diff --git a/_images/cnn_10_1.png b/_images/cnn_10_1.png deleted file mode 100644 index b3d6c3a8af..0000000000 Binary files a/_images/cnn_10_1.png and /dev/null differ diff --git a/_images/cnn_11_1.png b/_images/cnn_11_1.png index eec7cc23bb..b3d6c3a8af 100644 Binary files a/_images/cnn_11_1.png and b/_images/cnn_11_1.png differ diff --git a/_images/cnn_12_1.png b/_images/cnn_12_1.png new file mode 100644 index 0000000000..eec7cc23bb Binary files /dev/null and b/_images/cnn_12_1.png differ diff --git a/_images/cnn_11_2.png b/_images/cnn_12_2.png similarity index 100% rename from _images/cnn_11_2.png rename to _images/cnn_12_2.png diff --git a/_images/cnn_11_4.png b/_images/cnn_12_4.png similarity index 100% rename from _images/cnn_11_4.png rename to _images/cnn_12_4.png diff --git a/_images/gradient-descent_19_1.png b/_images/gradient-descent_19_1.png index e224f2e1e4..3f81b0867c 100644 Binary files a/_images/gradient-descent_19_1.png and b/_images/gradient-descent_19_1.png differ diff --git a/_images/kernel-method_32_0.png b/_images/kernel-method_32_0.png index 0068095f20..ab10cc25f0 100644 Binary files a/_images/kernel-method_32_0.png and b/_images/kernel-method_32_0.png differ diff --git a/_images/kernel-method_39_1.png b/_images/kernel-method_39_1.png index 0341d935c7..abd7482f24 100644 Binary files a/_images/kernel-method_39_1.png and b/_images/kernel-method_39_1.png differ diff --git a/_images/rnn_17_0.png b/_images/rnn_17_0.png new file mode 100644 index 0000000000..41277722ff Binary files /dev/null and b/_images/rnn_17_0.png differ diff --git a/_images/rnn_17_1.png b/_images/rnn_17_1.png new file mode 100644 index 0000000000..71c224f423 Binary files /dev/null and b/_images/rnn_17_1.png differ diff --git a/_images/rnn_7_3.png b/_images/rnn_7_3.png deleted file mode 100644 index ff15035929..0000000000 Binary files a/_images/rnn_7_3.png and /dev/null differ diff --git a/_images/rnn_7_4.png b/_images/rnn_7_4.png deleted file mode 100644 index 1db25e6f3e..0000000000 Binary files a/_images/rnn_7_4.png and /dev/null differ diff --git a/_images/tools-of-the-trade_29_0.png b/_images/tools-of-the-trade_29_0.png index 2771a6fcb9..caa9f81586 100644 Binary files a/_images/tools-of-the-trade_29_0.png and b/_images/tools-of-the-trade_29_0.png differ diff --git a/_images/visualization-relationships_12_0.png b/_images/visualization-relationships_12_0.png index e39c9ece95..1e673d453e 100644 Binary files a/_images/visualization-relationships_12_0.png and b/_images/visualization-relationships_12_0.png differ diff --git a/_images/visualization-relationships_16_0.png b/_images/visualization-relationships_16_0.png index 51768453b5..5661ce4a96 100644 Binary files a/_images/visualization-relationships_16_0.png and b/_images/visualization-relationships_16_0.png differ diff --git a/_images/visualization-relationships_18_1.png b/_images/visualization-relationships_18_1.png index a66c1f92ca..32c99efd7d 100644 Binary files a/_images/visualization-relationships_18_1.png and b/_images/visualization-relationships_18_1.png differ diff --git a/_images/visualization-relationships_20_0.png b/_images/visualization-relationships_20_0.png index 541bbf0884..612f86593e 100644 Binary files a/_images/visualization-relationships_20_0.png and b/_images/visualization-relationships_20_0.png differ diff --git a/_sources/assignments/deep-learning/cnn/image-classification.ipynb b/_sources/assignments/deep-learning/cnn/image-classification.ipynb new file mode 100644 index 0000000000..7f3a631caf --- /dev/null +++ b/_sources/assignments/deep-learning/cnn/image-classification.ipynb @@ -0,0 +1,1396 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "# Install the necessary dependencies\n", + "\n", + "import os\n", + "import sys\n", + "!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "license:\n", + " code: MIT\n", + " content: CC-BY-4.0\n", + "github: https://github.com/ocademy-ai/machine-learning\n", + "venue: By Ocademy\n", + "open_access: true\n", + "bibliography:\n", + " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FE7KNzPPVrVV" + }, + "source": [ + "# Image classification" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gN7G9GFmVrVY" + }, + "source": [ + "This tutorial shows how to classify images of flowers using a `tf.keras.Sequential` model and load data using `tf.keras.utils.image_dataset_from_directory`. It demonstrates the following concepts:\n", + "\n", + "\n", + "* Efficiently loading a dataset off disk.\n", + "* Identifying overfitting and applying techniques to mitigate it, including data augmentation and dropout.\n", + "\n", + "This tutorial follows a basic machine learning workflow:\n", + "\n", + "1. Examine and understand data\n", + "2. Build an input pipeline\n", + "3. Build the model\n", + "4. Train the model\n", + "5. Test the model\n", + "6. Improve the model and repeat the process\n", + "\n", + "In addition, the notebook demonstrates how to convert a saved model to a TensorFlow Lite model for on-device machine learning on mobile, embedded, and IoT devices." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "zF9uvbXNVrVY" + }, + "source": [ + "## Setup\n", + "\n", + "Import TensorFlow and other necessary libraries:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:37.838594Z", + "iopub.status.busy": "2023-10-27T06:06:37.838012Z", + "iopub.status.idle": "2023-10-27T06:06:40.429734Z", + "shell.execute_reply": "2023-10-27T06:06:40.429024Z" + }, + "id": "L1WtoaOHVrVh" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "import numpy as np\n", + "import PIL\n", + "import tensorflow as tf\n", + "\n", + "from tensorflow import keras\n", + "from tensorflow.keras import layers\n", + "from tensorflow.keras.models import Sequential" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UZZI6lNkVrVm" + }, + "source": [ + "## Download and explore the dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DPHx8-t-VrVo" + }, + "source": [ + "This tutorial uses a dataset of about 3,700 photos of flowers. The dataset contains five sub-directories, one per class:\n", + "\n", + "```\n", + "flower_photo/\n", + " daisy/\n", + " dandelion/\n", + " roses/\n", + " sunflowers/\n", + " tulips/\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:40.434690Z", + "iopub.status.busy": "2023-10-27T06:06:40.433828Z", + "iopub.status.idle": "2023-10-27T06:06:43.613076Z", + "shell.execute_reply": "2023-10-27T06:06:43.612374Z" + }, + "id": "57CcilYSG0zv" + }, + "outputs": [], + "source": [ + "import pathlib\n", + "\n", + "dataset_url = \"https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/flower_photos.tgz\"\n", + "data_dir = tf.keras.utils.get_file('flower_photos.tar', origin=dataset_url, extract=True)\n", + "data_dir = pathlib.Path(data_dir).with_suffix('')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VpmywIlsVrVx" + }, + "source": [ + "After downloading, you should now have a copy of the dataset available. There are 3,670 total images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.617178Z", + "iopub.status.busy": "2023-10-27T06:06:43.616929Z", + "iopub.status.idle": "2023-10-27T06:06:43.630586Z", + "shell.execute_reply": "2023-10-27T06:06:43.629991Z" + }, + "id": "SbtTDYhOHZb6" + }, + "outputs": [], + "source": [ + "image_count = len(list(data_dir.glob('*/*.jpg')))\n", + "print(image_count)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PVmwkOSdHZ5A" + }, + "source": [ + "Here are some roses:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.633873Z", + "iopub.status.busy": "2023-10-27T06:06:43.633337Z", + "iopub.status.idle": "2023-10-27T06:06:43.663732Z", + "shell.execute_reply": "2023-10-27T06:06:43.663159Z" + }, + "id": "N1loMlbYHeiJ" + }, + "outputs": [], + "source": [ + "roses = list(data_dir.glob('roses/*'))\n", + "PIL.Image.open(str(roses[0]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.669205Z", + "iopub.status.busy": "2023-10-27T06:06:43.668553Z", + "iopub.status.idle": "2023-10-27T06:06:43.706526Z", + "shell.execute_reply": "2023-10-27T06:06:43.705970Z" + }, + "id": "RQbZBOTLHiUP" + }, + "outputs": [], + "source": [ + "PIL.Image.open(str(roses[1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "DGEqiBbRHnyI" + }, + "source": [ + "And some tulips:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.713651Z", + "iopub.status.busy": "2023-10-27T06:06:43.712988Z", + "iopub.status.idle": "2023-10-27T06:06:43.732316Z", + "shell.execute_reply": "2023-10-27T06:06:43.731754Z" + }, + "id": "HyQkfPGdHilw" + }, + "outputs": [], + "source": [ + "tulips = list(data_dir.glob('tulips/*'))\n", + "PIL.Image.open(str(tulips[0]))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.736431Z", + "iopub.status.busy": "2023-10-27T06:06:43.735919Z", + "iopub.status.idle": "2023-10-27T06:06:43.758890Z", + "shell.execute_reply": "2023-10-27T06:06:43.758290Z" + }, + "id": "wtlhWJPAHivf" + }, + "outputs": [], + "source": [ + "PIL.Image.open(str(tulips[1]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "gIjgz7_JIo_m" + }, + "source": [ + "## Load data using a Keras utility\n", + "\n", + "Next, load these images off disk using the helpful `tf.keras.utils.image_dataset_from_directory` utility. This will take you from a directory of images on disk to a `tf.data.Dataset` in just a couple lines of code. " + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "xyDNn9MbIzfT" + }, + "source": [ + "### Create a dataset" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "anqiK_AGI086" + }, + "source": [ + "Define some parameters for the loader:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.764214Z", + "iopub.status.busy": "2023-10-27T06:06:43.763806Z", + "iopub.status.idle": "2023-10-27T06:06:43.766863Z", + "shell.execute_reply": "2023-10-27T06:06:43.766310Z" + }, + "id": "H74l2DoDI2XD" + }, + "outputs": [], + "source": [ + "batch_size = 32\n", + "img_height = 180\n", + "img_width = 180" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pFBhRrrEI49z" + }, + "source": [ + "It's good practice to use a validation split when developing your model. Use 80% of the images for training and 20% for validation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:43.770270Z", + "iopub.status.busy": "2023-10-27T06:06:43.769868Z", + "iopub.status.idle": "2023-10-27T06:06:47.127119Z", + "shell.execute_reply": "2023-10-27T06:06:47.126368Z" + }, + "id": "fIR0kRZiI_AT" + }, + "outputs": [], + "source": [ + "train_ds = tf.keras.utils.image_dataset_from_directory(\n", + " data_dir,\n", + " validation_split=0.2,\n", + " subset=\"training\",\n", + " seed=123,\n", + " image_size=(img_height, img_width),\n", + " batch_size=batch_size)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:47.131037Z", + "iopub.status.busy": "2023-10-27T06:06:47.130765Z", + "iopub.status.idle": "2023-10-27T06:06:47.287395Z", + "shell.execute_reply": "2023-10-27T06:06:47.286778Z" + }, + "id": "iscU3UoVJBXj" + }, + "outputs": [], + "source": [ + "val_ds = tf.keras.utils.image_dataset_from_directory(\n", + " data_dir,\n", + " validation_split=0.2,\n", + " subset=\"validation\",\n", + " seed=123,\n", + " image_size=(img_height, img_width),\n", + " batch_size=batch_size)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WLQULyAvJC3X" + }, + "source": [ + "You can find the class names in the `class_names` attribute on these datasets. These correspond to the directory names in alphabetical order." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:47.291072Z", + "iopub.status.busy": "2023-10-27T06:06:47.290824Z", + "iopub.status.idle": "2023-10-27T06:06:47.294420Z", + "shell.execute_reply": "2023-10-27T06:06:47.293799Z" + }, + "id": "ZHAxkHX5JD3k" + }, + "outputs": [], + "source": [ + "class_names = train_ds.class_names\n", + "print(class_names)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "_uoVvxSLJW9m" + }, + "source": [ + "## Visualize the data\n", + "\n", + "Here are the first nine images from the training dataset:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:47.297749Z", + "iopub.status.busy": "2023-10-27T06:06:47.297476Z", + "iopub.status.idle": "2023-10-27T06:06:48.298425Z", + "shell.execute_reply": "2023-10-27T06:06:48.297546Z" + }, + "id": "wBmEA9c0JYes" + }, + "outputs": [], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "plt.figure(figsize=(10, 10))\n", + "for images, labels in train_ds.take(1):\n", + " for i in range(9):\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(images[i].numpy().astype(\"uint8\"))\n", + " plt.title(class_names[labels[i]])\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5M6BXtXFJdW0" + }, + "source": [ + "You will pass these datasets to the Keras `Model.fit` method for training later in this tutorial. If you like, you can also manually iterate over the dataset and retrieve batches of images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.314518Z", + "iopub.status.busy": "2023-10-27T06:06:48.314267Z", + "iopub.status.idle": "2023-10-27T06:06:48.383826Z", + "shell.execute_reply": "2023-10-27T06:06:48.383086Z" + }, + "id": "2-MfMoenJi8s" + }, + "outputs": [], + "source": [ + "for image_batch, labels_batch in train_ds:\n", + " print(image_batch.shape)\n", + " print(labels_batch.shape)\n", + " break" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Wj4FrKxxJkoW" + }, + "source": [ + "The `image_batch` is a tensor of the shape `(32, 180, 180, 3)`. This is a batch of 32 images of shape `180x180x3` (the last dimension refers to color channels RGB). The `label_batch` is a tensor of the shape `(32,)`, these are corresponding labels to the 32 images.\n", + "\n", + "You can call `.numpy()` on the `image_batch` and `labels_batch` tensors to convert them to a `numpy.ndarray`.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4Dr0at41KcAU" + }, + "source": [ + "## Configure the dataset for performance\n", + "\n", + "Make sure to use buffered prefetching, so you can yield data from disk without having I/O become blocking. These are two important methods you should use when loading data:\n", + "\n", + "- `Dataset.cache` keeps the images in memory after they're loaded off disk during the first epoch. This will ensure the dataset does not become a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this method to create a performant on-disk cache.\n", + "- `Dataset.prefetch` overlaps data preprocessing and model execution while training.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.387326Z", + "iopub.status.busy": "2023-10-27T06:06:48.387053Z", + "iopub.status.idle": "2023-10-27T06:06:48.399552Z", + "shell.execute_reply": "2023-10-27T06:06:48.398861Z" + }, + "id": "nOjJSm7DKoZA" + }, + "outputs": [], + "source": [ + "AUTOTUNE = tf.data.AUTOTUNE\n", + "\n", + "train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)\n", + "val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "8GUnmPF4JvEf" + }, + "source": [ + "## Standardize the data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "e56VXHMWJxYT" + }, + "source": [ + "The RGB channel values are in the `[0, 255]` range. This is not ideal for a neural network; in general you should seek to make your input values small.\n", + "\n", + "Here, you will standardize values to be in the `[0, 1]` range by using `tf.keras.layers.Rescaling`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.403081Z", + "iopub.status.busy": "2023-10-27T06:06:48.402855Z", + "iopub.status.idle": "2023-10-27T06:06:48.409847Z", + "shell.execute_reply": "2023-10-27T06:06:48.409235Z" + }, + "id": "PEYxo2CTJvY9" + }, + "outputs": [], + "source": [ + "normalization_layer = layers.Rescaling(1./255)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Bl4RmanbJ4g0" + }, + "source": [ + "There are two ways to use this layer. You can apply it to the dataset by calling `Dataset.map`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.413451Z", + "iopub.status.busy": "2023-10-27T06:06:48.412874Z", + "iopub.status.idle": "2023-10-27T06:06:48.874337Z", + "shell.execute_reply": "2023-10-27T06:06:48.873622Z" + }, + "id": "X9o9ESaJJ502" + }, + "outputs": [], + "source": [ + "normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))\n", + "image_batch, labels_batch = next(iter(normalized_ds))\n", + "first_image = image_batch[0]\n", + "# Notice the pixel values are now in `[0,1]`.\n", + "print(np.min(first_image), np.max(first_image))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XWEOmRSBJ9J8" + }, + "source": [ + "Or, you can include the layer inside your model definition, which can simplify deployment. Use the second approach here." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "XsRk1xCwKZR4" + }, + "source": [ + "Note: You previously resized images using the `image_size` argument of `tf.keras.utils.image_dataset_from_directory`. If you want to include the resizing logic in your model as well, you can use the `tf.keras.layers.Resizing` layer." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WcUTyDOPKucd" + }, + "source": [ + "## A basic Keras model\n", + "\n", + "### Create the model\n", + "\n", + "The Keras [Sequential](https://www.tensorflow.org/guide/keras/sequential_model) model consists of three convolution blocks (`tf.keras.layers.Conv2D`) with a max pooling layer (`tf.keras.layers.MaxPooling2D`) in each of them. There's a fully-connected layer (`tf.keras.layers.Dense`) with 128 units on top of it that is activated by a ReLU activation function (`'relu'`). This model has not been tuned for high accuracy; the goal of this tutorial is to show a standard approach." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.878528Z", + "iopub.status.busy": "2023-10-27T06:06:48.878247Z", + "iopub.status.idle": "2023-10-27T06:06:48.977446Z", + "shell.execute_reply": "2023-10-27T06:06:48.976699Z" + }, + "id": "QR6argA1K074" + }, + "outputs": [], + "source": [ + "num_classes = len(class_names)\n", + "\n", + "model = Sequential([\n", + " layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),\n", + " layers.Conv2D(16, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(32, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(64, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Flatten(),\n", + " layers.Dense(128, activation='relu'),\n", + " layers.Dense(num_classes)\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "EaKFzz72Lqpg" + }, + "source": [ + "### Compile the model\n", + "\n", + "For this tutorial, choose the `tf.keras.optimizers.Adam` optimizer and `tf.keras.losses.SparseCategoricalCrossentropy` loss function. To view training and validation accuracy for each training epoch, pass the `metrics` argument to `Model.compile`." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:48.981686Z", + "iopub.status.busy": "2023-10-27T06:06:48.981407Z", + "iopub.status.idle": "2023-10-27T06:06:49.130037Z", + "shell.execute_reply": "2023-10-27T06:06:49.129313Z" + }, + "id": "jloGNS1MLx3A" + }, + "outputs": [], + "source": [ + "model.compile(optimizer='adam',\n", + " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aMJ4DnuJL55A" + }, + "source": [ + "### Model summary\n", + "\n", + "View all the layers of the network using the Keras `Model.summary` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:49.134092Z", + "iopub.status.busy": "2023-10-27T06:06:49.133829Z", + "iopub.status.idle": "2023-10-27T06:06:49.152889Z", + "shell.execute_reply": "2023-10-27T06:06:49.152297Z" + }, + "id": "llLYH-BXL7Xe" + }, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NiYHcbvaL9H-" + }, + "source": [ + "### Train the model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "j30F69T4sIVN" + }, + "source": [ + "Train the model for 10 epochs with the Keras `Model.fit` method:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:06:49.166383Z", + "iopub.status.busy": "2023-10-27T06:06:49.166146Z", + "iopub.status.idle": "2023-10-27T06:07:12.242819Z", + "shell.execute_reply": "2023-10-27T06:07:12.242097Z" + }, + "id": "5fWToCqYMErH" + }, + "outputs": [], + "source": [ + "epochs=10\n", + "history = model.fit(\n", + " train_ds,\n", + " validation_data=val_ds,\n", + " epochs=epochs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "SyFKdQpXMJT4" + }, + "source": [ + "## Visualize training results" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dFvOvmAmMK9w" + }, + "source": [ + "Create plots of the loss and accuracy on the training and validation sets:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:12.247018Z", + "iopub.status.busy": "2023-10-27T06:07:12.246357Z", + "iopub.status.idle": "2023-10-27T06:07:12.534186Z", + "shell.execute_reply": "2023-10-27T06:07:12.533543Z" + }, + "id": "jWnopEChMMCn" + }, + "outputs": [], + "source": [ + "acc = history.history['accuracy']\n", + "val_acc = history.history['val_accuracy']\n", + "\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs_range = range(epochs)\n", + "\n", + "plt.figure(figsize=(8, 8))\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs_range, acc, label='Training Accuracy')\n", + "plt.plot(epochs_range, val_acc, label='Validation Accuracy')\n", + "plt.legend(loc='lower right')\n", + "plt.title('Training and Validation Accuracy')\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs_range, loss, label='Training Loss')\n", + "plt.plot(epochs_range, val_loss, label='Validation Loss')\n", + "plt.legend(loc='upper right')\n", + "plt.title('Training and Validation Loss')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hO_jT7HwMrEn" + }, + "source": [ + "The plots show that training accuracy and validation accuracy are off by large margins, and the model has achieved only around 60% accuracy on the validation set.\n", + "\n", + "The following tutorial sections show how to inspect what went wrong and try to increase the overall performance of the model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "hqtyGodAMvNV" + }, + "source": [ + "## Overfitting" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ixsz9XFfMxcu" + }, + "source": [ + "In the plots above, the training accuracy is increasing linearly over time, whereas validation accuracy stalls around 60% in the training process. Also, the difference in accuracy between training and validation accuracy is noticeable—a sign of [overfitting](https://www.tensorflow.org/tutorials/keras/overfit_and_underfit).\n", + "\n", + "When there are a small number of training examples, the model sometimes learns from noises or unwanted details from training examples—to an extent that it negatively impacts the performance of the model on new examples. This phenomenon is known as overfitting. It means that the model will have a difficult time generalizing on a new dataset.\n", + "\n", + "There are multiple ways to fight overfitting in the training process. In this tutorial, you'll use *data augmentation* and add *dropout* to your model." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BDMfYqwmM1C-" + }, + "source": [ + "## Data augmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GxYwix81M2YO" + }, + "source": [ + "Overfitting generally occurs when there are a small number of training examples. **Data augmentation** takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.\n", + "\n", + "You will implement data augmentation using the following Keras preprocessing layers: `tf.keras.layers.RandomFlip`, `tf.keras.layers.RandomRotation`, and `tf.keras.layers.RandomZoom`. These can be included inside your model like other layers, and run on the GPU." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:12.537963Z", + "iopub.status.busy": "2023-10-27T06:07:12.537729Z", + "iopub.status.idle": "2023-10-27T06:07:12.684248Z", + "shell.execute_reply": "2023-10-27T06:07:12.683621Z" + }, + "id": "9J80BAbIMs21" + }, + "outputs": [], + "source": [ + "data_augmentation = keras.Sequential(\n", + " [\n", + " layers.RandomFlip(\"horizontal\",\n", + " input_shape=(img_height,\n", + " img_width,\n", + " 3)),\n", + " layers.RandomRotation(0.1),\n", + " layers.RandomZoom(0.1),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "PN4k1dK3S6eV" + }, + "source": [ + "Visualize a few augmented examples by applying data augmentation to the same image several times:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:12.687482Z", + "iopub.status.busy": "2023-10-27T06:07:12.687256Z", + "iopub.status.idle": "2023-10-27T06:07:13.738634Z", + "shell.execute_reply": "2023-10-27T06:07:13.737939Z" + }, + "id": "7Z90k539S838" + }, + "outputs": [], + "source": [ + "plt.figure(figsize=(10, 10))\n", + "for images, _ in train_ds.take(1):\n", + " for i in range(9):\n", + " augmented_images = data_augmentation(images)\n", + " ax = plt.subplot(3, 3, i + 1)\n", + " plt.imshow(augmented_images[0].numpy().astype(\"uint8\"))\n", + " plt.axis(\"off\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "tsjXCBLYYNs5" + }, + "source": [ + "You will add data augmentation to your model before training in the next step." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ZeD3bXepYKXs" + }, + "source": [ + "## Dropout\n", + "\n", + "Another technique to reduce overfitting is to introduce [dropout](https://developers.google.com/machine-learning/glossary#dropout_regularization) regularization to the network.\n", + "\n", + "When you apply dropout to a layer, it randomly drops out (by setting the activation to zero) a number of output units from the layer during the training process. Dropout takes a fractional number as its input value, in the form such as 0.1, 0.2, 0.4, etc. This means dropping out 10%, 20% or 40% of the output units randomly from the applied layer.\n", + "\n", + "Create a new neural network with `tf.keras.layers.Dropout` before training it using the augmented images:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:13.750960Z", + "iopub.status.busy": "2023-10-27T06:07:13.750684Z", + "iopub.status.idle": "2023-10-27T06:07:13.952738Z", + "shell.execute_reply": "2023-10-27T06:07:13.952076Z" + }, + "id": "2Zeg8zsqXCsm" + }, + "outputs": [], + "source": [ + "model = Sequential([\n", + " data_augmentation,\n", + " layers.Rescaling(1./255),\n", + " layers.Conv2D(16, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(32, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Conv2D(64, 3, padding='same', activation='relu'),\n", + " layers.MaxPooling2D(),\n", + " layers.Dropout(0.2),\n", + " layers.Flatten(),\n", + " layers.Dense(128, activation='relu'),\n", + " layers.Dense(num_classes, name=\"outputs\")\n", + "])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "L4nEcuqgZLbi" + }, + "source": [ + "## Compile and train the model" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:13.956252Z", + "iopub.status.busy": "2023-10-27T06:07:13.955872Z", + "iopub.status.idle": "2023-10-27T06:07:13.965125Z", + "shell.execute_reply": "2023-10-27T06:07:13.964525Z" + }, + "id": "EvyAINs9ZOmJ" + }, + "outputs": [], + "source": [ + "model.compile(optimizer='adam',\n", + " loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n", + " metrics=['accuracy'])" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:13.968257Z", + "iopub.status.busy": "2023-10-27T06:07:13.967902Z", + "iopub.status.idle": "2023-10-27T06:07:13.987989Z", + "shell.execute_reply": "2023-10-27T06:07:13.987423Z" + }, + "id": "wWLkKoKjZSoC" + }, + "outputs": [], + "source": [ + "model.summary()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:14.004029Z", + "iopub.status.busy": "2023-10-27T06:07:14.003575Z", + "iopub.status.idle": "2023-10-27T06:07:55.642484Z", + "shell.execute_reply": "2023-10-27T06:07:55.641736Z" + }, + "id": "LWS-vvNaZDag" + }, + "outputs": [], + "source": [ + "epochs = 15\n", + "history = model.fit(\n", + " train_ds,\n", + " validation_data=val_ds,\n", + " epochs=epochs\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Lkdl8VsBbZOu" + }, + "source": [ + "## Visualize training results\n", + "\n", + "After applying data augmentation and `tf.keras.layers.Dropout`, there is less overfitting than before, and training and validation accuracy are closer aligned:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:55.646327Z", + "iopub.status.busy": "2023-10-27T06:07:55.646069Z", + "iopub.status.idle": "2023-10-27T06:07:55.930762Z", + "shell.execute_reply": "2023-10-27T06:07:55.930040Z" + }, + "id": "dduoLfKsZVIA" + }, + "outputs": [], + "source": [ + "acc = history.history['accuracy']\n", + "val_acc = history.history['val_accuracy']\n", + "\n", + "loss = history.history['loss']\n", + "val_loss = history.history['val_loss']\n", + "\n", + "epochs_range = range(epochs)\n", + "\n", + "plt.figure(figsize=(8, 8))\n", + "plt.subplot(1, 2, 1)\n", + "plt.plot(epochs_range, acc, label='Training Accuracy')\n", + "plt.plot(epochs_range, val_acc, label='Validation Accuracy')\n", + "plt.legend(loc='lower right')\n", + "plt.title('Training and Validation Accuracy')\n", + "\n", + "plt.subplot(1, 2, 2)\n", + "plt.plot(epochs_range, loss, label='Training Loss')\n", + "plt.plot(epochs_range, val_loss, label='Validation Loss')\n", + "plt.legend(loc='upper right')\n", + "plt.title('Training and Validation Loss')\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dtv5VbaVb-3W" + }, + "source": [ + "## Predict on new data" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "10buWpJbcCQz" + }, + "source": [ + "Use your model to classify an image that wasn't included in the training or validation sets." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "NKgMZ4bDcHf7" + }, + "source": [ + "Note: Data augmentation and dropout layers are inactive at inference time." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:55.935151Z", + "iopub.status.busy": "2023-10-27T06:07:55.934521Z", + "iopub.status.idle": "2023-10-27T06:07:56.295539Z", + "shell.execute_reply": "2023-10-27T06:07:56.294784Z" + }, + "id": "dC40sRITBSsQ" + }, + "outputs": [], + "source": [ + "sunflower_url = \"https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/592px-Red_sunflower.jpg\"\n", + "sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)\n", + "\n", + "img = tf.keras.utils.load_img(\n", + " sunflower_path, target_size=(img_height, img_width)\n", + ")\n", + "img_array = tf.keras.utils.img_to_array(img)\n", + "img_array = tf.expand_dims(img_array, 0) # Create a batch\n", + "\n", + "predictions = model.predict(img_array)\n", + "score = tf.nn.softmax(predictions[0])\n", + "\n", + "print(\n", + " \"This image most likely belongs to {} with a {:.2f} percent confidence.\"\n", + " .format(class_names[np.argmax(score)], 100 * np.max(score))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aOc3PZ2N2r18" + }, + "source": [ + "## Use TensorFlow Lite\n", + "\n", + "TensorFlow Lite is a set of tools that enables on-device machine learning by helping developers run their models on mobile, embedded, and edge devices." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cThu25rh4LPP" + }, + "source": [ + "### Convert the Keras Sequential model to a TensorFlow Lite model\n", + "\n", + "To use the trained model with on-device applications, first [convert it](https://www.tensorflow.org/lite/models/convert) to a smaller and more efficient model format called a [TensorFlow Lite](https://www.tensorflow.org/lite/) model.\n", + "\n", + "In this example, take the trained Keras Sequential model and use `tf.lite.TFLiteConverter.from_keras_model` to generate a [TensorFlow Lite](https://www.tensorflow.org/lite/) model:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:56.299091Z", + "iopub.status.busy": "2023-10-27T06:07:56.298832Z", + "iopub.status.idle": "2023-10-27T06:07:59.418375Z", + "shell.execute_reply": "2023-10-27T06:07:59.417577Z" + }, + "id": "mXo6ftuL2ufx" + }, + "outputs": [], + "source": [ + "# Convert the model.\n", + "converter = tf.lite.TFLiteConverter.from_keras_model(model)\n", + "tflite_model = converter.convert()\n", + "\n", + "# Save the model.\n", + "with open('model.tflite', 'wb') as f:\n", + " f.write(tflite_model)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4R26OU4gGKhh" + }, + "source": [ + "The TensorFlow Lite model you saved in the previous step can contain several function signatures. The Keras model converter API uses the default signature automatically. Learn more about [TensorFlow Lite signatures](https://www.tensorflow.org/lite/guide/signatures)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "7fjQfXaV2l-5" + }, + "source": [ + "### Run the TensorFlow Lite model\n", + "\n", + "You can access the TensorFlow Lite saved model signatures in Python via the `tf.lite.Interpreter` class.\n", + "\n", + "Load the model with the `Interpreter`:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.422492Z", + "iopub.status.busy": "2023-10-27T06:07:59.421837Z", + "iopub.status.idle": "2023-10-27T06:07:59.426824Z", + "shell.execute_reply": "2023-10-27T06:07:59.426189Z" + }, + "id": "cHYcip_FOaHq" + }, + "outputs": [], + "source": [ + "TF_MODEL_FILE_PATH = 'model.tflite' # The default path to the saved TensorFlow Lite model\n", + "\n", + "interpreter = tf.lite.Interpreter(model_path=TF_MODEL_FILE_PATH)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "nPUXY6BdHDHo" + }, + "source": [ + "Print the signatures from the converted model to obtain the names of the inputs (and outputs):\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.430202Z", + "iopub.status.busy": "2023-10-27T06:07:59.429564Z", + "iopub.status.idle": "2023-10-27T06:07:59.434156Z", + "shell.execute_reply": "2023-10-27T06:07:59.433471Z" + }, + "id": "ZdDl00E2OaHq" + }, + "outputs": [], + "source": [ + "interpreter.get_signature_list()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "4eVFqT0je3YG" + }, + "source": [ + "In this example, you have one default signature called `serving_default`. In addition, the name of the `'inputs'` is `'sequential_1_input'`, while the `'outputs'` are called `'outputs'`. You can look up these first and last Keras layer names when running `Model.summary`, as demonstrated earlier in this tutorial.\n", + "\n", + "Now you can test the loaded TensorFlow Model by performing inference on a sample image with `tf.lite.Interpreter.get_signature_runner` by passing the signature name as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.437162Z", + "iopub.status.busy": "2023-10-27T06:07:59.436928Z", + "iopub.status.idle": "2023-10-27T06:07:59.441228Z", + "shell.execute_reply": "2023-10-27T06:07:59.440621Z" + }, + "id": "yFoT_7W_OaHq" + }, + "outputs": [], + "source": [ + "classify_lite = interpreter.get_signature_runner('serving_default')\n", + "classify_lite" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b1mfRcBOnEx0" + }, + "source": [ + "Similar to what you did earlier in the tutorial, you can use the TensorFlow Lite model to classify images that weren't included in the training or validation sets.\n", + "\n", + "You have already tensorized that image and saved it as `img_array`. Now, pass it to the first argument (the name of the `'inputs'`) of the loaded TensorFlow Lite model (`predictions_lite`), compute softmax activations, and then print the prediction for the class with the highest computed probability." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.444546Z", + "iopub.status.busy": "2023-10-27T06:07:59.444034Z", + "iopub.status.idle": "2023-10-27T06:07:59.455152Z", + "shell.execute_reply": "2023-10-27T06:07:59.454445Z" + }, + "id": "sEqR27YcnFvc" + }, + "outputs": [], + "source": [ + "predictions_lite = classify_lite(sequential_1_input=img_array)['outputs']\n", + "score_lite = tf.nn.softmax(predictions_lite)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.458120Z", + "iopub.status.busy": "2023-10-27T06:07:59.457878Z", + "iopub.status.idle": "2023-10-27T06:07:59.462008Z", + "shell.execute_reply": "2023-10-27T06:07:59.461371Z" + }, + "id": "ZKP_GFeKUWb5" + }, + "outputs": [], + "source": [ + "print(\n", + " \"This image most likely belongs to {} with a {:.2f} percent confidence.\"\n", + " .format(class_names[np.argmax(score_lite)], 100 * np.max(score_lite))\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Poz_iYgeUg_U" + }, + "source": [ + "The prediction generated by the lite model should be almost identical to the predictions generated by the original model:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "execution": { + "iopub.execute_input": "2023-10-27T06:07:59.465227Z", + "iopub.status.busy": "2023-10-27T06:07:59.464844Z", + "iopub.status.idle": "2023-10-27T06:07:59.468274Z", + "shell.execute_reply": "2023-10-27T06:07:59.467738Z" + }, + "id": "InXXDJL8UYC1" + }, + "outputs": [], + "source": [ + "print(np.max(np.abs(predictions - predictions_lite)))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5hJzY8XijM7N" + }, + "source": [ + "Of the five classes—`'daisy'`, `'dandelion'`, `'roses'`, `'sunflowers'`, and `'tulips'`—the model should predict the image belongs to sunflowers, which is the same result as before the TensorFlow Lite conversion.\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "1RlfCY9v2_ir" + }, + "source": [ + "## Acknowledgments\n", + "\n", + "Thanks to Tensorflow for creating the tutorial notebook [Image classification](https://www.tensorflow.org/tutorials/images/classification). It inspires the majority of the content in this chapter." + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "classification.ipynb", + "toc_visible": true + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/_sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb b/_sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb new file mode 100644 index 0000000000..3fe2073a9c --- /dev/null +++ b/_sources/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb @@ -0,0 +1,332 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "tags": [ + "hide-input" + ] + }, + "outputs": [], + "source": [ + "# Install the necessary dependencies\n", + "\n", + "import os\n", + "import sys\n", + "!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython skimage" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [ + "remove-cell" + ] + }, + "source": [ + "---\n", + "license:\n", + " code: MIT\n", + " content: CC-BY-4.0\n", + "github: https://github.com/ocademy-ai/machine-learning\n", + "venue: By Ocademy\n", + "open_access: true\n", + "bibliography:\n", + " - https://raw.githubusercontent.com/ocademy-ai/machine-learning/main/open-machine-learning-jupyter-book/references.bib\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Comparing edge-based and region-based segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In this example, we will try how to segment objects from a background. We use the coins image from skimage.data, which shows several coins outlined against a darker background." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "\n", + "from skimage import data\n", + "from skimage.exposure import histogram\n", + "\n", + "coins = data.coins()\n", + "hist, hist_centers = histogram(coins)\n", + "\n", + "fig, axes = plt.subplots(1, 2, figsize=(8, 3))\n", + "axes[0].imshow(coins, cmap=plt.cm.gray)\n", + "axes[0].axis('off')\n", + "axes[1].plot(hist_centers, hist, lw=2)\n", + "axes[1].set_title('histogram of gray values')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Thresholding" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A simple way to segment the coins is to choose a threshold based on the histogram of gray values. Unfortunately, thresholding this image gives a binary image that either misses significant parts of the coins or merges parts of the background with the coins:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)\n", + "\n", + "axes[0].imshow(coins > 100, cmap=plt.cm.gray)\n", + "axes[0].set_title('coins > 100')\n", + "\n", + "axes[1].imshow(coins > 150, cmap=plt.cm.gray)\n", + "axes[1].set_title('coins > 150')\n", + "\n", + "for a in axes:\n", + " a.axis('off')\n", + "\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Edge-based segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next, we try to delineate the contours of the coins using edge-based segmentation. To do this, we first get the edges of features using the Canny edge-detector." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.feature import canny\n", + "\n", + "edges = canny(coins)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(edges, cmap=plt.cm.gray)\n", + "ax.set_title('Canny detector')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These contours are then filled using mathematical morphology." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy import ndimage as ndi\n", + "\n", + "fill_coins = ndi.binary_fill_holes(edges)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(fill_coins, cmap=plt.cm.gray)\n", + "ax.set_title('filling the holes')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Small spurious objects are easily removed by setting a minimum size for valid objects." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage import morphology\n", + "\n", + "coins_cleaned = morphology.remove_small_objects(fill_coins, 21)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(coins_cleaned, cmap=plt.cm.gray)\n", + "ax.set_title('removing small objects')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, this method is not very robust, since contours that are not perfectly closed are not filled correctly, as is the case for one unfilled coin above." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Region-based segmentation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We therefore try a region-based method using the watershed transform. First, we find an elevation map using the Sobel gradient of the image." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.filters import sobel\n", + "\n", + "elevation_map = sobel(coins)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(elevation_map, cmap=plt.cm.gray)\n", + "ax.set_title('elevation map')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Next we find markers of the background and the coins based on the extreme parts of the histogram of gray values." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "markers = np.zeros_like(coins)\n", + "markers[coins < 30] = 1\n", + "markers[coins > 150] = 2\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(markers, cmap=plt.cm.nipy_spectral)\n", + "ax.set_title('markers')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, we use the watershed transform to fill regions of the elevation map starting from the markers determined above:" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage import segmentation\n", + "\n", + "segmentation_coins = segmentation.watershed(elevation_map, markers)\n", + "\n", + "fig, ax = plt.subplots(figsize=(4, 3))\n", + "ax.imshow(segmentation_coins, cmap=plt.cm.gray)\n", + "ax.set_title('segmentation')\n", + "ax.axis('off')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This last method works even better, and the coins can be segmented and labeled individually." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "from skimage.color import label2rgb\n", + "\n", + "segmentation_coins = ndi.binary_fill_holes(segmentation_coins - 1)\n", + "labeled_coins, _ = ndi.label(segmentation_coins)\n", + "image_label_overlay = label2rgb(labeled_coins, image=coins, bg_label=0)\n", + "\n", + "fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)\n", + "axes[0].imshow(coins, cmap=plt.cm.gray)\n", + "axes[0].contour(segmentation_coins, [0.5], linewidths=1.2, colors='y')\n", + "axes[1].imshow(image_label_overlay)\n", + "\n", + "for a in axes:\n", + " a.axis('off')\n", + "\n", + "plt.tight_layout()\n", + "\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Acknowledgments\n", + "\n", + "Thanks to [Scikit-image](https://scikit-image.org/) for creating the open-source project [Comparing edge-based and region-based segmentation](https://scikit-image.org/docs/stable/auto_examples/applications/plot_coins_segmentation.html). This inspires the majority of the content in this chapter." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "open-machine-learning-jupyter-book", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.18" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb b/_sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb new file mode 100644 index 0000000000..457d84b138 --- /dev/null +++ b/_sources/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb @@ -0,0 +1,1152 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "6e14052d-5eec-449a-b6d5-bcc100456aba", + "metadata": {}, + "source": [ + "# Getting Start NLP with classification task" + ] + }, + { + "cell_type": "markdown", + "id": "259d0ecc-b734-44ef-b989-49a6e127a944", + "metadata": {}, + "source": [ + "One area where deep learning has dramatically improved in the last couple of years is natural language processing (NLP). Computers can now generate text, translate automatically from one language to another, analyze comments, label words in sentences, and much more.\n", + "\n", + "Perhaps the most widely practically useful application of NLP is classification -- that is, classifying a document automatically into some category. This can be used, for instance, for:\n", + "\n", + "- Sentiment analysis (e.g are people saying positive or negative things about your product)\n", + "- Author identification (what author most likely wrote some document)\n", + "- Legal discovery (which documents are in scope for a trial)\n", + "- Organizing documents by topic\n", + "- Triaging inbound emails\n", + "- ...and much more!\n", + "\n", + "Today, we are tasked with comparing two words or short phrases, and scoring them based on whether they're similar or not, based on which patent class they were used in. With a score of 1 it is considered that the two inputs have identical meaning, and 0 means they have totally different meaning. For instance, abatement and eliminating process have a score of 0.5, meaning they're somewhat similar, but not identical.\n", + "\n", + "It turns out that this can be represented as a classification problem. How? By representing the question like this:\n", + "\n", + "> For the following text...: \"TEXT1: abatement; TEXT2: eliminating process\" ...chose a category of meaning similarity: \"Different; Similar; Identical\".\n", + "\n", + "In this assignment section we'll see how to solve the Patent Phrase Matching problem by treating it as a classification task, by representing it in a very similar way to that shown above." + ] + }, + { + "cell_type": "markdown", + "id": "12389d2f-c08d-4941-a759-d8bbd8fa44ba", + "metadata": {}, + "source": [ + "## Import and EDA" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "4e4e3c06-4292-40a7-bb1a-66207159c604", + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import numpy as np\n", + "from datasets import Dataset,DatasetDict\n", + "from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer\n", + "import warnings\n", + "\n", + "warnings.filterwarnings(\"ignore\")" + ] + }, + { + "cell_type": "markdown", + "id": "f3085076-3dbc-4eab-941c-9c7e2a4b740e", + "metadata": {}, + "source": [ + "First of all, let's import the dataset." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "cbd450f6-31dd-46c9-918e-e0f3984d1436", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idanchortargetcontextscore
037d61fd2272659b1abatementabatement of pollutionA470.50
17b9652b17b68b7a4abatementact of abatingA470.75
236d72442aefd8232abatementactive catalystA470.25
35296b0c19e1ce60eabatementeliminating processA470.50
454c1e3b9184cb5b6abatementforest regionA470.00
\n", + "
" + ], + "text/plain": [ + " id anchor target context score\n", + "0 37d61fd2272659b1 abatement abatement of pollution A47 0.50\n", + "1 7b9652b17b68b7a4 abatement act of abating A47 0.75\n", + "2 36d72442aefd8232 abatement active catalyst A47 0.25\n", + "3 5296b0c19e1ce60e abatement eliminating process A47 0.50\n", + "4 54c1e3b9184cb5b6 abatement forest region A47 0.00" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/nlp/phrase_matching_train.csv')\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "id": "8c3283b2-2a18-447f-8400-f6d6efc95f4d", + "metadata": {}, + "source": [ + "As you see, there are 5 columns, where **anchor** and **target** are a pair phrases, **context** is the common context they are in, **score** is the similarity score of anchor and target." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "69b58088-6d15-4b11-85dd-bf5b86d9df64", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idanchortargetcontext
count36473364733647336473
unique3647373329340106
top37d61fd2272659b1component composite coatingcompositionH01
freq1152242186
\n", + "
" + ], + "text/plain": [ + " id anchor target context\n", + "count 36473 36473 36473 36473\n", + "unique 36473 733 29340 106\n", + "top 37d61fd2272659b1 component composite coating composition H01\n", + "freq 1 152 24 2186" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df.describe(include='object')" + ] + }, + { + "cell_type": "markdown", + "id": "00f5b5c7-bcb7-4bf0-875e-45fbf8a2ba65", + "metadata": {}, + "source": [ + "We can see that in the 36473 rows, there are 733 unique anchors, 106 contexts, and nearly 30000 targets. Some anchors are very common, with \"component composite coating\" for instance appearing 152 times.\n", + "\n", + "Earlier, I suggested we could represent the input to the model as something like \"TEXT1: abatement; TEXT2: eliminating process\". We'll need to add the context to this too. In Pandas, we just use + to concatenate, like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "a89091d6-771a-4b7e-a540-b20d6f03e9aa", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
idanchortargetcontextscoreinput
037d61fd2272659b1abatementabatement of pollutionA470.50TEXT1: A47; TEXT2: abatement of pollution; ANC...
