184,theguardian:113,thei:[1,6,7,12,15,18,23,25,31,41,43,45,48,49,50,51,52,54,58,59,60,61,64,68,69,71,79,80,85,87,95,104,105,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,133,135,136,137,138,139,140,141,142,143,144,146,148,149,150,152,154,156,157,159,160,164,165,166,167,168,169,174,175,178,179,180,182,183,184,185,186,188,189,191,193,198,203,205,206,207],them:[0,1,3,7,15,21,26,30,31,33,34,37,40,41,42,43,45,47,48,51,52,54,56,58,59,60,61,62,63,66,69,71,79,80,83,85,87,88,90,95,98,104,105,106,108,109,111,113,115,116,117,119,121,122,124,126,129,130,131,132,134,135,136,139,140,141,142,143,144,146,147,148,149,150,151,152,156,159,160,161,163,164,165,166,167,168,171,174,175,178,179,180,182,183,184,185,187,188,192,198,203,204,205,206],theme:[30,39,109],themselv:[7,64,109,111,124,136,160,179,203],theorem:156,theoret:[119,150,156,159,165,182],theori:[52,108,113,121,135,142,145,160,165],thereaft:137,therebi:[142,154,165],therecord:69,therefor:[7,30,32,47,52,56,106,124,135,137,139,148,150,152,159,160,161,164,165,167,168,183,184,198,206],thereof:191,theta:[135,159,160,161,200],theta_0:160,theta_1:[159,161],theta_2:159,theta_i:[159,160],theta_n:161,theta_t:160,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,79,80,81,82,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,180,181,182,183,184,185,186,188,189,190,191,192,193,198,199,200,201,202,203,204,205,206,207],thick:1,thicksim:135,thing:[1,7,41,45,51,52,54,55,59,62,65,67,68,71,79,85,87,105,106,108,109,111,113,117,119,121,122,124,126,127,129,136,146,151,153,154,160,167,168,169,171,174,183,184,192,194,198,199,203,206],think:[7,11,18,26,28,31,34,43,45,49,50,51,52,57,64,71,85,107,109,113,117,119,124,127,129,142,145,150,151,154,155,165,166,168,171,173,174,179,180,182,183,184,196,198,206],thinkhdi:109,third:[14,32,41,51,52,66,104,109,121,124,157,160,183],third_baseman:121,third_term:134,third_tuple_str:184,this_file_dir:73,thisag:185,thisplot:43,tho:[184,206],thon:[184,206],thorough:149,thoroughli:108,those:[1,7,14,16,18,32,40,46,49,51,52,54,58,59,64,71,79,85,106,108,109,111,114,115,116,117,118,119,121,122,124,125,127,132,134,137,141,142,143,145,146,148,149,151,154,156,157,160,163,165,168,171,174,178,183,184,189,203,205,206],thou:141,though:[7,43,49,64,107,109,116,124,125,127,145,146,150,151,163,173,179,183],thought:[7,16,30,34,55,60,71,85,109,119,124,149,174,189,191],thoughtfulli:95,thousand:[29,51,52,79,113,151,164],thread:168,threadpoolctl:155,threaten:[114,190],three:[7,13,14,19,21,27,29,32,37,40,42,50,51,52,54,58,62,69,76,79,88,93,97,98,103,104,107,115,118,123,124,127,131,132,139,140,143,144,146,148,150,151,152,154,155,165,167,169,183,184,186,191,196,205,206],three_g:[71,85],thresh:[7,72,122],threshold:[1,18,29,48,49,52,56,61,121,148,150,159,160,179],through:[1,3,9,10,20,24,30,31,43,47,49,50,56,63,64,65,67,69,81,87,95,97,104,105,106,108,109,111,113,114,117,118,119,123,124,125,127,132,133,135,137,139,140,141,142,143,145,146,147,148,149,150,151,152,154,155,160,161,163,166,171,172,174,178,182,183,184,185,188,191,194,195,200,203,205],throughout:[42,87,109,111,121,149,160,174,178,189,203],thrown:124,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:61,thu:[3,14,32,45,49,51,52,55,56,59,61,69,106,116,119,121,124,125,127,136,154,156,157,159,163,164,165,166,168,174,178,179,180,181,183],thumbnail:[73,133],thunder9:39,thunder:39,ti:[109,145],tial:[65,67],tian:144,tibco:192,tibshirani:159,tic:183,tick:[3,105,154,157,167],tick_param:[56,167],ticker:167,ticket:109,tid:113,tidi:180,tier:148,tight_layout:[18,31,35,38,40,43,56,114,167,190],tiktok:152,tile:[73,106,167],tile_s:73,till:[58,166],tim:200,time:[0,1,7,8,9,13,14,29,31,32,33,35,36,38,39,40,41,44,45,47,51,52,54,55,56,58,60,61,62,63,64,65,67,68,69,71,79,82,85,87,105,106,107,108,109,111,113,115,116,119,121,122,124,125,127,129,132,133,135,136,137,138,139,140,141,142,143,145,148,149,150,151,152,155,156,157,160,163,164,165,166,167,168,169,172,174,178,179,180,182,183,184,185,186,187,190,192,198,199,200,203,205,206],time_model:40,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[154,155],time_step:135,time_t:36,timeit:[167,191],timelin:[100,151],timeseri:46,timeseriesclassif:29,timestamp:[39,118,126,146,148],timestap:46,timestep:[39,46,135,145],timnit:[107,186],tin:159,ting:178,tini:[33,167],tiniest:174,tip:[17,23,87,109,179],titan:161,titanic_train:22,titanic_train_and_test:161,titl:[15,22,29,30,31,32,33,34,38,39,40,41,44,47,49,50,52,56,57,58,61,66,68,71,72,80,81,82,85,87,88,114,115,116,118,121,125,126,127,132,140,141,145,154,155,157,159,167,168,169,182,184,190,192,198,200,201,202],title1:167,title2:167,title_cas:102,titlepad:[64,146],titles:[64,146],titleweight:[64,146],tj:39,tkt:145,tl:36,tl_start:36,tld:61,tmp:[12,25,29,30,31,33,37,38,39,40,43,68,72,81,127,141,145,183],tmp_folder:183,tmp_folder_path:[29,30,31,33,40,43,68],tmp_zip_path:40,tn:[54,61,71,85,179],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:61,to_categor:[32,40,204],to_csv:[68,81,171],to_datetim:[1,14,36,39,46,69,178],to_devic:33,to_drop:69,to_fil:3,to_fram:[125,171],to_lat:31,to_numer:[36,58,69],to_numpi:[46,127,178],to_pandas_datafram:[9,105],to_period:146,to_plot:69,to_print:137,to_pydatetim:126,to_renam:125,to_replac:175,to_seri:39,toarrai:79,tobacco:106,tocilizumab:1,todai:[69,113,117,141,143,147,148,150,152,160,161],todens:142,todo:138,toe:183,togeth:[0,1,3,7,8,14,39,41,43,48,51,52,69,98,109,115,121,122,123,124,129,135,143,149,154,157,160,164,166,168,175,183,184,185,192,205,206],toggl:106,toh:30,toi:[18,157,160],token:[45,139,142,145,185],tokyo:[14,129,192],tol:58,told:109,toler:[127,152],tolist:[39,40,46,51,157],tom:[24,174,185,203],tomato:[40,180],tomomi:182,tomorrow:204,tone:107,tong:144,tongchuan:39,too:[18,32,49,50,51,52,54,55,56,59,60,63,66,68,79,113,114,116,126,135,136,146,149,150,154,155,156,160,163,166,172,174,178,179,180,183,184,206],took:[17,20,40,52,109,160,167,169],tool:[7,41,53,56,61,104,106,107,108,111,117,118,119,122,125,127,135,147,148,149,150,152,155,160,168,170,178,180,181,183,184,186,187,191],toolbox:[119,160],toolchain:149,toolkit:[107,149],tooltip:113,top:[3,7,16,30,31,34,41,43,47,52,54,56,59,66,79,87,89,97,106,109,116,123,124,127,144,147,148,151,154,155,156,168,171,179,180,183,191,199,200,207],top_pol:39,top_sen:39,top_tweet:39,top_vol:39,topic:[1,104,107,108,109,115,117,121,122,123,124,147,152,201,202],topilimag:33,topolog:30,toppredict:172,torch:[31,33,38],torchvis:[33,38],torgo:60,toronto:[132,139,166],tort:[97,98,183,184,185],total:[7,29,30,31,35,36,37,38,39,41,42,45,50,52,53,56,58,59,60,61,62,63,69,71,79,80,82,85,97,113,116,121,122,123,124,134,139,151,154,156,157,159,164,167,168,169,178,184,198,204,205],total_bedroom:[63,79],total_incom:184,total_len:31,total_na:53,total_profit:36,total_promo:69,total_room:[63,79],total_s:132,total_sum_squar:82,total_var_i:134,total_var_x:134,total_variation_loss:134,total_volum:184,totalbath:56,totalbsmtfin:56,totalbsmtsf:56,totallot:56,totalporch:56,totalprod:[116,190],totalprofit:36,totalsf:56,totensor:[33,38],totrmsabvgrd:56,toucantoco:109,touch:[62,63,71,85,119,174],touch_scr:[71,85],touch_screen:[71,85],touchscreen:[71,85],tour:113,toward:[61,80,109,117,124,142,143,159,169,175,184,188],towardsdatasci:[119,192],tp:[54,61,71,85,179],tpr:[61,179],tpsnva:109,tqdm:[31,38,87],tqdm_notebook:38,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:61,trace:133,traceback:[87,124,125,126,127,191,205],track:[3,35,37,41,47,49,98,106,107,109,117,123,126,141,142,150,151,160,167],tractabl:135,trade:[51,58,71,85,137,139,150,159,166,174,181],tradeoff:[7,54,59,71,85,122],trader:[39,142],tradit:[3,47,56,106,109,121,139,149,150,151,152,170,174,182,192,203],tradition:[109,148,150],traffic:[107,118,119,149],trail:[61,124,173,184],train:[9,10,20,29,35,39,44,45,46,47,50,52,58,64,65,67,68,80,89,96,103,109,111,117,119,121,125,131,132,134,135,137,138,139,141,142,143,144,145,146,148,149,152,154,156,157,159,160,161,162,163,165,166,167,168,169,172,173,175,176,178,179,182,186,187,188,194,196,197,198],train_acc:[132,159],train_accuraci:[41,145],train_batch:140,train_d:33,train_data:[29,38,51,52,54,55,59,63,71,79,85,131],train_data_path:[71,85],train_dataset:[35,135],train_df:[87,89,142],train_dict:145,train_dir:132,train_dl:33,train_fold:132,train_funct:30,train_i:[39,163],train_imag:[43,132,140],train_index:159,train_label:[29,38,43,52,132],train_length:140,train_load:[33,38],train_log:87,train_loss:[29,31,33,41,132,141,145],train_nam:[68,132],train_on_batch:[132,194],train_op:141,train_path:42,train_respons:68,train_rms:146,train_save_path:68,train_scor:66,train_siz:[33,66],train_solution_bounding_box:42,train_step:[35,37,134,141,145],train_test_split:[29,31,32,34,40,41,51,52,53,54,55,56,58,59,60,61,62,63,66,79,80,81,88,143,146,159,161,163,164,167,168,169,172,173,175,178,179,182,198,200,201,202],train_url:68,train_va:31,train_vector:142,train_x:[31,39,163],trainabl:[29,30,35,37,42,64,131,135,139,140,172,194],trainable_vari:[131,137,138,141],trainable_weight:[35,37,135],trainhistori:[47,49,50],training_block:135,training_data:[9,105],training_data_preprocess:[63,79],training_fin:[71,85],training_hour:58,training_imag:42,training_input_data:[63,71,79,85],training_label:[63,71,79,85],training_loss:66,training_s:66,training_sc:44,training_seq_len:141,training_step:[33,131],trainset:44,trait:69,traj1:137,tran:[178,179,180],trane:[65,67],trang:87,transact:[6,17,129,154],transcrib:[142,152],transcript:152,transduct:[150,154],transfer:[31,33,51,54,123,131,136,140,143],transform:[7,22,30,33,38,41,43,44,46,47,48,49,51,52,53,54,55,56,58,59,62,63,64,68,69,73,81,87,88,104,114,122,124,127,131,132,134,135,139,142,143,144,146,147,148,150,155,157,163,165,167,168,174,198,200,201,202,203,205],transform_fpcoor_for_tf:144,transformed_df:171,transformed_feature_df:171,transformed_label_df:171,transformer_block:139,transformerblock:139,transfrom:62,transit:[104,139,151,160],transition_block:139,translat:[43,98,109,119,136,142,148,151,174],transmit:119,transpar:[117,152,188],transpos:[29,38,41,47,63,79,81,87,124,131,132,134,144,145,184,206],transposed_matrix:[184,206],transposed_row:[184,206],trap:[117,150,188],trash:182,travel:146,travers:[31,184],treat:[1,7,42,58,61,71,80,85,117,122,124,125,126,127,129,139,149,150,183,188],treatment:[117,124,142,182,188],tree:[31,51,54,55,56,57,64,71,73,85,137,150,156,157,160,161,163,168,172,173,174,198,203],tree_best:[59,60],tree_clf:[59,71,85],tree_grid:52,tree_list:157,tree_method:56,tree_param:52,tree_pr:52,tree_reg:60,tree_reg_sc:60,tree_scor:[71,85],treebeardtech:0,trees_grid:159,trekhleb:[97,98,183,184,185],tremend:7,trend:[14,51,54,81,82,107,109,113,117,118,142,166,186,188,190],treshold:1,trevor:159,tri:[37,52,58,60,65,67,156,166,174],triag:149,trial:[50,150,172,182],triangl:[167,168],triangular:154,trick:[32,37,113,117,131,150,163,164,165,166,174,183,188],tricki:165,trickier:[129,192],trigger:[0,117,124,148,149,151],trim:141,trip:[23,107,186],tripadvisor:157,tripl:[124,184,185,206,207],triplestor:192,triu:66,triumphantli:150,trivial:[87,136,139],troubl:[64,113,154,159],trouser:[30,41,43,52],truck:[132,136],true_boolean:[184,206],true_count:138,true_label:43,true_positive_r:61,truli:[51,56,59,66],trump:185,truncat:145,truncated_norm:[137,145],trust:[59,60,62,63,68,88,109,113,152,159,163,164,165,167,178,182,195],truth:[113,124,139,184,185,200,204,206],ts:146,tsne:[168,198],tstep:137,tsv:[18,24,121],ttest_ind:[18,121],tthoe3gp290gz:61,tue:59,tumor:154,tunabl:[52,204],tune:[49,51,52,61,62,68,71,80,82,85,89,131,146,159,160,162,164,174,175,177,197],tup:126,tupl:[33,34,51,126,139,140,144,168,182,183,192,198,206],turn:[3,7,30,33,35,41,43,50,52,80,147,199,203],turntabl:153,turori:149,turtl:124,tuskege:[117,188],tutor:147,tutori:[1,29,31,35,61,73,82,115,124,125,132,133,140,142,147,166,180,182,183,184,185,194,200],tv:109,tval:[18,121],tweak:[90,115,155,173,175],tweet:[104,123,142],tweet_vol:39,twenti:93,twice:[124,145,183],twin:169,twinx:[116,190],twitter:[104,123,192],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,34,37,39,40,41,43,45,47,48,50,51,52,54,55,56,58,59,61,62,63,64,65,67,69,71,77,79,85,87,88,89,95,97,98,103,106,107,109,111,113,114,115,116,117,121,122,123,124,125,126,127,129,131,132,134,135,136,139,141,142,143,144,146,149,150,151,152,154,157,159,160,164,165,166,167,168,169,171,172,173,174,177,178,179,182,183,189,192,194,196,199,203,205,206],twofield:124,twon:137,tx:169,txt:[31,73,132,137,141,145,169,174],type:[1,6,7,9,15,19,20,29,30,31,33,35,37,39,40,41,42,45,47,48,50,51,52,54,55,59,60,61,62,63,66,69,71,73,79,81,85,98,99,105,106,107,111,114,115,116,117,118,121,122,123,125,126,127,129,131,135,137,139,140,143,144,145,146,148,150,152,154,155,160,162,163,164,165,168,169,178,179,180,181,182,183,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,204,205],typeerror:[97,98,124,126,127,185,191,205],typhoon:142,typic:[3,8,14,22,32,45,47,48,49,51,52,58,64,66,71,79,80,85,104,111,118,119,121,122,124,127,131,136,146,148,149,150,151,152,159,160,163,164,171,178,179,183,200],typo:142,u10:[124,191],u2:192,u:[68,116,137,140,145,157,184],u_:137,u_k:137,ua:[15,205],uber:[107,186],ubuntu:149,ucb:189,uci:[50,60,143,145],ucimlrepo:143,ucl:[174,203],ucla:151,uclaacm:178,ufo:169,ufunc:7,ugli:[113,184],ugqbzwiq8iiufasvi9dz:61,ugqprfa:61,uhbmv7qcey4:58,ui:[106,149,199],uid:151,uid_iso_fips_lookup_t:14,uint8:[31,37,42,72,73,124,132,133,134],uk:[14,137,169],ultim:[81,97,98,118,119,174,203],ultra:139,um:52,umap:30,umap_3d:30,umap_:30,umap_df:30,umbrella:[123,192],umn:109,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:61,umr_sum:191,umt:189,un:[169,184,206],unabl:[30,56,59,60,62,63,66,68,88,159,163,164,165,167,178,182],unacc:59,unaccept:152,unaffect:124,unalign:127,unalt:80,unambigu:124,unansw:109,unbalanc:[68,71,85,160,165,196],unbatch:135,unbias:[150,156],uncertain:137,uncertainti:[52,168],unchang:[143,175,184],uncheck:83,uncom:14,uncondition:[183,205],unconstrain:40,uncorrel:[68,156,159],uncov:[19,56,111,180,181],undefin:[7,18,183],under:[0,22,31,40,47,49,50,52,53,65,67,69,88,89,106,114,117,121,123,124,144,149,150,151,152,159,160,165,172,175,176,179,180,185,191,192,196,198,199,200,201,204,207],under_name_scop:144,undercomplet:30,underfit:[63,64,65,67,163],undergradu:69,underli:[61,66,80,81,82,104,111,114,121,136,142,166,174,178,191,200,203,204],underlin:167,undermin:113,underneath:61,underrepres:[71,85],underscor:[105,123,183,184,192,206],underset:[87,160],understand:[7,16,23,30,31,43,45,47,50,52,79,80,81,82,83,104,105,106,107,108,111,112,113,114,116,117,118,119,121,124,125,131,136,142,143,146,147,150,151,152,154,160,161,163,164,165,166,168,169,170,172,174,175,178,179,180,182,184,185,186,188,189,192,201,202,203],understood:[7,56,111,118,124,183,189],undertak:[83,109],undesir:28,undestard:161,undisclos:152,undu:83,unearth:56,unemploy:151,unet:135,unet_model:140,uneven:[154,171],unexpect:[50,96,125,150,166,183,205],unexpectedli:183,unf:56,unfair:117,unfamiliar:174,unfold:[52,113,145],unfortun:[18,105,160,167],unhandl:183,unhealthi:106,unhelp:171,unicorn:150,unidata:192,unifi:[111,143,144,150],uniform:[18,35,37,45,49,57,73,121,135,137,138,143],uniformli:[7,156,167],unimagin:148,unimport:68,unindex:[124,184],uninform:58,unintend:[28,107,117,188],unintention:183,union:[83,117,124,127,184],uniq:53,uniqu:[5,14,22,40,48,49,52,53,58,59,66,69,72,79,82,83,98,106,123,125,127,136,142,146,150,160,167,169,171,174,176,178,183,184,185,192,201,202,204,206,207],unique_list:98,unique_numb:184,unique_valu:98,uniqueag:185,unit:[0,12,30,32,41,43,44,45,47,49,50,55,60,64,79,87,106,107,116,118,123,124,129,132,136,139,141,143,149,150,151,156,166,174,178,179,180,186,192,194,204,205],unittest:[3,14,22,24,49,50,55,79,97,98],univari:[7,80,135,182],univers:[14,66,117,121,137,147,152,166,192,204,205],unix:[46,148],unknown:[59,60,121,137,141,154,160,166,183],unknowningli:56,unlabel:[131,150,154,159,167,168,174,198,203],unlaw:117,unless:[22,47,49,50,58,127,146,183,205],unlik:[33,58,62,68,69,82,87,124,150,156,159,184,185,191,194,201,202,206,207],unlimit:[184,206],unlock:[26,180],unnam:[70,171,172,173,178,179,180],unnecessari:[124,129,166,167],unord:[79,184,185,206,207],unpack:[3,127,154,179,184],unpickl:205,unpreced:117,unprun:159,unqualifi:183,unrel:3,unreli:174,unrol:145,unsaf:124,unscal:[41,60],unse:41,unseen:[41,43,52,66,159,174,182],unsort:98,unsorted_list:98,unspecifi:[45,124],unsplash:[103,110,112,130,153,170,181],unsqueez:[31,33],unstabl:[64,150,160],unstack:43,unstructur:[6,118,119,148,174,188,203],unsuccess:150,unsupervis:[37,52,69,121,147,150,152,154,159,173,174,182,195],unsupervised_learn:167,unsupport:[174,184,191,206],unsur:15,unsurprisingli:169,until:[31,33,52,57,63,69,80,97,108,124,129,145,150,155,156,159,167,168,174,183,184,192,198,203],untouch:127,untrain:37,untruncated_norm:144,unununium:[184,206],unus:[124,180],unusu:[124,166],unweight:179,unwrap:117,unzip:[37,38,132],up:[0,3,5,7,14,18,22,33,37,39,41,42,48,50,51,52,54,55,56,58,60,62,64,66,68,69,71,85,89,90,91,97,104,105,106,107,108,109,111,113,117,121,122,123,124,126,127,129,132,137,139,140,143,144,146,149,150,151,152,154,156,159,160,161,163,164,165,166,167,168,169,171,174,178,179,180,181,183,184,185,192,203,206],up_sampling2d:[35,37],up_sampling2d_1:37,up_sampling2d_2:37,up_sampling2d_3:37,up_shifted_imag:89,up_stack:140,upbeat:109,upblock:35,upcast:[7,122],upcom:7,updat:[0,31,37,38,43,45,50,51,54,57,65,67,80,81,86,87,88,97,98,114,118,131,133,134,135,136,137,138,141,145,146,149,150,160,161,163,164,167,168,174,175,187,194,198,199,200,201,204],update_st:[35,37],update_trac:30,update_weight:137,upfront:109,upgrad:[104,114,149],upload:[9,20,105,106,123,151,168],upload_d:59,upon:[41,52,66,106,117,119,129,164,168],upper:[7,30,32,53,97,126,129,131,145,150,167,168,184,205],upper_cas:102,uppercas:185,uppered_anim:205,upsampl:[29,30,135,140],upsamplin:37,upsampling2:37,upsampling2d:[35,37,140],upward:135,uranu:207,urban:[115,190],url:[0,3,42,59,62,73,106,119,133,134,135,138,144,167,178,179,186,188],url_for:169,url_setosa:62,url_versicolor:62,url_virginica:62,urllib:[63,71,73,79,85,87,132,167,183],urlopen:73,urlretriev:[71,85,87,132,167,183],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,34,36,37,39,40,42,44,45,46,47,48,49,51,52,53,54,55,56,57,59,60,62,63,68,69,71,73,74,77,79,80,82,83,85,87,89,91,94,96,103,104,105,106,107,108,111,112,115,116,117,118,119,121,122,123,124,125,126,127,129,130,131,132,133,135,136,137,138,139,140,141,143,144,145,146,148,149,151,154,155,156,157,159,160,161,162,163,165,166,170,171,173,175,176,181,182,183,184,186,187,188,189,191,192,194,195,196,198,200,203,205,206,207],usa:151,usabl:[113,148],usag:[5,39,51,56,61,62,69,79,106,107,117,122,154,160,164,169,171,178,182,183,184,186,187,206],usd:36,usd_tri:36,usda:180,usdt:[39,46],use_bia:[35,139,140,144],use_column_width:73,use_inf_as_na:88,use_na_proxi:125,useless:124,user:[6,17,23,45,56,59,64,103,104,106,107,109,113,114,115,116,117,118,119,124,125,126,127,140,142,145,146,149,150,152,174,182,183,185,186,187,188,191,198,199,203,205],userwarn:[30,88,114,127,145,167,168,172,179,190],usf:145,usr:[125,126,127,172,179,183,191],usual:[7,42,48,50,51,52,54,56,61,68,71,85,87,104,108,109,114,118,122,124,125,126,127,131,135,136,137,139,145,146,148,149,150,152,154,159,160,165,166,168,174,175,180,183,184,185,200],ut:156,utf:[15,141,169],util:[31,32,33,36,38,39,40,41,42,44,46,56,59,60,68,72,80,81,82,83,97,122,125,126,133,138,140,142,144,149,150,151,164,182,183,204],utilis:42,utilitarian:150,uvicorn:72,v0_8:64,v1:[14,36,37,59,73,124,125,126,127,134,137,141,145,149],v2:[137,149],v2rayn:39,v3:[39,124,149],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:61,v7:61,v7t09o1tbxdw8p7:61,v:[1,3,39,58,125,126,127,166,168,197],v_:137,v_measure_scor:168,vaccin:[11,151],vae:31,vae_model:31,vagu:[109,174],val1:97,val2:97,val3:97,val4:97,val:[31,57,87,97,99,141],val_acc:[33,40,49],val_accuraci:[32,40,41,72,132,140],val_d:33,val_dataset:35,val_dl:33,val_load:33,val_log:87,val_loss:[30,31,33,34,39,40,46,49,50,64,72,132,140],val_siz:33,val_subsplit:140,val_x:31,valdat:33,valid:[7,14,15,31,34,40,41,48,51,58,64,68,71,85,87,98,117,122,124,125,126,127,132,139,140,142,148,150,156,159,163,166,172,174,178,183,185,204],validation_data:[29,30,32,34,39,64,132,140],validation_dir:132,validation_epoch_end:33,validation_fract:58,validation_loss:66,validation_split:[39,40,41,46,49,50,72],validation_step:[33,140],valmont:113,vals1:191,vals2:191,valu:[1,3,6,8,14,15,18,22,29,30,31,32,34,37,39,40,41,42,43,44,45,46,47,48,50,51,52,54,55,57,60,62,63,65,66,67,68,69,72,73,80,81,82,83,87,88,89,90,101,102,105,107,108,111,114,115,116,117,118,119,121,122,123,125,126,129,131,132,134,135,136,139,140,141,142,143,144,146,148,150,151,154,155,156,157,159,160,161,162,163,165,167,168,169,171,172,174,175,176,178,179,180,181,182,185,188,189,192,197,198,199,200,201,202,203,205,206,207],valuabl:[7,80,82,142,151,159],value_count:[7,14,15,22,34,40,53,56,58,59,61,62,63,66,69,71,79,85,154,155,171,190],value_left:125,value_right:125,valueerror:[97,124,125,126,127,137,140,183,184,185,206],valueless:7,values_list:97,van:[185,205,207],vanderpla:[59,60,62,63],vanilla:[7,141],vanish:[136,139,141,143],vanooteghem:103,vanschoren:150,vapnik:61,var1:39,var2:39,var3:39,var4:39,var5:39,var_idx:57,var_tensor:45,vare:29,varepsilon_i:156,varepsilon_j:156,vari:[37,41,51,54,56,106,118,119,124,143,148,155,159,167,168,180,198],variabl:[7,22,31,33,38,40,52,55,56,58,60,66,68,69,71,79,80,81,82,85,88,93,97,98,101,102,106,111,113,114,116,122,131,133,134,135,136,137,141,143,145,148,150,151,154,155,157,159,160,165,168,169,171,174,178,181,182,185,189,190,199,200,203,207],variable_nam:183,variables_and_typ:184,variad:183,varianc:[18,35,52,56,58,65,67,82,87,114,131,156,164,168,190,198],variance_inflation_factor:[56,66],variance_scaling_initi:144,variant:[61,136,167,183],variat:[40,49,134,135,139,144,160,168,183,204],varieti:[43,45,56,124,139,142,146,160,166,168,172,178,179,180,184,206],varinac:[65,67],variou:[16,28,30,37,40,41,52,56,61,64,69,82,83,90,95,104,106,107,112,113,115,116,117,118,124,125,127,136,139,140,142,143,148,149,151,152,153,154,156,160,171,173,174,180,182,185,190,192,203],vassilvitskii:167,vast:[7,22,104,119,122,142,148],vastli:37,vault:106,vc:40,vdf:39,ve:[7,28,31,52,80,87,107,109,111,117,122,123,124,125,129,139,143,146,156,160,166,174,179,183,184,186,192,199,205],vec:[31,87,156],vect_tensor:45,vector:[7,29,31,33,45,47,51,52,57,59,65,66,67,71,83,85,87,124,131,135,138,139,140,141,143,145,150,159,166,168,169,172,174,178,184,191,198,200,203,204,206],vectorregress:165,vegan:182,veget:181,vegetable_oil:172,vehicl:[136,146,203],veil:[115,190],veloc:[137,192],vend:148,venn:[120,188],venu:[106,107,183,207],verb:[142,183],verbos:[32,36,39,40,43,46,47,49,50,52,54,55,56,58,59,60,61,62,63,64,89,113,132,140,143,159,163,167],verdict:37,verghes:109,veri:[14,18,30,31,40,41,42,43,47,49,51,52,54,55,56,57,59,60,61,64,65,66,67,69,71,79,85,88,103,106,108,109,111,114,115,119,121,124,125,127,131,133,136,139,141,143,145,146,148,149,150,151,154,155,157,159,160,163,164,165,166,167,168,169,170,171,173,174,176,179,180,182,183,184,185,191,194,197,198,201,202,206,207],verif:[0,121],verifi:[33,41,47,49,50,60,79,101,102,115,116,126,139,150,154,161,167],verify_integr:[125,191],versa:[51,52,54,58,59,71,85,121],versant:192,versatil:[184,206],versicolor:[62,66,88,157],versicolour:[88,168,198],version:[1,7,22,29,33,36,47,48,49,50,51,52,59,61,80,88,106,111,121,124,125,126,129,134,136,140,144,145,149,150,154,161,163,167,168,175,182,185,191,198,207],version_info:[87,167],versu:[160,182],vert:18,vertex:52,vertic:[3,18,42,113,121,124,168],verticalalign:72,veryde:134,verydeep:134,vet:[113,125],vf4l3peswap51eb6clsmx7uuklt158tt0o:61,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:61,vgg16:140,vgg19:140,vgg:139,vgg_data:134,vgg_dir:134,vgg_layer:134,vgg_net:134,vgg_network:134,vgg_path:134,vgg_url:134,vgood:59,vhigh:59,vhx8dhywgnjy2:61,vi:[125,126,127,132,155,165],via:[7,69,114,123,125,126,127,134,140,160,165,166,167,168,172,183,198],viabil:106,vibranc:113,vibrant:174,vicdemand:[51,54],vice:[51,52,54,58,59,71,85,121],vicin:[1,8],viciou:113,vicki:[184,206],vicomt:113,vicpric:[51,54],victor:[29,146],victoria:[51,54],vid_4_10520:42,video:[45,118,119,121,123,124,132,134,136,144,152,160,163,165,171,174,176,177,180,181,182,185,188,203],view:[7,30,31,33,38,41,49,61,69,88,104,105,106,109,113,119,123,139,140,164,169,179,180,191],view_init:[165,196],viewpoint:[137,139,144],viewport:15,vinegar:172,vinod:33,viola:160,violat:[117,152,188],violenc:113,violent:142,violinplot:58,virginica:[62,66,88,157,168,198],viridi:[39,80,159],virtual:[104,106,142,149,182],virtuoso:192,visibl:[30,42,59,109,137,139,143],vision:[33,43,45,89,104,125,136,139,144,150,160,169,171,174,193,203],visiontransform:139,visit:[104,119,139,144,146,156,178,179,186,188],visitor:157,visual:[0,1,5,8,14,15,16,18,19,30,42,47,48,51,52,53,54,55,56,60,61,71,73,79,80,81,85,89,104,105,106,107,117,119,121,122,124,125,126,127,131,132,134,136,139,140,143,146,147,148,154,155,156,157,159,160,164,165,167,168,169,171,172,174,175,178,181,182,183,186,188,189,193,195,198,200,203],visualcapitalist:109,visualis:[31,61,165,178],visualize_input:72,vital:[56,142],viz:167,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:61,vladimir:61,vlfeat:134,vm:[104,105,106],vm_size:[9,105],vmail:[52,156],vmax:[31,39,154],vmin:31,vocab2ix:141,vocab:141,vocab_processor:145,vocab_s:[141,145],vocab_to_ix_dict:141,vocabulari:[141,145,154],voic:[52,136,142,156],voila:[115,157],vol:39,volatil:50,voldemort:192,volt:183,voltag:183,volum:[7,46,104,106,142,148,149,150,152,178,180,187],volume_btc:39,volume_dollar:39,volumetr:136,volunt:117,voluntari:117,voluntarili:117,von:133,voom:183,vooooom:183,voronoi:[155,167],voronoi_plot:167,vot_classifi:51,vote:[121,147,151,156,159,160,172],votingclassifi:51,vs:[33,39,40,43,57,61,69,71,85,90,106,109,111,114,115,117,137,148,149,150,154,161,163,167,171,172,178,179,180,182,189,195,200],vs_code_with_a_notebook_open:182,vscode:191,vscodecod:39,vstack:[124,165,196],vthyuhdilvw8hkemhmr:61,vu:[114,190],vue:113,vulner:[114,125,190],vutil:38,w0:145,w1:[137,145],w2:[137,145],w3:137,w3school:[183,184],w:[31,33,65,67,73,79,87,88,89,121,131,132,137,140,141,144,145,146,160,164,166,167,168,183,192,197,198],w_0:160,w_:[141,157],w_box:144,w_crop:144,w_h:145,w_hh:145,w_hx:145,w_i:[157,160,166,168,197],w_img:144,w_j:[160,164],w_n:159,w_xaxi:[168,198],w_yaxi:[168,198],w_yh:145,w_zaxi:[168,198],wa:[1,11,16,28,32,33,40,41,45,47,51,52,54,55,56,59,60,61,62,63,79,81,97,107,109,111,113,117,118,119,121,124,126,127,136,139,140,143,144,146,148,149,151,154,155,156,157,160,167,168,169,171,172,173,174,182,183,184,185,186,189,198,200,203,206,207],waffl:[27,113],wai:[0,1,3,7,11,18,30,37,41,43,45,48,51,52,54,55,56,58,59,60,61,62,63,64,71,73,76,79,81,85,87,103,104,107,108,109,113,114,115,116,117,118,119,121,122,123,124,127,129,130,136,137,139,142,143,144,145,147,148,149,150,151,154,155,156,159,160,161,163,164,166,167,168,169,171,172,173,174,179,180,182,183,184,185,189,190,191,192,199,200,203,205,206],waistlin:93,wait:[1,106,108,132,133,140,163,174,185],wait_for_complet:[9,105],wait_for_deploy:[9,105],wake:150,wale:[51,54],walk:[1,31,53,58,95,123,125,151,163,171,173],wall:[137,168,172,198],walter:145,want:[1,3,7,8,14,16,17,18,23,30,40,41,43,45,48,49,50,51,52,53,54,55,58,59,60,61,64,65,67,71,79,82,83,85,87,88,104,106,107,109,114,117,118,119,121,122,124,125,129,136,137,139,140,142,144,146,150,154,157,160,161,163,164,165,166,168,169,171,173,174,176,178,179,182,183,184,185,189,190,192,196,198,199,200,203,205,206],wanted1:97,wanted2:97,wanted_peopl:97,ward:[138,154],warehous:[104,148],warm_start:[58,159],warn:[30,36,37,40,50,51,52,53,54,55,56,58,59,60,61,69,71,73,85,88,114,124,125,136,139,140,141,143,146,159,161,163,167,168,172,179,190,198],warn_singular:[114,190],warnopt:69,warrant:[32,152,155],warranti:[22,47,49,50,97,98,183,184,185],warren:145,warrior:160,wasn:109,wast:[107,115,148,152,184,190],wat:145,watch:[58,119,133,136,174,175,178,179,180],water:[107,194],waterfowl:[114,190],wavenet:136,wb:[29,30,31,33,37,38,40,43,68,73,134,138,169],wc:3,wcss:155,wd:68,wdrfosfa13slih0epo:61,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,33,34,37,40,41,42,45,46,48,49,50,51,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,79,80,81,82,83,85,87,88,89,103,104,105,106,107,108,109,111,114,116,117,119,121,122,123,124,125,126,127,129,131,132,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,186,188,189,190,191,192,193,196,198,199,200,203,204,205,206,207],weak:[48,56,57,58,122,146,150,154,159,160,162,164,179],weaker:1,weapon:[117,184,206],wear:[174,203],wearer:6,weather:[107,146],web:[5,40,96,104,105,106,107,113,118,119,121,143,149,151,152,154,170,176,182,185,186,195,207],webapp:151,webservic:[9,105],websit:[104,119,137,139,151,152,157,174,178,180,182,203],wechat:39,wechat_fil:39,wechat_files_comput:39,weeight:166,week:[39,51,52,54,109,146],weekend:109,weekli:[14,146,151],weigh:[58,160,180],weight:[7,18,30,33,35,37,39,40,41,45,47,49,51,54,56,58,59,60,61,62,64,65,66,67,68,71,72,79,85,86,87,89,105,109,121,124,131,133,134,135,137,138,139,141,142,143,144,145,146,150,156,157,159,164,165,166,167,168,169,171,172,173,175,179,180,191,194,200,201],weight_1:146,weight_2:146,weight_decai:35,weightag:56,weights_init:38,weights_list:137,weird:174,welcom:[147,182,184,205,206],well:[3,5,15,18,30,31,37,40,41,42,45,47,48,49,51,52,55,56,58,59,60,61,62,63,66,68,69,71,74,76,79,81,82,83,85,87,88,93,94,108,109,111,113,114,116,118,119,121,122,123,124,125,126,127,129,136,137,139,140,142,144,146,149,150,154,155,156,159,160,164,166,167,168,173,174,176,178,179,180,182,183,185,189,191,194,197,200,203,207],went:[10,41,48,51,54,109,122,174,183],wer:178,were:[7,10,12,16,20,31,40,41,45,49,51,52,54,55,59,60,62,63,64,68,71,74,79,81,85,106,108,109,117,121,123,124,125,129,135,141,146,148,149,151,155,156,160,164,167,169,174,178,179,183,185,188,192,193,203,205],west:79,wget:139,wh:145,what:[1,7,10,16,17,18,21,26,31,37,41,49,50,51,52,54,55,56,57,58,59,62,64,65,67,68,69,71,79,80,85,87,95,103,107,108,111,114,116,117,118,121,122,123,124,125,127,129,133,136,137,143,145,149,150,151,153,154,160,164,166,167,168,169,171,173,175,178,179,180,182,183,185,186,192,193,199],whatev:[59,60,87,109,136,139,163,166,174,183],wheat:[174,203],wheel:152,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,36,37,41,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,64,65,66,67,68,71,79,80,81,82,83,85,88,90,103,106,108,109,111,113,114,115,117,118,119,121,122,123,124,125,126,127,129,132,135,136,139,140,141,142,143,146,148,149,150,151,152,154,156,157,159,160,163,164,165,166,167,168,169,171,172,173,175,176,178,179,181,182,183,184,185,187,188,189,191,193,194,198,199,200,203,205,206],whenev:[45,124,149,150,166],where:[2,7,12,14,17,25,28,29,31,33,34,40,41,43,47,48,51,52,53,56,57,60,61,63,66,69,71,72,79,82,83,85,87,97,106,107,108,109,111,113,114,115,117,118,121,122,123,124,125,126,127,129,135,140,142,143,146,148,149,150,153,155,156,157,159,160,163,164,165,166,167,168,169,171,174,175,176,178,179,180,182,183,184,185,186,188,189,191,192,198,199,200,203,206],wherea:[31,42,52,56,59,61,71,85,124,165,174,179,182,183,184,196,203],wherefor:141,wherev:183,whether:[7,22,23,29,32,37,48,49,50,52,53,60,82,88,97,98,105,114,117,121,122,124,126,127,138,139,140,142,148,150,152,159,160,168,171,174,179,182,183,184,185,203,205,206],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,37,40,41,43,45,48,49,50,51,52,54,55,56,57,58,60,61,62,64,65,66,67,69,71,73,77,79,80,81,82,85,87,88,97,98,104,105,106,107,108,109,113,115,116,117,118,119,121,122,123,124,125,126,127,129,131,134,135,136,139,140,141,142,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,189,190,191,192,194,196,199,200,203,205,206],whichev:146,whiskei:[70,171,172],whistl:[114,190],white:[3,39,49,50,52,72,114,115,132,137,139,151,152,168,179,182,185,190,198,207],white_bread:[70,171,172],white_win:[70,171,172],whitegrid:[53,64,88,146],whitesmok:[115,190],whitespac:[48,122,183,184,206],who:[31,45,48,52,58,69,79,104,108,109,111,117,118,121,122,148,156,160,174,183,184,185,188,189,206],whole:[14,41,45,52,54,55,56,58,59,60,61,64,71,79,85,121,131,136,138,148,149,151,152,156,159,164,168,171,174,184,190,194,206],whole_grain_wheat_flour:[70,171,172],wholesale_customers_data:164,whom:[97,98,118,147,183,184,185],whose:[58,64,114,124,127,137,145,183,184,206],why:[7,16,18,41,45,47,48,49,50,51,52,55,62,68,69,74,80,87,90,95,103,106,107,108,109,111,117,121,122,124,129,132,154,155,156,160,161,165,167,168,172,174,175,179,180,183,186,188,189,192],wide:[45,56,63,80,81,82,104,106,117,124,127,136,138,139,143,144,146,148,149,152,160,162,184,187,192,206],wider:[121,151,166],widespread:[142,160],widget:[9,105],widow:69,width:[1,3,14,15,31,33,35,48,62,63,71,72,85,88,113,115,121,122,125,126,127,132,134,135,139,140,155,157,159,167,168,169,171,175,176,178,180,183,190,198],width_multipli:139,width_shift_rang:32,wif:145,wifi:[71,85],wifi_count:[71,85],wiki:[3,133],wikimedia:[62,133,136],wikipedia:[3,45,119,121,164,174,192,193,203],wild:[31,125,154,169],wildfir:142,wildli:[163,172],william:121,willing:37,willingli:7,willpow:87,win32:205,win:[59,137,139,145,160,164],wind:137,window:[14,40,46,123,132,142,168,183,185,192,205],window_s:46,wine:[50,64,69,70,171,172],wine_feature_col:50,wine_feature_row:50,wine_schema:50,winedf:50,winefeatur:50,winefeaturessimpl:50,winefeaturessmal:50,winelabel:50,winelabelssmal:50,winequ:50,wingspan:114,winner:160,winston:58,winter:[17,111],wirefram:109,wisdom:[51,156],wise:[7,56,124,127,135,139,140,141,164],wish:[124,126,129,184,185,205,206],with_column:24,with_info:140,with_titl:31,withdraw:117,withheld:117,within:[6,33,48,49,50,52,56,58,79,88,105,108,109,111,114,115,117,118,121,122,123,143,144,149,155,164,168,178,182,183,184,191,198,205,206],without:[0,1,4,16,18,21,22,34,40,45,47,49,50,52,54,59,62,66,83,97,98,106,109,113,117,121,124,125,127,131,139,142,143,148,150,163,164,165,168,169,174,183,184,185,196,198,203,206],wkly:145,woke:161,woman:[52,106],women:[117,188],won:[7,51,54,58,62,109,124,129,136,137,139,150,163,164,166,174,200,203],wonder:[47,50,107,113,129],wood:[70,115,171,172,190],wooddecksf:56,word1:184,word2:184,word:[1,3,31,41,43,45,51,56,61,71,85,93,95,98,108,112,114,117,119,121,122,124,136,138,139,141,142,143,144,145,146,150,156,159,160,164,166,168,174,175,178,182,183,184,185,188,189,190,200,203,205,206],word_count:[98,141,145],word_index:[183,205],word_list:141,wordcloud:3,wordnet:139,words_length:183,work:[1,3,4,7,11,18,19,24,30,31,33,37,41,43,45,47,48,51,54,55,56,59,60,61,62,63,65,67,68,69,71,76,77,79,80,81,85,87,88,90,95,104,105,106,107,108,109,111,113,117,118,119,121,122,123,126,127,129,131,132,133,136,140,141,143,144,146,147,148,149,150,151,154,155,156,157,159,161,163,164,166,167,168,169,170,171,172,173,174,178,179,180,181,183,184,185,188,189,191,198,199,200,203,205],workbench:[107,186],workbook:123,workclass:53,workflow:[0,56,88,105,106,107,109,117,125,148,149,152,163,186],workload:[106,142,148],workplac:[6,109],worksheet:123,workshop:125,workspac:149,workstat:106,world:[0,7,18,28,29,33,36,38,40,41,43,47,48,52,55,59,60,62,64,82,98,113,117,119,122,123,125,127,132,136,139,143,144,145,146,148,149,151,152,156,160,161,166,169,174,178,183,184,185,188,191,192,195,203,205,206,207],worldwid:[106,117],worri:[104,121,174,183],wors:[43,49,150,159,167,173,194],worst:[61,178,179],worth:[6,32,50,68,112,114,139,159,160,161,168,174,185,190,203],would:[1,7,11,14,16,18,23,24,30,31,37,41,45,49,51,52,54,56,58,60,61,62,63,64,68,69,71,76,79,85,87,93,95,109,111,118,119,121,122,124,126,127,129,135,136,143,146,150,151,154,155,156,159,160,161,163,165,166,167,168,169,171,173,174,178,179,180,182,183,184,192,198,199,203,206],wouldn:[7,118,160,183],wow:[49,51,54,59,63,167],wrangl:124,wrap:[30,33,68,73,116,131,146,149,183],wrapper:[33,73,124,125,146,183,205],wrestl:[7,122],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:61,write:[0,1,3,7,21,22,23,26,29,30,31,33,37,38,40,43,47,49,50,52,53,58,68,72,73,87,98,105,109,117,119,121,124,127,129,132,134,136,137,138,141,145,150,156,159,160,167,169,174,175,182,183,184,185,203,205,206],write_imag:73,writefil:205,written:[7,93,113,124,125,135,141,147,159,164,168,183,184,185,205,206,207],wrong:[1,14,43,49,58,117,119,121,139,150,160,167,183,184,185,206],wrong_nam:14,wrong_sampl:18,wrote:[49,138,185],wrt:53,ws:[9,105,191],wspace:[138,165,167,196],wsr4u5caj:61,wt:145,wts2:46,wu:113,www:[22,25,32,47,49,50,58,60,113,117,121,132,133,134,135,139,141,146,152,155,158,165,167,171,175,176,180,183,184,187,192,193,194,205],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:61,x0:144,x0_box:144,x1:[32,52,114,124,140,144,167,190,191,201,202],x1_max:52,x1_min:52,x1y1x2y2:144,x27:[59,60,62,63,159,163,164,165,167,178],x2:[32,52,114,124,167,190,191,201,202],x2_max:52,x2_min:52,x3:[32,114,190,191],x4:[114,190],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:61,x5:[114,190],x6:[114,190],x80:39,x86:39,x99ve:39,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,51,52,53,54,56,57,58,59,61,62,63,65,66,67,68,69,71,72,73,79,80,81,83,85,86,87,88,89,97,98,107,113,114,116,117,121,124,125,126,127,131,132,134,135,137,138,139,140,141,143,144,145,146,151,154,155,156,157,159,160,161,163,164,165,167,168,169,171,172,173,174,175,176,178,179,182,183,184,185,188,190,191,194,196,198,199,200,201,202,203,205,206],x_0:[135,145],x_1:[52,121,135,145,156,157,159,167,174,203],x_1p_1:121,x_2:[52,121,135,145,157,159,167,174,203],x_2p_2:121,x_3:157,x_4:157,x_:[18,135,137,157],x_batch:[87,135,167],x_center:[168,198],x_cluster_dist:167,x_data:[141,145],x_digit:167,x_digits_dist:167,x_dist:167,x_histori:80,x_i:[18,121,131,135,159,160,168],x_init:[80,167],x_int:80,x_j:[18,157,159,168],x_k:[137,159],x_m:156,x_max:52,x_min:[52,80],x_mm:167,x_n:[121,135,174,203],x_new:167,x_noisi:135,x_np_n:121,x_organ:34,x_pca:[168,198],x_po:137,x_poli:200,x_rang:[159,183],x_reduc:[168,198],x_representative_digit:167,x_set:[201,202],x_shape:135,x_shuffl:145,x_start:135,x_t:[135,145],x_test:[29,30,32,34,41,44,51,52,53,54,55,58,60,61,62,68,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],x_test_circl:159,x_test_noisi:[29,30],x_test_scal:[41,81],x_test_with_bia:81,x_train2:32,x_train:[29,30,31,32,34,39,40,41,44,46,51,52,53,54,55,56,58,60,61,62,64,68,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],x_train_add:89,x_train_batch:145,x_train_circl:159,x_train_combin:89,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:167,x_train_scal:[41,55,60,62,81],x_train_with_bia:81,x_tsne:[168,198],x_umap:30,x_val2:32,x_val:[31,56,87],x_valid:64,x_vif:66,xa:57,xarrai:124,xaxi:[88,198],xb:33,xception:140,xe2:39,xentropi:87,xfb:61,xfhxfw:144,xfit:[165,196],xfyplk79sjp:61,xgb:[56,58,68,164],xgb_clf:164,xgb_cv:164,xgb_pred:68,xgb_reg:56,xgb_search:56,xgbclassifi:[58,164],xgbclassifierxgbclassifi:164,xgboost:[51,58,146,160,161,162],xgboostclassifi:58,xgbregressor:[56,68,146,163],xgbregressorxgbregressor:[68,163],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:61,xi:[57,61,140],xit:61,xj:61,xk:137,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:61,xks2cxejztkqivxffffcr4:61,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:61,xl:179,xlabel:[18,22,29,31,32,33,34,36,38,39,40,41,43,44,52,57,58,59,61,62,63,68,71,80,81,82,85,88,114,127,132,137,140,141,145,155,156,167,168,178,179,182,190,198,200,201,202],xlim:[52,58,157,159,165,168,196,198,201,202],xmax:42,xmin:42,xor:124,xplzqjohaao63bfq05ntwlheg6anqrhcuin:61,xrp:46,xs:[57,126,140,175],xtick:[3,18,22,31,38,40,42,43,49,56,58,154,155,157,167,190],xticklabel:[41,71,85],xu:138,xw:61,xx1:159,xx2:159,xx:[52,167],xxl:179,xxxx:106,xy:[72,165,167,178,196],xytext:167,y0:144,y1:[57,144,167],y1x1y2x2:144,y212szmlszq:191,y2:[57,167],y3:57,y4:57,y5:57,y:[14,30,34,36,39,40,41,42,46,47,49,51,52,53,54,56,57,58,59,61,62,63,65,66,67,68,69,71,72,73,79,80,81,82,83,85,86,87,88,98,113,114,116,121,124,127,135,137,138,141,143,145,146,151,154,155,156,157,159,160,161,163,164,165,167,168,169,172,173,174,175,176,178,179,180,182,184,185,190,194,196,198,200,201,202,203,205,206],y_2:145,y_:137,y_batch:87,y_clr:[168,198],y_cluster_kmean:155,y_di:194,y_digit:167,y_dist:167,y_distribut:24,y_fit:146,y_gen:194,y_hat:159,y_histori:80,y_i:[52,57,80,82,83,157,159,160,164,175],y_init:80,y_j:52,y_k:137,y_lag_2:146,y_lag_3:146,y_lag_4:146,y_lag_5:146,y_lag_6:146,y_lag_:146,y_max:52,y_min:[52,80],y_output:[141,145],y_po:137,y_pred:[53,57,61,65,67,72,81,83,88,143,146,161,164,167,172,173,175,182,200,201,202],y_pred_100:53,y_pred_idx:167,y_pred_sklearn:[65,67],y_pred_test:[61,81],y_pred_train:61,y_predict:[34,86,175,200,201],y_predict_class:34,y_predicted_:175,y_predicted_cl:[86,175,201],y_prob:161,y_representative_digit:167,y_score:179,y_set:[201,202],y_shuffl:145,y_step_1:146,y_step_2:146,y_step_3:146,y_step_:146,y_test:[30,32,34,40,41,51,52,53,54,55,58,60,61,62,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],y_test_circl:159,y_test_class:40,y_test_prepar:[51,54],y_train2:32,y_train:[30,32,34,39,40,41,44,46,51,52,53,54,55,56,58,60,61,62,64,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],y_train_add:89,y_train_batch:145,y_train_circl:159,y_train_combin:89,y_train_partially_propag:167,y_train_prepar:[51,54],y_train_propag:167,y_true:[34,81,83],y_val2:32,y_val:[56,87],y_valid:64,ya:[61,87],yahoo:160,yam:[70,171,172],yandex:[56,160],yandexdataschool:87,yang:140,yaxi:[88,167,198],yb:33,ye:[7,47,52,105,106,116,117,152,156,159,174,183,185],year:[1,13,14,24,25,51,52,53,54,58,69,109,116,117,119,125,129,132,146,149,160,164,178,182,184,185,188,190,192,200,205],year_birth:69,yearbuilt:56,yeast:[70,171,172],yellow:[17,23,52,109,113,114,115,178,184,190,206],yellowbrick:69,yellowlabradorlooking_new:133,yet:[0,14,37,42,45,52,55,60,62,98,105,106,113,150,152,160,161,168,170,174,183,198],yetayeh:207,yf:160,yfit:[165,196],yfozmvgstfo5xi:61,yhat:39,yhat_ac:69,yi:57,yield:[31,33,42,52,61,87,116,127,160,163,164,183,190],yieldpercol:[116,190],yiyiwang0826:25,yizh:178,yk_temp:39,ylabel:[18,22,29,31,32,33,34,36,38,39,41,44,52,57,58,59,61,62,63,66,68,71,80,81,82,85,88,114,116,127,132,137,140,141,145,155,156,167,168,178,179,180,182,190,198,200,201,202],ylgnbu:[53,61],ylim:[43,50,140,165,196,201,202],ylorbr:[116,190],ymax:42,ymean:49,ymeanactu:49,ymin:42,yml:0,ymp6irqbiss3usmcdyxx:61,yogurt:[70,171,172],yolo:[69,144],york:[14,17,23,52,121,150,184,191],yoshua:[29,52,83,138,176],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,39,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,58,59,60,62,64,68,71,74,76,79,81,82,83,85,87,88,90,94,95,96,97,98,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,142,143,144,146,147,148,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,180,181,182,183,184,185,186,187,189,190,192,198,199,200,201,202,205,206,207],younger:123,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,41,47,48,49,51,52,54,55,60,62,64,68,71,74,76,79,80,82,85,87,88,90,93,95,96,97,98,101,102,112,136,167,168,170,181,198,199,203],yourself:[7,49,52,107,109,114,116,122,159,174],yourthoughtpartn:109,yousfi:58,youtub:[45,58,121,132,134,136,151,158,165,168,171,174,175,176,180],youyang:151,ypred:[49,81],yrsold:[56,68],ys:[57,175],ystd:49,ystdactual:49,yt:[121,158,171,180],ytest:146,ytick:[31,38,40,42,43,167,168,198],yticklabel:[41,71,85],yu:135,yup:79,yuri:[52,156,157,159,160,198],yy:[52,167],yyyi:180,z1:[31,97],z2:[31,97],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:61,z5zy85g4yjw:121,z:[30,31,38,47,50,69,80,98,124,127,135,137,138,140,145,150,151,159,167,168,183,184,185,206],z_costcontact:69,z_h:145,z_j:157,z_revenu:69,z_y:145,zalando:43,zaxi:[88,198],zd_zt:39,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:61,zealand:[129,192],zero:[1,33,35,37,38,42,45,52,56,57,65,67,68,73,80,81,83,86,87,97,98,107,121,124,127,137,139,141,142,143,144,150,156,159,161,166,168,175,183,184,185,191,194,198,200,201,205,206,207],zero_grad:[31,33,38],zero_padding2d:37,zerodivisionerror:[97,98,183,185,205],zeropaddin:37,zeropadding2d:[37,139,140],zeros_lik:[73,87,138,167],zeroth:[184,206],zettabyt:117,zh:89,zhangqi:191,zhi:144,zia:188,zinkevich:150,zip:[18,22,29,30,31,33,35,37,38,40,42,43,68,73,124,131,135,137,138,140,141,145,165,168,183,184,196,198,204,205,206],zip_fil:73,zip_file_nam:73,zip_file_path:[29,30,31,40,73],zip_filenam:[37,38],zip_ref:[29,30,31,33,37,38,40,42,135],zip_store_path:[29,30,31,33,43,68],zip_url:[37,38,145],zipfil:[29,30,31,33,37,38,40,42,68,73,135,145],zlad:39,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:61,zodb:192,zone:148,zoom:89,zoom_rang:[32,34,89],zoomed_imag:89,zopedb:192,zorder:167,zorro:97,zsy:61,zth:144,zucchini:[70,171,172],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:61,zw:89},titles:["40. Self-paced assignments","40.22. Analyzing COVID-19 papers","40.27. Analyzing data","40.9. Analyzing text about Data Science","40.13. Apply your skills","40.16. Build your own custom vis","40.17. Classifying datasets","40.26. Data preparation","40.24. Data processing in Python","40.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","40.40. Data Science project using Azure ML SDK","40.10. Data Science scenarios","40.20. Displaying airport data","40.15. Dive into the beehive","40.23. Estimation of COVID-19 pandemic","40.25. Evaluating data from a form","40.36. Explore a planetary computer dataset","40.37. Exploring for answers","40.19. Introduction to probability and statistics","40.12. Lines, scatters and bars","40.39. Low code/no code Data Science project on Azure ML","40.38. Market research","40.29. Matplotlib applied","40.28. NYC taxi data in winter and summer","40.18. Small diabetes study","40.21. Soda profits","40.35. Tell a story","40.14. Try it in Excel","40.11. Write a data ethics case study","40.104. Intro to Autoencoders","40.105. Base/Denoising Autoencoder & Dimension Reduction","40.106. Fun with Variational Autoencoders","40.93. How to choose cnn architecture mnist","40.97. Object Recognition in Images using CNN","40.95. Sign Language Digits Classification with CNN","40.119. Summary","40.115. DQN On Foreign Exchange Market","40.116. Art by gan","40.118. Generative Adversarial Networks (GANs)","40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment","40.110. NN Classify 15 Fruits Assignment","40.109. Neural Networks for Classification with TensorFlow","40.120. Car Object Detection","40.122. Basic classification: Classify images of clothing","40.102. Google Stock Price Prediction RNN","40.98. Intro to TensorFlow for Deep Learning","40.107. Time Series Forecasting Assignment","40.86. Counterintuitive Challenges in ML Debugging","40.85. Data engineering","40.87. Case Study: Debugging in Classification","40.88. Case Study: Debugging in Regression","40.78. Beyond random forests: more ensemble models","40.79. Decision trees","40.83. Random Forest Classifier with Feature Importance","40.77. Random forests for classification","40.76. Random forests intro and regression","40.82. Boosting with tuning","40.81. Gradient boosting","40.80. Hyperparameter tuning gradient boosting","40.69. Decision Trees - Classification","40.68. Decision Trees - Intro and Regression","40.65. Kernel method assignment 1","40.67. Support Vector Machines (SVM) - Classification","40.66. Support Vector Machines (SVM) - Intro and SVM for Regression","40.72. Dropout and Batch Normalization","40.73. Lasso and Ridge Regression","40.71. Learning Curve To Identify Overfit & Underfit","40.70. Model selection assignment 1","40.74. Regularized Linear Models","40.75. Customer segmentation: clustering - assignment 3","40.91. Build Classification Model","40.90. Build classification models","40.53. Build ML web app - assignment 1","40.54. Build ML web app - assignment 2","40.59. Create a regression model","40.63. Delicious asian and indian cuisines","40.64. Explore classification methods","40.57. Exploring visualizations","40.60. Linear and polynomial regression","40.45. Linear regression - California Housing","40.48. Gradient descent","40.49. Linear Regression Implementation from Scratch","40.46. Linear Regression Metrics","40.47. Loss Function","40.56. Managing data","40.50. ML logistic regression - assignment 1","40.51. ML logistic regression - assignment 2","40.52. ML neural network - Assignment 1","40.42. Machine Learning overview - assignment 1","40.43. Machine Learning overview - assignment 2","40.92. Parameter play","40.62. Pumpkin varieties and color","40.55. Regression tools","40.44. Regression with Scikit-learn","40.61. Retrying some regression","40.89. Study the solvers","40.58. Try a different model","40.8. Python programming advanced","40.7. Python programming basics","40.6. Python programming introduction","40.5. Project Plan\u200b Template","40.3. First assignment","40.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4.3. Advanced Pandas Techniques","5.4.2. Data Selection","5.4.1. Introduction and Data Structures","5.4. Pandas","5.1. Relational databases","5. Working with data","27. Autoencoder","23. Convolutional Neural Networks","23.3.1.2. Deepdream in TensorFlow","23.3.1.1. Stylenet / Neural-Style","33. Diffusion Model","21. Intro to Deep Learning","30. Deep Q-learning","24. Generative adversarial networks","31. Image classification","32. Image segmentation","28. Long-short term memory","26. Natural Language Processing Overview","22. Neural Networks","34. Object detection","25. Recurrent Neural Networks","29. Time series","Learn AI together, for free","37. Data engineering","39. Model deployment","38. Model training & evaluation","35. Overview","36. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","20. Model selection","17. Unsupervised learning","19. Unsupervised learning: PCA and clustering","12.4. Build a web app to use a Machine Learning model","12. Getting started with classification","12.1. Introduction to classification","12.2. More classifiers","12.3. Yet other classifiers","10. Machine Learning overview","13.2. Gradient descent","13.1. Loss function","13. Parameter Optimization","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","41.10. Data Science in real world","41.9. Data Science in the cloud","41.4. Data Science introduction","41.8. Data Science lifecycle","41.7. Data visualization","41.6. NumPy and Pandas","41.5. Relational vs. non-relational database","41.20. Convolutional Neural Network","41.21. Generative Adversarial Network","41. Slides","41.18. Kernel method","41.19. Model Selection","41.17. Unsupervised learning","41.16. Build an machine learning web application","41.12. Linear Regression","41.13. Logistic Regression","41.14. Logistic Regression","41.11. Machine Learning overview","41.15. Neural Network","41.3. Python programming advanced","41.2. Python programming basics","41.1. Python programming introduction"],titleterms:{"0":61,"1":[3,24,30,32,45,51,52,54,55,56,58,59,60,61,62,63,67,71,72,79,80,85,87,88,109,118,124,139,168,186,187,188,189,190,191,192,193,194,196,200,202,206,207],"10":[41,58,132,139],"100":[53,61,139],"1000":[61,139],"11":58,"12":58,"13":58,"1300131294":165,"15":40,"19":[1,8,14,134],"1d":124,"2":[3,24,30,32,45,46,51,52,53,54,55,56,58,59,60,62,63,71,73,80,85,86,89,109,118,124,168,186,187,188,189,190,191,192,193,194,196,200,202,206,207],"2d":[30,124,196],"3":[3,24,32,40,45,51,52,54,55,56,58,59,60,62,63,69,71,79,85,109,124,186,187,188,189,190,191,193,194,200,206,207],"3d":[30,88,113,196],"4":[3,24,32,45,51,52,53,54,55,56,58,59,60,62,63,71,85,109,168,186,187,188,189,190,191,192,206,207],"5":[24,32,45,51,52,55,56,58,59,60,62,63,71,85,88,109,139,168,186,187,188,189,190,192,206,207],"50":58,"500":58,"6":[45,52,54,55,56,58,59,60,62,63,71,85,186,187,188,189,190],"7":[45,52,54,55,58,59,60,62,63,186,189,190],"8":[54,58,189],"9":58,"90":165,"abstract":175,"boolean":[124,184,185,206,207],"break":[97,183,205],"case":[28,47,49,50,52,109,117,180,196],"class":[36,40,49,52,53,65,67,97,176,183,205],"default":[53,61,134,183],"do":[49,119,179,180,184,188,196],"final":[51,73,79,80,175],"float":[7,184,206],"function":[45,53,61,80,81,83,87,97,98,124,136,137,160,175,176,183,185,191,201,202,204,205],"import":[9,29,33,38,43,46,51,53,54,55,56,58,59,60,61,62,63,66,68,69,88,122,134,135,150,157,164,182,183,200,201,202,204],"long":141,"new":[58,99,124,127,201,202],"null":[7,61,191],"public":38,"return":[99,137,183],"short":141,"static":165,"true":61,"try":[0,27,50,71,80,85,96,183,205],"while":[97,183,205],A:[31,136,166,172,173,178],And:174,At:[48,175,176],But:180,By:160,For:[97,142],Is:152,It:[129,179,192],NOT:179,Not:174,On:36,One:[79,80,204],That:201,The:[9,37,45,53,55,80,82,87,105,106,122,129,143,166,167,173,180,182,183,184,187,191,192,193,196,205,206],There:180,To:[66,166],With:[34,146,175],about:[3,33,116,171,179,190],absolut:[82,176],acceler:167,access:[98,124,127],accuraci:[32,43,49,61,139,164,168,204],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,147,150,154,155,156,157,159,160,161,163,164,165,169,171,172,173,174,178,179,180,182,183,184,185,193,196,198,199,200,201,204],ackowledg:194,action:137,activ:136,actual:109,ad:[30,31,49,64,68,124,166],adaboost:51,adam:204,add:[50,124,150],addit:127,advanc:[32,97,124,125,183,205],adversari:[38,138,194],after:[30,166,197],ag:24,against:50,agent:[36,137],agglom:[167,168],aggreg:[124,125,188,191],ahead:87,ai:[37,43,147,198],airport:12,aka:66,algorithm:[52,56,137,151,154,159,160,164,167],align:127,all:[24,49,79,116,129,178,190,192],an:[9,31,66,68,105,106,109,123,124,169,193,199],anagram:184,analysi:[8,39,51,53,54,55,56,58,59,60,61,62,63,79,82,104,108,168,174,198,203],analyz:[1,2,3,18,108,124,180,189],anchor:[40,53],anim:113,ann:46,annot:[183,205],anomal:49,anomali:29,anoth:38,answer:17,ap:165,api:[34,45],app:[72,73,169],append:[98,191],appli:[4,22,49,117,172,173,188],applic:[52,131,142,168,199,203],approach:[53,109,129,172,192],ar:184,arbitrari:183,architectur:[32,132,136,143,193,204],argument:[134,183,205],arithmet:[127,184,206],arrai:[124,127,191],art:37,artifici:203,artwork:37,ascend:[98,99],asian:75,ask:180,assert:53,assign:[0,12,25,40,46,61,67,69,72,73,85,86,87,88,89,101,102,124,125,127,168,202],assist:140,attribut:[61,124,127,191],auc:[58,61],audienc:109,augment:[32,34,135],author:182,autoencod:[29,30,31,131],automl:[9,105,106,150],avail:124,averag:[97,180],avoid:[113,166],axi:124,azur:[9,10,20,105,106,123],b:[80,175],babylonian:98,backend:72,background:135,backprop:87,bag:[51,156,159,164],balanc:171,bar:[19,22,190],base:[30,97,126,164],basebal:18,baselin:[49,50,174,203],basi:61,basic:[29,32,43,45,98,117,124,127,137,184,185,188,191,206,207],batch:[33,64,167],beehiv:13,begin:109,behind:57,best:[9,32,38,105,152],beta:135,better:[172,179],between:[24,56,58,71,79,85,124,159,176,188,191],beyond:[41,51,165,196],bi:56,bia:[66,159,166,197],bibliographi:[25,175,176],big:204,binai:56,binari:[41,176,179],binder:0,bird:[114,190],bit:[31,124],bitcoin:39,blend:56,bmi:24,boost:[51,56,57,58,160,161,162,164],bootstrap:156,bound:135,boundari:[165,167,196],boxplot:[24,88],bp:24,brain:193,broadcast:[124,191],bug:50,build:[5,29,31,32,37,42,43,52,53,70,71,72,73,85,113,142,155,169,178,179,180,190,199],c:61,cach:199,calcul:[49,97,98,184],california:79,call:205,callabl:126,callback:41,can:[35,52,58,119,188],candid:58,capac:166,captur:[111,189],car:42,cardin:53,cast:[184,206],catalog:148,catboost:56,categor:[7,53,56,59,71,79,85,178,200],categori:98,categorical_crossentropi:204,caus:47,central:[18,121],centroid:167,chain:127,challeng:[1,14,22,47,117,124,136,139,142,144,188],chang:[34,56],changin:34,channel:109,chart:[113,116,190,199],check:[30,49,50,53,55,59,61,71,79,85,150,164,180,184,207],checkbox:199,checklist:117,choic:[127,152],choos:[32,52,79,104,106,113,168,172,187],churn:52,cifar:[132,139],citi:[58,129,192],classic:[139,140,144,160],classif:[34,41,43,49,51,52,53,54,59,61,62,70,71,76,83,85,88,139,160,170,171,173,174,176,179,196],classifi:[6,40,41,43,51,53,54,59,62,164,171,172,173],clean:[69,122,169,171,179],cloth:43,cloud:[9,72,73,103,104,105,187],cluster:[9,69,105,106,153,154,155,167,168,198],cnn:[32,33,34,46,132,144,193],co:165,code:[20,73,80,106,117,131,132,133,134,135,137,139,140,141,142,143,144,145,149,175,185,187,194,205],collect:[40,174,203],color:[91,113],column:[7,53,56,127,199],com:165,combin:[124,125,126,191],come:201,comment:[61,184,185,206,207],commerc:142,common:[65,67,83,122,136,184],commun:[109,189],compani:58,compar:[61,190],comparison:[124,159,184,206],compil:[37,41,43,204],complet:35,complex:[50,52,97,184,206],compon:[142,143,168,198],comprehens:[179,184,206],comput:[1,9,14,16,24,105,106,124,191,193,204],con:[52,159],concat:[125,191],concaten:[56,191],concept:[83,117,129,188,192],conclus:[1,18,31,32,34,47,49,50,61,65,67,69,81,82,83,109,121,129,160,163,164,166,180,197],conculs:37,condit:97,confid:[18,121],configur:[9,105,182],confus:[53,61,179,201,202],connect:[131,136,147,193],consider:169,constant:45,consum:9,consumpt:[105,106,148],contain:124,content:[33,59,60,62,63,203,205],context:58,continu:[97,137,183,205],control:[41,183,185,205],converg:47,convert:[56,124],convolut:[29,32,33,131,132,136,193],corp:18,correl:[18,24,50,55,56,71,79,85,121,178,179],correspond:1,cosin:135,cosmo:123,cost:176,count:[97,98,184],counterintuit:47,covari:121,covid:[1,8,14,124],creat:[9,32,40,41,45,47,71,74,79,85,97,98,105,106,124,127,194],creation:[58,65,67,124],criteria:52,cross:[52,61,79,88,164,176,201],crucial:52,csv:46,cuisin:[75,171,172],cultur:117,current:132,curv:[37,61,66,150,166,179],custom:[5,35,41,52,69,142],cv:[61,164],d3:113,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,37,38,39,40,41,42,43,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,71,79,81,84,85,88,103,104,105,107,108,109,110,111,112,114,117,118,119,121,122,123,124,125,126,127,129,130,134,135,146,148,150,151,152,154,164,169,171,172,173,174,179,180,184,185,186,187,188,189,190,191,192,196,199,200,203,204,206,207],databas:[12,129,192],databasetyp:192,dataclass:127,datafram:[7,122,127,191],dataset:[6,16,29,30,31,33,35,36,40,43,47,48,49,50,53,61,88,105,106,114,125,139,140,159,164,168,171,182,190,191,198,200,201,202,204],datatyp:124,date:180,db:123,dbscan:167,deal:[7,48,56,97,122,124],debug:[47,49,50,150],decept:113,decis:[52,53,59,60,159,167],decisiontre:57,decisiontreeclassifi:52,declar:[53,61,164],decor:[183,205],decorrel:159,decreas:47,deep:[43,45,136,137,146,203],deepdream:133,deeplab:140,def:[183,185],defin:[29,33,36,81,118,119,140,146,174,179,188,203,205],definit:[117,135,137,183,188],degre:24,del:[98,184,206],delet:127,delici:75,demens:30,demo:168,denois:[29,30,35],dens:[32,87,136],densenet:139,densiti:[22,114,190],depend:[24,137],deploi:[9,174,203],deploy:[72,73,105,106,149,151],depth:150,deriv:[80,175],descent:[80,81,160,175],describ:[7,118],descript:[61,88,108],design:[200,204],detect:[7,29,42,144],determin:180,detr:144,develop:[0,81],deviat:121,diabet:[24,182],diagnosi:1,dict:[97,98,127],dictionari:[97,98,184,185,206,207],differ:[24,96,127,176],difficult:80,diffus:135,difuss:35,digit:[34,52,89,119,132],dimens:[30,53,88,198],dimension:[61,69,80,124,159,191],direct:146,dirrec:146,disciplin:58,discours:142,discov:171,discrimin:[37,38],diseas:24,dispers:61,displai:[12,53,113,124,155,199],distant:196,distribut:[18,24,53,56,61,114,121,154,190],dive:[13,165],diverg:135,divid:88,docstr:[184,205,206],document:[123,183,205],doe:[0,142,194],dog:38,donut:[115,190],download:[29,134],dqn:36,draw:[196,199],drop:7,drop_dupl:7,dropout:[32,49,64,166,197],dual:[116,190],duplic:[7,48,98,122,184],e:142,earli:[166,180,197],early_stopping_round:163,easi:152,ecg:29,eda:[53,71,85,164,174,203],educ:58,effect:[109,189],elbo:135,elbow:155,element:[98,124,184],elif:97,els:97,emot:109,emul:123,encod:[7,53,58,79,88,200,204],end:109,endpoint:[9,105,106],engin:[48,50,53,56,148,151],enrol:58,enrollee_id:58,ensembl:[51,56,156,158,173],entropi:[52,176,201],envireon:36,environ:[0,137,182,185],episod:137,equat:200,equival:50,error:[61,82,156,174,176,183,203,205],establish:[49,50,174,203],estim:[14,22],ethic:[28,117,188],eval:125,evalu:[15,41,43,51,54,55,56,59,60,62,63,69,71,79,81,85,88,137,150,151,204],everydai:142,everyth:[124,188,191],evid:135,evil:18,evolut:[149,164],exampl:[29,38,52,64,104,124,137,146,157,160,161,163,166,168,174,192,200,203],excel:27,except:[97,183,205],exchang:36,exercis:[7,154,155,169,171,172,173,179,180,182],exist:[45,124],expect:135,experi:[9,32,58,105,180],explod:47,exploit:137,explor:[7,16,17,31,33,43,48,51,53,54,61,71,76,77,79,80,85,108,114,122,123,137,190,191],exploratori:[39,51,53,54,55,58,59,60,61,62,63,79,108,174,203],express:183,extend:98,extract:[1,193],extrem:[159,164],f1:61,facet:[116,190],failur:[105,106],fals:61,fashion:[41,43],faster:144,fcn:140,fco:144,featur:[32,49,50,52,53,54,55,56,58,59,61,71,79,85,88,146,147,150,157,164,174,178,193,201,202,203],feed:[43,143],feel:80,fibonacci:98,field:[119,124,188],figur:165,file:[34,46,72,185,207],fill:[7,56,97],filter:184,financ:142,find:[53,58,71,80,85,167,184],fine:132,first:[29,88,101,180,182],fisher:168,fit:[47,58,66,165,166,197,200,204],fix:49,flask:169,flat:124,flatten:193,flow:[183,185,205],flu:146,fold:[61,164],forecast:[46,146],foreign:36,forest:[51,53,54,55,157,159],fork:31,form:15,format:[49,98,184,206],formul:[71,85,203],formula:[82,98],forward:[135,143],four:178,frame:[151,152],free:[80,147],frequenc:53,friedman:160,from:[15,34,40,45,65,67,81,86,98,124,127,184,193,198,201,204],frontend:72,frontier:[175,176],fruit:40,full:[87,193],fulli:131,fun:31,gain:[80,175],gan:[37,38,194],gate:141,gbm:160,gcd:97,gender:[24,58],gener:[37,38,40,42,98,124,138,194],geograph:79,ger:194,get:[1,3,24,41,47,88,98,115,119,124,154,158,170,182,190],giant:198,github:0,give:31,glass:31,global:[32,88,183],go:[41,172],goal:[3,122],good:[66,166,200],googl:44,govern:148,gradient:[47,51,57,58,80,81,160,161,162,164,175],grid:[116,179,190],gridsearch:61,gridsearchcv:58,group:[88,98,125],guid:43,hand:184,handl:[48,59,61,66,79,183,191],handwritten:[52,132],have:[49,56,179],hdf5:72,head:7,healthcar:142,heart:[105,106],hello:171,here:180,hidden:136,hide:199,hierarch:[125,167],high:[47,125,159],higher:61,hing:165,hint:50,histogram:[22,55,114,190],histori:[139,140,144,160],honei:[116,190],hood:61,hot:[79,204],hous:79,how:[0,32,52,118,132,140,142,152,160,166,185,193,194,196,204],http:165,human:[107,186],hyperparam:35,hyperparamet:[58,61,150],hyperplan:61,hypothesi:[18,24,121,200],id:[40,53],identifi:[7,56,66,108],iiit:140,illustr:157,imag:[29,30,32,33,38,43,125,139,140,165,167,193],imagenet:139,imbalanc:49,impact:166,implement:[34,41,50,81,82,98,134,161,164,200],improv:[54,55,58,59,60,62,63,150],includ:[184,206],inconsist:[48,108],indent:[184,185,206,207],index:[124,125,126,127,191],indian:75,indic:124,individu:[33,79,124],industri:[107,186],inequ:135,inertia:167,info:7,inform:[7,61,122],infrastructur:149,ingest:[148,151],ingredi:171,inherit:[183,205],initi:[9,38,58,167],input:[50,61,79],insensit:196,insert:[98,184],insid:[183,205],insight:[3,71,85,175],instal:[182,185],instanc:[105,183],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,74,76,90,93,94,95,96],integ:[124,184,206],intellig:203,interpret:[66,82,150,166],interv:[18,121],intro:[29,45,55,60,63,136],introduc:[127,191],introduct:[9,18,24,30,52,56,61,64,66,79,81,99,104,105,109,111,120,121,124,127,154,155,160,162,164,168,171,178,179,180,182,185,188,197,199,201,202,204,207],intuit:[61,80,157,164,168,175],inventori:123,investig:14,involv:124,iri:[66,168,198],isol:56,issu:168,item:[98,184],iter:124,jensen:135,job:58,join:[98,125,129,191,192],jpeg:165,js:113,json:123,just:56,k:[61,155,159,164,167,168,173,198],kaggl:22,kei:[143,174,184,203],kera:[34,40,204],kernel:[22,61,165,193,196],keyword:183,kl:135,knn:88,know:[115,190],l1:[166,197],l2:[166,197],label:[53,88,126,127,174,203,204],lag:146,lambda:[97,166,183],languag:[34,142],larg:[32,121],lasso:[65,67],lasson:[65,67],last:[48,58],latent:30,law:121,layer:[32,43,49,87,136,148,204],layout:199,lda:167,learn:[9,37,43,45,47,52,58,61,65,66,67,79,88,89,93,106,131,136,137,146,147,150,152,153,158,166,167,168,169,171,172,174,175,176,178,180,181,182,187,198,199,203],learning_r:163,legal:142,length:97,let:[80,165,175,184,194,196,205],level:[34,58],libari:33,librari:[29,32,34,38,39,44,53,61,69,88,135,164,182,200,201,202,204],lifecycl:[110,111,189],lightgbm:56,like:[109,127],limit:[18,121,167],line:[19,116,178,190,196,199],linear:[49,50,61,68,78,79,81,82,135,146,165,166,173,175,178,179,196,200,201,202],linearli:196,list:[97,98,99,127,183,184,185,205,206,207],liter:[184,206],load:[12,14,25,29,30,31,32,34,36,37,38,39,40,43,44,46,49,51,54,55,56,58,59,60,62,63,69,88,105,106,134,135,164],local:0,logic:57,logist:[66,71,85,86,165,172,175,179,196,201,202],look:[1,41,55,58,178],loop:[38,57,87,97],loss:[47,49,66,81,83,87,150,160,165,176,201,204],lot:[56,179],low:[20,106,187],lower:[102,135],lstm:[39,46],m:[80,175],machin:[9,43,61,62,63,79,88,89,106,152,153,165,169,174,175,176,181,182,187,196,199,203],mae:82,magic:199,main:[137,164],maintain:[111,189],mainten:151,major:58,make:[14,37,43,113,140,164,180,201,202],manag:[84,111,123,180,189],mani:32,manipul:[45,124],map:[32,56,79,173,199],mape:82,margin:[61,165,196],market:[21,36,180],mask:144,math:[57,80,124,165],mathemat:175,matplotlib:[22,180],matrix:[50,53,56,61,179,200,201,202],max:[124,188,191],max_depth:58,max_featur:58,maxim:[165,196],maximum:[61,191],mean:[24,82,121,135,155,167,168,198],meaning:[109,113],media:104,median:121,medicin:1,memori:141,men:24,merg:[98,99,125,191],method:[51,61,76,98,109,127,142,155,165,167,183,184,196,204,206],metric:[61,71,82,85,150,168,204],min:[124,188,191],min_samples_leaf:58,min_samples_split:58,mind:109,mini:167,minimum:191,miscellan:58,miss:[7,48,53,56,59,61,71,79,85,97,122,164,180,191],ml:[9,10,20,47,72,73,85,86,87,105,106,160],mnist:[32,43,49,52,132,198],mobilenet:139,mode:121,model:[8,9,29,30,33,34,35,37,38,39,40,41,42,43,45,46,47,49,50,51,52,53,54,55,56,58,59,61,66,67,68,69,70,71,72,74,79,81,85,88,96,105,106,135,137,139,140,142,144,146,149,150,151,152,153,155,163,166,169,174,178,179,180,181,182,194,197,200,201,202,203,204],modul:[183,205],more:[32,51,54,71,85,172,175,180],most:58,mostli:56,motiv:165,mse:82,much:32,multi:176,multiclass:41,multicollinear:[56,66],multioutput:146,multipl:[124,167,183,184,200],multistep:146,mushroom:[115,190],mutabl:98,myqcloud:165,n_estim:163,n_job:163,name:[53,127,165],namedtupl:127,nan:[7,191],nation:172,nativ:124,natur:142,ndarrai:[124,127],nearest:159,need:179,neighbor:[159,173],nest:[184,206],net:35,network:[32,33,35,38,40,41,87,113,132,134,136,138,143,145,193,194,201,204],neural:[32,33,40,41,87,132,134,136,143,145,193,201,204],next:29,nlp:142,nn:40,nois:[30,135],noisi:30,non:[7,123,192,196],none:[7,191],nonlinear:[49,50,87],nonloc:183,normal:[18,22,46,50,64,121,200],nosql:[123,192],note:51,notebook:[105,182],now:[72,196],number:[53,58,97,98,121,124,167,168,184,185,204,206,207],numer:[7,52,53,56,61,79,191],numpi:[34,124,191],nyc:23,o:40,object:[33,42,80,83,124,127,144,175,176,183,191],obtain:152,occurr:98,odd:180,one:180,oper:[45,98,124,127,184,191,206],optim:[38,50,58,61,150,167,177,200,204],option:[0,49,106,165,175,176,199],order:98,ordin:56,ordinari:[174,203],orign:30,other:[29,52,71,85,119,124,173,179],our:[72,200,204,205],out:[0,156],outlier:[56,61],outlin:[196,197,198],output:[79,205],over:[166,197],overcom:142,overfit:[61,66,166],overiew:146,overview:[29,42,43,88,89,125,126,127,131,137,141,142,151,166,174,203],own:[5,200,205],oxford:140,pace:0,packag:183,pad:193,pair:32,pairplot:[55,88],panda:[7,46,108,125,127,128,191],pandem:14,paper:[1,8,104,124],paramet:[38,52,53,58,88,90,159,177,204],parameter:135,part:[24,55],partial:[80,175],pass:49,path:46,pca:[167,168,198],pd:191,peopl:97,percentag:[53,82],perceptron:143,perform:[45,71,85,125,174,203,204],permut:157,pet:140,phrase:109,pickl:169,pictur:40,pie:[115,190],piec:97,pipelin:[79,139],pivot:125,plai:[90,193,194,201],plan:[58,100,173],planetari:16,play:175,plot:[22,24,30,32,57,79,114,116,179,190,199],plote:37,point:196,polici:137,polynomi:[61,78,178,200],pool:193,popul:98,posit:[61,126],potenti:131,practic:[157,159],pragmat:142,pre:[14,39,58],precis:61,predict:[40,43,44,52,56,58,72,85,88,105,106,140,164,166,172,197,200,201,202],predictor:56,prepar:[7,31,32,34,41,46,81,122,140,146,155,173,178,180],prepreprocess:37,preprocess:[37,38,43,51,54,55,58,59,60,62,63,68,69,71,79,85,135,167,174,203,204],prerequisit:[155,178,179],preserv:191,preview:[53,164],price:[44,85,180],princip:[168,198],principl:117,pro:[52,159],probabl:[18,24,121,188],problem:[42,52,53,61,71,85,151,152,159,160,174,200,203],process:[8,14,39,49,56,79,111,125,135,142,148,151,189,193],product:[73,152],profession:117,profil:[69,108],profit:25,program:[97,98,99,124,174,183,184,185,203,205,206,207],progress:[24,199],project:[10,20,100,105,106,113],promot:124,properti:[53,135],proport:[115,190],pumpkin:[91,180],put:[79,152,178],python:[8,82,97,98,99,124,164,182,183,184,185,191,205,206,207],q:137,qualiti:[52,148,150],quantiti:190,quartil:121,queri:[108,123,125],question:[179,180],quot:198,r2:82,r:[82,144],r_t:14,radial:61,rainfal:[129,192],rais:183,random:[18,30,51,53,54,55,121,157,159,188],rang:[85,97,127,183],rate:[47,58,61],rbf:[61,165],re:135,reach:47,read:[46,52,164],readabl:113,readi:24,real:[18,104,107,121,150,159,186],reason:[66,172],recal:61,recap:82,recogn:89,recognit:[33,52],record:127,recurr:[136,145],recurs:[146,184],reduc:50,reduct:[30,69,198],redund:56,refer:[14,186,187,188,189,190,191,192,205,206,207],refresh:66,regress:[50,52,55,60,63,65,66,67,71,74,78,79,81,82,83,85,86,92,93,94,146,160,165,166,172,174,175,176,178,179,180,181,182,196,200,201,202],regressor:[55,60,63],regul:117,regular:[49,65,67,68,83,166,197],reinforc:[174,203],relat:[119,123,129,188,192],relationship:[56,79,116,129,190,192],relev:58,remov:[7,48,49,56,58,98,122,124,184],renam:53,replac:98,report:[53,61],represent:159,research:[21,107,132,175,176,186],reshap:124,residu:[35,82,143],resnet:[139,143],resourc:[106,168],respect:[80,175],respons:109,result:[3,30,40,41,50,58,61,164,200,201,202],retri:94,retriev:[129,192],revers:[135,184],reward:137,ridg:[65,67],right:[106,113,180],rl:137,rmse:82,rnn:[44,46,136],road:87,roc:[61,179],role:[51,55],root:[82,98],rotaion:34,row:88,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,74,76,77,90,93,94,95,96],rule:124,run:[9,61,182],s:[72,79,80,135,160,165,168,175,176,179,180,184,188,189,190,191,194,196,201,202,205,207],salepric:56,sampl:[31,108],satisfi:150,save:[9,38,105],scalar:[124,127],scale:[30,53,56,61,71,79,85,88,201,202],scatter:[19,22,57],scatterplot:[56,116,190],scenario:11,schedul:135,schema:[12,50],scienc:[3,9,10,11,20,103,104,105,107,110,111,117,119,186,187,188,189,203],scientif:104,scikit:[52,61,65,67,93,172,178,180,182],scope:[183,205],score:[61,82,155,164],scratch:[40,65,67,81,86,200,201,204],sdk:[9,10,105],search:[97,148],second:[29,49,102,180],section:[83,176],secur:[111,148,189],see:[58,193],segment:[69,140,167],segnet:140,select:[45,53,67,126,127,150,166,174,191,197,203],selectbox:199,self:[0,104,105,106,107,109,111,113,114,115,116,117,118,119,121,123,124,125,129,131,132,134,137,145,150,151,152,154,155,169,171,173,178,179,180,182,183,184],semant:142,sens:14,sentenc:97,sentiment:[39,104],separ:[53,61,164,196,201],seper:72,sequenc:98,sequenti:45,seri:[46,127,146,191],serv:149,servic:142,session:[80,175],set:[32,43,51,53,54,55,56,59,61,79,88,134,164,184,185,200,201,202,204,207],setdefault:98,setup:[38,42,50,105,185],sex:24,shanghai:165,shape:[7,45,88,164],shell:185,shortcom:[129,192],show:[38,88,113,199],showcas:148,shuffl:[49,61],side:179,sidebar:199,sigmoid:[61,201,202],sign:34,silhouett:155,similar:159,simpl:[31,46,47,150,166,178,191,200],simpler:35,simul:[18,57],singl:[33,79,98,124,129,136,192],size:58,skew:49,skicit:[65,67],skill:4,skip:80,sklearn:[79,157,196,198],slice:[49,98,124,126,127,150],slide:195,slider:199,small:[24,58],smile:31,social:104,soda:25,solut:[47,49,50,137],solver:95,some:[38,94,175,184],someth:[35,180],sort:[98,124],sourc:118,space:[30,61],special:141,specif:[9,58,61],specifi:98,spectral:[167,168],split:[34,49,50,52,53,56,59,61,79,98,164,172,173,200,201,202],splite:88,spread:[8,124],spreadsheet:123,squar:[82,98,176],st:199,stack:[51,97],standard:[121,139,143],start:[41,129,150,154,158,170,182,192],state:137,statement:[53,97,160,183,184,205,206],statist:[18,24,50,53,59,71,79,85,108,121,164,188],step:[3,29,58,79,146,160],still:179,stock:44,stop:[166,197],storag:148,store:[111,123,189],stori:[26,109],storytel:109,str:[98,102],strategi:[1,122,146,149,180],stratifi:61,streamlit:[72,73,199],stride:124,string:[97,98,183,184,185,205,206,207],structur:[1,32,83,124,127,191],student:[107,186],studi:[24,28,47,49,50,95,104,105,106,107,109,111,113,114,115,116,117,118,119,121,123,124,125,129,131,132,134,137,145,150,151,152,154,155,169,171,173,178,179,180,182,183,184],studio:[106,185],style:[113,134,199],stylenet:134,subarrai:124,subclass:45,subplot2grid:22,subplot:22,subsambl:32,subsampl:58,sum:97,summari:[32,35,47,53,59,61,71,85,164,165,204],summer:23,sup:192,supervis:[174,203],support:[61,62,63,165,173,196],sustain:[107,186],svc:173,svm:[61,62,63,165,196],svr1:165,svr:165,swarm:179,syntax:[142,184,185,206],system:[174,203],tabl:[33,125,129,192,203,205],tail:7,take:41,target:[53,56,61,164],task1:46,task2:[46,58],task5:54,task:[24,46,51,52,54,55,56,58,79,118,137,146],taxi:23,taxonomi:137,techniqu:[125,142],tell:26,templat:100,tensor:45,tensorboard:41,tensorflow:[29,41,45,133],term:[98,141],terminolog:[137,174,203],test:[18,24,33,34,49,50,51,53,54,55,56,58,59,61,79,87,88,121,151,164,200,201,202],text:[3,114,190],text_input:199,tf:45,thank:203,theme:199,theorem:[18,121],theori:[31,168],thi:[0,43,57,83,175,176,179],thing:180,third:29,tidi:179,time:[46,72,80,104,146,175,193,194],titan:22,titl:[98,102,124],todo:35,togeth:[56,147,178],toi:52,tool:[92,124,169,182],top:139,trade:182,tradeoff:[166,197],traffic:146,train:[30,31,32,33,34,36,37,38,40,41,42,43,49,51,53,54,55,56,59,60,61,62,63,66,71,79,81,85,87,88,105,106,136,140,150,151,164,174,200,201,202,203,204],trane:200,transfer:[134,150],transform:[3,61,79,119,136,159],transpos:127,treatment:1,tree:[52,53,58,59,60,159,164],trend:[1,132,146],trick:[61,135,196],trigonometr:124,tune:[56,58,88,132,150,163],tunnel:146,tupl:[124,127,184,185,207],turn:[104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,169,171,172,173,174,175,176,178,179,180,182,183,184,185,186,187,188,189,190,191,192,205,206,207],tweet:39,twiddl:124,two:[80,99,184,191],type:[53,56,58,109,113,119,124,136,174,184,185,203,206,207],typic:[174,203],u:35,ufunc:[124,191],under:[61,166,197],underfit:[61,66,166],understand:[49,56,109],univari:[56,200],univers:[58,124,191],unpack:[183,205],unstructur:124,unsupervis:[131,167,168,198,203],up:[43,98,182],upper:[98,102],upvot:31,us:[10,30,33,35,41,43,50,58,61,64,65,66,67,72,81,88,97,98,109,113,114,134,142,147,150,152,164,167,168,169,172,174,178,179,180,185,190,199,204],useless:56,v3:140,v:[165,196,201,202],valid:[32,33,49,50,52,56,61,66,79,88,164],valu:[7,24,49,53,56,58,59,61,71,79,85,97,98,124,127,137,164,166,183,184,190,191],variabl:[18,24,32,45,53,61,121,124,164,167,179,183,184,188,205,206],varianc:[24,66,121,135,155,159,166,197],variat:[31,56],varieti:91,vector:[53,61,62,63,127,142,164,165,173,196],veri:50,verifi:43,versa:184,vgg:134,vggnet:139,vi:5,via:[32,179],vice:184,video:175,view:[53,124,204],vif:66,violin:179,visual:[3,22,35,40,41,58,77,88,108,112,113,114,115,116,179,180,184,185,190,204],visualis:[200,201,202],vit:139,volum:39,vote:51,vowel:184,vs:[164,174,192,203],w:40,waffl:[115,190],wai:[9,105,106,178,187],wait:180,want:97,we:[35,52,58],web:[72,73,169,199],weight:[38,160],what:[24,32,45,88,104,105,106,109,119,139,140,142,144,146,152,161,163,172,174,176,187,188,189,190,194,198,200,203,207],when:[174,201],where:119,whole:200,why:[104,136,185,187,196,207],widget:199,width:[150,165],wingspan:190,winter:23,within:124,women:24,word:[97,109],work:[0,52,58,114,124,130,142,160,182,190,194],workflow:[174,203],workspac:[9,105,106],world:[107,121,150,186],write:[28,199],xgboost:[56,68,163,164],y:24,yet:173,you:[49,80,119,179,188,203],your:[4,5,50,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,169,171,172,173,174,175,176,178,179,180,182,183,184,185,186,187,188,189,190,191,192,205,206,207],zero:49,zoom:34}}) \ No newline at end of file +Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/image-classification","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/difussion-model/denoising-difussion-model","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nlp/getting-start-nlp-with-classification-task","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/object-detection/car-object-detection","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/machine-learning-productionization/random-forest-classifier","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/build-ml-web-app-1","assignments/ml-fundamentals/build-ml-web-app-2","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression/california_housing","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas/advanced-pandas-techniques","data-science/working-with-data/pandas/data-selection","data-science/working-with-data/pandas/introduction-and-data-structures","data-science/working-with-data/pandas/pandas","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn/cnn","deep-learning/cnn/cnn-deepdream","deep-learning/cnn/cnn-vgg","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/nlp","deep-learning/nn","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-advanced/unsupervised-learning-pca-and-clustering","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/parameter-optimization/gradient-descent","ml-fundamentals/parameter-optimization/loss-function","ml-fundamentals/parameter-optimization/parameter-optimization","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/image-classification.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/difussion-model/denoising-difussion-model.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/object-detection/car-object-detection.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/machine-learning-productionization/random-forest-classifier.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/build-ml-web-app-1.ipynb","assignments/ml-fundamentals/build-ml-web-app-2.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression/california_housing.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.ipynb","data-science/data-science-lifecycle/analyzing.ipynb","data-science/data-science-lifecycle/communication.ipynb","data-science/data-science-lifecycle/data-science-lifecycle.ipynb","data-science/data-science-lifecycle/introduction.ipynb","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.ipynb","data-science/introduction/defining-data.ipynb","data-science/introduction/defining-data-science.ipynb","data-science/introduction/introduction.ipynb","data-science/introduction/introduction-to-statistics-and-probability.ipynb","data-science/working-with-data/data-preparation.ipynb","data-science/working-with-data/non-relational-data.ipynb","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas/advanced-pandas-techniques.ipynb","data-science/working-with-data/pandas/data-selection.ipynb","data-science/working-with-data/pandas/introduction-and-data-structures.ipynb","data-science/working-with-data/pandas/pandas.md","data-science/working-with-data/relational-databases.ipynb","data-science/working-with-data/working-with-data.ipynb","deep-learning/autoencoder.ipynb","deep-learning/cnn/cnn.ipynb","deep-learning/cnn/cnn-deepdream.ipynb","deep-learning/cnn/cnn-vgg.ipynb","deep-learning/difussion-model.ipynb","deep-learning/dl-overview.ipynb","deep-learning/dqn.ipynb","deep-learning/gan.ipynb","deep-learning/image-classification.ipynb","deep-learning/image-segmentation.ipynb","deep-learning/lstm.ipynb","deep-learning/nlp.ipynb","deep-learning/nn.ipynb","deep-learning/object-detection.ipynb","deep-learning/rnn.ipynb","deep-learning/time-series.ipynb","intro.md","machine-learning-productionization/data-engineering.ipynb","machine-learning-productionization/model-deployment.ipynb","machine-learning-productionization/model-training-and-evaluation.ipynb","machine-learning-productionization/overview.ipynb","machine-learning-productionization/problem-framing.ipynb","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.ipynb","ml-advanced/ensemble-learning/feature-importance.ipynb","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.ipynb","ml-advanced/ensemble-learning/random-forest.ipynb","ml-advanced/gradient-boosting/gradient-boosting.ipynb","ml-advanced/gradient-boosting/gradient-boosting-example.ipynb","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.ipynb","ml-advanced/gradient-boosting/xgboost.ipynb","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.ipynb","ml-advanced/kernel-method.ipynb","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-advanced/unsupervised-learning-pca-and-clustering.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.ipynb","ml-fundamentals/parameter-optimization/gradient-descent.ipynb","ml-fundamentals/parameter-optimization/loss-function.ipynb","ml-fundamentals/parameter-optimization/parameter-optimization.ipynb","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.ipynb","ml-fundamentals/regression/managing-data.ipynb","ml-fundamentals/regression/regression-models-for-machine-learning.ipynb","ml-fundamentals/regression/tools-of-the-trade.ipynb","prerequisites/python-programming-advanced.ipynb","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,74,75,76,77,83,84,85,86,87,89,90,91,92,93,101,102,103,110,117,118,119,120,125,126,128,129,130,131,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,153,154,155,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,192,194,195,198,200,202,203,204,205,206,208,209,210,211],"00":[25,29,38,41,42,63,65,66,73,131,136,169,173,183,188,195],"000":[7,29,34,46,56,62,69,71,126,143,173,195,208],"0000":[67,127,196],"000000":[41,64,67,70,73,76,83,92,125,129,130,131,158,161,168],"00000000":[127,196],"000000000":41,"000000001":41,"000000002":41,"000000003":41,"000000004":41,"000000e":73,"000001":101,"000004":158,"000014":176,"000035e":65,"000077":131,"000085":131,"0001":[60,62,67,70,83,139,141,154,179,198,204],"000169":158,"000187":158,"0002":209,"000234":158,"00026011":42,"00026941":42,"0003":[160,179],"00030352119521741776":14,"00031829":42,"000340":131,"0004":160,"00042677":42,"0004859":42,"00048828":42,"0005":[39,72,149],"00052738":42,"000537":158,"000574":131,"00058":83,"000581":67,"0006070423904348355":14,"000665":158,"00075388":42,"00082207":42,"000827":131,"00085592":42,"0009105635856522532":14,"00094271":42,"000z":127,"001":[14,31,34,35,37,39,50,60,66,70,72,90,102,141,145,148,154,179,205],"001133":73,"001214084780869671":14,"001238e":65,"0012919896640826":83,"00138378":42,"001413":41,"00153348":179,"001630":176,"001667":161,"00168324":42,"002":209,"00228":149,"00259226":186,"00270041":179,"002962":168,"00329781":42,"003411e":65,"00348282":42,"003604":135,"003652":135,"003707":131,"003750":168,"003900":135,"00390625":145,"00398532":83,"003990":135,"004013":135,"004016":135,"004066":135,"004198":135,"00421906e":42,"004265":176,"0043602":42,"00440216":42,"004663":135,"004767":135,"004884":135,"0049057":42,"005":[62,136,158],"005005":135,"005100":131,"005355":135,"00544156":179,"005524":135,"00561v3":144,"006":142,"00605086":144,"006220":135,"006323":135,"006457":168,"0068":30,"0069":30,"0070":30,"007000":158,"0071":30,"007185":[69,71],"0072":30,"007236":135,"007273":41,"0073":30,"0073697495707838":131,"00736975":131,"007370":131,"007380":168,"0074":30,"0076":30,"0077":30,"0078125":145,"0079":30,"008080":168,"0081":30,"008281":168,"008460":135,"0085":30,"008532e":73,"008906e":65,"009":142,"0090":30,"0092":160,"009477":73,"0097":30,"00978788e":169,"0098":160,"01":[1,14,31,37,41,42,50,53,56,60,62,65,66,70,73,77,83,85,91,123,127,130,131,135,136,137,142,148,150,160,165,169,171,192],"010000":67,"010309":125,"010679":135,"010763":130,"010a691e01d7":[127,196],"01130490957":83,"011305":67,"01138062":179,"01171875":145,"012114":41,"012419":131,"01246024":[67,83],"012635":73,"01273177e":169,"0129":38,"013":142,"01304349e":169,"013246":161,"01324612":161,"013417":168,"013538":73,"013547":168,"01355":148,"014371":168,"014542612245156494":179,"014739":131,"014840":131,"014940":41,"01497":148,"015":[142,158],"0152":160,"015625":[65,145],"016186":168,"016305":158,"01632993161855452":70,"016520":135,"016667":41,"016788":130,"017":182,"0170":65,"0171":136,"01743954":144,"017500":41,"01764613":186,"017692":41,"0183":37,"018352":73,"0189":41,"019231":41,"0195":41,"01953125":145,"0196":[30,41,160],"0196warn":30,"0198":41,"01990749":186,"02":[14,36,39,41,54,62,65,73,130,131,139,144,150,163,169],"0204":41,"0205":41,"02060786":144,"0207":41,"020724e":41,"0210":41,"021057989893612013":179,"0212":41,"0213":41,"02137124":171,"021448":41,"0215":41,"0218":41,"02187239":186,"021919":29,"021973":42,"0220":41,"022331":[69,71],"022377":29,"022443":42,"022460":130,"0226":41,"022692":73,"022738":41,"02277928":144,"0229":[41,136],"0230":41,"0231":41,"023286":42,"0233":41,"0234":41,"0234375":145,"02356819":144,"0238":41,"0246":41,"024613e":65,"02497744e":169,"025358e":131,"0255":[41,136,160],"025568e":65,"025820":161,"0260":41,"026109":83,"026275":42,"02653783":83,"0268":41,"02689146":[67,83],"02734375":145,"02744117":144,"02749798e":169,"0276":41,"02763018":83,"027800":158,"0283":136,"028300":158,"028325":131,"028881":73,"0289":14,"0292":41,"02935816e":169,"0296":41,"02d":38,"03":[14,39,41,42,65,73,127,130,131,150,169,196],"0301":136,"0302":41,"03026961":144,"0311":[41,136],"03121360e":169,"03125":145,"031324":130,"031506725":29,"032":77,"03265429":144,"03265986323710903":70,"03267463":144,"0327":41,"0328":41,"033114":73,"033842":131,"033892e":41,"0339":41,"0342":41,"034452":131,"03446420e":169,"03482076":186,"0348944":144,"035":77,"03501685e":169,"035077":161,"03515625":145,"0352":41,"0353":41,"03530027e":169,"035406":131,"035444":131,"035480":131,"035499e":65,"035711":[69,71],"035785":161,"0358":41,"036":142,"0362":136,"03669362":144,"03676084":83,"037089":131,"0372":41,"0375":41,"037540":41,"0376":41,"037692":41,"0377":41,"03807591":186,"0382":38,"0383":41,"0386":41,"038871":131,"0390":41,"0390625":145,"039105":161,"039164":41,"0392":41,"039250":158,"0393":41,"0394":41,"03942163":83,"039600":42,"039738":161,"039893":41,"0399":41,"03_intellij":41,"03d":[31,39],"04":[14,41,42,53,65,73,120,125,130,131,150,169],"0400":41,"04000000001":41,"040021":73,"04015012":144,"0402":41,"040343":130,"0404":41,"0407":41,"04124236":83,"0416":41,"0418":41,"0420":41,"042143e":65,"04218550e":169,"0423":41,"042321":29,"0424":158,"04251990648936265":171,"04296875":145,"043":142,"0430":41,"04340085":186,"0435":41,"0436":41,"044":158,"0440":41,"0442235":186,"0443":136,"044444":125,"04460606335028361":182,"0447":[41,158],"0447134":144,"0448":41,"045":142,"045000":41,"04555172":83,"045561":41,"045637":41,"0458":41,"04597":144,"0463":41,"0467":41,"046875":145,"04690235":83,"047":142,"0471":41,"04764906":83,"048622":83,"04915341":144,"04922013e":169,"0496":41,"049672":83,"04d":141,"04t22":63,"05":[14,38,41,42,52,65,72,91,129,131,142,150,154,160,167,171,179],"0500":165,"0506":41,"05068012":186,"05068934":144,"05078125":145,"05093587":128,"051":142,"051164":65,"05129013":83,"05163977794943221":70,"051695":41,"0517":41,"05174632":144,"052646":41,"0528":41,"052836":131,"05283644":83,"053126":176,"05345990e":169,"053607":41,"05377960e":42,"053899":161,"053903":41,"054000":[70,92],"05409845":144,"0541":41,"054369":131,"054430e":65,"05447388e":42,"0546875":145,"05504988":144,"0555621":144,"05558296":83,"05581988":144,"05587v3":144,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":65,"056":142,"05667198":144,"057":142,"0571":136,"05729737e":169,"05736295e":169,"05743935":144,"057504":[69,71],"0580":53,"05816076":144,"05859375":145,"0589":41,"05899204":144,"059025":29,"059100":158,"059136e":65,"05919117":144,"0595":41,"059532":73,"05d":[39,141],"05vabnfa1d":169,"06":[14,37,41,65,73,131,142,182],"06040135":144,"061038":131,"061164":131,"0612":37,"061476":161,"06156753":[169,200],"06164216":144,"061652":130,"06169621":186,"061881":161,"0621118":160,"06227022":144,"0625":[145,169,200],"062868":41,"063025":131,"06376063":125,"0638174":144,"064":142,"064079":73,"064088":131,"06468739e":169,"06525736":144,"06537655":144,"065508":83,"06556804":144,"06576":138,"0660":37,"06640625":145,"0668":41,"06704963":144,"067482e":65,"067647":131,"0677799":144,"068415":65,"06866593e":169,"06870":148,"06870405":144,"0688":65,"0688029":144,"06886704":144,"0694":41,"069473e":65,"06948027":144,"069987":73,"07":[1,41,56,65,129,130,131,136,142,160,182,195],"0703125":145,"070471":131,"070833":41,"07103796":179,"07117926e":169,"071203171893359e":195,"071268":41,"0713":41,"0716":38,"071856":64,"072046":73,"0721":38,"07272727":91,"073":142,"07383654":83,"07394277":144,"07421875":145,"074246":41,"07432988":83,"074776":161,"075":[142,172,202],"075001":131,"07534395":144,"075361":73,"0754":41,"07554621":144,"07555147":144,"075604":179,"075650":158,"07604103":83,"07614989":131,"07614989061128":131,"076150":131,"07665441":144,"076661":73,"076923":41,"07737338323":67,"077500":41,"07769945e":169,"077712":161,"0781":53,"078125":145,"07878788":91,"078843":41,"078910":[69,71],"078934e":65,"079167":41,"07959982":83,"08":[41,53,65,73,101,120,125,127,131,182,187,192,209],"0801":36,"080870":41,"081":142,"08104258":179,"0813":36,"08157576":144,"0819":41,"08203125":145,"08206309":144,"08207602e":169,"0822":158,"0823":36,"082436":131,"0829":158,"083032":131,"083333":41,"0835":36,"0835601":125,"08377614":144,"0839":37,"0841":36,"08421487":144,"0843":53,"08484848":91,"085":[172,202],"085537":195,"08588317":144,"0859375":145,"086":142,"0864":36,"086798":29,"087":[142,158],"0881":36,"088730":161,"08898591":144,"088992":41,"08925183":144,"0893":41,"08946078":144,"089525":158,"08963869e":169,"08964461":144,"08984375":145,"09":[25,37,41,65,73,83,131,142],"090000":41,"090298":41,"090321":158,"090548":41,"090717":41,"09090909":91,"09091988e":169,"091":142,"091439":41,"09146885":179,"091489":41,"091574":65,"091606":73,"09207596":144,"0924":[37,149],"092731":131,"09274592":144,"092939":158,"09312624":144,"0934":36,"093557":131,"0937":149,"09375":145,"093902":130,"094025":41,"094383":41,"094390":131,"0944":37,"094493":41,"095000":41,"095163":41,"09531643e":169,"0954":149,"095922":41,"09592476":144,"096131":131,"096164":41,"096233":130,"0964":158,"096545":41,"096688":41,"096907":73,"09704554168":83,"097061":41,"097124":41,"097329":130,"09736372":83,"097565":41,"09759183e":169,"097633":131,"09765625":145,"097692":41,"09772872e":169,"0978":144,"097950":158,"098004":41,"098327":41,"098485":41,"0985":41,"098512":41,"09913234":144,"099139":41,"099198":41,"099369":41,"099380":41,"09941497e":169,"099428":41,"099534":41,"099587":41,"099596":41,"099674":41,"0a":[129,130,131,187],"0aarrai":129,"0ad":131,"0adel":131,"0adf":[129,131],"0adf1":[129,130],"0adf2":129,"0adfd":130,"0adfl":130,"0afor":187,"0aget_age_group":187,"0aimport":[129,130,131],"0aindex":129,"0al":129,"0amask":130,"0anp":130,"0aother":129,"0as1":130,"0ax":130,"0cm":51,"0f":46,"0n":32,"0nb81h2lf3u6tgo":65,"0rvhljoesr6bt4cmi":65,"0s":[29,30,37,41,45,53,60,66,67,76,83,136,144,147,149,171,178],"0th":[46,130],"0x0000020ad04ad280":30,"0x0000020ad0975280":30,"0x132a05eb0":194,"0x15efcfd6708":172,"0x15efe146708":172,"0x1799f6b3e80":76,"0x1799f7b00d0":76,"0x1f49b239f08":83,"0x1f4a26c7b08":83,"0x1f4a26efc48":83,"0x1f4a2788808":83,"0x1f4a27bb588":83,"0x1f4ad02ae08":83,"0x1f4ad061988":83,"0x20ad0773190":30,"0x227c78bf790":64,"0x24c343c74c8":73,"0x24c38b8cfc8":73,"0x25c6dfaf370":36,"0x28523a37dc0":158,"0x7e1538110d60":171,"0x7e3d355e1e70":53,"0x7e3d441045e0":53,"0x7f2ffc9951e0":128,"0x7f880645a550":182,"0x7f88170fc6a0":182,"0x7f9b21c61670":160,"0x7fe8301c2fa0":169,"0x7fe83267c070":169,"0x7ff214796dc0":183,"0x7ff23cb12580":183,"0x7ff69a626c10":120,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,57,61,68,69,70,72,73,74,77,85,86,87,90,93,101,102,103,104,105,109,110,117,118,119,120,121,123,125,126,129,130,131,133,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,152,153,154,155,158,159,160,161,163,164,165,167,168,169,170,171,173,175,176,177,178,179,180,182,183,184,186,187,188,189,202,203,205,208,209],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,41,42,43,45,46,48,49,50,52,53,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,76,77,83,84,85,89,91,92,93,101,102,110,113,118,121,123,125,128,129,130,131,138,139,140,142,145,147,149,150,154,155,158,159,160,161,163,164,168,169,171,172,173,175,177,182,186,187,188,192,194,195,200,202,203,204,205,206,208,209,210,211],"100":[7,14,18,31,33,35,37,38,39,40,44,46,51,52,53,54,55,56,58,59,60,62,66,68,69,70,71,72,75,77,83,84,85,86,89,91,92,101,119,128,136,137,138,141,142,144,145,147,154,155,156,158,160,163,167,168,169,171,172,173,177,182,183,184,187,188,194,195,198,200,202,203,208,209,210],"1000":[3,14,18,31,33,34,36,52,54,56,60,62,64,66,67,70,85,90,91,93,111,116,125,135,139,142,144,145,154,160,161,163,165,167,171,179,183,187,190,194,203,205,206,209],"10000":[14,29,30,34,36,39,62,70,76,91,135,139,141,143,173],"100000":[60,70,92,139],"1000000":[169,187,189,195],"10000000000":169,"1000px":163,"1001":155,"1003":155,"1004":145,"100486":41,"1005":155,"1006":145,"10061107":144,"1007":[76,83,155],"10071":129,"10072":129,"10073":129,"100795":150,"1008":45,"10086":129,"10087":129,"100878":29,"10088":129,"1009":[76,145,155],"10090":129,"10091":129,"10092":129,"10093":129,"10094":129,"100942":41,"10095":129,"10096":129,"10097":129,"10098":129,"10099":129,"100k":177,"100m":[37,154],"100tl":37,"101":[85,145,161,171],"1010":[76,158,173],"10100":129,"10101":129,"10102":129,"10103":129,"10104":129,"1011":45,"10119387961131":[69,71],"1012":76,"1012000":120,"10134804":144,"1014":145,"10143793":179,"101451":41,"1015":145,"1015625":145,"101744868":45,"101761236":45,"1018":41,"101m":37,"102":[56,65,85,145,158,161],"1020":[118,142,194],"1021":145,"1022":76,"10220":58,"1023":145,"102352":150,"1024":[32,34,38,39,45,68,139,142,143,144,198],"1024n":32,"102530":42,"1026":145,"102657":41,"1027":145,"102724":41,"1028":[35,76,145],"1029":145,"102b":155,"102k":56,"102m":37,"103":[56,62,65,85,145,160,161,184],"1030":[35,145],"103095":41,"1032":[76,145],"1033":[145,149],"103500":158,"103536":150,"10359594":138,"1036":145,"103669":130,"1037":172,"1038":145,"103997":41,"104":[56,65,85,160,161],"1040":[119,142,145,194],"1040000":120,"1044":76,"104412":41,"10444444444444445":171,"10449817":144,"10452":41,"10460062":144,"1048":[41,73,145],"1048832":45,"105":[85,136,142,143,144,145,155,158,159,163,169,171,172,175,179,180,182],"1050":[118,145,194],"10509942":144,"1052":145,"105237":83,"1053":83,"10546875":145,"10553714e":169,"105586":41,"1056":145,"105651e":41,"105748":161,"105937":168,"105m":37,"106":[42,65,85,145],"1060":142,"10601041":144,"1060762990306165":85,"10613463":144,"1063":145,"10639190e":169,"1064":145,"1065":130,"10651042":144,"10655":168,"106569":150,"1066":[118,130,194],"106649":41,"1067":130,"1068":[130,145],"1069":[41,130],"106m":37,"107":[56,85,145,160],"1070":130,"1071":145,"1072":[119,130,194],"107282":41,"1073":[130,145],"1075":145,"10782758":144,"107m":37,"108":[85,129,145,198,209],"1080":142,"108032":41,"108381":131,"1084":145,"108428":131,"1085":145,"1086":131,"1087":145,"1088":[131,145],"1089":131,"109":[85,129,142],"1090":131,"109091":125,"1091":145,"109167":41,"10928802805393":64,"1093":145,"109375":145,"1096":[145,195],"109604":131,"1097":63,"1098":145,"1099":34,"109m":37,"10m":[121,149,192],"11":[14,22,25,37,41,45,52,53,56,63,65,66,68,70,73,76,77,85,92,93,101,102,110,111,120,125,128,129,131,136,141,145,146,147,149,150,153,158,159,160,161,163,171,175,182,183,184,187,188,190,209,210],"110":[14,56,64,65,72,85,129,136,160,163,187],"1100":[142,158],"11000":135,"110000":41,"1103":149,"1104":145,"110426":65,"1105":[67,83],"1106":[67,83,145],"1107":[53,145],"11088":25,"110m":37,"111":[37,65,73,76,84,85,129,141,142,145,158,159],"111000":158,"11109":101,"1111":[133,196],"111101":41,"11111":101,"11111749e":169,"1112":145,"1114":145,"1115":149,"1116":73,"1116058338033":70,"111618":41,"1117":145,"111700":41,"11171325":144,"111752":41,"1119":92,"111958":130,"111982":73,"111m":37,"112":[70,85,129,145,158],"1120":142,"112151":168,"1123":145,"11234131":144,"1123949416":196,"1124":145,"112425":41,"11250":72,"112522":29,"112638":131,"1127":76,"1128":145,"1129":145,"112m":37,"113":[41,56,63,85,118,145,160,194],"1130":158,"1132":145,"11328125":145,"1133":145,"113362":41,"113402":125,"1135":[41,76],"1136000":[120,194],"1137":145,"1138":[67,83],"113m":37,"114":[56,67,83,85,142,145,160],"1140":142,"11404718":144,"1142000":120,"114224":42,"1143":76,"1144":[119,194],"1145":145,"114639":[69,71],"1147":41,"114700":83,"114954":131,"115":[53,63,65,85,136,145,158],"1151":37,"115161":172,"115237":67,"115238":83,"1153":145,"11530945":[169,200],"115337":161,"115588":73,"11567072":144,"11569134":179,"1157":145,"116":[37,70,85,118,145,158,194],"1160":[29,30,142,145,158],"1160103":41,"11609933":83,"1162":145,"1163":145,"1164":145,"1166":[67,83],"11663747":83,"1167":145,"1168":[29,30,45],"116819":161,"11683491e":169,"116m":37,"117":[67,77,85,145],"1170px":129,"11715698e":42,"1171875":145,"11742":83,"1175":145,"117513":67,"117522":158,"1176":[133,196],"11761":64,"11770":25,"118":[53,67,83,85,145],"1180":[142,145],"1180160":[38,45],"1183":145,"1184":145,"1187":145,"118m":37,"119":[45,67,83,85,142,145,171],"1190":149,"11903076":144,"119048":41,"1191":[65,145],"11912291":144,"1192":145,"1194":149,"1196":168,"119621":29,"1197":160,"1197000":120,"1198":160,"11983416102879":171,"11988789":144,"1199":[145,176,177],"11anon_oac":184,"11m":149,"11th":49,"12":[14,22,25,37,39,41,43,45,46,48,49,53,55,56,57,58,59,60,65,67,72,73,75,76,83,85,89,92,101,102,110,118,120,125,128,129,130,131,136,142,143,145,149,150,158,159,160,161,163,165,168,171,172,173,179,183,187,188,194,202,205,206,209,210],"120":[14,39,41,66,70,85,101,136,142,145,169,200,209],"1200":[62,142,145],"12000":[135,168],"120000":[67,83,188],"1201":145,"1202":143,"120679e":131,"1207":145,"120m":37,"121":[52,56,67,70,83,85,145,160,171],"121005085892223":85,"12108":64,"12109375":145,"121096":130,"12109601307967026":130,"1211":41,"121237":65,"1213":145,"121358":41,"12147502e":169,"121669":[69,71],"1218":145,"1219000":120,"12195403":83,"121m":37,"122":[52,56,67,83,85,129,142,145,160,171,173,203],"1220":[34,142,145],"122021":41,"1222":145,"122402":130,"122411":41,"1225673588504812":72,"1227":145,"122784":41,"122785e":65,"12280441":144,"1229":145,"122m":37,"123":[14,33,56,85,101,129,142,145,160,168,188],"1232":145,"12326000":[120,194],"1234":[145,188,210],"123431":29,"12345":[41,179,188],"123456789":101,"123492":65,"1235":145,"123588":158,"1236":35,"1237":35,"1238":145,"1239":145,"123m":37,"124":[41,64,67,83,85,129,145],"1240":[142,145],"124087":130,"124210":41,"1245":145,"124505":41,"125":[31,64,70,85,136,145,158,188,195,210],"1250":145,"1251":83,"125115":155,"1253":145,"1254":145,"125408":179,"125457e":65,"125479":41,"1259":47,"126":[41,67,83,85],"1260":142,"126299":41,"1264085":41,"12647":168,"12669":168,"1267":145,"12693":25,"12697628":128,"126m":37,"127":[65,72,85,139,142,145,158,171,198],"127304":83,"12733734668670776":72,"1274":[67,83],"127431":131,"127469":41,"1275":145,"1276":145,"127696":41,"1279":145,"127m":37,"128":[31,32,33,34,35,36,38,39,42,43,45,46,56,64,73,85,91,135,136,139,142,143,144,145,150,160,188,208],"1280":[66,142],"128162":130,"128188":161,"1284":145,"1285":[145,149],"1286":145,"1287":145,"1288":130,"12882135":195,"1289":130,"12890625":145,"128n":32,"128x128":144,"129":[41,51,67,83,85,145,158],"1290":[130,145],"129014":131,"1291":[36,130,145],"12919":41,"1292":130,"1292794":144,"1293":145,"12934355":144,"12936294":144,"1295":145,"129527":41,"12966134e":169,"1297":145,"12985994":83,"1299":53,"12e4":[188,210],"12m":149,"12px":173,"13":[14,25,41,45,53,55,56,58,61,73,76,85,101,102,110,121,125,128,129,130,136,142,143,145,149,152,153,158,160,161,163,165,171,182,187,188,209],"130":[9,14,85,109,110,118,136,158,194],"1300":[60,142,171],"13000":135,"1300131294":[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,119,120,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,194],"1301":165,"1302":149,"130533":131,"1306":145,"130634":41,"130649":131,"1307":145,"130748":158,"1308":145,"131":[29,70,85,173],"1310":145,"1311":145,"1312":145,"1313":145,"1315":145,"1316":41,"131667":41,"13168":83,"131688":158,"1317":145,"131741":41,"131m":37,"132":[29,45,53,64,85],"1320":[29,142],"1321":[130,145],"1322000":120,"1323":130,"1324":130,"132500":41,"132543":130,"132545":73,"13255":25,"1326":[130,145],"13265":168,"1327":130,"1328":145,"1328125":145,"132931":41,"13299297":144,"133":[29,85,158],"13326":83,"133260":67,"1334":[49,145],"1338":168,"13390011":83,"133927":83,"133m":37,"134":[29,51,85,92,142,171,172,202],"1340":[142,145],"134156":41,"1342":136,"13436471":144,"1345":145,"1346":145,"135":[29,85,118,136,142,145,164,171,194],"1350":145,"135000":41,"13502571e":169,"135088":41,"135117":41,"13533305":179,"1354":145,"13554822e":169,"1356":145,"135762":131,"1358":145,"1359":145,"135m":37,"136":[29,65,85,145],"1360":142,"1361000":[120,194],"1362":145,"136302":[69,71],"136368":131,"1364":145,"13653559":179,"13669937e":169,"13671875":145,"136719":131,"1368":145,"1369099078838":[69,71],"136m":37,"137":[9,29,56,85,109,110,142,145,160],"1371":145,"137210":41,"13725491":144,"137321189738925e":125,"1376":145,"137m":37,"138":[29,85,131,142,145],"1380":142,"1382":145,"1385":145,"1386":[133,196],"1387":83,"1388":145,"139":[29,63,65,85,145,150],"139063":131,"1391":145,"139167":41,"1393":145,"1394":145,"1396":41,"1397":145,"13982857e":169,"1399":145,"13997155e":169,"139m":37,"13m":149,"14":[14,25,29,30,41,53,54,56,60,64,65,67,70,73,76,85,101,102,110,125,128,130,131,136,145,148,149,150,158,161,163,165,171,172,173,188,202,209,210,211],"140":[14,29,45,62,65,85,136,142,143],"1400":[142,149],"14000":135,"140000":72,"140074":131,"1403671649831801":85,"1405":145,"1406":142,"140625":145,"1407":145,"140769":41,"140m":[37,45],"141":[29,85,142,145],"14100":188,"1411":[144,145],"1412":145,"141297":195,"1413000":41,"1413001":41,"1414":145,"14159":[188,189,210],"141592653589793":209,"14160174e":169,"1419":145,"142":[85,145,179,188,210],"1420":142,"1422":[67,83,145],"142242":131,"14234563e":169,"1425":145,"142543":83,"14260":72,"142721":73,"142m":37,"143":[51,85,142],"1430":145,"14318":65,"1432":34,"1432780985872142341":127,"1438":145,"1439":145,"143m":37,"144":[51,70,85,119,142,182,187,194],"1440":[142,145],"144000":158,"1441":145,"1442":145,"144218":41,"1443":35,"1444":[35,145],"1445":[67,83,133,196],"14453125":145,"145":[29,30,69,70,71,85,126,136,161],"145394":179,"145m":37,"146":[70,85,126,129,161],"1460":142,"1461":[145,184],"1464":[130,145],"1465":130,"1466":[130,145],"1467":[67,83,130],"1468":[83,130,145],"1469":[130,145],"146m":37,"147":[51,70,85,126,129,145,161],"1470":[130,145],"147184":73,"147308":158,"1475":145,"147704":161,"147m":37,"148":[56,70,85,126,129,142,145,160,161],"1480":[142,145],"14812986":179,"1484375":145,"148495":[69,71],"1485000":[120,194],"148533":158,"14857187":161,"148572":161,"1488":145,"148822":[69,71],"148884":29,"14888888888888888":171,"148m":[37,45],"149":[66,70,85,126,145,161],"1490":[41,145],"149000":110,"1492":145,"1493":73,"149653":131,"1498":145,"14999":[67,83],"149995":195,"149m":[37,45],"14m":149,"14x14":32,"15":[3,14,18,25,31,32,33,34,38,41,44,45,53,54,55,56,57,58,59,60,61,63,64,66,67,70,72,73,76,83,85,92,101,110,113,120,128,129,136,142,144,147,149,158,160,161,163,165,168,171,173,182,188,194,202,209,210],"150":[7,14,40,43,51,56,66,70,76,83,85,91,92,126,136,141,145,155,161,163,172,202],"1500":[31,60,62,64,76,119,142,194],"15000":135,"150000":41,"150271":73,"1505":144,"1506":148,"1508":[138,145],"150800":83,"1508000":120,"150m":37,"150px":173,"151":[85,145],"1510":41,"1511":144,"15119934e":42,"151262":130,"1512622144956577":130,"151462":29,"1516198":83,"15172482":179,"151849":130,"151882e":65,"15190726e":169,"151976":131,"151m":45,"152":[36,42,85],"1520":142,"152049":158,"1521":145,"1522":145,"1523":145,"152300":131,"15234375":145,"1524":168,"1525":145,"152508":73,"1526":168,"15262765526":67,"1527":145,"152m":45,"153":[45,85,142,145],"1530":[145,149],"1531":145,"1532":145,"1533":168,"153373":131,"1536936":41,"153m":37,"154":[85,145],"1540":142,"1541":145,"1544":145,"1545":145,"1546":149,"1548000":120,"15480133":125,"154m":37,"155":[85,136,142],"1555":[63,130],"1556":130,"1557":130,"1558":145,"155833":41,"155m":[37,45],"156":[53,85],"1560":142,"1561":130,"15615109e":169,"15625":145,"1563":130,"1564":130,"1565":130,"1566":145,"1567":[118,194],"156m":37,"157":[85,129,145,155,173],"1570":145,"1572":145,"1576":[41,145],"157729":[69,71],"15777777777777777":171,"1579":149,"157m":37,"158":[41,85,129,142],"1580":[142,145],"158123":73,"1583":145,"1586":130,"1587":130,"1588":130,"1589":130,"159":[85,129,142,145],"1590":[130,145],"159000":[120,194],"15900736":144,"1593":145,"1594":145,"1594000":[120,194],"1595":[145,184],"1596":149,"15973821e":169,"1599":[53,145],"159m":45,"15e":125,"15m":149,"16":[14,25,29,30,31,32,33,34,38,39,41,45,48,49,51,53,56,57,60,62,64,65,67,68,73,83,85,101,102,110,111,119,128,136,139,142,143,144,145,148,149,150,158,160,161,163,165,168,169,171,172,173,179,182,183,184,188,194,195,200,202,209,210],"160":[29,30,85,125,129,136,142,145,182,183,184],"1600":[60,142],"16000":[64,120,135,194],"1600000":120,"1600x1200":168,"16015625":145,"16024654e":169,"1604":145,"1605":145,"1607":145,"160m":37,"161":[56,85,129,145,160],"1611":149,"16111":[63,149,202],"1611969":38,"1612":145,"161382":131,"1613889":38,"1614":130,"1615":130,"1616":[130,145],"161677":64,"1617":41,"1618":130,"1619":130,"161m":37,"162":[56,85,145,160,183],"1620":[130,142],"16200":63,"162016":161,"1621":145,"162125":131,"1622":149,"1623":149,"162308":41,"16259":65,"1626":184,"1627":[67,83],"162754":131,"162829":168,"1629":145,"162m":37,"163":[41,85,142],"1630":182,"1630251618197":[69,71],"1630537000":127,"1630544034":[127,196],"1631":149,"1632":[145,149],"1635":145,"1636":83,"163636":125,"16368":45,"16384":45,"1639":65,"163m":37,"163mb":136,"164":[85,142],"1640":[142,149],"164000":158,"1640625":145,"1641":145,"1644":145,"1645":145,"164533":131,"1646353":41,"16465":25,"1647":149,"1648":145,"1649":35,"164m":45,"165":[85,118,131,136,145,194],"1650":35,"165221":131,"1653":145,"1654":[83,184],"16550446e":42,"16578108":83,"1658":145,"165m":37,"166":[56,73,85,145,160,183],"1660":[142,145],"1665":83,"16666667":195,"166667":41,"1669":41,"166m":[37,45],"167":[64,85],"1671":145,"1675":149,"167573":41,"1676":145,"1679":145,"16796875":145,"167m":45,"168":[85,119,194],"1680":142,"1682":145,"1683":[133,145,196],"16837":83,"1685":145,"1686":145,"1687":145,"1688000":[120,194],"168m":37,"169":[45,85,142,145],"1690":[133,196],"1691":53,"1692":145,"16928":58,"16933":168,"1694":183,"1695":[145,183],"1696":183,"169605":131,"1697":183,"1698":183,"169811":158,"16x16":144,"17":[14,25,36,38,41,53,56,61,63,64,65,67,73,83,85,101,110,111,128,136,142,145,149,155,158,161,163,165,171,172,173,182,183,184,188,190,202,209,210],"170":[53,85,136],"1700":142,"17000":135,"1703":[145,148],"170312":195,"170446e":65,"1706":144,"17067697e":169,"1709":145,"170m":45,"171":[85,142],"1710":145,"17111912":144,"171160":73,"1712":[145,184],"1713":145,"1715":41,"171656":131,"17176609":144,"17176777":144,"1718":145,"171875":145,"171909":65,"172":[64,85,150],"1720":[142,145],"1723000":120,"17233455":144,"17238052":144,"1725":[67,73,83],"17259929":144,"172664":73,"17296777":128,"172989":131,"172m":[37,45],"173":[63,70,73,85,142,172,202],"1730":73,"1731":145,"173211":[69,71],"1733":145,"17339829e":169,"173400":83,"1736":142,"1738":182,"1739":182,"173m":37,"174":[41,73,85,142,145],"1740":[142,182],"1741":[145,182],"1742":[145,182],"174330":41,"17449102e":169,"1745":145,"1747":41,"1748":145,"17482":25,"174871":172,"1749":145,"174m":[37,45],"175":[85,136,142,195],"1750":145,"175000":41,"17500248":125,"175069":179,"175135":158,"1752":145,"17533917e":169,"1757":184,"175772":131,"17578125":145,"175833":41,"175m":41,"176":[64,85,125],"1760":142,"1760000":120,"176114":73,"1762":168,"176277":41,"1764":145,"1765":145,"176m":[37,41,45],"177":[67,83,85,142],"1770":145,"177000":158,"177071":130,"17725185":144,"177400":131,"1775000":120,"1776":168,"1777":168,"1779":[133,196],"177m":[37,41],"178":[72,85,145],"1780":142,"1782":117,"1784":160,"178449":65,"178456":41,"178497":172,"178542":73,"17865972":144,"1787":36,"1788":[145,168],"17889":25,"178930":65,"17897":65,"17898":65,"178m":[37,41,45],"179":[85,145],"1790":[69,71],"179056":41,"1792":38,"179242":131,"17925531e":169,"1795":145,"179603":73,"1796875":145,"1798":145,"179800":[67,83],"179m":[37,41],"17m":149,"18":[14,25,38,41,53,56,57,60,63,64,65,67,68,73,83,85,86,101,110,125,128,136,142,143,145,149,150,155,158,165,171,182,187,189,196,204,209],"180":[33,85,121,125,136,141,142,169,200],"1800":142,"18000":135,"1800000":120,"180088":41,"1803":145,"18036583":144,"1805":145,"1806":145,"180658":130,"1807":145,"1808":145,"180833":41,"180m":37,"180x180x3":33,"181":[85,142],"1810":145,"181033e":65,"1811":145,"1811000":120,"1812":145,"181408":29,"181500":72,"1817":[36,145],"18175551":144,"181916":41,"181m":[37,41,45],"182":[85,125],"1820":[142,149,168],"182097":172,"18215":25,"1823":145,"18237040e":169,"1825":[36,149],"1827":145,"1827000":120,"182729":172,"18288803e":42,"182m":[37,41],"183":[41,85,142,145],"183150":161,"183580":29,"18359375":145,"1836":145,"1836633":41,"1839":145,"18390":[67,83],"183m":[37,41],"184":[85,125,145],"1840":[142,145],"18421":25,"18424606e":42,"184320e":73,"18441446e":169,"1847":145,"1848":149,"1848000":120,"18496":[38,45],"184m":[41,45],"185":[47,62,85,125,129,136],"18517844e":169,"1852":145,"1855":35,"18557502":[67,83],"1856":[119,145,194],"1857":145,"18576":[67,83],"1858":35,"1858320":142,"185946e":65,"185m":[37,41],"186":[53,56,67,83,85,145,160],"1860":[83,142],"1862":145,"1864":36,"18647253e":169,"18664192":125,"1867":42,"18677":83,"1869":145,"186m":41,"187":[85,142],"1871":83,"18714815":144,"18717328":144,"1872":145,"1872000":120,"1874":[30,133,196],"1874428":144,"187449":29,"1875":[30,136,145],"1875693":41,"18772155":83,"18781619":144,"187857":130,"1879":145,"187m":41,"188":[85,125,142],"1880":[1,142,145],"188054e":65,"1882":[41,145],"18844927e":169,"1885":145,"18851821":144,"18876416":45,"1889000":120,"188m":[37,41,45],"189":[85,125,142,145],"1892":145,"1893":145,"1896":145,"18965517":83,"189688":131,"1897":29,"1899":145,"189m":[37,41],"18th":117,"19":[41,45,53,56,65,67,73,77,85,86,101,110,121,128,131,136,143,145,149,155,156,158,171,182,189,192,193,195,202],"190":[45,62,67,83,85,136],"1900":142,"19000":135,"190222":41,"1904":[142,148],"190416":131,"19053":25,"1906":160,"1908":[36,145],"190m":[41,45],"191":[85,142,150],"19105823":144,"19123":167,"19126407":41,"191304":131,"19140625":145,"1915":145,"19157667":83,"191m":[37,41],"192":[65,76,85,119,136,194],"1920":[38,142],"1920000":120,"1921":145,"1923":36,"192380":41,"1925":145,"1926":36,"19269777":83,"1927":36,"1929":36,"192m":41,"193":[85,142,195],"1930":[118,145,158,194],"193100":83,"193137":29,"193203":41,"1933666654":[118,194],"1936":7,"193633":161,"1939":145,"193m":[37,41],"194":[85,125,173,209],"1940":[36,142],"1941":145,"194167":41,"1943":[30,149],"19437386e":169,"1944":145,"1944000":[120,194],"19447708e":42,"1945":145,"194532e":41,"19460641":144,"19464949":144,"194763":41,"1948":36,"1949":173,"194m":[37,41,45],"195":[56,69,71,85,136,160],"1950000":120,"195256":41,"1953125":145,"1954":[73,145],"1954000":120,"19541375872382852":171,"1955":[145,173],"19552860":195,"1956":173,"1957":73,"1959":[69,71,178,207],"195m":[37,41],"196":[56,85,142,145,160],"1960":[36,142,173],"1963":65,"1964":145,"1965":[69,71,73],"19651127":195,"196923":41,"196m":[37,41],"197":[56,85,125,145,160],"1970":41,"197080":131,"1972":[121,145,192],"19722e":142,"1973":145,"197317":85,"1974":[36,121,145],"197m":[37,41],"198":[64,85,142,145],"1980":[142,153],"1981":[73,145],"198279":41,"1984":[73,145],"198573":131,"198667":[70,92],"1987":149,"199":[73,85,125,142,183],"19902":25,"19903924":144,"1991":[145,189,211],"1992":[56,65],"19921875":145,"1993":[65,121,192],"199305":158,"1994":160,"1995":65,"1996":[55,58,121,145],"1997":[56,178,207],"1998":[55,58,120,121,148,158,194,197],"199833":65,"1999":[120,164],"1999000":120,"19991344e":169,"199m":[37,41,45],"1\u0435":163,"1_bar":139,"1d":[41,48,49,63,131,140],"1e":[14,32,36,45,77,91,101,137,139,142,143,148,154],"1e10":[169,200],"1e6":[169,195,200],"1f":[35,50,51,52,53,57,70,119,171,177,194,208],"1h":[67,83],"1m":136,"1min":202,"1pjb":41,"1px":173,"1s":[29,37,53,67,83,171,178],"1st":[7,14,18,22,39,60,128,135,136,173],"1stflrsf":60,"1u":41,"1x":[148,188],"1x1":143,"1x3":45,"1xcxhxw":148,"1xfhxfwx":148,"1xfhxfwxna":148,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,61,65,69,70,71,72,73,74,76,83,85,86,87,91,92,101,102,103,104,105,109,110,117,118,119,120,121,123,125,126,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,158,159,160,161,163,164,165,168,169,170,171,173,175,176,177,178,179,180,182,183,184,186,187,188,189,201,202,203,205,207,208,209],"20":[7,9,14,18,29,30,31,32,33,35,36,39,41,43,44,45,49,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,69,71,72,73,75,83,85,86,89,92,101,109,110,113,117,118,123,125,128,129,130,131,136,141,142,143,144,145,149,150,152,154,155,159,163,171,172,173,184,187,189,194,195,202,203,208,211],"200":[17,31,41,51,53,56,58,59,60,62,66,70,73,85,91,110,125,129,130,136,141,142,144,145,159,169,171,172,187,200,202,208],"2000":[14,37,60,64,118,120,131,135,142,150,171],"20000":[14,120,135,136,189],"200000":173,"2000x1500":92,"2001":[120,156],"200126e":41,"2002":[37,120],"200223":130,"2003":[120,150],"2004":[120,173,195],"2005":[120,142,145,150,173],"2006":[72,120,153,171],"200611":41,"2007":[72,120,121,192],"2008":[56,72,120,173,195],"2009":[53,120,145,156],"201":[41,64,85,125,129,130,145],"2010":[120,130,150,187],"2011":[120,150,164],"2012":[73,120,129,130,150,195],"20123":129,"2013":[31,73,121,130,150,153,192],"20130101":130,"20130102":130,"20130104":130,"2014":[63,73,143,150,158,195,198],"2015":[22,111,143,150,156,158,190],"2016":[56,62,150,158,164,178],"2016000":120,"2017":[117,129,150,154,158],"2018":[41,50,52,53,54,101,102,121,133,145,150,158,187,188,189,192,196,209],"2019":[17,54,121,133,145,150,152,154,158,192,196],"2019\u7248\u5b89\u88c5\u6559\u7a0b":41,"201m":[37,41,45],"202":[85,129,130,131,142],"2020":[1,14,41,60,63,101,121,123,129,133,136,142,145,152,155,156,158,192,196],"2020060289":14,"2021":[1,41,73,111,121,127,145,148,190,191,192,196],"2022":[14,117,121,123,152,153,154,182,183,190,191,192,196,211],"2023":[25,41,101,129,130,131,148,191,193,196],"2024":[77,129,149],"2025":121,"202500":41,"2026":129,"2028":145,"202805":130,"202895":41,"202m":[37,45],"203":[85,125,129,130,131,142],"2030":[111,129,156,190],"203125":145,"2033":[36,129],"2033000":[120,194],"203450":41,"203488":41,"2035":[69,71],"20350":129,"203578":161,"2037":145,"20370":129,"203848":41,"203m":37,"204":[35,64,85,125,129,130,131,145,179],"2040":[142,145],"20433":83,"20439573":144,"204445":41,"2045":145,"204565":41,"2048":[32,38,45,144],"2048n":32,"205":[35,64,85,125,129,130,136,145],"2050":[118,194],"205000":41,"205043":131,"205244":161,"2053":145,"2054":145,"2055":145,"2056":[76,145],"20583705e":169,"206":[64,85,129,130,158],"2060":142,"2061":[67,83,145],"2062":35,"2063":[76,145],"20635":83,"20636":83,"20637":83,"20638":83,"20639":83,"20639801e":42,"2064":67,"20640":[67,83],"2065":187,"20663297":144,"206881":[67,83],"2069":145,"206937":[69,71],"206m":37,"207":[37,64,85,129,142,145],"2070":145,"20703125":145,"207495":41,"207758":158,"207m":[37,41],"208":[64,85,129,130,142,145],"2080":142,"208342":158,"208500":72,"208516":41,"20876306":171,"2089":145,"208969":41,"20899203":144,"209":[64,85,125,142,145,187],"209435":41,"20944":14,"2095":92,"2099":41,"209m":[41,45],"20a":[129,130,131,187],"20adolesc":187,"20adult":187,"20age":187,"20algorithm":172,"20an":187,"20and":187,"20are":187,"20break":187,"20c":129,"20child":187,"20column":[129,130],"20construct":187,"20df":[129,130,131],"20df1":130,"20dfd":130,"20differ":172,"20dropna":129,"20dtype":130,"20elif":187,"20els":187,"20exampl":172,"20factor":187,"20fals":130,"20fell":187,"20find":187,"20for":187,"20from":172,"20gemi":37,"20get_age_group":187,"20how":129,"20if":187,"20in":187,"20index":[129,130,131],"20io":[129,130,131],"20lambda":130,"20left_on":129,"20list":130,"20loop":187,"20lsuffix":129,"20n":187,"20name":129,"20none":129,"20np":[129,130,131],"20numpi":[129,130,131],"20of":172,"20on":129,"20outcom":172,"20panda":[129,130,131],"20pd":[129,130,131],"20period":130,"20prime":187,"20print":187,"20px":173,"20random":130,"20rang":[129,187],"20right_on":129,"20rsuffix":129,"20scikit":172,"20speed":129,"20th":61,"20the":172,"20through":187,"20true":130,"20use":187,"20verileri":37,"20without":187,"20x":187,"20x_rang":187,"21":[14,29,40,41,53,65,67,73,75,77,83,85,89,101,102,110,111,128,131,136,145,147,155,171,172,173,182,183,187,189,202,209],"210":[85,125,129,136],"2100":142,"210113":41,"2103":145,"210424":41,"2105":145,"2107":145,"2109":145,"2109375":145,"211":[56,85,171],"2112000":[120,194],"2115":145,"211667":41,"2117":145,"211714":41,"211771":41,"2118":145,"212":[45,85,145],"2120":142,"2122":76,"212514":41,"212563":41,"212626":41,"2127":[67,83,145],"21271446":144,"212782":41,"212m":[37,41],"213":[41,85,125,142],"21351941":144,"2137":145,"21384971":144,"214":[85,145,168],"2140":142,"214141":41,"2144":145,"21447655e":169,"2145":145,"214693":41,"21475352":171,"214756":41,"2148":[119,194],"214824":41,"21484375":145,"2149":145,"215":[85,125,136],"215000":131,"215058":41,"2152":76,"2153":168,"2155":145,"21556523":179,"2156":145,"215643":41,"21567622":171,"215682":67,"21578029":83,"2158":145,"215m":37,"216":[85,145,188],"2160":[36,142],"216000e":73,"216148":41,"216719002155":171,"2169":[67,83],"216924":41,"217":[85,142,155],"2173424":41,"2174":[73,76],"217478":41,"2175":145,"21753011e":169,"2176":145,"217739":41,"2178":145,"21783545e":169,"218":[85,142],"2180":[83,142],"21806371":171,"218161":[69,71],"218217":41,"21836272":144,"21845922e":169,"218509":158,"2186":42,"218612":41,"218684":73,"21875":145,"218966":41,"219":[67,83,85,125,145,171],"2190":41,"219367":41,"219453":161,"219544":41,"2196":145,"2197":36,"2198447506":209,"219m":37,"22":[14,41,45,51,53,56,60,65,67,73,83,85,86,119,121,128,129,130,131,136,142,144,150,155,163,165,171,173,187,189,192,194,196,209],"220":[41,64,85,125,136,142,145,187],"2200":142,"22000":120,"220173":41,"2202":145,"2203":145,"2204":145,"220500":158,"22067261e":42,"2207":145,"2208":145,"2209":145,"220m":37,"221":[85,125,142,145],"22102":83,"2212":73,"2216":73,"2217":145,"2218":145,"221846":41,"2219":[83,145],"221956":73,"22199004":83,"221m":37,"222":[34,85,142],"2220":142,"2222":145,"222222":125,"222298":158,"222337":[69,71],"2224":145,"2225":149,"22265625":145,"223":[41,65,83,85,145],"2235":145,"223500":72,"223854":41,"2239":73,"223910":41,"224":[45,73,77,85,145],"2240":[73,142],"2241":145,"22426":25,"2243":145,"2246467991473532e":209,"224m":37,"225":[85,136,145],"2250":145,"2251":145,"2254":83,"22545290e":169,"2255":145,"2259":145,"226":[85,142,145],"2260":142,"22611444e":169,"22615":168,"226176":131,"2265":145,"2265625":145,"226673":131,"226722":179,"2268":145,"227":[85,142,145],"227031":41,"22708941e":169,"2272":145,"227546":41,"2278":145,"228":[85,145],"2280":142,"228077":29,"228120e":41,"2282":145,"2284":[119,194],"2285":149,"228550":130,"2287":145,"2288":145,"229":85,"2290":145,"2291":145,"2292":145,"2293":145,"229673984":41,"229679":73,"22969874e":169,"22a":[129,131],"22b":[129,131],"22bar":131,"22boolean":130,"22c":[129,131],"22d":131,"22flag":131,"22foo":131,"22golden":187,"22one":131,"22one_trunc":131,"22two":131,"22type":129,"22you":187,"23":[14,41,51,53,67,73,77,83,85,86,101,118,119,128,136,142,145,155,158,171,173,182,187,188,194,196,209],"230":[65,85,136,145,177],"2300":142,"23000":120,"230000":41,"23046875":145,"230769":41,"230m":[37,41],"231":[41,85,125,142,145,171,176,177],"2310":145,"2313":145,"231342":41,"23157000":[120,194],"231640":41,"23170093":83,"231768":41,"2318":145,"232":[64,73,85,142,145,171],"2320":142,"2326":145,"2327":145,"2328":145,"2329":145,"232m":37,"233":[85,142,145,176,187],"2332":145,"2333":145,"2334":145,"233477":131,"2335":145,"234":[85,145],"2340":[142,145],"234330":41,"234368":29,"234375":145,"234571":65,"234978":135,"234m":37,"235":[67,83,85,136,142],"2353":145,"23532076758141082":131,"23532077":131,"235321":131,"2354":145,"235449e":41,"2355":145,"235636":41,"2357":145,"236":[85,142,145,176],"2360":[142,145],"236000":41,"2360000":120,"23606797749979":101,"2361":145,"2364":145,"236431":130,"2365":145,"2366":145,"2367":145,"2369":145,"237":[41,85,142],"23702":42,"237185":41,"2373":145,"2376":145,"237692":41,"2377":145,"2378":145,"2379":145,"238":[85,142,145],"2380":[142,145],"2381":145,"2383":145,"2384":[67,83],"238462":41,"2385":145,"2386":145,"2387":145,"2388":145,"2389":145,"239":[85,142,145],"239001e":65,"2392":145,"2394000":120,"2395":145,"239501":130,"2396":145,"2397":145,"2398":145,"239m":37,"24":[14,32,41,42,45,53,55,58,64,65,67,73,83,85,86,111,128,129,131,136,145,146,154,155,163,171,173,182,183,184,190],"240":[85,136,142,145],"2400":142,"24000":120,"2401":[42,67,83,145],"2403":145,"2404":145,"2405":168,"2408":145,"2409":145,"241":[85,142,145],"2411":145,"241108":83,"241287":41,"2413":145,"2416":145,"2417":76,"2418":145,"2419000":120,"242":[85,145,177],"2420":142,"242098":158,"2421875":145,"242225":65,"242289":73,"242545":131,"2426":145,"2427":145,"243":[56,85,160],"2430a9896ce5":[127,196],"2433":145,"243338e":41,"243422":41,"2435":145,"243534":41,"24364250e":169,"243875":41,"244":[56,85,142,160],"2440":142,"244215":41,"2443":145,"2444":41,"2446":145,"244655":41,"2447":[145,175],"2448":175,"244898":161,"244950":73,"245":[85,136,142,145,155,177],"2450":145,"2451":145,"2455":129,"2457":129,"2458":129,"245820":41,"245839":130,"24591009185":83,"246":[85,145],"2460":[129,142,145],"246046":41,"24609375":145,"2461":129,"2462":129,"2463":129,"2465":145,"247":[85,142,145],"2472":145,"2474":129,"2475":[129,145],"2477":145,"2479":145,"247m":37,"248":[85,143],"2480":[142,145],"2481":145,"2483":145,"2484227":38,"2486019":38,"2488":145,"2489":145,"249":[69,71,85,145,176],"2495":145,"2498":145,"249865":130,"24c5":32,"24m":149,"25":[7,14,31,32,37,38,39,41,42,43,44,46,53,55,56,58,60,61,64,65,67,70,73,83,85,91,92,101,102,110,125,128,129,131,136,138,141,142,145,149,150,155,158,160,163,164,167,168,171,182,183,184,187,188,189,195,203,205,206,208,209,210,211],"250":[35,64,66,85,136,145,149,171,173,176,211],"2500":[142,165],"25000":120,"250000":[41,70,72,73,168],"2503":145,"250448":41,"2505":145,"250522":29,"251":[85,142,145,177],"2513":145,"251354":73,"25173":73,"251957":130,"252":[65,85,142],"2520":142,"2520000":120,"2522":145,"2524":145,"2525":[73,145],"252526":131,"2526":145,"2528":145,"2529":145,"252973836909085":85,"253":[85,145],"253000":120,"2532":145,"253611":173,"2537000":120,"25390625":145,"254":[56,85,145,160],"2540":142,"2547":41,"255":[29,30,31,32,33,36,38,44,45,46,52,76,77,85,135,136,137,138,142,143,144,208],"255000":158,"2555":145,"25551336":171,"2556":145,"255614":131,"2559":145,"255933":131,"256":[31,32,34,35,38,39,41,42,43,45,64,66,68,85,128,135,138,139,142,143,144,148,167,168,198,208],"2560":142,"256217e":65,"256221e":65,"25641564":144,"256662":130,"2568":145,"256952":41,"256n":32,"256x256x3":128,"257":[85,142,209],"2574":[67,83],"2577":145,"257740":29,"2578125":145,"258":[38,43,85],"2580":142,"258445":[69,71],"2586":145,"2586000":120,"25863":173,"258653":131,"2587":145,"258906":130,"259":[41,65,67,73,83,85,142],"2593":145,"25931094e":169,"2595":149,"2599":145,"259m":37,"25th":60,"26":[41,53,56,64,65,70,73,83,85,120,128,129,136,142,145,155,160,165,171,182,183,184,189,192,195,204],"260":[41,42,85,136,142],"2600":[41,67,142],"260000":[9,109,110],"260882":73,"260c2de0a050":197,"261":[85,145],"2613":[58,145],"261400":130,"26150":83,"2617":145,"26171875":145,"262":[73,85,145],"2620":142,"262048":41,"262207":41,"2624":145,"2625":145,"2629":145,"263":[85,142,145],"2631":[67,83],"263694e":41,"263863":41,"2639":145,"264":[70,85,145],"2640":[41,142,145],"26448193":195,"264598":73,"264700":[67,83],"265":[36,42,56,85,136,142,145,160],"265056":[69,71],"265412":158,"26541833":83,"265625":145,"265630":131,"2659":145,"26590556":128,"265909":168,"266":[64,85,145],"2660":142,"2661":142,"2664":145,"2664364997":68,"26646":73,"2666666666666666":14,"267":[85,142,182],"2670":145,"267009":142,"267059e":65,"2671":145,"2672":145,"267238":131,"2673":145,"2674":[145,168],"26769257e":42,"2677":145,"268":[85,142,145],"2680":142,"268016":29,"2681":145,"26835":42,"2687":145,"269":[42,64,85,131,142,145,150,208],"2692":145,"2693":149,"26953125":145,"269534380":131,"269573":65,"26989269e":169,"27":[41,51,53,56,64,67,73,85,128,129,136,142,145,154,160,168,171,173,182,187,188,192,210],"270":[85,136,145,182,183,184],"2700":[142,173],"27000":[120,194],"2701":145,"27017952":83,"270551":41,"2706":145,"270833":41,"2709":145,"271":[41,85,142],"2710":145,"2713":145,"2716":145,"271796":41,"2719":145,"272":[85,142,145],"2720":[142,158],"2723":83,"2725":145,"2727":145,"272923":131,"27298934":83,"273":[85,145,164],"273000":83,"2732":145,"27342931":[67,83],"2734375":145,"27354":42,"27355957e":42,"27358504939668":85,"2738":145,"27381897e":42,"274":[65,85,142,145,182],"2740":142,"274082":[69,71],"2744":76,"274785":73,"275":[85,136,145],"2751":41,"2752":145,"2753":145,"2759":145,"276":[85,142,145],"2760":142,"2761":145,"2763":145,"2768":145,"276923":41,"277":[83,85,142],"277078":67,"277273":168,"27734375":145,"27735919e":169,"277392":29,"27745":83,"277600":41,"2778":83,"278":[54,83,85,142,145],"2780":[142,145],"2784":83,"2785":83,"2787":145,"279":[67,83,85,145,184],"279057":131,"2794":145,"279666":131,"279818":73,"28":[29,30,32,41,44,46,52,53,56,63,65,67,73,75,76,83,85,89,91,93,101,125,128,129,130,131,135,136,145,146,156,160,165,171,173,182,187,189,198],"280":[41,67,83,85,130,136,142,145,182,183,184],"2800":142,"280110":73,"2807":145,"2809":[53,145],"2809000":120,"281":[41,85,129,131,142,182],"2810":[129,130],"28109":25,"28125":145,"281427e":41,"2815":145,"2816":145,"2819":45,"282":[85,142,187],"2820":[142,168],"2824":145,"282879":131,"283":[85,187],"2831":145,"2832":145,"28327":25,"283273":73,"2833":[145,165],"2836":145,"2838":145,"28393465e":169,"283m":37,"284":[45,85,142,145],"2840":[142,145],"28433":25,"2846":45,"284642":130,"284887e":73,"2849":145,"284m":37,"285":[85,130,136,142],"2850":187,"28515625":145,"2854":145,"2855":145,"28566":[67,83],"28571428571428414":171,"285843":29,"28585348":171,"286":[85,130,142,159],"2860":[142,145],"287":[85,130,142,145],"287105":73,"288":[41,85,145],"2880":[142,145],"2881":168,"28813776e":169,"2882":145,"288m":37,"289":[42,53,85,175],"289028":131,"2890625":145,"289547":73,"28964":25,"28age":187,"28arrai":129,"28by":129,"28d":131,"28df2":129,"28l":129,"28level":129,"28list":130,"28n":187,"28np":130,"28other":129,"28rang":130,"28x":130,"28x28":[29,30,32,46],"29":[14,25,41,53,54,56,64,65,67,73,83,85,101,128,129,130,131,136,145,160,171,173,182,183,184,187],"290":[85,136,145],"2900":[64,142],"290224":73,"2904":145,"29040966":171,"290833":41,"291":[85,145],"2911":145,"2915":145,"2916":145,"2919":145,"291m":37,"292":[85,119,145,194],"2920":142,"292181e":65,"2922":145,"292669":[69,71],"29296875":145,"293":85,"2933":145,"29340":42,"29340409e":169,"2938":[69,71],"293846":41,"29399768":171,"294":[41,42,85,142,145,171],"2940":142,"294307":73,"2945":145,"294904":131,"295":[67,83,85,136,145],"2950":76,"295040":38,"295113":131,"29513185":83,"295168":[38,45],"29518659e":169,"2954":145,"295910":130,"296":[85,142,145],"2960":142,"2962":145,"2963":145,"29630879e":169,"2966":145,"296875":145,"296m":37,"297":[85,142,143,145],"2971":145,"2974":145,"2975":145,"2976":145,"2977":145,"297727":168,"2978":145,"29780579e":42,"298":[85,142],"2980":142,"2982":76,"298750":158,"299":[42,56,83,85,110,142,145,160],"2995":145,"299628":131,"2998":41,"2\u5347\u7ea7\u8865\u4e01":41,"2_2":135,"2_intro_to_tensorflow_for_deeplearn":48,"2_k":141,"2_p":139,"2_q":139,"2a":144,"2b":144,"2c":144,"2d":[1,34,48,92,118,119,131,139,169,172,182,184,202],"2d2d2d":173,"2e":139,"2f":[18,33,56,125,136,150,159,163,165,171],"2fe":160,"2g4adil3rc2ig":65,"2j":[128,188,210],"2m":[41,53,136,147],"2n":73,"2nd":[18,22,39,60,70,128,130,135,136],"2ndflrsf":60,"2p_":56,"2s":[36,38,67,76,148,171,202],"2urviv":165,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":65,"2vtlmaj":91,"2x":[63,84,179,188],"2x_i":[84,179],"2xbdtm2l70p":65,"2yf":164,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,39,40,41,42,44,45,46,49,51,52,53,54,57,65,68,69,70,71,72,74,76,77,80,84,85,87,91,92,93,101,102,103,105,109,110,115,117,118,119,120,121,122,125,126,127,129,130,131,133,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,158,159,160,161,163,164,165,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,196,200,202,203,205,206,207,208,209],"30":[7,14,18,32,37,40,41,44,52,53,55,56,57,58,61,62,65,66,67,68,69,71,72,77,85,101,102,110,113,118,119,128,129,131,136,137,145,150,155,158,160,163,164,169,171,173,187,188,189,194,195,200,203,205,206,209],"300":[18,55,58,59,60,85,136,142,155,163,164,169,171,187,200],"3000":[14,18,60,135,142,145,179],"30000":[14,42,120,204],"300000":[70,92],"3000000000":189,"300000012":167,"3005":145,"30078125":145,"30082566":171,"300k":156,"300px":[144,173],"301":[41,85,145],"3010":145,"3014":[67,83],"3015":145,"30189633e":169,"3019":145,"302":[41,85,142],"3020":142,"3022":145,"302548":131,"3028":145,"303":[85,142],"303347":41,"304":[85,142],"3040":142,"30404801e":169,"3046875":145,"304888":[69,71],"3049":145,"304m":37,"305":[73,85,136,145],"3054":145,"3055":145,"306":[85,142],"3060":142,"3064":145,"3067":145,"306m":37,"307":[85,142],"3071":[145,168],"3075":145,"307562":73,"3078":145,"307m":37,"308":[85,142,145],"3080":[142,145],"3081":145,"3082":145,"3085":145,"30859375":145,"3086":145,"3087":145,"3089":145,"309":[38,85,142],"309233":131,"30927452":83,"3093":149,"30957512":83,"30990":25,"30px":173,"31":[1,41,53,56,63,65,75,83,85,89,101,110,128,136,142,145,155,158,171,172,173,202,204],"310":[85,136],"3100":[64,142,145],"3103":[76,149],"310353":73,"3105":145,"3106":145,"3107":145,"3109":145,"311":[85,142,145],"3111":145,"3112":145,"3113":145,"311377":29,"3116":145,"31168387":83,"3117":145,"312":[55,58,85],"3120":[142,145],"312037":85,"312196":73,"3125":145,"3127":168,"3128":145,"313":[76,85,136,142],"3131":145,"3133":145,"3134":145,"313765e":41,"314":[41,85,142],"3140":[142,145],"3141":145,"3142194":125,"3145":145,"3146":145,"3148":[119,194],"3149":[67,83],"315":[85,125,136,142],"315000":41,"31501":130,"3159":145,"316":[85,145],"3160":142,"3161":145,"3163":145,"31640625":145,"316667":41,"3168":145,"317":[85,142,145],"3170":145,"31754741e":169,"3177":145,"3179":145,"317m":37,"318":[41,85,130,142],"3180":142,"3181":145,"3184":145,"31856":25,"318823":29,"319":[85,130,142,145],"3191":145,"3196":145,"31t19":127,"32":[29,31,32,33,34,35,36,37,38,39,41,43,44,45,47,48,49,53,56,61,64,67,69,71,77,83,85,91,101,113,128,136,139,142,143,144,148,155,160,171,187,188,209],"320":[30,41,43,85,130,136,142,163,175],"3200":142,"32000":[64,120],"3202":145,"3202614379084967":179,"3203125":145,"3204":76,"3208":145,"320833":41,"321":[73,85,142,171],"3210":145,"321097":29,"321188":131,"32137599":171,"321772":131,"322":[41,67,83,85,130,142,145,171,208],"3220":142,"32208":41,"3224000":120,"322500":41,"322727":168,"3228":[76,145],"323":[85,171],"3230":36,"323328":65,"3234":145,"3235":145,"3238":145,"324":[85,171],"3240":142,"3242":145,"32421875":145,"3245":145,"3246":145,"3248":145,"3249":145,"325":[85,129,136,142,145,171],"3252":[67,83],"325377":130,"3255522":[188,210],"32561":57,"326":[41,85,129,145,171],"3260":142,"3261":145,"32622333e":169,"326460":[69,71],"326667":41,"32674535":[67,83],"3269":145,"326m":37,"327":[85,129,142,145],"3270":145,"327500":41,"327920":73,"328":[41,85,129,142,145],"3280":142,"328086e":41,"328125":145,"328316":73,"328333":41,"3285":145,"3286":145,"3288":145,"328865":168,"3289":65,"328947":125,"329":[41,85,129,142,145],"3291":145,"329167":41,"3293":168,"329481":131,"329816":41,"32995317":171,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[34,143,144],"33":[41,53,56,65,67,73,83,85,128,129,136,142,145,150,155,160,169,171,179,183,186,200],"330":[83,85,129,136],"3300":142,"3300000":[120,194],"3301":145,"3306":[65,145],"3308":145,"3309":145,"331":[85,129,142,145],"3310":[118,194],"331000":158,"33146":130,"3316":145,"3319":145,"331m":37,"332":[85,142,145],"3320":142,"33203125":145,"3323":145,"332317":131,"332354":64,"3326":145,"3327":145,"333":[32,85,188,210],"333045":130,"3330454933340619":130,"3331":145,"333110":130,"33318591117858887":53,"3333":145,"333333":[41,129],"333701":158,"3338":145,"333884":29,"3339440331":202,"334":[85,145],"3340":142,"33416821":83,"3342":145,"334288":85,"334530":73,"3346":145,"3349":145,"335":[85,136,142,145],"3357":145,"3359375":145,"336":[42,85,142],"3360":142,"336000":120,"336342":[69,71],"337":[73,85,142,145],"337178938356":167,"337692":41,"3377000":120,"3378712":83,"3379":145,"338":[45,85,142],"3380":142,"33812285":[169,200],"338224":29,"3385":145,"338m":136,"339":[83,85,145],"3394":145,"339513":73,"33984375":145,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":65,"33m":149,"34":[41,53,56,64,65,67,70,83,85,102,120,128,131,136,142,145,160,171,187,188,189,210],"340":[85,136,142],"3400":142,"3404":145,"3406":145,"340769":41,"340906":131,"341":[85,142,145],"34110223":83,"3412":145,"3413":142,"341300":[67,83],"3414":145,"341649":65,"342":[85,142],"3420":142,"342200":[67,83],"3425":145,"343":[85,145,188],"3432":45,"3435":45,"3436":145,"34375":145,"34376245":128,"3439":45,"344":[41,85,145],"3440":142,"3443":76,"3444":145,"3445000":[120,194],"344698":67,"344828":125,"345":[34,83,85,136,142],"3455":145,"3459":38,"346":[42,85,145],"3460":142,"346652":131,"3468":145,"3469":45,"347":[85,142],"3471":145,"3474":45,"3475":45,"34765":42,"34765625":145,"3477":145,"348":[54,85,142,145],"3480":[142,158],"3482":45,"3483":145,"349":[83,85,142,145],"349388":41,"349603":73,"3497":145,"349751":29,"35":[14,31,37,41,53,67,75,83,85,89,102,128,136,144,145,163,165,171,173,183,188,210],"350":[85,129,136,145,187],"3500":[67,142,188],"35000":[120,188,210],"350000":[70,92],"3502":145,"3505":45,"350816":29,"3509":145,"351":[85,142],"3510":145,"351179":131,"35119":25,"3513":145,"3514":145,"3515625":145,"3516":168,"3519":[65,145],"352":[85,142],"3520":142,"352100":[67,83],"3522":145,"352222":173,"3525":45,"353":[85,145],"35303":73,"35313706e":169,"353490":130,"3537240779558":[69,71],"354":85,"3540":142,"35410":25,"3544":183,"3548":145,"355":[85,136,142,145],"3554":168,"355442":131,"35546875":145,"3555":145,"35554":83,"3557":145,"3558":145,"356":[83,85,142,145],"3560":142,"356047":73,"35650803e":169,"35656222554887711":[188,210],"356566e":131,"357":[85,142],"3571":145,"357417":73,"35775710e":169,"357935":73,"358":[85,142,172,202],"3580":[65,142],"358500":[67,83],"359":[85,142,145],"35903936e":169,"359375":145,"3595":145,"3596":145,"35e3":[188,210],"35m":30,"36":[37,41,42,53,56,69,71,83,85,109,128,129,136,145,171,188,209,210],"360":[35,72,85,136,142],"3600":[142,158],"36000":120,"36019897e":42,"3605":145,"360769":41,"3609":45,"360m":37,"361":[85,142,172,202],"3611":145,"36114314":179,"3612":145,"36155096":161,"361551":161,"36159148":171,"3617":76,"361724":131,"3618":145,"3619":145,"362":[85,142],"3620":142,"362000":158,"362069":125,"3623":145,"3625":145,"3627":[145,168],"362759e":65,"3628800":101,"363":[85,142],"3630":145,"363270":41,"36328125":145,"363636":182,"36398808":83,"364":85,"3640":142,"364581":131,"36473":42,"365":[73,85,136,142,145],"3650":145,"365349":41,"365811":131,"366":[85,129,142],"3660":142,"3664":145,"36644657e":169,"3668":144,"367":[85,129],"3670":145,"3671875":145,"3672":145,"3673":145,"367530":130,"368":[41,85,119,129,142,194],"3680":142,"3681":145,"368430":41,"36864":36,"369":[85,129,142,145],"369197":131,"3697":145,"36d72442aefd8232":42,"36m":30,"37":[41,53,56,65,67,69,71,73,83,85,101,128,136,142,144,145,160,164,171,187,195,203],"370":[85,129,136],"3700":142,"370000":41,"3703":[76,145],"371":[85,129,145],"37109375":145,"3715":145,"371667":41,"371682":29,"372":[85,129],"3720":142,"372294e":65,"3723":145,"3725":41,"373":[45,85,129,142],"3730":145,"373333":41,"37350000":[120,194],"3737":145,"373888":130,"374":[83,85,129,142,171],"3740":142,"374603":125,"3748":145,"375":[85,129,136,142,145],"375147":209,"3752":145,"3756":145,"37570172":[67,83],"375833":41,"3759":145,"376":[85,129,142,145],"3760":[41,142],"376041":29,"3762":149,"3764":145,"376707":131,"3769":145,"377":[85,129,142,145],"377175":168,"3773":145,"3776":145,"378":[85,129,142],"3780":142,"3781":145,"3782":145,"378791":131,"3788":145,"37890625":145,"379":[67,83,85,129,145],"3791":[41,145],"379601e":41,"37d61fd2272659b1":42,"37m":30,"38":[9,41,53,56,57,65,70,73,83,85,109,110,125,128,136,145,160,165,171],"380":[45,63,74,83,85,129,136,142,145,175,176],"3800":[142,145],"38000":120,"380000":41,"3801":145,"3802":[131,145],"3803":131,"380350":41,"3804":131,"3805":[131,145],"3806":131,"3807":131,"3808":131,"380813":73,"3809":131,"381":[63,85,129,142,145,175],"3810":131,"381185":130,"3817":145,"3819":145,"382":[74,85,142,145,176],"3820":142,"3822":[41,145],"382308":41,"3824":41,"3828125":145,"383":85,"3830":41,"3830571":41,"383290":73,"38332521":195,"383564":29,"3836":145,"3837":145,"38378143e":42,"3838":145,"3839":145,"384":[85,136,142,145,175],"3840":142,"384210":173,"3843":145,"384615":41,"384761":29,"385":[41,63,85,136,142,145,175],"3852":145,"385705":179,"385733e":41,"386":[63,85],"3860":142,"3861":145,"3862":41,"386440":131,"38671875":145,"386818":130,"387":[36,63,85,145],"387129":155,"3877":145,"3878":41,"388":[36,45,85],"3880":142,"38828582528":67,"3884":130,"388495":130,"3886":[83,130],"3887":130,"3888":130,"3889":[76,130,145],"389":[63,85,145,150],"3890":130,"3891":130,"389167":41,"3892":130,"3894":145,"3895":130,"3896":130,"3897":130,"389738":131,"38m":30,"39":[37,41,53,65,66,69,71,73,83,85,128,136,145,159,171,209],"390":[63,85,129,136],"3900":[130,142],"3901":130,"3902":130,"3903":[130,145],"3904":[41,145],"390566":158,"390584":130,"3906":149,"390625":145,"3909":37,"391":[85,145],"3915":168,"3916":[119,145,194],"392":[63,76,85,142,145],"3920":142,"3922":168,"392257":73,"3925":145,"392552":130,"3929":145,"393":[63,85],"39320":[67,83],"393580":65,"3937":145,"3939":145,"394":[85,142,145],"3940":142,"3942":145,"394229":29,"39453125":145,"3946":76,"395":[85,136,142],"3950":145,"3952":145,"3954":145,"395833":41,"396":[41,73,85],"3960":142,"396047":131,"3966":145,"3967":145,"39696":158,"397":[41,85],"3974":145,"3975":145,"3976":41,"39761905":160,"398":[85,142,145],"3980":[41,142],"3984375":145,"398623":131,"399":[85,142,145],"3991":83,"3994":175,"3995":175,"39972045e":169,"3998":41,"3a":[129,130,131,187],"3a10":130,"3a3":130,"3a4":130,"3a5":130,"3a6":130,"3c":187,"3d":[41,73,84,128,129,130,131,136,169,172,182,184,187,195,202],"3d0":129,"3d5":130,"3ddf":131,"3dfals":129,"3dindex":129,"3dlist":130,"3dpd":130,"3e":[130,131,187],"3f":[41,172,188,202,210],"3g":[75,89],"3int8":128,"3j":211,"3ltlqmqsncb9d0rthglvb3gjj3":65,"3m":[29,53],"3rd":[22,39,60,128,172],"3s":[38,41,65,67,136,149,171],"3ssnporch":60,"3x3":[32,34,143],"3x4":[188,210],"3yqlb":65,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,49,52,53,54,65,69,70,71,72,73,74,76,77,83,84,85,91,92,93,101,102,103,110,111,117,118,119,120,121,122,126,127,128,129,130,131,133,135,136,139,140,141,142,143,144,145,146,147,148,149,150,153,154,155,158,159,160,161,163,164,165,167,168,169,171,173,175,176,179,182,183,184,186,187,188,189,198,200,202,203,204,205,206,209],"40":[1,7,9,14,32,33,41,53,54,56,65,69,71,73,85,91,92,93,109,110,118,119,121,127,128,136,142,145,158,164,171,172,179,187,192,194,202,203,204,209],"400":[7,59,62,77,85,118,126,136,142,143,182,187],"4000":[14,37,60,64,135,142,171],"40000":[14,120],"400000":[70,92],"40000000":189,"4002912":156,"40067661":128,"400698":130,"4007":145,"400833":41,"400mg":[1,8],"401":[85,145],"4012":145,"4013":145,"4016":41,"4018":145,"402":[63,85],"4020":142,"40216064e":42,"40234375":145,"402461":131,"4029":145,"403":[85,142,195],"403000":158,"403011":29,"4031":76,"4038":145,"4038v2":144,"403950":131,"404":85,"4040":142,"4041":145,"404166":131,"404572":73,"4048":145,"40480256345":83,"405":[85,136],"4050":[118,194],"405278":85,"405309e":41,"4056":41,"406":[85,145],"4060":142,"40618608":171,"40625":145,"406383":131,"4066":145,"406667":41,"4067":145,"40675528e":169,"406m":45,"407":[85,142,145],"4071":145,"4077":145,"4077193":160,"407m":37,"408":[56,85,145,160,168],"4080":[142,145],"4081":41,"40827":168,"408376":67,"4084":145,"40847":130,"408470":130,"4087":145,"409":[35,77,83,85,145,176],"4093":145,"4096":[38,45,144],"4098":[188,210],"40996577e":169,"41":[29,41,53,54,56,67,73,83,85,101,128,136,145,160,171,173],"410":[67,83,85,136],"4100":142,"410014":64,"41015625":145,"411":[35,41,85,142],"4117":38,"411786":131,"4119":145,"411m":37,"412":[85,142],"4120":[142,145],"41212121":91,"412146":131,"41214628169062806":131,"412214e":41,"41242353":[67,83],"4127":[188,210],"413":[77,85,142,145],"413696":38,"4139":[188,210],"414":85,"4140":142,"4140625":145,"4141":73,"414184":179,"41420614":83,"4147":145,"41472":38,"41473":38,"41473335e":169,"4148":145,"4149":145,"415":[56,85,136,160,182,184],"4153":145,"415385":41,"416":85,"4160":142,"4162":145,"4165":64,"417":[36,67,83,85,145],"4179":145,"41796875":145,"418":85,"4180":142,"41800805e":169,"418056":173,"41863":25,"4189":145,"419":85,"41915124e":169,"4191616766467092":37,"4192":145,"419540":73,"419621e":65,"4197":37,"4198":37,"4199":[37,145],"41m":76,"42":[31,34,35,37,41,42,44,48,49,53,54,55,58,59,62,63,64,65,66,67,70,73,85,91,113,128,136,144,145,149,159,163,171,172,179,183,187,188,195,202,209,210],"420":[85,136,142,158],"4200":[37,142],"420000":41,"4201":37,"4202":37,"4203":37,"4204":[37,145],"4205":37,"4206":37,"4208":[119,194],"421":[41,85,142,145],"421456":29,"4215":41,"421797":29,"421875":145,"4218916":83,"4219":145,"422":85,"4220":142,"4221":168,"4222":145,"4223":58,"42235376":125,"42237836":83,"4229":145,"423":[85,145],"4236":145,"423735e":73,"4238":145,"423967":195,"424":[85,142,145],"4240":142,"4243":145,"424866":41,"424965632":41,"425":[85,136,142],"425306":131,"425538":131,"425684e":41,"42578125":145,"425798":131,"426":[73,85],"4260":142,"4261":145,"4265":145,"42685419e":169,"427":[85,142,145],"4270":145,"427000":120,"42707062e":42,"427500":41,"428":85,"4280":142,"428448":131,"428793":195,"429":85,"429055":41,"4291":145,"42932572e":169,"4296875":145,"429m":37,"43":[41,45,53,56,64,65,70,73,83,85,101,128,136,145,171,179,187],"430":[63,75,85,89,136],"4300":[142,145],"43000":120,"4303":145,"431":[85,145],"43116792":[169,200],"431800e":65,"432":[85,145],"4320":142,"432320e":73,"432x288":73,"433":[83,85],"433153":130,"4334":145,"43359375":145,"433594":[70,92],"4336":145,"434":[85,145],"4340":142,"4345":145,"435":[42,67,83,85,136,142],"4350":145,"43539442771396":171,"4354":41,"435656":131,"435833":41,"436":85,"4360":142,"4362":[45,145],"436250":29,"43641024":179,"436517":161,"437":[85,145],"4375":145,"437m":37,"438":[85,142,145],"4380":142,"4381":145,"439":[85,145,168],"44":[41,53,54,63,65,73,83,85,101,119,125,127,128,136,145,163,171,173,187,194,196,209],"440":[53,85,136,142,168],"4400":[142,145],"440000":41,"44001770e":42,"4405":145,"44085502":[67,83],"4409":76,"441":[75,85,89],"44140625":145,"441787":73,"4419":145,"442":[85,145,175,186],"4420":142,"44221823e":169,"4427":145,"44294":25,"443":85,"4432":41,"4434":145,"44359863":[169,200],"444":85,"4440":142,"44406":43,"444305":73,"4448":145,"4449":145,"445":[42,85,136],"4450":145,"4452":41,"4453125":145,"445368":70,"445375":41,"4455":41,"445716":161,"4459":[145,149],"446":[85,145],"4460":142,"446873":[69,71],"447":85,"4475":41,"44767761e":42,"447m":37,"448":85,"4480":142,"448885":179,"449":[85,145,195],"449070":73,"44921875":145,"4494":145,"45":[14,31,35,41,46,53,54,55,56,58,64,85,110,118,120,125,128,136,142,145,147,150,158,159,160,171,173,183,187,191,194,195,208],"450":[56,85,136],"4500":[34,142],"450000":[41,120,194],"45025583e":169,"45053314":128,"451":[85,145],"451667":41,"451825":73,"452":[85,142,145],"4520":142,"4522":145,"452600":[67,83],"45266050e":169,"4527":145,"45299624e":169,"453":85,"453125":145,"453172e":65,"453472":73,"4535":145,"4539":145,"454":[85,142],"4540":142,"454335":41,"4544":145,"454545":182,"455":[44,85,136],"4554":145,"4555":145,"455649e":65,"4557":145,"455850496":41,"45585107":[67,83],"4559":41,"456":[34,85,101,188],"4560":142,"456198":130,"4562":145,"4567":145,"457":85,"45703125":145,"457822322845459":137,"458":[63,85],"4580":142,"45826232":125,"4586":41,"4588":145,"459":85,"4590":145,"4591":145,"45998":25,"46":[41,53,54,64,65,85,93,120,128,136,145,171,172,195,202],"460":[85,136,142,145],"4600":142,"4601":145,"4602":145,"460483":161,"460609":130,"4608":145,"4609375":145,"461":85,"4612":145,"461414":131,"461758453195614":195,"46175845319564":195,"461822":[69,71],"461847":131,"461849":130,"462":85,"4620":[41,142],"462067":179,"463":[85,145],"463333":41,"46344":73,"463448":131,"4635":145,"463724e":65,"463988":85,"464":[52,85,145],"4640":[45,142],"4641":142,"464186":158,"4646":41,"4647":145,"464776":[69,71],"46484375":145,"465":[85,136,145],"4650":41,"465318":65,"4654":145,"46542":25,"4655":145,"4656":149,"466":[85,145],"4660":142,"46679593":171,"467":85,"4670":145,"467450":67,"467570":131,"4676":145,"467674":41,"468":85,"4680":142,"468052":168,"4681":145,"468333":41,"468384":131,"46854":25,"4686":145,"468720":65,"46875":145,"469":85,"4691":[41,145],"4699":145,"46m":30,"47":[41,53,56,65,83,85,101,118,125,128,142,145,160,171,177,194,195],"470":[85,136,145],"470137":179,"4704":145,"4705882352941178":14,"470642":131,"4707":149,"471":[73,85,145],"47191825e":169,"4719616":45,"472":[85,145],"472429":131,"47265625":145,"47284":42,"473":[83,85],"4730":145,"473497":67,"474":[85,145],"4741":145,"4743":[142,173],"474986":29,"475":[85,136,145],"4750":145,"4755":168,"4758":145,"4759332":171,"476":85,"4760":145,"4762":145,"476333":29,"4764":145,"4765625":145,"476572":161,"476631":161,"47663104":161,"4767":[145,168],"477":85,"4771":145,"477328":[69,71],"477492":29,"4775":145,"477621e":73,"477910":130,"478":[85,145],"4781":145,"4782":145,"4785":145,"4786":145,"47861920e":169,"478804":131,"479":[85,145],"4790":145,"47943":168,"4795":145,"47992614761185":[69,71],"48":[32,38,41,45,53,55,58,65,83,85,92,101,113,128,145,158,171,172,195,202],"480":[64,85,136,142,145,195],"48017":25,"4802":145,"4803":145,"48046875":145,"480655":131,"4808":41,"4809":53,"481":[73,85,145],"4815":145,"4816":53,"48168319e":169,"4818":145,"482":[85,145],"4825":53,"482578":161,"48281860e":42,"4829":41,"483":[85,145],"4833":145,"483713":73,"483724":85,"484":85,"4840":[42,53],"484010":179,"484167":41,"4842":[53,145],"4842477557110338":131,"48424776":131,"484248":131,"484375":145,"4844":53,"48444509506225586":53,"4846":53,"485":[83,85,136,145],"4852":53,"48527527e":42,"4854":[53,145,168],"48542":145,"4855":53,"486":85,"4860":53,"486069":131,"486111":67,"48624811":83,"4868":53,"486801":172,"4869":[53,145],"487":85,"487439":64,"4875":53,"4876":145,"48765671":125,"48772751e":169,"487864":158,"488":[75,85,89],"4880":53,"488090":131,"48817":145,"48828125":145,"4883":45,"4886":53,"48868864572551":70,"489":85,"489000":41,"48909":145,"4893":53,"4896":[53,145],"48965":145,"4897":53,"4898":53,"489919":64,"48c5":32,"49":[41,53,56,62,73,83,85,128,131,136,143,145,161,171,183,188,210],"490":[75,85,89,136,145],"4900":67,"490000":41,"49017":145,"4903":53,"4904":53,"490473":29,"49050":145,"4906":145,"490659":29,"4907":145,"491":[85,145],"4914":145,"4918":145,"492":[37,85],"492178":131,"4921875":145,"492209":[69,71],"4927":53,"4928":145,"493":85,"493182":168,"4932":[41,53],"49322154e":169,"4933":53,"4937":53,"4938":145,"49381":145,"494":[85,145],"4941":53,"49416":145,"49439034":171,"4947":145,"49473684":160,"495":[56,85,136],"4951":53,"49527669e":169,"49529":145,"496":[41,67,83,85,145],"4960":53,"49609375":145,"49630006e":169,"4964":53,"496488":131,"4966":53,"49663":145,"4966309980255":[69,71],"497":[85,145],"49719":145,"4974":145,"4975":145,"497500":41,"49752":145,"49763":145,"4978":53,"49791":145,"498":[85,145],"49834":145,"49847":145,"4985":145,"499":[67,83,85],"499111":29,"49914":145,"4994":53,"4996":41,"49960":145,"49960699":[118,194],"49971":145,"49972":145,"49974":145,"49981":145,"49984":145,"4999":[62,67,83],"49998084":38,"49c57b793eef1b8e55f297e5e019fdbf":63,"4a16":[127,196],"4ac":188,"4c":102,"4d":[128,136],"4f":[31,34,39,57,65,70,168],"4g":[75,89],"4j":[189,211],"4m":[29,53],"4px":173,"4s":[67,171],"4th":[51,128],"4x3":128,"4x4":[32,144],"5":[0,1,3,4,6,7,8,14,22,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,49,50,51,52,53,54,58,61,65,69,70,71,72,73,74,76,77,80,83,84,85,86,87,90,91,93,101,102,110,115,117,118,119,120,121,122,125,126,128,129,130,131,133,136,138,139,142,144,145,146,147,148,149,150,154,155,158,159,160,161,163,164,165,167,168,169,170,171,175,176,179,182,183,184,186,187,188,189,195,198,200,202,204,205,206,208,209],"50":[7,14,29,31,32,37,38,39,41,42,47,49,50,51,52,53,55,56,58,59,61,64,65,66,67,68,69,70,71,72,73,83,85,92,101,111,113,117,120,128,136,137,138,141,143,145,149,154,155,158,160,161,163,164,165,168,169,170,171,172,173,176,177,187,195,198,200,202,203],"500":[1,9,31,45,52,55,56,58,59,60,72,85,109,110,136,137,138,142,143,145,163,171,187],"5000":[34,37,52,60,62,91,135,143,171,179,188],"50000":[18,34,69,71,143],"500000":[41,64,70,73,92,129,158,168],"5000000":77,"500001":[67,83],"5000x1000":37,"500135":41,"5002":53,"500216":195,"5006":53,"5007":145,"5008":145,"501":[85,145],"501017e":65,"50114":145,"5012":51,"5013":145,"5014":[53,145],"50159":145,"50177":145,"502":[85,145],"5023":53,"5024":145,"502500":41,"5027":145,"50273":145,"50276894e":169,"5029":53,"503":85,"5030":53,"50325":145,"5033":145,"50334":145,"503355363845":[69,71],"5033565506537":[69,71],"503371776776":[69,71],"50343":145,"5035673795078":[69,71],"503607":73,"50363":145,"50390625":145,"504":85,"5042":53,"50467":145,"5047":145,"50489807e":42,"504911":73,"505":[73,85,145],"5050":101,"50510":145,"5053":53,"50531":145,"505415":73,"5055":145,"50562":145,"50596":145,"506":[85,145],"5060":53,"5060835072245":[69,71],"5062":53,"50635":83,"50636":145,"50641":145,"5065":53,"50654":145,"506579":29,"5067":145,"5068":53,"507":[73,85,142,168],"5070":53,"5072":145,"50728":145,"50732":145,"50735":145,"50751":145,"507547":158,"50755":145,"50774":145,"507812":65,"5078125":145,"50783":145,"50784":145,"50797":145,"5079999999999996":86,"508":[85,145],"508128e":41,"5083":[53,145],"50832":145,"5085":145,"50859":145,"5086":53,"5089":53,"509":[85,145],"5091":145,"50910":145,"50949":145,"5095":41,"50966":145,"50982":145,"50_startup":204,"50k":[57,121,192],"51":[41,53,65,73,83,85,128,136,145,171,173],"510":[85,145],"5101":145,"51010":145,"51011":145,"51027":145,"510410":131,"51043":145,"51047":145,"5105":145,"5106":53,"510636288":41,"51070":145,"51078":145,"510892":131,"51095":145,"511":85,"51101":145,"51112":145,"51133":145,"51135":145,"51167":145,"51171":145,"51171875":145,"51173":145,"511738":158,"5118":53,"51187":145,"511893":41,"511919e":131,"512":[29,32,34,38,39,45,64,77,85,143,144,198],"51206":145,"5121":53,"51211":145,"51212":145,"51241":145,"51249":145,"51249098777771":53,"51259":145,"5126":145,"51262":145,"51267":145,"5127":53,"5128785371780396":53,"51288":145,"51289":145,"512n":32,"513":[63,67,85],"51304":145,"51311":145,"51312":145,"5132":145,"51323":145,"513333":41,"51356":145,"51358":145,"513588e":65,"51367":145,"51368":145,"51375":145,"51378":145,"51379":145,"51381":73,"51382":145,"51385":145,"51390":145,"51391":145,"51392":145,"51393":145,"51398":145,"514":[63,85],"514000":158,"51402":145,"51406":145,"51407":145,"51408":145,"51409":145,"5142":145,"51425":145,"5143":53,"51443":145,"51445":145,"51449":145,"51461":145,"5147":53,"51470":145,"51471":145,"5149":53,"51492":145,"51498":145,"515":85,"515088":65,"51517":145,"51524":145,"51525":145,"51527":145,"5153":53,"51533":145,"51537":145,"5154":145,"51540":145,"51542":145,"51543":145,"5155":145,"51551":145,"515554":130,"51556":145,"51559":145,"5156":145,"515625":145,"51563":145,"51564":145,"51565":145,"515731":131,"51587":145,"51589":145,"5159":53,"51594":145,"516":[63,85,145],"51600":145,"51606":145,"51610":145,"51612":145,"51612345e":169,"51615":145,"51622":145,"51633":145,"51634":145,"51635":145,"51636":145,"5164":41,"5165":145,"51654":145,"51655":145,"51665":145,"51673":145,"51676":145,"51687":145,"51688":145,"5169":53,"51691":145,"51694":145,"517":[63,83,85,145],"51714":145,"51716":145,"5172":145,"51721":145,"51729":145,"5173":173,"51734":145,"51742":145,"51743":145,"517460":125,"51747":145,"51750":145,"51770":145,"51772":145,"51775":145,"51777":145,"51784":145,"51786":145,"518":[85,145],"5180":145,"51818":145,"518221":130,"51832":145,"51839":145,"5184":53,"51843":145,"51847":145,"5185":[53,168],"51851":145,"51853":145,"518601":158,"51863":145,"51865":145,"51867":145,"5187":41,"51870":145,"51874":145,"51879":145,"51886":145,"5189":145,"51891":145,"51895":145,"51896":145,"519":[85,142,145],"51907":145,"5191":145,"51912":145,"51915":145,"51918":145,"5192":145,"519278":41,"51935":145,"51941":145,"51944":145,"51946":145,"51948":145,"51950":145,"51953125":145,"51955":145,"51956":145,"51969":145,"5197":53,"51974":145,"51981":145,"51985":145,"51m":144,"52":[37,41,53,59,64,67,69,71,73,83,85,120,125,128,136,142,145,171],"520":[85,142],"52000":120,"52004":145,"52005":145,"52018":145,"5202":145,"5203":53,"52037":145,"52049":145,"52056":145,"52063":145,"52065":145,"52066":145,"52080":145,"52081":145,"52084":145,"52096":145,"52097":145,"521":[63,85,145],"52109":145,"52110":145,"52112":145,"52113":145,"52115":145,"52116":145,"52117":145,"52120":145,"52138":145,"5214":53,"52141":145,"52142":145,"52150":145,"52153":145,"52155":145,"52156":145,"52169":145,"52171":145,"52176":145,"5218":145,"52182":145,"52183":145,"52187305e":169,"522":[63,85,145],"52205":145,"52207":145,"52213":145,"52214":145,"52216":145,"52218":145,"52223":145,"52225":145,"52226":145,"52242":145,"52244":145,"52245":145,"52246":145,"52247":[73,145],"522500":41,"52266":145,"52272":145,"52278":145,"52282":145,"52285":145,"52286":145,"5229":53,"52297":145,"52298":145,"52299":145,"523":85,"52300":145,"52303":145,"52308":145,"52310":145,"52314":145,"52317":145,"523248":131,"52326":145,"52329":145,"52331":145,"52333":145,"52335":145,"52339":145,"5234375":145,"52346":145,"52347":145,"52350":145,"52351":145,"52353":145,"52356":145,"52358":145,"52359":145,"52361":145,"52364":145,"52373":145,"52383":145,"52385":145,"52389":145,"52392":145,"523965":[69,71],"524":[85,145],"52408":145,"52412":145,"52421":145,"52422":145,"52426":145,"52427":145,"52428":145,"52429":145,"52432":145,"52436":145,"52440":145,"52442":145,"52444":145,"52447":145,"52448":145,"5245":53,"52452":145,"52457":145,"52460":145,"524601e":41,"52463":145,"52473":145,"52474":145,"52478":145,"52489":145,"5249":145,"52490":145,"52492":145,"52495":145,"52496":145,"525":85,"5250":[53,145],"525000":131,"52505":145,"52516":145,"52518":145,"52524":145,"52528":145,"52534":145,"52537":145,"525385":41,"52539":145,"52541":145,"525503":131,"52553":145,"52558":145,"52561":145,"52564":145,"52567":145,"52569":145,"52572":145,"52574":145,"52577":145,"52579":145,"52581":145,"52587":145,"52590":145,"52594":145,"52596":145,"526":[85,145,150],"52600":145,"52602":145,"52603":145,"52606":145,"52610":145,"52618":145,"52628":145,"52641":145,"52647":145,"52650":145,"52653":145,"52658":145,"5266":145,"52661":145,"52666":145,"526667":41,"52672":145,"52678":145,"52679":145,"52680":145,"52683":145,"52686":145,"52689":145,"52690":145,"52691":145,"52692":145,"52693":145,"52694":145,"527":[85,142],"52700":145,"52706":145,"52707":145,"52709":145,"52717":145,"52720":145,"52733":145,"52734375":145,"52737":145,"52738":145,"52742":145,"52743":145,"52744":145,"52748":145,"52749":145,"52750":145,"52752":145,"527625":41,"52763":145,"52764":145,"52765":145,"52769":145,"52770":145,"52771":145,"52774":145,"52776":145,"52777":145,"52778":145,"5278":145,"52783":145,"52791":145,"52795":145,"52796":145,"528":[63,85],"52800":145,"52805":145,"5281":145,"52812":145,"52819":145,"52826":145,"52828":145,"52833":145,"52836":145,"52837":145,"52839":145,"52840":145,"52841":145,"52845":145,"52847":145,"52850":145,"52853":145,"52855":145,"52861":145,"52862":145,"52863":145,"52877":145,"52886":145,"52888":145,"5289":53,"52890":145,"52893":145,"529":[85,158],"52904":145,"52906":145,"52907":145,"5291":145,"52912":145,"52914":145,"52916":145,"5292":145,"52920":145,"52922":145,"529231":41,"5293":145,"52934":145,"52935":145,"52938":145,"52939":145,"52941":145,"52945":145,"52946":145,"5295":[53,145],"52951":145,"52952":145,"52954":145,"52957":145,"52959196":125,"5296":145,"52962":145,"52963":145,"52965":145,"52967":145,"52969":145,"5296b0c19e1ce60":42,"52970":145,"52972":145,"52975":145,"52976":145,"5298":53,"52980":145,"52981":145,"52987":145,"52988":145,"5299":145,"52996":145,"52998":145,"52999":145,"53":[41,42,53,54,63,65,85,118,120,125,128,145,159,165,171,173,194],"530":[83,85,158],"53000":[120,194],"530000":41,"53004":145,"53006":145,"53013":145,"53014":145,"53018":145,"53025":145,"53027":145,"53028":145,"53036":145,"53037":145,"53038":145,"530416":73,"53048":145,"53052":145,"53058695":171,"53060":145,"53061":145,"53062":145,"53066":145,"53068":145,"53071":145,"53076":145,"53077":145,"53079":145,"53081":145,"53087":145,"53090":145,"53094":145,"530m":[121,192],"530wv2bvx2w7ycwfpl":65,"531":85,"53101":145,"53103":145,"53105":145,"53106":145,"53108":145,"53109":145,"53110":145,"53123":145,"53125":145,"53129":145,"53130":145,"53134":145,"531452":29,"53146":145,"53151":145,"53154":145,"53157":145,"53159":145,"53161":145,"53165":145,"53166":145,"5317":53,"53179":145,"53183":145,"53184":145,"53189":145,"53190":145,"53192":145,"53198":145,"532":85,"53200":145,"53202":145,"53210":145,"53214":145,"53217":145,"532197":29,"532217":131,"53222":145,"53224":145,"53227":145,"53237":145,"53238":145,"5324":73,"53243":145,"53245":145,"53246":145,"53248":145,"53249":145,"5325":[53,145],"53255":145,"53256":145,"53259":145,"53262":145,"53265":145,"5327":53,"53276":145,"53279":145,"5328":145,"53281":145,"53282":145,"53287":145,"53292":145,"53295":145,"53296":145,"53299":145,"533":[85,171],"5330":145,"53301":145,"533059":131,"53306":145,"53315":145,"53321":145,"53324":145,"5333":145,"53333":145,"5333333333333334":14,"53334":145,"53341":145,"53346":145,"53348897":125,"53349":145,"5335":53,"53351":145,"53352":145,"53353":145,"53354":145,"53356":145,"53358":145,"5335853695869446":53,"5336":145,"53360":145,"53363":145,"53364":145,"533659":130,"53366":145,"53370":145,"53380":145,"53382":145,"533846":41,"53387":145,"53388":145,"53389":145,"53391":145,"53392":145,"53393":145,"53396":145,"534":[85,145],"5340":41,"534000":158,"53401":145,"53403":145,"53409":145,"5341":[67,83],"53411":145,"53413":145,"5342":145,"53421":145,"53426":145,"53427":145,"53428":145,"53430":145,"53437":145,"53438":145,"53441":145,"5345":41,"53450":145,"534510":29,"534563":[69,71],"53458":145,"53462":145,"53465":145,"53468":145,"53470":145,"53474":145,"53475":145,"53478":145,"53482":145,"53488":145,"5349":145,"53491":145,"53494":145,"53495":145,"535":[85,145],"5350":145,"53508":145,"53513":145,"53515625":145,"53517":145,"53518":145,"53520":145,"53521":145,"53525":63,"53529":145,"53531":145,"53536":145,"53538":145,"53551":145,"53553":145,"53556":145,"53557":145,"5356":53,"53560":145,"53563":145,"53566":145,"53570":145,"53571":145,"53574":145,"53580":145,"53584":145,"53587":145,"53588":145,"53589":145,"53593":145,"53594":145,"53595":145,"53597":145,"536":[85,145],"536031":131,"53606":145,"53607":145,"53616":145,"53617":145,"53627":145,"53628":145,"53630":145,"53635":145,"53642":145,"53645":145,"53652":145,"53655":145,"53657":145,"53661":145,"53662":145,"53663":145,"53666312":83,"53668":145,"53672":145,"53673":145,"53674":145,"53675":145,"53686":145,"53687":145,"536879":[69,71],"536896":73,"53691":145,"536923":41,"53693":145,"53696":145,"53697":145,"53699":145,"537":[67,83,85],"5370":145,"53706":145,"53709":145,"53712":145,"53715":145,"53719":145,"53726":145,"53728":145,"53729":145,"53732":145,"53738":145,"53747":145,"53748":145,"53749":145,"53751":145,"53757":145,"53760":145,"53762":145,"53765":145,"53768":145,"53769":145,"53771":145,"53772":145,"53774":145,"53778":145,"5378":145,"53782":145,"53783":145,"53786":145,"53788":145,"53789":145,"53797":145,"53798":145,"538":85,"53807":145,"53811":145,"53812":145,"53814":145,"53818":145,"53819":145,"53826":145,"53829":145,"538356":29,"53837":145,"53842":145,"53849":145,"538491832234":[69,71],"538494":73,"53850":145,"53855":145,"53857":145,"53859":145,"53860":145,"53863":145,"53865":145,"53866":145,"53870":145,"53871":145,"53872":145,"53879":145,"53879547e":42,"53883":145,"53891":145,"53892":145,"53894":145,"53897":145,"53899":145,"539":85,"5390625":145,"53907":145,"53908":145,"53911":145,"53912":145,"53913":145,"53919":145,"53923":145,"53924":145,"53927":145,"53938":145,"53944":145,"53946":145,"53947":145,"5395":[53,145],"53952":145,"539527":155,"539534":41,"53955":145,"53957":145,"53965":145,"53967":145,"53971":145,"53974":145,"53975":145,"53976":145,"53979":145,"53986":145,"53987":145,"53989":145,"53991":145,"53993":145,"53995":145,"54":[41,53,63,65,73,83,85,102,146,171,195,209],"540":[85,142,145],"5400":[63,67],"54001":145,"54004":145,"54005":145,"54010":145,"54014":145,"54027":145,"54031":145,"54034":145,"54035":145,"54040":145,"54044":145,"5405":145,"54054":145,"54055":145,"54062":145,"54063":145,"54068":145,"54085":145,"54086":145,"54090":145,"54094":145,"54095":145,"54097":145,"541":85,"5410":168,"541112":41,"54112":145,"54119":145,"54119856e":169,"54121":145,"54128":145,"54134":145,"54135":145,"54136":145,"5414":53,"54142":145,"54146":145,"54152":145,"54153669e":169,"54155":145,"54156":145,"54158":145,"5416":145,"54165":145,"54167":145,"54171":145,"54174":145,"54177":145,"54179":145,"541833":131,"54184":145,"54186":145,"54188":145,"54189":145,"5419":145,"54196":145,"542":[85,110,145],"54202":145,"542029":130,"54205":145,"5421":76,"54210":145,"54211":145,"54213":145,"54216":145,"54219":145,"54221":145,"54222":145,"54226":145,"54228":145,"54229":145,"54230":145,"54232":145,"54236":145,"54243":145,"54244":145,"54253":145,"54261":145,"54266":145,"54273":145,"54276":145,"54279":145,"54282":145,"54283":145,"54284":145,"54288":145,"5429":[41,53],"54293":145,"54294":145,"54296875":145,"543":85,"54300":145,"54302":145,"54303":145,"54306":145,"54311":145,"54317":145,"54318":145,"543182":168,"54321":188,"54330":145,"54331":145,"54332":145,"54334":145,"54335":145,"54336":145,"54337":145,"54338":145,"54346":145,"54349":145,"54351":145,"54359":145,"54364":145,"54366":145,"54370":145,"54376":145,"54381":145,"54383":145,"54388":145,"54389":145,"54390":145,"54394":145,"54395":145,"54396":145,"54397":145,"54398":145,"544":85,"54406":145,"54407":145,"544181":73,"54421":145,"54422":145,"54423":145,"54427":145,"54434":145,"54439":145,"54440":145,"54442":145,"54444":145,"54445":145,"54447":145,"54453":42,"54454":145,"54456":145,"54457":145,"5446":41,"54461":145,"54464":145,"54470":145,"54473":145,"54474":145,"54479":145,"54485":145,"544908":73,"54491":145,"54494":145,"54495":145,"54497":145,"54498":145,"545":[85,145],"54501":145,"54504":145,"54505":145,"54507":145,"545079":131,"54509":145,"5451":[53,145],"54516":145,"54519":145,"54524":145,"54526":145,"54527":145,"54528":145,"54530":145,"54534":145,"54536":145,"54538":145,"54540":145,"54545":145,"54554":145,"54556":145,"54559":145,"5456":145,"54564":145,"54567":145,"54570":145,"54571":145,"54573":145,"54575":145,"54582":145,"54583":145,"545833":41,"54584":145,"545850":41,"54587":145,"54589":145,"5459":53,"54593":145,"54595":145,"54596":145,"54598":145,"546":[85,142,145],"546021":[69,71],"54603":145,"54605":145,"54614":145,"54621":145,"54627315":128,"5463":145,"54630":145,"54634":145,"54636":145,"54640":145,"54641":145,"54643578e":169,"54647":145,"5465":145,"54655":145,"54658":145,"54659":145,"54662":145,"54663":145,"54667":145,"5466747351275563":159,"54670":145,"54671":145,"54672":145,"54676":145,"54679":145,"5468":145,"54683":145,"546875":145,"54693":145,"54697":145,"54699":145,"547":[53,85],"5470":53,"54705":145,"54710":145,"54715":145,"54717":145,"54718":145,"54725":145,"54731":145,"54737":145,"54738":145,"54739":145,"54741244":83,"54750":145,"54752":145,"54765":145,"54769":145,"54770":145,"54772959":125,"54782":145,"54784":145,"54789":145,"54798":145,"548":[85,145],"54803":145,"54808":145,"54808703":171,"54810":145,"5482":41,"54824":145,"54832":145,"54833":145,"54834":145,"54836":145,"54841":145,"54842":145,"54843":145,"54846":145,"54848":145,"54854":145,"54865":145,"54866":145,"54869":145,"54877":145,"54878":145,"54880":145,"54888":145,"54898":145,"549":85,"54900465e":169,"54901961":83,"54905":145,"54914":145,"5492":[53,145],"54921":145,"54925":145,"54927":145,"54930":145,"54931":145,"54941":145,"54944":145,"54945":145,"54947":145,"54949":145,"54958":145,"5496":53,"54961":145,"54966":145,"54969":145,"54970":145,"54971":145,"54972":145,"54974":145,"54976":145,"549784e":131,"54979":145,"54980":145,"54984":145,"54988":145,"54996":145,"54997":145,"54998":145,"54c1e3b9184cb5b6":42,"55":[14,41,53,56,65,70,85,101,120,125,136,144,145,168,169,171,177,187,195,200,204],"550":[85,145],"55000":[120,194],"55010":145,"55012":145,"55017":145,"55024":145,"55029":145,"55030":145,"55031":145,"55034":145,"55035":145,"55040":145,"55053":145,"55054":145,"55056":145,"55057":145,"55060":145,"550610e":65,"55062":145,"55066":145,"55071":145,"55072":145,"55074":145,"55077":145,"55078":145,"55078125":145,"55081":145,"55083":145,"55086":145,"55087":145,"55095091e":169,"550px":130,"551":85,"5510":53,"55100":145,"55103":145,"5510652":128,"55107":145,"5511":53,"55110":145,"55116":145,"55120":145,"55124":145,"55126":145,"55127":145,"55135":145,"5514":145,"55142":145,"55149":145,"55158":145,"5516":145,"55161":145,"55164":145,"55168":145,"55179":145,"5518":145,"55181":145,"55183":145,"55186":145,"55187":145,"55191":145,"552":[85,145],"55200":145,"55204":145,"552041":73,"55209":145,"55212":145,"55220":145,"55225":145,"55231":145,"55234":145,"55236":145,"5524":73,"55241":145,"55246":145,"55250":145,"55253":145,"55255":145,"55259":145,"5526":[53,145],"55263":83,"55264":145,"55265":145,"55268":145,"552745":131,"55276":145,"55281":145,"55284":145,"55287":145,"55288":145,"5529":53,"55290":145,"553":[53,85],"55309":145,"5531":145,"55310":145,"55329":145,"55330":145,"55348":145,"5535":53,"55350":145,"55355":145,"55359":145,"55360":36,"55364":145,"55366":145,"5537":145,"55373":145,"5538":53,"55381":145,"55386":145,"554":[85,145],"5540":53,"5540224313735962":53,"55408":145,"55415":145,"55422993e":169,"55426":145,"55428":145,"55433":145,"554453":73,"5545":53,"55454":145,"5546875":145,"55477":145,"55481":145,"55487":145,"55491":145,"555":[85,145],"55501":145,"555015":130,"5552":[53,145],"555218":131,"55523":145,"55526":145,"55527":145,"5553":53,"55531":145,"555312":41,"55535":145,"5554":145,"55546":145,"55547":145,"55549":145,"5555":53,"55550":145,"55552":145,"55553":145,"55556":145,"55557":145,"55559":145,"55563":145,"55567":145,"5557":145,"55570":145,"555784":29,"555814":73,"5559":145,"55592":145,"55598":145,"556":85,"55606":145,"55609":145,"55613":145,"55620":145,"55621":145,"55623":145,"5563":53,"55635":145,"55636":145,"55637":145,"55645993":128,"55649":145,"5565":41,"55653":145,"55656":145,"5566":53,"55662":145,"55666":145,"55668":145,"55670":145,"5568":83,"5569":53,"55697":145,"557":[85,145],"5570":53,"55701":145,"55703":145,"55706":145,"55713":145,"55716":145,"55718082144":83,"557190":131,"55727":145,"55731":145,"55737":145,"5574":149,"55748":145,"55758":145,"55761":145,"5577":53,"55782":145,"55788":145,"55791711":83,"55799":145,"558":[67,83,85],"55801":145,"5581":53,"55812":145,"5583":53,"55830":145,"55844":145,"55846":145,"558500":158,"55851":145,"55859375":145,"55866":145,"55867":145,"5587":53,"55870":145,"55881":145,"5588235294117647":14,"55884":145,"55888":145,"55892":145,"55895":145,"55896":145,"559":[41,85,145],"55902":145,"55910":145,"55912":145,"55922699e":42,"5595":53,"55954":145,"55957":145,"5596":53,"55976":145,"55978":145,"55981":145,"55988":145,"55989":145,"55994":145,"55995":145,"56":[53,54,73,85,101,118,125,136,161,171,184,194],"560":[85,125,129,142],"5600":188,"560000":41,"5600000000000002":86,"56012":145,"56015":145,"5602":53,"5603":83,"56035":145,"56039":145,"56045":145,"56048":145,"56057":145,"56058":145,"5606":53,"56060":145,"56062":145,"56065":145,"56069":145,"5609":53,"56090":145,"56093":145,"56098":145,"561":[85,129,145],"5610":145,"56102":145,"56113":145,"56115":145,"56116":145,"56119":145,"56120":145,"56125":145,"56127":145,"56135":145,"56137":145,"56139":145,"5614":53,"56148":145,"56152":145,"56159":145,"5616":53,"56163":145,"56171":145,"5618":53,"5619":53,"56190":145,"561961":73,"562":85,"562000":120,"56212":145,"56215161e":169,"56217":145,"5622":[53,145],"56220":145,"56226":145,"56231":145,"56242":145,"56244":145,"56245":145,"56247":145,"5625":145,"562500":65,"56255":145,"56261":145,"56262":145,"56267":145,"562754":131,"56276":145,"5628":145,"563":[85,129],"5630":53,"56303":145,"56306":145,"56308":145,"5631":145,"56319105e":169,"563252":130,"5633":53,"56335":145,"56342":145,"56352":145,"5636":53,"5637":145,"56376":145,"5638":145,"56381":145,"56390":145,"56394":145,"56396":145,"564":[41,85,145,158],"5640":145,"56424":145,"56427":145,"5643":[53,67,83,145],"56430225e":169,"56431":145,"56435":145,"56439":83,"56447":145,"56454":145,"56466":145,"5647":41,"56471":145,"56474":145,"56498283":146,"56499":145,"565":[41,67,83,85],"56504":145,"56508":145,"56509":145,"56510":145,"56521":145,"56526":145,"56538":145,"5654":145,"56544":145,"56546":145,"56550":145,"56558":145,"5657":145,"56574":145,"56576":145,"5658":41,"56596":145,"565m":37,"566":[85,145],"5660":53,"566126":29,"56624":145,"5663":53,"56636":145,"56637":145,"56639":145,"56640625":145,"56646":145,"56647":145,"56649":145,"56660":145,"5666666666666667":14,"5669":145,"56699":145,"567":[85,145],"5670":53,"567088":29,"56721":145,"56729":145,"567306":65,"56735":145,"56740":145,"567453":67,"56749644e":169,"5675":53,"567530":67,"56755":145,"5676":53,"5677":53,"56770":145,"56771":145,"56777":145,"5679":53,"56790":145,"567906":155,"56791":145,"567919":130,"56792380e":169,"568":[83,85,145],"568008":130,"56805":145,"56806":145,"56812":145,"5682":53,"56823":145,"5683":53,"56837":145,"5685":53,"56852":145,"56858":145,"5686":41,"56886":145,"5689":145,"56895":145,"569":[85,145],"56917101":128,"56918":145,"56919":145,"56922":145,"56928":145,"56949":145,"5695":145,"5697":53,"56982":145,"5699":145,"56993":145,"56997":145,"57":[41,53,65,83,85,118,136,143,144,171,194],"570":[85,208],"5700":[53,145],"570000":41,"57006":145,"5701":53,"57013":145,"5702":53,"57026":145,"5703":145,"5703125":145,"57033":145,"5704":145,"57046":145,"570540":73,"57060":145,"5706829878497204":86,"57070":145,"57084":145,"57085":145,"57098":145,"571":[85,145],"57110":145,"57115":145,"57123":145,"5713":53,"571340":73,"57143":145,"57147":145,"57153":145,"57157":145,"57161":145,"57163":145,"571657":73,"57166":145,"57172":145,"57178":145,"5719":53,"57196":145,"572":85,"5720":145,"57214":145,"57228":145,"5724":53,"57242":145,"5725":53,"57250":145,"5726":53,"57260":145,"57268":145,"57276":145,"57290":145,"57294":145,"57297":145,"57299":145,"573":[41,73,85,145],"57307":145,"5732":53,"57323":145,"57328":145,"573333":41,"57336":145,"5734":53,"5736":[41,53],"57389":145,"57391":145,"57395":145,"574":[38,85],"57401":145,"5741":53,"57415":145,"57417":145,"57418":145,"57421875":145,"5744":53,"5745":131,"57467":145,"57489":145,"57498":145,"575":[85,145],"57508":145,"5753":[42,131,145,149],"57538":145,"57542":145,"57547":145,"57553":145,"57554":145,"57556":145,"57560":145,"57570":145,"5758":53,"5759":53,"57593":145,"57595":145,"57597":145,"5759974718093872":53,"576":[85,145],"5761":[53,145],"57637":145,"576487":65,"5765":53,"57652":145,"57654":145,"5766":[53,145],"57669":145,"5767":145,"57679":145,"57685":145,"57690":145,"57693":145,"577":85,"57704":145,"57744":145,"5777":145,"5778111219406128":53,"57789":145,"57799":145,"578":[85,145],"5781":53,"578125":145,"578142e":65,"57819":145,"57840":145,"57841":145,"57852":145,"578621":29,"5789473684210527":14,"579":[38,85],"57909":145,"5791":53,"579158":131,"57916":145,"5792":53,"57929":145,"57942":145,"5796":168,"57961":145,"5797":53,"57987":145,"57993":145,"58":[37,53,65,73,77,85,125,136,145,171],"580":[85,142],"580000":41,"58000000000":189,"58001":145,"58019":145,"5802":145,"58023":145,"5803":145,"58042":145,"5805":145,"5807":145,"58078":145,"58079":125,"580px":130,"581":[85,145],"581082":173,"5811":53,"58110":145,"5811388300841898":24,"58113883008418981":24,"581139":73,"58137":145,"58138":73,"58149":145,"5816":53,"58164":145,"58172":145,"58177":145,"58181501e":169,"58195":145,"58197":145,"582":[85,145,150],"5820":145,"582000":158,"58203125":145,"5821":53,"58260":145,"582778":173,"58293":73,"58294":145,"583":85,"58310":145,"58313172":83,"583136":130,"58330":145,"583333":41,"5834":145,"5835":53,"5836994051933289":53,"58379":145,"58380":145,"584":[29,30,85],"584095":29,"5842":76,"584304":131,"584389":130,"5843960046768188":53,"5844":53,"5845":53,"58454":145,"58468":145,"5849056603773586":14,"58494":145,"584943":41,"585":[85,145],"5850":37,"5851":76,"58516":145,"58520":145,"58525":145,"58526":145,"585335":73,"58549785e":169,"58565":145,"5857":145,"58581":145,"58585":145,"5859375":145,"586":[85,172],"5861":145,"58611":145,"58615":145,"5865":38,"58651":145,"587":[85,142],"58702":145,"58716":145,"58730":145,"587461e":65,"5875":83,"58761":145,"58768":145,"58799":145,"588":[85,145],"58800":145,"58810":145,"5882":145,"58823529":83,"58829":145,"58832":145,"588333":41,"58840":145,"588462":41,"58860":145,"5889":83,"589":[85,195],"589167":41,"589271":41,"58930337":171,"58936":145,"58941":145,"58946":145,"58952":145,"58957":145,"5896":[67,83],"5897":53,"58978":145,"58984375":145,"58986":145,"58994":145,"59":[41,53,56,77,83,85,120,136,145,171,188,194,195,209,210],"590":[85,145,195],"590000":41,"590080":38,"59026":145,"5906":53,"5908":145,"59080":145,"5909":53,"590909":41,"590px":182,"591":85,"59114":145,"59115":145,"5913425779189757":85,"59139":145,"59146":145,"59171":145,"5918":76,"5919":[53,145],"592":85,"59210":145,"59229":145,"5923":76,"59248":145,"59250":145,"592509":73,"59257":145,"592px":33,"593":[85,145],"5932":53,"59334":145,"59337":145,"59345":145,"593450":29,"593661":65,"59375":145,"5938":62,"594":85,"59420865e":169,"59421":145,"59421842":146,"59432":145,"594450":29,"5947":145,"5949":76,"59493":145,"595":[85,145],"5950":145,"59512":145,"5952":145,"59524":145,"59525364e":169,"59529":145,"5954":145,"59564":145,"59566":145,"5957":145,"5958":76,"59591482e":169,"596":[85,142,145],"5961":142,"59617":145,"59670":145,"596767":131,"5969":53,"597":[85,145],"5972":53,"597450":131,"59756":145,"59759":163,"59765625":145,"5977":53,"597948":131,"597988":130,"598":[85,171,175],"5981":145,"598150":195,"59823":145,"5983":53,"59831252":83,"59842":145,"59849616e":169,"59853725816836":171,"5985372581684":171,"59853725816868":171,"59854":145,"5988":38,"59880":145,"59886":145,"5989":53,"598945":131,"599":85,"599167":41,"599277":131,"5994521975517273":53,"59970":145,"5998":53,"59981":145,"5999":53,"5b":[121,129,130,131,187,192],"5b0":130,"5b1":[129,130,131],"5b2":129,"5b3":[129,130],"5b380":129,"5b390":129,"5b4":130,"5b5":129,"5b7":129,"5bdf":129,"5bdfd":130,"5blambda":130,"5bmask":130,"5bnone":129,"5btrue":130,"5cm":51,"5d":[129,130,131,187],"5e":38,"5f":[32,172,202],"5g":[75,89],"5k":56,"5m":[41,53],"5more":63,"5s":[67,171],"5th":[48,128,190],"5vbcssa6":65,"5x5":32,"6":[0,7,8,14,18,22,24,29,30,31,32,34,35,36,37,38,41,42,43,44,45,46,49,52,53,54,57,65,68,69,70,71,72,73,76,83,85,86,91,92,93,101,102,105,110,113,120,121,125,126,128,129,130,131,133,136,137,141,142,143,144,145,149,150,152,155,158,159,160,161,163,165,167,168,169,171,172,175,182,183,184,186,187,188,189,195,196,200,202,204,209,210],"60":[7,9,14,32,33,34,37,41,44,46,47,53,56,62,63,69,71,72,85,86,109,110,113,118,120,126,128,136,142,163,169,171,173,177,194,195,200,208,209],"600":[3,77,85,120,142,143,171],"6000":[34,37,53,64,91,93,135,143],"60000":[29,30,76,143],"600000":[70,73,92],"60028":145,"6003":53,"600345":29,"60045":145,"600833":41,"600866":65,"600px":[129,130,136,163,182],"601":85,"60114670e":42,"60116":145,"60122":145,"60144":145,"6015625":145,"60192":145,"602":[73,85],"602028":131,"60220868e":169,"60239":145,"602528":131,"6026":145,"603":[85,145],"60306":145,"60320":145,"60321":145,"60332519e":169,"603333":41,"60349":145,"60357230e":169,"6036":41,"60373":83,"60381281e":169,"603m":37,"604":[83,85,145],"604039":67,"60409":145,"6041":145,"6043":53,"604382":85,"604384":[69,71],"60465":145,"6047":41,"605":85,"60522":145,"60523":145,"6053":145,"60546875":145,"60548791e":169,"60550":145,"605962":67,"606":[67,83,85,195],"60623":145,"6063":38,"6065":145,"606722816":41,"607":[73,85,145],"607008e":41,"6072":41,"60733":145,"60744":145,"6075":145,"6076":145,"60764":145,"6078":145,"608":85,"6080":37,"6081":145,"6082":[67,83],"6084":142,"60850":145,"60851":145,"60863":145,"60869":168,"608724":179,"6088":145,"609":[85,145],"6090":[37,53],"60904":145,"6092":145,"60925":145,"609339":130,"609375":145,"6095":145,"6096":145,"60970":145,"6098":145,"6099":145,"60m":37,"61":[41,53,54,56,65,70,85,136,145,158,160,171,177,195,209],"610":[85,145],"610000":41,"6105":38,"6107":145,"611":[85,158],"611105":41,"61122":145,"611222":73,"61158124e":169,"6117":145,"61184":145,"612":85,"61204":145,"61205":145,"61216":145,"612245":131,"6123":[53,145],"612364":172,"61238":145,"6124":145,"612405":131,"6125":145,"613":[85,145],"6131":76,"61328125":145,"61351":145,"614":85,"614392":29,"6149":41,"615":[35,85,145],"6150":37,"61501":145,"61516":145,"6153":34,"615385":41,"61547":145,"616":[83,85,184],"616175":130,"61622":145,"61630":145,"616314e":41,"616364":29,"61663286":83,"616766":64,"617":[35,85],"6170212765957446":14,"6171875":145,"6173":41,"617423":[69,71],"6175":145,"6176":53,"61760":145,"617712":131,"617802e":65,"618":[85,145],"6180":53,"6182":73,"619":85,"619047619047619":14,"61905":145,"61965":145,"62":[41,53,56,65,69,71,73,77,85,120,125,142,145,160,171,177,194,204,209],"620":[85,142],"6200":37,"6201":145,"62037":145,"6204":145,"62046":145,"6205":145,"62055":145,"62066":145,"620727":131,"6208":145,"62084":145,"620px":130,"621":[41,85,145],"6210":37,"62107":145,"62109375":145,"62110":145,"621116e":65,"6212":145,"6213":145,"62134":145,"6215":53,"622":[85,145],"6220":145,"6225":37,"62271805":83,"623":85,"6230":145,"6231532":41,"62329":145,"6233":53,"62374":145,"624":[38,85,145],"62405":145,"624059":130,"6240593506280346":130,"62419":145,"624289":41,"6244":38,"6245":[37,145],"6246":145,"624615":41,"625":[85,145],"6250":37,"625000":41,"6254":145,"62557666e":169,"62571878891146":171,"625803":131,"625998":131,"626":85,"6263":145,"6265":76,"6266":41,"627":[85,145],"62712":145,"627175":41,"6274":145,"62740":145,"627590e":65,"628":85,"6283":41,"6285":41,"62860":145,"62890625":145,"62891":145,"629":85,"6291":41,"6294":145,"62993":145,"63":[41,45,53,65,70,85,120,136,145,160,161,164,165,171,172,177,183,202],"630":[38,85,145],"6302":83,"630217":67,"63022":145,"6303904952264":64,"6304":38,"6305506":138,"6308":145,"630px":[129,130],"631":[85,129],"63119":145,"6312":145,"6313":145,"6315":41,"63169":145,"63197":145,"632":[85,129],"63204":145,"632456":73,"63256":145,"63262":145,"6327":41,"6328125":145,"633":[85,129],"633158":195,"63339":145,"6334":41,"633534":179,"6339302659034729":53,"634":[85,129],"634019":73,"6342":41,"63420490e":169,"6345":[37,41,145],"6348":145,"63481":145,"635":[41,73,85,129,145],"6350":41,"6351":53,"6352":41,"6353":168,"635397":131,"6354":41,"6356":41,"635833":41,"6359":41,"636":[85,129,145],"63603":145,"63608":145,"6361":41,"6362":41,"636238":65,"636364":182,"636368640":41,"63637":145,"63655":145,"6366":145,"63671875":145,"6368":41,"6369":[41,145],"637":85,"6370":41,"6371":[41,145],"63726835e":169,"6374":145,"637461":73,"63752":145,"63759":145,"637635":73,"6378":41,"63792":145,"638":[38,85,145],"6380":41,"63803":145,"6381":41,"63851":145,"6387":145,"6388":145,"639":[65,85,142,145],"63940":145,"639426e":41,"63958699e":169,"639588":130,"63960":145,"63m":37,"64":[7,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,53,56,64,65,85,101,118,120,126,128,135,136,139,143,144,145,150,163,168,171,172,176,177,188,194,202,210],"640":[85,142,158],"6400":37,"64000":64,"6404":168,"640625":145,"64073":145,"64082434":146,"640x480":92,"641":85,"641035e":65,"642":[85,145],"64206":145,"64211531e":169,"64243":145,"642485873":179,"642977":65,"643":[85,145],"64300":145,"6431":[67,83],"6435":[42,145],"644":[85,145],"644082":155,"6442":145,"64438":145,"6445":[67,83,145],"64453125":145,"64497":145,"645":85,"6450":37,"6451":145,"6452":53,"64568":145,"645767":172,"645833":[41,173],"645885":130,"646":[38,85],"646705152":41,"64671":145,"64681":145,"646848":131,"647":85,"6471":145,"6473":145,"647744":131,"6479":145,"648":[67,83,85],"64805431":125,"6482":145,"6484375":145,"64851":145,"64859406":[67,83],"649":[85,142],"649167":41,"6492":145,"649232":130,"6497":53,"64982451e":169,"649855":41,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[35,144],"65":[36,37,53,65,72,85,120,125,136,146,169,171,175,187,188,194,200,205,206,208,210],"650":85,"6500":145,"650px":130,"651":85,"651004":73,"65127388":131,"6512738833704724":131,"651274":131,"652":[85,118,194],"6522":145,"65223263":125,"65234375":145,"65239850433215":171,"6527":145,"653":[85,171],"6530":[37,145],"6532":145,"65334":145,"65347":145,"6535":145,"6536995137169997":85,"6538":145,"65380":145,"654":85,"654167":41,"65443":145,"654644":73,"65480":145,"65492":145,"655":85,"6550":37,"65526":145,"655365":179,"65540311":125,"655517642572828":171,"65555":145,"655553e":131,"655787":73,"6559":130,"656":[38,85],"6560":[53,130],"6561":130,"65611":145,"65625":145,"65670227e":169,"656881":29,"657":[85,172,202],"6571":53,"65732685":83,"65746":145,"657658":131,"65793":145,"658":85,"6581":145,"659":85,"6590":37,"65907190e":169,"6591692566871643":53,"6594504178995297":125,"65949":145,"6596":38,"65962":145,"6598":130,"6599":130,"65m":149,"66":[30,41,53,56,85,145,158,171,175,188,198,210],"660":[85,142,145],"6600":[37,130],"66015625":145,"6602":130,"66022":145,"66036":145,"6604":130,"660451":131,"6605":130,"6607019357604422":85,"660833":41,"66098":145,"660px":129,"661":85,"661054":41,"661068":67,"6611":83,"6615":37,"662":[85,145],"6621":41,"662185e":41,"662224":[69,71],"662295":172,"662475":131,"6625":41,"66265869e":42,"6627":41,"663":[85,145],"6631":41,"6632":41,"66327":145,"6635":41,"66369":145,"6638":41,"663811":131,"664":85,"6640":41,"6640625":145,"6641":41,"6642":38,"6646":145,"6647":41,"664918e":65,"66496461":83,"665":[41,85],"665000":120,"6651":[41,145],"665144":73,"6652":41,"6653":38,"6655":41,"6657":[41,145],"666":[85,158],"6660":37,"6662":41,"66623":145,"6663":41,"6664776":138,"6665":145,"6666":41,"666666":73,"6666666666666666":56,"6666666666666667":[188,210],"666666666666667":188,"666667":41,"6669":41,"667":[38,85,145],"6670":145,"6671":145,"6674":41,"6675":145,"6678":145,"66796875":145,"668":85,"6680":37,"6683":41,"66840":145,"66845":145,"669":[85,145],"669000":158,"6691":145,"6695":37,"66952876e":169,"66977":145,"67":[30,53,55,58,64,85,92,130,136,145,171,175,177],"670":[33,85,145],"6700":37,"67000":145,"67021":145,"670px":129,"671":85,"671131":29,"67131":145,"6714":53,"6715":130,"6717":130,"6718":130,"671875":145,"6719":130,"672":85,"6720":37,"67209274e":169,"6721":130,"6722":[130,145],"672225":65,"67225":145,"6725":37,"672864":67,"672916":131,"672963":131,"673":[83,85,142,145],"673333":168,"67372042e":169,"67374":145,"673913":131,"674":85,"6740":37,"6742":76,"67434":145,"674452224":41,"675":85,"6750":145,"675010":131,"6754":145,"67550":145,"67578125":145,"6758":145,"675833":41,"676":[38,45,85],"676245":73,"6765":145,"676667":41,"6767":145,"6768":145,"677":85,"6770":145,"6771":145,"677258":65,"6775":145,"6779":145,"678":85,"6780":37,"6782":142,"6783":145,"6784":145,"67843":145,"678478":131,"67858615":[67,83],"6786":145,"6788":145,"679":85,"67912":145,"67953":145,"6796875":145,"6797":145,"67m":37,"68":[14,53,65,67,72,73,85,130,136,145,171,175,177,195],"680":[85,142],"6800":37,"680470":179,"68076":145,"6808":130,"680851":131,"6809":130,"680px":130,"681":85,"6810":[37,130],"681000":158,"6811":[53,130],"6812":130,"68141":145,"681744":[69,71],"6818":145,"682":85,"68201":145,"6821":145,"68269":145,"682f2f":73,"683":[85,155,158],"68323517e":42,"683499":131,"68359375":145,"683782":65,"683995":131,"684":[67,85],"6842":[41,145],"68438":83,"6844":41,"684457140":41,"6845":145,"68478":67,"68491":83,"685":85,"6850":37,"6851":41,"6852":41,"68522":73,"68537":83,"685433":83,"6855":41,"685531":131,"68557":145,"6858":41,"686":85,"68617":145,"686275":131,"6866":145,"68667298e":169,"6868":41,"68684":67,"6869":41,"687":85,"6870":[37,41],"6872":41,"6875":145,"6878":41,"6879":76,"68796":145,"688":[85,145],"68849":145,"6885":41,"6886":41,"6887":41,"688719":131,"6888":41,"6889":41,"689":[85,145],"6890":41,"6891":41,"6893":[41,145],"6894":41,"68969":145,"6897":145,"6899":41,"68m":37,"69":[41,53,73,85,125,136,145,171,175,176,177,183],"690":[85,208],"6900":[37,41],"6902":41,"690293":73,"6903":41,"69037":145,"6904":41,"6905":41,"690659":130,"6907":41,"6908":41,"6909":[41,142],"690px":130,"691":[85,142,145],"6911":41,"69136631":171,"6914":41,"69140625":145,"6915":41,"6917":41,"69178":145,"692":[85,129,145],"6920":41,"6921":41,"69211":145,"692181":73,"6922":41,"692308":41,"6924":41,"6925":41,"692500":41,"69261":145,"6928":41,"6929":41,"693":[85,129],"6930":41,"69318":145,"6933":41,"6934":[41,145],"6935":41,"6936":41,"6937":41,"69378":145,"69399":145,"694":[85,129,145],"69400":145,"6941":41,"69411":145,"69412994e":42,"6942":41,"69456":145,"6946":[41,145],"6947":41,"6948":41,"695":[38,45,85,129,142,145],"6950":37,"69500":145,"695000":158,"6952":41,"6953125":145,"695662":195,"6958":41,"695833":41,"696":85,"6960":41,"696038":131,"6961":41,"6962":145,"6963":41,"6965":41,"6968":41,"6969":145,"697":[83,85,129,145],"6970":[37,41],"6974":53,"69764":145,"6976998904709748":183,"69779":145,"698":85,"6982":145,"6983":145,"69831":145,"6984":41,"6985":41,"6986":41,"699":[85,129,142,158],"6990":41,"69921875":145,"699648":65,"6999":145,"6a":102,"6j":[188,210],"6m":[41,76],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":65,"6qepylt4v68sypax9kxk":65,"6qwd":65,"6s":[67,136,171],"7":[3,7,14,22,24,29,30,31,32,35,36,37,38,39,41,42,45,46,49,53,54,55,60,61,65,68,69,70,71,72,73,75,76,77,83,85,86,87,89,92,93,101,102,110,119,121,125,126,128,129,130,131,133,142,143,144,145,146,148,149,150,155,158,159,160,161,163,164,165,168,169,171,172,175,177,182,187,188,189,195,196,202,204,209,210,211],"70":[14,30,32,41,46,53,54,56,65,69,71,72,85,120,125,136,145,160,171,177,182,187,194,204],"700":[33,62,85,142],"7000":[1,83,128,135],"7009":145,"700px":[130,143,144,163,169,172,175,179,180],"701":[85,145],"7010":[37,145],"7011":145,"7012":145,"7018823027610779":53,"702":[85,158],"7020":41,"702500":41,"70282":145,"703":[85,129],"7030":145,"703125":145,"7032":145,"7033":142,"7034":145,"7036":145,"703982":[69,71],"704":[85,129,145],"70429":145,"7048":41,"705":[85,129,145],"7054":145,"70549":43,"7057":168,"70584":145,"706":85,"70633":145,"706839":73,"70698":145,"707":85,"70703125":145,"7073":145,"70760":145,"708":[85,145],"708015":130,"70884":145,"70895915e":169,"709":[85,145],"7090482711792":53,"70935":145,"7099":[67,83],"71":[30,53,56,62,83,85,101,120,125,136,145,160,165,171,176,177,182,194,204],"710":[85,145,158],"7100":37,"710000":67,"7104":145,"7107":145,"71086031":171,"7109375":145,"711":85,"7110":[37,145],"7111":145,"71130":145,"7117":145,"711806":131,"712":[85,118,194],"7125":145,"7127411872482181":86,"713":85,"7131":145,"7133":41,"713683":29,"714":85,"714350":73,"714500":158,"71469":145,"71484375":145,"715":[85,145],"7153":145,"71537":145,"71578957e":169,"716":85,"71613":73,"71625":145,"716308":131,"716440":85,"7169":142,"717":85,"7171":41,"71714":83,"71733307":[67,83],"71747425e":169,"718":85,"71817":145,"718230":73,"7184":145,"7185":145,"71875":145,"7189":145,"719":85,"7190":168,"71902117":125,"719457":125,"71977":145,"7198":168,"71995":145,"72":[37,41,53,85,101,120,125,171,177,182,194],"720":[85,142],"7200":173,"720000":[120,131],"7203":[53,145],"72035":145,"7209":[41,145],"72093598500494":[69,71],"721":[85,145],"72101958323096":[69,71],"72108":145,"72115":145,"72164454424515":[69,71],"722":[85,145],"722071":155,"7222":41,"72226459e":169,"7225":145,"72265625":145,"7227":142,"722717":41,"723":[85,145],"723684":125,"724":[85,142],"724046":29,"7245":41,"724590719956222":64,"7247":145,"724924":[69,71],"725":[85,145],"725399":130,"7255":142,"72568":145,"72581411":171,"726":[85,129],"72627890e":169,"726562":65,"7265625":145,"72663483920857":[69,71],"726845ca9638":123,"726940":130,"727":[85,129,145],"727484":179,"7276":[41,142],"727750":155,"72788":83,"728":[85,142],"7280":41,"7281":[41,142],"729":[85,129,145],"7291":142,"7293":145,"72991":145,"73":[41,53,56,85,120,125,136,158,160,171,177,182,209],"730":[85,129,172,202],"7302":145,"73041":145,"73046875":145,"7305":145,"730px":[130,131],"731":[85,129,145],"7311":[41,145],"7312":145,"73167":145,"73183":145,"732":[85,171],"732573":131,"7327":145,"7329":145,"733":[42,85,129],"73307516e":169,"733707e":65,"73372":145,"734":[85,129],"7340":145,"734147e":65,"734157":131,"7343":145,"734375":145,"7345":37,"734924":[69,71],"73498":168,"735":[85,129,145],"735000":41,"7351":145,"7352":142,"7354":41,"735448":172,"735822":65,"736":[85,129],"73625860e":169,"7363":145,"73645":145,"736567":172,"736769":41,"737":[85,129],"7373":142,"737524":131,"73779":145,"738":[85,129,142,145],"7380":168,"738248":131,"73825064e":169,"73828125":145,"7383":142,"738389":131,"73856":[38,45],"7386":145,"73886":145,"739":[85,129,145],"7390":145,"73914":145,"739191":172,"7394":53,"7395":142,"739580":131,"7396":41,"73m":37,"74":[29,41,53,56,65,73,85,125,145,171,177,182,195],"740":[85,142],"740251e":41,"740959":73,"741":[83,85,142],"741066":[69,71],"74108070e":169,"7414":142,"7415":37,"741619":158,"74170":145,"741986":131,"742":[85,145,168],"7421875":145,"7422":[41,145],"7424":41,"742725":67,"74273":83,"7428":145,"742856":131,"742940":29,"742972":172,"743":85,"74306":145,"74307116e":169,"74310":145,"743285":131,"74340771":83,"74354":145,"743542":131,"74360":145,"74382":145,"744":[85,129,142,145],"744051e":65,"7442":142,"744669":65,"744769":41,"745":[85,129],"745034":41,"74569":145,"7457":41,"7457109493044":70,"7458":145,"746":[85,145],"74609375":145,"746965":131,"747":85,"74703":145,"7475":142,"74763":145,"748":[85,145],"7483":145,"7486":145,"74875226e":169,"7488":145,"749":85,"749062":73,"749080":85,"7493":145,"7495":145,"74989164e":169,"7499":145,"75":[7,32,34,41,42,53,56,60,62,63,64,65,67,70,72,73,83,85,92,125,136,138,145,150,158,160,161,163,164,168,171,176,177,183,188,195,203,204,205,206,210],"750":[56,64,85,145],"7500":67,"750000":[41,65,70,168],"750178363923474":70,"750716":131,"750px":129,"751":85,"75151515":91,"75181":145,"752":85,"752082":73,"75226":145,"7529":142,"753":85,"753199":29,"75390625":145,"754":85,"754374":131,"75453":145,"754680":29,"7547":142,"7549":145,"755":[83,85,145],"75501568":45,"75548704e":169,"75555":145,"75572":145,"7558":145,"756":85,"7561":168,"756231":131,"7563":145,"756461":172,"7567":145,"757":85,"75727":145,"7575":149,"757500":41,"7578":142,"7578125":145,"758":[85,145],"758359":73,"75837":145,"7584":142,"75860":145,"758667":[70,92],"7589":142,"759":[85,145],"7590":145,"7592":145,"75929":145,"7596":145,"7598":145,"7599":145,"75th":[60,171],"76":[41,53,63,73,85,118,125,136,145,171,177,194,203],"760":[85,142],"76006":145,"7603":145,"760479":64,"760623":158,"76074":145,"761":[85,145],"761000":158,"76150":145,"76170674e":169,"76171875":145,"76193":145,"762":[85,130],"76219":145,"7622":145,"762576":131,"763":[85,130],"763161":[70,92],"7634":142,"76349":145,"7639":142,"764":[85,130,145],"764029e":41,"764420":[70,92],"7645":145,"7646":142,"7647":145,"764796592":179,"7648102045059204":53,"765":[85,130],"76536":145,"765625":145,"766":85,"7660":37,"76605":145,"7666666666666667":70,"7667":145,"7668":145,"766995e":41,"767":[85,130],"76701":145,"767181":131,"7673":145,"76731980371954":[69,71],"7675":145,"7678":[188,210],"768":[64,85,130],"7682":145,"7684":168,"7688":145,"769":[85,130,145],"7690":41,"7691":41,"76921":145,"769231":41,"769422":130,"76953125":145,"76968":145,"7699":41,"77":[41,53,65,85,120,171,177,182,209],"770":[85,145],"77002253":125,"77016":145,"77019":145,"7704":145,"7705":37,"7706":41,"77064":145,"7707":142,"770px":129,"771":[85,129],"77100":83,"7712":[41,142],"7715":41,"7719":41,"772":[85,142,145],"7721":[142,145],"7722":41,"7723":41,"772308":41,"7724":41,"77259":145,"7727":41,"7728":[37,145],"772823":64,"773":[85,129],"7730":[41,145],"77332":145,"7734375":145,"773820":29,"7738266430037695":53,"773897":29,"774":85,"774000":120,"77419":145,"774272":168,"77455":145,"7746":41,"7749":145,"775":[85,129],"7750":41,"77506":145,"77519226e":42,"7752":145,"77531":145,"7754":41,"77584":145,"7759":41,"776":[85,129],"7762":145,"776223":179,"7763":41,"776956":130,"777":[85,129],"77734375":145,"777493":131,"7777":41,"777777":46,"7779":142,"778":[85,129,145],"7780":145,"7784":[142,145],"77847":145,"7785":145,"778597":131,"7786":[142,145],"7787":142,"7788":145,"778871":131,"779":[85,145],"77909926e":169,"7795":142,"7798165137614679":176,"77m":144,"78":[41,53,54,56,65,85,145,160,171,176,177],"780":[85,129,142],"7800":41,"78008":145,"780421":73,"7805":145,"7807":145,"781":[85,142],"78100":83,"7812":145,"78125":145,"782":85,"7829":145,"782925":41,"783":[85,172],"78319":145,"7832":142,"783333":173,"783423":29,"784":[29,30,32,46,52,76,85,91,93,135,142,145,198,208],"78428669e":169,"78431373":83,"7844":[145,168],"784500":158,"78466":145,"785":[67,83,85,145],"7851":145,"78515625":145,"7851741":138,"7852":145,"7856":142,"78573":145,"7858":145,"785px":129,"786":[85,142],"7860":145,"786272":131,"7866":145,"7866666666666667":70,"7867":142,"7868":145,"7868852459016393":147,"786927":131,"787":[83,85],"7870":145,"78709665e":169,"7871":145,"787490":29,"78775":145,"788":85,"78855":145,"7888":145,"78892774e":169,"789":85,"7890625":145,"78911":145,"7898":142,"79":[41,53,58,65,83,85,118,120,145,171,176,177,183,194,195],"790":[85,145],"7900":67,"790120":131,"79028106e":169,"7903":142,"790317":131,"7906":145,"7908":145,"7909":145,"791":[85,145],"7910":38,"7912":145,"791419":131,"791840":131,"7919":142,"792":[85,208],"792168":29,"7925":83,"79260":145,"79290307":171,"79296875":145,"793":[85,172],"7934":145,"793560":41,"7936":145,"793917":73,"794":85,"794003":172,"794615":41,"7949":145,"7949491493525":[69,71],"795":[85,142,202],"7951":168,"7952":145,"7953":142,"7954":[142,145],"795514":73,"7958":145,"7959":145,"796":85,"796221":131,"7963":145,"79641063":171,"7965":142,"7968":145,"796875":145,"79692861e":169,"796958":29,"797":[85,171],"79704":145,"7971":[142,145],"798":[85,145],"7980":[145,158],"798392":131,"7984":145,"7986":142,"799":[85,175],"7990":145,"7991":145,"799154":41,"79948":145,"7995":41,"799895":73,"79997071e":169,"79m":[37,41],"79uxx":65,"7b":[129,130,131],"7b9652b17b68b7a4":42,"7d":[129,130,131,188,210],"7e100":188,"7m":41,"7poa":65,"7s":[45,67,171],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":65,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,48,49,52,53,54,55,56,57,59,60,64,65,66,67,69,70,71,72,73,76,77,83,84,85,86,92,93,101,102,110,118,121,125,126,128,129,130,131,133,137,139,142,144,145,149,150,158,159,160,161,163,165,168,169,170,171,172,173,182,183,187,188,194,195,196,202,204,209,210,211],"80":[14,31,32,33,34,53,56,58,65,69,71,72,83,85,101,136,142,143,145,149,154,171,173,176,177,178,183],"800":[3,62,85,142,160,171,187],"8000":[64,135],"800000":[70,92],"8001":53,"800232":29,"80037642":171,"8005":145,"80078125":145,"800px":[129,136,159,171,182],"801":[85,130],"80117999":171,"8012":145,"8013":145,"8014":145,"8015":145,"8016":145,"80180":145,"8019":[142,145],"802":[85,130],"8020":145,"802422":29,"802500":41,"8027":145,"80290755":171,"803":[85,130],"8032":142,"8033":145,"80330":173,"80336271e":169,"8034810001":195,"80351":145,"80354":145,"803611":173,"80389616":171,"8039":145,"804":[85,130],"8042":142,"804221":41,"8045":145,"8046":145,"8046875":145,"80468775":83,"8049":145,"805":[85,130,202],"8057":142,"80577065":83,"8058":145,"8059":145,"806":[85,130],"8061":145,"80614819e":169,"80634378e":169,"8064":142,"8066":[142,145],"807":[85,130],"8072":142,"8072059636181399":85,"80730058":171,"8079":142,"808":[85,130,171],"808087":130,"808326e":41,"80859375":145,"80864142e":169,"8088":142,"809":[85,130,145],"8091":145,"8092":142,"80933237e":169,"8094":142,"81":[41,53,63,65,72,85,101,118,125,128,136,145,171,176,177,183,188,194,210,211],"810":85,"8100":145,"8101":[83,142],"8106":[142,145],"81093633":171,"81098":145,"810px":129,"811":[85,130,145],"811000":158,"8115":[142,145],"8116":142,"811667":41,"8117":[142,145],"8118":145,"81180":145,"812":[85,130,145],"8121":145,"8125":[142,145],"812500":41,"813":[85,142],"81307829e":169,"8132":145,"8133":145,"8133333333333334":70,"8134":[142,145],"8135":145,"8137":145,"814":85,"8140703517587939":183,"8141":145,"8143":145,"8145":145,"8147":145,"81484222e":42,"815":[85,145],"815145":131,"8154":145,"815414":73,"8155":145,"816":[85,142,168],"81640625":145,"8167":142,"8169":145,"817":85,"8172":142,"81746018e":169,"818":[85,142,145],"818000":[120,194],"818286":29,"818377":179,"81845995e":169,"818557e":65,"81860620e":169,"81864488e":169,"819":[85,145],"8192":[45,145],"8195":145,"8196":145,"81m":37,"82":[41,53,85,102,136,145,171,177],"820":[85,142],"8200":145,"8201":142,"8203125":145,"8206":145,"820px":130,"821":[85,145],"8215":142,"821597":130,"8216":145,"8217":142,"8218":145,"8219":142,"822":[35,85],"8220":145,"822130":73,"8222":145,"822259":158,"8224":45,"822754":73,"823":[35,85,142,145],"823045":131,"8231":[67,83],"8235":145,"823889":173,"824":85,"8242":145,"82421875":145,"8243":145,"824776":130,"8248":145,"82485143":128,"824944":131,"825":85,"8250":145,"825000":41,"8252":142,"8256":145,"8259":145,"826":[85,145],"8260":145,"826347":64,"827":[41,85],"827204":29,"828":85,"828066":[70,92],"828125":145,"8283":145,"8285":142,"8286":145,"829":[85,145],"829067":73,"829364":131,"829500":158,"829756":[69,71],"82m":37,"83":[37,41,53,65,70,85,120,136,171,177,183,194],"830":[85,145],"8307692307692308":183,"83094042e":169,"830px":129,"831":85,"83115470e":169,"8313":53,"83130016e":169,"831691":172,"832":[85,119,194],"83203125":145,"8321":142,"833":[85,158],"83300943e":169,"833333":41,"8333333333333334":171,"83334957e":169,"833597":131,"8337":142,"834":[85,142],"8340":37,"83425452e":169,"8343":142,"834313":131,"8348":38,"835":85,"8359375":145,"836":[85,158],"836154":41,"836323":130,"836667":41,"8369":142,"837":85,"8373":142,"837500":41,"837984":161,"838":85,"839":85,"839000":120,"8392":142,"8394":142,"839416":131,"83984375":145,"83m":37,"84":[44,53,56,63,65,72,85,136,145,160,171,176,177,182],"840":[85,142,155],"84001001":155,"84001003":155,"84001005":155,"84001007":155,"84001009":155,"840235":130,"8407":37,"8407442":125,"8409":142,"841":85,"84192557":171,"842":[85,145],"842069":29,"84236351":171,"842521":131,"8428":142,"843":85,"8431":142,"8433":149,"843333":[70,92],"84375":145,"8438":142,"844":85,"84402835e":169,"8448":142,"8449":142,"844925":161,"845":[83,85],"8450":72,"845000":41,"8456":142,"8459":37,"846":[85,142,145],"8462":[67,83],"846646e":65,"847":[85,142],"84700":83,"84739223":171,"8474":142,"84765625":145,"8476788564209704":85,"8476788564209705":85,"8476788564209707":85,"8476788564209713":85,"8476788564209723":85,"8476788564209757":85,"8476788564209847":85,"8476788564210102":85,"8476788564210811":85,"8476788564212772":85,"8476788564218222":85,"8476788564233363":85,"847678856427542":85,"8476788564392248":85,"8476788564716766":85,"847678856561821":85,"8476788568122215":85,"8476788575077785":85,"8476788594398821":85,"8476788648068361":85,"8476788797150412":85,"847678921126722":85,"8476790361591695":85,"8476793556937455":85,"8476802432897899":85,"8476827088343573":85,"8476895575692671":85,"8477085818329055":85,"8477614270096787":85,"8479082191673818":85,"84797838907741":[69,71],"848":85,"8483159751610024":85,"8488":142,"849":[85,145],"8492":142,"8494486306988371":85,"849773e":131,"84983913e":169,"85":[18,41,45,53,62,63,67,83,85,118,119,125,136,145,155,171,173,176,177,194,195,204],"850":[85,145],"8504":168,"851":[85,145],"8510":158,"8515625":145,"8516":142,"851852e":41,"852":[85,145],"852040":172,"852500":41,"8525948960817107":85,"8529":37,"853":85,"8533":142,"853562":172,"8536":142,"854":[85,145],"8544":37,"854448":168,"855":85,"8554":37,"85546875":145,"8554913294797688":63,"856":[42,85,145],"856196":[69,71],"8562":142,"856667":41,"8568203376968316":56,"857":[73,85,172,202],"8572":37,"857513":172,"85796668":[67,83],"858":85,"8584":37,"858734":130,"85897064e":42,"859":85,"859375":145,"8595784":128,"86":[41,53,56,63,65,67,69,71,83,85,136,145,155,160,165,171,173,177],"860":[85,142,145],"860146":65,"86057123e":169,"860666":131,"861":85,"8613345221452491":85,"8614":142,"861526":131,"8617":142,"862":85,"862276":131,"862895":131,"863":[85,145],"8630":149,"86328125":145,"8636":142,"8637678":[188,210],"863846":41,"864":[85,145],"8641":38,"8644":37,"8649":37,"865":85,"8651":45,"866":[85,145],"8666666666666667":70,"866832":172,"867":85,"86713461558":67,"8671875":145,"8672":83,"867339":41,"867500":41,"8677":142,"868":[76,85],"868170":172,"868263":155,"8684":142,"868416e":131,"868855":131,"8689":142,"868942":[69,71],"869":[85,145],"869231":41,"869547":[69,71],"87":[41,53,56,63,85,136,155,161,171,177,188,195],"870":[85,145],"87000":[205,206],"870000":41,"87005":83,"870053":67,"870455":168,"870815e":65,"871":[85,130],"87109375":145,"872":[85,130,145],"872618":73,"873