17b9652b17b68b7a4abatementact of abatingA470.75TEXT1: A47; TEXT2: act of abating; ANC1: abate...
236d72442aefd8232abatementactive catalystA470.25TEXT1: A47; TEXT2: active catalyst; ANC1: abat...
35296b0c19e1ce60eabatementeliminating processA470.50TEXT1: A47; TEXT2: eliminating process; ANC1: ...
454c1e3b9184cb5b6abatementforest regionA470.00TEXT1: A47; TEXT2: forest region; ANC1: abatement
\n", + "
" + ], + "text/plain": [ + " id anchor target context score \\\n", + "0 37d61fd2272659b1 abatement abatement of pollution A47 0.50 \n", + "1 7b9652b17b68b7a4 abatement act of abating A47 0.75 \n", + "2 36d72442aefd8232 abatement active catalyst A47 0.25 \n", + "3 5296b0c19e1ce60e abatement eliminating process A47 0.50 \n", + "4 54c1e3b9184cb5b6 abatement forest region A47 0.00 \n", + "\n", + " input \n", + "0 TEXT1: A47; TEXT2: abatement of pollution; ANC... \n", + "1 TEXT1: A47; TEXT2: act of abating; ANC1: abate... \n", + "2 TEXT1: A47; TEXT2: active catalyst; ANC1: abat... \n", + "3 TEXT1: A47; TEXT2: eliminating process; ANC1: ... \n", + "4 TEXT1: A47; TEXT2: forest region; ANC1: abatement " + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor\n", + "df.head(5)" + ] + }, + { + "cell_type": "markdown", + "id": "0fc9e71f-aed8-40b0-821d-c352331f4a89", + "metadata": {}, + "source": [ + "## Tokenization" + ] + }, + { + "cell_type": "markdown", + "id": "0d9c20bb-a146-497b-a503-edfc6372c084", + "metadata": {}, + "source": [ + "Transformers uses a `Dataset` object for storing their dataset, of course! We can create one like so:" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "a3dcc05b-e170-43ed-92f5-8805d3dbac7f", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Dataset({\n", + " features: ['id', 'anchor', 'target', 'context', 'score', 'input'],\n", + " num_rows: 36473\n", + "})" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ds = Dataset.from_pandas(df)\n", + "ds" + ] + }, + { + "cell_type": "markdown", + "id": "107fe0be-b9a4-4c30-a141-41fcfb3beab4", + "metadata": {}, + "source": [ + "But we can't pass the texts directly into a model. A deep learning model expects numbers as inputs, not English sentences! So we need to do two things:\n", + "\n", + "- Tokenization: Split each text up into words (or actually, as we'll see, into tokens)\n", + "- Numericalization: Convert each word (or token) into a number.\n", + "\n", + "The details about how this is done actually depend on the particular model we use. So first we'll need to pick a model. There are thousands of models available, but a reasonable starting point for nearly any NLP problem is to use this (replace \"small\" with \"large\" for a slower but more accurate model, once you've finished exploring):" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "9bd4fdd3-f881-486b-9d75-ccbb6286b525", + "metadata": {}, + "outputs": [], + "source": [ + "model_nm = 'microsoft/deberta-v3-small'" + ] + }, + { + "cell_type": "markdown", + "id": "3f60c3b5-a0a5-4dd5-b512-549cb4242579", + "metadata": {}, + "source": [ + "`AutoTokenizer` will create a tokenizer appropriate for a given model:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "96aca66f-0663-4dfd-97f6-169f8a0fcb1d", + "metadata": {}, + "outputs": [], + "source": [ + "tokz = AutoTokenizer.from_pretrained(model_nm)" + ] + }, + { + "cell_type": "markdown", + "id": "5335cfec-7a71-481a-8c18-e934a90194ad", + "metadata": {}, + "source": [ + "Here's an example of how the tokenizer splits a text into \"tokens\" (which are like words, but can be sub-word pieces, as you see below):" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "6fd61beb-a5a8-4f89-9659-8470faf62fb4", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['▁G',\n", + " \"'\",\n", + " 'day',\n", + " '▁folks',\n", + " ',',\n", + " '▁I',\n", + " \"'\",\n", + " 'm',\n", + " '▁Jeremy',\n", + " '▁from',\n", + " '▁fast',\n", + " '.',\n", + " 'ai',\n", + " '!']" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokz.tokenize(\"G'day folks, I'm Jeremy from fast.ai!\")" + ] + }, + { + "cell_type": "markdown", + "id": "0a2a6a56-2e10-403a-9533-b65afb974425", + "metadata": {}, + "source": [ + "Uncommon words will be split into pieces just like `ornithorhynchus`. The start of a new word is represented by `▁`:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "92e0189f-c8f1-405f-83fb-bd01c483710c", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['▁A',\n", + " '▁platypus',\n", + " '▁is',\n", + " '▁an',\n", + " '▁or',\n", + " 'ni',\n", + " 'tho',\n", + " 'rhynch',\n", + " 'us',\n", + " '▁an',\n", + " 'at',\n", + " 'inus',\n", + " '.']" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokz.tokenize(\"A platypus is an ornithorhynchus anatinus.\")" + ] + }, + { + "cell_type": "markdown", + "id": "a4e253e5-e098-4253-b401-57f0cf753325", + "metadata": {}, + "source": [ + "## Numericalization" + ] + }, + { + "cell_type": "markdown", + "id": "83ee57e9-54d7-45cb-a23d-68156b0350f8", + "metadata": {}, + "source": [ + "After completing Tokenization, we need to convert each token into a number, because the model only accepts numbers as input. But ... how to do it?\n", + "We need a large token dictionary to map each token to a number!" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "7d56000f-9137-4f7f-b3b6-93624efddc50", + "metadata": {}, + "outputs": [], + "source": [ + "vocab = tokz.get_vocab()" + ] + }, + { + "cell_type": "markdown", + "id": "f062775c-83b5-48cb-be62-70d9e1355d05", + "metadata": {}, + "source": [ + "The above is the token dictionary that comes with the `deberta-v3-small` model. You can print it out to check." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "dd749eeb-17da-4bd9-b229-c96270a0d415", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'input_ids': [1, 336, 114224, 269, 299, 289, 4840, 34765, 102530, 1867, 299, 2401, 26835, 260, 2], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "tokz(\"A platypus is an ornithorhynchus anatinus.\")" + ] + }, + { + "cell_type": "markdown", + "id": "95028988-a530-46d2-96a9-b11c2e9ab3d7", + "metadata": {}, + "source": [ + "According to this token dictionary, we can convert the original token sequence into a digital sequence. Input_ids is the number we need, token_type_ids represents whether all tokens belong to the same sentence, and attention_mask represents whether the token exists in the token dictionary.\n", + "\n", + "Here's a simple function which tokenizes our inputs:" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "8c6da089-a612-499b-8a00-e448a0eee212", + "metadata": {}, + "outputs": [], + "source": [ + "def tok_func(x): return tokz(x[\"input\"])" + ] + }, + { + "cell_type": "markdown", + "id": "681d176d-f055-42fd-87de-88dcee8ec18a", + "metadata": {}, + "source": [ + "To run this quickly in parallel on every row in our dataset, use map:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "fec0c346-3726-42d2-87c6-2260b7d4c80c", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "42f7bd84ff414f0cb23b9b1bb44b8ad5", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Map: 0%| | 0/36473 [00:00\n", + " \n", + " \n", + " [856/856 00:53, Epoch 4/4]\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
EpochTraining LossValidation Loss
1No log0.026275
2No log0.021973
30.0396000.022443
40.0396000.023286

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "trainer.train();" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "3c35b83e-0320-4ea6-89df-342f9d3fb36e", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/plain": [ + "array([[-1.50489807e-03],\n", + " [ 4.90570068e-03],\n", + " [-5.05447388e-04],\n", + " [ 2.69412994e-04],\n", + " [-1.44767761e-03],\n", + " [ 4.85897064e-04],\n", + " [-1.81484222e-03],\n", + " [ 8.22067261e-04],\n", + " [ 4.36019897e-03],\n", + " [ 4.40216064e-03],\n", + " [-6.16550446e-04],\n", + " [-4.18424606e-05],\n", + " [-1.20639801e-03],\n", + " [ 3.18288803e-04],\n", + " [-6.15119934e-04],\n", + " [-8.05377960e-04],\n", + " [-2.66265869e-03],\n", + " [ 2.60114670e-04],\n", + " [ 3.48281860e-03],\n", + " [ 1.68323517e-03],\n", + " [ 1.38378143e-03],\n", + " [-2.48527527e-03],\n", + " [ 7.53879547e-04],\n", + " [ 8.55922699e-04],\n", + " [-2.27355957e-03],\n", + " [-2.88581848e-03],\n", + " [ 3.29780579e-03],\n", + " [ 9.42707062e-04],\n", + " [ 4.26769257e-04],\n", + " [-1.19447708e-04],\n", + " [-2.77519226e-03],\n", + " [ 5.27381897e-04],\n", + " [-8.44001770e-04],\n", + " [ 4.88281250e-04],\n", + " [-2.11715698e-04],\n", + " [-1.00421906e-03]])" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds = trainer.predict(eval_ds).predictions.astype(float)\n", + "preds" + ] + }, + { + "cell_type": "markdown", + "id": "138c6cd1-e0cb-405e-8b15-952e90c6a954", + "metadata": {}, + "source": [ + "Look out - some of our predictions are <0, or >1! Let's fix those out-of-bounds predictions:" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "d6cfff69-3178-4afb-858e-5653a938e3af", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[0. ],\n", + " [0.0049057 ],\n", + " [0. ],\n", + " [0.00026941],\n", + " [0. ],\n", + " [0.0004859 ],\n", + " [0. ],\n", + " [0.00082207],\n", + " [0.0043602 ],\n", + " [0.00440216],\n", + " [0. ],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00031829],\n", + " [0. ],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00026011],\n", + " [0.00348282],\n", + " [0.00168324],\n", + " [0.00138378],\n", + " [0. ],\n", + " [0.00075388],\n", + " [0.00085592],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00329781],\n", + " [0.00094271],\n", + " [0.00042677],\n", + " [0. ],\n", + " [0. ],\n", + " [0.00052738],\n", + " [0. ],\n", + " [0.00048828],\n", + " [0. ],\n", + " [0. ]])" + ] + }, + "execution_count": 25, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "preds = np.clip(preds, 0, 1)\n", + "preds" + ] + }, + { + "cell_type": "markdown", + "id": "464c75ad-e4c3-4c6a-a776-c98011ed5eba", + "metadata": { + "jp-MarkdownHeadingCollapsed": true + }, + "source": [ + "# Acknowledgments\n", + "\n", + "Thanks to [Jeremy Howard](https://www.kaggle.com/jhoward) for creating [Getting started with NLP for absolute beginners](https://www.kaggle.com/code/jhoward/getting-started-with-nlp-for-absolute-beginners). It inspires the majority of the content in this chapter." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "vmamba", + "language": "python", + "name": "vmamba" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.13" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/_sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb b/_sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb new file mode 100644 index 0000000000..16f232bd58 --- /dev/null +++ b/_sources/assignments/machine-learning-productionization/random-forest-classifier.ipynb @@ -0,0 +1 @@ +{"cells":[{"cell_type":"markdown","metadata":{},"source":["

LICENSE\n","\n","Copyright 2018 Google LLC.\n","\n","Licensed under the Apache License, Version 2.0 (the \"License\");\n","you may not use this file except in compliance with the License.\n","You may obtain a copy of the License at\n","\n","https://www.apache.org/licenses/LICENSE-2.0\n","\n","Unless required by applicable law or agreed to in writing, software\n","distributed under the License is distributed on an \"AS IS\" BASIS,\n","WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n","See the License for the specific language governing permissions and\n","limitations under the License.\n","
"]},{"cell_type":"markdown","metadata":{},"source":["# Introduction"]},{"cell_type":"markdown","metadata":{},"source":["Climate Prediction-Random Forest is a model that uses a combination of climate variables and machine learning algorithms to predict future climate conditions. The model is trained on a large dataset of climate observations and uses a random forest approach to generate predictions. The predictions are based on the relationships between the climate variables and the random forest algorithm is able to capture complex patterns in the data."]},{"cell_type":"markdown","metadata":{},"source":["## Importing Libraries"]},{"cell_type":"code","execution_count":1,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:09.977471Z","iopub.status.busy":"2021-09-12T07:42:09.976692Z","iopub.status.idle":"2021-09-12T07:42:11.175857Z","shell.execute_reply":"2021-09-12T07:42:11.174872Z","shell.execute_reply.started":"2021-09-12T07:42:09.977341Z"},"hideCode":false,"hidePrompt":false,"id":"d4a2uASN7jbm","outputId":"a31fc9d2-6d41-4f32-f935-4de1392fb75d","trusted":true},"outputs":[],"source":["# Pandas is used for data manipulation\n","import pandas as pd\n","\n","# Use numpy to convert to arrays\n","import numpy as np\n","\n","# Import tools needed for visualization\n","\n","import matplotlib.pyplot as plt\n","%matplotlib inline"]},{"cell_type":"markdown","metadata":{"execution":{"iopub.execute_input":"2021-06-05T03:15:54.659441Z","iopub.status.busy":"2021-06-05T03:15:54.658886Z","iopub.status.idle":"2021-06-05T03:15:54.679235Z","shell.execute_reply":"2021-06-05T03:15:54.677744Z","shell.execute_reply.started":"2021-06-05T03:15:54.659396Z"}},"source":["## Data Exploration"]},{"cell_type":"code","execution_count":2,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.178015Z","iopub.status.busy":"2021-09-12T07:42:11.177625Z","iopub.status.idle":"2021-09-12T07:42:11.198022Z","shell.execute_reply":"2021-09-12T07:42:11.197162Z","shell.execute_reply.started":"2021-09-12T07:42:11.177971Z"},"trusted":true},"outputs":[],"source":["# Reading the data to a dataframe \n","df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/classification/temps.csv')"]},{"cell_type":"code","execution_count":3,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.201049Z","iopub.status.busy":"2021-09-12T07:42:11.200281Z","iopub.status.idle":"2021-09-12T07:42:11.230628Z","shell.execute_reply":"2021-09-12T07:42:11.229917Z","shell.execute_reply.started":"2021-09-12T07:42:11.200999Z"},"trusted":true},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
yearmonthdayweektemp_2temp_1averageactualfriend
0201911Fri454545.64529
1201912Sat444545.74461
2201913Sun454445.84156
3201914Mon444145.94053
4201915Tues414046.04441
\n","
"],"text/plain":[" year month day week temp_2 temp_1 average actual friend\n","0 2019 1 1 Fri 45 45 45.6 45 29\n","1 2019 1 2 Sat 44 45 45.7 44 61\n","2 2019 1 3 Sun 45 44 45.8 41 56\n","3 2019 1 4 Mon 44 41 45.9 40 53\n","4 2019 1 5 Tues 41 40 46.0 44 41"]},"execution_count":3,"metadata":{},"output_type":"execute_result"}],"source":["# displaying first 5 rows\n","df.head(5)"]},{"cell_type":"code","execution_count":4,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.232535Z","iopub.status.busy":"2021-09-12T07:42:11.232032Z","iopub.status.idle":"2021-09-12T07:42:11.237917Z","shell.execute_reply":"2021-09-12T07:42:11.236766Z","shell.execute_reply.started":"2021-09-12T07:42:11.232503Z"},"hideCode":false,"hidePrompt":false,"id":"5aXM1w987jbq","outputId":"c9eabdf4-30d9-4df4-b890-b28df3c5287b","trusted":true},"outputs":[{"data":{"text/plain":["(348, 9)"]},"execution_count":4,"metadata":{},"output_type":"execute_result"}],"source":["# the shape of our features\n","df.shape"]},{"cell_type":"code","execution_count":5,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.239954Z","iopub.status.busy":"2021-09-12T07:42:11.239514Z","iopub.status.idle":"2021-09-12T07:42:11.253434Z","shell.execute_reply":"2021-09-12T07:42:11.252149Z","shell.execute_reply.started":"2021-09-12T07:42:11.239913Z"},"trusted":true},"outputs":[{"data":{"text/plain":["Index(['year', 'month', 'day', 'week', 'temp_2', 'temp_1', 'average', 'actual',\n"," 'friend'],\n"," dtype='object')"]},"execution_count":5,"metadata":{},"output_type":"execute_result"}],"source":["# column names\n","df.columns"]},{"cell_type":"code","execution_count":6,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.256082Z","iopub.status.busy":"2021-09-12T07:42:11.255489Z","iopub.status.idle":"2021-09-12T07:42:11.271869Z","shell.execute_reply":"2021-09-12T07:42:11.270748Z","shell.execute_reply.started":"2021-09-12T07:42:11.256038Z"},"trusted":true},"outputs":[{"data":{"text/plain":["year 0\n","month 0\n","day 0\n","week 0\n","temp_2 0\n","temp_1 0\n","average 0\n","actual 0\n","friend 0\n","dtype: int64"]},"execution_count":6,"metadata":{},"output_type":"execute_result"}],"source":["# checking for null values\n","df.isnull().sum()"]},{"cell_type":"markdown","metadata":{},"source":["There are no null values"]},{"cell_type":"markdown","metadata":{"id":"Nzu0v5mQ7jbs"},"source":["## One-Hot Encoding"]},{"cell_type":"markdown","metadata":{"execution":{"iopub.execute_input":"2021-06-05T03:26:04.246284Z","iopub.status.busy":"2021-06-05T03:26:04.245896Z","iopub.status.idle":"2021-06-05T03:26:04.252279Z","shell.execute_reply":"2021-06-05T03:26:04.250937Z","shell.execute_reply.started":"2021-06-05T03:26:04.246247Z"}},"source":["A one hot encoding allows the representation of categorical data to be more expressive. "]},{"cell_type":"code","execution_count":7,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.273448Z","iopub.status.busy":"2021-09-12T07:42:11.273117Z","iopub.status.idle":"2021-09-12T07:42:11.308893Z","shell.execute_reply":"2021-09-12T07:42:11.307365Z","shell.execute_reply.started":"2021-09-12T07:42:11.273418Z"},"hideCode":false,"hidePrompt":false,"id":"VURjcTE27jbu","outputId":"12cc15a3-072a-4e40-89c8-009ea27c2622","trusted":true},"outputs":[{"data":{"text/html":["
\n","\n","\n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n"," \n","
yearmonthdaytemp_2temp_1averageactualfriendweek_Friweek_Monweek_Satweek_Sunweek_Thursweek_Tuesweek_Wed
0201911454545.64529TrueFalseFalseFalseFalseFalseFalse
1201912444545.74461FalseFalseTrueFalseFalseFalseFalse
2201913454445.84156FalseFalseFalseTrueFalseFalseFalse
3201914444145.94053FalseTrueFalseFalseFalseFalseFalse
4201915414046.04441FalseFalseFalseFalseFalseTrueFalse
\n","