":[37,38,85,130,145],"8734":37,"87381744e":169,"874":[85,130,145],"874230":29,"874252":29,"875":[85,130,145],"875499":131,"8756":149,"875628":131,"875750":158,"876":[85,130],"876614":172,"8767":142,"877":[85,130,145],"8776021588280649":86,"877954":130,"878":[85,130],"878377":73,"87890625":145,"879":[85,145],"879096":172,"8798":142,"88":[44,53,56,63,65,67,83,85,136,145,160,163,165,168,171,176,177,179],"880":[67,83,85,142],"8808":[142,168],"881":85,"881110":29,"88172306e":169,"882":85,"8823":37,"88235294":83,"882430":65,"882500":41,"8827":142,"8828125":145,"88281250e":42,"883":[85,145],"8830":37,"883056":173,"8833":142,"884":85,"8842":142,"8844":142,"8845":37,"885":[76,85,145],"8855":65,"8856112612106326":85,"8858":65,"88581848e":42,"885964":[69,71],"886":85,"886073":29,"886097":130,"8861":37,"886230e":131,"88633901":171,"8864":168,"88671875":145,"887":85,"8878":142,"887861e":131,"888":85,"88807373e":169,"8881":142,"88819707e":169,"8883":37,"888888":163,"888889":125,"88889":[172,202],"8889":142,"889":[85,145],"8892":142,"8897":45,"88k":56,"89":[41,45,53,56,63,85,136,145,160,171,173,177,187],"890":[85,145],"890625":145,"891":85,"8914":142,"892":[76,85,145],"8920":45,"89217494e":169,"8923":142,"8924":37,"8926045016077171":63,"893":85,"89342825e":169,"893586":73,"8937":142,"894":[85,145,158],"89400":83,"8942":142,"894290":131,"89453125":145,"89488":158,"895":[85,145],"8954":38,"8959":142,"896":[38,85,142,145],"896058":131,"896291e":65,"896499":65,"896727335512334":70,"897":[30,85],"897485":131,"8977517768607695":70,"898":[85,145],"8982142857142857":29,"8984375":145,"8986":[76,144],"899":[85,155],"8997":142,"8998":142,"89m":37,"8aaad":65,"8b":102,"8b9":172,"8b9ae55861f22a2809e8b3a00ef815ad":172,"8c74a315":[127,196],"8e":42,"8j":[188,210],"8m":[53,76],"8s":[67,144,171],"8spbdlrp3lbr9j9uejdzgqul6":65,"8x8":[56,144],"9":[7,14,18,22,24,29,30,32,33,35,36,37,38,39,41,42,45,46,48,50,52,53,54,56,60,64,65,66,70,72,73,75,76,83,85,86,89,92,93,101,102,110,119,121,125,126,128,129,130,131,133,136,138,142,145,146,149,150,158,159,160,161,163,169,171,172,176,179,182,183,184,187,188,189,194,195,196,200,202,208,209,210,211],"90":[1,7,14,31,35,37,41,43,44,53,56,57,60,62,63,65,69,71,73,85,91,125,136,145,150,160,164,171,172,176,177,182,183,184,200,202,209],"900":[62,85,142,145,173],"9000":135,"900000":[70,92],"90022":83,"900225":67,"900476":73,"9006":142,"901":85,"901429":85,"9017":142,"902":85,"902000":120,"9022":142,"90234375":145,"903":85,"903846":125,"90385283885":83,"904":85,"904182":130,"904227":29,"9042344":171,"905":85,"905000":41,"905040":131,"9051":142,"90570068e":42,"905722":73,"906":[85,145],"90625":145,"90671616e":169,"907":[85,145],"908":[85,145],"908097":73,"908113e":65,"908426":65,"9086":37,"909":[85,145],"90909091":91,"90998233e":169,"90m":37,"91":[30,41,46,53,56,63,83,85,93,120,136,145,160,171,177,195],"910":[85,145],"910000":158,"91015625":145,"9102":53,"91034463e":169,"9104":37,"91076629230869":37,"911":[85,145],"91111":[172,202],"9118":142,"9119":42,"912":85,"912641e":41,"913":85,"913000":73,"91312281e":169,"913196":73,"9136":37,"9137407":83,"914":85,"9140625":145,"9142":37,"914407":29,"9145":142,"915":[85,145],"91505991e":169,"9152":142,"916":[85,142],"9162":149,"916667":[41,173],"917":[85,145],"9171":65,"917554018630476":70,"91796875":145,"917983":131,"918":85,"9181":142,"918462":41,"9187":142,"9187045":[67,83],"9189":76,"919":[85,145],"91m":37,"92":[41,44,53,55,63,65,75,85,89,125,136,145,163,171,172,176,177,179,202],"920":[85,142,145],"920135":73,"92051":150,"92086185e":169,"920px":130,"921":[85,145],"92162351e":169,"921875":145,"922":[85,145],"922500":41,"922706":41,"923":[83,85],"92300":83,"923077":125,"923210":73,"9235":65,"924":85,"924251":130,"925":[85,145],"9250":165,"925286":29,"925596661128895":163,"92578125":145,"926":85,"92615075e":169,"927":85,"927040e":73,"9272":142,"927331e":73,"92780":168,"928":85,"9283":149,"929":[85,145],"9296875":145,"929699":73,"92m":37,"93":[37,41,44,53,63,65,83,85,91,118,129,136,145,171,179,194],"930":[85,145],"9300":67,"930023":131,"930808":168,"930833":41,"930838":131,"931":85,"9312":65,"931818":168,"932":[85,145],"9324":37,"932801":130,"933":[85,145],"9335":76,"933541":29,"93359375":145,"934":85,"9342":53,"9345":76,"934649":168,"934832":168,"935":85,"93598814":[67,83],"936":85,"936285":179,"93657988":125,"9368":76,"937":[36,85,145],"937017":131,"9375":145,"937600e":73,"9377":76,"938":[85,145],"9382":76,"9383":142,"9385":76,"9386":142,"9388":76,"938874":168,"939":[85,142,145],"93m":37,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":65,"94":[29,41,45,52,53,54,56,63,65,73,75,83,85,89,118,125,129,136,145,171,179,182,194],"940":[85,142],"940000":41,"940000e":41,"940217":168,"9403":37,"94038234e":169,"9404":142,"940964":176,"941":[85,145],"941111":173,"9413":142,"94140625":145,"941642":[69,71],"9417":142,"9419":76,"942":[85,133,196],"9422":149,"9423":142,"942361":131,"942500":41,"94257014456259":56,"943":[85,145],"943324":168,"9439":76,"944":85,"944167":41,"9446":142,"94465006e":169,"945":[85,145],"9453125":145,"9454":76,"946":[56,85,145],"946246656":41,"9463":76,"947":85,"947202":73,"9473":142,"9479":76,"948":85,"9481":76,"948352":73,"9484":149,"948799":168,"949":[76,85],"94921875":145,"949230e":41,"9494233119813256":56,"9498":149,"95":[18,32,36,37,39,41,44,45,52,53,56,63,65,75,76,83,85,89,93,101,120,125,129,136,160,169,171,172,173,179,200,202],"950":85,"9500":67,"9503":168,"9504":76,"950602":131,"950791":168,"95089302e":169,"950964":64,"951":[85,145],"951123":168,"9511372931045574":56,"9518":149,"952":[76,85,142],"952074":29,"952559":130,"952655":168,"953":[56,85],"953011":158,"9530466475033655":85,"953125":145,"9534":45,"9538":76,"954":[56,85,145],"9540":149,"954000":158,"9543":142,"955":85,"9550":72,"9552":149,"955556":125,"956":[85,145],"9562":142,"9563":149,"9564":76,"9564565636458":[69,71],"9568":168,"957":85,"9574":149,"957500":41,"9576":142,"9578":76,"958":[63,76,85,145],"958084":64,"958434":29,"9585":149,"958899":172,"959":[83,85],"9590":76,"9591":[37,144],"959280":65,"9595":136,"95k":56,"95m":37,"96":[32,36,52,53,56,60,65,85,92,136,142,145,171,173,179],"960":[85,142,145,208],"9600":72,"9600000000000002":70,"960304":29,"9608":149,"9609375":145,"961":[85,145,158],"961250":158,"9619":149,"962":[76,85],"962500":41,"963":[76,85,145],"9630":149,"96303579":83,"963297":73,"9638507635801276":173,"964":85,"96430733e":169,"96484375":145,"965":[85,168],"9652":149,"965253":73,"9652659492293556":182,"96537550e":169,"9656":168,"965629":29,"965736":131,"966":[85,145],"966000":158,"9664":149,"9666666666666667":70,"9666666666666668":70,"967":[85,145],"968":85,"9681":142,"968333":41,"9686":149,"96875":145,"9688888888888889":171,"96896536339727":70,"969":[76,85],"96918596":[169,200],"969394":73,"9694":142,"96945":41,"96982397":65,"96m":37,"97":[41,43,45,52,53,56,63,70,76,85,91,136,145,171,173,179,182,204,209],"970":[76,85],"97011173":65,"9709416":65,"971":85,"971020":29,"972":[85,145,208],"9723201967872726":[69,71],"972455":131,"9725":65,"97265625":145,"9728":142,"973":[85,145],"97318436":65,"973292":29,"9733333333333334":70,"973583":73,"9739":38,"974":[76,85],"97451713":125,"97458101":65,"9747":142,"9748":149,"975":[85,145],"9750":45,"975000":41,"9753462341111744":56,"975385344":41,"9754":142,"975532":65,"9756":65,"9757":83,"9759036144578314":183,"976":[85,130,145],"9765625":145,"976m":144,"977":[85,130],"977162":130,"977255e":41,"977660":73,"9777777777777777":171,"978":[76,85,131,145],"9783":65,"978333":173,"9784":45,"97848561":65,"97849162":65,"97876502":65,"9789":65,"97899282":[67,83],"979":[38,76,85,130,142,145,195],"9795":149,"97988827":65,"97m":[37,136],"98":[45,52,53,55,64,65,66,76,85,136,145,171,173,183],"980":[76,85,131,142,145],"980233":131,"98046875":145,"9807":[65,76],"981":[85,131],"9810":168,"9814":136,"981466":131,"9816":65,"98176":150,"982":[76,85],"9821":149,"982109":155,"9824":65,"982500":41,"9826":142,"9827":65,"98296089":65,"983":[85,131,145],"9830":65,"983000":120,"983077":41,"9832":[65,142],"9835":65,"9837":149,"9839":142,"984":[85,131],"984375":145,"985":[85,131],"985000":41,"985388":179,"9855":45,"985554":73,"986":[41,85,131,142,145],"9861":142,"9864":136,"9865":149,"9866666666666667":70,"986792":158,"9868":[65,149],"987":[85,145],"9871":149,"987249":131,"9874":149,"987494":131,"987500":41,"9876":45,"987654321":101,"9879":149,"988":85,"9882":136,"98828125":145,"9883":45,"989":85,"9890":45,"98925569e":169,"9894":45,"9896":149,"98e3715f":110,"98m":37,"99":[31,32,41,52,53,56,62,65,69,71,73,76,85,125,128,131,155,160,171],"990":[85,145],"9900":136,"990000":[205,206],"990133":29,"9905":149,"9905999898910522":136,"9906":136,"9907":[136,149],"9909":136,"991":[63,76,85,183],"992":85,"9921875":145,"992212":158,"992258":29,"9924":37,"9927":136,"993":[85,145,158],"993280":29,"994":85,"9940711462450593":29,"9943":142,"9948":136,"9949":65,"994f5f":38,"995":[37,85],"9950":37,"995000":158,"9951":142,"995873":41,"995939":73,"996":[76,85,142,145],"99609181":83,"99609375":145,"996421":155,"996650":41,"996840":29,"997":[85,145],"997128":41,"99713160e":169,"997217":41,"99757":32,"9978":38,"998":85,"998058":41,"998799":41,"998816":41,"9989":142,"999":[35,36,39,62,85,138,139],"999436":131,"999530266023044":64,"9996615456176722":[69,71],"9999":[62,179],"9999965334550955":[69,71],"9999997207656334":195,"999999999601675":[69,71],"99m":37,"9be4c7yahuinv1h07ucme1co9p":65,"9e726f":73,"9ec22d57b796":110,"9ect":65,"9f84":127,"9f8a78":73,"9f95":[127,196],"9k":41,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":65,"9m":[76,149],"9s":[67,171],"\u00b5":31,"\u00b5s":195,"\u015fimdi":37,"\u03b3":65,"\u03b3xit":65,"\u03bb":168,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":41,"\u5168dlc":41,"\u5b89\u88c5\u5373\u73a9":41,"\u6597\u9c7c\u89c6\u9891":41,"\u65b0\u5efa\u6587\u4ef6\u5939":41,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":41,"\u7fa4\u661f":41,"\u8c6a\u534e\u4e2d\u6587":41,"\u8d60\u54c1":41,"\u8fc5\u96f7\u4e91\u76d8":41,"\u923d":110,"\u94f6\u6cb3\u5178\u8303dlc":41,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":41,"\ud835\udc4f":179,"\ud835\udc53":179,"\ud835\udc5a":179,"a\u00e7\u0131l\u0131\u015f":37,"abstract":[1,8,123,128],"ayl\u00f8":158,"bia\u0142ecki":196,"boolean":[7,51,101,110,126,129,130,131,142,143],"break":[14,33,34,37,56,68,84,133,141,145,146,152,153,178,188,207,210],"byte":[29,75,89,128,188,195,210],"cach\u00e9":196,"caf\u00e9":168,"case":[3,7,8,14,18,29,30,40,44,48,55,58,60,63,64,65,70,72,83,84,87,91,101,102,110,111,115,117,120,123,125,126,128,129,131,133,136,140,144,147,150,152,153,154,155,156,158,159,160,161,163,164,165,168,169,171,172,175,176,178,180,182,183,187,188,190,192,195,202,204,209,210],"catch":[141,154],"char":188,"class":[3,7,14,22,24,29,30,31,33,34,35,36,38,39,41,42,44,45,46,48,55,58,59,60,61,63,64,65,66,67,70,73,75,83,87,89,90,91,92,102,103,109,119,125,126,128,129,130,131,137,139,140,141,142,143,144,145,148,149,154,158,160,161,162,163,164,165,168,169,171,172,173,175,176,178,179,182,183,184,188,189,194,198,202,204,205,208,210],"clion2020\u7834\u89e3":41,"d\u00fc\u015f\u00fck":37,"default":[7,22,33,34,50,51,55,56,58,59,60,63,64,68,69,71,75,89,91,94,102,110,118,126,128,129,131,137,139,140,142,143,144,150,154,163,169,171,172,176,177,180,188,200,202,203,208,209,210],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,34,38,40,42,44,45,46,48,51,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,75,80,83,85,89,91,97,99,101,102,107,109,110,111,112,113,115,117,118,119,120,121,122,125,126,128,130,131,133,138,140,141,142,143,144,146,147,150,152,154,155,156,158,160,161,163,164,167,168,169,170,171,172,173,175,176,178,179,182,186,187,189,196,202,203,204,207,209,210],"export":[45,153,173,175],"final":[7,31,32,34,40,42,46,52,53,56,57,60,61,62,64,65,73,75,85,89,91,102,115,126,131,138,142,143,144,145,147,149,153,154,155,160,163,164,165,166,169,171,173,175,178,182,183,187,188,198],"float":[22,35,37,41,42,48,49,51,53,55,57,61,65,76,85,101,102,126,128,131,136,138,148,159,161,172,187,189,195,202,211],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,34,38,39,42,44,45,46,50,51,52,53,55,56,58,59,60,61,62,63,64,66,67,68,69,70,71,72,75,77,83,89,90,100,112,120,125,126,127,129,130,131,135,136,137,138,139,142,143,144,145,146,147,148,149,150,152,155,160,163,165,166,168,169,170,171,172,175,176,178,181,182,183,184,186,188,196,200,202,203,204,210,211],"g\u00f6rkem":35,"g\u00fcnai":35,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,33,35,36,37,38,40,41,43,44,45,47,48,50,51,52,53,56,61,68,69,71,74,75,76,77,83,84,85,86,87,89,91,93,95,101,102,103,107,108,109,110,111,112,113,114,115,116,117,118,119,120,123,125,127,128,129,130,131,133,134,135,136,137,140,141,142,143,144,145,146,147,148,149,150,152,153,155,156,157,158,159,160,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,188,189,190,192,194,195,198,200,202,203,207,209,210,211],"int":[7,14,22,31,43,45,53,56,62,77,93,101,102,128,130,131,138,139,142,143,144,145,148,149,163,173,187,188,189,195,210,211],"long":[1,8,14,34,37,38,50,52,53,59,61,62,65,70,75,89,91,109,110,113,120,123,128,140,141,149,150,154,167,170,173,178,187,188,189,203,209,210],"micha\u0142":196,"new":[7,9,14,17,22,23,31,34,35,36,37,42,46,48,50,52,53,55,56,58,59,60,61,65,66,67,68,70,73,75,89,93,101,102,108,109,110,111,113,115,117,118,121,122,123,125,127,129,133,135,137,140,141,142,143,146,147,150,151,153,154,156,159,160,163,164,165,166,167,168,169,170,171,172,175,178,179,182,183,184,186,187,188,190,192,193,195,196,197,198,200,202,207,210],"null":[41,49,51,53,54,66,73,83,126,129,131,158,168,173,182,183],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":41,"p\u03b8":139,"pikach\u00fa":12,"public":[1,14,56,62,63,108,115,121,123,125,146,148,153,155,156,178,184,187,191,192,193],"return":[2,3,7,12,14,18,22,24,25,29,30,31,34,35,36,37,38,39,41,42,43,44,45,46,48,49,51,52,53,55,56,58,59,60,61,62,63,64,66,69,70,71,72,75,77,83,84,85,89,90,91,93,101,102,109,110,126,127,128,129,130,131,133,135,136,137,138,139,142,143,144,145,148,149,150,154,155,160,163,164,165,168,170,171,172,173,175,179,188,189,195,196,198,202,203,204,205,206,209,210],"short":[26,42,50,65,109,125,128,140,141,143,156,173,180,187,188,210],"static":[1,2,5,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,119,120,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,188,194,210],"super":[29,30,31,34,36,38,39,48,69,71,130,139,143,144,145,148,164,187,209],"switch":[0,7,14,52,56,154,160,187,209],"throw":188,"transient":152,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,70,72,73,75,76,77,83,85,86,87,89,91,92,101,105,106,109,110,117,118,125,126,128,129,130,131,133,136,137,139,141,142,143,144,145,147,148,150,155,156,158,160,161,163,167,168,169,170,171,172,173,177,179,182,183,184,186,187,188,189,194,195,198,200,204,208,209,210,211],"try":[1,3,4,5,7,9,11,14,16,18,25,31,33,37,38,40,49,50,52,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,77,85,91,92,98,101,109,110,111,113,116,117,118,119,120,123,126,127,129,130,131,133,138,144,145,147,148,154,155,156,158,159,163,164,165,167,168,169,170,171,172,173,174,176,177,178,182,183,184,185,186,188,189,202,207,210],"var":[18,41,57,61,75,89,117,139,148,160,163,182,194],"void":128,"while":[0,1,7,29,31,32,33,34,38,44,45,51,52,53,56,59,63,64,65,66,67,70,84,94,102,108,110,111,112,113,115,117,120,121,122,123,125,126,128,129,130,131,133,136,137,141,143,144,152,154,156,163,169,170,171,172,173,176,178,182,183,188,190,191,195,196,197,198,202,203,207,208,210],"y\u00fcksek":37,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,38,40,42,44,45,46,48,50,52,53,54,55,56,57,58,62,63,64,65,68,69,70,71,72,73,75,81,83,84,85,86,87,89,91,94,97,98,99,101,102,108,109,110,111,113,115,117,118,119,121,122,123,125,126,127,128,129,130,131,133,135,136,141,142,143,144,147,148,149,150,152,153,154,155,157,158,159,160,161,163,164,168,169,171,172,173,175,178,180,183,184,186,187,188,189,192,193,195,196,198,200,203,204,207,208,209,210,211],AND:[101,102,117,128,130,187,188,189],AS:[22,25,50,52,53,54,101,102,173,187,188,189],And:[31,32,33,44,46,48,53,55,56,58,62,64,68,73,75,83,85,87,89,101,109,111,113,121,125,128,135,140,141,144,149,152,153,154,155,156,160,169,171,179,184,188,192,196,200,203,210],As:[1,3,7,8,34,35,38,42,44,45,46,48,52,53,55,56,57,58,59,60,62,63,64,65,66,67,73,75,83,87,89,91,92,108,109,115,118,121,123,125,126,128,131,133,143,144,145,146,152,153,154,160,163,164,168,169,170,171,172,175,178,182,183,184,187,188,189,193,195,198,207,209,210],At:[28,44,53,56,62,65,75,84,89,115,125,128,133,141,153,154,156,160,164,165,170,178,184,186,187,188,195,207,208],BE:[101,102,187,188,189],BUT:[101,102,187,188,189],BY:[110,154],Be:[94,100,113,117,128,173],Being:[48,68,110,113,131],But:[34,41,42,44,45,48,53,55,56,58,59,62,63,64,65,67,70,75,83,89,109,113,118,121,133,138,140,147,150,152,153,154,159,163,164,165,167,169,170,171,172,178,183,186,187,188,189,200,204],By:[7,18,29,42,44,46,51,55,58,59,60,63,65,75,83,85,86,87,89,108,110,118,123,126,128,131,133,139,150,152,153,155,158,160,161,168,171,175,178,179,182,183,187,198],FOR:[101,102,187,188,189],For:[7,19,29,30,31,32,33,37,38,41,42,43,44,45,46,48,50,51,52,53,55,56,57,60,65,66,67,70,72,73,74,75,76,78,80,81,83,84,93,94,95,97,98,99,100,109,110,111,120,121,122,123,125,126,128,129,130,131,135,140,141,144,147,148,150,152,153,154,155,156,158,159,160,161,163,164,165,168,169,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,190,200,204,207,208,210],IN:[25,91,101,102,187,188,189],IS:[22,50,52,53,54,60,101,102,106,158,187,188,189],IT:[60,108,153],If:[1,7,14,16,18,29,30,33,34,35,37,43,44,45,46,48,50,53,55,56,57,58,59,60,63,64,65,66,68,70,72,75,78,83,85,86,89,91,101,102,104,109,110,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,139,140,141,143,145,146,149,152,153,154,156,158,160,163,164,165,167,169,170,171,172,173,175,177,178,179,182,183,184,186,187,188,189,196,202,204,207,209,210,211],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,34,38,40,42,43,44,45,46,48,50,51,52,53,55,56,58,59,60,63,64,65,66,67,68,70,72,73,75,78,80,83,84,85,86,87,89,91,92,97,98,99,101,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,143,144,146,147,148,150,152,153,154,155,156,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,195,196,197,202,204,205,206,207,208,210,211],Is:[56,102,106,108,112,115,120,121,122,139,147,153,154,158,173,178,183,184,211],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,77,78,80,81,83,85,86,87,89,91,92,93,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,182,184,186,187,188,189,191,192,198,202,203,204,205,207,208,210],Its:[140,147,163,168,183],NEAR:[67,83],NO:[101,102,187,188,189],NOT:[91,101,102,128,142,146,187,188,189],Near:[118,194],No:[7,20,29,34,42,56,60,62,70,77,91,97,102,107,109,110,119,141,160,169,171,176,187,188,191,194],Not:[7,44,48,55,58,60,62,75,89,110,120,126,127,145,164,176,182,183,188,203,210],OF:[22,50,52,53,54,101,102,142,187,188,189],ON:196,ONE:7,OR:[22,50,52,53,54,101,102,128,187,188,189],Of:[33,56,73,110,111,113,123,171,189,190],On:[55,56,58,63,64,65,66,67,72,73,75,83,89,92,110,113,115,147,154,160,163,164,167,168,169,171,172,173,178,182,186,187,193,203],One:[1,7,11,28,42,44,48,55,56,58,59,60,61,63,64,65,72,92,107,112,113,115,117,119,123,125,128,136,140,148,154,159,161,163,169,172,178,182,184,187,188,189,193,194,195,200,202,207,210],Or:[32,33,44,56,64,83,111,113,128,140,141,154,158,161,178,187,188,203,207,210],Such:[1,7,30,44,48,55,56,60,125,154,155,182,187,209],THAT:91,THE:[101,102,187,188,189],TO:[60,101,102,187,188,189],That:[31,32,44,48,53,55,56,58,63,67,68,73,75,83,89,113,118,125,128,133,141,159,161,164,165,171,173,178,179,183,188,189,207],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,36,37,39,42,43,44,45,46,50,51,52,53,54,55,56,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,80,83,85,87,89,92,93,99,100,101,102,108,111,112,113,115,117,118,119,121,122,123,124,125,127,128,129,130,131,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,166,167,168,169,172,173,175,176,178,179,180,182,183,189,190,192,193,194,198,199,201,202,203,204,205,206,207,208,211],Their:147,Then:[7,31,45,50,52,56,62,72,86,91,110,113,125,128,136,139,145,146,149,154,155,156,159,160,161,163,164,168,172,173,182,186,187,188,189,203],There:[0,1,3,7,18,28,29,30,32,33,35,38,39,42,43,44,46,48,51,52,54,55,56,57,60,63,65,66,68,70,73,75,81,83,89,94,109,110,113,115,117,118,119,122,123,125,126,127,128,129,133,135,136,137,140,143,145,146,147,149,150,152,153,154,155,156,158,159,161,163,164,167,171,172,173,174,175,177,178,179,182,183,185,186,187,188,189,207,208,209,210],These:[7,30,31,33,40,43,45,46,50,55,60,62,65,66,73,83,84,86,87,108,110,113,115,118,121,122,127,128,130,131,143,146,147,153,159,163,164,168,170,171,172,187,189,191,193,195,196,198,209],To:[0,1,7,14,18,22,29,30,33,34,35,38,40,42,44,45,46,50,51,53,55,56,58,60,64,67,68,72,73,75,83,84,85,91,101,108,109,110,111,113,118,119,120,121,123,125,126,128,129,131,133,138,139,140,143,144,145,146,150,151,152,153,154,155,156,160,161,164,165,167,168,169,171,172,173,175,178,179,182,183,184,186,187,188,189,193,194,196,199,202,203,207,209,210,211],WITH:[101,102,187,188,189],Will:[156,183,189],With:[7,42,44,46,48,52,56,62,66,67,68,93,108,112,113,117,118,120,121,122,123,127,128,130,131,133,140,153,154,161,163,164,169,171,172,178,180,187,196,203,208],_0:164,_1:161,_2:161,_:[18,29,31,33,34,36,39,40,45,46,57,62,77,90,135,136,139,141,142,143,144,145,149,150,161,164,171,179,187,188,198,204,205,210],____:[3,12,22,24,25,51,101,102,106],_____:[24,101],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:[29,30,38,45],__________________________________________________________________________________________________:36,____i:102,__abs__:101,__add__:101,__all__:187,__annotations__:[187,209],__builtins__:187,__cached__:187,__call__:[69,71,137,139,144],__class__:[39,187],__dict__:[179,205,206],__doc__:[187,209],__eq__:101,__file__:[77,187],__finalize__:[129,130],__future__:39,__get__:129,__getitem__:[130,131],__init__:[29,30,31,34,36,37,38,39,48,61,69,71,90,91,103,129,137,139,141,142,143,144,145,148,165,179,187,204,205,209],__iter__:[34,142],__len__:34,__loader__:187,__main__:[37,141,169,172,173],__mul__:101,__name__:[37,39,141,172,173,187],__operators__:145,__package__:187,__repr__:61,__spec__:187,__str__:101,__sub__:101,__truediv__:101,__version__:[46,141,171,209],_aspp:144,_attach:[127,196],_bin:60,_branch:144,_build_model:37,_bunch:[63,64],_caller:129,_check_indexing_error:131,_concaten:129,_consolidate_inplac:130,_constructor:130,_conv_block:144,_conv_bn_relu:144,_conv_relu:144,_data:130,_decor:129,_deeplabv3:144,_deprecate_mismatched_index:130,_deprecated_arg:130,_engin:131,_etag:[127,196],_fcn_16:144,_fcn_32:144,_fcn_8:144,_format_argument_list:129,_fuse_bn_tensor:143,_get_axi:130,_get_block_manager_axi:130,_get_comb_axi:129,_get_concat_axi:129,_get_join_info:129,_get_list_axi:130,_get_new_ax:129,_get_result_dim:129,_get_slice_axi:130,_get_valu:[130,131],_get_values_for_loc:131,_getbool_axi:130,_getitem_axi:130,_getitem_lowerdim:130,_getitem_tupl:130,_i:[86,87,161,171],_identity_block:144,_ilocindex:130,_index:62,_indicator_pre_merg:129,_info_axi:129,_invalid_index:130,_is_copi:130,_is_scalar_access:130,_items_overlap_with_suffix:129,_j:[161,171],_k:141,_kmean:172,_label:63,_left:129,_lib:[129,131],_locationindex:130,_locindex:130,_m:141,_make_concat_multiindex:129,_make_stag:143,_mapdataset:38,_maybe_cast_for_get_loc:130,_maybe_cast_slice_bound:130,_maybe_check_integr:129,_merge_doc:129,_merge_typ:129,_mergeoper:129,_method:195,_mgr:[129,130],_novalu:195,_oldcor:92,_other:129,_pad_1x1_to_3x3_tensor:143,_recognized_scalar:130,_reindex_and_concat:129,_rid:[127,196],_right:129,_sec_1:102,_segnet:144,_self:[127,196],_sigmoid:[90,179,205],_skip:3,_slice:130,_static:[130,131],_subplot:[73,83],_sum:195,_t:[127,196],_t_sne:[172,202],_take:130,_take_with_is_copi:130,_takeabl:130,_valid_typ:130,_validate_integ:130,_validate_kei:130,_validate_tuple_index:130,_valu:131,a0958ad901d7:127,a0:[129,195],a10:131,a1:[128,129,195],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:65,a21453:188,a23:[187,209],a2:[128,129,195],a3:129,a3z5kdkfn3tbq:65,a47:42,a4:129,a5:129,a7yia1n5fo6efhugqfis3dhueyjsa:65,a_:[91,172],a_dict:188,a_i:[91,160],a_list:188,a_n:163,aaaaaa:[169,200],aafter:170,aaron:[29,56,87,142,180],ab:[33,54,56,69,71,77,86,101,102,130,138,142,148,171,187,188,210],abadi:142,abat:42,abbrevi:[133,139],abc:[102,130,131,188,195,211],abcd:[7,126,130,195],abcdef:130,abcmous:[121,192],abil:[48,58,60,75,85,86,89,117,140,146,152,163,169,173,178,181,187,189,200,207],abl:[3,7,10,11,14,16,20,31,42,44,54,55,56,58,59,60,63,67,68,83,85,110,113,119,121,123,127,128,131,140,147,150,153,155,158,164,167,170,172,173,175,182,183,184,186,192,202,205,206,209],abnorm:29,abnorml:72,abo:41,aboslut:170,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,33,42,44,45,46,48,51,52,53,55,56,58,59,60,63,64,65,66,67,68,72,73,75,86,87,89,92,93,99,108,109,110,111,112,113,115,117,118,119,121,123,124,125,126,127,128,129,131,133,134,140,141,144,146,147,148,150,151,152,153,154,155,157,158,159,160,163,164,165,167,168,170,171,172,173,174,176,177,178,179,180,182,184,185,186,187,188,189,190,192,193,196,204,207,209,211],abov:[0,1,7,11,14,19,26,29,32,33,38,40,42,44,48,50,51,52,53,55,56,57,58,59,60,63,64,65,66,70,72,73,75,83,89,101,102,113,117,119,123,125,128,129,130,131,133,136,139,140,141,142,143,144,146,148,150,152,153,154,155,158,159,160,161,163,167,168,170,171,172,175,178,181,182,183,184,185,186,187,188,189,194,203,204],above_cutoff:171,abracadabra:188,abraham:211,abs_vector:[188,210],absenc:[60,172,202],absent:[130,179],absolut:[42,52,54,85,87,92,101,125,128,154,163,167,170,187,188,189,210],absolute_error:86,absolute_percentage_error:86,abspath:77,absurd:73,abund:[119,194],ac:[73,147,171],academ:[121,124,151,192],academi:209,acc:[33,34,43,52,55,58,63,136,208],acc_and_loss:136,acceler:[109,119,120,154,182,194],acceleromet:[125,172],accept:[16,42,44,45,63,73,75,89,92,109,112,115,121,128,130,131,143,154,164,168,178,187,193,207,208],acceptedcmp1:73,acceptedcmp2:73,acceptedcmp3:73,acceptedcmp4:73,acceptedcmp5:73,access:[6,14,16,33,41,46,75,83,89,108,110,111,113,115,117,121,127,130,146,152,155,156,173,180,182,187,188,192,193,195,203,209,210],accessor:131,accident:164,acclaim:168,accommod:[7,38,52,126,188],accompani:[125,154,182],accomplish:[97,154,164,172,178,202,207],accord:[18,42,50,56,60,69,71,73,108,117,118,119,120,125,128,130,143,152,155,158,160,163,168,172,173,176,178,182,183,184,186,202],accordingli:[36,46,61,136,158,187,209],account:[0,6,8,14,16,45,56,85,101,110,111,121,125,127,128,147,156,160,164,182,183,192,195],accumul:[1,56,101,115,150,161,178,188,207],accur:[15,32,34,42,46,56,60,65,75,78,86,89,99,110,115,121,122,125,140,144,146,148,152,155,160,167,170,172,175,178,181,182,183,193],accuraci:[29,33,34,35,43,44,45,53,54,55,56,57,58,60,62,63,66,70,75,76,78,85,86,87,89,91,92,93,111,121,126,136,144,146,147,149,154,155,156,159,160,161,163,164,166,167,169,171,173,176,177,182,183,190,192,198,202],accuracy_metr:136,accuracy_scor:[29,43,55,56,57,58,62,63,65,66,75,76,89,92,147,163,168,172,173,176,177,183,202,205,206],achiev:[32,33,34,44,53,56,60,62,65,73,112,115,128,141,143,144,152,153,154,155,156,163,164,165,166,168,169,170,171,187],achitectur:142,aci_servic:[9,109],aci_service_nam:[9,109],aciconfig:[9,109],acid:53,aciwebservic:[9,109],acm:[121,192],aco:36,acoust:[157,158,159],acquir:[6,112,115,154,193],acquisit:[3,111,115,123,150,190,192],acro:173,acronym:118,across:[34,48,52,60,75,89,111,121,123,125,128,129,131,133,136,146,150,152,153,154,164,168,171,187,188,190,192],act:[3,14,22,24,37,42,59,68,102,113,121,128,131,136,137,141,146,148,178,182,195,207],act_greedi:37,act_valu:37,action:[0,7,37,44,50,51,101,102,108,112,113,121,123,126,127,128,153,155,173,176,178,187,188,189,192,207],action_prob:141,action_s:37,actions_count:37,activ:[0,29,30,32,33,34,35,36,37,38,42,43,44,45,46,48,49,50,52,53,62,63,68,76,77,91,121,135,136,137,139,141,142,143,144,145,147,148,149,155,164,170,171,175,192,197,198,203,208],activateion:145,activation_1:38,activation_2:38,activation_3:38,activation_4:38,activespac:196,actor:187,actual:[7,41,42,44,45,48,51,52,53,54,56,57,58,62,63,65,66,72,75,77,83,84,85,86,87,89,91,92,93,101,110,120,122,123,125,126,127,128,130,131,136,139,140,150,152,158,164,166,168,170,171,175,178,180,182,183,187,189,191,193,197,204,207],actual_result:[3,14,22,24,59,102],actual_valu:[41,86],acut:163,ad:[1,7,18,22,29,32,38,41,46,48,50,53,56,58,60,65,70,73,75,85,89,101,102,120,122,125,127,137,139,143,151,153,154,163,164,165,167,169,172,178,179,182,188,204,210],ada:177,adaboost:[164,177],adaboost_clf:55,adaboostclassifi:[55,62,176,177],adagradoptim:154,adam:[29,30,31,32,33,34,35,37,38,39,41,43,44,45,46,47,49,50,52,53,68,76,135,136,139,142,144,145,147,198],adamax:38,adamharlei:[136,197],adamoptim:[138,154],adamw:36,adapt:[36,52,64,68,108,121,143,150,154,164,180,192,208],adaptiveaveragepooling2d:143,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,37,38,41,42,43,46,47,48,49,50,51,52,56,58,60,67,68,69,71,72,76,85,101,102,117,119,122,125,127,129,133,135,138,139,143,144,145,147,148,153,163,164,165,167,168,169,170,173,177,178,182,183,184,186,187,188,189,196,198,200,203,204,207,208,210],add_1:145,add_:31,add_artist:[119,194],add_ax:172,add_legend:158,add_selectbox:203,add_slid:203,add_subplot:[37,39,52,73,76,84,141],add_trick:187,add_weight:143,addit:[1,7,18,23,32,33,46,51,60,65,70,72,83,84,85,101,112,113,115,117,121,122,125,126,127,128,133,141,143,144,145,148,150,154,156,160,164,165,167,168,169,171,179,182,188,189,195,196,210,211],addition:[31,126,128,133,153,156,158,160,164,169,196,200],additon:32,address:[84,85,99,112,113,115,121,147,150,152,153,156,160,167,178,187,192,193],adel:163,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,78,80,81,94,97,98,99,100,125,154],adher:[53,115,146,153],adjac:[172,187],adject:[188,210],adjunct:178,adjust:[29,34,38,42,45,50,61,63,64,84,143,153,154,163,164,169,172,177],adjusted_mutual_info_scor:172,adjusted_rand_scor:172,admin2:155,admin:196,administr:[156,189],admonit:[129,130,131],adobe_premier:41,adolesc:187,adopt:[65,94,111,121,153,154,160,164,190,192,211],adult:[187,209],advai:45,advanc:[37,48,72,111,121,125,131,132,134,146,151,153,154,156,160,172,178,188,196,199],advantag:[44,56,60,75,89,131,143,147,153,156,163,166,167,169,188],advent:[55,140,153],advers:28,adversari:[38,156,199],advertis:113,advic:154,advis:[7,51,59,64,67,126,163],advoc:121,ae5:172,ae:[31,139],aebf:[127,196],aeroplan:7,aerospik:196,aesthet:22,afb:173,affect:[7,17,34,43,55,58,60,62,64,75,85,89,91,111,113,115,121,125,126,141,143,154,161,167,169,170,179,187,190,192,200],affer:149,affin:[91,158,172],affinity_matrix_:171,affinitypropag:172,afford:[7,83,126,178],african:[121,156,192],afro:[158,159],afropop:[158,159],after:[0,7,14,29,32,33,34,35,37,38,42,43,44,46,52,53,54,55,56,57,60,61,62,63,66,68,70,73,76,83,85,91,113,117,123,125,126,128,133,135,136,143,144,145,149,150,153,154,155,158,159,161,163,164,167,168,172,177,178,182,184,187,188,189,203,205,206,208,209,210],afterward:[32,128],ag:[9,18,22,56,57,73,83,97,101,102,109,110,123,125,127,128,129,153,158,160,161,165,168,175,178,185,186,187,188,189,195,196,205,206,207,209,210,211],again:[7,14,17,44,46,52,55,56,57,58,59,63,64,65,75,89,91,126,131,139,159,164,168,170,172,183,184,187,188,189,202,203],against:[0,18,40,46,52,56,65,86,87,113,121,123,125,129,130,150,154,156,164,170,173,186,201],agaricu:119,age_distribut:24,age_median_imput:22,age_sal_tre:56,age_tre:56,agefil:22,agenc:113,agenda:[111,190],agent:[121,178,207],ageron:171,agg:[18,41,171],aggfunc:129,agglom:[73,158],agglomerativeclust:[73,171,172],aggreg:[7,14,55,115,120,136,160,163,168],agil:[152,153],agnost:153,ago:[140,164],agre:[22,50,52,53,54,121],agreement:146,agricultur:[111,120,184,190,207],ahead:[55,58,63,113,150],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:65,ai:[12,18,25,42,109,110,111,117,121,123,129,130,131,141,152,153,155,156,173,178,186,191,192,197,207,209],aid:[60,68,87,146,147,158,179,182],aim:[60,84,85,113,141,143,146,148,161,172,178,180,201],air:122,airbu:29,airflow:153,airlin:7,airplan:136,airport:[111,133,190,196],aka:[38,73,153],akkio:191,al:[31,75,89,120,121,156,194],alabama:155,alacazam:188,albeit:[50,183],albifron:[118,194],album:158,alcohol:[53,110],alekseynp:171,alert:152,alex:[34,139],alexa:[146,154],alexand:[134,137],alexandru:72,alexei:65,alexi:165,alexnet:143,alfredo:186,alg:62,algebra:[47,57,60,65,93,128,208],algo:[164,172],algorithm:[3,31,46,54,55,57,58,59,61,62,63,64,65,66,67,80,84,85,91,92,93,99,101,108,109,110,111,121,128,138,139,140,143,146,148,150,151,152,153,154,156,159,160,161,165,166,167,169,170,172,175,176,178,179,184,187,190,192,200,201,202,204,205,206,207],algoritm:164,algorythm:92,alia:[128,172,202],alic:[188,195],align:[22,33,86,121,128,136,143,144,148,150,158,159,161,163,169,171,172,173,175,179,180,182,183,202],alik:[0,156,163],aliz:36,all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,35,38,39,41,42,43,44,45,46,48,51,53,55,56,57,58,60,62,63,64,65,66,68,70,72,73,75,85,89,91,93,98,101,102,109,110,111,112,113,115,116,117,119,121,123,125,126,127,128,129,131,139,140,141,142,143,144,145,146,147,149,152,153,154,155,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,183,184,186,187,188,189,190,192,193,195,200,201,202,204,207,208,209,210,211],all_attr:31,all_clfs_acc:55,all_data:72,all_nod:1,all_photo:31,allah:146,allbeit:91,allclos:91,allegrograph:196,allei:[60,72],allevi:[55,58,60],allianc:115,alloc:[44,56,121,172,198,202],allow:[1,3,14,18,53,54,56,60,65,84,85,86,108,109,110,112,120,121,122,123,125,127,128,129,130,131,133,135,141,143,144,146,147,152,153,154,158,164,167,168,169,172,175,176,182,186,187,188,189,202,203,209,210,211],allow_arg:129,allowed_arg:129,allowfullscreen:[125,162,175,184],allpub:72,allud:56,almeida:53,almond:[74,119,175,176,194],almost:[7,31,33,38,44,48,56,63,68,77,111,113,126,133,163,164,178,179,182,187,188,203,207],alon:[73,115],along:[1,7,34,38,44,53,57,60,65,75,84,85,89,112,113,118,126,127,128,129,130,131,149,153,155,158,163,172,176,177,178,182,187,194,207],alongsid:[80,118,154],alot:[60,140],alpha:[38,61,72,73,84,86,92,118,139,142,147,160,163,164,168,169,170,171,172,188,194,200,202,205,206,210],alpha_:139,alpha_t:[139,164],alpha_t_bar:139,alpha_tb_t:164,alphabet:[33,122,127],alphago:[140,178],alphas_cumprod:139,alphas_cumprod_prev:139,alphas_t:139,alq:60,alreadi:[33,44,48,55,56,58,60,66,69,71,75,87,89,91,102,109,115,123,130,131,139,144,149,154,160,164,171,172,179,180,184,186,187,189,193,195],alright:[38,91],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,35,38,43,44,48,50,51,52,53,55,56,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,75,77,83,85,86,87,89,91,92,107,108,110,111,112,113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,135,136,137,139,140,141,143,147,148,150,151,152,153,154,155,156,160,163,164,167,168,169,170,171,172,173,175,176,177,178,180,182,183,184,186,187,188,189,195,200,202,207,208,210],altair:203,altavista:164,alter:[84,93,115,122,187,193,209],alter_imag:93,altern:[7,16,32,50,60,65,68,120,121,126,128,147,154,158,169,170,187],although:[30,31,55,56,58,60,61,66,72,85,93,140,143,149,152,153,160,164,168,171,178,187,188],altogeh:153,altogeth:[14,170],altunyan:111,alwai:[7,14,30,34,35,36,38,42,44,48,50,52,53,55,58,60,61,63,64,65,67,75,89,113,118,125,128,129,131,133,139,140,141,143,150,153,154,155,156,163,164,168,169,170,171,175,178,183,187,188,189,209,210],am:[0,44,65,102,188,209],amalgam:87,amax:37,amaz:[32,110,117,144,189,190],amazon:[108,152,153,154,156,196],ambigu:[34,115,130,146,187],america:[117,185],american:[121,156,192],ami:172,aml:[9,109],aml_comput:[9,109],aml_config:[9,109],aml_nam:[9,109],amlb:154,amlcomput:[9,109],among:[7,62,65,70,73,125,128,143,153,154,163,164,168,172,178,183,201],amongst:[73,158],amor:149,amount:[7,17,31,62,65,73,84,108,109,110,119,120,123,129,133,136,140,143,146,152,154,164,165,169,170,172,173,178,184,187,188,191,192,194,195,196,200,202,207],amp:[158,173],amplifi:[111,121],amus:158,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,35,38,40,42,44,45,46,48,50,51,52,53,54,55,56,58,60,62,63,64,65,68,73,75,76,77,83,84,86,87,89,91,92,93,99,100,101,102,108,111,112,115,117,118,119,120,121,122,123,125,126,129,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,167,168,169,170,171,172,175,176,177,178,179,180,182,183,186,187,188,189,190,192,193,194,195,196,198,199,200,201,202,204,207,208,209,210,211],anaconda3:[41,92,150,172],anaconda:163,anaemia:[9,109,110],analog:[55,84,125,128,131,165],analys:[7,60,85,108,126],analysi:[1,7,16,17,18,21,31,42,51,73,75,85,89,109,111,114,115,122,123,126,128,129,131,133,135,140,146,147,152,158,161,164,168,171,183,190,192,193,195],analyst:110,analyt:[1,37,57,62,108,111,128,152,160,164,168,190,191],analyticsvidhya:62,analyz:[16,17,42,65,108,111,122,123,125,146,152,156,158,168,171,172,176,182,185,194],anatida:[118,194],anatinu:42,anc1:42,anc:42,ancestor:164,anchor:[42,148],andon:121,andra:36,andrew:[117,125,152,155,178,180],android:173,anemia:110,anf:35,ang:182,angel:188,angelica:[74,175,176],angelina:56,angl:[36,93,117,163,170,197],angular_spe:36,ani:[0,3,7,14,17,18,22,26,30,31,42,44,48,50,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,70,75,83,86,89,91,101,102,108,109,113,115,118,119,121,125,126,128,129,130,131,133,140,141,143,147,149,150,152,153,154,155,156,158,160,161,163,164,167,168,170,171,172,173,175,178,183,184,186,187,188,189,192,202,203,207,209,210],anim:[129,139,160,178,198,207,209],anis:[74,119,175,176,194],anise_se:[74,175,176],ankl:[30,44,46],ann:[43,140],ann_build:49,anneal:32,anni:24,annot:[4,5,13,19,35,41,44,53,55,57,58,59,65,70,73,75,76,83,89,117,143,147,148,171],announc:91,annual:[133,196],anomal:[29,50,154],anomali:[8,14,52,55,56,154,158,171],anomalies_mask:171,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[112,121,187,192,209],anoth:[1,3,7,8,10,14,30,31,33,34,42,44,48,51,52,55,56,58,60,62,65,72,73,75,84,86,89,99,101,108,110,113,117,118,119,120,123,125,126,127,129,131,133,136,143,146,150,151,153,154,155,156,157,158,159,160,161,163,164,167,168,170,171,172,177,178,179,182,187,188,194,195,202,209,210],another_tupl:188,anser:[118,194],anseriform:[118,194],ansibl:153,anspos:29,answer:[16,23,44,55,56,57,62,91,94,111,112,117,120,125,129,140,142,143,147,151,154,155,156,160,161,164,165,173,175,178,184,186,187,193],anthropolog:158,anti:93,antialia:[36,77],antialias:36,anticip:123,antipattern:156,any_column:24,any_script_cont:3,any_style_cont:3,anymor:[170,172],anyon:[86,121,146,151],anyth:[7,13,18,48,64,67,72,113,133,158,164,178,184,186,187,193,203,207],anywai:[63,183,188],anywher:[55,56,128,178,187],ap:[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187],apach:[22,50,52,53,54,69,71,73,92,93,152,153,196,202,203,204,205,208],apart:[7,38,60,68,126,131,133,164],api:[6,16,29,33,44,45,46,50,53,63,68,108,109,110,111,122,127,129,135,149,153,173,175,182,183,186,190],api_doc:139,api_kei:110,apocalyps:146,apostroph:145,app:[5,6,41,48,100,108,113,117,121,125,127,155,174,192,203],appar:[164,187],apparatu:[18,125],appdata:[63,68,118,202,209],appeal:[55,58,59],appear:[30,31,32,42,52,110,118,121,125,128,143,144,145,150,154,163,164,168,170,173,182,183,184,187,188,192,198,203,210],append:[1,3,7,14,31,34,36,37,38,39,41,43,47,49,51,55,56,60,73,77,84,91,92,93,101,128,129,136,137,138,139,141,143,144,145,148,149,158,159,163,165,171,172,187,188,189,202,209,210],append_diff_column:14,appl:[43,74,121,175,176,188,192,210],apple_brandi:[74,175,176],applet:169,appli:[1,3,14,16,28,29,31,33,35,36,38,39,41,44,50,51,56,60,62,63,65,68,69,71,72,73,77,84,85,90,91,92,101,111,112,115,117,118,122,123,125,127,128,129,131,133,136,138,140,141,143,144,147,149,150,152,153,154,155,156,158,160,163,164,167,169,170,171,172,173,178,179,182,183,184,188,194,195,200,202,203,205,207,210],appliabl:3,applic:[0,4,16,22,33,42,43,46,50,52,53,54,84,86,108,109,110,111,115,121,122,123,127,128,134,137,142,143,144,148,150,152,153,154,156,160,164,168,173,178,188,189,190,192,193,199,210],apply_along_axi:93,apply_dropout:144,apply_gradi:[36,38,135,139,141,142,145],apply_if_cal:130,apply_kernel:34,appreci:38,approach:[1,23,29,33,34,45,50,53,54,56,60,64,65,72,84,91,111,115,121,123,143,146,147,152,153,154,155,156,157,158,161,163,164,169,171,172,178,179,182,183,187,188,189,190,193,207],appropri:[31,42,50,56,75,85,87,89,101,113,127,128,141,154,158,164,167,169,175,184,186,188,196,200],approv:[56,125,153],approx:[56,101,160,164],approxim:[7,30,53,56,90,102,146,150,160,164,168,179,182,204,205,208],apricot:[74,175,176],april:[155,182],aqi:122,aqx:60,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76,77,81,83,84,85,86,87,89,91,92,94,97,101,102,104,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,189,191,192,193,194,195,196,197,198,199,200,202,203,204,207,208,209,210,211],arang:[29,56,61,91,128,142,149,150,171,172,195,202,205,206],arangodb:196,arbitrari:[18,52,128,129,142,164,168,188,208,209,210],arbitrarili:[171,188,210],arc:118,arcco:128,arcgi:111,architect:152,architectur:[34,38,68,110,121,127,142,143,144,145,148,152,154,155,160,170,173,192],archiv:[34,45,139,149],arcsin:128,arctan:128,are_anagram:188,area:[1,42,56,60,65,72,83,86,109,110,111,118,121,123,125,131,140,152,154,156,160,164,178,183,186,189,190,195,197],aren:[45,48,52,62,70,146,165,167,183],arff:63,arg:[22,42,43,52,53,77,101,102,129,148,164,187,209],argmax:[33,35,37,43,46,76,91,136,144,145,163,172,202],argmin:[171,172,202],argscop:148,argsort:[61,128,161],argtyp:77,argu:[61,123,154],argument2:189,argument3:189,argument:[7,33,44,56,68,101,112,113,127,128,129,130,131,143,144,167,170,172,188,189,208,210],arguments_dictionari:187,arguments_list:187,ari:172,aris:[28,52,101,102,121,152,156,187,188,189],aristocraci:117,arithmet:[7,31,101,125,126,128,172,187],aritifici:192,arizona:120,armagnac:[74,175,176],armi:203,around:[1,3,7,10,13,16,18,20,31,33,34,39,43,48,50,53,60,61,86,108,113,114,117,120,121,123,125,126,133,149,154,155,158,164,171,173,177,178,182,186,188,192,195,204,210],arous:152,arr1:128,arr2:128,arr:[52,53,77,102,128,195],arrai:[1,7,18,31,35,37,42,43,44,45,46,47,48,49,50,54,55,56,61,63,65,66,67,69,71,72,76,83,84,85,86,90,91,92,93,118,119,125,129,130,136,137,138,139,141,143,144,145,146,147,149,158,159,160,161,163,164,169,171,173,177,179,182,183,186,188,189,200,204,205,206,210,211],arrang:[14,60,70,146,150,186],array_split:145,array_to_img:[38,76,144],arriv:[73,115,125,183,193],arrow:[127,186],arrowprop:171,art:[31,136,142,143,145,151,153,154],artemisia:[74,175,176],arthur:[171,178,207],artichok:[74,175,176],articl:[28,37,39,46,55,56,58,111,113,117,119,123,125,146,158,161,164,188,190],articul:[113,156],artifact:[43,110,117,153],artifici:[18,43,46,56,93,111,123,135,140,146,147,149,151,155,156,178,205,206,208],artist:[38,158],artist_top_genr:[158,159],artistanim:139,artwork:31,arument1:189,arxiv:[138,142,144,148],as_cmap:41,as_default:138,as_fram:[66,171],as_list:[48,138,143,148],as_panda:168,asabeneh:[189,211],asarrai:163,ascend:[1,31,56,57,60,62,128,175,176],ascent:137,ascii:149,ascrib:117,asia:[174,175],asian:175,asid:[34,56,167],ask:[8,11,23,45,46,56,63,64,80,111,112,113,115,117,121,123,129,130,140,143,151,154,173,175,176,178,179,182,183,186,188,190,193,207],asp:[187,188],aspect:[11,13,33,60,62,91,114,115,117,120,123,148,152,154,170,184,194],aspp_siz:144,assembl:[38,187],assert:[3,14,22,24,31,51,53,59,91,101,102,103,105,106,143,144,145,148,155,171,187,188,209,210],assert_called_onc:[24,59],assert_called_once_with:[24,59],assert_frame_equ:[14,22],assert_not_cal:[24,59],assert_series_equ:14,assertalmostequ:52,assertequ:102,assertionerror:[105,106],assertrais:[14,102],assess:[23,56,85,86,107,111,112,121,147,161,170,172],asset:[12,14,15,18,22,23,24,25,51,55,56,58,59,60,62,65,66,67,68,70,73,83,91,95,110,117,173,184,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,208,210,211],assgin:60,assign:[3,6,8,11,14,16,17,19,22,24,28,36,42,44,45,50,51,52,54,55,56,58,59,60,83,85,87,99,102,109,110,111,115,117,118,119,120,125,130,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,151,152,154,155,158,159,163,164,169,170,171,175,176,177,178,180,182,183,184,186,187,188,189,202,203,204,205,209,210],assist:[110,146,172,178,202],associ:[3,7,46,101,102,109,110,113,121,125,127,128,148,153,156,161,170,178,182,186,187,188,189,191,192,196,207],assort:128,assum:[7,36,42,53,55,56,62,63,64,85,92,101,125,128,131,139,141,146,148,154,160,161,171,172,182,187,188,208,210],assumpt:[31,53,61,83,125,154,160,164,169,170,172,202],assur:[0,154],asterisk:[102,189],astrophysicist:6,astyp:[22,29,30,31,33,37,38,41,42,45,49,56,62,76,119,135,136,138,142,171,172,194,198,202,208],asymmetr:[152,164],asymmetri:121,asymptot:163,atlanta:[133,196],att:[143,173],attach:[46,110,119,127,194,196],attack:[109,110],attempt:[8,16,50,52,63,101,128,131,159,168,187,188,203,209,210],attend:139,attent:[73,92,131,139,140,143,145,161,163,164],attention_ax:139,attention_mask:42,attn_dim:139,attn_output:143,attr:[3,31],attract:[19,73,178],attrib:171,attribut:[7,31,33,56,57,64,73,92,101,110,122,123,130,147,152,161,168,172,187,202,209],attributeerror:[148,189],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,au:173,auc:[154,165,168,183],auc_weight:[9,109],auckland:[133,196],audienc:[157,193],audio:[31,46,122,164,178,207],audit:121,audubon:119,aug_test:62,aug_train:62,augment:[85,93,144,155,178,188],augment_input:144,augment_label:144,augmented_imag:33,august:[153,182],aurelion:[48,55],australia:[14,173],australian:[55,58],autauga:155,authent:[110,152],author:[12,25,42,63,64,101,102,108,111,117,121,123,152,155,187,188,189,190],authorit:155,auto:[9,65,109,133,135,136,154,159,163,167,168,171,172,173,175,182,202],auto_add_to_figur:172,autoconfig:[3,14,22,24,59,83,101,102],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:156,autograd:[31,39],autograph:30,autokera:156,autolayout:[68,150],autom:[0,46,109,110,111,115,121,146,153,154,156,178,190,191],automat:[0,31,33,34,38,41,42,48,58,59,63,109,110,123,128,131,135,146,153,154,155,156,157,163,167,178,182,187,188,207,210],automl:[10,20,129,156,176,191],automl_config:[9,109],automl_error:[9,109],automl_set:[9,109],automlconfig:[9,109],automlrun:109,automobil:[34,136],automobile_fil:34,automodelforsequenceclassif:42,autonom:[148,156,207],autopct:[57,119,194],autoplai:125,autoregress:142,autotoken:42,autotun:[33,36,139,143,144],autumn:[56,169,200],autumnali:[118,194],aux_loss:148,auxiliari:[56,91],av:60,avail:[1,3,7,14,29,33,34,41,42,44,56,57,58,59,60,63,68,75,81,83,89,109,110,112,115,118,119,120,121,125,126,131,133,141,149,150,152,154,155,156,158,163,164,172,175,179,184,186,187,192,193],avenu:111,averag:[7,14,18,22,24,25,29,32,34,36,39,53,54,55,56,58,59,65,72,73,86,87,102,113,122,123,125,128,136,139,143,158,159,160,161,163,164,168,171,172,177,180,182,183,186,202,209],average_length_of_word:101,average_method:172,average_pooling2d:143,averagepooling2d:36,averkiev:31,avg:[41,63,65,66,76,138,173,176,177,183,209],avg_pool2d:148,avg_pool:148,avgpool2d:32,avgpool:148,avil:[63,64],avocado:211,avoid:[44,52,55,56,59,60,63,64,113,120,130,131,133,145,153,154,156,163,167,171,172,177,178,184,186,187,196],aw:[44,152,153,155,156],awai:[55,70,113,119,158,169,171,178,187,188,204,207],awar:[85,111,113,117,121,128,131,178,187,190],awcmr9f:65,awesom:[101,102,110,119,140,164,187,189],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:65,ax1:[61,150],ax2:[52,61,120,150,194],ax:[1,14,22,29,30,32,33,34,37,38,39,40,41,43,44,48,52,53,56,57,60,68,70,72,73,76,83,84,92,117,118,120,128,129,130,131,136,139,141,142,150,158,163,165,168,169,171,172,182,188,194,200,202,204],axacc:52,axes3d:[73,84,92,172,202],axessubplot:[30,63,65,66,67,73,83,118,131,158,159,175,182,183,194],axhlin:[14,86,172,202],axi:[1,3,7,14,22,30,31,32,33,34,35,36,38,39,40,41,43,47,48,49,54,55,56,57,58,59,60,62,63,65,67,68,69,70,71,73,74,75,76,83,85,89,91,117,118,120,121,125,126,129,130,131,136,137,138,139,141,142,143,144,145,147,148,150,153,158,161,163,165,167,168,169,171,172,175,176,177,179,182,183,184,186,192,194,195,198,200,202,203,208],axisgrid:[64,83,92,120,158,183,194],axloss:52,axvlin:[171,172,202],aymer:135,az:[120,194],azim:[92,169,172,200,202],azip:[169,200],azithromycin:1,azur:[107,108,111,115,129,152,153,155,156,173,174,185,190,191,192,196],azurecontain:110,azureml:[9,108,109],b0:[129,195],b1:[128,129,141,195],b2:[128,129,141,195],b3:[127,141],b4ejbh5mczlor:65,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:65,b9c0c9:73,b:[7,14,22,29,34,35,37,41,56,60,69,71,86,91,101,102,110,125,126,127,128,129,130,131,135,139,141,142,144,145,148,149,155,158,160,161,163,169,171,172,182,187,188,189,195,200,202,203,204,209,210,211],b_1:160,b_dtree:163,b_f:145,b_g:145,b_h:149,b_i:[145,160],b_k:163,b_n:[160,163],b_o:145,b_t:164,b_y:149,ba:45,back:[1,7,29,30,31,44,48,50,51,59,83,98,102,108,109,113,123,125,128,131,133,139,150,152,153,154,160,170,173,184,186,187,188],backbon:[48,144,146,148],backend:[37,38,48,144,208],backfil:150,background:[40,43,104,111,143,150,173,207],background_color:[3,76],backprop:[34,149],backpropag:[34,39,91,139,149,198],backpropaget:91,backpropog:48,backtick:129,backward:[7,31,34,39,91,139,178],bad:[7,44,55,56,67,75,89,113,117,128,154,171,172,173,183,187],bad_kmeans_plot:171,bad_n_clusters_plot:171,badli:[53,56,118,154,163,204],bag:[30,44,46,60,62,161,162,175],bag_classifi:55,bagging_fract:60,bagging_freq:60,bagging_se:60,baggingclassifi:[55,160,163],baggingregressor:[160,163],baheti:147,bai:[67,83],baidunetdisk:41,baidunetdiskdownload:41,balanc:[35,55,58,63,65,69,70,71,75,87,89,109,111,153,154,156,163,164,169,170,176,190,200],balanced_subsampl:163,baldwin:155,ball:[56,160],ballback:44,baltimor:[182,183,184],bam_extract_path:29,bam_zip_file_path:29,banana:[43,188,210,211],bandwidth:108,banerje:[65,168,203,208],bank:[56,111,122,127,156,158,196,207],banko:156,bankrupt:117,bar:[1,3,15,31,44,46,57,62,70,86,109,117,118,128,129,131,161,168,175,184,189,203],bar_chart:76,barack:101,barbour:155,barchart:182,bare:[153,163],baregg:150,barh:[72,175,194],barlei:176,barnrais:113,barnraisersllc:113,barometr:122,barplot:[43,60,75,89,158,159],barrier:146,base64:[31,65],base:[7,11,14,15,17,18,29,31,34,37,42,44,46,51,54,55,56,58,60,61,62,63,65,66,67,72,73,75,83,85,86,89,93,102,110,111,115,117,118,121,122,123,127,128,131,133,135,139,140,141,143,144,145,146,147,148,151,152,153,154,155,156,158,160,161,163,164,165,167,169,170,172,173,176,177,178,183,184,186,187,188,189,190,191,196,197,200,203,207,208,209,210],base_estim:55,base_learn:165,base_model:[137,144],base_model_output:144,base_scor:[72,167,168],base_shap:137,base_url:14,basebal:125,baseblockmanag:130,baseclassnam:187,baselin:[154,163,168,171],baselinems:53,basemen:[18,125],basement:60,basenam:[29,30,31,34,43,46,72],basex:196,basi:[1,22,50,52,53,54,56,66,67,73,108,128,140,164,169,172,189,202],basic:[7,14,15,18,24,30,38,44,53,56,61,63,64,73,77,111,117,118,120,125,126,127,129,135,140,147,149,150,151,153,155,159,160,163,164,168,169,170,172,173,175,178,179,182,183,184,186,187,190,191,193,194,196,197,198,199,200,201,202,203,204,205,206,207,208,209],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basket:[175,182],bat:38,batch:[31,32,33,36,38,42,46,49,50,53,91,135,136,137,139,142,143,144,145,152,153,154,155,156,158,172,175,198],batch_:38,batch_acc:34,batch_label:136,batch_loss:[34,145],batch_norm:[36,38,143,148],batch_normalization_1:[36,38],batch_normalization_20:45,batch_normalization_21:45,batch_normalization_22:45,batch_normalization_23:45,batch_normalization_24:45,batch_normalization_25:45,batch_normalization_26:45,batch_normalization_27:45,batch_normalization_28:45,batch_normalization_29:45,batch_normalization_2:[36,38],batch_normalization_3:[36,38],batch_normalization_4:[36,38],batch_normalization_5:[36,38],batch_normalization_6:[36,38],batch_normalization_7:[36,38],batch_normalization_8:36,batch_siz:[29,31,32,33,34,35,36,37,38,39,41,43,45,47,49,50,52,53,68,91,135,136,139,142,144,145,147,149,171,179,198,208],batch_x:135,batchno:36,batchnorm1d:31,batchnorm2d:39,batchnorm:[32,36,38,39,45,68,139,143,144],batchsiz:91,bathroom:60,batter_pow:[75,89],batteri:[75,89],battery_pow:[75,89],battl:119,bayesian:[139,144],baz:129,bb38:[127,196],bbox:[92,172,202],bbox_coord:45,bbox_emb:148,bc:171,bce:31,bceloss:39,bdt:163,bdt_predict:163,beam:[154,173],bear:175,beat:[52,53,178,207],beatl:189,beauti:[116,119,120,172,202],beautifuli:44,beautifulli:[48,118],becam:[123,140,164],becaus:[1,3,7,12,14,18,22,28,30,31,32,34,38,42,44,46,48,50,51,52,55,56,58,60,62,63,64,65,66,70,75,77,83,84,89,92,110,113,120,121,122,123,125,126,127,128,130,131,137,139,140,146,148,150,152,153,154,155,159,160,163,164,165,168,169,170,171,172,175,178,179,182,184,187,188,189,195,200,202,204,207,209],becom:[7,32,33,37,38,50,56,61,84,91,101,110,121,123,125,128,140,141,145,149,152,153,154,160,164,165,168,175,178,179,188,198,209],bed_room:83,bedroom:[67,83],bedroomabvgr:60,bee:[13,120,194],beehiv:[120,194],been:[3,6,7,12,14,15,17,18,23,29,30,31,33,36,44,45,55,58,68,73,92,110,111,113,115,117,119,121,122,126,128,129,130,131,140,142,145,147,148,153,155,156,158,160,164,165,168,170,171,173,187,189,193,198,204,209],befor:[7,8,14,16,32,33,34,35,37,42,44,45,46,48,50,52,53,55,56,57,58,59,60,62,63,64,65,66,67,68,73,75,77,83,84,85,89,92,93,109,110,113,115,117,120,123,126,127,131,133,139,141,142,143,144,150,152,153,154,155,156,158,161,163,167,170,172,173,175,178,179,182,186,187,188,189,193,194,195,204,207,209,210],began:155,begin:[1,7,14,32,34,37,52,55,56,58,70,72,87,121,126,128,133,147,150,154,156,160,161,163,164,170,172,182,185,187,188,189,193,196,198,202,204,209,210],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,42,51,60,74,75,78,80,81,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,133,146,152,158,159,173,175,176,177,182,183,184,186,189,190],behav:[7,118,121,128,133,143,158,187,188,192],behavior:[17,34,68,110,111,120,121,123,125,128,131,141,147,150,154,163,170,172,176,178,189,192,202,207],behaviour:[55,58,73,128,129,169,200],behind:[31,58,59,64,66,67,68,75,84,89,121,146,147,164,166,168,169,171,172,176,179,182,188,192,203],being:[0,11,14,38,44,48,56,60,65,83,111,115,120,121,123,128,130,131,133,140,141,142,144,150,155,158,160,164,165,170,171,178,183,187,188,189,193,196,207],beings:123,believ:[33,164],bell:[119,194],belli:[118,194],belong:[33,38,42,46,65,92,121,143,144,158,168,172,183,187,209],below:[0,3,7,12,14,15,16,17,22,24,30,42,43,46,48,50,51,52,53,56,59,60,63,65,66,70,77,85,101,102,105,106,111,113,119,121,125,127,128,129,136,138,140,143,147,152,153,154,155,156,160,161,163,167,168,169,170,171,172,173,177,179,182,187,189,194,204],belt:178,ben:182,benchmark:[53,111,154,156,178,190,207],bend:159,benefici:[30,156,188],benefit:[32,68,108,115,122,158,170,172,193],bengio:[29,56,87,142,180,197],benign:44,bensor:48,bere:36,bereft:187,berkelei:193,bernhard:65,bernoulli:164,bernulli:164,besid:[50,128,141,143,144,153,154,170,188,210],bespok:173,best:[1,3,10,20,22,31,34,43,44,50,52,53,55,56,58,59,60,62,63,64,65,67,72,73,83,85,91,92,93,110,117,119,122,128,129,133,141,150,152,154,160,163,164,169,170,171,175,176,178,182,183,184,188,194,195,200,201,203,204,207,210],best_estimator_:[58,59,62,63,64,65,66,67],best_k:92,best_kmean:171,best_model:43,best_model_1:44,best_model_2:44,best_model_ann:49,best_model_ann_2:49,best_model_cnn:[43,49],best_model_cnn_2:49,best_model_lstm:49,best_model_lstm_2:49,best_model_rnn:49,best_model_rnn_2:49,best_param:60,best_params_:[56,58,59,60,62,63,64,65,66,67,93,163,171],best_run:[9,109],best_score_:[56,62,65,93,163],beta16:138,beta1:[39,138,142],beta2:138,beta:[39,143,148,170],beta_1:[35,198],beta_2:35,beta_end:139,beta_start:139,beta_t:139,betas_t:139,beth:185,better:[1,3,7,14,23,30,31,32,33,35,38,40,52,53,55,56,58,60,61,62,63,65,68,72,73,75,84,85,86,89,91,108,110,112,117,120,121,123,125,126,128,135,143,146,147,150,152,153,154,155,156,158,159,160,163,164,165,167,168,170,171,172,174,175,177,178,179,182,186,187,188,192,202,203,204],bettter:67,between:[7,14,18,21,30,31,33,34,35,38,44,46,52,53,54,55,56,58,59,63,65,66,67,68,69,70,71,84,85,86,87,92,95,97,101,110,111,113,115,118,120,121,122,123,125,127,130,131,133,135,138,139,140,141,143,144,145,146,147,149,150,152,153,154,155,156,158,159,161,164,166,169,170,171,172,173,175,177,178,182,183,184,185,186,187,188,193,194,196,198,200,202,204,207,209,210],bewar:173,bewild:176,beyond:[7,51,56,66,67,125,126,140,146,150,151,154,178,187,204],bfill:7,bg_label:40,bhwdaa:[127,196],bhwdapqz8s0:[127,196],bhwdapqz8s0baaaaaaaaaa:[127,196],bi:[108,188],bia:[39,42,50,60,62,69,71,83,85,90,111,121,135,138,143,147,150,154,156,160,169,179,190,192,204,205],bias1x1:143,bias3x3:143,bias:[44,51,55,91,111,121,126,135,153,178,190,192],bias_add:138,biasid:143,bib:110,bibb:155,bibliographi:110,bicolor:[118,194],bidirect:145,big:[3,48,62,63,68,75,89,107,108,123,140,146,152,154,164,171,172,178,183,184,189,192],big_arrai:195,big_integ:[188,210],bigger:[147,154,158,164,182,209],biggest:[73,178,207],bigodot:145,bigoplu:145,bigtabl:196,bilibili:179,bilinear:[36,143,144,148,171],bill:[187,188,189,210],bin:[18,22,29,41,52,55,58,59,60,64,65,66,118,125,127,136,148,182,183,184,194],binar:63,binari:[22,38,40,46,56,60,62,65,75,83,87,89,93,101,128,136,145,147,163,164,165,168,169,171,175,176,178,186,188,195,210],binary_cross_entropi:31,binary_crossentropi:[44,147,198,208],binary_fill_hol:40,binary_search:101,binaryclass:63,binarycrossentropi:[38,142],bind:187,bing:[3,142,164],binomi:169,bio:111,biolog:[140,147],biologist:7,birch:158,birchard:189,bird:[4,19,129,136],birth:[15,73],birth_month:15,bit:[1,7,14,43,44,72,73,75,77,89,91,118,120,124,126,133,140,159,164,165,169,171,175,179,182,183,184,186,187,200],bitcoin:145,bitwis:[128,188,210],bitwise_and:128,bitwise_or:128,bitwise_xor:128,bivari:60,bizarr:117,bj:188,bla:73,black:[1,52,56,60,76,118,119,136,141,143,169,171,173,186,194],blackbox:[63,64,178],blank:[127,158,173,175,184,187],blend:[63,138,143,160],blend_models_predict:60,bleu:154,blind:117,blit:139,blob:[128,171,182,183],blob_cent:171,blob_std:171,blobs_plot:171,block:[33,39,46,63,64,83,91,101,139,140,143,144,146,169,173,184,186,187,188,189,203,209,210,211],block_13_expand_relu:144,block_16_project:144,block_1_expand_relu:144,block_3_expand_relu:144,block_6_expand_relu:144,block_depth:36,block_num:136,block_siz:136,blog:[1,14,28,29,31,56,62,108,111,113,119,128,129,159,164,171,190,196],blood:[24,110,186],bloom:152,blount:155,blq:60,blu:146,blue:[30,41,46,47,50,56,60,75,85,89,113,117,118,125,143,146,147,153,158,159,163,164,182,186,187,194,204],blue_count:[75,89],blueprint:[187,209],bluetooth:[75,89],bluff:204,blur:[34,77],blurri:30,bm_axi:129,bmatrix:204,bmi:186,bmi_distribut:24,bmp:172,bn:[32,39,143,144],bn_axi:144,bn_conv1:144,bn_name_bas:144,bo:[144,171,172,202],board:[22,141,178],boat:198,bob:[188,195],bodi:[15,24,118,122,125,143,173,186,187],boil:56,bold:[68,92,150],boldfac:[178,207],boldsymbol:179,bolster:156,bonu:[16,18,28],book:[0,12,18,25,55,56,102,110,113,117,121,123,125,128,129,130,131,135,138,149,150,151,161,163,171,176,183,187,195,209],book_cov:138,book_sal:150,bool:[14,29,126,128,129,130,131,148,171,187,188,189,195,210],bool_vec:131,boolean_arrai:128,booleanarrai:130,boost:[56,63,64,73,93,151,154,163,167,171,172,176],booster:[60,72,165,167,168],boosting_typ:60,boostrap:72,boot:[30,44,46,63],bootstrap:[55,58,59,161,163,164,168],border:[56,136,143,144,148,159,163,164,169,171,172,173,175,179,180,182],bore:41,born:164,borrow:187,boser:65,boss:56,boston:[121,192],bot:154,both:[1,7,14,29,30,31,32,34,44,46,48,51,52,55,56,58,60,62,63,64,65,66,67,68,69,70,71,72,75,78,83,84,87,89,91,101,109,111,113,117,120,121,123,125,126,128,129,130,131,133,140,141,142,144,146,148,150,152,153,154,156,163,164,166,167,168,169,170,172,173,177,178,186,187,188,192,194,196,198,207],bother:[91,184],bottleneck:[33,139],bottom:[31,35,56,128,183,184,203],bottommost:187,bottou:197,bouhsin:49,bounc:154,bound:[42,45,48,52,56,101,118,128,130,131,141,148,154,171,172,178,183,187],boundari:[56,65,66,67,77,87,125,130,147,156,159,160,163,208],bounding_box_coord:45,box:[18,45,48,56,109,117,125,136,148,163,173,178,182,184,203],box_ind:148,box_logit:148,boxenplot:73,boxplot:[18,60,65,70,159],bp:186,br:15,brace:[188,210],bracket:[128,154,188,189,210],brain:[140,147,189,207],branch:[0,121,143,146,153,164,168,187,192,207],brand:[113,164,178,207],brave:187,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:65,breach:[121,192],bread:129,breakdown:[14,85,122,189],breakfast:[187,209],breakthrough:136,breathtak:[111,190],breed:[39,144],breez:154,breiman:[160,163],breinman:161,breviti:187,breweri:125,bridg:[146,156],brief:[145,178],briefli:[17,28,60,121],bright:[35,143],brighter:118,brill:156,brilliant:175,brilliantli:164,bring:[55,58,60,87,110,133,145,153,155,164,196],britannica:123,british:[7,189],broad:[68,119,121,123,125,143,150,153,156,178,187,192,194,207],broadcast:131,broaden:111,broader:[73,121,123,151,154],broadli:121,broken:[57,65,115,122,153,161,193],brook:211,brother:173,brought:[15,133],brown:[119,194],brows:[68,187],browser:[16,41,109,110,127,173],bruce:125,bruis:[119,194],brush:186,brute:155,bs:42,bsmtcond:60,bsmtexposur:60,bsmtfinsf1:60,bsmtfinsf2:60,bsmtfintype1:60,bsmtfintype2:60,bsmtfullbath:60,bsmthalfbath:60,bsmtqual:60,bsmtunfsf:60,btc:41,btcdf:41,btcsave2:41,btn:173,bu:125,bubbl:194,bucket:60,buddi:187,budget:[108,191],budgetari:110,buff:[119,194],buffer:[33,123,128],buffer_s:[33,36,139,144],buffet:149,bug:[4,52,113,145,153,154,189,209],buggi:[78,94],bugi:149,bui:[37,59,63,64,108,113,121,158,182],build:[1,4,8,13,33,34,44,48,55,58,63,64,65,70,78,83,84,85,86,91,92,94,98,107,108,109,110,111,113,115,118,119,120,121,123,125,127,129,135,136,139,140,143,144,145,147,148,149,151,152,153,154,155,156,160,161,163,164,167,168,172,174,176,177,178,185,186,187,188,190,191,193,196,199,204,206,207,210],build_vocab:145,builder:143,built:[1,3,7,12,29,44,48,56,72,78,91,94,100,117,118,119,120,121,125,128,131,133,147,151,152,153,155,159,164,165,173,183,186,187,188,189,195,199,209,210],builtin:[172,202,209],bulk:113,bulki:153,bull:160,bullet:164,bump:[121,192],bunch:[0,1,31,56,63,64,123,142,178,188,207],bundl:153,buolamwini:[111,190],burgeon:[133,196],burn:173,bushel:[182,184],busi:[7,73,108,111,113,115,121,123,146,150,152,153,154,155,156,158,173,190,193],buss:117,butter:129,button:[15,76,109,110,127,173,186,189,203],bw_adjust:118,bwteen:44,bx8rsirp:65,bx:[29,30,34,182,188],bytearrai:[188,210],bytesio:[45,77,139,149],c0:195,c1000:14,c100:14,c1:[14,22,24,59,101,144,195],c2:[14,24,59,101,144,148,195],c3:[14,101,144],c4:[14,56,144,148],c5:[32,144],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:65,c64u:65,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:65,c:[1,14,22,32,34,50,56,60,61,63,66,67,68,70,73,86,92,101,102,113,118,125,126,127,128,129,130,131,138,145,148,149,150,155,159,161,163,168,169,171,172,177,182,183,184,187,188,195,200,202,203,205,206,209,210],c_1:171,c_:[56,85,125,163,171,172],c_i:[171,172],c_j:172,c_k:[172,202],ca:[48,120,141,173,194],cab:[111,190],cach:[33,36,59,64,128,144,145,156,171,196],cache_data:[77,203],cache_resourc:203,cachedproperti:129,caerulescen:[118,194],cal_data:67,calc_grad_til:77,calc_loss:137,calcul:[6,7,8,14,18,25,29,30,31,34,36,38,41,44,50,53,54,55,56,60,65,70,73,75,84,85,86,87,89,92,105,125,127,128,129,131,133,137,147,148,154,156,159,160,161,163,164,167,168,169,171,172,179,180,182,183,184,187,196,202,210],calculate_discrimin:188,calculate_sum:101,calculu:84,calendar:[187,209],calendar_clock:[187,209],calendarclock:[187,209],california:[14,121,178,195],call:[1,3,18,22,29,30,31,33,34,38,42,44,45,46,48,52,53,55,56,57,60,63,65,66,67,69,71,75,83,85,87,89,91,101,102,108,109,110,113,117,119,121,122,123,125,127,128,129,130,131,133,135,139,140,141,143,144,145,147,148,150,153,154,157,158,159,160,161,163,164,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,186,187,188,189,195,196,203,207,208,210],call_func:[187,209],callabl:[65,131],callback:[30,32,36,43,45,49,72,144,167,168,170],callout:182,cam_extract_path:29,cam_zip_file_path:29,came:[56,73,122,153,164],camera:[43,75,89,123,128,143],campaign:73,can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,35,38,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,80,83,84,85,86,87,89,91,92,94,100,101,102,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,156,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,190,193,194,195,196,198,200,202,203,204,207,208,209,210,211],canada:[14,146,173],canari:153,cancel:[44,121,160,192],cancer:44,candi:183,candid:[56,63,64,65,66,67,163,171,184,201],cane_molass:176,canin:187,canni:40,cannot:[7,14,18,22,24,30,43,50,52,56,59,65,72,118,122,123,126,128,130,158,164,170,171,172,183,187,188,194,210],canon:128,canva:76,canvas_orig:135,canvas_recon:135,canvas_result:76,cap:[73,119,194],capabl:[60,91,110,121,123,131,152,153,183,188,191,192,207,210],capac:[52,53,68,75,89,153,154],capcolor:[119,194],capit:[102,187,188],capital_gain:57,capital_loss:57,capitalize_first_lett:102,capitalize_word:102,capitalized_sent:102,capitalized_word:102,caption:[140,178],captiv:129,captur:[15,23,34,43,54,72,85,86,112,117,121,122,123,150,152,154,170,182,198],car:[63,64,121,122,140,141,144,146,147,148,178,192,207],car_data:63,car_label:63,car_labels_prepar:63,car_test:63,car_test_label:63,car_test_labels_prepar:63,car_test_prepar:63,car_train:63,car_train_prepar:63,carambola:43,carbon:111,card:[110,121,158,192],cardiac:147,cardiovascular:110,care:[20,50,62,63,64,75,89,100,111,117,120,121,128,131,167,168,170,173,178,187,192],carefulli:[55,164],caregor:62,carlo:125,carnam:188,carri:[7,63,126],cart:[56,163,164],carton:182,carv:[159,183,185],cascad:144,cassandra:196,cassett:158,cast:[29,128,137,139,141,144,145,148],casted_kei:131,cat1:1,cat2:1,cat:[15,34,60,67,83,129,136,143,146,178,187,198,209],cat_col:60,cat_feat:[67,83],cat_feats_enc:83,cat_feats_encod:83,cat_feats_hot:83,cat_feats_pip:83,cat_feats_preprocess:83,cat_fil:34,cat_list:[67,83],cat_on_snow:137,cat_train:60,catalog:[16,23,111,118,190],catalyst:42,catastroph:169,catboost_search:60,catboostregressor:60,catcher:125,categor:[54,55,56,58,62,64,67,72,73,87,92,120,122,125,126,127,128,129,146,147,154,163,165,178,183,186,196,207],categori:[1,7,42,43,46,56,57,60,62,65,66,73,75,83,87,89,108,113,115,117,118,119,121,122,123,140,141,143,144,147,152,154,156,159,161,169,171,175,176,177,178,182,183,186,188,193,194,195,200,207,208,210],categorical_crossentropi:[32,35,43,52],categoricalcrossentropi:[44,144],category_count:194,category_encod:57,cater:73,cathi:195,catplot:[62,183],caught:130,cauliflow:175,caus:[1,14,18,28,30,51,52,55,60,63,65,68,69,70,71,75,89,110,111,120,121,123,125,126,130,131,147,152,153,154,161,163,167,169,170,187,188,190,200,209,210],causal:125,causat:158,caution:117,cb:60,cbar:[44,70,75,89,147],cbar_kw:41,cbeddd:73,cc:[48,55,110,137,154,161],ccc:161,cccc:161,ccd:120,ccp_alpha:[62,63,64],ccpa:121,cd:[0,153,155,158,173],cdata_estim:93,cdata_estimator_predict:93,cdc:155,cdeott:32,cdist:[172,202],cdot:[84,87,91,161,164],ce:57,ceil:142,celeba:139,celebr:[31,56],cell:[0,3,7,17,41,44,47,48,49,50,51,52,53,63,64,66,67,72,73,91,92,105,106,110,126,127,128,129,130,131,140,145,150,158,163,167,168,169,171,182,184,186,187,195,197],censor:102,censor_word:102,cent:[41,182],cent_histori:[172,202],center:[14,22,36,41,72,73,76,92,108,115,119,125,128,133,136,143,144,147,148,153,155,158,159,161,163,169,171,172,173,175,179,180,182,194,200,202,204],center_circl:[119,194],centercrop:39,centernessnet:148,centimet:[66,194],centr:169,central:[59,64,110,152],centralu:110,centric:152,centroid:[158,159,172,202],centuri:[117,173],cerdeira:53,certain:[7,14,30,34,44,46,56,60,65,83,85,87,102,115,123,125,128,141,142,147,149,152,153,154,155,156,158,163,169,170,176,178,182,186,187,188,193,207,210,211],certainli:[38,140,171],cfees8eopk:127,cg:176,cgcug0a0c6nut:65,chain:[34,46,84,91,130,147,152,179,182,187],chained_assign:147,chair:[143,154],challeng:[3,8,28,43,46,51,84,87,108,111,112,120,123,125,126,129,133,153,154,155,156,158,168,176,178,189,190,196,211],champion:203,chan:148,chanc:[38,55,62,75,89,125,133,140,167],chang:[0,7,8,14,20,30,34,44,48,50,52,53,55,56,58,59,61,62,63,68,69,71,84,92,94,100,110,111,112,115,117,118,119,120,122,125,126,127,128,130,133,139,141,144,148,153,154,155,156,158,161,163,164,169,172,173,174,178,179,180,182,184,187,188,189,190,195,196,200,202,209,210],changeabl:[188,210],changer:107,channel:[31,33,34,36,38,39,43,59,64,77,136,138,143,144,148,168,172,193],channels_first:148,channels_last:144,chao:56,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,38,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,85,89,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,155,158,159,160,161,163,164,165,167,168,171,173,175,176,177,178,182,183,184,185,186,187,188,189,195],chapter_id:171,charact:[3,52,109,117,121,122,123,127,188,189,210,211],characterist:[30,31,52,60,64,65,86,122,127,141,154,164,178,183],charg:[23,56,75,89,101,102,110,160,187,188,189],charli:188,charset:[15,173],chart:[13,19,27,85,118,119,121,159,168,182,184,192],chart_data:203,charticul:119,chase:173,chatbot:146,chatgpt:[101,102,146],cheaper:[115,121],cheat:[156,176,177,180],cheatsheet:176,check:[0,3,7,10,14,20,22,24,29,31,37,42,43,44,45,48,50,51,54,55,56,58,62,64,66,67,69,71,73,92,101,102,108,109,110,111,112,121,126,136,139,140,141,142,144,145,151,153,158,159,161,163,164,167,171,172,173,175,176,186,187,189,190,202,208,210],check_dtyp:14,check_nam:14,check_str_or_non:130,check_valu:155,check_win_condit:141,checklist:[28,192],checkout:[0,153],checkpoint:[42,145],chef:175,chen:148,cherri:[113,188,210],chervonenki:65,chess:[140,141,178],chest_pain:147,chester:173,chicago:188,child:[161,177,187],children:[11,22,73,121,161,192],children_:171,china:[14,121,146],chines:[175,176,177,179],chinese_df:175,chinese_ingredient_df:175,chiphuyen:154,chlorid:53,chloroquin:[1,8],chmax:[59,64],chmin:[59,64],chnage:[69,71],chnormal:38,choc:140,chocol:183,choderlo:117,choic:[7,27,32,44,55,75,89,110,115,117,121,123,126,128,136,140,141,145,153,154,158,163,164,171,175,176,178,183,192,207,208],chollet:29,choos:[7,29,33,40,51,53,55,62,65,75,77,84,86,89,109,113,120,126,128,129,136,140,141,143,147,150,152,153,154,156,158,159,160,163,164,169,170,171,177,178,179,183,189,201,202,207],chop:175,chord:[1,8],chose:[35,36,42,78,108,131,171,195],chosen:[34,53,60,65,110,120,128,154,160,169,171,172,173,203],chr:144,chri:32,chrome:110,chronolog:[121,192],chuck:101,chunhua:148,chunk:[77,123,172],chunk_siz:77,churn:[160,163,164,207],churn_cal:160,churn_mean_scor:160,ci:[34,120,144,150,153,155],cid:179,cifar10:[34,136],cifar10_extract_path:34,cifar10_label:136,cifar10_mdoel_nam:34,cifar10_model_respons:34,cifar10_model_save_path:34,cifar10_model_url:34,cifar10_nam:34,cifar10_respons:34,cifar10_save_path:34,cifar10_url:[34,136],cifar10_zip_file_path:34,cifar10cnnmodel:34,cifar:34,cifar_labels_fil:136,cifar_link:136,cine:149,cinnamon:[119,194],circl:[117,119,158,163,169,173,194],circle_color:171,circu:189,circuit:[110,143],circuitri:110,circular:[149,173],circumfer:120,circumst:121,cite:[63,64,124,155,186],citi:[12,17,23,55,58,83,111,117,121,140,146,154,173,182,183,184,190,192],citizen:[121,187,192],citric:53,city_:62,city_development_index:62,city_id:[12,133,196],ck:34,cl:143,cla:[172,202],claim:[101,102,187,188,189],claremont:111,clarif:23,clarifi:[112,113,153,168],clariti:[1,73,84,113,164],clasifi:92,class_busi:7,class_economi:7,class_emb:148,class_first:7,class_label:7,class_nam:[33,44,46,63,161],class_report:[58,63],class_weight:[55,58,63,163],classes_:176,classfic:172,classic:[44,46,56,66,67,92,135,141,142,165,169,175,178,183,207],classif:[9,32,38,43,48,54,59,64,67,70,73,84,94,109,110,111,115,121,125,129,135,137,140,144,145,146,147,148,149,154,160,161,163,165,166,168,169,170,171,172,176,179,186,190,192,193,198,201,205,206,207,208],classifi:[29,32,33,38,42,52,56,62,65,70,73,75,80,89,91,92,94,122,129,140,143,147,149,154,158,160,161,163,164,165,169,171,174,178,183,198,200,205,206,207,208],classification_accuraci:65,classification_error:65,classification_model_nam:46,classification_model_respons:46,classification_model_save_path:46,classification_model_url:46,classification_report:[43,44,52,57,58,63,65,66,75,76,89,93,173,176,177,183],classify_lit:33,classnam:39,claus:[127,146,187,188,209],clean:[3,18,20,22,38,44,51,60,85,98,111,112,115,117,145,149,150,152,154,155,159,176,177,178,182,184,190,193,195],clean_data:22,clean_fresh_fruit:[188,210],clean_text:149,cleand_df:51,cleaned_cuisin:[74,175,176,177],cleaner:187,cleanli:143,cleanprep:41,cleans:115,cleanup:152,clear:[3,7,8,12,14,25,43,44,56,57,65,73,86,113,120,128,129,161,164,177,178,183,186,188,189,210],clear_output:[91,137,144],clearer:[178,207],clearli:[1,14,16,28,38,52,53,58,63,64,73,113,149,150,154,156,164,172,178,179,182,189,202,207],clees:187,clever:[14,189],clf1:55,clf2:55,clf3:55,clf:[55,57,146,169,172,200,202],clf_tree:56,cli:110,click:[0,3,41,50,52,53,57,77,109,110,117,127,175,178,181,184,185,186,189,203],client:[15,17,23,56,108,156,160,164,171,187,203],climat:[54,111,120,190],climax:113,climb:41,clinic:[146,186],clint:101,clion:41,clionproject:41,clip:[36,38,42,77,93,136,138,154,178,207],clip_by_valu:[29,30,36,137],clip_value_max:[29,30],clip_value_min:[29,30],clipart:41,clipboard:125,clipped_zoom:93,clobber:128,clock:[110,187,209],clock_spe:[75,89],clockwis:[35,93],clone:[0,39,153],clone_model:36,close:[1,7,8,29,30,31,34,39,40,41,43,49,55,56,58,62,65,70,73,75,83,84,85,87,89,101,110,117,119,125,126,130,136,140,141,146,159,163,168,171,172,182,189,194,204],close_pric:41,closer:[14,33,35,53,58,59,62,65,86,91,153,159,161,171,172,184,198],closest:[44,65,110,122,158,159,169,171,172,202],closur:[113,187],cloth:152,cloud:[1,3,21,100,110,111,115,123,127,129,152,153,154,156,173,176,190,192,193,196,199],cloud_link:150,cloud_url:173,cloudform:153,cloudmus:41,cloudwatch:152,club:97,cluster:[30,56,115,118,123,125,135,153,163,177,178,182,193,207],cluster_centers_:171,cluster_classification_plot:171,cluster_dist:171,cluster_std:[169,171,200],clusterer1:171,clusterer2:171,clusterpoint:196,clustr:[73,151],clustroid:158,clutter:[118,143],cm:[31,40,44,46,51,57,58,63,65,66,75,89,92,126,147,161,171,172,194,202,205,206],cm_matrix:[57,65],cmap:[1,31,40,41,46,55,56,57,58,59,60,65,73,75,76,83,84,89,91,92,93,135,136,142,147,163,169,171,172,200,202,205,206,208],cmd:189,cn:41,cncf:153,cnn:[33,43,45,137,138,140,143],cnn_builder:49,cnt:61,co:[1,2,8,25,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,111,118,119,120,125,127,128,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,164,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,190,194,202],coars:[143,144],coat:[30,42,44,46],coca:25,coca_cola_co:25,cocacola:25,code3:155,code:[0,1,3,5,7,8,9,12,14,18,30,31,33,36,41,46,50,51,52,53,56,62,72,75,85,86,87,89,91,92,94,101,105,106,107,109,111,117,118,119,123,125,126,128,129,130,131,140,142,150,151,154,155,160,163,165,167,169,171,173,174,178,180,182,183,184,185,186,187,188,190,192,195,200,203,207,210,211],codedivheight:187,codedivwidth:187,coef0:66,coef:[72,83],coef_:[72,83,182,204,205,206],coeff:171,coeffici:[60,72,83,85,86,87,150,163,164,170,171,172,182],coerc:[37,73],cognit:[1,108,128,192],coher:[26,146,159,196],coin:[40,178,207],coinbas:41,coincid:[117,139],coins_clean:40,col1:[73,128],col2:[73,128],col3:73,col:[36,41,49,50,57,60,62,65,119,120,131,163,194,195,203],col_nam:[57,60,65],col_vector:128,col_wrap:[120,194],cola:25,colab:[44,48,50,52,53,140],cold:[115,193],colder:152,coll:[127,196],collabor:[111,121,153,155],collaps:120,collect:[3,6,11,31,34,37,46,55,56,58,64,85,97,108,109,111,113,115,117,121,122,123,127,128,131,133,145,149,152,154,155,160,168,169,182,186,187,188,189,190,192,193,196,208,209,210,211],collector:43,collinear:72,colnam:131,colon:187,coloni:[13,120,194],color:[1,14,18,22,29,30,33,34,35,40,41,43,46,47,55,56,57,58,60,62,73,75,76,85,86,89,92,113,118,119,120,121,122,125,128,143,144,150,158,159,161,163,169,171,172,173,182,183,184,186,188,192,194,200,202,204,205,206,210],color_bgr2grai:76,color_mod:76,color_palett:150,color_threshold:172,colorbar:[46,172,202],colorblind:120,colorjitt:39,colormap:171,colour:143,cols_del:73,colsample_bylevel:[72,167,168],colsample_bynod:[72,167,168],colsample_bytre:[72,167,168],colum:60,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,41,42,43,44,45,48,49,50,51,52,53,54,58,59,61,62,63,64,65,66,70,72,73,74,75,83,85,89,92,109,110,112,119,120,122,126,127,128,129,130,133,140,147,150,155,158,159,163,165,168,172,173,175,176,179,182,183,184,188,194,195,196,204,210],column_diff:14,column_filt:14,column_index:131,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:63,column_to_diff:14,column_to_format:51,column_to_format_uniqu:51,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[127,196],columns_to_plot:24,columntransform:[67,83,204],com:[1,2,3,12,14,18,25,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,62,72,74,75,77,89,92,93,110,113,117,118,119,120,121,123,125,129,130,131,136,137,138,139,142,143,144,146,148,150,155,156,158,159,160,161,162,163,165,167,168,171,172,173,175,176,177,178,179,180,182,183,184,187,188,191,192,194,196,197,198],comapani:62,combin:[34,38,44,53,54,55,56,58,59,60,62,65,67,68,75,83,84,89,90,91,93,108,111,115,117,122,138,140,143,144,146,147,150,152,153,154,155,156,160,163,164,166,167,168,169,172,177,178,179,182,186,187,188,193,204,205,210],combined_imag:38,come:[7,37,42,48,53,57,63,68,70,72,73,75,86,89,107,112,113,115,117,118,121,122,123,125,128,129,140,143,147,150,151,155,158,160,163,165,168,170,172,178,179,182,187,188,189,195,200,202,203],comedi:189,comfort:[7,51,60,126,186],comma:[102,128,177,188,210],command:[52,57,110,121,122,133,141,146,167,186,188,189,196,210],comment:[42,50,53,56,113,121,122,137,173,186,192,209],commerc:158,commerci:113,commiss:[17,23],commit:[0,121],committe:68,commom:[66,75,89],common:[7,31,34,42,44,50,51,52,53,56,60,62,65,68,72,85,101,108,112,113,115,121,122,128,129,131,133,136,137,145,147,148,150,152,153,154,155,158,159,164,167,169,170,171,172,175,184,185,186,187,189,191,195,210],common_el:188,common_norm:[118,194],commonest:52,commonli:[46,60,67,68,75,85,89,108,131,140,147,152,153,154,155,168,170,172,178,187,208],commun:[28,48,76,77,112,114,115,121,123,140,146,151,153,155,164,178,189,198],comp:149,compact:136,compani:[6,113,122,152,156,164,188,189],company_s:62,company_typ:62,companyx:188,compar:[14,18,21,31,34,42,46,52,53,56,57,60,66,67,69,70,71,75,83,86,89,99,101,102,110,117,118,120,123,125,128,130,135,139,143,144,154,155,156,160,161,163,168,172,176,178,183,188,207,210],comparis:[69,71],comparison:[8,14,53,56,101,115,120,122,125,127,154,160,164,169,176,187],compat:[15,30,37,38,61,77,110,128,130,138,141,145,151],compatible_format:209,compel:87,compens:[168,171],compet:164,competit:[140,150,156,164,167,168],compexifi:56,compil:[1,7,29,30,32,35,36,37,41,43,45,47,49,50,52,53,68,76,136,144,147,149,153,189,195,198],compilaton:44,complain:73,complaint:[113,121,192],compleletli:[75,89],complementari:150,complet:[1,8,21,24,35,42,44,45,46,55,56,58,59,62,63,64,68,75,78,84,89,110,115,117,121,123,125,128,129,131,136,139,143,146,147,148,149,150,152,154,156,168,170,171,172,178,180,182,183,184,187,188,189,191,202,209,210],completeness_scor:172,complex32:128,complex:[0,1,31,32,34,54,55,63,64,66,67,69,70,71,72,75,85,87,89,120,123,128,133,140,143,146,147,148,150,151,152,153,154,156,160,166,169,170,171,175,178,187,189,197,198,200,201,208,211],complex_numb:187,complex_number_1:[188,210],complex_number_2:[188,210],complex_number__1:210,complexnumb:187,complexnumberwithconstructor:187,compli:121,complianc:[22,50,52,53,54,121,192],compliant:121,complic:[38,56,91,123,128,147,152,153,154,164,167,170,171,184,198],compon:[36,42,73,84,85,110,111,117,127,135,141,150,152,153,154,155,160,164,167,169,189,190],components_:[171,172,202],compos:[38,39,67,83,91,135,146,152,153,164,172,204],compose_greet_func:187,compose_greet_func_with_closur:187,composit:[42,128,163],compound:[188,195,210],compound_stmt:187,comprehend:55,comprehens:[102,117,131,146,147,154,182],compress:[29,30,31,115,135,140,143],compris:[43,110,153],compromis:[7,126],comput:[3,7,18,22,32,33,34,38,42,44,46,48,51,52,55,56,59,60,64,65,72,77,84,85,86,90,91,93,108,111,112,115,123,125,126,127,129,130,131,135,138,140,142,143,146,147,148,149,151,152,153,154,156,160,161,163,164,168,169,170,172,175,178,179,183,186,188,190,191,192,203,204,205,207,210,211],computation:[34,38,56,62,128,130,140,143,150,166],computationn:34,compute_reciproc:195,compute_target:[9,109],con:[7,52,62,110,121],concat:[22,30,36,38,41,47,60,62,72,139,143,144,145,147,148,150,175,187,188],concat_axi:129,concat_index:129,concaten:[35,36,41,42,61,85,128,129,139,144,147,148,184,188,198,204,205,206,210],concatenated_str:187,concav:139,conceiv:[155,187],concentr:158,concept:[3,18,29,31,33,52,56,65,84,85,86,110,111,123,125,127,128,131,136,143,151,152,153,154,155,156,161,164,168,169,170,176,181,183,186,188,197,210],conceptu:164,concern:[7,45,52,60,64,65,73,83,115,118,121,126,146,152,153,156,164,182,194,207],concis:[42,128,160,178,187,188,210],conclud:[62,65,73,84,111,117,125,154,161,172],conclus:[24,56,112,121,123,182],concret:[156,172,178,202],concurr:[93,109,110],conda:[0,30,37,38,118,149],condens:141,condit:[3,22,31,43,44,50,52,53,54,56,60,102,111,121,128,139,143,147,154,161,163,164,172,182,183,184,187,188,189,209,210],condition2:60,condorcet:160,conduct:[62,109,121,172,192],conf:18,conf_matrix:[58,63],confer:[113,117,129],confid:[33,44,46,53,75,89,120,143,154,155,158,160,164],config:[9,41,56,72,77,145,150,160,163,172,202,203],configur:[10,42,46,50,52,108,110,149,152,153,154,178,184,185,187],confirm:[14,30,50,52,53,65,112,115,121,171,182,192,193],conflict:[102,113,121,131],conform:[122,131,152,154],confus:[7,35,44,56,58,63,66,75,89,92,113,126,128,147,161,163,168,170,175,187],confusingli:171,confusion_matrix:[35,43,44,57,58,63,65,66,75,76,89,92,93,147,176,177,179,183,205,206],confusion_mtx:35,congratul:[109,110,182,183,186,189],conjug:101,conjunct:123,connect:[6,30,32,33,34,36,46,48,50,53,68,91,101,102,111,113,121,125,143,144,146,147,149,154,170,187,188,189,198],connectionist:87,conquer:164,consciou:7,consecut:[14,32,44,55,168],consent:[121,192],consequ:[28,111,121,141,192],conserv:[118,194],conservationstatu:[118,194],consid:[1,3,7,8,11,14,18,22,24,29,38,42,43,44,46,50,51,55,56,59,62,68,70,84,85,102,110,112,113,115,117,122,123,124,125,126,135,136,141,143,145,146,147,150,153,154,155,156,158,160,161,163,164,165,168,169,170,171,172,173,178,183,186,187,188,200,202,209,210],consider:[65,73,110,115,121,123,124,131,164,167,171,192,193],consist:[0,1,3,8,15,30,33,34,35,38,46,50,55,56,58,60,65,97,115,121,126,128,135,143,144,152,153,154,155,156,161,170,172,178,182,184,188,192,193,196,207],consol:131,consolid:84,conspiraci:68,constant:[56,69,71,84,87,128,137,138,139,141,142,143,147,154,164,168,179],constant_initi:148,constantli:123,constitut:147,constrain:[30,141,158],constraint:[30,110,115,128,143,153,154,158,170,172,176,202],construct:[30,56,128,131,135,139,142,143,147,150,152,158,160,163,164,165,168,187,188,210],constructor:[131,143,187,188,209,210],consult:[7,129],consum:[10,20,46,50,107,109,110,112,117,120,121,122,152,154,156,169,173,178,191],consumpt:[117,173,191,195],cont:60,cont_num_var:60,contact:[196,203],contagi:183,contain:[1,3,6,7,12,14,15,17,22,29,31,33,34,38,39,43,44,45,46,50,51,52,53,55,56,57,58,60,63,65,66,68,75,83,89,92,95,100,101,102,109,110,112,115,122,125,126,127,129,131,133,140,142,143,144,146,147,149,152,153,154,158,160,162,163,165,168,171,173,175,178,182,183,184,186,187,188,195,209,210],container:153,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,65,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,151,154,156,158,159,160,161,163,164,165,167,168,173,175,176,177,178,182,183,184,186,187,188,189,195,202,203,204,205,208,210],contest:160,context:[9,28,31,42,56,65,84,109,111,113,115,121,130,131,138,144,146,154,156,158,159,170,171,173,185,187,188,190,192,193,210],contigu:128,contin:[63,64],continu:[0,1,17,18,31,34,35,44,52,53,56,60,61,64,65,68,84,85,86,87,108,109,111,118,120,125,128,129,133,139,144,146,147,153,154,155,156,158,159,163,164,165,170,173,178,183,189,207],contour:[40,169,171,200],contourf:[163,171,205,206],contract:[101,102,110,153,187,188,189],contradictori:154,contrari:[130,131,156],contrarili:187,contrast:[7,56,99,112,128,142,154,163,169,172,198],contribut:[51,54,58,59,63,64,72,111,128,129,130,131,146,147,151,154,160,161,163,187,188,189,190],contributor:151,control:[7,11,30,48,53,62,65,67,68,69,70,71,77,108,112,113,115,121,123,126,128,140,141,143,145,152,153,155,163,164,170,179,188,193,203,210],controlflow:187,conv0:148,conv10:36,conv1:144,conv1_1:138,conv1_2:138,conv1_featur:136,conv1_pad:144,conv1d:[49,140],conv2:36,conv2_1:138,conv2_2:138,conv2_featur:136,conv2d:[29,30,31,32,33,34,35,36,38,39,43,45,77,136,138,139,140,143,144,148],conv2d_1:[29,30,36,38],conv2d_20:45,conv2d_21:45,conv2d_22:45,conv2d_23:45,conv2d_24:45,conv2d_25:45,conv2d_26:45,conv2d_27:45,conv2d_28:45,conv2d_29:45,conv2d_2:[29,30,36,38],conv2d_3:38,conv2d_4:38,conv2d_5:38,conv2d_6:38,conv2d_7:38,conv2d_8:38,conv2d_9:38,conv2d_transpos:[29,30],conv2d_transpose_1:[29,30],conv2dt:30,conv2dtr:29,conv2dtra:30,conv2dtranspos:[29,30,139,144,148],conv3:36,conv3_1:138,conv3_2:138,conv3_3:138,conv3_4:138,conv3d:140,conv4:36,conv4_1:138,conv4_2:138,conv4_3:138,conv4_4:138,conv5:36,conv5_1:138,conv5_2:138,conv5_3:138,conv5_4:138,conv6:36,conv7:36,conv8:36,conv9:36,conv:[36,39,136,143,144,148],conv_block:143,conv_bn:143,conv_bn_relu:143,conv_lay:138,conv_name_bas:144,convei:[113,117,146,193],conveni:[7,51,60,120,125,126,131,144,161,164,172,182,183,187],convent:[45,48,50,75,89,133,140,156,167,187,189],converg:[38,84,118,154,158,171,172,178,202],convers:[1,33,51,86,110,113,126,146,154,156,184],convert:[1,3,7,14,31,38,41,42,44,45,46,48,50,52,54,55,62,63,65,70,83,92,93,95,101,102,109,117,119,121,123,130,131,135,136,137,138,143,145,147,149,168,173,178,182,184,188,203,207,208,210],convert_image_dtyp:137,convert_indic:130,convert_to_tensor:[137,141,143],convex:[119,139,194],convinc:[113,189,198],convlay:39,convnet:[139,140],convolut:[33,45,138,139,143,144,148,178,199,207],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convtranspose2d:[31,39],cooki:158,cool:[31,44,75,83,89,102,106,158,183],cooler:113,cooper:187,coord:[45,128],coordin:[45,48,56,68,120,128,141,148,153,176,178],cope:[43,163,164],copi:[0,1,7,14,22,29,30,31,33,50,51,52,53,54,60,70,73,75,77,89,101,102,126,128,129,130,131,133,147,150,163,172,175,177,184,187,188,189,195,202,210],coppa:121,copyreg:209,copyright:[22,50,52,53,54,101,102,187,188,189],cor:41,cord:[1,121,128],core:[7,9,14,16,29,41,63,64,65,66,73,75,83,89,109,110,121,124,126,129,130,131,133,143,144,147,158,163,164,167,168,171,173,175,182,195],core_mask:171,core_sample_indices_:171,corinna:65,corner:128,coronaviru:[1,155],corpor:[18,121,123],corr:[24,41,53,55,58,59,60,70,73,75,83,89,158,163,182],corr_winedf:53,corrcoef:[18,125],correct:[18,29,36,44,45,46,50,53,55,56,57,58,60,62,65,68,72,75,89,91,105,106,117,119,121,125,127,131,142,143,146,154,159,160,164,168,169,170,172,177,183,187,192,202,208,209,211],correct_label:159,correcti:[58,63],correctli:[6,35,40,44,46,52,53,58,60,62,63,65,75,89,92,112,143,153,159,164,168,172,180,182,188,202],correl:[8,14,55,58,70,73,111,117,118,120,121,123,150,154,158,159,163,164,169,172,173,178,190,192,198,202,204,207],correspond:[0,14,29,33,34,44,45,46,51,52,55,56,68,83,84,87,91,92,101,102,109,121,125,126,128,131,139,144,147,150,153,154,159,160,164,172,179,180,182,187,192,208,209],correspondingli:154,corrmat:[73,158],corrupt:178,corrwith:24,cort:65,cortex:197,cortez:53,cosin:[42,128,164],cosmo:[108,196],cost:[25,32,39,53,58,62,63,69,71,75,84,85,87,89,110,113,115,117,123,127,144,145,148,152,153,156,170,178,179,191,193],cost_funct:[69,71],costli:171,costlier:110,couchbas:196,couchdb:196,could:[0,5,7,10,16,17,20,23,26,29,30,32,34,35,42,44,50,51,52,53,56,60,61,63,64,65,68,70,72,75,89,91,108,110,113,118,120,121,122,125,126,127,128,133,141,143,150,152,153,154,155,156,158,159,160,164,168,170,171,173,175,176,178,182,183,187,188,195,196,198,207,210],couldn:[121,155,192],coulumn:14,count:[1,18,22,31,35,41,42,53,55,58,60,62,63,64,65,66,67,70,73,83,92,112,119,123,125,126,128,142,145,146,150,158,168,173,175,182,194,208,210],count_3g:[75,89],count_4g:[75,89],count_bug:209,count_digit:101,count_occurr:102,count_param:142,count_vector:146,count_vowel:188,count_word_occurr:102,countabl:125,counter:[145,187,209],counteract:87,counterintuit:154,counterpart:147,counti:117,countplot:[35,55,57,58,60,62,63,67,73,75,83,89],countri:[8,12,14,51,117,122,126,128,133,155,160,173,196,211],countries_and_region:14,countries_dataset_url:14,country_region:[14,155],countvector:146,coupl:[33,34,42,73,108,113,133,161,170,196],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,35,42,43,44,49,51,52,54,55,56,58,59,60,61,62,63,64,65,66,67,68,70,74,75,78,80,81,83,89,91,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,131,133,136,138,139,141,143,144,146,147,149,150,154,158,159,160,164,165,167,168,171,172,173,175,176,177,178,182,183,184,186,209],courvil:[29,56,87,142,180],cov:[18,125,172],covari:[18,118,163,172,194],cover:[3,30,55,86,115,120,121,123,126,127,128,129,138,140,159,172,178,185,186,189,193,195],covert:[113,193],covid19:155,covid:[108,117,121,155,156,192],coxboost:164,cp:147,cpickl:136,cpk:110,cpu:[31,34,39,59,64,77,109,110,142,202],cpu_cor:[9,109],cr:[118,194],crabtre:146,craft:[113,164],crash:[146,154,178],crawler:155,crazi:[149,165],creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,45,46,47,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,80,81,85,86,91,92,93,94,95,97,98,99,100,108,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,129,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,182,183,184,186,187,188,189,192,194,195,196,200,202,203,204,205,207,208,209,210,211],create_discrimin:198,create_gan:198,create_gener:198,create_ingredi:175,create_ingredient_df:175,create_mask:144,create_model:[43,141],create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:127,createlink:117,creatinin:110,creatinine_phosphokinas:[9,109,110],creation:[91,109,110,121,123,161,164,203],creativ:[7,117,164,178],creator:[129,136,155,164,173],credenti:110,credit:[26,56,111,121,158,161,192],crest:[55,58,59,83,118,194],crisi:108,crisp:115,criteria:[78,80,81,94,97,98,99,100,122,156,163,172,202],criterion:[31,39,56,62,63,64,87,121,161,163,172,180,208],critic:[38,60,86,110,111,113,118,123,146,152,153,154,155,156,172,178,181,194],crop:[31,36,43,136,182,183,184],crop_and_res:148,crop_height:136,crop_shap:148,crop_siz:[36,148],crop_to_bounding_box:[36,136],crop_width:136,cross:[22,38,55,62,70,72,75,87,89,115,129,130,139,143,146,150,154,160,169,171,176],cross_color:171,cross_entropi:[34,142],cross_val_predict:[75,83,89],cross_val_scor:[56,60,62,65,70,72,75,83,89,92,93,146,163,176,177],cross_valid:62,cross_validated_roc_auc:65,crossentropi:[52,91],crosstab:22,crowd:[55,119,158,160,194],crucial:[45,62,86,110,141,146,153,163,170],cruel:158,cruis:189,crypto:41,cs231n:[136,143],cs:[113,136,143,163,169,209],csci:209,csr:83,csr_matrix:83,css:[130,131,173,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],csse:[14,128,155],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,37,41,42,45,47,51,52,53,54,55,56,57,58,59,60,62,65,66,67,68,70,72,73,74,75,83,85,89,91,92,93,95,118,119,120,122,128,131,146,147,150,155,158,159,160,161,163,165,167,168,173,175,176,177,179,182,183,184,188,194,202,204,205,206,208],ct:[9,109,111,140,204],ctc:87,cto:152,cu3tc99fx:65,cube:[188,210],cuda:[31,34,39],cuisin:[74,174,177,186],cuisines_df:[74,176,177],cuisines_feature_df:[74,176,177],cuisines_label_df:[74,176,177],culliton:146,cultur:[111,113,146,192],cumprod:139,cumsum:[172,202],cumul:[141,165,182,187],cun:197,cup:149,cur_count:142,cur_group:143,cur_layer_idx:143,curat:[36,111,121,156,190],curb:87,cure:58,curinstr:187,curl:[12,25],curli:[188,189,210],curr_scor:61,currenc:41,current:[3,14,16,34,37,42,45,46,57,60,62,65,84,101,102,111,113,123,128,140,141,142,144,145,164,167,168,169,176,184,187,203,209],current_directori:187,current_numb:187,current_posit:37,curriculum:[80,108,175,182,186],curtain:43,curv:[14,50,52,53,56,60,68,72,84,86,118,150,158,163,164,169,171,178,182,207],cusin:175,custom:[3,6,16,23,45,48,109,111,113,115,117,121,122,129,139,140,152,153,156,158,160,161,163,168,173,178,183,187,188,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],custom_callback:44,custom_exception_is_caught:187,custom_loss:139,customer_for:73,cut:[43,56,163,171,172],cut_df:43,cutler:163,cutoff:145,cutoff_dist:171,cv2:[31,43,45,76,139],cv:[56,58,59,60,62,63,64,66,67,70,72,75,83,89,92,93,146,163,166,171],cv_cb:60,cv_fold:62,cv_gbc0:62,cv_gbc:62,cv_lgbm:60,cv_results_:[62,93],cv_ridg:72,cv_score:[62,70,92],cv_xgb:60,cvd:110,cvtcolor:76,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:65,cycl:[50,59,64,73,110,115,121,145,150,153,154,167],cycler:150,cylind:173,d1:[34,73],d3:196,d6b2b1:73,d8ca7e:38,d:[1,14,17,25,30,32,36,37,38,39,41,43,44,53,56,57,60,65,69,71,72,73,75,89,91,92,102,112,117,118,121,125,126,128,129,130,131,135,141,142,143,144,147,149,153,154,158,159,161,163,164,169,171,172,179,184,186,188,191,193,195,196,198,200,202,203,209,210],d_:139,d_g_z1:39,d_g_z2:39,d_gradient:142,d_i:128,d_layer_d_input:91,d_loss:[38,39,142],d_loss_metr:38,d_loss_tru:142,d_model:148,d_optim:38,d_predict:163,d_solver:142,d_total_error:142,d_x:39,da:32,dai:[8,14,42,43,49,54,55,56,58,73,110,111,113,122,150,154,155,160,168,178,182,189,190,203,211],daili:[1,8,14,41,111,121,146,150,155,178,189,190,207],daisi:[33,187],damag:[101,102,117,187,188,189],damien:135,damn:154,danb:167,danceabl:[157,158,159],dancehal:[158,159],dandelion:33,danger:[117,170],dangereus:117,daniil:154,danmaku:179,dark:[121,156,192,203],darker:[40,56,111],darkgreen:[75,89],darkgrid:60,dasani:[158,182,183,184],dash:[86,109,171],dashboard:[108,111,152],dat:[55,83],data2:[56,131],data:[4,5,6,13,16,17,19,21,22,26,27,30,36,37,40,42,47,56,68,74,80,81,84,86,87,91,93,95,97,98,99,100,101,110,117,119,120,124,132,135,136,140,141,142,143,144,145,146,147,149,151,153,157,159,160,161,163,164,165,166,167,169,170,171,172,174,179,182,185,186,187,198,199,201,202,205,206,209],data_augment:33,data_batch_1:136,data_batch_2:136,data_batch_3:136,data_batch_4:136,data_batch_5:136,data_batch_:136,data_df:44,data_dir:[33,34,136,138,145,149],data_dmatrix:168,data_fil:[136,145,149],data_format:148,data_gener:45,data_i:[69,71],data_loc:136,data_path:[38,49,75,89],data_prepar:49,data_sci:3,data_util:31,dataarrai:128,databas:[6,43,73,108,122,123,127,129,134,149,152,173,191,192,199],databrick:[108,110],dataconversionwarn:63,datafi:121,dataflair:190,dataflow:139,datafram:[1,8,14,17,22,23,24,29,30,31,38,41,43,44,45,49,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,75,83,85,89,93,95,118,119,129,130,133,147,150,158,159,167,168,171,172,173,175,176,177,182,183,184,194,203],datagen:[32,35,45],datajameson:34,datalira:43,dataload:[34,39],datanul:53,datapoint:[7,73,97,144,158,159,168,175],dataset991:63,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,35,38,39,41,42,44,45,49,54,55,56,58,59,60,62,63,64,66,67,68,69,70,71,72,73,75,76,78,80,83,85,89,93,95,97,107,111,112,119,120,121,122,123,125,126,127,128,135,136,139,140,142,146,147,149,150,152,154,156,157,158,159,160,161,164,165,167,169,170,171,176,177,178,180,182,183,184,190,192,198,200,203,207],dataset_991:63,dataset_path:[31,43],dataset_test:47,dataset_tot:47,dataset_train:47,dataset_url:33,datasetdict:42,datasets_nam:[29,31,43],datasets_respons:[29,31,43],datasets_save_path:[29,31,43],datasets_url:[29,31,43],datast:135,datastor:196,datastructur:188,datatyp:[7,53],date:[1,14,37,41,49,51,55,58,63,73,110,117,126,130,131,146,150,152,155,156,173,182,183,187,209],date_column:[41,49],date_rang:[14,41,49,130,131],date_split:37,date_train:[41,49],dateset:30,datetim:[1,14,41,44,73,130,173,182],datetime64:[41,150],datetimeindex:[41,130,150,182,184],datetimeindexopsmixin:130,datetimelik:130,daum:41,daunt:154,david:[102,142,153,156,171],day_of_year:182,dayofyear:182,db4o:196,db:[12,69,71,84,90,108,111,179,190,196,204,205],dbscan2:171,dbscan:158,dbscan_plot:171,dbscandbscan:171,dcab:[188,210],dd:[42,184],de:[44,48,89,117,121,173,192],dead:187,deadlin:111,deal:[48,55,56,58,62,63,65,73,84,102,117,123,131,146,152,153,155,163,164,170,172,173,178,187,188,189,202,207],dealt:7,death:[1,8,14,22,110,117,147,155],death_ev:[9,109,110],deaths_dataset_url:14,deaths_df:14,deberta:42,debertav2forsequenceclassif:42,deborah:152,debt:156,debug:[0,37,46,91,109,173,187,189],debug_log:[9,109],dec:117,decad:[123,140,148,152,178],decai:[42,142,170,178,208],deceiv:[38,117,121,192],decemb:[55,58,175,182,191],decent:[45,69,71,136,154,165],decept:121,decid:[18,32,37,38,60,72,73,112,117,119,122,123,129,147,150,154,158,160,163,164,168,176,177],decim:[101,188,189,210,211],decion:63,decis:[3,11,52,53,55,58,59,60,62,65,66,67,68,75,86,87,89,110,111,113,115,119,121,122,123,140,141,146,147,152,154,155,156,159,160,161,164,167,168,169,172,176,177,178,190,192,200,202,207,208],decision_funct:[169,200],decisiontreeclassifi:[55,63,75,89,163,165,172,176,202],decisiontreeclassifierdecisiontreeclassifi:63,decisiontreeregressor:[56,64,163,165],decisiontreeregressordecisiontreeregressor:64,declar:[138,145,187,188,210],declin:[1,14,53,117,120],decod:[29,30,31,38,135,144,145,149],decoded_data:29,decoded_img:[29,30],decoder_b1:135,decoder_b2:135,decoder_h1:135,decoder_h2:135,decompos:101,decomposit:[73,172,202],decompress:31,deconstruct:111,deconv:148,deconvolut:[135,144],decor:[30,129,203],decorate_with_div:[187,209],decorate_with_p:[187,209],decreas:[34,52,53,55,56,58,60,65,70,75,89,110,120,136,143,154,160,161,163,164,170,172,183,198],decres:165,dedic:[60,110],deduc:14,deed:146,deeeeeeep:77,deem:72,deep:[16,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,47,49,52,53,56,68,83,87,110,125,128,129,130,135,136,137,138,139,142,143,144,145,146,147,148,149,151,154,155,156,170,178,180,186,197,205,206,208],deepcopi:31,deepdream:[77,136],deepen:[60,143,183,186],deeper:[7,13,17,19,53,56,85,110,115,125,143,147,154,161,169,170,175,176,182,193,200],deepfunnel:31,deeplabv3:144,deeplearn:178,deeplearningbook:135,deepli:[123,146,152,197],deeplizard:[136,138],deepmind:178,deer:136,def:[1,3,14,18,22,24,29,30,31,34,35,36,37,38,39,41,42,43,44,45,46,48,49,52,53,55,56,57,58,59,60,61,62,63,64,66,69,70,71,72,75,76,77,83,84,85,89,90,91,93,101,102,103,129,130,135,136,137,138,139,141,142,143,144,145,148,149,150,155,160,163,165,169,171,173,175,177,179,188,195,198,200,204,205,206,209,211],default_image_url:77,default_target_attribut:63,defe:38,defect:[178,207],defenestr:[187,209],defin:[0,1,3,14,22,30,31,32,33,38,44,45,50,52,53,56,57,60,63,65,68,69,71,72,84,91,92,101,111,112,113,115,118,121,124,125,127,128,129,136,138,139,141,143,145,152,153,154,155,156,158,159,160,163,164,165,168,169,170,171,172,173,176,182,187,188,189,193,195,203,204,210],definit:[33,46,56,66,72,111,123,125,127,128,130,146,148,153,161,172,178,189,207,209],deforest:111,deform:143,degrad:[31,94,111,143,152,155,171,190],degre:[3,35,39,54,56,65,66,67,69,71,123,125,133,141,163,182,192,204],del:[93,131,141,187],delai:[141,150],delet:[50,62,73,109,110,121,142,188,210],deliber:[186,189],delicassen:168,delicassesn:168,delici:[119,174,175],delimit:[31,41,202],delin:40,deliv:[7,62,108,113,123,126,146,152,153,187],deliveri:[108,111,153,191],dell:113,delta:[52,61,65,73,87,139,141,187],deltamean:52,deltastd:52,deltatheta:141,delv:[84,86,146],demand:[7,55,58,108,110,120,150,152],demarc:159,demis:117,demo1:169,demo2:169,demo:[136,137,143,144,148,153,155,159,163,164,169,171,175,182,183],democrat:[111,121],demoforest:163,demograph:62,demographi:155,demonstr:[3,8,18,33,46,50,52,53,65,68,78,85,86,118,125,126,128,141,153,158,161,163,182,184,186,187,188,195],demostr:32,dendogram:172,dendrocygna:[118,194],dendrogram:172,deni:[56,121],denois:[135,139],denoise_model:139,denomin:[7,101],denorm:36,denot:[60,84,125,139,141,161,168,187,188,210],denounc:113,dens:[29,30,33,35,37,38,41,42,43,44,45,46,47,48,49,50,52,53,68,76,136,139,141,142,143,147,148,149,158,159,172,198,208],dense_1:[38,48],dense_2:48,dense_3:48,dense_4:45,dense_5:45,dense_block:143,densenet121:144,densenet169:144,densenet201:144,densenet264:144,densiti:[4,53,125,139,158,160,163],deon:[28,121,192],deott:32,depart:[120,121,146,164,184,192],depend:[0,7,12,14,18,25,29,30,33,40,42,43,51,53,56,58,63,75,85,86,89,107,108,109,110,111,112,113,114,115,117,118,119,120,122,123,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,207,208,209],depict:[38,56,136,168],deploi:[5,10,20,46,48,76,77,100,107,108,109,110,121,140,143,153,155],deploy:[9,33,111,115,178,191,203,207],deploy_configur:[9,109],deprec:[37,38,68,77,92,128,129,171,172,202],deprecate_nonkeyword_argu:129,deprecation_mask:130,deprecationwarn:[143,172,202],deprocess:137,deprocess_img:142,depth:[7,55,56,60,62,63,64,75,89,113,117,139,143,161,163,164,165,168,172,187,202],depth_multipli:143,depthwis:[143,167,168],depthwise_separable_conv:143,depthwiseconv2d:143,dequ:37,dereferenc:128,deriv:[14,16,34,56,60,63,69,71,73,85,91,111,120,128,131,143,146,150,154,158,159,168,169,175,187,189,204,209],derivedclassnam:187,desat:150,desc:31,descend:[172,187],descent:[34,50,55,60,75,87,89,90,91,139,143,154,165,168,169,176,180,181,182,200,204,205,208],descr:[63,64],descreas:62,describ:[1,2,9,11,21,28,41,42,44,50,52,53,55,56,57,58,59,62,63,64,65,67,70,73,75,83,85,89,91,92,97,109,112,113,118,121,125,127,128,129,133,142,143,147,148,150,152,153,154,158,164,167,168,169,172,187,196,198,202],descript:[0,9,28,56,63,97,109,110,128,129,139,145,154,173,178,187,188,189,193,207,208],description_vers:63,desert:154,deserv:125,design:[7,12,18,31,32,41,44,48,60,84,87,100,110,111,113,117,121,122,123,126,128,140,141,143,150,152,153,154,155,156,160,168,169,176,187,188,189,192,210],designated_hitt:125,desir:[35,45,53,73,101,115,121,123,128,141,147,153,178,187],desktop:[153,189],despin:[120,194],despit:[56,143,146,156],dest:150,destin:[128,152],detach:[34,39],detail:[7,11,14,16,26,29,33,42,46,56,60,63,73,75,77,80,84,89,94,110,113,119,122,125,127,129,144,153,154,155,161,164,165,167,170,172,176,178,179,182,187,189,195,202,207,211],detect:[48,51,52,55,56,65,66,67,70,111,121,126,129,140,146,147,152,154,158,163,170,178,187,190,207,209],detector:[40,178,207],detergents_pap:168,deterior:167,determ:32,determin:[22,32,40,56,57,60,65,73,75,84,86,89,101,109,110,115,123,125,128,131,133,141,143,149,153,154,156,158,159,161,164,169,170,175,178,182,183,185,186,187,188,193,195,196,200,207,208],determinist:[121,141,150],dev:[52,53,125,130,171,195],devast:120,devdoc:[172,202],develop:[7,8,33,44,50,52,53,60,62,65,68,107,108,109,110,111,121,123,126,129,131,140,146,148,151,152,153,154,155,156,163,164,168,170,175,178,186,189,190,192,198,203,211],devi:[69,71],devianc:[62,165],deviat:[7,18,29,31,36,52,53,65,68,70,83,86,87,112,128,139,152,161,178],devic:[15,31,33,34,39,42,60,75,89,123,127,143,152,154,155,189],devicedataload:34,devid:62,devis:84,devot:151,dexamethason:1,dexter:38,deza:186,df1:[22,129,130,131,195],df2:[22,57,129,131,195],df3:[129,195],df4:129,df5:129,df6:129,df7:129,df:[1,9,14,17,18,22,23,24,31,41,42,43,45,49,53,54,56,57,59,65,83,84,109,119,125,129,130,131,150,155,158,159,163,168,175,179,182,194,195,203],df____:24,df_attr:31,df_boxplot:24,df_corr:59,df_corr_i:24,df_corr_sex_with_i:24,df_desc:59,df_diff:14,df_filter:14,df_heat:59,df_hist:59,df_mean:24,df_null:59,df_pairplot:59,df_plot:24,df_rolling_mean:14,df_scale:49,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,41,49,68],df_train_scal:49,df_valid:68,df_y:49,dfa:131,dfd:130,dfl:130,dfm:1,dfmt:1,dfmtp:1,dfrac:165,dfx:84,dfy:84,dg77ysplly4qtmh7trbd03p9nl1g:65,dg:77,dhamaa:127,dhamaiusa4o:127,dhamaiusa4ohaaaaaaaaaa:127,dhariw:139,di:[22,65,110,121,188,192],diabet:[1,9,109,110,125,192],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,48,50,146],diagnosi:[121,192],diagnost:30,diagnoz:207,diagon:[18,125,128,172],diagram:[1,5,8,18,56,65,115,124,125,136,152,159,166,167,168,169,171,182,192,193],diamond:187,dibia:29,dice:[87,125,130,131],dickinson:[111,190],dict1:102,dict2:102,dict3:102,dict4:102,dict5:102,dict6:102,dict7:102,dict:[1,3,22,43,77,92,118,141,143,148,150,171,172,188,189,194,202,208,210],dict_1:209,dict_2:209,dictat:[7,126,140,146],dictionari:[17,23,42,45,83,128,131,163,187,195,209],dictionary_for_string_kei:[188,210],dictionary_via_constructor:[188,210],dictionary_via_express:[188,210],did:[7,16,18,27,33,44,50,56,58,59,60,61,66,67,73,75,78,83,89,113,117,118,121,125,126,154,158,159,164,168,171,172,173,176,183,184,188,189,202],didn:[48,53,62,64,66,75,89,130,131],die:147,diego:142,diet:110,dieu:[44,48,89],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,35,42,43,44,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,68,69,71,72,73,75,81,83,84,85,86,87,89,91,93,101,107,108,109,110,111,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,135,136,139,140,141,143,144,145,146,147,148,150,152,153,154,155,156,157,158,159,160,161,163,164,166,168,169,170,171,172,175,176,177,178,179,182,183,184,185,186,187,188,189,195,196,198,201,207,209,210,211],differenti:[21,84,108,135,143,154,164,168,169],differnt:61,difficult:[30,32,33,68,125,147,154,163,164,169,172,187,202],difficulti:[56,123,149,153,164],diffus:36,diffusion_angl:36,diffusion_models_tutori:139,diffusion_schedul:36,diffusion_step:36,diffusion_tim:36,diffusionmodel:36,difuss:139,dig:[13,19,94,118,175,176,182,184,194],digest:172,digit:[16,29,31,32,42,46,52,76,91,101,111,117,121,135,137,152,155,171,172,178,188,190,192,202,208],digitdata:52,dilat:[143,144],dilation_r:[143,144],dilemma:121,dim:[34,135,138,139,142,208],dim_z:31,dimens:[7,29,33,34,48,53,65,73,118,126,128,135,139,140,142,143,152,169,172,207,208],dimension:[29,30,34,44,46,48,50,66,67,92,131,135,143,158,164,169,172,202],dimensions:34,dimenss:92,diment:[69,71,73],dimi:31,diminish:[53,156],dimx:31,dine:146,dioxid:53,dip:70,dir:[62,171,187],dir_nam:141,direct:[7,46,85,93,113,130,131,135,141,145,147,156,165,172,182],directli:[1,7,14,30,31,42,46,68,72,87,108,109,110,113,126,127,128,131,137,141,143,146,147,150,152,154,161,163,187,188,198,210],directori:[33,34,38,39,41,43,57,75,85,89,110,112,126,127,138,141,145,173,187,189],directory_nam:141,dirnam:[31,57,62,77],dirpath:31,dirti:[53,126],disabl:[118,120,163,187,188,194,210],disable_eager_execut:138,disadvantag:[31,55,169],disappear:[143,183],disast:[108,146],disaster_tweets_test:146,disaster_tweets_train:146,disc:173,disc_num_var:60,discard:[52,131,168,188,210],discern:158,disciplin:[3,123],disclosur:121,discount:[37,141,146],discourag:128,discov:[3,4,13,19,21,38,52,112,115,117,118,120,121,122,123,124,126,134,154,157,158,176,183,184,185,186,193],discover:152,discoveri:[42,113,122],discrep:[45,73,87],discret:[56,60,65,87,125,128,139,141,163,164,172,178],discrimin:[121,142,156,169,188,198,200],discriminator_loss:142,discriminator_opt:38,discriminator_verdict:38,discuss:[1,3,4,7,11,18,28,53,56,85,110,113,121,123,125,126,128,129,151,152,154,156,158,160,167,168,179,186,187,195],diseas:[8,14,110,111,147,155,175,183,186,207],dish:175,disk:[12,14,25,33,110,153,171],dislik:113,disord:120,dispar:[84,87],dispers:[139,143,172,202],displai:[3,7,14,29,30,34,39,43,44,45,46,48,50,52,53,54,55,58,61,63,64,65,66,69,70,71,75,85,89,91,118,119,120,123,125,129,130,131,133,135,136,137,141,143,144,162,163,169,171,172,173,175,179,180,182,183,184,186,187,196],display_commandlin:141,display_from_datafram:45,display_grid:45,display_imag:[45,66],display_image_from_fil:45,display_list:144,display_stat:43,display_step:135,display_t:188,displaycallback:144,displi:51,disregard:[84,135],dissatisfact:123,dissemin:121,dissimilar:[56,87],dissoci:164,dist:60,distanc:[65,93,139,158,159,169,171,172,177,180,182,202],distance_down:141,distance_left:141,distance_mat:172,distance_right:141,distance_up:141,distant:[159,169],distinct:[57,60,73,141,156,161,171,175],distinctli:117,distinguish:[7,38,56,123,128,146,169,198,200],distort:118,distplot:[60,62],distract:167,distribut:[3,7,22,30,31,50,52,53,54,55,56,61,62,67,70,73,75,86,87,89,92,101,102,111,117,121,123,139,141,142,143,148,149,150,152,153,154,156,160,163,164,168,169,170,171,172,175,178,180,183,184,187,188,189,198,208],district:184,div:[3,22,125,129,130,131,162,173,175,182,184,187,209],dive:[7,16,56,110,111,120,129,154,156,178,179,182,194,207],diverg:[52,53,154,159,180],diverging_palett:41,divers:[111,121,146,147,152,153,157,174,178,207],divid:[14,25,31,38,44,46,52,56,65,73,75,89,91,101,118,121,123,125,127,128,133,140,143,152,154,158,159,160,161,163,173,176,177,178,183,188,192,196,207,210],divis:[14,52,101,128,154,169,187,188,189,195,209,210,211],divisible_by_2:128,divisor:[43,101],divorc:[73,117],dl:[34,91,163,207],dll:209,dm:[65,84,115,179],dmatrix:[72,168],dmitri:[14,108,182],dn:172,dna:111,dnn:140,do_deepdream:77,do_glob:187,do_loc:187,do_nonloc:187,do_not_convert:30,do_noth:187,doc:[26,44,46,48,68,76,77,80,99,109,113,119,120,127,131,172,176,187,188,196],docker:[37,57,153],docloud:209,docstr:[83,91,130,187],doctyp:[3,15,173],document:[3,5,7,10,16,25,26,41,42,44,55,63,75,78,80,89,101,102,104,108,109,110,111,118,120,123,128,129,139,146,152,155,156,158,159,160,168,172,176,186,188,189,196,210],documentdb:196,docutil:[129,130,131,182],docx:41,doe:[1,3,5,7,14,16,17,30,31,32,33,34,46,48,52,53,55,56,58,60,63,64,65,66,72,75,83,84,86,89,91,92,100,101,102,111,113,117,120,121,123,125,126,127,128,129,130,131,143,144,147,148,150,154,158,163,164,165,167,168,171,172,173,175,176,178,182,183,184,187,188,189,196,202,211],doesn:[7,26,31,32,34,43,55,58,62,63,64,70,72,75,84,85,89,91,102,113,118,122,128,131,150,152,163,165,168,177,187,188,209,210],doesnt:60,dog:[15,129,136,143,178,187,198,209],dogwithsharedtrick:187,dogwithtrick:187,doi:14,dollar:[56,83,148],domain:[7,11,16,55,60,62,86,110,111,123,124,142,146,147,154,159,184,192],domin:[75,89,158,167,211],domino:196,don:[0,7,31,32,35,44,46,48,53,55,56,58,59,62,63,64,65,66,75,89,108,109,110,111,112,113,115,130,131,133,135,140,150,152,154,167,170,171,172,173,178,183,187,188,189,190,209,210],donald:[101,189],done:[1,3,7,14,25,37,38,42,44,48,55,56,58,60,62,67,73,91,109,110,117,119,127,128,129,133,135,136,147,150,153,158,161,164,168,170,171,172,173,179,182,187,188,189,196,203,210],donli:158,donn:22,dont:149,donut:[27,117],door:[63,64,178],dopmzxl:77,dosag:[1,8],dot:[18,30,56,69,71,85,90,91,120,160,163,164,171,179,186,187,204,205,209],doubl:[32,56,127,158,188,189,210,211],double_quote_str:[188,210],doubled_vector:[188,210],doubt:[109,110,156,164],doug:195,doughnut:119,douyupccli:41,down:[14,26,30,42,50,55,56,57,58,65,75,76,84,89,91,93,101,110,113,115,141,143,146,152,153,163,164,170,177,178,179,188,193,207,210],down_shifted_imag:93,down_stack:144,downblock:36,download:[1,3,12,25,38,39,41,63,64,75,77,89,91,110,123,127,128,136,137,139,142,143,144,145,149,171,173,176,184,187,189],download_fil:[9,109,138],download_model_from_web:77,download_read_data:[75,89],download_root:171,download_url:34,downsampl:[29,30,36,139,143,144],downsid:[63,64,150],downsiz:137,downstream:152,downward:[117,139],dozen:[32,68,110,155],dp0dtheta:141,dp1dtheta:141,dp2dtheta:141,dp3dtheta:141,dp_dtheta:141,dpi:[159,171],dprobability0_dweight:141,dprobability1_dweight:141,dprobability2_dweight:141,dprobability3_dweight:141,dqn:141,dqnagent:37,drag:[7,110,119],drain:178,dramat:[42,113,167],drastic:[60,143,154,172,202],draw:[1,3,8,14,18,31,45,55,56,58,65,66,67,73,75,83,84,89,118,119,120,123,125,135,141,160,164,169,173,178,182,186],drawback:[147,159,188],drawing_mod:76,drawn:[55,117,125,154,160,198],dream:137,dream_img:137,dream_model:137,dreeeeeeeeeam:77,dress:[30,44,46],drewconwai:192,drift:155,drive:[50,52,53,111,113,115,121,140,144,148,152,156,173,178],driven:[0,111,121,123,141,147,152,155,190],driver:[17,23,121,178],drop:[14,31,32,33,41,43,46,51,52,53,54,55,56,57,58,59,60,62,63,65,67,68,70,73,74,75,83,89,110,119,123,126,128,131,145,147,150,160,161,165,167,168,170,171,173,175,176,177,179,182,183,184],drop_column:14,drop_dupl:[45,51,126],drop_first:147,drop_remaind:[36,49,139],drope:141,dropna:[7,41,51,60,72,73,126,129,131,150,165,167,173,182,183,195],dropnan:41,dropoff:[111,190],dropout1:143,dropout2:143,dropout:[30,34,35,38,43,47,49,91,135,143,144,149,154,198,208],dropout_1:38,dropout_2:38,dropout_3:38,dropout_4:38,dropout_r:143,dropoutlambda:52,drug:111,ds:[37,41,42,49,73],ds_train:139,ds_wordcloud:3,dset:39,dsse:65,dt:[41,65,128,182],dt_custom:73,dtest:72,dtl8folder:41,dtrain:[62,72,168],dtrain_predict:62,dtrain_predprob:62,dtree:163,dtyp:57,dtype:[7,14,22,24,31,34,37,38,41,48,53,54,57,62,63,64,65,66,67,70,72,73,74,76,83,92,119,126,128,129,130,131,137,139,141,143,144,145,148,150,158,161,163,168,171,173,175,176,179,182,184,195],dual:[75,89,117],dual_sim:[75,89],duc:143,duca:196,duck:[101,118,194],due:[14,18,56,60,111,120,128,140,141,143,146,147,148,154,155,160,161,163,164,165,169,170,172,190,202],duel:117,dummi:[22,72,91,150,187],dummy_inst:187,dummyclass:187,dump:[9,93,109,158,173,209],dumpstack:41,dun:149,duplic:[41,45,129,130,131,133,152,160,178,187,196],duplicate_kei:102,durabl:152,durat:[39,111,173,190],duration_histori:141,dure:[11,14,33,38,42,43,44,46,48,55,56,58,60,63,65,66,67,68,91,101,110,113,120,128,133,140,143,144,146,150,152,154,155,160,161,167,168,169,170,178,184,187,188,207,208,209],dutch:[189,211],dw:[69,71,90,179,204,205],dx:[31,125,139],dy:31,dy_pr:91,dynam:[123,150,153,187,189,209],dynamodb:196,dynload:187,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:65,e2ab30:38,e5ni7of:65,e87ckhmr4qc:65,e:[1,3,8,14,16,34,36,37,38,42,43,47,55,56,57,58,60,61,65,69,70,71,73,75,86,89,91,101,102,110,111,121,122,123,125,126,128,129,130,131,135,139,141,142,143,147,148,149,152,158,160,164,165,170,171,172,176,178,179,182,183,184,187,188,190,192,195,198,202,204,207,208,209,210,211],e_1:160,e_:[139,163],e_n:160,e_x:160,e_z:163,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,34,37,38,39,42,43,44,45,46,48,52,53,55,56,57,58,59,60,62,63,64,65,66,67,68,70,73,75,83,84,85,86,87,89,91,92,93,99,101,102,110,111,113,115,117,120,121,122,123,125,126,127,128,129,133,139,140,141,142,143,144,146,147,148,150,152,153,154,155,158,159,160,161,163,164,166,167,168,169,170,171,172,177,178,179,180,182,183,184,187,188,189,190,195,196,200,202,203,204,208,209,210],eagerli:170,earli:[44,56,62,63,65,109,121,149,163,167,168,173,178],earlier:[7,29,33,42,44,51,56,60,91,100,109,110,111,126,131,142,147,150,159,164,171,174,175,179,183,188],early_stop:[44,167],early_stopping_round:[72,168],earlystop:[43,44,49],earn:122,earth:[65,111,187,190,211],earthquak:146,eas:[110,126,186],easi:[0,7,31,38,44,45,48,51,52,55,56,58,65,110,113,120,121,122,125,126,128,131,140,150,153,154,155,160,163,169,170,172,179,183,189,195,196,202,203,211],easier:[1,31,44,46,56,59,64,81,91,110,111,113,121,122,126,137,143,147,150,154,170,172,184,187,188,191,209,210],easiest:[14,44,125,128,154,172,202],easili:[1,7,26,40,43,50,51,52,55,56,63,64,65,67,75,89,113,117,120,126,128,129,131,152,153,154,155,156,161,163,171,183,203,205,206],eastwood:101,eat:[146,184,189,211],ebook:121,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[118,153,154,187],echo_funct:187,ecolog:117,econom:[56,86,111,121,150,190,192],econometr:56,economi:7,ecosystem:[111,173],ed:1,eda:[17,109,112,135],ede9d:38,edg:[15,33,110,127,144,147,149,172,188,196],edgecolor:[56,92,169,171,172,200,202],edibl:[119,194],edibleclass:[119,194],edit:[3,118,119,120,129,186,203],editor:[23,189,203,211],edna:173,edu:[64,102,113,136,143,149,163,169,193,209],educ:[11,56,57,73,111,113,171,190],education_level:62,education_num:57,effect:[7,35,43,50,55,56,58,59,60,62,63,68,83,84,110,117,121,123,128,129,133,143,144,146,147,148,152,154,155,156,158,160,164,168,169,170,172,178,182,187,188,189,191,192,198,207,210],effectiviolog:113,effects_echo_path:187,effects_fold:187,effects_init_path:187,effects_reverse_path:187,effici:[30,32,33,60,65,108,110,115,123,128,129,135,140,143,146,150,153,154,160,163,168,187,189,191,193],effort:[110,111,113,122,146,154,172,190],eg8djywdmyg:175,eg:[3,7,125,182],egg:[187,188,209,210],ei:61,eigenvalu:172,eigenvector:172,eight:[93,150],either:[3,7,14,22,29,40,44,48,50,52,53,54,55,58,63,109,113,125,128,129,130,131,140,144,146,148,150,152,154,155,156,158,161,163,170,176,178,187,188,189,207],ejection_fract:[9,109,110],ejtdl1tzr2vxnvlm4pwxei:65,ekf6iw6gti6:65,el:[62,156],elabor:8,elaps:139,elast:164,elasticnet:[72,170,182],elasticsearch:196,elbow:[73,171],elbow_m:73,elec_data:[55,58],elec_df:[55,58],electr:[55,58,60],electrocadriogram:29,electrocardiogram:29,electron:[75,89,110,146],eleg:189,elem:[188,210],element:[7,13,14,18,19,29,34,43,48,56,75,89,91,101,118,122,125,127,129,130,131,139,142,143,145,146,156,160,163,186,187,189,195,203,208,209,210],element_spec:38,elementwis:[34,91],elev:[40,92,169,172,200,202],elevation_map:40,elif:[37,39,43,93,102,130,131,138,141,148,187,188,209],elimin:[28,42,72,111,121,188,190],elkan:171,ell:[56,160,163],ellips:170,ellipsi:128,ellipsoid:[172,202],els:[1,7,24,31,34,36,37,39,41,43,46,56,57,60,61,63,64,76,90,91,93,102,103,108,128,129,130,133,136,137,138,139,141,142,143,144,145,148,149,171,179,187,188,189,205,209],elsevi:53,elu:147,em:172,ema:36,ema_network:36,ema_weight:36,email:[2,42,112,113,122,146,175,178,203,207],email_df:2,emam:156,emb:[65,125,139,149,153,162,169,175,179,180,184,187],embark:[22,86,165],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,33,36,135,139,140,143,145,148,149,153,155,187],embed_dim:143,embedding_dim:[36,139],embedding_lookup:145,embedding_lookup_1:145,embedding_mat:145,embedding_max_frequ:36,embedding_min_frequ:36,embedding_output:145,embedding_s:[145,149],emblemat:87,embodi:149,embrac:[156,178,189],emerg:[123,173],emerson:113,emili:[111,190],emiss:65,emit:141,emot:[121,128,129,146,193],empath:113,emphas:[87,111,153,158],emphasi:60,empir:[56,123,164],emploi:[32,38,55,60,65,84,87,93,110,146,163,178],employ:[62,125],employe:[6,56,62,121,187,195,209],empow:[86,146,151],empti:[3,7,14,24,31,44,55,59,77,101,102,122,126,128,130,135,171,182,187,188,195,203,210],empty_tupl:188,emrebulbul23:37,emreustundag:198,emul:196,en:[3,15,30,118,121,156,173,188,192,194,196],enabl:[0,7,33,46,65,85,109,110,117,126,131,143,146,148,152,153,160,163,172,173,175,178,191,207],enable_categor:[72,167,168],enable_early_stop:[9,109],encapsul:153,encircl:189,enclos:[187,188,209,210],enclosedporch:60,encod:[9,22,29,30,31,52,53,55,58,60,63,67,70,73,75,89,109,135,136,144,147,149,154,159,165,178,182,207],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:135,encoder_b2:135,encoder_h1:135,encoder_h2:135,encoding_dim:30,encompass:[7,87,147],encount:[7,35,51,113,121,125,126,158,189,209],encourag:[3,121,164,172],encrypt:[115,125,152,193],encyclopedia:123,end:[3,7,29,31,32,34,37,41,44,48,51,56,58,59,60,63,64,66,67,70,75,87,89,93,110,111,112,115,117,120,121,123,125,126,128,129,130,131,136,137,140,141,142,143,144,147,150,153,155,156,160,161,163,164,168,170,171,172,177,187,188,193,195,204,209,210],end_angl:36,end_slic:130,endang:[118,194],endpoint:[123,191],endswith:[31,171],energet:158,energi:[75,89,157,158,159],enforc:[87,111,121,123,128,190],engag:[111,113,154],engin:[14,18,31,41,52,62,73,85,86,110,121,128,129,140,144,146,150,153,154,156,158,164,170,173,178,195,196,207,211],england:173,english:[42,146,154,188,210],enhanc:[84,86,87,117,118,120,146,147,156,178,181,195,207],enjoi:[84,117,158,211],enlarg:[144,164],enorm:[7,126,169],enough:[7,31,34,43,50,52,53,64,66,67,75,89,101,108,110,112,115,120,121,125,128,139,143,154,164,169,170,172,178,183,188,189,207],enrich:[147,152],enrol:73,enrolled_univers:62,ensembl:[54,56,57,58,59,62,63,64,68,75,89,125,151,154,161,163,164,166,167,168,172,176,178,202],ensur:[31,33,34,52,53,85,87,113,115,117,118,121,122,126,128,133,136,141,143,146,152,153,154,168,170,171,177,186,192,193],entail:[45,110],entangl:156,enter:[41,53,57,104,110,123,141,187,189,199,205,206,209],entertain:129,entir:[31,32,42,113,118,121,128,143,144,146,150,154,155,164,169,171,173,180,184,187,188,192,210],entireti:[115,193],entiti:[1,122,127,146,156,196],entri:[7,15,41,45,51,65,66,73,83,126,128,139,146,149,152,158,168,170,173,175,182,187],entropi:[38,87,139,161,163,165,169,170,172,176],entry_script:[9,109],enumer:[1,35,39,43,45,60,70,125,130,135,136,138,139,141,142,143,145,148,171,172,177,182,187,202,205,206,209],env:[0,30,37,38,101,102,118,129,130,131,149,150,172,176,183,187],env_test:37,envi:117,environ:[9,30,37,42,43,50,52,53,57,63,64,66,67,72,92,108,109,110,111,113,131,143,153,156,163,167,168,169,171,172,178,182,184,185,187,190,207],environment:110,environment_debug:37,envis:183,enzym:110,ep:[31,143,171],epic:41,epidem:[14,128],epidemiolog:155,episod:37,epistolari:117,epoch:[29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,52,53,68,76,84,91,136,139,142,144,145,147,149,152,154,165,170,179,198,208],epoch_acc:34,epoch_count:37,epoch_end:34,epoch_loss:34,epoch_tim:39,epochs_rang:33,epr:61,epsilon:[37,67,139,143,164],epsilon_decai:37,epsilon_min:37,epsilon_t:164,epub:145,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:65,eq:53,equal:[7,14,18,22,24,34,52,53,56,60,65,75,85,89,92,101,125,127,128,131,139,142,150,154,155,156,160,161,163,164,167,170,171,172,178,184,186,187,188,209,210],equal_var:[18,125],equat:[61,65,84,85,139,150,164,165,172,182,188],equilibrium:38,equip:[115,123,153],equiprob:160,equit:[121,192],equiv:[15,130],equival:[7,31,52,83,87,128,129,130,131,143,150,152,154,164,187,188,208,210],eras:1,erasur:121,eratosthen:101,erc20:41,erencan:205,eros:156,erp:152,err:[130,131,160],errd:39,errd_fak:39,errd_real:39,errg:39,erro:48,erron:118,error:[0,1,7,29,30,37,39,43,44,48,50,52,53,54,55,56,57,60,61,63,67,69,71,72,73,84,85,87,92,111,125,128,129,130,142,143,149,150,152,153,154,156,161,163,164,166,167,168,169,170,171,179,182,183,188,189,200,201,204,210],error_r:179,errord:86,errormsg:52,errr:[59,64],erwo:101,es:196,escap:[188,210],especi:[48,55,68,72,113,117,118,119,123,152,153,154,156,163,164,168,171,177,178,187,198,207],essai:26,essenc:[56,84],essenti:[1,7,56,84,86,108,110,123,126,145,146,147,164,172,176,179,181,195],establish:[7,34,75,85,89,108,121,144,150,154,159],estim:[18,55,56,58,59,60,62,63,64,65,66,67,70,91,93,110,113,118,122,123,125,128,141,154,155,156,158,159,160,163,167,169,171,172,177,182,186,194,201,205,206],estimators_:161,estonia:211,et:[31,37,121,156],eta:[30,72],etc:[7,28,31,33,34,46,50,55,56,62,75,83,89,111,123,125,128,131,140,144,148,152,153,154,155,161,163,164,178,187,189,190,193,194,195,207],ethic:[111,115,124,152,156],ethiko:121,etho:121,ethos3:113,etl:152,euclidean:[101,158,172,202],euclidian:171,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:65,european:121,ev:[56,160],eva:[127,196],eval:[31,34,44,77,138],eval_d:42,eval_dataset:42,eval_df:42,eval_epoch:31,eval_epoch_va:31,eval_everi:[136,145],eval_i:136,eval_index:136,eval_metr:[72,167,168],eval_set:167,eval_x:136,evalu:[29,34,36,38,42,45,56,65,72,86,93,111,112,115,121,126,128,129,131,136,139,143,145,146,153,160,161,163,164,167,168,169,170,171,172,178,180,186,187,188,189,190,192,200,201,202,207,210],evaluate_on_last_n_it:171,evaluation_s:136,evaluation_strategi:42,evanesc:[119,194],evauat:66,even:[1,3,7,18,34,40,45,46,51,53,56,66,68,70,72,75,89,101,108,113,117,119,120,123,125,126,128,130,131,140,141,146,150,152,153,154,155,156,158,160,163,164,167,171,172,177,178,182,183,186,187,188,195,202,203,207,209,210],even_numb:[187,209],evenli:[86,128,154],event:[101,102,108,125,129,152,153,155,173,187,188,189,192],event_nam:153,eventu:[60,152,160,196],ever:[91,109,127,133,188],everi:[3,7,34,39,42,44,45,48,52,55,58,62,65,68,70,76,91,113,121,122,123,126,127,128,130,133,139,141,143,144,145,150,153,154,155,161,163,164,165,168,170,171,172,178,187,188,189,197,202,203,207,210,211],everydai:[56,123,164],everyon:[108,113,127,155,164,172,175,202],everyt:164,everyth:[7,56,67,110,112,113,127,129,133,145,150,151,154,158,164,178,187],everytim:48,everywher:[123,182],evid:[17,18,60,113,123,125,146],evok:113,evolv:[1,108,120,153,168],ex:[41,60,118,121,178,194],exact:[75,89,109,125,152,154,160,161,164,169,170,200],exactli:[1,7,56,83,84,87,111,113,115,125,128,131,140,143,154,164,165,178,179,186,187,209],exagger:56,exam:204,exam_model:204,exam_scor:204,examin:[7,29,33,46,51,65,67,73,86,126,147,158,160,168,178,182,195,204],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,34,37,40,41,42,43,44,45,46,48,50,51,52,53,55,57,58,62,63,65,70,73,75,77,83,84,86,87,89,91,102,110,111,112,113,115,117,118,120,121,122,123,125,126,127,129,130,131,133,135,136,140,143,144,145,146,147,148,149,152,153,154,155,156,158,160,163,166,168,169,171,173,175,177,180,182,183,184,186,187,188,189,190,195,197,198,208,209,210,211],example1:[7,126],example2:[7,126],example3:[7,126],example4:[7,126],example5:7,example6:7,example_imag:137,example_tensor:48,example_train_vector:146,exce:170,excel:[23,25,29,111,119,122,127,144,169,190,194,200],except:[3,9,14,22,24,30,31,45,48,50,52,53,54,55,56,59,69,71,77,102,109,120,128,129,130,131,140,143,145,148,163,164,165,178,179,188,189,208,210],exception:152,exception_has_been_caught:187,exception_has_been_handl:187,exception_is_caught:187,exception_messag:187,excerpt:91,excess:[65,87,172,187],exchang:[113,121,141,153,173,193],excit:[56,113,123,137,149],exclaim:154,exclud:[60,73,102,128,129,130,167,171,186,188,210],exclude_pattern:125,exclude_word:102,exclus:[108,161,187],execut:[0,3,12,14,18,22,24,25,30,33,40,52,59,60,75,84,89,101,102,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,78,80,81,94,97,98,99,100],exercis:[0,3,12,34,52,97,126,147,152,170,182,189],exhaust:[125,163,187],exhibit:[100,125,143,154,187],exhuast:62,exist:[1,7,9,14,29,30,31,33,34,39,42,43,46,50,52,56,60,62,65,70,72,76,85,91,102,109,110,111,113,121,122,123,125,127,129,131,136,138,141,145,146,149,152,153,154,155,156,158,160,161,164,170,178,187,188,190,195,196,209,210],exist_ok:[38,39,171],exit:[152,189],exogen:141,exot:[164,167],exp1:128,exp2:128,exp:[31,36,56,60,90,91,128,131,139,155,163,164,165,169,179,195,200,205,206],expand:[7,126,127,128,163,164],expand_dim:[33,38,46,49,77,128,136,137,145,204],expans:[169,187],expect:[7,34,37,42,45,46,52,53,57,63,83,91,100,118,123,125,126,128,130,131,137,141,153,154,160,164,172,182,184,187,189],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,102],expected_result:[14,22,102],expected_sequ:102,expected_sorted_list:102,expectil:164,expedi:141,expedit:[146,156],expend:110,expens:[34,55,56,62,75,83,89,110,130,140,150,152,153,156,166,184,203],experi:[1,14,16,28,37,44,46,50,52,53,56,110,111,113,117,118,119,121,123,125,143,144,146,153,154,155,156,164,167,178,183,194,204,207],experienc:[28,121],experiment:[30,37,52,143,186],experiment_nam:[9,109],experiment_timeout_minut:[9,109],expert:[55,56,113,121,154,155,156,171],expertis:[110,111,123,154,155,190,192],expir:152,explain:[5,8,24,26,34,46,56,60,78,80,85,94,98,111,113,115,121,128,131,136,137,138,153,154,159,161,163,169,170,171,172,176,178,179,180,182,190,192,197,202],explained_variance_ratio:[172,202],explained_variance_ratio_:[172,202],explan:[10,20,24,42,50,52,110,121,130,131,156,164,170,188,210],explanatori:[24,118,167,182],explic:63,explicit:[128,131,172,187,202],explicitli:[91,128,130,141,178,187,207],explod:[57,145,147,154],exploit:171,explor:[9,18,23,28,37,42,50,52,60,66,73,85,86,92,107,108,109,110,111,113,114,115,116,119,120,121,122,129,133,147,151,153,155,158,160,164,166,169,170,172,173,175,177,178,182,183,184,186,190,193,196,203],exploratori:[17,73,75,85,89,109,135,193],expm1:72,expn:128,exponenti:[36,60,128,147,164,188,189,210,211],expos:[30,33,60,111,121,131,155,192],expose_map:60,exposit:113,exposur:[40,113,121],express:[1,8,22,30,38,49,50,52,53,54,84,91,101,102,113,125,128,129,130,131,145,152,160,164,178,182,183,188,189,192,204,207,209,210],extend:[34,111,121,128,153,154,163,164,178,187,188,207,209,210],extens:[0,18,44,87,110,146,154,164,186,189,196,208,209,211],extensionarrai:131,extent:[33,125,143,169,171,172],extercond:60,exterior1st:60,exterior2nd:60,extern:[108,121,122,125,147,156,172,192],exterqu:60,extinct:[118,194],extra:[18,55,56,128,153,161,164,168,178,188],extract:[3,8,31,32,33,34,41,46,49,60,73,108,122,123,128,129,136,137,138,139,140,143,144,146,147,151,152,154,184,192,207],extract_fold:136,extract_net_info:138,extract_path:[29,30,31,43],extractal:[29,30,31,34,38,39,43,45,77,136,139],extracted_text:3,extractor:3,extrapol:[56,163],extratreesclassifi:163,extratreesregressor:163,extrem:[40,53,60,62,125,143,147,153,164,174,196],extremli:92,ey:[30,91,117,120,154,170,197,198,204],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:128,f10:161,f1:[44,52,58,63,66,75,76,89,128,146,161,165,173,176,177,183],f1_score:165,f2:[128,161],f2ac792482e3:196,f35:65,f3:[128,161],f3ab60:73,f4:[128,131,161],f4bafb1ea019:171,f50duri2g6yv8pzu8ii:65,f5:161,f6:161,f7:161,f821:[187,188],f8:[128,161,195],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:65,f9:161,f:[0,1,3,9,14,18,24,29,30,31,33,34,39,41,43,50,52,53,56,57,61,70,76,77,84,87,91,93,101,102,109,117,125,128,129,130,131,135,138,139,141,142,145,147,150,158,160,161,163,164,165,168,172,175,176,179,180,182,188,189,195,203,210],f_0:164,f_:163,f_i:164,f_t:[145,164],fa:[60,141,149],face:[31,38,42,43,108,111,113,129,140,144,146,147,153,185,189,190,192,195,198],facebook:[121,156,192],facecolor:[38,73,92,169,171,172,200,202],facemask:[178,207],facet:117,facetgrid:[120,158,183,194],facial:[111,129,190],facil:[128,187],facilit:[59,128,147,187],fact:[1,4,14,18,19,43,44,45,48,55,56,58,63,64,68,75,89,112,117,118,119,121,122,123,125,128,133,157,159,160,163,164,169,170,171,176,183,184,187,188,205,206,207,208],factor:[56,59,60,69,71,73,75,84,89,101,108,110,120,139,143,153,160,161,163,169,170,178,187,200,205],factori:[101,108,115],fad:41,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:65,fail:[1,16,52,53,56,65,67,75,89,102,121,140,152,154,178,187,192,207],failur:[9,107,136,153],fair:[58,63,64,75,89,111,121,123,154,157,160,168,190,192],fairlearn:111,fairli:[34,45,55,73,121,136,171,172,192],fairseq:139,fairytal:182,fake:[38,39,142,198],fake_imag:142,fake_label:39,fake_loss:142,fake_samples_epoch_:39,falcon:129,fall:[46,50,52,53,68,70,108,113,118,125,128,131,163,173,175,178,182,187,207],fallaci:113,fallback:154,fals:[1,3,7,9,14,18,22,24,29,30,31,34,36,37,38,39,41,43,44,45,46,51,54,55,57,58,59,60,62,63,70,72,75,77,83,85,89,91,93,101,109,110,118,120,125,126,128,129,130,131,136,137,141,142,143,144,145,147,148,150,154,156,160,163,167,168,169,171,172,173,175,176,177,183,187,188,189,194,195,198,200,209,210,211],false_boolean:[188,210],false_positive_r:65,falsehood:189,famhist:179,famili:[5,22,73,113,118,119,127,151,164,168,173,177,194,196],familiar:[28,45,65,68,111,118,127,131,133,160,165,170,182,183,189,190],family_s:[22,73],family_size_max:22,familys:22,famou:167,fan:[111,189],fan_out:148,fanci:[72,123,195],far:[4,7,17,31,38,44,62,70,73,75,83,86,89,118,125,126,139,158,168,169,171,178,179,182,188,200,204,208],fare:[22,165],fare_add_averag:22,fark:37,farlei:[142,153],farmer:160,farsight:141,farther:[83,158],fascin:[119,121,185],fashion:[20,29,30,107,109,110,111,118,128,140,143,168,172,182,187,202],fashion_classifi:44,fashion_classifier_21:44,fashion_classifier_22:44,fashion_classifier_23:44,fashion_classifier_24:44,fashion_classifier_2:44,fashion_classifier_3:44,fashion_classifier_4:44,fashion_classifier_vi:44,fashion_mnist:[29,30,44,46],fashion_test:44,fashion_test_label:44,fashion_train:44,fashion_train_label:44,fashon:30,fast:[7,38,42,44,46,50,53,56,83,110,115,128,131,147,153,168,178,179,188,193,195,203],fastai:61,fastapi:76,fasten:60,faster:[38,42,50,52,55,59,60,65,75,84,89,91,123,128,147,153,167,168,171,178],fastest:[128,168,171],fastgfil:77,fatal:[8,14,187,209],fater:55,father:70,fault:153,favipiravir:1,favor:[163,164,170,178,189],favorit:[109,122,125,129],favorite_hobbi:102,fayyad:56,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[75,89,119,194],fcn:148,fd:149,fe:154,feasibl:[110,154,156,160,168],feat:138,feat_df:58,feat_dict:59,feat_imp:62,feat_import:[58,59],feat_map:83,featuir:60,featur:[7,9,16,20,22,30,31,34,35,40,41,42,43,44,46,49,50,55,64,66,67,68,69,70,71,72,73,77,85,86,91,93,109,110,112,121,122,123,127,128,129,131,135,136,137,138,139,140,143,144,147,148,153,155,160,162,163,164,166,169,170,172,173,175,176,183,186,187,188,191,195,202,204,208,210],feature_1:150,feature_2:150,feature_column:92,feature_df:175,feature_extract:146,feature_fract:60,feature_fraction_se:60,feature_importances_:[57,58,59,62,161],feature_indic:161,feature_list:54,feature_nam:[7,44,63,64,126,161,172,202],feature_rang:[41,47],feature_scor:57,feature_typ:72,featurecolumn:50,featureidx:52,featuremap:148,featurespr:50,februari:[189,193,196,211],fed:[31,46,55,57,65,131,142,143,147,149,160],feder:121,feed:[3,31,32,43,44,48,60,63,91,123,128,140,150,156,171,178,207],feed_dict:[138,141],feedback:[113,147,151,153,156],feedforward:[140,143],feel:[3,7,113,139,158,184,189,193],feet:72,felis_catu:137,fell:187,femal:[22,62,111,178],feminin:117,fenc:[60,72],fence_map:60,fenugreek:175,fernandez:125,fetch:[63,147,172,202],fetch_california_h:83,fetch_dataset:31,fetch_openml:[63,64,171],fetch_ucirepo:147,few:[1,7,9,14,33,38,43,44,46,48,50,51,52,53,56,58,63,64,65,67,72,73,75,84,85,89,91,97,109,110,111,112,113,115,118,120,121,125,126,127,128,129,131,136,143,144,145,150,151,153,154,155,158,159,164,167,168,170,171,173,178,179,183,187,188,195,198,207],fewer:[3,56,63,65,68,80,122,125,128,160,170,177,187],fewest:143,ff_dim:143,fff9ed:73,fff:173,ffffff:76,ffill:[7,126,147],ffn:143,ffn_output:143,ffoutput:41,fg86ufl9igmpwtk6aurw9v5:65,fgsymyf:65,fh:145,fhxfwxna:148,fhxfwxnax4:148,fi:161,fib_sequ:102,fibonacci:187,fibonacci_at_posit:187,fibonacci_at_position_renam:187,fibonacci_function_clon:187,fibonacci_function_exampl:187,fibonacci_list:187,fibonacci_modul:187,fibonacci_module_renam:187,fibonacci_path:187,fibonacci_smaller_than:187,fiction:31,fido:[128,187],field:[7,48,55,56,58,91,118,127,131,143,144,150,151,152,158,160,169,173,178,182,188,196,197,207,210],fieldnam:128,fifth:[128,188,210],fifti:38,fig:[1,22,30,34,37,39,40,43,49,60,65,70,73,76,84,92,118,119,120,139,141,142,150,163,165,169,172,194,200,202],fig_dim:22,fig_extens:171,fig_id:171,fight:[33,60],fighter:173,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,70,72,73,75,76,83,86,89,91,92,118,119,120,135,139,142,144,150,158,159,161,163,165,168,169,171,172,194,200,202,208],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,46,52,53,55,56,58,59,60,61,62,63,65,67,68,70,72,73,75,76,83,84,86,89,91,92,111,119,120,122,133,135,139,141,142,143,144,150,154,156,158,159,160,161,163,168,171,172,179,184,194,196,202,203,208],figure_format:[56,72,150,160,163,172,202],figureclass:[119,194],file:[0,1,6,9,12,17,22,23,25,29,30,31,34,38,39,41,43,45,46,47,50,52,53,54,57,60,65,72,80,85,99,101,102,109,110,117,122,123,127,128,129,130,131,136,137,138,141,142,145,147,149,153,158,159,173,175,176,177,182,184,186,187,188,195,208,209],file_conn:[136,145,149],file_desc:77,file_id:63,file_loc:136,file_obj:77,file_output:141,file_path:[29,30,31,34,46,72],file_upload:77,fileexistserror:77,filenam:[31,43,57,62,136,138,171,173],filepath:[43,49,136,138],fill:[1,11,14,15,18,22,24,40,51,53,55,57,58,62,72,75,83,89,106,110,118,126,128,129,131,139,147,150,161,167,169,173,178,182,194,200],fill_:39,fill_between:[29,163,169,200],fill_betweenx:171,fill_coin:40,fill_color:76,fill_valu:129,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,51,57,60,62,72,126,147,150,195],film:117,filter:[7,14,16,24,31,34,35,40,43,51,60,118,128,131,133,136,139,143,144,146,158,184,196,209,210],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[118,194],filters1:144,filters2:144,filters3:144,filterwarn:[38,42,43,55,56,57,58,59,60,62,63,64,65,75,89,143,144,163,165,167,171],fin:[69,71],fin_col:60,final_df:41,final_estim:55,final_featur:173,final_list:209,final_pip:[67,83],final_st:145,final_state_c:145,final_state_h:145,financ:[6,86,111,123,190],financi:[6,129,141,146,164],find:[7,8,14,15,18,31,32,33,39,40,44,51,52,53,55,56,58,59,60,63,64,65,66,67,69,71,73,78,80,85,86,92,93,101,109,110,111,115,117,118,119,120,121,122,123,125,126,127,128,129,131,133,135,140,141,146,151,154,155,157,158,160,161,163,164,165,167,168,169,170,172,175,176,178,179,182,183,184,186,187,189,192,200,204,207,210],find_better_split:61,find_common_el:188,find_prime_factor:101,find_stack_level:129,find_varsplit:61,find_wanted_peopl:101,fine:[84,86,93,135,143,144,152,154,163,167,181,182],finer:[7,126,153],finish:[0,3,32,42,60,110,150,153,165,170,173,179,187,189],finit:[125,141,175,183],finland:211,fintech:41,fintype_map:60,fip:155,fire:[30,146],firecolumn1:41,firecolumn2:41,firecolumn:41,firefox:110,firegod:41,firehos:152,fireplac:60,fireplacequ:60,firm:73,first:[0,1,3,7,11,14,18,31,32,33,35,36,40,42,43,44,46,48,49,50,51,52,53,54,55,56,58,59,60,62,63,64,65,66,68,70,72,73,75,85,86,89,91,102,109,110,112,113,115,119,120,121,123,125,126,127,128,129,131,133,140,141,142,143,144,145,146,147,149,150,152,153,154,155,156,158,160,161,163,164,165,167,168,169,171,172,173,175,176,178,180,182,183,185,187,188,189,192,193,195,202,203,204,207,208,209,210,211],first_baseman:[18,125],first_char_set:188,first_imag:33,first_nam:[102,209,211],first_numb:[188,210],first_param:187,first_term:138,first_tuple_numb:188,first_word:[187,209],firstli:[51,73,92,154],firstnam:[127,189,196],fiscal:25,fish:[73,176],fisher:7,fit:[29,30,31,32,33,34,35,36,37,38,41,43,44,45,46,47,49,52,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,71,72,73,75,76,83,84,85,86,89,90,92,93,97,101,102,109,122,123,127,136,138,141,144,146,147,149,150,152,154,155,156,159,161,163,164,165,166,167,168,171,172,173,175,176,177,179,182,183,186,187,188,189,200,202,205,206],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:149,fit_predict:[73,171],fit_resampl:175,fit_transform:[30,41,44,47,49,55,57,58,59,62,63,64,65,66,67,70,73,75,83,85,89,92,146,147,159,167,171,172,173,183,202,204,205,206],fitted_model:[9,109],fiumlogtswc31vrwbvd:65,five:[7,16,33,51,55,58,92,101,113,116,143,146,150,175,184,188,210],five_up:128,fix:[29,42,50,53,55,58,68,91,121,122,128,131,139,143,145,153,154,163,165,168,169,172,175,189,192,197,200,202],fixat:113,fixed_nois:39,fixedformatt:171,fixedloc:171,fj4b:173,fk:[12,133],flag:[3,34,37,131,143,154,158],flair:190,flat:[43,70,158],flat_map:49,flatten:[29,30,32,33,34,35,38,39,43,44,45,46,48,49,70,76,91,102,135,136,139,142,143,172,173,176,188,202,210],flatten_2:45,flatten_nested_list:102,flatten_vector:[188,210],flattened_list:102,flavor:[7,141,170],flaw:[72,78,94,100,111,190],fledg:164,flexibl:[7,72,108,122,128,131,133,151,152,153,164,169,191,195,196,203],flip:[75,83,89,117,141,144,178,207],flipsid:7,fll:51,float32:[29,30,31,34,37,38,48,77,128,135,136,137,139,141,142,143,144,145,148,171,198,208],float64:[14,24,41,49,65,66,70,73,83,126,128,130,131,158,163,172,173,179,182,195,202],float_base_shap:137,float_format:[50,52,53],float_neg:[188,210],float_numb:[188,210],float_number_via_funct:[188,210],float_with_big_:[188,210],float_with_small_:[188,210],floatbox:148,floattensor:31,floor:[41,60,141,160,188,195,210,211],floppi:153,florida:[117,195],flow:[32,35,56,118,140,147,188,210],flower:[33,66,92,117],flower_photo:33,flowform:169,flu:[111,190],flu_trend:150,fluctuat:[14,55,58,170,182],fluoresc:43,flush:209,fluvisit:150,fly:[173,189],fmt:[35,41,44,57,65,70,75,89,147],fn:[58,65,75,89,183],fname:31,fnlwgt:57,focu:[1,14,18,55,60,65,87,91,108,111,112,115,120,122,123,128,130,131,133,152,154,161,175,176,178,179,182,190,196,203],focus:[51,84,110,111,112,113,115,119,121,122,126,127,146,147,151,153,154,155,164,177,185,186,190,192,193],foggi:141,fold:[55,56,62,63,64,66,67,70,75,89,92,163,166,171],folder:[14,31,34,43,109,117,136,158,173,175,184,189,194],folder_path:136,folk:42,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,33,38,42,44,46,48,50,52,53,54,56,57,59,60,64,65,72,73,83,84,85,86,92,101,102,108,109,110,111,112,113,115,117,119,121,122,123,125,127,128,129,130,131,133,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,153,154,155,158,160,161,163,164,167,168,169,170,171,172,173,176,177,178,179,180,182,183,184,186,187,188,189,196,209,210],font:[65,119,173],fontsiz:[30,43,92,136,171],fontweight:92,foo:[128,129,131,189],food:[117,152,174,188,210],fool:[117,198],footbal:56,forc:[1,111,135,155,156,158,170,187],forcast:150,forcibl:209,ford:156,forecast:[41,56,86,109,115,155,193],forecasting_d:[41,49],forehead:198,foreign:[133,141],forest:[42,56,63,64,68,72,75,89,125,135,146,160,162,164,167,177,178],forest_best:[58,59],forest_clf:58,forest_grid:56,forest_param:56,forest_reg:59,forget:[91,109,110,111,140,145,190],forgiv:146,forgotten:[121,145,192],fork:0,form:[3,7,33,52,56,57,65,73,91,121,123,126,128,131,133,138,140,141,146,147,150,153,155,158,159,164,168,169,173,175,178,182,187,188,196,204,207,208,209],form_df:15,form_linearly_separable_data:56,formal:[18,56,121,125,143,156,161,163,172,187,209],format:[6,14,26,29,31,32,33,34,37,38,44,45,46,50,51,53,55,57,58,59,62,63,64,65,66,67,69,71,75,83,89,101,111,117,121,122,123,126,127,128,129,136,137,138,140,141,142,144,145,148,149,152,153,159,160,163,168,169,171,172,173,176,178,184,187,189,190,195,200,202,207,208,209,211],format_person_info:102,format_vers:209,formatfactori:41,formatted_column:51,formatted_info:102,formatted_str:[188,210],former:[48,55,67,123,128,139,143,154,156,160,161,178,183,207],formul:[172,178,204],formula:[18,84,85,101,127,161,164,172,179,183,188],forth:[55,113],forthcom:186,fortran:128,fortun:[7,51,75,89,126,159,164,184],forum:151,forward:[7,31,32,34,39,51,91,126,137,146,153,178],foster:146,found:[1,9,26,32,38,56,60,62,69,71,75,77,89,93,101,109,110,112,118,122,125,128,131,136,145,146,148,152,154,155,164,167,168,169,187,188,189,203,209,210],foundat:[121,123,151,152,153,155,164,178],foundationdb:196,founder:178,four:[7,32,46,56,57,65,73,75,89,101,110,126,127,128,150,161,170,175,186,187,188,209],four_g:[75,89],fourier:128,fourteen:[172,202],fourth:[14,32,92,128],fowler:155,fp16:42,fp:[65,75,89,148,183],fpath:31,fpcoor:148,fpn:148,fpr:[65,183],fr:14,frac:[14,52,53,56,68,84,86,87,102,139,147,148,160,161,163,164,165,168,172,179,183,204],fractal:128,fraction:[33,46,56,68,163,170,171,183,188,208,210],fragil:[68,187],frame:[1,7,14,37,38,41,56,63,64,65,66,73,83,126,129,131,136,140,147,154,158,168,173,175,182],framebord:[125,129,130,131,187],framework:[0,44,46,60,110,121,136,138,140,144,145,151,153,154,156,168,173,180],franci:160,frank:154,fraud:[111,158,190,207],free:[3,30,53,60,101,102,111,119,121,123,139,140,148,149,156,158,178,184,187,188,189,190,192,194],freecodecamp:197,freedom:[111,125,131,141,190],freedraw:76,freez:146,french:117,freq:[41,42,49,63,70,83,131,150],frequenc:[1,3,36,67,70,146,150,152,154,163],frequent:[55,56,57,58,59,60,65,115,125,133,145,154,164,172,175,178,202],fresh:[78,121,168,173,184],fresh_fruit:[188,210],fri:54,friedman:[56,163,168],friedman_ms:62,friend:[54,113,122,123,129,154],friendli:[111,117,146,153,154],frog:136,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,34,36,37,38,39,40,41,42,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,76,77,83,84,86,89,91,92,93,97,100,101,103,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,129,130,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,189,190,191,192,193,194,195,196,198,200,203,204,206,207,209,210],from_arrai:129,from_categor:43,from_config:[9,109],from_keras_model:33,from_lat:31,from_logit:[33,46,136,142,144],from_logitstru:144,from_panda:42,from_pretrain:42,from_se:48,from_tensor_slic:[49,135],fromarrai:[31,137],front:[75,89,118,188,194,210],frontend:187,frozen:168,frozenset:[131,188,210],fruit:[73,146,147,188,210,211],fruit_nam:43,fruits_copi:[188,210],fruits_dictionari:[188,210],fruits_set:188,fruits_set_via_constructor:188,fruits_tupl:188,fruits_tuple_via_constructor:188,frustrat:152,ftc:[121,192],fu:129,fulfil:[128,164],full:[1,7,29,31,39,46,48,53,55,67,73,75,89,102,108,109,110,118,121,126,128,129,130,131,133,148,153,154,163,164,167,171,172,175,176,182,187,188,210],full_model_dir:145,fullbath:60,fulli:[0,32,33,34,46,50,53,70,91,94,140,141,143,144,148,152,153,154,155,164,171,178],fully_connected_size1:136,fulvou:[118,194],fun:[63,91,128,182,183,209],func:[101,129,143,187,209],func_nam:187,func_wrapp:187,function_nam:189,function_that_receives_names_argu:187,function_wrapp:[187,209],functool:138,fund:62,fundament:[58,59,64,66,84,86,108,125,128,131,134,146,175,178,179,181],fungi:119,fuqiongi:118,furnish:[101,102,187,188,189],further:[1,14,38,56,60,65,66,67,73,84,85,101,109,110,122,123,125,128,135,136,138,141,146,153,154,160,164,166,167,168,171,173,177,178,179,187,195,207],furthermor:[52,56,93,112,154,164],fuse:143,fused_batch_norm:38,futher:60,futur:[29,41,49,52,54,60,64,85,92,111,121,123,146,155,156,164,173,175,178,183,187,207],future_step:[41,49],futurewarn:[92,129,171,172,202],futurolog:[136,138],fx:145,fxbyxm:65,fy:25,fykun93:65,g2d:38,g:[3,39,41,42,43,47,56,57,60,62,65,77,84,86,91,102,111,121,123,128,129,130,131,135,141,142,143,148,149,152,158,163,164,170,172,176,179,183,187,188,190,192,195,198,208,210,211],g_error:142,g_fake_se:142,g_gradient:142,g_k:141,g_loss:[38,39,142],g_loss_metr:38,g_loss_tru:142,g_optim:38,g_origin:138,g_resolut:38,g_sampl:142,g_solver:142,g_style:138,g_t:145,gain:[53,56,60,65,85,108,118,129,141,146,152,154,156,161,163,164,165,168],galaxi:[6,172],gallahad:187,galleri:155,galton:160,gam:164,gambl:111,gamboost:164,game:[37,41,56,107,111,141,156,178,207],gamedownload:41,gamma:[37,65,66,67,72,141,143,148,164,167,168,171],gamma_initi:148,gan:[142,155,156],gan_input:198,gan_output:198,gan_structur:198,ganlab:198,gap:[14,22,46,56,65,113,121,143,146,154,170,184,192],garagearea:60,garagearea_mean:60,garagecar:60,garagecond:60,garagefinish:60,garagequ:60,garagetyp:60,garageyrblt:60,garbag:[43,128],garbl:152,gari:41,garlic:175,gartner:[121,152,156],gate:[140,189],gatewai:152,gather:[15,43,111,112,123,139,154,156,158,173,177,182,190],gaug:[86,87,146,183],gaussian:[30,65,139,158,164,176,178],gaussiannb:176,gaussianprocessclassifi:176,gave:[55,56,160],gb:[1,173],gbc:62,gbdt:[60,164],gbm:[62,168],gbm_tuned_1:62,gbm_tuned_2:62,gbm_tuned_3:62,gbrt:164,gbtree:[60,167,168],gc:43,gca:[1,32,118,119,136,169,171,194,200],gcf:[119,194],gcp:153,gcv:163,gd:[60,179],gdpr:121,gdprv:60,gdwo:60,gebru:[111,190],geeksforgeek:[169,209],gees:[19,118,146,194],gelu:139,gemston:196,gen_imag:39,gen_logits_fak:142,gen_z:39,gender:[7,22,56,111,121,123,129,168,178,190,192],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,35,36,42,46,48,50,51,52,53,54,55,56,58,59,63,65,66,68,77,83,85,87,93,109,110,111,112,117,118,120,121,122,123,125,126,127,129,130,131,133,135,136,137,138,139,140,141,144,145,146,147,150,151,152,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,175,176,177,178,180,186,187,188,189,192,195,196,199,200,204,208,211],generalis:[60,169],generalist:113,generalizaton:35,generar:38,generate_from_frequ:3,generated_imag:[36,38,198],generated_paint:38,generated_path:38,generated_portrait:38,generated_text:145,generator_loss:142,generator_opt:38,genfromtxt:202,genom:111,genr:[158,159],genu:[118,194],geoffrei:[34,172,202],geograph:[67,110],geographi:155,geoloc:14,geometr:[158,169],geometri:[143,158],georg:[129,188,189,210],georgia:[121,148,192],geospati:[111,190],geq:164,geqq:139,gerg:141,germani:173,geron:[48,55],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,34,38,39,40,43,45,46,48,51,52,53,55,58,59,60,62,63,64,65,66,67,68,70,72,73,75,76,77,85,86,89,91,108,109,110,111,112,113,117,118,121,125,126,127,130,131,133,135,138,139,140,141,142,143,145,146,147,149,150,152,153,154,155,159,160,161,164,165,167,168,170,171,172,173,175,176,177,178,179,182,183,184,185,187,188,189,195,198,202,207,209],get_age_by_surviv:22,get_age_group:187,get_base_model:144,get_batch:31,get_bootstrap_sampl:160,get_cmap:[172,202],get_count:187,get_dat:[187,209],get_default_devic:34,get_default_graph:[37,38],get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,54,60,72,147,182],get_environ:[9,109],get_equivalent_kernel_bia:143,get_fil:[33,41,43,44,47,49,137],get_full_id:[187,209],get_grid:56,get_imaginari:187,get_index:130,get_initial_st:145,get_item:131,get_lay:[137,143,144],get_loc:[130,131],get_messag:[187,209],get_model:139,get_nam:[187,209],get_network:36,get_network_custom:36,get_oper:77,get_output:[9,109],get_param:[58,59,63,64],get_pinfect:14,get_properti:[9,109],get_real:187,get_result:129,get_rolling_window:14,get_rt:14,get_shap:[77,138,141,143,148],get_signature_list:33,get_signature_runn:33,get_slice_bound:130,get_smoothed_ax:14,get_solv:142,get_std:24,get_survival_rate_by_gend:22,get_tensor:77,get_tensor_by_nam:77,get_text:187,get_the_unique_values_of_pclass:22,get_tim:[187,209],get_timestep_embed:139,get_transition_sigmoid:155,get_valu:131,get_vari:148,get_vers:144,get_vocab:42,get_xaxi:[29,30,136],get_xlim:[169,200],get_yaxi:[29,30,136],get_ylim:[169,200],getcwd:[29,30,31,34,43,46,72,187],getpro:172,gettint:48,gfile:77,ggplot:163,gh:[130,145],ghost:183,giant:142,gif:139,gift:184,gigabyt:[75,89],gigaspac:196,gill:[119,194],ginger:175,gini:[56,63,161,163,165],giraph:196,girshick:148,gist_rainbow:[75,89],git:[0,41,101,153],github:[5,14,37,41,57,63,64,66,67,72,77,84,92,110,111,128,130,131,136,144,148,151,153,155,163,167,168,169,171,175,182,183,186,197,198],githubusercont:[12,14,18,25,75,89,110,171],give:[1,7,18,24,38,40,46,55,56,57,60,62,65,69,71,83,86,109,110,113,117,118,121,123,125,126,128,129,131,140,142,143,147,148,154,159,161,164,165,168,169,171,178,182,183,187,188,189,192,207],give_me_sunglass:31,given:[1,7,14,18,19,22,29,34,35,42,44,49,52,55,56,58,59,60,62,63,64,65,66,75,83,89,91,101,102,108,110,117,118,119,120,125,128,129,135,140,141,143,144,148,154,155,156,158,159,161,163,164,168,169,170,171,172,175,176,178,182,183,184,186,187,188,194,195,201,202,204,207,209,210],gkioxari:148,glacier:152,glanc:[38,60,67,152,164,165,178],glean:113,glenc:62,glimps:146,glinternet:164,glmboost:164,glob:[2,31,33],global:[14,22,56,65,110,143,144,152,155,169,171,200,209],global_variables_initi:138,globalaveragepooling2d:[143,144],gloss:113,glq:60,glu:[188,210],glue:152,gluon:154,gn:148,go:[0,1,7,31,38,46,48,53,55,56,58,59,61,63,64,66,67,69,71,72,73,75,83,89,91,98,107,108,109,110,113,117,118,120,125,126,128,129,130,133,139,140,144,145,149,152,153,154,159,161,164,167,170,171,172,175,178,179,183,186,187,188,189,191,198,202,207,209,211],goal:[1,7,8,16,29,33,51,80,83,104,111,112,113,115,123,135,141,154,155,156,164,168,169,170,178,182,190,192,193,198,207],goali:141,goalx:141,goe:[55,56,66,68,83,91,113,123,147,149,151,160,163,164,172,176,178,184,198,209],gog:41,gold:[73,155],golden:[152,187],gomez:142,gone:[3,121,164,178,207],gonna:91,good:[1,3,7,18,19,25,31,33,43,44,46,48,50,52,53,55,56,58,59,60,63,65,66,67,68,69,71,72,75,89,91,93,109,111,113,117,118,120,121,123,125,126,136,139,143,146,152,154,155,156,158,159,160,163,164,165,169,171,172,173,176,177,178,180,182,183,184,187,189,194,200,201,202,203,208],good_init:171,goodby:187,goodfellow:[29,56,87,142,180,198],googl:[44,48,50,52,53,54,108,111,121,129,136,140,146,149,152,153,154,155,178,189,190,196,198,207],googleapi:[77,137],googlenet:143,goos:[118,194],gosset:125,got:[7,48,56,57,62,91,149,164,165,171,172,189,203],gov:156,govern:[22,50,52,53,54,84,121,123,150,156,178,207],govt:121,gp:198,gpu:[33,34,38,44,48,55,60,109,110],gpu_hist:60,gpu_id:[72,167,168],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:65,grab:[46,128],gracefulli:[130,188],grad:[34,38,77,141],grad_bias:91,grad_boost_clf:55,grad_input:91,grad_output:91,grad_softmax_crossentropy_with_logit:91,grad_w:91,grad_weight:91,grade:[182,183,184,203],gradient:[34,36,38,40,52,53,60,63,64,69,71,75,77,87,89,90,91,135,137,139,140,141,142,143,145,147,151,154,163,167,169,172,176,180,181,182,200,204,205,208],gradient_boost:165,gradient_desc:[84,85],gradient_i:84,gradient_loss:165,gradient_react_3d:182,gradient_x:84,gradientboostingclassifi:[55,62],gradientdescentanim:179,gradienttap:[36,38,135,137,139,141,142,145],gradual:[70,84,85,120,154,164,171,178,179,207],graduat:[62,73],grai:[18,29,30,31,40,52,76,77,91,118,123,135,142,171,172,194,202,208],grain:[7,126,152,163,182],gram:138,grammat:146,grand:143,granda:125,grant:[38,56,101,102,131,187,188,189],granular:[118,153,158,177],grape:[188,210],graph:[1,3,8,14,19,24,30,34,44,46,52,60,77,123,125,127,136,138,139,142,150,155,158,160,163,164,167,168,169,172,182,184,186,196],graph_def:77,graph_object:1,graphdef:77,graphic:[8,24,48,110,125,128,141,160,170,178,191,196,201],graphwin:141,grasp:[73,84,160,177],grass:[119,194],grassi:173,gratifi:119,grayscal:[46,76,171],great:[16,30,44,45,55,56,58,59,69,71,83,85,110,111,113,117,123,125,128,146,149,154,156,159,161,163,164,171,188,189,190,210],greater:[29,51,53,56,60,101,113,118,128,131,140,147,161,163,164,171,187,188,194,209,210],greater_equ:128,greatest:[56,101,128],greatli:[53,56,123,143,154,158,163,164],greedi:[56,164,168,172,202],greek:121,green:[45,55,56,57,58,113,117,118,119,125,141,143,153,164,173,182,184,188,189,194,205,206,210],greenawai:25,greengrass:155,greensock:117,greet:[187,209],greet_again:[187,209],greet_funct:187,greet_one_mor:[187,209],greet_someon:[187,209],greet_with_closur:187,greeter:187,greeting_with_div_p:187,greeting_with_p:187,greeting_with_tag:187,greetingclass:187,grei:56,gremlin:196,greys_r:136,greyscal:136,grid:[18,22,29,45,46,56,59,62,63,65,66,72,83,91,93,141,148,155,158,160,169,173,200],grid_clf:171,grid_estim:93,grid_param:93,grid_pr:66,grid_search:[58,59,63,64,65,66],gridsearch:[58,59,63,64,66,163],gridsearchcv:[56,58,59,63,64,65,66,93,163,171],gridsearchcvgridsearchcv:[63,64,66,163,171],gridspec:142,grlivarea:[60,72],groceri:[73,168,175],gross:25,ground:[72,143,188,208],groundbreak:140,groundwork:113,group:[14,18,22,31,41,55,56,60,73,83,110,111,113,115,116,117,119,120,121,122,123,125,127,139,143,145,146,148,152,154,155,157,158,159,160,163,168,172,173,175,176,178,183,184,185,186,188,190,192,193,194,195,196,202,207,209,210],group_by_categori:102,group_kei:[22,129],group_siz:148,groupbi:[1,14,18,22,31,41,60,92,119,129,184,194],groupby_sum:14,grouper:41,groupnorm:[139,148],grover:61,grow:[91,110,119,125,128,133,148,153,164,196],grow_polici:[72,167,168],grown:163,growth:[87,143,150,163],growth_rat:143,grunin:14,gryffindor:203,grzanka:137,gs:142,gsearch3:62,gsearch4:62,gsearch5:62,gt:[51,145],gt_coord:45,gu:155,guarante:[56,128,131,153,189],guardian:117,guardrail:121,guarrant:[75,89],guava:43,guess:[7,18,52,56,59,62,64,101,102,126,154,160,164,176,183,187],guesser:56,gui:[60,110,191],guid:[0,17,23,56,60,62,84,108,121,123,128,129,130,131,147,151,153,154,155,178,187,191,197,207],guidanc:[50,53,65,84,121,154,172,178,202,207],guidelin:[53,121],guido:[188,189,209,210,211],guin:125,gun:117,gust:141,gutedbanoeu:175,gutenberg:[111,145,190],guyon:65,gym:102,gyro:172,gyroscop:125,gz:[34,136,143],h01:42,h0:194,h1:[1,15,18,141],h2:[1,18,141],h2o:[153,164],h5:[41,43,44,45,46,47,49],h:[18,31,34,41,77,93,102,121,139,144,145,148,149,164,168,172,188,205,210],h_:204,h_t:[149,164],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,34,36,38,42,43,44,45,46,48,50,51,52,53,55,56,58,60,62,63,68,69,70,71,73,75,83,84,85,89,91,92,97,108,110,111,112,113,115,117,118,119,120,122,123,125,126,127,128,129,130,131,133,136,140,143,144,145,146,147,148,149,150,153,154,155,156,157,158,159,160,163,164,165,167,168,169,170,171,172,173,177,178,179,182,183,186,187,188,189,193,194,195,196,198,202,203,204,207,208,209,210,211],habit:[23,73,187],habitat:[119,194],habr:172,habrastorag:172,hack:[102,121],hacker:101,had:[16,29,43,50,52,53,55,56,58,62,63,65,75,89,111,113,121,128,129,131,133,164,168,182,187,190,192],haemoglobin:110,haffner:197,haha:189,halevi:156,half:[1,31,34,55,56,58,101,125,128,150,171,182,184],half_dim:139,halfbath:60,hall:178,halloween:[182,185],halt:187,halv:[34,154],ham:[149,187,209],hamster:178,hand:[31,35,43,46,55,60,62,112,113,117,131,147,150,152,153,158,160,165,169,170,172,175,178,180,186,207],handbook:[63,64,66,67,117],handi:[44,83,128,158,187],handl:[0,7,23,43,45,55,56,60,62,64,66,67,75,85,87,89,101,102,110,113,117,118,121,123,126,128,130,131,140,147,152,153,154,155,156,158,163,166,169,176,178,186,188,191,200],handle_data:3,handle_endtag:3,handle_missing_valu:83,handle_starttag:3,handler:187,handout:159,handson:171,handwritten:[29,32,46,52,91,172,208],hang:176,hao:148,happen:[1,7,18,46,53,60,66,69,71,113,122,125,128,131,141,146,154,157,164,170,173,187,197,203],happi:[113,117,125,129,178,203,207],happier:[53,120],har:[86,108],hard:[50,55,58,65,72,113,115,140,143,164,167,171,172,178,184,207],hardcod:187,hardcov:150,harder:[50,52,56,68,73,154,155,164,187],hardest:173,hardwar:[108,110,115,153,156,171],harm:[28,110,111,121,190,192],harmon:[44,58,63,65,75,89,172],harmoni:160,harvard:113,harvest:183,hasattr:143,hash:[51,127,189,196],hashabl:188,hashablet:129,hashtabl:131,hashtable_class_help:131,hashtag:108,hasn:[70,170],hasti:[163,164],hat:[84,86,87,143,160,161,164,168,179,203],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,35,36,38,42,43,44,45,46,48,50,51,53,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,73,75,77,83,85,86,87,89,91,100,101,102,106,107,108,109,110,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,168,169,170,171,172,173,175,176,177,178,179,180,182,184,186,187,188,189,193,194,196,197,202,203,204,207,208,209,210],haven:[45,59,64,178],hay:189,hazelcast:196,hbase:196,hbr:113,hc:172,hd:43,hdbscan:158,hdf5:198,he:[18,125,129,143,148,149,150,153,160,163,173,178,207],he_norm:144,head:[1,14,15,24,29,31,37,41,42,43,44,49,52,53,54,55,56,57,58,59,60,62,63,65,66,67,69,70,71,72,73,74,75,83,85,89,92,95,118,119,120,126,131,143,146,147,148,150,155,158,160,161,165,168,173,175,176,182,183,184,194],header:[18,29,41,52,125,127,136,158,188],headlin:28,headwai:114,health:[1,13,108,121,128,146,155,192],healthcar:[86,111,147,190],healthi:110,heapprimit:187,hear:178,heard:[28,41,83,113,146,158,164,165],heart:[6,9,34,56,107,122,147,156,179],heart_diseas:147,heat:123,heatingqc:60,heatmap:[1,8,35,41,44,53,55,57,58,59,60,65,70,73,75,83,89,147,158],heav:154,heavi:[115,164,176],heavili:[137,141,153,156,159,178,184],heavyweight:176,height:[3,18,31,34,36,66,75,76,89,92,117,120,122,125,129,130,131,136,138,139,143,144,159,163,169,171,172,173,175,179,180,182,186,187,194],height_shift_rang:32,heirloom:182,held:[121,160],helicopt:141,hello:[46,102,131,136,186,187,188,189,195,209,210],hello_world_str:[188,210],helloworld:[189,211],help:[0,1,7,8,23,28,32,33,34,37,38,46,50,53,56,57,60,62,65,68,70,72,73,75,83,84,85,86,89,91,94,107,108,110,111,112,113,115,116,117,121,122,123,125,126,128,129,135,139,146,147,150,151,152,153,154,155,156,158,159,163,164,167,168,169,170,171,172,174,175,177,178,179,182,183,184,185,186,187,188,189,190,191,192,193,194,202,204,209],helper:[34,46,77,119,142,150],helvetica:173,henc:[7,44,53,60,65,66,67,69,71,73,83,135,152,160,172],heparin:1,her:[7,56,154],here:[1,7,11,14,18,24,28,32,33,37,42,44,46,48,50,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,83,84,85,86,89,91,93,101,102,105,106,109,110,111,113,115,117,119,121,123,125,126,127,128,129,131,133,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,158,159,161,164,165,167,168,170,171,172,176,177,178,179,182,183,186,187,188,189,195,196,198,202,203,204,207,209,210],hereaft:188,herebi:[101,102,187,188,189],hessian:164,heterogen:161,heurist:[56,154,156,164,172,178],hf:[9,109],hi:[7,55,70,77,125,129,161,170,173],hidden:[30,46,52,53,68,123,135,145,147,148,149,150,154,156,170,208],hidden_dim:148,hidden_layer_s:37,hidden_unit:208,hide:[18,52,55,58,59,63,64,75,89,187],hide_result:52,hierarch:[73,123,158,197],hierarchi:[122,143,144,172,187,197],high:[14,18,31,33,41,45,46,48,49,52,53,55,56,59,62,63,65,66,67,69,70,71,73,75,83,89,92,101,110,123,128,133,140,143,150,152,153,154,156,164,166,167,168,169,170,172,178,182,183,184,189,195,198,202,204,211],high_blood_pressur:[9,109,110],high_qual:179,high_valu:155,higher:[18,29,34,43,50,55,56,58,60,62,63,70,72,73,83,86,110,111,113,118,125,128,144,147,150,154,161,163,167,169,170,171,172,182],highest:[33,34,46,52,143,144,168,184,208],highli:[53,58,60,83,125,141,152,154,155,163,172,189,202],highlight:[1,28,87,111,119,121,123,127,133,146,153,178,207],highlight_max:203,hilari:117,him:164,hing:87,hint:[3,7,14,22,24,52,59,91,101,102,109,127,159,184,186],hinton:[34,170,172,202],hipaa:121,hire:[62,111,113,121,190],hire_d:195,hist2d:[118,194],hist:[1,18,22,29,40,43,52,55,58,59,62,64,65,66,67,72,118,160,194],hist_cent:40,hist_df:43,histogram:[1,4,18,40,44,52,55,58,60,64,65,66,83,117,125],histor:[111,117,155,178,182],histori:[29,30,31,32,33,34,35,36,37,38,41,43,44,49,50,52,53,68,76,110,111,136,149,150],history_df:[38,68],history_t:37,history_va:31,histplot:[75,89],hit:[7,141],hitchhik:153,hither:187,hline:161,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:65,ho:[65,163],hoang:143,hobbi:102,hoc:153,holbrook:68,hold:[31,35,37,56,70,87,127,131,140,160,168,178,188],holder:[101,102,187,188,189],hole:[40,119],holidai:182,hollow:184,home:[56,83,173,187,203],homeless:117,homepag:151,hometown:188,homogen:[7,128,161,172,195],homogeneity_scor:172,honei:13,honestli:121,hong:209,honor:130,hood:[101,163,164,179,204],hope:[26,60,62,85,129,143,165,170,175,189,211],hopefulli:[46,60,67,83],hopkin:[14,128,155],hoptroff:156,hor:149,horeca:168,horizon:[141,150],horizont:[14,33,57,117,128,129,144],horizontalalign:[76,92,172,202],horribl:[188,210],hors:136,horseradish:175,hospit:155,host:[53,108,111,115,122,152,153,190,191],hostel:161,hostel_data:161,hostel_factor:161,hot:[1,7,44,52,57,60,115,147,149,154,178,182,193],hotel:168,hour:[34,41,55,58,62,109,110,111,113,122,154,173,190,203,204],hour_df:41,hourli:[41,122],hours_per_week:57,hous:[56,60,67,140,153,154,155,156,178,203],house_price_test:60,house_price_train:[60,167],household:[67,73,83],housekeep:141,housing_median_ag:[67,83],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,34,36,40,41,42,43,44,45,46,48,50,51,52,53,55,58,59,60,63,64,66,67,68,69,71,72,73,75,76,78,80,83,84,85,86,87,89,91,92,97,99,108,109,110,111,112,113,115,117,118,119,120,121,123,124,125,126,127,128,129,130,131,133,134,138,139,140,141,145,147,148,150,151,152,153,154,155,158,159,160,163,165,167,168,169,171,172,173,175,176,177,178,179,182,183,184,186,187,188,190,192,193,194,196,201,202,203,204,207,209,210],howard:42,howden:[182,183,184],howev:[1,3,7,28,30,32,34,38,40,45,50,51,52,53,56,60,62,68,72,73,84,91,110,112,121,122,123,125,126,128,130,131,133,135,137,144,145,147,148,153,154,156,161,164,166,169,170,171,172,176,178,182,184,186,187,188,189,192,202,211],hpo:154,hr:[41,62,173,195],href:[130,131,136,137,143,144,159,163,169,171,172,173,175,179,180,182,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:65,hs:[139,148],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:65,hspace:[31,142,171],hsplit:128,hstack:128,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:65,html:[3,15,31,63,64,66,67,72,92,102,122,125,129,130,131,136,137,143,144,159,162,163,167,168,169,171,172,173,175,179,180,182,184,186,187,188,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],htmlparser:3,http:[1,2,3,12,14,15,18,22,25,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,52,53,54,57,62,63,64,72,74,75,76,77,89,91,92,93,102,109,110,117,118,119,120,121,123,125,127,129,130,131,136,137,138,139,142,143,144,145,146,148,149,150,155,156,158,159,160,161,162,163,165,167,168,171,172,173,175,176,177,178,179,180,182,183,184,187,188,190,191,192,193,194,196,197,198,202,209],http_get:3,httpmessag:171,huang:[101,102],hub:[16,108,111,123,155,190],huber:[49,87,139,164],hubspot:113,hue:[55,57,58,63,66,67,70,73,75,83,89,92,118,120,158,194],hufflepuff:203,hug:42,huge:[1,70,108,140,152,178,207],human:[16,31,46,52,56,115,121,122,123,140,143,146,147,153,156,178,189,192,207],humanist:111,humbl:153,hundr:[7,139,154],hungri:[38,175],hunt:[80,91],husl:150,hutter:154,huyacli:41,hw8:65,hw:77,hxfbpxg4aih7u:65,hybrid:[87,108,150,191],hydroxychloroquin:1,hype:[41,121],hypeparamet:34,hyper:[32,66,143,145,164,172,201,202],hyperparam:60,hyperparamat:[55,66],hyperparamet:[34,42,50,53,55,56,58,59,60,63,64,66,67,69,71,75,89,93,109,140,143,150,155,164,168,169,171,178],hyperplan:[56,169,200],hypert:196,hypertens:110,hyphen:145,hypothes:[18,123,125],hypothesi:[29,69,71,146,168,182],hyungjin:148,i1:128,i4:[128,131,195],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:65,i8:128,i:[1,3,8,14,16,18,29,30,31,32,33,34,35,38,39,41,42,43,44,45,46,47,48,49,55,56,57,58,60,61,62,63,64,65,66,70,72,73,75,76,77,83,84,85,86,87,89,90,91,101,102,109,110,111,112,113,115,117,123,125,128,129,130,131,135,136,138,139,140,141,142,143,144,145,146,147,148,149,150,152,155,159,160,161,163,164,165,168,169,170,171,172,179,182,188,195,201,202,203,204,205,206,208,209,210,211],i_1:128,i_:[14,161],i_batch:39,i_i:161,i_imag:39,i_j:168,i_loss:36,i_m:128,i_t:[14,145],i_x:145,iaa:[108,153,191],iac:153,iam:152,ian:[29,56,87,142,180,198],iat:130,ibm:[111,121,152,153,190,196],ic:[64,149],iclr:154,icml:164,icon:[7,51,110,119,126,186,189],id3:56,id:[7,12,15,31,42,60,62,63,69,70,71,72,73,91,109,127,129,133,146,147,173,187,196],id_out:143,id_tensor:143,id_var:70,idea:[7,31,38,41,42,45,51,55,56,58,59,64,66,67,68,72,73,75,89,92,111,113,125,126,128,143,146,147,151,154,155,158,160,164,165,166,168,169,171,172,175,176,178,179,182,183,187,193,203,204,208],ideal:[33,60,83,86,113,123,125,146,154,160,164,167,169,170,182,183,187,189,209],ident:[33,42,46,56,121,128,129,131,141,143,144,147,149,152,153,163,188,196,210],identif:[42,87,141,152,169],identifi:[6,11,16,23,28,29,33,34,38,51,55,56,58,62,63,65,68,85,87,110,111,113,115,116,121,122,123,125,126,127,131,133,140,143,146,147,148,152,154,155,164,172,178,186,189,190,192,193,194,195,196,197,202,207],idiom:146,idl:[38,110,128],idx1:43,idx2:43,idx:[31,61,142,171],ie:15,ieee:[7,126],ifram:[125,129,130,131,136,143,144,159,162,163,169,171,172,175,179,180,182,184,187],ig:56,igam:41,iglob:31,ignit:196,ignor:[38,42,43,55,56,57,58,59,60,62,63,64,65,70,73,75,89,91,101,113,118,127,129,143,144,149,150,163,164,165,167,171,172,179],ignore_index:[45,129,195],ih:145,ihm:155,ii:[18,39,65],iii:31,ij:[18,125],iljxqfj1omejrnpbca8g:65,ill:167,illinoi:195,illumin:[43,143,148],illus:[121,192],illustr:[3,8,24,29,38,56,65,111,121,127,131,135,136,138,139,143,148,150,160,163,164,169,170,187,192,201],iloc:[1,14,31,37,43,47,51,52,53,56,60,70,91,93,130,131,161,163,176,179,195,204,205,206],ilsvrc:143,im:[139,148],im_batch_s:39,im_shap:139,imag:[3,28,31,35,36,37,38,40,43,44,45,48,52,57,65,66,70,75,76,77,84,87,89,91,93,101,111,113,116,117,122,123,128,135,136,137,138,139,140,141,142,146,147,148,149,154,156,158,160,164,167,168,172,175,178,182,183,189,190,192,194,198,207,208],image_:39,image_arrai:[39,136],image_batch:[33,198],image_count:33,image_data:76,image_data_format:144,image_dataset_from_directori:[33,38,139],image_dict:136,image_dictionari:136,image_ev:138,image_h:31,image_height:136,image_label:44,image_label_overlai:40,image_loss:36,image_loss_track:36,image_of_8:76,image_path:137,image_s:[33,36,38,39,139,143,208],image_segmentation_diagram:171,image_shap:148,image_w:31,image_widget:77,image_width:136,imageclassificationbas:34,imagedatagener:[32,35],imagefold:[34,39],imageio:[31,136,137,138,147],imagenet:[137,138,156],imagenet_mean:77,imagenum:31,imageri:[43,113],images_path:171,imagin:[56,122,133,154,158,164,170,173,175,186,196,203],imaginari:[18,101,187,188,210],imaginary_part:187,imbal:[58,75,89,152,154,175,178,183],imbalanc:[63,64,65,159,164],imbalnc:65,imblearn:175,imdb:[121,192],img:[31,33,34,38,39,43,45,46,76,77,135,137,139,142,148],img_arrai:33,img_batch:137,img_class:76,img_color:76,img_grei:76,img_height:33,img_in:77,img_label:43,img_nois:77,img_path:43,img_pool:144,img_resc:76,img_shift:77,img_to_arrai:[33,76],img_width:33,imgplot:39,imgs_numpi:142,imgur:77,immedi:[7,48,51,56,83,113,126,141,164,173,184,187],immens:[56,131],immut:[48,188,189,210,211],imp_coef:72,impact:[28,33,46,55,58,60,111,113,121,141,146,147,154,156,182,190,201],impair:[56,117],implaus:198,implement:[0,16,31,33,34,38,51,52,55,56,57,58,59,60,63,64,65,67,75,83,89,91,101,105,106,113,121,128,131,139,142,143,144,145,149,153,154,156,163,167,169,171,172,178,187,188,195,210],implemet:172,impli:[22,50,52,53,54,65,70,101,102,109,146,149,153,154,158,172,178,183,187,188,189],implic:[16,121,149],implicit:[121,153,163,192],implicitli:[65,141,187],imporov:72,import_graph_def:77,importance_typ:[72,167,168],importantli:[110,131,191],importerror:[187,189],impos:[163,170],imposs:[123,178,207],imprecis:146,impress:[3,44,58,66,113],improb:125,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,34,38,42,44,46,48,52,53,55,56,60,65,70,72,75,78,80,81,84,85,86,89,94,97,98,99,100,102,109,111,113,121,123,126,139,141,143,145,147,151,152,153,155,156,160,163,164,167,168,169,171,172,177,178,179,182,183,192,202,207],impur:[56,161,163],imput:[7,22,57,60,62,67,72,75,83,89,167,178,207],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,39,43,45,171],imsav:76,imshap:148,imshow:[1,3,29,30,31,33,34,35,36,38,39,40,43,44,45,46,56,76,91,93,135,136,139,142,144,171,172,198,202,208],imura:186,imwrit:[136,138],in_channel:[31,143],in_clust:171,in_plan:143,inabl:140,inaccur:[7,51,111,121,126,141,150,164,167,190],inaccuraci:[51,126],inact:[33,110],inadequ:65,inappropri:123,inargu:44,inbound:42,inbox:146,inc:156,incent:121,incentiv:121,incept:136,inception5h:77,inception_v3:137,inceptionv3:137,inch:[182,183,184],incid:28,incident:170,includ:[1,3,4,8,14,31,32,33,38,42,44,46,55,57,60,62,70,73,83,84,85,87,92,101,102,108,109,110,111,114,117,118,120,121,123,125,128,129,130,131,140,143,144,148,150,151,152,153,154,155,156,157,159,161,164,167,170,171,173,175,176,178,182,183,184,185,186,187,189,190,191,195,203,204,207,208,209],include_top:[137,144],inclus:[111,121,130,141,153,154,192],incom:[56,57,73,83,121,154,161,178,188,192],income_evalu:57,incompar:117,incompat:128,incomplet:[4,51,78,99,121,122,126,141],incomprehens:123,inconsist:[38,126,193],incorpor:[56,129,144,153,155],incorrect:[15,46,50,52,53,57,65,75,83,89,142,160,164,211],incorrectli:[44,58,63,65,75,89,152,154,164,177],increa:44,increas:[14,32,33,34,37,38,43,44,50,52,53,55,58,59,62,63,65,68,70,73,75,85,89,91,110,113,115,120,123,125,128,135,143,148,152,153,154,156,160,163,164,168,169,170,171,172,178,189,191,200,202,211],increasingli:[137,150,154,156],incred:[44,45,55,178],increment:[53,55,70,84,101,102,128,141,152,153,154,164,165,171,187],increment_count:187,increment_funct:187,incur:[110,191],ind1:128,ind2:128,ind:[128,161,195],ind_1:128,ind_2:128,ind_n:128,inde:[7,18,53,120,128,164,165,171,172,202],indefinit:149,indent:[93,129,187],independ:[0,60,85,86,125,128,139,141,149,153,160,163,168,172,183],index:[1,7,14,24,31,34,36,39,41,43,44,45,48,54,56,57,58,60,62,63,65,68,72,73,83,85,92,101,119,122,126,136,143,144,145,150,158,159,163,169,171,172,173,176,177,179,182,186,187,188,196,208,210],index_col:[51,60,150],index_nam:14,index_of_8:76,indexengin:131,indexerror:[69,71,128,130,131,189],indexin:[22,24],indexingerror:130,indi:158,india:[174,175],indian:[74,175,176,177],indian_df:175,indian_ingredient_df:175,indic:[1,7,14,16,22,46,51,52,53,60,62,70,73,85,86,87,91,101,108,109,111,121,122,125,126,129,130,131,133,141,143,144,145,146,159,160,161,170,172,178,182,184,187,188,189,195,207,208,210],indirect:128,indirectli:[55,187,188,208],indistinguish:169,individu:[7,14,40,46,55,56,60,62,68,84,111,113,121,126,127,139,147,153,154,156,160,163,178,179,187,188,190,195,207,210],induc:145,induct:[154,158],industri:[115,121,146,150,153,156,164,178,189,207],indx:39,ineffici:[110,128,164,168,188],inequ:171,inertia:[159,172,202],inertia_:[159,171,172,202],inertia_vs_k_plot:171,inexhaust:143,inf:[14,50,61,92],infect:[1,8,14,128,155],infected_dataset_url:14,infected_df:14,infecti:[14,155],infer:[9,33,42,109,110,143,144,145,152,153,154,155,156,158,173,178,180,195,207],infer_sampl:145,inference_config:[9,109],inferenceconfig:[9,109],inferior:56,infinispan:196,infinit:[14,62,113,141,164,187,188],infinitegraph:196,infinitydb:196,infix:128,inflection_idx:155,inflection_r:155,inflict:117,influenc:[17,58,60,84,87,115,121,141,159,173,177,178,188,193],influenti:121,info:[14,41,44,55,57,58,60,65,66,73,75,83,89,93,126,144,158,168,173,175,182,183,196],infocli:41,infograph:[113,117,123,158,159,175,182,183,184],inform:[1,4,12,14,15,17,22,23,24,25,31,41,44,45,46,48,51,53,55,56,58,59,60,62,63,64,73,75,83,86,89,102,108,109,110,111,112,113,115,118,119,121,122,123,125,127,128,129,131,133,140,141,143,144,145,146,147,148,150,152,154,155,156,158,161,163,164,168,169,170,171,172,178,182,186,187,188,190,192,193,196,198,209],infrastructur:[108,115,155,191],infti:[125,139,141,160],infus:177,ingest:153,ingrain:146,ingredi:[174,176],ingredient_df:175,inher:[70,144,146,172],inherit:195,init:[30,62,90,101,159,171,179,187,204,205],init_imag:138,init_lr:139,init_model:77,init_s:171,init_tim:139,initi:[0,3,15,34,37,42,45,48,53,55,56,60,61,69,70,71,73,77,84,85,91,101,102,108,111,121,122,128,135,138,141,143,144,145,148,152,154,156,159,163,164,167,172,178,182,184,187,188,190,195,202,209,210],initial_eda:57,initial_nois:36,initial_prob:165,initial_st:145,initiali:34,initialis:38,initialise_graph:141,inject:129,inland:[67,83],inlin:[54,55,57,58,59,61,63,64,65,66,67,68,72,83,84,91,92,93,142,147,163,171,173,200,202,204,205,206,208],inlinebackend:[56,72,150,160,163,172,202],inner:[41,84,101,129,130,131,133,150,187,196],innermost:[187,209],innov:[60,108,111,121,191],inordin:164,inplac:[1,7,14,22,30,39,41,45,51,53,56,57,60,129,147,150,167,173,175,179,183],input:[9,14,15,18,22,29,30,31,32,33,34,36,38,39,41,42,44,45,46,47,48,50,52,55,56,57,58,59,61,62,63,64,67,68,70,75,76,77,84,85,86,89,91,100,101,102,108,109,110,125,128,129,130,131,135,136,137,139,140,141,142,143,144,145,147,148,149,150,153,154,155,156,158,160,161,163,164,168,169,170,171,172,173,175,178,182,186,187,188,189,198,202,203,207,208],input_1:[36,139],input_2:[36,139],input_:45,input_data:[9,53,58,59,63,64,83,109],input_dim:[37,38,50,52,53,143,147,149,198,208],input_funct:53,input_id:42,input_imag:144,input_length:149,input_mask:144,input_proj:148,input_s:[141,144,208],input_shap:[32,33,35,38,41,43,44,46,47,49,68,76,136,141,143,144,148],input_signatur:137,input_tensor:144,input_text:102,input_unit:91,input_valu:141,input_width:36,inputlay:[36,45,142],inquir:146,inquiri:[111,118,146],insensit:[133,163,169],insert:[69,71,84,127,128,131,164,187,209,210],insertion_sort:102,insid:[0,1,3,33,34,56,66,67,68,75,84,89,125,128,131,133,135,141,143,145,147,153,165,171,173,179,188,189,203,210],insight:[11,16,55,58,60,65,66,83,84,86,108,110,111,113,118,121,123,129,151,152,190,192],inspect:[33,46,63,64,65,75,83,89,178],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,154,155,158,159,160,161,163,164,165,167,168,173,175,176,177,178,182,183,184,186,197,202,203,204,205,207,208],instabl:56,instagram:129,instal:[0,3,12,18,25,30,33,37,40,48,57,107,108,109,110,111,112,113,114,115,117,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,187,188,194,195,198,200,202,203,204,205,206,208,209],instanc:[7,31,42,51,55,56,57,58,60,65,87,92,110,111,113,126,127,128,130,140,142,143,146,148,150,153,154,156,161,163,168,170,171,178,183,188,198,207,209,210],instant:[62,119,146],instanti:[48,54,57,65,92,131,168,183,187],instantli:151,instead:[7,22,31,32,34,37,38,48,52,53,55,56,59,60,63,64,67,68,91,92,108,113,117,119,121,122,123,128,129,140,142,143,144,150,152,153,154,163,164,165,167,170,171,172,178,179,182,184,187,188,189,202,203,207,210],institut:[56,146,155],instruct:[0,56,75,89,109,110,113,117,140,186,189],instrument:[111,121,158,159,160,164,173],insuffici:[16,117],insur:121,int16:128,int32:[48,77,128,137,139,141,145,148,171],int64:[22,41,54,63,64,65,66,67,70,73,76,83,92,128,129,130,131,144,158,161,163,168,171,175,182,184,195],int64index:[173,182],int8:[62,163],int8dtyp:150,int_:125,int_featur:173,int_memori:[75,89],int_seri:7,int_shap:144,intact:22,intang:121,integ:[7,12,44,45,46,52,59,60,62,64,87,101,126,130,131,136,141,142,143,144,180,187,189,195,209,211],integer_vari:[188,210],integr:[0,65,87,108,110,111,113,121,122,123,131,139,146,152,153,155,190,191],intellectu:[121,192],intellig:[43,46,108,111,123,140,146,152,155,156,178,191,192],intellisens:94,intend:[46,87,113,117,131,146,152,153,180,187],intenion:165,intens:[56,110,143,154,172,198,202],intent:[113,117,121,146,192],intention:164,inter:[65,125,143,153],inter_nearest:76,interact:[5,7,16,29,30,85,108,109,110,113,117,123,126,131,141,146,151,152,153,164,169,182,186,187,189,191,200,203,209,211],interaction_constraint:[72,167,168],interactivesess:77,intercept:[83,84,150,179,182,204],intercept_:[83,182,204],interchang:[7,133],interconnect:147,interdisciplinari:[151,207],interest:[1,5,13,14,16,19,29,34,44,55,56,58,63,64,65,75,83,89,108,111,116,117,118,119,120,122,125,127,129,133,141,143,144,154,157,158,163,164,169,173,175,183,184,186,194,195,196,198],interestingli:[1,119,158],interfac:[16,107,110,119,122,128,189,191],interg:189,interleaf:186,intermedi:[18,30,144,147,171],intermediari:34,intern:[30,56,75,77,89,110,128,130,141,151,153,155,159,160,163,172],internet:[14,32,108,117,118,121,122,123,133,153,191],interpol:[1,31,36,56,76,142,143,144,171,175,198],interpret:[3,7,33,44,46,52,53,56,63,64,72,73,118,121,125,127,128,129,130,131,141,146,156,158,160,163,164,172,178,182,187,188,189,192,196,197,207,209,210],interquartil:60,interrelationship:113,interrupt:[110,170],intersect:[87,115,127,129,182,188],interspers:128,intersystem:196,intertwin:146,interv:[55,58,62,120,128,139,141,152,155,160,169,200],interview:164,intimid:168,intl:[56,160],intp:128,intra:[143,148,171],intric:87,intricaci:[86,113],intrins:173,intro:125,introduc:[18,29,31,33,52,56,60,72,84,85,104,113,118,123,129,139,140,141,143,144,147,148,153,154,158,164,170,187,197,198,209],introduct:[7,39,48,67,132,134,141,152,156,157,174,178,180,181,185,188,196,197,198,199,200,202,204,207,209],intuit:[56,61,75,86,89,131,140,143,164,169,178,197,202],inu:42,inv_i:41,inv_sigmoid:155,inv_yhat:41,invalid:[14,118,149,150,152,187,189],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:131,invari:[143,154],invent:164,inventori:[111,152],inventoryexampl:127,invers:[43,70,72,128,155,163],inverse_transform:[41,47,205,206],invert:[41,128],invest:[108,153],investig:[23,52,60,111,121,122,154,163,168,182,192],investor:146,invis:[121,192],invit:128,invoc:[153,187],invok:84,involv:[7,38,48,51,56,60,73,84,85,86,87,110,112,113,115,121,123,126,129,131,143,146,168,178,181,183,187,191,193,207],io:[30,31,45,76,77,110,130,131,136,138,139,144,149,150,163,173,182,197,198],ioc:153,ion:141,iot:[33,123,152,173,192],iou:[87,154],ip:65,ipykernel_15370:194,ipykernel_24432:202,ipykernel_3024:131,ipykernel_30912:209,ipykernel_3908:118,ipykernel_6984:68,ipykernel_launch:172,ipynb:[0,77,158,159,173,175,177,182,184,186,195],ipytest:[3,14,22,24,59,83,101,102],ipython:[12,22,25,30,33,40,43,61,66,70,91,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],ipywidget:[169,200],iq0d24li:172,iqr:[60,125],ir1:72,irani:56,ireland:12,iri:[7,51,66,92,126,131,161,178],iris_data:161,iris_df:[7,51,126],iris_df____:51,iris_isduplicated_df:51,iris_isnull_df:51,iris_support:66,iris_versicolor_3:66,iris_virginica:66,iris_with_drop_duplicates_on_column_df:51,iris_with_drop_duplicates_on_df:51,iris_with_dropna_1_values_on_rows_df:51,iris_with_dropna_2_values_on_rows_df:51,iris_with_dropna_on_column_df:51,iris_with_dropna_on_row_df:51,iris_with_fillna_back_df:51,iris_with_fillna_back_df____:51,iris_with_fillna_df:51,iris_with_fillna_df____:51,iris_with_fillna_forward_df:51,iris_with_fillna_forward_df____:51,iris_with_missing_value_after_fillna_back_df:51,iris_with_missing_value_after_fillna_df:51,iris_with_missing_value_after_fillna_forward_df:51,iris_with_missing_value_df:51,ironi:146,irrelev:[140,169],irrespect:[110,180],is_avail:[31,34,39],is_bool_index:130,is_cnn:31,is_empti:101,is_good_enough:102,is_hash:131,is_integ:130,is_leaf:61,is_list_like_index:130,is_marri:211,is_monotonic_increas:130,is_par:73,is_prim:101,is_scalar:130,is_uniqu:129,isabel:65,isalignedstruct:128,isalpha:188,ischoolonlin:193,isclos:101,isdecim:188,isdir:[43,136],isfil:[77,136,145,149],ish:[38,72],isinst:[14,34,57,101,102,130,138,143,144,148,187,188,210],island:[67,83],isn:[43,45,50,53,131,161,170,173,187],isna:[14,57,62,112],isnan:[51,128],isnt:60,isnul:[7,22,51,52,53,54,55,57,58,59,60,63,64,65,67,70,75,83,89,112,126,158,168,184,195],iso2:155,iso3:155,iso:152,isol:[7,84,126,153,156],iss:29,issu:[0,7,28,44,50,51,55,56,60,63,64,72,75,89,113,121,126,130,145,147,151,153,156,159,164,169,171,192],issubclass:187,issubset:14,isupp:188,item:[31,34,39,42,48,65,73,101,120,121,127,128,131,136,145,146,154,158,177,183,184,186,187,189,195,209,210,211],item_from_zerodim:130,items:[128,195],iter:[31,33,34,37,39,42,53,61,67,69,71,75,77,84,85,89,101,102,109,110,129,139,141,142,153,154,155,159,164,166,167,168,171,178,179,183,187,188,189,203,209,210],iter_cont:77,iter_count:142,iter_n:77,iterate_minibatch:91,iterated_numb:[187,209],iteration_count:145,iterrow:150,ith:[61,168],its:[4,6,7,12,18,22,26,28,29,31,33,34,36,43,44,45,46,48,53,55,56,60,65,67,68,73,75,83,84,85,86,89,94,102,108,110,111,112,115,117,118,120,121,122,123,126,127,128,129,130,133,135,139,140,141,143,144,145,146,147,150,152,153,154,156,158,159,160,161,163,164,165,168,169,170,171,172,173,175,177,178,179,180,183,184,186,187,188,189,190,193,194,195,198,200,202,207,210],itself:[7,14,56,60,91,117,123,127,133,152,153,154,155,163,164,172,173,178,183,187,188,202,207],itslek:60,iucn:118,ium:[188,210],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:65,ix2vocab:145,ix:[136,145],ix_:128,ix_cutoff:149,ix_to_vocab_dict:145,j7z80yoo:65,j:[1,32,34,35,39,41,53,56,62,101,102,117,128,135,141,142,143,154,160,161,163,164,168,171,172,188,189,202,205,206,210,211],jack:[188,210],jade:196,jag:[118,163],jake:[63,64,66,67,195],jakevdp:[169,200],jam:[38,123],jame:[125,209],jane:102,januari:[1,17],japan:[133,196],japanes:[175,176,177],japanese_df:175,japanese_ingredient_df:175,jar:153,jargon:[163,177],jasmin:25,java:153,javascript:[122,127,155,173,189,211],jbase:196,jci5e2ng6r4:162,jcodella:192,jean:[44,48,89,142,146],jeen:146,jehx7a7:65,jellek:107,jello:[188,210],jen:[111,159,175,182,183,190],jenna:116,jeremi:42,jerom:[163,164],jerri:[101,102],jesucristo:39,jetbrain:41,jez:153,jgzcjvracubdwr59:65,jha:147,jian:148,jim:[113,123],jitter:164,jlwfklkcd5a5zdyvlszj0s5qme6nbl:65,joaquin:154,job:[3,31,41,65,72,93,108,110,113,122,123,147,153,154,158,163,176,178,188,207,210],joe:189,john:[14,101,102,128,155,187,188,189,209,210],johnson:102,joi:[111,190],join:[12,29,30,31,34,38,39,43,46,50,51,52,53,57,62,72,73,77,126,136,138,140,145,149,150,151,161,171,172,175,182,187,188,202,210],join_ax:195,join_index:129,joint:139,jointli:144,jointplot:[73,158],joke:149,joli:56,jone:164,journal:56,journei:[86,111,123,151],jovian:34,jp:14,jpeg:[31,41,77],jpg:[31,33,38,41,45,66,77,137,138],js:[29,151,155,173,187,211],json:[6,9,93,109,117,122,123,173],judgment:160,jul:[111,190],juli:[17,123,154],jump:[93,109,113,120,128,171,179,187],jun:[110,211],jungl:158,junho:143,jupit:211,jupyt:[0,12,18,25,63,64,66,67,72,75,89,92,93,109,110,125,126,129,130,131,149,150,151,163,167,168,169,171,176,182,183,184,186,187,189,195,202,203,204,205,208,209],jupyterlab:[0,169],jupyterlab_myst:[30,33,40,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],juri:160,jurong:149,juror:160,just:[0,1,3,7,9,14,18,28,29,31,33,42,44,45,48,49,50,51,55,56,61,62,63,65,66,68,72,84,91,102,108,109,110,113,118,119,121,123,125,126,128,129,130,131,133,140,143,144,146,147,148,150,153,155,156,158,161,163,164,167,168,169,170,171,172,175,178,179,182,184,187,188,189,202,203,204,207,210],justifi:[53,113,154,173],jython:[188,210],k0:129,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:65,k1:129,k2:129,k3:129,k4:129,k5:129,k5izpn8apjgrfovv82wjhtletgw:65,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:65,k8:153,k:[3,56,73,92,93,125,128,130,131,136,140,141,143,145,148,157,158,160,164,166,169,178,183,200,208],k_d:141,k_i:141,k_list:92,k_p:141,k_size:39,kaggl:[1,4,10,20,25,30,31,32,34,37,41,43,54,57,62,75,83,89,92,93,110,112,122,128,139,140,143,150,164,172,178,183,198,202,203,204,205,207,208],kaim:[143,148],kam:163,kaneoh:173,kapoor:[38,73],karnika:[38,73],karpathi:[163,169],karr:182,kashnitski:[56,160,161,163,164,202],kb:[29,38,41,45,56,66,73,126,158,168,173,182],kdd:152,kde:[22,60,62,73,118,158,194],kdeplot:[118,194],kdr:41,keep:[7,22,33,34,38,50,52,67,69,71,73,75,83,89,100,108,110,115,126,127,128,129,130,143,147,150,154,159,163,169,170,171,178,179,182,183,184,187],keep_dim:148,keepdim:[91,195],kei:[3,7,9,41,45,53,76,85,86,102,108,109,110,111,113,121,127,128,129,130,131,133,136,139,141,145,146,148,149,152,153,154,155,176,187,189,190,195,196,203,209,210,211],kelbowvisu:73,kept:[7,126,144,146,156],kera:[29,30,31,32,36,37,38,41,44,45,46,47,48,49,50,52,53,55,68,76,87,135,136,137,139,141,142,143,144,145,147,148,149,154,170,198],kernel1x1:143,kernel3x3:143,kernel:[31,32,34,62,66,67,143,144,150,158,168,177,182,199],kernel_initi:[36,144,147,148],kernel_s:[29,30,31,32,34,35,36,38,39,43,143,144],kernel_valu:143,kernelid:143,keskar:154,key_cal:129,key_dim:[139,143],key_is_scalar:131,key_oth:129,keyerror:[101,130,131,145,189],keys_list:101,keyword:[3,102,109,122,123,127,128,129,133,146,170,172,188,189,196,209,210],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:65,kfold:[62,65,70],kfold_scor:62,kfoldcv:70,khale:156,khg:148,kid:73,kidhom:73,kill:[146,189],killer:51,kilobyt:[59,64,178],kim:[30,143,148],kind:[1,7,15,22,30,31,43,48,50,52,53,54,55,56,57,58,60,62,65,66,67,68,70,72,73,75,89,99,101,102,110,116,117,118,120,126,128,130,131,135,140,145,150,151,153,158,164,168,169,170,175,176,178,179,183,184,186,187,188,189,194,198,207],kinesi:152,kingdom:12,kingma:31,kingpin:117,kit:[68,107],kitchen:161,kitchenabvgr:60,kitchenqu:60,kiwi:[43,188,210],kl:180,kld:31,km:[152,159],kmean:[73,159,171,172,202],kmeans_:171,kmeans__n_clust:171,kmeans_algorithm_plot:171,kmeans_bad:171,kmeans_good:171,kmeans_iter1:171,kmeans_iter2:171,kmeans_iter3:171,kmeans_k3:171,kmeans_k8:171,kmeans_per_k:171,kmeans_rnd_10_init:171,kmeans_rnd_init1:171,kmeans_rnd_init2:171,kmeans_variability_plot:171,kmeanskmean:171,kneighbor:[171,176,177],kneighborsclassifi:[62,92,93,171,177],kneighborsclassifierkneighborsclassifi:[92,171],knife:203,knight:[187,188,210],knights_nam:187,knights_properti:187,knn:[56,62,135,163,171,177,178],know:[7,17,18,23,27,34,44,48,50,51,55,56,58,59,62,64,65,75,83,89,91,93,108,110,112,113,121,123,125,126,127,131,133,139,140,144,147,150,154,159,164,168,170,172,178,179,187,188,189,204,207,210],knowledg:[7,31,46,56,60,65,78,85,108,110,115,123,125,139,141,146,154,155,156,164,167,172,178,182,191,192],known:[32,33,56,63,64,65,75,84,86,89,115,121,122,123,125,128,131,140,144,146,147,148,150,151,152,153,154,155,160,164,169,172,178,180,187,188,207],kogwl43x3ogqzqjpuoe8b:65,kool_kheart:41,korbut:154,korean:[175,176,177],korean_df:175,korean_ingredient_df:175,kosaciec_szczecinkowaty_iris_setosa:66,kotthoff:154,kpash:65,kqxjp1r14yggzhpqx_gpx6580000gn:194,kriz:[136,143],krizhevski:34,ks:160,ksv:70,kubeflow:153,kubernet:153,kullback:139,kumar:147,kuqvjmwrkag9whlqdvrh:65,kurtosi:65,kw:77,kwangnam:139,kwarg:[36,48,118,129,131,144,148,187,194,209],l1:[69,71,87,103,135,154,180],l1regular:[69,71],l2:[42,69,71,87,103,154,169,180],l2_leaf_reg:60,l2_loss:138,l2regular:[69,71],l4lsxqfk:65,l9dkgf1pchhmpqsobc9eb:65,l:[56,61,87,91,125,129,135,138,141,148,149,163,164,165,168,180,183,188,195,196],l_1:[72,164],l_2:[72,164],l_:[87,164],l_left:56,l_p:125,l_q:164,l_right:56,la:[146,149],lab:[0,43,44,48,64,66,67,75,89,111,190],label2rgb:40,label:[1,7,15,22,29,30,31,32,33,34,35,38,39,40,41,42,43,44,45,46,47,50,51,52,53,55,56,58,59,62,63,64,65,67,70,72,73,75,83,84,85,87,89,91,93,109,110,117,118,119,120,127,129,136,141,143,144,146,147,149,154,155,158,159,160,163,168,169,171,172,173,175,176,177,182,183,189,194,195,197,198,202,204,205,206],label_batch:33,label_column_nam:[9,109],label_enc:[55,58,63],label_encod:[22,58,62],label_logit:148,label_mod:[38,139],labelbottom:171,labeled_coin:40,labelencod:[41,55,58,62,63,70,73,92,159,173,183],labelleft:171,labels:[68,150,171],labels_:[159,171,172],labels_batch:33,labels_df:175,labels_fil:136,labelweight:[68,150],labl:3,labor:154,labori:[7,51,126],lachin:110,lack:[13,26,28,141,154,155,156,164,187],lackland:173,laclo:117,ladi:[117,158],ladybug:171,lag:41,lag_1:150,lai:[113,144],laid:113,lake:[108,123,152,192],laken:53,lamb:187,lambda:[1,14,22,31,32,33,36,38,41,49,52,60,62,72,129,130,131,145,155,168,182,188,201,209,210],lambda_i:172,lambda_l1:60,lambda_l2:60,lambdamart:164,lamda:[69,71],land:[60,152],landcontour:72,landmark:121,landscap:156,lang:[15,41,129,130,131],langua:146,languag:[1,22,42,46,48,50,52,53,54,65,123,127,128,131,133,137,140,149,151,153,154,178,187,188,189,195,196,209,210,211],laplacian:164,lar:[149,154],larg:[1,7,11,30,31,33,42,43,45,50,51,54,55,56,57,60,65,66,67,68,69,71,72,80,87,108,110,111,112,113,115,121,123,126,127,128,129,131,133,135,140,143,145,146,150,152,153,154,156,158,160,161,163,164,167,168,169,170,171,172,177,178,182,188,191,192,195,198,200,202,203,210],larger:[14,29,53,65,84,87,101,110,121,128,135,139,154,164,167,183,188,195,197],largest:[53,65,108,128,143,172],larxel:110,laser:113,laskoski:157,lasso:[72,87,164,170,182],lasso_pr:72,lasso_sklearn:[69,71],lassocv:72,lassolarscv:72,lassoregress:[69,71],last:[7,8,14,29,32,33,40,41,42,43,44,46,48,49,50,52,55,58,61,66,68,73,75,89,91,92,102,113,121,123,126,128,129,130,131,136,140,144,150,152,153,154,159,164,170,175,176,178,184,187,188,192,195,207,208,209,210],last_index:188,last_nam:[102,209,211],last_new_job:62,last_stat:145,last_tl:37,lastli:[32,38,50,60,73,113],lastnam:189,lastnewjob:62,lat:[14,155,203],late:117,latenc:[143,150,153,156],latent:[29,31,38,135,139,154],latent_dim:[29,30,38],latent_vec:31,later:[7,18,33,39,44,45,46,48,52,54,56,59,60,65,73,91,92,113,115,121,123,125,126,131,133,140,141,147,150,154,167,168,171,178,186,187,188,189,204,207,211],latest:[110,136,140,153,155],latest_iter:203,latin1:136,latin:53,latitud:[67,83,173],latter:[44,121,123,128,139,140,143,154,155,160,161,173,176,182,183],launch:[16,110,127,153,156,199],lavend:150,lavenderblush:150,law:[22,50,52,53,54,111,115,121,190],layer:[29,30,31,33,34,35,36,37,38,41,43,44,45,47,48,49,50,53,68,76,77,117,129,135,136,137,138,139,141,142,143,144,145,147,148,149,154,168,170,198],layer_1:135,layer_2:135,layer_activ:[91,137],layer_i:91,layer_input:91,layer_nam:144,layer_num:77,layer_regist:148,layernorm1:143,layernorm2:143,layernorm:143,layout:[128,141],lbfg:[171,176],lc:[70,118,194],ldot:[164,165],le:[44,70,73,92,117,125,159,197],lea:141,lead:[53,56,65,70,84,113,121,123,125,128,129,130,141,150,152,153,156,159,160,161,167,170,187,192,195],lead_tim:150,leader:156,leaderboard:72,leaf:[56,60,163,168],leagu:125,leak:[63,121,142,172],leakag:[60,72,178],leaki:[142,147],leaky_re_lu:38,leaky_re_lu_1:38,leaky_re_lu_2:38,leaky_re_lu_3:38,leaky_re_lu_4:38,leaky_relu:142,leakyrelu:[31,38,39,140,142],lean:154,lear:167,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,35,37,39,40,41,42,43,44,45,47,49,51,52,53,54,55,57,58,59,60,61,63,64,66,67,68,72,75,78,80,84,85,86,87,89,91,99,101,102,107,108,109,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,136,137,138,139,142,143,144,145,146,147,148,149,152,153,155,158,159,160,161,163,164,165,166,167,168,169,174,177,181,183,187,188,189,192,194,195,196,197,198,199,200,201,204,205,206,208,209,211],learn_curv:70,learnabl:[32,91,143,154],learned_paramet:171,learner:[60,62,87,165,166,168],learning_curv:70,learning_r:[36,37,42,53,55,60,62,69,71,72,84,85,90,91,135,136,138,139,141,142,145,149,168,179,204,205],learningrateschedul:[32,139],learnpython:188,learnt:[18,60,63,70,85,144,179],least:[4,8,11,13,16,28,43,56,57,65,118,121,123,125,128,130,150,154,161,164,169,170,171,182,183,187,188,194],leav:[55,56,58,68,72,75,84,89,110,113,119,123,131,146,160,161,163,168,173,184,189,194,211],lectur:[92,125,152,164],led:64,lee:[7,116,178],leed:56,leff:152,left:[1,7,31,32,34,44,48,56,60,61,62,84,86,93,101,110,112,115,118,127,128,129,130,131,135,136,141,144,147,149,160,161,163,164,165,169,171,178,179,183,187,188,193,200,203],left_column:203,left_i:161,left_idx:61,left_index:[41,129],left_on:129,left_output:141,left_shifted_imag:93,leftarrow:164,legaci:110,legal:[42,121,187],legend:[22,29,31,32,33,34,35,37,39,41,47,50,52,53,56,57,73,84,85,91,117,118,120,136,144,149,150,160,161,163,171,172,194,202,205,206],legibl:160,legisl:117,legitim:65,leibler:139,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:65,lemmat:146,len:[1,14,18,22,31,33,34,37,39,41,43,44,45,46,47,49,50,52,53,55,57,58,59,60,61,62,63,64,65,66,67,70,73,75,77,83,89,91,101,102,129,130,131,136,137,138,139,141,143,144,145,148,149,150,160,171,177,179,187,188,195,204,205,206,208,209,210],len_axi:130,lend:[156,183],lenet:143,length:[3,8,14,31,46,48,51,56,66,70,92,102,117,118,123,125,126,128,130,131,140,145,150,158,159,160,161,172,179,185,187,188,194,202,210],lenovo:68,leo:[160,161,163],lepiota:119,leq:[56,87,128,164,172],leqq:139,less:[1,6,7,8,18,26,29,31,33,34,38,43,44,46,55,56,58,60,62,65,72,86,101,108,110,113,118,120,121,127,128,140,145,152,153,154,158,160,163,164,167,168,170,171,172,178,184,187,188,192,195,209,210],less_equ:128,lesson:[60,68,81,145,150,172,182,183,184],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,34,35,38,42,44,45,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,68,72,73,75,83,85,86,89,91,92,95,105,106,108,109,111,112,113,115,117,118,119,120,121,123,125,126,127,128,129,130,131,133,135,139,140,143,144,145,146,147,149,150,151,154,155,156,157,158,159,160,161,163,164,165,168,170,171,172,173,174,175,176,177,178,182,183,184,185,186,187,189,190,192,193,195,196,202,203,204,207,208,210],lett:101,letter:[7,102,109,117,121,123,126,129,133,173,187,188,210],level:[7,46,48,50,52,60,63,64,65,73,110,121,125,128,129,139,140,143,146,147,153,154,156,158,163,164,168,169,178,187,189,195,200,204,207,208,211],leverag:[0,46,55,60,61,108,146,151,152,153,154,156,173,175,176,177,184],lexsort:128,lfw:31,lfw_attribut:31,lg:183,lgbm:60,lgbmregressor:60,lh:61,lhs_cnt:61,lhs_std:61,lhs_sum2:61,lhs_sum:61,li:[34,50,56,117,172,209],liabil:[101,102,187,188,189],liabl:[101,102,187,188,189],liaison:117,lib:[30,37,38,63,92,118,129,130,131,149,150,172,176,183,187,195,202,209],liblinear:176,librari:[0,1,3,7,8,18,33,34,37,38,43,45,46,50,51,52,53,62,81,83,85,86,95,110,112,117,118,119,120,126,127,128,146,147,151,154,156,158,160,161,163,164,173,176,177,182,183,184,185,189,194,195,198,203],licenc:[63,169,200],licens:[22,46,50,52,53,54,92,93,101,102,110,154,187,188,189,202,203,204,205,208],lidiya:211,lie:[56,117,125,172],lieu:164,life:[11,18,35,56,65,66,110,111,115,121,123,125,128,158,171,178,187,190,207],lifecycl:[17,23,109,111,112,153,155,156,199],lifetim:164,lift:115,light:[43,55,73,123,143,146,173,203,211],lightbgm:60,lightcor:29,lighter:[111,190],lightgbm:[55,165],lightgbm_search:60,lightgrai:1,lightn:168,lightweight:153,like:[7,11,14,17,18,23,28,30,31,33,34,35,36,38,42,44,46,48,51,53,55,56,58,59,60,61,62,63,64,65,66,67,68,72,75,83,84,85,89,91,108,109,111,112,115,117,118,121,122,123,125,126,127,128,129,130,133,136,138,140,143,145,146,147,149,150,151,152,153,154,155,158,159,160,161,163,164,167,168,170,171,172,173,175,176,178,182,183,184,186,187,188,189,190,193,195,196,198,203,204,207,208,209,210,211],likehood:164,likelihood:[113,139,169,172,175,180,183],likewis:[35,46,128],lili:24,limit:[7,14,16,22,28,31,50,52,53,54,56,62,65,75,83,85,86,89,101,102,110,115,121,127,128,131,141,145,147,148,152,154,155,160,161,164,168,178,187,188,189,210],limits_:[56,171],limits_c:172,limits_k:[56,172],limousin:[17,23],lin_pr:66,lin_reg:[182,204],lin_reg_2:204,lin_svc:66,lin_svr:67,linalg:[145,171],line2d:[53,76,172,182],line:[1,14,18,31,33,36,46,50,53,55,56,58,65,66,67,76,85,86,91,110,117,118,121,128,129,130,131,137,141,142,150,158,164,169,171,172,173,175,177,183,184,186,187,188,189,195,197,204,208,210,211],line_chart:203,line_kw:60,lineag:[121,155,192],linear:[18,31,34,37,45,46,47,50,55,56,57,58,60,61,62,66,67,69,71,75,78,84,87,89,90,91,93,128,135,136,140,141,143,146,147,154,159,163,164,168,171,172,175,176,178,180,184,185,186,187,188,199,202,207,208],linear_beta_schedul:139,linear_model:[55,62,69,70,71,72,75,83,89,90,146,150,171,173,176,177,179,182,183,186,204,205,206],linear_reg:[69,71],linear_reward_00011:141,linear_reward_00012:141,linear_reward_00013:141,linear_reward_00014:141,linear_reward_00015:141,linear_reward_00016:141,linear_reward_00017:141,linear_reward_00018:141,linear_reward_00019:141,linear_reward_00020:141,linear_reward_00021:141,linear_reward_00022:141,linear_reward_00023:141,linear_reward_00024:141,linear_reward_:141,linear_scor:65,linear_svc1000:65,linear_svc100:65,linear_svc:65,linearli:[33,65,92,128,139,154,169],linearregress:[83,150,179,182,186,204],linearregressionlinearregress:[182,186],linearregressionwithsgd:179,linearsvc:[65,66],linearsvclinearsvc:66,linearsvr:67,linearsvrlinearsvr:67,lineplot2:[120,194],lineplot:[55,58,62,70,120,159,183,194],liner:182,linestyl:[14,18,32,86,169,171,200],linewidth:[40,41,56,60,65,86,118,150,169,171,186,194,200],linguist:183,link:[1,28,29,31,67,110,113,115,117,123,130,131,141,144,146,154,155,158,164,165,168,173,186,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],linkag:[111,171,172],linnerud:97,linspac:[36,56,84,91,128,139,163,169,171,200,204],linux:[127,143],lisa:195,lisens:[69,71,73],lisheng:174,list1:101,list2:101,list3:101,list4:101,list5:101,list:[1,3,7,12,14,18,28,31,33,34,37,41,43,44,46,48,49,50,54,55,56,57,58,59,60,63,64,65,67,69,70,71,73,77,80,83,91,92,99,109,118,119,120,123,125,126,127,128,129,130,133,135,141,143,144,148,149,153,154,156,161,163,165,172,173,177,184,194,195,196],list_i:35,list_of_char:[188,210],list_of_coordin:128,list_of_numb:[188,210],listcomp:[129,188,210],listdir:[34,39,41,43],listedcolormap:[73,205,206],listen:[0,154,188],listlik:131,listnod:103,lite:173,liter:[146,187,209],literari:111,litig:146,litt:158,littl:[1,7,14,30,44,46,52,69,71,75,77,80,83,89,115,117,120,126,131,143,159,161,164,165,171,175,177,182,184,186,187,204],live:[53,56,73,108,110,111,121,122,146,149,150,151,158,159,173,178,199],living_with:73,ljust:188,lkei:129,ll:[16,22,28,29,33,34,42,45,46,50,52,53,56,68,70,72,80,86,91,108,111,112,114,115,117,121,122,127,128,129,130,131,133,134,139,144,146,147,150,152,154,159,160,161,164,165,167,170,172,173,175,176,184,185,186,187,188,195,196,210],llabel:129,llc:[50,52,53,54,113],lmdb:196,lmgr:129,ln:164,lo:[44,77,188],load:[2,7,9,15,17,18,23,34,36,42,44,50,53,57,72,85,91,93,95,118,126,136,140,142,144,145,147,150,152,153,158,163,167,169,171,172,173,177,182,183,186,187,202,203,208,209],load_batch_from_fil:136,load_breast_canc:44,load_data:[29,30,44,46,76,135,136,142,198,208],load_dataset:91,load_diabet:186,load_digit:[56,171,172],load_ext:[12,25,44],load_imag:144,load_images_from_fold:43,load_img:[33,43,76],load_iri:[7,51,126,172,202],load_model:[29,30,41,43,44,46,47,49,76,198],load_next_batch:171,loader:[33,34],loadmat:138,loadtestsfromtestcas:52,loan:[56,207],lobe:173,loc:[1,14,18,22,31,32,33,41,45,52,53,56,57,60,62,68,72,91,118,125,130,131,136,149,150,159,160,163,172,182,184,194,195,198,202],local:[14,28,30,48,63,68,109,110,115,118,127,129,138,143,144,148,169,173,176,178,186,187,195,200,202,209],local_fil:173,localto:144,locat:[1,9,30,45,72,83,111,115,121,122,128,130,131,137,141,144,146,148,154,161,169,172,187,190,196],log1p:72,log2:[56,128,163],log:[0,9,16,36,39,41,42,44,45,60,72,87,91,93,109,110,123,128,139,144,152,153,164,165,192,205],log_2:56,log_classifi:55,log_dir:44,log_model:[75,89],log_reg:[55,70,171],log_reg_scor:171,log_scor:[75,89],log_shap:148,log_templ:31,log_transform:72,logaddexp:[128,165],loganberri:[188,210],logarithm:[128,154,156,208],logdir:44,logging_level:60,logic:[3,33,35,56,77,91,128,129,152,178,183,186,188,210],logical_and:128,logical_not:128,logical_or:128,logical_xor:128,logist:[55,62,65,84,98,111,145,164,168,171,173,175,178,180,182,185,186,199,208],logisticregress:[55,62,70,75,89,171,173,176,177,179,183,205,206],logisticregressionlogisticregress:171,logisticregressor:70,logit:[39,46,91,143,145,148,154],logit_output:145,logitech:43,logits_concat:148,logits_fak:142,logits_for_answ:91,logits_r:142,logvar:31,lon:203,london:12,long_:155,longer:[7,32,38,44,50,53,55,56,58,60,68,83,84,110,115,122,131,154,167,171,172,179,187,202,209],longest:[75,89,113],longitud:[67,83,173],loo:183,looa:182,loob:182,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,35,38,42,46,48,51,52,53,55,56,58,60,61,64,65,66,68,70,72,73,75,80,83,85,86,89,91,92,95,97,108,109,110,111,113,115,117,118,119,120,121,123,125,126,127,128,130,133,138,143,145,146,149,154,157,158,159,160,163,164,168,170,171,172,173,174,175,176,179,183,184,186,187,188,190,194,195,196,198,202,204,210],lookback:[41,49],lookout:129,lookup:[125,127,128],loop:[34,37,62,102,117,128,131,141,147,156,159,171,178,187,188,189,195,209,210],looper:[111,159,175,182,183,190],loos:[75,89,158],lopinavir:1,lose:[72,172],loss:[13,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,53,60,61,62,68,73,76,125,131,135,136,137,138,139,140,142,144,145,147,149,163,165,166,168,170,176,181,198,200,201,204],loss_acc_metrics_df:44,loss_d:39,loss_fn:[38,136],loss_fun:145,loss_funct:[60,85],loss_g:39,loss_grad:91,loss_histori:165,loss_vae_fn:31,lossi:31,lossless:31,lost:31,lot:[3,7,14,51,53,55,56,58,62,65,72,94,108,109,110,122,123,126,143,145,150,158,161,163,164,165,167,168,170,173,175,177,178,187,207],lotarea:[60,72],lotfrontag:[60,72],lotfrontage_mean:60,lotshap:72,loud:[157,158,159],loudli:[172,202],loukid:121,love:[38,56,102,146,175,187,211],low:[18,30,41,45,46,48,49,50,53,55,62,63,65,67,69,70,71,73,75,83,89,101,107,109,111,113,125,128,143,154,167,169,170,174,182,183,184,185,188,190,198],low_valu:155,lower:[1,3,7,29,33,52,53,55,60,62,65,70,83,86,102,110,121,125,128,130,131,135,136,145,149,154,160,164,171,182,183,188,192],lower_cas:106,lowercas:[102,188],lowest:[7,171],lowqualfinsf:60,loyal:160,loyal_cal:160,loyal_mean_scor:160,loyalti:117,lpsa:179,lr:[31,34,35,39,42,53,69,70,71,84,90,169,176,179,198,200,204,205],lr_d:39,lr_g:39,lr_scheduler_typ:42,lrschedul:139,ls:153,lst2:43,lst:[43,101,102,188,189],lstm:[47,140,145],lstm_builder:49,lstm_model:[41,47,145],lstm_output:145,lsuffix:129,lt:[83,173],ltd:62,ltorgo:64,ltsm:140,ltv:164,lu:144,luci:[24,156],lucidchart:113,luck:[52,117],lucki:[75,89],luckili:[91,145],lug_boot:63,luggag:63,lui:64,lunch:178,lund:209,lvert:[135,170,180,201],lvl:72,lw:[40,56,163,169,172,200,202],lwq:60,ly:91,m1:[18,186],m2:18,m:[1,3,12,18,24,25,30,33,36,37,39,40,42,65,69,71,72,107,108,109,110,111,112,113,114,115,118,119,120,121,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,207,208,209],m_:18,m_dep:[75,89],mac:[110,143,186],macheads101:169,machin:[0,3,7,12,18,25,31,33,34,38,42,43,44,45,48,51,53,54,55,56,58,59,60,62,63,64,75,84,85,86,87,89,99,107,108,109,111,115,117,121,123,125,127,129,130,131,135,140,141,146,147,149,150,151,152,153,154,155,158,159,160,163,164,165,166,167,168,170,174,175,176,177,181,182,183,184,187,189,192,195,197,198,199,201,204,209,211],machine_cpu:64,machine_cup:59,machine_data:[59,64],machine_label:64,machine_learning_complet:89,maciej:36,maco:[127,189],macro:[37,63,65,66,76,173,176,177,183],made:[16,24,29,43,48,55,56,68,75,84,89,91,109,110,115,127,128,140,143,147,150,152,153,158,160,164,166,178,186,187,189,196,209],madip:[158,182,183,184],mae:[29,41,54,60,68,85,87,163,180],mae_cb:60,mae_lgbm:60,mae_xgb:60,magic:[164,178,188],magic_dict:101,magnitud:[72,86,92,125,182],mah:[75,89],mai:[1,8,12,14,22,25,28,30,31,32,35,44,50,51,52,53,54,55,56,58,62,63,64,65,66,68,69,70,71,75,83,84,85,87,89,91,110,111,112,113,115,118,121,122,123,125,126,127,128,129,130,131,133,136,141,143,144,146,149,150,152,153,154,155,156,158,160,161,163,164,167,168,169,170,171,172,173,178,180,182,183,187,188,189,190,193,200,209,210],mail:[56,123,160],main:[3,12,18,25,31,39,48,55,56,59,60,64,65,72,75,84,89,91,108,110,115,117,123,125,128,135,136,140,144,146,147,152,156,163,164,166,169,170,172,178,182,183,187,192,193,207],mainli:[60,135,143,149,169],maint:63,maintain:[31,63,84,108,122,140,143,151,153,155,163,178],mainten:[63,108,115,156,178,187,193,209],major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,87,89,91,92,93,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,171,173,175,176,177,178,182,183,184,186,187,188,189,197,202,203,204,205,208],major_axi:131,major_disciplin:62,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,33,37,41,43,45,48,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,72,73,75,83,85,86,89,91,93,101,108,110,111,112,113,115,118,120,121,122,123,125,126,128,129,131,133,137,138,139,140,141,142,143,145,146,147,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,169,170,171,173,175,178,179,180,181,182,186,187,188,189,190,192,195,196,203,204,207,210,211],make_blob:[169,171,200],make_circl:[163,169,200,205],make_classif:[205,206],make_dataclass:131,make_df:195,make_grid:34,make_increment_funct:187,make_lag:150,make_me_smil:31,make_moon:[171,205],make_multistep_target:150,make_pipelin:182,make_regress:[69,71],make_test_funct:30,make_train_funct:30,makedir:[29,30,31,34,38,39,43,46,72,76,85,136,138,145,149,171,187],maketran:102,makeup:117,male:[22,62,178],malici:121,malign:44,man:[110,173],manag:[0,41,108,109,110,111,112,113,122,125,130,134,146,152,153,155,163,185,189,190,196],manageri:113,mandat:121,mandi:158,maneuv:117,manfr:[188,210],mango:[43,211],mani:[1,3,7,18,29,37,38,43,44,48,49,51,52,55,56,57,58,59,60,62,63,64,65,66,67,72,73,75,76,83,84,89,92,97,108,109,110,111,112,113,115,117,119,120,121,123,125,128,129,130,131,134,136,140,141,143,144,145,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,167,168,169,170,171,173,175,176,178,179,184,186,187,188,189,191,192,195,198,207,209,210,211],manifold:[30,172,202],manipul:[45,54,93,117,121,123,131,133,134,141,178,188,195,203,207,210],manishmsft:196,manner:[7,30,56,65,111,121,123,126,131,146,153,155,182,188,192,210],manual:[1,33,146,154,155,156,170,171,172,202],manual_se:34,manufactur:[153,207],map:[1,5,7,22,30,31,33,34,36,38,40,42,43,46,48,49,53,57,62,65,75,76,77,89,101,111,118,123,128,129,135,139,140,141,143,144,145,147,155,158,161,169,175,178,183,187,188,191,207,208,209,210],map_data:203,map_funct:101,mape:54,mapper:[30,129],mapper_fruit_nam:43,mapper_noisi:30,mapper_org:30,mappingproxi:128,mar:[154,187,211],marcela:157,march:[191,196],marco:173,margarin:117,margin:[33,66,67,91,129,130,131,156,173],mari:[187,209],marin:173,marit:73,marital_statu:[57,73],mark:[1,70,92,101,131,169,178,207],markdown:[43,186],marker:[40,73,92,131,171,172,183,202],marker_s:30,markeredgecolor:150,markeredgewidth:[169,200],markerfacecolor:150,markers:[169,171,200],market:[55,58,73,108,121,123,141,146,147,158,178,191],marketing_campaign:73,marketplac:121,marklog:196,maroon:[73,119,194],marquis:117,marri:73,mart:164,martin:[22,154,155],mask:[7,51,60,70,126,128,130,144,195],mask_logit:148,maskrcnn_upxconv_head:148,mason:121,mass:[24,113,118,164,186],massiv:[46,111,190],master:[7,14,62,73,75,77,86,89,158,171],masteri:139,masvnrarea:60,masvnrtyp:60,mat:[138,146],mat_mean:138,mat_tensor:48,match:[0,7,35,42,46,50,53,69,71,80,128,129,131,133,139,143,150,158,169,172,178,187,202],matconvnet:138,materi:[56,111,125,126,172],math:[18,29,31,36,41,48,51,66,67,87,101,125,137,139,144,180,182,183,184,189,209],mathbb:[125,141,164],mathbf:[161,171,172,204],mathcal:[141,164],mathemat:[40,60,62,65,84,85,86,101,102,122,123,125,128,136,139,140,147,155,158,164,170,172,178,180,182,188,189,195,204,210,211],mathematician:125,mathfrak:161,matlab_2016:41,matmul:[128,135,138,141,145],matmul_1:145,mato:53,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,76,81,83,84,85,86,89,91,92,93,107,108,109,110,111,112,113,114,115,117,118,119,120,125,126,127,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,186,190,194,195,198,200,202,203,204,205,206,208,209],matplotlibdeprecationwarn:[68,172,202],matric:[50,56,72,128,149,154,169,172,183],matrix:[1,8,18,24,34,35,43,44,48,55,56,58,63,66,70,73,75,83,89,91,92,125,128,136,138,147,158,169,172,178,186,188,202,210],matt:146,matter:[65,91,113,121,152,170,178,183,187,189,201],max:[3,7,18,22,32,33,34,41,43,46,52,53,56,63,64,65,66,67,70,73,76,77,83,87,92,112,118,129,136,142,147,148,158,163,165,168,171,172,173,188,194,205,206],max_:172,max_ag:22,max_bin:[60,72,167,168],max_cat_threshold:72,max_cat_to_onehot:[72,167,168],max_concurrent_iter:[9,109],max_delta_step:[72,167,168],max_depth:[55,56,58,60,63,64,72,161,163,165,167,168,172,202],max_depth_grid:163,max_dim:137,max_featur:[55,56,58,63,64,161,163],max_features_grid:163,max_img_height:77,max_img_width:77,max_it:[62,70,84,171,173],max_leaf_nod:[58,59,62,63,64,163],max_leav:[72,167,168],max_len:188,max_nod:[9,109],max_pool:138,max_pool_size1:136,max_pool_size2:136,max_pooling2d:143,max_pooling2d_20:45,max_pooling2d_21:45,max_pooling2d_22:45,max_pooling2d_23:45,max_pooling2d_24:45,max_pooling2d_25:45,max_pooling2d_26:45,max_pooling2d_27:45,max_pooling2d_28:45,max_pooling2d_29:45,max_row:[50,52,53],max_sampl:55,max_sequence_length:149,max_signal_r:36,max_val:29,max_valu:77,maxbodymass:[118,194],maxdepth:163,maxim:[39,56,65,87,137,141,172,177,180,187,202],maximis:169,maximum:[3,7,22,52,53,55,56,59,62,63,64,84,91,109,110,118,135,142,143,163,169,172,180,183],maxiter:141,maxlen:[37,149],maxlength:[118,194],maxpool2d:[31,32,34,35,45,139],maxpooli:45,maxpooling2d:[33,43,136,139,144],maxstep:141,maxval:[36,139,142],maxwingspan:[118,194],mayb:[7,68,113,120,130,150,159,165,177,182],maybe_cal:130,maybe_convert_indic:130,maze:141,maze_collect:141,maze_typ:141,mb:[38,41,45,65,83,175],mcculloch:149,mckinnei:[128,129],md5_checksum:63,md:[117,125,186],mdkjmpmcwjy:179,mdp:141,me:[1,38,44,115,143,165,182,183,189,193,203],meadow:[119,194],mean:[3,7,14,18,22,29,31,32,33,34,35,36,38,39,41,42,44,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,77,83,84,85,87,89,91,92,93,101,108,109,110,111,112,113,117,120,121,122,123,126,128,129,133,135,138,141,145,146,148,149,150,154,156,157,158,160,161,163,164,165,167,168,169,170,177,178,179,180,182,183,184,187,188,189,190,195,200,204,205,207,208,210],mean_absolute_error:[36,60,85,167,208],mean_actu:86,mean_confidence_interv:18,mean_cross_v:60,mean_imput:83,mean_squar:135,mean_squared_error:[41,47,59,60,64,67,83,85,150,182,208],meanarr:53,meaning:[3,16,30,46,118,121,143,146,152,178,193],meansquarederror:[29,30],meant:[128,153],meantim:178,measur:[7,14,24,46,55,56,58,65,66,72,75,83,85,86,87,89,110,111,115,120,121,122,123,125,139,141,150,154,155,156,158,159,161,163,166,171,172,178,182,184,187,192,193,202,204,207],meat:73,mechan:[50,84,128,140,143,146,152,153,187,209],med:[1,63,183],media:[5,55,56,58,111,113,125,146,153,155,156,190],median:[7,18,22,60,63,83,131,164,178],median_house_valu:[67,83],median_incom:[67,83],medic:[1,8,44,108,110,111,121,144,158,186,192],medicin:[8,123,178],medium:[1,65,75,83,89,113,172,196],meet:[113,117,121,128,184,192],mega:[75,89],megapixel:[43,75,89],megatrend:121,mehdi:142,mel:154,melt:70,member:[5,46,56,73,111,113,115,121,158,160,188,190,193,210],membership:[188,189,210],memcach:196,memcachedb:196,meme:164,memmap:171,memo:113,memor:[46,75,89],memori:[33,34,37,41,55,59,60,64,65,66,73,75,83,89,126,128,136,140,141,144,152,153,154,158,168,169,171,172,173,175,182,188,195],memory_gb:[9,109],memory_unit:141,memorycachestoragemanag:77,memoryview:[188,210],men:[62,97,121,192],mention:[0,1,2,8,19,43,44,48,62,65,115,123,125,127,128,131,140,144,146,150,152,156,161,164,170,178,179,187,195],menu:[44,109,110,203],merchant:[101,102,187,188,189],mercuri:211,mere:128,merg:[14,31,40,41,73,101,126,164,172,187,188,189],merge_dict:102,merged_dict:102,merged_list:103,mergetwolist:103,merteuil:117,meshgrid:[56,84,163,169,171,200,205,206],mess:[75,89,184],messag:[56,65,101,110,113,122,130,149,160,178,187,188,193],messi:[77,152,178],met:[31,44,128],meta:[15,60,154,160,173],metadata:[1,7,51,122,126,128,131,133,152,187,209],metaflow:153,metal:153,meteorologist:150,meter:[111,190],metho:[69,70,71],method:[1,3,7,14,18,24,30,31,33,34,38,40,45,46,51,52,54,56,60,62,63,64,73,75,84,85,89,100,101,109,110,111,115,117,118,119,120,123,126,128,129,130,135,139,143,144,147,148,150,151,152,153,154,155,156,158,160,161,163,164,166,168,172,173,175,176,177,178,182,183,186,192,193,195,199,202,209],method_nam:187,methodnam:187,methodolog:[139,154,164],methylprednisolon:1,metric:[29,32,33,35,36,38,41,43,44,45,46,49,52,55,56,57,58,59,60,61,62,63,64,66,67,69,71,76,83,84,85,92,93,109,110,113,136,144,146,147,149,150,152,155,159,163,165,167,168,171,173,176,177,179,182,183,202,205,206],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:65,mi:[50,172],michalbialecki:196,michigan:121,mickei:101,micro:[152,167,173],microcomput:153,microphon:154,microprocessor:[75,89],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,41,42,46,51,55,60,74,75,78,80,81,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,133,152,156,158,159,173,175,176,177,182,183,184,186,190,192,196],mid:[101,155,172],middl:[97,101,119,144,159,169],middlenam:189,midnight:130,midpoint:[155,183],might:[1,7,11,14,18,26,34,35,43,48,52,55,60,61,65,68,70,72,75,84,86,89,108,110,117,120,122,123,125,126,128,133,141,146,147,148,150,152,154,158,160,163,170,171,176,178,179,182,183,186,187,188,189,196,198,204,207],migrat:152,mike:24,milk:168,miller:125,millimet:[133,196],million:[32,34,111,143,178,190,207],millionair:189,mimic:[32,46,123,128,147,187,207],min:[1,3,7,18,31,33,41,52,53,56,64,65,67,70,72,73,76,77,83,92,112,118,129,131,143,148,158,163,164,168,171,172,173,194,205,206],min_:[63,165,172,204],min_child_sampl:60,min_child_weight:[60,72,167,168],min_freq:145,min_impurity_decreas:[62,63,64],min_impurity_split:[62,163],min_leaf:61,min_nod:[9,109],min_sampl:171,min_samples_leaf:[56,58,63,64,163],min_samples_leaf_grid:163,min_samples_split:[58,59,63,64,163],min_signal_r:36,min_val:29,min_weight_fraction_leaf:[62,63,64,163],min_word_freq:145,minbodymass:[118,194],mind:[7,38,50,111,115,126,129,143,154,156,159,183,193],mine:[3,53,56,115,134,169,189],minecraft:164,ming:209,mini:[154,183],miniatur:182,minibatch:[37,39,91,142,172],minibatch_kmean:171,minibatch_kmeans_vs_kmean:171,minibatchkmean:171,minibatchkmeansminibatchkmean:171,miniconda:[129,130,131,176,183,187],minim:[29,32,46,55,56,58,59,60,61,73,84,85,87,98,121,123,135,138,146,150,154,158,159,160,164,165,168,170,171,176,178,179,180,181,182,192,204,208],minima:[61,154,179],minimis:[169,200],minimum:[3,7,36,40,53,56,59,62,64,70,84,110,118,128,163,165,168,169,170,179,182,188,210],minio_url:63,minlength:[118,194],minmaxscal:[41,44,47,52,66,68,75,83,89],minnesota:[4,118,194],minor:[53,65,72,87,175],minor_axi:131,minu:[164,165],minut:[9,52,55,56,58,109,110,113,122,123,128,136,153,155,158,159,160,171,173,175,177,186],minval:[36,139,142],minwingspan:[118,194],mirza:142,misc:[138,209],miscfeatur:[60,72],misclassfi:60,misclassif:[56,70,92],misclassifi:[60,70,152,168],miscval:[60,72],misgend:111,mislead:[63,121,152,178,192,207],misleading_label:38,mismatch:[64,128],misrepresent:[121,192],miss:[14,16,18,19,22,24,25,31,40,55,56,58,59,62,64,67,72,73,86,112,123,128,129,130,131,147,150,152,154,158,163,165,167,178,182,187,207],miss_rinola:41,missclass:56,missing_count:60,mission:121,mistak:[56,60,68,72,113,141,152,164,168,189],mistaken:187,misus:153,mit:[46,62,101,102,110,111,121,169,187,188,189,190,192,200],mitchel:[56,178,207],mitig:[28,33,111,121,147,170,190],mitpress:102,mix:[36,42,130,131,164,182,184,188,210],mixed3:137,mixed5:137,mixed_list:[188,210],mixtur:[158,164],mkdir:[39,77,141],mkframe:14,mkl:172,ml2:171,ml:[53,55,58,66,72,74,75,78,80,81,83,94,95,97,98,99,100,107,108,125,140,147,149,150,151,153,154,156,172,173,174,175,176,177,178,179,180,182,183,184,185,186,191,207],ml_04:179,mlaa:153,mlb:18,mleap:153,mlearn:64,mlflow:[110,153],mlop:[151,155],mlp:[30,48,148,208],mlpclassifi:176,mlsummari:64,mltest:52,mlu:163,mm:184,mmax:[59,64],mmin:[59,64],mn:60,mncb:65,mnist:[29,30,36,44,76,91,135,142,171,172,178,198,208],mnist_784:171,mnist_8x8:202,mnist_test:[32,91,93],mnist_train:[32,91,93],mnist_train_smal:52,mnistdata:52,mnistdf:52,mnistdf_backup:52,mnistlabel:52,mnistpr:52,mnprv:60,mntfishproduct:73,mntfruit:73,mntgoldprod:73,mntmeatproduct:73,mntsweetproduct:73,mntwine:73,mnww:60,mo:[172,202],mobil:[33,75,89,113,143,153,172,173,203],mobile_price_test:[75,89],mobile_price_train:[75,89],mobile_test:[75,89],mobile_train:[75,89],mobile_wt:[75,89],mobilenetv1:144,mobilenetv2:[143,144],mock:[5,24,59],mock_df_boxplot:24,mock_df_hist:59,mock_df_pairplot:59,mock_df_plot:24,mock_pairplot:59,mod_resourc:209,mode:[0,7,34,57,60,92,110,143,144,147,148,153,154,171,173,182,183,184,187,199],modefin:51,modefined_sklearn_iris_dataset:51,model2:148,model:[7,10,14,20,31,32,37,47,54,61,64,66,67,68,69,77,84,86,87,93,94,97,98,99,107,111,112,115,121,122,123,125,126,128,129,135,136,137,138,140,142,145,147,149,151,152,158,160,161,163,164,165,166,168,169,171,172,174,175,176,177,179,181,191,192,193,196,199,200,202,203],model_1:44,model_2:45,model_auto:31,model_dir:77,model_ev:44,model_filenam:[77,173],model_histori:144,model_lasso:72,model_mean:139,model_nam:[9,30,31,109],model_new:76,model_nm:42,model_output:145,model_path:[33,41,43,44,47,49,109,145],model_perform:60,model_respons:[30,31],model_ridg:72,model_save_path:[30,31],model_select:[29,31,32,35,43,44,54,55,56,57,58,59,60,62,63,64,65,66,67,70,72,75,83,84,85,89,92,93,146,147,150,163,165,167,168,171,172,173,176,177,179,182,183,186,202,204,205,206],model_url:[30,31,41,43,44,47,49],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:72,model_zip_url:77,modelcheckpoint:[43,44,49],modelfit:62,moder:[70,156],modern:[68,115,140,153,155],modif:[29,143,163],modifi:[1,8,50,52,53,56,73,101,102,123,128,129,131,133,137,142,144,154,155,165,167,172,179,187,188,189,195,196,202,209,211],modifii:102,modnam:187,modul:[31,34,39,65,72,91,109,110,123,127,137,144,148,153,154,155,171,172,173,183,186],modulenotfounderror:[91,189],modulo:[188,210],modulu:[188,189,210,211],moment:[110,117,142,148,150,154,155,159,164,172,175,178,182,188,189,208],momentarili:195,momentum:[38,136,208],mon:54,mondai:[55,58],monei:[18,110,111,123,161,164,189,190],moneybal:111,mongodb:[123,196],monitor:[43,44,46,49,109,110,111,146,151,152,153,154,155,191],monkei:129,monolith:146,monoton:[130,156,163,187],monotone_constraint:[72,167,168],monster:91,month:[1,14,15,43,54,122,150,182,184,189],monthli:[1,122,150,182],mood:[111,190],moodle2:209,moon:31,moraga:165,moral:[6,117,121,192],mordvintsev:137,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,35,37,38,42,43,44,45,46,48,51,53,54,56,59,60,62,63,64,65,68,69,70,71,72,73,83,84,85,86,87,91,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,128,129,131,133,136,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,167,168,169,170,171,172,173,174,175,177,178,180,182,183,185,186,187,188,189,190,193,195,196,200,202,203,204,207,208,209,210,211],moreov:[56,65,68,73,143,164,165,172],morpholog:40,mosold:[60,72],mosquera:156,most:[1,3,7,14,17,18,24,29,30,31,32,33,38,42,44,46,48,52,53,55,56,57,58,59,60,61,63,64,65,66,68,69,71,72,73,83,87,91,108,110,113,116,118,119,120,121,123,125,126,127,128,129,130,131,133,135,140,141,143,147,150,151,152,153,154,155,156,158,159,160,161,163,164,165,168,169,170,171,172,175,176,178,179,184,186,187,188,189,191,194,195,202,207,208,209,210],mostli:[7,65,123,140,154,163,164,182,183,184,207],motiv:[64,67,111,121,140],motor:141,motorcycl:56,mous:101,move:[7,14,34,36,43,45,52,55,58,84,91,113,115,117,128,139,140,146,152,154,155,160,164,167,171,172,179,188,189],move_down:141,move_left:141,move_right:141,move_up:141,movement:[141,146,164],movi:[111,117,121,178,190,192],moving_mean:143,moving_vari:143,mp3:31,mpeg:31,mpimg:39,mpl3:172,mpl:[137,171,175],mpl_toolkit:[73,84,92,117,169,172,200,202],mplot3d:[73,84,92,117,169,172,200,202],mri:[111,156],mrr:154,ms:[171,195],mse:[37,41,45,49,50,52,53,56,59,61,64,67,83,84,85,87,92,135,154,161,163,168,179,180,182,204],mse_cross_v:83,mseloss:31,msg:[52,92,129,183],msi:41,msocach:41,msr:111,msrafil:148,mssubclass:[60,72],mszone:[60,72],mtwuhpol:65,mu:[31,125,139,160,163],mu_i:172,mu_j:172,mu_k:172,mu_p:139,mu_q:139,much:[1,3,7,18,30,42,52,53,55,56,58,60,61,63,64,65,67,68,72,73,75,83,89,110,112,113,123,125,128,129,133,140,144,147,152,154,159,160,161,163,164,165,170,171,172,175,178,182,183,187,195,207],mudiger:154,mug:143,mul:[31,138],multi:[30,45,48,52,63,87,128,129,131,143,144,147,150,152,153,155,158,169,175,187,195,196],multi_class:[171,176],multi_grid:144,multi_line_str:[188,210],multiclass:[144,147,154,169,175,176],multicollinear:[85,172,202],multidimension:[48,128,136],multidisciplinari:146,multifield:128,multiheadattent:[139,143],multiindex:[129,131],multilabel:176,multilay:143,multilin:[120,188,189,210,211],multiline_str:188,multimod:125,multinomi:[176,183],multioutput:176,multioutputregressor:150,multipl:[0,7,12,16,18,33,34,46,48,50,55,58,59,62,72,77,92,97,101,102,115,118,120,123,126,129,130,131,133,136,140,143,145,146,147,150,152,153,154,156,158,164,166,168,169,170,186,189,195,196,200,209,210,211],multipli:[48,84,85,91,101,127,128,143,164,167,170,172,179,182,209],multipurpos:211,multitud:167,multivalu:196,multivari:204,munich:[121,192],muralidhar:70,muscl:189,music:[157,158,159,160],muskmelon:43,must:[0,30,32,38,44,45,46,50,53,65,70,73,83,84,91,101,109,113,115,122,124,127,128,130,131,138,143,153,154,156,158,169,171,173,178,182,187,188,200,207,209,210],mustach:173,mutabl:[48,128,187,188,210],mutual:172,muufdbikxdmks9nw6kt1ryvntpqvf9:65,mv:196,mvbase:196,mventerpris:196,mx:[84,179],mx_i:[84,179],mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:65,my:[35,60,128,129,145,147,148,154,155,173,187,188,203,209,210],my_dict:[101,102],my_funct:209,my_get_text:[187,209],my_imput:167,my_list:[101,209],my_mnist:171,my_model:167,my_modul:209,my_own_classifi:205,my_sum:[105,209],my_tupl:[188,210],mybind:199,mybnk3dsmcymz0gwylxxqfulhrvy5axto:65,myconda1:172,mycount:187,myct:[59,64],mycustomerror:187,myfunct:209,myhtmlpars:3,mylst:189,mymodel0:62,mymodel:62,myownlinearregress:204,myownlogisticregress:[90,205],myqcloud:[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,119,120,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,194],mysql:[133,196],myst:169,mysteri:175,mythbusting_1:63,n24wr7ee6evwkotuekcka3picccvrgxpyku:65,n:[7,9,18,25,29,30,31,34,37,41,43,44,50,56,57,58,61,62,63,65,69,70,71,73,84,86,87,93,101,102,110,117,121,125,128,130,131,135,136,137,139,141,142,143,144,145,148,149,150,153,154,160,161,163,164,169,171,172,179,180,182,183,184,187,188,189,191,193,196,200,204,209,210],n_1:56,n_2:56,n_:163,n_anchor:148,n_arrai:48,n_channel:31,n_class:[91,143],n_classifi:177,n_cluster:[73,159,171,172,202],n_clusters_:171,n_clusters_per_class:[205,206],n_col:31,n_color:[150,171],n_column:53,n_compon:[30,73,172,202],n_connected_components_:171,n_core:[75,89],n_dense_block:143,n_estim:[54,55,56,57,58,59,60,61,62,72,161,163,168,177],n_featur:[41,69,71,90,179,204,205,206],n_features_in_:171,n_filter:[45,143],n_group:139,n_head:139,n_hour:41,n_i:[56,128,172],n_imag:39,n_in:41,n_inform:[205,206],n_init:[159,171,172],n_input:39,n_item:45,n_iter:[60,67,90,171,179,204,205],n_iter_no_chang:62,n_j:172,n_job:[30,56,58,59,62,72,93,163,168],n_label:171,n_layer:143,n_layers_per_block:143,n_leaves_:171,n_loss:36,n_neighbor:[92,93,171],n_ob:41,n_out:41,n_output:39,n_redund:[205,206],n_resnet:139,n_row:[31,53],n_sampl:[56,63,69,71,90,160,163,169,171,179,200,204,205],n_split:[62,65,70,163],n_test:[56,163],n_train:[56,163],n_train_hour:41,n_var:41,na:[7,14,51,57,60,72,73,126,129,130,131,148,154],na_val:57,nabla:164,naftaliharri:[159,171],nah:149,nair:34,naiv:[91,128,147,164,167],name1:128,name2:128,name:[0,1,7,8,9,12,14,15,18,22,24,32,33,36,37,38,41,42,44,45,46,54,60,61,63,64,65,66,67,70,73,74,77,83,91,92,101,102,105,109,110,115,118,122,123,125,127,128,129,130,133,137,138,139,140,143,144,145,146,147,148,150,153,154,158,161,164,168,170,172,173,175,176,177,178,179,182,183,184,186,187,188,189,194,195,196,202,203,209,210,211],name_1:[188,210],name_2:[188,210],nameerror:[187,189],namespac:[187,209],nan:[1,14,18,41,50,51,52,57,60,62,70,72,83,92,125,126,128,129,131,146,150,154,167,168,173,182,183,184],nanosecond:[59,64],narr:[117,121],narrow:[50,55,56,101,119,160,177,178,194,207],nasknxwdtb4aaaaasuvork5cyii:65,nasty_list:101,nat:37,nation:[111,173,175,190],nativ:[153,195,196],native_countri:57,native_country_41:57,natur:[1,42,43,48,50,52,60,65,73,113,116,119,120,121,123,128,130,131,140,141,147,149,150,154,158,179,182,184,189,204],naught:91,navig:[108,110,111,173,190],nax4:148,nbmake:0,nbsp:[46,150],nbviewer:[63,64,66,67,72,92,163,167,168,169,171,182,186],nbyte:195,ncc:64,nchw:148,ncluster:159,ncol:[39,43,136],nconfus:43,ncss:148,ndarrai:[33,83],ndf:41,ndframe:[129,130],ndi:40,ndim:[48,128,129,148,195],ndimag:[40,93],nearbi:[158,163],nearer:182,nearest:[1,31,36,92,93,142,158,159,169,171,172,176,178,187,198,200],nearest_neighbor:[144,172],nearli:[42,55,58,75,89,148,195,204],neat:[72,182,183,187],neatli:176,necess:[140,153],necessari:[0,7,12,18,20,25,30,33,40,43,45,50,56,85,86,107,108,109,110,111,112,113,114,115,117,118,119,120,121,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,207,208,209],necessarili:[55,72,113,125,135,154,182],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,34,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60,61,62,63,64,65,68,69,71,73,78,80,81,85,91,92,94,97,98,99,100,101,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,137,138,139,144,146,150,152,153,154,155,156,158,159,160,163,164,167,168,169,170,171,172,173,175,176,177,178,182,184,186,187,188,189,192,193,196,200,202,203,204,207,209,210],needless:[7,128],neg:[33,42,44,46,56,57,58,62,63,65,72,75,77,89,101,111,125,128,139,140,141,146,147,154,156,164,169,171,172,183,187,188,189,198,208,210,211],neg_mean_squared_error:72,neg_root_mean_squared_error:[60,83],negative_integ:[188,210],negative_slop:39,negativs:58,neglig:53,neigbor:172,neigh_garag:60,neigh_lot:60,neighbor:[55,58,62,92,93,141,159,171,176,178],neighborhood:60,neightborhood:60,neither:[80,165],neo4j:196,nepoch:31,neptun:211,neq:[128,141,160],ner:146,nervou:149,ness:148,nest:[62,84,102,117,128,131,187],nested_list:102,nested_tupl:188,nestim:65,net50:143,net:[6,25,32,37,52,143,144,149,164,168],netd:39,neteas:41,netflix:[121,140,178,192],netg:39,network:[5,29,30,31,33,38,41,45,46,48,50,52,53,55,68,70,75,89,108,111,123,128,129,135,141,143,144,145,148,150,151,152,153,154,156,164,170,173,175,176,178,186,191,192,199,206,207],network_weight:138,networth:189,neural:[29,30,31,33,37,38,39,45,46,48,50,52,55,68,70,75,89,128,129,135,141,143,144,145,148,150,151,154,156,164,170,173,175,176,178,186,198,199,206,207],neuralearn:139,neuralnetwork:141,neuron:[30,44,46,50,52,68,140,147,149,154,170,197],neurral:170,neutral:[147,153],neutron:65,never:[31,44,55,56,58,60,62,63,91,110,122,128,142,143,154,170,178,187,207],nevernest:187,nevertheless:[7,92,126,128],new_ax:129,new_column:[14,182,183,184],new_data:130,new_df:30,new_dict:188,new_imag:35,new_label:130,new_pumpkin:[182,183,184],new_row:129,new_shap:[137,148],newaxi:[29,30,50,69,71,128,144,186],newbi:154,newcom:146,newer:[83,154,195],newest:73,newli:[14,42,45,131,133,188],newlin:[145,188,209],newshap:128,newton:[101,176],next:[3,7,9,33,35,36,37,38,39,40,41,43,44,45,46,49,51,52,53,55,56,58,59,60,62,64,67,68,73,85,101,102,103,107,109,110,111,113,115,121,126,128,129,133,139,140,141,143,145,147,149,150,153,154,155,158,160,163,164,165,167,168,169,171,172,173,175,177,178,183,184,186,187,188,189,195,203,207,209,210],next_diffusion_tim:36,next_noise_r:36,next_noisy_imag:36,next_num:102,next_signal_r:36,next_stat:37,nfals:65,nfold:168,ng2017mlyearn:154,ng2d:45,ng:[117,152,155,178,180],ngo:62,nh:148,nhwc:148,ni:[42,188,210],nice:[52,56,72,118,165,172,175,188,202,210],nicer:[1,14,179,187],nichol:139,nick:[136,138,145,149],nigeria:157,nigerian:[158,159],night:[56,138,160,173,204],nightli:149,nine:33,ninfav:14,ninfect:14,nipy_spectr:[40,172,202],niter:77,niven:204,nj:160,nl:63,nlargest:41,nleft:129,nlhlong01:163,nlookup:128,nlp:[1,65,143,154],nlp_rake:3,nltk:1,nmodel:62,nmultilin:189,nn:[31,33,34,36,38,39,44,135,138,139,141,142,143,145,148],nn_vi:[136,197],no_enrol:62,no_exceptions_has_been_fir:187,no_grad:[31,34],no_missing_data_df:51,no_missing_dup_data_df:51,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:154,node:[1,30,46,56,109,110,117,127,145,147,153,161,163,168,196,211],node_id:161,nois:[3,29,31,33,36,38,39,46,50,56,65,70,75,77,89,135,141,142,156,158,163,164,169,170,171,198,200,204,205],noise_dim:142,noise_factor:[29,30],noise_loss:36,noise_loss_track:36,noise_r:36,noise_s:142,noise_shap:52,noise_vari:36,noisi:[29,36,155,158,159,163,164],noisy_imag:36,nol20:123,nolli:123,nomin:[60,63,168],non:[1,14,18,29,30,36,38,41,45,49,60,62,65,66,67,73,77,83,101,102,110,121,126,128,129,130,131,134,135,139,145,146,147,154,156,158,161,163,164,168,169,170,172,173,178,182,187,192,199,209],non_block:34,non_cor:171,non_core_mask:171,none:[3,9,14,18,22,24,29,30,36,37,38,41,42,43,45,50,52,53,55,58,59,61,62,63,64,69,71,72,75,76,89,90,98,102,103,109,110,119,120,125,126,128,129,130,131,136,137,139,141,142,143,144,147,148,150,159,160,163,167,168,169,170,171,172,175,179,180,182,187,188,194,200,202,204,205,210],nonetheless:171,nonetyp:[188,195,210],nonexistent_column:14,nonflat:158,noninfring:[101,102,187,188,189],nonlin:50,nonlinear:[32,50,67,77,85,140,143,154,170,182],nonparametr:[163,176],nonzero:[36,61,128],nooooooo:189,noqa:[187,188],nor:80,norm:[45,121,148,170,171],norm_hist:60,normal:[7,29,30,31,32,36,38,39,44,45,48,50,55,56,58,65,72,75,76,83,89,91,126,128,135,136,137,138,139,140,143,144,145,147,148,152,154,159,161,163,164,170,172,178,184,187,198,202,208],normal_:39,normal_goal_i:141,normal_goal_x:141,normal_i:141,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:141,normalizaiton:32,normalization_lay:33,normalization_matrix:138,normalization_mean:138,normalized_d:33,normalized_data:[75,89],normalizedata:53,norri:101,north:[83,185],northgat:196,norwai:211,norwegian:187,nosql:[123,192],nostruct:128,not_equ:128,not_existing_charact:[188,210],not_existing_vari:187,not_ther:128,notabl:[67,140,178,196],notat:[60,122,127,128,131,187,188,210],notclean:41,note:[0,1,7,8,14,18,29,30,33,36,38,44,45,46,52,53,56,58,59,60,63,64,67,72,73,75,77,89,92,93,109,110,112,120,121,122,125,126,128,129,130,131,137,139,140,144,146,154,156,158,160,161,163,164,165,169,171,172,182,184,186,187,188,202,204,210],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,34,36,38,44,45,46,55,59,60,63,64,66,67,69,70,71,72,73,75,78,81,89,91,92,93,94,98,110,111,112,125,126,135,140,142,151,158,159,163,167,168,169,171,172,173,176,179,182,183,184,185,189,190,195,199,202,203,204,205,208],notebook_path:[29,30,31,34,43,46,72],noteworthi:[87,139],notexist:3,notfittederror:165,noth:[7,46,63,66,68,73,91,120,128,142,160,164,165,167,168,171,179,187],notic:[7,29,33,44,45,53,101,102,111,113,115,118,119,120,125,126,127,133,150,170,173,178,184,187,188,189,193,195,196,204,207,209],notifi:[121,192],notion:[55,64,178],notnul:[7,51,57,126,195],notori:[38,117],notwithstand:[7,126],noun:143,novel:[117,144,148],novemb:[117,150,155],novic:113,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,35,37,38,42,44,45,46,48,50,51,52,53,55,56,57,58,60,62,63,64,65,66,67,68,72,73,75,83,84,89,91,92,98,100,108,109,110,111,113,119,120,121,122,123,125,126,128,129,131,133,138,142,144,145,146,147,148,149,150,153,154,159,160,161,163,164,165,168,169,170,171,172,173,175,176,178,179,182,183,184,186,187,188,189,190,196,202,203,204,210],nowadai:[123,169],nowdai:178,np:[1,7,14,18,22,24,29,30,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,76,77,83,84,85,86,90,91,93,95,125,126,128,129,130,131,135,136,137,138,139,141,142,143,145,146,147,149,150,155,160,161,163,165,168,169,171,172,173,175,176,177,179,182,183,186,195,198,200,202,203,204,205,206,208],np_util:32,npm:117,npredict:43,npy:35,npython:189,npz:142,nrow:[34,39,43,136],ns:41,nsampl:[41,49,144],nsecond:188,nshape:[69,71],nspose:30,nstandard:18,nswdeman:[55,58],nswdemand:[55,58],nswprice:[55,58],nt:[118,194,196],ntest:[44,46,208],nthe:[44,55,58,59,63,64,66,67,75,89],ntrain:70,ntree:163,ntrue:65,nu:165,nuanc:146,nudg:[121,192],nuforc:173,null_accuraci:65,nullifi:87,num1:209,num2:209,num3:209,num:[67,83,101,128,135,144,145,188,209,210],num_allow_arg:129,num_anchor:148,num_batch:145,num_block:143,num_boost_round:[72,168],num_categori:148,num_channel:136,num_class:[32,33,143,144,148],num_col:[36,46,60],num_conv:148,num_epoch:[34,36,142],num_exampl:144,num_feat:[67,83],num_feats_imput:83,num_feats_pip:83,num_feats_preprocess:83,num_featur:[91,135],num_filt:143,num_head:[139,143],num_hidden_1:135,num_hidden_2:135,num_hours_studi:204,num_imag:[36,46],num_img:38,num_input_data:[75,89],num_iter:85,num_label:[42,208],num_lay:[143,148],num_list:[67,83],num_memory_unit:141,num_output:91,num_parallel_cal:[36,144],num_parallel_tre:[72,167,168],num_patch:143,num_pip:67,num_preprocess:67,num_queri:148,num_row:[36,42,46],num_scal:83,num_target:136,num_to_plot:161,num_train_epoch:42,num_unit:91,num_vowel:188,num_work:34,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,37,38,41,42,43,44,45,46,48,50,51,52,53,55,56,58,60,61,63,64,65,68,69,70,71,73,75,77,83,84,85,86,89,91,92,93,109,110,113,115,117,118,119,120,122,123,126,129,131,133,135,139,140,141,142,143,144,145,146,147,148,150,153,154,155,158,159,160,161,163,164,167,168,169,170,173,175,176,177,178,179,182,183,184,186,187,192,194,195,198,200,202,203,204,207,209],number_imgs_each_part:43,number_limit:187,number_of_iter:[187,209],number_of_part:43,number_to_be_found:[187,209],numbug:209,numcatalogpurchas:73,numclass:52,numcol:[120,194],numdealspurchas:73,numer:[1,8,31,34,44,48,51,55,58,63,64,67,72,73,75,89,91,101,110,112,117,118,119,120,122,125,126,127,128,133,140,141,146,154,159,161,163,177,178,182,184,186,188,194,196,207,210],numeric_:60,numeric_feat:72,numeric_train:60,numeric_v:101,numpi:[1,7,14,18,22,24,29,30,31,32,33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,76,77,83,84,85,86,87,91,92,93,95,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,190,194,198,199,200,202,203,204,205,206,208,209],numstorepurchas:73,numvehicl:150,numwebpurchas:73,numwebvisitsmonth:73,nuniqu:57,nusvc:65,nvalid:70,nvarianc:18,nw:148,nx0:148,nx1:61,nx4:148,nx:[41,49,128],nxcx:148,nxn:136,ny0:148,ny:[41,49,128],nyandwi:[44,48,55,58,59,75,83,89,178],nyc:[111,115,117,190],nyu:209,nywvm6_euxq:169,nz:39,o4yuzatazi:65,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:65,o:[12,25,33,47,57,60,61,65,73,92,121,128,141,148,149,156,160,171,172,188,208,210],o_lay:138,o_t:145,ob:37,obama:[101,156],obei:[44,128,169],obes:110,obj:[128,129,130,187,195],object:[3,7,9,14,16,24,31,38,40,41,42,48,49,52,53,54,56,59,60,62,63,65,70,72,73,74,83,86,91,92,109,111,117,119,122,126,127,129,130,135,136,138,140,142,143,144,145,146,147,150,153,154,155,157,158,164,167,168,169,170,172,173,175,176,178,182,188,189,190,194,196,197,208,209,210,211],object_:128,object_col:73,objectdatabas:196,objectdb:196,objectstor:196,observ:[1,3,7,18,30,41,52,54,59,65,86,87,122,123,126,131,139,141,150,152,154,158,159,160,161,164,167,172,175,182,183,202],observablehq:182,observepoint:113,obtain:[3,22,24,33,50,52,53,54,56,64,65,73,91,101,102,123,125,128,139,153,154,161,163,166,168,182,187,188,189,192,210],obviou:[18,62,119,125,143,163],obvious:[56,62,120,169,198],ocademi:[0,12,18,25,106,110,130,131,151,189,197,209,211],occam:170,occasion:[156,187],occlud:[143,148],occlus:[43,143],occup:[57,168],occur:[1,7,8,28,33,55,58,65,84,121,128,137,145,150,154,170,173,184,187,188,203,209],occurr:[1,2,8,28,51,52,60,65,126,183],ocean:[67,83],ocean_proxim:[67,83],oceanproxim:83,octav:77,octave_n:77,octave_scal:[77,137],octob:[121,184,196],od:187,odaba:196,odd:[101,209],odor:[119,194],odot:139,odunsi:158,ofcours:140,off:[30,33,35,36,38,39,40,43,44,51,55,56,58,62,65,67,68,75,86,87,89,91,115,139,141,142,143,144,145,150,154,160,163,168,170,171,172,178,179,187,193,198,208],offer:[21,44,73,84,87,108,117,118,119,121,128,143,152,158,167,175,176,177,183,184,192,195],offic:[123,143,150],office16:41,offici:[48,128,168],offlin:173,offset:[128,164],often:[1,3,7,8,44,46,51,55,56,58,60,65,68,75,85,89,110,111,117,121,122,123,125,126,128,139,141,143,145,146,147,150,153,154,160,161,163,164,170,171,176,178,179,183,184,185,187,188,192,195,209,210],oftentim:123,oh:[52,145,160],ohadlight:143,ohh:[55,58,63,75,89],oil:38,ok:[127,131,133,149,160],okai:[46,63,64,147,171],old:[56,73,129,153,159,175,189,209],older:[125,128,173],oldest:73,oldid:196,oleksii:[101,102,187,188,189],ols:169,omar:62,omega_t:149,omit:[1,29,45,125,129,160,164,187,188],omp_num_thread:172,on3sx3y9kwmxfjcw:65,on_bad_lin:41,on_epoch_end:[44,45,144],onboard:[113,152],onc:[0,7,42,46,48,50,53,59,61,64,83,85,91,109,110,121,123,125,126,128,129,142,145,150,152,153,154,164,165,168,170,173,177,178,183,187,189,209,211],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,34,36,38,40,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,60,62,64,65,66,67,68,69,71,72,73,75,77,78,81,83,84,85,86,89,91,93,94,99,100,101,102,108,110,111,113,115,116,117,118,119,120,121,123,125,126,127,128,129,130,131,133,136,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,163,164,167,168,169,170,171,172,173,175,176,177,178,179,182,183,185,186,187,188,189,190,194,195,196,200,203,204,207,208,209,210,211],one_hot:[7,83],one_hot_data:7,one_hot_encod:[22,83],one_trunc:131,onefield:128,onehotencod:[57,67,83,204],ones:[7,11,36,38,39,48,51,55,56,62,69,71,72,85,87,110,111,113,117,126,128,135,139,143,152,158,159,163,168,170,172,183,184,189,190,195,198,204],ones_for_answ:91,ones_lik:142,ones_tensor:48,ones_tensor_1:48,ongo:[115,156,193],oni:149,onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,35,36,38,42,43,44,45,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,69,71,72,75,83,89,91,99,101,102,107,108,109,110,113,115,118,121,122,125,126,127,128,129,130,131,133,136,137,140,141,143,146,147,148,149,150,152,153,154,156,158,161,163,164,168,169,170,171,172,173,176,179,180,182,183,184,187,188,189,191,193,196,200,202,209,210,211],onlin:[1,28,121,123,125,128,129,146,153,156,173,178,187],only_path:43,onnx:[153,173],ontario:14,onto:[52,57,113,135,155,172,202,204],ontotext:196,onward:14,oob:160,oob_scor:163,oocademi:189,op:[77,129,136,138,145],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,38,39,40,41,43,44,46,47,48,49,51,54,55,56,58,59,60,61,62,63,64,65,66,67,68,70,72,74,75,77,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,156,158,159,160,161,163,164,165,167,168,172,173,175,176,177,178,182,183,184,186,187,188,189,195,202,203,204,205,207,208,209,211],open_access:110,openai:146,opencv:[41,139],openinsight:196,openlink:196,openml1:63,openml:[59,63,64],openporchsf:60,openqm:196,oper:[7,18,25,34,44,55,62,65,73,84,92,101,108,110,121,123,125,127,129,130,138,141,143,145,146,147,151,152,153,154,155,172,183,187,189,191,192,211],operand:[128,188,195,210],operation:[121,192],opinion:[146,154],opportun:[60,110,111,112,146,154,156,170,173],oppos:[131,167,172,187,188],opposit:[7,117,135,146,157,165,170,183,198],oppurtun:164,opt:[108,187],opt_func:34,optic:[153,158],optim:[29,30,31,32,33,34,35,36,37,38,41,42,43,44,45,46,47,48,49,50,52,56,58,60,63,68,73,76,84,85,86,87,92,110,111,113,118,125,128,131,135,136,138,139,140,141,142,143,144,145,147,149,152,155,156,159,161,163,164,165,167,168,169,172,176,179,180,182,183,198,200,202],optimis:[85,169],optimist:[55,160],optimizerd:39,optimizerg:39,optimum:[62,159,172],option:[1,7,15,16,48,50,53,56,75,77,83,89,92,102,103,109,111,115,120,121,126,127,128,129,131,142,147,150,152,153,156,164,171,173,176,177,187,188,189,190,195,208,209,210],option_context:92,oracl:[133,196],orang:[43,56,117,118,125,141,173,175,183,188,194,210,211],orchestr:[152,153],ord:144,ord_col:60,ord_enc:63,order:[1,3,6,7,14,18,31,33,44,48,51,52,56,59,60,61,63,64,70,73,75,83,84,89,91,92,101,118,119,121,122,123,125,126,127,128,129,130,131,139,141,143,146,148,150,154,155,156,160,163,164,165,168,169,172,173,178,182,183,187,188,189,192,194,196,202,204,207,209,210,211],ordin:183,ordinal_map:60,ordinalencod:[63,83],ordinari:[63,83,150,183],ordinary_encod:83,oreilli:113,org:[3,22,50,52,53,54,63,64,66,67,72,77,92,113,131,137,138,139,144,145,148,156,163,167,168,169,171,172,182,186,187,188,196,197,202,209],organ:[35,42,44,108,109,111,115,118,121,122,123,126,127,128,143,146,152,153,172,178,186,190,192,193,194,196,202,203,207],organiz:121,orgin:[59,64,83],orient:[38,140,143,152,186,187,188,189,210],orientdb:196,orig_shap:148,origin:[3,7,14,29,30,31,33,35,38,42,43,50,55,56,61,63,64,65,69,71,77,89,98,101,102,120,123,128,129,131,135,137,138,142,150,152,153,158,160,161,163,164,165,168,169,171,172,175,182,183,184,187,188,196],original_featur:138,original_imag:138,original_image_path:138,original_image_url:138,original_image_weight:138,original_img:137,original_label:130,original_lay:138,original_layers_w:138,original_loss:138,original_minus_mean:138,original_norm:138,original_str:[106,188],originl:61,orign:73,ornella:111,ornithorhynchu:42,orthogon:[135,172,202],os:[29,30,31,33,34,36,37,38,39,40,41,43,46,50,52,53,57,62,65,72,76,77,85,91,93,107,108,109,110,111,112,113,114,115,118,119,120,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],ossif:121,other:[3,7,14,17,18,20,31,33,34,37,44,45,46,48,49,51,53,55,57,58,59,60,62,63,64,65,68,70,72,83,85,86,87,91,92,94,97,101,102,107,109,110,111,113,118,119,120,121,122,125,126,127,129,131,133,135,139,140,143,144,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,163,164,167,168,169,170,171,172,174,175,178,179,180,182,184,185,186,187,188,189,195,196,202,204,205,206,207,208,209,210],other_nam:[187,209],otherno:187,otherwis:[34,67,87,91,101,102,128,129,130,131,133,136,143,147,154,156,158,163,167,178,182,184,187,188,189],ouch:171,our:[1,3,7,14,18,29,30,31,32,34,35,38,43,44,45,46,48,51,52,53,54,56,58,60,61,62,63,64,65,66,69,71,72,73,75,83,84,85,86,87,89,91,92,111,112,113,119,120,121,123,125,126,129,133,135,136,139,140,142,143,146,147,148,150,151,154,155,156,158,159,160,161,163,164,165,168,170,171,172,173,175,176,177,178,179,182,183,186,187,189,192,195,196,202,203,207,211],ourselv:[53,60,150,164,172],oustand:55,out1:143,out:[3,7,8,14,15,18,29,33,34,35,37,39,42,45,46,48,53,54,56,59,60,62,65,68,70,72,73,75,77,89,101,102,108,109,111,113,117,118,120,121,122,123,125,126,128,130,131,133,136,138,139,140,141,143,144,146,148,150,151,153,154,156,158,159,161,163,164,167,168,170,172,173,175,176,177,178,179,183,184,186,187,188,189,195,196,202,203,207,209],out_channel:[31,143],out_col:60,out_conn:145,out_filt:144,out_sampl:139,out_sent:145,outbreak:14,outcom:[7,16,62,65,73,87,111,115,121,123,125,126,139,152,160,172,175,182,183],outer:[84,175,187,195],outermost:[129,187],outfield:125,outli:154,outlier:[7,50,51,52,66,67,73,83,85,86,87,116,118,125,152,154,158,159,160,163,164,169,171,194],outliers_influ:[60,70],outlin:[40,60,113,121,150],outlook:146,outperform:[55,154],output:[7,9,29,30,31,33,34,36,38,39,41,42,44,45,46,48,51,52,53,56,57,62,73,77,84,87,91,108,109,110,126,128,130,131,135,136,137,138,139,140,141,142,143,144,145,147,148,149,150,154,155,156,158,160,161,163,164,165,168,170,171,173,175,178,182,183,187,188,189,195,196,197,198,203,207,208,210],output_channel:[36,144],output_class:144,output_dim:[148,149],output_everi:136,output_fil:138,output_file_nam:141,output_final_layer_before_activation_funct:141,output_gener:138,output_imag:39,output_loc:136,output_memori:141,output_prepar:[41,49],output_s:143,output_scrol:144,output_stag:144,output_unit:91,outsid:[60,113,125,128,129,147,167,176,179,187,209],outwork:178,over:[1,7,8,13,14,24,31,32,33,34,38,44,51,53,55,57,58,60,65,73,75,77,85,87,89,91,99,102,108,111,113,117,120,121,126,128,133,135,136,140,141,142,143,145,147,148,149,150,152,153,154,155,158,160,161,163,164,165,168,171,173,175,176,177,179,180,183,185,187,188,189,190,191,194,196,209,210],over_sampl:175,overal:[7,13,14,30,31,33,53,55,56,60,62,73,111,112,120,122,123,126,146,154,161,164,178,182,207],overallcond:60,overallqu:60,overcom:[55,58,63,64,169],overdu:56,overexcit:170,overfit:[32,34,44,46,52,53,55,56,58,59,60,63,64,66,67,68,69,71,72,75,85,89,91,150,154,160,163,164,166,167,168,169,177,200,208],overfit_cat:60,overfit_num:60,overflow:129,overhead:[148,195],overlap:[18,33,125,128,129,158,159,187],overli:[55,56],overlin:[139,161],overload:169,overlook:[121,146,178],overrid:[131,187,209],overridden:30,override_groups_map:143,oversampl:175,overshadow:156,overshoot:[84,165],oversimplif:113,overtim:178,overtrain:70,overview:[56,80,110,113,118,140,152,154,172,199],overwhelm:[73,123],overwhelmingli:73,overwrit:[141,188,209,210],ovr:[171,176],owlim:196,own:[0,11,17,28,43,46,56,68,97,99,108,109,110,111,115,117,121,125,128,129,135,141,143,152,155,156,160,163,164,169,170,171,172,178,187,193,207],owner:[152,161],ownership:[56,121,192],ox:145,oxford:[121,192],oxford_iiit_pet:144,ozair:142,p1:209,p2:[32,139,209],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:65,p:[3,18,32,39,53,56,61,62,63,77,125,128,129,130,131,136,139,141,142,143,144,150,154,159,160,161,163,165,168,169,170,171,172,173,175,178,179,180,182,187,188,200,204,207,209,210],p_1:[56,125,139],p_2:[56,125],p_:[56,139],p_i:[56,139],p_k:56,p_n:[125,139],p_sampl:139,p_valu:125,paa:[108,191],pace:[46,84],pack:[128,186,188,209],packag:[18,30,37,38,57,63,92,111,118,125,128,129,130,131,149,150,153,158,164,172,173,175,176,178,182,183,184,186,190,195,198,202,209],package_fold:187,package_init_path:187,packed_tupl:188,pacsuta:141,pad:[1,14,18,29,30,32,33,34,35,36,38,39,43,45,60,128,135,139,143,144,148,149,171,173],pad_bord:148,pad_sequ:149,padding_11:143,paderborn:141,page:[3,21,26,44,48,63,64,66,67,72,92,110,111,113,122,123,129,155,163,167,168,169,171,173,179,180,182,183,186,190],pagefil:41,pai:[18,65,92,108,121,140,145,161,163,182,191,192],paid:[121,140,192],pain:171,paint:[38,127],pair:[7,42,56,99,102,125,127,128,147,163,164,171,172,176,187,188,189,196,209,210,211],pair_list:3,pairgrid:[64,83,183],pairplot:[64,73,75,83,89],pairwis:[92,163,172],pal:[38,73],palett:[43,57,62,73,75,89,117,118,120,150,194],palette_kwarg:150,palette_kwargs_:150,palinami:[69,71],pallet:73,palyground:182,pamphlet:56,pan:144,pancak:141,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,33,35,37,38,40,41,42,43,44,45,47,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,83,84,85,89,91,92,93,95,107,108,109,110,111,113,114,115,118,119,120,125,126,127,128,130,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,190,193,194,198,199,200,202,203,204,205,206,208,209],pandasarrai:131,pandastutor:[129,130,131],pandem:[1,11,128,155],panel:203,paper:[7,14,21,26,28,55,56,111,123,125,138,140,142,144,145,148,168,171,172,180,183,190,197],paperback:150,papercodereview:148,papiu:72,par:72,parabol:182,paradigm:[123,178,207],paragraph:[97,99,145,187],parallel:[30,39,42,60,108,110,144,163,167,168,172],param:[29,30,36,38,45,52,53,67,69,70,71,72,144,168,187],param_count:142,param_distribut:[60,67],param_grid:[56,62,63,64,65,66,163,171],param_lst:60,param_test1:62,param_test2:62,param_test3:62,param_test4:62,param_test5:62,paramet:[3,7,10,22,31,32,33,34,35,42,45,46,50,53,55,58,63,64,65,66,67,68,69,70,71,72,75,84,85,87,89,90,91,93,109,110,118,120,125,126,128,129,130,135,136,138,139,140,142,143,144,145,149,150,154,155,164,165,167,168,169,170,171,172,176,177,179,182,183,187,188,189,201,204,205,209,210],parameteriz:155,parameterless:187,parameters_input:189,parameters_output:189,parametr:169,params_grid:[58,59,63,64,66],paramt:[34,165],parch:22,paremet:[66,83],parent:[6,22,121,130,187,192],parenthes:[7,187,188,209,210],parenthood:73,park:173,parma:[69,71],parmet:170,parquet:123,parquet_url:63,parrot:[129,187,209],parrot_typ:187,pars:[3,73,146,150],parse_d:150,parsed_data:3,parsefromstr:77,parser:[3,187],part:[1,7,8,11,30,34,35,40,43,48,52,56,60,73,75,89,91,101,108,109,112,113,115,116,117,121,123,124,126,127,128,131,135,141,142,143,144,145,148,150,151,152,153,154,155,156,158,159,160,163,164,169,170,172,173,177,178,179,182,184,185,186,187,188,189,194,198,200,207,209,210,211],parti:[108,113,123],partial:[43,94,119,128,152,154,158,164,165,168,194],partial_deriv:139,partial_fit:171,partially_propag:171,particip:[56,73,121,149,160,164,192],particular:[7,31,42,45,48,55,56,57,63,65,83,101,102,112,115,119,120,122,126,127,128,129,131,140,146,154,160,161,164,171,178,182,187,188,189,193,207,210],particularli:[7,51,118,120,121,126,146,156,158,159,184,188,210],partit:[56,127,128,152,159,169],partner:[73,121,192],pascal:187,pass:[0,3,7,31,33,38,42,44,51,53,56,60,62,63,64,65,77,85,91,101,112,113,118,121,128,129,131,136,137,139,140,142,143,146,147,165,170,172,176,182,187,188,189,194,203,209,210],passag:117,passeng:[7,17,22,23],passenger_class:22,passengerid:165,passion:[113,188,210],passthrough:204,past:[55,56,60,73,77,121,133,136,143,148,149,150,153,155,156,173,197],pastel2:171,patch:[24,55,59,108,143,182],patch_dim:143,patch_project:143,patch_siz:143,patchifi:143,patent:42,path:[0,2,15,17,23,29,30,31,33,34,38,39,43,45,46,50,52,53,56,57,62,72,75,76,77,85,89,109,119,121,128,136,138,139,141,144,145,149,150,156,164,165,171,177,187,194,209],path_to_param:138,pathcollect:[169,182],pathlib:[33,45,150],pathnam:[50,52,53],pathwai:147,patienc:[43,44,49],patient:[24,44,109,110,111,146,147,154,186],patil:45,patrick:62,pattern:[38,54,60,61,62,68,70,73,85,86,87,111,112,115,120,121,123,140,150,153,157,158,166,170,178,183,186,187,192,193,207],paul:[41,189],paus:141,pave:72,pavithra:[69,71],pawel:211,payment:56,pb:77,pbar_out:31,pc:[75,89],pca:[73,135],pca_d:73,pclass:[22,165],pclass_xt:22,pclass_xt_pct:22,pcolormesh:56,pctdistanc:[119,194],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,35,37,38,41,42,43,44,45,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,83,84,85,89,91,92,93,95,118,119,120,125,126,129,130,131,146,147,150,155,158,159,160,161,163,165,167,168,172,173,175,176,177,179,182,183,184,194,198,202,203,204,205,206,208],pdf:[144,209],pdist:172,peac:113,peach:43,peak:167,pear:[43,188,210],pearsonr:72,peek:[93,101,183],peep:44,peer:111,peke:209,penal:[140,164,178,198,207],penalti:[65,87,121,135,143,164,169,170],pendant:[119,194],peopl:[3,14,31,42,44,51,55,62,83,102,108,110,111,113,115,117,121,123,125,126,128,129,153,154,156,178,188,191,192,196,207,209],people_info:102,people_to_check1:101,people_to_check2:101,pep557:131,per:[33,34,42,43,50,52,53,55,56,66,73,77,118,120,128,131,136,139,142,143,144,148,154,171,175,182,184,194,195],per_device_eval_batch_s:42,per_device_train_batch_s:42,perceiv:[158,178,207],percent:[1,33,172,202,208],percentag:[14,35,46,54,56,58,65,68,75,83,89,110,154,163,183],percentil:[125,160,171],percentile_closest:171,percept:[158,178],perceptron:30,perceptu:143,perceptualedg:113,percsampl:163,perctraindata:163,perf:179,perfect:[52,55,65,70,102,118,170,171,180,194],perfectli:[7,40,56,70,75,89,126,154,160,169,182,200],perform:[1,7,18,31,32,34,43,44,45,46,53,55,56,57,59,60,62,64,65,67,68,70,72,73,83,84,85,86,91,92,93,98,102,108,110,115,123,125,127,128,133,139,140,141,143,144,146,147,148,151,152,153,154,155,156,158,160,161,163,164,165,167,168,169,170,171,172,175,176,182,183,186,187,188,189,191,193,195,201,203,204,209,210],performcv:62,perhap:[4,42,52,53,68,73,118,139,144,150,158,171,178,198,207],period:[13,14,41,43,49,55,58,110,111,130,131,150,156,187],period_rang:150,periodindex:150,perm:102,permiss:[22,50,52,53,54,101,102,110,121,187,188,189],permit:[101,102,128,187,188,189],permut:[31,34,91,102,149,172],perpendicular:[56,65],perplex:154,persimmon:43,persist:[9,141,156],person:[6,7,14,28,31,38,56,57,63,73,101,102,109,111,113,121,122,123,125,127,140,146,147,150,153,178,186,187,188,189,192,207,209],person_id:31,personsdata:127,perspect:[111,121,143,164],perst:196,persuad:113,persuas:113,pertain:[73,146,147],pertin:146,pervas:[121,123,146],pet:15,petabyt:[111,190],petal:[51,66,92,126,161,172,202],petallength:[92,131,161],petallengthcm:70,petalratio:131,petalwidth:[92,131,161],petalwidthcm:70,peter:[125,188,210],petrova:14,pfa:153,pg100:145,pg4mtoh4b05qn5dt:65,ph:53,ph_delta_weights_list:141,phase:[34,62,112,113,155,158,178,207],phd:[62,73],phenomenon:33,phi:139,phil:146,phone:[6,75,89,113,121,122,123,172,188,192,203,210],phonem:145,photo:[31,33,35,48,107,114,116,129,134,174,185,198],photo_id:31,photo_numb:31,photo_path:31,photograph:[123,129,157],photoshopcs6:41,php:[196,209],phrase:[29,42,143,146,178,193],phrase_matching_test:42,phrase_matching_train:42,physic:[56,110,141,153],physician:146,physicochem:53,physiolog:97,pi:[36,139,141,161,188,189,209,210],pi_j:161,pi_valu:[188,210],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,34,38,42,70,72,75,77,89,99,113,120,127,141,159,163,165,168,171,184,186,196],pickl:[136,145,153,209],pickler:209,pickletool:209,pickup:[111,190],pictur:[1,3,14,30,31,39,56,57,65,66,123,125,128,129,140,154,160,161,164,172,178,198,202,207],pid:141,pie:[27,57,75,89,117,182,184],pie_pumpkin:182,piec:[42,51,57,65,106,112,123,126,146,152,155,167,186,198],piecewis:56,pii:121,pil:[31,33,77,137,138],pile:147,pillow:[137,187],pin:[129,203],pin_memori:34,pineappl:[188,210],pinfect:14,pink:[1,117,119,194],pinpoint:60,piotr:148,pip:[3,12,18,25,30,33,40,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],pipe:63,pipelin:[33,59,62,63,64,66,67,70,109,110,144,152,153,154,155,170,171,182],pipeline_scor:171,pipelinepipelin:[171,182],pipeln:70,piplin:141,pitaya:43,pitch:155,pitt:149,pivot:[41,87,123,146],pivot_t:129,pix2pix:144,pixel:[29,30,33,34,38,43,44,46,48,52,56,75,89,93,128,136,137,143,144,147,148,154,172,178,202],pk:[12,133],pkl:173,pktfrwjz:65,pl:[73,161],place:[7,34,51,56,60,73,101,102,110,112,113,117,123,126,128,131,140,146,152,160,173,175,183,186,187,188,189,210],placehold:[53,77,138,141,143,173,189,203],plai:[3,14,18,48,53,56,62,83,84,86,109,123,125,146,152,164,169,177,186,187,200,203],plain:[3,143],plainli:119,plan:[1,56,73,108,113,152,155,160],plane:[56,143,158,163,169,172,182,202],planet:[6,111,190,211],planetari:[111,190],plant:146,plastic:158,platelet:[9,109,110],platform:[10,20,48,108,110,113,146,152,153,156,164,173,178,189,191,207],platypu:42,plausibl:198,play:84,player:[18,111,125,153,178,179],playground:[144,155,163,164,169,175,179],playgroundn:182,pleas:[15,29,37,38,50,51,52,53,55,58,63,64,66,67,72,91,92,109,131,136,143,163,167,168,169,170,171,173,178,180,182,186,187,199],plenti:[117,152,154,156,164,171,172],plot:[1,3,8,14,15,18,19,29,31,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,52,53,55,56,57,58,60,62,63,65,66,67,68,70,72,73,75,76,84,85,86,89,91,92,97,117,123,125,131,136,141,142,144,145,149,150,154,158,161,163,165,169,170,171,172,175,176,178,179,182,184,186,200,202,204,205,206,207,208],plot_3d:[169,200],plot_accuraci:34,plot_align:22,plot_centroid:171,plot_clust:171,plot_clusterer_comparison:171,plot_color:22,plot_dat:37,plot_data:171,plot_dbscan:171,plot_decision_boundari:171,plot_galleri:31,plot_imag:46,plot_import:168,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[34,39],plot_model:208,plot_multistep:150,plot_param:150,plot_profit:37,plot_spectral_clust:171,plot_support:[169,200],plot_surfac:84,plot_svc_decision_funct:[169,200],plot_svm:[169,200],plot_titl:22,plot_train:43,plot_tre:[63,161],plot_value_arrai:46,plotli:[1,30,49],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,76,83,84,85,86,89,91,92,93,118,119,120,125,135,136,139,141,142,144,145,149,150,158,159,160,161,163,165,168,169,171,172,175,179,182,184,186,194,198,200,202,204,205,206,208],plu:[32,56,85,90,117,128,131,179,204,205],plug:179,plugin:0,pluginfil:209,plum:43,plumag:187,plymouth:160,pm:[125,187,209],pmml:153,pneumonia:1,png:[3,38,39,43,65,72,76,141,171,172,178,182,183],po:[45,60,141,148,171],poc:110,poem:111,poetic:111,poetri:[111,190],poignant:120,poin:70,point3d:131,point:[7,8,11,15,16,28,29,30,31,34,38,42,44,46,52,53,55,56,58,65,66,67,68,73,75,83,84,86,89,93,113,115,117,118,120,122,125,126,128,130,131,141,148,149,150,153,154,158,159,160,163,164,168,169,170,171,172,173,175,177,178,182,183,184,185,186,187,188,195,201,202,203,204,207,208,210],pointer:[101,128,133],pointwis:143,pois:129,poison:[119,194],pojo:153,polar:41,poli:[65,66,67,182],polic:111,polici:[108,115,178,207],polli:129,pollut:42,poloclub:[136,197,198],poly_best:66,poly_pr:66,poly_svc100:65,poly_svc:[65,66],poly_svr:67,poly_transform:204,polynomi:[66,67,78,85,169,170,185],polynomialfeatur:[182,204],polynomialfeaturespolynomialfeatur:182,pomegran:43,pond:146,ponder:84,pool1:138,pool1_pad:144,pool2:138,pool3:138,pool4:138,pool:[32,33,136,138,140,143,144],pool_siz:[35,36,43,136,143],poolarea:[60,72],pooler:42,poolqc:[60,72],poor:[31,44,45,59,64,65,70,75,83,89,128,145,154,158,164,170,178],poorer:86,poorli:[34,65,94,154,169,170,178,201],pop:[7,14,36,37,101,113,131,139,147,158,159,188,195,210],popul:[4,13,14,67,83,119,122,125,133,150,160,163,164,182,184,186,194,196],popular:[1,48,50,56,65,112,113,115,122,127,140,151,153,154,155,156,157,158,159,164,165,166,168,172,175,183,188,189,202],porch:60,port:22,portabl:[121,139,209],portal:[9,56,110],portion:[34,56,101,102,128,143,146,152,154,172,186,187,188,189],portrait:38,pose:[38,43,55],posit:[3,28,37,42,44,56,57,58,60,62,63,72,75,84,87,89,101,111,125,128,131,140,141,143,146,147,148,154,161,164,169,172,183,187,188,189,197,202,204,209,210,211],position_embed:143,position_salari:204,positionalembed:139,positive_integ:[188,210],positive_vector:[188,210],positv:65,possess:[60,75,83,89,207],possibl:[1,11,35,42,44,48,50,52,53,56,58,60,65,67,75,83,87,89,101,111,117,123,125,128,129,131,136,139,140,143,145,150,152,153,154,155,156,160,163,164,168,169,171,172,178,182,187,188,190,207,210],post:[0,1,14,28,29,32,48,56,128,129,146,148,149,173,191],post_imag:172,postdoc:189,posterior:163,posterior_vari:139,posterior_variance_t:139,postgradu:73,postur:38,potenti:[23,28,44,52,60,63,86,110,111,113,115,118,121,123,125,128,130,131,137,140,141,146,154,156,168,175,184,190,192,201],pothol:[121,192],potrait:38,potrait_gener:38,potraits_gener:38,pouget:142,pound:[120,160,184],pow:[31,135,141],power:[1,7,34,48,55,58,59,63,64,65,66,67,85,86,107,108,111,113,117,128,129,131,140,141,146,154,156,164,168,169,172,178,182,187,188,189,190,195,209,210],power_of:[187,209],ppf:18,pprint:31,ppwwyyxx:148,pq:63,practic:[4,7,16,30,33,42,44,50,52,53,54,56,59,64,65,67,73,111,115,121,123,125,126,128,133,135,136,137,138,140,143,144,146,149,150,153,154,156,160,164,167,169,170,172,173,178,183,186,187,188,189,192,202,209],practical_dl:91,practis:169,practition:[86,121,150,192],prafulla:139,pragati:147,prashant111:57,prashant:[65,168,203,208],pre:[3,9,42,46,52,108,110,129,144,154,155,156,167,170,182,186],preced:[52,84,128,143,147,187],precis:[29,42,44,51,52,58,60,63,66,72,75,76,84,86,89,91,101,112,128,149,154,155,170,173,176,177,183,187,204],precision_recall_curv:[176,177],precision_scor:[29,176,177],precison:[58,63],precomput:131,pred:[29,34,42,43,44,55,58,59,60,62,63,64,72,76,136,150,165,172,182,202],pred_bbox:45,pred_class:43,pred_coord:45,pred_imag:36,pred_mask:144,pred_nois:36,predefin:[34,125,127,141,158,177,181,196],predf:61,predi:61,predicit:165,predict:[9,22,29,34,35,36,37,38,41,42,44,45,48,49,50,52,53,55,57,58,59,61,63,64,65,66,67,68,69,70,71,72,73,75,83,84,85,86,87,90,91,93,111,115,121,123,125,136,139,140,141,143,145,146,147,148,149,150,152,153,154,155,156,159,160,161,163,164,165,166,167,169,171,173,175,177,178,179,180,181,182,183,184,185,186,187,190,191,192,193,198,207,208],predict_class:[52,76],predict_imag:34,predict_proba:[62,165,171,172,176,183,202],predict_row:61,predicted_column:[41,49],predicted_df:[41,49],predicted_label:46,predicted_nois:139,predicted_pric:47,predicted_valu:[41,86],prediction_text:173,predictions_arrai:46,predictions_lit:33,predictions_on_train:[75,89],predictions_singl:46,predictor:[55,62,72,154,161,167,168,171,182],predominantli:[38,111,190],preds_test_cb:60,preds_test_lgbm:60,preds_test_xgb:60,prefer:[53,62,70,83,111,121,125,128,153,154,163,168,170,171,178,180,183,185,188,189,190,210],prefetch:[33,36,49,135,139,144],preffer:70,prefix:[22,62,147,187,188,210],prefrenc:73,preiousli:38,preliminari:[146,159],preload:182,premis:[108,115,153,175,193],prep:[41,175],prepackag:186,prepar:[18,22,42,48,55,58,59,63,64,75,83,89,109,110,112,113,115,117,134,135,152,171,172,178,191,193,202],prepare_dataset:36,prepend:187,prepocess:38,preprint:[14,56],preprints202006:14,preprocess:[32,33,35,41,44,47,48,49,56,57,60,65,68,70,85,92,136,143,146,147,149,153,154,159,173,182,183,186,204,205,206],preprocess_imag:36,preprocess_img:142,preprocess_input:137,preprocessor:68,prerequisit:[0,138,151,187],prescrib:146,presenc:[60,146,154],present:[1,3,4,5,7,9,13,14,19,21,26,27,37,51,55,57,58,60,63,78,80,94,98,99,101,102,111,113,117,119,125,126,128,129,130,131,143,145,148,151,152,155,156,175,176,178,179,187,189,190],preserv:[51,93,121,126,128,129,131,140,171,183,187],preset:16,press:[41,57,141,150,186,189,203],pressur:[24,110,122,123,186],presum:[38,158],pretend:[18,164,187],pretrain:[140,144,198],pretti:[7,31,60,63,64,66,70,72,146,158,159,161,167,171,172,176,177,178,183,184,204],preval:147,prevent:[28,30,32,46,48,52,56,60,110,111,128,129,139,141,154,155,160,163,169,170,187,188,200,210],preview:[65,110,111],previou:[7,14,17,32,33,37,44,52,53,55,56,61,62,63,84,85,91,109,112,117,118,122,125,126,127,128,129,139,143,144,145,147,150,154,156,159,160,163,164,165,166,167,168,171,172,173,176,177,178,182,184,187,188,207,210],previouli:55,previous:[18,33,46,60,63,84,85,126,128,153,159,160,177,183,195],previous_numb:187,prgn:[75,89],price:[22,41,55,58,60,63,72,75,83,86,111,120,140,146,149,154,161,175,178,182,183,190,206,207],price_add_averag:22,price_rang:[75,89],priceperlb:[120,194],pricier:184,prim:187,primari:[6,7,51,62,75,84,89,109,110,122,123,126,130,131,133,168,196,197],primarili:[7,84,87,113,131,161,186,207],primary_metr:[9,109],prime:[101,187],prime_factor:101,prime_text:145,primit:[188,210],princ:61,princip:[73,135],principl:[31,50,52,53,56,62,108,111,123,133,141,160,168,169,170,187,192],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,69,70,71,72,73,75,76,83,84,85,86,87,89,91,92,93,101,109,119,125,128,135,136,137,138,139,141,142,143,144,145,146,147,149,150,159,160,161,163,165,167,168,171,172,173,175,176,177,179,182,183,184,186,187,188,189,194,195,198,202,204,205,206,208,209,210,211],print_everi:142,print_four_numb:209,print_funct:39,print_stat:29,printfeatureimport:62,printmd:43,prior:[65,110,117,120,168,191],priorit:154,prioriti:110,privaci:[115,121,156,192],privat:[62,108,115,153,191,193],privileg:187,prix:143,priya:47,prize:[121,192],pro:[7,41,52,62,110,121],prob:[41,165],proba:176,probabilist:[65,139,140],probability_model:46,probabl:[7,31,33,34,42,44,46,53,55,56,58,61,62,64,87,91,107,110,111,112,113,115,118,122,123,124,133,139,140,141,143,147,154,158,159,160,163,164,165,171,177,178,180,182,184,186,188,198],probalist:140,probe:[6,65],problem:[7,11,23,29,38,42,46,50,51,52,53,55,58,60,62,63,64,66,68,70,73,84,85,87,93,99,109,112,113,115,117,121,123,125,126,128,129,140,141,143,144,145,147,148,150,151,153,154,159,160,161,165,168,169,170,171,172,175,176,179,180,184,188,192,193,200,201],problemat:[18,26,154],proce:[38,60,73,75,85,89,91,147,168],procedur:[52,56,60,150,156,160,163,164,168,182],proceed:56,process:[1,3,7,11,18,28,30,31,32,33,35,38,42,45,46,47,48,50,51,53,56,57,59,62,63,64,65,68,73,75,84,85,89,91,99,101,108,109,110,111,112,113,121,122,123,128,135,136,140,141,143,144,147,149,150,151,153,154,156,159,160,163,164,165,166,167,168,169,171,172,173,175,176,177,178,179,181,182,186,187,188,189,190,191,192,195,201,202,203,207,208],processed_data:31,processing_d:63,processor:[75,89,93],prod:[128,142],produc:[7,29,31,32,38,51,57,63,65,68,110,117,118,120,123,126,128,146,147,148,150,152,153,158,160,168,170,178,184,187,188,192,198],product:[11,13,42,55,73,85,101,108,110,111,113,120,121,122,123,125,128,131,139,143,150,151,152,153,154,155,172,173,178,183,190,191,192,194,203,207,208,209],production:[51,155,156],prodvalu:[120,194],profession:[108,146,153,158,168,189,192],professor:[164,178],profil:[65,121,193],profit:[37,127,164,196],profium:196,program:[41,46,56,63,108,110,121,122,131,133,139,140,146,151,152,153,154,169,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,208],programm:[122,178,187,189,207,211],programmat:[7,110,126],progress:[14,38,44,50,52,77,120,136,152,154,177,178,186,187,198],progress_info:136,progress_widget:77,project:[5,7,9,16,22,30,31,38,40,41,64,65,72,73,84,101,102,108,111,113,115,119,121,126,128,135,137,139,141,142,143,144,145,148,149,151,152,153,154,155,156,169,172,175,178,186,187,189,190,191,193,200,202,203,207],project_fold:109,project_root_dir:171,promin:56,promis:[50,91,121,192],promot:73,promote_typ:128,prompt:[6,110,173,189],prone:[72,163],pronounc:[133,186],proof:[28,110,158],propag:[7,31,91,130,131,150,158,171,172,208],propens:167,proper:[18,55,58,59,63,64,75,89,113,128,136,146,158,178],properli:[5,51,70,91,100,126,152,154,160,166,178,183,184,207],properti:[9,14,31,34,36,38,52,53,56,61,92,109,121,125,127,128,129,154,161,163,164,169,182,187,188,192,196],proport:[56,65,68,86,117,125,163,164,170],propos:[65,112,113,139,142,143,145,148,156,160,163,169,171,193,200,208],proposals2:148,proprocess:44,prose:31,prospect:113,prostat:179,protagonist:117,protect:[14,108,111,121,152,190,192],protocol:130,prototyp:[52,53,110,111],prove:[18,26,28,56,117,123,125,154,158,160,163],provid:[0,1,7,12,14,15,16,17,21,23,28,34,35,44,45,46,50,51,53,55,56,58,59,60,63,64,65,83,84,86,87,91,101,102,108,110,111,112,113,115,117,121,123,126,127,128,130,131,133,135,136,140,143,146,147,148,150,151,152,153,154,155,158,160,161,163,164,168,170,171,173,176,178,184,186,187,188,189,190,192,193,196,198,207,208,210],provinc:14,province_st:[14,155],provis:[109,153],provisioning_configur:[9,109],proxim:[83,158,163],prp:[59,64],prune:[56,143],pseudo:[18,164],pseudocod:164,pseudonym:125,psgk:65,psycholog:158,pt:64,pth:[31,34,39],public_dataset:[75,89],publicli:[110,155],publish:[56,59,64,65,101,102,110,125,152,153,187,188,189,191],publish_tim:1,pubu:[75,89],pull:[56,117,121,131],pullov:[30,44,46],puls:65,pulsar:65,pulsar_star:65,pumpkin:[81,98,100,175,182,183,185],pun:187,punctuat:[101,102,145],pungent:[119,194],purchas:[73,108,113,120,123,182],pure:[36,44,53,65,91,125,130,163,187],puriti:161,purpl:[30,117,119,194],purpos:[16,30,37,52,53,64,65,66,67,73,84,101,102,115,121,128,131,136,138,140,142,154,158,168,171,173,178,183,186,187,188,189,192,193,195,207,209,210,211],pursu:[111,154,178,207],pursuit:84,push:[0,52,101,113,117,141,146,153,187,195],pussin:[101,102],put:[41,44,48,56,61,68,73,87,110,113,121,133,140,160,164,170,178,186,187,188,189,207,209,210],pval:[18,125],pvt:62,pw:161,px:[30,34,49],px_height:[75,89],px_width:[75,89],pxi:131,py39:[30,37,38,118],py3:209,py:[9,30,37,38,63,68,77,92,109,118,129,130,131,136,141,172,173,176,183,187,188,189,194,195,202,209,210,211],pycharm:41,pycharmproject:209,pycon:129,pydata:[128,129,131],pygment:125,pylab:22,pylint:[187,188,210],pyobjecthasht:131,pypi:[188,210],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,73,75,76,83,84,85,86,89,91,92,93,118,119,120,125,135,136,139,141,142,144,145,149,150,158,159,160,161,163,165,168,169,171,172,175,179,182,184,186,194,198,200,202,204,205,206,208],pyramid:[144,155],pytest:[0,3,14,22,24,59,83,101,102,151,187,188,210],python37:209,python38:[63,202],python39:187,python3:[101,102,129,130,131,173,176,183,187,195],python3_7_4:209,python:[0,1,3,7,18,22,23,30,33,34,37,41,45,48,51,55,57,62,63,64,65,66,67,85,91,109,110,111,112,118,125,126,129,130,131,134,136,137,138,139,143,145,151,153,171,172,173,175,184,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207,208],python_3_2021:209,python_cast:188,python_datatyp:188,python_dictionari:188,python_funct:209,python_numb:188,python_oper:188,python_ref_str:188,python_set:188,python_str:188,python_try_except:187,python_tupl:188,python_util:[111,112,113,114,115,184],python_vari:188,pythonista:188,pythonpath:187,pythontutor:[187,189],pythonwin:209,pytorch:[31,34,110,140,142,173],pytutor:0,pyvideo:129,pywaffl:[119,194],pyx:[129,131],q1:125,q3:125,q:[22,37,56,128,139,172,183,209],q_:[139,141],q_sampl:139,qbbc3cjsnjg:180,qbcdxtzitda:65,qgl:65,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:65,qizx:196,qmcrlph5c7vc:65,qmqvejnztng9kv28rwerdmjfiwjrgfn:65,qq:[3,14,22,24,59,101,102],qqpcmgr_docpro:41,qty:127,quad:[84,160,164,179],quadrat:[60,65,87,163,164,169,188],quadraticdiscrinationanalysi:176,qualit:[6,24,113,122,152,178,192],qualiti:[0,43,51,52,53,59,60,62,68,72,91,94,110,112,115,118,121,122,125,143,153,155,156,158,160,161,163,172,177,178,182,183,184,192,193,202],quan:63,quantifi:[65,84,86,87,115,193],quantil:[60,112,164],quantit:[6,56,60,113,122,152,178,192],quantiti:[4,115,119,123,127,141,150,178],quantiz:[143,154],quarter:143,quarterli:122,quartil:[7,18,60],quebec:14,queliti:31,queri:[2,12,16,25,51,108,122,123,126,131,133,139,146,152,173,193,196],query_emb:148,question:[0,16,17,23,28,32,42,52,55,56,57,63,64,65,80,84,111,112,113,115,117,120,121,123,125,129,140,146,147,151,154,155,156,164,165,169,173,175,178,182,186,192,193,195,207],questionstd:149,queue:113,quick:[44,45,53,55,58,59,60,67,73,86,92,110,131,146,154,156,158,169,172,175,178,181,184,185],quickli:[7,14,42,44,45,50,52,53,64,75,83,89,110,118,120,126,128,139,152,153,164,168,182,183,195,198],quicksight:152,quickstart:153,quiet:[3,12,18,25,30,33,40,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],quirk:188,quit:[1,3,7,18,34,35,38,43,44,45,56,65,66,67,73,75,89,119,120,129,133,148,154,160,161,163,171,176,177,178,179,182,186,188,207],quora:156,quot:[129,187,188,189,210,211],quotient:[101,128,172],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:65,r2:[69,71,85],r2_score:[69,71,85,86],r2_socr:[69,71],r:[22,29,30,31,34,38,39,43,45,61,65,70,83,85,91,120,125,128,136,138,139,141,144,145,149,153,158,163,164,169,171,172,173,188,194,200,202,204],r_0:14,r_:[56,93,141,164,171],r_k:141,r_p:125,r_t:[8,164],rabbit:209,race:[57,173],racial:111,radial:[66,67,169],radic:143,radio:[65,203],raffael:123,rag:37,raggedtensorvalu:37,rai:111,rainbow:120,rainfall_id:[133,196],rainforest:122,rais:[3,14,22,24,59,101,102,105,106,111,121,128,129,130,131,141,144,154,156,188,190,209,210],raise_for_statu:150,rajesh:147,rake:3,ram:[43,59,75,89,110,163],ramif:177,ran:[10,20,189],rand:[18,37,55,56,85,163,172,195],rand_i:136,rand_index:[45,136],rand_indic:45,rand_tensor:48,rand_x:136,randint:[31,39,45,56,76,77,160,179,195,198,208],randn:[31,39,85,91,130,131,203],randn_lik:31,random:[29,31,32,33,34,36,37,38,39,41,43,44,45,48,49,50,52,54,56,61,62,63,64,65,66,67,68,70,72,73,75,76,77,85,89,91,112,128,130,131,135,136,139,141,142,143,144,145,149,154,159,160,162,164,167,168,170,171,172,175,177,178,179,195,198,202,203,208],random_flip_left_right:139,random_index:[44,139],random_norm:[135,138],random_normal_initi:[144,148],random_se:34,random_split:34,random_st:[29,30,31,35,43,44,54,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,83,85,92,147,159,161,163,165,167,168,169,171,172,173,177,179,182,183,200,202,204,205,206],random_strength:60,random_transform:39,randomappli:39,randomflip:[33,144],randomforest:62,randomforestclassifi:[55,56,57,58,62,161,163,172,176,177],randomforestclassifierrandomforestclassifi:163,randomforestregressor:[54,59,161,163],randomhorizontalflip:39,randomizedsearchcv:[60,67],randomizedsearchcvrandomizedsearchcv:67,randomli:[30,33,35,45,56,60,61,68,72,86,139,143,144,160,161,163,170,171,172,202],randomnorm:[135,143],randomrot:[33,39],randomst:[163,195],randomtreesembed:163,randomzoom:33,randrang:37,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,46,47,48,49,50,52,53,56,57,58,59,60,61,62,63,64,69,70,71,75,76,77,83,84,85,90,91,92,93,102,108,110,111,118,121,123,125,128,129,130,135,136,137,138,139,141,142,143,144,145,146,147,148,150,152,153,154,159,161,165,166,167,171,172,179,183,188,191,192,195,198,202,203,204,205,206,208,209,210],rangeindex:[41,65,66,73,83,126,158,168,175,195],rank:[48,121,128,130,154,158,161,164,176,192],rankboost:164,ranspos:30,rapid:[111,189],rapidli:[128,152,172],rare:[60,65,115,154,158,163,164,195],raschka:[56,135,142,145,149],rate:[6,8,14,22,34,36,37,42,52,53,55,61,68,70,84,85,110,111,113,117,122,140,141,142,143,144,145,154,155,161,165,167,168,170,171,172,179,183,202,207,208],rater:52,ratetc:149,rather:[7,31,38,51,60,75,84,87,89,108,120,123,126,128,131,133,146,153,158,163,169,171,178,182,186,187,188,195,203,207,210],ratio:[14,42,44,51,55,58,63,65,131,154,161,171],ration:[44,113],rational:161,ravel:[56,62,63,163,165,169,171,176,177,200,205,206],ravenclaw:203,ravendb:196,raw:[6,12,14,16,18,25,48,50,63,64,68,75,87,89,110,122,123,125,126,131,143,152,154,155,171,173,178,184,195,207],raw_data:29,rawinputlstjson:187,rayleigh:172,razor:170,rb:[77,136,173],rbf:[66,67,171,200],rbf_score:65,rbf_svc:65,rbk:65,rbkzduqmatb85:65,rbr_1x1:143,rbr_dens:143,rbr_ident:143,rbr_reparam:143,rc:[22,38,68,73,150,171],rcl:[160,163],rcnn:148,rcparam:[14,65,72,142,163,194],rdbm:196,rdss:101,re:[3,7,15,31,33,35,41,42,44,45,46,50,52,53,58,63,68,70,72,75,89,91,111,113,115,126,127,128,129,130,131,133,136,137,143,144,145,146,148,149,154,155,164,165,170,173,175,178,179,182,186,187,188,190,196,203,207],re_fit:66,reach:[34,38,46,53,56,61,84,115,161,163,167,169,172,179,187,188],react:[182,211],reaction:151,read:[16,29,31,44,50,52,54,59,60,64,75,77,89,91,110,117,118,119,120,121,123,125,127,128,137,145,149,151,154,172,175,176,182,183,186,187,188,209],read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,37,41,42,45,47,49,51,52,53,54,55,56,57,58,59,60,62,65,66,67,68,70,72,73,74,75,83,85,89,91,92,93,95,118,119,120,125,131,146,150,155,158,159,160,161,163,165,167,168,173,175,176,177,179,182,183,184,194,204,205,206,208],read_file_from_url:77,read_tabl:179,readabl:[0,119,153,173,188,189,210,211],reader:108,readi:[35,44,46,55,57,58,65,75,89,110,152,153,154,155,156,158,165,173,176,177,178,182,184,186],readm:[5,117],readthedoc:30,real:[0,7,11,28,29,34,35,37,38,39,41,43,44,47,50,51,56,59,63,64,65,66,87,101,121,123,126,127,128,129,141,142,143,146,147,148,150,152,153,155,156,160,164,170,171,178,182,187,188,189,192,195,196,198,199,204,207,210],real_data:142,real_imag:[38,39],real_label:39,real_loss:142,real_part:187,real_sampl:39,real_stock_pric:47,realist:[43,198],realiti:[7,62,121,140,154,183,196],realiz:[115,141,149,164,183],realli:[44,55,60,62,66,67,72,75,89,109,113,120,146,168,170,176,178,183,187,188,207,210],realm:[56,86,146,147,196],realpython:187,rearrang:[84,117],reason:[7,11,14,42,44,51,55,56,66,68,72,75,83,89,91,108,123,125,126,128,136,146,153,154,156,160,161,165,167,168,172,178,180,186,188,191,207],reassign:188,reboot:111,rebuild:44,rec:60,recal:[29,44,52,56,58,63,66,75,76,89,112,128,154,160,165,173,176,177,183,195],recalcul:161,recall_scor:29,recap:172,receiv:[6,46,65,91,109,112,113,122,131,141,149,155,164,183,187,193],recenc:73,recent:[14,48,73,91,113,128,129,130,131,150,156,164,176,195,209],recept:197,recgon:208,recip:[164,204],recipi:122,recogn:[44,48,68,75,76,89,111,128,140,143,146,148,152,172,178,187,190,207],recognit:[30,43,46,136,138,140,143,145,146,147,155,178,207],recommend:[15,50,55,110,111,113,120,121,123,127,128,129,131,154,161,163,164,171,172,186,187,189,192],recomput:172,recon_x:31,reconstr_img:135,reconstruct:[29,30,31,135,156],reconstructed_imag:135,record:[9,15,73,109,121,122,128,136,139,140,146,150,152,155,158,164,178,187,195,207,209],recov:[14,155,164],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,41,108,152,155],recreat:[53,118,119,135],recruit:121,rect:[39,172,202],rectangl:[45,56,127,141],rectifi:[91,121,136,140,143,147],recur:52,recurr:[28,175],recurs:[56,101,102,149,187],recycl:41,red:[14,41,45,46,47,50,53,55,56,58,62,68,85,86,110,113,117,118,119,125,143,161,163,169,170,171,182,188,189,194,200,204,205,206,210],red_sunflow:33,red_win:68,reddit:117,redefin:[52,112,115,187],redhat:153,redi:196,redo:[100,152],redshift:152,reduc:[7,30,32,33,38,44,50,52,55,56,58,60,62,63,64,67,70,73,84,101,110,115,128,138,140,143,144,146,147,153,154,156,158,160,163,164,167,168,170,171,172,173,178,179,183,188,202,207,208,209],reduce_max:29,reduce_mean:[77,135,137,143,145],reduce_min:29,reduce_std:137,reduce_sum:[137,138,145],reduct:[31,56,60,135,150,160,161,163,172,207],reduction_model:30,redund:[73,135,168,187],ref:[30,153,177],refer:[3,17,22,23,24,33,34,35,45,48,51,55,56,58,60,62,63,64,66,83,84,86,108,109,110,112,113,115,117,121,125,127,128,130,131,133,135,136,138,139,140,141,143,149,152,153,154,155,156,158,159,160,170,173,177,178,182,187,188,207],referenc:[56,187,188],reference_answ:91,referenti:123,refin:156,refit:[58,59,63,64],reflect:[7,28,43,44,73,87,100,121,152,158,173],reformat:46,refram:41,refresh:[45,110,155,184],refus:[50,121,192],reg:[60,72,163,178],reg_alpha:[60,167,168],reg_lambda:[60,167],reg_model:83,reg_tre:56,reg_tree_pr:56,regard:[7,34,56,120,126,128,141,146,163,164,168,183,188],regardless:[51,125,128,153,156,158,187,188],regdataset:163,regener:[53,149],regex:[182,184],regim:170,region:[14,42,83,110,121,144,148,155,159,168,174,187],regist:[9,73,109,110,209],register_model:[9,109],registr:[1,128],registri:[110,153],regplot:[60,150],regress:[44,45,48,50,52,55,58,60,61,62,63,65,66,72,84,100,109,115,125,140,146,147,154,159,160,161,163,165,166,168,171,172,173,174,175,177,193,199,201,207,208],regressor:[47,55,56,154,163,165,179,204],regressorchain:150,regul:[115,156,177],regular:[1,8,33,38,42,46,58,59,63,65,67,70,75,77,85,89,135,150,154,163,164,168,169,171,177,200,208],regularioz:[69,71],regularis:[169,200],regularization_weight:138,regularli:[155,156],rei:53,reilli:[121,156],reimport:[29,187],reindex:150,reindex_index:129,reinforc:[31,121,141,156,164],reinforcement_learning_course_materi:141,reinvent:156,reiter:[113,152],reject:125,rekognit:156,rel:[1,38,43,45,46,55,57,58,59,64,73,84,85,101,118,123,125,130,131,133,137,139,143,154,158,164,173,188,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],rel_error:142,rel_tol:101,relat:[1,3,16,18,28,52,62,104,110,113,120,121,122,125,131,134,139,146,149,154,155,163,170,178,183,187,189,194,199,207,208],relationship:[1,34,44,54,55,57,58,62,70,72,75,85,86,89,92,95,97,112,115,117,118,123,125,127,140,150,155,158,169,170,175,178,182,183,184,185,186,187,193,204,207],relax:[128,141,169],releas:[118,121,128,153,172,189,192,202,211],release_d:[158,159],relet:73,relev:[3,16,28,108,111,121,123,125,128,140,141,146,154,156,164,178,183,190,207],relevent_experi:62,reli:[63,68,75,89,115,122,123,126,127,178,183,188,210],reliabl:[86,108,111,121,153,163,178,191,192],relief_pitch:125,reload:[51,52,126],reloop:61,relplot:[120,194],relu1_1:138,relu1_2:138,relu2_1:138,relu2_2:138,relu3_1:138,relu3_2:138,relu3_3:138,relu3_4:138,relu4_1:138,relu4_2:138,relu4_3:138,relu4_4:138,relu5_1:138,relu5_2:138,relu5_3:138,relu5_4:138,relu:[29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,48,49,52,53,68,76,77,91,136,138,140,142,143,144,147,148,198,208],relu_grad:91,remain:[7,56,60,65,68,75,87,89,101,102,121,126,128,131,139,143,146,147,152,156,160,168,172,187],remaind:[101,127,128,187,188,189,204,210],remark:[55,63,66,67,75,89,160,189,211],remdesivir:1,rememb:[7,37,53,58,63,75,89,113,123,128,145,150,154,160,164,165,170,172,183,186,188,197,204],remind:182,remix:111,remot:[0,153],remote_effects_echo_url:187,remote_effects_init_url:187,remote_effects_reverse_url:187,remote_fibonacci_url:187,remote_package_init_url:187,remote_run:[9,109],remov:[1,3,14,29,31,38,39,40,54,55,56,57,58,61,65,68,70,73,75,77,89,91,92,101,115,118,120,121,145,154,158,159,170,172,175,178,183,187,189,193,202,210],remove_dupl:[102,188],remove_small_object:40,ren:148,renam:[1,18,42,65,73,92,129,131,187],rename_column:42,render:[16,60,63,64,66,67,72,92,163,167,168,169,171,173,180,182,186,188,203,210],render_templ:173,rent:108,rep:113,repack:[182,183,184],reparameter:31,repay:207,repeat:[33,36,38,41,49,56,61,84,93,102,123,128,131,135,144,152,159,160,163,164,168,171,172,182,188,202,210],repeat_delai:139,repeatedli:[101,167,209],repetit:[55,58,59,64,154],replac:[7,14,22,30,31,32,37,42,46,51,53,55,57,60,61,62,72,73,86,91,110,126,128,143,145,150,154,160,171,179,182,187,188,210],replai:37,replec:55,replic:128,repo:[0,5,77,144,172],report:[14,34,42,43,44,58,62,63,66,113,121,146,155,173,176,177,183,184,187,192],report_to:42,repositori:[0,1,14,64,84,128,147,149,151,153,178],repres:[1,7,18,30,31,37,38,42,43,44,45,46,48,51,52,53,56,57,58,60,62,63,65,70,83,84,85,86,101,109,111,112,113,119,121,122,123,125,126,127,128,139,140,143,147,150,154,158,159,160,161,164,165,171,172,188,189,195,196,202,210],represent:[7,22,29,30,38,46,54,56,63,64,66,67,70,72,75,83,89,92,101,112,115,118,126,128,135,141,143,149,151,167,168,169,170,171,178,179,182,186,195,196,209],representative_digit_idx:171,representative_images_diagram:171,reproduc:[43,50,53,148,149,154,160,161,168,195],reproduct:14,reput:146,repvgg:143,repvgg_convert:143,repvggblock:143,request:[3,16,29,30,31,34,38,39,43,45,46,67,72,75,77,83,89,91,109,111,121,123,131,136,137,138,139,142,145,146,147,149,150,156,171,173,178,187,188,207,210],requir:[0,1,15,22,24,31,34,46,48,50,52,53,54,62,65,67,73,77,83,85,87,95,102,108,110,111,113,115,121,122,126,127,128,141,144,146,148,150,152,153,154,155,156,158,163,164,167,171,172,173,178,186,187,188,191,192,193,210],requires_grad:34,requisit:9,rerun:[44,48,63,64,66,67,72,92,163,167,168,169,171,182,184,186,203],res_block:139,resblock:139,rescal:[33,44,68,83,178],research:[1,16,28,108,113,118,119,120,121,131,140,147,154,155,156,164,175,177,178,186,191,192],researchg:56,resembl:[83,84,157],reserv:[56,91],reset:[37,50,52,53,129,141,145,170],reset_default_graph:[136,138,145],reset_index:[1,14,41,43,52,53,60,70],reshap:[29,30,31,32,35,37,38,41,47,48,49,52,56,76,85,91,93,129,135,136,138,139,142,143,145,148,163,169,171,172,176,182,195,198,200,202,204,205,206,208],reshaped_imag:93,reshuffle_each_iter:139,resid:[83,173],residu:[53,61,72,139,143,164,166,168],residual_block:143,residual_sum_squar:86,residual_unet:36,residualblock:36,resili:87,resist:53,resiz:[31,33,36,39,43,76,77,136,137,138,139,143,144,145,208],resize_bilinear:77,resize_with_pad:139,resizemethod:144,resnet101:144,resnet152:144,resnet50:144,resnet:[139,144],resolut:[31,43,46,75,89,130,139,148,171,187],resolv:[15,51,56,112,126,131,144,147,154,187],reson:[48,83],resourc:[28,44,45,48,84,108,109,111,115,121,123,128,129,133,147,152,153,154,156,158,178,187,188,191],resource_group:9,resp:77,respect:[1,14,30,34,37,52,55,56,58,60,72,73,83,91,121,128,131,133,135,137,139,143,145,161,168,171,172,178,186,188,207],respond:[146,150,186],respons:[3,9,17,38,39,56,73,84,85,109,110,111,121,136,138,142,145,146,147,150,152,161,163,173,182,186,192,193,204],rest:[56,63,109,110,126,127,128,146,153,164,170,171,176,182,183,187,188,196,210],rest_ecg:147,rest_of_the_numb:187,restart:173,restat:113,restecg:147,restor:[30,139,164],restore_best_weight:44,restrict:[7,53,101,102,122,126,163,187,188,189],result:[0,1,7,8,9,14,16,18,22,24,31,32,34,36,38,39,41,45,49,50,51,52,55,56,57,58,59,60,63,64,66,72,75,76,83,84,85,89,93,100,101,102,109,110,111,112,115,121,123,125,126,128,129,130,131,133,135,136,137,138,140,141,143,144,146,147,152,153,154,155,158,159,160,161,163,164,167,169,170,171,172,173,175,176,177,178,179,182,183,187,188,189,192,193,198,200,202,203,207,208,209,210],result_typ:128,resultdf:176,results_df:93,resum:122,ret:148,retail:[73,150,152,168],retain:[31,143,172,202],rethinkdb:196,retina:[56,72,150,160,163,172,202],retrain:[44,50,52,58,59,94,121,136,154,178],retri:183,retriev:[3,25,33,59,75,89,102,112,115,117,121,127,135,137,146,153,154,183,187,191,193,209],retrospect:164,retun:[69,71],return_count:[76,208],return_sequ:[47,49,145],return_st:145,return_valu:[24,59],return_x_i:[171,186],reus:[126,140,143,144,163,187,209],reusabl:[153,189],reveal:[26,151],revel:[26,196],reveng:117,revenu:[25,113],revers:[36,37,117,121,125,144,187,210],reverse_diffus:36,reversed_list:188,review:[50,108,110,111,113,117,121,139,146,153,158,164,177,178],revis:121,revisit:[111,113,118,144,183,190],revolution:146,revolutionari:[75,89,173],revolv:48,reward:[37,121,178,207],rewritten:[91,145,164],rex:128,rezend:31,rf:[12,25,44,54,163],rf_predict:163,rfc:[57,161,163],rfc_100:57,rfi:65,rfst:177,rgb:[33,34,38,43,128,143],rh:61,rho:[163,164],rho_t:164,rhs_cnt:61,rhs_std:61,rhs_sum2:61,rhs_sum:61,rhynch:42,rhythm:29,ri:[34,161,172],ri_j:161,riak:196,rice:175,rich:[48,123],richard:156,richer:171,rid:[1,14,140,158,172,182,188],ridg:[72,75,85,87,89,146,170,182],ridge_sklearn:[69,71],ridge_sol:72,ridgeclassifi:146,ridgecv:72,ridgeregress:[69,71],right:[1,22,27,30,31,33,38,41,46,50,52,56,57,60,61,62,63,64,68,70,72,75,83,86,89,91,93,101,102,113,119,120,121,123,127,128,129,130,131,135,136,138,140,141,143,147,153,154,156,158,159,160,161,163,164,165,167,169,170,178,183,186,187,188,189,192,194,200,203,207],right_column:203,right_i:161,right_idx:61,right_index:[41,129],right_on:129,right_output:141,right_shifted_imag:93,rightarrow:[160,172],rightmost:[128,161],rigid:143,rigor:53,ring:[119,194],ringo:189,riot:41,rise:[1,113,118,120,125,151,170,183,199],risk:[109,110,111,121,128,153,156,169,200],riski:164,riskiest:153,ritonavir:1,river:196,rk:34,rkei:129,rkswahlyepd0yioe0t4oe3i3:65,rl:72,rlabel:129,rm:[12,25,44,209],rmaliz:36,rmse:[41,59,60,64,67,72,83,150],rmse_cb:60,rmse_cross_v:83,rmse_cv:72,rmse_lgbm:60,rmse_xgb:60,rmsle:72,rmsprop:[149,208],rnd_indx:39,rnd_search:67,rng:195,rnn1:149,rnn2:149,rnn3:149,rnn4:149,rnn:[142,145,149],rnn_builder:49,rnn_model:47,rnn_size:145,rnplwnsp1zaqp:65,ro:[34,84,172,202],road:[75,89,123,140],roadwai:[121,192],roam:209,robert:163,robin:[101,187],roblem:159,robot:[121,148,178,207],robust:[7,38,40,43,55,60,66,68,87,144,163,164,168,169,172,180],robustscal:[57,60],roc3qtujlwlgnjug8xyjhmyab7mslm:65,roc:154,roc_auc:[62,65],roc_auc_scor:[62,65,165,183,202],roc_curv:[65,183],rocket:[43,196],roi:[113,148],roi_align:148,roialign:148,role:[14,18,62,83,84,85,87,104,115,123,125,128,140,146,147,152,164,169,184,197,200],roll:[14,77,125,145,153,187],rollback:[152,153],rollout:153,ronald:7,rong:146,room:[43,55,83,123,129,155,161,178],root:[56,59,64,67,69,71,85,101,117,119,121,139,146,158,161,173,184,188,208],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:65,ropsasrsaeuchxukvv2ymdhz:65,rose:33,ross:[118,148,194],rossii:[118,194],rossum:[189,209,211],rotat:[1,3,18,22,35,43,46,57,60,93,141,148,158,159,171,172,194],rotate_in_all_direct:93,rotated_imag:93,rotation_rang:[32,35],rotobuf:118,roug:154,roughli:[14,50,52,56,125,171],round:[43,44,51,54,65,70,76,92,93,101,136,147,153,158,167,168,172,188,202,210],rout:[7,111,126,152,173,190],routin:128,row:[2,6,7,14,29,36,41,42,43,44,45,46,48,50,51,52,53,54,55,57,58,60,61,62,63,64,65,70,72,73,74,75,85,89,110,112,119,120,122,126,127,128,129,131,133,147,149,150,155,159,165,175,176,179,182,183,184,188,194,195,196,204,210],row_index:131,row_vector:128,rowsum:128,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:65,rpn:148,rpn_head:148,rrgtp8yqcvnf:65,rror:160,rsuffix:129,rt:[14,165],rt_with_na_fil:14,rtol:14,rule:[44,48,56,83,84,91,101,112,122,123,131,140,146,152,154,156,158,163,164,171,176,178,179,188,195,207,210],run:[0,5,7,14,30,32,34,41,42,43,44,48,50,52,53,55,57,58,59,62,63,72,75,77,84,85,89,91,92,93,100,105,106,108,109,110,117,118,123,125,126,127,128,129,135,136,137,138,141,142,144,145,148,152,153,154,163,164,167,168,170,171,172,173,176,179,182,187,189,195,202,203,207,209,211],run_a_gan:142,run_deep_dream_simpl:137,run_functions_eagerli:145,run_optim:135,run_step:137,rundetail:[9,109],runner:[153,187],running_loss:31,running_mean:143,running_var:143,runtim:[0,44,77,153,156,167,173],rush:[122,156,158],russian:31,rutherford:189,rvert:[135,170,180,201],rx:[34,172,202],ryan:68,ryanholbrook:150,s1:[24,61,128,129,130,186,188,210],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:65,s2:[61,129,131,189],s3:[128,152,172],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,35,37,38,39,42,43,44,45,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,77,78,85,86,87,89,91,92,93,95,100,101,102,105,106,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,137,140,141,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,163,165,167,168,170,171,173,174,175,176,177,178,181,182,185,186,187,189,190,196,201,202,203,204,207,208,210],s_0:56,s_1:[56,125],s_2:56,s_i:[56,125],s_j:125,s_n:125,s_o:56,s_text:145,s_text_ix:145,s_text_word:145,sa:131,sa_heart:179,saa:[108,152,173,191],sack:184,sacrific:56,sad:113,sadli:53,safari:110,safe:[66,153,172,178,202],safefi:63,safeti:[63,64,111,121,178,190,192],sag:[173,176],saga:176,sagemak:[152,153,155],sahara:154,sai:[7,31,34,38,42,53,55,56,58,63,64,65,72,75,83,89,108,121,125,126,128,140,146,149,150,154,157,160,164,170,172,178,179,183,187,188,198,202,210],said:[7,44,48,55,56,64,70,113,143,178,207],sake:[60,144,161,163,176],salari:[18,56,204,205,206],salary_data:204,sale:[73,86,150,178,182,183,184,188,207],salecondit:72,salepric:[72,167],saletyp:[60,72],salt:146,same:[0,1,7,9,18,29,30,31,32,33,34,35,36,38,42,43,44,45,46,48,49,50,51,52,53,55,56,57,58,60,63,64,65,67,68,69,71,73,75,83,84,85,89,92,97,102,109,113,115,119,120,122,125,126,127,128,129,131,133,135,136,137,138,139,142,143,144,145,146,147,148,150,152,153,154,158,160,161,163,164,165,168,170,171,172,175,177,178,179,182,183,187,188,189,193,195,203,209,210,211],samll:[69,71],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,39,41,44,46,52,53,55,56,59,62,63,65,66,68,69,70,71,72,75,81,86,89,91,92,102,109,110,120,121,125,126,127,136,139,141,142,144,145,148,153,155,156,159,160,161,163,164,168,169,170,172,173,175,177,178,179,182,183,186,189,193,200,207,208,211],sample_imag:[34,144],sample_kernel:34,sample_mask:144,sample_nois:142,sample_s:18,sample_submiss:146,sample_time_series_covid19_deaths_u:155,sample_weight:163,sampledb:127,sampler:34,samsung:172,samuel:[101,102,178,207],san:173,sandal:[30,44,46],sanit:[111,190],saniti:[53,145,154],sankei:1,santino:158,sape:[188,210],sar:1,sarcasm:146,sask:146,sat:[54,146],satellit:144,satisfi:[53,60,128,155,164,172,188,210],saturn:211,save:[1,29,30,31,33,34,38,44,45,46,50,52,53,54,57,62,72,76,85,91,110,128,136,138,139,144,145,146,149,154,160,163,164,169,171,175,176,187,198,203],save_best_onli:[43,44,49],save_everi:145,save_fig:171,save_format:[29,30],save_imag:39,save_images_from_dict:136,savefig:[141,171],saw:[10,13,20,44,52,55,56,58,63,75,89,109,117,150,160,164,170,171,183,184,188,207,210],say_goodby:187,say_hello:[187,209],sc1:171,sc2:171,sc:[47,70,147,171,205,206],sc_h:[75,89],sc_w:[75,89],scalabl:[56,108,110,111,121,152,153,163,169,191,192,200],scalar:[48,141,142,144,147,164,172,202],scalar_tensor:48,scale:[0,7,15,36,41,44,45,46,50,52,55,59,62,63,64,66,67,68,70,73,76,85,108,110,111,117,121,128,143,144,147,148,153,154,159,163,170,172,178,186,191,196,198,202,207],scale_feat:[75,89],scale_pip:[59,64,66],scaled_d:73,scaler:[41,44,49,57,59,60,64,65,66,67,70,73,75,83,85,89],scaler_i:49,scali:[119,194],scallion:176,scan:[111,140,146,158],scari:185,scatter3d:[169,200],scatter:[18,24,50,56,66,72,73,85,86,92,117,118,119,120,125,131,158,159,163,169,171,172,179,182,184,186,194,200,202,204,205,206],scatter_3d:30,scatter_kw:150,scatterplot:[19,24,55,58,66,67,73,75,83,89,118,158,159,182,183,184,186],scaveng:80,sceipt:153,scenario:[26,43,55,58,59,84,108,113,121,123,147,153,156,178,207],scene:176,schedul:[42,55,58,152,155],schema:[110,123,152],schema_max:53,schema_min:53,scheme:[56,120,176],school:[11,56,62,111,209],sci:[68,186],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,51,53,60,62,63,64,66,67,92,110,112,113,117,118,119,120,122,124,125,126,127,128,129,131,133,150,151,152,164,173,178,186,189,195,199],scientif:[1,56,65,123,128,151,175,188,192,210],scientificnam:[118,194],scientist:[3,6,7,21,62,86,108,109,110,111,112,115,116,117,120,121,122,123,124,125,152,153,154,164,175,178,184,185,186,190,191,193,194],scikit:[7,33,40,44,51,52,55,57,63,64,67,68,72,78,80,85,107,108,109,110,111,112,113,114,115,118,119,120,126,127,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,177,179,183,185,194,195,198,200,202,203,204,205,206,208,209],scipi:[18,40,72,83,93,125,129,138,172,200,202,203],sckit:172,scoop:187,scope:[42,66,67,140,176,178,188,204,207,210],scope_util:148,score:[9,33,37,42,44,46,50,52,53,56,57,58,60,61,62,63,66,69,70,71,72,73,75,76,83,89,92,93,109,110,111,123,142,144,146,147,148,154,157,161,163,165,167,171,173,176,177,180,182,183,204],score_cb:60,score_lgbm:60,score_lit:33,score_xgb:60,scoreboard:183,scoring_file_v_1_0_0:[9,109],scout:111,scrape:[111,122,190],scrapi:[111,190],scratch:[48,108,109,136,154,206],screen:[75,89,117],screenporch:60,screenshot:[16,113,148],script:[3,109,110,136,137,138,151,187,189,203,209,211],script_file_nam:[9,109],scroll:[117,129,130,131,136,159,163,171,175,182],scrollytel:117,scrutin:121,scullei:156,scylladb:196,sd:65,sdjfhhes1figky8fmsto5n:65,sdk:[107,110,129,153,191],sdpzzf8euy6hn86ydqexmfsez:65,se:18,sea:83,seaborn:[22,33,35,38,40,41,43,44,53,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,73,75,81,83,89,92,117,118,120,143,144,147,150,152,153,154,155,156,158,159,160,161,162,163,169,172,183,194,200,202,203],seali:125,seam:133,seamless:[110,146],seamlessli:153,search:[1,51,56,58,59,62,63,65,66,67,68,72,93,109,110,111,113,118,121,122,123,126,128,129,130,146,147,154,155,156,158,163,164,168,172,187,188,190,210],searchitoper:153,searchsort:128,season:[17,23,55,58,111,122,150],sebastian:[56,135,142,145,149],second:[0,7,18,31,32,33,43,44,46,48,53,55,56,63,110,118,121,125,127,128,131,143,146,150,154,160,161,164,165,168,171,172,173,177,178,182,187,188,189,203,208,210,211],second_baseman:[18,125],second_char_set:188,second_numb:[188,210],second_term:138,second_term_numer:138,second_tuple_numb:188,second_word:[187,209],secondari:[6,122],secondli:[164,172],secret:[26,101,156],section:[2,3,7,13,15,16,17,19,21,28,29,33,38,42,50,52,53,60,65,70,73,78,85,94,98,99,100,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,134,136,139,141,146,152,153,154,155,156,158,159,160,165,166,167,168,169,170,173,174,175,176,177,178,181,182,183,184,185,186,188,189,193,195,196,203,210,211],sector:[56,62,146],secur:[108,111,121,173,190,191,192],sedol:178,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,35,38,42,44,46,48,50,51,52,53,54,55,56,57,58,59,60,63,64,65,66,67,70,72,73,75,77,83,84,89,91,92,101,107,108,109,110,113,118,119,120,121,123,125,126,128,130,131,133,136,140,141,145,146,147,148,149,150,152,154,158,159,160,163,164,165,168,169,171,172,173,175,176,178,182,183,184,186,187,188,189,196,202,204,207,209,210],seed:[30,33,34,38,41,42,43,48,49,56,70,73,85,91,130,144,149,159,160,163,164,165,168,171,172,195,202],seed_numb:48,seek:[33,83,113,169,182,186,200,207],seem:[7,17,22,30,32,34,44,45,53,55,56,58,68,72,73,75,89,118,120,121,125,126,133,150,154,158,164,170,172,179,182,184,192],seen:[1,7,28,30,44,46,51,55,58,60,64,65,73,118,120,121,125,126,128,133,135,140,142,143,154,160,163,164,169,173,178,182,187,188,207],segment:[48,87,111,119,140,148,158,164,175,178],segmentation_coin:40,segmentation_mask:144,segmented_img:171,segreg:65,seir:155,select:[3,12,14,15,16,22,24,25,29,31,45,52,53,56,65,68,70,72,73,87,110,112,117,118,119,121,127,128,132,133,134,143,155,156,159,160,161,163,164,168,169,171,172,173,183,184,186,187,196,199,202,203],select_dtyp:[60,119,167,194],selected_featur:[173,183],selector:203,self:[3,14,18,22,24,29,30,31,34,36,37,38,39,44,45,48,52,59,61,69,71,90,91,101,102,103,130,131,137,139,142,143,144,145,148,151,152,165,169,178,179,200,204,205,209],self_dense_2:48,self_dense_3:48,sell:[37,101,102,121,182,187,188,189],selu:[49,140],selvam85:144,sem:18,semant:[123,130,131,144,187],semi:[6,122,123,158,171,178,192],semicolon:[188,210],send:[109,113,152,193],sender:[113,178,193],senet:143,sens:[1,3,7,18,32,51,55,56,59,72,75,83,89,101,110,122,123,125,126,128,131,140,160,165,178,182,184,187,196,204],sensibl:154,sensit:[41,56,65,86,133,143,152,154,156,166,172,188,197,202,210],sensor:[122,123],sent:[42,109,122,140,152,155,173,178],sentenc:[42,97,102,140,145,146,188,189,211],sentiment:[42,111,123,140,145,146,147,190],sentinel:195,seok:30,sep:[9,18,24,31,52,73,111,125,187,188,209],sepal:[66,92,126,131,161,172,202],sepal_ratio:131,sepallength:[92,131,161],sepallengthcm:70,sepalratio:131,sepalwidth:[92,131,161],sepalwidthcm:70,separ:[1,7,29,36,42,56,67,73,84,92,115,123,125,127,128,131,133,136,143,148,150,154,155,159,164,169,172,179,182,184,187,188,202,210],septemb:[175,184],sequel:133,sequenc:[14,18,41,42,46,48,55,83,87,111,125,128,140,143,145,149,150,161,187,188,189,209,210],sequenti:[29,30,31,32,34,35,37,38,39,41,43,44,46,47,49,50,52,53,60,62,68,76,91,136,140,141,142,143,144,147,149,165,166,168,172,188,198,202,208],sequential_1:38,sequential_1_input:33,sequential_2:[29,30],sequential_3:[29,30],sequential_window_dataset:49,ser1:195,ser2:195,ser:[131,195],sercostams:92,sergei:[31,171],seri:[7,8,14,18,22,24,31,35,41,51,55,56,57,58,62,63,64,66,72,83,85,117,126,127,129,130,140,143,144,147,149,155,159,164,176,185,187,189,196],serial:[150,153,173,209],series_to_supervis:41,seriou:65,serum:110,serum_creatinin:[9,109,110],serum_sodium:[9,109,110],serv:[48,84,86,109,115,117,128,131,154,155,156,187],server:[108,115,123,133,153,173,186,189,196],serverless:152,servic:[1,9,56,108,109,110,111,113,115,121,128,129,140,147,152,153,154,155,156,160,161,173,178,190,191,192,207],serving_default:33,sess1:138,sess2:138,sess:[77,138,141,145],session:[77,92,138,155,208,209],session_st:203,set1:[57,92],set2:62,set:[0,3,7,14,17,22,29,30,31,33,34,35,37,38,40,41,43,44,45,48,49,50,51,52,53,54,56,62,64,66,67,68,69,70,71,72,73,75,78,84,85,87,89,91,93,94,101,102,108,109,110,111,113,115,118,120,121,122,125,126,127,128,129,130,131,133,135,136,139,141,142,143,144,145,146,147,148,149,150,151,153,154,155,158,159,160,161,163,164,167,169,170,171,172,173,175,176,177,178,179,180,182,183,184,185,186,187,190,194,195,200,202,203,207,210],set_aspect:[142,150],set_axis_off:39,set_color:46,set_grad_en:31,set_index:[1,14,41,129,150],set_major_formatt:171,set_major_loc:171,set_opt:77,set_printopt:204,set_prop_cycl:150,set_properti:150,set_se:[48,49,149],set_styl:[60,92],set_them:158,set_ticklabel:[92,172,202],set_titl:[1,22,39,40,43,57,61,65,70,73,84,92,150,169,200],set_vis:[29,30,136],set_xlabel:[22,52,61,65,73,84,92,150,163,169,200],set_xlim:[169,200],set_xtick:[1,34,171],set_xticklabel:[1,57,142],set_ylabel:[22,52,61,65,70,84,92,150,163,169,200],set_ylim:[14,32,163,169,200],set_ytick:[1,34],set_yticklabel:[1,142],set_zlabel:[84,92,169,200],setfil:141,setosa:[66,70,92,131,161,172,202],settl:[121,192],settlement:[121,192],setup:[0,50,52,62,77,136,138,141,153,182,186],sever:[7,8,14,21,33,37,40,46,50,57,60,62,69,71,81,85,86,108,110,118,119,120,123,126,128,129,133,143,145,146,147,148,153,154,158,160,165,168,172,173,175,176,177,182,183,184,186,187,188,189,202,208,209,210],sew:164,sex:[9,22,57,109,110,165,186],sex_distribut:24,sex_val:22,sgd:[34,44,50,55,68,75,89,136,141,154,179,208],sgd_classifi:55,sgd_clf:[75,89],sgd_score:[75,89],sgdclassifi:[55,75,89],shade:[43,52,111,117,121,190,192],shadi:117,shadow:[43,57],shakespear:145,shakespeare_fil:145,shakespeare_model:145,shakespeare_url:145,shall:[101,102,187,188,189],shallow:[128,144,147,154,178,188,207,210],shanghai:[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,125,131,136,138,139,142,143,144,146,150,151,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,209],shannon:56,shaoq:148,shape:[29,30,31,32,33,34,35,36,38,41,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,69,70,71,72,76,77,85,90,91,93,119,125,126,128,135,136,137,138,139,141,142,143,144,145,146,147,148,149,153,159,163,169,171,172,173,175,179,182,183,184,186,194,195,197,198,200,202,204,205,206,208],shape_i:[69,71],shape_img:43,shape_y_0:[69,71],share:[28,34,56,57,63,65,111,112,113,115,120,121,122,123,126,128,129,130,131,146,148,151,153,155,160,161,164,172,176,178,183,187,190,195,207],sharei:[40,56,61,172],sharp:[154,160],she:[18,154,178,207],sheet:[156,176,177,180],shell:[30,187,211],shen:148,shepb1jhw5o:180,sherjil:142,shift:[8,14,41,49,57,60,68,75,77,89,93,102,147,149,150,153,155,158,169],shift_in_all_direct:93,shift_in_one_direct:93,shifted_imag:93,shine:[164,173],ship:[55,68,136],shipment:152,shirlei:117,shirt:[30,44,46],shoot:146,shop:[43,73,158],shortcom:143,shortcut:[143,144,187,189],shorten:65,shorter:[21,26,110,131,172],shorthand:[128,187],shortli:[158,186],shortsight:141,shortstop:125,shot:38,should:[7,18,29,30,32,33,34,38,42,43,46,50,51,52,53,56,57,64,65,69,70,71,73,76,91,92,101,102,109,110,112,113,115,117,121,123,125,126,128,130,131,133,136,140,141,143,144,145,149,152,153,154,155,156,158,159,163,167,168,170,171,172,173,175,176,177,178,179,182,183,185,186,187,188,189,192,193,198,203,204,208,209,210],shouldn:[62,113],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,33,35,36,37,40,41,43,44,45,46,47,49,50,52,55,56,57,58,59,61,62,63,64,65,66,67,68,70,72,73,75,76,77,84,85,86,89,91,93,109,111,112,113,118,119,120,125,126,127,128,129,131,135,136,137,139,140,141,142,144,145,148,149,150,153,154,155,158,159,161,163,164,165,167,168,169,171,172,175,176,178,179,182,183,184,186,189,194,196,198,202,204,205,206,207,208],show_centroid:171,show_everi:142,show_generated_img:39,show_imag:[34,142],show_images_batch:34,show_img:38,show_nam:209,show_new_sampl:35,show_output:[9,109],show_point:30,show_predict:144,show_xlabel:171,show_ylabel:171,showcas:[28,72,111,190],showclassificationresult:52,showdown:119,showexampl:52,showfileuploaderencod:77,showmean:18,shown:[0,7,14,16,30,32,42,55,56,58,65,78,110,125,128,143,155,156,163,169,171,178,183,187,207],showregressionresult:53,showtestdata:163,showtestimag:45,shp:148,shrink:[41,171],shrinkag:165,shuffl:[29,30,33,34,36,39,41,43,44,48,53,62,70,91,117,135,139,142,144,145,149,150,154,163,177],shuffle_fil:36,shuffle_tensor:48,shuffled_ix:149,shufflenet:143,shuga:158,shut:68,sibl:22,sibsp:[22,165],sicp:102,sid:117,side:[7,8,14,60,61,65,75,83,89,120,130,141,156,164,169,176,187,188,189,210],sidebar:77,siev:101,sieve_of_eratosthen:101,sift:146,sigh:154,sight:[173,176],sigma:[125,139,145,149,160,161,163,168,172],sigma_ix_i:125,sigma_p:139,sigma_q:139,sigma_t:139,sigmoid:[29,30,31,38,39,44,48,66,67,90,135,140,141,145,147,148,155,165,179,183,198,208],sigmoid_svc100:65,sigmoid_svc:65,sign:[33,56,59,62,69,71,110,113,127,128,137,163,164,180,188],signal:[36,53,65,72,75,89,113,154,159,161,170,178,186,193,198],signal_r:36,signatur:[33,111,131,188,190,210],signifi:[7,84,86],signific:[18,40,44,53,60,73,84,110,113,123,125,146,156,160,161,163,169,188,197],significantli:[52,56,84,146,152,154,158,163,164,171,172,182,188,202],signup:62,silenc:[30,172,202],silent:[51,60,167,188],silhouett:[171,172],silhouette_analysis_plot:171,silhouette_coeffici:171,silhouette_sampl:171,silhouette_scor:[159,171,172],silhouette_score_vs_k_plot:171,silu:139,silver:164,sim:[75,89,164],sim_count:[75,89],simcard:[75,89],similar:[3,6,7,14,29,31,33,42,43,48,52,56,58,65,69,71,73,75,85,89,113,115,121,123,125,126,127,128,131,135,136,144,147,148,149,150,153,154,155,156,158,159,160,164,169,172,173,175,177,178,182,187,188,189,193,195,207,210,211],similarli:[18,55,56,63,65,70,84,128,131,152,154,167,172,188],simpl:[1,3,15,30,34,35,36,40,42,44,46,48,52,53,55,56,60,61,65,70,73,75,83,84,85,86,89,92,93,112,120,123,128,131,135,136,140,143,144,146,147,148,150,153,163,164,168,169,171,172,178,179,186,187,188,189,194,197,198,202,207,210],simplefilt:[73,150],simpleimput:[60,67,83,167],simpler:[31,50,52,53,128,153,154,171,178,195],simplernn:[49,149],simplest:[3,18,32,48,52,53,56,91,123,128,147,153,154,164,170,171,172,178,187,202,208],simpli:[0,7,30,34,45,48,51,52,53,55,56,57,73,84,87,91,109,113,117,126,129,131,140,144,154,160,164,167,169,170,171,178,182,187,188,195,203,207,210],simplic:[109,143,150,161,163,164],simplifi:[1,29,30,33,53,61,73,84,111,123,128,139,152,153,154,158,164,190],simpson:41,simul:[0,128,155,156,187],simultan:[38,125,143