"],"text/plain":[" year month day temp_2 temp_1 average actual friend week_Fri \\\n","0 2019 1 1 45 45 45.6 45 29 True \n","1 2019 1 2 44 45 45.7 44 61 False \n","2 2019 1 3 45 44 45.8 41 56 False \n","3 2019 1 4 44 41 45.9 40 53 False \n","4 2019 1 5 41 40 46.0 44 41 False \n","\n"," week_Mon week_Sat week_Sun week_Thurs week_Tues week_Wed \n","0 False False False False False False \n","1 False True False False False False \n","2 False False True False False False \n","3 True False False False False False \n","4 False False False False True False "]},"execution_count":7,"metadata":{},"output_type":"execute_result"}],"source":["# One-hot encode categorical features\n","df = pd.get_dummies(df)\n","df.head(5)"]},{"cell_type":"code","execution_count":8,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.312525Z","iopub.status.busy":"2021-09-12T07:42:11.312019Z","iopub.status.idle":"2021-09-12T07:42:11.320042Z","shell.execute_reply":"2021-09-12T07:42:11.318836Z","shell.execute_reply.started":"2021-09-12T07:42:11.312458Z"},"id":"zgYBtUrr7jbv","outputId":"69df322f-2e24-4576-9fd2-d34773ac406c","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Shape of features after one-hot encoding: (348, 15)\n"]}],"source":["print('Shape of features after one-hot encoding:', df.shape)"]},{"cell_type":"markdown","metadata":{"id":"mtd7DqrQ7jbw"},"source":["## Features and Labels"]},{"cell_type":"code","execution_count":9,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.322293Z","iopub.status.busy":"2021-09-12T07:42:11.321937Z","iopub.status.idle":"2021-09-12T07:42:11.33496Z","shell.execute_reply":"2021-09-12T07:42:11.333645Z","shell.execute_reply.started":"2021-09-12T07:42:11.322261Z"},"id":"2rYCVrfV7jbx","trusted":true},"outputs":[],"source":["# Labels are the values we want to predict\n","labels = df['actual']\n","\n","# Remove the labels from the features\n","df = df.drop('actual', axis = 1)\n","\n","# Saving feature names for later use\n","feature_list = list(df.columns)"]},{"cell_type":"markdown","metadata":{"id":"Q6SSjx5p7jb0"},"source":["## Train Test Split"]},{"cell_type":"code","execution_count":10,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.336918Z","iopub.status.busy":"2021-09-12T07:42:11.336569Z","iopub.status.idle":"2021-09-12T07:42:11.348348Z","shell.execute_reply":"2021-09-12T07:42:11.347294Z","shell.execute_reply.started":"2021-09-12T07:42:11.336886Z"},"id":"11BJUq0s7jb0","trusted":true},"outputs":[],"source":["# Using Skicit-learn to split data into training and testing sets\n","from sklearn.model_selection import train_test_split\n","\n","# Split the data into training and testing sets\n","train_features, test_features, train_labels, test_labels = train_test_split(df,\n"," labels,\n"," test_size = 0.20,\n"," random_state = 42)"]},{"cell_type":"code","execution_count":11,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.350455Z","iopub.status.busy":"2021-09-12T07:42:11.350066Z","iopub.status.idle":"2021-09-12T07:42:11.358556Z","shell.execute_reply":"2021-09-12T07:42:11.357489Z","shell.execute_reply.started":"2021-09-12T07:42:11.350426Z"},"id":"KkVnZf4H7jb2","outputId":"3c0a9db7-0f71-44be-bd0a-946fddc7d048","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Training Features Shape: (278, 14)\n","Training Labels Shape: (278,)\n","Testing Features Shape: (70, 14)\n","Testing Labels Shape: (70,)\n"]}],"source":["print('Training Features Shape:', train_features.shape)\n","print('Training Labels Shape:', train_labels.shape)\n","print('Testing Features Shape:', test_features.shape)\n","print('Testing Labels Shape:', test_labels.shape)"]},{"cell_type":"markdown","metadata":{"id":"ny3qdq-i7jb4"},"source":["## Training the Forest"]},{"cell_type":"code","execution_count":12,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:11.360258Z","iopub.status.busy":"2021-09-12T07:42:11.359962Z","iopub.status.idle":"2021-09-12T07:42:13.842601Z","shell.execute_reply":"2021-09-12T07:42:13.841175Z","shell.execute_reply.started":"2021-09-12T07:42:11.360229Z"},"hideCode":false,"hidePrompt":false,"id":"d_Vboxs77jb5","trusted":true},"outputs":[],"source":["# Import the model we are using\n","from sklearn.ensemble import RandomForestRegressor\n","\n","# Instantiate model \n","rf = RandomForestRegressor(n_estimators= 1000, random_state=42)\n","\n","# Train the model on training data\n","rf.fit(train_features, train_labels);"]},{"cell_type":"markdown","metadata":{"id":"rJz8X7b77jb6"},"source":["## Make Predictions on Test Data"]},{"cell_type":"code","execution_count":13,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:13.844914Z","iopub.status.busy":"2021-09-12T07:42:13.844471Z","iopub.status.idle":"2021-09-12T07:42:13.975596Z","shell.execute_reply":"2021-09-12T07:42:13.974317Z","shell.execute_reply.started":"2021-09-12T07:42:13.84487Z"},"id":"pssgaBC67jb6","outputId":"5a3a9029-c98b-4ac8-c081-2f7e17c3ca86","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Mean Absolute Error: 3.78 degrees.\n"]}],"source":["# Use the forest's predict method on the test data\n","predictions = rf.predict(test_features)\n","\n","# Calculate the absolute errors\n","errors = abs(predictions - test_labels)\n","\n","# Print out the mean absolute error (mae)\n","print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.')\n"]},{"cell_type":"code","execution_count":14,"metadata":{"execution":{"iopub.execute_input":"2021-09-12T07:42:13.978583Z","iopub.status.busy":"2021-09-12T07:42:13.97822Z","iopub.status.idle":"2021-09-12T07:42:13.985832Z","shell.execute_reply":"2021-09-12T07:42:13.984493Z","shell.execute_reply.started":"2021-09-12T07:42:13.978549Z"},"id":"fDaM3Z677jb7","outputId":"2307bab3-cb96-4a7a-f57d-3a9d80cec129","trusted":true},"outputs":[{"name":"stdout","output_type":"stream","text":["Accuracy: 94.02 %.\n"]}],"source":["# Calculate mean absolute percentage error (MAPE)\n","mape = 100 * (errors / test_labels)\n","\n","# Calculate and display accuracy\n","accuracy = 100 - np.mean(mape)\n","print('Accuracy:', round(accuracy, 2), '%.')"]},{"cell_type":"markdown","metadata":{"id":"9U2KQYmS7jb7"},"source":["## Visualizing a Single Decision Tree"]},{"cell_type":"markdown","metadata":{"id":"Cnbb-pTt7jb9"},"source":["![Decision Tree](https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/assignment/deep-learning/nn/tree.png)"]},{"cell_type":"markdown","metadata":{},"source":["## Your turn! 🚀\n","You can practice your random-forest skills by following the assignment [Climate Prediction-Random Forest](../../assignments/machine-learning-productionization/random-forest-classifier.ipynb)."]},{"cell_type":"markdown","metadata":{},"source":["## Acknowledgments\n","\n","Thanks to Kaggle for creating the open source course [Climate Prediction-Random Forest](https://www.kaggle.com/code/anandhuh/climate-prediction-random-forest-94-accuracy?scriptVersionId=74560159&cellId=26). It contributes some of the content in this chapter."]}],"metadata":{"kaggle":{"accelerator":"none","dataSources":[{"datasetId":1018620,"sourceId":1717426,"sourceType":"datasetVersion"}],"dockerImageVersionId":30096,"isGpuEnabled":false,"isInternetEnabled":false,"language":"python","sourceType":"notebook"},"kernelspec":{"display_name":"Python 3","language":"python","name":"python3"},"language_info":{"codemirror_mode":{"name":"ipython","version":3},"file_extension":".py","mimetype":"text/x-python","name":"python","nbconvert_exporter":"python","pygments_lexer":"ipython3","version":"3.11.5"}},"nbformat":4,"nbformat_minor":4} diff --git a/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb b/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb index a5ecb1db0a..5b96cb622c 100644 --- a/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb +++ b/_sources/assignments/ml-fundamentals/create-a-regression-model.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "ee2af449", + "id": "6e4ad8e0", "metadata": {}, "source": [ "# Create a regression model\n", diff --git a/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb b/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb index 1f287345e2..2b91d3a104 100644 --- a/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb +++ b/_sources/assignments/ml-fundamentals/exploring-visualizations.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "70c3fb3a", + "id": "8633a20a", "metadata": {}, "source": [ "# Exploring visualizations\n", diff --git a/_sources/assignments/ml-fundamentals/parameter-play.ipynb b/_sources/assignments/ml-fundamentals/parameter-play.ipynb index 7290324945..8c808e78eb 100644 --- a/_sources/assignments/ml-fundamentals/parameter-play.ipynb +++ b/_sources/assignments/ml-fundamentals/parameter-play.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "b62869bf", + "id": "ccc592ea", "metadata": {}, "source": [ "# Parameter play\n", diff --git a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb index 4b58aa3f21..48bcd3b714 100644 --- a/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb +++ b/_sources/assignments/ml-fundamentals/regression-with-scikit-learn.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "2812ba9a", + "id": "d5e8515c", "metadata": {}, "source": [ "# Regression with Scikit-learn\n", diff --git a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb index 7db5432d06..1c55b67f0e 100644 --- a/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb +++ b/_sources/assignments/ml-fundamentals/retrying-some-regression.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "4e729fc1", + "id": "441cd1b1", "metadata": {}, "source": [ "# Retrying some regression\n", diff --git a/_sources/data-science/working-with-data/numpy.ipynb b/_sources/data-science/working-with-data/numpy.ipynb index 13cc19f4b8..26b6ec9650 100644 --- a/_sources/data-science/working-with-data/numpy.ipynb +++ b/_sources/data-science/working-with-data/numpy.ipynb @@ -2,7 +2,7 @@ "cells": [ { "cell_type": "markdown", - "id": "1816b909", + "id": "1824344d", "metadata": {}, "source": [ "# NumPy\n", @@ -19,7 +19,7 @@ { "cell_type": "code", "execution_count": 1, - "id": "16db2570", + "id": "524f2024", "metadata": {}, "outputs": [ { @@ -40,7 +40,7 @@ }, { "cell_type": "markdown", - "id": "0ea8e4d9", + "id": "0ecaa4a1", "metadata": {}, "source": [ "### Create a basic array\n", @@ -53,7 +53,7 @@ { "cell_type": "code", "execution_count": 2, - "id": "f3a97a93", + "id": "fdbbbc0b", "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ }, { "cell_type": "markdown", - "id": "db97ae62", + "id": "52e94fbd", "metadata": {}, "source": [ "Besides creating an array from a sequence of elements, you can easily create an array filled with `0`’s:" @@ -84,7 +84,7 @@ { "cell_type": "code", "execution_count": 3, - "id": "03b948d2", + "id": "e00c2e09", "metadata": {}, "outputs": [ { @@ -104,7 +104,7 @@ }, { "cell_type": "markdown", - "id": "9d11a2b8", + "id": "754873dd", "metadata": {}, "source": [ "Or an array filled with 1’s:" @@ -113,7 +113,7 @@ { "cell_type": "code", "execution_count": 4, - "id": "f31d9d52", + "id": "a4fcd2e2", "metadata": {}, "outputs": [ { @@ -133,7 +133,7 @@ }, { "cell_type": "markdown", - "id": "a44b0e87", + "id": "4c6327c9", "metadata": {}, "source": [ "Or even an empty array! The function `empty` creates an array whose initial content is random and depends on the state of the memory. The reason to use `empty` over `zeros` (or something similar) is speed - just make sure to fill every element afterwards!" @@ -142,7 +142,7 @@ { "cell_type": "code", "execution_count": 5, - "id": "d02a7123", + "id": "453ab575", "metadata": {}, "outputs": [ { @@ -162,7 +162,7 @@ }, { "cell_type": "markdown", - "id": "c4546a55", + "id": "ef83f671", "metadata": {}, "source": [ "You can create an array with a range of elements:" @@ -171,7 +171,7 @@ { "cell_type": "code", "execution_count": 6, - "id": "cbad5e9e", + "id": "a3d25666", "metadata": {}, "outputs": [ { @@ -191,7 +191,7 @@ }, { "cell_type": "markdown", - "id": "c4ae3281", + "id": "a1e4a408", "metadata": {}, "source": [ "And even an array that contains a range of evenly spaced intervals. To do this, you will specify the **first number**, **last number**, and the **step size**." @@ -200,7 +200,7 @@ { "cell_type": "code", "execution_count": 7, - "id": "796953a0", + "id": "6851463b", "metadata": {}, "outputs": [ { @@ -220,7 +220,7 @@ }, { "cell_type": "markdown", - "id": "41299cfe", + "id": "214052a9", "metadata": {}, "source": [ "You can also use `np.linspace()` to create an array with values that are spaced linearly in a specified interval:" @@ -229,7 +229,7 @@ { "cell_type": "code", "execution_count": 8, - "id": "411e39bd", + "id": "392ba480", "metadata": {}, "outputs": [ { @@ -249,7 +249,7 @@ }, { "cell_type": "markdown", - "id": "d416d0be", + "id": "758d340d", "metadata": {}, "source": [ "While the default data type is floating point (`np.float64`), you can explicitly specify which data type you want using the `dtype` keyword." @@ -258,7 +258,7 @@ { "cell_type": "code", "execution_count": 9, - "id": "0cfcf49d", + "id": "4956e399", "metadata": {}, "outputs": [ { @@ -278,7 +278,7 @@ }, { "cell_type": "markdown", - "id": "58557c57", + "id": "424fc3cf", "metadata": {}, "source": [ "### Adding, removing, and sorting elements\n", @@ -291,7 +291,7 @@ { "cell_type": "code", "execution_count": 10, - "id": "c5680f41", + "id": "82acaac3", "metadata": {}, "outputs": [], "source": [ @@ -300,7 +300,7 @@ }, { "cell_type": "markdown", - "id": "03ca1110", + "id": "d1b1a4a4", "metadata": {}, "source": [ "You can quickly sort the numbers in ascending order with:" @@ -309,7 +309,7 @@ { "cell_type": "code", "execution_count": 11, - "id": "6bfee14a", + "id": "33f1d0f9", "metadata": {}, "outputs": [ { @@ -329,7 +329,7 @@ }, { "cell_type": "markdown", - "id": "312788c4", + "id": "290dc695", "metadata": {}, "source": [ "In addition to sort, which returns a sorted copy of an array, you can use:\n", @@ -345,7 +345,7 @@ { "cell_type": "code", "execution_count": 12, - "id": "3b8ccf7d", + "id": "59a365e9", "metadata": {}, "outputs": [], "source": [ @@ -355,7 +355,7 @@ }, { "cell_type": "markdown", - "id": "e0b12155", + "id": "abfb3a12", "metadata": {}, "source": [ "You can concatenate them with `np.concatenate()`." @@ -364,7 +364,7 @@ { "cell_type": "code", "execution_count": 13, - "id": "47e4d2d7", + "id": "178dc1a9", "metadata": {}, "outputs": [ { @@ -384,7 +384,7 @@ }, { "cell_type": "markdown", - "id": "14f32192", + "id": "81c2d2cc", "metadata": {}, "source": [ "Or, if you start with these arrays:" @@ -393,7 +393,7 @@ { "cell_type": "code", "execution_count": 14, - "id": "03035494", + "id": "0041f9cb", "metadata": {}, "outputs": [], "source": [ @@ -403,7 +403,7 @@ }, { "cell_type": "markdown", - "id": "f1177f1f", + "id": "62a5fda3", "metadata": {}, "source": [ "You can concatenate them with:" @@ -412,7 +412,7 @@ { "cell_type": "code", "execution_count": 15, - "id": "b55eb0c6", + "id": "c5b2ad7f", "metadata": {}, "outputs": [ { @@ -434,7 +434,7 @@ }, { "cell_type": "markdown", - "id": "bebaef59", + "id": "023eed3d", "metadata": {}, "source": [ "In order to remove elements from an array, it’s simple to use indexing to select the elements that you want to keep.\n", @@ -450,7 +450,7 @@ { "cell_type": "code", "execution_count": 16, - "id": "e0ae6518", + "id": "7e0508c9", "metadata": {}, "outputs": [ { @@ -475,7 +475,7 @@ { "cell_type": "code", "execution_count": 17, - "id": "d88c14eb", + "id": "72bcb260", "metadata": {}, "outputs": [ { @@ -495,7 +495,7 @@ }, { "cell_type": "markdown", - "id": "42651f1a", + "id": "a64eea9d", "metadata": {}, "source": [ "- ndarray.shape\n", @@ -505,7 +505,7 @@ { "cell_type": "code", "execution_count": 18, - "id": "034505ee", + "id": "6f45f950", "metadata": {}, "outputs": [ { @@ -525,7 +525,7 @@ }, { "cell_type": "markdown", - "id": "6319a33f", + "id": "68585758", "metadata": {}, "source": [ "- ndarray.size\n", @@ -535,7 +535,7 @@ { "cell_type": "code", "execution_count": 19, - "id": "b02dad23", + "id": "7e313856", "metadata": {}, "outputs": [ { @@ -555,7 +555,7 @@ }, { "cell_type": "markdown", - "id": "40df55da", + "id": "3a2d0042", "metadata": {}, "source": [ "- ndarray.dtype\n", @@ -565,7 +565,7 @@ { "cell_type": "code", "execution_count": 20, - "id": "d0ee25cc", + "id": "a23efb5c", "metadata": {}, "outputs": [ { @@ -586,7 +586,7 @@ { "cell_type": "code", "execution_count": 21, - "id": "ce5388d2", + "id": "587a63a9", "metadata": {}, "outputs": [ { @@ -606,7 +606,7 @@ }, { "cell_type": "markdown", - "id": "13f9ecb1", + "id": "5c23cb2e", "metadata": {}, "source": [ "- ndarray.itemsize\n", @@ -616,7 +616,7 @@ { "cell_type": "code", "execution_count": 22, - "id": "a37e6226", + "id": "00a5ec05", "metadata": {}, "outputs": [ { @@ -636,7 +636,7 @@ }, { "cell_type": "markdown", - "id": "2f645661", + "id": "021373f2", "metadata": {}, "source": [ "- ndarray.data\n", @@ -646,13 +646,13 @@ { "cell_type": "code", "execution_count": 23, - "id": "230eb0a8", + "id": "246a9ae5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 23, @@ -666,7 +666,7 @@ }, { "cell_type": "markdown", - "id": "c1391da9", + "id": "c8c621a6", "metadata": {}, "source": [ "### Reshape an array\n", @@ -679,7 +679,7 @@ { "cell_type": "code", "execution_count": 24, - "id": "eb269161", + "id": "f303592f", "metadata": {}, "outputs": [ { @@ -700,7 +700,7 @@ }, { "cell_type": "markdown", - "id": "e1799fdd", + "id": "9966b1c7", "metadata": {}, "source": [ "You can use `reshape()` to reshape your array. For example, you can reshape this array to an array with three rows and two columns:" @@ -709,7 +709,7 @@ { "cell_type": "code", "execution_count": 25, - "id": "474b905b", + "id": "ca2f6ae0", "metadata": {}, "outputs": [ { @@ -732,7 +732,7 @@ }, { "cell_type": "markdown", - "id": "b652bd10", + "id": "3cba7acb", "metadata": {}, "source": [ "With `np.reshape`, you can specify a few optional parameters:" @@ -741,7 +741,7 @@ { "cell_type": "code", "execution_count": 26, - "id": "2111b540", + "id": "91843f24", "metadata": {}, "outputs": [ { @@ -761,7 +761,7 @@ }, { "cell_type": "markdown", - "id": "3fe6825e", + "id": "1a0a17fc", "metadata": {}, "source": [ "`a` is the array to be reshaped.\n", @@ -782,7 +782,7 @@ { "cell_type": "code", "execution_count": 27, - "id": "9c7d4be6", + "id": "dc26bcaa", "metadata": {}, "outputs": [ { @@ -803,7 +803,7 @@ }, { "cell_type": "markdown", - "id": "b8f5cdba", + "id": "c9c3ad13", "metadata": {}, "source": [ "You can use `np.newaxis` to add a new axis:" @@ -812,7 +812,7 @@ { "cell_type": "code", "execution_count": 28, - "id": "ecc8a5a1", + "id": "222e3bbc", "metadata": {}, "outputs": [ { @@ -833,7 +833,7 @@ }, { "cell_type": "markdown", - "id": "2136fbc5", + "id": "5aca6723", "metadata": {}, "source": [ "You can explicitly convert a 1D array with either a row vector or a column vector using `np.newaxis`. For example, you can convert a 1D array to a row vector by inserting an axis along the first dimension:" @@ -842,7 +842,7 @@ { "cell_type": "code", "execution_count": 29, - "id": "5f5c0256", + "id": "78686b80", "metadata": {}, "outputs": [ { @@ -863,7 +863,7 @@ }, { "cell_type": "markdown", - "id": "f446042c", + "id": "1880a2bc", "metadata": {}, "source": [ "Or, for a column vector, you can insert an axis along the second dimension:" @@ -872,7 +872,7 @@ { "cell_type": "code", "execution_count": 30, - "id": "085bcaea", + "id": "79e0afad", "metadata": {}, "outputs": [ { @@ -893,7 +893,7 @@ }, { "cell_type": "markdown", - "id": "e14b2290", + "id": "39c555ff", "metadata": {}, "source": [ "You can also expand an array by inserting a new axis at a specified position with `np.expand_dims`.