,148,153],sin:[18,36,128,139,164,209],sinc:[18,22,30,32,34,37,38,40,44,45,46,50,52,53,55,56,58,59,60,62,64,65,66,67,68,70,72,73,75,83,89,91,110,121,123,125,128,129,130,131,140,143,144,145,148,150,153,154,160,161,164,167,168,169,170,171,172,173,176,177,182,183,186,187,188,192,202,208,209,210],sine:128,singl:[7,32,35,45,46,48,52,55,56,60,62,65,73,75,89,101,108,120,122,126,129,130,131,143,147,148,149,150,154,155,163,166,167,168,171,172,178,180,187,188,189,207,210,211],single_quote_str:[188,210],singleton_tupl:188,singular:146,sink:108,sinn:134,sinusoid:139,sinusoidal_embed:36,sir:[14,155],siri:146,sirkap:111,sister:173,sit:[63,64,115,178,179,193],site:[16,30,37,38,63,92,108,117,118,121,123,129,130,131,146,149,150,156,158,172,176,183,186,187,195,202,209],situat:[28,60,65,73,113,123,125,141,146,152,154,156,161,164,182,187,188],situp:97,six:43,sixth:[188,210],size:[1,7,14,18,22,31,32,34,35,36,37,38,39,40,41,42,43,44,48,50,51,53,55,56,58,59,63,64,65,66,67,68,73,75,76,77,83,84,85,89,91,92,93,101,109,110,119,120,125,126,128,131,135,136,137,138,140,142,143,144,145,148,149,154,159,160,163,164,168,169,170,171,172,173,178,182,183,184,188,194,195,198,201,202,207,208,210],sjoerd:[188,210],skalskip:[92,93],skeeter:169,skeptic:164,sketch:189,sketchnot:186,skew:[7,22,60,63,65,72,75,89,118,159,175],skewed_feat:72,skf:163,skicit:54,skill:[41,52,54,110,111,117,118,123,133,136,137,138,146,149,150,190,194,211],skim:[109,184],skimag:[40,138],skin:[111,190],skip:[0,3,31,36,41,46,48,52,53,118,144,147,187,188,194],skip_head:202,skiprow:31,skiti:[69,71],sklearn:[7,29,31,32,35,41,43,44,47,49,51,52,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,75,76,84,85,89,92,93,126,146,147,150,159,160,163,165,167,168,169,170,171,172,173,176,177,179,182,183,186,204,205,206],sklz5kcmqsshyyfixsjcin0srf5:65,skorski:36,sl:161,slate:127,slaughter:160,sleep:203,slept:204,slice:[57,65,91,187,188,195,210],slice_index:130,slice_loc:130,slice_obj:130,slicer:130,slide:[14,34,113,125,151,155,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],slider:77,slideshow:199,slight:[45,62,156,163],slightli:[18,30,32,46,55,56,62,70,72,113,137,139,147,163,164,170,179,182,187],slope:[84,147,179,182],slow:[14,44,55,68,83,128,148,153,179,195],slower:[7,42,84,110],slowest:171,slowli:[50,53],slytherin:203,sm:[149,183],small:[0,15,29,32,33,34,40,42,46,53,55,56,63,64,66,67,69,70,71,72,75,83,85,87,89,91,110,125,127,128,129,139,143,144,145,147,148,152,154,160,163,164,167,169,170,171,172,173,178,182,183,186,187,189,192,198,202],smaller:[7,18,30,33,34,38,53,68,84,91,101,118,126,128,135,143,154,160,163,167,172,183,195],smallest:[101,154],smart:[128,154,167],smartphon:[75,89,123,140],smartwatch:[6,122],smelyanskii:154,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:102,smo:[169,200],smoke:[9,109,110],smoker:175,smooth:[14,56,87,118,119,138,155,163,194],smoother:118,smoothli:[65,118,183],smote:175,smsspamcollect:149,smv:[66,67],sn:[35,38,41,43,44,53,55,56,57,58,59,60,62,63,64,65,66,67,70,72,73,75,83,89,92,118,120,147,150,158,159,160,161,163,169,172,183,194,200,202],sna:[172,202],snake:56,snapshot:[43,110,119],sne:[171,172,202],sneaker:[30,44,46],snippet:[7,56,85,155,188],snow:[19,118,194],snr:65,so:[1,4,7,15,17,18,29,30,31,32,33,34,35,38,42,43,44,45,46,48,52,53,55,56,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,75,83,89,91,101,102,106,110,111,113,117,118,119,120,121,125,126,128,129,130,133,135,137,139,140,143,144,145,146,147,149,150,151,152,153,154,155,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,190,195,202,207,210],sobel:40,social:[5,111,113,117,121,123,146,190,192],social_network_ad:[205,206],societi:[121,156],socio:[111,121,192],socr:18,socr_mlb:[18,125],soda:[127,196],sodium:110,soft:[65,171],softmax:[32,33,35,43,44,46,52,76,91,136,140,141,143,145,149,208],softmax_crossentropy_with_logit:91,softwar:[0,22,23,50,52,53,54,101,102,107,108,115,125,127,152,153,154,155,156,173,186,187,188,189,191,196,211],sold:[25,60,184],sole:[60,84,154,163,187],solid:[19,53,173],solidifi:164,soluion:[69,71],solut:[11,28,56,72,78,84,101,108,110,111,113,117,121,146,152,153,154,155,156,163,164,169,171,172,173,178,184,188,191,192,196,200,204],solv:[42,56,58,60,63,109,112,113,115,125,128,129,140,141,143,147,148,153,154,156,164,168,169,171,175,176,178,188,193,207],solvabl:[155,164],solver:[141,142,171,173,176],somber:113,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,35,38,42,43,44,45,46,48,50,51,52,54,55,56,58,60,61,62,63,64,65,66,68,70,72,73,75,77,81,83,85,86,89,91,92,94,101,108,110,111,112,113,114,115,117,118,119,120,121,122,123,125,126,127,128,129,131,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,157,158,160,163,164,165,167,168,169,170,171,172,173,175,176,177,178,182,183,184,186,187,189,191,192,193,195,196,198,200,204,207,210],some_digit:93,some_digit_imag:93,somehow:[7,125,128,184],someon:[7,55,107,108,113,115,146,152,154,164,178,182,187,193],someth:[7,42,48,60,68,75,89,91,113,118,122,123,127,128,131,133,140,156,165,170,178,182,187,188,196,197,198,207,210],sometim:[7,30,33,51,55,65,68,84,119,122,123,125,126,128,130,131,133,135,141,143,150,152,154,155,164,167,178,179,180,182,183,187,188,195,207,210],somewhat:[7,42,52,119,171,182,183,203],somewher:[92,125,164,178,182,183],sonali:113,song:[157,158,159],soo:75,soon:[29,44,164],sophist:[55,117,118,153,160,163,178,194,207],sore:140,sort:[22,43,50,56,60,68,101,123,129,130,136,143,158,163,171,172,175,178,184,187,188,194,203,207,209,210],sort_i:61,sort_idx:61,sort_index:130,sort_valu:[1,31,56,57,60,62,72,175,176],sort_x:61,sosa:182,sosb:182,soshnikov:[14,108,182],soudelor:146,sound:[7,18,31,50,125,126,140,160,167,178,207],sound_packag:187,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,40,43,44,48,49,51,54,55,56,58,59,60,61,62,63,64,65,66,67,68,70,72,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,116,117,118,119,120,121,123,125,126,127,128,129,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,195,197,202,203,204,205,207,208,209,211],source_indic:1,sours:149,south:[55,58],soy_sauc:176,soybean:176,sp:147,space:[1,6,29,31,38,43,56,91,101,102,111,117,119,125,128,129,135,141,143,146,148,154,155,161,163,164,168,169,172,173,177,183,184,187,188,189,190,194,202,209,210,211],spacing_h:148,spacing_w:148,spam:[146,149,175,178,187,188,207,210],span:[73,120,156,188,210],spanish:56,spark:[152,153],sparki:158,spars:[83,135,146,163,164,168],sparse_categorical_accuraci:136,sparse_categorical_crossentropi:[44,52,76,136,145,149],sparsecategoricalaccuraci:136,sparsecategoricalcrossentropi:[33,44,46,136,144],sparsiti:[87,168],spatial:[111,140,143,144,148,172,202],speak:[113,117,120,152,154,172,173,187],speaker:[146,154],speci:[66,70,92,118,119],special:[7,29,31,60,68,87,110,123,126,128,140,158,168,169,178,183,186,187,188,195,209],specialti:184,specif:[3,7,14,22,28,31,43,44,45,48,50,51,52,53,54,55,56,58,68,75,76,84,86,87,89,108,111,112,121,122,126,128,129,131,133,143,144,146,147,149,152,153,154,156,158,160,163,164,165,169,172,177,178,182,187,188,189,197,202,209,210],specifi:[1,7,14,22,31,34,35,44,45,48,51,53,84,85,93,108,126,128,129,131,143,153,155,163,167,168,176,178,187,188,207,210],spectral:158,spectralclust:[171,172],spectralclusteringspectralclust:171,spectrum:125,specular:43,speech:[46,87,108,140,147,178],speechi:[157,158,159],speed:[14,44,60,68,75,89,91,110,115,121,128,129,143,148,154,155,156,167,168],spend:[23,55,73,75,89,108,113,153,164,167,178],spent:[73,113,154,164],spepal:51,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:65,spike:[1,116,117,120,194],spinach:184,spine:120,spline:164,split:[31,33,34,36,37,41,42,44,55,58,61,62,66,67,68,70,77,85,91,92,128,129,133,137,138,141,143,144,145,147,148,149,150,152,154,160,161,163,164,165,169,171,172,178,182,183,186,187,188,189,195,196,200,202,209,210],split_col:61,split_data:165,split_nam:61,splitidx:53,splitted_str:188,splitted_sub_str:188,splitter:[63,64],spokan:146,sponsor:[115,153,193],spore:[119,194],sport:111,sports_hobbi:102,spot:[7,51,126,128,146,170,178,207],spotifi:158,spous:22,spread:[14,123,125,133,139,141,158,164,184],spreadsheet:[6,23,25,27,80,122,129,131,133,173,178,184,207],spring:[155,187],springer:154,spruce:184,spuriou:[40,65,68,117],sql:[12,25,108,123,127,129,131,133,152,196],sqlite:[12,25],sqrt:[41,58,59,60,61,62,64,67,72,83,86,102,125,139,142,143,148,161,163,172,182,202],sqrt_alphas_cumprod:139,sqrt_alphas_cumprod_t:139,sqrt_iter:102,sqrt_one_minus_alphas_cumprod:139,sqrt_one_minus_alphas_cumprod_t:139,sqrt_recip_alpha:139,sqrt_recip_alphas_t:139,sqrtimg:142,sqrtn:142,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:65,squar:[36,41,44,50,53,56,59,64,67,69,71,72,75,84,85,87,89,101,119,128,135,139,141,150,154,158,159,160,163,164,168,169,170,171,172,179,182,183,188,203,204,208,209,210],square_root:101,square_tupl:[188,210],squared_error:[64,86],squarederror:60,squeez:[29,30,31,38,39,136,148,169],sr:148,src:[37,38,117,125,129,130,131,136,143,144,148,159,162,163,169,171,172,175,179,180,182,184,187],ss20:[135,142,145,149],ssh:110,st:[76,77,149],st_canva:76,stabal:68,stabil:[91,120,147,154,159],stabl:[1,72,128,131,154,171,172,202],stack:[1,22,31,34,44,60,117,128,129,140,143,147,148,152,164,194],stack_clf:55,stackingclassifi:55,stacklevel:129,stackoverflow:18,staff:161,staff_id:[187,209],stage0:143,stage1:143,stage2:143,stage3:143,stage4:143,stage:[17,23,61,62,65,112,113,115,143,144,148,153,168,170,178,193],stai:[53,83,154,173,179,203],stakehold:[113,115,193],stalk:[119,194],stall:33,stamp:[55,58],stand:[55,65,68,75,89,113,120,146,156,165,168],standard:[7,18,29,31,36,51,52,53,65,68,70,73,83,98,112,115,121,126,128,131,133,140,150,152,153,155,161,164,167,169,178,182,184,187,209],standard_d2_v2:[9,109],standardscal:[49,59,64,65,67,68,70,73,83,85,147,205,206],stanford:[39,111,143,163,164,169,178,182,183],stapl:87,star:[65,73,175,188],starri:138,starry_night:138,start:[0,1,3,8,11,13,18,29,34,35,39,40,45,46,48,50,51,52,53,60,62,65,67,73,75,76,77,84,85,89,91,93,101,102,108,109,110,111,112,113,117,118,120,121,123,125,127,128,130,131,136,137,138,141,142,145,146,147,150,151,155,159,161,163,164,165,167,168,169,170,171,172,173,175,177,178,182,183,184,187,188,189,191,195,197,198,202,203,205,206,207,210],start_angl:36,start_idx:91,start_slic:130,start_tim:43,starter:[31,117,183],starti:141,starting_pitch:125,startswith:[3,141,171],startup:[48,62],startx:141,stat453:[135,142,145,149],stat:[18,44,55,59,60,64,70,72,73,125,154,155,160,200],stat_interv:160,state:[9,13,14,15,31,37,55,56,58,65,109,111,117,120,122,128,131,133,136,140,143,145,152,153,154,155,160,165,172,173,175,177,184,187,194,196,203],state_c:145,state_dict:39,state_h:145,state_s:37,statement:[31,34,105,106,121,122,125,127,133,141,146,186,189,196],stationeri:41,statist:[7,43,52,56,58,60,65,67,86,115,120,121,123,124,128,139,149,151,154,155,156,158,160,163,164,169,175,178,182,193,195,198],statquest:179,statsmodel:[60,70],statu:[22,63,73,109,110,118,141,146,153,155,194],std:[18,24,29,31,41,52,53,64,65,67,70,73,83,91,92,125,128,143,158,163,168,171,195],std_agg:61,stdarr:53,stddev:[139,148],stderr:52,stdout:209,steam:41,steep:[155,183],steer:46,stellar:65,stem:[7,62],step:[0,7,9,16,28,30,31,33,34,36,37,38,39,41,42,43,44,45,46,48,49,52,53,55,56,58,60,65,66,67,68,70,73,76,77,84,85,86,91,101,108,109,110,111,112,113,115,118,121,123,127,128,130,133,135,136,137,139,140,141,143,144,145,147,149,152,153,154,155,156,159,160,161,168,171,172,173,175,178,179,182,184,187,188,192,195,202,205,206,207],step_siz:[36,137],steps_mean:141,steps_per_epoch:[32,45,144],steps_remain:137,steps_taken:141,stepwis:182,stereotyp:121,stick:[53,113],sticki:119,stiff:187,stikeleath:113,still:[7,18,38,53,55,58,59,63,84,125,126,128,129,130,131,140,144,145,149,150,152,153,154,164,171,178,187,188,203,210],stochast:[91,139,141,164,176,179,208],stock:[120,141,146,149,178,194],stockast:[55,75,89],stop:[34,43,44,56,61,84,109,128,130,131,163,167,168,172,179,187,195,205,206],stop_gradi:148,stop_train:44,storag:[11,34,77,108,110,115,123,133,137,182,183,184,191,192,193,196],store:[6,7,11,12,29,30,31,34,42,43,45,46,51,56,59,70,72,73,75,85,89,101,102,105,108,113,122,123,126,128,129,133,134,135,139,140,145,150,152,153,154,155,156,161,167,169,187,188,189,191,196,203,210,211],stori:[4,13,19,56,116,117,172,188,193,194,210],storymap:111,storytel:[19,26,193],stott:7,str1:[53,188],str2:188,str:[1,9,14,33,34,37,39,45,52,53,60,62,65,72,75,76,89,92,109,129,130,136,139,144,148,161,167,182,184,187,188,189,195,209,210,211],straight:[48,50,56,77,113,167,169,182,186,200,204,208],straightforward:[31,84,123,128,154,167,172,173,183,186,187],straightfoward:150,strang:[18,117,184],strateg:[141,178],strategi:[7,29,42,46,52,55,58,67,73,75,83,89,113,121,141,144,154,155,175,178,180,207],strategist:113,stratifi:[163,172,202],stratifiedkfold:[70,163],stratifiedkfoldcv:70,stream:[42,52,56,77,108,140,141,148,152,153,156,178,207,209],streamlin:[143,146,151],streamlit:155,streamlit_app:77,streamlit_drawable_canva:76,street:[66,67,72,121,192],strenghten:61,strength:[1,60,150,154,169,200],strengthen:[108,164],stretch:[1,8,128,172],strftime:41,strict:[115,130,154],strictli:187,stride:[29,30,31,32,34,35,38,39,135,136,139,143,144,148],string:[7,14,22,43,60,62,65,92,126,128,129,130,131,145,184],string_vari:[188,210],string_with_whitespac:[188,210],stringio:150,strip:[3,14,65,145,187,188,210],stripe:183,stripplot:183,strive:[38,87,146],stroke_color:76,stroke_width:76,strong:[18,48,55,58,60,70,72,118,120,125,143,145,158,160,164,166,168,178],stronger:[37,172],strongest:[60,121],strongli:[125,164,171,178,207],struct:128,structur:[6,7,12,22,30,31,41,44,46,56,63,64,73,99,101,121,122,123,127,132,133,134,135,136,140,141,143,144,146,147,148,152,165,168,169,172,173,176,178,182,184,187,189,192,194,196,197,200,202,207,209],struggl:[154,160],strutur:167,stubbornli:50,stuck:[68,154],student:[16,18,70,123,125,127,155,170,182,186,196],student_admiss:209,studi:[14,16,34,43,56,73,140,164,169,174,176,178,190,192,195,204,207],studio:[7,9,109,111,182,184,185,186,190],study_15:63,study_1:63,study_20:63,study_41:63,study_7:63,stuff:[91,187],stump:164,stun:63,style:[0,3,32,38,41,57,68,73,100,128,129,130,131,136,143,144,150,151,155,158,159,163,169,171,172,173,175,179,180,182,190,191,192,193,194,195,196,197,198,200,201,202,204,205,206,207,208,209,210,211],style_expect:138,style_featur:138,style_gram_matrix:138,style_imag:138,style_image_path:138,style_image_url:138,style_image_weight:138,style_lay:138,style_loss:138,style_minus_mean:138,style_norm:138,style_shap:138,style_weight:138,stylenet:136,stylesheet:[130,131,173,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],sub:[1,33,42,77,98,128,145,149,154,182,183,184],sub_str:188,subarrai:195,subclass:[3,29,145,187],subdimension:128,subgraph:172,subgroup:[56,111,121],subitem:187,subject:[1,7,31,38,50,56,101,102,111,113,121,122,128,146,187,188,189,190,192,198],sublicens:[101,102,187,188,189],sublist:102,subm:60,submiss:60,submit:[9,15,72,81,97,109,113,154,173],submodul:187,subnet:152,suboptim:171,subpackag:187,subplot:[1,29,30,31,33,34,35,36,38,39,40,41,43,44,45,46,56,57,60,61,65,70,73,91,118,120,136,139,142,144,150,158,159,163,165,169,171,172,194,200,202,208],subplot_kw:43,subplots_adjust:[31,35,169,171,200],subsampl:32,subscrib:[121,153,192],subscript:[108,110,121,192],subscription_id:9,subsect:[7,51,126],subsequ:[31,32,55,60,84,128,141,163,167,168,177,188,203,210],subset:[7,18,33,34,45,46,51,55,56,73,75,83,89,92,95,98,121,125,126,128,130,131,135,140,153,154,163,164,167,168],subspac:[55,128,163,172,202],substanti:[101,102,160,161,187,188,189],substitut:[7,11,129,187,209],substr:[1,188,210],subsubitem:187,subtl:[7,126,167],subtract:[85,86,101,128,144,188,189,195,210,211],subtre:56,subtyp:188,subwai:111,succe:178,succeed:168,success:[111,113,121,128,143,154,155,156,164,178,187,188,204],successfulli:[38,39,56,62,141,154,155,164],succinct:113,sudden:70,suddenli:70,sue:195,suffer:[62,63,64,140,147,150],suffici:[30,32,125,160,164,168,169,188],suffix:[129,173,186,187],sugar:[53,128,187],suggest:[11,14,18,34,42,45,65,86,125,147,156,161,163,164,178,182],suit:[48,52,65,66,67,130,159,178,183,194],suitabl:[3,60,66,128,140,152,156,164,176,178,187,208],sulfur:53,sulphat:53,sum:[1,7,14,18,22,25,31,34,36,41,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,69,71,72,73,75,83,86,89,90,91,125,127,128,129,139,141,142,147,149,150,158,159,160,161,163,164,166,168,169,171,172,175,179,182,184,187,195,200,204,205,208,209],sum_:[56,84,86,87,139,141,149,160,161,163,164,168,170,172,179,201,204],sum_i:[135,160],sum_inertia_:171,sum_of_list:101,sum_of_valu:101,sum_t:164,summar:[57,65,83,112,113,125,143,145,161,178,180],summari:[7,29,30,38,45,51,52,55,58,59,64,84,85,110,113,128,139,140,187,192,195,198],summaris:[65,85],summat:[84,143,147,179],summer16:209,summer:[17,111,115],sun:[54,63,148],sundai:[55,58],sunflow:33,sunflower_path:33,sunflower_url:33,sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:43,sup:53,supercalifragilisticexpialidoci:[188,210],supercharg:117,superclass:143,superimpos:[50,120],superman:101,supermarket:43,superpow:64,supervis:[29,38,41,56,58,59,63,64,65,66,67,75,89,143,144,151,154,156,157,158,163,164,168,169,171,172,175,176,177,186,202],supervisor:141,suppli:[7,55,58,97,111,120,128,152,187],support:[0,1,7,18,48,52,53,55,56,58,60,63,64,75,76,87,89,91,110,111,112,113,115,117,119,121,122,125,128,130,131,144,146,151,152,153,154,158,160,163,164,168,171,173,176,178,183,186,187,188,195,203,210],support_vectors_:[169,200],suppos:[18,55,56,123,125,128,144,160,161,169,184,188],suppress:[130,147,172],supris:44,suptitl:18,sure:[0,4,9,11,33,51,55,56,58,91,113,117,119,121,122,125,126,128,138,150,154,156,159,165,171,175,176,178,180,182,186,187,188,192],surfac:[56,60,84,85,119,194],surmis:159,surpass:[29,156],surpris:[7,126,128,158,178,179,184,187],surprisingli:[59,183],surround:[123,144,182,188],survei:[6,7,123,152,161,192],surveil:[123,148,156],surviv:[22,155,164,207],survivor:22,suscept:155,suspect:[65,204],suspicion:152,sustain:[16,110,153],sustract:165,sv_classifi:55,svc:[55,62,65,66,169,176,200],svcsvc:[66,169],svm:[55,62,87,135,176,177,178],svmj:[163,169],svr:67,svr_rnd:67,svrsvr:67,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:65,sw:161,swap:[102,128,131,188],swarmplot:[73,183],sweden:211,sweet:[73,170],swish:36,swiss:203,switzerland:150,sx:77,sy:[3,12,18,25,30,33,40,41,52,73,77,91,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],syllabl:188,symbol:[49,62,146,187,189],symmetr:[148,152,164,172,188],symptom:146,synaps:108,sync:125,synchron:156,synonym:[65,87,143,195],synset:143,syntact:[128,187,209],syntax:[128,131,133,173,187,195],syntaxerror:[187,189],synthes:93,synthesi:93,synthet:[56,154,155,156,175],syphili:[121,192],system:[14,41,43,46,53,56,83,108,110,111,113,115,121,122,127,128,140,141,146,149,151,152,153,154,155,156,164,173,186,189,190,192,196,198,211],systemat:[121,156,178],sz:77,t:[0,1,7,14,18,24,26,30,31,32,33,34,35,37,38,41,42,43,44,45,46,48,50,52,53,55,56,57,58,59,61,62,63,64,65,66,69,70,71,72,73,75,83,84,85,89,90,91,102,108,109,110,111,112,113,115,117,118,121,122,125,127,128,129,130,131,133,135,138,139,140,141,143,145,146,148,149,150,152,154,155,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,182,183,186,187,188,189,190,192,194,195,200,202,204,205,206,207,209,210],t_1:[125,163],t_2:125,t_:141,t_dim:139,t_fix:141,t_grad:77,t_index:139,t_input:77,t_k:141,t_loss:31,t_maze:141,t_n:163,t_obj:77,t_preprocess:77,t_score:77,t_valu:125,ta:60,tab:[22,31,109,110,127,131,187],tabl:[11,12,14,51,80,117,119,123,125,127,128,131,152,154,155,158,161,176,182,183,187,188,203,210],table_data:[188,210],table_str:[188,210],tableau:[113,119],tabular:[44,57,65,110,128,140,167,178,188,196,207],tac:187,tack:128,tackl:[45,56,60,66,67,111,129,151,154,168,171,184],tag:[3,9,63,73,109,122,187],tag_nam:187,tags_decor:187,tags_to_skip:3,taha:49,tail:[41,51,55,58,60,72,75,83,89,126],tailor:87,taiwan:146,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:65,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,35,38,43,46,48,50,52,53,55,56,58,59,60,62,63,64,65,67,70,72,73,75,83,84,85,86,89,91,92,97,101,108,109,110,111,112,113,115,117,119,120,121,122,123,125,126,128,129,130,131,133,135,136,139,140,141,143,144,145,146,147,151,152,153,154,158,159,160,163,164,167,168,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,192,198,202,207,209,211],takeabl:[130,131],takeawai:[7,24,51,113,126],taken:[1,24,28,35,37,51,62,115,123,125,126,128,141,150,156,168,184,193,204],talent:111,talk:[16,18,56,68,75,89,111,113,117,121,123,125,151,165,168,178,183,190,192,204],talk_tim:[75,89],tall:[120,141,143],taller:[18,125],tan:[119,128,194],tandem:209,tang:154,tangent:128,tangerin:[188,210],tangibl:108,tanh:[38,39,50,142,145,147,198,208],tape:[0,36,38,137,141,142,145],tar:[33,34,136,143],tarantool:196,tarfil:[34,136],target:[1,9,29,30,37,39,42,44,55,56,58,59,61,62,63,64,66,68,69,70,71,72,73,75,83,84,85,87,89,91,97,101,109,110,135,138,145,146,147,148,150,152,153,154,159,160,161,163,164,165,169,171,172,178,180,186,187,202,204,207,208],target_class:65,target_f:37,target_fil:136,target_indic:1,target_nam:44,target_s:[33,76,136],target_shap:138,tarih:37,task:[7,8,9,16,38,45,46,48,51,52,57,63,64,65,66,75,85,86,87,89,104,108,109,110,112,115,116,117,118,121,123,126,127,128,129,140,143,144,146,147,148,151,152,153,154,156,157,164,165,166,168,169,170,171,172,173,174,175,176,177,178,180,183,184,185,186,189,191,194,204,207,209],task_typ:60,tast:[157,158],tasti:[119,194],taught:[60,158],tax:38,taxi:[17,115],taxicab:[111,190],taxonom:7,tbd:[134,159,160,161,163,164,165,167,168],tc:186,tchnormal:45,tcl:165,tdd:151,tdsp:115,teach:[44,117,143,211],team:[17,18,23,73,111,113,115,121,125,151,153,156],teammat:[104,113],tecent_fil:41,tech:[48,207],technic:[41,48,56,121,133,152,153,156,164,165,167,178,192,196,207],techniqu:[1,4,7,15,17,32,33,35,46,51,55,56,60,62,63,64,65,66,73,78,80,83,84,85,86,87,93,94,111,112,115,116,120,121,123,125,126,128,132,134,140,154,158,159,160,163,167,168,170,175,176,177,178,179,180,182,183,184,186,188,193,204],technolog:[62,108,111,122,146,152,156,164,173,178],tediou:[115,127,169,182],teenag:73,teenhom:73,telecom_churn:[56,160,163],telecom_data:160,telemetri:29,televis:113,tell:[4,7,13,19,38,56,60,61,62,66,75,89,111,113,116,117,121,125,140,146,150,163,170,178,179,194,198,207,209],temb:139,temp:[41,54,68,85,118,136,138,188,202,209],temp_1:54,temp_2:54,temp_original_loss:138,temp_output_:138,temp_test_acc:[136,163],temp_train_acc:[136,163],temp_train_loss:136,temperatur:[122,123,185],templat:[41,127,155,173],tempo:[158,159],tempor:87,temporari:[77,128,138],temporarili:[34,84],temporary_attribut:187,tempt:[53,125],temptat:53,ten:[52,62,83,136,143,175],tencent:41,tend:[44,55,58,59,62,63,64,65,68,117,118,128,129,140,147,159,160,178,196],tendenc:[116,194],tens_reshap:48,tension:144,tensor2tensor:139,tensor:[33,34,38,77,136,141,142,143,144,145,195,208],tensor_0:48,tensor_1:48,tensor_1d:48,tensor_2:48,tensor_2d:48,tensor_3d:48,tensor_nam:48,tensor_shuffl:48,tensorflow:[30,36,37,38,41,43,45,46,47,49,50,52,53,55,63,64,68,76,77,87,110,135,136,138,139,140,141,142,143,144,145,148,149,151,153,154,155,156,173,175,179,186,198,208],tensorflow_addon:[36,139,143],tensorflow_cookbook:[136,138,145,149],tensorflow_dataset:[36,144],tensorflow_inception_graph:77,tensorpack:148,tensorspec:[38,137],term:[1,3,31,52,55,56,58,63,65,84,85,86,109,111,120,123,127,128,133,139,140,141,143,146,149,152,156,158,159,164,169,170,171,172,177,178,182,183,187,190,196,200,204,207],termin:[0,44,109,110,117,141,173,184,187,189],terminolog:[1,65,121,127,133,158,177],terribl:[52,146],territori:14,test:[0,14,15,22,29,31,32,33,36,37,41,43,44,45,46,56,61,64,66,67,70,72,75,85,89,93,102,108,110,111,118,121,123,128,135,136,143,144,145,146,147,149,150,153,154,158,159,160,163,164,165,170,171,172,173,176,177,178,182,183,186,187,189,198,201,202,207,208],test_absolute_valu:101,test_acc:[46,136,163],test_accuraci:136,test_addit:101,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[136,144],test_calculate_happy_cas:102,test_calculate_with_invalid_c_input:102,test_calculate_with_none_input:102,test_calculate_with_str_input:102,test_capitalize_words_default:102,test_capitalize_words_exclude_word:102,test_censor_word:102,test_censor_words_no_censor:102,test_censor_words_partial_match:102,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:101,test_cont:3,test_count_occurr:102,test_count_occurrences_empty_list:102,test_count_occurrences_str:102,test_count_word_occurr:102,test_count_word_occurrences_empty_text:102,test_count_word_occurrences_same_word_rep:102,test_data:[29,55,58,59,63,67,83,135],test_data_path:[75,89],test_data_schema:53,test_dataset:34,test_df:[14,22,24,59,91,93,146],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:59,test_df_hist_with_empty_df:59,test_df_hist_with_none_df:59,test_df_pairplot_happy_cas:59,test_df_pairplot_with_empty_df:59,test_df_pairplot_with_none_df:59,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_discrimin:142,test_discriminator_loss:142,test_divis:101,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:53,test_empty_list:101,test_equ:101,test_existing_el:101,test_featur:54,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:102,test_fibonacci_sequence_single_term:102,test_fibonacci_sequence_zero_term:102,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:102,test_flatten_nested_lists_empty_list:102,test_flatten_nested_lists_no_nested_list:102,test_float_numb:101,test_fold:136,test_format_person_info:102,test_format_person_info_empty_list:102,test_format_person_info_single_person:102,test_funct:[30,187],test_function_scop:187,test_gener:142,test_generator_loss:142,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:187,test_group_by_categori:102,test_group_by_category_empty_input:102,test_group_by_category_no_categori:102,test_group_by_category_single_categori:102,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[41,167],test_imag:[46,136,144],test_img:76,test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:163,test_init:3,test_input_data:[67,83],test_input_dim:53,test_insertion_sort:102,test_insertion_sort_empty_list:102,test_insertion_sort_single_element_list:102,test_insertion_sort_sorted_list:102,test_is_empti:101,test_label:[29,46,54,67,83,136],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:101,test_load:34,test_loss:[29,46,136],test_lstm_model:145,test_merge_dicts_with_list:102,test_merge_nested_dict:102,test_merge_three_dict:102,test_merge_two_dict:102,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model:45,test_ms:[67,83],test_multipl:101,test_nam:[72,136],test_negative_numb:101,test_non_existing_el:101,test_nul:53,test_one_as_input:101,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_path:45,test_permut:102,test_permutations_empty_list:102,test_permutations_single_el:102,test_pop:101,test_positive_numb:101,test_pr:[66,67,83],test_pred_poli:66,test_preprocess:[67,83],test_push:101,test_rang:53,test_remove_dupl:102,test_remove_duplicates_empty_dict:102,test_remove_duplicates_empty_list:102,test_remove_duplicates_no_dupl:102,test_remove_duplicates_str:102,test_respons:72,test_result:34,test_rms:[67,83,150],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:101,test_sampl:[9,109],test_save_path:72,test_scal:[59,66],test_scor:[62,70],test_single_element_list:101,test_siz:[29,31,32,35,44,54,55,56,57,58,59,60,62,63,64,65,66,67,83,85,92,147,150,163,165,167,168,172,173,176,177,179,182,183,186,202,204,205,206],test_sqrt:102,test_sqrt_non_perfect_squar:102,test_sqrt_perfect_squar:102,test_square_funct:101,test_str:102,test_string_input:101,test_string_numb:101,test_string_upper_empty_str:102,test_string_upper_happy_cas:102,test_string_upper_none_str:102,test_subtract:101,test_url:[3,72],test_vari:187,test_vector:146,test_wrong_target_typ:101,test_x:[41,69,71,167],test_zero:101,testabl:151,testappenddiffcolumn:14,testbinarysearch:101,testcalcul:102,testcalculatesum:101,testcapitalizefirstletterp:102,testcapitalizeword:102,testcas:[3,14,22,24,52,59,102],testcensorword:102,testcleanfar:22,testcolumnfilt:14,testcomplex:101,testcountdigit:101,testcountoccurr:102,testcountwordoccurr:102,testdfboxplot:24,testdfhist:59,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:101,testfibonacci:102,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:101,testflattennestedlist:102,testformatpersoninfo:102,testgcd:101,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:102,testgroupbysum:14,testimoni:113,testing_imag:45,testinsertionsort:102,testlabelencod:22,testload:52,testmapfunct:101,testmean:52,testmergedict:102,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:102,testremovedupl:102,testrtwithnafil:14,testset:[47,60],testsieveoferatosthen:101,testsqrt:102,testsquareroot:101,teststack:101,teststd:52,teutschmann:185,texa:[121,173,195],text1:42,text2:42,text3d:[92,172,202],text:[1,12,15,23,41,42,44,46,48,53,63,64,65,72,75,76,77,83,87,89,102,108,111,113,117,122,123,127,128,136,140,143,144,145,146,147,149,150,152,154,158,159,161,163,164,165,169,171,172,173,175,178,179,180,182,184,186,187,188,189,190,191,192,193,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],text_data:149,text_data_target:149,text_data_train:149,text_process:149,text_str:149,text_templ:77,text_widget:77,textbf:161,textbook:[56,164,178],textbox:94,textcolor:170,textcoord:171,textrefer:187,textrm:[84,179],texts_to_sequ:149,texttestrunn:52,textual:[1,8,117,119,187],tf0btgg9:65,tf:[29,30,33,36,37,38,41,43,44,45,46,47,49,50,52,53,77,87,135,136,137,138,139,141,142,143,144,145,148,149,154,170,175,198],tf_model_file_path:33,tf_util:37,tfa:[36,139,143],tfboard_callback:44,tfd:[36,144],tfdetect:148,tffunc:77,tflite:33,tflite_model:33,tfliteconvert:33,tfutil:148,tfv1:148,tgz:[33,34],th:[56,86,125,128,139,147,160,163,172],thai:[175,176,177],thai_df:175,thai_ingredient_df:175,thal:147,than:[1,2,7,8,14,18,29,30,31,32,33,34,37,43,44,46,48,50,51,52,55,56,58,60,62,63,65,66,67,68,70,75,80,87,89,91,101,108,110,113,118,120,121,123,125,126,127,128,129,131,133,139,140,143,145,146,147,150,153,154,156,158,159,160,161,163,164,167,168,169,170,171,172,176,177,178,182,183,184,186,187,188,189,192,195,196,200,202,203,204,207,209,210,211],thang:143,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,154,158,159,160,161,163,164,165,167,168,169,173,175,176,177,178,182,183,184,186,187,188,189,202,203,204,205,208],thecodeship:187,thedatasciencevenndiagram:124,thee:188,theguardian:117,thei:[1,6,7,12,15,18,23,25,31,33,42,44,46,48,51,52,53,55,56,58,62,63,64,65,68,72,73,75,83,84,89,91,99,108,109,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,137,139,140,141,142,143,144,145,146,147,148,150,152,153,154,156,158,160,161,163,164,168,169,170,171,172,173,178,179,182,183,184,186,187,188,189,190,192,193,195,197,202,207,209,210,211],them:[0,1,3,7,15,21,26,30,31,33,34,35,38,42,43,44,45,46,48,50,51,55,56,58,60,62,63,64,65,66,67,70,73,75,83,84,87,89,91,92,94,99,102,108,109,110,112,113,115,117,119,120,121,123,125,126,128,130,133,134,135,136,138,139,140,143,144,145,146,147,148,150,151,152,153,154,155,156,160,163,164,165,167,168,169,170,171,172,175,178,179,182,183,184,186,187,188,189,191,192,196,202,207,208,209,210],theme:[30,41,113],themselv:[7,68,113,115,128,140,164,183,207],theorem:160,theoret:[123,154,160,163,169,186],theori:[56,112,117,125,139,146,149,164,169],thereaft:141,therebi:[146,158,169],therecord:73,therefor:[7,30,32,40,42,50,56,60,110,128,139,141,143,152,154,156,163,164,165,168,169,171,172,187,188,202,210],thereof:195,theta:[139,163,164,165,204],theta_0:164,theta_1:[163,165],theta_2:163,theta_i:[163,164],theta_n:165,theta_t:164,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,83,84,85,86,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,184,185,186,187,188,189,190,192,193,194,195,196,197,202,203,204,205,206,207,208,209,210,211],thick:1,thicksim:139,thing:[1,7,42,44,48,55,56,58,59,63,66,69,71,72,75,83,89,91,109,110,112,113,115,117,121,123,125,126,128,130,131,133,140,150,155,157,158,164,171,172,173,175,178,187,188,196,198,202,203,207,210],think:[7,11,18,26,28,31,35,46,48,52,53,55,56,61,68,75,89,111,113,117,121,123,128,131,133,146,149,154,155,158,159,169,170,172,175,177,178,183,184,186,187,188,200,202,210],thinkhdi:113,third:[14,32,44,55,56,70,108,113,125,128,161,164,187],third_baseman:125,third_term:138,third_tuple_str:188,this_file_dir:77,thisag:189,thisplot:46,tho:[42,188,210],thon:[188,210],thorough:153,thoroughli:112,those:[1,7,14,16,18,32,42,43,49,52,55,56,58,62,63,68,75,83,89,110,112,113,115,118,119,120,121,122,123,125,126,128,129,131,136,138,141,145,146,147,149,150,152,153,155,158,160,161,164,167,169,172,175,178,182,187,188,193,207,209,210],thou:145,though:[7,46,52,68,111,113,120,128,129,131,149,150,154,155,167,177,183,187],thought:[7,16,30,35,59,64,75,89,113,123,128,153,178,193,195],thoughtfulli:99,thousand:[29,42,55,56,83,117,155,168],thread:172,threadpoolctl:159,threaten:[118,194],three:[7,13,14,19,21,27,29,32,33,38,43,45,53,55,56,58,62,66,73,80,83,92,97,101,102,107,108,111,119,122,127,128,131,135,136,143,144,147,148,150,152,154,155,156,158,159,169,171,173,187,188,190,195,200,209,210],three_g:[75,89],thresh:[7,76,126],threshold:[1,18,29,51,52,56,60,65,125,152,154,163,164,183],through:[1,3,9,10,20,24,30,31,42,46,50,52,53,60,67,68,69,71,73,85,91,99,101,108,109,110,112,113,115,117,118,121,122,123,127,128,129,131,136,137,139,141,143,144,145,146,147,149,150,151,152,153,154,155,156,158,159,164,165,167,170,175,176,178,182,186,187,188,189,192,195,198,199,204,207,209],throughout:[45,91,113,115,125,153,164,178,182,193,207],thrown:128,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:65,thu:[3,14,32,48,52,55,56,59,60,63,65,73,110,120,123,125,128,129,131,140,158,160,161,163,167,168,169,170,172,178,182,183,184,185,187],thumbnail:[77,137],thunder9:41,thunder:41,ti:[113,149],tial:[69,71],tian:148,tibco:196,tibshirani:163,tic:187,tick:[3,109,158,161,171],tick_param:[60,171],ticker:171,ticket:113,tid:117,tidi:184,tier:152,tight_layout:[18,31,36,39,40,43,46,60,118,171,194],tiktok:156,tile:[77,110,171],tile_s:77,till:[62,170],tim:204,time:[0,1,7,8,9,13,14,29,31,32,33,34,36,37,39,41,42,43,44,47,48,50,55,56,58,59,60,62,64,65,66,67,68,69,71,72,73,75,83,86,89,91,109,110,111,112,113,115,117,119,120,123,125,126,128,129,131,133,136,137,139,140,141,142,143,144,145,146,147,149,152,153,154,155,156,159,160,161,164,167,168,169,170,171,172,173,176,178,182,183,184,186,187,188,189,190,191,194,196,202,203,204,207,209,210],time_model:43,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[158,159],time_step:139,time_t:37,timeit:[171,195],timelin:[104,155],timeseri:49,timeseriesclassif:29,timestamp:[41,122,130,150,152],timestap:49,timestep:[41,49,139,149],timnit:[111,190],tin:163,ting:182,tini:[34,171],tiniest:178,tip:[17,23,91,113,183],titan:165,titanic_train:22,titanic_train_and_test:165,titl:[15,22,29,30,31,32,33,34,35,39,41,43,44,47,50,52,53,56,60,61,62,65,70,72,75,76,84,85,86,89,91,92,118,119,120,122,125,129,130,131,136,144,145,149,158,159,161,163,171,172,173,186,188,194,196,202,204,205,206],title1:171,title2:171,title_cas:106,titlepad:[68,150],titles:[68,150],titleweight:[68,150],tj:41,tkt:149,tl:37,tl_start:37,tld:65,tmp:[12,25,29,30,31,34,38,39,41,43,46,72,76,85,131,145,149,187],tmp_folder:187,tmp_folder_path:[29,30,31,34,43,46,72],tmp_zip_path:43,tn:[58,65,75,89,183],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:65,to_categor:[32,43,208],to_csv:[72,85,175],to_datetim:[1,14,37,41,49,73,182],to_devic:34,to_drop:73,to_fil:3,to_fram:[129,175],to_lat:31,to_numer:[37,62,73],to_numpi:[49,131,182],to_pandas_datafram:[9,109],to_period:150,to_plot:73,to_print:141,to_pydatetim:130,to_renam:129,to_replac:179,to_seri:41,toarrai:83,tobacco:110,tocilizumab:1,todai:[42,73,117,121,145,147,151,152,154,156,164,165],todens:146,todo:142,toe:187,togeth:[0,1,3,7,8,14,41,44,46,51,55,56,73,102,113,119,125,126,127,128,133,139,147,153,158,161,164,168,170,172,179,187,188,189,196,209,210],toggl:110,toh:30,toi:[18,161,164],tok_d:42,tok_func:42,token:[48,143,146,149,189],token_type_id:42,tokyo:[14,133,196],tokz:42,tol:62,told:113,toler:[131,156],tolist:[41,43,49,55,161],tom:[24,178,189,207],tomato:[43,184],tomomi:186,tomorrow:208,tone:111,tong:148,tongchuan:41,too:[18,32,33,42,52,53,55,56,58,59,60,63,64,67,70,72,83,117,118,120,130,139,140,150,153,154,158,159,160,164,167,170,176,178,182,183,184,187,188,210],took:[17,20,43,56,113,164,171,173],tool:[7,33,44,54,57,60,65,108,110,111,112,115,121,122,123,126,129,131,139,151,152,153,154,156,159,164,172,174,182,184,185,187,188,190,191,195],toolbox:[123,164],toolchain:153,toolkit:[111,153],tooltip:117,top:[3,7,16,30,31,33,35,42,44,46,50,56,58,60,63,70,83,91,93,101,110,113,120,127,128,131,148,151,152,155,158,159,160,172,175,183,184,187,195,203,204,211],top_pol:41,top_sen:41,top_tweet:41,top_vol:41,topic:[1,42,108,111,112,113,119,121,125,126,127,128,151,156,205,206],topilimag:34,topolog:30,toppredict:176,torch:[31,34,39],torchvis:[34,39],torgo:64,toronto:[136,143,170],tort:[101,102,187,188,189],total:[7,29,30,31,33,36,37,38,39,41,42,44,45,48,53,56,57,60,62,63,64,65,66,67,73,75,83,84,86,89,101,117,120,125,126,127,128,138,143,155,158,160,161,163,168,171,172,173,182,188,202,208,209],total_bedroom:[67,83],total_incom:188,total_len:31,total_na:57,total_profit:37,total_promo:73,total_room:[67,83],total_s:136,total_sum_squar:86,total_var_i:138,total_var_x:138,total_variation_loss:138,total_volum:188,totalbath:60,totalbsmtfin:60,totalbsmtsf:60,totallot:60,totalporch:60,totalprod:[120,194],totalprofit:37,totalsf:60,totensor:[34,39],totrmsabvgrd:60,toucantoco:113,touch:[66,67,75,89,123,178],touch_scr:[75,89],touch_screen:[75,89],touchscreen:[75,89],tour:117,toward:[65,84,113,121,128,146,147,163,173,179,188,192],towardsdatasci:[123,196],tp:[58,65,75,89,183],tpr:[65,183],tpsnva:113,tqdm:[31,39,91],tqdm_notebook:39,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:65,trace:137,traceback:[91,128,129,130,131,195,209],track:[3,36,38,44,50,52,102,110,111,113,121,127,130,145,146,154,155,164,171],tractabl:139,trade:[55,62,75,89,141,143,154,163,170,178,185],tradeoff:[7,58,63,75,89,126],trader:[41,146],tradit:[3,50,60,110,113,125,143,153,154,155,156,174,178,186,196,207],tradition:[113,152,154],traffic:[111,122,123,153],trail:[65,128,177,188],train:[9,10,20,29,36,41,47,48,49,50,53,56,62,68,69,71,72,84,93,100,107,113,115,121,123,125,129,135,136,138,139,141,142,143,145,146,147,148,149,150,152,153,156,158,160,161,163,164,165,166,167,169,170,171,172,173,176,177,179,180,182,183,186,190,191,192,198,200,201,202],train_acc:[136,163],train_accuraci:44,train_batch:144,train_d:[33,34],train_data:[29,39,55,56,58,59,63,67,75,83,89,135],train_data_path:[75,89],train_dataset:[36,42,139],train_df:[91,93,146],train_dir:136,train_dl:34,train_featur:54,train_fold:136,train_funct:30,train_i:[41,167],train_imag:[46,136,144],train_index:163,train_label:[29,39,46,54,56,136],train_length:144,train_load:[34,39],train_log:91,train_loss:[29,31,34,44,136,145],train_nam:[72,136],train_on_batch:[136,198],train_op:145,train_path:45,train_respons:72,train_rms:150,train_save_path:72,train_scor:70,train_siz:[34,70],train_solution_bounding_box:45,train_step:[36,38,138,145],train_test_split:[29,31,32,35,42,43,44,54,55,56,57,58,59,60,62,63,64,65,66,67,70,83,84,85,92,147,150,163,165,167,168,171,172,173,176,177,179,182,183,186,202,204,205,206],train_url:72,train_va:31,train_vector:146,train_x:[31,41,167],trainabl:[29,30,36,38,45,68,135,139,143,144,176,198],trainable_vari:[135,141,142,145],trainable_weight:[36,38,139],trainer:42,trainhistori:[50,52,53],training_block:139,training_data:[9,109],training_data_preprocess:[67,83],training_fin:[75,89],training_hour:62,training_imag:45,training_input_data:[67,75,83,89],training_label:[67,75,83,89],training_loss:70,training_s:70,training_sc:47,training_seq_len:145,training_step:[34,135],trainingargu:42,trainset:47,trait:73,traj1:141,tran:[182,183,184],trane:[69,71],trang:91,transact:[6,17,133,158],transcrib:[146,156],transcript:156,transduct:[154,158],transfer:[31,34,55,58,127,135,140,144,147],transform:[7,22,30,33,34,39,40,42,44,46,47,49,50,51,52,55,56,57,58,59,60,62,63,66,67,68,72,73,77,85,91,92,108,118,126,128,131,135,136,138,139,143,146,147,148,150,151,152,154,159,161,167,169,171,172,178,202,204,205,206,207,209],transform_fpcoor_for_tf:148,transformed_df:175,transformed_feature_df:175,transformed_label_df:175,transformer_block:143,transformerblock:143,transfrom:66,transit:[108,143,155,164],transition_block:143,translat:[42,46,102,113,123,140,146,152,155,178],transmit:123,transpar:[121,156,192],transpos:[29,39,44,50,67,83,85,91,128,135,136,138,148,188,210],transposed_matrix:[188,210],transposed_row:[188,210],trap:[121,154,192],trash:186,travel:150,travers:[31,188],treat:[1,7,42,45,62,65,75,84,89,121,126,128,129,130,131,133,143,153,154,187,192],treatment:[121,128,146,186,192],tree:[31,55,58,59,60,61,68,75,77,89,141,154,160,161,164,165,167,172,176,177,178,202,207],tree_best:[63,64],tree_clf:[63,75,89],tree_grid:56,tree_list:161,tree_method:60,tree_param:56,tree_pr:56,tree_reg:64,tree_reg_sc:64,tree_scor:[75,89],treebeardtech:0,trees_grid:163,trekhleb:[101,102,187,188,189],tremend:7,trend:[14,55,58,85,86,111,113,117,121,122,146,170,190,192,194],treshold:1,trevor:163,tri:[38,56,62,64,69,71,160,170,178],triag:[42,153],trial:[42,53,154,176,186],triangl:[171,172],triangular:158,trick:[32,38,117,121,135,154,167,168,169,170,178,187,192],tricki:169,trickier:[133,196],trigger:[0,121,128,152,153,155],trim:145,trip:[23,111,190],tripadvisor:161,tripl:[128,188,189,210,211],triplestor:196,triu:70,triumphantli:154,trivial:[91,140,143],troubl:[68,117,158,163],trouser:[30,44,46,56],truck:[136,140],true_boolean:[188,210],true_count:142,true_label:46,true_positive_r:65,truli:[55,60,63,70],trump:189,truncat:149,truncated_norm:141,trust:[63,64,66,67,72,92,113,117,156,163,167,168,169,171,182,186,199],truth:[117,128,143,188,189,204,208,210],ts:150,tsne:[172,202],tstep:141,tsv:[18,24,125],ttest_ind:[18,125],tthoe3gp290gz:65,tue:[54,63],tulip:33,tumor:158,tunabl:[56,208],tune:[33,52,55,56,65,66,72,75,84,86,89,93,135,150,163,164,166,168,178,179,181,201],tup:130,tupl:[34,35,55,130,143,144,148,172,186,187,196,202,210],turn:[3,7,30,34,36,42,44,46,53,56,84,151,203,207],turntabl:157,turori:153,turtl:128,tuskege:[121,192],tutor:151,tutori:[1,29,31,33,36,65,77,86,119,128,129,136,137,144,146,151,170,184,186,187,188,189,198,204],tv:113,tval:[18,125],tweak:[94,119,159,177,179],tweet:[108,127,145,146],tweet_vol:41,twenti:97,twice:[128,149,187],twin:173,twinx:[120,194],twitter:[108,127,196],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,33,35,38,41,42,43,44,46,48,50,51,53,55,56,58,59,60,62,63,65,66,67,68,69,71,73,75,81,83,89,91,92,93,99,101,102,107,110,111,113,115,117,118,119,120,121,125,126,127,128,129,130,131,133,135,136,138,139,140,143,145,146,147,148,150,153,154,155,156,158,161,163,164,168,169,170,171,172,173,175,176,177,178,181,182,183,186,187,193,196,198,200,203,207,209,210],twofield:128,twon:141,tx:173,txt:[31,77,136,141,145,149,173,178],type:[1,6,7,9,15,19,20,29,30,31,34,36,38,41,43,44,45,48,50,51,53,55,56,58,59,63,64,65,66,67,70,73,75,77,83,85,89,102,103,109,110,111,115,118,119,120,121,122,125,126,127,129,130,131,133,135,139,141,143,144,147,148,149,150,152,154,156,158,159,164,166,167,168,169,172,173,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,208,209],typeerror:[101,102,128,130,131,189,195,209],typhoon:146,typic:[3,8,14,22,32,48,50,51,52,55,56,62,68,70,75,83,84,89,108,115,122,123,125,126,128,131,135,140,150,152,153,154,155,156,163,164,167,168,175,182,183,187,204],typo:146,u10:[128,195],u2:196,u:[72,120,141,144,149,161,188],u_:141,u_k:141,ua:[15,209],uber:[111,190],ubuntu:153,ucb:193,uci:[53,64,147,149],ucimlrepo:147,ucl:[178,207],ucla:155,uclaacm:182,ufo:173,ufunc:7,ugli:[117,188],ugqbzwiq8iiufasvi9dz:65,ugqprfa:65,uhbmv7qcey4:62,ui:[110,153,203],uid:155,uid_iso_fips_lookup_t:14,uint8:[31,33,38,45,76,77,128,136,137,138],uk:[14,141,173],ultim:[85,101,102,122,123,178,207],ultra:143,um:56,umap:30,umap_3d:30,umap_:30,umap_df:30,umbrella:[127,196],umn:113,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:65,umr_sum:195,umt:193,un:[173,188,210],unabl:[30,60,63,64,66,67,70,72,92,163,167,168,169,171,182,186],unacc:63,unaccept:156,unaffect:128,unalign:131,unalt:84,unambigu:128,unansw:113,unbalanc:[72,75,89,164,169,200],unbatch:139,unbias:[154,160],uncertain:141,uncertainti:[56,172],unchang:[147,179,188],uncheck:87,uncom:14,uncommon:42,uncondition:[187,209],unconstrain:43,uncorrel:[72,160,163],uncov:[19,60,115,184,185],undefin:[7,18,187],under:[0,22,31,43,50,52,53,54,56,57,69,71,73,92,93,110,118,121,125,127,128,148,153,154,155,156,163,164,169,176,179,180,183,184,189,195,196,200,202,203,204,205,208,211],under_name_scop:148,undercomplet:30,underfit:[67,68,69,71,167],undergradu:73,underli:[65,70,84,85,86,108,115,118,125,140,146,170,178,182,195,204,207,208],underlin:171,undermin:117,underneath:65,underrepres:[75,89],underscor:[109,127,187,188,196,210],underset:[91,164],understand:[7,16,23,30,31,33,46,48,50,53,56,83,84,85,86,87,108,109,110,111,112,115,116,117,118,120,121,122,123,125,128,129,135,140,146,147,150,151,154,155,156,158,164,165,167,168,169,170,172,173,174,176,178,179,182,183,184,186,188,189,190,192,193,196,205,206,207],understood:[7,60,115,122,128,187,193],undertak:[87,113],undesir:28,undestard:165,undisclos:156,undu:87,unearth:60,unemploy:155,unet:139,unet_model:144,uneven:[158,175],unexpect:[53,100,129,154,170,187,209],unexpectedli:187,unf:60,unfair:121,unfamiliar:178,unfil:40,unfold:[56,117,149],unfortun:[18,40,109,164,171],unhandl:187,unhealthi:110,unhelp:175,unicorn:154,unidata:196,unifi:[115,147,148,154],uniform:[18,36,38,48,52,61,77,125,139,141,142,147],uniformli:[7,160,171],unimagin:152,unimport:72,unindex:[128,188],uninform:62,unintend:[28,111,121,192],unintention:187,union:[87,121,128,131,188],uniq:57,uniqu:[5,14,22,42,43,51,52,56,57,62,63,70,73,76,83,86,87,102,110,127,129,131,140,146,150,154,164,171,173,175,178,180,182,187,188,189,196,205,206,208,210,211],unique_list:102,unique_numb:188,unique_valu:102,uniqueag:189,unit:[0,12,30,32,33,44,46,47,48,50,52,53,59,64,68,83,91,110,111,120,122,127,128,133,136,140,143,145,147,149,153,154,155,160,170,178,182,183,184,190,196,198,208,209],unittest:[3,14,22,24,52,53,59,83,101,102],univari:[7,84,139,186],univers:[14,70,121,125,141,151,156,170,196,208,209],unix:[49,152],unknown:[63,64,125,141,145,158,164,170,187],unknowningli:60,unlabel:[135,154,158,163,171,172,178,202,207],unlaw:121,unless:[22,50,52,53,54,62,131,150,187,209],unlik:[34,62,66,72,73,86,91,128,154,160,163,188,189,195,198,205,206,210,211],unlimit:[188,210],unlock:[26,184],unnam:[74,175,176,177,182,183,184],unnecessari:[128,133,170,171],unord:[83,188,189,210,211],unpack:[3,131,158,183,188],unpickl:209,unpreced:121,unprun:163,unqualifi:187,unrel:3,unreli:178,unrol:149,unsaf:128,unscal:[44,64],unse:44,unseen:[44,46,56,70,163,178,186],unsort:102,unsorted_list:102,unspecifi:[48,128],unsplash:[107,114,116,134,157,174,185],unsqueez:[31,34],unstabl:[68,154,164],unstack:46,unstructur:[6,122,123,152,178,192,207],unsuccess:154,unsupervis:[38,56,73,125,151,154,156,158,163,177,178,186,199],unsupervised_learn:171,unsupport:[178,188,195,210],unsur:15,unsurprisingli:173,until:[31,34,56,61,67,73,84,101,112,128,133,149,154,159,160,163,171,172,178,187,188,196,202,207],untouch:131,untrain:38,untruncated_norm:148,unununium:[188,210],unus:[128,184],unusu:[128,170],unwant:33,unweight:183,unwrap:121,unzip:[38,39,136],up:[0,3,5,7,14,18,22,33,34,38,41,42,44,45,51,53,55,56,58,59,60,62,64,66,68,70,72,73,75,89,93,94,95,101,108,109,110,111,112,113,115,117,121,125,126,127,128,130,131,133,136,141,143,144,147,148,150,153,154,155,156,158,160,163,164,165,167,168,169,170,171,172,173,175,178,182,183,184,185,187,188,189,196,207,210],up_sampling2d:[36,38],up_sampling2d_1:38,up_sampling2d_2:38,up_sampling2d_3:38,up_shifted_imag:93,up_stack:144,upbeat:113,upblock:36,upcast:[7,126],upcom:7,updat:[0,31,38,39,46,48,53,55,58,61,69,71,84,85,90,91,92,101,102,118,122,135,137,138,139,140,141,142,145,149,150,153,154,164,165,167,168,171,172,178,179,191,198,202,203,204,205,208],update_st:[36,38],update_trac:30,update_weight:141,upfront:113,upgrad:[108,118,153],upload:[9,20,109,110,127,155,172],upload_d:63,upon:[44,56,70,110,121,123,133,168,172],upper:[7,30,32,33,57,101,130,133,135,149,154,171,172,188,209],upper_cas:106,uppercas:189,uppered_anim:209,upsampl:[29,30,139,144],upsamplin:38,upsampling2:38,upsampling2d:[36,38,144],upward:139,uranu:211,urban:[119,194],url:[0,3,45,63,66,77,110,123,137,138,139,142,148,171,182,183,190,192],url_for:173,url_setosa:66,url_versicolor:66,url_virginica:66,urllib:[67,75,77,83,89,91,136,171,187],urlopen:77,urlretriev:[75,89,91,136,171,187],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,35,37,38,40,41,42,43,45,47,48,49,50,51,52,54,55,56,57,58,59,60,61,63,64,66,67,72,73,75,77,78,81,83,84,86,87,89,91,93,95,98,100,107,108,109,110,111,112,115,116,119,120,121,122,123,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,143,144,145,147,148,149,150,152,153,155,158,159,160,161,163,164,165,166,167,169,170,174,175,177,179,180,185,186,187,188,190,191,192,193,195,196,198,199,200,202,204,207,209,210,211],usa:155,usabl:[117,152],usag:[5,41,55,60,65,66,73,83,110,111,121,126,158,164,168,173,175,182,186,187,188,190,191,210],usd:37,usd_tri:37,usda:184,usdt:[41,49],use_bia:[36,143,144,148],use_column_width:77,use_inf_as_na:92,use_na_proxi:129,useless:128,user:[6,17,23,48,60,63,68,107,108,110,111,113,117,118,119,120,121,122,123,128,129,130,131,144,146,149,150,153,154,156,178,186,187,189,190,191,192,195,202,203,207,209],userwarn:[30,92,118,131,171,172,176,183,194],usf:149,usr:[129,130,131,176,183,187,195],usual:[7,45,51,53,55,56,58,60,65,72,75,89,91,108,112,113,118,122,126,128,129,130,131,135,139,140,141,143,149,150,152,153,154,156,158,163,164,169,170,172,178,179,184,187,188,189,204],ut:160,utf:[15,145,173],util:[31,32,34,37,39,41,43,44,45,47,49,60,63,64,72,76,84,85,86,87,101,126,129,130,137,142,144,146,148,153,154,155,168,186,187,208],utilis:45,utilitarian:154,uvicorn:76,v0_8:68,v1:[14,37,38,63,77,128,129,130,131,138,141,145,153],v2:[141,153],v2rayn:41,v3:[41,42,128,153],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:65,v7:65,v7t09o1tbxdw8p7:65,v:[1,3,41,62,129,130,131,170,172,201],v_:141,v_measure_scor:172,vaccin:[11,155],vae:31,vae_model:31,vagu:[113,178],val1:101,val2:101,val3:101,val4:101,val:[31,61,91,101,103,145],val_acc:[33,34,43,52],val_accuraci:[32,33,43,44,76,136,144,149],val_d:[33,34],val_dataset:36,val_dl:34,val_load:34,val_log:91,val_loss:[30,31,33,34,35,41,43,49,52,53,68,76,136,144,149],val_siz:34,val_subsplit:144,val_x:31,valdat:34,valid:[7,14,15,31,33,35,40,43,44,51,55,62,68,72,75,89,91,102,121,126,128,129,130,131,136,143,144,146,149,152,154,160,163,167,170,176,178,182,187,189,208],validation_data:[29,30,32,33,35,41,68,136,144],validation_dir:136,validation_epoch_end:34,validation_fract:62,validation_loss:70,validation_split:[33,41,43,44,49,52,53,76,149],validation_step:[34,144],valmont:117,vals1:195,vals2:195,valu:[1,3,6,8,14,15,18,22,29,30,31,32,33,35,38,40,41,43,44,45,46,47,48,49,50,51,53,54,55,56,58,59,61,64,66,67,69,70,71,72,73,76,77,84,85,86,87,91,92,93,94,105,106,109,111,112,115,118,119,120,121,122,123,125,126,127,129,130,133,135,136,138,139,140,143,144,145,146,147,148,150,152,154,155,158,159,160,161,163,164,165,166,167,169,171,172,173,175,176,178,179,180,182,183,184,185,186,189,192,193,196,201,202,203,204,205,206,207,209,210,211],valuabl:[7,84,86,146,155,163],value_count:[7,14,15,22,35,43,57,60,62,63,65,66,67,70,73,75,83,89,158,159,175,194],value_left:129,value_right:129,valueerror:[101,128,129,130,131,141,144,187,188,189,210],valueless:7,values_list:101,van:[189,209,211],vanderpla:[63,64,66,67],vanilla:[7,145],vanish:[140,143,145,147],vanooteghem:107,vanschoren:154,vapnik:65,var1:41,var2:41,var3:41,var4:41,var5:41,var_idx:61,var_tensor:48,vare:29,varepsilon_i:160,varepsilon_j:160,vari:[38,44,55,58,60,110,122,123,128,147,152,159,163,171,172,184,202],variabl:[7,22,31,34,39,43,54,56,59,60,62,64,70,72,73,75,83,84,85,86,89,92,97,101,102,105,106,110,115,117,118,120,126,135,137,138,139,140,141,145,147,152,154,155,158,159,161,163,164,169,172,173,175,178,182,185,186,189,193,194,203,204,207,211],variable_nam:187,variables_and_typ:188,variad:187,varianc:[18,36,56,60,62,69,71,86,91,118,135,160,168,172,194,202],variance_inflation_factor:[60,70],variance_scaling_initi:148,variant:[65,140,171,187],variat:[43,52,138,139,143,148,164,172,187,208],varieti:[46,48,60,128,143,146,150,164,170,172,176,182,183,184,188,210],varinac:[69,71],variou:[16,28,30,38,43,44,56,60,65,68,73,86,87,94,99,108,110,111,116,117,119,120,121,122,128,129,131,140,143,144,146,147,152,153,155,156,157,158,160,164,175,177,178,184,186,189,194,196,207],vassilvitskii:171,vast:[7,22,108,123,126,146,152],vastli:38,vault:110,vc:43,vdf:41,ve:[7,28,31,42,56,84,91,111,113,115,121,126,127,128,129,133,143,147,150,160,164,170,178,183,187,188,190,196,203,209],vec:[31,91,160],vect_tensor:48,vector:[7,29,31,34,48,50,55,56,61,63,69,70,71,75,87,89,91,128,135,139,142,143,144,145,147,149,154,163,170,172,173,176,178,182,188,195,202,204,207,208,210],vectorregress:169,vegan:186,veget:185,vehicl:[140,150,207],veil:[119,194],veloc:[141,196],vend:152,venn:[124,192],venu:[110,111,187,211],verb:[146,187],verbos:[32,37,41,43,46,49,50,52,53,56,58,59,60,62,63,64,65,66,67,68,93,117,136,144,147,163,167,171],verdict:38,verghes:113,veri:[14,18,30,31,40,42,43,44,45,46,50,52,55,56,58,59,60,61,63,64,65,68,69,70,71,73,75,83,89,92,107,110,112,113,115,118,119,123,125,128,129,131,135,137,140,143,145,147,149,150,152,153,154,155,158,159,161,163,164,167,168,169,170,171,172,173,174,175,177,178,180,183,184,186,187,188,189,195,198,201,202,205,206,210,211],verif:[0,125],verifi:[34,44,50,52,53,64,83,105,106,119,120,130,143,154,158,165,171],verify_integr:[129,195],versa:[55,56,58,62,63,75,89,125],versant:196,versatil:[188,210],versicolor:[66,70,92,161],versicolour:[92,172,202],version:[1,7,22,29,34,37,50,51,52,53,54,55,56,63,65,84,92,110,115,125,128,129,130,133,138,140,144,148,153,154,158,165,167,171,172,179,186,189,195,202,211],version_info:[91,171],versu:[164,186],vert:18,vertex:56,vertic:[3,18,45,117,125,128,172],verticalalign:76,veryde:138,verydeep:138,vet:[117,129],vf4l3peswap51eb6clsmx7uuklt158tt0o:65,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:65,vgg16:144,vgg19:144,vgg:143,vgg_data:138,vgg_dir:138,vgg_layer:138,vgg_net:138,vgg_network:138,vgg_path:138,vgg_url:138,vgood:63,vhigh:63,vhx8dhywgnjy2:65,vi:[129,130,131,136,159,169],via:[7,33,73,118,127,129,130,131,138,144,164,169,170,171,172,176,187,202],viabil:110,vibranc:117,vibrant:178,vicdemand:[55,58],vice:[55,56,58,62,63,75,89,125],vicin:[1,8],viciou:117,vicki:[188,210],vicomt:117,vicpric:[55,58],victor:[29,150],victoria:[55,58],vid_4_10520:45,video:[48,122,123,125,127,128,136,138,140,148,156,164,167,169,175,178,180,181,184,185,186,189,192,207],view:[7,30,31,33,34,39,44,52,65,73,92,108,109,110,113,117,123,127,143,144,168,173,183,184,195],view_init:[169,200],viewpoint:[141,143,148],viewport:15,vinod:34,viola:164,violat:[121,156,192],violenc:117,violent:146,violinplot:62,virginica:[66,70,92,161,172,202],viridi:[41,84,163],virtual:[108,110,146,153,186],virtuoso:196,visibl:[30,45,63,113,141,143,147],vision:[34,46,48,93,108,129,140,143,148,154,164,173,175,178,197,207],visiontransform:143,visit:[108,123,143,148,150,160,182,183,190,192],visitor:161,visual:[0,1,5,8,14,15,16,18,19,30,45,50,51,55,56,57,58,59,60,64,65,75,77,83,84,85,89,93,108,109,110,111,121,123,125,126,128,129,130,131,135,136,138,140,143,144,147,150,151,152,158,159,160,161,163,164,168,169,171,172,173,175,176,178,179,182,185,186,187,190,192,193,197,199,202,204,207],visualcapitalist:113,visualis:[31,65,169,182],visualize_input:76,vital:[60,146],viz:171,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:65,vladimir:65,vlfeat:138,vm:[108,109,110],vm_size:[9,109],vmail:[56,160],vmax:[31,41,158],vmin:31,vocab2ix:145,vocab:[42,145],vocab_s:[145,149],vocab_to_ix_dict:145,vocabulari:[145,149,158],voic:[56,140,146,160],voila:[119,161],vol:41,volatil:53,voldemort:196,volt:187,voltag:187,volum:[7,49,108,110,145,146,152,153,154,156,182,184,191],volume_btc:41,volume_dollar:41,volumetr:140,volunt:121,voluntari:121,voluntarili:121,von:137,voom:187,vooooom:187,voronoi:[159,171],voronoi_plot:171,vot_classifi:55,vote:[125,151,155,160,163,164,176],votingclassifi:55,vs:[34,41,43,46,61,65,73,75,89,94,110,113,115,118,119,121,141,152,153,154,158,165,167,171,175,176,182,183,184,186,193,199,204],vs_code_with_a_notebook_open:186,vscode:195,vscodecod:41,vstack:[128,169,200],vthyuhdilvw8hkemhmr:65,vu:[118,194],vue:117,vulner:[118,129,194],vutil:39,w0:149,w1:[141,149],w2:[141,149],w3:141,w3school:[187,188],w:[31,34,69,71,77,83,91,92,93,125,135,136,141,144,145,148,149,150,164,168,170,171,172,187,196,201,202],w_0:164,w_:[145,161],w_box:148,w_crop:148,w_h:149,w_hh:149,w_hx:149,w_i:[161,164,170,172,201],w_img:148,w_j:[164,168],w_n:163,w_xaxi:[172,202],w_yaxi:[172,202],w_yh:149,w_zaxi:[172,202],wa:[1,11,16,28,32,34,43,44,48,50,55,56,58,59,60,63,64,65,66,67,83,85,101,111,113,115,117,121,122,123,125,128,130,131,140,143,144,147,148,150,152,153,155,158,159,160,161,164,171,172,173,175,176,177,178,186,187,188,189,190,193,202,204,207,210,211],waffl:[27,117],wai:[0,1,3,7,11,18,30,33,38,40,42,44,46,48,51,55,56,58,59,60,62,63,64,65,66,67,68,75,77,80,83,85,89,91,107,108,111,112,113,117,118,119,120,121,122,123,125,126,127,128,131,133,134,140,141,143,146,147,148,149,151,152,153,154,155,158,159,160,163,164,165,167,168,170,171,172,173,175,176,177,178,183,184,186,187,188,189,193,194,195,196,203,204,207,209,210],waistlin:97,wait:[1,110,112,136,137,144,167,178,189],wait_for_complet:[9,109],wait_for_deploy:[9,109],wake:154,wale:[55,58],walk:[1,31,57,62,99,127,129,155,167,175,177],wall:[141,172,176,202],walter:149,want:[1,3,7,8,14,16,17,18,23,30,33,43,44,46,48,51,52,53,54,55,56,57,58,59,62,63,64,65,68,69,71,75,83,86,87,89,91,92,108,110,111,113,118,121,122,123,125,126,128,129,133,140,141,143,144,146,148,150,154,158,161,164,165,167,168,169,170,172,173,175,177,178,180,182,183,186,187,188,189,193,194,196,200,202,203,204,207,209,210],wanted1:101,wanted2:101,wanted_peopl:101,ward:[142,158],warehous:[108,152],warm:42,warm_start:[62,163],warmup:42,warmup_ratio:42,warn:[30,37,38,42,43,53,55,56,57,58,59,60,62,63,64,65,73,75,77,89,92,118,128,129,140,143,144,145,147,149,150,163,165,167,171,172,176,183,194,202],warn_singular:[118,194],warnopt:73,warrant:[32,156,159],warranti:[22,50,52,53,54,101,102,187,188,189],warren:149,warrior:164,wasn:[33,113],wast:[111,119,152,156,188,194],wat:149,watch:[62,123,137,140,178,179,182,183,184],water:[111,198],waterfowl:[118,194],watersh:40,wavenet:140,wb:[29,30,31,33,34,38,39,43,46,72,77,138,142,173],wc:3,wcss:159,wd:72,wdrfosfa13slih0epo:65,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,34,35,38,40,42,43,44,45,48,49,51,52,53,54,55,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,76,77,83,84,85,86,87,89,91,92,93,107,108,109,110,111,112,113,115,118,120,121,123,125,126,127,128,129,130,131,133,135,136,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,190,192,193,194,195,196,197,200,202,203,204,207,208,209,210,211],weak:[51,60,61,62,126,150,154,158,163,164,166,168,183],weaker:1,weapon:[121,188,210],wear:[178,207],wearer:6,weather:[111,150],web:[5,43,100,108,109,110,111,117,122,123,125,147,153,155,156,158,174,180,186,189,190,199,211],webapp:155,webservic:[9,109],websit:[108,123,141,143,155,156,161,178,182,184,186,207],wechat:41,wechat_fil:41,wechat_files_comput:41,weeight:170,week:[41,54,55,56,58,113,150],week_fri:54,week_mon:54,week_sat:54,week_sun:54,week_thur:54,week_tu:54,week_w:54,weekend:113,weekli:[14,150,155],weigh:[62,164,184],weight:[7,18,30,34,36,38,41,42,43,44,48,50,52,55,58,60,62,63,64,65,66,68,69,70,71,72,75,76,83,89,90,91,93,109,113,125,128,135,137,138,139,141,142,143,145,146,147,148,149,150,154,160,161,163,168,169,170,171,172,173,175,176,177,179,183,184,195,198,204,205],weight_1:150,weight_2:150,weight_decai:[36,42],weightag:60,weights_init:39,weights_list:141,weird:178,welcom:[151,186,188,209,210],well:[3,5,15,18,30,31,33,38,43,44,45,48,50,51,52,55,56,59,60,62,63,64,65,66,67,70,72,73,75,78,80,83,85,86,87,89,91,92,97,98,112,113,115,117,118,120,122,123,125,126,127,128,129,130,131,133,140,141,143,144,146,148,150,153,154,158,159,160,163,164,168,170,171,172,177,178,180,182,183,184,186,187,189,193,195,198,201,204,207,211],went:[10,33,44,51,55,58,113,126,178,187],wer:182,were:[7,10,12,16,20,31,42,43,44,48,52,55,56,58,59,63,64,66,67,68,72,75,78,83,85,89,110,112,113,121,125,127,128,129,133,139,145,150,152,153,155,159,160,164,168,171,173,178,182,183,187,189,192,196,197,207,209],weren:33,west:83,wget:143,wh:149,what:[1,7,10,16,17,18,21,26,31,33,38,42,44,52,53,55,56,58,59,60,61,62,63,66,68,69,71,72,73,75,83,84,89,91,99,107,111,112,115,118,120,121,122,125,126,127,128,129,131,133,137,140,141,147,149,153,154,155,157,158,164,168,170,171,172,173,175,177,179,182,183,184,186,187,189,190,196,197,203],whatev:[63,64,91,113,140,143,167,170,178,187],wheat:[178,207],wheel:156,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,35,37,38,44,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,68,69,70,71,72,75,83,84,85,86,87,89,92,94,107,110,112,113,115,117,118,119,121,122,123,125,126,127,128,129,130,131,133,136,139,140,143,144,145,146,147,150,152,153,154,155,156,158,160,161,163,164,167,168,169,170,171,172,173,175,176,177,179,180,182,183,185,186,187,188,189,191,192,193,195,197,198,202,203,204,207,209,210],whenev:[48,128,153,154,170],where:[2,7,12,14,17,25,28,29,31,34,35,42,43,44,46,50,51,55,56,57,60,61,64,65,67,70,73,75,76,83,86,87,89,91,101,110,111,112,113,115,117,118,119,121,122,125,126,127,128,129,130,131,133,139,144,146,147,150,152,153,154,157,159,160,161,163,164,167,168,169,170,171,172,173,175,178,179,180,182,183,184,186,187,188,189,190,192,193,195,196,202,203,204,207,210],wherea:[31,33,45,56,60,63,65,75,89,128,169,178,183,186,187,188,200,207],wherefor:145,wherev:187,whether:[7,22,23,29,32,38,42,51,52,53,56,57,64,86,92,101,102,109,118,121,125,126,128,130,131,142,143,144,146,152,154,156,163,164,172,175,178,183,186,187,188,189,207,209,210],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,35,38,40,42,43,44,46,48,51,52,53,55,56,58,59,60,61,62,64,65,66,68,69,70,71,73,75,77,81,83,84,85,86,89,91,92,101,102,108,109,110,111,112,113,117,119,120,121,122,123,125,126,127,128,129,130,131,133,135,138,139,140,143,144,145,146,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,193,194,195,196,198,200,203,204,207,209,210],whichev:150,whiskei:[74,175,176],whistl:[118,194],white:[3,41,52,53,56,76,118,119,136,141,143,155,156,172,183,186,189,194,202,211],white_bread:[74,175,176],white_win:[74,175,176],whitegrid:[57,68,92,150],whitesmok:[119,194],whitespac:[51,126,187,188,210],who:[31,48,51,56,62,73,83,108,112,113,115,121,122,125,126,152,160,164,178,187,188,189,192,193,210],whole:[14,44,48,56,58,59,60,62,63,64,65,68,75,83,89,125,135,140,142,152,153,155,156,160,163,168,172,175,178,188,194,198,210],whole_grain_wheat_flour:[74,175,176],wholesale_customers_data:168,whom:[101,102,122,151,187,188,189],whose:[62,68,118,128,131,141,149,187,188,210],why:[7,16,18,44,48,50,51,52,53,55,56,59,66,72,73,78,84,91,94,99,107,110,111,112,113,115,121,125,126,128,133,136,158,159,160,164,165,169,171,172,176,178,179,183,184,187,190,192,193,196],wide:[42,48,60,67,84,85,86,108,110,121,128,131,140,142,143,147,148,150,152,153,156,164,166,188,191,196,210],wider:[125,155,170],widespread:[146,164],widget:[9,109],widow:73,width:[1,3,14,15,31,34,36,51,66,67,75,76,89,92,117,119,125,126,129,130,131,136,138,139,143,144,159,161,163,171,172,173,175,179,180,182,184,187,194,202],width_multipli:143,width_shift_rang:32,wif:149,wifi:[75,89],wifi_count:[75,89],wiki:[3,137],wikimedia:[66,137,140],wikipedia:[3,48,123,125,168,178,196,197,207],wild:[31,129,158,173],wildfir:146,wildli:[167,176],william:125,willing:38,willingli:7,willpow:91,win32:209,win:[63,141,143,149,164,168],wind:141,window:[14,43,49,127,136,146,172,187,189,196,209],window_s:49,wine:[53,68,73,74,175,176],wine_feature_col:53,wine_feature_row:53,wine_schema:53,winedf:53,winefeatur:53,winefeaturessimpl:53,winefeaturessmal:53,winelabel:53,winelabelssmal:53,winequ:53,wingspan:118,winner:164,winston:62,winter:[17,115],wirefram:113,wisdom:[55,160],wise:[7,60,128,131,139,143,144,145,168],wish:[128,130,133,188,189,209,210],with_column:24,with_info:144,with_suffix:33,with_titl:31,withdraw:121,withheld:121,within:[6,34,51,52,53,56,60,62,83,92,109,112,113,115,118,119,121,122,125,126,127,147,148,153,159,168,172,182,186,187,188,195,202,209,210],without:[0,1,4,16,18,21,22,33,35,43,48,50,52,53,54,56,58,63,66,70,87,101,102,110,113,117,121,125,128,129,131,135,143,146,147,152,154,167,168,169,172,173,178,187,188,189,200,202,207,210],wkly:149,woke:165,woman:[56,110],women:[121,192],won:[7,55,58,62,66,113,128,133,140,141,143,154,167,168,170,178,204,207],wonder:[50,53,111,117,133],wood:[74,119,175,176,194],wooddecksf:60,word1:188,word2:188,word:[1,3,31,42,44,46,48,55,60,65,75,89,97,99,102,112,116,118,121,123,125,126,128,140,142,143,145,146,147,148,149,150,154,160,163,164,168,170,172,178,179,182,186,187,188,189,192,193,194,204,207,209,210],word_count:[102,145],word_index:[149,187,209],word_list:145,wordcloud:3,wordnet:143,words_length:187,work:[1,3,4,7,11,18,19,24,30,31,34,38,40,44,46,48,50,51,55,58,59,60,63,64,65,66,67,69,71,72,73,75,80,81,83,84,85,89,91,92,94,99,108,109,110,111,112,113,115,117,121,122,123,125,126,127,130,131,133,135,136,137,140,144,145,147,148,150,151,152,153,154,155,158,159,160,161,163,165,167,168,170,171,172,173,174,175,176,177,178,182,183,184,185,187,188,189,192,193,195,202,203,204,207,209],workbench:[111,190],workbook:127,workclass:57,workflow:[0,33,60,92,109,110,111,113,121,129,152,153,156,167,190],workload:[110,146,152],workplac:[6,113],worksheet:127,workshop:129,workspac:153,workstat:110,world:[0,7,18,28,29,34,37,39,43,44,46,50,51,56,59,63,64,66,68,86,102,117,121,123,126,127,129,131,136,140,143,147,148,149,150,152,153,155,156,160,164,165,170,173,178,182,187,188,189,192,195,196,199,207,209,210,211],worldwid:[110,121],worri:[108,125,178,187],wors:[46,52,154,163,171,177,198],worst:[65,182,183],worth:[6,32,53,72,116,118,143,163,164,165,172,178,189,194,207],would:[1,7,11,14,16,18,23,24,30,31,38,44,48,52,55,56,58,60,62,64,65,66,67,68,72,73,75,80,83,89,91,97,99,113,115,122,123,125,126,128,130,131,133,139,140,147,150,154,155,158,159,160,163,164,165,167,169,170,171,172,173,175,177,178,182,183,184,186,187,188,196,202,203,207,210],wouldn:[7,122,164,187],wow:[52,55,58,63,67,171],wrangl:128,wrap:[30,34,72,77,120,135,150,153,187],wrapper:[34,77,128,129,150,187,209],wrestl:[7,126],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:65,write:[0,1,3,7,21,22,23,26,29,30,31,33,34,38,39,43,46,50,52,53,54,56,57,62,72,76,77,91,102,109,113,121,123,125,128,131,133,136,138,140,141,142,145,149,154,160,163,164,171,173,178,179,186,187,188,189,207,209,210],write_imag:77,writefil:209,written:[7,97,117,128,129,139,145,151,163,168,172,187,188,189,209,210,211],wrong:[1,14,33,46,52,62,121,123,125,143,154,164,171,187,188,189,210],wrong_nam:14,wrong_sampl:18,wrote:[42,52,142,189],wrt:57,ws:[9,109,195],wspace:[142,169,171,200],wsr4u5caj:65,wt:149,wts2:49,wu:117,www:[22,25,32,50,52,53,54,62,64,117,121,125,136,137,138,139,143,145,150,156,159,162,169,171,175,179,180,184,187,188,191,196,197,198,209],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:65,x0:148,x0_box:148,x1:[32,56,118,128,144,148,171,194,195,205,206],x1_max:56,x1_min:56,x1y1x2y2:148,x27:[63,64,66,67,163,167,168,169,171,182],x2:[32,56,118,128,171,194,195,205,206],x2_max:56,x2_min:56,x3:[32,118,194,195],x4:[118,194],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:65,x5:[118,194],x6:[118,194],x80:41,x86:41,x99ve:41,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,55,56,57,58,60,61,62,63,65,66,67,69,70,71,72,73,75,76,77,83,84,85,87,89,90,91,92,93,101,102,111,117,118,120,121,125,128,129,130,131,135,136,138,139,141,142,143,144,145,147,148,149,150,155,158,159,160,161,163,164,165,167,168,169,171,172,173,175,176,177,178,179,180,182,183,186,187,188,189,192,194,195,198,200,202,203,204,205,206,207,209,210],x_0:[139,149],x_1:[56,125,139,149,160,161,163,171,178,207],x_1p_1:125,x_2:[56,125,139,149,161,163,171,178,207],x_2p_2:125,x_3:161,x_4:161,x_:[18,139,141,161],x_batch:[91,139,171],x_center:[172,202],x_cluster_dist:171,x_data:145,x_digit:171,x_digits_dist:171,x_dist:171,x_histori:84,x_i:[18,125,135,139,163,164,172],x_init:[84,171],x_int:84,x_j:[18,161,163,172],x_k:[141,163],x_m:160,x_max:56,x_min:[56,84],x_mm:171,x_n:[125,139,178,207],x_new:171,x_noisi:139,x_np_n:125,x_organ:35,x_pca:[172,202],x_po:141,x_poli:204,x_rang:[163,187],x_reduc:[172,202],x_representative_digit:171,x_set:[205,206],x_shape:139,x_shuffl:149,x_start:139,x_t:[139,149],x_test:[29,30,32,35,44,47,55,56,57,58,59,62,64,65,66,72,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],x_test_circl:163,x_test_noisi:[29,30],x_test_scal:[44,85],x_test_with_bia:85,x_train2:32,x_train:[29,30,31,32,35,41,43,44,47,49,55,56,57,58,59,60,62,64,65,66,68,72,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],x_train_add:93,x_train_circl:163,x_train_combin:93,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:171,x_train_scal:[44,59,64,66,85],x_train_with_bia:85,x_tsne:[172,202],x_umap:30,x_val2:32,x_val:[31,60,91],x_valid:68,x_vif:70,xa:61,xarrai:128,xaxi:[92,202],xb:34,xception:144,xe2:41,xentropi:91,xfb:65,xfhxfw:148,xfit:[169,200],xfyplk79sjp:65,xgb:[60,62,72,168],xgb_clf:168,xgb_cv:168,xgb_pred:72,xgb_reg:60,xgb_search:60,xgbclassifi:[62,168],xgbclassifierxgbclassifi:168,xgboost:[55,62,150,164,165,166],xgboostclassifi:62,xgbregressor:[60,72,150,167],xgbregressorxgbregressor:[72,167],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:65,xi:[61,65,144],xit:65,xj:65,xk:141,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:65,xks2cxejztkqivxffffcr4:65,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:65,xl:183,xlabel:[18,22,29,31,32,34,35,37,39,41,43,44,46,47,56,61,62,63,65,66,67,72,75,84,85,86,89,92,118,131,136,141,144,145,149,159,160,171,172,182,183,186,194,202,204,205,206],xlim:[56,62,161,163,169,172,200,202,205,206],xmax:45,xmin:45,xor:128,xplzqjohaao63bfq05ntwlheg6anqrhcuin:65,xrp:49,xs:[61,130,144,179],xtick:[3,18,22,31,39,43,45,46,52,60,62,158,159,161,171,194],xticklabel:[44,75,89],xu:142,xw:65,xx1:163,xx2:163,xx:[56,171],xxl:183,xxxx:110,xy:[76,169,171,182,200],xytext:171,y0:148,y1:[61,148,171],y1x1y2x2:148,y212szmlszq:195,y2:[61,171],y3:61,y4:61,y5:61,y:[14,30,33,35,37,40,41,43,44,45,49,50,52,55,56,57,58,60,61,62,63,65,66,67,69,70,71,72,73,75,76,77,83,84,85,86,87,89,90,91,92,102,117,118,120,125,128,131,139,141,142,145,147,149,150,155,158,159,160,161,163,164,165,167,168,169,171,172,173,176,177,178,179,180,182,183,184,186,188,189,194,198,200,202,204,205,206,207,209,210],y_2:149,y_:141,y_batch:91,y_clr:[172,202],y_cluster_kmean:159,y_di:198,y_digit:171,y_dist:171,y_distribut:24,y_fit:150,y_gen:198,y_hat:163,y_histori:84,y_i:[56,61,84,86,87,161,163,164,168,179],y_init:84,y_j:56,y_k:141,y_lag_2:150,y_lag_3:150,y_lag_4:150,y_lag_5:150,y_lag_6:150,y_lag_:150,y_max:56,y_min:[56,84],y_output:145,y_po:141,y_pred:[57,61,65,69,71,76,85,87,92,147,150,165,168,171,176,177,179,186,204,205,206],y_pred_100:57,y_pred_idx:171,y_pred_sklearn:[69,71],y_pred_test:[65,85],y_pred_train:65,y_predict:[35,90,179,204,205],y_predict_class:35,y_predicted_:179,y_predicted_cl:[90,179,205],y_prob:165,y_representative_digit:171,y_score:183,y_set:[205,206],y_shuffl:149,y_step_1:150,y_step_2:150,y_step_3:150,y_step_:150,y_test:[30,32,35,43,44,55,56,57,58,59,62,64,65,66,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],y_test_circl:163,y_test_class:43,y_test_prepar:[55,58],y_train2:32,y_train:[30,32,35,41,43,44,47,49,55,56,57,58,59,60,62,64,65,66,68,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],y_train_add:93,y_train_circl:163,y_train_combin:93,y_train_partially_propag:171,y_train_prepar:[55,58],y_train_propag:171,y_true:[35,85,87],y_val2:32,y_val:[60,91],y_valid:68,ya:[65,91],yahoo:164,yam:[74,175,176],yandex:[60,164],yandexdataschool:91,yang:144,yaxi:[92,171,202],yb:34,ye:[7,50,56,109,110,120,121,156,160,163,178,187,189],year:[1,13,14,24,25,42,54,55,56,57,58,62,73,113,120,121,123,129,133,136,150,153,164,168,182,186,188,189,192,194,196,204,209],year_birth:73,yearbuilt:60,yeast:[74,175,176],yellow:[17,23,56,113,117,118,119,182,188,194,210],yellowbrick:73,yellowlabradorlooking_new:137,yet:[0,14,38,45,48,56,59,64,66,102,109,110,117,154,156,164,165,172,174,178,187,202],yetayeh:211,yf:164,yfit:[169,200],yfozmvgstfo5xi:65,yhat:41,yhat_ac:73,yi:61,yield:[31,33,34,45,56,65,91,120,131,164,167,168,187,194],yieldpercol:[120,194],yiyiwang0826:25,yizh:182,yk_temp:41,ylabel:[18,22,29,31,32,34,35,37,39,41,44,47,56,61,62,63,65,66,67,70,72,75,84,85,86,89,92,118,120,131,136,141,144,145,149,159,160,171,172,182,183,184,186,194,202,204,205,206],ylgnbu:[57,65],ylim:[46,53,144,169,200,205,206],ylorbr:[120,194],ymax:45,ymean:52,ymeanactu:52,ymin:45,yml:0,ymp6irqbiss3usmcdyxx:65,yogurt:[74,175,176],yolo:[73,148],york:[14,17,23,56,125,154,188,195],yoshua:[29,56,87,142,180],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,41,42,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,62,63,64,66,68,72,75,78,80,83,85,86,87,89,91,92,94,98,99,100,101,102,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,184,185,186,187,188,189,190,191,193,194,196,202,203,204,205,206,209,210,211],younger:127,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,34,42,44,50,51,52,55,56,58,59,64,66,68,72,75,78,80,83,84,86,89,91,92,94,97,99,100,101,102,105,106,116,140,171,172,174,185,202,203,207],yourself:[7,52,56,111,113,118,120,126,163,178],yourthoughtpartn:113,yousfi:62,youtub:[48,62,125,136,138,140,155,162,169,172,175,178,179,180,184],youyang:155,ypred:[52,85],yrsold:[60,72],ys:[61,179],ystd:52,ystdactual:52,yt:[125,162,175,184],ytest:150,ytick:[31,39,43,45,46,171,172,202],yticklabel:[44,75,89],yu:139,yup:83,yuri:[56,160,161,163,164,202],yy:[56,171],yyyi:184,z1:[31,101],z2:[31,101],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:65,z5zy85g4yjw:125,z:[30,31,39,50,53,73,84,102,128,131,139,141,142,144,149,154,155,163,171,172,187,188,189,210],z_costcontact:73,z_h:149,z_j:161,z_revenu:73,z_y:149,zalando:46,zaxi:[92,202],zd_zt:41,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:65,zealand:[133,196],zero:[1,33,34,36,38,39,45,48,56,60,61,69,71,72,77,84,85,87,90,91,101,102,111,125,128,131,141,143,145,146,147,148,154,160,163,165,170,172,179,187,188,189,195,198,202,204,205,209,210,211],zero_grad:[31,34,39],zero_padding2d:38,zerodivisionerror:[101,102,187,189,209],zeropaddin:38,zeropadding2d:[38,143,144],zeros_lik:[40,77,91,142,171],zeroth:[188,210],zettabyt:121,zh:93,zhangqi:195,zhi:148,zia:192,zinkevich:154,zip:[18,22,29,30,31,34,36,38,39,43,45,46,72,77,128,135,139,141,142,144,145,149,169,172,187,188,200,202,208,209,210],zip_fil:77,zip_file_nam:77,zip_file_path:[29,30,31,43,77],zip_filenam:[38,39],zip_ref:[29,30,31,34,38,39,43,45,139],zip_store_path:[29,30,31,34,46,72],zip_url:[38,39,149],zipfil:[29,30,31,34,38,39,43,45,72,77,139,149],zlad:41,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:65,zodb:196,zone:152,zoom:93,zoom_rang:[32,35,93],zoomed_imag:93,zopedb:196,zorder:171,zorro:101,zsy:65,zth:148,zucchini:[74,175,176],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:65,zw:93},titles:["40. Self-paced assignments","40.22. Analyzing COVID-19 papers","40.27. Analyzing data","40.9. Analyzing text about Data Science","40.13. Apply your skills","40.16. Build your own custom vis","40.17. Classifying datasets","40.26. Data preparation","40.24. Data processing in Python","40.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","40.40. Data Science project using Azure ML SDK","40.10. Data Science scenarios","40.20. Displaying airport data","40.15. Dive into the beehive","40.23. Estimation of COVID-19 pandemic","40.25. Evaluating data from a form","40.36. Explore a planetary computer dataset","40.37. Exploring for answers","40.19. Introduction to probability and statistics","40.12. Lines, scatters and bars","40.39. Low code/no code Data Science project on Azure ML","40.38. Market research","40.29. Matplotlib applied","40.28. NYC taxi data in winter and summer","40.18. Small diabetes study","40.21. Soda profits","40.35. Tell a story","40.14. Try it in Excel","40.11. Write a data ethics case study","40.106. Intro to Autoencoders","40.107. Base/Denoising Autoencoder & Dimension Reduction","40.108. Fun with Variational Autoencoders","40.94. How to choose cnn architecture mnist","40.99. Image classification","40.98. Object Recognition in Images using CNN","40.96. Sign Language Digits Classification with CNN","40.122. Summary","40.117. DQN On Foreign Exchange Market","40.118. Art by gan","40.120. Generative Adversarial Networks (GANs)","40.121. Comparing edge-based and region-based segmentation","40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment","40.126. Getting Start NLP with classification task","40.112. NN Classify 15 Fruits Assignment","40.111. Neural Networks for Classification with TensorFlow","40.123. Car Object Detection","40.125. Basic classification: Classify images of clothing","40.104. Google Stock Price Prediction RNN","40.100. Intro to TensorFlow for Deep Learning","40.109. Time Series Forecasting Assignment","40.86. Counterintuitive Challenges in ML Debugging","40.85. Data engineering","40.87. Case Study: Debugging in Classification","40.88. Case Study: Debugging in Regression","40.89. Introduction","40.78. Beyond random forests: more ensemble models","40.79. Decision trees","40.83. Random Forest Classifier with Feature Importance","40.77. Random forests for classification","40.76. Random forests intro and regression","40.82. Boosting with tuning","40.81. Gradient boosting","40.80. Hyperparameter tuning gradient boosting","40.69. Decision Trees - Classification","40.68. Decision Trees - Intro and Regression","40.65. Kernel method assignment 1","40.67. Support Vector Machines (SVM) - Classification","40.66. Support Vector Machines (SVM) - Intro and SVM for Regression","40.72. Dropout and Batch Normalization","40.73. Lasso and Ridge Regression","40.71. Learning Curve To Identify Overfit & Underfit","40.70. Model selection assignment 1","40.74. Regularized Linear Models","40.75. Customer segmentation: clustering - assignment 3","40.92. Build Classification Model","40.91. Build classification models","40.53. Build ML web app - assignment 1","40.54. Build ML web app - assignment 2","40.59. Create a regression model","40.63. Delicious asian and indian cuisines","40.64. Explore classification methods","40.57. Exploring visualizations","40.60. Linear and polynomial regression","40.45. Linear regression - California Housing","40.48. Gradient descent","40.49. Linear Regression Implementation from Scratch","40.46. Linear Regression Metrics","40.47. Loss Function","40.56. Managing data","40.50. ML logistic regression - assignment 1","40.51. ML logistic regression - assignment 2","40.52. ML neural network - Assignment 1","40.42. Machine Learning overview - assignment 1","40.43. Machine Learning overview - assignment 2","40.93. Parameter play","40.62. Pumpkin varieties and color","40.55. Regression tools","40.44. Regression with Scikit-learn","40.61. Retrying some regression","40.90. Study the solvers","40.58. Try a different model","40.8. Python programming advanced","40.7. Python programming basics","40.6. Python programming introduction","40.5. Project Plan\u200b Template","40.3. First assignment","40.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4.3. Advanced Pandas Techniques","5.4.2. Data Selection","5.4.1. Introduction and Data Structures","5.4. Pandas","5.1. Relational databases","5. Working with data","27. Autoencoder","23. Convolutional Neural Networks","23.3.1.2. Deepdream in TensorFlow","23.3.1.1. Stylenet / Neural-Style","33. Diffusion Model","21. Intro to Deep Learning","30. Deep Q-learning","24. Generative adversarial networks","31. Image classification","32. Image segmentation","28. Long-short term memory","26. Natural Language Processing Overview","22. Neural Networks","34. Object detection","25. Recurrent Neural Networks","29. Time series","Learn AI together, for free","37. Data engineering","39. Model deployment","38. Model training & evaluation","35. Overview","36. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","20. Model selection","17. Unsupervised learning","19. Unsupervised learning: PCA and clustering","12.4. Build a web app to use a Machine Learning model","12. Getting started with classification","12.1. Introduction to classification","12.2. More classifiers","12.3. Yet other classifiers","10. Machine Learning overview","13.2. Gradient descent","13.1. Loss function","13. Parameter Optimization","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","41.10. Data Science in real world","41.9. Data Science in the cloud","41.4. Data Science introduction","41.8. Data Science lifecycle","41.7. Data visualization","41.6. NumPy and Pandas","41.5. Relational vs. non-relational database","41.20. Convolutional Neural Network","41.21. Generative Adversarial Network","41. Slides","41.18. Kernel method","41.19. Model Selection","41.17. Unsupervised learning","41.16. Build an machine learning web application","41.12. Linear Regression","41.13. Logistic Regression","41.14. Logistic Regression","41.11. Machine Learning overview","41.15. Neural Network","41.3. Python programming advanced","41.2. Python programming basics","41.1. Python programming introduction"],titleterms:{"0":65,"1":[3,24,30,32,48,55,56,58,59,60,62,63,64,65,66,67,71,75,76,83,84,89,91,92,113,122,128,143,172,190,191,192,193,194,195,196,197,198,200,204,206,210,211],"10":[44,62,136,143],"100":[57,65,143],"1000":[65,143],"11":62,"12":62,"13":62,"1300131294":169,"15":43,"19":[1,8,14,138],"1d":128,"2":[3,24,30,32,48,49,55,56,57,58,59,60,62,63,64,66,67,75,77,84,89,90,93,113,122,128,172,190,191,192,193,194,195,196,197,198,200,204,206,210,211],"2d":[30,128,200],"3":[3,24,32,43,48,55,56,58,59,60,62,63,64,66,67,73,75,83,89,113,128,190,191,192,193,194,195,197,198,204,210,211],"3d":[30,92,117,200],"4":[3,24,32,48,55,56,57,58,59,60,62,63,64,66,67,75,89,113,172,190,191,192,193,194,195,196,210,211],"5":[24,32,48,55,56,59,60,62,63,64,66,67,75,89,92,113,143,172,190,191,192,193,194,196,210,211],"50":62,"500":62,"6":[48,56,58,59,60,62,63,64,66,67,75,89,190,191,192,193,194],"7":[48,56,58,59,62,63,64,66,67,190,193,194],"8":[58,62,193],"9":62,"90":169,"abstract":179,"boolean":[128,188,189,210,211],"break":[101,187,209],"case":[28,50,52,53,56,113,121,184,200],"class":[37,43,52,56,57,69,71,101,180,187,209],"default":[57,65,138,187],"do":[52,123,183,184,188,192,200],"final":[55,77,83,84,179],"float":[7,188,210],"function":[48,57,65,84,85,87,91,101,102,128,140,141,164,179,180,187,189,195,205,206,208,209],"import":[9,29,34,39,42,46,49,54,55,57,58,59,60,62,63,64,65,66,67,70,72,73,92,126,138,139,154,161,168,186,187,204,205,206,208],"long":145,"new":[33,62,103,128,131,205,206],"null":[7,65,195],"public":39,"return":[103,141,187],"short":145,"static":169,"true":65,"try":[0,27,53,75,84,89,100,187,209],"while":[101,187,209],A:[31,33,140,170,176,177,182],And:178,At:[51,179,180],But:184,By:164,For:[101,146],Is:156,It:[133,183,196],NOT:183,Not:178,On:37,One:[54,83,84,208],That:205,The:[9,38,48,57,59,84,86,91,109,110,126,133,147,170,171,177,184,186,187,188,191,195,196,197,200,209,210],There:184,To:[70,170],With:[35,150,179],about:[3,34,120,175,183,194],absolut:[86,180],acceler:171,access:[102,128,131],accuraci:[32,46,52,65,143,168,172,208],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,151,154,158,159,160,161,163,164,165,167,168,169,173,175,176,177,178,182,183,184,186,187,188,189,197,200,202,203,204,205,208],ackowledg:198,action:141,activ:140,actual:113,ad:[30,31,52,68,72,128,170],adaboost:55,adam:208,add:[53,128,154],addit:131,advanc:[32,101,128,129,187,209],adversari:[39,142,198],after:[30,170,201],ag:24,against:53,agent:[37,141],agglom:[171,172],aggreg:[128,129,192,195],ahead:91,ai:[38,46,151,202],airport:12,aka:70,algorithm:[56,60,141,155,158,163,164,168,171],align:131,all:[24,52,83,120,133,182,194,196],an:[9,31,70,72,109,110,113,127,128,173,197,203],anagram:188,analysi:[8,41,55,57,58,59,60,62,63,64,65,66,67,83,86,108,112,172,178,202,207],analyz:[1,2,3,18,112,128,184,193],anchor:[43,57],anim:117,ann:49,annot:[187,209],anomal:52,anomali:29,anoth:39,answer:17,ap:169,api:[35,48],app:[76,77,173],append:[102,195],appli:[4,22,52,121,176,177,192],applic:[56,135,146,172,203,207],approach:[57,113,133,176,196],ar:188,arbitrari:187,architectur:[32,136,140,147,197,208],argument:[138,187,209],arithmet:[131,188,210],arrai:[128,131,195],art:38,artifici:207,artwork:38,ascend:[102,103],asian:79,ask:184,assert:57,assign:[0,12,25,43,49,65,71,73,76,77,89,90,91,92,93,105,106,128,129,131,172,206],assist:144,attribut:[65,128,131,195],auc:[62,65],audienc:113,augment:[32,33,35,139],author:186,autoencod:[29,30,31,135],automl:[9,109,110,154],avail:128,averag:[101,184],avoid:[117,170],axi:128,azur:[9,10,20,109,110,127],b:[84,179],babylonian:102,backend:76,background:139,backprop:91,bag:[55,160,163,168],balanc:175,bar:[19,22,194],base:[30,40,101,130,168],basebal:18,baselin:[52,53,178,207],basi:65,basic:[29,32,33,46,48,102,121,128,131,141,188,189,192,195,210,211],batch:[34,68,171],beehiv:13,begin:113,behind:61,best:[9,32,39,109,156],beta:139,better:[176,183],between:[24,60,62,75,83,89,128,163,180,192,195],beyond:[44,55,169,200],bi:60,bia:[70,163,170,201],bibliographi:[25,179,180],big:208,binai:60,binari:[44,180,183],binder:0,bird:[118,194],bit:[31,128],bitcoin:41,blend:60,bmi:24,boost:[55,60,61,62,164,165,166,168],bootstrap:160,bound:139,boundari:[169,171,200],boxplot:[24,92],bp:24,brain:197,broadcast:[128,195],bug:53,build:[5,29,31,32,38,45,46,56,57,74,75,76,77,89,117,146,159,173,182,183,184,194,203],c:65,cach:203,calcul:[52,101,102,188],california:83,call:209,callabl:130,callback:44,can:[36,56,62,123,192],candid:62,capac:170,captur:[115,193],car:45,cardin:57,cast:[188,210],catalog:152,catboost:60,categor:[7,57,60,63,75,83,89,182,204],categori:102,categorical_crossentropi:208,caus:50,central:[18,125],centroid:171,chain:131,challeng:[1,14,22,50,121,128,140,143,146,148,192],chang:[35,60],changin:35,channel:113,chart:[117,120,194,203],check:[30,52,53,57,59,63,65,75,83,89,154,168,184,188,211],checkbox:203,checklist:121,choic:[131,156],choos:[32,56,83,108,110,117,172,176,191],churn:56,cifar:[136,143],citi:[62,133,196],classic:[143,144,148,164],classif:[33,35,42,44,46,52,55,56,57,58,63,65,66,74,75,80,87,89,92,143,164,174,175,177,178,180,183,200],classifi:[6,43,44,46,55,57,58,63,66,168,175,176,177],clean:[73,126,173,175,183],cloth:46,cloud:[9,76,77,107,108,109,191],cluster:[9,73,109,110,157,158,159,171,172,202],cnn:[32,34,35,49,136,148,197],co:169,code:[20,77,84,110,121,135,136,137,138,139,141,143,144,145,146,147,148,149,153,179,189,191,198,209],collect:[43,178,207],color:[95,117],column:[7,57,60,131,203],com:169,combin:[128,129,130,195],come:205,comment:[65,188,189,210,211],commerc:146,common:[69,71,87,126,140,188],commun:[113,193],compani:62,compar:[40,65,194],comparison:[128,163,188,210],compil:[33,38,44,46,208],complet:36,complex:[53,56,101,188,210],compon:[146,147,172,202],comprehens:[183,188,210],comput:[1,9,14,16,24,109,110,128,195,197,208],con:[56,163],concat:[129,195],concaten:[60,195],concept:[87,121,133,192,196],conclus:[1,18,31,32,35,50,52,53,65,69,71,73,85,86,87,113,125,133,164,167,168,170,184,201],conculs:38,condit:101,confid:[18,125],configur:[9,33,109,186],confus:[57,65,183,205,206],connect:[135,140,151,197],consider:173,constant:48,consum:9,consumpt:[109,110,152],contain:128,content:[34,63,64,66,67,207,209],context:62,continu:[101,141,187,209],control:[44,187,189,209],converg:50,convert:[33,60,128],convolut:[29,32,34,135,136,140,197],corp:18,correl:[18,24,53,59,60,75,83,89,125,182,183],correspond:1,cosin:139,cosmo:127,cost:180,count:[101,102,188],counterintuit:50,covari:125,covid:[1,8,14,128],creat:[9,32,33,43,44,48,50,75,78,83,89,101,102,109,110,128,131,198],creation:[62,69,71,128],criteria:56,cross:[56,65,83,92,168,180,205],crucial:56,csv:49,cuisin:[79,175,176],cultur:121,current:136,curv:[38,65,70,154,170,183],custom:[5,36,44,56,73,146],cv:[65,168],d3:117,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,35,38,39,41,43,44,45,46,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,75,83,85,88,89,92,107,108,109,111,112,113,114,115,116,118,121,122,123,125,126,127,128,129,130,131,133,134,138,139,150,152,154,155,156,158,168,173,175,176,177,178,183,184,188,189,190,191,192,193,194,195,196,200,203,204,207,208,210,211],databas:[12,133,196],databasetyp:196,dataclass:131,datafram:[7,126,131,195],dataset:[6,16,29,30,31,33,34,36,37,43,46,50,51,52,53,57,65,92,109,110,118,129,143,144,163,168,172,175,186,194,195,202,204,205,206,208],datatyp:128,date:184,db:127,dbscan:171,deal:[7,51,60,101,126,128],debug:[50,52,53,154],decept:117,decis:[54,56,57,63,64,163,171],decisiontre:61,decisiontreeclassifi:56,declar:[57,65,168],decor:[187,209],decorrel:163,decreas:50,deep:[46,48,140,141,150,207],deepdream:137,deeplab:144,def:[187,189],defin:[29,34,37,85,122,123,144,150,178,183,192,207,209],definit:[121,139,141,187,192],degre:24,del:[102,188,210],delet:131,delici:79,demens:30,demo:172,denois:[29,30,36],dens:[32,91,140],densenet:143,densiti:[22,118,194],depend:[24,141],deploi:[9,178,207],deploy:[76,77,109,110,153,155],depth:154,deriv:[84,179],descent:[84,85,164,179],describ:[7,122],descript:[65,92,112],design:[204,208],detect:[7,29,45,148],determin:184,detr:148,develop:[0,85],deviat:125,diabet:[24,186],diagnosi:1,dict:[101,102,131],dictionari:[101,102,188,189,210,211],differ:[24,100,131,180],difficult:84,diffus:139,difuss:36,digit:[35,56,93,123,136],dimens:[30,57,92,202],dimension:[65,73,84,128,163,195],direct:150,dirrec:150,disciplin:62,discours:146,discov:175,discrimin:[38,39],diseas:24,dispers:65,displai:[12,57,117,128,159,203],distant:200,distribut:[18,24,57,60,65,118,125,158,194],dive:[13,169],diverg:139,divid:92,docstr:[188,209,210],document:[127,187,209],doe:[0,146,198],dog:39,donut:[119,194],download:[29,33,138],dqn:37,draw:[200,203],drop:7,drop_dupl:7,dropout:[32,33,52,68,170,201],dual:[120,194],duplic:[7,51,102,126,188],e:146,earli:[170,184,201],early_stopping_round:167,easi:156,ecg:29,eda:[42,57,75,89,168,178,207],edg:40,educ:62,effect:[113,193],elbo:139,elbow:159,element:[102,128,188],elif:101,els:101,emot:113,emul:127,encod:[7,54,57,62,83,92,204,208],end:113,endpoint:[9,109,110],engin:[51,53,57,60,152,155],enrol:62,enrollee_id:62,ensembl:[55,60,160,162,177],entropi:[56,180,205],envireon:37,environ:[0,141,186,189],episod:141,equat:204,equival:53,error:[65,86,160,178,180,187,207,209],establish:[52,53,178,207],estim:[14,22],ethic:[28,121,192],eval:129,evalu:[15,44,46,55,58,59,60,63,64,66,67,73,75,83,85,89,92,141,154,155,208],everydai:146,everyth:[128,192,195],evid:139,evil:18,evolut:[153,168],exampl:[29,39,56,68,108,128,141,150,161,164,165,167,170,172,178,196,204,207],excel:27,except:[101,187,209],exchang:37,exercis:[7,158,159,173,175,176,177,183,184,186],exist:[48,128],expect:139,experi:[9,32,62,109,184],explod:50,exploit:141,explor:[7,16,17,31,33,34,46,51,54,55,57,58,65,75,80,81,83,84,89,112,118,126,127,141,194,195],exploratori:[41,55,57,58,59,62,63,64,65,66,67,83,112,178,207],express:187,extend:102,extract:[1,197],extrem:[163,168],f1:65,facet:[120,194],failur:[109,110],fals:65,fashion:[44,46],faster:148,fcn:144,fco:148,featur:[32,52,53,54,56,57,58,59,60,62,63,65,75,83,89,92,150,151,154,161,168,178,182,197,205,206,207],feed:[46,147],feel:84,fibonacci:102,field:[123,128,192],figur:169,file:[35,49,76,189,211],fill:[7,60,101],filter:188,financ:146,find:[57,62,75,84,89,171,188],fine:136,first:[29,92,105,184,186],fisher:172,fit:[50,62,70,169,170,201,204,208],fix:52,flask:173,flat:128,flatten:197,flow:[187,189,209],flu:150,fold:[65,168],forecast:[49,150],foreign:37,forest:[54,55,57,58,59,161,163],fork:31,form:15,format:[52,102,188,210],formul:[75,89,207],formula:[86,102],forward:[139,147],four:182,frame:[155,156],free:[84,151],frequenc:57,friedman:164,from:[15,35,43,48,69,71,85,90,102,128,131,188,197,202,205,208],frontend:76,frontier:[179,180],fruit:43,full:[91,197],fulli:135,fun:31,gain:[84,179],gan:[38,39,198],gate:145,gbm:164,gcd:101,gender:[24,62],gener:[38,39,43,45,102,128,142,198],geograph:83,ger:198,get:[1,3,24,42,44,50,92,102,119,123,128,158,162,174,186,194],giant:202,github:0,give:31,glass:31,global:[32,92,187],go:[44,176],goal:[3,126],good:[70,170,204],googl:47,govern:152,gradient:[50,55,61,62,84,85,164,165,166,168,179],grid:[120,183,194],gridsearch:65,gridsearchcv:62,group:[92,102,129],guid:46,hand:188,handl:[51,63,65,70,83,187,195],handwritten:[56,136],have:[52,60,183],hdf5:76,head:7,healthcar:146,heart:[109,110],hello:175,here:184,hidden:140,hide:203,hierarch:[129,171],high:[50,129,163],higher:65,hing:169,hint:53,histogram:[22,59,118,194],histori:[143,144,148,164],honei:[120,194],hood:65,hot:[54,83,208],hous:83,how:[0,32,56,122,136,144,146,156,164,170,189,197,198,200,208],http:169,human:[111,190],hyperparam:36,hyperparamet:[62,65,154],hyperplan:65,hypothesi:[18,24,125,204],id:[43,57],identifi:[7,60,70,112],iiit:144,illustr:161,imag:[29,30,32,33,34,39,46,129,143,144,169,171,197],imagenet:143,imbalanc:52,impact:170,implement:[35,44,53,85,86,102,138,165,168,204],improv:[58,59,62,63,64,66,67,154],includ:[188,210],inconsist:[51,112],indent:[188,189,210,211],index:[128,129,130,131,195],indian:79,indic:128,individu:[34,83,128],industri:[111,190],inequ:139,inertia:171,info:7,inform:[7,65,126],infrastructur:153,ingest:[152,155],ingredi:175,inherit:[187,209],initi:[9,39,62,171],input:[53,65,83],insensit:200,insert:[102,188],insid:[187,209],insight:[3,75,89,179],instal:[186,189],instanc:[109,187],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,78,80,94,97,98,99,100],integ:[128,188,210],intellig:207,interpret:[70,86,154,170],interv:[18,125],intro:[29,48,59,64,67,140],introduc:[131,195],introduct:[9,18,24,30,54,56,60,65,68,70,83,85,103,108,109,113,115,124,125,128,131,158,159,164,166,168,172,175,182,183,184,186,189,192,201,203,205,206,208,211],intuit:[65,84,161,168,172,179],inventori:127,investig:14,involv:128,iri:[70,172,202],isol:60,issu:172,item:[102,188],iter:128,jensen:139,job:62,join:[102,129,133,195,196],jpeg:169,js:117,json:127,just:60,k:[65,159,163,168,171,172,177,202],kaggl:22,kei:[147,178,188,207],kera:[33,35,43,208],kernel:[22,65,169,197,200],keyword:187,kl:139,knn:92,know:[119,194],l1:[170,201],l2:[170,201],label:[54,57,92,130,131,178,207,208],lag:150,lambda:[101,170,187],languag:[35,146],larg:[32,125],lasso:[69,71],lasson:[69,71],last:[51,62],latent:30,law:125,layer:[32,46,52,91,140,152,208],layout:203,lda:171,learn:[9,38,46,48,50,56,62,65,69,70,71,83,92,93,97,110,135,140,141,150,151,154,156,157,162,170,171,172,173,175,176,178,179,180,182,184,185,186,191,202,203,207],learning_r:167,legal:146,length:101,let:[84,169,179,188,198,200,209],level:[35,62],libari:34,librari:[29,32,35,39,41,47,54,57,65,73,92,139,168,186,204,205,206,208],lifecycl:[114,115,193],lightgbm:60,like:[113,131],limit:[18,125,171],line:[19,120,182,194,200,203],linear:[52,53,65,72,82,83,85,86,139,150,169,170,177,179,182,183,200,204,205,206],linearli:200,list:[101,102,103,131,187,188,189,209,210,211],lite:33,liter:[188,210],load:[12,14,25,29,30,31,32,33,35,37,38,39,41,43,46,47,49,52,55,58,59,60,62,63,64,66,67,73,92,109,110,138,139,168],local:0,logic:61,logist:[70,75,89,90,169,176,179,183,200,205,206],look:[1,44,59,62,182],loop:[39,61,91,101],loss:[50,52,70,85,87,91,154,164,169,180,205,208],lot:[60,183],low:[20,110,191],lower:[106,139],lstm:[41,49],m:[84,179],machin:[9,46,65,66,67,83,92,93,110,156,157,169,173,178,179,180,185,186,191,200,203,207],mae:86,magic:203,main:[141,168],maintain:[115,193],mainten:155,major:62,make:[14,38,46,54,117,144,168,184,205,206],manag:[88,115,127,184,193],mani:32,manipul:[48,128],map:[32,60,83,177,203],mape:86,margin:[65,169,200],market:[21,37,184],mask:148,math:[61,84,128,169],mathemat:179,matplotlib:[22,184],matrix:[53,57,60,65,183,204,205,206],max:[128,192,195],max_depth:62,max_featur:62,maxim:[169,200],maximum:[65,195],mean:[24,86,125,139,159,171,172,202],meaning:[113,117],media:108,median:125,medicin:1,memori:145,men:24,merg:[102,103,129,195],method:[55,65,80,102,113,131,146,159,169,171,187,188,200,208,210],metric:[65,75,86,89,154,172,208],min:[128,192,195],min_samples_leaf:62,min_samples_split:62,mind:113,mini:171,minimum:195,miscellan:62,miss:[7,51,57,60,63,65,75,83,89,101,126,168,184,195],ml:[9,10,20,50,76,77,89,90,91,109,110,164],mnist:[32,46,52,56,136,202],mobilenet:143,mode:125,model:[8,9,29,30,33,34,35,36,38,39,41,42,43,44,45,46,48,49,50,52,53,55,56,57,58,59,60,62,63,65,70,71,72,73,74,75,76,78,83,85,89,92,100,109,110,139,141,143,144,146,148,150,153,154,155,156,157,159,167,170,173,178,182,183,184,185,186,198,201,204,205,206,207,208],modul:[187,209],more:[32,55,58,75,89,176,179,184],most:62,mostli:60,motiv:169,mse:86,much:32,multi:180,multiclass:44,multicollinear:[60,70],multioutput:150,multipl:[128,171,187,188,204],multistep:150,mushroom:[119,194],mutabl:102,myqcloud:169,n_estim:167,n_job:167,name:[57,131,169],namedtupl:131,nan:[7,195],nation:176,nativ:128,natur:146,ndarrai:[128,131],nearest:163,need:183,neighbor:[163,177],nest:[188,210],net:36,network:[32,34,36,39,43,44,91,117,136,138,140,142,147,149,197,198,205,208],neural:[32,34,43,44,91,136,138,140,147,149,197,205,208],next:29,nlp:[42,146],nn:43,nois:[30,139],noisi:30,non:[7,127,196,200],none:[7,195],nonlinear:[52,53,91],nonloc:187,normal:[18,22,49,53,68,125,204],nosql:[127,196],note:55,notebook:[109,186],now:[76,200],number:[57,62,101,102,125,128,171,172,188,189,208,210,211],numer:[7,56,57,60,65,83,195],numeric:42,numpi:[35,128,195],nyc:23,o:43,object:[34,45,84,87,128,131,148,179,180,187,195],obtain:156,occurr:102,odd:184,one:184,oper:[48,102,128,131,188,195,210],optim:[39,53,62,65,154,171,181,204,208],option:[0,52,110,169,179,180,203],order:102,ordin:60,ordinari:[178,207],orign:30,other:[29,56,75,89,123,128,177,183],our:[42,76,204,208,209],out:[0,160],outlier:[60,65],outlin:[200,201,202],output:[83,209],over:[170,201],overcom:146,overfit:[33,65,70,170],overiew:150,overview:[29,45,46,92,93,129,130,131,135,141,145,146,155,170,178,207],own:[5,204,209],oxford:144,pace:0,packag:187,pad:197,pair:32,pairplot:[59,92],panda:[7,49,112,129,131,132,195],pandem:14,paper:[1,8,108,128],paramet:[39,56,57,62,92,94,163,181,208],parameter:139,part:[24,59],partial:[84,179],pass:52,path:49,pca:[171,172,202],pd:195,peopl:101,percentag:[57,86],perceptron:147,perform:[33,48,75,89,129,178,207,208],permut:161,pet:144,phrase:113,pickl:173,pictur:43,pie:[119,194],piec:101,pipelin:[83,143],pivot:129,plai:[94,197,198,205],plan:[62,104,177],planetari:16,play:179,plot:[22,24,30,32,61,83,118,120,183,194,203],plote:38,point:200,polici:141,polynomi:[65,82,182,204],pool:197,popul:102,posit:[65,130],potenti:135,practic:[161,163],pragmat:146,pre:[14,41,62],precis:65,predict:[33,43,46,47,54,56,60,62,76,89,92,109,110,144,168,170,176,201,204,205,206],predictor:60,prepar:[7,31,32,35,44,49,85,126,144,150,159,177,182,184],prepreprocess:38,preprocess:[38,39,46,55,58,59,62,63,64,66,67,72,73,75,83,89,139,171,178,207,208],prerequisit:[159,182,183],preserv:195,preview:[57,168],price:[47,89,184],princip:[172,202],principl:121,pro:[56,163],probabl:[18,24,125,192],problem:[45,56,57,65,75,89,155,156,163,164,178,204,207],process:[8,14,41,52,60,83,115,129,139,146,152,155,193,197],product:[77,156],profession:121,profil:[73,112],profit:25,program:[101,102,103,128,178,187,188,189,207,209,210,211],progress:[24,203],project:[10,20,104,109,110,117],promot:128,properti:[57,139],proport:[119,194],pumpkin:[95,184],put:[83,156,182],python:[8,86,101,102,103,128,168,186,187,188,189,195,209,210,211],q:141,qualiti:[56,152,154],quantiti:194,quartil:125,queri:[112,127,129],question:[183,184],quot:202,r2:86,r:[86,148],r_t:14,radial:65,rainfal:[133,196],rais:187,random:[18,30,55,57,58,59,125,161,163,192],rang:[89,101,131,187],rate:[50,62,65],rbf:[65,169],re:139,reach:50,read:[49,56,168],readabl:117,readi:24,real:[18,108,111,125,154,163,190],reason:[70,176],recal:65,recap:86,recogn:93,recognit:[34,56],record:131,recurr:[140,149],recurs:[150,188],reduc:53,reduct:[30,73,202],redund:60,refer:[14,190,191,192,193,194,195,196,209,210,211],refresh:70,region:40,regress:[53,56,59,64,67,69,70,71,75,78,82,83,85,86,87,89,90,96,97,98,150,164,169,170,176,178,179,180,182,183,184,185,186,200,204,205,206],regressor:[59,64,67],regul:121,regular:[52,69,71,72,87,170,201],reinforc:[178,207],relat:[123,127,133,192,196],relationship:[60,83,120,133,194,196],relev:62,remov:[7,51,52,60,62,102,126,128,188],renam:57,replac:102,report:[57,65],represent:163,research:[21,111,136,179,180,190],reshap:128,residu:[36,86,147],resnet:[143,147],resourc:[110,172],respect:[84,179],respons:113,result:[3,30,33,43,44,53,62,65,168,204,205,206],retri:98,retriev:[133,196],revers:[139,188],reward:141,ridg:[69,71],right:[110,117,184],rl:141,rmse:86,rnn:[47,49,140],road:91,roc:[65,183],role:[55,59],root:[86,102],rotaion:35,row:92,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,78,80,81,94,97,98,99,100],rule:128,run:[9,33,65,186],s:[76,83,84,139,164,169,172,179,180,183,184,188,192,193,194,195,198,200,205,206,209,211],salepric:60,sampl:[31,112],satisfi:154,save:[9,39,109],scalar:[128,131],scale:[30,57,60,65,75,83,89,92,205,206],scatter:[19,22,61],scatterplot:[60,120,194],scenario:11,schedul:139,schema:[12,53],scienc:[3,9,10,11,20,107,108,109,111,114,115,121,123,190,191,192,193,207],scientif:108,scikit:[56,65,69,71,97,176,182,184,186],scope:[187,209],score:[65,86,159,168],scratch:[43,69,71,85,90,204,205,208],sdk:[9,10,109],search:[101,152],second:[29,52,106,184],section:[87,180],secur:[115,152,193],see:[62,197],segment:[40,73,144,171],segnet:144,select:[48,57,71,130,131,154,170,178,195,201,207],selectbox:203,self:[0,108,109,110,111,113,115,117,118,119,120,121,122,123,125,127,128,129,133,135,136,138,141,154,155,156,158,159,173,175,177,182,183,184,186,187,188],semant:146,sens:14,sentenc:101,sentiment:[41,108],separ:[57,65,168,200,205],seper:76,sequenc:102,sequenti:[33,48],seri:[49,131,150,195],serv:153,servic:146,session:[84,179],set:[32,42,46,55,57,58,59,60,63,65,83,92,138,168,188,189,204,205,206,208,211],setdefault:102,setup:[33,39,45,53,109,189],sex:24,shanghai:169,shape:[7,48,92,168],shell:189,shortcom:[133,196],show:[39,92,117,203],showcas:152,shuffl:[52,65],side:183,sidebar:203,sigmoid:[65,205,206],sign:35,silhouett:159,similar:163,simpl:[31,49,50,154,170,182,195,204],simpler:36,simul:[18,61],singl:[34,54,83,102,128,133,140,196],size:62,skew:52,skicit:[69,71],skill:4,skip:84,sklearn:[83,161,200,202],slice:[52,102,128,130,131,154],slide:199,slider:203,small:[24,62],smile:31,social:108,soda:25,solut:[50,52,53,141],solver:99,some:[39,98,179,188],someth:[36,184],sort:[102,128],sourc:122,space:[30,65],special:145,specif:[9,62,65],specifi:102,spectral:[171,172],split:[35,52,53,54,56,57,60,63,65,83,102,168,176,177,204,205,206],splite:92,spread:[8,128],spreadsheet:127,squar:[86,102,180],st:203,stack:[55,101],standard:[33,125,143,147],start:[42,44,133,154,158,162,174,186,196],state:141,statement:[57,101,164,187,188,209,210],statist:[18,24,53,57,63,75,83,89,112,125,168,192],step:[3,29,62,83,150,164],still:183,stock:47,stop:[170,201],storag:152,store:[115,127,193],stori:[26,113],storytel:113,str:[102,106],strategi:[1,126,150,153,184],stratifi:65,streamlit:[76,77,203],stride:128,string:[101,102,187,188,189,209,210,211],structur:[1,32,87,128,131,195],student:[111,190],studi:[24,28,50,52,53,99,108,109,110,111,113,115,117,118,119,120,121,122,123,125,127,128,129,133,135,136,138,141,154,155,156,158,159,173,175,177,182,183,184,186,187,188],studio:[110,189],style:[117,138,203],stylenet:138,subarrai:128,subclass:48,subplot2grid:22,subplot:22,subsambl:32,subsampl:62,sum:101,summari:[32,33,36,50,57,63,65,75,89,168,169,208],summer:23,sup:196,supervis:[178,207],support:[65,66,67,169,177,200],sustain:[111,190],svc:177,svm:[65,66,67,169,200],svr1:169,svr:169,swarm:183,syntax:[146,188,189,210],system:[178,207],tabl:[34,129,133,196,207,209],tail:7,take:44,target:[57,60,65,168],task1:49,task2:[49,62],task5:58,task:[24,42,49,55,56,58,59,60,62,83,122,141,150],taxi:23,taxonomi:141,techniqu:[129,146],tell:26,templat:104,tensor:48,tensorboard:44,tensorflow:[29,33,44,48,137],term:[102,145],terminolog:[141,178,207],test:[18,24,34,35,42,52,53,54,55,57,58,59,60,62,63,65,83,91,92,125,155,168,204,205,206],text:[3,118,194],text_input:203,tf:48,thank:207,theme:203,theorem:[18,125],theori:[31,172],thi:[0,46,61,87,179,180,183],thing:184,third:29,threshold:40,tidi:183,time:[49,76,84,108,150,179,197,198],titan:22,titl:[102,106,128],todo:36,togeth:[60,151,182],toi:56,token:42,tool:[96,128,173,186],top:143,trade:186,tradeoff:[170,201],traffic:150,train:[30,31,32,33,34,35,37,38,39,42,43,44,45,46,52,54,55,57,58,59,60,63,64,65,66,67,70,75,83,85,89,91,92,109,110,140,144,154,155,168,178,204,205,206,207,208],trane:204,transfer:[138,154],transform:[3,65,83,123,140,163],transpos:131,treatment:1,tree:[54,56,57,62,63,64,163,168],trend:[1,136,150],trick:[65,139,200],trigonometr:128,tune:[60,62,92,136,154,167],tunnel:150,tupl:[128,131,188,189,211],turn:[54,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,133,134,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,173,175,176,177,178,179,180,182,183,184,186,187,188,189,190,191,192,193,194,195,196,209,210,211],tweet:41,twiddl:128,two:[84,103,188,195],type:[57,60,62,113,117,123,128,140,178,188,189,207,210,211],typic:[178,207],u:36,ufunc:[128,195],under:[65,170,201],underfit:[65,70,170],understand:[52,60,113],univari:[60,204],univers:[62,128,195],unpack:[187,209],unstructur:128,unsupervis:[135,171,172,202,207],up:[46,102,186],upper:[102,106],upvot:31,us:[10,30,33,34,36,44,46,53,62,65,68,69,70,71,76,85,92,101,102,113,117,118,138,146,151,154,156,168,171,172,173,176,178,182,183,184,189,194,203,208],useless:60,util:33,v3:144,v:[169,200,205,206],valid:[32,34,42,52,53,56,60,65,70,83,92,168],valu:[7,24,52,57,60,62,63,65,75,83,89,101,102,128,131,141,168,170,187,188,194,195],variabl:[18,24,32,48,57,65,125,128,168,171,183,187,188,192,209,210],varianc:[24,70,125,139,159,163,170,201],variat:[31,60],varieti:95,vector:[57,65,66,67,131,146,168,169,177,200],veri:53,verifi:46,versa:188,vgg:138,vggnet:143,vi:5,via:[32,183],vice:188,video:179,view:[57,128,208],vif:70,violin:183,visual:[3,22,33,36,43,44,54,62,81,92,112,116,117,118,119,120,183,184,188,189,194,208],visualis:[204,205,206],vit:143,volum:41,vote:55,vowel:188,vs:[168,178,196,207],w:43,waffl:[119,194],wai:[9,109,110,182,191],wait:184,want:101,we:[36,56,62],web:[76,77,173,203],weight:[39,164],what:[24,32,48,92,108,109,110,113,123,143,144,146,148,150,156,165,167,176,178,180,191,192,193,194,198,202,204,207,211],when:[178,205],where:123,whole:204,why:[108,140,189,191,200,211],widget:203,width:[154,169],wingspan:194,winter:23,within:128,women:24,word:[101,113],work:[0,56,62,118,128,134,146,164,186,194,198],workflow:[178,207],workspac:[9,109,110],world:[111,125,154,190],write:[28,203],xgboost:[60,72,167,168],y:24,yet:177,you:[52,84,123,183,192,207],your:[4,5,53,54,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,133,134,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,173,175,176,177,178,179,180,182,183,184,186,187,188,189,190,191,192,193,194,195,196,209,210,211],zero:52,zoom:35}}) \ No newline at end of file diff --git a/slides/data-science/data-science-in-real-world.html b/slides/data-science/data-science-in-real-world.html index 88ee847815..4585f60392 100644 --- a/slides/data-science/data-science-in-real-world.html +++ b/slides/data-science/data-science-in-real-world.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3078. + + 40.89. Introduction + +
  3079. - 40.89. Study the solvers + 40.90. Study the solvers
  3080. - 40.90. Build classification models + 40.91. Build classification models
  3081. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3082. - 40.92. Parameter play + 40.93. Parameter play
  3083. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3084. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3085. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3086. +
  3087. + + 40.99. Image classification
  3088. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3089. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3090. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3091. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3092. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3093. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3094. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3095. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3096. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3097. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3098. - 40.116. Art by gan + 40.118. Art by gan
  3099. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3100. +
  3101. + + 40.121. Comparing edge-based and region-based segmentation
  3102. - 40.119. Summary + 40.122. Summary
  3103. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3104. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3105. +
  3106. + + 40.126. Getting Start NLP with classification task
  3107. diff --git a/slides/data-science/data-science-in-the-cloud.html b/slides/data-science/data-science-in-the-cloud.html index eb59a710e2..65963a2ef1 100644 --- a/slides/data-science/data-science-in-the-cloud.html +++ b/slides/data-science/data-science-in-the-cloud.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3108. + + 40.89. Introduction + +
  3109. - 40.89. Study the solvers + 40.90. Study the solvers
  3110. - 40.90. Build classification models + 40.91. Build classification models
  3111. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3112. - 40.92. Parameter play + 40.93. Parameter play
  3113. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3114. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3115. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3116. +
  3117. + + 40.99. Image classification
  3118. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3119. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3120. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3121. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3122. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3123. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3124. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3125. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3126. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3127. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3128. - 40.116. Art by gan + 40.118. Art by gan
  3129. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3130. +
  3131. + + 40.121. Comparing edge-based and region-based segmentation
  3132. - 40.119. Summary + 40.122. Summary
  3133. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3134. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3135. +
  3136. + + 40.126. Getting Start NLP with classification task
  3137. diff --git a/slides/data-science/data-science-introduction.html b/slides/data-science/data-science-introduction.html index c7bd8bbd19..b694d62ca1 100644 --- a/slides/data-science/data-science-introduction.html +++ b/slides/data-science/data-science-introduction.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3138. + + 40.89. Introduction + +
  3139. - 40.89. Study the solvers + 40.90. Study the solvers
  3140. - 40.90. Build classification models + 40.91. Build classification models
  3141. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3142. - 40.92. Parameter play + 40.93. Parameter play
  3143. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3144. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3145. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3146. +
  3147. + + 40.99. Image classification
  3148. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3149. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3150. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3151. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3152. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3153. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3154. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3155. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3156. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3157. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3158. - 40.116. Art by gan + 40.118. Art by gan
  3159. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3160. +
  3161. + + 40.121. Comparing edge-based and region-based segmentation
  3162. - 40.119. Summary + 40.122. Summary
  3163. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3164. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3165. +
  3166. + + 40.126. Getting Start NLP with classification task
  3167. diff --git a/slides/data-science/data-science-lifecycle.html b/slides/data-science/data-science-lifecycle.html index 8ad8795726..6f450b6df9 100644 --- a/slides/data-science/data-science-lifecycle.html +++ b/slides/data-science/data-science-lifecycle.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3168. + + 40.89. Introduction + +
  3169. - 40.89. Study the solvers + 40.90. Study the solvers
  3170. - 40.90. Build classification models + 40.91. Build classification models
  3171. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3172. - 40.92. Parameter play + 40.93. Parameter play
  3173. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3174. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3175. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3176. +
  3177. + + 40.99. Image classification
  3178. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3179. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3180. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3181. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3182. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3183. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3184. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3185. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3186. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3187. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3188. - 40.116. Art by gan + 40.118. Art by gan
  3189. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3190. +
  3191. + + 40.121. Comparing edge-based and region-based segmentation
  3192. - 40.119. Summary + 40.122. Summary
  3193. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3194. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3195. +
  3196. + + 40.126. Getting Start NLP with classification task
  3197. diff --git a/slides/data-science/data-visualization.html b/slides/data-science/data-visualization.html index f7fb5da01d..363cb98353 100644 --- a/slides/data-science/data-visualization.html +++ b/slides/data-science/data-visualization.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3198. + + 40.89. Introduction + +
  3199. - 40.89. Study the solvers + 40.90. Study the solvers
  3200. - 40.90. Build classification models + 40.91. Build classification models
  3201. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3202. - 40.92. Parameter play + 40.93. Parameter play
  3203. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3204. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3205. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3206. +
  3207. + + 40.99. Image classification
  3208. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3209. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3210. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3211. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3212. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3213. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3214. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3215. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3216. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3217. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3218. - 40.116. Art by gan + 40.118. Art by gan
  3219. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3220. +
  3221. + + 40.121. Comparing edge-based and region-based segmentation
  3222. - 40.119. Summary + 40.122. Summary
  3223. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3224. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3225. +
  3226. + + 40.126. Getting Start NLP with classification task
  3227. diff --git a/slides/data-science/numpy-and-pandas.html b/slides/data-science/numpy-and-pandas.html index 440523b973..24dc257020 100644 --- a/slides/data-science/numpy-and-pandas.html +++ b/slides/data-science/numpy-and-pandas.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3228. + + 40.89. Introduction + +
  3229. - 40.89. Study the solvers + 40.90. Study the solvers
  3230. - 40.90. Build classification models + 40.91. Build classification models
  3231. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3232. - 40.92. Parameter play + 40.93. Parameter play
  3233. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3234. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3235. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3236. +
  3237. + + 40.99. Image classification
  3238. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3239. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3240. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3241. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3242. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3243. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3244. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3245. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3246. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3247. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3248. - 40.116. Art by gan + 40.118. Art by gan
  3249. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3250. +
  3251. + + 40.121. Comparing edge-based and region-based segmentation
  3252. - 40.119. Summary + 40.122. Summary
  3253. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3254. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3255. +
  3256. + + 40.126. Getting Start NLP with classification task
  3257. diff --git a/slides/data-science/relational-vs-non-relational-database.html b/slides/data-science/relational-vs-non-relational-database.html index f3a2f34949..a628546f02 100644 --- a/slides/data-science/relational-vs-non-relational-database.html +++ b/slides/data-science/relational-vs-non-relational-database.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3258. + + 40.89. Introduction + +
  3259. - 40.89. Study the solvers + 40.90. Study the solvers
  3260. - 40.90. Build classification models + 40.91. Build classification models
  3261. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3262. - 40.92. Parameter play + 40.93. Parameter play
  3263. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3264. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3265. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3266. +
  3267. + + 40.99. Image classification
  3268. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3269. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3270. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3271. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3272. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3273. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3274. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3275. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3276. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3277. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3278. - 40.116. Art by gan + 40.118. Art by gan
  3279. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3280. +
  3281. + + 40.121. Comparing edge-based and region-based segmentation
  3282. - 40.119. Summary + 40.122. Summary
  3283. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3284. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3285. +
  3286. + + 40.126. Getting Start NLP with classification task
  3287. diff --git a/slides/deep-learning/cnn.html b/slides/deep-learning/cnn.html index 0467d048b3..9a01b2949c 100644 --- a/slides/deep-learning/cnn.html +++ b/slides/deep-learning/cnn.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3288. + + 40.89. Introduction + +
  3289. - 40.89. Study the solvers + 40.90. Study the solvers
  3290. - 40.90. Build classification models + 40.91. Build classification models
  3291. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3292. - 40.92. Parameter play + 40.93. Parameter play
  3293. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3294. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3295. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3296. +
  3297. + + 40.99. Image classification
  3298. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3299. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3300. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3301. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3302. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3303. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3304. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3305. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3306. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3307. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3308. - 40.116. Art by gan + 40.118. Art by gan
  3309. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3310. +
  3311. + + 40.121. Comparing edge-based and region-based segmentation
  3312. - 40.119. Summary + 40.122. Summary
  3313. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3314. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3315. +
  3316. + + 40.126. Getting Start NLP with classification task
  3317. diff --git a/slides/deep-learning/gan.html b/slides/deep-learning/gan.html index a691486fdf..f5d4dcf7ab 100644 --- a/slides/deep-learning/gan.html +++ b/slides/deep-learning/gan.html @@ -27,8 +27,8 @@ - + @@ -1109,114 +1109,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3318. + + 40.89. Introduction + +
  3319. - 40.89. Study the solvers + 40.90. Study the solvers
  3320. - 40.90. Build classification models + 40.91. Build classification models
  3321. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3322. - 40.92. Parameter play + 40.93. Parameter play
  3323. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3324. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3325. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3326. +
  3327. + + 40.99. Image classification
  3328. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3329. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3330. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3331. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3332. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3333. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3334. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3335. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3336. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3337. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3338. - 40.116. Art by gan + 40.118. Art by gan
  3339. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3340. +
  3341. + + 40.121. Comparing edge-based and region-based segmentation
  3342. - 40.119. Summary + 40.122. Summary
  3343. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3344. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3345. +
  3346. + + 40.126. Getting Start NLP with classification task
  3347. diff --git a/slides/introduction.html b/slides/introduction.html index ac6b9671f3..72773e9230 100644 --- a/slides/introduction.html +++ b/slides/introduction.html @@ -27,8 +27,8 @@ - + @@ -99,7 +99,7 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3348. + + 40.89. Introduction + +
  3349. - 40.89. Study the solvers + 40.90. Study the solvers
  3350. - 40.90. Build classification models + 40.91. Build classification models
  3351. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3352. - 40.92. Parameter play + 40.93. Parameter play
  3353. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3354. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3355. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3356. +
  3357. + + 40.99. Image classification
  3358. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3359. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3360. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3361. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3362. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3363. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3364. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3365. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3366. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3367. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3368. - 40.116. Art by gan + 40.118. Art by gan
  3369. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3370. +
  3371. + + 40.121. Comparing edge-based and region-based segmentation
  3372. - 40.119. Summary + 40.122. Summary
  3373. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3374. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3375. +
  3376. + + 40.126. Getting Start NLP with classification task
  3377. @@ -1600,11 +1620,11 @@

    41. Slides +

    previous

    -

    40.122. Basic classification: Classify images of clothing

    +

    40.126. Getting Start NLP with classification task

    diff --git a/slides/ml-advanced/kernel-method.html b/slides/ml-advanced/kernel-method.html index 42468f6b9f..65022cb6c5 100644 --- a/slides/ml-advanced/kernel-method.html +++ b/slides/ml-advanced/kernel-method.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  3378. + + 40.89. Introduction + +
  3379. - 40.89. Study the solvers + 40.90. Study the solvers
  3380. - 40.90. Build classification models + 40.91. Build classification models
  3381. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3382. - 40.92. Parameter play + 40.93. Parameter play
  3383. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3384. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3385. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3386. +
  3387. + + 40.99. Image classification
  3388. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3389. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3390. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3391. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3392. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3393. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3394. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3395. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3396. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3397. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3398. - 40.116. Art by gan + 40.118. Art by gan
  3399. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3400. +
  3401. + + 40.121. Comparing edge-based and region-based segmentation
  3402. - 40.119. Summary + 40.122. Summary
  3403. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3404. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3405. +
  3406. + + 40.126. Getting Start NLP with classification task
  3407. diff --git a/slides/ml-advanced/model-selection.html b/slides/ml-advanced/model-selection.html index 8980d3ebed..c5f4028edc 100644 --- a/slides/ml-advanced/model-selection.html +++ b/slides/ml-advanced/model-selection.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3408. + + 40.89. Introduction + +
  3409. - 40.89. Study the solvers + 40.90. Study the solvers
  3410. - 40.90. Build classification models + 40.91. Build classification models
  3411. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3412. - 40.92. Parameter play + 40.93. Parameter play
  3413. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3414. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3415. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3416. +
  3417. + + 40.99. Image classification
  3418. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3419. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3420. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3421. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3422. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3423. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3424. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3425. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3426. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3427. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3428. - 40.116. Art by gan + 40.118. Art by gan
  3429. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3430. +
  3431. + + 40.121. Comparing edge-based and region-based segmentation
  3432. - 40.119. Summary + 40.122. Summary
  3433. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3434. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3435. +
  3436. + + 40.126. Getting Start NLP with classification task
  3437. diff --git a/slides/ml-advanced/unsupervised-learning.html b/slides/ml-advanced/unsupervised-learning.html index 60b3d93e9c..d7c21cd172 100644 --- a/slides/ml-advanced/unsupervised-learning.html +++ b/slides/ml-advanced/unsupervised-learning.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3438. + + 40.89. Introduction + +
  3439. - 40.89. Study the solvers + 40.90. Study the solvers
  3440. - 40.90. Build classification models + 40.91. Build classification models
  3441. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3442. - 40.92. Parameter play + 40.93. Parameter play
  3443. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3444. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3445. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3446. +
  3447. + + 40.99. Image classification
  3448. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3449. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3450. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3451. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3452. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3453. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3454. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3455. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3456. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3457. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3458. - 40.116. Art by gan + 40.118. Art by gan
  3459. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3460. +
  3461. + + 40.121. Comparing edge-based and region-based segmentation
  3462. - 40.119. Summary + 40.122. Summary
  3463. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3464. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3465. +
  3466. + + 40.126. Getting Start NLP with classification task
  3467. diff --git a/slides/ml-fundamentals/build-an-ml-web-app.html b/slides/ml-fundamentals/build-an-ml-web-app.html index f083e60ff7..6908400ee9 100644 --- a/slides/ml-fundamentals/build-an-ml-web-app.html +++ b/slides/ml-fundamentals/build-an-ml-web-app.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3468. + + 40.89. Introduction + +
  3469. - 40.89. Study the solvers + 40.90. Study the solvers
  3470. - 40.90. Build classification models + 40.91. Build classification models
  3471. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3472. - 40.92. Parameter play + 40.93. Parameter play
  3473. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3474. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3475. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3476. +
  3477. + + 40.99. Image classification
  3478. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3479. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3480. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3481. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3482. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3483. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3484. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3485. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3486. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3487. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3488. - 40.116. Art by gan + 40.118. Art by gan
  3489. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3490. +
  3491. + + 40.121. Comparing edge-based and region-based segmentation
  3492. - 40.119. Summary + 40.122. Summary
  3493. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3494. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3495. +
  3496. + + 40.126. Getting Start NLP with classification task
  3497. diff --git a/slides/ml-fundamentals/linear-regression.html b/slides/ml-fundamentals/linear-regression.html index 27b667c13b..cdbb32d237 100644 --- a/slides/ml-fundamentals/linear-regression.html +++ b/slides/ml-fundamentals/linear-regression.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3498. + + 40.89. Introduction + +
  3499. - 40.89. Study the solvers + 40.90. Study the solvers
  3500. - 40.90. Build classification models + 40.91. Build classification models
  3501. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3502. - 40.92. Parameter play + 40.93. Parameter play
  3503. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3504. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3505. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3506. +
  3507. + + 40.99. Image classification
  3508. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3509. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3510. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3511. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3512. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3513. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3514. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3515. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3516. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3517. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3518. - 40.116. Art by gan + 40.118. Art by gan
  3519. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3520. +
  3521. + + 40.121. Comparing edge-based and region-based segmentation
  3522. - 40.119. Summary + 40.122. Summary
  3523. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3524. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3525. +
  3526. + + 40.126. Getting Start NLP with classification task
  3527. diff --git a/slides/ml-fundamentals/logistic-regression-condensed.html b/slides/ml-fundamentals/logistic-regression-condensed.html index 4fe9e8eb26..f9bf7eeccc 100644 --- a/slides/ml-fundamentals/logistic-regression-condensed.html +++ b/slides/ml-fundamentals/logistic-regression-condensed.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3528. + + 40.89. Introduction + +
  3529. - 40.89. Study the solvers + 40.90. Study the solvers
  3530. - 40.90. Build classification models + 40.91. Build classification models
  3531. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3532. - 40.92. Parameter play + 40.93. Parameter play
  3533. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3534. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3535. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3536. +
  3537. + + 40.99. Image classification
  3538. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3539. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3540. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3541. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3542. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3543. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3544. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3545. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3546. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3547. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3548. - 40.116. Art by gan + 40.118. Art by gan
  3549. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3550. +
  3551. + + 40.121. Comparing edge-based and region-based segmentation
  3552. - 40.119. Summary + 40.122. Summary
  3553. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3554. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3555. +
  3556. + + 40.126. Getting Start NLP with classification task
  3557. diff --git a/slides/ml-fundamentals/logistic-regression.html b/slides/ml-fundamentals/logistic-regression.html index a8e0072a55..e51a27547f 100644 --- a/slides/ml-fundamentals/logistic-regression.html +++ b/slides/ml-fundamentals/logistic-regression.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3558. + + 40.89. Introduction + +
  3559. - 40.89. Study the solvers + 40.90. Study the solvers
  3560. - 40.90. Build classification models + 40.91. Build classification models
  3561. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3562. - 40.92. Parameter play + 40.93. Parameter play
  3563. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3564. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3565. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3566. +
  3567. + + 40.99. Image classification
  3568. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3569. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3570. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3571. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3572. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3573. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3574. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3575. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3576. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3577. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3578. - 40.116. Art by gan + 40.118. Art by gan
  3579. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3580. +
  3581. + + 40.121. Comparing edge-based and region-based segmentation
  3582. - 40.119. Summary + 40.122. Summary
  3583. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3584. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3585. +
  3586. + + 40.126. Getting Start NLP with classification task
  3587. diff --git a/slides/ml-fundamentals/ml-overview.html b/slides/ml-fundamentals/ml-overview.html index 19f8093b81..b635773838 100644 --- a/slides/ml-fundamentals/ml-overview.html +++ b/slides/ml-fundamentals/ml-overview.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3588. + + 40.89. Introduction + +
  3589. - 40.89. Study the solvers + 40.90. Study the solvers
  3590. - 40.90. Build classification models + 40.91. Build classification models
  3591. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3592. - 40.92. Parameter play + 40.93. Parameter play
  3593. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3594. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3595. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3596. +
  3597. + + 40.99. Image classification
  3598. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3599. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3600. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3601. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3602. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3603. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3604. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3605. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3606. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3607. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3608. - 40.116. Art by gan + 40.118. Art by gan
  3609. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3610. +
  3611. + + 40.121. Comparing edge-based and region-based segmentation
  3612. - 40.119. Summary + 40.122. Summary
  3613. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3614. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3615. +
  3616. + + 40.126. Getting Start NLP with classification task
  3617. diff --git a/slides/ml-fundamentals/neural-network.html b/slides/ml-fundamentals/neural-network.html index 5c51366ae6..6d901a9f49 100644 --- a/slides/ml-fundamentals/neural-network.html +++ b/slides/ml-fundamentals/neural-network.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3618. + + 40.89. Introduction + +
  3619. - 40.89. Study the solvers + 40.90. Study the solvers
  3620. - 40.90. Build classification models + 40.91. Build classification models
  3621. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3622. - 40.92. Parameter play + 40.93. Parameter play
  3623. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3624. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3625. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3626. +
  3627. + + 40.99. Image classification
  3628. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3629. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3630. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3631. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3632. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3633. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3634. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3635. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3636. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3637. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3638. - 40.116. Art by gan + 40.118. Art by gan
  3639. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3640. +
  3641. + + 40.121. Comparing edge-based and region-based segmentation
  3642. - 40.119. Summary + 40.122. Summary
  3643. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3644. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3645. +
  3646. + + 40.126. Getting Start NLP with classification task
  3647. diff --git a/slides/python-programming/python-programming-advanced.html b/slides/python-programming/python-programming-advanced.html index 462acbcca1..778ad0faba 100644 --- a/slides/python-programming/python-programming-advanced.html +++ b/slides/python-programming/python-programming-advanced.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3648. + + 40.89. Introduction + +
  3649. - 40.89. Study the solvers + 40.90. Study the solvers
  3650. - 40.90. Build classification models + 40.91. Build classification models
  3651. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3652. - 40.92. Parameter play + 40.93. Parameter play
  3653. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3654. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3655. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3656. +
  3657. + + 40.99. Image classification
  3658. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3659. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3660. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3661. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3662. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3663. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3664. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3665. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3666. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3667. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3668. - 40.116. Art by gan + 40.118. Art by gan
  3669. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3670. +
  3671. + + 40.121. Comparing edge-based and region-based segmentation
  3672. - 40.119. Summary + 40.122. Summary
  3673. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3674. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3675. +
  3676. + + 40.126. Getting Start NLP with classification task
  3677. diff --git a/slides/python-programming/python-programming-basics.html b/slides/python-programming/python-programming-basics.html index 08b2d3e2c6..4d254ab20d 100644 --- a/slides/python-programming/python-programming-basics.html +++ b/slides/python-programming/python-programming-basics.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3678. + + 40.89. Introduction + +
  3679. - 40.89. Study the solvers + 40.90. Study the solvers
  3680. - 40.90. Build classification models + 40.91. Build classification models
  3681. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3682. - 40.92. Parameter play + 40.93. Parameter play
  3683. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3684. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3685. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3686. +
  3687. + + 40.99. Image classification
  3688. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3689. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3690. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3691. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3692. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3693. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3694. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3695. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3696. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3697. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3698. - 40.116. Art by gan + 40.118. Art by gan
  3699. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3700. +
  3701. + + 40.121. Comparing edge-based and region-based segmentation
  3702. - 40.119. Summary + 40.122. Summary
  3703. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3704. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3705. +
  3706. + + 40.126. Getting Start NLP with classification task
  3707. diff --git a/slides/python-programming/python-programming-introduction.html b/slides/python-programming/python-programming-introduction.html index ba25787f4b..b9edb44f4f 100644 --- a/slides/python-programming/python-programming-introduction.html +++ b/slides/python-programming/python-programming-introduction.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  3708. + + 40.89. Introduction + +
  3709. - 40.89. Study the solvers + 40.90. Study the solvers
  3710. - 40.90. Build classification models + 40.91. Build classification models
  3711. - 40.91. Build Classification Model + 40.92. Build Classification Model
  3712. - 40.92. Parameter play + 40.93. Parameter play
  3713. - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  3714. - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  3715. - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  3716. +
  3717. + + 40.99. Image classification
  3718. - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  3719. - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  3720. - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  3721. - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  3722. - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  3723. - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  3724. - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  3725. - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  3726. - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  3727. - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  3728. - 40.116. Art by gan + 40.118. Art by gan
  3729. - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  3730. +
  3731. + + 40.121. Comparing edge-based and region-based segmentation
  3732. - 40.119. Summary + 40.122. Summary
  3733. - 40.120. Car Object Detection + 40.123. Car Object Detection
  3734. - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  3735. +
  3736. + + 40.126. Getting Start NLP with classification task

*Z!RU-(#}(N(7NIh>e3Wntlp#3wAYQ$?pA%F~^$AW}8o zdo}0BX4F;kQJF%}zTYNk`HohGPi@Pg&6P_UFnd7lkA?{|F*p6@YquW`CRX zE2+m<04B8EjDm_f+w3C#NA5zgB;U0zo2^xshgZ{vjfaOkl|A! zXGz$z2m56?=_qo&P6;kP3RLCx$coU_KT41d)S%(ENz*Mi`}en1=zJuRfXDhdFe|gO z!{p!1oY;20I`m^x$&t0h z8f@;$2RH$U%_CJ-pE5jmi*}#-RGJP#m46oMw2C27Ny)EDhCTZfs$SS(fcj5l+Ixsph&T@ibL_!c*pFw<~X ztU3!Mi~5mf`ZW_~4ogW&(l~7{w0C^xrL|Uxr2{$z5I(nn_LvJGs(DHmaCnM@P8v8kcVr8FcR$HE%J14d^NSz<;S!?Jf~Z z#XV;78`+d`3Tw7zXVK5#acX)`xNNoDuifvm3BCDoFttU$JJN=Vni^P*QGa$yOPH^1 z=x|UfoVIuXu6@r(ELqOW=6!{Ph(XMR{bBVs)xu^djeqbP`W`ejUVzvF7#RMM%oES6 zc}h?ITX?3V;O;dFPR`ib%B_y(vC4ddnO_*N0SiFf!c%9~4{$Ws>dYBR%aHRYJg<*@ z5SBv~*_l)P?k!XQlW|X$xocW4eb%K#1YND4>96;&+Xxg{Kuk;&MDCp}U@tYchI9yc zZL{||nZ&okc)3)5|1!hwo_2c|y5~{a)`rTY zam)_XZi)}zIDkY&gHgW$nmeDzDPQr&QgTcr{VL5jg05nzbEoqvtJkR(Tz9^rsl0xz z53=euoSd9>8wo{x#LS|3qbb8d{TpvV<2BF~Exp!WDEt;a(*v#|Y!?Exh!&MUu^Bw- z{$;>yX+f{4DbVVG{quGD1S2D3GVhU(5a}xr1=#>1Vn-*DtW&cEsECULEnr?TA^;oF ztS@f9LNhky++kHhsKuYRqezujqsbFjBoiOFApn;FkZl*%yfoKW2QbY3OhrU%KyZhz zCN%j^ywfOwBLl;d1!0%OSp}SDF{dg8lBdlhA0=jXT=wLI#7%T9miLMuZ_eA&{n2Op z3)IW5wUZwi8LiAUa^J&p^ZBp6MF7`)|GpK1fQUxW0mj@Yw|$(Pj1U0H8%thCX0Y9O zxJx%Iswe;c{S!EFQWq@H4B)o<7z>yuK#3eaH%$E8q}}Tb9n~~AZ?74nVou|w*sT{; znph--b>59tincqP)%L9ZNeaRjQ+ENuAlnun#4gG3E2@~))wd!y+dhCQWls~;ZY0oy zYJ3k2mx-7d>wz@>R3M>dLm9fG$Tk9AErGsNS%FcizB6ryAej>lN2u1bhF@FtOFqP; zd`}Ct>@4FgNdksQ#of+hS;GiE%cR8i686@deDtOrJ0?m{VIdtYGqW&F)UtMpXVN9$ zEK?=d;YxHNiy3Xe@a^g8vHmK(rYH2OZaDk4?VzD+=y60j)hC31UBQqspEv2X`f2 ziMS_HN}U>!Xcoh%0e}kMb?yF56vcW!Ttk6e%FUiU^M}GxS-DC5D+PyTj&AJ;_&7<+ z1ZFKcI-K0vS`8W=7docKzra7}2C@S%I{;e=0719juU;yZAQy!XcUcq^1OXXf{KNt; zujc{&8o_u@K<_mMC@g6Z@8*05f6qRbhGtoL9y2-yYj#d&*#R1A?(c~QR&Jv|5%4{T ztn60xe16}n9ZkT}zr8>eX+3aVv(I(7T)Z613){D4-O(5heOi zD5<(CJ_!VbSE6^+0N4=hDdp1Oi5BN$eR-^&uh@Yp4X6Fewzx7|{Csr3gF*WDZfJg6 z0UwTMY8LS7(tB~#g#akb2SO!H?01Xtb&SF}I5W(X#aAycNaonMs4dN*s1kufIlQl= z!3Xq&;`Yy*Z~rBn2S5R%f=oUP+(Nafh>^`LG%R9`t%-;xUuPKsu!79 zsSo2XaI(S7WG&M{>cDONferu4imm8onmn~^1WU}aQ z4ILoJr8uLyddUR%Ws1XXH!$Kb(GYtF4>~|?0}rHA{Puz*iIeuX^dbNnKxhZNJ=8^` zRP1wdtjF0BcoewcR#>K1qo}iAg3G8!B4*lx8$$!0HLq=Dpb@?%WGkFXB@)q#uz<2-aFhe*!&u6+GSsY40z7h;xT1=!7ptI!5r&2Jc%anpnV%!&JvEV$; zh5$zA&|Fn!mPCawt1f+L+j=iA$Zh(A3}SCg(3N+ysh@Ux7i@;CIr03E1kzGOwj=CV zA!^V2&BZF^zG5wzX=FNdQp=j2Sdy792nz$-cA7M1_lVK>aqJnvC#GW3tRmUoO&xO` zE4_aVfzpMp$fI~I44_V0zeWKK67E!Vg$u6VFDLv-Pt4(#r7m)RBx=E z%`xH^cL98`M&5TPFKZWV0S_AdMMPpwoe? zF*Y%Q+fkFAmxukOH45+5)iKD1%sN9&kad2s@blN*aC<%6@q>rH#65YhHJZu;!mYs`Z<)7XOHc0K~8@5Ya4z_JM_q zC!6{7S`4m`LK#tpli0&@skBPkV{#F9X4n&xIaw9knY6DUVN5@5O2OmQGxCuKQTf<~ z@>R#ldXKdfqo8;3KFx%3G(5;OTvs$gdiS2C)9?t`?%(_67KEQ5v4NhrI|pYn`}_NN z-z%8`8Nmhyy`;K&zCt<+(H9w;j}5K|$=rJi1E#3>ta!gc6L1&$E^J8tpJfQo2LR50 z+I2K+8fG~`{8oLvDsFuqpr}?|CAXuUVy3rOp}y+cIz4YZ?DL3 z_b}Ha`H1tuA_2?+qIkfYaHwN=!(&Ya)K(Dx-*z?t_FY7;F$Fz6a#&~Rq$P;t_mX(Y z|7>gwhmV&HC>8(g5C|*>E&3kZ)VnVkYEu(qR04+@^xwbM)of-%+A6mCR1z&lL`CDa zPbdlxk{NJ#+4Ca{q!@r82f51Kv;=WB zfU<(}Ex8YQCHi=r!~V z^*y_jjLE`Y3OT6{-)spbH^?5vPHS5Hm0Y-|gi)GE+YGc@?u`Os2zNL@2(5|(9Ds7{ zkJAVqWw4pAev#N81hCW9N$fh(`?yA3R%+@_K-iVFy`zCOdUHu8{`l|=fsFtS2UnsG zIZ2KN*e<<2Jyguh>FevpV`F2`qkhY(F>v+q@hku+lSUD>EGyFCWS>IE&Vkum^7-ry zCd6C7WmimBmlPP^qdS&IO$pmEv9Wb)k^FEkI4_U7M6)Ulq!f5>o;5Lp16sg(Out-y zwhyuSwn73_Xhr!XKA$Lik zg{D}u!(_p(H?gqh--e?HBKh$o5g$B&hQGU*muiAY1OR4Pg@s6odvl~hKq)jiUDx{3 z^Wzb~cKDrvb~qJSQ9Uh5hXYk`1QQ-AMK}zO3zX>y(y_AUl$4a*xL3}KT^^wXggl?yLh@Y@S$}#eu%~{@FSwK@2HE5Lz%I`6vfu#wc)_W4y^L zDj#BrfQBdz&9OL?1t$yCV!PL9L?6kslnU!18P2mHg~;!A$mH4N&u-M!Es%znMYoY8 zccjn3EUBy=*q(lTO-e)17_?_oBII>}1`_+G>pi0gRMfMz2h~LcXp*3cjOv>ul;d`H zN&!P~yx4yO1QR_YitWDm%+(Y3?OD#K!$mJ};~)xWHCAZ`PuT$_^f!oNfJf5PYk|M_ zOB4953*Kio6&N4j?o}?~#r~{39nM>DRN!FVEyRVdG<5mM>|jp%C;{XisXHcuMr(;1 z?v=^MDCLx&d)~7QY(^m?zEstHpb!&B;m5<%)$dP`2V9Bp%TRiQn%}X@j*1uOqy~u5 zE-WalZ@NO8frP50r1XvsXB`Yy>xJ4#@B_Fd2VT#m^`WEM@ai}kXmmjF4masfum@0f z)jqca^hn1BoxpZYu|~2#xZm#?;w`}uwf*H5{4W$AY-3Oj%Yo)ZvtY|xR8$0%BEG2= zF2N>WRM*@4cLWl3jW~+RZHZ;evX;Bn7-SD$0O2_>BbOA1xx5e? z^MH@Z9h1W7(L~7jiPUJh*$g@8CI`v@+&xnuec9a1TdBlEybt)s22SDt+Zi5R1?Bjqe0 zX$xX8L?IL9(aStItwxm_n^7!u0cBUwf;u~mD%0dNiQ z0Ps=sEl=>PtyukdPEhFGK$Uv-%j3)xI3HMRA%;16Ef3&Ofxi-65AX?OYPa57f!~mT zT&pc>4EEUXZ-cnND%A6?cpbu&W*xRCNx0?c@;On~V3Gm5yd|R}ftdz_xK@Z{JWn=h zV4x#4V|2$EY@$*=Vhqr}i$5}(t+XlH3#0>@F0lc|*zvzq1fXV^#Jc>omBo=T0Aa1s zJ#@Ig1iDJ6KyDzdXe-sf)31vBnyTXo%zFRMJOHx;D(8DpF`dr?0!FwPwQ2~j=a*w< zs`^9n>DM>ENh`K!U&)5_kV!Y%6~U3&;lk}3c0(KxXax@LaqG(?aKHG^16nnLrwxH+ z_QBSc1z6pRqB?Tqm?19G%y6Eeobz@AoyTVGorHvhaLtdDSa9gB2oLC{{Py~y2y0#P z(uLVJVj73e}$u zq7Mm{bSx~ZXTzUHo4ketm%2RR1KwRImYY(Jv?|3ORH#qv7a2Mq3=swJlS_pqqx=n zN)+xqgPcP)IKWhaQ7i%Y4d4#gyQoT5)Kb=13t*PfGcd>$+9izw%?Y$4v@hVqdM95> zLSjb7dl{Le3ZrLeq}pCU;i%_Du_czTjbu5~lx+cW;8L(yq)HCm`e zo=o&;(#0TM$izgIsjPI`UKahm=&{!2GJP;adQ>K78HfpXvleCYOb0)pdgoqlIT%DuiR+_$NT^XO$x%p@P2^b zm$1VNYj@~(9}B*qb?KuDM-?p+>Dq(YpBPdgfH3xV`Jbf|zyNsy)QeAT`&igw6B_4* zP~P#Gnh`Gog=XQ;j+m2Kp1T!wLJ3pii8Xrx179*UE+CO^k zG@F~7FC3l0P{*~jEiw`v<2qDqFQ>LFKuADAW4^aD^-*Y*GpzIXV`N+D#%>}5luu{M zAC>9$eKJdUsp~?CEC4Z(@Fo^yENMaN9G$Ox1(h|QgFe)6$VbTEE*JPpwqt8c*To8j zC`X*5)Ps?k=+jlydC1jI+5zz+r%J!4)(*3-ee{ijw3h>55y0ORKBV)b(VM38FpUp^ z0B!au8oUIBwY4mrL{(4WHG@bH+IW*MGt@huZn3nY{z`4blgGK4h!aTFou{OLJccC( zDK!ov-E=kHTO(gA4aFf6?gU)jgKv#Vo)*vD(D7j@ z1LF(6J9nt$RCW}krEmQC7csb5eqK$}ZgD1JZS5~Be~Kl&sQ1-KPPsX~vNCw>aEg*l zPXWRV3uO)4pqP`CkF}-oX5|{PFW~Iz>V1!?v7LUsv53Ar~>Hj;qP~lM^3oV zX~7ey@{~Fzt6aL+G9eez$$Bks4KoCj(x-4D=mQky`IEt~`7`yq_@?B$aANTas9xX@ zshCKF>uA(A@d@qc;!?ki#6-UzJy%jv9do-rJ5sMs=R`sWi16Y7_EK_KlV8x+YOJm2 zpPFk$5vw4pl<~6rfJ^N4`*R+PeOs0&k98I7SEQ{PBVXV@6f3lyiALD--Gx(>maCiq zT7>AcD!n}ESO~4UZck5aP=!ZIs*!fa+=)jbQRdE}D!bpW(+vGuJ`=|*c;rc*^s-1{ zJKPa`33)cFm7>YFFbB!8rc6!M!AbZ_B~TF$Y1wQfTg?n#RXzEyL+k{(`wwwj0yzzL z;)}{BD+mS8FDI}Q{AV^}J6|v`UR?W~W|5xI&X_pxPVuVKE}&+Vb1^Cx-7qn!MZ@yx z$6yeC9XeDQ4P_j_DG+i)M*0e@xDw(Bv$DjuZ?&4Rnvvs$!{_iV%Rm6}n^ozR7$oOj zB`1fzv#|!xR7pY3LSSX*y4z=nd7#1UQ%PC5p~&$r{?XU1fa^sz#i~h!f;=3!HD@Qf zJ8h=kpZcnV5(*2VMou?<3R_9B@WMY*;AKe@`ENQev^#@VZd9uemeODB*9n?&(tD*} zyugBxNR+$4Bj`b~A<))tU!xT3&VmC7q}_I__P{ay(6ViUU<@V_%Yy!EU)az5KSV{{ z?8_33fQ-Qo^_B1!C{`)B%~{|eE%{W&q-(h23BNdwQgqCB>>T|Kst<(N)ABkKmR6I8 zNsLmgomTpRy|TSkU10<3$_A9J#aX@olEN>DdnF5nf_nea2;8H07LYcn5shiBAg+BX z2)=o}YP;Oh(iqTQI+wMaKn{ih06MhOzSB%j?w|=D?1*gz6 zY18wlZ}NEw{4TDn?Cf^)Yq~W^15+4fsJzOUeCnM)a{JoUx2);;jgr`+Qvy!Pi`xoOQDL8YCuKvTeD{4TG9 zQ>wAb>>~NTgH!wb{Ar1i+wPz`S6V+V*_>`Sn@RajH|Y%X12Dv*vW4!lkBG1_y{;|- zQL@4NzBLlx;(1Utqt^BaOwML&y4MmVELQE*U4Q+~i5S?j(he^C`cufMY%1nxmw8ZK z1M&b6EIR5jn*Z*2C0qNP8U{;Ao3>@y*1#=FaQsCjxYQ|-wo(NL#jN)#hw^)Y*;jhF zZuJ-xc(#M<|D2YG+!pgy8R*$pAAThNc4=GcOx&7U&^}L2+ zR*E*T*x!mKB_H73?kVSDWWV$|wXvqa(|bhuT+`_7n>W4ray4ibo;#VfrK9O@-YC^L z2%`~K_d@!bfw3c)@MWG1$^KmS2N;sQdB|z_%50C~=T!hn$0n8-&h`0=Be`aK;uZeO z+3Yi1&z;D#K%?v>C-jc6<>Y&uUoWN|S-4ZtP}7*bxf~AHh8a+VH4(9!)-1G`Q2*qV zmg0rvY@c#Jf1EnoI#2OTcalY2!!q$LUtDEn>$~1S`bqO=YCj&O8!<61b81#q^zrhE zYaV9WsJ=^~mT5EB6?fSS$uB&*&$tXhYpzA7>6o@h_wt+r+IA|_2-3GiIY)+1Sa0_z zFfa;7Am2)nl@PL7?2Fpyk2d)da6kTn9rhCPI-A!`ZJ|$zV*f7cbKo?+jai~HQV{w*wZtG``Hz_<%;|WNk|&2Sig5gLvw?zh%h;No788ULG`NDN2mCwIfn5~O zkk0X>jQr$HO3J)T9n1#IEmtM|g-Q;|$G22+hN#M%>yVjrPfkQXO*AX{cgGIaCLbI; zwX3EveOM}8E~;&SySj07jLct=PF0LnOHOO@ajU1#&wu)I;#`-0`%&o3C7Q+l6pQ?^ zx>AO5$S68%RJgL|60(OBm1sgDo$LCp-{-G+Z1Lqzd{-OHZA{@s0^1^RuvBz(bPjz# z4IeBVQ8nH|O&PJ(Ja17VI`#@hX9pI+l>%KJXcXYto<)5aDU+bD~Zr5@BI!jLORG0I)aQfQ}2F*^ZAi756lCV zGw5swpv_V5A5=H%Zf6<|{dzv%poYNZE7OfrA3c_`?C3~v#Kw=nFc7vUCsum#BL9&| zBQu|6zcg`r995o?jQOW?#;B@?Y`1%iY??$^*8^XbdKQ2Do++l5oxAWtzigE#mvJ<( zSeyN-=&Is@HhZ}g!nuw!Ve4;=fookZ3j;Ir+<xjg>>fjr5DH{<{t+k z#IfwA`54ZmQtze_TbqqM>|kBpUuzLRdV8148dkV{4r-<6WEzpBrI=qKeD2K9D}&uy z=W2hF?kZkqCx#pKS$gtt~;NY#0G859b=Z2c?Mly^@&XyW{K+S{4z;*3u9{WTWiy`Xk#Rn4a?`Enu+2gkylgvm^WAtob{_|A@nW`1>Et) z<;EyuWC4U@)()?OkrVaDTI)X-DqerriycDySykX>nsC)1!Hb6!cQp<85;T>hI`;Wj zpy2Zp;Q}Md&!216rw^iPf;VNRvDI8Jv<_yPT8+mQy-%jFO{CP)0zF?NZ^Pe{jy!x8 zbq%Q-qkLprIx4EFw#yeRhUn0a?cBZ=(z6+^Uq(Jq$yr7134x)N{;Y@zy8^Q={TMYZ z5=UGBF37}Z!mAfeFM|&aXpMHn@B&B|Nz8MKFm<=KUXN`cp&g)l8l>xmZt{hQlAH8k zZ?Q4z-ls@jM2G06vZSzzJQ$oQc(2ovU+_goMSa)Qba6S48;8$)dbp`lZs@J1B6ZV5 zVkj~9sn)VjmD$GTwm+j3jtRGa)Y#dfU|}Aeh8e$z0hvw+ec6ORncT|x_!fboP1zl$ zCnq?hQj%3z7pL}2z+Uvam9=B*KFbGU50WQVA=N|s~*TA*4VlyS2f-J}b z`5_v76714a|D68dU;r z%O17%_hT1 zU{-ZWqqT|qPLXEJ`+WJBH1xX|Hm3?Gz)0=;!;BVkZUXrYtlHq&HpmmLfsyD9|=M$AHsOA|0x(`zVJOXzjFdedH*Sb)nRM2$oX6mJGuQbSy zoKiv*N9SLEefZcJ?^n&8+zF%_L6S8(E2}43LY0}g05&F*6)62 z$}BvUr#?zO?TaV0WMt_<4cM65vE1u6?`4JG6IAF1l8q$mGpx(Et?NSqj<%yCEcp#& zn=hCM4c=dG^9jelASy0?<|i`#rOS!+?e~ndOf2%Pmq3UPbfH+bm;&n=7OpF_3Q1n^T$XE10XJ^g_?$Y6=kV(fz@pMdA_kMq)@RyX)ub6qXQCd{G^l**HTF(W1>9Z{SD(!d6$9h5T zf@lrJ2uuC4WBKsZZwlJqSC<6Dm1w49;0mAv+e?wx5xqQqM)pDURx*_cy6qV8dy)O{ zorZjd&*=~Y8mn)lXA3CI!KV>v2U-nEfwCLk3TfRVmlXDagidvo6Zs7DQVD1vA&e~ z=FQC786n->rb{Qyj(s`}d1k1c64C^zngRkf<8xSO8)wV;SU8n7rFAA&1u|^^dR^ku znkHr6%*nRq|JU)XP{_Gs&g8&KbYjBfeP5d6NWw-(?E2w|4^;iBae~ftkH#j}4o^1> zOa|S~wfqL-?N~F9H~B{iT>`aV7O{oD;5N|PaVnl-D_zr4hMYDIx4yf7uii^>Va%S0iUP zTT0pv6`)9IIe!5L`=8J?c+ZECV`Fa2t^9wmh7BIPfnS}AZ0x0;9zC;RkM6iem}2mz zB)?Ebdcz_A{=3{{zM>5W0XrE)bRL^kAxi=gL5K-`cefF}aMKN~O-E}*W{0dDXR$f) zk!X544deA=KUc@KfS0YUR+Gz2rB$(UQU!ksrU%SAbX{D`%|C**)5Oz8ODXXA$RIKr z(mC0gM~*o|t;wvf-mjf~?Z~sZN`An_wF-VmMhd(=$V%*j4=@Eh=2=D;8_y4C|5c3{ zE_RR`Eq&^uUVQW15ao!2hxYwYp$fm}xN{K_O~;Qju8HV&G#Q%8J%YJ{LYV?t!dwJwWS?o-7Y5YeKya$nb|u zp0hH|F|u-X9;<&CuhFUWWzCLDCwUG0iR^9IX^x)ST2To+C0Xo>w?r8rf8P-O4Mw96 z6%`euQzsVzhTh9$)Pd*D)V_Znfk@iB6L{qdnLh7}!?ARsKedm+)dk6lXWWm|9cGjp zD|G22m7ebO70KJ_m&yBy7=<`G^0kC0d$MfIJOe4Ez&(CryxzsW)$=IzL|JV^GJ7Z%jJvZ z4=Hw}WW^&b(Nh;!*bz7QI?4$jBavF=wk4&df$enE6L#G&Mub0fGoyp>&YficTEc|1 zDAi=j2Fozz8-l{y&o8epE`Eu$k@&xv2_+jFo5L4F1xgY_JbZTJs+(Itmk0(+^kk*= zNXng9X@`a_zR@y+srR&9j19tJm6dLI;m54~vznYLQr?RmveV|=2!acK3&9_z-mz8> zF2dWkSRUv}uncG2wSMNr7-E9K%1U7T#XsIEDc#8nt@Ss>Mzj$3t?OwPrTjQi`i}Ye z<~JA_BS7E%x^-#vbHx)Pd~Nf!vBSecate2)Z8jKUIzOm&=YDd!epE^B1T5C|uv~8UFgt2O>OY3-jfcK%P zwH!TTTXr~)*WoCl$mWK4&W+$Ke!5?_2oB6@?aOe(7K}A)w+>@3v^As6t)DAv#L==J z)6m5A4Zr(U$*SiqcwCVnV*jkEjiB*O&8!{Tmgy+ukL}PgE{jZWU(pl3YK~KpWD}WF zIKJr5Wocm~td(`%?PXw|!!7!VDTwVIof~|!ua(~wyM{Bh| zY_-VnzOe`d3!SEZjfgA^KVb^)KHF!-W0=%2x#bZ`n4FTr&-O_TffcbRz1n(L4Ey-p zRlAX5+F@<_4z)L?pk#~9j6=<|69vd5P`UsQ?ml1`{vJ7!B+4pR6WmmI@`b9q+q96qJ$$hd(}670PnyPjS7fwqBQ@mWu{JfDGvX=Rwm3Nhc=}~h z`ZLw{S-XQMie#62mR?1Hx7iH#UJ`yTe-Z!ig}1 z%Or(~NB%^{&N#GepIbvP;xOv(qyyYP{|~?OL*LXWGpWrbNtsYU@{)B;ju#!5)-sZk zwUhrUl7%B@&(U#o3c+=6)IngyNn2tFGi{W+B~TA^`@u?XKu(!kj9%;vp?=>`LX;H) zWor1hMdKdfh!(%fs;(|lzIy5I)ucjrbG^<5Gw<`>nAg*IGrpF%)(R?B?CUbd5ADRu z=e*kvEl8!>jI|?>oQ#A;8-**-E~Hc7_2ja#cr~33Z}P(snNvL9p#ET^xPYq2=3?^= zDI9gEV%A8c#r zcz)upnrYV*NG;UqcS$=OHD^i|y}+n2?-m~|H&XES)(L@cRk3X~UBlL%g4QjxO?cO* z1w`7m`KQy{BC3SHxLTE8@g$XJ%wKmJuMkY`H6=`Z+-YP%R!!~KI z{LZJ2se+Bw637IGH$uA8gke=Hisj{fG>N9JQ5iM5Xm@nQ0&j}gP0FViZo=Z@Hcgz9 z(kTgAxLbFrLS{0>wX{4A%c{LVpMA6wvCPG%VEE9s&&l3krS8>F?OQxxrp-_!#(kf z=M{Vl6tBT5+pWAQd!78Zv9S=71SO%QCXksJnzRYK*42H8$S6yb{KHn%gp3a;Mt^~G z{P)k7{yq3ck|0I}!IKk6Z0IctC=Fp7y}^5WvXq2Pdwe!`rEG1@3ZRVn!!aXfe*T)e zwm2aKSp@IL4`-{Dw-7=d@B4mH$oy(V#Z;WWcBMWR6(0iiiLLrMH&o_{-07b`ztEp) zz!rN&dVU!}d3cQUp)5I!f7k2yT%|v>ZEK*CfwW_44XYzTkSBqAFTq`ipHDZBg_62| zX!tos7j%m7G!GM{;6vNE>iai*A<`0@S9^PV(qwTlW%3au-rt!Z{Z)!$5NwDzg?WtYm$A)d}0P_M7_0kbbIpq_c253jg=S8 zySU|xhzR@yq6ioh8hkMp&UD+EO@g=fw};Tl0@@r#%fURKiTl^$p~%ZQqd;zAY{d_s_u|Lx z=Fo>9c=#jy6Tas+`k90jtd)7d69eDhqDN(wje*{XV2vaxzD%?Jnw~~*E+4yy5$mIZ z7psKtM81q>Qln5$JBu7cJ1F}T489{kNZNJ1*k$J(32vJggN`eU6D%~noyMx~xL;sI z(T&#)L0i1#2#Ui4_h}8nJZE?X_n{f-G}cy{L4=3o=l^VCDh@_2cqN!i4!PJK$k}}V zW?Fu8;9?sn1al?OI~z7n{}75eJWziY(x&2MKiU$)I#jVe9b=q6dKag_2rw`#ka zU-gJv*p6xY>Ig5KH%o#;C@(a3A?r!>@8ig^+1fkimdqYCV^$Ck#3~$;gQSGd!J5w1 zt;zfFT_0_CEG?(9vZ)u_v%bs4J~(X)iZ3b5Q!F5;mN6WzPsZmDJD>O9l{WwqHGZJFMG#0%=mxTWl zWHzA>nx`lwvb&i^2uO%Xat*Nmi-_dgmOYRHYh6@~0 z#?Q9|f5i%M$CM!p<>XRhTb=B2Fp}1je1x=Qw##jfGCew8xJxpN4Na=)oE&ZRoL|<3 ziVJV}v(suqlT3(z)SOIlnD}mvd~Hrv0+FJmKI=R{Qc=?7dIc((@wz&JN?@CT)T-4@9JPy|7nT79e6+ zc{`JM&ubc$u?KhEE26xOmS@*&#yHh!y5TI+_M+u1+@dq6q0(mW6O1Pjr@gm*Q{V6? zn}rN46_y|AS)y`jL*-re_*pn+dfv>XYgVx%s~#W5_UW&x;e`1>-4ORsU8|Zh!i++2 zrbCxn27aQDF4x6|PiZ}=j|;)31Zm59x5$12wM+#pMH27If;x)Pa>n)NEts_yO@%J3 zsh^tnEML+~6Tfq}REQWWg;~%vY1r>t9L%nc>VL`*!v%LMIF z_k=cp#nN$-q|4%*F<0nb1?7g~M3{8pV<;E?NM^mHlsWa|CErR{+(B>lIc2q8b1QsA zp+$l>tLtA^@ItEUVQr3zf)o)&tgY(E5VX%TiQ@U{y7hqIEqs(J!tnWWbuZ)W!t=LF z6ZWuSA=4;6b&R6K;h$9UnrQhFX**(Xf2I3`zv0?yHGcRI5-Ycm*oNdi4+5X9xw*fk zCPLzG_5?a4wo9{ec2;_!+gRi1A~CKGbY4A>udifyLiXl9kb)tk&O%yx`If<;1X!1&^Dl2*=)Y0QyEVjs0_UZ}@T-NDm)wZb8REquLg zg)-&D?`YO(GjvjN6oaa^kCzEvGikZ*M<65bdIh}fIkc5mIMUELVG_^hQ+TQbCJd(y z&HN3YMrDcCWukOR6+3W*vpjI+o9U}j#a@hhaX6}>QTZ_ZV>%2jDX+8*xvF>kqYr|c zDlW!6KV7bP+lii1uZQ?1oztiU_lz8$IWVM-Ghk;ZNA%ui4PaF89OHy33KF^C_Li@9 zOH7YeQV>cBoUriMsl|`HoXl@pFUvn@y^k3}0%enIzQoa+Tm#R1G~PMYkk)kYzDZW~ z6+8+py7;L0%FVC2>#tY9tNx=ZX;Kn9Z-^Q(+`~@-!ju7rAT=U(oMBH>b7aA~$#Bk% zew|tcUh1-Z{lY9W&6m&Asq1g-x6Df7gsFzso?iiSDPkwdr{B(Mo>B^|@%It25)atS zO*QT&b!!S^k@e^CrHy8O{yZX(kp+Iglt<||H1wZFAxaECH2R5%>rY)1A>B~m;WZ^? z)NYbk=Z1Ta07?by9KLlQDJTfVL(;eL^@0J8Jnetf6hm#`JC*8nzc82X+IF(&2)&){ z%9T-edOopQ8I>P%em7z|ZKWMTm2db6zu{_8w)#FGJ<~#rKN2`_>s}!Jf-6Ceo57ts zI$&4?UkZ3^C}MY?cUKle?k5E0wzVBohO6=o;nd>RKT;-@=G4kcJn($idVP9bT3S+L z%Ld|f$ExqOFDD#s^%s&h-7#NReY0DIV&P^m<1y45DCa{Iwl4eJN#A1S=~X(2PSZFskj9I?yiH&7PSmz$_ttRRFA>E{{?Wm*BoB49|Wv}oH z(zPk5;gMGXglV)n@_`(Yi@iwad)c^2}&?_dTO|nhn*0n z>`B@bK#rC(Aogv3)CIo@MoT8#A4|)&NbtTbbO<@sc_h3Y%_!CoeRXDj3Ri%bIb~(B zO--c~if00oyIwx5V)u=hGs~8*7hjBcwx}N5Y~~8Y+H}l}5Huwhq-vI-iMU&Cy;6;YLCgpEt(b_tSo4G8e+d_epQ^nyJZPrEKzt zihILIJS120%N9>)?t64<7~tNZJz$Z?ru}NH9X)b-Z{CUj;FO-%febsQV=Ev|)k^m9 zIrX4|@+F`2qRstZat1@j-NcVA`;io}FMYQsWaNMJ7r~=|V?71@68JW;=%`j1C(VyM zb{17kFUQi0payPX&Q*?hn;Eh= zxp-Rs^{>XqFNcR&*ACOm>&iY9ZLlg993g#8aL^w-PZRJN4pL^W-Q?t&n4kr_irUEW z7Iz@{&Vk7cj6}${Y_>dm58SEHP1fA8G#nYq7yBv1%{;&Ks@@iET+R0xuozWTc03^L zL9sJUcqr@E3%-A=hX{ox*Pa5YMEG<&AcauOJm6M=1|0!5=kf+KBTUGGC zff+wEGh7fN&#)iEw$$KE2YzuLjvA6aUL)0im(0gIbu?EWHFoFxxt6ak(N@FlLmR5j z6K}vR9rUvGK6Il}*c=Y&o4jwp0s6)Fh!f;rc>3EoYTBz;pDS!a6c-g@h8QOpT+HEL zU|i4~leCdf8@<&McvE^2sXN6b>7jZjSS(MMN76?pqs{6(S;eQwz+B}4Mi8v@jsAkc2{@3r1&tN+2Im4R*DO7+S z7Fo#IAff9&QFmXkom-<%NyQF3omQP=r9Bw2)z?iUm9zM@3L2%8I;+?zHL*=67cjPQXpOco=|1Tl!qTtZgSNY^d(0lr!HmqM>n8!vmkf zPu594rX2N(OH2KQ6LLfUo>^8Jn{yP}P_n80U>Rnjz*E=1SIqi0BZFkoY9U(Dj`($l zX>kB8qda>3-5ewv>|ePCPynjWLV^hkHnyXs5WXOU5X{bo^01QY+{DUp!NME}3=HtxDjAV?`7As--wty$h9YEu?C$j1Csy~Z$=E-C?BG$F zs$pI!>U~4^CW?99Nx-RLhF$0Lt9}u^k#-IiyHIg@>@aD1NhZM=HSh(@8mnVu|2`5O zAVrs!!fwqJZaDti=2_>pOD8_vRcS5V8QakJPdi8Al_tdBbDNv>?FS=Cx^Tk8!H3SR zTVbqc>*h_##+)NlmIl!dVoijpE6M~twKYT$mHW_T$qEfNjmUuYJBB{031up7J`;g6 zB_@{zdW9g=`}f#VnZIW-wfD+O^(<_YNW68^pBU_{l4>I#b8}y!CalA2)1+GX$_&YU-J!T!7*a|F3a7Yc{0m9nr~pYiI}nk?+w&f1LFm|YIE@% zLU_3%-39E$fkq1nCrN>O7E^q6e<|rM?7?E$|6kH9^JNdB`&(F+(?2`2ObzOo&W?AA zj%GZZ=#9K(Bb%O*RaUh&7qNt=4>+UGXI6a)YtHJV+eZZ;<%i;?fv*8&JB+#GY5Zkk zpi&>2XAN~1(n41(<<*<=@^K3;7k8AR`|CL&^eMQmbYRUAgaQNCxu(?a{HDfrY4Cih zP8tT5n~K0ILy!{Jrt6l+?o~>GG)FIb#R36_T!4Duw3Ot@gPpw=RvVlwM8`scg?F|z zjPTG;h`_W;B)((sCep|IQA5E5=!W54`}CBjTFV}RGzboGh~R-hoOA4FL`zyNtaeDvrwSc4hi)tSF@n<(&Ra0Ik3_~m z%4fFm2*ol3GEC{^*B17enM=l)PR23PRgICGrK5A%L(9-asEFs7P~fF+P*tgsVq;qH z`4YP_0z)Vm<7^ya7l6+Jr0|Vbq~48N)l+)xaid6hP`0M%^WN{Z>DxF!-EE97v!s_4 zaHNc9D z30Z~j1xk0F1@1uyh%&{X(poNi4HU7_wg!ZyEZ4qxiv)l5g$Y}y&4pP;JV&TJ%Wz9a zA|(_r03i9^-_J}MRf^C+ki~b+u+OAT(a~aVj(!C6=P!sr1L(C~F#p|6AWY0OfEjXc z$u&O}+||MB_^Z(D7T}Bd#3EY_t(Xc)aS)3KTO35BA^_a?`{)dXS+ndTh4fZX zmxf}4M+CAk+hd2%Y5rv#r-8WJ1}T!7N0anchzWU=dgRo_@}^R=MaRw&EV7E3uq$?;-gH5@Yz%jARM|lFm1EHGZ%<-_O(ZKG96jhL-tdH9 z%J(w)pvK0hCw|sU@cgLCiJowg#@}@n_<85cof@Qzcwt@_S%w8XQnu$u)8t7^7WU6l zIA`Fx5kTQ1wkG=_entQI@q5`Xc+-1aI6J%oav^Vfq?;NGB8^Z<|R39E1)ue7E&EWZIOh@?k0BoVs0-@w=g zu{Z#WLHMth5eib&3dP<15f<@mH18Zjp&04CTj7+Eu>`$cFPjP>du&Ec|Z zN`!^Qd~z`K0o7}2FP-N5uttfyxLERV;2>f(U8s54zDANzGOKK`unsz3`YrX78@;QT zh?#bOE`RuQZMMm>VybI?KUTVM2=Zf(C{ch?idd$f7OolbG}xHnFOo)#YzWc;@D?D@ zXZ2lEcHI-XQw)Jl7QN2w3R6OJ-iV9-k z_Ij#iR@F)5c%R#>mfjhv5El8IX?-)nyF1p!&{-|6M(R+v%(v3(i&~rmq4_>Qx~d{{ z=#T-|{hGPJ`W%%Tx<376??!g6`1~-dFnkmN?_Z$sdXX;gO^pE3Bb$ZN5UBelb?IzC zXRUMHDY^89EH4h`Ibn?u2LE|S`=4*8g zR!=}^77wCJ-xJKhm0E(@1_kU8&^+D#P-IC_=;5Z0Pos6{M4ikzngy(K4C9g$cJrNk z{%k!PC$TbU=n!nw4Ldvdxcf!ieAptoTk?_&^<3fHqM!)Dp2`HA0EF%S3$sFq9Fhvq zyu!}8Dxb8`$i2NVP^HnM(6OY5Qal8#u@j`FI=bHV@{V}}9TYNeurLmmi=;)?*CG#( z!1Vq1jJ_MvFW)Q_n1qEF>ovl;i|d>rpbVSQFoK*HnNYC#dup4%cfG(ci-MAg^rxjN z+EL22Sdz0IO-HJ)geuq~idee#HjFA7Ps!P?4sKpH?8Lgi8zZB9`097ivo&}V>v(*I zgh)-JyW5?csA-I^!vtu@Or@P?v^pQ?_<)4{3}w1jx#2Sxm(Ti&_rg@I9x^hXJxmw< zX6^%*uK3XBzbD&JbYk$>_5K>6p?va$V~AWHxp8`V2cm00Klrh9d9y7%HruEL{WGZ; zF6a>SAW7u^%!pOjQ8W8^Q?kGT^Y!_`^TA2a`vN|8b}vgK&dB={xR3BdbF;CZ6%-6U zpkO#t&xIk!Rg4h!3=ex}LNy1yOk7TF?K^mXP@~1|`pwKu&8atKFF*mn%-TuNzCkw= z1kowT&3WTp$AAQ0GCj$2>pz{>4%?l7LTWoX`TjlpbI)lh?SE6qH~RDA*l+o-;?&g) zH&02h#MCOz=N$ET%EDporb`P85%Sx11TWUG1d-l|u}YnILJS zU>;qI0Q10tgh1KO>wK?8m%8yrZ+bNNJDHw5c>;kWd^n637ILL$v|yv~<#&z<-i`&~4q+Gls7M8#@t`C+-ST)^GhxbXJ`ux1o2MnSO4Z{F!4 zFeo#*mZyT?1>3=V#K~ZTT>nRf`QJyj^ zyMrl^dA%%1yF@-Hia2E2B(5ACmuKR>Fs&0z@@a(6gkrJ}7kUuOJuc69$F-Kg#K z*OdwU%mNm(;bsd~ZfE~Sz4xK)M4k48P}tQ}st)WvVD0YwGvNtiPks=dP(UM4QO4}# z-sV?J5AncD*b3z#K=EM(1|9CM!8{Z%?}dG@HyIkuMA7R;O@&>y@7nSe>bu^{77E1w zP~>duweSZ1v{nGcs(#BkjrZNSJMc~7^XS~u_^s5e+=&JURa%D)@~5u1nd0(b#5)ii-EeP_jNobb(0Rew~XvJi*HVKA?Y+j+rU6R`|x z6%ey%%Ew4H2N;Ts;`A#tH}$3lE_sz&s&#dL7D`NH{$D}={$^m`bpK%NLf zQ5033ZUS`;ZsfJesFKnyc>qJi+V)FT(2 zUkV_-rK^jQsK9X91!4OaKX@iY3(yz5^=xgI4}Bngj1G}x$YH@AnrPsw@97WIk=~q9 zm2vGr$U*J67DrR!-cU1|L*GYcOBlyJnFw(f?aiCCy-3WC69%|b;`r@^F4f3S`Nnlv7 ze@e}dd)rS@ZBPoJF~DME)k6#~N+(jjQj~e)|2g^h--Lv$Lmxoi)Vj6gJPTpfJGORL zr#E2IV{1e+6DqsH#?euL=2g<7oewdH=8DoP3Av6=uod zq);Mdujwal+tCc5jj;iF`X_`b)eH^$pc6D_^(h`HDk?G_%vAx91~ZVFQy=dza3}@5 zGgQKE1$@l+-d@a{ zNc+<)5fTnit^Dq7uG#M5A^~Db0gAaMg8Mez3t_oIxxWMco%Eyz2q^yI$|`m}Y%&@e zulK~UTfGc276@}6qji(L%|G77)6{K4~1@qI&9g6>yofBS37xkAF+0G z(}8FnL0bK;_q~4oJHUDH?>oM(^*Q`u2K=K(=^QAP4_Iab?i-=(E6i23C4cY3QzUdIg++@rfsq*3k5q?!10&>27TD+qV_&n-<`sogy`nAA>0M5AfRdRNL!K zz?wHu4+Wrq1PrYC+5l1SzfM+0KDg;&Nf3&HLU`xd`-dip`kROwN<-R!9E7R^FiD_l z590kE-UtH&_x8cfL24980YL8}HINLYH74jP>qI-MKtlpxCYs z3_5#qng@#%KVu6#laaL9aG!dlxs{JRZ_6UIUI#K9bvnnL@-YeLPj*!U>Y&8^6h3uQGU-Q;10Yf}WxAt${p z5bPqxm$@ttqgM(SruMm5YD4S zwZZy97UDI(E$no4o`PARjPccqhZ}AK_S;{kPba>C-50hc766p|s-;ONJ|5XfE_(Uo ziv@SLc}S?R7&dJwPRaLzAlz3%wbi;ux*TJ=frs+NA4ZY(TW?B^s&y6gsk6W}_Tx61e$ix!L- z*;grHea5>k-7s^o>!U`7wO>x%_T-4Th3uzBuZ8B?Km|H$K3in0Ku7x1V;1s7gUll^Gn<3))iBWk^9yTHzxT~X zpK0>$4i6_NX7~gj)K^QSG?gRNH9ibhtPhvATPrj7c0AUUdggh*%P}(c;w_EoW!nz8 zBDI7!IEr;S%1X*RUMFLY*cdk#eApau3iR!d8rjrtOgK zirAg;Y&h9&n7Jov_``RnsTcCxV8EheN^(;=l6I&`zc~AHvXWl@X=)1%cIUo^^YHaM zmZmbQL6_;AyV@i~!Fp;G3m%U<*6lv!ZH!^P9ue^`I@|Bj-fqG`sPz>I71&gHg)D?rQ(NsF9bcU0>B{OibmeRWTisjTG?g^ICBEQM z&lxdQN8BFY`qI@(e08xxqq@IqS%l+%PAO6JdVTg8 zJ86NM&r@ox@_>jW<_C~)T!w%Lftzdq$<3|7Qh>n0{}U#Uf9>ybGo%8n`?0yK%lG(J zoDbD&a?r4&*x-A6+-N^79s>n|o`Yk?(LMfK9S09%N4v^Bi8AT78->@G4Tr{M<)eo* zkXq3~uEe~XB3qwoDw@A2AEi&XXoS%Ik5K#CU zs;_r8BVpZuz)*p~_+s>ja9cf|ma^v1Ift&}UCK(C_#nf0*G~57q{7pW9!k$cZS}+m zGov8zLGs{v83Syv0^*6&PScSKOqfVBGlU`ez)DDsnW+*zl#LoEXYCeE@F@@eoEj*+j=#$y?ln zmV+fM?4;Rx3au@o@O8o?R^!7D-#&2w4``~I{k`%HIBJ0(qB_HIZz@+uH6seONdYKa z_W?R-0pLbBTc4lrrL?r$@wuKXZxQhLAJ0bsxHoO*^TfUL7AD`4cki@Km2a7b6cF5a z(nRzg26L`S)V_XEG;i5rldqeZ@%-WR3tO3@}B~|Z+fOYlcZ5ng~CQWG zxfSp^Fpy8kGXU!=;EEWFah?Sz*+I=GGBQIoj;7fX#8iYdSzqBGhx89FE6exQufZ2^hp9h*t^m%e8~96TuU`*z zrK|z@f-vOSkC*OmrnU-dYf-x_;ftJNOO1@HK2A(+_9tOX-Tg8>ZDu#I_XI78NeQRt z)61q{Ba(EO_33kx!>4tu5@!6cPVVR6;Ls4+8%6fuc%nZ*+Rl!Bf2DU3{$N@@zJHAi zzt&&6PJdlb>u2^jXf%BY@Gv0kGs8Dw4rLU(j*FQrp1g31szZF=uXUc7d#NCV76TtY zj)v<4EDDB?3Kq7aG7&lVL%GjijWEB{lqVYgc zU{WQecx=HA1`&eOu}io4U$<9#%CkhO zs;bbm+23kSrE~Ec&D{o?P%r=7&!4G}KWVcAQZ0hq$S(oLytDpCGo0n7rGqT(9bu#7 zr5&a=fraDUbhk)MT=@Roijs78d|Xyd4b*)s zI0@A>G$ib|Tx(=G{X_Fug7#DxKbJoB$X=(I;+H**GWTcX0CKPE$4vl)5aNuzIb+?)*Fry}}c zKS(8b!C?kW5iTxA&lW%vda`C)L`FtJzy8hB8+L-^7ZkY6`5%39UX;GgsXzYV?9d0X zu_2y!(4tk+YWhg+xnygbW4kfl7e*i&|UMM`ThUv z`S5;v*TeD)i*aVI`@XMpowLtAds7ia$4iFrX{Q$!;)Y0!qcnVc@F6Fj>;9aH2Nrvv zy?)o*`y}t&yhux1o5@WTx5GN}ueQ%CMt}p5{_WdVKbGdPuI`MjDRTbD-CNM$f7TMx zuj3kMZH<`O&U;#1u42)ZC>94qanNIDwti{*hBW6vQ#a0F0RRR!(3zPXl5gjH4!tWgrPCU&$mG|eZ6abOM6 zAmy=f6^$k`GuN=e1}Wb7IMU1p_P=-4SyZf-d0{lax;hLN2B00EfIy>p3B*ScnA`cg z>;~!p@$vLGVxO3pnxda1Ql`Rh*RH9t-1j^`K#M~4c6Z-?@#0lDXEtSiSz*^H$2FXg zWH9uGQjZj(hlZX^IPZ8ozFPVq?Cp_bPXqSq(Y`$+BgM}@_=pC9-?}+eNn8(N0a5-y zidk`y?pfKLou3B?;l{+?=%~T#TW#YZ8=?-ASIvLLccscrd`M1aUUUd#gPxJM_xa6D zBG8*ZS2XwljCEhUXxB{nhWZSrALMfyIeqS7^DbZohRmR%q6%&`0j_IC-%?0OHx)zP z%MzY1`LM}hwm-P}-I$&Irh6Z@%WniDjzXb|M@G(&Y%I2)?I-FvId?X>M9fR1%)I!U zkxEK(fP209S0WV4xBa}W2%i-SFPKZ5iP4mw+8eRow>7S?V*zoSlvIi`(ClMmVq%cc z_^BJ52q_A!YTWqZNmMF502z2=OZ5!HJ3XP8@bu|>5vl6M|Hdk%R+9Ohj>@|9(Wr^( zj2@?mI`)pTvdiHvrChUJ1(;6VNtS)uG2fNugeeQ>+9c-iW$Snab1cpywiRfT*2}av zo_vS<{G`O3ZgX7Y+!J;spB(A)&e*N(iJNY=3x0 zs(+x^`2{D)J2W)(K8=s78hUaRY;2ma4;Ti4pZN8!v~fmXf2Vc;Xz|WDfj1%W2Q(4? z$;1-e32!B;xu4ndOjH%Bj~2@aD3~ZID5j2U4y)l{oSvSpkquS6@UC-ib|z}jVatpQ zZo-%L)6numIdp>TtD8c#8|NVvm<5kmQ-~6{Ns}8-iqi*tS)+206;4ok*w-I&uh(vq zf_Njis?Z7<{p!tn&}?F^Ztu3UNFjf0gHJ?6WZ>935U*C}b)mshy=d@Q!y+Y8C!d_f z_RF_#q%~uqBV!*oys>{ER7qjJF-5fp7!}z^e^D+y(g)^1oB@5w2i6k%Tk{O{zJsu&uw zto-%4>*^{7+e{_Akee^hIK6pU=W{QuVNXI?2Esj~p71Fe?P%aSPzF2v(bK1mU=R1Y zi&jtD;4S&*7a;crafOP8rnPKPkhJEDs<$R369xI^<|h0PSLpF+q<)>9z@8~EGAU*9 zs1s6nns-%)Krv(Bh56u|I#2x>_j+MRM|C*~@V|lg+VsO#FeV9zUNI$N_XqWugmwGO zo*xiJC}3#$dx)~;d#%chKGCZ7kb`GpKRfO}en9*#zpyn%zWTxbfVZA?S0Wi0SG`yJ zM1x3{KqCK@z2pHp%WTsX3rKv;;Q*JrOUcypJgn^9V%iz~Otl!4Y?h*vyC!FS>yEz@ zmBzyT?f^R9x6edH)d@HR?ArtLFS#iG674|pl=)4Mp>K1}AV)~nE${+Qua}zc^GF&= zn7^0zB_oD>DiCHF7K({jXOG?Pe?D}QAOszqS|eh% zBCfUG@NQQ5et{^i-)TETA*3Rw7_Nts3(_EF626p{Z|QwN*ZuZd*nL+TilTUxwSd3(B6?Y1&4GQr`!RdPbEE%b<(AbhL?i7Ap;prUW)fS zmK^r?&K|-TSQRvT>=3qNk2SrW)}x9$TpZYynE-7CH0r9LVCu`Fy87b}jNdnwE|q3+ zSzro+vS(E*6qv>eQ^xixGgjbcVYb~Jt&<|-xpXu0c<*Q-6aCh|RE^!Rvb>5w<_&L2 zvB~XWa|;Xi>~A1K-cLG7<>lw^8nP_RU;(p?ZG zP^}72SbYfLXme1eTYC5a6J2nHF;-)&ZgXNiQ-IHIo37_}RB#d#6WXJ$Qhp+^^Z9ze z&lUD2O(c>AGJwwEGB$7sI`@#eRVXK)CaJ(wVU7A?me#VvMf`g<%E3eH^+jVoj|*r= zFz$*x3I^B4Pv}tdtM;uPMREE}OjY%@5pSy6rClcwA>En%k2CoM-t=8|L!o}w`*=O6 zJF-RP=L3DNe^CFFG2CL~{X5L!-XueBqt9F8dnO#xEpDB*9=+|N14UK=sDWt~VZ4zj zw#6Nvm+#^-N^foRJwh_9Zl?3eoVyLR4RG3dJB0};1Rv8h2V?K7(!_OJnB62|SlVF_ z30WjqSE^A6K05LQn-mG?@Pow$6v{Wl=_VHU=O|Vs#?P}PB;@r?SK5Udn^LfFghnpX zmn0R9j(ssMZR~@pw_Cj0|W3#=DX$p>Dq;f9o&?(rDdHjBif1(UA6&4WIDU`nGB&Bf<_yJ+24Yf=^Nboo z6Qd-iScHoo?5|XA4QKPWVK!7%rfMB%p^keXWOx^WV6!P#1^MjvLJgx~3(O@j_}h4W z+PLW1(Qzjp?|9!k)2Jlo$V)m6N*~6*Pq#|kbX%=t6&QVrZT}=GWK8%Pb?ST7ahpu$ zSiPcmBcI3f2CJjpqjpu7M2lZf7~3K+<;NuxTS~wF$VVN05IVzvYp{BX!sBo%Jvv_peMX+XWm6s+_{-v zSdjk#kY>?E+OBq!_C{>HT@+fP>`rk^IU%c|^_3cy=Aft^S~_@KO^pt}uJcP24_LMk z8F&s$Yo;m&W3x)({F!IaCNjrB?W@##-SUcPN&ME7*CT9s;Z zbqIL!C4PB7kUI=bitT%qvH%i-k6xM-6e?lHhcB*}i&B)Ar zTDoXGY8Pj(Z)%E<%ggw*vmwF6^9vFTT*TWBn^QiUyErj7KmJsxxbxYwq{i2}TEbp+ z1|}61;G5BZfg$<&Fi&VCp|o|HeC6@Z(her^vWw3|ehI*nxI7qIGA$vG1uLIj>gnkj zV?dE-1h`E2_VMRg>EsT4Yqk8c+D{fwAxIY|$*i0zejhPlSv=w39M!^)Na7T~W}}`e zOH-sf2i91ClLelfcteBb$B+0S{&SRwgR~_!Kc#`?hq87P;$$25lrOk4l3YU0nbf3+ z*h%D&H6v*NuV1Yg>&X-e@8*OrsUIC}E?8|T2(}_P`~j-R7lVaGkksRW^99rr(EwS7 z7%5>}&4FN+pYcowDf*f=e$L@x#=y<7CE3ilONn8A8H3u#%lausg(^E5@K6WVK^0te zw7gQe(|b|*j(%=YQBG~`jqc|}J^4d&tmX8?UvDOLSfN*c@>V3h%1QCGK6@aRP(0yA zFpyL+mFVn9cIO7-6P!#&idxi<9;v=hmi>q;U_5u|CtQ(8WRAJ^)ARJ7$)`FnZZR<> zQKzAyk{EGnWY+Ec7s;Kje@7nMo-&GwP>2ope(u0Wl)^d}k&xXcBvARpA(0@V-USK| z(SShQi{YkXup)gHhzKNr#0yAH2S+O`5J7u1ewaO56ET-!CRTXx$pM+)D&{Oc9&IJZ zTtLY40lrz+oYUt4>rD??*ppDK;X`BT9f;Q7mt$uC-3&OI^W<%9kveDxa!n-By0_?w4PMQO0oDM?yc?9P2LRKq{@WH%3gWzF z)l2>1!_h@)HFkvm;EIZ~^;pHuPS5Nd3kQcOE@M^#jeeh(VzF#vVN;z2xza3QBV(d7 z_mEm$=F2*DL0;3dcnVi2md)I2t6$k)JtPgzO#Q5+9U8UH^!@HzLRmmI zLC|_*3jbp)ZSTVRvxwJ@u);ykf4#G#Qw9bQr78{72ehFq{gM-9zO#tFX;@3p zfu@k0@ZJ`~VNp2AO96pMh*QsmmG9|acp}M0mm)>O6$)S{G=B~sqBJNa>}eCJ+I_+o z%f0}9e!P?A*(cs#Kj!{3w@U8*{hy$0!Op{z1o;)PkFrJV$Fs)vo=lI<4s9qPk$KQ+ zo@~Sialx2mSzEN}c;A}dqd@mw??Q6o>+0De6EZ*^QG6P5> zwV%FOnrrB;T-~(uI|0-H^qRRjOs`$McsM(|Y6>`A{R)7~zzlxz$V@4{a(F9UV=~n*0kOQhG@TVeXg?AvB?5{pHJB zxBztV;wul0-N0oRX%M4?UVkP&a|$^NF0%67Hxx(=+akr}gW{UhD@rlGjz3yue<4OQ zGBN^HGaHSL26nLn=-*MRu#1R|S^Wfh9emei&WRQjiCgzu zsz%)Xw2vZ`f}P#n`_I+%eDQBJYiq{5JS*Ux{QRl$@X3?gT3YNpnmWDR4=1eu{(y`N zH-5`1OJ5>|YB!~+3-2<|{PHCP08q$BD%Yx8>-WdNr0?GSmjsrKE%g!nmV_<(nfw-UgqE0-iEuC35GPW+bY1vrx)XAIgn>p2x!L- za~kKO4qW8Jtt^9gXzfr$D+)w(3d?KOUmo2irG(l{S;c4K`pjk}$Z9i#=Lk?lwVys! z1eIdklMIPH6}Q>@1S!7P6ydC&QH$<2JkxN-?2p-XTRN!M;T@;!Po}P>b~8gk8LVle&KS5ER+B8T14p3T0L2NS@@~AoqEXH z)pZRDr`3uR@)>Mhuy6aGH~~dIBgtB540_C07cXN)5~w#H`RIgS{Jc116G=@=`{?0& zO)af+;`$tdah(-KUFN1>6b8U%8Z;zg;^RY%>(3`|skEe4p|50LG@tHCbUj`z z+BckUD6kVvvD+O0QCEn%46~4aK2pIeu&rG$P5^vlhld#f--O;zW@+h#^*qi7fcOoZ zyLRh+#_ZhN^G);lp)3uu8yvL#8{(hMM!J{eclXp;2yd#7b_$Fj5tnyT0yxE|RPu7a zSMDi^@?76+Yn`c_=5Ofozij69q(BEQi=<=5M+glEm+{4G4yIq#^HoJgl8B0m;&AYa zUZ+Z;U{fXS_nIgDL<`K$q&eI!CrWHxCQv^LPUyyTjS2h zJtkpHRq@QI<`_DdJp0TDbv5GfazeVPQQAl8nmdfv6ZJ!W)T24c)k-cdqA*TkFF4^E{G~))^l^E7MBN#N>V^Qn&AxuWe#6w`+2;;j`+FJ*Z{V4q4+4jU;F1m6lF~ zD5x4i|EkSZFzyOynlw-0Ot*S_Kj;h!8F_O+SNJ^m@FHAYY0zl(j;Mb&q>2BYB-R?3 z*w@n9`m&-_!>4!C`7a*{iD#be4HmnRL@-XAv0UWKy4o->N21C>u;V$JQ+I|^#s5SD zJRak`*Hz97KvVB=bC$x-%E(yixASt57M)|s=iyS;jA>B~u}kL@L}=@UF*1bm__*9& zUJy+J-d93GOfE_qELXY8%EbEn`wz~dLPK{kUI1G;Iqe+^uIzdmuWLXf0*GxJ$OrOu z=}8JO2hn2Wbum%<;taLDc2UrJsk$wRffG@p`cq*W<*1f^8h9%D|NebsY@bzMKh=-b zSzcK|r%3+Rq#*tawr+KUA`E4uoM*dSQ7yI}*;2MIU@RkZHjT~tCK(sV{N zH8m(HDPf=9S63I)$)}0yoJ(>e6}B@7vY!yp7k7qbUE|;oNk}{sJGH%b^X7;Ce$kzr z)b&GdMT(-c607LGk^+MHUH@jq7C$WA?@xYfTQe@7P$&p8PYQNLMf;CGe1aku#&?DW zOSZZsa6S8xc^}J|;76NtI*E6Ft2s$`xKxE~drF;t%3u3@QHLeGuxY1AcX&bz>1g1X zg~g}LxB@H62#;8=SJ?^Jf79z(8#doU^s7Pt%~@wbf8CzW_YX6(~8=BdC z2*|CiEdaM-@CcUj=S&O@h4d}8fGec7wsV_Lg{;6{D_v4Ymt0tf*%p_gXB{i33_x3b zYc{W*GxzK2h27oVg2MIVsJKlOzvtESzYj79zGK=p#$|Xl&tM9oy157l&W%ehCZdc! zrjaO=#v`OFB@E$o&Pne!Q04T2qb&|pJIcPd4#Xg!<{$mlmL6*fjS*%{;@{W10Yx6Y zF-c}_uI0o8`hgv{)eKMWCmLQOAvEf84hg4DnVu{hn>lKjjcpmW!tnVi4Td-33hS#S z8Krv3&O(h|!;Dsl3y|3bE}mESg(={50;GzTKDb&yn)!S?M_C?gEP8g*^SWi|sa`>B zWu@c<^>$xZk~<#>2?^X9QE_pT5;2pKf0i~jEmOtElr(rr1r))}pf6*2izrd{RoMD^ zaocaw3rpVdF-O`gI`;#B{OH-g4cXH;BRM&x*ErRuw0~mRZ=!a!`{daG<`kmhSLzCEVnd^nIH7TkkwnqJl zxR=>_OZMW*w%<~M2V8~!E=AvUKZ4)AF%DrFsQ9xz%E$+7q$s1L!khHO^u$3W-0}il zDPBa8k+|i<&>qNLRgMWlqZtBD%G&WD2RC;tAdZtxDb?dkO?Z_^nxc&Kmp$QA=b3YS zI%JSS*5M{WT>wq4IsaM%II_OM)YOzg_*we8)bg(9j%UESliBRPsa|j2otVVLpno>< z>y0&QR&)EvC=P8SdnL>s?to|{!FC3*XO>FkPscyK>rkr147y60Gpt=jzA0LKYR2< zj`jX4JmKW*O?`fN)&%Wx9)HTa(xgyl!xPB_f{PgAUXeNjU zDJ9hvneG|~lKVogN^Uq=ITwss!=*htA|9$)`?r;!t7;XW?Wb9twBD@EX>%4$yQLec z%IrQ)lIBfW{Fa_%4M|NjW+*$!{YfHb>OzuNbV=h<{gY_i(omtPTmE9$w7Q zIiW;mS|KfR4g>lf$0)!0`Bsh5R5ic#*0>nuV21;p1Jm+i>8;0)-w&-61)^fQGjjE| z^<;Lh`|{jVcMl2qUge;bo{4w6!i!Gpx-XG~>gMr1<8$aZ>LtEtyBzH)-tOVZRm_z^4e*6wpJRe+u)6UHq>x4!X_HB61LN6phF zkQ_HqVpC4KUTBrOZz_xkDT!`TC1jUIXl-zFyIJZYwKh0+6}AQW`MWXWZ`~%09Hd7o zv&g5tAsr7SXEAHo74LV8)q?$+O!r60Hu{3qKBjdmQ~w@)-2Krx=g>5Xn7~brQ1AJB zmV}W{6A^)zp(twofyikB`*FY#|%yd)cRH8gSUREJ(Cq_bvDc@bG@1x^b zeVy{D=TkB{eD)?BJnEiX#IskeQlFX-+mK8XMKEfYvECq)OL=MRT~SDq97*2;YHMR6fB_i2Q-w;7Aj4bgK|jt0Hpzw z*T$_o_Kh>Lg4=e3DQS zc7=?7!b^sHYS$C;Nm2P7LZtEf=bP)2$bWY%4=}ep9_b0uTN!LW4_?!BloGKy`^EP8 za?i?v9J=G@&*{m=0JVgh7sFe7^G4)%x|M83$|Gs6>)_PrfalRJw?7(ClOj!tNEVzP z@VhM&uETFc7K9n;o?X~|_}Ie2^YoLO-%@@UV)m!PJ@(40+5H2bU5b6E87w%ID>l5| z)El2n)155%o$=s77Q48CsXyJ*FSi@}i9+VbOF47nH3yNH0$m0AMQ`3-p*!L-qDU=$ zdy(bLzlWA)nnn88ABvQu&4R%Z7T&M9aF`SHunt98?8L)va0zmsyxo8LZ^1zGSA~6p zuN-+a`P83vIq^h6!3z~HI%(lZyJh|hxNY*@l1ocVAnK7-(?nGlI2?*hN5*tSMY}{~ zfAe?V7b+Xqy})xES>bjgFI4lpl!YCcGNO#Cue7{My3C0l|u&RsTy{6Yp=#C zH0T&jvy*ghViv=)r&mYggl=!QH4F;`uSbRl{Q4z6!6EmL)mrUF|A4EdvAVaxkJ_A? z2f55l2Mb&`c%G1@K?dxeqiqb5XH!sun5EWZpZ>yO2Ub#G% z-MHi_S13g{Q@J2NS~7oI-O`)8Oy&PS?^;ck9W);U^#MkOOS})a-1ebL0^We3@xQ+& zXou;R&|Bq$fB#ZaQT5FoUv#KZ%5Riowg1t|95Jf!G_1zh?;7?%wA%EJ&q$q?){vhE z0ZG&u<&LW5LfKmM-l9TCb)0dd(;%7F=K(8XWTxV#r{k!{6%vK&oH37P^%ezPio@`< z6p>DKM@iw@z01Rxk-Voh=LVd7)2PONnzfx~dL<68xUkX?o+j9CNzur9dg;4Jqn~~= zBLa5*=A9b_AkUEuJ@qj#%T_Wo zOIMN!aGttmEq_MbcjdZB;qi~SQIFnUtCLN9NxSN@F}~F))tIz9{h4GEhL)K;4`95K zRW9PNgQg!lRmJ*FgOGyQf3M{PcuGKWd;y-2^|tV#V4#`yuf&2t_$I{`^+or2&SXgH zT{mmf)vOb%ZgHC!?(*}H&1sjNGHI+y-Q8Uh+ujhZVtY~;auGD9+RA>=%9f!2~GqOFCih}SF%(L z#J$bM%qYmtU#(Rw0O4*17^=JOLx>AB1C#+g@frmeLY_Cbvn0wF3}FC`X_vx&V-2}a zNTGI;Is`Kf0qv|_zucv+Ul0HK^#&f`u(Km;n;sjfI`3`fetwcY-RYA(JD34j%lvn8 z2aLz`Ecv_Lj3aM~qOPf%kr|Oj7m;7H;YAJCETg?-jZmoJ)LlxO|7i(%?%pnb#*U%z z5E(Rn>#I*2R&i>SwEX9rLsU{XzSgdtlfeZ@Bf<|noP#Y?E@J4J*aIa~PRrTKlKOMQ z{AGNI*U&Rwy!`CS!niY<;wJMI+9?gTNYp_2tGfGrjCv$drzl<0LRtj$XaWhjF5#E0 zd%xzfrM{hi;SL;RnTh}V6(A%>Nb#ul-f6M#HzHO~LVN5vkIc-?ot0qB zc-q6=U87ZnO1W*QWt%yHcFi`UUdk4VOLZ{s-8ZuGStZ7sG9`M2UD4E!m z?>hW$pw@h((7(rjdBtVOzB{DG`K{@0T(#@- zWKOeJboFw`iE2b2TH)NUE5Z`W8p34JpA^h^rG1qwj61IZB~#q5yt zB49N^a3Kgm8k`BYwm^8MaEt$cdco&h6zY<6Na`09zmff-?27`OfOd{g$bh${cQ)Qb zTd|k6k;7mFk*W3YH~PT#L7gBhkC0vY;Dff-|MC<6H{ba}0t^prZl__B!4@edHnt5s z`+BBE^a^xh1@znc^R&VK&upnT3p!25BEuUMR(;$+Vdrm)WNLpAXV?bbvLkh%6(#~! z?iMFCQ$b9gSEsw(fgJ~9Vx-X0ix)Ay}asTsRxGsd`~=})v8*5 zye5MsU~a1(riEE6+iiLWNoF~6R}X$(-bv6nU0BX9g04i*4ZYG_rHYlv_P2uF=R*GC zbZ~*N2jq3&vz2RC_$+=7h6z#L>pEY7DD};0?mh$^pvN0UYVfF!Jq3czbRz+q+2(ZX z4gKmhG_U1o#lF{&8qV*xCvJhgSx`_qn%pM(H3+ zY?1ov5?G(jL@D_G9;rXs>XgNvY|C!_;J{^jM=M1zC*!^aCId;(R@m>pMaZ_$M~fF{ z=*9pt3l{mdmjW7%r-JH$v$+8rQQ_xJ7odnmq1+bT>b5E$syu`aTz!KO=zQ!-G#si2 z+f{h&+qusEh_=?ziM1brj#__dsVImIm5s4l*gL>yp(MsVO!IBY6i$k(pEdeBj~C|V z-er+;`hru2J-$_2yfYmxgkoS|uy%DVvmep7ugl8L$;syd)3g=Ls#^_+N-6JxfkKRZ zQuEZq|2}!J;jD~}gVfm2_6ia+Y7w^>A3H$;n$5YMtu(r&UPTQ7v%p)h40#ep4x*l~wpn?M0Ocp!8ZW#PWE7meFU{3$hGy=~PSdB}g z(dc?xAlZBejs!et-5*b6EMxg)7K?`w8#N6_Ycg?x%Wq% z$pAFj(#@T|;kn|-jxW@t3{*7eb6eN|)W|L)BZEirwtRk5oi;pcU~j&2fe~vaOkWA3 zCkc@J(uTj4^V-{h8}K0|D{N2QOS zW~yug!!7e-xa2TFJ+M4P-o(a<-YkJ5y+ZoOA9JuBtM6krd=Ad)AW_CJ^77?NU<@y9 zod(7HE>+on2{StShPt}C1l>!6F8{-=Y`|S*Hb4M!d?;rhT>08a%1YFK*9y@<$5SPe;Lm?%Cxra{3V|+&7-G>_d6hN|p^qJY`4iI~V z7$6T!N#KEd{RP3S{=DOn+E=##t^yuyp-eNe47_%}Q>bBQH$qWcGf6emN^EA`1-c8I z{QO~23THzV&`?J|Z@%;j>#n6ck|FTo#S8E4E{UzP_2+fFmG4=Tu7a9O6KKuh0rUke zpl`mXp09PZqhJK>e`uw*;R%F6D>ImqkUd(=1m;Vs*P0YgS#qcMf!A4R;G5(1hO`m8 z8eBn#yN6)+(U>Uq(gR|i9>(2MUv~S~E#5GMs_G?p66?J7aqcf7ZmUngaf~e_hw`Rf z^%A#{7eJ}Pw^l2(| zLEwD{_PyXW4LolH6sdd9Y)1^vkmpI26Bi7+u)_H1WCu^04U+2oZ=3LsAF0Q^x7EQW zk_F6DVLz6 z9WgwIQP_hhosmSLhNI#5^-Jhx`E%a+SvvavTI9g*YysfdhZ&Jr3px qB!8|1i4puIkOY^S{I6axgT>FDY##LP(b2+#pL;4A%7ut${{IIDsW`F# diff --git a/_images/rnn_17_0.png b/_images/rnn_17_0.png new file mode 100644 index 0000000000000000000000000000000000000000..41277722ffb636082cc31c3ce48a22cbe5638023 GIT binary patch literal 28979 zcma&O1yq(>6fFv(peP_nr-FzeDN2V5D3S_Dcjr%ci-aN|(k%ia(jeU}tsvbk9lvzF z^?B}nG2VS~#$b5RpD*@aYp%KGnwz&TVN+LyS1GO$K5~V`f!meHj--g7#IY4$QR~U(M&T844Y5S#UCrVB(6_5yC}VyZQb6K zaU;0(;m!5SH8)>Z5v$r05e!z*ybG`S>! zamOJo@uyFVtfxex*)&>L^Xq!PzD#?kwFp;xKY?2EBM_+{8>8}xx~FpA>%>Lhz+fPP zfj;BO%+vIDNBec>vXYXQ?i;6kz`%f& z&>hfiY;g2<`MdQLtP2&k_q2^-|0BO2^edeHmBJ&dwfK4u2RaHo@A0cl_|- zgHK8dooxIAy|a_UOQTV-u|GWbC!R&zk=;V0)7*Af#_c-UU`^T_L-oiVRtG~UADR^HUMaz1tCg6O zQ1Mun|EX}EbY+qkJ$+y`R=Q9!q@5-m!!8rc={tt1>UQjTM&~KM)RVNmy*-l_CNc|O zpVf+ug^t&XG2T=2_c@+?%g(c_*=T-yL(}_o_xA1ETPf!!ICOM$sH$}ywttFnn! zxN7HBj_OBGpJHQSU%Sc1*1bDQa!6`*d5vUX5szurq`FQ{uwQ~7Z(@jLs9uf zE=fvRnRI{LK5VsQt~JB}zGM=3LVSFDh&(yulLRD&^0W^Bq=k_Sxo~pS{3W_|>((_Y zo}5QEalF>Fe%N@Q)l1B)4`zd_w;HcHtdB;u1d~6LX+qj)-MeB1o%6yYA{3{qA6g8O``9ie zIg|2<7)vV70$7fvsEpw@;c($Yi$pZC(+2VSb*RM$qZO1uU$P-@lcbIIqp62GZVt?dKO# zU0r=OnuLtZMALb~k<2P4NHf+ACI0OzlB*fgF?LOOyai6{>SySb^Pkx&9G}zD4)?~a zwU$n|ng}r7(+XGCuhMz`eTh+fes)Y$!obN{@QC0AMD1lfybRcV*yZxjrKzbBiR6D z*cG9!uCCkDegq$rlY2PoPA)t$HN8tgLE*2hkBf(A1p93{RXg#q^sSNv611wvd+Ucg zogDnOvllyKI84@t3)3?)xOD3=c&tV*#?Gm)ISJxX@vv@<{`evJL`>|tj122bD)XVd zkZ$99HmtXAzln{FwGZ`mrMNehrI_h*w4C|&?c0X7w!p0|8}r{^8`>k7o za^Ta|B~xlW)$@0`|LU8xkCHMn>5xyu>zB@-TMg#Kt-AUgZ&Zb~hEVlq%G1F;x@nxp z8xr~LajO?cOi~u++an&J#$%Op)wjdEPy8HL2i5xI!oLAZiEr)geepcr6FNUZSHsfG zFD~vJE~Sw1Ev;eblMoPu>C^CDYjX7d{q^O^@znX^poaBAaj(c+W{Q{oWVNeOzBWx} zziW>L8Jqe%<;5C+t*9MO?a%Dmk2oFvycptF(Q+gablxyr z`JMIMa^&Owly^$0)!5G2@n(#hy95i1KNTVKO%V}VAF)7u%*A>GW;{H}EmG!g@Ul0F&Ue!k9vcpaT4&By9)#mK- za(fUVL(j4B-8_r@n&_rL0&a^z)}cZu15n8DAfc84%rPLM?`;WGO~|bd=3;6JOPQqH zASah>3c$N6Q$-fuXhtXsj|KZ=Xl!gZ7sA{3-AvKW&JL+%#m3$AJUr3xK3Lbu$l89U zin;DjIP<&i+y+F@JKR|S0QWmPJ?_udD0{MsWJhXhYBjn?@ZzOQgx9Y>dh+DL?#jTu zZTIrCqg4dsE?>El>WW@u)vAmus!FnIhh0{B?1Z+m38&w1Rg8RIs15CYdOGLv!Og1Jw3e~&5Dmu;L!D01d)Ho z7!@2N*A3YSneU079i-W|(KwUCb3KG5#Iv@xMgXA|FyMW9disT>#l=NRC``O71KB1n zuC5eZTwJZgg$5xxIXM@WlB`+E^~hU!r#uWESWk{`{r$_znN$U(=xH!1TMvI7YNB!} z2_KIf!nba9`|S-TBwDCuW@eu1>VEnKAZE}R&Gr<+H3UK806lU*3+^XRp1g;EOIDl= z;hi+Sc<~~6mD76V^ggpU%Yi=%ATC^wJRm$Wa^5_+tgP(Uw^!NrU+Q|3g~$Gk6lcCH zHkNG~8yowom>Fsd+ea0MPh*#a&i6j;{PQ!_kC2km{NV7A0(srD(@pObZV4T6_AX;` z(!cHRfM!MBptS%0&%s`y2t_md+Z+6FuHfR@trl$oU(=^);*^w@P6HHKvQ%&{Wg$c1 z(+autpqdae$F(+A)?3nd;IC9+6H#~V2;TEDK0f>0AVTq8rhoZDbmPX{k)U=g{MZhM z#3dY@dkFhe;*_9J_>9@|zu<#XQB?MdO89|($l3zP<<3F<7Llamt+NjbSMz!NIP8R-?UAACBvc4%OEa(dcX z&ZrQ+aDHOi6%7ROML9o#*1L}%fA)sKcM9c%goNQz5;ITP??ReEFhnEIDE>}j<_l55 zh^7BzGSqo#7U!0CBtTM%#I43^+X}DDi$f@ADA`9=y*L>QX)Ry-&|^=^ZqUHgr0tuXQiT0vLj2AhfZpt zzFjdx+u6`CeU+4m=ykWTz3^m_(N##olY_ai?-oP&z@EI$Po14M#-G=Dox-NwZ2o-M;AnT;tDjR# zb!WRA$oE68kQH+Pzl;waL>3fq9__BSB@4S_xBx4P`O>RMeFF9PcBP)@KHFiIdfxPF`sHB1iSsg#=#fFHq&uGc)bi zONNSc8!nukpyl26H)N-3Jx8jXty34?(}^Z)Sl2|s$86y<_g%JhL+M1lChaYLfAyU} znLvTzqYgzUMJg2oANT)o^82^jok;A0B|MeHojIi>2|NieSZ;9m0G|d z2zrL7gX3G!?8LB3Yc*$S;&i7ZYus_Pb}J=2n;i5I?-e;_9n!Q9S+!MFB?t1H*VZe% zPp#v*OETqk%tj!zRe!0Ig2$2^DC31`D8(jy>CahpY7-}G+*9mP4h|21_{9_?bH@5lEq&!6s3Im@OdL&pOs&Z_=B2$pnqY3Z4h6Hj<}c(exx ztfZY{uPg~69i7g!t(%*GLF@Ze;8DPph{(x*05#_rwePQVv=}<|@xcHBr!|I`*bA5K zg>*aI^gfq{QgnEN?lt@M`4W1u8%uY6v;^pn-=|ME0co#XyLKC@XHE_)M2y;NXI6Up zS5a;#_Qu{$KiS?rmc9zL3Vf&AnFhrprj!&xfi;FBzj`|>ecKVfN*hMO9RQ_e8<S zc%r$w^V3cK{Cmqj#)SW}oxRbxnB=hULtPouEiZnS6#>J07j*BGrNv z3R4C7g(zET+@Y^88EQ{G)nlsrkP0E<5V;Xq(iF2eBjUTtQ)}QGF0-lzgvwB_6YzNl(n>Eg*wM{ z>y|Gk4}IN-sHlaN_KMZKDpO!K&}jju z@PlqeV^j{-QPVOY3LSFK2Pi(2Gf5z*OZO$AF{*Oj{Gwgs1}&bp!eM}3!Ql%^S2?EL zMy$&_yOjsQ=?aCjOOoQ^xGZa%`y;>Y4Y(4zmG#(V-$Ds^ipz`o;BCh8@ZM0L{{aB! z{46nQ{N~TL8&%y;^P1YTG`n{IVVPy&bGl_?n*H^TW>OHu4$R}_&kLq>V!pu7r2oAO z-+c&U;;}Sb5ctv4pTP{E-1pgL?oKkT(*=*N^&1ZVehT?q_-fy8X03Q4xF{Q3G*XmN zh?^-)D6m9>3gGR>AzV1TER#l*gW%fDhuJ4O@hi{=5{RA@tlGk2A~f&sL!N|?{JOKs zW=D-zq3}bEAqi2f8Cg*F02?;ZBKu?3b$Z1ks%0px!cMJ1{YwnbLRrnwxCpkH_J8T- zZzG@)5Kj^DWX)Z*gd#_#?c)1IHUUXgz=bPUu2e&_Bf)L};5Tf^1KfAHHsD>5 zE#Q@G^;hUb%7(aL_rJ)*H9}MHHY|+k;ln5pFYIQUuaph3(bH!<6Xr!Nt{SzCHHG$b zN_IN+W@LftkqlA*r{~e%3vK=V{YdUpaOqzJ7%=$x>9P2;XLA7i*~+;G^AYm6Z2N1S z3S(u~OVElp4h_Wso^V@FR@-Z%p`P@Y+ZsSQ%>pq;UU-+dqQW?T0Gb*K=z%SU@>-0G zVa+tHM2?GoLuM>b)(C=B0!>CzIKwk&%QoD+fHD5voJxVB7Weh*-ES)SJpfFb-&Q?p zPxmx{O^cu^7D$28J=4^rW_bEu7pQHXeWD!GjXN@*koY`2Bm@c!A_wMhu?YdJ4%R1V z%wdTG@Tipk?7t8fmr4P!YURAii~gvC!g?ZP&levhrfyDqi`GlRyD&y{n0>N;4mkUV zTVk;yo&xeBhqp`n^N}^N<)gkv`5@@;Uk6D3Ht4hEY-~8Eyw8Q9a0ud2KKKOHn=BXL z%dTIR7b3cW&imxCl$4b3Hvi%4*RPSQK@RH!QXsMukninbgD@_e=|?=4!}ZY3#fo~1 zV1TZ$6bV577!dEza3KStF7fln32s(L;Ly5!dgP-~ZgcD9%a=&g1wg|IKR){1tVs)6 z@5%k^6cp{y`F4Tq+q#PWwffN!KMB*xzP|=Z>lKGiRjxj8f5VC)4q0=;od3 z8qC$Wf{)+Yn@^sS2}}~#KOwli`^}O?)YqV|{bl;cb$-({FVYn^%jfX5-If`>4j0HO zoz`(;}x?;{SE zM9-Hi>8PkWfdL%+?U#222@m8c==!hA%lAIv5c53QZZkA8+MWrdBf73zdk%eaf0?z8 zw#T*vut<#JeM4vhfhhij1_(MW0a8{~n+6;7N_PHzXwHEmB4sN{!0|KSZQlNeq@-?i zuW0YdA$l2B6JvLEXbDKYNk=5J!*ZWLuo4XO!JOx&rhg>rtbykqIjDX6Xgd0x8LprY zJuC)N_@Hu!0CHk1>W(fYyN3cpCL|?=PT;2fQjgK*WQ_!iH`K}I=H~L(c+&xg@i9j4iJAuVDPiVRUsiE&9Jo3pMjdz z>Q;0o@R~r=$Es2KUT~w_Z+_ko%3x=b^W>G-sbY``5ZVV-SgQ>1>O+#CGwG@@5Xq63 zz1=M?hY7-W8NZ)5Gs_t+UZ?#dt0YOtVdQd1mK_RD&k5Tz>4BC76nYBe0}&805Frbq zLI5By{Z+Oyv@Bbo$wYwiG+t)+7}_DDt?34YNkM865)m~5EA6AgRJQ*0I6vJ73?Xw#3JVJ>2_YjSECZrP zo{;+^CII&a@mlxx_%#J;C;FNbtvUT1ht=G&ou6U^+uLn)Xovy3&6@qn6}4&?F36iX zU?+mQp{XOKR#dQ1910^KLl^)@K&aW*yJ&jQy*hCdi$Uo_$Y_MT$g)6mY^>@uHMED+ zp^f{au-OzKqA)QqG!3{HyKL)&j01`(vx0jt%lWB^q2bSJS9=c+kKrok{CmX7-5~x> zf8Km7F5VH!E*k z&8@9P?)xZ&WB?;*@97cA%!5vCZgsU2Na#p`9@bSdc0;Jz<6g(>dD}cO`t?4T)qA5B zkT`U=@7yUe{YAe~ckV^Wi;@9h5IQ`4KuMvU9}I{N0Jkb~+cig&2ji|-Ohj5Q9I^BO zz@X;0ORvAi4n>oW7$x;KaN_Bwu#uP1@e8$=PM^LfZ-B<<4=9(u+g#@-OQL2#n?M-& z46qIYdS9LQIem;p+1MfEA)n(4F^z!3bdTWXJc2jA_Nek1Y+BcOLRyz;Oa!ffce$)& zW#T5YAU6|e#!3Sz;?9Ey4MF2s~lD(PRP}6yOzRac_5n% zWQX%VV`cgGzCN@XjZE=6x*{)+E_U6hSVFED%c*w(f+Ed%a}o)>-`OezK7an0wuaI5 z-jEl9jl2jP{L$Od+w}B<#S{U0k&X;fist4lfV&_YT&JeioUTB)?dGH`yx!LCZb|jV z90mWHX!zTd7@QFL*Q^{m9XQVC)Ng~7B>YcLMH1XlQZEbgnRup^^86BotkRjG0mH}T z&G^yZ6k1ny%<+!|8NpxVJmBdg29DJM%d1w9KVlydzJ9YeRay~nO<56oPUq0Vz3rX) zp-wEUeYlQM_PdZ@WQ5Gl(8+$No3%1t%&?ABBW|dzeDEp`n$^Ub*F}KW__;4Uun7nV zK!nsfzHxY5Wx}XOr$PHv8=rZ(!tiLMa4a`pOe#f>9F(JviHS0%rl!80`TtR>L`Ltj zl|~-j?~R3#tkiN?&))IYY9BGE#zC_{TDe*g6jUD5*sTU*2`D)*y@(js+}GkcaysLw z)pGx^sxHA*X(CoOz>v||*(oi|Lr-rcGqZRB5N-VE**C?AyOU?0bUJy0jW>qM1`)Ouwb;y;_b%?E%Y)zVV4!(OJe^SpDNJmX1##Z> zB8I4yfMzQj{8g3^F{y4vnx#M|)tqEZ^@F@aESZu^@sv2!@%^G9iN9!SOM-AE-TAsb1%#-x%R;>I@-{VrssdW#j7tfi*Oa_lkMHKVTJiT4o-y0kpUA_ zMh{q+u0;MDnf=c*<&uU009<=hAo(DX@-$>*-Y;x6;acf`BZNAnu1xE_CZIjojci{* z$4QZrt>fBo_${%3pI>CDDjk;pi5QUovGr5qKwo=xyd(QWS`p2| zs7L;kqUBPa+0Sp{ri=L(x@>rkg3dx!-Fr~JP#Wq)g;#;ZGB z?+Xb01`&Q>#{syh7Q5o+C=IKfH?`OH>h2E%{+2`62AjY+@a3NMtHvdVM?f91wB%$43_5B1D6cwT2xW&krp&44o9~UQ9<=x#j^Wb2Y zZsM!rL|sk-V4=d|JM?~47l-uo$EjzNw|`&7dSC%f*u28s@klXmtMoXBaBc{;c}ra0 zg%@7sY86X-ZQOPp`IV~TMcK?R%{|aj;lrc|dz9g=U zjBBPImaRYIi<-OpPd8MehKnf`f4%ux?DR*6Fug>-^Syin(%b!HYmGkJab{zyRJm$D_?y=PUsXL1-o*%RTkpA{J+)kYKA)qxdfzpd5}5%?COg*n6Vk82$)6tH}HRo2UL zGy(fM;2!2YR1SO-?!_ls(wY8KM08m7WZC#1vTKlM=#idjrI|%xZQkT7#d12eR4bfF z7`!d?Ga+qx;TY@X{))a!E)2%e6KV{ILN^NfzV2TK?S z-MI8|RagF)_v^VT)_XkXeZOCKw^PgZmj3q`Pi9)R8mXQ%(fVL^PL<^h-wA)*-16q* z(u0E|dD*ML75NhyLj)bm$4-uxWPZrOCp1O}u&0Zoj=w9GLocreQbLvzW%zn;(V#;%DtQf z(quXm>84Oe?Ofb{YZT5r9vOXNHj^#-hT7t_q)e=+%7dIxJ=lx^cTk}&0CUK+<+z-S zrN*Rpx&)6XEoiU1z4q$ZR-j}NFQLqzAl{DeES=Tm;K9jLDJcxTkInD2^iIuc7a zUQky?0!|{`Msai})8G0GUm<7N>}@v9lewTrMd-v6>-ER~-Qp|ULPPv&(E7CiEM*Vf z=ixjF-LS$I00fe+GHnz|cigR&dws@PrQfZ2t360|qO#aaGSpCrXEZ|MNF1tjYJ16b zO{)804FMdi%tcQ>5J13PoQ6e|QG|g2yMIE_^vsp@XR-S+@`aY_2W*)*q~5zrn07RB z|2={!V1(3I>hug&;9z6zLNxJ6$#c9$EKk1pMUTW1#$0}+H^FA&R3(ghHADZroc&xC$X$h3v4uk=NtOGNX=9FY4TaySrEUALmh`0Zf)~5DW^% zF=5Y%M?DYcEz1t+#+G)bF__wx`S*s*oA8DaZ>qZU?`6JbC~Iz!2t2YiYO+D%X_5*8 zjuQFz#nW4y7y9rU7OmNs?dq3Fg6mXE=rR@mg~S4cM6!#USk=tpspw=$`VVb3`YU_8 z^DwJm9dYgYcpuWXgWEr0=Z+WOu(00LeZKN9%`Jy+u0Qi-&y3@br8JXarCi}ElNTl8 zV=^(KHTvD{JC`3?FIo!8NEx@c?Lb~cn!vlfJgcAGExt8p`Zm~tgyu>AkDGQoi5^uO zx^Fvg09N<@uPB~&`j98g>p?YwNzLXYc690J`mJwxd_{V@?}^BOY?U*Lcyr4l3S)Rj zZdX$`*m}r?-5wym5tyVlx3nN5!jBPGb$*~=z6S&9fSx457zJtR@a{d8&F*(u(?9On zhM$i8ZtO=HOq>yyQp>T~y29=)yow7s@kXw206YTx=}>F0ZlDVz;Wf0&YTS& z;y^(hH!xDl7#>ylJ$q*>A3y6@Z*`xMJpR2?Gp3b8nqgJghTcYap2x}9KM`y3|0 z2OzGu0_9<~8XxKF>qC4Uu0XXe6A*CpS+s`INJ~k*TP?NLxkUMbiU_a!D1M(UmULrT zZ)vgAcryf>G#Coyt2G-m7$TY+%}hW%5IXvkrs=+3f(Y=?Sd(Sv{7)h&#bP7G%>4Gp zk016uQ{dKe-&;$yo~m_mb3=yrplJL6g)cZWlL?FsLQ4-tL_}axKvw?h?jct2kSBIr zo3y4T;Qv3Q=w|tEBV`Mlx;G}O%qFY(F?2k(FM$v*j9ApHYY*?h@Y+ zz!h!0QM0do|Neb)k@0Z@vmYOB0d*$D(9zKWgPGbiDJ7*87`@muN}I>Vs)l!C+@4l6C7VvpWUtk_fy>O|Aft5(L^2i0(x!7^ zldOb_UQ_p5aTj5H&S~GM>yux_TiC`N-;YgdJ@qNWxpy{#UAP#s2l!=#kNSs&> z;_$6~obxcMn1rfnUxRjCZaZbE+uA3dXHC;GUsqD{H5}e~&~{a6%LCw0ADS!ZUL&9- z2VqTP!%sGYaD-^Z;erWmPQ3Q)Eb1-q{``@d0TC1T!z3Lbk)`^92_VKILKRH4U17k7 ze8Gfe2^6ozAK?rerfG@tf&Ey)DzbsqA1{3*EqQH5N+JVoeW3IW=}8{gwfjnIHryb? z_VxFVl-n}2h0!g63&wJ|z!%1Cv>scJoxi{A$u!fs{NCs9?ctp|A`&C0HDwl97?a0V zWXy3D%HLstkuF0lINlY<9SEc8V8HK+(1+HOiC|@kfO*5OzSifrglbZgD(ovsu!8fg zNhF};^%d>J?yU9@#V|qnSAIu>N|al2Z5sqzOvPYbxI!N)mjA2Erh@$k+bhHCJWqA{ z$$iX%_iY{skG;kQeim5^FArdb23^*6Yx?m}A*A!x4~8(C-2oMiQND_x>AR+GHLl(g z?e5ljX0(qrW$tF$(Nvebr~xOi0vCzkxJDTsx)`P)=7O?X zP;IMl(NXYm_u}Ha77LMp(0$nbdsG4asoLb7&U8y5Db8CbA-SyPUx73%7g!S30j_~> zjknzC8b>}$3%!?##x|yh=;*i-+Ba&ER*A8|W8W5)R75Oa6_P@?E|s)$M*2_*dd9xU z4)}0qPml4ETuA@j8@V{IRCmR3bY8lX}7MXgxwai-CPm8y!P@uE~Ba^!sY$&%ztJfLX zd#$zWdyywKz0D_XMR3#D|EY8P9exbS}TUe;6TXr7;QlQ1QEqEd`?_+!^f4U?%xX8a{Q=yGi7I={SDA&#SD-e!PomlJwp6UXi3&e2;53_++3xoM-Zp4l>WU@OM!8+>J{NDn=I^O>_fp4yb9cpR672qt4|7c1wX{{Y4A5Ao|t9%Uh#Uq!ZZCw_7UfR-h8IY;6A!cF3 z9t~Elnuu19*t}B~@FJz>7jUesc{e${hl=z!*EGYfi*kTr0^J>t z^{*q;kAieVlAELU;5AU7KG;%_4^_cs08Z4U@MpBP&!`p@TBb0EyOJ8iHVV>zz`%H8 zLxIlcExIgX)ka+b+P0uq>}HQ_VFF#g{3SsZ<|jzmgwl`>HYDXTS*dU8tPeJfCUv%J zjau+miKSgW@w$hZ>>PHS{`V06@DMO8=qogM2E|qond}*a3Af_$j@QGVPf@5m!O^>n z;dN8Lk@__8k^ZzsxFX*|3}f=ZRZy*B@R}-UA%#z1Ie^W5RmrD?Nx=g6_h)p@kH}zx zF%OpYbg2A*n~~zD8`qWTiWGHEO`=JT%iaix`ybfdWeg5GAGT1d0NiGDd~Se39O#J1 z-3Cm!ImP?zITXNL%LLU1RN$U-{C-Rw0ckG#+Ui1sp9=4V>0Ajxa1s@#BWlM-V3-xa zAbZ_~?%oX|5IOkNj7P+43XT6x;Cx7da~3RtsY*iSz$rg;i+>s2S?{Sp?%fvR*!72} z*M}M3{QP`*D3oBB##uaXYJTE1@M(apz%78Ets2E7{cd-s0BsZYROr41o1)i9%k-Pd zHwUh23Z)=XWWdcwpuEGe1%}n3{5Ip_3Z9qWM=UY;s3|qo*&WL}ukj|FyKT>9`jMx-GIQu%pWDbgI>m7dZ)~Q`r)?LDGu|pVRH&5M)D^WL^Pk59p*Y&c*;L zz6915jNiE$F<@0w9}_54E~dKq=}tNw4~M*3Gpda1i^&ZPW7Y{VyA^+46$C`eAgBPj zi@*+!K}1A!0He_+u!SNI1fGG~1w7)bu5Mx{Ht1Uad!$$nRtkPjj@jW+tMlFdgOMghwcj9L?Fru#iWz!E~y3YHA~tL<>ViE)Rl9(jpu$P zFAgV!#cUd#zm@6iKqR_Qcn&B)wlJv2{0TlJWKs>h=Q+3oAx(gJv65yAtjqE41xC#>hcmUWy-0m|4qwmoAf9= z!l(*WEslwTl4DEko|FJHC1mDC%C0GCXIHdJ^r{x9hsGeEZA7KYqYz^oL++f@i|lnn zMW4q8vswpaEsAud@84LmHtGA+$$C!%qVX=gIWmWXfnhU@#SmAhn$dbdT3b&!*)j=4_NuYZ4T9M++Uj8TFlDUkH^G)+w9q%BhN-oZl)yTU`4k#wp zO|_hDx;Z#}w@9MOs`t2X3-!TuYSy;}BTTdZaupt;LXUbfv2g%%ntuY%t?jx%LhF5E z3nKW$FIr~V!+WIG30O?~>gocsXMN?{CBeJ8B%s?z?_;2xL9Nt?EIa#fU?vrb+L2#vN?5EG2j(a;<# z0NRejV_Jo{i`iI7P7qMlz2@;_W%E+n59rb^Nm+0YMUU;JX%3VJWGsN3o0vNslY#ij z!012ziIlRk~U{7rLoR?*wXb7kkEu>Pk?u?Ke#4I z*r}288cgQ!1Dh%bD|`nlDtxTz-VAWx%)uN-3%VR@sGlU_1(ut9sc_qUlc3J^Rg6Zu zlMGQT_`K_ag%^#%;~q24$=sIbN?O|MHz%lf##g?_C>^{xasS=3e6y~5=+f=qLsUVz zw2#`b2iS7OV0g+tQ=|k4RKD^p8yp1EzGJUcv?Sm!*s}6s?OJ-w3vm~GMXsc0B$f~t=sdme(LGIV6!$?fl-23T^A zBey2b18|OxR65=RhA`{e3m$goe}phm{Q`=$%1-~7h%q>ljHQt)sg5^ zzh8k1{mJI7pyxi1EXbxTUJ1TYL76q3(&aCnPC57ArT^f&{?HEuAgMgb8Dp@)BCrGo zE@bz#;atc4n)DmQ#LZx)k(8G=fhip_O@)W-2M2|H4-EQpvWKp8B`3f+8wE?NO9SiY zT_cL^R5Mk9debrmE~{@=)t?m#R}cb-E~R9eykPu2bd3eDKaL*nE{I?c%*@O%JmA0+ zn2ppFTwPrF-~`rfMn)38IL&Nz?IwoafX2S)ytVX}j{CY-b1U3sesWwx+baZg= z&nR$5VtN^iR~EC1%<>R_&}${yoVK!(aHu4den`(|(_5u@v)uT_+aSqyV&?JR-(LOW zbIr}-*P3+Uj0AW;_N&WgkpnvacNIu=-Y!wj#Mkzre)tdNpSyoQZP3yAMV>~hfPc=# z^$~UMXECViO-bC!ACr?zT!o>_awIk@{av+L+X*KiesorC(IrW1rMkcn8Zn(PD}Dj* z2+ke3#2;YKYK0OEbU+tWA28-rxf$P)iG2iV3T@dO3mEx$RYAv;X!}lQo6yAsoqq z6NTdX`t-mJjNw3{Qa-ACILH?Z$8P=yVY1he89to|oUpTs9BRhbcQ zJw!X-Am0_|%7JIv&9+T>0;RI$7{nc$2x}O#T25MSY>k5oJ6dYx&fF3y;GZBp@6gyq z)on##UKTiG-=$5%>$01fD|6(EGfC?tQhU$$V3@P)H}nD|&uq`U$lSNY;YjF2l{4ay zLi8%+3+kIa^v)^H8rWI4*PQNIl5run z8+%Cp;<=6e?ySU;j?gdMk|(Dw){=tN!s}gQk>3DTGXV@iNM-vlhrFNyZwpO2#O%o@GrnMGJ8=$KIA0+6cTEdUVMWre-b+?=&Qz+5 zD@XO4A^FYaY(O;QE8>B!ClL=ks>l@qbkUJAN=kT#IJm1w8v;+ej=j%`C@VMn44*pD zVoj=bEQ)142*WkrtD)K6cj{FagoUUrhaZ81k~<&b?I0_axEj4u zs=MdFS3}dpOHj|euXP`HYkU4Qb^8sDTk-M>mM~LnAeo8J!kfC`a*g@Fy8;B1d z(Yw99y#<^%*4(_n1^2-8XFXd;ByM9r70Lrgs9JB8pkUFUOc{zmtcwO!{8Mb(+iVGf zCONmcpSc67D>+Kw^CD+El9Q7WD=8wa!xsUF??Y(COt}m=o`^C_SGpO_mO6GGx9{yi zEw|xl;pi&@3ex~q^@s~+)H6|yYzigFB+bI13OEgV3tX^pDDwiOwy2!0uC8yrBCT0c zg2J>z{dbXqO#+y&iq&3nFC=SXkB$NoTDE_7vu(x@XsOU>@mq~mkW2a&q8(8?{%_tS z-mt`IY;5fCEC^T7-}gDQ_KOi+JH(5wTis)sGiZvniQxBJ2}wZ^JDtUT(>pU`<=Z5N zn~2F|iYR_)xwmk9!q~v#WS)2Tr#@Qb86z4)%H>ZkoBpKPDVkn&ub(+lG|Hm#I+Dth7~$jn1r_nM{7Ut$k#cJ+=y1u=9B4>3FZP->OdFouStZR3a1?0|zT> zMoS&PZTI;MVpP|dGU?=uZte+4h^MbHk4r9ZZN0%%Ox+;)kc7)^9bh0hp>0*i^XvV} zeq^qlX9h?zl_)0%GKujbf?1rM1+a6}Jp1pZqwDO_F!o^JyW-EBO?^v>-L zEHBS5l$UgTy)HUQMHCj6nUqp?8{HU|Frf~UjYvFyDrP~#ZoRD~h&jQdr zh~WCNJbWj000UYJ^ce?7J)PpXdJ;6{3mUUQ*))xByELD6sXjMX&eK5lurJkyVc}U| z)u+{eDRXVmb7OGDqecjtPoeOJ+BHeJCEu{~+r2ZBT%s_C@q*>3b#T2VFm5$@endMg z(wjQ~j=r6UssHL;U+Miz;{2lv4~Zv5HI(+(yAj`CfxpbF|Dh3T|}=>t@mva5Glz+Vf+V4=*0nscr0jkJHcK?qTI zxUf#(eN1d#>hrg0>sQE!==stWXyZ60$K!dpQqvPVjGF(Fq#K$8tV>Fy!Ez+%JUloi zyRJ?qw-yk`+msc7%I-;gJP@jWt9DHwz5xjJ9hHCYNDS|I{yJ@XFCSEx+qr@AD8EFR zvR5kHKVtR+OA$BQlr!~0#U@WhF4%kvlN&>nt_@Jtuj{;)zr3b}TO8=uh%dIb$%4)JdLxi_1H>AmIYnsV>r>l&ry}h5D8q!u~ z<|#|^oto5hjm1+V>jvxm@>~|ch4tQ*A9-f5A4z_ zJ{Kl5zd1x73e!*|zQAenc`mxC`{TDLcuUqx5j1guh|w<|nXXis{^sq|jlXK#Fs4$U zJT;-5kspI|URy|V1E;hBPRO+ghT2Y~PpMWcmH&IV&x+;Y?|L`%_NK3;U=8TsGNO~I zqxEvb-5DQB>pL$pt@WJ7rTl&QCiBAt-%a+p8Xaf7a@)OV@OUM{?$J6DO(##Ku3xYB zVT_or*+5OatbQqeeM-cJ(R0px#)k6bIIw%1+nyv#Z8QRKJ_ieVsWjgR3$ufpbHz`@ zf0gMqQh~auEvq-U%W}=B$!>Hwr{$$04_Vsrbn@FtX0Gu{ro5&iM|Uj_8hVG8^Y~t$2fxhw|KziE3|REY2JD+pJ4qis2s|o zl5ojbgK*vBlgsFBI_m`PZ}_>6(vE};wH_WS7o4552Cq17XO~ zBcQ9G<%xm2g&$5JF_&qwg!rs*+T8i;ezn?9cj~@*M2PvwqJXM+FDpS6*?TihU3Fqd*8W>>^(sQ z#el(m*>5I#g_p>vKW=Xv)cgYT0Tz%{W(17O#+HF7!)X^b1&X-1IQShIM5LrnlS}{8 z8hxYUlX)TM2~N2i^>B@Dr}Ng}LcuyynG!NnKe7HDr8&Zxm?*>)LALSfxU&wSzoR~i z;`2mN|0}zUO?Zb39Ms5y<2JrN4qyJSUKxe<5#dj0({c;UH@v>@4Z(SOV0fKc)ymZo z&jNerR}j8TMGXy?o)@)T_iU>C5CV*re4kFU;4pf2SKD}GGyK|{dgPD}Scv@d^EX|4 zDgF;H^~Q*XBuna7zVc%-$#SxShC#aN8Wbnmc=$Ll;}uLc+)9EBCmFQJ`-{1}v}tpO z?O)eMc$=)ntnx=ETbV&-MXCLt%-8>iXXc5{F`VW_H(uq~0?YF+n2=vhUYeT|v$3)9 zO^^(CJ$#%(Hhs46^N7dZagGM9XD%Q6i_GcVc=?lo4hI44pUI$ZSk0K9_ z32p7>?=4mBj;7n9gyF%=|4)YP?brFo$oRm%SGWxh&jp2rafE!4dZm)aHU8kz)7&>O zdfd2DW~d#7sUdu-4YOphi${ynhoaIffH#v_<5!f^y6 z_{C5da8T%DY^;kM1^CY9;MZPNm}=qj>Sz5HD=;L=NyK)|EK>}!Gzv)k;@N=GS~8U~ zX3y`QYJJv8WXp#K&G@+IE6vsZ6-M{s4*! zwkx+;y$Pagu4Kx^wmn&`k4j7Jo~rL}`)FPSc7pv?_W!N3^NxyY+19-g1BkK($p{z_ zP(YB}h!GJGL_vbk;Vz|G{AYmH!Sx0vbMD(-(5D;4wOM!>YLnKtH<$OR%}blK2HuNR`;K>A66}T zH8qnyD#E;MeYy#b^p%TBg{AItKJpP?)ZL&}UoRJzZ!`9L>6$pLKL2rNF7wL+4w$L6 zY{x#=@Hd%_`E~5rqe#zW8ICn!E-g@HveucEFSd$!^yy+`rp=13=DJh8EfwVy{HK)9 zfF}Lc>dyYbVBeGzq|qK$$bl|z1b6%VdFBh%&)plEb`M+qqQEVV0GZfDGYY4rKUQO5I9enMw8Y;Az&5a}cX&;bmqokX);#jK)Ov?->as8OdaGi%L&5@@nzPY!jn(tZE&j z&CM%ES3erFveBd);uY1GbfVU-;UzF^WixZ%M>USVNAo<`YfKdeXK`cx=0)yY&#yYQ z79V{;;+l*7dwLv5B>cTW^FR8sEm5Y;S;tq_Mh5s!F#NcBM%sG%iOQLf<3Hyq)_0V< ziW=Rt3dFV6c-kuFDLQ|GlL&4%{S9@N2>szcflb0|iG$`*xXh8c=R=w}m8@1X0h3WZ z^oAL)WU%4BheF@{l>3rm-^1#5QD6p*t&l%CbpgmtLty}B1WcyLQ zc-5#ujrkMp-dK_&&r=AEWo=R|HlpdbGNKFUdj^lSPn{|I_E?-6PKc{vPcQUYz1GoO zRlB1GF2chZGQ-EkIU^omB1^n~SreY0>&5?LGk%WLlx(FhC-*ztJTfz46IGK&FRb>HmtJe&M))kj*w{vV}c~1@GD#Y50>;;lkvR&0`!cZ`GuElT((RCws^OH)ZYe%R0 z(kEic(`zj9MAGbC$qgF~PB4S+D-}uq92Nh-l#z9WBzm3`6XJ4|w3ATs=F$z_^UEG= zpv9gnJoZHS_mEZLzE=p^aT}Wxc!g_g&xbiH7d`aok6zDX$@f{R;dkAz{Ca&6Z!F$f z7+`2xtB&Y9(;V1wuV83~Tp}KPip(qX*WD#YJ?{Q8Albzj&@ARRO@gq2qCTS?9RnNG|=S867sWx*1^Z}{DgF$nA zTbs-em+XebSsfOul|GglV}_y8_5p#73iRK(1p6bm&!l$(A?rx&?dvg5}s+Qjd5q%w6uCXb(ff^w+BaUe775KIEQn?8T)0B7 z9Jv=^Mm&xv#gCA$)LrfiZ5)ZaS6455grnEyuOTxV)$LQI!che<1b zTOmf+4sRZAZm6`@8oEw8>#oKwE*YhDDa#2rD2?x)G@h63(cSS<7%&_lR#MrD5ca+A zp6Qc+x|3#79e3Jr=h_PuWp9P-hDHsS3zLlSvRR!RXsM)Y9nK7dO`O*MM0np}?8^Bx zwn8m_+%T-G?ZunoL#up}ti~eG1{Q1_h)aI7yHn(2SB8OBFlC(z!Z~EpO|df?mryTV zVxTNMpJ&rR(|P>c2JGdwfH^D&^CV2inD*oYs*y@T2uOY%&l`~cljvlIZAhQf1*$d4cVElu@UDKfY$b1=d#*D~u~sqD?N~Uq%QmByZrugusm1M)T&pUK)oLtHqcOpEq&%_g3 zPny^6(ixi5SgxO2#`j|*_!Db%Zl<{$EWq*F9%DgU|BP|JSZQwjrmpht*NB9L>vZA2lb1U@ zzV5X`8_x2AIt1~m1XrcfprY*4_4B+_EoDaM(VEvD_6@fk6Ut@LTOYPBU7Of#Ttt5 zx*vxPR%6}h+e{bLqK^H|H+|-b%ii;)7l*dyudfGJG-?&%-cFLJ*sPT#MgM8nS5H%) z#a?*yH}_t*9BF9A&V$Pe*?6?y+>P1adcBaTn(+P}kwnu&mP24zNP;IjuE#*(`BSoP z`K#-?-Zn?4alA6er@nzazM_wW+v?9LYy(s%{#+Rk%$W7L{5w0Fwdf$DD9Y9ir=H2d zi!pj?|NOWtS2@Q?7yYNDzyo+>Fk2E?XTdQaw!KM?OnTFmw_Vl zFC_u1IyRD}Sm5aLh0KYE(ny+CwR-jCuj$Z;-)<$yaY8c459_&&`Q*n&rB|PE3eoS= z;g=LeKZ&i>LHm)EKX-lb43;f<_dCG|$>8Pf{9I%~Eoi@h0p|;rl|VNlkGm*5*^@${ zc8!Ybdu;*LQ*O>b*&fYRsuv*f5pu6%^B4$Ka2U|xCAv6w`4gCBzyv-4cJbHd6d7vw zQdst~IDb4heEbjX+I6F8nlqRO7Z=oxy~ypE=N?_(iwJj)7i^kRyehm{U^-0`IV<6y zNKo8VFHlRfIK49EAAWIftja3K)!XJ;u3bH2b>Fz9@Z3~84fpN6h7OUB7|bk~w<9P9 zx!B*4d%f4F{~U*{tINIijpZ*@WeJL4Ydugdb!>ity{fjgJkEnz7N-99nl80+(qbk@4oYO*@8XQhW?=yxpYC7+I6I3sU6% zJYn%u4?;6!q;JAw?z%XzF?Kr}lEh@CM=fj*eD~?H{GR+oKusj;bHs`2zk{=V2{^yQ zbGK65_Bxb*IDH8tsd^#i;34Yj>)DkD-BWJr6dwYF8! z&qWW}+~8&QX}v7SP^N9*nKJVDci#Z-XPueG^cNN z^K99LKd&hx05(-Te@cCxlWfdI1|{BP>(v}Ysf!oG5p{QovY74FBqwK6Qe?Q&pQ~i> zjH~d;JI3G$9)lj?QYH^{PA)HuE&ghs?7M{LW%6xJlzHAU74i%W#;{=J#r7 zkXr{1K=mh^4KDXP2VRg2wjCNvKR|SK?J-kJV?zEIRNEhNSTnBhX0Y#deE)Fk%^;I} zL$b13*L_9aVuxU8j@fCSmb_1l4w^E4LrFfzd8PjRtqM!cWP_SK+($QZ3Hv}mWgKok zwzzU0A_^<>%ho&(dzfv_R7rBOf0~>Q*J=i5T21YlOSL}@z(`9cmKIY+)0 zTljrP@u(jR=iUEbmtdn#`&{#aJ14h5pSXa1VpQ0h2)-xHcIqU1yQA6Wem_t=4ARyo z9_4`X5?L65vS3^Sk1Q^Y%7O}v2k&>xDGl40cZidnyR5EdFv?E%7J^|72N3)dS;`SMV^G`6t%!09v_5FpSz$Jh^D2_oZ7BgVdP(XbzH*zK5uwr3&*v9qit+jMu{NPYp{FS{>NMhLL6$4 zqAB3TLO{8iXFvS}6avo88?a;9M$k!kiYf5{@k9!hCII>9;DGI%;6J!;Z)9Bx{SP%( zVTZ=JMesBZ9kWUtFhVSp)>f;~``l2o*9de9WfJZF!PzoprFv~g7rCn)&ztbJ#>f7D zw`FhXFay2`SJHP=gVAz4$rLG+AxWE~iv_hTho;BG$z3%fcZJ#sYtbA4)RJYh%v4eYfznm;2?(-Pt~ivvb{XE^MtL%E*QjM5a^ki!a5}5cz!!1h z!t90Hhz*OX6h9_V^ahS7N2dDCK;8gY1fz{7JRjvMGg@9AI}KQGHw{rxDe|O)e7{sU z{eIC!l6nh-EasE%a$(4;%{Au*vOJj){~RF2rA4q{p;=d(Q|uRjjXpc>22P_hm@n1U z3-j~r+}!C^3jja{bk&tigfk5~x1JR-(62;AF*MX89{8}Lw77;TmC<~O_TpE+U_0XH zTgEJftxQLg&K9b|3#kQHxZ{)}V-H4HP;8v?l$iLC!FtO-fqwt>_(LwPBXgrkjGA8` z8V}b15!qq3Cl8#4U~D}ZbufVbvO17;QMwvZU}{`nH>E8@PK{%mWVV^S+6Xk?vKL66 zIl=Et3V0R{K_-x^PqYwD-5_`7eEXi-hkN7kQ?hUX=2i#Cc=U2}I)z1^YQIe*f zUqEed>5#YV8%LKHGH4>}m-E{|kisZocL}Uxb`#&dz}oQdVySLC2W_1q28Qm5cFs_AT3WKnxP;=#MWvm$U1dJ&5JHrg9Jeq|oJGPP;_OSAoI1vJnp&>aWKJK1OA)}KZc2V&x7Qdhs&wDD)Icvy* zWlXFwH=KM;wgDJPZL6UHa1btfQp?P_&tnUJKdN1vigLA#kFd8BnBs4`br&+CIroxnw9bXBk{ZN!Y?T@wYp}PXZ+Y~-}{m+ zH}~;2d(!BK;8$4%)X!DK;{9!fq}9J!s!=qEu9a2BRkEw$S(udK+y-s zs2DUKCp-Id@Q+AGUFZb_ng{^8d2)g$@{ACAh(KeMD;fW~1Rfw8 zpmY^L{Q&^k+=E*J!}9ra=iYwr1cdazFiGK>TF;<_#-;D8fLq-5CO>H-(&++j`S1X_ z+<9qV@p$A@zV(=Z#S&vfLj-{ile6;xc^3)}AeIosK))QOZG#1?ioEa9V_4+XBI5 zd-2cG>EkT&va$jQj=rd{)f`%hLKlfBP-y|sXfm?0vXjE~w;+oU0vAGnn}^Yc)`@BX zHkS#Gw@}5vw{;RVw?wysJq#O1zv@@ICheF2fK&si$e4t~;@JJ_+S*!#)5)iW}l3{{>Wh>_s_Xo8e)U4z-N2kLeQzyk9bUTy*Jq{2doxCrGOfm5T_f) zevEO!1YFviuMrvKzs=W^&N>AkcRN5nxIEQ9?M=q10jg;qSP$u3&;aHI^*u6b5!^L^ zuYQ=uUx2y>iqHs1eHT!98iSRJ9#xd@mILZ`#DEKs!?)ib81gQXW2~X0LFg^6A_J)! zu##U6OBcy+#PJhBZw{Po1WD$Cw)LQ|4+DNK!b?Z+*A;664WN+cbHW&HScZj$u0zWM zy!4;D#O(J8)2XnMO$Jx`h>aLTz)LnLPEK#2D*@%#@8ns&j*amUAS#34k`%z3lL*E* zdK3W;+7tlt45Qc=pac+^9>fci&w79mXpC zApoZUU)8cw44Oj(@e5M#`93VMq%8Wv52zN=xea*Fus3fI(BB4NsREXzlLMxpu1z9b z2Sn-c3gJFg6-r7<`dp^7A-4cHq4q=x-HPLIVJ`;T4=QLnkZ`|)&WF&ZL7ZDk^^}B$ zt08bmde$)=W$Dh)hr|aoV8|XF9=-{0%WD+GjDQ7lG~Z z{L3pUka_~p$~LT6i8w$mBv$QO65F8TKu2zj6`g~QOz*2V56RGcyPD1d#OudkF44yg z+lZ-GdPo8N4r7|+nwpkY0L)Ly!ir>%920Q-Fo8dG3=AN=zwc5LWV?{XQMzH$)6?Ni zpQYdG;~RJUgsM9!0>oUC-zs=?MVFD*47~fEN>6D(?3Te@|1zO8CRzZL%>UIZ-c<|U zDYE8eBdO#P&J8$UJ^?f{q!3UIfD;124});OYhc*{Q6UhXwI7rcTv}v)ba@w)F}Q~I z*f25x8fi_j?I;yLKfeLAjnT@PfH7cm2qP5=VC*m=wFUYC5ur`SZ=*qMYTXzo+1XWs zP0IsO#3;OWAvbsT*WfRV{QC4#BoyUoQ~zKZk_S{u1dxu%O9FwNaZX&kTOhE0sf2`u zKnK9oz*=yiweKpW&%#m+%x^Du$-5V)pfZ*e5Kr0Xkp@I=K zy+S~#9_M)r?mMWXQ9kVAmN&SOuhO;IR9ANu!AHJ@#I*)y$>UpWCMG6j^hfC1F3V6|SfUg?Vbhj3FXnH=zsk)y5SqD3uckcewR1Ut{<_nMbGGJkB{H~?I1OfFk z`QmUmWq?$VBB)%h6qRt8yrgTPU47X`x9SsKB+AkcWcek(rR!3aXNG*g0@G)+Hy=LEU>JspsKpBKuY7|0HjbO*Ig)9Kf3Hz%c zMX!dUVz=Rz0Ksw+yk(csQLndjnRlaRF|fSYqXJOO}5K@g7zhvw#p5G|Z1lKe~uKS=>5rVk=$IRu8B zd|zr-q;?shVwDL@dmJbfe*ZxV+7kDHfdMc%L_$W5baE)GhRh~coXDIb7!jB|@-Z*{ zzeOYC6^c{98{(gS=P!FW1=<%xl>aK;hcx%k3G)*F@R!hB|9RB^w;|!*e!1b9e`TuA V=}2w?6foR(|E}VloLjoy{|D5>jmiK3 literal 0 HcmV?d00001 diff --git a/_images/rnn_17_1.png b/_images/rnn_17_1.png new file mode 100644 index 0000000000000000000000000000000000000000..71c224f423dab04b67f7725186744e452ef8224d GIT binary patch literal 27224 zcmZ^L2RN4h`}Y0VGb?+mkc_hTiiVPry-5;6_Vyq#(ACR9j<=wCMgjE5rQD3w{IzFA_$f|f}q+7@Zb~O z_N6ZPOTtB2&*i>@m5aN%(?dkn+{Mw(!Nu;e1)JMLC+Eiw_Coxk{DQn})-EoN&XNKG zPyXiueg~&V0^G}V7H|_n$6NZ&2tsC#`5%=d_u(;uJZ`za~ud~6BE`aA~Q8Hw2>o}+;rIUQYj9AgUp5gZ&5a}RR~!mtX70<+O}eV=tN zXR9ys_o3_@zhASfRpQy5830MwQcDo2}%WW9C8W@3Vn*)5nRka zk{Gc6{mhKV#=*hyS&~FvNlD4ll@1*i7S{3mDgu|p4VfeG9Y0^cd=greZPuutdy z&o2&Kh`VL8Gg9sDkQ$?HWb_=Dm}bz%bgbMVREZ-XJ)L#X#x>QJonyt~f*VT7(xmR} z)Vp?g%6E_1;=zL}ybePjwg2;b!Njy!NSeniVbB-ja(m{$z(B{{-`cB_wTy9bajpfS zVW05fp}!7>>rb=y4m;v5ghfT=7a84ER#x7hIy()0{hIERNiD<5k9?sqL`zEx=jP3u z#a(Qf_(jCe!${ui5vDk>^G zpL8`f1L2B{hg~n#xzBIz?zYCVUyn^lc<0Wa?)#Vi=a(nM!HOs~HMO0UVY0L1?U;gl z;Yxubwm-B+&VqLN^@itfxpOJ=tVm3sFb(jg%?oj^tq#v|3*FIM^Y;xVnN${nBX*3nrz3J)3prW!e zWgQ)w!@q09Fxr}vzhjQh&do!4y2YN`RtOpvMCX%Uz~%ez%{HeS=>#nakPPE$H!_*i zD%X`huz~&keKS}XkE6BntucrCnS-VD;ruMk+|6#GUN(OIa~EzrZ&)d;j}8pPYH4em zT^%j4{_%+(F`I1(*DJ9iJ>1)fp*8iPSXfvXsrQ$QW|9c}mMS&;duj=8bTg8MugJQe zgCGz=VDnpHu2=nzJ>ZekKC+}l2=5$|US3uBrwDl^t*G4lABgtO zK3JTco?s#76IHHWD{CXg*BuUC@)_bFO;i47#tU^NB_+5>)A7N!t&y6Q)qArC4=(t? z%&Q(wRJ+r{?Q+T|KWgW}KdvtygGlg~w|5Xmbj`yl>rhosAko7%e+3jm6DQD^r)8wLBDy! zh)nNI`G;!e3jf>^vl~HjwIbeL5B>czib;af|9C6Zgmzq@{uqmljI8GHcOLcMw@;oN zEW9!W!@BB!ddxGN8}-W6ud+$d+uM6$`^5{&`T6!4Z@*WaHuK`KwHJTurJ-pCfL1Dc!#g`Znq$cx%u`|P z@!q|Ac&t*_u2J}(orobB%8@kGlcsQ2PPH_}Rr`sX~nGAvcTfj)u=>BmVwYJL@%@L2kQ|B9uVgerDsuUD&Fi z{Cqx)TkfzFtlc}uB#s6z#(wD%uId|6xCw@SAF&!rT502y<*Oem*kL)Y8;>CzPBA;zc&6^=(@6c({LDE zAUi>zy4j{lB1RCR4$ z$sO&EGoS`L2fXP2j{0v#ubs z@3z3<+Z=tAK2y1r*8H=~b_R3S!5!*UI{$-S^7Bf$HK-&Of<8U1vnv(mHhIn;0b*8Cfr|Ndw>TY zhnUoQz0JuXsCHXxx>8sZ7=VqR>Ao>ZC*vgy_Y8ppX6!zAdUDhc-g%O;6ziZ9ecV5{XJ1ox52DY3#lWm6S+-llZ_({RkB zG2S#!CqFhVEgCFjrXc{ks&N7Rp3!df^TUynM`W_co6QWv*OjIpZYpWj;tK=~AA)Os zb}vK7HrF0QeBoyF`DD>2JP^*n8{F|&OnUUp|McLd zgIwr2W=cud-xo(lN433gALkX;@gU@I$UlB^Z4AW4LS_bY?+3D3^UI{mcz+>hV&Vl$ zC6bkuZF26F`A{D7=Z};5)@-Yyp5AM-M~}EXyu64`j`nD0=jL2j&ePHoL*P4aWNeK4 z=+Ptdks@zKZq8a;6k`(vMO^R(jYC7)9*`;ogAY>aJ%D{}f(^g{b5`Jg zMGWzz35F326Cyf#^8I}j8`v?Un7!7)hN2SnZJe0^QGLj;=$Iv4(ACva;M`mIgF7-E zNysVUf)8PtF(&k!Ug*ZEW*F}|h|^)b-J>OsC|Frz)MO8EBqSs%oEC`A69tbvq|iVA z1u`@J*RUV-uyWwWTMl5WM0>Cga3ET+Q|DCHv=TNb)kCl@}(hA)0@sS?*{=N8N z7Yzx6aL&&sf7d4>>4mH?@sognpdm%V`KtZ6c&%&Q{wy)CNevx6Jv{*#Svw3c8e-{> z3jQ*KsM1nlaVe?cU(tP-he-yqWn^R^etv#r^#W;O&g6uU`q5hTrt#TL*61T_U=`Uv zcMFXwImE@q352Y=$-kw`3HZQD2HxeQa$6mFYxt-+gfuWUHMPiQh-U^y()8|jJPs^5 zyO2;xo2zlXpE1&a&x-M1tUh|vb1+%5lLE0f3VoE}^Kbd&9cp)JzC0Ow@1E5_ap4Ad zBw8uARRoi+X28L&IywXQiGzbPJ)~>e3clGm%izzSKhukgA>dM*TU)dLaw)^Lobl=D zF=#Y0zqr^mG*tG}mG8HSStuFn4NJ>+lb>^PxbLRRG9&6bIwAY}9^J_zclPSEc$6(I zFP>wSHJY2VuC6sQGWwS}^WIerDb&+KIy*Yh<>lp*f({N2^Gi!}kjPZ{9*Ju4XlJh& z)p!(lp1ged^7r~ZQftbK;0{HMYKTbW@7^T=V|2xgr1%cx-I-pN8mNx;cKoEIB(E+( zA)%SsSuBXV5c1_Y%s~e*Sx6uMP5bEwwsd9YUON)m(K_$C!EY7v0tSlI| zsG0<_e@+{OhnKenLal3Ie0=;a54#-@k@OV-l+g_bC)&;&u-V4w zFkR9sdp(|0brT8#S`7`2D%TJ)*67t$yY4q)WMIqIQ*|<6avJ7lF2>f)F|S_HGBGjj zU%DZ}Nq`j*85x(Dh>Jk-PF)ErzhWu6jU>e%ANy2PRdEOi6gEBFIy#b9Qhv7lImH^yeu0A$ zA6uQTcr5aFV7;7@(yYb*6jo(4=g&U_Cmdmn2NhQ%9r_bmi6i%Ku~}oF!P?$N{aM@m z*Z37JLrB$4JZ5nB4-ORGs%PAe=cE&NG%G9T_w1{9I`^?QoS%ZCA0E!3^f46{XJR{w zQ4AA`Z{51p$LH+iG$2EZgMulDijtiTZSL%Rx^JwKP3e2MqhM{#E$T2yVrps%@;-xkNu#FH};W5-fgoQbj(6cj*hQT5P!Z(SMorr7t$ ztvg8w|IxRUMogdp`|W;x4f|#^lY)i@g+ZB3Fw|#CH*Wm?OAT}V_5H(x!<}D={|o5(|rGqs;o%5uQOp%IY=oQ8srgqGcz`?o#nUXle;U!TO0mo zj1V2T-f3R;+Wj5eD|;Oa82FO_WH_k^~(IKgzMQqy6c2wKI6W>`9-)*PA&f`LLb0JP?4pT zbX@WGi(rJDTRb8|6rH*Vb`U=Xo+2IuoZ0~)nI9Yn_Vsta>y*d-+y2nh+TF_HdA zzrvAS_Hg+E#`VG~NlNc5ep;&G|QRIK- zH!?CZeX=)o6RJJO!=1<7DH2prAjtdq$?6oEkRpjJkzpOALAZ(?1=7?I*qC?dzaYRRqfaRV>;Gtt}kpNxz@FwBc;CgioGhQy*e z2-dl^tz{fOe2wuwo!}N9p{b(=ZD08C%eNo8+nl6 zh(Cwo0>PATyoO&$+M}7T!$5gHtw3%A=_V!{XlV*2?yq!yw6i|Jm~|sc5ta;5eU)mE z-{yaIWNJKOSnDM+K0aRLzF~q%wjh__=Htu%8&a;Mw3t~`YDDF@j+go_g~RA8zoOGU zc9jHed}8;TQqMfZGm}10DM~ZXSU5yx4mh2E`Eu$cS21qgQzD|XQ$y?HK&`3K`vcZp zr?L#&++5-$Ei7Gc!-~Kby7II=rw^+2-kSyR zVx;sj6%C)kGgJQ)YS_(2C^sDs{yc=hy7B}ACV*!%NV!a*aYBKEQb|O=aH57&c&n3N z>BSdiu4)2ZC!)9{Q-cMtGD0jyDUOzA3U>FPdqQel!rLy--UJz^+T70#u6}z&Y64)wQ*)ap&H*pFVy1c>-D0@7kBQE~@9{Iq635H>c7#p#-l}hIZPWNasN<*obtNb!lNG*toXtt;_1>;tnqL zBo79nKRb!2bPj>psT&mB$khy{%qF^|BBIhIB3HJN$gR!YU*J4dRkgQnpH-mH!