\n", @@ -904,7 +904,7 @@ { "cell_type": "code", "execution_count": 31, - "id": "43063c3a", + "id": "2702b9e5", "metadata": {}, "outputs": [ { @@ -925,7 +925,7 @@ }, { "cell_type": "markdown", - "id": "f1ca9224", + "id": "02d4d8ad", "metadata": {}, "source": [ "You can use np.expand_dims to add an axis at index position 1 with:" @@ -934,7 +934,7 @@ { "cell_type": "code", "execution_count": 32, - "id": "54426fa5", + "id": "f399bc85", "metadata": {}, "outputs": [ { @@ -955,7 +955,7 @@ }, { "cell_type": "markdown", - "id": "ad62b973", + "id": "1d3afbaa", "metadata": {}, "source": [ "You can add an axis at index position 0 with:" @@ -964,7 +964,7 @@ { "cell_type": "code", "execution_count": 33, - "id": "e5b4e1db", + "id": "8b5f3d80", "metadata": {}, "outputs": [ { @@ -985,7 +985,7 @@ }, { "cell_type": "markdown", - "id": "a7d628d0", + "id": "f5643a8d", "metadata": {}, "source": [ "### Indexing and slicing\n", @@ -996,7 +996,7 @@ { "cell_type": "code", "execution_count": 34, - "id": "7744b04c", + "id": "989b5895", "metadata": {}, "outputs": [], "source": [ @@ -1006,7 +1006,7 @@ { "cell_type": "code", "execution_count": 35, - "id": "e57b89ed", + "id": "5b691c28", "metadata": {}, "outputs": [ { @@ -1027,7 +1027,7 @@ { "cell_type": "code", "execution_count": 36, - "id": "871490cb", + "id": "0215274d", "metadata": {}, "outputs": [ { @@ -1048,7 +1048,7 @@ { "cell_type": "code", "execution_count": 37, - "id": "b1edf739", + "id": "bf45b2af", "metadata": {}, "outputs": [ { @@ -1069,7 +1069,7 @@ { "cell_type": "code", "execution_count": 38, - "id": "4f445c63", + "id": "e7bdb1d6", "metadata": {}, "outputs": [ { @@ -1089,7 +1089,7 @@ }, { "cell_type": "markdown", - "id": "abe25bce", + "id": "b6be28c4", "metadata": {}, "source": [ "You may want to take a section of your array or specific array elements to use in further analysis or additional operations. To do that, you’ll need to subset, slice, and/or index your arrays.\n", @@ -1102,7 +1102,7 @@ { "cell_type": "code", "execution_count": 39, - "id": "4ff5af74", + "id": "6c11e978", "metadata": {}, "outputs": [], "source": [ @@ -1111,7 +1111,7 @@ }, { "cell_type": "markdown", - "id": "46e9a9e4", + "id": "71c0d6dd", "metadata": {}, "source": [ "You can easily print all of the values in the array that are less than 5." @@ -1120,7 +1120,7 @@ { "cell_type": "code", "execution_count": 40, - "id": "315c2a6d", + "id": "d8a5e5b6", "metadata": {}, "outputs": [ { @@ -1140,7 +1140,7 @@ }, { "cell_type": "markdown", - "id": "48eb2ce0", + "id": "62ca2bd5", "metadata": {}, "source": [ "You can also select, for example, numbers that are equal to or greater than 5, and use that condition to index an array." @@ -1149,7 +1149,7 @@ { "cell_type": "code", "execution_count": 41, - "id": "72f77806", + "id": "88160ef6", "metadata": {}, "outputs": [ { @@ -1170,7 +1170,7 @@ }, { "cell_type": "markdown", - "id": "a9d85724", + "id": "93c0082f", "metadata": {}, "source": [ "You can select elements that are divisible by 2:" @@ -1179,7 +1179,7 @@ { "cell_type": "code", "execution_count": 42, - "id": "2eb963d0", + "id": "bd315251", "metadata": {}, "outputs": [ { @@ -1200,7 +1200,7 @@ }, { "cell_type": "markdown", - "id": "e413ed52", + "id": "f0317012", "metadata": {}, "source": [ "Or you can select elements that satisfy two conditions using the `&` and `|` operators:" @@ -1209,7 +1209,7 @@ { "cell_type": "code", "execution_count": 43, - "id": "3cbbcb78", + "id": "b232c963", "metadata": {}, "outputs": [ { @@ -1230,7 +1230,7 @@ }, { "cell_type": "markdown", - "id": "15d9f972", + "id": "c19ab5ad", "metadata": {}, "source": [ "You can also make use of the logical operators `&` and `|` in order to return boolean values that specify whether or not the values in an array fulfill a certain condition. This can be useful with arrays that contain names or other categorical values." @@ -1239,7 +1239,7 @@ { "cell_type": "code", "execution_count": 44, - "id": "71107b1d", + "id": "cc3ee644", "metadata": {}, "outputs": [ { @@ -1262,7 +1262,7 @@ }, { "cell_type": "markdown", - "id": "f33cf954", + "id": "c1edf600", "metadata": {}, "source": [ "You can also use `np.nonzero()` to select elements or indices from an array.\n", @@ -1273,7 +1273,7 @@ { "cell_type": "code", "execution_count": 45, - "id": "4c70a74d", + "id": "cfa0a483", "metadata": {}, "outputs": [], "source": [ @@ -1282,7 +1282,7 @@ }, { "cell_type": "markdown", - "id": "ffe2a170", + "id": "8af96f8e", "metadata": {}, "source": [ "You can use `np.nonzero()` to print the indices of elements that are, for example, less than 5:" @@ -1291,7 +1291,7 @@ { "cell_type": "code", "execution_count": 46, - "id": "8b4b45b8", + "id": "f27a3cb8", "metadata": {}, "outputs": [ { @@ -1312,7 +1312,7 @@ }, { "cell_type": "markdown", - "id": "55e88a39", + "id": "2334c12d", "metadata": {}, "source": [ "In this example, a tuple of arrays was returned: one for each dimension. The first array represents the row indices where these values are found, and the second array represents the column indices where the values are found.\n", @@ -1323,7 +1323,7 @@ { "cell_type": "code", "execution_count": 47, - "id": "b66242da", + "id": "8b52d868", "metadata": {}, "outputs": [ { @@ -1345,7 +1345,7 @@ }, { "cell_type": "markdown", - "id": "0b59a31e", + "id": "97416f45", "metadata": {}, "source": [ "You can also use `np.nonzero()` to print the elements in an array that are less than 5 with:" @@ -1354,7 +1354,7 @@ { "cell_type": "code", "execution_count": 48, - "id": "dbb5def2", + "id": "7f6736f7", "metadata": {}, "outputs": [ { @@ -1374,7 +1374,7 @@ }, { "cell_type": "markdown", - "id": "e8e58650", + "id": "fa8447ee", "metadata": {}, "source": [ "If the element you’re looking for doesn’t exist in the array, then the returned array of indices will be empty. For example:" @@ -1383,7 +1383,7 @@ { "cell_type": "code", "execution_count": 49, - "id": "9c70546d", + "id": "30f0472b", "metadata": {}, "outputs": [ { @@ -1404,7 +1404,7 @@ }, { "cell_type": "markdown", - "id": "9453b1a1", + "id": "dabfad61", "metadata": {}, "source": [ "### Create an array from existing data\n", @@ -1417,7 +1417,7 @@ { "cell_type": "code", "execution_count": 50, - "id": "e78ed6f3", + "id": "a6842649", "metadata": {}, "outputs": [], "source": [ @@ -1426,7 +1426,7 @@ }, { "cell_type": "markdown", - "id": "acda1ab2", + "id": "8b614389", "metadata": {}, "source": [ "You can create a new array from a section of your array any time by specifying where you want to slice your array." @@ -1435,7 +1435,7 @@ { "cell_type": "code", "execution_count": 51, - "id": "94e882ca", + "id": "6989fa4f", "metadata": {}, "outputs": [ { @@ -1456,7 +1456,7 @@ }, { "cell_type": "markdown", - "id": "2f306341", + "id": "f289eda6", "metadata": {}, "source": [ "Here, you grabbed a section of your array from index position 3 through index position 8.\n", @@ -1467,7 +1467,7 @@ { "cell_type": "code", "execution_count": 52, - "id": "da7cf18e", + "id": "e210134f", "metadata": {}, "outputs": [], "source": [ @@ -1479,7 +1479,7 @@ }, { "cell_type": "markdown", - "id": "defa57a1", + "id": "2afdac4f", "metadata": {}, "source": [ "You can stack them vertically with `vstack`:" @@ -1488,7 +1488,7 @@ { "cell_type": "code", "execution_count": 53, - "id": "c5e69457", + "id": "26755e66", "metadata": {}, "outputs": [ { @@ -1511,7 +1511,7 @@ }, { "cell_type": "markdown", - "id": "012e163b", + "id": "fef26743", "metadata": {}, "source": [ "Or stack them horizontally with hstack:" @@ -1520,7 +1520,7 @@ { "cell_type": "code", "execution_count": 54, - "id": "570dc433", + "id": "6644a131", "metadata": {}, "outputs": [ { @@ -1541,7 +1541,7 @@ }, { "cell_type": "markdown", - "id": "4ff18130", + "id": "9c076954", "metadata": {}, "source": [ "You can split an array into several smaller arrays using `hsplit`. You can specify either the number of equally shaped arrays to return or the columns after which the division should occur.\n", @@ -1552,7 +1552,7 @@ { "cell_type": "code", "execution_count": 55, - "id": "1347c4a4", + "id": "bc4467b4", "metadata": {}, "outputs": [ { @@ -1574,7 +1574,7 @@ }, { "cell_type": "markdown", - "id": "0191a5a0", + "id": "0c66f90e", "metadata": {}, "source": [ "If you wanted to split this array into three equally shaped arrays, you would run:" @@ -1583,7 +1583,7 @@ { "cell_type": "code", "execution_count": 56, - "id": "c5c5352f", + "id": "c085a4c4", "metadata": {}, "outputs": [ { @@ -1608,7 +1608,7 @@ }, { "cell_type": "markdown", - "id": "4553dec2", + "id": "09d10de4", "metadata": {}, "source": [ "If you wanted to split your array after the third and fourth column, you’d run:" @@ -1617,7 +1617,7 @@ { "cell_type": "code", "execution_count": 57, - "id": "bff5cc21", + "id": "6f735a83", "metadata": {}, "outputs": [ { @@ -1642,7 +1642,7 @@ }, { "cell_type": "markdown", - "id": "6672a1d9", + "id": "10d069a1", "metadata": {}, "source": [ "You can use the `view` method to create a new array object that looks at the same data as the original array (a shallow copy).\n", @@ -1655,7 +1655,7 @@ { "cell_type": "code", "execution_count": 58, - "id": "84d6807a", + "id": "681e767a", "metadata": {}, "outputs": [], "source": [ @@ -1664,7 +1664,7 @@ }, { "cell_type": "markdown", - "id": "7743a4b6", + "id": "d793698b", "metadata": {}, "source": [ "Now we create an array `b1` by slicing `a` and modify the first element of `b1`. This will modify the corresponding element in `a` as well!" @@ -1673,7 +1673,7 @@ { "cell_type": "code", "execution_count": 59, - "id": "fb7cea7e", + "id": "03f7af11", "metadata": {}, "outputs": [ { @@ -1695,7 +1695,7 @@ { "cell_type": "code", "execution_count": 60, - "id": "a14c10fa", + "id": "29abfd98", "metadata": {}, "outputs": [ { @@ -1717,7 +1717,7 @@ { "cell_type": "code", "execution_count": 61, - "id": "e21fbebe", + "id": "1cb28f3b", "metadata": {}, "outputs": [ { @@ -1739,7 +1739,7 @@ }, { "cell_type": "markdown", - "id": "2fa50f1c", + "id": "6fa60f89", "metadata": {}, "source": [ "Using the `copy` method will make a complete copy of the array and its data (a deep copy). To use this on your array, you could run:" @@ -1748,7 +1748,7 @@ { "cell_type": "code", "execution_count": 62, - "id": "ab07c948", + "id": "8dd1dbb7", "metadata": {}, "outputs": [], "source": [ @@ -1757,7 +1757,7 @@ }, { "cell_type": "markdown", - "id": "5bfb0e9a", + "id": "3c1bf5b9", "metadata": {}, "source": [ "## Array operations\n", @@ -1770,7 +1770,7 @@ { "cell_type": "code", "execution_count": 63, - "id": "f63f7a98", + "id": "0df0d146", "metadata": {}, "outputs": [], "source": [ @@ -1780,7 +1780,7 @@ }, { "cell_type": "markdown", - "id": "edb26bed", + "id": "6096c489", "metadata": {}, "source": [ "You can add the arrays together with the plus sign." @@ -1789,7 +1789,7 @@ { "cell_type": "code", "execution_count": 64, - "id": "a12628ca", + "id": "a3da3376", "metadata": {}, "outputs": [ { @@ -1809,7 +1809,7 @@ }, { "cell_type": "markdown", - "id": "10a78453", + "id": "857ceeca", "metadata": {}, "source": [ "You can, of course, do more than just addition!" @@ -1818,7 +1818,7 @@ { "cell_type": "code", "execution_count": 65, - "id": "0a1ab57e", + "id": "c34fbb3d", "metadata": {}, "outputs": [ { @@ -1839,7 +1839,7 @@ }, { "cell_type": "markdown", - "id": "3a7fe8c5", + "id": "db7b0009", "metadata": {}, "source": [ "Basic operations are simple with NumPy. If you want to find the sum of the elements in an array, you’d use `sum()`. This works for 1D arrays, 2D arrays, and arrays in higher dimensions." @@ -1848,7 +1848,7 @@ { "cell_type": "code", "execution_count": 66, - "id": "4765fbea", + "id": "3ccef6f8", "metadata": {}, "outputs": [ { @@ -1869,7 +1869,7 @@ }, { "cell_type": "markdown", - "id": "c795d2ae", + "id": "92cbcee9", "metadata": {}, "source": [ "To add the rows or the columns in a 2D array, you would specify the axis.\n", @@ -1880,7 +1880,7 @@ { "cell_type": "code", "execution_count": 67, - "id": "22774bc3", + "id": "c97288df", "metadata": {}, "outputs": [], "source": [ @@ -1889,7 +1889,7 @@ }, { "cell_type": "markdown", - "id": "ca4b6372", + "id": "17f5f516", "metadata": {}, "source": [ "You can sum over the axis of rows with:" @@ -1898,7 +1898,7 @@ { "cell_type": "code", "execution_count": 68, - "id": "8547d72c", + "id": "4eea7e0a", "metadata": {}, "outputs": [ { @@ -1918,7 +1918,7 @@ }, { "cell_type": "markdown", - "id": "0ac60ab0", + "id": "be1de269", "metadata": {}, "source": [ "You can sum over the axis of columns with:" @@ -1927,7 +1927,7 @@ { "cell_type": "code", "execution_count": 69, - "id": "85ac759f", + "id": "3a987410", "metadata": {}, "outputs": [ { @@ -1947,7 +1947,7 @@ }, { "cell_type": "markdown", - "id": "25b5d4f4", + "id": "369fb67d", "metadata": {}, "source": [ "### Universal functions(ufunc)\n", @@ -2038,7 +2038,7 @@ { "cell_type": "code", "execution_count": 70, - "id": "e169b883", + "id": "bf6e23ee", "metadata": {}, "outputs": [ { @@ -2060,7 +2060,7 @@ }, { "cell_type": "markdown", - "id": "2cc7a971", + "id": "434fd9bf", "metadata": {}, "source": [ "NumPy’s broadcasting rule relaxes this constraint when the arrays’ shapes meet certain constraints. The simplest broadcasting example occurs when an array and a scalar value are combined in an operation:" @@ -2069,7 +2069,7 @@ { "cell_type": "code", "execution_count": 71, - "id": "3741d36a", + "id": "a469d37a", "metadata": {}, "outputs": [ { @@ -2091,7 +2091,7 @@ }, { "cell_type": "markdown", - "id": "c0dac40e", + "id": "1ee6b52f", "metadata": {}, "source": [ "The result is equivalent to the previous example where `b` was an array. NumPy is smart enough to use the original scalar value without actually making copies so that broadcasting operations are as memory and computationally efficient as possible.\n", @@ -2133,7 +2133,7 @@ { "cell_type": "code", "execution_count": 72, - "id": "76014f7f", + "id": "35e1c26c", "metadata": {}, "outputs": [ { @@ -2154,7 +2154,7 @@ { "cell_type": "code", "execution_count": 73, - "id": "12e9b800", + "id": "26aefd82", "metadata": {}, "outputs": [ { @@ -2175,7 +2175,7 @@ { "cell_type": "code", "execution_count": 74, - "id": "538e8b0f", + "id": "d37ad687", "metadata": {}, "outputs": [ { @@ -2195,7 +2195,7 @@ }, { "cell_type": "markdown", - "id": "6c450279", + "id": "273886fa", "metadata": {}, "source": [ "Let’s start with this array, called “a”." @@ -2204,7 +2204,7 @@ { "cell_type": "code", "execution_count": 75, - "id": "df7e5735", + "id": "34183eda", "metadata": {}, "outputs": [], "source": [ @@ -2215,7 +2215,7 @@ }, { "cell_type": "markdown", - "id": "80b524b9", + "id": "c0f61cfa", "metadata": {}, "source": [ "It’s very common to want to aggregate along a row or column. By default, every NumPy aggregation function will return the aggregate of the entire array. To find the sum or the minimum of the elements in your array, run:" @@ -2224,7 +2224,7 @@ { "cell_type": "code", "execution_count": 76, - "id": "66c67ac4", + "id": "cb0a6d59", "metadata": {}, "outputs": [ { @@ -2244,7 +2244,7 @@ }, { "cell_type": "markdown", - "id": "5c440ff4", + "id": "9e3b702e", "metadata": {}, "source": [ "Or:" @@ -2253,7 +2253,7 @@ { "cell_type": "code", "execution_count": 77, - "id": "0064a683", + "id": "ab98f982", "metadata": {}, "outputs": [ { @@ -2273,7 +2273,7 @@ }, { "cell_type": "markdown", - "id": "77adcfae", + "id": "e4b23885", "metadata": {}, "source": [ "You can specify on which axis you want the aggregation function to be computed. For example, you can find the minimum value within each column by specifying `axis=0`." @@ -2282,7 +2282,7 @@ { "cell_type": "code", "execution_count": 78, - "id": "406f149a", + "id": "555a5494", "metadata": {}, "outputs": [ { @@ -2302,7 +2302,7 @@ }, { "cell_type": "markdown", - "id": "c6150b00", + "id": "3cf31cb7", "metadata": {}, "source": [ "The four values listed above correspond to the number of columns in your array. With a four-column array, you will get four values as your result.\n", @@ -2325,7 +2325,7 @@ { "cell_type": "code", "execution_count": 79, - "id": "c82893ba", + "id": "b8db9ba4", "metadata": {}, "outputs": [], "source": [ @@ -2335,7 +2335,7 @@ { "cell_type": "code", "execution_count": 80, - "id": "5bbf1fa8", + "id": "c38ea3cb", "metadata": {}, "outputs": [ { @@ -2356,7 +2356,7 @@ { "cell_type": "code", "execution_count": 81, - "id": "046bdefe", + "id": "6ff1d893", "metadata": {}, "outputs": [ { @@ -2376,7 +2376,7 @@ }, { "cell_type": "markdown", - "id": "a5569c55", + "id": "d7c505e0", "metadata": {}, "source": [ "It is not necessary to separate each dimension’s index into its own set of square brackets." @@ -2385,7 +2385,7 @@ { "cell_type": "code", "execution_count": 82, - "id": "6d2ddea2", + "id": "73771785", "metadata": {}, "outputs": [], "source": [ @@ -2395,7 +2395,7 @@ { "cell_type": "code", "execution_count": 83, - "id": "94aa2b0d", + "id": "c087f055", "metadata": {}, "outputs": [ { @@ -2416,7 +2416,7 @@ { "cell_type": "code", "execution_count": 84, - "id": "8f19e665", + "id": "55e3a5ae", "metadata": {}, "outputs": [ { @@ -2436,7 +2436,7 @@ }, { "cell_type": "markdown", - "id": "b5948b7d", + "id": "254c4056", "metadata": {}, "source": [ "Note that If one indexes a multidimensional array with fewer indices than dimensions, one gets a subdimensional array. For example:" @@ -2445,7 +2445,7 @@ { "cell_type": "code", "execution_count": 85, - "id": "707ba14b", + "id": "bc3f0df1", "metadata": {}, "outputs": [ { @@ -2465,7 +2465,7 @@ }, { "cell_type": "markdown", - "id": "03ccae92", + "id": "60e0fea3", "metadata": {}, "source": [ "That is, each index specified selects the array corresponding to the rest of the dimensions selected. In the above example, choosing 0 means that the remaining dimension of length 5 is being left unspecified, and that what is returned is an array of that dimensionality and size. It must be noted that the returned array is a view, i.e., it is not a copy of the original, but points to the same values in memory as does the original array. In this case, the 1-D array at the first position (0) is returned. So using a single index on the returned array, results in a single element being returned. That is:" @@ -2474,7 +2474,7 @@ { "cell_type": "code", "execution_count": 86, - "id": "0d7943d1", + "id": "17ca9933", "metadata": {}, "outputs": [ { @@ -2494,7 +2494,7 @@ }, { "cell_type": "markdown", - "id": "9bfe60fd", + "id": "b1540b46", "metadata": {}, "source": [ "So note that `x[0, 2] == x[0][2]` though the second case is more inefficient as a new temporary array is created after the first index that is subsequently indexed by 2.