*b7! zV5@@GQBhhXfGZ&D-nvLYOxz5G6oN2IxwSy5H?y#yz2IxSy1JU7ndC=8qaO-`icsld z-Or@S7&!X;qekcBy6?=Zyum5~zibuXsXq~8o$t_hd4lurVu95#=HiHIUbeGLPOo~n zS6f$J;3o5RVqvdPAQ-35S7GWXv*3`pcEI%`0V;dJCLuA;)m+*8bT7S7q$K_}#r#YL zv1AnuGZ|NfaTLO zg}ivCu>Q0OkcQ14h7KqM<270%X&+2C1bARh=DXWeM%8YlaHF<24t3$2s>y8J+yt0f zTu~7V0vU;}?l2Lbh7wtpR_;@g4+O6SiQ{7R(JkFr7cFU~fA&~RXkW2p5`3bU$5HyY zIR%!vG_6{1{);BJou&GS3VZ$0ee)|pO*(j$QRkh;@Fz6#hC#iV{>z}!O)>L7@}(y%XLN*8h)d&Jl#S?j<{u$`mHubL|BY; zqTGRX(rbl}gkBH_7Z-PPZ?FBnnoPDWMY8Z?N=)L4NhFGjVqZ1hFVnI?4LeXz(ZaEK zt&e`Us>sdiq#dy~K|=?d^7$xTx1Zy|{Z`s)s|oMIp*>fsUu878LsdE)#(D7{XRA8# z4HC6%REJ-DIl9G}DF60Eu)N<-!?wO9`_Odx=T%2{Oz^1uMQI`Z}<+mvc%Oh#nl5sz}gB z-$@FtNYFsv(Z{{j&8zg7`qif7&#!$=WAuErseJ=u`g@yBFR$~I)d)N(Ge8@V|9*0p zFs?Fp{pd)+4lsvENK-x&sXV=0f)LUtqvK(dy7Ys&dHD)m7-8*uYE#I6uRW)k{6?_b zkHaFT>m5lVsU4?ssqZ-!M<)I?gd%Q~hllT`l^>zt_MJFw^-S-yIMcvS)xAR7cRt$n z7bo5(pPhO3QudqmFW0>fGZI|579>^HwxQO(Z~7`mO2Yg~eqIA=0v2?9^@f*iU55qg00E3R}pSXN~ z=GB~7(Qh+B2;z|QrbcN|S)@>Jy7kMJqHY!#E?!*ne;?Mdzi&#zA(-5KO!-O1g<6i~ zj>7tc4$GrT(hxVBz#o46o0S5~6+g%RI9YR0k^+`IG&(vc{Yg6Z`IOp+UyB2Tj^*w9 z>y30jE}`?ql`P%%O)qf>xl1pIPM)1eJ8f`p=@F~#oZD7ZDym*~zps;v+hW|&(uw_5 zJlW??d5vwX6z2}fjr1RrH3Jc0-89(baY;NHAB!&jr97=Zi&$Tb(ES`)wAiQ3ZI`{= z-;J&I%=4{#4p*|U(^Y+A!`Oj^MXy<@?X1;jgRn50NK}~3 zYB*P#Je2Dg92=2WS0{h3mL3h6lx}5|5=SG{`d6*{G9;PD^p1+pZw=ee$i2BYrxI<2 zY{i~CUH<-)@rbgdc*#Ok@XsA`_iMyYX-g1dTpOXjz+D~Vd_h7d|NW( z*24#vI|TZT($;MpBIAtTSlI2!?^pd~JbA68v>S}-AOdXcdajlQgmLQ0F#u{=yjQQK zNV*b1)DyC<$DmwH%*;{RoCu__xFc1rSMH@r=ax&$$S_AShzR~JW_hQXTja52@kze~ zZ@9oXsJ2$dpwv15QrekTTGLPcvY7KdS?fIqXbk|+LKPuW4|#n4Ji^jpxf{ZUn0#~M zWf-T4%dbTtCu4_-UGZQfR*2F`4 zkZO|OwR))S>q_PR#_5&)IlGYc_Zf{W(Xab15L}lM2?%076H-)q8G5$x84GZM7C?`l z&b5&WKORupsKo$~&P(6$LRk?=o`rS7$rk43?r*f~LDE)tdT5I&d?1Ux0T~yjr7(^u zykbZZf79AvF@M>p`RaVx>r$ePHIEFMhZN4f{RNOZ-^aMGa~QW!x}V9jRYkQ+U6JNg zrK7DUQ}FnyD7Jq}4}z3#IV)_a3xMG%9ieZCFub~7pgGsOoxCNpHN2kcUmn}`dPIm$ zEyPnK$M6Pu-0sZzT%GBpM`-~7)kBq(RbEq6M2>+BTf(WHZZE20(y-IhQ%6Tf`LQog ziv3OwZT1+?pMSS<4jTHdTL!^2Ei*w>P-AJ_E~4|a!5w>qyBPGc~BN5`v8&CS=I&MH9$d%rx|ApZu`#DPIU z<_-=qo12cu(0W185Gybs7lP@PC~(A?!M%r08L^Ue(u3<$n~Ms`E=YVJnB;f*#4t>s zPC{Hr?#DCt+bnX~QI41X2aA7ibj#WMzYRMbGz4UhK}uLDce>jD$h^Ad(rWJFB}Y@3 zFBibaWj}3Y{y5l|I)Qs@>O^<5rQLh0vuZA^-i;BGt`Il7z$b;fEr(xYI6jw&HIq^3 zOMgM=gV>Nxi|?$%KTtW1(mbM~qI5!5B$#3qz?_vulTpa}puh%%Km5OW5(c~g;GpQq znCNpB8HS!@k?U|CSiML9Xkot|(l9p0cr%6t6I`+%1f`^=7F+c&K>arZwbpA0gYd}~ zfNK`}n=|6xe|e#{4S;qG3IPn^%4!y%f=~o6|Hx-NJw0*&U>$R~TA&BEqd1u+<2}8y z5-H>TcN(x#I$0la0Gngr0BU=k1MqC5)?3WPb0Lw(up9u+&1N#WX#n07F&!9(DcR!{ z)3ZP@Ft5L>;ii5ExPVtHLoNXmF>^3Isd#;V*kP_GpVl=fJk-@ba8#{4B=4j-NbTV} zO~NMZadMXFkY90pargBid|!Po=3-~`zhuc?t`}~qmOV3k|8eXs^d_hMGV||X{>CVB zcXndNv$}%n0P73*hQ}-Y^3VN*$xU2WZ(QII6eE#u%izVMIY>IK*m#F>6JZPzGH=4c zlu!OAyR?{YB9gpb2uU7bI@D0IdhszA)*bS=t&fMN`yJ-qKv~0TS9ol3z$b)qay|8} znaYuU_5S{~yNlgPS>7yAtb#pT07B)l-6IAzh{5Bb)Y2MT*oC?-^W8ff=w+tblMKKr zQh?7RlRGA#oJ`&l1V`5dpRvb(C8wbY0ThG*0BCKzj7xW3P6ING0XU%M3tFG3#w2Q0 z&QQ!?9$sWS%>NInA*ZAa#Ku224ZWT=c+xp2tq}C9SGr{n(2(s^wyJcGKPAe=<=L;| zAs2ebmqxJraXo$1jOCsa$*&Qd>yn}hl`2v3!_Kh2#MJ^;bBbQF_e^?Q!S{KM3GX>I zJ!5I48|XLPxw94?_8Y4DL`a9P@2yW10}3a-)k0O_b0GM4V=Bgd%9j>xg>1suHovRM zv5SaMKYaKQMjIS-y@$WB&T$3{{&ShZNAq7CcYr)w?~5Hh6z=MJdSQUQRzSDSg&$Li zdU#Y!BC9MiUh;rDv9l}CqGA5nNvo5z6@`TY-{7<__yJ%QRr08pLspgrpNyrY&i9BM z))ZXDO#Ru30KaM7^VwO8onPN?I#hrDEa(DYf7>qY%Y+LHR&fQ{50zdaHQO#%D!6Ti zf8W0^DtK8EzcR}?R_c_BI^=l`<+1B!VsCz{xpdp|{?1`~DsQ~GVw$woS&mG+7*q$H z9kX!$H4CO;1mpR^*dw4rf(4G|2J}ES_vd1;5gGxL=NPB~U`1tco-@nKVGw__K7H!8 zUSN^+p@XWm35r+>YHD0vU0qC*1>lVE{^+N2hGP*yp+h#VWn;IpHC=uU;2KxCG{QW# z;9!~UEcd?#=-U2yKL8=q8ykh?sYd+%)-q5uJwK)#=j9E~&}_cJqtG4e=J6?!AU_oG zF`}lM%)T7r{+Oq8D?F^F1+gTdyd71Y*&=K=a<%64a0S!p!N3dV&=;=SlE*A20QFmi z{wKs}tGm4bHuXWrmSL@0J5Q&=??e)+*O`?SVnp0&K5SAFAa_N;TL8t)H*{P3DN^hD zuPDl8@%jWk>x`V7Tf;;yo6`y~nP(v(KXN9M2h#j8I8V7fX{AwgLc)1tN1xc#RAxj= zJhX}OlKpsHkYFMwy7K2(Q=4+MRpa`N{8y0Hgy;t7Q^0{DVU=ZqRaW%!s+y!$;WH?e zx3l9t$1M2_`hU~euS^uJtgNE;nCa=mAFZsMypkQE^kf7&MOM`ynIh8wCOmc;x@5Ozd=sB|#4RoVg!T)Xk&MUNl#jjc~ z{OPe?xrFJO&q7gE;kL$r$v>bb&xAX|xd?*puocwC&@09UJVsellQNoBF1lClj0t|k zMR4%&pmf1BRc~Uth<}JGDoQCqW-0<%G6vVDe2&{=9_ zbf^gc?Dehh(O+?wWpaqhdF9_AS?Mn{mBYX%02L*gL~Kk?qah)gg)aBVse28?~X8&PyDeoOt;LWr_gQ zVB!<746qUC3Kc`##}ETH|Nd>OxGgYe75AR8xHya1z(cCJGOhiPoT9(^HneqG_?yN7 z_ihHy>*?u9jko+VA%P7xrLnP5o!jH_Rqc10c~A}n8oCF?q~49-j9Q&>G2NWm00?wT zd++3g4ce@NnSs?0d=uQ;4~5-cG`A}^R%cRCB+&z3(2V4P)^kh*tbbN}x4nRlI zXW0dpqM5lA$YZ^Z&Jo?|Vo$t9K0kxtS0|s`-r5TdyJbWok2mm*AEMiFAEU9R3^|Ux zI`(fT`Ft###KjMjD}TJZTsEeBd&4dwSO|_aSA4}~+|?A+!9-|OP3M~-8d_U>zr$&} zAwcCB;8ribT0%;D9at7fPl_<*J!@U}Kn89;9Ia08x60}(p-c*-1Pd0r2Bg#(-MA4> zA_Cc8lIfe)m{5i{<*l$4$kl;l1CVn?W#zAlyysAtg`#q3O5J&eL)boIDEM=aY5V870OUytTdC zy*W5Onv%$uL7yK|17ZOI0ciUccNO2w4sIAt4~Un;a<_l{a#Rd2*#&F9AesMSFfp5Z z<E5q+CyL<|JJ#uZMd~|! zeu5&t%G}2Xgue-ey*0P3$Bh!U**QMzq!3n7hIC)NjmJ|($YhLSI>O`r`kmML3DJ%R z>GGyP!w;W!?d-+L#%Y0b9C;b%ClnbTtUW6zD#mPHP zMf}z_Lf%fw%j1|m(A_=7QTQJ0u_UVgBJaSHt2}wwo%K?s{NuXQy44BPo>_**=0v)} zUYgW_bro}XSoe8sb>?dbeSgoz>1oaBc`te2^6I{FnZA`N`4J(StzZM4g0>OucE|lr zRgdb9;)6t%O?M%SJKFl!Vx4Y%7fdK+?2s%xtIN-NU){|&ZQ|HZEaK@}-_-MC#^h># zMAWPao6Y%mtO?`EHf>@Q6yag0oM=GC*yea0%?KUsBNu=3Aq1<0JIQY!j~2yl@dvV* zwW)n5T2SI)TC?2$wP0^Or`tQBbnq*A{qq%fYz+;!o-grVQAao2S?!b4iOTWQXB^fOJZzaM#OG&(p()>qhcNDjodhw`q->=^E}XBmS57xE z6``fo>OygjC7EsBUyS^~6-kj0K`4gO*r%pyNYZT7^6~gj3m$LXmdn-WEW`a7gX47< zpFxbOq)Kws`5LkFnL7=#`SU&>o!`d`amYQB#QYAmV*DBGl zpx1M~YjneeZa|ia@y)7MScg{;ZVsg#%8MY8QhdAQeJdB2LP>WU%d#}fvM8zJE^T?8 zq@?o&vgUe;=d*&;m?|VD-JyN7E=pBDvy$>2W0+=)t>3HCxz_ciA3JsOgA|*jORqTu zLgh5Q+xyBKY6FD`TryE?cDoIh|M zbSddfRW%gQr&U0R1bN)HY^r@D9b|o2*V)OQ9k?CWiU|JOn2*msbu zgwe-}eJ2x-(#(?&s&A3~b3QWD<-;Q7MVl)~O~n|8m4m2KH!JPtuBoosg+w!Ou*?19 zf7%86eSvgS;m?wl>|#5(mtk93a(aAEyJz>EulN1tD6T5cv z$)gix#^Nk*7q?oCUf^Hcs26*?oPXtT zR1`$XOwa1Zl&PROQv<$Hp*f9t-xDYOa~bRLp6B*Iepo!qXg@>YxY1T~WF4MvYImQc zTN!=l>J5Eh{ehE1SBdlC^MHJd*q=HiD%vvTWy3~q-&K{r@`UlJ>n@seNfId$TO`lHg8 zJhd|N>WhM6mpqfNYWu`&m?5)pFGLJd! zY3Qgw^>_Q0+|_XMb84mO@p-L1onXVS$wkf&$s8Z1zu*1s7xiYUI@eLX7tgs7Z_q|H zQb*Mx{yt+T$8@(qLuHS=XSh{TYCI>7YZ}46w5ET10rr0eyE1TZy4^habSbx8xTl4* zC3mHg?zG1|fqRIq{}OWT`cJ0_z{E{ZdaPMWMcIJ)iVG(6&EgCz@C|z*#~H+AGl;H!`jf< z3=eMvl1*H4aztOBy3hVh=<;x3x_v6JY%z>nud(2eklESRNRfhY6hZRWbM>q5lN!s9 zY~`o+S_(R>HSK90bVLMoT;^?tFtRmOoN9i>R&OpjtUKhRky_{5;JSL+!Em^+H7b z`1dWeZicXC9$qZzH)@=pxFO_=mqGtJ&GmGWZK{+?e$i9))xFt!Jy|?ahT~6WJSho& zoBw^F$v_g0L*Qw&&E0|A^C4>~92&oPu<6uuVV+QRPtV#v^0k5DAWcSC7y+g(1=1Nl z^8XNK%zc4o+?^)Fc>lw_AwEV)7j8^r5Gq%suM~MQQAG`9)+bkEohdArCDEc!L5oY@ z?+Ev#kjjT^2K%4vai3PYF`nB09XVEU_o#lY_MIJVi~!6y%}Ls(2qJ7C5xUC{XFxNzYq z;9e@_mjR1Ve0vuB5D-E@OqTiX+`an@nCIt-aG}Nx0pfx1lg_$nh9lcz&SQ@+1IJim zh)o%qUM{soZrHwA-#ln&uKMaRc@mYOH(N&J;@fQA{^tsIX7?S0=`@qxmvNQWFIoib zmnFY^8|X4!NEYB58SwH1Oj+1C!RoI>gpMlIm;me5)Yk641a1zPbJoC<%*@Op%deCd zIXM*p?+_KG!8G!qz_m|>rN-diz*1_6puQ5DlJXow;mgQ)afND~hmTL$&#!K>*=FJ{ zRv!Tm_Hh%0 zrI6J;W%015CiieZOnCOBf$VxfuM~p+5=&XaLighXjVXH!A01kN&x(q!-nvLBZ2N-* zNM!BMJak#v*_bljs{sHJDE=6}h2P;XuDdCEp1Sw$-n|of^EXaprm`*2jDdM-X=U}BueZDV84#MX$AG100WD;19-by}2##B` z%Hk3d>=!S->zsqS2Lnh~_*6zzt6*d3NB_foT7SoD{71HD*)N=A`KWGWXi(*z`Q?|# zN$B;nazbx3-IV4cX}ocdCDxK%C^$!XI& zT2U2M$rbHVYjjcN<92-eb}m)YRnf?Z36GQkM_!0P^1r+(H$$NH`}_Mtp>+JGOMp() zPA_qVhK7dY@@2xTn=u7W%#}vxD#tq=gg@w@q^A0%H>6oMiKxn1u#I~zHi3S9URo+1&M)883Pcr-rJ`O zJ^H2uEoCfh>^LCFA8apO=ZrU>?}*Dx$!ZlZW9bmb?l2DEnxv>sW{~ofp*1~Ae8#*a zm{FT{ttR}6iB}DM=Ffe3&V~69B_*roLhQ}eCHeF{VeBd8i#7-YAjzLgO0GFfN?Tf5 zW&lDlQv4v)-poZsh3MTLDf-Ig%Z=a@9Tz&OVN1<1WEfx&%q%XxH(Y`qJe`EoMc`Bs zVx$tQqg22jf=0%NT(w@O1RAWT8#ZZjr>qVAHSHb$Z7J&d8#flu8&)mUUYFS#nCl^@ zSpBA-3Wb%v@03{uo>DsDPbU2dY5D4@VWWZ(Zo1cArGLLq50^k^|I}TOdTPBs5PGr* zVwi-}8*=pE&jWUX-I+vVC8ZzT9E&Ipp*VMJ@tw*=&vf@5!Q=A@+{LGQL^{kB5zl>k zR1Z?-MLpOvFSqRxK(<)XlLH05Cy=)$3WAfRPVoLB2Fj7fQE8Zdq~z=8tTFF0GPInh z=mj20K&P;cm_l_X^XggdkMOV#>1&973FB5nQaW-AokOOS8Z+Y;o`kz^HAQVFlSGuQ z^8NbQco$*3cd(fmzFfx>4`o^kiXl?$*fL5Sv!#i#*k>_=&%0^$kIM}Aozy62`K^Av zbR~6apKn*(w0uqbt|l`wEbRF+REI(87?zP7(TF6X)cJMdi`~y#s{>(SIVcO{^Nmi*o`iX%?}6m>>=hdcIPb4(7kF_{n08{xVJLgc_uGTX zaIN_Rxb|ipj?;bQkz9uNZi)SyrVquhVw1h`!SU-!*2pj|9G6|>$UJNvTQzvo#A|j& z*|XhofKJWISx8asX@)i`g5JZIY1+IFRLn-i^2uKxB!Su*Po_Nokj3V`dV%JHAB#fj z#PTi`tX`p>;Ra+tfhEIZvwh)tPW&`=(Q}YPo@c$i9vZAEw|jyjoA9>N9`o7o!Il`q zmISj|um9!G3HX5>(6FBQ()mQ^n(VETueFE&?U)K;3 z7k7JXZ`#Lcdw%%p6%hvC&ekf>P;dd2rzL?aIoyC4<|=@f5wc#`noK@FO0+DlGpHGD zQW?GrxgBB=QaY!q8Xk5_m_(j*6o7;gvE(I<4Q#fC(m@GVf7s`a0*o*Jyn`LPyqPQ_}bC`D)y$OwmRQ z>|I15G}2=X1?Rr}TZtBAkUUpA`8F9UW80(QP7MuhnL&fpo8HX3*=_OWCLUG!74B(V z92{75XomOqR|1|3p~tB`W|=kajPCckGF5vKpK}wekt!m+NcrsmR(AFQVq>jB98lpd z(#v{AHa((OstJS#@)FSCnB7Q!X+6-PPzwF?JI?6+gZo>B(Rek!s(7PBs{Yz2YmTnXf z1o7(=8D7+$;U~O80%XuS{h5gxS_aXThP^0+bBCbm!s+ZcSyd&a9X8m7%o-B$v%E#m zjZt)1P?TI$?K2>EY`T}UGx{1t=-^XOXlTQ9BW&@}1JVus#MVDmO9j7;cQk(t`e);E zSol&~R_UAowh>{gUw``a&ElgGM4sncy8(1|*Lps@r9nSxKIxMhyptdaQ)LN(NvP)q zM2?B{Hm6bKKOe#`oHa6#H99Z)`sl80|8LOldC|eR*iLZNWAR2LP>nI+noYZgt$LK+ zgviySUpkvEG#f<1Kqd|~M{EfAj|&b)Gh?`4)e#4xB@BCKqcwxW%-l&_yT5;(7Xcfik3e+{JT~+X^hObVR}-fzIpJ_3>goe0CLl*)@n?<-{1+Z}Z1#6o zf0-wLuCrD;Q8AuXoI-y)HJsq$>S@Y6A6 z%kfhbvbjEd zTVeIT9;JY7339^PW$9oOg4L*woMe;ArzVREj$VU#V48i|x1~_$-(f?UdE}pT>$t2M z#T|=LcJi{qca{6qi;p5@(NW_UL$y8*io42?A$@U}uNe@y>xHI;4chO-jyH1yOPcU{ zWK!?C8Nmu4HX)X`ohSoRaO7?B9-{=~_HE07TK7gYFhSQJ4h41td|#R`*BAp9VH{4K z{(=}i=MVcgV}^Xb$T4xeBaSZ*UKkr1B$tT<(Tx7KX`$z?j+zVoQNaWfO+x4!TYa9R z1k2%qVZ;?Nqmg}gJR=`fH@&rEIdfTl#}{L-S1W-1z6;B&88&#*dVqNVJM2BqrGtjV zdf{GG@gpHe0mPNWMd;U4%wkYs$6l&nBF;&apM!IEC!YC>Qf^bFa1TycYI4<^|J*GK z)*9~S$|*vol8BITNnnkyss1yoL+HG%cisuO1N#{{crtXkkCc*-OCBO!ND!)H+<1a4 zff~6tiT3A;XGz{ZBd5@~4nbzUbi(v4Hj?{GmS2I~ziO#jx+OI6L=0B{uEGwo108$}dk;jcpcxQ%TZMd+CsC#5XuTSvFM^T> z*b~Jd29#X;{wbRopGXLidc;=o>NZ(E^V#>dDO@7Mq}wsz%Cx4GNaaDH(gLazQ1$s> zqN{D2PYK@*J9@gI?)YYqJ~4>3oNXs8c+P zff!PCxw;;+l@uZfpZ;eYpx|Q?QVcuMXLm>!$RiC3|nCQtS0&-V5%OXi)5 zu|ujq;u((De!W#Q?gfU2D#K{=nDW*pDdxaDUk=J3-GZjvTTu03T7}T{1OZqG$ZM|~ zw0AW>u&@9n=0|T(pwQ*cN|HbR`v^T@3S-)YF-c2Hv&DanO-cf8l#mb=@GcVV=YIVP z2ZdcGkT(DqXa;y>W`6!zY;3H-1{Gq}lN=0U#R-fE##OpnlBWZ)KhF1Lk!+X`jafPd zS;1ff+!wmFeYy9!T3TCwz04i5fxq8EXMM;%Pn{e3%NR-2ziI{41F3&6zv==_N#-88 zcGE_kG;Yy9;8uY3b(0BHy2zEEi+4gFa+F`x|) zw=MuxfS86C4GeDJo$Al|8sJb=*He}dX{Z~V!@U%wK9cCG=Mtz=?i{z=)NaYmsE(UmD1l=So$l2+y^L`S3*x$Xx+Pibq<5|s=X?;l6_pCSL4eKg31HlT8oz&xgwS zxgV=J3vg9Pj3gcJ!vNn~I3mfizLKE7cpe)|4x9jdMo~NY$B!TT4qEw^iph~OB7;wz z+JE--oHch%g@@$?@4QioPVh< z8ay4{vLXYDTcy-T* z>i+Zow8%fl+^oCei3VZd7rW6w;KE@b4UD!F)5``wGM(x^*$DOMCU8|4N`8c>j-3o; zl9@d?+!9;*{zt>0ASADrPfjjxdAA0eVFnm@+$PFEOgd!(SiZ2z}2N^4K&3 zG^#ZxSk!~V^wdvU+53oC>{d3Vh7IHeg499S>Y&5v1IfWBy<)5&Jkr4Y{3pS#z!JM= z(L#`Q-kSQe07{GsmCM&x6T^LJ^V}xHRaKI6^11~^3T9?zWh>&6k`}wahsyXne_KNo zWx+o`J07-MVUGx7-fSS^gGUzlt+TTUjQI+$oYxLFhS8UG{-LYV`l(7+ZBS_qWyd?p zXJSvOvhgqm4AW6fm82dnG%YNW2D1mGOhiRP=aL-rty)H=>-b@sfo{iYS4>`gir29v_Y6=(=SF(Ze3!aDQDfj;QgQN5DCJL1=QhQx@?r|$`6bj6NJ_6 z;Qy~V&3C9Q;bhvpR@fUp**?2LO>NGyXi%>;MBByU@Orr^lech+-U-$(}G z_*q=tf3pYtLk#cm^XJc?5Jv;Y(|oGVcX_;02v{J7WS2zcZFXx9{JYJL)y6mrV#hj^ z@`B(68G|JDC`q6Ft8N>Uq<~=o7Y6=dK#ObFu6eAL4Lia+4Gwck%x_0Q6h>7NlMmi0 z6@tcVZwILBJNgiy;GEZ(%)NaSfC?);m~?DXVv&IVo?2FC23||9Sl7N^+cx+-mHa z6zc!E1^jx#y65&{&r?9-#;aV3qZpoY)G}1=L;bQjhgPh)QYe0gsmg_d+K|hj7Y98O zsIa`cCMG86{cJi(s_GHPQ%r_zgNMszXlN+>gITf*CCVM^IFjvSY0 zk-p;GH`cCj4#Qig^BRDK6y-kYi4Qubk1<{hqW?W0lbMNeueH%l15V;UzXI=_*MJ$b zpVvG{`ha%#6vQ;ZlVrbol^mmN*#`4}qrsU_<^x*#5(=F(GXQtu;CVm`q<$#_@^)Ekf zjXUGNJ;m+=3ggGU1=!gc$WQ>o7Pe`zr*>|`q}XA?uzo=O%L^6EsROlxf5GGRskSXh zM=aM!Sg=dIc5Uo_mgYA70l~OAaKvw1j(9G>SBR5zkR5yb5`n`kr<(+9UM9HF)|Qrr z=H{#>C!n8zN9f>Ij@yEi(BP=5Ve%fQlL%Zk3zucTd&ed&UeWXiw1J?NqRZwMl$}7V z-JsH-pl3nX)YO0o?iW#)TB>9)z>19Uecjw;CQM%W?x7>X05GG8_nHVsCJ2g1_ycd{ zXv4gi1SG_RH>0#}0@fw|>LnTapQKuzuK){3QG1v-(qJf5MaBJg1v+_{m=%o@y#K*r zULl)idM*>4o~O9#1nZ&n$Pob)v>6_a5lGDe2^xIjO&|?Y(9!9!?#5A!%bosn?i52D z$m255`2g$fsuiD>+CLW7{l>HLgaF{PU*)DOb{C*|AVe0Yjl} zxyiN+>@bUtSoT{gDoycfvV=%jWMnghkuac;jV|MAPAnH7ww)LWHfFISqNCe@gH{aM zKMZ>tvk)F0;uyCH@8vkmiL<%95lsoABUBMCEZwqSSry4CQ1RM;ZAyy3Alo5BxaPcg zx23)PdbTEgnf%9ED);L8KnAIX=G*-LOky$XN0tS=fg%)2pQhekvVSsCpFg+Z}NAeN2({Wx#Mg4Gb8d9NIqo6!lv^o5sc1tOmscN41Wj9615LCC2Greb{+^5~~@M zQ|B{s?&5M)k{WnPMH-)j%k=+OWoI6cQ@;Q4^JrgCjdogty=zG=k1xW@Z*iG}tJMq1$E*Hb_{DQ4n85;rKO!?HV;#=z}&*doGTou^r&aY}&T% zk;#g(D6B;}PHrw$!M&Pc#c(<}#s*Xp2rF2cL&*EA?#?_*H{k~W1)V4&dq1wxp}To= z-0(Cyr^GpGS5#DZS|!OnpC8#vY{(^U-h142O-=ki$eSXS;_&UQ6P=puoUNXn?wloH z7EHWe*PCoB@{|3!?%W}C3*N!Cg9>15X}Jh46ImUo5D(GcJWhUx`PZGr{&K`z!Dt)% zkOrrewzk8Brf*kd+O^$dfj>z3Pr*-^vjvr`wS@AR2wsWo7}{8k{gX(?c0IeYSwts% zJ*G*IV_KVg!GZ-l^F5)Oms}Uf39Lyufh47-N)Z((uo2fAJ>6VgStKPT+bdx?toz(E z^LVzz`)7*?a5Y{Gjzs-2tNh2{N2edV5&Z#?q>A}$pA+&!k=&tV^rw#h!x|{ojSn6y zRT;G}_GiP0<_+KAZ;(Y0SAu+%$Wjs2E7w2q-#s!bI55O3%*?52#-&e8v3<(AmlvQ0 zvrJ1&Mz+`uBZ2~Q!Mfxr`MMV_EGD4=Uy6J}_yXH6Y%S}icfdeg%e?p9-Hb%j z=(;-7vL3JoM#si71Cz*Yjse;IV^zWoYVYfUjhOKTv*sAo3*L?#&~s;jB_vYYx@0ZkrlzJ6 zsZ}s7&@;&*R6y2sPA6i6o4P0@8VYS8=b!y6YRyo;#Gcw+86&HuC5|Y_z{rT5^wyvq z?PoW-1`t91S0aFiswbegP7j?osGVp*z=p57h4q*cAS@ZeEJ6g||LXQKu&w5y%Z0pD zL~{lqMt}EGeXB5I>*YE+l29tt)Yjh47*^He8}%?<47uLebCdSQ)h``B{stRqT77cF z=a&-hV_9cW8G{$S8Na15H!k~S57~;!?5XUANWZEZNVR8fd!l{7Zm2<>Cl$BYtSah7 z6)1*sJZkp^;JlD!NMBGVom9-YH&Ny8% ze3Iir5gn$CIxEXbw&y2i$AWLiBppenFR{%6ylbD&jAX$K&RFy?qvo(5wF-7_2p^-` zE;mXCA8vejm(?XpX|-%VsQ>TZu^xN|_n!=00-$*U{W|FL~c2Ld#y1b^~1Iddw#qq_M2Sr$>fQ%(y7$+!rSzovssGMx;!-F`C*7xOFaA_)+PUej~V&V zTM{H+YD3pRmA(R&!T9iK`n-c4QEqzv+$NB+bH^F3>Cc|kRQ{N| zFs`+^1FmJHi6|4E0{im+vPbcJc-6lwWa7&d+TsuVd8&A>uzGkQ4Lf!v07}%Wr`|ey;y3^;3Ih*|Y?LqgUPbd7`X&b_~LQR(UFkT*4#)i*TU7}_n`{Kw=l zse&3-%YKvcF!S2%G?h01DX`-c94)|wmL*RCJW>n&;!*nb?Jra$1VE(l3&d76QWLNIZ4?=B zLEM#gAUP#vMJOk!IDRP=*tAqv$%$Z~_(e~7C<9%$k0AcwNCRtMc&^63jfiM58Kt5U zZJFhiXL?n1@p4Z69Go0DKPoCJp$l*A?wjTE{K&bi*kf%1?jt>c@uZ;takK<(b7!6# z*Sf%dfT}p*{Y6nT*%%mjM}<>+Ps$nn*V9#6#9D}^WH3B1qJ{aH>e7(UClPuhS3!`v zq(rYyK|vu@c>{bUY#W&fIeGp(H~b-??m_61F}6Xu>ebwBowb6HOK<(6s`01P{-Q^_ z^S1C(VQ6e_?$h6~zT?^U)1-H~JPs4uLP3J(@_&TT{nJyKIeVS8kXQHTekkBr8KZvY zBx|4z?0nc7(RGhRi6Iz35AfgrKPjt>^&;&cn>pB}R&KY>HFB|LQ1n%A7RFBkpu+c^V*0`$|KHDhPGYv(O^pKrfuLin7f~c9p*LAev9a+k70_X{#w8S z5+Z%8rreBv^ASobGG$}tERw#s)#WS-MK5-#QHlI}Cw3?~3D;biv!G5Qk#(H3aZW@J zRdns#0m;~eJgZ*U|C!-*Ofl?X>h}I@m$kX5n+4ZDlMr*%X58fOXz1?k?qLPCg0@&< zYj84tKGZ7O@i%MW)dM;Ox{8*Rd_Cz-@h9@)gNht1qtWZ8B3npT#c=!tqlVW5aq!ER zjCyXnxx4i%zFYY#%Q-i?1(&^RG3`Xv6>!+{1H`!`3bCB5Ia>R~PwpBgMObICrcA~r zH{oYIQk;=zZ!f-B??30Jz{8T!Y8YMtyLrl$5=i`AV%NtRyifMi`3nOW&i$8*1oa>n}# z#+TK#vaL}M=f!cZKJ;;nzwnMYE14#IViakeZd#Ae;bUd=SH#78nUbt|f%^(K|% zKQ!l(MBsJ>4(+1?1GX*uanDaOJFo-X!bBns%jpFHGfLpW^aLe~BR|I#VT=&Nv{Z#% z>W5k->$lZIT61OHr9$}0b2!nW*Okp3*7Pc0$3~1pB}KxS_8%T1k)|IzmUO+EMmL#$ z|2x{tjA6SqCaVknmiIj$-(aY0O!uprwp2SXY>Y2 zTK$VlXSNR;FG<-UuZrt!mAF1sj%Hn=)EKWwZz_j8`vdXAI zR3YmnVTx&@IvdE)q>MoA0*MT6)S5YDoogSbcZ59+g5uCxNFK*hW~VqXWB365EW$1& z>`aun(F9k2ycWwAAM!&OZzDpD_~hi{_=PkE)qx^~1Jep*xxC%NLMmaP?@m+{>tan` z3Oq7*=JaDXby6-ODp7B5m8q$z#zG&bQsA&I@Zh_~Qq({13}_-D1FQti?9~$7#BS1P zH}muHMWS;9;GFf{Tx_}CjMP+$;^X6!@|VLEcgsMjCx%_BfU+Vp#mdU_>+9=5VKZtk zT$5~TFeuQF-<@~$b5HRa`m~po=7H);nMCFJ+%@m!-nYIr zy7qj1t62TGv$BruB_|R$8@hSYCZ52+O-)tKx}x@N?YDWuzkfhr?&>N%Vmbd4Ir$en zIF=Y(@$s%-R@@`Z5)3F{)qT<1^=$0~4FSa{)UF5+6m^Pr!-N(`R47UUKg>g81bAKN z##BADL^Adzp=L){ufV{JQ_L+xG0QSTYx(l)ZF`rGt!xHYHOu!Na&I)=astClz7ZU4 z43w>el?OfqW{E>bFz$pkL}7uj!!S}{=;HF$V8W}vvsA${I2R~90%O2!zyoqP{>~ZO z2946}eJS~W*r_JOgcXnqx7h*6VI@kOOeXg*EWb@C#cu+~>0?)U)Qy zr()cN((BhRMozFXeI(*blQGfd-}^S8v{*ZI5qctI(gQXkVRF?MpAO3`tyU=O$q)!a zxhhmo2=5zqvJ0)Zu>SD*xB}_80#qXu#$|2jb2<%eP#(L@mKuEG!-o$j&j|uh6}@1I z?NIpB@!L5X^F*yMy}*QodcZN;Qt?4U!!{^7G6Sb!8MwCTOyB9qL+IEIZFg4dy5q`9 zN+y)l6#8&hxwp|Q0Bp56aHHsBljzIHv7A^;n_+)KQ1xm)*Z+=aS`0TQO)Ltpz<4ZM0q%S%Timhs2eDszl zB#&S$nTh*d>`qGbr&pjJo9+Mfcv-f?Ba01ot}Z+$`4bWnq=6v-e7@u-i_As%R}-}1 z^w%(^JAJ|^T)r&-uz-ZKXE`X};NTnk%22n04qQe`ih>B?AxdYa=8nm7^75n}4L+>M zYR^SzXlB_LrX9Q**&F;VMl!q{r1`8ewVUbTxf3Q^w;CB4MR&OO0o)Bsp{R4WZR%-K zHpV>=t6=Kg>h4A92%g@b|K=gAi@gp0*t2rw%3Dxrn_kcyOB=NPjCh(rltl3wqwV5kF;nQ!_opUk1=uWQNp|~c7)HtJOOiddL#mJ8%bQ|CgfKz zyOmMRVk#(Cd$nAD0MmEVrHUJntIKF1k|K2Abo6MVC((hR%qXJaZJ#i>bD-~=)KH&m zjr)$I`ym0A0NNFHgc8Q@_1}#Wqi2-Qor06?zB_Wy05kOf1{;vI@9(^?L(@?;PB(x$ zkng*1Uo|lLSq=@q>AY@x+uoH~Pwo#myA5~l7h#|UULt8Y2+WG6EGwmhsOypf=)m1N z+riHJ_lHA3L`F1m2puAVa9;iGzM@Hif6o@E93+9OwaRtPOi|j6$$eh&HM|hMRvi^= z&h>g6!2?EpqqfiM0%cM`MOD)oSA73K<~76X*TbQQ=SCGcw4cd!X6jXokX_`l8ay~a zJ&~6Nv|QGCH*>w@C2*yeffVRX$ZHCo;r6f78P0IY}rTNIb-X7L_4eqb|oR-?vs0VKGuS` zeN3IP`*=N0*?T-roBM9stDDY8z{X_4;Bx|qFN}IK(YkYCU<>g43VZ~!uoIw=8OW&E z#KpzCQJ?@mu1KmbMaKz`FAxMzLAFKVMa^l2?W~yiA*)Bg62s>9_SfzD9t1cP`KH|r z=-Vo-ps*QwB4MLrBGLdu5c06g1^wgG=zR#G@vlVK{1_@&1f3BZA{dx(6TYbE&xsw| z(k-~q$P@&eE{A)>=2M@onVHlDO+S4Y^(aagsc{^7|6J_}+h!*sW|xsKKZ}D#;cnxB zX&~);Cc#AhPKff{Xqgock5|t0R#~(cpGipIBK?*|F#EdEGz^WXL;zG0wtj!^!bv;6 z?LmEZ_$)$3f-$-Y>CkeZ-c9;n-n!g)X(LbCl`DpYzebO~@&r7c3vH7M=!+EFW8}gL zkZop29K;lhK31Cz0aqF#lnOYbz!B}4ukR{g4aZw%v8qwn3EZeB=)=iGq2!-fXOqTud~oWFvwf=6&Ce+kFA zE~4-d3ogNq+wU8K8ZK%l%yf7*7~^pWa5h9X#a3*uLi(zLGxITo!bBfwP&s?p$8mXc zvKQv|5+W*b12ql3dk_%zvh(n{EUivBt2Cd^dw>vK+vVk@1jEaX`zwpjO{~H_dmP4u z2R>fk+uJ*R^5&I>f_s}V1vZc$hs-#(rjB5@|DI+1x5u7jfON$Qt0M>^aux@|Beyfy z&m3`v7Ttuqamz&Z5_`GP$9br)Kf`N0jKtO_(OyM3Q%uHl6PdR8*+k`R<)cT&BTdK) zz$MBQRI*Nun4KXFQLweb5kHm*5dyV6ceK z59lmg#&LvWVKh4S1fGUzO{<9xgr|h?4*?YcaG|N3!S|9DnDEC}o!1Ihfsa0lAj$bf zhPjBE3oC9Mih_PfAI&@hsJ%ZsBTi^xFg9Q2)nogp1`Sx6UR*Cqz`meN9_@XaG`NH` ztDtofAtOKNJnzE6ih>5u41Xn$Fp-RyIs|SDv8V9es_i;NIR7%(RZb?W4%>_^(NrG8 zKLgquzIK6T!ODmng>q_eFX~0oh}t*uvFeeDmMDZ()KnB& zPdjW_C}-T|C9U{9`0r>uGUFcMziy3qI^5x;_KdD3vtTDPk#N21)q``cZ^dVOA_4CssypCO<>4-r8 zNCG>siChq!_JdNFQ=brP3PfLQ-I>dmU70EhuD1#cZ#0FX#~ykETr`yAD6-H5EK}gq zc>;kN+3moeDH0mmWu#NpRchE!x6l-_=nev1pQ7MtDiA(l?B>dWS)fZ1x^vE-&jg7E zNdTzGJFbbL!=#4R7kK*%2~GRnAH7NIhJKATr5{jGfMgFrOIl%Fb+wU3<9=)zGSWnl zU1UlND?ze8imV-pRSB6JK{awQaYD#4`c+~+q6VrQkF_D|Q;9|}u=&P%dW;1U>tlB~ zh2^NXOa&mHC;l9ZL0HEgtot5nu1_MP3qd>Wm zHusl-W*!Vps#YZaU>0RR5rqq)q6&VFVjKd1DVtH~z4##5fC%^SBG=IZY{{0~CkNdN!< literal 0 HcmV?d00001 diff --git a/_images/rnn_7_3.png b/_images/rnn_7_3.png deleted file mode 100644 index ff15035929de6abc84cd87258c289b6c50d97653..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 30389 zcma&O2{@K}+ckch5{V2&5hW!eLuDwTB1BOs$&@)|2xZQY3`OP)5f!0QGGrbjLx@r# zbLPzR%zs_&=Xt*W_r33Tyx%^Kee7Ls_jUcI^IYdz>-;@XJEyRjb_XqqMB1#RD0hKG zB9|qR$SOB(z~5+84%Fa3lDFlr+`edKa@$_t#+Y-z26w``9J30eH-0|%{aOojFjvKin@Xl^NL+LA~N`ozCv$udc1B$6GslH3V( zhnUfJdk2;utre5wiQ>Ct70JkHp4*!-o?tvdvH#vfckZ(+@(+uASvGw-sm6FdVgH$V zpN)1eH=f_Jn}zS&vFC{mCutLcYL_dY{MbtqRFT*gH~hqJq&BL>^h!@hOq67$5u3M% zudlBnje+Sfxg7qn6sOw7$jHcN&Ek$fC6u2hF)=a*GbxZM;*V!I{-+=2j&``M-+g`Q zjdx+;@ki|9S$8D4FOc(*9#m}}?I?`4Y|lIY;l?FxZS7?BS4{JrZZeIDXKQ{;x~|S@ zoDSendUN@06K2F;|{G>!7S0 zZ7QDdEz3gdwfd`%8THbBsi{Iq=bjqiJ6&eJD$wmbdbqN3Wi-3YrcZ6<%qi>LyN5bd8Q$%r5=052|(MVLpszd6DxD~zZ`r7K-pA>D*LS*Tcfx48oe9E2D*~UN@`YC)*VM~l&>sK zANsKT=S}MMUzvO_&pdu{d+6KY>kaOK(o0q8$B!I&jEPZ;KfM|2vtO@B>aA9`$?TsW zj_=MVB&d;?g3T|zz4{oBOEayHjn2B;A7#pR%ue9!lf&I*3^EC4qs8ufdwV zCnMv~apyUs>X5xNBQ2rlo*or3`^Lk>%slk-E&Jr;Wcb}|%l6L|kJyJ=GI+V%Rz&J$ z)}{3I^@+LE&b6Turp}PG?GFkIE1#~Hv1+kz%dsA5&yT<={2m*NO)9Q=qmgPeUO1nA ztNWzW?4M7|MA9nY&Yo+9GX5(C! zUXii+Z4(qFK1DoVsBq@OoZE?Y3D=bzGPd#Jb=NG5#B)z?NZNUag|WnAi1>9MMpjl+ zHgElch2MUshrYdhbhGK5v2)7lM?1DNNH27q9cBt1c}1-#mwsn`b)K1%^9z=^w$p9B z4zr@5sJQVl|E1rRTyB|}T176Bq%t3d>|g7B5qcZCBJ^CVFYe^zBEg59~&D( zkKXySg@eOfGj4J^&9G8nSX)O&P$nrc(Wd(&)oYE^fTSeTM9xr*mWhe!W5e@PL+$zE zCr+GDiIEUd{a|_p4=5@slA0`M4!;u+5J1N+=70Y_<Zi|)EFO0yq3b_~zA z{E&*k5gQvDBVo<0dPM!5_V&mq{v(ciP<(-DS1W;`RKpeV-mM^Cq8<-(Y9=bG`NL#iRh^ zViD=IEzn4H~l_TO zo(m2+iMVU|AT*S@E?V65clm?b7|GD@-_^qp>fHFzzZ4XrH!?bEo7o{uS5tq=hraKr zeaCa>`7xK(*`}4H;nWn}!Y5OGHK7=rS?7nFO;;`3FiG~(>T!oUIyy$$azk;Bf_=DL zBeAki19l$!mTje{9PK=o>l3dKC~EqJ<4;p+{Xm@CxzK%Q7gnb0t(*(F(BTzYf4uzQl0UxG|PE6cy=?($SAHCMx1E%7mI#H-ns z_>6gCR&a1I!gClkr-Qo>r;{(^p3}X#^ZciNyuL&%VPeCbt`f4EIl6P_&fOksi`st3 z*M$!!8xN`m(&2v~f6d_V!gRI|WA1Tp`GewjDYg|yy{t$Z|pLwfQ0TK*-g zGv5Brt~fYUviJ}w^5~t{m-6{8CXyz)JQ+GB?uy2~|I8oO`?#?1ZlZ0Zn8gk=Gqb2) z(#s9%_dV>{`b@Ijd z`1s7*a)S3Nha(>mxqe9g&BBnP5zc2%O98K*LYWpy-rLXk?-4t)Uz#h#tP?k zpNLtUL9|*JPAw*W`;<3b^{`%qVzqv&PlH^7uvVIZ*W^s2Dm(V2n3R+h9WO6$JmPW% z0>Goe!Rv3bUcGu%ai50SzobOA?CaOB6Z7-pIKqZJd-rO7sQDw}P$ulp<+@Ostd;!^ zOLT2^zjL&hg+IQ+_=X-Lj{p}HwSTE6wU(}4-tFqa&f?v%e77HIX+dj$2&hi-+H7u&3rvpl+&}`5=rd2KASh=&Yc#o zJ|V?lN3Km&SdS3YGLf1nq43Vm&hGB*HBx_d;giEy?tp()m7;Pq;(Y7%uP?m1hlb3M zx_1y`?Qk4;s#3=6t2n3P9n5eyA9~Upm0NUHWu0U+n zGT!=IxVTh5J=}WetW?Y;!|3JSP}RR<{PN|?X(R}LB8IePVXtb^AO893BCm2ZzNP1p zc!#jd-MgEC5#oVIDxRP6vCNIVm~^iFmf9h~tC@IzdF5^$%+Q_2ai{2clAvb#{q8cK zLpOg4-1GE|I(mm66Urgwu*J%1TxGO)bx!NTg$n|yLfSd9@uwd-tV~u44tF?@AD3QR zFeEnewQIYq3MMz;mquE%8CY2(qJM^o@T|VNn6zIf@3wTzO8`=q%$yvFmDN?j&K_}t z>ELIco}OkM1(I#!OB#P zKbr`-drgE;Pft%-f#dXGOUA(2!0oK83P}1nE{o}iV!n!u!J*?;(H)deLqa|xzhCbx zDl~rj^y$vg)@)uWsg>}6Nd$ogV4529Zuy!`y1|3m^Q?v{{{Xf@o&%gc;3`hh^u zlg5pt+iNS1-@bjDn4C)`v;QE|ID-SR(oIZ56L04B7Ngl!0 z;)C?jqdWBUI@!mfBO|Lc^zMF&wkk6FAZ=KT(N2A}+xNLE!{{UGsdG}E?irx9n!rq4D2S30vw& zR;aIUv+J&M?3PAkmM2GU68jKQm>*etX1tTjUHa~l+N%qDPo6sUc5eB%pU~j14+r{c zBC@YqiAFgLy^L^J9?gDrKHj@eWZ~h~16NO8)-}G*1)K%MJmYn>YP)wSqN(qL2W0R6 zY-eE%4yo=ZOI8Tvj5%f>0I0!)SL&&Fq?v2;vTt91D6gu?j=IUNQqPsefjA;RYI554 zRt59y+b4RfOV+^9(5yZ0$N`Oa1usS1E%ylu)-k!hW6-^ zs0Y4^8~#&1@iZZ*66uIo0mf<(s%K0kMxyPvw#&G>ybH*`GkkdiJx65HuK+HYFQKZ^ zN;uV+?&mgrp8?suD5&Y%rbL!zha;?17x2B+*QS$7&cx(M+_Lv+U0}IjWR%c1fTSX9 zH*$rZQ|h|rKzFzPVv8^xHs`HdIg4&Pw(_f2UDQE@ZF5^+{r>urA8^t(85x;#anf~| z=))BuID`9VN$uy7RLh>9Vq2%-$@TEar4kPcWCDElazm!s#h9m07XiB^ zoo0wLT#Ax|fq?-9&ljwDN`Uj~Ug6N{asY`hdjh5IMMtwAx$(UV@Ub@QU7_>54RX6l zZDc9XixLok*^k#-@j7Dm9gaya+YuH9I|`2h!h{{r2*75{xJk>bOnAOj zxHf&ORw$ zTU|D5e!rWBhUWI4?+@O;$4oV!@S)#{_rDjbY&NiX#jR250xFxU2qn-I6uhoEHDXnu45M z^h33kRng);qD}@LCdLnZKG|klf4(8Hu85tQbHEOD>`SjK;5rP)Zlky&M?A)1qIgML${!a5{z`zt;ULGD{gYu04 z2cAIW!2Tnh#p{X3WjC{nWv+~jjh#b*A$U>E$atcwR8C%g5L9&6Tx9m7qn_T2FHiUMH|Z&f zN4GnBLZY1S4Rg0ZRv1bwjiJ?o<>y3dajGciK|mi%vrv^VcN8^i-SvB zg13fN%MIQ5AxzKlj3sEt&PRr$zZ|74U0dJlQ>-q{_5>?%lGS#P*-?t%bC^nm;XNdj z$@(a59h{v_kEP^>hF;8?-}1oM*GN91#Jr@v%yYq}PncABpYofKPWm0CsPD<=J&D={ z{Kpj5e;T>GBa@dm$!@GoDdM0GfvA?}MtiD)_qZTM)kYoi!Ohj9H0G;CEnF35SVY1NCvd$OL-Bh?&0?$f{2BgF(slR|eG}yL-4a zQq-81sD$6;j}fzT|Ni}k1f@`yyMe&2%v-jU0F`Z|r%zN0-AC{&L~Y!p>%5sHE-t>d z(8EBmG4X-YXRx2xgs+hhBf~kLo5tM@zxv_E*A&e|sGLf?H?vQDIEQoKdYIj1o29YX z!b;?Mse@wM0-1T=E1#v};+mMRZ=CF{n3~RDW(@wQkWtFY`11Jiv`rg@i+uyU4``TQ z4Mf&edQLLBY5ZBXC7q;w%#QB+ZUlh~T`caj9ulgm@5tztloAvaTJt!-VHv2BC2yJ7 zuN6M%U#(Cd;}PxuVGnYzV?0THV{=Q(d4Ay_%91a_Id&^KZtsckg6ZVvh_ z*ySZ&DoSPFbSB%}+^s&^)0~wXM59#1wJQR-;*tz;SmwnoK!+S95I7da=bw=J%&M~} zp|>k|9SI2)|C8aXfDNMiNn0-m1ZdArk(Wr=ZU_mry_*bhS|fVrkNTO2gBBkw%Y7La zFWm{B8*NoU2)zC?WxLzTBz3<1xXG_fGYLt_;6(O9dAafp7)9C}OUrUYPWJtR+}uqO zACcq*m4T;(qf{;r7cKocK!gB4zfHioCcx_9cP}CeiW+Tnb#=|j$x#FKhfGgq8%S3| z=sK3F?aLx`lp}6s--+5HndCr`m2}ajerd7v^mM!rI)ZV7e@AY}s zY#F{6&Ue(H>R2dVUzSm>e~g`ADcPLoZcr*rYsB4{{^d)|;iy~1HdM=RG(_6kgdZQ6 zx1taiuQJ@SFjXV89jq0BB<bfL!k)ZYG-s8uH`xuy{=r)Hb7D{ zE%sb%-kk%em_gA*;N`AaS;h4^6F3MV9Tjxx@%gq;<7kx3-w^nT0McI@RR-dT7&_`6 z{js)O7XX>VH@^F#?wA_MsP7+&!O|cHls!Js)g3(UbA;?tsX7P$-ogiqrg$K2c; zlKLO-aljax1Gi~XD3w)IdI!J8)3FJYkkMe=ssJopf?KT6yFMfOGGmSyCUh zxVWvA3Yn6s>OgNtA!S0M0V(mxk-FpO*8N$-v}o49OJP5t*m#>|to`N2w*(qsaZ_NT z6wM6pvG)ANqPx!F$ZkFJZ$K*pQ6$=rcM!zv_Y}=g%?uL}{g0H0=R{q`CT4ymaTOsd z#1Damu{xGq%~d#R%7yRG=@ECEJHs|>4Z90SJu8kXTlsqz*SPQx|K*e_fXP85l&n#l zn6rVL$1x?;NGb71?SKWrz-8TogOP7|b3ca*`o+b?_3aw~%y@6rDUJLSJ1XsTLq$$* z%8wi*eco-eci&TJDg*TMoVFSm?BW{piW1f*$1KL9D7Zb?-~qI~wlpk+fL;zl3CD{T z=cmoOawo!6+U=nWICYaVGnBQe_q@EkzP`S60O*TPE6Y4_egOq_ORg<%pw!exAO@7m z1W7nI)?Ndmg2Z;@1`9wHFSaC6jg(@~V`HT`&EAk+>}9TTUd8SQ^~!8&YFecF*zkFx_E7x<5HzvW1a3gp9Vu?biPC^XAj0_$=Rj~1 zUke;<5#k8;&d#oX{WeHNip#0GkBWpA{J$BaR8h;Cx}mdg1AR$!@F*9 zM}|m8fWvVs2O(Rx)4r_~{M)N5X)pRD2vCHQ7qq*kWyv#<(LpFVv$pQy6^ zpk9%=;~BnF7cMXnHJh;T78IGSdNKMzt`ocLXlN25_`P)Mo;Vh_25lSQH=^w|<9>?S8~4TZctK;!`%7Wap{#`!P#t_%#!F!Of(IuiX8nd8ED1lAK{ zV`B*#$t9Oc4hnAWnK9Ff;K5H4@RRedkNK@DN>{eT4XrGa@AUbbIMN(RPo(c2B_kt4 zI0PqJi(PBkEDfRuL`BcQ0KtKSu`ybl>I)z3sSM0k36Dxc(mvKXoHbk6Lr+g1_U3|@ z?RvpE8CQ;PjTTog>YEPNV{6eeLU=SMmK6sv5dzy$0Mgjm!ds5xD4ZFD}?ZV3m z|G-KS$?Y%VOY7?sk8Cy3Sc`fu)^ms`xM~u~u73{WlLBS-x1hsmo2(Hk76x~CI*{|} ztJN4u+Z=~UZgz3YOqT~#l$1s{2D-Y`t}&bZYHjTq8d6eGp(9yZT1J{Lu;oRh3Jo+i z@jf=B#H5z3<|tUV zU)ffwz^viRD+@h=ndU7an9*sF)@sjBQpLJVDFHbf&%U%oPMMEI6+=4ig zVOr05<}v@{KI>DbP9Xw(6l}5-jhdLAF2f3a|NdR8BUQGgMPF(~II-7gVZqR$i%d&H zJz3)D(boeCa&iLZVoWnF8K$og@i4gwSkv&?JqiIv2umo-B^#x&kuv@JqbH5Uj6bsw zvK;rGJ%>I}PoHfBM+**v4?%rbjhN;vX>obE^P6Ibmpo34^35MF=Bq=sU+J)C-(5a@ zG84FWzq|p@b#UGwn;!%OWL@Rjx%26$F)ixF8$VObW`!0Bh99-|nKNg?mywAGCOd#b zGQ>g<)Kl0&onJTjZa`DIVqdwFhuo5yzU1N7tb>sB5*pGqNj5e%FU%Sf?|XS^{(PB~ z#0+lX$DSEIs9(P^jS1@m*5in>-8dWo&Ed;DJUj#!ymF?b@w`yss#wO_;^Lp-R8P)j zA`pa}tt8ta?IMB6HCbC(L>&?bej+$B^135`ifWwnWpO2j9fy7WScRs*HrNa{>~>x3 zW8HTyrV6xxpv7r_w$i*i!$?clkbzd^OIh!uC7_aw^khbQ*`Tg?J^s= zqP@0I_H!=*Hjj$s)8q-)RG(G%Iv==AaKUEyvTa^_!S<_}@Bh9Q)jP#DN{xm$N_#wSaS7!8arYG>dbM`+lRULtDH|q3uNU1| zp0dy)ShC%~$T5XW{G^JIy|+BAg9s^j2h}qJ^Q7wX8@#+KLqiFwG1rG}@b|Qv@%Jfq zqrY5w$LJwZk;NP}?s-W3fEquj{q)HzU*XYj`x0q{%ffkc9qG(4=Q&rkS zIl^2!7z<~?M|w<>mX=}|;*)bUmn0Q!lQ zpRAeQ2R`t~wYAU*z?0AJCp{K^q?OsV>gHM`X3d?D_$!kWpVlHijoRl^QMllP4IJm< zyw_Lj{|=+g4zJWulUjVP;+C)3cmai(nb=#L?OwZ!Bz}*hb|Y0>KqNHpWn9>bR)7BU zE0^&rLDfbEgEvzrCuLF_JDoPsl_eg*o@hIVAE|@0SbTnFD-$WdJzsy(=I_vLTJdUX z$Q~|pb>hto+YNLlza0BR#ROsh6j?ImO(6bvsYSG3zHH&7zuELFj|Us2^(0wx0)mml zk{QY0z9Y?A1e-nE2lH;qwqbRCoOi3Rmse@H;6Des1hal?Unosy7wFl64^AF9+&s{X zb)AOxO5eK8vr~9=Vb4g1#c&9*6~f4afK8Q$$tbRbry2Z~(+Vf@DatlVcPK%^)kfqc z3rja8T$(Gk5_=u41F~JH3w|AUo;q~xjH-`P=sz3B1MURB^YN#Htv6*7TTRNW(TVu} zhvY$52(Ybmv&o>%St#*lQ`hRe#oxW=ftNY}tWi3%G~CY`=SKha>)%a~K-y1IGMR5z zaPr$06h?V5u{m!CQHUjxc%tNDBuX0<0!Y_tBgrBTw&ZZ*2P-e}1CSM77Ot)W$}kQC?od*%!+!7*X45}KVSHG?SNHvgs9VZ(-J=1_TUpK@FGF_tKw@9_Mt zt`!c56C$MItDSiQ2we|83DX-g5D190L(d`M9v^R5#Bt~V zI83N4-bj%b^KK7m$LdUOVP{tc8+X{XmvQ=;ukFCeV%MyL%0Ql>F)nVcDb)W;^IuV% zx%s7K!~?M2_wg~!tq+u0Q-on+yOe`4PCH?yKs^`&N^aPYoaf)Xd=%)YM_O5sE9wx; zy5owiFr_a(n~)8{3X$;gWp_`H;fD@n@#N%Wfq6;05jK3~9znrJn9b=5cB=_!mlG&? z29_d8&!0ah6ryx!!UK~d51*g#RGgo=f6Aw;)yhKW5yDk$^UA)#81PC2#HyEG_6MQ< zEna~^*Ln1aN#7*nsEA?3t;H$h8XF)pm)AK93saR`j=b@v=D+3Mw?Dp!SCh)nBu!0C zeeCFn9UR`*>K_nL(bObfa~EuWvS!9UlxN|0;H22i&;KwiEKGYRb4g1})VG()T7m|n zUyhCU8kX%MyEbs{O76G6C#N^IjywqBG1AFi0fE}|gU63Q1=o2s%RH)2`ripQDM{<+ z&ZDAP%)O#EN2Lcbu;9+BHXCHy7?N2u0xoKg$nfqc2*H@@#rBvq5#)@X*C zTK}G-HtY9&(er~}J;5`HfUbV=;>Gp091*banQi4RQ@u(fBWrcnv8{-jc73^cJsxb9 z`fK$Eta>iNIQs2VB75h@a(d|hU<2D~r1m=s&y&BsqCcFDKwwjw*aPxo2laku$Qe?t zMaO-}oZT&2pD8i3YoNrvAXh;a@?xlHc`RPLG129z^&Y3|$rhW4qe?}!tC|tH5X#ZU z#ZmF;hgL->-OaVau+a2;B&C2K*l{-VZ4^5BPbw*#=5_uC+K@ds;m+$)&rJocQu3Z_ z&SAr%Y9WT?{v7*=@C;m3pZOt*u z(P0aHWJpL?8N=VmRV8?y6rw#nGt;|x!c(A7_McdkPK0W$7bG6XDU|eSzrF_RkR~UE z@8DfKw%E8eGKj&5aQwzz^cSyhKI#1>9{J|IBB&B4+2kt*_d>pux5 zh&-rQlkgs`E|06niq#buOc^Pj%d$9+_%Hs9#IyJtV&13cZf?m}7{A1Lcy0P8ux8=K z*CmdH&bh6dt~q|=$+4@;nnhMLIz^^9RRM@;n|d_PMmw13NB?!GkB1M$F>ghnp5U;dq6um<4<2*@uU8bzNe=P9L)V{m33N zLT(-L2D!PpBIeD)9n{}OMy}QEXioq1(->Lj3ZCS_hUlU!ZdFlaZ#Dg}p@DsT7Z#2^ zitdzsvaZm#eJxo83UedA{3>iw^Q%j57C-&|bZaE?@4h=hrbv4QW{ZugO8R?cukI*VFZ#QZ zn38*!Qgx4WIt}g?VE9-cMG+jFB>)I5hhOLb8==WyE*!OMFIA#S8i8Cce8l>C+=P-s z9P?3sYI@Tz_x)Hci2WOOU6NiF2dozcs?35|)T0pY`{8WrMI>3g8pFZ`SZc8Mea#no zCT9JAp{Ko90w@~bOgX8o%|QY+*bfdr5h5`me?i_GaQ3($CAHAy`Tea{gp%F*3h(?^ zg)LlGtuL^k<)5udM_pGWU`e3rf<`IQ*>%*KyD>?Xpl}v-pRq95+1UwPdGF50$f%aF zPdkq?&h-XyfD`WHH&Gw_1~?-TTo3#rBzKT4noizw>EEC`xg5B3?`wSB0qF%&NXXyQ z8K#KQ5zaN_I)Va%4B|z-zP)cAq6{{hWap+ZgJcaMkSM$PY5VIk?i|5vk@rcE?!w#! zRrkGli>S$$7$uNbq$_C#R0xe#^W-lVhQ8*D3n|D)=@l#=)Xq0)y+;hpx@w62(rfi@ zLfOh(BP>!8_YxM~AXIaam^nE1voezD-KA1JZv1yNl-1S@4PaSY3Z1k2W*KBwWTCY> z&i>E6 zzTCM^&^4Vd(`Vm3jQl^@h;)l%uqvwT3;pr?_iuwAiF(DZQNIS)5y;?c2>X!9WDR zI*Uw^@=HLsK%(-4QYj4`T>@cYqU339E&KU)%QlmLc0!dk3B~4iLKxh{dXT7c!z;T2 zxnu$Y162by5sC#;uE6T@d=gBiwNH+0f*JuDHgr@PuvAY^uO{TjGI#>54+K*da5MDY z5u0AcFJ$Yswue$9B__Q`!N*Q1W0QY>b+M)B?lFQS`+#Brei9Oait@+u4k%QfQBu-x z&9ca}>Rju*H!=dh!131=HsJrc6NrsX5|=%BK87k8ZpZ@ z0_g}2Lm#U~b=nMOE%ENhvNBkugdwr@!s4Y8D-|WPw%`fw^XdkJ6<9oP+1l;_a|}{? z3V-_D-F?ErK>`3GDj+H*M#aV^z3&c=G7_tHkqZGK26|IZ*bGORcKHcCGgP=z)b{fS zQXM19KZXg*q2*(hJtX7iEDQGK`ElxJnB>E-XJ-3+4hDyH)$1kZ#}Dg20h)U1r|ghRr(~-s_)&C-q9coglQZn%lJv4Qdcq)h0eEXT5vG=CQi67zA#3(}g1 zip#;#(YO`LvIxf5k{*NC`>A?zN&pi5lcz^Tj>X$smT!Et32>H*zmn|wV8e5e3-9g6 zbr0$mRDJSe1-rrk#ERz&C{+HNrdS;qii2nhyHtvkqa_cpA|zf=cM%rRh-kLmAHB?5 zC5{~fzBPLzZ^`B6=7z;|6qJlIVr6YkqbOSWMx+--k?Doi?iyMYC zbRE3_`vB=rT)DyqP5wDHGU&kG9BDoWY=Z)%{ut^G`-OqmBX3eaK0YA!7O4ASDhKtm znVA^@tJ`+aN&OkZnBlRxHq~40zw=l)ytf&!vJ%vWW9BNT4XD~zf5Bb#fKc}^yA3cE zA#5~5?<8V9LrSjG^nIc)VOQL zEb{1&e`e=#Pf`gggp)87f~!e{rH2F}(Hqjm`7Coy0JeN`z8SmE)jGW)ZiMa>>+qW< z*3P=yFM(%b!hMgzF4i7p!Wa=6IzG-Z|2MXmfBM7-lbxE{7QkD|4I7wPSu0^dh#7t% zpJzY*g&>&Q5_rxnEy$iE9~_b*(s%9-YDBl6DVk-#exzi$IDcI8mVfHxZf*)ugRp)1 z-)IR@>h8W~#gK1b<~AltND61p6%|ig>?#K{I5APipk?w<=rfDE`AxWd4_kF`a5_>J zt#fiZZFF6#{yW&+8qXq1(nDinYEd>#58t|Q560EDm9qTtd!7_4D;bWrH0VrGy(B8w;jBG#!?B0olb*tB58K$uUwT(L7r(-|i8xJnSJ;ZzZ(8o^9|th4Y7b zO4!G9tF&g*{PaNgQ~TO@IX_=t?Ic+f&$!p;9s9(l=jKcx9uhu%@sZIe@+~`PDK`A` zVxcb1bVU;98PvKNVM@bnNwPAZQvdPVAx?s94%Qm|`RIDYgQ|6NG&NmV{5F z4HciFG`_@cUY={oJcytF!U!5_B3FJEBV}{CZ29)>+V}lh5y0;9&4Qg2JO&3~5rvVJ z8SX)e+Z!*xU9!JbPQ(#MWOYgym>*K&C({f^Zax_&Bi|gbpPM@uClAF_*l1Q&Rh87% zJvN63??E9wCr^9XDbGC*eHGsU4IDB1b|2ci$<=kZ))B(WR+5!?v;d5LyS>rKNN~C{ zP5aNc1@(|_L%XyYcxpcdHI_UmGE%YFb#)LaAoYg(QNC-a8%Z;rxuGn2dJ=bc96k-P zvRCb01=$i3sslXqg!3PESa8?xVf+HesJG=vhuse9gD6 zi&92;xidNBa3EpAq?QKb;ZgU1wTXE6w&;mHUY#(7c!9)E9qTx&UH2p?h}2Wr`gc2= z1RMz9JbnhrWD)ueK}aH0_Tqe+zy<}fdYjxM?#pmRR-lX%c8@r8`NrQ(=E0#yegG>3 zWB4xkJw8syY37L|DWU2k77h~Xe&3^32Xx2}tcdPAb5>EYOT}-SdRscxzc%?x!0AUU zRYu9%iD)<8QTX;}`<*5okfojxx=wsaKFrly;pu`ga_7j%$VA?}F6z0zvzx6F`rPEi zaas9>hUXL2ybU=b=B*p-cJy47OGv1$p0|HT(EwsV!f}cRPTF?=f?eReL~u&ReSNW8S`4Z6rz-1nR&qMBc^< zX`G-iwwIP>>J|Qyk}$}&?CLie{zg-ahG;4jfN|E$lgnFvx(n6| zj()zTcayQ%*^VzaC_vaT@0B1GLWP76nqs0q+RA2S!J5$F!{K))qUJc&!?xEjfRG6v z6!33$9{0*T%qICQOP;93@K6>w`QZVfl_gI8tu7K_IN7()d-*WwX|o#O=n%FxNe?n8 zJ^e(D5I|nfXUy;Wud=?H4HB~Q8ff?NVc_bAUe(m)%gw!4#e@ESBw9Nl4KA$CcfvlH zrcGb-9&AvIhISR?Hs*o)Q)*j?*b~h3T$cJI2b?Ep${>6{@$!D#!pXMC(?;8RpRnmH zLQ%U}_wFU)sQbzT@SzN<1%!g_?9z$vdqRW=%K?&^+{>xH7LAv*iJ`o8o_mVsp1f6t zQh0J#rMNu!hiXy!AVvKC`f`JjPhbNbn=G_` zUupXQ$+J(~3y%xv(&^nbCiY@^h0O}f6%g;V6lk{gCpa5rgz{@J4mVh`6^HMx4B$t&fRpO+d z!bAemhENjmO)XhZQ8ZwO-2fs=yJ5(-fr!`j^$Z#s8j#-VvEgkmMYC809-m`_X?WM} z-5yQvbiMlPc8hIWn)Mv^z6Gag$ev2FWM~80aC~*rUP(8iLF0%i8g~#Uh4=drDtaU50sy?Srluwbh|z+>Fotf1ByKqQ`%|`hBbdR>yEF#&cr^|+CavEU zG4$4V*OxfPUeQsQb>IwYh)YQSwrv#OVFdw3H*0#g6V4IBdzWrp^BaO^OS-Y`?G$w4 zz;ApS3n(~@p!a_-B%0DkVdH|Tq`5N#{s8obnL5|PApo3}vW-s{EbYv=-$0yCz|P&0 z+nr|bg|W15-N(%>7Tn{ph42ZvI8TGH3k?tV4h#(Z;RHVe_}HL6X^4>qUt%N=n>Po6 zjwPIOV|l{|VHHqDPs)Rb57Rk%mJChI^L4LZ-_N{HrOM|}$VW@`%@AnZ@%eN0j&v%! zvHO!f`k?P4@WAZz2yU=;qoRn4T@$7A1Ub;BrQc!(8zQ9E%z~ofclm%&^k`V(vnrgu z{4PKe+AZ{IOUIq8tUkrXZm~BXe>ANM+P#8fFSYvXX3EmcMV0ov(){t0N#`2!KD@2L z0c_=|j3^zSciTQlE89bZ{)w# z$l%{*0CkYy-xJ=4Vh6^hxg#>0f97X9epAPRWW<4_E32|0{|>;c5*Xj<|6e)OH@dOx zO3KQHkXsfO7s>kF`-g{b-l>IaUCgS(rKU3M_ZviUm6ZXTCeWsmk_MFOZ)q7BckI0? zmq3}@r+jUDgfDUrVT89_kGgaWbp-7BjWBF;unMCEW@&Cz89N^4dn!!iUJ;RCSXL<- zl2o~{;&NCM5)s1*HwSDfyf6@ez>h=UBw^0D^2hmqS*JI^mr*cT!H#Vn4EJ9@@V_g( z6&2#0E)XKw9hP23Tq(RpmWU88Y5UC9w84$=(RK(@KihfCj?~Zjj3{rg-&*>6d*u+( zU}}{M*hKhW{u{yb!QwxHXY2VpL*Mqs-ks9~pSxcxO8}*aF~UCBp{8#H*!VA=>so7u z$1JKSObCw^5el|#t4M0kn_Q_1?sxWxy}NC!fZ1}ADFt%S+3dqxD+u#2(eepvCu;ry z~)1FFm=gWuaiE%M^n(;cqfA_va1;5(G-ED*yf)$^_~sLy*DC0=A^_yYgT_@oR+~VJJqQdm1rQ^gSg01$ zVXQ!OB%EIF{I;bXffffM$TL6x7~#5HtM~B*V$o2l$FpP&S!}G@4;X} z%d-67ihM^Dcj(FMH@z$Noby=-;pihA9SaK!w}6DSEB!qJr9}hj3!TLs99!~;QtYJ1 z90~q~9{9k_3W2{d0LkMqiqEIv*Ct#lhztI2-n?-%f0lO#)Z+&F`)%!F*bZKbNW%Yf zt$TqX$SB>Anv(j|4gT7vn^u=v@}NWJp2JfK=JLO*ZUL5TbTSq7KOoA{=jNB)r|I8X z=3P43lO;$bDxS(yZA;6`8F!cM{(mJdJ;cHK`QLKpf<0ds2vSGJb$#cuo~uY8eR~o^ ziq1_=UTEeIW3&S))MJL2B8>?2O&B+&rDM^aJv|j4c(TkJRY&N)(&Y152hYpNt)1T$ zQG#4Z6diAW3WDebeugJ$yTq+s=%mVhb0s0@H5!>NCaREifzlYbc81nvCC#yi-Kylv z)2svMpyZ5(Q#61&CYn42Q{nEbLq{HwG{JB6L-OQ4Y`D)N*uV(89x)qDz;dX;6o=c{ z^X!gvZdv_)F(}Mvm`Pra$H!8VG>XPYpb$-6H*l{=sE43-622)SrohOkvrGPAa|k5% zxsetEh#+=}^p!DmXVjNeQqPTfY3P0U8vssabGXB!cOQARZx+1VAbk6McK}f&;jCS| z%zHr*QsFeJEAk0QiMROqXo?m-7EG2g>=vl?{s9DbuHA<8nQbfUE?Ai`>$WH%uVz(N zR+>u6zEHIOTI}ZLG(T2%k7^TI-+ZXK?hnKsvKnb(IH;3ub{9ItFops#@BvtZ43H}D z+j_zVY~Oh|+jtp~ej_a{e-O7kEd^98d1%&ZcXZAABBd78ZU!zap>}(rcF=`{z&x2argyz%lp;#kO}J2jTc)Hv~2IT zUI&h6M3Yr_x5w%oiV~dy2S)fr->9jpn{n*Qjl#y5ZZ-@gn*Ol?tRs(Z)ph(-VBN3c zu;v*3lb8Df)7C+CHkgsBSzJkA`85PS23Ebrt8=3pooLmEn~>qOzdJa7c0C8OZ3im=soG}aoZpV4MGZ%g!cnx{i-d~=98;SrP-aovJ`PB5#$vQ9-sYwk#P8< zRRgwFg+Cu|PJC79p9qbmKkoeT^W&_87v<#Ap=^aH!%<80Jp!qv<5YCqo!5Dv;aM-^ zQ^_SB$g*0sXQGlT>mW3$caWPxsNu>~i5A-|tjao#a2Fl7Q7f}b>YUmICaIY%=Iu9n z&Y%`3Ml z;Rg#0+G1qn-Lkm6i&UGNjCqH7?6HwRnP(Es7EjTnAS1ig>${lV?6rxQfQ0f3B&KRp z)F!{tMqi2MG1$)tQ?WkV1~^6OPq@0iw->rSNV2xhI;bI+fV(r$k_|rB82o6Y%09wx zI?Z;1bmBz+mfk)pw^d_TxwX$*Teltf=e7uzAh>$}9vxvs&i=Y+(+;)lgDF?3UMiO@ z&Gwfvg@#&aB;(qO1QO2$cU_lBc{JQVfT<5{LhF{-zm>1tj*N~54aytqezVE^auUo$ z@z(C?&#c{fWDulnVf?z$^zNyn;gv|o^1)sshd+FgGM!RSy+O`IR**6A$pMt7d{q6X z4iziD-tq*W5amA?q}!Ta$=RZ^FY?Hy(*f!m znHc%5d2y4@{-4!Uc4jB~^}MQ$UZC6d^6>KPun)}eSC8HvR3kn1>-9%<4`V5ztq~2! z5tD2#^|8XvS&IYJq1|t@%{3A*^lQ_ke;Yo58k-?mU^%#Xcn+C`40PLZeZMhRz_;7u7m>0AQ%!i>S{Cu`<7r3+c^YD~^Yh1)32!+S6 zLkvA-Y1MY;Z3NtX;0W_&5X6Pqd6Cw!#zKLxtJZhOKdX?N2TP09Xnl@ zXgD28>^?p8W!Zyy{IA`iDxK~F{L;Maa@Pgr!C%$;az|I;{X zq8SkzODr?0z1r_ZNU$Tg@dZ!48cy6W0Em|ka?ae@f@lxG1tD;{9(ZrdSbd;OIP$O= z6FLH~0etp9rl;?Bc6XW)R(*`B1xDE*ksyMvepnYr&i+5iB4i~n7$U}N2@?H+Fr(xD zQM|~VJV~BfFhvWeIz-ERu)q*_3)B>jZCc-}hiz)u4g_0-b8&m5IT+MNl(>Xs>F-bd z%K8X7iD$t)*2cUdW0se*`B#f6p}4{I`wd=C^kh{dcL|E0j+1f>0jsPf9gFL4{(J31 zr$6Lm9hP9cXqo8dLq9nP(~YR54p|+JdS-9cT*y9_&+txLq?4!p6?4q-o2?(^-~i4tT%ra%l7R`h&PfbI8ZMRplPkFtgNSV!_ZJadxAoscLL9TjW1GO6?f*D(5ZU( z3EicHjnmW9hB)nELVB?f#=qePhzl1lu3KC)HRTkxZWX)!jq;%GVVS*i-!H=RK1$2V z$afN{fR>PECehT1yJ$W`v0MOOEh_$6i}hn!_iR($^T8US=O-wxWc1Im3UFU2A7r|+ z?KX`Htsgq(yil@E;<|{=obJT4{m%CTI7Es$kA9bmd=afx%8K-**xS3TMYewv)Qc-P zTK?dlOpkB5ZopkI^>A@W*!|ZB{qB?3e~!#;@olG&ubDxKVd1o;wHBeu%ioMdiuip-#=-^*5)e zr+cQ_^P@fMbF3R)Z{;|8d)aRrBVPi>`_LDtl<2#FP$rN4fMeJV``3zn%CmKTJ z$K^(M@ZiL7YJX*4@zS5UZ3nq8`0gh?U^x$`Y!^OhfC~r&v~#wER)^g+Ja%k4e)5=I zWE^e&ZJJnzj|HfOmLFndJjBR^0m(qUdlVNJ8|#2OKpj-?IX(U8>)c$w?z0V> zYYR_;X!XUAMA9Kl>fW8b^ef9k`TF(iKUE({9{sp5*}qFYBhgXxN6?nRADiaJ3P+Fl z`8E@CAo4Bm&P}3090Jl`lmQJLzeJXKUB8G&%*c0fc72U{cKB4&yZ4UM7H>4=%C`}( zMIc4uJ`XVJ9+){?{`7)aU4$OZaZv8Dnro@WUGO2R2CPm{v^nx--ZYKXPzkK_QxqZc zel37Rtm~2)F@eYolFoAiKo~&kGPSNriD&g&M4Pi2mS!oasTW4YbJkrq(tD2=`=lI9 zdf>})o>rFole*`I&CTfSf@r=EWlUSb>HEs}NWV?y?X-bX21S}q-6s{# z3N8>!7rF0L-MxLM9{(;ErbCL#1*;`6j9ZGV?d^*fzlews(2_AhNKY*F&D9@LLw_1o zJ>T3UyCldRVvEBlCje{3r3LV7FF;NbH{1*-m9N#bvUfOApNnyCP@5iR=B*V!M@?A* z)=OKvG}hf$k&M{U`b8^K${_5@Zl)HVMxX=*p1XL?_;bnN*DZ`>uwPz!9qH_II#6sK zo$W#GjV7opVdYY!IRrL|sDHtf5Fw6ezL`^fpi}>2>jnnzJqp*>T#_$Vx|oeX-;1cw zbzwaBl)ssI3u84krf9D}Ad1`int6NPV*uAHu}thRWugBx?}Mkr(UWn~?@bw8mft!$ zJ$j>2H~r|+8p3G2S4(x@xcbELY2k60V{Q)_=#rC971}ZK<=RZGz9ogh z2go;sn{g`8NM{zM027i4g2@A9x4!;s@Ygy%e01D7CHsi^f)(41Z{=;FJlrA5w6c!a zpybFVU~Iim6^Ei8mIc=vg+zyPvabC^Ag33X+hL#Qv%_zbnn20B45cWu=FIEfviZEM zLF8BJw2M-7bB|HqC-`x^R(c2GXo z@sf0R{upth*QgiL@0210;|yQljTHeqYfv}0V5_4Q%XB}YKf0i6TT4Sjb_vvSc)PAJ zzKCCM@9(-c#`rl$y?;C|d!8xSK$&cRAdYEzL`)3sk2rKK_F@Wb7({=e|BfRMQ6u%Q zZvNI-7x=?%y-;$?PKj%Ug-W4rWol*Kc~**Y0{^@~?@xlzLxsMBgi9e%qn3fMv97CE zy1=kgl=?ZBt2>ybz$Vk=tFxUoMrWh%MQE%Qruwo-{xgR*H|ff{5LpquMBu7nb;ltU zbzO0Q>om|4?Mg-ZDs+&@CF$PkTEI?Fyt3LIa4dz@&25(HLD-gmz9ZxiZuN0l?28~g z44_C!gjk+s+5Qmi_oW3xj}P>337eE_3ErcbeL&-&?f%!AjZ*u9eOV6t>(`Hgqky5v zk7y7lh$=7?T3Oq@gQrVbY`G88g9YDtY)xlw^pI+u^>K0W>))%6viwM8SZ{0P;g%02 zSL4KGRJ~_mwm}Zg{V_7Y8ww}*cUy2WzTJjgr@yZliWi%xoA-*)N! zRc*)A<2R_MTCQcB-khvnEww$xmu1JlMpO)XYyq}rO*jzIm3eIYdaE^DcF%n{4X{Gs zxSHR|mbqU{N;&lvi0n>_wY7*({IKWw**~-j++zRQnp6X@tH8At37RzRX466Rol7{+ zr5Fo;f*O4x*T%R;)=%utTESw`3s360!qYws(NetjVBCHVT`rUvO-VPb-$IS725`I+lHWvz!-i*KPKTH#8O$l;>3j?t+)hs#AW<-~Xxc;vPfgv`Y!(YG_R$5GigeA*-Dy zf%-ax(Gfj>ebP98AVH5ytIppOcDK2QY z)dlu+>(ifH-z>kb!++_Xo24Qv-wgzFi$*swT#-m{*VyESnvnDq5Rz#a80zhcQ8+Tg zf&js_1SP}Uteq&mlau#D*|gHsKuamKbK--dB%)U^CdS-xr~QF-LXCP2w0Joc445i< zHqjhsf?f?|xSjuBV`m=MbGr8NFk-ULG?a*GgorkT$~GiwM97jzsYY7pS5jJ-nUW=0 zTSTcOL`f>qV#wNNZBZntkd#V9>UrNduk$SDJkN9fJeuF{_r1UOecjjfxjvuIwT12} zZfAMmW;u#Xv9yoxt>z%>*uGr`pRE} zOx2W9nmN>3u;_)KCN!;El$OO9n7{%<#=p!r0tEu59&^dGXzPx>(0a>04^GfHy94i9 zxWKIxtiOxu7&~HKNUHLPtD#!e%9ninZJL#=zl*M|pVj#GZgjiJi=R&VC|_&9%Ib=#%;E{1#4kTu0m!%K5RZ=p! zuX)zUp>uw=xG(j*s>+uV3tKSL+UV%$F_P||i@-r4njEFb400vckb=xB#IHHt{1rVq z`ln=<%L;Mo+?90wNne#lh!obYtqMbd8euXduD&Wg!M^x1r%Qk-aO!MP#)BrGB^x&U zM3QJi40>(&%>FI6==x`sU4W$?SHD_3(d%RR%IJ=j&O80poebys{kkpJ(6n7)&pDa7 znVB*MCQpGJP*w;x5mX4KT_RC!Ypl7s$EXhQCl8?OOrc;}(9mf@?_W`0A4vBA$3vlr z>}<@v5vJ{AL$cr1Yp#;XO>D$8*WB!z)3H!^mVN&#u57}7E+}Qef(1eaV-hoWg8-5} zw$sa)hj`rHRmOK`Ty0jDi8jjPA9}XF&We1IWq92>MWO4k5wSjhF0eT2{`6+YSnLii zZ=W;A3M-)?)nzki^|q3Bt^L}7tir{u8fcKa;h#Oo--ABAuPrKgrJ}ArReCCH(6}2< z-Rd62+;}=`*pFA$RgHtraN4^K@w{U<^mqI)4(kzy1g01m7q)r7UV--M9y!y7}VsxJvA5 z8JQ?d?o17d)~b@QTdso!cVs*`c(At1y+o_^%_rP1-;AD}XQg~Z$9Clehui5{mvk1z z*@W9Y|G0ipjErpTh%U;;_D{Mjk`q>$?W5^riEVlSQmJvXVlbuuDJMKu*2pbx`!1g>N|IHA?kOn<2VG|FbjgK7T0 zdvPl(+qGJ5=Iq(9g2RmrEiHwlTBv@da>Mn)SOr{8=b_|Q)tg0uc$BB&T`he#bIw@h z5n-DH&dJOM)JV0(y|T?^Mct$7n0bSnB9iUadhAs?W?X3=N=Ru zo=@U>CVYmTPrEK8J36+ceEli5EL~3vsxg<00$Q4s4OlheMKm2}OWJwqV`>(vPSgqO zVhBkwH753INm60ti-y$`H{D4eHsb1=$JJFHi{qAWi`q4H^rAbT^=E~60Lv;4?RU!w zH>yEY7Ym*40!L8}@3QV5C}^zw46~M|#>OZb>Os?*anCS`oYB?ni2mCHK{nopJ1%!B z&MI%SyWv?^Q((`}~U^6u_eM_x1#T;g3n_?+;XCREH|q zLH@#997U`M;ijEVa@m7huC-5Ub8h#np6~K>ORI_5##Ir(2{~(_WW|nI`{+TNZJKjx za`QfeuSxPTb^pLXA^RRQ#WRHDL-M*9TWIYXVN4%z7{XX@c6=)B^(E-i@o#%&>m;0{~Y`xZ|nv*<@^<$EkTcr3n=T2ld zn%4dK#~%}&pZiz66QBZrMZ7ro*Rfp@pWE8T$*tKK-)B~7N@%QfYr;8eu%f)xBZqxA z_r>#!Z}00%;UQ?t;=w(31DkKEOD%tAj-UnhLdL|NhgJd2HF)|H=Rj4uqz1dNQ6 zW6t2G!=)z$34smvyL>I;K^tJ?Qq$N4A68tFuBd3J46L5!(s1-04E@~cFDkZ0x=Ti0 zZ@Q}@RV6~r&AR=E4$bB2sp?2OsSP)UttA${_mC+@mX=YAKZ!c1)G2G(%5utb(If?Z zU*1dRWo@mQrdr(K$!mJgnA+amr+sa>^sqkz`{*|BnbbGgsn44?DRD_CZNGepL4}2! zG`AKf@uudJ1#pMJV>-he`?+-MU_D*k7x+9A>{3pbavj5BfkV}j^1w+lU@ZOt)zi*f zcFn%gaVhWGwLyPOcAKy*YR69wOKhhskh=W~S@+(kpC?TUg*~ubdTVa?Ib=XE8MT1h z#Hp0R&38xXRIN)GEQa&TO;A=ryfvmlfh*kVx8b&9l)DnH%MGpj^(!n58~^EjW~6?= zj^{HIzP(zL^CW^2m;h*Y1%X$JFA&0gE!+GxX~t9=%g$PKvdC1`{_3G?Oki#xIGV?l zEBbZX+|suBqie&AbmUe)&+|k^8=Hr$wjMWR9D# z-Xbz=_pe{$>&)k-4q#A7d~$!-jcd&56t$&iFKas9#jR9eB7!Hyl3a^CVYI5>;9e2l zGFmnvKGN%5eV=4hTpLg^HMobvoNpgBOdCvr8i!8IHh$V!%oc??jbWcV=zBMT6Lf;u z8;vCeMx1~2AG7=pdK=stW!@Lhx^?U9n(vK{$mncryVSn5TkiA|zjh1jeg4F^_h!ZpsVWg(qTAVPI2}zt zVLYUv;X}47x9rrma1Nmkdcu=4_6Rig_2Nk+iAx1>!VP%&C2?{qa=|1Qmt^JQ(GHu_)pVn zhDO9Hemm{`R7MHS4t>xM03)Z5x31r~aX76|(xOJ3o*$i^@w9Bxhu2ymQwA&jl2?1t z_0Jf?rgsjaD!gR-5EbRH0vb3ss4E4Vg*K5T?L(4)y@)cPLER+WsX8RA%$SR#Yn|G; z8C^HgSp4qv&i*rsRON1Wg$l0p*}gDvTK zyN5ew5AixMThaY5>O(Wx-`lk!oOTo{pB1PDR(vl|oLK?)nbsZ}xAuw^&XADV<^paz zELzq+|7&FHrxGu0$v_?o1c#5;H>W@@yRV?2Aw^7F?TVw_7wiynMRs;Jk$!3;UDWju z@?dzZDVeb0*-Y;4xiA-Z=Du$E$KFu>jh+YmyDjbmchd-=AAABzj^O9QsY&rU-9Efo zHUu&4a|8Vkodla1+Ahsl2@-8#@*qtA6r9qh8yW5D6_-2pRj1p3c!&uSLse9^ckR(% z9eyd7N6#(b{47QlP}8{$uAw4r2J02JAiSz`J{{hfttFT*zKh(WstJLEb@U_*(ca;JkVyoBXJUNHi!pRLryuJL)4P^Af;eyrZU%YuhXzXP+g%ALea-^Qd z81$PNL%EC3RrT&YdQ@^-37E&Uv@qU$Cz4cNfoM`;jQ(?ZtpFj`5pRSH4F92JSB&lK zMhUqlP1q}lpe)|*j{Zo+*My{Is# zOaJ&PPPA?t8rH{c4cEj0;wwyp^H(2RSawQMP=ztE94_)(dau1)g&%d^DaL>7cXI`p|dXWw$LP$)3GSzbG{=su* z$@f0XsSdsjyKNo?J*;PWxbMQnopSCT1T!h%s$WUB*-~9|gX4JB`UvCzyj53a9%kcf zN~(>dxNk#ns1wwFa`i!a9tSAUOfo!NF%Yre7|!CFY%123diSqg9OS&dx;WIGz?kq{M&Y%_wZ?yg? z19uJ^l^^!D@`mlH3=XSynJsp{n9>PSikMfy`E**C?2a+)o|h|r8~!8YlKgXC3qG#s zzzlY>+Z!WD(i)*g!r9NXwAWP&bYH-672uFUzT)|z;kQ6`uL~*G`VAW}Ru6$dB6~;v zd2T?yHqaaa^Dbj;${s(){7(tVXa$*uwyuq%_W;LjVO}XD?Kz9whz5=xWmi6wJbAq$ z>Eq||p+=(DSfZG8);m76(R@GJA;OaiQ*E#()@>=a0!b-vxRCbQyx@C`sq9FJL}n$f z7TB_M$lRemGDj!9!kafUTm)mrgFKtC_^=zik)%_fg=#3J4phpWOJ4ZgB7-~1MdMQU z=pdPN+4UU~TaqNxnlwI7N)bm@`}ZoNBGv)i05(~2?v^?Fpl$g;`Wi}v1?0PqAtMgN z(7(^=RRj5pI3yYiER%3E;-3(m$-ElpSQ3!`o_s~9W(2rTJZ{2#j`ucQ(fdP1n4_)stM>(d!fv)q{)(c zdS^hucuso&x@+6bhY1XF?4y+Qd4`5s820_nXrcZFkJDT~x7rX($4Faw7vsnTuDSwzRX$;i!g^C%0=J#TX8#6f)t}VNnff1NE!x4^ftgF%nBJx}1#3m&2v!rtFIyR;U?An(Gb)IZlwN)M#FFuv z))ET&IJFm=O^fHwm7&%13?Y1GMRvxlR!N?qj6+B{JtY;IIku07>uQ3&4jee$lKAx= zo%JS3x~V>qVNv(*H~G~$H(r__f_HO&ni6odt_fcq<`$(m?98!M7(6&nEvxMc3~0wk zDI-1Oi+qX%c@BDOT)|0BD3_UXX@QD%R&83O)S}K}lnK;KVH8TS7~yaUUXKQKDO;tR z2*B7jxjl9r5NjNf8St=r9(^3TFjjP`#IPAmC?#;bxVE5;$ zbDO-F|oO}NUd}N&-yuGSHbWR5v717$YVzLk8nlSCWLU?M}%Lf_--FBY@{kw zw#!hGMb3b?r!{9!T;1o-pI0p%5L~d4Ye2Zr9uNL&$Ca8x58ZxSv`CiPDRjoCfGM$M zZSggJHh-#hLcj&`x!KVp;{rPZ$H#k(ABABx$+73hm$Ab8qpP`1IG=pCQ34i()bKb< zDX_oPX0^DeS7O`($PB_5jW0j_rzBPoDfsTyay)sHpTo{q^)vo8OYcap(W94gh9a?r z*Y;A6ezB={!((OUTSIy_O)YsM+jJZ(xwKB-9FnQ8@%F6yovyG2`9+tPcQzY;5APi zWMR;ETfL`WPx&igH#acU(6_L#*d2(S{dMp~YPiu`WO|qi1R_u|FQtV7RLpxwb|mhZ z>M8p^rlo~YrW$Tk?p^O$?li6d*v0GfXEI@FYf$k+oM{sOgLsSHEB@2+0rRRVO~Xii0tgyv*QY0 z61)%Vx@&&h)?-!*|1D{GB9I2j<~m_S5CrpT=_7%1$?18VuX-m&$FMl^JjHnGHyea5 z_qkv+VC=5jx$x#*oPtU)r8u*J!)e9-5L!G|Qtg-F!>_CF%B{IbKjpalPhck6Yjr6rXrk~gbX1M?aDKl9 z_%lwNH!CuI5vasan@YGbK~{p-BE|@*CcyFpd9E9o0gVCarL`Re^w@9FE6IPa=0cyE){BgHvd5)c@ujf>@KOwtrEztu+BVTDmg zHmmBl_rQTQlk^v~+B>zBC$5&eE~Jd0j#l8Y%M_zeu!kGXo1pC}h{y8&RHt1@rLT!w z*jjPAUQHyQ*UY3m%BeMDAB|=o$=q}f)p3iD;o5W%v!0f(%xb=8sL#*=G0x{IT80-7 zPVP@6LYA)b91H#ZDy&Z}nqj->y@~NH>ez%@mUw?o8|b%MoJ@Ucj$Zty(X{=q6Xcx3 z;_@@ZTimjNti-5vM`O)LP-5HGa);}!1U5>}w|>IKZK95j0(Ejuvzu@k7w^inR&*L$ zb%2I^6G3xIUG%j#MmOof9!bf%!RfqIC07(tpXWWmzDmEwqw4lgm0PuwPj@YjP!3Ce0B3mUcbNcWM&H1mG!J9xwt=uFSajaI+XS z!2gj1J3%P4L1b{7i>mtkzOM8JYyts{g1~0y-en>u?_UbdHPHX*TMv_NCsi9_G~G!)dvL#pbX4ufya7{;d@EBnky+tDnVv) zQlu|$Vv~+ZK!M!zGVV~mOoY0dCb5l%BiAaqqU3D$lDb6YJjBTyu&pzN;sR)tkg%Ld zNyd{HHgsoEA|llLi}_O4o9V=37+6DegUl!fI#C8WF8!5oG-fJ)AY5d~`J{w_kSM=| z(F>bYZG5{PowT&MK9n2{=AirT%(I_zcjrEY;RvvXJ<`NebZW?aaHYsYP?h$cXuJE2nHkl z!z<*2ou={bppq%L}UhZxkP6k=*8(|rXXEI z?IC#1=9{=_la#k?H>fzy>G3TjE9L@ATD}C006J%>kcc|~0|}cddcTB4kK1i!_;skSUb0%!N{tL{W$`m!UEh5z>G%QwW)- zjF~d-?b_V2g$+JEe|-?cuU-u3o8_jBLZbzbLroX2sT_bt5>YFoGL*g_(awrZ%W z=#xm~N+c55XX?%PFXuiF*WwQu_u~fcr(7<$ds({LkaR5FFI{wTzi5AcucwWxo4t$k zK@lkt38B4q?(Ub|WJN`t{_hWnxVYMi@{h2e$3mW<9s_^UTzBcYy=9Oe=;FmStG*rN8GFUb6%ySRtZh9#7dUv|C{F%-`#mXIpPDO}Q8|{0 zwv?7p8UL>Cz#NGGKyB&CL!!Z7RsL2dF%y5$9!cUM{vvN5nL6>E3u@%|h;MwoyJ_#g zOYEjmB0eW3_kUjCnHW3W)clVE$L~}DZM89?9ETiEzgsAOc2Yr^tgDt7~1}ud&%&o$32{v9nOPWBEEIt^c%bsqf$Wjmc^h)1&E$pGHfyVnjZ6 zbtS|}yS%pgOz+T=F;g**8@Y)aQDIFCSic%QcPQ>Lr##(xRys}D@-MX2AcDu-(!i|kKIfoX0tk!USVmclvMJwj6=7R%d(~CU; z&6%h8W(TT+va^LB9kflux*WMW%hTaM)m5VQJ;${A@gYGeDXD?Fgt#a2KFn-vpXSHE zi?h?M&Nb^cc666CywUgVbbeG1>H9VZnY z#i#o^V8cHvD{K1CpX9UIM%G_rBP)Wa`uqASu@Z)*-iJsW2QOF;eSI|dyFH3m=W#>6 z{V5VwV!5u~yx3hJ(Qko+xJQriHagBDv5Fh3QCOwe!drLlq#O;}ytKUBgcVy}n5Yfg zF8ZU;X{T-dll?B;??~E;LkjmFq76pt8h3XR(({UYE ze!W2a@yem~fLWQZ#*-sgGYnpFV;xh?-}^WEi`>0?R}!ml=0R(DHkwiST}Vt!%<`h* zHhkwypi!~Aee^`(#dcsB9Vg}V%xPtIu-0z;p{RKdslc|Lv$>dlw=6#`Z5VribFSlKd7nb^7A%u? zZb(Roz`1khS`oE&Q!L6Vd@<$0jF(@#4r<0HBxD-q@vg70r>SM?r>e(E3Cnp+ZYuxy zkuq@WPANuC&LsmAMTM&~ zpZBoSZGKl;YSqQ7;5|3OZ_DDqQTx=|`am^&$195pa^+*k6i5EV2pKB3zqYwLJ3wkHpBm*++mGtxF{5aRhBx`_&@EW#^wNwKIR(YvfhgVX;(+bjw;z$0H!QsP$iAy7Rjc};@J`&4R{1_A z?)m!)#GQ-p2*+IuXpVn)Upo2Yq8PhDfy1_&^t=1&6*sKM+p^t9n?i8>BaxRPrJOnr z2P`}gJa^c8j-T{*b}(#V8CMZj!=0YwY%+Fsje(eFB3F5TmM z3`tP~d#0KkDeEy-<+v*u5%3cGioaKixg4^2%H zHI6F_6a6vf{=EwmodaJVMZLTF$8~Aivhu?ReCqbRL7{V3O>?@gl@q0AjL2>hPE^F} z^|ox|DbvL~+xqGGd7HVB#yh)Yn)282vnLB{k={<6I1w-JvyiZobt;{n$QMY*SFT){ zo*mTcD0128K15?VIiO3)r4pZivHkv+FY2G}?%p|35E@E-O7F_T??PdfJYfBA`l!@utOL1v z6z^82j{IIET-)Bt5LN;Gfzrt&7G=8>N_A=`KK$@tt>}B}%3zv!S&!RB1rC-rHXm_I z25(*WBhMW~eza|TcKmCsco6d9J!uy+vv*f2kdrREx;`^2^$zsR%+PzPytK45jZ+n+ z;ODJ?xMN=_-=*Li`{G<~Q;F9U`*;n4Zok$;V#VloNQM%7e`V(U^5Rr|E4y8_k2f=#9wTGJ@ef>;Bx<`aJ$aCdla9%UtbP;e&$6}sgKtd zHlZ&;R1Cx;B1{f?h)_*P{2+d-Eg*cygP7zRKEEz{aV?sh)G10v>%;G_7emJ0BdhJz-;Il`LUXld?n7F6r)WIW`+b zD*9b|#CO};+FVNam*K>2(L;3$D`-PD6;Mi0@G}xf?ebQ*_(SXgsBXU9qj1{@t^PJ1A3`!aa;Iph-I&fP+Sjv|6cKXuKDM-wzE^O zgVj$Gk;kPUi_mL)>t>51X;|j_Hh2$L-%+FgL2v&)@qeN;x?pyS6iH&GP*YP= zS|O8_kr_1!C$L|)nuWz)d|J#e;(hq0B=&b@zXt~fc>V!Ib<6JbmD}#u+5X?b<1)!F z5a%1WJ}+|Y9hIP*>YdnDF9 zxgT`Xv>&}JDvA+pu|6U25gR%4=MTkRt%pLg=LneU!W`JgFCo#y>MvpaCCN*sPrkjq zo$S}}uo}KM;2I0aD>J%jw_5JX>W|LOag$r2FTM|JFFXBreO=df!NEv3-eAVQL;oAq zR#9E{^0Gya@Q(SnHn%qIJ!mP$-n|TL2T;<;W?f(`0u@v@~>4mN80s%zP{`-t~@a!rV`m&aZ=f% zZ}o3ueVS6PE^crlQ?4czW37n#{rAtX?fh6Pfg+I@USIulfx}h<(U6IccTIhIz_#~b zq>S5z<`3=d96=QpMrBuKxPfCXcE5Y1pQ>qTW%Z%VZ{>~W#17n4<+pF)`S#8FY1$lx zE9;}T@Yhmn*VNY-;_eLu&^*t8xsN4_}S?DTeo52TS%BmCU0E_Y955$-X=IZ zQPiWKV1kfZp;x`beiWr^X?6(*VzG$v6jrB^mM)=mmdFdf7J+19aOcyNMD)faybF7`$wD8#hv5CtyBSN zh>9E;87c0}!pV68e~DvYJ=I|QSc2`zbvLC**7ik~`+jQj0bRZQ2Co*#g z!}?Y1*3u;;KtYtxXQwmueOD%mh*Fjvz|P09{}~N6wO-&BYU`^QJd{(-- zYB>YAB-&|WV#2Dc(4qDD$wChgkMP28Hw|7|TyypGloFo$`Sui<1MXW0VSvIcQS2$C*q`Z+B-W1aT@2_Z4)!atv+Qqe$RPi zwt>w!y}tVQL8F~yHtp7}XOL|j06sJYQe{1VXJAj}+B$kXCviS}-~9SzQE=hg4v)o2 z)8=B_ub>jH`2u~(^B(^d9eMN-ClxlFdU`hY3oBKo0Kc4k79F6jB$nf2 zV`C(~ejl~DDP30=m=RfcC2${d#mrNH@Jh5{_Nc+A(vtQ~!94*RU31>as^J900lFl> zr|v^C=Z(G%!&4mYTa#%p*lbb(6oAf{Na{v(RaE z`U8XST%#I#xJF=F>~(kX9znqu{I#2d$dVhE+7=JX$^xj~LOfvwgaKQJI$hqUUikJH zF!bc}(*h4gOm|H9?dhN~Mw0qjinNJk%k!KtTKL`0GT3v)%gYPLU8fd7_qn+@0Vx+762sivdYFnak)W1&FhVvVAyU{Rr0H29WS;qGBRYG+9HAsho+aseMZZ z6VX(m*ZbX35SClEd>fgCyu*A~z{Z+1Qc`74kNMCFN)-bu2S+t>R9*jP={(I9F% zI_-vf6c)M3$;msM@{iHWpBH1-u3cN6r^wgPUi{tu0UxvL$QKYbd$-rP@Z#xQv#u8I zxsTh;Upjsl0pirr(_=*YGSIB6sMBB+!dSU0{>at)KzXka)trj{7mZvT9c%kPN9dR` zl&viomuhM=ZcdGEDhVCn6%%7bJtrq8e`e}RLqpSx2S<}ES99n@7Uj^QorrVA z^`&I{c63L&y1F~0owad7J;v|Plyxtxt(m*hXcJ_|DWtuMo}QlkRXqKDUY#9AMb6*M z1J*(k6ZfEzO|x%Kt5#U8dhm}Usl3CV`U7ZO=dol3_zN%gf?2WLj2kq_w_`%a4VBnFfVI}C7Zw(-j+e>f9NaJSuP~_`So|j4Bjz@w-F#XT zKbC6s`R?3UYZ!XXQIiCP|2UjX?JHLfBcF?R-RERwRk?IY3|moITN{SvWHlin_>|lz z1yM9pm;uLZTQW`($$g*N-PksUU5D=h0k{H*ARF5(^iutYE7TjK^?{#nBGmJ++}zyU zB;rmvIXOuK-{NA>DvTLkc>Nz!q<#%&Emko=0nNfNzLYlq;J_K;*O6<+3`}SF{(}qG zQ2!qtzRX?Z+*R4#{RFobk34@e%RszTON;5h2dOqe`ww8wht;yJzQ5nV*x1V6{#H?u zG`dFju@)NOgwk5=lPN6uk3c-R_}$rYXe?-<)N`W4%elyB(HX};746@vq9Q)?GGF)K zKO$ege7U$Tgrf^wz&wRG;@*E1-7GNgKHVorB%L~jFVXrCJW^8C1(x_aoShnLqP`}={?ckh^2^zLV) zqQr9IlNHs~0yV|gD5!YHh7%P7o**~qflojx`2doP^lmXv{A zGt?qDKfYN*d-otbJRGb=X7T0z8y&?SFKX`Z4;%ZQn`pmNQBiUJR|Q406*A=(J)A4w z+{Xw%)+FMPlrD_53VN)sUIpxUab>rQ>r1rXgTH_8vgtw>bLJX3Wi&2alc@Oqv4UUm zXhB1R-r(TiKM;QL;>FW-@iMKz(+~7D2WuW^k)^5Sn7lo|`ZdviS>tU<$@{#*QlG`= zptJ;xjg243`*^md>+adc%9;|b|D33o3W7NsD`_{}_=45f>Jk(}qE&pi43$9!X}5+LMB!`Id)!Fb#(_FpSr?vGGBjhJagO~NDK z>}m{ti99yZo~PFJ?&_(Du99;A4B7&zAv#LJ1}~N5uS_fb{rmUh(jx@vInZwoi<4ci z+C1jR&J2Qb^j{w3^Y}Y!Q-FGK=9vmjD=56wXnn-mNi<^T&`^knbiTO?B^`kEoZ!5M*pq~?BH@-nT`(W9D2n-tgWIc~k!*qnru ztGY6{Q_eH%fO*+Fea%b-zvT?4hw)W0#uqG8xo4$CYDT6q^_ruV}7x=Gvp8?dO0?aebN~3p3sATSxo_n#6Q(v0|F#UwQ1xMsr*2Ykr%W2R&R(?H53}7L%PCu5k zXH6oAr}07s1%;ZXCjG7wFVQw9P*TaJM&dCfR)i4A#@04{*REaK4EVVR0;hPf)Sn~v zoI~C^2jb-vda;wnMb6=`-!IZA%zjj z`Zr5UOUVg%_duVZxdl2=U|Oqgu{YdQSHS9!& zaghiLTDV8zu^V(x5y5GL<>gAQ17Bv=kGFRo)6+6|5$Ovgn$ISEc z^EV}-Irxbt1PDCOZ^aX=n+Cu>0PvZ3MNt&fe3zalV08|9{x(opU$R2o`8d*;3~1d4 zB4Yrw@9l-Mcp0}({UgDQ+ zG^E;=W%w3=19dsfLk`#z)XVV~XS3~qk_jFin+$}=35<88tNH=h;@8&I=N~7$!Q#Xt z<3=bf^S3R2F||?-jppXz2}YKT6g($FI&$QQ*pBdMA;bFsI?W)ZfB*hHCk%#)U5?Fv ziHw_juagnGBB%E}xt7)&Uyci314C$g$Ih^ek!~>DEOe@XY!aEc{6V@1R_FrAq*XBS zCS|^;26aTf<<)&cR}Rh?oxaR=QL_Oc>nxME_rE?m822gRl9$)#@84r?GVGZ}(6TF9 zp^gwdJi*wYHMl(aQ)ctl9aR7t({pp1EEP%7{SXiA7icDJ0TWVV-^TR*blE;-LT$RXo<{MVOhZ?j&z#ZoZc zoI+#rhUB+w*Gu)QKf?DcCSsC-?4FAd$T2Z7X+hJ2Y+K;cW44v^$dCL|5a9$xL*!HtA?E_t=3{E&q;nmR z6r$HuRaKuOrk+Dc`1qFB?cG*?B*N!cX8H)qCsixv#FILXImK>p=51@2wUTO*Kbp~>c$zWZAar=)S8AzWQ2hKdtKr^h? zKKUhb-*X(B1K!}=GwR6SIE2Ui7TRso*5zf~hE79I zYA(sj;8ZyM+^JJ~&G)tKIrM#tKDmt1Yc30s0#W)OZU}g+c=ole(+i}r z%sHM)KXHb*0s`tec)2m?A8Fs8pUr-b#?H=&o`K;U+9Um|e}>LLU^<|7ch_@3{l;~w zPE>jF7A!%ZiLL{K(vW6d0web;_HfmCAejT`ASwBMe0&c1ExT`HVtVRj@1ml5;E-32 z{%Di^(~p(PnPq+tw$R<_S?4^W=kS$1^|g%;OR$hov_q3h=0s<|{OQ`8p;{yf{`tgl z)$7PjkQmSjmlN2=k&BCq$U#5|P}E+W3gK25_({XX`~gzZNW)VKXba>?sK`PlZ>F=? zIHG=r&`uA=y!6T~G!V~3&vm`t-k1LJ+KKdXUS)>nNr7!K8ONwDd9F{_UuAGv zSzph!7TrSJ}LEtEBa)bk3Btm z04keO8lBS=+=l4b*w|P_Obmu=)@?r1k2F%`m^41zDH&+r{424fiMcgw`*f#^(Tj$^ ze_YzmWj>=!;nm6i6iit_NbYLB)uokV=_m9`i`o2NTVFf# zBER;u29rN&*Y1K^bK81{n2(R8zfTHv=200HG>yfIaoIcE3fYu&<^GMlXtlaWjD5$B z1gyt{CI!XGvbwrTa2#Mfy<_HY=yzO^r`%Hh?05&ehnbntM&gBU`GYAJ#LCkXD{CHH z`onvNoy^&J`q#CyF?V@LA0t~8bv%)lTHZ1$I}8 zwA@kjdw#!ImuXp6!IJwVo$eF6{`p;plT2qdpV5Drik6qV!$DEx@?myR>{3$BAWzi6 z7*_)$qrSer>u88b;FH+r)LZ*X1yZm4o!t+v6?9ST<~mm8P%onTfV#ItQYR68x{y(R zC>q8QlXgYrW4$F)7C#SD(^AOEu^-y9Jg*h4AVpKzfo`jxh7_)0WJ5ZPHVk!`f^+dBk z@M%zh(Zl2rbfJNvp+;>4V_zxGN^`UpQnWS1p*JNZr?QO>B?ulHA9fpIT%D!OGI*Np z<`$F~aO0uy{OE9$vIc3H^zh-s+0+BUjG14cS|b(F0*$AFG$WyW9v^<*z$o`1va8ni$b~KthfqS6+7Sx6d&PSzjxt*z|r$ znO3o|(8zX}h0mf*h(>XS2f8iP?+&meI#8SliiL!;=Ck zM>;~GdI3x$Z> z$_jEG?Kz02vBS7xm- z(q+7p?{l5V=$QDie_n#vZ~&@%&<1e6u~S)B`~0e}!R1Whk>@uu>QgNNqD6GEqg-hG_tjvN1XcOP=iMVqS zt*grO!pr@tP#aEw$3nAVg^oT&Cr)ZcVR}F#yTGx_H@$hfD1lgmxW{`MpEw=ZS zY7nl9NQb`=ef|z7vM@0n{cvOJ%*;$hTbop`BEKZ-+3cq4^%X%bZQF&P7cAsEQdQf~ ziu42AW#=N=C0eYC)5mI_)tJN_{Y z`l+CKUBT4?DfS0*^z-c{u?aWv@|3!dep{|rXg2cMAr&0#Y{`5}^-~K7yvPGMF*oQq zDl<=|Ymd(k*KhRp4u9pyw&63D8tFVot7zZs@O1d6O!lD+!-F)60(S_pBUpU~ak$hM zCTalh0gml2z?;J|G9LqOq6SHUxl^PvWL={|AkYE0rr*X?2+4O9UUD( zy+QE1{L}MUbX(0qzv8wr7N(~FIYEx z&Fbpg!iz2pi2*s`Ehbq8&sqfUZ~vcffZ)4~f`)T-9AKqqBbR6etk)!VC zyTAJG8>HU0Rwq0-p{yTzdJ=(8EX3FeQ6E(%yp#U!o}0xU1=FWqJe0ckG+gId%YpmS z98^TS-o6An=QgWACHlg?5(?qDO`DY;95A|ROQU!}>)!>fr+{xxXB#~Lpd_3FW~EPT z*8EJ%=ngrQH>c|r3SIn>G{3_1zdr2*_7?nH0+>od3jo^^l914~GWBanC&O$vr+ky_ zVV8FDyLWG$%~j|4$KRUugROF@V?*UFLW*(s8amz!)$j{_dy1g5|#$z zjB1w$f+4FbcFElfln5}GCOXNht4pu!{UC+D zdKvoRTx)GiLlW681-j8@$Cy%u^}|dD*aQ;(#ZWQ$M$4*DCRS0iczm8|$Bvqr{?GkI zc@27YO)7CeTB zv(umVbi7eieiw99AazcJ`z;L}T~&MgBM=Jl@$qvaY7nB{0i;{m*c?YgN=8jh{R^!E z{2(Iha%Z+IFN9>Cs;DIQ^-a3^XVY_o6qU<=*B`PG2C`ec*jboX^z-dbq8s@%{{Aft zC5lH@>2^O4*%L&@CK5fpuTN!>Bnhzkv#aY>LBYolAA&$rzVlcSIF)u!F~A?48UmLJ zNPZs=4^NF0n3sO|tN2jyz{;J3%?eQIVeC!(T%RKJa4noI4ybNVpFTysXJTcI7L(f} zP0xFx4x_K0iYISF86KvczatiVtffC&zrT^Hnr?Wu85(0 z5~~FO-rL{*0q9((^N7#F9i-0lFar#Ii<1HS4no=L=g?gyWojlD!gqqs7fMnHc;ddH zp-;$o?eDH0yh|faGpegt5z5r@r#h;)R#ee9vGVsw2h|rmErf9~?7mXT!M(uvNa8o4 zj;VE)L2Jg(lM#JpF&V|?OYmu+zo#nyRT0$wK0p!OT)3BM6LI?chS4z+WV&RmC6)(_ z>-owxCRraTboBCjZ3!BY`wj`Bv8o26P$Q*L<1fJ=E2#f=oH!u7@=?f{rm$Hl|OhxqF zvq00h%@$;gR&Z=*5TFmj!os|lrk{d}!~?%TxW^SPE-ajdqV0gZI|iD4EcgBTzt$Hd zm86r~z!#`T4HE;6Ms1|Cy3PeJ-wBi-z2-p|y)eIb`Yrso*-FBk^WtWoMrO@6h`6 z*iG%+GucLGJbwRZ%-@C10rfg{cIev+=zwRy)Z?6$w!jSa>^HK|#_2@g*;}t)y*f#` zg;fuRm|LfGh-A%O45KGMT5)&=vz3_--iwz>2H|Y91kNJ!*RQG-p~&Y|gDb{E>xb4 zIDf=}fYnOOqMQVuqJy{a$q)74;ySb^BRG%F^u4^A7rZCZ&b@>dvX;s$p=x?BPJRQW zOIlj}Qy(?Nd*5d$^n6H`AZ%a09 zx^7ThT-$8_4~#dA{(;)YmW$ zVk8iJ=xJdIiTiMM=)vcSRwx7~smJ%vR)kTeHj=wjJPc+N!*I zY?2(pr|7%Y4 zA3=`2hpvu902N5N{3oAnf^DHnKccfI{o`iHQlj1PZ{Q-e`ro>uYLjq-eZ3$gObkcM|xo4#{Z1^jy&)=4mlF#83;t^FFu z?Rrp9`K6$3 zs3Nfq!Z;j00syYK&%X7w73~Ds*16(@1k)xR^BDyx=iox80`Y)i_iF;DcveHL1v%D+ zpdgdXQpP)4~^4)dwf)7Q@%X~S{kc$>PT%3 zKA=MN3y-CoYG7|AQ-}L9X!F)*zyOC2A09C_xVSKN^TyT!jT1W$T|XYC6d`^yIF#bn zFqV)G4#;{KLc)TAD4;U@Lh^){kpJ(EM61vFClk!ef;$Q-KC8uzDTiAB3+|B-9J7{O z^F%lgW7|9?e?CIRhaSxiigr$L(zGtVQ5om&bmp^fQ#Mw~UT2iw{p(+(M>)4W}2Z9`W0PY-LIDqjTK!0ppYo5ga^EQNbHiwYH;# zRZYF$xC<BfRrTzQo!_c>1BN_P3s#}E3ER;tA$dHg-p>~s? zcbxzI;}wJjmEoE`yI)E_^3-VM9lt9VyL+GGQHdv7;!qxaKtjS+WmYOncs`&{HkYKl zF@DGH|M$4hdZ&wCQefFUHIweYJk10j$P5G$3w!%&m=j1D`l(y6XUV{DvgfwzevWwm zsKI?eed3`Pmp*^c@?vQWdEo!aiE2!_LNUTX05wX&1xP&wp+H91I-u zB2yn!RFu#QELF$omdx$%RZF?_&!M2u03(ilPnrC=91}9aM{&i+hnO13(*KYY7__;f zF5#Y3cH5|oOoR?kmCwIcYY#ta)6ZfLTDZt>(C^m7fdSTTEy)Ugb&*5+NtV2MKJ}Ju zO+}ns%>SsC&}0bXuK|zXzuKwjDRl=L5Cu`vke#yK&fFTPX31{;^DR!VNM!YIy7r|5_epZ>pD6s9n&KH}js(vqGg z$jhUk$EFt+K6Q1OPR%mcH#~jmCwKVp7xnu8X)<43nIGG>Q`%WY;P{`RZ%EH{08lL@ zSyhAm6j8kP_1lF4brl+k2Z!|!ez5JStndzzq@|?+T#llUWt`5uU-w}Dwf7r0L`?IC zgErfHIK;^dohjwy4DvQNrGGEs=3-7DJg2eQNQF&>PR0PE)X?y{{=&WjJLUJc zuX*wvwrR&E$wO(sy{#D!d;i}q8+xxUi6aXPU<(e*$sP2XG%<=bPVaFWPCCUm@wfb1 z#}7s2SQ?@+&WncOjtKr_G` z^$=P#2{`VX=ql;X4$3&GYuPvk?X72~ZU?Ko7OVO1*|Uf6R>K%OJw0s!(`QSLX&jPT zBw9_oPKc;?2w!5ry6=J08Ra0>Mq4sjHV0j+j^c|e6odoVzEU|*a`t;TKtD z+X)IH5Uw|7R@PvE+Om*Qn{PYV<<9yjc!@;wKSkLZQCVb5!WI6&<UeJNpL!2rHEQ|M9f2_C97f^A{E}F9-piLsfUs$u`Wr9cD%k~- zH0u?jw?Yd4XJeee@m2=9!A&xND(wdhz2&tR)dF)|5-@2VIG6Jky6qSIHBgc5ukvdK z1|#cUi3;T8`6ud+9>oCH^x7g4aBz-$smQ?8l&-Zk4+`GNwvxARFXNusdzulI@a<=w z&ScgU04WF>mkI`lLr(qJag_gR>@@@D5ewjr(>W%Ou%&$?BkWFz=;4EJ+<5$uf`Wo& zggS)Lo0^u^3LOGGG{j^P>OOq`QQbD9pY4JdCVFRWVB(0IZrQb>KrXi#$V=EAdgqIGf!20*NV}}w@iGAZU%Hv^dsc8JMn73d|{sUI|^P74a7T#aKe_!+_ z(pe_G8g(Q!z(0swOL$C#j0?ZM`@mr5=fA$na`B?YyhG^IfK!H5|C*NC%(Z)T4nTIEiLg3yY-S zyPUO9px_XC-OBIZ zzvtK4N%oD8Yhj(NeCxs6B!}#(4d9(PrTKB`NmA0@9Mck2G*0JzyFPu|%*U6`&%mWp za|zrNfxj3OSIaX_Cd2br+`WJQp5Z$Cm@?Ax+_k&A3Djn-vZ!SNx4A7qKB48H$!W;5 z)g_+j=i7s%-Lmc$U+!_GO~}j3Kaz3d6+D~u3pPB02xQu)`fGI5ev2~U+(d5r`R-~I z{kg zKSU^wnMN{J-<}NW&v$6O4G+jc*8z1-1z+NzpqC5Fw3{ycilLcR9g7 zO&EAhiv68F(JhS$hTehpo$s&MG-?>iPj{ejT=f-X`*h?KIM=Er<9!`i*x5s|eeklm z%4kz3KqQ+TxMeSt3%UQEu(1@_ErKCmf-hkI(mOV$r{Pmzs|$aY$wMv;UlI!DK&R>z zFM7>yZT@?fS?Oa81M1~n&_Qux8f0??il7GZ4VvU8fakN$U| z(`EnayMtJ<-oFgA@PCT_ON&Sc&bu(&{GXpn4EMe-pOEtCT7ksVR-0NPIz z5jY2}KG8wLR|i8*LMnze`t0&z)zH`(y9SboDY=i2!Rt+rB^yf)aNRcns_EYyXhzGx zU<*x+m}WrTWEe& zY<+R~gk2lm6ZxRu?FF6PHvXcPX??S6yQfYx5W!)XcLN3drBkOAG4}*Il-NP!5*yS< z98ICJlI_Z|kHA{L#z!y;N%-91O9a#WXsTt~l+~okNUPTPN`LQD9rqozm-Z-!X236Y zBK|PcAX=ibK@D~vX}AU_n?OyV71-&gP!MU1G8nl%;BN;Jk*1q?0>)f+SY1f4q*wxx z5*|MAV&f(@65BawD5xr<1v*^gq{Lh}f3%MpJ!BNnzz!N38R=u^iajSZ!7{zN-P=|J zdkoQ$Ph8BezTbjOo~O!!`ODU)0%; zu=_6^HFoYc+4-}f+pMQJSe>%(C%H9dBw)gMmK^{M(7tIzp#bwDR4|^S@g@wZzJ7jx z;R?j4Oj);0>P1mAyC9A-dc}Qe*CQe@gu|>JPobA>RKPA_9cmwZHW0Pqp!ym3d$8}1!wuG+hIhcIULVEmIXOe0%tN-}tLo)~A=Ra`sW zQ>kA}L6!e-kD}t2c#gK5*3B}k$~+lYbV8Ug8jX}G1H~9emQ~m&8suEnVO~8=o_-R| zj5A@qhD{cF9$}zHFoKCpC7$^G+UBm}qXz7(qB%N_Tv4T4X1edYi@a?Zgi6ytZZ!Pi?kMFj!-~=@C zEXxHvrmvSku=)+|efu8Cd5NG`Er$^UK)a*RiI&mnh!_(?MMXndsZ_-F@`k4!BXvzZ zYN0CIawC)CB<(BF!9yl~=d9$tw%yX&+Pd;Ae{jP$Q2$HIT=rsG@w=FIEbk@X8&MyWu#KsE7N=B zJb#zN5=To*i?I~+49qON+P{clYuLMPolIxsrt!mc12M4-*PQpl?`l+8)XE?%y@_T; z?*}nI+12%uwrY;O$2O02Y+GJvO)Em<{OB-M65Ox5cJC&;aPp z9(CjrG%hrfX}2`quT09J+8*Ucv7%mVy9cn1zf0i~wlif_3%Q$z(?ENRwjsTdY2y07vqoPw2;^KL@IZeqqFN>@QV8zPS1 z>Va*_Jhy?BFbH1xP}n$D#x2c0dI2;CF`<77CI_H%Wgti!#t%!fp4yHRhOfw#mGeDB zM2xg_>z_60wY9ekQxcZvQ?vdTHQG-28q`yKH%D4TLC>|IH-D>0+^Tz2@l_jlSN)$S9cfMCYc_FW{ANF z925T28G6r0W76Z~yg)!N^)on?i3I*`f2zjd)TA#h?KjS%TxE>3iE794l#Z*a69D2N z8pqclqMdun2xAK|U_gQ}i`$jK>66oRj94N?Mv6H-mO5&$cdszV+atT+b2Cd*mCugj zVC0yFd(OMKOjTtZqh<;Nk*Qzm?SX=&r|DSW`?V511O!D%RB*O}7{6 zRz@&p>ctxe;#_xk=!ZA4AhlCahUY_~9SMmMGq~oqkASscd@S=(2?$i_! zES`@P9S8ZfYaQy})>eXwq}3Z(xj)_pio8BghF)%0Sy>rPfgIOYeNbx1(9+?dAprm^Ue57lRF( z=V%y9r3ruP5JLfbWn^(ev-OyQ~}=rV+&}es$KG#3p2*BtIG)C&sDJvb-Q)p2xlfZkXtMDJA{!;+&Exfav%F%kM12}r*@NW~_(fi%pvSII)^<6?j$lMlR*(aJ} zVBNxxV+Mfe@|)0-@Q(v!RRbK4LczbjjZej45hwbw>g9FhE;X1)h-)48qAy!zUYPp+ zQ0rl^j9Y%0BDkW6!(P{);Eg31fNN~S$muP31o+fX;t2o)5nKcWhC#KZBtCkgRnTcN zhk5`1*c=^qKiR)Z&9%O-PFM+Jk-V5sYHS+@Ug*qKJGo8yT?|H-qkyA9%yJzp3ZOPO zce=6g;#`4^uC9~BsYkoc;;1z6qvf z_@m-(FIr1FczIp*Ru10*_U-Yu^(Bh7?5OE|!B<`!-gwc8k?ykPF+o%$yl-L)3BJrU zylWvJzL^SIR_;SEO^6pbv~olEhm9!`Z}BMA(!2^ZA3|FoAZS*!#7@`nV*8z)={o0O zrki3MCP~7v?hG>-22peZ3U-96!ppSRFEIEDG;}jPm?D#53Y&Ea1ud6|t24A=>y z5B3}S=xdiAh1uHe3nd{T_AC!hB+^sSzcVyX35Bt(#1s6f|2$CL1D;2;LO@ITc8%8& zFTR(S9{qnLtC;%>v6odAVgzIg&(|JAkbn-LKVXuv;X7!TLi z18{YKGbl09{LcU4ulgq@z5zAHVp1Np7EV6NjzZYrZNRDm4NBH|&_psu>!UH=4mu3l z8$pU7G8#*=1~ddFoO9B2xV)UR6(bT8+g@FrvwP#W^K4dN&4U63B8JJ(E8#*c{bFl) z>5C0$UnH(IkHXl>0YthTv&>`^=hOOfN1vUyloSbjWe91hc{#>)D*(IBClP z^)L62PiX=i6ObGOgOIZu+l*oLU}tAf_k+>$GJFh#hbwI_EiL}60I6r?tBWEAPV9}q zw8?w_1c(pEX>BlD1RX@Nrp$_E#|}*k3ybKRj5HN+zCa@F>+e4XJM)|f-&Gl(vvEn1 zj%S@7-wxYepk-9*ZJ#^wljd7o(1Qov4`8T$dbo%3ESMdb&e&yKt)u5bd?aDU_;N=K zX8bXqj5m=SH=KeWgmB#Y>Z0AASzJtqEJ0k^ZY;UciFdLeL_0Syt+48w0@j8h{aG z3-P8N0?lGINyKYAK!<==IZ#2nn)|;wv1>PPQo#~LyekE!hllvuKj9bbG+OhQ1qFV& ze)Jp?JT<$tp*0g+*em*@DX!QzVpTpsF|vf9NqTKP(WHbRrQYESl#YYL007y z3HX)neqUNaa!3c&9N1>`+V`*PX8K)UkfHG|Bj2etI7&_d_@GH7MwpYjBz}WngMRuS z!3KX=hevf&6LZ7l8$xyhnz=RW4bp>94k6=7I0>qN`kvSUx`0be>>h}=m-vN0@jZh4 z)G!%-nw0Tb__lm|TS2V}gh9GBP@UWYAAQK5LDdz*3sB(FWFX#h)10P*1mqpR*bJ5s zQv&KJ!o-`8h$+Rxhhs6gK>?c*75qz|f@xStm^x>Gfi+-T z(1@O@FBK2E## zh>G%`)$Un_+seF;H4tpu7ZA9QkZlkn#0y?9DA<-`x^tMmAs4~-|A&?PIQ}POi7-=G zf@>z;WP$!953))8HyefLq0~!%bb$%KFMeD0{hMDVpCEfJEX=GGdTmy>&jC6ZeUYG! z;r8vn=j_IUS72X&!B1ecbBYwbtNJuMw}}77ninxxL=fumwqWWx5^Se}qGGJv_6zlG zs!p4spKsop-}Yq3p?n*VY|01`|0%X43}5|eJ!jqs((_S;QEWE4{-OHB2=ou&K1uMu z4PE^4@*3co>UiSA=lqm6>FtYN=9*-7HPQbX+k*Z&g7e<(p-l)n=c%>ad32-%CL)Mi zAR4fs#C%R{0ZrsZFx;4IV&1~auLL5QfJxLuD^(!}tv1p7187}fdJrYs4wS#PFc{c_xUj#t$|uY$4+X`a}++pr+YnH7~=t-@7iY{o#=ENhp8gu z>Xd?#_*?f;W@u~uc*#&dbdi=U!zdgjK5M_?dkRYAzkri4y<98#>`ho0?Z!&a#z=EI zgZ-&-p#ijbSMy*4u6-yy{%4>uEqmlAhlF)Qt^yZ|KLo-6y*NLJB!6K!B3M3vu8n)9 zG?Bky3MQCgR2dFgcYfTpEjsDUgR4ibl0(w-a=Gg5(EHgUu-L=0U-gYE1ZHg7C4019W2JH91=~d}mM%?rdM2NAoOvXvG2Ro^ z5n&3r2eU^k;lGstKms9s6!?X-b%&${A%TmUne_BAcXkvslt}+9Nf$11q>AE$Q?~fw zeq>#U?qYJtn5*DMfNJyP0nsq#8I(5UBYS$KMSpW}mev= zCwp$P3Fn`Tcj;;4Wz5Anf;HK zT)^c+=uq)i2=l4?%%79h07PG&4=Ie7FOe$8VDY~|5x_ePBG2Q!AiLns7hP ziwO1#n{F}vze@WOXsp+E{gB_t9OGE1gN zGDU`{%tKLT8QzSU$8$Yz`}@xM&iU5)uXX-=t@hfh{SLq1?|q*8x$o<~uItWHFo~7& zfQ^WHykD~>dCx{?*Ms-1JBpW+ULrz7DNGFU43wSQN=#~h4o=Tni_J=!MW!>LIicXe zfQ26^f}_3mm2Lpy9T=7C2saK0J-*`X;w9#8++KW1Vyx>}UTPm`Oq;I9nvX+A`_T)s z9f1^T;H)N8U;yW1;-Y7N+{gJx+)pH>l!7dN3s)zF(99=;i`nLhNp zbfXTJFP1ha&;HI2JZg<08Ua+}1J(TyHb$S`(Sj4qhaTRle!gliYu12H zgQY}v05(w}1><30713zh^#Y;SaDkPo z?{_pSrutqcQ9x*XE4nnwEK}cJ^qZ3PRErgd`yxaB?b7wkV@vqEW(s_t7JZ0`J!n z31^sgn)jh?17{Nw9F>6pw$zR+Qb*QR3%TKq+2hOPyu2)j!qC2OSE9ow9VB)csEGFC zCB%6TAvZzdqG93E{wY6E^<;?q@G$MoEh94SgG#6>Us>)0ox3KKKRyp4k zcC(&Nhloymw$N9Cunyt^T+CKM@eYC=@UIxvKn0xJpnig$%`-}E@b>XxtDzDWsY%rf zNPyZpI}f5g4QjmgIleoS-cZ6Ghk*bTTCrNMxFPp0fW~()mAyQp1;u=$=YVy$f>~xH z&KhI+2}&nQGXO2a6adO{wP64W~ZzP_X7zW00hW--K|Gsr7}g|e-8AK zc@5SWgwq^u8Y;b~T~RurYCelIoB|{p`u+XDjnDD$MgM!+{%R_5HhK=M3R3$9+j`D_ zwuOlzsw4Ju6aJcjk*M{E(jRC1qV8JB;qI5(>Zw9!vX@?NM50GX7HqfPI=fIC={aHj zikpc$9&yJs1h5#$9<5lb+jC?7W_er-`~{*EAvOSCE_&+>RtD-)e$)vhfW1}w2Zdj7 z9t|3b$eFj>K+;pwYg=O2qb@dkp_G1s!4^A4^g&_=Wol-IW6hd-!NIzIW1x0`^S!-z z0+gFoE-o&pX52OIgL^~zja}?q?-77S4088CD-6lplbz=E>aarOnvgkLzyLZ~$hIZI zBBzr1pKVJZXT*$YQ6&z+-R z6b^Qi{ltKJMj~y+d&ueOx`J_+l9tv9HvaK?Ie2*1Z>=C@bgr`_76T*k;zR--jf+Nh z%(85mSPe{BepemlqXFWikpVLJXEc-|`fEU|Si3gZeUId8b~ZLrQ=z)s0#}dlD`v|X z=Vm^<()E$uH9O?iT!-~ENqP5%g3m&E87IOU^zhJn;Ik>?4fazbQKFsM#we)YH%(iw zeRxRWzyXdhvtbML`w4p!&EbyDPIq`zkkk6%+Vms(jElCMiG4V|1*b|;wX=9Kx>XCVav(1s;VJt3 z`EwA#%hP~t@u9N9x?Tc;+6l;rNUot47$KUEyq0)=p(G~;s$fBeqd)2p;4kekcIz%{ zx~cg5*a8X6en%#(Tz%KCS<=%F=8;KF^l}nk(9OVm)P>XE+=o8l;n;aorn@Wl_g2$( znBXc=V;=rTJ4B<`x@?k2@XFgDs9J>kU$ILg}OL)lq`|afT6$=QMJ^>wmGVCXweWgNoO)8)74 zhDI17Ngt!zend_0s@R9)Je&-m$TS#GL6K4LILI$1FL+2r6gitBj*+)u!61X_2BZUj z)iZpM~cFmbd_TES%`YtfdS6V}9~oKDGvqv+_&AoH`okAcVY5k3iEQ-?Gg35WQw z^;c^jWRSE-RCB}y3)VfRTqs88=>YC4(_w5A5<%5x(pA|7tnWQmLMF6p*Hf7j;?5*x z@u6IZhEMZR6pBRU4hlp&=^gx7FI#e9P=9jxaR1cz%+|hm+LHJ6{Jz-O7=7+3)L%s3 z1PwmXPrzK`^K8K}bswqLa1A5|b`FHV1j@1y-N(E^3>$ z`51U&?JTND_tTHQwVwCkzUZc{5*VF~aAb^Auoj-h-SOAJc9N=ReecCPR1soQq2w)B&nU-<6z_=;B}#*!g@7rLJTjtybDsXjd;0 z@t=ZldU$kHh@amTr<64$%1m;U^@j@{Z&XisN=x=mKc@JVL3_9YDqj$XNJK(#s{zgj zE$i=}rWG-2i_Fbw>mgh=li^7jiE8jlA=K)eBg*>@dAfd70)c6hW_1=fRzayNj3F$+ z&m!qM8Y98=%9B$89VM^^PM66gX(#Pf?s%0UBo0UkcR!Q1x`hgtIIvVlK03i&1iFGt zQ@Yy=#j#h4Slg)rEl)&i5z5fxXG9Z22$dw9fR!evl6YlXlkyhZmODmm1N$cGYF8O~JsfX5(3b^$ zrnE8LvU91lG-z%P+IXOXfsZJD1q5#(5K!sH&}7>|eY`8mR=M=p!NTBNxw+|^!NIhw zM(KJd`zdBZeZ@IQSYyhe`*N@yk3CrZq3D6nzP&6wv9>$0u6zYd=~U?8+vy5pcC^HH z;ACc!OJQQ7v#{u&stj-amGEZ^Kqg)K49ORIokpO=I|TUdKnZO-s4)JkwJYk+XNlr9 zUjgo6MJ-2gB-La@RV*$~SDuo+;(o+onBf1pyf;D=;S-Qru7@J-u&5$|#Gv9xPWGu8 z(?ad6W~UQIxz-c*=VP}|9a1y)(;yx7n+w;P=ZF#skAbvYA`Wk}PaSvqF72~l0FgBN zw$l+IiA9Vot>A9c8{#@y?Dswmwac>V;Fsnq^Sg<~op=bp=#GtaB7p?W1sxb!N4s!{ zT?;t=+svPgJGCFY+>*@QL08x9yu3Wq5cg1NX=_G+z|TLa)8PR(KW5-uE^`oM}$)s45fsX3=I zIeZoK=c44ZjfF8{I`ZVKBERx&B>%fzDqIKP;mXJ z7Xy?P%qf|!!OX~7|J=5he(E=swjMbZ>DAc@v<*n?Cn$&)DxQa6;S&R5)~4Q10gWF^ z!qgU8TPeA@K0y}YE!k_v`)dw4u9MLiG{c^c+{W(e>!U$jk}ZG#R3nKgFwu{pY+|eP zX6ae^Ze?XjaY1a{IL&v%^{>tQoEAzSR!wgBKGqxYWd>EhLgD_@rSjOdB|m=f!fFma zPtwT6bu&Vd?BIke!8wnzz7iD_6kn=I$8d~*#nIZ+ql9iJ90ImOKBe;OgWX2ZLvi`| zZC4=26Go4hFSq7mMQhezTKD;qTj@I`E!K^VRQA^J&C8UQ-v3KSZsW!7T_vLA5^fIA zeJm-ti$sX@-oP^!(MsS#%1~TUv9-8AKuot7`3tF50F*=T!HT{c7#wDe#$d*QeMShU z=(ij~xsAF^5PF}u6`QpHB^v=$MdwKP^NPHg70>1F3MxW0vx|yh8qm^dC#5}l6uM9C zX+@3hDK1Yg2z@1&LJmMXibZ|*I}hbF@D=~3yqE&40B1LGPGRwCOPV1*Q7Dm+KB-X& z9so(nw+ssd&(L8ULU=@lSP^LOmdTnk|5r75yZr^_*5QhQB|g->)N$E}o$-IGSf*tVlqr$NF27oQzQn8zwimGm za?{k_8g#x4Er>DMhr1i??=fwX<|_8AdhX3b!wn8*_wHWd^QY}rCB7u{f1#is_B&#@ zU@XZ^PU$#|h#)-?&n6Jg*}1vRbXKsicy_N84&SWZ+F+30Z4tZ>Z*shU)s)obw0@N* zwT#PE??tOt89P@5uO|97a!80i9dLGSM?+SR=!U^lu*CU=fgxYO%38Dble`@oj)VjA zmqq4UGc@?HRfE@&geqZ#qugU9+nPAN@%WRy{Y`JKEMK(5tU}iI4uo`hx$fhgOil|q z<4(U$C8rXR4!$ZV(V5WviH?9kO;^5uP0K|QL}b9|%qlt_1K&y%Y!95zJ6`F6Vu8T4 z5wgi;4|WA6qDD>7&G16uL;$K&RFAmDBB<0$GgvF{aR9Ze@3ZcMZ^m!&l`GYO-0V|t z&bAyC!IYAos0~joa;vUTw`!@%-gv+n@Ppt>shl-SJ|ay<+*9nWyd=pzJT?}E)NXrj zH&hhI6;`-*$?-ZGT$G98L~KAJv=ilR$E&s_@Be0?dtc}u9M8xbN&Ol6SN5sZLnW(JM{>rN6!jGO z_X`-=?elK%t-2wf71397Oh9BQ_pUoG#VRUVUhC=#yz?m?#l3o@B0qVMUR`Cl z$-=Vjmekues&1p4yZ>L4lk#3XjZYQeccQi<=vnry#KnRTS)aYKqkaC#GjL}9 z`5F6q-EuUOe$96rh})GhJ@JcaU;v^AeEJyDo9~Mmb9)zdm~npnCOmr)0$aG$p%CXe z7kEdgG(mqknpM1M1{02?j$rp;2aAhQ9Ab98Z7m@= zOIRw!Ysk}KQl(eF`m;M`F-N7&&1#|c@9A1v$lrL1(U<~76KQ>`~0s5vZiT;bxJZm zCeIT`=T)2E(e+bn43R@@c^0Yu=2vh9uME4?71f}M#ZR{%2%gw{@n}!g`rduo$p617 z7n*Nsce8UmU?*K0OIP=DWB*0l-WN6s&t*;oOOEv%{}`~fO|H9?<8sSkFOvo5y`lp> zRgF$Yxc7sCkK(qS3!6E~1p~6z*_)$o!*;?q_fGP*$zKxEmh!MWN@>1OG`DqAJ1}lcZB}@GR7nqHns@*Cl&u&zq?@# z`ReiL%$fVkSQ`|+=Y1&u_IkT*JiIabQ*{G(G`bw|r=jD5Rm#iMS*~5CYs}+A0YV``N^uUK za6cMyNJHcNZsohBchlSoDP;k7Vc7O*Yr5>~tKIdC=bd=%fNFPFMC4TzDK3*)Sg{8v zvdtKI7M`SXf0qvGCBqoioYyt!OjUHQk~q}Xu(iAKrGAx)pNE6!W()mfpI{ae-+1w5 z_dJVtVNTGfvOWN^zLPMC93QANHeRs(RK79PWRWO&M8tNi6Mfc6G=QQf8UpftIo7WI znsOjGz5sA0$#*_v3A)q(!deWAd4tJDbMVD``gU@ zExEJ=Pa)EQ-F0*o56k&tlZwM$3`>^KY8!#it_=J+bF&g~2e2QJ&$#mE#bg~iIE*mR z6x!DlMw5_q($s!?ohNu17|nj)fFU6*O?Ln0Lx~K?vQ1C1p=?m~*}n*Pib}NQodc%y z1aEzL)hJe1n|9GlUklPHu?C3e&rUV|X5whJxMPExRS@FBS8;8p7hIoT!?8)LmUaY^ z(PAoQC0_Yu{yHx!-dg>ARj3A(`^Vg4LS0rU-tWKb8|I2gTKd#C5 zTkGTMh{LVz=m#7a`2P3X#qjnxJ=s`oR(O50{+GT<8JiiET0%spI}KzknuKRD&{ zY}UFtgg(7sj3f-Lvy!T+mFT9}%G`r%xes1WXg4&gosCt2HN#~o(fU8HWnWE*(>}+W zqye-{-v=rJ&`+B`9oBI@X9(3R(a4IgF9moUShV%K`Ja~u$nYldnD_Z}mCPhQ32lI5 zHo1uZI?T=ZGfrGIN?^z_DlV-2^k2U0sH}n_*gGlYgeYwx5f?w3>L%f!edl6X)9P%kR42d=fL^$8rM%Ipjfpz_-mNPCw zezg5csBbwHcoWDgLI6#H3lcg>mrWEWnh8R1awe`n5ITYAH&Q-FXdVA_>}~~~b?+L3 z)$cbQ%b`O8D;iR9Y?vj4I|Bp?;*NRUi8Y}uwPfmygtC9kd9FAtGsh*D^VuSOU|=lf(%6-{tU= zuLiBJUTp_%8C?SLq;G6HtM*&VHj(r}w6E(g!-HKO?6RK5^v&>ch=df4SpP%Tvf*se zur(N9A|;v7FHyj`UrBY;D6?M<@R{g8Lig=0ZUBkX@y1lwYGhJH$lI+fEyGZ;xx2d; zzB`8E0vcCu*r&q*l}JWFtA-PJUg2)fiSaib&H%6QKMX+zA}9v35o_>hxuq^mmd_P; z*$TvEQ@_)LC%aMQ2j~_q)P0Ysna&L<^D|t0d+gp5Ee;n8lr6trkw-S>oNG?B*f6~> z1<~?bj^i%U7)Cj7@x#LDMni`x(`$@piJ_#UraF~z`php zM>Np}6QQDZtHo%l!1w;bxhMkTNzxQi#nnL-9m}RC+^=XOpaaCC8o1L1oeA`6h{-Ha zxpmYVn56U)d7bJfps|~2Ps7$}Zo=+73c{6(;k$gL=$+abm(`I$->IocC#fhdB-+oehmu=JD?B}F!kOj*KsIWY*Hp51mWG%%F3R4-D*lt=_o1NQPvXWG*Wwf@y3)Z!8+yrSh8Q=TCE49?A-lEv@Lsn zBI_rNHsB3;SmqdnJp3T6r96+BoJ}mjyhRDae=Ug;nz|r4K{5Rr9AC(-ZowJ}EvE1I zwV7T%7(ir;ZOO&QVo#Wew(@ z$Ce|^0KA+lq%YGk4eCoS{q1K*Vq(mO`=K~*FE8h9H=+`B?Dim`;xg~z-f zO*OCUs|)Z`LKSYU;TOOUJ#i6e5xwAVKWh%qsGw4-Z39}+ z)pa>HlGt*)a}#tu#2ZS-)=V0`;DIivpRDG2?{wPgpPxy@5DE#bMU;?x%Em2Zj}1@h zd9yOf$N6d8CzlD)3bxIDa4I^oy`f1Wz&Vx!dw4-1oc#*{c$|BcgXfAdK8H?cfcz~Y zCS3Xh+QyHVfdWF9cg>7OpFPGV?jrYcwHZVe8K+6hgzhhYmyY({RVIZE4Z9SdQ5)Jo zZ{JKtpAm<9d%nSGJ*7lA(tH9yb?%jHRH$yHj^z>mO^RTywa+$pUe#|I(<2N`5Sm{+ zBl=s~eycb^qL6O3(rqZN;;@(Mz=^FT1~}fZ1q^xv6O9~hc(Iy-^;kuw>h$3^>ciHE zM-5$u!CY{`IO=`C<1zf#FfR0Z9Mt2npkKd4<4Xjc%Ps^rzxy{5po`arD*rgtmTvD* zAC17w3jg$>b?(5c@C;-=QX~>9Yeh#f;m`)0=&`tyc>LKUul9V;>5x74)z=zo(9R~_ zSXf6P(@>&olBk5|jm40pI)m1DP|$9hcvE}u&d7u^7>25c$hqj-3^wbLkr1e4H%txB zH8gqc+OkD;=cTXeAZY8ska1JlpcRG-nDQ;`ZMK~g@9DZ+GTmOZY^PXA*YoYP5icH4f^a4f>U|Iy>?gl|@={ch$N{jl$E1tM!VL^n0xE)QH zW%$EqB!|7Njmwo1%c~fizUxczQ=!|w57G?7#%PQjhzCRw-37A~ovzP;C(!oX4E>)b zIQ};6h4&)2?pp^|W)vZC5IZi2uOQ@lRg2qKOInyX<*(5P;+{4}E~db@Ukio57Jd)a z_V^A9{B+Fffb#B->tJsJ)9@T#Xlf`qFUeg8$(mnqa4_-c!UuVeOCVGS;0N+by@I$B z9l9Ug1LFGS+vCwZaJj@0Op{YC-jGbFgnpf#8=6oj5{f&7D4d8XiSg z$tVs%9Uo;;qz(&wo1-zg^d;izM>}J7_$Ce^mn%m+K0A` zu^LTwyCL&Nns$enc#tyh|1^~M;1-CT5nSsqgddi1BKUf^hbx zq{C`{ceWG)bHb3-BefjMC1JCHTQ5Jh02qxj7jgb%oAbKw*4`ze4M9g#f%F9_T)Fe);cCBY!C zd9)EZjtPjlM8pGZ7U4p1*(C*!PGzV}1&g?$sm4LyL53YcQjN$)PF@Q91>*Fwq(F1( zfO7PFq1S0C51@NfK(y`uc=Qms5s2$%-JRJ?}vs(SI8lN0fS=KAUj@vI%#a!0ttD`Yn2H@7)}y+13iE!0`rxn!1weD2w06+cHmaSW_TbFkI6^p(1sUjyb2B; z9bs>PmbyV&`s?U4kT_%{{IGx|qqYVHypoazm(;--?hyFtAAN<7fECG%pJys;4h!rK zZJE6SM;yd)E+ak2C{=kMB2!Yvk4x-95Vl^X9yD~tiN8Q>)`q1V|o#?ZK5-)$tA>l z7(T%Wf&=QyLQJnkzc$a-8A24CR?w(eoV$4OFe;tXu*0M0$%Hxo8b1w{K{%KTCX!tW zDhM)uhX6r$rJMhwawTJ%lpb~V<-iCYw1NL#!I22@uj9D?wJZZch}3Vi`Ah#f&%1nq Zjwj#pabme3J!XA0!Bt#@7L_$C@Xp!y^RJyxGy1TnW5v2qvm2N>AX{8Y9{$JY{7BPT#qPPYn~|d_O3ujH-rCOD+QRsztEr=tg`F)YD>v%{=9}iu&h}3H zY-~3F^8!{oM>Dp&D-_1?A(!nRYdN7%1V+feXt^Re7AVxq)hCi-s_vM%7n`WEx$1c~Tzkiep2+?UFCmz9<57atk3rhj`Bxf82_s%r4J_&eEJ70>ORoPu7w zAkeO~41o(+=t~m_{P9hlS-)QM&%Tq3%cI^DE+SIW5L(|Ow2+XHgyJlDg>>Qe*Y{MI ziSOPIQeEu*_U*FE+DN-U8pc+?$ls&};rCezBInnLBQ9+=o)&*7pilbs>silRo)=EX zv$M0f>DyRWDGghKFT3xp#A$1pW-QIl`WF@!;-22WdslR^>kVDpV|L3QcZUyd@Yssd z$IYH@Ht`%)ALT!*GArloPGpm|w`Y%~;tRAIEza~kKS`z0(AJL3ln684o^LmwuIH1A zrU=N$xOt6?jGlo3!@&3Wc9r#b;8dO4+any=&h~apzq4&@)J--vf_wMwQHb~o#?lBy zzG2d!Z1{_Lg)GB!f0g2)`OE2YHiJe=T)%l7o(FX>Dau4pR_5zGUgnp18n@$mpZw0ToKR6wiOH|a zpdgwQ`FqxiD*f?8b!ly_`=e}f%W)a!^BzOgSQ3YcriFz?$m!-}O>5)nhCtfs%kIVX z@d~s0wchq$-{P;MT>oD91ks4t&x$TBEq$z#V@<3W)%S`)GaMfux9m3w|0wsiJeFF( z@qV4>z9p7Fi$P<3i%Z|%EkG2=!@)x^Ehq)II zon>Y5tcLT|LOPu{CX?GcIv${`Vaf9UBqt~1q23C4aW@5Vpu3nPf7w~=Rw~lwa^9S# zc5raeZ1m>K=@jxgxyEVMCkc_j;dNjgb6(A5`QwXOx(_VKxMa2WvExIVpVwGfS;wku zZlI9x?z~}Fk48&Nt6HpkosN!9v(D8fM2?B)YE z-90>-hlWUkun9VbauoQe%{=h&@$(JFd2A;Kw2R-rzhvNd&b2yRfK5(LehC|Uq3Q2= ziT0re9Gkv$krxeKhxsW+F6V(wzUTa?*$d8MLn?2?6#AHF-fRd(*LkCVWWhcl~c zBjA0+4#};`b_!S2sZZYBoi~NcD)b6D>rHxkbhUg{F+;eqOWseO?o{D@+)}yGc5gohc{(b^jJ@fDH zFO#wA=DN%XxUP#9s23qi#VD6ze%79pm>Aa9COOPkV$dY~ye~E4`*&qj-%`LsC?%crK@!r;JHNL{x1* zhaMOdG^{Q7X6lvK;YNEn5yR~AGIpM7ey!iyNDVrBHIAk~@>H-TLh+O)UVKbVgT2Yp z`E0wjwdG$|C&2Hr8Y~fppZ7+IrZoTqo85I?^XTNHrMLI0&&gi%`RO5F6F!nd;~C`$ ziHHKeetldtGodRY^85F1_vJJ<#R7Gf>gwv7ckkkubVN5-nDzfS$oajSc_ysig(&fGFihZpUR6Sy4_IfvHN_o-a}>ImjEAs$y>e) z7Y7H0iYcZv&9Cq>% zq;7VT4!l%e2Xv%NoSmJqJ1xoT@2e|gQ40$TYj@ZGy*Sk@e|C9(ejYgzRKngAkRHE4 zRV}lf;zxa{_t@Rq?xbyrXc{3(G&How^75gwj6*ec#V3cG zFaBN}HbLZJhhDw$v2wB{n|XQL#N2Mw_Kxq|NKTb(2v(HN4Jk z(|EexV{3oE9lnDDR$%Y<5H<$~2P$LLQNZs)aN2uU?h+Q({BFNU7@QdO68#vcVhp!$ zV?t1)WmNO_CUIbFHvJXW_d9n13^WTD&Fe59oG|{u<4G2|!-a zlgzoj_gjTox0>+J#OF>xP--(AWo2c&aFN0nM4yviYA5P~MTpS*)Fcm~9 zuj4Nq-?MG$$wr?WRwIRjIyrFo8MwGe8Kj~`;iI-&2}EvkbCZ3xoll1wt|wzNVdi!bSTl)KBrZyUSZugqY~K+^06`n{Vu3rjoKz_ zoCY%`upuqwh#%uq^NZepL(j)|9SR@@s!+QUcVlCNw3w63q>B5NfW!J22bTYz$(neM z4uBK);-7x7-dh>;q=k+4hAM8*q;KQ(%4XQGgG>K;belN?)uafrH%) zH`+1nxyDlY2StH$h0hzVddp+?Ktn@gBu9aEnA@~s@g<$a51JYH+tR{9_94X^J+ZEZ zYS%xMr+}!ECFzY=v_Iu;2|mq{Pcuf1K?N?U5-}ZG1x&3vapY_Q75p{i-f%R-N~_W5 zL0DIf{VtC0bocfSYr3JVAstyxK*sGA7Z+FcgA(%&%@FFa1{36zPAGeI@I5BcWq@J; zHgqSjM00ci00&IvHti8sX)~d|Uk#_bY@|r1;6mLs?CY}!!&Lx^;Kjecf5^9KZ*OP5 zdD9hU6-&lD!Lb!AW~+ERGz`re87 z75`M%*6x~iU${DwA%-zr1w8}hkIIkUQx_*|YzU@vUGAfOA4x{YMjE0T%d8?B%1WvHFgMrgx9a%tH<^)OAmQ@ zcSK*8rH?Cx;K;ACIPpdqLbsH^iQ7RT;B)d2;|p>;hPjc|+@O=g``w|ePtY}um(;-SIHvOxkB_*{ba&Nh@eC+Eh+|tsb+M8+`5*kW>>z3rc zTak7pAvJXjtd~aasWh$6`vW&kO$r)e@2?i`$DqKgb}BXb`kX-~dSq^%`;%>G2U;3* z6or6m;ZN5^wzA&0JZnDsa`!cgqg%rWOrW_!U6Y#!9PkLR8d8p|sOUca9_x<%I9_gg z1)^a4+nsdPTqYCQVd~*p7pv;Jx`JBVp`jtVH%~bXzo3xv2MrFU2_8~)H8qo_O&r|Z zI{hwoX@_TE5#7)CM~7D-vvWgQ&ex7XJ#tGcR;Os3oSNE??Ye*3*wf$N3HWrN%tRVG z9g(m7{TfU<0FBfNa8d5=?uK9d(Re*}Zb9sz?)p9o3kk`D{?mPHHei+P`t{2-y2X_O z>c62K9jh=SI63$e)zTt9yg)1L9iE$eSGU2F6#5Ai3NmV{h#w7<{6!c2*P(dV(E+pm zDAXc>Uau2Yt@PP9;`)Q1R+fuhP5srrSgxDXF|S?`M^kW!7fnKvEv%Gp4ZW&jB{vQE zdS_>cke0T@RhXKZda%kyM@>cwdeOP{_2^HZ9t!%NX)ZK2)Yqd>Z@Fz+06=s~EVdG_oU0Qj7fx<^rDP~sI&1-(2x=C(dQ4^lF_4PuxwH{FId9ejc3cuNCZ|C9vv6{ypFHBc&26avA%w_e5Qa8!KFDPR6_V&5#`7AeYqV)CkQyT|9ZSU43bl-GbuyLIXVuc8AdZPBDI@px zoKca6cbJ*+;QWN?vUUO&FuS?=Liz=b1Fq|PWs8u}O1MN`r=@7^DOeJAC}7ay)&#~KnIr> z8ylOe-@vc$u}B)@LAWR~q$`5a<=36KdvKucBfl?{_~50=63LsKv*^0&YQv?TWC|Wz zsMbLapipFYJc)~(6%Y}!6P zo2+%YV&Jn+3WSAbCjKIZr(759i=Cvd4S*3^6ukB~0|NsIiHQS0&-mUzF6j#4Riy?` z7bHVpY)m%@P;yxYS6B0%LE53jScdeT4YdmamWhevu$G@1{g?v+snPz7S75`@Y43W& z#D$-!-{@V_XP5)8MEN@{_tEk5YgYnMrnlcQ(d5_E(V1{gn)$xx6lwtmLSn&pd;#7m zii}0v(eXiv36p}3JP}j8f5BRrsmNpRB+s3qpOsc7UtiL#4CN3&g^XJ4PAtF_@OH}E zvzTcVYCK-LfuI*?dyeL#*k%_OL!cq06B5#UW7l?jjAMz5s0*SgE<&`cnj5G;Lhv_Np{_U*Yu1K(x@cziB~g~(tQrDQ}Wp2@$m3GGcz-R zBc3|Fpc|WGH`54BYHO{_TB%7Ve$P9h8wjsqX_?;QN?6HZ5T3%-T6YcR;<*G)w5;T!|>dKi(OPMfocmy*vK$#m5bVZnI8Y4Hfm3TmP`+K`u@vb#4k=aQ>({8< zv0X)V*w@CBRi?=XFAWod;M);**2^7%u9L8|yzjZU5&%pA?q_ICGD}NKTi8d+^HuW# z5$bojFRc~eX7M)p<#dDJkoI0azGZpL4gAy>h-0pV{;yvZyBEK8b+tfeIq*S-yjkbr zk>}~3&uAGfvKesvF;SJ#eh`hn78f0UZUXzq#p;99P~B>KF%wSy#M-V!$Fsd51-*#O{rk8yG&D!hk#H@I-|g>&g31)Vm9J4k1C&rcKP_Oz;;jZKeoUwV zPXxLT!b(BgFJ^<|1+o7sK7O##$E#s#Q5W*N(M+Sy%EafAj?F&+CKlkR@B#^k+DNCB z+jQulSn5x=b548n%h4lbgB_SQKuIcp>T7Fi99Fr9q?0`d%1vd8Orbc2dF(D30d7VR zUW~6iol{vhw!I>V`$pL~3Nu4V{E18IiiS40=o&he*HE3$orU_H7c-~70*^+yY3bo0o zt71N0ej5v)DtyNG^s0x42f`X4eE)5k1O#j42iv1?E?;g&r~;o8=N}~owD2|Br?GB; zi4aW#@`L$kF*RV(ZO|iT;V6hZIFyN5?e76a3A`MV@a-2mu70u}CkE>93&h~dq@>&g zXJ}(cgM))-;rQnBxuPC*_rYP>`t^-OEGP|lWkQkjJrbnr_S`f7k*kCOC{Uvzz4`(d z3MLZ}TET!Ve=RK;!vR4E0HBs*Vs7xPdi%Nl{*DQtd1bufj_}!*1OSgYz&T;*>FFJ! z*+#9Q6#UM2L4&~c^Yc5~A2s;e+pBgZmQgmzAKsn?C%<9e$(g zRR7T8`z63#;!s-V{``r73YH0i&e8F5IuaQV?WU>VHxg5|E^%+)Mny;CAzVO?LOK=- zdE?yN94uqN=g&NVVn0$|SUrUhy|}ob5b}Ho*dqwCX(oIXFSJTPq$Igu4*1JydrFJQn&ta z+6(0mJ89S)i21KHL&!mFon4%6A~+Y*J_UiB0&W|Urw4yHAVI0-t6pxpIAMy6isI^{ zH4TTXHmpjNQh$ChfqZTPn?Wq}A&wVk4{awYfCp@a(i@kSb`{ta;7ROlwHC5UO9_?p zt^q%f1QvuvnbjyOm5`@ukpSzhTgU>oKw%#ID0c(eplq}Lcl?KGP$?|mcx}&P%BKs* zK#m}V{5+bxf{y}N&3!Q|+ibniXsru7oea#m*Uqnqkp~D(011dRbkm|7n7{)#*PL)v z)bo^YFD)*%1CQMQy#Jk^(cRl!SJ#-`zs151utp~FnX@~JcoWEiLzFVyk zBsJ1ddaJi$T6|}moSZ7l4i0G{nkv)=jo#lr%BOV!joq4>nyRU&Ncfi5A?v52QOC7b z6Tr}YkUhFkD^#Hu@D-)7OOZfg!~%O$2C0Vwu4n`yL+93OSBvwCp)t4aN#ZDk(CPX1 zErQE@z`ysMkj_Hk7zv{+Xg*MnhO0(P4ARjQZ+Lbm9b_&;BV1Iv3DmMWh3g6O4REw8 zpo$~+3W>-yGFG1G88NY2Etb?6@!^!++>_yxM`mYA_2E z1V+>5=4NXMxOF(F`CBx~eM_|fbVjlsT^T;DK4Wf+zSno$7D1wQezKnou&V$NwAVrm z&lnt`eqe(#@4Icyijff$x1^?}G2yv20$97jZiu>qgJTHW!OYJ7a(`tos7S9)UG4eF z-tTodVP?>P{L_|T;n&~VH7a@G%YEw2DE#AXk@6vR%`D^n`(U}0hY^^UE|tQqReYZI zjMA%jk2^j(Dt#e*@>orNMiu=*a`dA|k2s)NSXy1}g5%K%y5{?ota-@4h+2f~YEN%( zjEARZIYekVL{Py2k{HQoY5M`LwCn2XCIJpu8_W*-`H(zXjmopw+gerinvuG;74}kMv1TD?oyLT0Dvm~Z*MpA?di;P4#x+1#2@z7nfFhuC*jtQiO{{@dd z>>3X+rUof@BLlXN(ZDML`E`q7G{7H1E~}9rHEqP00*bQIY(My!5UT)3Nns)L;}6P3 zhbpBQxnx#7U0uY_8c2~3OVSq;LxVo*2btbTa3J+r-MfgeFzkO0gYY+liGkvmyZ)DE z1G1~G2=qpjWhpTrl#D@H%0F#wZ3P+qhb^toUffS%;G#p|m}bKbZ|&~3245yoR8}_L zkoaeGc&z2TQUhh%ZN?`I_5&ygNY6L<`6+?fMKnw_6hu?&CyOD~7kSDbB3J){b^!#7 zw5TWwpGNQ>c@Jz3!eT>1Xmzmg??aEmZHJxg?Cg-90imG)93ch+02da_buMe_NIMJl zI-sdZ1T~AaLLiTZ0@u_!KAt?}M0V}k7Z5lhXFcpk%ooPDtM!{6#aA#Sc9#JT7WCM; zl$n{C{|6DWAmtB&dLx_4O9YIS+Eij(TmX;_1?bc$L@|S92JX0IzXs}ulA>aUD+8=+ zxJ~&HUKeC~VAJjb|B3JB=2ocl86VC(8tT@qTNyy6=4w?i0&N@AFMNszY_}9ZUewJy zccfVc&@xU0;16p~eV{t1A_(RUlypeVd2!}T4*?|`%@!o32&Ub{9Ee&{lAW!9vZj&!H+!E&z-yKj!%1k=* zFVu^R#E^(IdjIjGF)SRy!dt$D9RtM>gdLNSTFv?!-Q(le_t!?HA3w%<-jnpt^#RG2 zvKulF8Or|8PcD=wY?z~y({R__zxX&f11G6adGd)2KhcoEXVVvg;NRBXo`=bgf;K4z z`gb*gm>RhDdnM3v0VhqlDFC`1DnlxU66HTIpokz5XdG1Dj04sI?O0XM=wHm!0xJf@ zoy5@5oy97U2fr>lRt$g3n$iT#MH0jYL}5g%8K4hnUXXJMZ@be?o8ilYouegN7+|p7g6ukW2?thM;-5RgM;*7;$!$HGkD1bja4WI@? zn^E9K3zfD5GHP%kvZmsA?`64&@>2;V6D$6`ag7vIpFCCE2+6E%U&x+dQV9+TNiLHA zkE2ME9Xh3arQt;kn#CEoD$X@;f&coAB8Xw&3SdFU0CryHgEB5No>->EqjpjK8M4UVCw@WnRn0BdD)RihnE!A7CFGO-|2d%keS-S8@1%&qDj2xX zxOeYj0j6X@AR!8Pc6RoMf=816|B|da8wgYYu{wasP@8zKd=L7T7fDGJS4N`4(OgX6 zn3Y)qjSwCcrEK@Cp zl9G4F;9iU?K_g}QwDP*0LPA}g4F1xq$wbfn8rh&W%PHt{2OK3e6Is!2aHAeQ`ci5n zTBMzj_n*XEs19fJ5{qWGqc^%uv%mnG>br)g^UlpOw6Io zEn+ZC0P)w;!&PC>8H1s-jA74{MErzNsyObi{rbTrwKTyI z^j-NTGoJa7)b6>>Pt^4EQc*lq7FfSRZSY%+6zfGnk*)j#pcVl72M^btn=DuDoi811 zj_N;e$IW;Z^2+R%?2x;VfQq6b3INKl1@{6+oqkjh{Vz>iVw@bogQGZf6{6Yl%q+?^U4qGKq;Q-hXfjStMiQPnx&OxQ9OeCNSLD z4QP|BQ0+ATcW;bRQEJ3iacM;&%g?_NpFim`mSFjxH(|nh2w{V2VMtvwS7`kdobgq_i~RTS57Am~_m70N(-9Y^mF(K9Hf(e-cw+2_XG~-RcUJpgSSLKh3vC zZ37#wwfYi=4m~sC2!|+C7ypy>maHE0oy`FMWrb(ADiC;Y(O$B0uw9i(pf412RszWpyV5(ICN5R z-=5+5PrsFAtZ-JlOjJ~)b6v$*-=Zl^#O}8?W$fC%&cmx}fN4O*YeVV)tRXNM3xFBJ zqoY;dSWH%P0Ne|K_8BEAC4~i&DLypnYRNz-fz=>aI}C?zB!Y3Cq0OF6AH`*fnyR&6 z<8;oYpS1Yi=DlBj4HB|9FmS=4q4Th%_8_AHpE>}wKb7AF7ifX4ogHPSP0%Y+Q>jp* za5LH&+4Tk<>D*9s!L_M=uBWJYb6^mXr#Q(rk#Uk*f&bz3kRBr^2@XEDjEiLRJc|G% zrWO$2?T@yM5cwYg7|;>Oo}>a-?4Og9vkHjn+4p6J;4NvA?d$zyq3a|Y?*x_bNJdFl zybqG${JcY_7QNIQ3k??NoiD&~23;WrbfRqt$RH&22PXhHCKZajfq4QFA56e#XrxkR z_x`FU3_hE0i$D~;e+P%!V7>_=y`c5po@9@__3&@4xL+wiFtFXFUWc~BJ^;KrAfRDSa8Wo{ueJlx zzM3<3AZ7j@Jym44kDhvpk-pjK3ieUnTHW`>ddni1%PE)QZl^ZKJX~mQNU=0jOxhy{2ac?) ztWv{f^x*~2B+D#@7?HgN;0uo3)-M4V95z26%1{&2Wf@vE2RPCTXBl{U){cl`EA}Y8 ze)A>-WHJ66_4{|EIlezlobkm7y~?TJQ;5bwjt0rPs(mCunyu|pLHup4c1I!rpi0G9nRKUB_c&GJ-a=;3YM{K! zT9qyuMqoLPR=G|%AzDLu>FCf0;n^MXu6ojHrZ)!#v`1CWu)RSaEn(7jS-%P|Gd4T= zWl1=(xUv#nt^xam>s)1nQC_~zIWQLl$=>=BONl7zk;W1bG+fit z5(h;XCZaEBL@S>E?5;n_HpzB0*UC$Mj@h z<=56HbE8JjaeAbCjkHg`&d11zH8?n^E)-N=)Qhsge_dg!H&TSLcYaXqNt$agBe-AY z^11>8UOv*S|6Hmnap4*zd}^3kKT1R-Blodaa+~DMd*7_p$}It(gkLR7Opg1r$SW5B z*;tGy&?sC7beWmGUPI;743nD8NLYp=L=+O0KZn ziT_sUNor*!C|~AU6G4X}k)ZB*a!Ms_g4Q#5JcdnxqNR;j>;34^;Hwh&fR5gbE!(>A z4{xR3-z_m+C|w1=s<7@h*^qIX=PFpW=1iJYA^ zgnI=0AsQqp9DIE4wGw+PO1Wn?dbUf(C1M#_l@4hB%+wz?OimAcRz~|}-_Tn^ZEwR( za(w=b!$m-|8*gCb$KrE&am;`OThm_)JEj0^sJ_@!fAFNgd-qZre}hE=e_W*bLo)cM zj7I#0J<*!IUD=CYnU~KVk{C;-Ro>#^!~&1p%U4+iKRi%HH{-rOA}yRCru6K?z!YfH zPd2IkJcdCoaZjfWm5V9Z#meJVUw!??CCeLgj8#sa^Op#Tvr1I4QNJH{#zhR`0cX%4 zo90Cys(VwVEP<8B=>g+r7v-zB*D?5Ae^9Rkhj6Solj`24z!jShqvUi9Ao_Uv>WKc@sDqj9^8(5oCLNh(CAudUt+#~{hB>l zwgVK1WLZWNaQJ|oy8XlZ_v~P8J*dUT#Qg2uD|f7at!26)`d$n5pU(@OEXrJU9s4J8 zQ<@pJ%*IW!Z@lP7bZ;69d)KjP07ME7zSM9k2T~W1O)u4k^WI-FA4IQqSMo}(<~7{6 z6zwj&+!kz(Whx%7-(?#H-6?{wYwm>N9WHTR(qfhoAvD@fYuAcqnB=y@^4uHHTl#)G zLy2McM;Jvca-y9+eih2}Fvl@4PEjqdrr6pa2E=)knY9~3s`50b>ysQOdW9utL=ByCn2@auInc zw!{&^V8~Q@z&7OF_g*=#_m=&x>0`$VLfk9+cW(M^hde0|#S^{UC8!7orDKR&`l*NU zTh8`Zg{Jz~ojBcOM*BrDvZa2rI&HqovWg17B6t5Q#6U2G^vp^@`NQ5&s~1ze4~=_w zXoN52YmDkW-_SMep@19Ql8(nE7VnXoSz*$%_LvvbTXz|hElU#C^UH`&ln#h3%D4o} zHh2`BuguC`>-t97zI()0Nbs zIbfBCzoSw-zrQghCLtlBrnZTn;x$gy=opE)j?wcr=iJxL?UAkgV%PHmVh)nk4*FmU zxf!Z^iyR&Hrw2Bmx2-Xobi+GR;2nBR#Yt0|8X57g(65mxXP6WqFquMb6#ZpK`LHdO z30dzo65tLX@gP+RxB)V~T$T8X^MI56${AWJyn1)EF>||n$9_oTbScw@@wv&kBTsB) zNh<5ouN_V^Xa~9zEZ8cn$X_O3=H*K+(QkWTzQPCp(1|NweBYe-%tj;R`MxX~#%REQ zPGM5*v>cle^-`O`iprC1gfEZ+qt+GEb$vkpqm9n&tk{?4K#{|uZ7y<#6tggFTvr^T zcRR*7q64}C0YU%F#0CWkZH&szbB zd8JQ3agz~|=;$!z0UHey4hhgKJbRGbv0qyKnrsL8EkF~W^+WX%Yf!9sEFj|*YL++EtJ4YR3<195-3!=3z`$9)x zR?>8i&ET>^k&{CsDDpR)X#mZ9#9Af`8mBly9hysJBDynRYoht|l}bz@9lf|%bf)oV zcQkFuN`1bH^gs^TrQQ@9J}hhjM4g9z-(hWprSb+{8~a|t3r))O!;G5v?!QME_D&d) zQ7*$*l7w^ya!9Ws@2MZ{sP){x4~DNm_=0>Jv%gIVSGme22vY8dYr?y6Vm8fQZ+fx+ zr~WdY(|qm5$X6TEd)|RJyW5ZH^)z0oFNK<%92VhC*$F0To84nw{ z#l*z+&Mi<-L#LbNK^Gnaiu!7C5`|J}tHRT#ksWLj5t1$75A`vO$q@X!*w2=x(-Ov! zuEbG~?c}(J&DV5hyknVkP44qeym(B3l7<6H83hHNYGYF$P{!9QNA*p>M+**s#7EN7 z6~J}pz4;BWD1=}=jMg_-eF;da^Lb_TwX4iIsy{a z7;HAipy`_+c3Bv$;Vw`sAY;0}E58BC>~R@DzYo<4o52?!ZcA_TzQHvwKl zM6LmSihkKsv9vW!mT}=>a?-y}tSF@hols{p_EV>*d~SbkP5)HPjT0Rw_2P#Xq~W9w zv`VwByPWOq73=POzK(dR@lX?WZY7pFpfiuJ3}#mfKL@DZ)7%`e2nOgX7TxNX9`5d? zzzE9s%fJmAr|`X@=p3nIun~GW)Ilkd4OSb0ua|KQfxD0yeHBhLy2i6Ps0p{aDZvY^ zA~p&v90fL@uJOV4hx+@Y5VaVr(BiO@C=_&@<}g|YW-PVE?5r%rrH@z-p*Jbs68zVw zar%~JWPG_6W)g4S_R?m6$0HT;jIl92Si*`NpM_Ux`M+5s7~hfoF|v2P!JWwbyQEt( zi;lnTRF4X+ah*H109XkhJ`z%dSvFuz>yMY-nvWDFTY7;715uKp`<(|d4sq|>AMcnB z8(V;l))MHX;TiY?Wx5q;_FxIie-hg|a&I}}YhT}pd!}l!tL(01_>J_-cp<4((^TO4 zx%>;UdJDoJ8Ccf1c}xSjyrr&VcphSL+y2o1_~^=P+vP8z`jp0E^+D9AuV57ejXxra zoDCh7!fg{tClLz7{LpM%P46Hzq*q@)c{3y`q&sa`@ zt?!7XE;y;n$UwmX300fy8xSO_Y9=P3`1oI`QY_&=TsEeS=^XJ_80@0`d))6QtBx&k znFufPoD(KMwocY+yVqw*yfB@_-4`ZAT=!O#mj3+d1wK?OUD!tx{!LQ7Zwj{ebzmpF z-8v~u5D8B9{+n`eZcE#ZXJyf2`GavXhNEK)?6{f`JHuUwGZhad;4ptFXE`U8`ojDj z&f4=0NhhZzY=>Sg4pVA8I_KE9G2v`SK9fH`fA{r9L_aJ1^n-qwLA~qQWyBw52BNR> zji2Wr!*RpN0~r}vhm`^JvH$cx&{Wq!Jxryk@cZkF<)0?(lfrRe7wBkfTb$nm>Q@&u znPX0|*KMw?Q*_Ws*N)*j$YUh=6q+?h%OSF_3H^KXhus$kIfq5k`T| zXV$fW%pgnJuFPdHei|XC8Rkh%AXz-zOC=QQ;qpkW(TUr`bX>{}qT466y7@dhk?nec zfq~o0-D$5BTC0-m-#8+SS6o3A90Q*gll2TtudE>yDF&~5;=&e1^u>JAxv4F;GR zpCj5f7;CJ-k4%cc3ide=S#19auP|h34bu=0^KQ~nC1n@15=&%O!uJ+pXjJjL4WH~o zCiuj)GI8<=N0OKEhUdjb-KH^k|Bk>WunnaLg~F%e^+zURgoWRYHYSC}p_>BsG6D~} z=b;LW&smR`hm1Ori1$>y%)T8e&ZO~+HJ#9=kKf+Zs$dEPpG%iee?{WMrLv{aL@siV zg>}-&0yJ@E?&gC;>a+9hPS5zb7FT9QRMZt2S=nEy3=G^q$|b^oYdShSG41OtH|^F0 zk>=63+A|pz0hxpqyWVeI-x~;Y_-WhrWJk&uz%>k94@^*9uSSOKGQdlb|KtLP?me>% zeu%5HvuZDiD$H?#;DY9_wU+UMt0yX3K@2U!ZYl0te84@Gz0K|s?b>jlPfor7S(gF2 z8Ipc5`GX15UQa!RqiZ?wK{;>yIVYI}^+P4Bpf61UiLX9jaIh}*kJ7G8HuZx{RcM7} zZY%^uutJ2Rv9WQf`?fJyuUF2+75l8M<#2IvXMg{W07(jds9DP&JjU$QlVN?;Wk7Q1 zeH0wkBp$nWcNqnlH=8lOjB2Z*OR#A+>!&)Gc46EPRUO32HN-?EXT`SkR^3p z)DcGp4}c(4+#`QRUqA5~&4+1?Sr2z_)9%bkOGk#h4DVk_?So;oFBB?^zY(u6h@29T zoDuKXf~5@|K*Fr#k5^)|vl)6J4EMU?i-__M3`C!HcIyW_&c zz6GX%UFRmi1CU3Fz(Y8YtHc1)y9=P)Ba^zJ1hlr!i@k{Md;h7N+#_Ax)am2W*LqhH zWOr_N43TN-)}TMMe1BR7B0+;^a?ZQpz%S*z22IDY7Khv0Mo6WM<~RUzX9cLT>@~W5 zFtF4M{>mOVw=B_JxK#NWVys2Gk^1)m!Uv_o@l_wLgL5XKkI#vcTb22;SWj5Opkn9# zNw3$+F_^-X_WxG&!I(<`2qED2%K&F_HF%+CrijEP?+OW}jrO!gbASa5+^bW;l@FRg z$%8p0WH*Pf6Ofbj%5bh@ z**{$~nf4}m*^NeoZ(d<>k}!z!hZ0ul&A-Do-Q0%^Qo*DL0|YZ9U_^06Jz`RT4a6+D zN!NCUmsZ-V&gjXx)Ity1P(nf|DETloE%$?*cAu=CCv%0=L&oYjTRPzU6b(Bl2Tt?% z(VvzDMFrw>=Ls=UQLRve?O_JUdZJ3MvH|4S$4{RUe{u{a>{etoQuLKFumQ*gO1osk zdo z;#gFwv{VCok><(?kvOyHC~V&Nyrf;Iu4ZA`#M)BtN7OG=%G%w1+~>Wu_^}Rb97Nhu zt-SR?Y2bgF&q?=1&q#7w2K*)g9zC%6TmfGaj=q?9xT(30Ouo0M$?wV!vH_bR?LT+! zMMeeqqYUTU$oQY0V@0%~iHRv#e{And`E6xWSvjJXxsC4%i8qHo8P*TO1P|PCM=(ss z4nDYMrpGvCsSqNNRxutV<9++~4Z3{ylfAs3GjLM5Nmo#3Y|JCC70Mhx7|%CN>gs*4 zl%PMx@wcfQ)8e!;U?2JJPCyBB8)4uGLm5J0KuAacKgjH)Y!bWJ7Ic}+GDF(R#=1IB zAA66Qm4|vq-cdji5M+E()yTV!y10UR`P9M!t4yh?Dj|JX_x_vjRv)l84etO&1NaFZ zQ_ulwG-6~$eF27j?*1>qIgo3_yjhuz`*V&K$wg;=9gL4V>ediP*15(1@m1I7sQ8F! z(jI*1NCeM6_yVvG29smKNH7P}=0LQ5c_DHU4&e?XR4T*6&&&}LkX!fTQeyWa&^c1B zu2miN)De>Cpr-Wn$X4jTrV&E-_I6H8=DLz0?Ygk21BmY|Hy*d{n*rHaaYG zF1R=EYaM&fAx&yBP%^MgCam#Bf?NZ)$Qhh2f-(r=%6CVTADu zp65$Kd)~lmBQ`w*0T91pU|=Y-9KPRbDT7m{J@QE~kngT^Nqc7}1BiOeNT-G(j@S@2 z>!qCit%BnQxIt@#@yHyb z(&rECZFkxGQ3Vu>=2&U8D-&K@Ayg(R zNk{{!Vje~++W=i|LF#{-FCYB!K^ui;xR1vroh`d4{W~ZDmjodvEdIJmoHDn1ZC6k^ zUcP!|oL@_5th_`?&$720&QUsBcb|7ofpOx+#OFf^w~UHw540$u?5{M}-6#O5K(ooW z;c~us`0pgETk-eaNk<2SII7t%?k1KHWHiD%?{JYqAT#*?mvh$SB?3O8%;y?T<%6(zeb*!6`Trs9bsBo}IB z5^$K03UTGDJr3}4_4PQ8(_Nj=qE*fx>4gNZbb8fkq(m$W9K)-Gtem@n5?lS4%&P{|a%mk&=$@}^VN5pRzD^HfGg zLQ*n#+VMehPcGf}B~Kb$W@`ms;lwwcO_#P}R@wf&e$2kXSLe`iF?hx3>tjXkr;h12f` zv%7-MapiUf-e}&ZMF*$1iJ=>^cjGZg!zoh-<-I=a9gMUyJa|A1o~ULhmJVk}4v1M7 zWG-Mt1z~0ynXiS%BXs0q+?2%84SS5iZdr7PGE#1@#zltcE9fQ(Y#Kd*vH|#X=q7^0 zg8H<6TVy|$=?;De5l~=!nmIe8@Vc1%UU{qS1h!(gZyY|R6CNgU-&qOi z*#Lh3o5+Ji*pe|DMW_-U5g`T-FBqxE&LocB7a}NQ16u_QZq@aCloLJNSjr=yJBV~E zC4sp|Xe$lDYh^z4@hWN-vOMxo7SF?tt0-iM874LEnm@YCkx(2bE6zwU6n?LTf{;8X z>9W>aurR3P_&c z|AOlGF!?2O8obb?rGYGqAn})#f}KkEA~1H3g{2)DH3W(y<1Ju313kE9)W9zW=C)LR z#1U4&lU$m??tL@<+so8cykyx>C}ohhrEcFAUFe7;yJ0i!Aw9S{R9iWo{|M(^m|N*? zJGsFuz>XHg(FeJB9*QM0Wv~sk#`ydDC(ts&6As`@v0$np1RSWa)G=VCD|qAa|7sgB z{eRjARgWcuw?4?S$G&(W4c5NJ6~dT{iyQWi=v_Xhc{R?LH5*d2op8z?PV)(XF|v)V z=`0Xhpgfxy=tGgm^Q^C1_nof7FaTm8N3H}kgriNrzflmcNJ@tcg@HoUPAJA5;2D^M z<$*a9u#BL=qYh9RkC|=27798vJ3L?oCN9Wf4h_sYty@LK<8@u2@rmPT^rvG41boSs z{@IO3i_ffS*vL<0T!Nr<`Pqf}`4(0fVK6#{*^VS|aL-KT)wpfaV0=NQMJP;|+1OqH zt5OEnp4+ASzpxza)gzs3a1@Mf9scr1nS8d@s!a$UBS0FLDNRI1hp`w{qf_{AFwjdo zQ)wyCc%c+o=sn@2*Lxom$Hm3vKY(qPf>Gd?adBuU7)KNZ6WE-=bG3&5SPf>O$Vm-{ z5z54MFFux$L7o8gG9lrkOERu8O-M*&aqh)=Wn%KfCqx^UFoFFJCbV@|FoRoQMxIUs z6Gh_xp!b(J(1ziPD0Jf>!fr7#&Li`Gz}mr+y!iO+U0nhEBx-Ac#Q}M;K-W>CjNEp>tm0^A{g`XZN>IfqQiq7i_^=2)q)(#097cj z_T#VHfu2W-gDIdlCkto{rbxiSneQktT?TFw87D!;$&fjzKs93+$^g=X1OPJfjFq1> z|CepSUZtH2Ybkx^kDm&Fy<$cpaU}{ zoaIO0On`}MM zm}p=OoSD6Y1JV0;!AU`iOeG|(-aD5SKN{5p=BowdCXuUcpgkPlc_D7L?R4rkEyeheT-M}(Ec|G+s_3W ze|#n}@ReU&w)W!_93buvGKke;piLn&dNFkZM2U7tf4y2@b!q zY+DGNd8N@3bh~i))q5i(!uhtYcUZlU@cpx$#O1M#o~wdg?Ii7$OecW~_=s0<69y`Q zXmy8S#*qi`2Pu{^fcpQZv@?Omx^3J2ZHgpQgP|lcWDZHjj18s~N#>a{RHhP2k|{}# zOv#WUWXu#Qlqj<@7Yzy_6)HotkE`DA{l0H~d+oLM-p_hk@0*9)egB8+f1T%f9KR#F zS6S&_-E!k|H7JJO1k9{fR#7?hYOV$1O5T9bZv(?I*8a*)`X+@dh62%0I=6g)Rx^Zk zvDR-4t^51Op55+A=~Py#*P3G*E^Fkg`Ek1CqlzE(X+J7K!GUJIL`utb$AzlfnVFw% z#Om!6iamfi>h5$u-_z+fdtP6Q{d{!8;6dMeDwG?|13EvM(`M|&8ZCy7*HB?PQr$9G z9TZ=7o~{DGGw2V;Boc1ih=SHlwkw?VmBT-N7!lK|J~{2~Bd!16W{}5bO8Um7y}r#A z^A}@wIWu@Fa^9x}wKN2U;eB7NHe6y=4cVJ0_jH?;E4OyG6i1^~m_qxFl>y6@Q!`iij=IV)5p(sX=l zoaV)2R@T0Ky8Y=kw`w;YLNh{}nru+T?<&VbJW4#XzQsXfchabsN zvAwK`^iyH$*par)AY9?ZqqDOARVdI$%x*$)I$V^?@|bF&zhVj{VMAlnzvq;>dVjS8 z0B{)hCH&P6%Q>FN2*79Qw^Jh;;T&)kZ5&CoGsPih)2G07b>>Z}@C zbq;lH*m)fR?4ciZTf2pYMIVIp0E#Tl4PPM*>(K6=$1pRS5Tp5}?e?!}m{n{3sk|na zwN7X2!g#H)%UXXi>a^PFUw%vZ3g#7NUu_up);r&`xq~Iy?fE}~*ifUfaHtOZKHpSyP0nopM61)TAJ@vr7ULX6l_8Wm*Z6YDaVYXn1aB?cW??%K1j<7G{9)az|f;;2nh%BT?p^J0*Aw z5p&rO)WDoQ%#OBQmmRq+);LM@$K9SZ>x|#%)^>x((kBMAADE$?nx9HP9ozo7&?{u< z^$nvtw8}f9>tpU4Fm$#$C@7Hu3Y=OnPw9WZc?u3Oti73aab?>Xef7fj|5KDn&5RF> z&UaI<_SmI>r@fWzGzFiSJl_w~sqRem>0W=@-2Bm6zVfEqn(bWnd1&dQ7)s?)4M>Cl zpSx{w|T$r;+Q{2lQVS2+^fK9-Q3&LteWo?`LuS$(knTp zxu7jGi50zJs>u%50llvE1^(Z&BKC1&H62_Z0;VI18XXuk$$?5t zd%oNL`{!32I7qeFC6K2w+3BK5WD{kJs}1e7kJY*w6bd#+;nC6Mea|>h1m4=?f7Dz^ zvob#J(QP}vaT_Khp-WO$OiY`YCrqEv z1^AADI?>ADco1CwXsgtZZ{NN#u&`9*@;!pC1=9MSov*DbC8VW0#}4RcIYeFxP(N?? z&Okf;R)1Gcq%V&&tzvD>OW|w0`q=_k_resRbvJ&Eogn6u5Y?ivSwTUgbv5`C*#|Qj ziI({8;X+0Zq`s%S#-%3VC z4Txw{mHmRz48DmeHYKR>3h$Hd?nCG=^3!^?B=Co>WV|fcrM~&TXN z+7!XjT@Ve0oeG|Y$5Z<3uhYa=R8UZ`ci%pB7&H`pC&PiwYFz6hP;aBbl(|EouK)Vz zsu!aeQ`f1VN{@|SVNoS8rAA+Lnaw+dbqUugVU`6^(NHMpT|dUm=q*~t*jd^_=o@@E zhSi=^>Ds`0A;z_g_G(&0Kle~Cj5)}H*?ZFE(HX8MCc8V>G`xp-ChvorHSK+@EBid5 zQBC=SO>{zTi`M1_rp)q-5!4rBQVU#K_vya08tId^`C_H5;HoYwxWm; zC);r=Y)S^>`pX-V@2FP`n2&I+s))&Aw&{9ZmR&3}oSMD7p)^QYk&_adFmsFUc~W=i}}7@;--|SjXBkN9tF!!RaWxVzt$_asD}mZ+eBfF zN#7<;&TuH}A60KLX)xI>%=M3#!`|SMM3pnNb8};oGfO{f@1Oirxh67x@el{X4WfSI zzOx{~!r0DuP{hs(>n7A_rp0!2Xs~vWx{2$VFttcG6T6G2@^1p{BNf@#NPD*m+s9iMZP#rL zZ@Kfm#ke7w&UU=e!{`8b&vfK>t+S|PuT%!{?( zw+LkvUWCHwU&Ze_Y7W=bkXCkuJ@KirV+%g%X9EWvdkW~XZR1((N)joXcAa(W7$yx9 zpg`(yqtsD~U|P=^B>3MIYMZyB@ zmzQAY&^h{uj$Zc1d!n&q;1ha+*=h9#SKRTYWyj*izhDmcxUrEQy*Tor3j^-kDz=sv(Tjsskw}y&MP8!@r0~an zQX4MFZMe6r7O{42$l9M4ts1!CB7vqZ}ZO9dPFA5@t;8dGG_hVxi9 zMW{F^3y#VA+kd{58)aL-b+t8x_u5seojWP7DkdboK7?o7P#IQYyvk}fc>3H&T%xPd z&7ctFO%8i3mwoVW8PfG5h%prMf4mpfr=;MA$vTsYn{+NNxu@)4rVjQQJqmU2(CpK0sbC?d3c(%_l$QIof3tA2Uu&+0P=lrx>+@4i zd%^^;#Tu4p*ao?sglUo5#97#c+n|&_RDpqbwXUIw&c1!N2Xl-i{B~^J`s_nQ$qxbz zKqLL~%BH#B0w3Y+yv1H!alAJrh-sVekGvpyM?MX~Ct}uX^b5lb3$aWE+!xx4hjZ$+ zYa!56V17@$=&%RTr@KV*O5258y_w*F`$-!@laui8dXIOlL<8&osV}K!NhrPuw+VkY z`-$s@&}?ISy3PJ-mC59YD%H0rvQm zl-Bvm&nL$!b4-U%c&lzNBcD4(!d9aqHUG%18oAL0AI&R<79pFe(x6#AI({DR-ZeaI zd|G=^%-k?hc?0+Z&iM*qVPS}X4mkIt2tCPMO5o~$jLMj8OXGnDnQHB;R~yh!C#*9& zdwb$T!ozqN7q7OhEgu?ccaJ4~!aW3A^EcdRZ_y|rT`nvC&vLN#col@@=biERbf{87 z#V<8S#7m{=oWr&J?N$FIUp(!es!I3Z;raJ=pB=GQjAmt@$+jOSAg2xv^hF+S3*diOk3}9$*ZxbYoQg-{q0(vmaC|mo{o+ehc0ab!^1V$za8_AikUu_^^EpOgOxBBQw)`fWq1-#QEioIyn z&sL1&S^C#bN*v1yc#~vDy;s%GSfliy*@D;635om=Z0#;(ZD{@{Po=NeJKgq^TJ6Rb zm6>}lh8q_y+z1KrT3?xdeId{}S5nyVVRP?8w}%%Q4vH^TmU^dWve4OSF|3{ZYSUU5 z%}KplmyUYGA;RLyk&;<@#Y-H=OP|qoZ~UTU^r+DL(0&NgBD zkIf!n-FN-|73=e5C`HbF;2L_&QNVx4N*uWt5*HuOeaKe#-iXZ}rt_h!=Y#sreN38B z9{n)J;<;YDy{qvuVuxY_GDu@ zbnbT`Iu*Bw_GzG0#AE0|1gPAfET+#VMhlvJlWgyMK9gs=!`!QNr^-qGbo(A!tU?zr z)_#4r5O#ouH9&z;(Cfh$J(X{nS!IJEX78VnUn6exI8Lzl(v}~Wy^2a8h$727;SNIX zTZ|O}J!y8*4@H?w+KJ+pRbAJ71hem_?w{wnT_*jJ`)~s-b&pJPevZ@w`QxJNr+!T- zeRed-Gi-_f_1nmtPf02H<)g~@;U^X)n#rz5S=7Gu4?t9V=iWl_THOK_;ZR<+fp7)Z zEjyxJjSfI3)Q=^ubm%ua@I_daPYkAHo9fEPm!I{3aWl5cg|ZS) zp6S~*XlX)46{T{{>f1?xpl?*^puNhp%SNI_TFHBURMt`cPFC-sUVZDIv6b!nkJyb3 z^n{Km@N2A5c5Zz0CM`wT@8HA|zydbl{M-=RD%8U|IW|7pGkY%Zd}z-2GhtTNnS^_i z8kVP}EIQJXOZ-ZHG)kG5N4=akFLz5izb7}DkE($4=%O3fhTEp&zf5I1UNoBRn$dbd z%R;8veb`x)4y9pv0E(ru*HEi|)8vVLTHm1r#H05H&1$2bIM>ZKg*DSUx?Go{dw4!< zcWp>~%(g40GzX;V?dla*ZkmMP30AB~9XIilsQn$wy!CglIA*@^ZSeTN7xAgm$OmlbDZ` z`tgst3T73OkLPDn0RaELzQ{F!|3H$MyRIoEaz@yjy)ggXLjS^avy`-B)7rcKypcXR zjQYCGaDS5y+U!}u2e@0kn0;5UY-;%w!GVy2{7`;=@J&?pV~30K`o8VQcN3w;-O z8rE8yT3q09)f+1tdBCE-!wqMfX8YQw7rTa>OUpiPWcNSk9`Tu6HSrM-H|QP(@;Fi1 z@7|DS&(H^t*3@0}$GRxf)826lD{C8bYsBZzh|FY_LK3FyXH?}f&Uj5HlM}LV?(Hr% zaf9Ns1ML2_*pd0IaJ2IyOmvuIdKNF5-3#J$`gAbe(=qUT^jb$6o?02%e$mdTa>oBw zi%a{A8&hgA!qlz~iBQFBO-nKQ=7oDcr;gCF`$uq9xGm$Vbz8DmFn1jSp<`uGq^^9T zrwB{n{S{`ovCEsT#s_TeZNi|X4s?F48oY*`)sA3RuUj^aO^IIln={_9?4m6As|Hf( zsoIGvRKpvz>yjWLuL@mbFnkgIjYf6T6)& z%vqb@=()aA;S-Cu)q`!;flMp4W+mhfo>idLl}M|V+br7~Rohb@5|Q7kX25V5&mXnA zX!l`%zP@t(b1^f$)=s$rT%ol5p|pEPJo?{q$E@Svm|=V!lARz&%Ub$lU9t1uANl;= zi*KvM$9t*k?BgGdd|Ry*^=U!oaPx}ZAaN0qh*NK!CR{#?*?mDVdK9L+BLSgD3r(qZ zj?Hh6;;CkVnugN6x_U&Zs-dG(TjTQP;oymFQxjD(^{e~R%1SaVh#ht&R1?#k`xB(kER5{LVLID*} zSS4dL@?Q7K$XgaM5@tCQ(aVboJM$g(qT3GHPSq>U>Ap(eC(sMX191;I+rHdLt`EQz_HlszL&^JAL)O{U&lu zK0fs?Gl|E9Y&DNem#qoTbT%yC(bT&kXu#D&qEMc%A%p9hUwVAXxo;^U275IsgqD=V zf1Y}nuh3hNv#W>O+*f>lfUWsvyrf-wwqqFmvHtml%-yFGGqm5g@umVK-XdLuYnIFBTqr1-1+=8K7<%y5#CN(yjBd-?gV&+2`__W-x6wyrHdZ+F z^P9DUve(UKcDVJ~$bO+emM;(zz8Y>GIwe-gz5`ZjWvwgnK2hs%#6+^Qx7k09%u;OL zs6btM)c*BMqUTeWkFQmb^YIj&@a^$81317FVb&LQp$bS)NuQGRAv%h!mgfy@Y^XS8 zRXeEkdR1-(SVB@+wnC9ofBozFP>oTf_;VHWNxSX{k!_q{?6+&PgtsSKGSZd zI?*p6!B-W3;jL!xYn7^wjdJhz|mt;{ixXe1{Dy=Bp_(OG6{%dD(~Mf z!osi(b`ONy(A0unnJZcXu9wi&y{5jtJ4Q#>AFE_2Xx;?C(xt4o&QVXFezG2?V#qsT zh4y-@Sv#2?#y&U2NDcEp?u2}ssKpnIAK$PH{Mb{^Cn%^r>}-_Hn{bu5!8FIqak5xw8R=%6Ll-fR_?bT&UZ^jVE`fBrl z4T@8G3NYe@<%39Y@v(-s0)3LMsX{;}31HT7dy=&M3NqoYK&@Xl-YWR%P@d7(jzQTvvvb#40uRvZrNy3@x{)C_`g_C2?F+xWHVX=_V}EYnwkr5~Bwx)K zl6WX@@o0c8;G02k)(6vO)>j(Yv#Oix)v~@E7+&$w(--1{HcAns1i5jBpbveCzMB{S1 z1<~%v8x3(?)}MbMs%d@L(og+*TbQwErUjeqw%I@%M*Qa6{185Mu25>C{Rk+GRhh)D zUDo!&)6k+AJ0i-)qnOt5QT>SnhlLKgF0#uDMfmVG5ErL)bq1*ZiNTQkp{X5dOKCPpRep{N@i}@o)n6Xj zgYQV%7o>A4uBdpuJI5#t5N*A(D=6&lp)Xs4l!OxKl}iA;D}oHb>U)uK(UZiFQsY^3 z9}$IN>Xx^xHu`kcOP++{C>1FS>%)N@(xfJ%%?MG_t$2KWntml;Pn&2kk2}XTpuuDs z*5(uWgB|LsmZwiILJAaN`6%FsJ1-h)4j93;3=XCce zU*7Ee>EIgPYm}C6m#p4sM@_W$+}X-XV^r~YoH6=oSKRJ!B7U7XvVWiy&=VhnTHIx% z(X5xeL*JDPhF&x~k~7Zus%KxdjiQ1k@ljya&n*cw%qB7G3vcY+{4Y80z>x+a-E)vi zJ#aGXX)wXBi2W->Np|3=hQa`J2D8r(HzNT8Ni1k3g-h99&&7#`;0-)Ec(d*JAs{QyAXLwot z!3%Kj^bqG~Zi--)lgk7gYrlPZ$$RoucgQX^F-o=m}mLQbYf|MdR3sGde&pP;|*))S(`?C z;xABb4X#D+)AU!FaMrCafohdIA;HE0qPr0EIV`95jtsil7)MZc-Ok$4X|`XwU}LM? z@!d)Cz^zI4RcSTZex__Mpdwce&TdsLR~>gx%)v)2rF0LXq??}dX>AqaTIJ*j_q7Gn z%esV=KDQ;*22Y-!*D}!Tdb-m)e!?NLi8#RDPOwMVR)XiMm)x7|{#)+ZRem3PvMYqY-*r!AmLEJ$WOpPiYos#wl$uCq3dQ}t(vsS=im z@dkFP0!>3WO7*9IH3eLMRq@dl_MFy{CbVuehlcTbPec#f1$IJ3{o;{K9qBiI$b8{sp8K& zA~pwBtp7M;bnUMph!tkdhwpbE9MN^T8_RC5H~O@*i$lQmnF`w~*HxQbxEM5A!h(6& ziX567o8lTzEc&hw(&EWnuo-T67^8D{!`h-T-Dh;-vLe?#WwhNTl;N1$3#(wMlskuj zeegPIp}b2;WppfdZr=pzos#Y=wTgxdIyYVub8}_qmFkU6@VZPDXFR{XDIk3M`-kf+ zd_5r+jzcZPS%|`dv|B{aH6(sGX3y@JFY;4Mygrek@KPoYTpzoR;Yi(!I%fNpF|}Zr z7QRcpUil#N8?~)lEq`c;g{sfC*u#j^Yq+t|DJh5Z_1U(}N+7Ht z%I8yt)U)R{L0Y498cbA|ZZaKpf9J0*v%|Ewd_AKyeo8%0A~nR6hS3+)F06~6s3U0T z@0X4|@Q~wR(BynM@OU)X!L5kD;pRe5J@*BA*JUd8a6$M0Uk;e^Z<%F$g%L#7>J!tq z3l5&689QWqS3*K2`?%@7e@~I+gmh+(Bs}ZWI-+AC7cE!7CpbHr%9??@aznX2J?py6 zLSrKeho~E3NPb_!@HS$Bx{f~0_W6LMqJ`Anh81E>Hy0Lq^kha216?)iXyB{lKI3u0 z>VaXNa)DCE{Hn<3RASh$y`7kFl|9dFGi3X`p-oJn=jH6a7GD$2M)vlYvTd$qBs+?k7~uV=@w+8r0rGg7Kdc~_|R)U{}4t{Bgd2Byy(3i|T;94h8jd#8Eg z-Bzh@vfqB-W@4~`M)(PgZtJ)&q$J6Hr&qkP=~K!F?N)K#v(dB(W^d6$)RB?PAVN)XNI`*ond38*;s#fEWu2nB^IP&Cu*S2DV6p$! zru5}RYC%D59eAIY$v8*&?EO~LyQM^-=HF@JtocZ^G5PQpJ&xfIN zybR1eXV0}>S34>Fb*lRM7kS@cCC!mn#i7=%7FDD7i{b@0c(*PYrOMIXwdiy0<>9-{ z&*-Z){+JHZm9%rmq)L2{I!ezrclQq{b-mgW96#+$4cQq)N>KmK> zd4UdY`w&(^{CueNW<_q70b~E9c!~4>u&28o_E_BRw8P4=Ip$`_Lbv#AUX6yuTX<41 z&T~B^fr0HG@d{3icl;XvqNa<*`PV@JRj-Q<->AZfw)h5lyp?miPK>Xub*98vND_}9 zNpK}62#HXCaX?*4?ArY@w+kmUH}C~V{@X>WQ6%6}!0{M5)^Q$pM|X+MAXY*TFlyX$ zz52AvWoeD@$WOa#%vp5X!RM9jDM*=8@Z#UXB_{E)=J?GK&dyR^Y%OE=A9QZ2^tj)W z?RIzOW#9P8qmNIK!~8vcADtieLM6^umY-AYPmytZqe0L3QFs_(QJ2-5rM~*98nrLn z{h|TbNsGu$eF^4KpAgomBCVpCX+it%6BEpyL;mewmy%um zC`QZ2b{w9#P_XKzL`4v1l?f-fjC8H(;&#Ni>yLTmN5+oy^Y7a0oTIN!-%Tbo-3tI# z#pZ>26x@8`=xi*xKk3!2<7M8idY*@b3S7-QmtfSBGf&)<5c_f^}G89>>@|0^*Hj_H6U5;@LD6b z)liQ)8)|qN?W>vgZs|t8lH8RR9^bv9!rjMC%m?WjQJlmrCw%%J=QUutV-srMbdNeq z$1qiX|L?tb7k^&#lhluR4B>8Wh>__@>fFpQ=48(~|05$hqQW7p=5^l}By3w~ckR#D z13MY@4N4QR^jXw@R64Hecv$^oakQOYb-w=osNskY3892)=4y@FR3qK1yr`;@>Oz>MhXf5pizRLi)&J zARQgT2^&6J8(Hn~`@-~!j!(BdxS=W3>c8tf5pTzHH*k@1`0(&gv4m!##Tt5E+{JCf$w$pvP*e2%vMLQ&XS|@8 z;orNiDO*NvPAF;g4=c@_J^ zZ6mT(I=y4EnW#>Q;9~5eVZ`V6FTd-AKg9LW^ws@laVX!2om0!#Q-L)_=Oe|k#71XV zcFD3(t=1MEFr4DxTNk0&_cu>GVjv%M`P@a4Wda5}5jTJhLkzosOVGKxoe3~=5trt; zEb(G}5OB09l`NslkE8z@iHeYZ09lV~ptzy5DSwD(4MWb}E;v|`>be#V!$X6>sTWoq z$7(nSJ#4X4D>unag)yyo{yv73f7TY*RhLr$Mc065=G}bxWf`JalLu>rD6H;4xdxBt#x+E;$^8D`0Ruh;!_|z%m88o z(QA?r|Aj$VK}Ct?-4%^u7KiuXp>iCdY=CNHWMsq-S(bEk=VN^&iA~^}zD!8E$hElY z)wMx3Fjt9J7<@_ulOPgTeP8>I`i_Fb8g6mf&W1yX_8@^ikVg=k5$xsKXm3Cp5>|uY zZH#VrBU)s@p5%^VTum~&%zm0%Smgb<9~?}L`Oiwl3-=T{q`bZvMK@5Vf8!`GSarqo zhg0CHo6{)|kG$F_ZZWQvw<>TCt9hdz9j!V?&bDI6A!TvD{eUI52m@_dXXjByM+{(| zs4mSKr7R|44%1K;7DA-w4N>N=bSotj3@4I17tC?uE6_YrwkFdx2$u$h5@ zp%(m>n1qBoCPMP^hwY>HA0a4i*#E}kxpCT>(^R*-Y9UzlX)VvCld@; z-F)#MFE9!@C+^}#6mst-CNAM`!$@dB#v&aB&oAN$gB+ERLy?_;Y%rU5W^4GZ7JA+s z6jFIfUc;P!ywh~#u|je(>js+^25EE`*P!^gt79k>!g*!H2I{R1e*u<@TIBQR@$^nq zWP8DQowddIg)E*KJb%#BeDzttKmOra@2(?QdX4`FrZymbbEl;1adoWfB`jq=3z5QC z3nq^;Z0Oa{)u2Eu^z5-5d2t47*ai@h)pcf<1T7ASpEkwGXBC$rH^k zsiJ&*^Cs`q)(dSVejR>0cwKk)R+)KU+p3;K-q(M|9x(bgp^~k`2<{zPYM*lZwkx)e zsE_t5|Lb=amwD;`M_d7r9{=Y9)NffdGuF9f7Ah-vpooSR=kfsZv}UA9rH%dua%s?; z4}S1KS^bA=Gm`=@35y`K_u*k0aQf>T8u)P;=L6%GbHW^P4k9et-e;HRoks-NzK_nWPB9PNMl6rh8Yq0!$g68t9bKbnPcdUE65NDhmNWk8mJN|Yl^Y%70VBu z*34(3l)H5D`w}%8;_;lbl-C|O0>u}JP&v2sokIyR!-Thm9C$m(PPm(Scb*6$d8iQI z79(E02u90)h;b1z!Q7^RpM$3mv>J;@-Bbb}LUZL3I$@0kZLWSCJ;G74#H^4wk~=fibv zfDCg|2#l$_92gE6I6<&G|E_8!6nm7(H)^mjU;0A;EP&Ezrk3MD(p`>~NQNT5Ws7Fn zY6@2Dl;`7;zOa!gZcy;NJ$@Xh6eK)8M}Wc2;sC%hjzDAFU5;e0_&{JTAVz}3{RrMx zvWkEC_%g1L5g0i^*tQMcQpBv0=G?Hh&H$FG^3vq-_QWi#zl{Ri+;?y9w3si$LIW- zKrj5I{HMDL-g~`EThd#lzxiMaME__l@(js?QBP{ z^x#qrRY4KF5+;O^h>{YC?xL%>O}x@rPdC2lIKF$ZN>^7wB6 z&xt1T060%103NqpnN92Vk_a1Tuul+{71Jg|gmbu1ki~JQ{2`zY*pg_dsRh-wAJ1Ki zye!i0h5tx0;&Ba?^`sz}DrK|?E63czMBxDo3pZKU`z}T}&0yi1aNf+C*oY*cG4aA* zh@|5n(aK^k!Gor9J+7j6GF2`II}oI{MME~-?^tC2%&)v&H9w`YEdmq~nAgMc^_AuO z`TDiw;|mL=a5d%4i~taYXB}=0;>^r#oPvE6GZy5*=l|zh{4XHva@ezn(YJJLiD#w4p*Ng$CtnUEP23>CWY|i*58P$0s5$T&7eJF4Vy>BaRa>wp zY=@j9eTM)_&R2P`U``^8HrE{+Mn?>%9IzWwf_wV&t47j^Cki*enjZ}@Grv0b@D}5} z7Nh-6M1;lo)a$vqbF0ol6h8@swlh*#9C4*P0`Ou(Qjd^48h7MM>pvz17SD+n3-0fJ zEHi!dyaBbiVIiSoMz}T{OeIk7S{z!2k~t5O(Mjx8opB>NV9L?6bM`gTrrrCB&Zj7N zg#wrOvcv0qyBD6X8$cFle)h};Z5iT2ngom9k)&|p8B_60I+E(m41Q+|`3&R_5jB$t zX!8FHtR6P`rTut@r4Uz{xP-)IM<=IySVW7SJ=<%7YXwJNrG%H4!VOcz` zM&7-vBeEZKFc1B7c5;%T=n2KHU*bRZZ@z1DX<&u z^+DPMPd|=KcM~+}*X7*$V#t5a(oenzy2;%^Ym7LMTU!sDVGIAfvO#9#Zm5(!d&iW}3j0v(cGa*A1Rc)iQ|>o(yNxRldUO+kQOL>` zN1N-ABVK?B`-{U?ewmMl5spfOzo1Gjn_la{W_M&q@wftCy(iX65?cVvEiG9}0KF&S z(WuieRz3O&G?$1FaJ7eM56Sl0T>gJ-7G)ca3mn zvNw`8MJyIlN2I+*^iVL6pdpg9NFq>?->jSe8ul#)biM%j%fLgO*x4y>p}ofbcMqVo zBw!O85lpq$DW+9G!3K^J`8s}m2QsVSjm?QW0(?E;+Y@daPUVdYkaA1W($W$cy2_bZ zHE-|j1~+!zG|9qU12TUt((N(_e6b+lrvZmiA6>>zT}G8|oNu-cdo+@@h{@f~?#rxp zoCHU-0x4r*5U+v`R@l>RWP+6kYTi)X3O48^-N!(fw3e`RQd1zBjz*S%+t33pLW{&b z9E3Y}7!Ogiv{SI_<1p0%k$7^Xh3mmgn-cN!<33}gknBq0UdKA~t}Dj~5VKkwXg}UJ z=t2=;CLW{Zj{`MBnd%^I`3A8qCGu@9)>-tWdMn$39E9EWJwPHm0X@hKU5{)(dI}!Q#Tu@9{ja$#Q6m#j$_>>(ZjyA4mk)5Z%ZpN53 z1QJ^s3KHt`X2|xm0h{Y@{myCXfD@22jHEVvmhJIUqN2f|_>n>$kGUKV;^xA)URI5V zH-gw+5Otw}EeVkY5*HMX#a+X4>zcD9>orR+DHzw+t%HI~_NwGBP~_dh%49X?91I)cu5ip6PHZLj4IA=I3d$u zSq2uT4%YxvE-uFne{LuLxvzXAOhw$hoXNTEhB|niZ~|Pw?T-{}ZVK`HkT5J1xnviI zW=k=I7Q}@~LB&EtOeGj=)&n;D4JbHL8%=mY8^cP#1@OVez;%W_*+vCVS`r+M)q{$X z2CM_NZJ`*>Z^EO4#w%i z*@sJum6!JlzD}Gd7cC^|DPT7x5bGdfvoC)AdIAd;342vcI|X7MC-NL&UkpQJ)J=SG z=b72;W6{aDSxAm*BQB3lJQOGUifLdJ7QAE6jRhHxZYuaeG2177EtDGF1KNjx+?<=6 zJ26m!D-3&-a4MP=>3Cnr%_Sa`Q1G5T&nSaH&ECLS;w?xDSq;65B)$lJ)RzQTjt7|j lEs_lM-|OT5&u=LGO%t8utUo6&XF|b0`?L+T3N&nj{})Ok1bzSj literal 37483 zcma&O1yq&W*Dk(k1O-7_LMfGQ>5vlX?w0P91_cz55D6&>MH&H-kdPE4L|R%xx{+4! z&R4(Rz2Ck6{~hC=G0r*0=G|+rHP@Wa^UP=NNHrDtOL$axC=}|F!d)2+6bfAgg+lAZ z#fCr8cTUZP{|R}@>UnCqSbIJ&ceg?*n|r!Cx_CO;SzPnBa`&)vapvU^;NW4qX6xzc z>LJX@>GVHez~SOS--b z;_PgPY~bR)Tg|TBX3evE^^BQ{Ir9F)56M>ck%o5q9QyXw_UW4(5?JJtl{^nRjQWSC zj<86Gj4+I(9{)PCoJplfS?uNNNu4`4`exLfYSZW2=eV3{^MURH5fO!DG zGxAGo73vMH4hqZOw{GQa$RE^qv=ID#2^EeAypp2Q;s50Yp}i^G7{rm7H7?()KfATx zA1gQC+24Qf&3`SS>stI>_-~0ZsT9jkgU62_zjFEhk@+pr6^2NeN0hwQdi7LfH#)Y3 z{o7k&Qv-f&);zn*xH4RrpdR;Uv*!CwD?aBnF0RXceSJFz2eLKJ)8%F@=phK zypCgBcNvLCzV!6qJ59WAd4z?prlocNxh3)#y=uqQ*}bFf@16UrLj&)u6n%Vrn!kP} zbegRGRO`0jdUooSFx+LrW>~GXdEnvYC0lAxb(xejoU`dS@zK_Fr8lXU-|^0M>)sUe zBuRD3ToxA<6_oz4e|(tEdNhrQPL&udD?U6VEBO4w zz_L|=J(-9GX{G%LOW5Pb^V>~-IzBxmA1F7MmWpF#XaD3-*7(?}CpkyEScgK)kMGW% zJFeR^V)yUgH=B5GH}>A{iucBt`4TS|9XUDq@BJZFRLJk&0l9g37K6D8f<8OfbjnPO zSI>fBg9`L3nIB)enpd-ta6`4f)bMtOm_M2H6M|2ZE=@7NjyPE*Xj|Y@*n6e$JCLo76hFD4nt6?rlaMF%Vq|3G@%&THa<>J!_s-J> z+TO6F6dtRnku`(SwkL$#9!p9nNg0_i?X{ggk?q;S{LEH(>z%I>e`cT11vS$J|9*Jo zhDyX%qqRaDt=OF^`_XzvBBJLB2}D#>QQw1pU4nCwK3E(15@h5NEdKoYbJx8e3XIIm zctJ{&)lS@Q^D?OBh0Zv);~jH0gZH@g-kYu8gZ~)kG(3HZ4^P?Ms^2bhQdLwe)|yt1 zO6fBG7?6rmGcce!`Soiknvxe&!n-d+2s5N3j!yN>n>VCeO+jbEUtWsnE{p$g7ZUT^ z|2*r5&mDN`i7p9o$g{Q!o5e&(NLc0M{vkuyb43z$^TrMNO~DS^fmc{w+cU;$<5dpd zh*1Vr_S)gUXvO?wu&}U%*G)#)jO!9n{Vkz5tW!0XodoV493Gy@7&l6|UMe4LV^$%T|>*(^|LO{@&!WwWhzQXYtNs zSp{8EjT<)%Ao{C{?-LIU3~1Fj8@DW01uiiwr^%pJexLj-a_Zh*9UIfLhg}Qr z6g`^q;4^DRp-WnJM5{Y}?d@em@dcj;w5j9~*Iw4^3SC&(of0Qx!|QSXSFRYEk4_gN5j>((s6a+C&<_hnm>KQO26%bjS4tFSzZ}@ zga7;Y@7blL$K~Z*xw*MoV=m)?e0GDFZ{NPf#m8?m4L*BQ@%H58ghIfPA|N1Oc5^dk zuI@!q|AJG-59ucbn_y;BQ+y#R^^>WI{FbeihZ66W7(%_3`!99?MKf2qiZSAj-_l+&Mbx%vDIZ_M&H` zThwO<1+gb{_b#rHkx_rH!WCrE*XXrVVV~Z+d^g#2<80VLXC%HL;5=0@;XT`o2G{rZ z$#NEoFK#?CB0{n!nceMl-%dtOu625v1`fW%CM!@U=Un%#krV{d?A+YLkPuWfodm66 zwPWGFU^e_U8C}rv^|wYJ9wo8r7F9b?C6s%vYKZ>YsKmv^4S}FdyX_Loq?l|weKcBX zI8g0mSX)>3%J=6IRWSF`@-hQAxB5ZGZO5^{M`34o3-!sr=lgd$6c=2ykzcPj1mi1h zzS47W5Pbaj(G@b>69SrH6MV@5DnWPwpZzc{Z2iv9pVHsn8do??3WR3yO71qGNm^So zhy2MbgScb3ejSb9epnJ-fQI|)A}We(9x`?|M1<>u2lDstGpb~X$H1;vk*QkM{CI0z z&*isoi;0OT$&ysG_2=hT2_jlr0=OYsWhOKbiGp5hi4zrjdwW~~$F6tZXw=r$UK13g z;O6GG&sv1bbe)9-kKbW5EIs`yl30is1} zQE`%bX4_1oKeu@+=JBszZEbBB@TZ-nhBcT?1dy-pKztHWQbuNq`P-k(ke!~4H~QZ; z@mpnrw1&gM!GU|>Ld)^)!tTldL)DqxX~4~tZ+Q$S*NIKCK-O4IMSL%P3pNK*hUvn+IOY zyB%)mk5o4_h;B@MxN_mb1v#3p!~eNZ5LJRAA`If!CDdTr6m(ZrwG%07)lQQZaEDSveRWBNNkgF)`!ikKt6JK3qupaGb6qg*Y2FaPE4} zge36OgY_r&BSmvH--Fs#241Th7({Vfb`&Hvy3V1S1f5t#Q}N>=)pGES;_jd#r#Wn( z&(?=!)Xkuqp4&4tLPA15Kfl~o&sU+@n5-ex%vV9)9x${~sW@j}&tLV}F>se^16k#tG@n0Lf4FIFyBw8yh zI}wP}8As<(f_$jC?d`ZY@l#wvT2U10_jd4~w*DMxB6tPlm^nzidhhOEsPo>8f{iKo zXo-E1A_P9i9KbR;NV?854Uqt*=HRLpHTfT`VZjGeO69>47Z?BB-90$@$!%@;R@jp# zZE$qkAAfOVWMu4|9ern@r$>hjUBpGZhdc-{5*L)z`&L%w1FvK$M7-HXOY~nK@!w=& zxnpl%RJ6_vcLXYMaECMlw{cVN@BZkzGQyY$8@BK{o&f)-Ahp;yhg^#gasS>(+%z z>o4f268%bSC@Q3Hd37u+1aevCVJk61AgbkLWB^StCf&1}s&(_DtM}QpK$pBK;HWlf zqM>mIkc38k(&jw6Bmn_|=h|=~-Y>TAFV&2Ul-LccbCD9_Bm$)wQn!Xvz562Ghq^iq zKxEpJiC>Z#%b za!~V5gb{99RjL2c7G{V}iC)fxj+T~;l#~>LIYz3n@X54%;s9JlqzO0~m}jM}taWJY z9Ukfwm*sINC{G)ytE+1@1qD_)d99B!p%T;5iY6e>N&?=n?>vSS+||}5T^ji^!nQl{ z){m8yySim2O!U*!dhkf3Pz?Ye)SkSjs931@f@8QqonfRJ7ECcxl@~A_bh1beaEr{i zDd^?-@d6>BmJbP`j+We zsCOC)3X%4|AT53F?0g~@OI=tU2l*aZzSAGbxCh?yC8kX#+y0LuSQYG6{;D<@f7eEZputO51+=D*pz;jt%(ZDRw@vGLTaOfJ<6gWd z1H~OxAa_`1(pYy#SKhZ`QT6RpEGg* zxVVIby8Ir=BOg3$!otG~&);h16IfVSltb~s^P=OoPn`HZH#b-7u^gM7Y5|Ey?WH^f z-|qRZ?bja5efCXCJ(IvD z79fR;3Q8*teR%OwxzcWkSx{Jb{^f(2LN#4_4KI0!KmxdvMQ>YSt7N4J8|6BBS z=AY4^>AJkM<@(O!z6zJ4^Nx%Ktdvl^lhe2|{IKP;*Lk*te zXJeHVXi7#xGJCi=xiZrz!eRO``q3lws&`fPBN|mjsE`*g$Ps!7`4XW-A@jPPP{Qno z3m#6^xD-2!`5%TEaeSMgDfR?Ph@b+ftL+dyT5(Mt%LK1py>gvv#rpB%2MPrM*cH;J zQLSrB_Oh&9djt`nRe6M>($K`<5Yn2R>@BYJ=Y$%3*xTmK$$Cg5;+>tFi}_kUPKWjA zaMH!0bO;jGh(SV))8u1dfbE@~#bQ~pv9SoXE@Enf-2_Vgtn2l@P9|Lov$qLxJpz=~U9G0NH@>ug8tN;>^+s>@i zNR!2CD>|U5T%cyaX=6TrzN`I5B->|!O|Kj!;=LgWk^5fUL}(Av<1hP3$hQSlgyj~W z@Q^ZByrZYA{4``9-x^{-&~LwBBHU2(fie_N7DtDvT5hDg7}hu!@-L4TYRZ=yL6Jh; zL}yW6FzR;q^7`b`bcQX-9o1yg=x4ux$@c-$GBq_dORqgX9^Rw4xVUUiKBtDp#$CW1 zbCqAk+u)9t1J6Sk#qsHS*&HyN@k*QG5o4h(=|ZT0_NMy?OMpFO>HPtzH+3xtb zupF0-C62&n`pingh(*`Ruy%FuIK8aEbmE zxV>6uG;sYOb6x{dC2_W&(9!$>j>UH3{Vh-ctVb%uFwO+`*k8395! zSRh#gy=L{IH`F*hl%Ve(BVe?*1vTYX%`PaqLJ>@SRJZz z&<)t@y5aNtnA>}MCWcV_7zLorcKjU^{I-oKnXao zyeOzr=-01bclGw}$Wu;7aQH}wg>+(a^8AP8%wnzsZ3W+o!2=&u3ZES@WGud9^-N6w zF|NS1e?xGO)p@Z7ovz+sGpfD(J@AMI!5xiWP9sH0*+)%zU-`^3ze=81-pY#mbG999 zFX5ipjco%A%V#c}yxhDE+j0CI7D9@bdQ(GRiadA)y9;{YT?K^}i2Ge2Gv>e%D7Y;! z$=LKlfbXTVspnU0{{d`}Q&515PsY{^A|T6D6Ub-Ub?7;e95Vg4gr*w($w8c;MYbR4 zC}dbOP$(bGEZpg{nQeXuC94zQeudY%PH&b39n>^w1A{dCjLgFQl>rRY4v--`CnhDx zKF^sH)f)Z08h-EfxVm0eT_(a2VSW$q1)O&_-Q{DUt0~Ayz>wkq@T#o8(1Yv`iJ-#o zz+UO4aMhqoB4Byo@CebdZ^};QFfOWS$g@8Ax%{GEM2a4EgxGOlBV0Tb`w}91y*|)Jeh#NKyF~}7wN>Q;VE=sk; zR)ir}-K4=sz4X&k-%AlcL!rdP=^K!M9%aS>Q#G4!k4zDCqel`A!t+3>wXfXE3_7(F zJ=-5T{*j>iEHN<*^c-_g_o%XXfl1WX*Dp+c@F3k1@jqmP?0T7)n101*U%$$p6tu0# z)uDXd+HELU@){b?S;mM?PlVj&G5fM4;ud>eSVEaE+U)2X8)5=^0cv6g1h?DIC1ntD zXrZP=vW#(SyBcX|pl4frmDUGpj^u-9>FLE4IIU^zSG>n-LFK&8&VC8DSQhl4@JS?_ z0FA~Q((7@5@SwAP`{PrPE-e6aQU%9T?6FP{3=k1V$~ZMB>*$aPIF4mk1jxxfp3uwO z*l8(Kv9hZQr=KvG-tM3W_+}GCuGGRD?1^eGK zP^1MpOd1ev0(JTPWMH5620fceL+zlK&hwr{(z-TSu3E7Ud)4v?Pz1G_RPpW{9B2~^ z805h=APNSOWMV;qKTXMNXBT092fFoC{R35}Sp$7oFW>L8vkJJ|FAG2CE2Tc-wdpfE z|9yhwHz2~OLaitS@c#MzlMsN?6Oi`cUaysEdV2DGJf6qj-hArJ;+Y^>YPQ)>9J%&M8uF;{ORogqa1 zZEbBu){-IUhJNeTEf5nl7Jcky8iat9BKV{2+c$C`$1<>)yI*d9&xYu*9VsFO`V|RT zd;wnZ`Sa&yz$~sCW85f7NasWlwV*m5pPnMDylAy)iE*FzGAscgfH@>1L{RfP+KK^H zU=F$w2#mpM>@YDgK?D$hInjXk7m{>M9yT>eyftZzk~lxcK*Snkn=&MVLE7JMZhnX{ z(BSICtoFe+ZLY>Gpy^0(fj(yex&}0UvJD;>>FH4*TX^9LGtzrOv{VzHIjonz`ntN* ztGY?a$rm8a9Rm|Xq{f#R(`aUJ{z(!-9_3>VoFYfiihEXE%qr%yBk7Q8-u5^?Awe^I z)jtg=Zf0iix$oZ5Q9dYU@o{m4UYiq1OJB20%~_bbmDgFC#s6MNc9b|trqv8|Dg18nTZd-B2QS{cQ4GkFGB&U0s~|{ybBj{ z3N`bKlu4O2l;UDyWAh+|TtU4Y>gP25s6-dIPb3EAgyiyNNg%NdP(-3)V|CK|-WG4A zt@**eQ%MAg!rwdvC8_{)Af(9=qhA62D33H6RnR6o5a-AWPr19Bq54udiAuon zE<8yK4qy#BCV@a1w2X{OSfH^g4v%E8v026&ddX>ACnNp%Vh*59$o8*5`O*XceT#`n zRvTe7!xfhDd%L^Wp~q+s&@>RRpnYe*3~aB{*B5zgi+3b2-~#W@J)zS8^be_g09cA5 zXkgbRBqX5KlUS7TQ44)_b(MsaRCZ=&=EvIFy-QSl*>L8C8d^Z;(mSFlr6B~7?iYw1 zdBD*IU=iBC5ORG}Ts#wWENRf#k)wbTs;%fDrRBEvVXp$joFA*J3XpwBC@B>nGBsIW zZ&LFGs&qTR4ITlqwSFce1J@P#N!3iz>-2M3SwLSjzh;Vc4GksOkCrF^xzN*F|CJy?n<%8G=NupH#5q1!P7eVj%)dfK47holvpu4u3_xZdr<@ zwuu!SfwcTDGhwf*(^$MoObkFch_+?vv_x=Wu;arZ|2-C^fN z^3Hm{1D02>U(aoA#X^Zw$`sX4l0<9)mc2!mz&>vQ+ItEY`(Z?Rz=?Z%d;2Vq{34}y za7OJw7`5WmttGKYC>dYBeoaI|5(cpVK}imw`!FHliul>SX3N1%Xlet0Q3qIES=QK& zcn|=qLLDXqQDv~P{rM-JQ(Udra+jdcWkuYLzv%=?$)Lx1;(a8*!ke6&s#Q)P+5cEv zl!bpD#ihP{S(+>p=@PJT_4{$h?T_Pq>>?tD%U&jYl@&k-kYWw`Nj7LrMVkmr=}uxr zmWEU;ARakIUN;yRFo23{7&3B0KMIlQ5eWjsAUjbVsIC(e*Z2Qez6Z5U`P~d2VwLDE z1Na1#$^I#agT;Z_a(m>Jm8lQBv=TuV;Q%2!(t?_VldUHOx4o`FyO<1gzSyG~e?s8* zKs2aOpcR$1+V^)i{oLDoPwN4V7OHRl8nHAM@bHw){@a+J)>>2&n3Y}kSJWX~u7Q4y zbRIx|?1y7V)R-c7Sn(ZKSLna3JOrV$kUh_~08*s|sAxq^N%7bJS~}uJ@-sz5L|(%^ zMv6Zuh)9h9%%o>I4xbSX1#k)%g^P#R3e{`4`{o}4JiI|aC2$gGvl7%SAwH4AFR&C} z(6j9q?7D^h_HUw)4j!r>)IOwK-*%bNN*V_Rr=g)i%h()=l;Vk!i5PybH7(#EI9_YR zEueP++Q&>)dJIK;7MLe6+*TyoA^A{C1W|($fl!P7IxhzlqT(Q*@gl7#1;Wme-l5Y3 zA2jQ+A-#->^23s%Bg3>qUqYi9QTIN7`4V1Ja~rt<$kTzcN_%??RJ(kSm3>M!2fzbq z`-PxkAWs=t05-pih+d^NGk4%HK*V^6h`Wo6$jbFbIvgyexFyFYC$EBTA{vC;oJyiQ zW#3<2t^DhivA*|zdSk2)avvcdx>D8s12xj7f}YQ#&`_ieDlaep^jl~s4YJ}?BRF=z zDNg{p6jm#|(SS3csHmtQE5(0c`S*6^4h{}pCMVA)TR};xs1QIo*K#m2!29RP;iddw z6bsNrO4Iu4Vl@D|&x`I)MF|@hI*ebsHV*M^dc4|9R&;O;MR+sfBi~%p<^9cTy1W*$!f1Yg^v+r zq2H2zCcko!j&qY2R)r42Fg-ne>%@qe+^pH(94I{QS4{SALx;L)N3j;rx{;$B`fLKf z{`V46*x2Z+w^b~IuK#DB6?MOu{X6v%bbkZ#=zj;QZKk^Z=%0hC0&m04nCst1)sX@L z0MY2IcoLzcfLZ4t%X_NFd-Lan9vHG1M>&l< zHd0H=@DXcPul1PpgkQ)0T*%BmvJbt?V~X&5PX$FqX=uvPGcd$Idlmv}D7c6Ae$_vR z*B~#mxbdO~Tr@@e>BTbi54Biip~?RT-C97Avj0UB8>@}@_+W^cB9Y(OQZh|P%F4JV zJd>{?->aZK0+#xpKY%xF5F9g)hNk+PQX8c!1S?;j{y+S+a`}t*2hnz|XpO$R!yY@s z9vzMsZWvh}DrwI5K6`cI0@^}I8khwhgZlZ|ApdXOiYJ;*p)oZzMMNa9${>oph6XX*T@=dZYo;u;37^Hs zKZK%91q;7%dbs%%m;wX1+fX~x55CVq$GQ#d3&5Y)R#Ff+Q54xJ$7Ma~=Zw=j| z1xR2>X(6B!j|SM94NooNL8t&=33xOb3W$#+6g91f1Sr4gq&*9Y>s_ zD~iH(Us#u{mHU-@%(q_vc7S*t0I0MAaY7&jR8cT@QG!}%zlec>5&z-^4(fAHk0!on z;t}ii5MXg3L_eN}NLKRKh~`$;e9K`R#QrKHgS!3GC%0xzS-3Hfcff)q&781HpYGlJ zze*RipeqU~r-;M~m@fSw1@>AN1jx1ImoJ@07q~mxLt%NSnhkA!9YXJnmoE|98z`}e zSHX5D?-CiONi;xSH~*ZAJy8%K9p$_q;|6p@BH+nNpk(TZeay`b1L;bk(eL0DXi|glR$bq}X90M&R};g-!^1_9l8~hA z|E8#90xk#r;tL^b%t`ld@$-)`$Guke^Q)VvsG1%e8e-R=v)2E8I!T`M&7~My1iHZ4 z(8YWXy(=)XX@YYOj-LqpCvmnQUn0l}6svq-`kKzpZzsgxy?a*xW||*MOLE|~$&I{n zV-Rrj#UdOWk&+@sWo77qYRuuA(#JoOq371WW>L7X0*%N!8iiVxVu@aWqH~@b|#Yr~oADioM9v0jk_na!xsLu`m)x zb|g0f2-yAA+~-=}rbkLnP3<`7J}Mr2-N$RSNMZaPXc2-{qjI3^z{}ivGHK?yMP|80 zO6)ab-v9(35TyAwZ0X$_NZk=OUp3%J2S`5p!Yjv795r+5&|B#T>|XFU8r2)0Iy=GS z@aVh0H&Pu^K4EX{HJf#$@VoviPE3mY>mEmFmc1nZE#sxI!h;e=u zmd^;t!6lr%E%vXh#NSm^97-AY1uIZSS`L`>pyE+ndHDW4A6!ChJ+9j~Zs0)vfmc;( zd~u}vn^IGdLqTfUf(A>s6DaP`x=VhWX8iB%Smilhz=gdoBt*%R+Pfizz=Zz|Gkh^1 z^#5du)b9$O5^iVa+qb{vE~W@O!xnINoM%;ae1UFk`g>~4&K}v27f;QixfO}mhwUM4 zfjz8rS^@m68igdOsj19mWqV^_j-l$@O!+xh9sT#U%);Q;0DK_}U1wrq;>%#$f*(`w z<$JeOO9{XUfkz?q<+l`1j)0X5_Hz^e{Y-3kHZ+S%#hjT11js-rDlo3Ep74g_OH3r` ztJJ(O6@#_a0T|k&(waP84g9I`@$r5=Z}RiubXpw`E<4=LqPWl) z)&*-vLgZk%nW;v%=!qY7ei`HZyX&bhOO;BO+;|To>nob4p)gxJSC7iJ!|Ox)*KgaX zS;L=rcXPa|trY}kU{#2Gw6P5ITXn9Av@6BcSHRBcV?H3_c9?T!gFt}a5kDYGHPH@K z`S2I8+;k(4x6`+r(=dcCJnU&o46(nCeZ{}ysgwdZ3BuNpV7>AOc5ZGW_YYHp+E-}) zg~QeRU&0lgF8y6~o~||xiq*RMS&{)8QmHSrlGhhK#c7U8D82uN3kpMez7G^8$}pGS_XRZ-8X}H>pr&>7>UEe!mf#mPPOu1p+nwEc=yxWwRyDi zd24+97eNQ4muU$a4yjxZOGb)X0GcR?d>qqu5=H6!Zcj-%?Yd&Nq9#d?HsgykR*7@G zNS>|B`6+O;83`f-O81HdMz_N!IL#A}|6NzTK&9zYLrED-*VFe)zbY%CV~*x<@%lUf zu{=`KjUoYBl!Hh~YSQUvqU=EbvqisycPiN!$WAKZAa8ppj?(#WF&tfQdFj1%%&X#i zce6F?1(;^})E-qqeP}k6~ z=+ZRrb&lM$=rkrwCck?1Dd@Jj5Ub!X0wv~iZ}0mq$tN}xR7-%wzy&MVB_ zi|*hUWVm?~7jzhDAS&QoKnImA0Ejl37+uFkQuR133atBV0vPQEsR2U%@4axE(}=%v zkyuX(doT{!J&+I>tfG&|QO`Jt!EN1t(@Sd!xfqWX*d?B%teZ2EKVKhfaJOCu4Kq4U;A z0r*WGl-}YkIw5yP2nxkbZt%QZLxCdC9MhR59$43LH`CCYVyFx}i+2>|$J1r#bD*%X z+`7d*&OJ0Vgmp#*BEs!)?ozi*=u&8;-7?ixE)A>RsY}x^p;ce#Xf<^I_^WS%|Lx}` z18)$mLXo}{yp#Rpcb|nz2ns|-1^8?)gZJto2rUc1xaH^^K%u*N^QPMLyUI#d!@!QB ziwB$u5QqJR9bU4^~zT+t@oerGD@mlc0F%6->ZMX+WPYLcfR21URjcsJ`jo# z=FA`_Mgz#e=Kn4q)DnVx0M6^eX$s3$J%*ifxo@GR)^SVYa;K3_k8|FX7`(xC7xwHo zt=3_mUDK9*HdIx7vTp4R_&fp^^!QImV-}q4;JH)Xwv43}!<%j5tOCro05S`-SMrK_ zp`(bjm>>ev-^@g7TaDt1vc*r8|2|Fz$x15j%H$Y