\n", @@ -2521,7 +2521,7 @@ { "cell_type": "code", "execution_count": 87, - "id": "39736de3", + "id": "5d59ce09", "metadata": {}, "outputs": [ { @@ -2542,7 +2542,7 @@ }, { "cell_type": "markdown", - "id": "cae23acf", + "id": "0ad4af78", "metadata": {}, "source": [ "- Negative *i* and *j* are interpreted as *n + i* and *n + j* where *n* is the number of elements in the corresponding dimension. Negative *k* makes stepping go towards smaller indices. From the above example:" @@ -2551,7 +2551,7 @@ { "cell_type": "code", "execution_count": 88, - "id": "9b7f09b1", + "id": "0b8d903a", "metadata": {}, "outputs": [ { @@ -2572,7 +2572,7 @@ { "cell_type": "code", "execution_count": 89, - "id": "a917329c", + "id": "0dccd35c", "metadata": {}, "outputs": [ { @@ -2592,7 +2592,7 @@ }, { "cell_type": "markdown", - "id": "817f1318", + "id": "fdf27673", "metadata": {}, "source": [ "- Assume *n* is the number of elements in the dimension being sliced. Then, if *i* is not given it defaults to 0 for *k > 0* and *n - 1* for *k < 0*. If *j* is not given it defaults to *n* for *k > 0* and *-n-1* for *k < 0*. If *k* is not given it defaults to 1. Note that `::` is the same as : and means select all indices along this axis. From the above example:" @@ -2601,7 +2601,7 @@ { "cell_type": "code", "execution_count": 90, - "id": "aa2480ef", + "id": "9c58ff87", "metadata": {}, "outputs": [ { @@ -2621,7 +2621,7 @@ }, { "cell_type": "markdown", - "id": "cdb21dd3", + "id": "36552e98", "metadata": {}, "source": [ "- If the number of objects in the selection tuple is less than N, then `:` is assumed for any subsequent dimensions. For example:" @@ -2630,7 +2630,7 @@ { "cell_type": "code", "execution_count": 91, - "id": "c3dcf26b", + "id": "a50bd245", "metadata": {}, "outputs": [ { @@ -2652,7 +2652,7 @@ { "cell_type": "code", "execution_count": 92, - "id": "e3dc5a91", + "id": "0486952f", "metadata": {}, "outputs": [ { @@ -2674,7 +2674,7 @@ }, { "cell_type": "markdown", - "id": "24d6064c", + "id": "fddbb9d3", "metadata": {}, "source": [ "- An integer, *i*, returns the same values as `i:i+1` **except** the dimensionality of the returned object is reduced by 1. In particular, a selection tuple with the *p*-th element an integer (and all other entries *:*) returns the corresponding sub-array with dimension *N - 1*. If *N = 1* then the returned object is an array scalar.\n", @@ -2699,7 +2699,7 @@ { "cell_type": "code", "execution_count": 93, - "id": "d93749f7", + "id": "12c63082", "metadata": {}, "outputs": [ { @@ -2720,7 +2720,7 @@ }, { "cell_type": "markdown", - "id": "ca8798f4", + "id": "0078053e", "metadata": {}, "source": [ "This is equivalent to:" @@ -2729,7 +2729,7 @@ { "cell_type": "code", "execution_count": 94, - "id": "cd4c7a2e", + "id": "340be6f0", "metadata": {}, "outputs": [ { @@ -2750,7 +2750,7 @@ }, { "cell_type": "markdown", - "id": "32625800", + "id": "9d18f154", "metadata": {}, "source": [ "Each `newaxis` object in the selection tuple serves to expand the dimensions of the resulting selection by one unit-length dimension. The added dimension is the position of the `newaxis` object in the selection tuple. `newaxis` is an alias for `None`, and `None` can be used in place of this with the same result. From the above example:" @@ -2759,7 +2759,7 @@ { "cell_type": "code", "execution_count": 95, - "id": "20fe2be5", + "id": "6d7c70b3", "metadata": {}, "outputs": [ { @@ -2780,7 +2780,7 @@ { "cell_type": "code", "execution_count": 96, - "id": "63240821", + "id": "2ac0fede", "metadata": {}, "outputs": [ { @@ -2800,7 +2800,7 @@ }, { "cell_type": "markdown", - "id": "0a220928", + "id": "c33c4d8f", "metadata": {}, "source": [ "This can be handy to combine two arrays in a way that otherwise would require explicit reshaping operations. For example:" @@ -2809,7 +2809,7 @@ { "cell_type": "code", "execution_count": 97, - "id": "20ae9d4b", + "id": "af1e4760", "metadata": {}, "outputs": [ { @@ -2834,7 +2834,7 @@ }, { "cell_type": "markdown", - "id": "8616dbbc", + "id": "a682dfca", "metadata": {}, "source": [ "### Advanced indexing\n", @@ -2857,7 +2857,7 @@ { "cell_type": "code", "execution_count": 98, - "id": "4cade501", + "id": "09f60290", "metadata": {}, "outputs": [], "source": [ @@ -2867,7 +2867,7 @@ { "cell_type": "code", "execution_count": 99, - "id": "8cb265f3", + "id": "c6215f55", "metadata": {}, "outputs": [ { @@ -2888,7 +2888,7 @@ { "cell_type": "code", "execution_count": 100, - "id": "6a678867", + "id": "4c78bcbf", "metadata": {}, "outputs": [ { @@ -2909,7 +2909,7 @@ { "cell_type": "code", "execution_count": 101, - "id": "76ffa3ab", + "id": "712d9208", "metadata": {}, "outputs": [ { @@ -2929,7 +2929,7 @@ }, { "cell_type": "markdown", - "id": "3046f1aa", + "id": "e5d75aa2", "metadata": {}, "source": [ "If the index values are out of bounds then an `IndexError` is thrown:" @@ -2938,7 +2938,7 @@ { "cell_type": "code", "execution_count": 102, - "id": "69ad05d6", + "id": "3f885a84", "metadata": {}, "outputs": [], "source": [ @@ -2948,7 +2948,7 @@ { "cell_type": "code", "execution_count": 103, - "id": "a94a5db2", + "id": "eed86f9e", "metadata": {}, "outputs": [ { @@ -2969,7 +2969,7 @@ }, { "cell_type": "markdown", - "id": "fe1eb07f", + "id": "6dd9de97", "metadata": {}, "source": [ "```py\n", @@ -2999,7 +2999,7 @@ { "cell_type": "code", "execution_count": 104, - "id": "534eaca5", + "id": "804a6e1c", "metadata": {}, "outputs": [], "source": [ @@ -3009,7 +3009,7 @@ { "cell_type": "code", "execution_count": 105, - "id": "48bf6028", + "id": "2a4c6d27", "metadata": {}, "outputs": [ { @@ -3034,7 +3034,7 @@ { "cell_type": "code", "execution_count": 106, - "id": "3d30a489", + "id": "34937c0b", "metadata": {}, "outputs": [ { @@ -3054,7 +3054,7 @@ }, { "cell_type": "markdown", - "id": "237662eb", + "id": "72afe642", "metadata": {}, "source": [ "In this case, if the index arrays have a matching shape, and there is an index array for each dimension of the array being indexed, the resultant array has the same shape as the index arrays, and the values correspond to the index set for each position in the index arrays. In this example, the first index value is 0 for both index arrays, and thus the first value of the resultant array is `y[0, 0]`. The next value is `y[2, 1]`, and the last is `y[4, 2]`.\n", @@ -3077,7 +3077,7 @@ { "cell_type": "code", "execution_count": 107, - "id": "4af2f4e9", + "id": "746a8a2a", "metadata": {}, "outputs": [ { @@ -3097,7 +3097,7 @@ }, { "cell_type": "markdown", - "id": "cfb6a961", + "id": "c806293b", "metadata": {}, "source": [ "Jumping to the next level of complexity, it is possible to only partially index an array with index arrays. It takes a bit of thought to understand what happens in such cases. For example if we just use one index array with y:" @@ -3106,7 +3106,7 @@ { "cell_type": "code", "execution_count": 108, - "id": "970c577f", + "id": "8d24f98b", "metadata": {}, "outputs": [ { @@ -3128,7 +3128,7 @@ }, { "cell_type": "markdown", - "id": "8f83cd68", + "id": "75a6a88c", "metadata": {}, "source": [ "It results in the construction of a new array where each value of the index array selects one row from the array being indexed and the resultant array has the resulting shape (number of index elements, size of row).\n", @@ -3143,7 +3143,7 @@ { "cell_type": "code", "execution_count": 109, - "id": "7845e084", + "id": "843d2d9d", "metadata": {}, "outputs": [ { @@ -3164,7 +3164,7 @@ }, { "cell_type": "markdown", - "id": "9d716b3d", + "id": "b53bec85", "metadata": {}, "source": [ "To achieve a behaviour similar to the basic slicing above, broadcasting can be used. The function `ix_` can help with this broadcasting. This is best understood with an example.\n", @@ -3177,7 +3177,7 @@ { "cell_type": "code", "execution_count": 110, - "id": "9d028c17", + "id": "8b3486a3", "metadata": {}, "outputs": [ { @@ -3206,7 +3206,7 @@ }, { "cell_type": "markdown", - "id": "758b4a35", + "id": "6b649b71", "metadata": {}, "source": [ "However, since the indexing arrays above just repeat themselves, broadcasting can be used (compare operations such as `rows[:, np.newaxis] + columns`) to simplify this:" @@ -3215,7 +3215,7 @@ { "cell_type": "code", "execution_count": 111, - "id": "ec7b51df", + "id": "e499d3c0", "metadata": {}, "outputs": [], "source": [ @@ -3226,7 +3226,7 @@ { "cell_type": "code", "execution_count": 112, - "id": "edbf9768", + "id": "8c259488", "metadata": {}, "outputs": [ { @@ -3248,7 +3248,7 @@ { "cell_type": "code", "execution_count": 113, - "id": "eb31dd1f", + "id": "162b4cf4", "metadata": {}, "outputs": [ { @@ -3269,7 +3269,7 @@ }, { "cell_type": "markdown", - "id": "7ff7c435", + "id": "6804676b", "metadata": {}, "source": [ "This broadcasting can also be achieved using the function `ix_`:" @@ -3278,7 +3278,7 @@ { "cell_type": "code", "execution_count": 114, - "id": "b5b937a5", + "id": "9be46052", "metadata": {}, "outputs": [ { @@ -3299,7 +3299,7 @@ }, { "cell_type": "markdown", - "id": "0a8f070c", + "id": "e9ff09f5", "metadata": {}, "source": [ "Note that without the `np.ix_` call, only the diagonal elements would be selected:" @@ -3308,7 +3308,7 @@ { "cell_type": "code", "execution_count": 115, - "id": "05619cd7", + "id": "e796de41", "metadata": {}, "outputs": [ { @@ -3328,7 +3328,7 @@ }, { "cell_type": "markdown", - "id": "9d77ccdb", + "id": "12406154", "metadata": {}, "source": [ "This difference is the most important thing to remember about indexing with multiple advanced indices.\n", @@ -3349,7 +3349,7 @@ { "cell_type": "code", "execution_count": 116, - "id": "d73844ae", + "id": "0c1a1859", "metadata": {}, "outputs": [ { @@ -3370,7 +3370,7 @@ }, { "cell_type": "markdown", - "id": "985d5493", + "id": "cfda58c9", "metadata": {}, "source": [ "Or wish to add a constant to all negative elements:" @@ -3379,7 +3379,7 @@ { "cell_type": "code", "execution_count": 117, - "id": "75ee7fe3", + "id": "84b58448", "metadata": {}, "outputs": [ { @@ -3401,7 +3401,7 @@ }, { "cell_type": "markdown", - "id": "d9247246", + "id": "ac73a2b4", "metadata": {}, "source": [ "In general if an index includes a Boolean array, the result will be identical to inserting `obj.nonzero()` into the same position and using the integer array indexing mechanism described above. `x[ind_1, boolean_array, ind_2]` is equivalent to `x[(ind_1,) + boolean_array.nonzero() + (ind_2,)]`.\n", @@ -3414,7 +3414,7 @@ { "cell_type": "code", "execution_count": 118, - "id": "e691a204", + "id": "030806a6", "metadata": {}, "outputs": [], "source": [ @@ -3425,7 +3425,7 @@ { "cell_type": "code", "execution_count": 119, - "id": "6730d9e8", + "id": "419f7088", "metadata": {}, "outputs": [ { @@ -3446,7 +3446,7 @@ { "cell_type": "code", "execution_count": 120, - "id": "716092f9", + "id": "356547dd", "metadata": {}, "outputs": [ { @@ -3467,7 +3467,7 @@ }, { "cell_type": "markdown", - "id": "657b732f", + "id": "5ead70ba", "metadata": {}, "source": [ "Here the 4th and 5th rows are selected from the indexed array and combined to make a 2-D array.\n", @@ -3480,7 +3480,7 @@ { "cell_type": "code", "execution_count": 121, - "id": "24e80f01", + "id": "59f2584c", "metadata": {}, "outputs": [ { @@ -3503,7 +3503,7 @@ }, { "cell_type": "markdown", - "id": "2e9c7a50", + "id": "fde47f24", "metadata": {}, "source": [ "Combining multiple Boolean indexing arrays or a Boolean with an integer indexing array can best be understood with the `obj.nonzero()` analogy. The function `ix_` also supports boolean arrays and will work without any surprises.\n", @@ -3516,7 +3516,7 @@ { "cell_type": "code", "execution_count": 122, - "id": "0aee987f", + "id": "ad475641", "metadata": {}, "outputs": [], "source": [ @@ -3530,7 +3530,7 @@ { "cell_type": "code", "execution_count": 123, - "id": "43d73458", + "id": "57e1caef", "metadata": {}, "outputs": [ { @@ -3551,7 +3551,7 @@ { "cell_type": "code", "execution_count": 124, - "id": "4544e60c", + "id": "f711ea9e", "metadata": {}, "outputs": [], "source": [ @@ -3561,7 +3561,7 @@ { "cell_type": "code", "execution_count": 125, - "id": "084a72fa", + "id": "afb6793d", "metadata": {}, "outputs": [ { @@ -3582,7 +3582,7 @@ }, { "cell_type": "markdown", - "id": "54d115d4", + "id": "20bb0f03", "metadata": {}, "source": [ "Without the n`p.ix_` call, only the diagonal elements would be selected.\n", @@ -3593,7 +3593,7 @@ { "cell_type": "code", "execution_count": 126, - "id": "492e0749", + "id": "fec999aa", "metadata": {}, "outputs": [ { @@ -3615,7 +3615,7 @@ }, { "cell_type": "markdown", - "id": "9794683e", + "id": "5f069d0e", "metadata": {}, "source": [ "##### Example 3\n", @@ -3626,7 +3626,7 @@ { "cell_type": "code", "execution_count": 127, - "id": "27a94206", + "id": "78014573", "metadata": {}, "outputs": [ { @@ -3654,7 +3654,7 @@ { "cell_type": "code", "execution_count": 128, - "id": "602decb2", + "id": "5f18d1f1", "metadata": {}, "outputs": [ { @@ -3678,7 +3678,7 @@ }, { "cell_type": "markdown", - "id": "822f10a9", + "id": "a0d3b147", "metadata": {}, "source": [ "#### Combining advanced and basic indexing\n", @@ -3691,7 +3691,7 @@ { "cell_type": "code", "execution_count": 129, - "id": "2fd94f53", + "id": "9313ab71", "metadata": {}, "outputs": [ { @@ -3714,7 +3714,7 @@ }, { "cell_type": "markdown", - "id": "61fb52dd", + "id": "2ae88709", "metadata": {}, "source": [ "In effect, the slice and index array operation are independent. The slice operation extracts columns with index 1 and 2, (i.e. the 2nd and 3rd columns), followed by the index array operation which extracts rows with index 0, 2 and 4 (i.e the first, third and fifth rows). This is equivalent to:" @@ -3723,7 +3723,7 @@ { "cell_type": "code", "execution_count": 130, - "id": "6b417598", + "id": "56b1f695", "metadata": {}, "outputs": [ { @@ -3745,7 +3745,7 @@ }, { "cell_type": "markdown", - "id": "e1c85d79", + "id": "0e6dddf9", "metadata": {}, "source": [ "A single advanced index can, for example, replace a slice and the result array will be the same. However, it is a copy and may have a different memory layout. A slice is preferable when it is possible. For example:" @@ -3754,7 +3754,7 @@ { "cell_type": "code", "execution_count": 131, - "id": "0ff42fd8", + "id": "607ce968", "metadata": {}, "outputs": [], "source": [ @@ -3767,7 +3767,7 @@ { "cell_type": "code", "execution_count": 132, - "id": "58013488", + "id": "f04d4d21", "metadata": {}, "outputs": [ { @@ -3788,7 +3788,7 @@ { "cell_type": "code", "execution_count": 133, - "id": "5e4c2001", + "id": "7bdee1ce", "metadata": {}, "outputs": [ { @@ -3808,7 +3808,7 @@ }, { "cell_type": "markdown", - "id": "381fc0be", + "id": "df8272ed", "metadata": {}, "source": [ "The easiest way to understand a combination of multiple advanced indices may be to think in terms of the resulting shape. There are two parts to the indexing operation, the subspace defined by the basic indexing (excluding integers) and the subspace from the advanced indexing part. Two cases of index combination need to be distinguished:\n", @@ -3834,7 +3834,7 @@ { "cell_type": "code", "execution_count": 134, - "id": "1731247e", + "id": "e665163b", "metadata": {}, "outputs": [], "source": [ @@ -3845,7 +3845,7 @@ { "cell_type": "code", "execution_count": 135, - "id": "baefc549", + "id": "8a0eeb3f", "metadata": {}, "outputs": [ { @@ -3870,7 +3870,7 @@ { "cell_type": "code", "execution_count": 136, - "id": "e6e1c108", + "id": "211ae299", "metadata": {}, "outputs": [ { @@ -3891,7 +3891,7 @@ }, { "cell_type": "markdown", - "id": "eaa10183", + "id": "ac489faf", "metadata": {}, "source": [ "### Field access\n", @@ -3908,7 +3908,7 @@ { "cell_type": "code", "execution_count": 137, - "id": "8c715588", + "id": "87082d2b", "metadata": {}, "outputs": [], "source": [ @@ -3918,7 +3918,7 @@ { "cell_type": "code", "execution_count": 138, - "id": "7b5d745d", + "id": "25797dbf", "metadata": {}, "outputs": [ { @@ -3939,7 +3939,7 @@ { "cell_type": "code", "execution_count": 139, - "id": "473385a9", + "id": "d362383b", "metadata": {}, "outputs": [ { @@ -3960,7 +3960,7 @@ { "cell_type": "code", "execution_count": 140, - "id": "38df66f1", + "id": "d277a47b", "metadata": {}, "outputs": [ { @@ -3981,7 +3981,7 @@ { "cell_type": "code", "execution_count": 141, - "id": "6b405005", + "id": "bb59101a", "metadata": {}, "outputs": [ { @@ -4001,7 +4001,7 @@ }, { "cell_type": "markdown", - "id": "ceaa6265", + "id": "81e86d2a", "metadata": {}, "source": [ "### Flat Iterator indexing\n", @@ -4016,7 +4016,7 @@ { "cell_type": "code", "execution_count": 142, - "id": "60df60bc", + "id": "651d8796", "metadata": {}, "outputs": [], "source": [ @@ -4026,7 +4026,7 @@ }, { "cell_type": "markdown", - "id": "e35ad0a7", + "id": "f0bf23cc", "metadata": {}, "source": [ "Or an array of the right size:" @@ -4035,7 +4035,7 @@ { "cell_type": "code", "execution_count": 143, - "id": "36c7a028", + "id": "3f734843", "metadata": {}, "outputs": [], "source": [ @@ -4044,7 +4044,7 @@ }, { "cell_type": "markdown", - "id": "d6bb68ea", + "id": "7577483a", "metadata": {}, "source": [ "Note that assignments may result in changes if assigning higher types to lower types (like floats to ints) or even exceptions (assigning complex to floats or ints):" @@ -4053,7 +4053,7 @@ { "cell_type": "code", "execution_count": 144, - "id": "9f3a644a", + "id": "4a2f112c", "metadata": {}, "outputs": [ { @@ -4074,7 +4074,7 @@ }, { "cell_type": "markdown", - "id": "a9daf9ca", + "id": "47e09f84", "metadata": {}, "source": [ "```py\n", @@ -4093,7 +4093,7 @@ { "cell_type": "code", "execution_count": 145, - "id": "152f86ff", + "id": "b1b83b6d", "metadata": {}, "outputs": [ { @@ -4115,7 +4115,7 @@ { "cell_type": "code", "execution_count": 146, - "id": "8a4b69d7", + "id": "c2ed584e", "metadata": {}, "outputs": [ { @@ -4136,7 +4136,7 @@ }, { "cell_type": "markdown", - "id": "94071121", + "id": "26367fa1", "metadata": {}, "source": [ "Where people expect that the 1st location will be incremented by 3. In fact, it will only be incremented by 1. The reason is that a new array is extracted from the original (as a temporary) containing the values at 1, 1, 3, 1, then the value 1 is added to the temporary, and then the temporary is assigned back to the original array. Thus the value of the array at `x[1] + 1` is assigned to `x[1]` three times, rather than being incremented 3 times.\n", @@ -4149,7 +4149,7 @@ { "cell_type": "code", "execution_count": 147, - "id": "f8f02799", + "id": "361dad28", "metadata": {}, "outputs": [ { @@ -4171,7 +4171,7 @@ }, { "cell_type": "markdown", - "id": "0c35b2c7", + "id": "e214f199", "metadata": {}, "source": [ "So one can use code to construct tuples of any number of indices and then use these within an index.\n", @@ -4182,7 +4182,7 @@ { "cell_type": "code", "execution_count": 148, - "id": "b05c46a5", + "id": "956f5a69", "metadata": {}, "outputs": [ { @@ -4203,7 +4203,7 @@ }, { "cell_type": "markdown", - "id": "32f2990f", + "id": "7d68302b", "metadata": {}, "source": [ "Likewise, ellipsis can be specified by code by using the Ellipsis object:" @@ -4212,7 +4212,7 @@ { "cell_type": "code", "execution_count": 149, - "id": "0c52b1c9", + "id": "8e19d081", "metadata": {}, "outputs": [ { @@ -4235,7 +4235,7 @@ }, { "cell_type": "markdown", - "id": "2cf9e8ae", + "id": "30b1c106", "metadata": {}, "source": [ "For this reason, it is possible to use the output from the `np.nonzero()` function directly as an index since it always returns a tuple of index arrays.\n", @@ -4246,7 +4246,7 @@ { "cell_type": "code", "execution_count": 150, - "id": "0e5cedd0", + "id": "bc878720", "metadata": {}, "outputs": [ { @@ -4316,7 +4316,7 @@ { "cell_type": "code", "execution_count": 151, - "id": "93461eca", + "id": "8d0c8879", "metadata": {}, "outputs": [ { @@ -4336,7 +4336,7 @@ }, { "cell_type": "markdown", - "id": "860ceada", + "id": "b900ab4b", "metadata": {}, "source": [ "## Structured arrays\n", @@ -4349,7 +4349,7 @@ { "cell_type": "code", "execution_count": 152, - "id": "bbccc513", + "id": "731cfdd6", "metadata": {}, "outputs": [ { @@ -4372,7 +4372,7 @@ }, { "cell_type": "markdown", - "id": "599c24ca", + "id": "148197cf", "metadata": {}, "source": [ "Here `x` is a one-dimensional array of length two whose datatype is a structure with three fields: 1. A string of length 10 or less named `'name'`, 2. a 32-bit integer named `'age'`, and 3. a 32-bit float named `'weight'`.\n", @@ -4383,7 +4383,7 @@ { "cell_type": "code", "execution_count": 153, - "id": "745967eb", + "id": "9616caaa", "metadata": {}, "outputs": [ { @@ -4403,7 +4403,7 @@ }, { "cell_type": "markdown", - "id": "d2f00026", + "id": "de516267", "metadata": {}, "source": [ "You can access and modify individual fields of a structured array by indexing with the field name:" @@ -4412,7 +4412,7 @@ { "cell_type": "code", "execution_count": 154, - "id": "fec68e48", + "id": "d43c6311", "metadata": {}, "outputs": [ { @@ -4433,7 +4433,7 @@ { "cell_type": "code", "execution_count": 155, - "id": "25eb0464", + "id": "0be2975e", "metadata": {}, "outputs": [ { @@ -4454,7 +4454,7 @@ { "cell_type": "code", "execution_count": 156, - "id": "d1f77685", + "id": "80a499fb", "metadata": {}, "outputs": [ { @@ -4475,7 +4475,7 @@ }, { "cell_type": "markdown", - "id": "d8d5a893", + "id": "3b028ec2", "metadata": {}, "source": [ "Structured datatypes are designed to be able to mimic 'structs' in the C language, and share a similar memory layout. They are meant for interfacing with C code and for low-level manipulation of structured buffers, for example for interpreting binary blobs. For these purposes they support specialized features such as subarrays, nested datatypes, and unions, and allow control over the memory layout of the structure.\n", @@ -4498,7 +4498,7 @@ { "cell_type": "code", "execution_count": 157, - "id": "797dd050", + "id": "74ebd158", "metadata": {}, "outputs": [ { @@ -4518,7 +4518,7 @@ }, { "cell_type": "markdown", - "id": "32712a39", + "id": "e34b6ce2", "metadata": {}, "source": [ "If `fieldname` is the empty string `''`, the field will be given a default name of the form `f#`, where `#` is the integer index of the field, counting from 0 from the left:" @@ -4527,7 +4527,7 @@ { "cell_type": "code", "execution_count": 158, - "id": "09d05c4f", + "id": "0f6e526b", "metadata": {}, "outputs": [ { @@ -4547,7 +4547,7 @@ }, { "cell_type": "markdown", - "id": "4f6bb0fd", + "id": "53d95bbc", "metadata": {}, "source": [ "The byte offsets of the fields within the structure and the total structure itemsize are determined automatically.\n", @@ -4560,7 +4560,7 @@ { "cell_type": "code", "execution_count": 159, - "id": "28c8a822", + "id": "b2287306", "metadata": {}, "outputs": [ { @@ -4581,7 +4581,7 @@ { "cell_type": "code", "execution_count": 160, - "id": "f7b83bcf", + "id": "79eff3e6", "metadata": {}, "outputs": [ { @@ -4601,7 +4601,7 @@ }, { "cell_type": "markdown", - "id": "5c960b91", + "id": "257bd476", "metadata": {}, "source": [ "- A dictionary of field parameter arrays\n", @@ -4614,7 +4614,7 @@ { "cell_type": "code", "execution_count": 161, - "id": "434ca05a", + "id": "ab42e01a", "metadata": {}, "outputs": [ { @@ -4635,7 +4635,7 @@ { "cell_type": "code", "execution_count": 162, - "id": "e2a4528d", + "id": "9fd55ad4", "metadata": {}, "outputs": [ { @@ -4658,7 +4658,7 @@ }, { "cell_type": "markdown", - "id": "36a35aeb", + "id": "64c2856f", "metadata": {}, "source": [ "Offsets may be chosen such that the fields overlap, though this will mean that assigning to one field may clobber any overlapping field’s data. As an exception, fields of `numpy.object_` type cannot overlap with other fields, because of the risk of clobbering the internal object pointer and then dereferencing it.\n", @@ -4673,7 +4673,7 @@ { "cell_type": "code", "execution_count": 163, - "id": "d9f02eba", + "id": "d9c1f88a", "metadata": {}, "outputs": [ { @@ -4693,7 +4693,7 @@ }, { "cell_type": "markdown", - "id": "a436abe7", + "id": "86448c29", "metadata": {}, "source": [ "#### Manipulating and Displaying Structured Datatypes\n", @@ -4704,7 +4704,7 @@ { "cell_type": "code", "execution_count": 164, - "id": "f69590d4", + "id": "b9033bda", "metadata": {}, "outputs": [ { @@ -4725,7 +4725,7 @@ }, { "cell_type": "markdown", - "id": "4e7b9a5d", + "id": "178065ea", "metadata": {}, "source": [ "The field names may be modified by assigning to the `names` attribute using a sequence of strings of the same length.\n", @@ -4736,7 +4736,7 @@ { "cell_type": "code", "execution_count": 165, - "id": "43f8a0f5", + "id": "2ab6061b", "metadata": {}, "outputs": [ { @@ -4756,7 +4756,7 @@ }, { "cell_type": "markdown", - "id": "1232b323", + "id": "ec92a2d5", "metadata": {}, "source": [ "Both the `names` and `fields` attributes will equal `None` for unstructured arrays. The recommended way to test if a dtype is structured is with `if dt.names is not None` rather than `if dt.names`, to account for dtypes with 0 fields.\n", @@ -4773,7 +4773,7 @@ { "cell_type": "code", "execution_count": 166, - "id": "a0ed1548", + "id": "655b8383", "metadata": {}, "outputs": [ { @@ -4793,7 +4793,7 @@ }, { "cell_type": "markdown", - "id": "7828e2b3", + "id": "6ff6765b", "metadata": {}, "source": [ "When using the first form of dictionary-based specification, the titles may be supplied as an extra `'titles'` key as described above. When using the second (discouraged) dictionary-based specification, the title can be supplied by providing a 3-element tuple `(datatype, offset, title)` instead of the usual 2-element tuple:" @@ -4802,7 +4802,7 @@ { "cell_type": "code", "execution_count": 167, - "id": "a92fe7b9", + "id": "054229c3", "metadata": {}, "outputs": [ { @@ -4822,7 +4822,7 @@ }, { "cell_type": "markdown", - "id": "a03df07f", + "id": "8cb7b0c3", "metadata": {}, "source": [ "The `dtype.fields` dictionary will contain titles as keys, if any titles are used. This means effectively that a field with a title will be represented twice in the fields dictionary. The tuple values for these fields will also have a third element, the field title. Because of this, and because the `names` attribute preserves the field order while the `fields` attribute may not, it is recommended to iterate through the fields of a dtype using the `names` attribute of the dtype, which will not list titles, as in:" @@ -4831,7 +4831,7 @@ { "cell_type": "code", "execution_count": 168, - "id": "7d79d449", + "id": "46fa0789", "metadata": {}, "outputs": [ { @@ -4850,7 +4850,7 @@ }, { "cell_type": "markdown", - "id": "f326f48c", + "id": "90027ceb", "metadata": {}, "source": [ "### Indexing and Assignment to Structured arrays\n", @@ -4867,7 +4867,7 @@ { "cell_type": "code", "execution_count": 169, - "id": "0bcff25e", + "id": "3acd25ac", "metadata": {}, "outputs": [ { @@ -4890,7 +4890,7 @@ }, { "cell_type": "markdown", - "id": "c6036a27", + "id": "71abc223", "metadata": {}, "source": [ "##### Assignment from Scalars\n", @@ -4901,7 +4901,7 @@ { "cell_type": "code", "execution_count": 170, - "id": "5f8180c1", + "id": "09ad3720", "metadata": {}, "outputs": [], "source": [ @@ -4911,7 +4911,7 @@ { "cell_type": "code", "execution_count": 171, - "id": "1d2f184e", + "id": "b4e9d99e", "metadata": {}, "outputs": [ { @@ -4934,7 +4934,7 @@ { "cell_type": "code", "execution_count": 172, - "id": "38fa378b", + "id": "17e3e19a", "metadata": {}, "outputs": [ { @@ -4956,7 +4956,7 @@ }, { "cell_type": "markdown", - "id": "31872854", + "id": "bfc7d2c2", "metadata": {}, "source": [ "Structured arrays can also be assigned to unstructured arrays, but only if the structured datatype has just a single field:" @@ -4965,7 +4965,7 @@ { "cell_type": "code", "execution_count": 173, - "id": "2ad8f17d", + "id": "e27b36d3", "metadata": {}, "outputs": [], "source": [ @@ -4976,7 +4976,7 @@ { "cell_type": "code", "execution_count": 174, - "id": "59d06d12", + "id": "bbda13b9", "metadata": {}, "outputs": [], "source": [ @@ -4985,7 +4985,7 @@ }, { "cell_type": "markdown", - "id": "254ad34d", + "id": "ce6b3e7e", "metadata": {}, "source": [ "```py\n", @@ -5006,7 +5006,7 @@ { "cell_type": "code", "execution_count": 175, - "id": "a1e63a89", + "id": "4c1918c7", "metadata": {}, "outputs": [], "source": [ @@ -5017,7 +5017,7 @@ { "cell_type": "code", "execution_count": 176, - "id": "ac4e538d", + "id": "00d0a5f3", "metadata": {}, "outputs": [ { @@ -5039,7 +5039,7 @@ }, { "cell_type": "markdown", - "id": "695a3ae3", + "id": "2c3d7598", "metadata": {}, "source": [ "##### Assignment involving subarrays\n", @@ -5056,7 +5056,7 @@ { "cell_type": "code", "execution_count": 177, - "id": "78eb2d91", + "id": "095efc01", "metadata": {}, "outputs": [ { @@ -5078,7 +5078,7 @@ { "cell_type": "code", "execution_count": 178, - "id": "bd39cd14", + "id": "4aba895c", "metadata": {}, "outputs": [ { @@ -5099,7 +5099,7 @@ }, { "cell_type": "markdown", - "id": "65aa6b1c", + "id": "b41a3c7a", "metadata": {}, "source": [ "The resulting array is a view into the original array. It shares the same memory locations and writing to the view will modify the original array." @@ -5108,7 +5108,7 @@ { "cell_type": "code", "execution_count": 179, - "id": "98b4398f", + "id": "748ea7c0", "metadata": {}, "outputs": [ { @@ -5130,7 +5130,7 @@ }, { "cell_type": "markdown", - "id": "eb5964c9", + "id": "dd634134", "metadata": {}, "source": [ "This view has the same dtype and itemsize as the indexed field, so it is typically a non-structured array, except in the case of nested structures." @@ -5139,7 +5139,7 @@ { "cell_type": "code", "execution_count": 180, - "id": "f1fc17d5", + "id": "da053c07", "metadata": {}, "outputs": [ { @@ -5159,7 +5159,7 @@ }, { "cell_type": "markdown", - "id": "2ce4b583", + "id": "527b2bfe", "metadata": {}, "source": [ "If the accessed field is a subarray, the dimensions of the subarray are appended to the shape of the result:" @@ -5168,7 +5168,7 @@ { "cell_type": "code", "execution_count": 181, - "id": "511e4a07", + "id": "4aab2047", "metadata": {}, "outputs": [], "source": [ @@ -5178,7 +5178,7 @@ { "cell_type": "code", "execution_count": 182, - "id": "6a2b3394", + "id": "aa1fe97d", "metadata": {}, "outputs": [ { @@ -5199,7 +5199,7 @@ { "cell_type": "code", "execution_count": 183, - "id": "13a0bed3", + "id": "347a151d", "metadata": {}, "outputs": [ { @@ -5219,7 +5219,7 @@ }, { "cell_type": "markdown", - "id": "2fcb6413", + "id": "16ef12a4", "metadata": {}, "source": [ "##### Accessing multiple fields\n", @@ -5232,7 +5232,7 @@ { "cell_type": "code", "execution_count": 184, - "id": "1fbf406d", + "id": "7d571104", "metadata": {}, "outputs": [ { @@ -5254,7 +5254,7 @@ }, { "cell_type": "markdown", - "id": "446cb17a", + "id": "fd414843", "metadata": {}, "source": [ "Assignment to the view modifies the original array. The view’s fields will be in the order they were indexed. Note that unlike for single-field indexing, the dtype of the view has the same itemsize as the original array, and has fields at the same offsets as in the original array, and unindexed fields are merely missing.\n", @@ -5265,7 +5265,7 @@ { "cell_type": "code", "execution_count": 185, - "id": "9b1533fb", + "id": "63fc9305", "metadata": {}, "outputs": [ { @@ -5287,7 +5287,7 @@ }, { "cell_type": "markdown", - "id": "1ab777da", + "id": "3bebf5bb", "metadata": {}, "source": [ "This obeys the structured array assignment rules described above. For example, this means that one can swap the values of two fields using appropriate multi-field indexes:" @@ -5296,7 +5296,7 @@ { "cell_type": "code", "execution_count": 186, - "id": "92f9299f", + "id": "d012c47a", "metadata": {}, "outputs": [], "source": [ @@ -5305,7 +5305,7 @@ }, { "cell_type": "markdown", - "id": "ff11badf", + "id": "3a06e1be", "metadata": {}, "source": [ "##### Indexing with an integer to get a structured scalar\n", @@ -5316,7 +5316,7 @@ { "cell_type": "code", "execution_count": 187, - "id": "3c4458fb", + "id": "57a2317e", "metadata": {}, "outputs": [ { @@ -5339,7 +5339,7 @@ { "cell_type": "code", "execution_count": 188, - "id": "9d02156e", + "id": "68e825bd", "metadata": {}, "outputs": [ { @@ -5359,7 +5359,7 @@ }, { "cell_type": "markdown", - "id": "091a49db", + "id": "76996871", "metadata": {}, "source": [ "Unlike other numpy scalars, structured scalars are mutable and act like views into the original array, such that modifying the scalar will modify the original array. Structured scalars also support access and assignment by field name:" @@ -5368,7 +5368,7 @@ { "cell_type": "code", "execution_count": 189, - "id": "fce3539a", + "id": "7717de35", "metadata": {}, "outputs": [ { @@ -5391,7 +5391,7 @@ }, { "cell_type": "markdown", - "id": "ec2ee51b", + "id": "0c60396e", "metadata": {}, "source": [ "Similarly to tuples, structured scalars can also be indexed with an integer:" @@ -5400,7 +5400,7 @@ { "cell_type": "code", "execution_count": 190, - "id": "7892151e", + "id": "f15636e2", "metadata": {}, "outputs": [ { @@ -5422,7 +5422,7 @@ { "cell_type": "code", "execution_count": 191, - "id": "1f5b258b", + "id": "f36c37e1", "metadata": {}, "outputs": [], "source": [ @@ -5431,7 +5431,7 @@ }, { "cell_type": "markdown", - "id": "fc2974b3", + "id": "902b6b77", "metadata": {}, "source": [ "Thus, tuples might be thought of as the native Python equivalent to numpy’s structured types, much like native python integers are the equivalent to numpy’s integer types. Structured scalars may be converted to a tuple by calling `numpy.ndarray.item`:" @@ -5440,7 +5440,7 @@ { "cell_type": "code", "execution_count": 192, - "id": "75900109", + "id": "501e7ddc", "metadata": {}, "outputs": [ { @@ -5460,7 +5460,7 @@ }, { "cell_type": "markdown", - "id": "675d25e0", + "id": "701d3646", "metadata": {}, "source": [ "#### Viewing structured arrays containing objects\n", @@ -5475,7 +5475,7 @@ { "cell_type": "code", "execution_count": 193, - "id": "4e0d5322", + "id": "3a2ffa4c", "metadata": {}, "outputs": [ { @@ -5497,7 +5497,7 @@ }, { "cell_type": "markdown", - "id": "bf1f00b0", + "id": "bd9211ed", "metadata": {}, "source": [ "NumPy will promote individual field datatypes to perform the comparison. So the following is also valid (note the `'f4'` dtype for the `'a'` field):" @@ -5506,7 +5506,7 @@ { "cell_type": "code", "execution_count": 194, - "id": "afc92f87", + "id": "06be69c9", "metadata": {}, "outputs": [ { @@ -5527,7 +5527,7 @@ }, { "cell_type": "markdown", - "id": "580de1f6", + "id": "b6da70a8", "metadata": {}, "source": [ "To compare two structured arrays, it must be possible to promote them to a common dtype as returned by `numpy.result_type` and `np.promote_types`. This enforces that the number of fields, the field names, and the field titles must match precisely. When promotion is not possible, for example due to mismatching field names, NumPy will raise an error. Promotion between two structured dtypes results in a canonical dtype that ensures native byte-order for all fields:" @@ -5536,7 +5536,7 @@ { "cell_type": "code", "execution_count": 195, - "id": "ca2a66a5", + "id": "337df658", "metadata": {}, "outputs": [ { @@ -5557,7 +5557,7 @@ { "cell_type": "code", "execution_count": 196, - "id": "ef7f384f", + "id": "51141e9f", "metadata": {}, "outputs": [ { @@ -5577,7 +5577,7 @@ }, { "cell_type": "markdown", - "id": "93698d5e", + "id": "04f4a521", "metadata": {}, "source": [ "The resulting dtype from promotion is also guaranteed to be packed, meaning that all fields are ordered contiguously and any unnecessary padding is removed:" @@ -5586,7 +5586,7 @@ { "cell_type": "code", "execution_count": 197, - "id": "fb8d6547", + "id": "a4837e21", "metadata": {}, "outputs": [ { @@ -5608,7 +5608,7 @@ { "cell_type": "code", "execution_count": 198, - "id": "76a68ed4", + "id": "b4e5acc1", "metadata": {}, "outputs": [ { @@ -5628,7 +5628,7 @@ }, { "cell_type": "markdown", - "id": "3c61f81d", + "id": "2635d41b", "metadata": {}, "source": [ "Note that the result prints without `offsets` or `itemsize` indicating no additional padding. If a structured dtype is created with `align=True` ensuring that `dtype.isalignedstruct` is true, this property is preserved:" @@ -5637,7 +5637,7 @@ { "cell_type": "code", "execution_count": 199, - "id": "c471ee7c", + "id": "ec117194", "metadata": {}, "outputs": [ { @@ -5659,7 +5659,7 @@ { "cell_type": "code", "execution_count": 200, - "id": "cf6d9f72", + "id": "c20a5317", "metadata": {}, "outputs": [ { @@ -5680,7 +5680,7 @@ { "cell_type": "code", "execution_count": 201, - "id": "77b637fe", + "id": "0648deaa", "metadata": {}, "outputs": [ { @@ -5700,7 +5700,7 @@ }, { "cell_type": "markdown", - "id": "f7bae0a4", + "id": "462d8b57", "metadata": {}, "source": [ "When promoting multiple dtypes, the result is aligned if any of the inputs is:" @@ -5709,7 +5709,7 @@ { "cell_type": "code", "execution_count": 202, - "id": "56b42f94", + "id": "53ca495a", "metadata": {}, "outputs": [ { @@ -5729,7 +5729,7 @@ }, { "cell_type": "markdown", - "id": "7253081d", + "id": "fab01908", "metadata": {}, "source": [ "The `<` and `>` operators always return `False` when comparing void structured arrays, and arithmetic and bitwise operations are not supported.\n", @@ -5816,7 +5816,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.18" + "version": "3.9.19" }, "source_map": [ 14, diff --git a/_sources/deep-learning/cnn/cnn-deepdream.ipynb b/_sources/deep-learning/cnn/cnn-deepdream.ipynb index 49ef8353bf..bc578fe39e 100644 --- a/_sources/deep-learning/cnn/cnn-deepdream.ipynb +++ b/_sources/deep-learning/cnn/cnn-deepdream.ipynb @@ -352,7 +352,7 @@ "source": [ "## Your turn! 🚀\n", "\n", - "TBD." + "You can practice your cnn skills by following the assignment [sign language digits classification with cnn](../../assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb)" ] }, { diff --git a/_sources/deep-learning/cnn/cnn-vgg.ipynb b/_sources/deep-learning/cnn/cnn-vgg.ipynb index 4e67c7e724..188b31cdbd 100644 --- a/_sources/deep-learning/cnn/cnn-vgg.ipynb +++ b/_sources/deep-learning/cnn/cnn-vgg.ipynb @@ -440,8 +440,7 @@ "metadata": {}, "source": [ "## Your turn! 🚀\n", - "\n", - "TBD." + "You can practice your cnn skills by following the assignment [object recognition in images using cnn](../../assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb)." ] }, { diff --git a/_sources/deep-learning/cnn/cnn.ipynb b/_sources/deep-learning/cnn/cnn.ipynb index 29bb544d7b..5ac8402b46 100644 --- a/_sources/deep-learning/cnn/cnn.ipynb +++ b/_sources/deep-learning/cnn/cnn.ipynb @@ -162,6 +162,42 @@ "\"\"\"))" ] }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "

\n", + "\n", + "A demo of CNN. [source]\n", + "

\n" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from IPython.display import HTML\n", + "display(HTML(\"\"\"\n", + "

\n", + "\n", + "A demo of CNN. [source]\n", + "

\n", + "\"\"\"))" + ] + }, { "cell_type": "code", "execution_count": 4, @@ -861,8 +897,7 @@ "metadata": {}, "source": [ "## Your turn! 🚀\n", - "\n", - "TBD." + "You can practice your cnn skills by following the assignment [how to choose cnn architecture mnist](../../assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb)." ] }, { diff --git a/_sources/deep-learning/image-classification.ipynb b/_sources/deep-learning/image-classification.ipynb index 56f4d51c5e..2486078d3d 100644 --- a/_sources/deep-learning/image-classification.ipynb +++ b/_sources/deep-learning/image-classification.ipynb @@ -219,8 +219,8 @@ "source": [ "- Using small 3×3 filters to replace large convolutional kernels.\n", "- After replacing the convolution kernel, the convolution layers have the same perceptual field. \n", - "- Each layer is trained by Re LU activation function and batch gradient descent after convolution operation.\n", - "- It is verified that increasing the network depth can improve the model performance Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming." + "- Each layer is trained by ReLU activation function and batch gradient descent after convolution operation.\n", + "- It is verified that increasing the network depth can improve the model performance. Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming." ] }, { @@ -1156,7 +1156,7 @@ "id": "b4552758", "metadata": {}, "source": [ - "TBD." + "Assignment - [Image classification](../../assignments/deep-learning/cnn/image-classification.ipynb)" ] }, { diff --git a/_sources/deep-learning/image-segmentation.ipynb b/_sources/deep-learning/image-segmentation.ipynb index 7c2d3556dc..abbe6c89a3 100644 --- a/_sources/deep-learning/image-segmentation.ipynb +++ b/_sources/deep-learning/image-segmentation.ipynb @@ -2045,7 +2045,7 @@ "id": "a0994ed1", "metadata": {}, "source": [ - "TBD." + "Assignment - [Comparing edge-based and region-based segmentation](../../assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb)" ] }, { diff --git a/_sources/deep-learning/lstm.ipynb b/_sources/deep-learning/lstm.ipynb index c920b28b04..6ea5b6e8f9 100644 --- a/_sources/deep-learning/lstm.ipynb +++ b/_sources/deep-learning/lstm.ipynb @@ -4770,7 +4770,7 @@ "source": [ "## Your turn! 🚀\n", "\n", - "Practice the Long-Short Term Memory Networks by following this TBD.\n", + "Assignment - [Bitcoin lstm model with tweet volume and sentiment](../../assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb)\n", "\n", "## Acknowledgments\n", "\n", diff --git a/_sources/deep-learning/nlp.ipynb b/_sources/deep-learning/nlp.ipynb index 839b75e674..efcff10fd5 100644 --- a/_sources/deep-learning/nlp.ipynb +++ b/_sources/deep-learning/nlp.ipynb @@ -786,8 +786,7 @@ }, "source": [ "## Your turn! 🚀\n", - "\n", - "TBD." + "You can practice your nlp skills by following the assignment [getting start nlp with classification task](../assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb)." ] }, { diff --git a/_sources/deep-learning/rnn.ipynb b/_sources/deep-learning/rnn.ipynb index d436b6048b..7c1bf555d2 100644 --- a/_sources/deep-learning/rnn.ipynb +++ b/_sources/deep-learning/rnn.ipynb @@ -2,14 +2,23 @@ "cells": [ { "cell_type": "code", - "execution_count": null, + "execution_count": 1, "id": "4f92eda8", "metadata": { "tags": [ "hide-input" ] }, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING: Ignoring invalid distribution -fds-nightly (c:\\users\\16111\\.conda\\envs\\open-machine-learning-jupyter-book\\lib\\site-packages)\n", + "WARNING: Ignoring invalid distribution -fds-nightly (c:\\users\\16111\\.conda\\envs\\open-machine-learning-jupyter-book\\lib\\site-packages)\n" + ] + } + ], "source": [ "# Install the necessary dependencies\n", "\n", @@ -159,9 +168,21 @@ "## Code" ] }, + { + "cell_type": "markdown", + "id": "6b52f47d", + "metadata": {}, + "source": [ + "A text classifier implemented in TensorFlow to classify SMS spam messages.\n", + "Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow.\n", + "The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function.\n", + "The output of the # code is the accuracy of the classifier along with some statistics\n", + "We implement an RNN in TensorFlow to predict spam/ham from texts" + ] + }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 2, "id": "b8241ee1", "metadata": { "attributes": { @@ -171,294 +192,303 @@ "id": "" } }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']\n", - "(5574, 25)\n", - "[[ 191 3 17 ... 2725 0 0]\n", - " [ 365 1206 41 ... 0 0 0]\n", - " [ 81 40 4 ... 0 0 0]\n", - " ...\n", - " [7814 7815 533 ... 0 0 0]\n", - " [ 2 28 1439 ... 7 161 3]\n", - " [ 51 20 3 ... 0 0 0]]\n", - "Vocabulary Size: 8629\n", - "80-20 Train Test split: 4459 -- 1115\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\fuqiongying\\AppData\\Local\\Temp\\ipykernel_1816\\2116000173.py:115: UserWarning: `tf.nn.rnn_cell.BasicRNNCell` is deprecated and will be removed in a future version. This class is equivalent as `tf.keras.layers.SimpleRNNCell`, and will be replaced by that in Tensorflow 2.0.\n", - " cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)\n" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tensor(\"Mean:0\", shape=(), dtype=float32)\n", - "Tensor(\"Mean_1:0\", shape=(), dtype=float32)\n", - "Epoch: 1, Test Loss: 0.69, Test Acc: 0.81\n", - "Epoch: 2, Test Loss: 0.65, Test Acc: 0.82\n", - "Epoch: 3, Test Loss: 0.6, Test Acc: 0.82\n", - "Epoch: 4, Test Loss: 0.55, Test Acc: 0.82\n", - "Epoch: 5, Test Loss: 0.51, Test Acc: 0.83\n", - "Epoch: 6, Test Loss: 0.47, Test Acc: 0.83\n", - "Epoch: 7, Test Loss: 0.45, Test Acc: 0.83\n", - "Epoch: 8, Test Loss: 0.43, Test Acc: 0.84\n", - "Epoch: 9, Test Loss: 0.42, Test Acc: 0.84\n", - "Epoch: 10, Test Loss: 0.41, Test Acc: 0.84\n", - "Epoch: 11, Test Loss: 0.41, Test Acc: 0.84\n", - "Epoch: 12, Test Loss: 0.4, Test Acc: 0.85\n", - "Epoch: 13, Test Loss: 0.4, Test Acc: 0.85\n", - "Epoch: 14, Test Loss: 0.4, Test Acc: 0.85\n", - "Epoch: 15, Test Loss: 0.4, Test Acc: 0.86\n", - "Epoch: 16, Test Loss: 0.39, Test Acc: 0.86\n", - "Epoch: 17, Test Loss: 0.39, Test Acc: 0.87\n", - "Epoch: 18, Test Loss: 0.38, Test Acc: 0.87\n", - "Epoch: 19, Test Loss: 0.38, Test Acc: 0.87\n", - "Epoch: 20, Test Loss: 0.37, Test Acc: 0.87\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB2IklEQVR4nO3dd3gU1dvG8e+mNyBASAECCaF3aRFBEUEDKIKKgCJNFEWKvogUC8VCUBFRpChK94cIdqUIURAhFCnSO6Gm0EIKpJDM+8ea1SUJkMam3J/rmovszJnZZ1jj3pyZOcdkGIaBiIiISAliZ+sCRERERG43BSAREREpcRSAREREpMRRABIREZESRwFIREREShwFIBERESlxFIBERESkxFEAEhERkRJHAUhERERKHAUgEbnt3n//fapVq4a9vT2NGze2dTkiUgIpAInIDe3evZtu3bpRtWpVXFxcqFSpEvfffz/Tpk3L1fF+/fVXRo4cSatWrZg7dy4TJ07k7NmzjB8/np07d+Zv8bdJREQEJpOJyZMn27oUEblFDrYuQEQKr40bN9K2bVuqVKnCs88+i6+vL6dOnWLTpk189NFHDB06NMfH/O2337Czs+OLL77AyckJgL/++osJEyYQEBCgHiERuS0UgEQkW++88w5lypRh69ateHp6Wm2LiYnJ1TFjYmJwdXW1hB8REVvQJTARydbRo0epV69epvAD4O3tbfX62rVrvPXWWwQFBeHs7ExAQACvvvoqycnJljYmk4m5c+eSmJiIyWTCZDIxb948mjdvDkD//v2t1gPce++91K9fn127dtGmTRvc3NyoXr06y5YtA2DdunUEBwfj6upKrVq1WLNmjVVdJ06c4IUXXqBWrVq4urpSvnx5Hn/8cSIiIixtDMOgbdu2VKhQwSrYpaSk0KBBA4KCgkhMTMzLXyVgDn8DBgzAx8cHFxcXGjVqxPz58zO1++qrr2jatCmlSpWidOnSNGjQgI8++siyPTU1lQkTJlCjRg1cXFwoX748rVu3ZvXq1XmuUaSkUAASkWxVrVqVbdu2sWfPnpu2feaZZxg7dixNmjThww8/pE2bNoSGhtKzZ09Lm4ULF3L33Xfj7OzMwoULWbhwIXXq1OHNN98EYODAgZb199xzj2W/S5cu8dBDDxEcHMx7772Hs7MzPXv2ZMmSJfTs2ZNOnToxadIkEhMT6datG/Hx8ZZ9t27dysaNG+nZsycff/wxzz//PGFhYdx7771cuXIFMAezOXPmkJSUxPPPP2/Zd9y4cezdu5e5c+fi7u6ep7/Lq1evcu+997Jw4UJ69erF+++/T5kyZejXr59VuFm9ejVPPPEEZcuW5d1332XSpEnce++9bNiwwdJm/PjxTJgwgbZt2/LJJ5/w2muvUaVKFbZv356nGkVKFENEJBu//vqrYW9vb9jb2xstW7Y0Ro4caaxatcpISUmxardz504DMJ555hmr9SNGjDAA47fffrOs69u3r+Hu7m7VbuvWrQZgzJ07N1MNbdq0MQDjf//7n2XdgQMHDMCws7MzNm3aZFm/atWqTMe5cuVKpmOGh4cbgLFgwQKr9Z9++qkBGIsWLTI2bdpk2NvbGy+99FL2f0H/OH78uAEY77//frZtpk6dajl2hpSUFKNly5aGh4eHERcXZxiGYbz44otG6dKljWvXrmV7rEaNGhkPPvjgTesSkeypB0hEsnX//fcTHh7Oww8/zN9//817771HSEgIlSpV4scff7S0W758OQDDhw+32v/ll18G4JdffslTHR4eHlY9SbVq1cLT05M6deoQHBxsWZ/x87FjxyzrXF1dLT+npqZy4cIFqlevjqenZ6Yek4EDBxISEsLQoUPp3bs3QUFBTJw4MU+1Z1i+fDm+vr488cQTlnWOjo4MGzaMhIQE1q1bB4CnpyeJiYk3vJzl6enJ3r17OXz4cL7UJlISKQCJyA01b96cb7/9lkuXLrFlyxbGjBlDfHw83bp1Y9++fYD5Phs7OzuqV69uta+vry+enp6cOHEiTzVUrlwZk8lkta5MmTL4+/tnWgfmS2YZrl69ytixY/H398fZ2RkvLy8qVKhAbGwsly9fzvReX3zxBVeuXOHw4cPMmzfPKkDlxYkTJ6hRowZ2dtb/261Tp45lO8ALL7xAzZo16dixI5UrV+bpp59m5cqVVvu8+eabxMbGUrNmTRo0aMArr7zCrl278qVOkZJCAUhEbomTkxPNmzdn4sSJzJw5k9TUVJYuXWrV5vqQkl/s7e1ztN4wDMvPQ4cO5Z133qF79+58/fXX/Prrr6xevZry5cuTnp6ead+1a9dabtzevXt3PlSfM97e3uzcuZMff/yRhx9+mN9//52OHTvSt29fS5t77rmHo0ePMmfOHOrXr8/nn39OkyZN+Pzzz297vSJFlQKQiORYs2bNAIiMjATMN0unp6dnuiQTHR1NbGwsVatWveHxCio4ASxbtoy+ffvywQcf0K1bN+6//35at25NbGxspraRkZEMHTqUBx54gIceeogRI0bkufcqQ9WqVTl8+HCm0HXgwAHL9gxOTk507tyZGTNmcPToUZ577jkWLFjAkSNHLG3KlStH//79Wbx4MadOnaJhw4aMHz8+X2oVKQkUgEQkW7///rtVb0qGjHt+atWqBUCnTp0AmDp1qlW7KVOmAPDggw/e8H0ynrDKKpTklb29faZzmDZtGmlpaZnaPvvss6Snp/PFF1/w2Wef4eDgwIABA7L8O8ipTp06ERUVxZIlSyzrrl27xrRp0/Dw8KBNmzYAXLhwwWo/Ozs7GjZsCGDpmbq+jYeHB9WrV7cackBEbkwDIYpItoYOHcqVK1d45JFHqF27NikpKWzcuJElS5YQEBBA//79AWjUqBF9+/bls88+IzY2ljZt2rBlyxbmz59P165dadu27Q3fJygoCE9PT2bNmkWpUqVwd3cnODiYwMDAPJ/DQw89xMKFCylTpgx169YlPDycNWvWUL58eat2c+fO5ZdffmHevHlUrlwZMAelp556ipkzZ/LCCy/c9L3CwsJISkrKtL5r164MHDiQTz/9lH79+rFt2zYCAgJYtmwZGzZsYOrUqZQqVQowDydw8eJF7rvvPipXrsyJEyeYNm0ajRs3ttwvVLduXe69916aNm1KuXLl+Ouvv1i2bBlDhgzJ61+XSMlh24fQRKQwW7FihfH0008btWvXNjw8PAwnJyejevXqxtChQ43o6GirtqmpqcaECROMwMBAw9HR0fD39zfGjBljJCUlWbXL6jF4wzCMH374wahbt67h4OBg9Sh7mzZtjHr16mVqX7Vq1SwfBQeMwYMHW15funTJ6N+/v+Hl5WV4eHgYISEhxoEDB4yqVasaffv2NQzDME6dOmWUKVPG6Ny5c6bjPfLII4a7u7tx7NixbP+eMh6Dz25ZuHChYRiGER0dbanFycnJaNCgQaZH/5ctW2Y88MADhre3t+Hk5GRUqVLFeO6554zIyEhLm7ffftto0aKF4enpabi6uhq1a9c23nnnnUzDE4hI9kyGkQ99uyIiIiJFiO4BEhERkRJHAUhERERKHAUgERERKXEUgERERKTEUQASERGREkcBSEREREocDYSYhfT0dM6ePUupUqUKdIh+ERERyT+GYRAfH0/FihUzTTycVWOb++STT4yqVasazs7ORosWLYzNmzdn27ZNmzZZDjTWqVMnS5v09HTjjTfeMHx9fQ0XFxejXbt2xqFDh265nlOnTt1wUDMtWrRo0aJFS+FdTp06ddPvepv3AC1ZsoThw4cza9YsgoODmTp1KiEhIRw8eBBvb+9M7b/99ltSUlIsry9cuECjRo14/PHHLevee+89Pv74Y+bPn09gYCBvvPEGISEh7Nu3DxcXl5vWlDEk/alTpyhdunQ+nKWIiIgUtLi4OPz9/S3f4zdi85Ggg4ODad68OZ988glgvvzk7+/P0KFDGT169E33nzp1KmPHjiUyMhJ3d3cMw6BixYq8/PLLjBgxAoDLly/j4+PDvHnz6Nmz502PGRcXR5kyZbh8+bICkIiISBGRk+9vm94EnZKSwrZt22jfvr1lnZ2dHe3btyc8PPyWjvHFF1/Qs2dPy2zSx48fJyoqyuqYZcqUITg4ONtjJicnExcXZ7WIiIhI8WXTAHT+/HnS0tLw8fGxWu/j40NUVNRN99+yZQt79uzhmWeesazL2C8nxwwNDaVMmTKWxd/fP6enIiIiIkVIkX4M/osvvqBBgwa0aNEiT8cZM2YMly9ftiynTp3KpwpFRESkMLLpTdBeXl7Y29sTHR1ttT46OhpfX98b7puYmMhXX33Fm2++abU+Y7/o6Gj8/Pysjtm4ceMsj+Xs7Iyzs3OO609LSyM1NTXH+8nt5+joiL29va3LEBGRQsKmAcjJyYmmTZsSFhZG165dAfNN0GFhYQwZMuSG+y5dupTk5GSeeuopq/WBgYH4+voSFhZmCTxxcXFs3ryZQYMG5UvdhmEQFRVFbGxsvhxPbg9PT098fX01tpOIiNh+IMThw4fTt29fmjVrRosWLZg6dSqJiYn0798fgD59+lCpUiVCQ0Ot9vviiy/o2rUr5cuXt1pvMpl46aWXePvtt6lRo4blMfiKFStaQlZeZYQfb29v3Nzc9IVayBmGwZUrV4iJiQGw6hkUEZGSyeYBqEePHpw7d46xY8cSFRVF48aNWblypeUm5pMnT2YazfHgwYP8+eef/Prrr1kec+TIkSQmJjJw4EBiY2Np3bo1K1euvKUxgG4mLS3NEn6uD19SeLm6ugIQExODt7e3LoeJiJRwNh8HqDC60TgCSUlJHD9+nICAAMuXqhQNV69eJSIigsDAwHwJwyIiUrgUmXGAijJd9ip69JmJiEgGBSAREREpcRSAJNcCAgKYOnWqrcsQERHJMQWgEsBkMt1wGT9+fK6Ou3XrVgYOHJin2o4fP86TTz5JxYoVcXFxoXLlynTp0oUDBw7c8jH69euXb0/4iYhIyWDzp8BKnLg4cHeH2/gUUmRkpOXnJUuWMHbsWA4ePGhZ5+HhYfnZMAzS0tJwcLj5fxoVKlTIU12pqancf//91KpVi2+//RY/Pz9Onz7NihUrNMaSiIgUKPUA3U6nT8OhQxj/CSS3g6+vr2UpU6YMJpPJ8vrAgQOUKlWKFStW0LRpU5ydnfnzzz85evQoXbp0wcfHBw8PD5o3b86aNWusjnv9JTCTycTnn3/OI488gpubGzVq1ODHH3/Mtq69e/dy9OhRZsyYwZ133knVqlVp1aoVb7/9Nnfeeael3alTp+jevTuenp6UK1eOLl26EBERAcD48eOZP38+P/zwg6VHa+3atfn51yciIsWQAlA+SkxMzHZJSkrC+GfGeqKiSIiJybbt1atXb3rc/DZ69GgmTZrE/v37adiwIQkJCXTq1ImwsDB27NhBhw4d6Ny5MydPnrzhcSZMmED37t3ZtWsXnTp1olevXly8eDHLthUqVMDOzo5ly5aRlpaWZZvU1FRCQkIoVaoU69evZ8OGDXh4eNChQwdSUlIYMWIE3bt3p0OHDkRGRhIZGcldd92V578PEREp3hSA8pGHh0e2y2OPPcY1Dw9iTSZMgE/Vqtm27dixo9VxAwICMrXJb2+++Sb3338/QUFBlCtXjkaNGvHcc89Rv359atSowVtvvUVQUNANe3TAfD/OE088QfXq1Zk4cSIJCQls2bIly7aVKlXi448/ZuzYsZQtW5b77ruPt956i2PHjlnaLFmyhPT0dD7//HMaNGhAnTp1mDt3LidPnmTt2rV4eHjg6uqKs7OzpVfLyckpX/9uRESk+FEAuo0cHR25VrEiWfd12FazZs2sXickJDBixAjq1KmDp6cnHh4e7N+//6Y9QA0bNrT87O7uTunSpS1TUGRl8ODBREVF8eWXX9KyZUuWLl1KvXr1WL16NQB///03R44coVSpUpbwV65cOZKSkjh69GgezlhEREoy3QSdjxISErLdljH1QnlfX6LOnSPm119JN5mwq1cPruuxuH7qj4z7XQqSe8bluX+MGDGC1atXM3nyZKpXr46rqyvdunUjJSXlhsdxdHS0em0ymUhPT7/hPqVKlaJz58507tyZt99+m5CQEN5++23uv/9+EhISaNq0KV9++WWm/fJ6E7aIiJRcCkD56PoQkRWTyUTpatUwDhygFJAaHY1j7dp5Pm5+27BhA/369eORRx4BzOHudgQxk8lE7dq12bhxIwBNmjRhyZIleHt7ZzusuZOTU7b3EImIiGRFl8BswN3Dg/hy5TAAx4QE0i9dsnVJmdSoUYNvv/2WnTt38vfff/Pkk0/etCcnp3bu3EmXLl1YtmwZ+/bt48iRI3zxxRfMmTOHLl26ANCrVy+8vLzo0qUL69ev5/jx46xdu5Zhw4Zx+vRpwHyP1K5duzh48CDnz58nNTU1X+sUEZHiRwHIRipUqcK5jEtdJ05AIevBmDJlCmXLluWuu+6ic+fOhISE0KRJk3x9j8qVKxMQEMCECRMIDg6mSZMmfPTRR0yYMIHXXnsNADc3N/744w+qVKnCo48+Sp06dRgwYABJSUmWHqFnn32WWrVq0axZMypUqMCGDRvytU4RESl+NBt8Fm5lNvj8mFE8LjYWjxMnsEtNBR8f8PfP0/HkxvLzsxMRkcJHs8EXEaU9PbELCDC/iI6GK1dsWo+IiEhJoQBka2XKQNmyAFw7dgzUISciIlLgFIAKgThPT64BDklJpEdH27ocERGRYk8BqBDwKFuW6IzJR8+cgZuMtSMiIiJ5owBUCNjZ2VEqMJAEwM4wuHb8uK1LEhERKdYUgAqJ0mXKEFumDOmAQ3w8RiEcG0hERKS4UAAqRHwCAogxmQBIj4godGMDiYiIFBcKQIWIo6MjdpUrkwTYp6WRduqUrUsSEREplhSACpkK3t6cd3MDwO78eUhMtHFFIiIixY8CUCFjMpmoVKcOlCuHCczTZGhsIBERkXylAFQImUwm87QY9vZw5QpGHscGMplMN1zGjx+fp2N///33N223bt067rvvPsqVK4ebmxs1atSgb9++pOTgkf+AgACmTp2a61pFREQyKAAVVo6OXPXyAsA4cwaSk3N9qMjISMsydepUSpcubbVuxIgR+VV1lvbt20eHDh1o1qwZf/zxB7t372batGk4OTmRphu9RUTEBhSACrGrbm7EYx4bKC0iIteXwnx9fS1LmTJlMJlMVuu++uor6tSpg4uLC7Vr12bGjBmWfVNSUhgyZAh+fn64uLhQtWpVQkNDAXOPDMAjjzyCyWSyvL7er7/+iq+vL++99x7169cnKCiIDh06MHv2bFxdXS3t/vzzT+6++25cXV3x9/dn2LBhJP5zD9S9997LiRMn+L//+z9Lz5WIiEhuOdi6gGLBMApkItOyzs6cNJlwv3IF+6tXMdzcMJUr928DNzfIYxD48ssvGTt2LJ988gl33HEHO3bs4Nlnn8Xd3Z2+ffvy8ccf8+OPP/L1119TpUoVTp06xal/nk7bunUr3t7ezJ07lw4dOmBvb5/le/j6+hIZGckff/zBPffck2Wbo0eP0qFDB95++23mzJnDuXPnGDJkCEOGDGHu3Ll8++23NGrUiIEDB/Lss8/m6ZxFREQUgPLDlSvg4ZHvhzUBVa97bSUhAdzd8/Qe48aN44MPPuDRRx8FIDAwkH379vHpp5/St29fTp48SY0aNWjdujUmk4mqVf+tqEKFCgB4enri6+ub7Xs8/vjjrFq1ijZt2uDr68udd95Ju3bt6NOnD6VLlwYgNDSUXr168dJLLwFQo0YNPv74Y9q0acPMmTMpV64c9vb2lCpV6obvJSIicit0CawES0xM5OjRowwYMAAPDw/L8vbbb3P06FEA+vXrx86dO6lVqxbDhg3j119/zfH72NvbM3fuXE6fPs17771HpUqVmDhxIvXq1SMyMhKAv//+m3nz5lnVERISQnp6Osc1NYiIiOQz9QDlBzc3c29MAUlPT+fk3r0EpKZiAKaaNc09Tv+MF5RbCf/UPHv2bIKDg622ZVzOatKkCcePH2fFihWsWbOG7t270759e5YtW5bj96tUqRK9e/emd+/evPXWW9SsWZNZs2YxYcIEEhISeO655xg2bFim/apUqZKLsxMREcmeAlB+MJnyfCnqRuyAcnXrcv7QIbwA4/x5TBUq5Pn+Hx8fHypWrMixY8fo1atXtu1Kly5Njx496NGjB926daNDhw5cvHiRcuXK4ejomKsnucqWLYufn5/lJucmTZqwb98+qlevnu0+empMRETyiwJQEVG6dGmu1KwJx45hunoVYmIgH+6FmTBhAsOGDaNMmTJ06NCB5ORk/vrrLy5dusTw4cOZMmUKfn5+3HHHHdjZ2bF06VJ8fX3x9PQEzE+ChYWF0apVK5ydnSlbtmym9/j000/ZuXMnjzzyCEFBQSQlJbFgwQL27t3LtGnTABg1ahR33nknQ4YM4ZlnnsHd3Z19+/axevVqPvnkE8t7/fHHH/Ts2RNnZ2e8/hkmQEREJKd0D1AR4la6NFSubH5x9myexgbK8Mwzz/D5558zd+5cGjRoQJs2bZg3bx6BgYEAlCpVivfee49mzZrRvHlzIiIiWL58OXZ25v90PvjgA1avXo2/vz933HFHlu/RokULEhISeP7556lXrx5t2rRh06ZNfP/997Rp0waAhg0bsm7dOg4dOsTdd9/NHXfcwdixY6lYsaLlOG+++SYREREEBQVZbsAWERHJDZNhaJ6F68XFxVGmTBkuX75seUopQ1JSEsePHycwMBAXF5fbX5xhkH7wIHYJCaSXKoVdzZp5vhRWUtj8sxMRkQJ1o+/v66kHqKgxmThhGKQDdvHxcOmSrSsSEREpchSAiiDvKlWI/Ofn9BMn4No1m9YjIiJS1CgAFUHu7u6kV6jAVcAuLQ3j9GlblyQiIlKkKAAVUX6VKnHGwfwQn+n8+QIdh0hERKS4sXkAmj59OgEBAbi4uBAcHMyWLVtu2D42NpbBgwfj5+eHs7MzNWvWZPny5Zbt48ePt0yWmbHUrl073+u29b3jDg4OlKtShXP/vE4/fhzS021aU2Fn689MREQKD5uOA7RkyRKGDx/OrFmzCA4OZurUqYSEhHDw4EG8vb0ztU9JSeH+++/H29ubZcuWUalSJU6cOGEZkyZDvXr1WLNmjeW1g0P+naajoyMAV65csZrJ3BbKli3LsVKl8IyPxzE5GaKjwc/PpjUVZlf+mbA24zMUEZGSy6YBaMqUKTz77LP0798fgFmzZvHLL78wZ84cRo8enan9nDlzuHjxIhs3brR8iQUEBGRq5+DgUGATZtrb2+Pp6UlMTAwAbm5umGz4GLqXry/n09Mpm5hoHhvIzQ2cnW1WT2FkGAZXrlwhJiYGT0/PbGetFxGRksNmASglJYVt27YxZswYyzo7Ozvat29PeHh4lvv8+OOPtGzZksGDB/PDDz9QoUIFnnzySUaNGmX1pXb48GEqVqyIi4sLLVu2JDQ09IbzSSUnJ5P8n0EF4+Liblh7RrjKCEGFQWxCAiQlQXw8+PjYupxC6Waz1ouISMlhswB0/vx50tLS8Lnuy9rHx4cDBw5kuc+xY8f47bff6NWrF8uXL+fIkSO88MILpKamMm7cOACCg4OZN28etWrVIjIykgkTJnD33XezZ88eSpUqleVxQ0NDmTBhwi3XbjKZ8PPzw9vbm9TU1Fver0DZ2WE8/DCm5GT4+GN44AFbV1SoODo6qudHREQsbDYS9NmzZ6lUqRIbN26kZcuWlvUjR45k3bp1bN68OdM+NWvWtIzmm/FlNmXKFN5//30iIyMztQfzTdNVq1ZlypQpDBgwIMs2WfUA+fv739JIkoVFUlISS2vVovfJk1ypXRu3ffs0QrSIiJQoRWIkaC8vL+zt7YmOjrZaHx0dne1lCj8/P2rWrGn1L/k6deoQFRVFSkpKlvt4enpSs2ZNjhw5km0tzs7OlC5d2mopalxcXFh3xx0kAm4HDsCKFbYuSUREpNCyWQBycnKiadOmhIWFWdalp6cTFhZm1SP0X61ateLIkSOk/+dx70OHDuHn54eTk1OW+yQkJHD06FH8SsDTUS+9/Taz/vn56uuvgx77FhERyZJNxwEaPnw4s2fPZv78+ezfv59BgwaRmJhoeSqsT58+VjdJDxo0iIsXL/Liiy9y6NAhfvnlFyZOnMjgwYMtbUaMGMG6deuIiIhg48aNPPLII9jb2/PEE0/c9vO73erXr8/u++8nGXDdsQPWrbN1SSIiIoWSTR+D79GjB+fOnWPs2LFERUXRuHFjVq5cabkx+uTJk9jZ/ZvR/P39WbVqFf/3f/9Hw4YNqVSpEi+++CKjRo2ytDl9+jRPPPEEFy5coEKFCrRu3ZpNmzZRoUKF235+tjBw/HjmrF7NICBp7Fhc/vjD1iWJiIgUOja7Cbowy8lNVIVRjxYt+HLrVnO63bwZWrSwdUkiIiIFrkjcBC0Fp9+ECXz5z8/GO+/YtBYREZHCSAGoGOrQoQPVPvsMw2TC9OOPsHu3rUsSEREpVBSAiiGTycTdzz6L6bHHzCtCQ21bkIiISCGjAFScvfoqAMaSJXCDcZBERERKGgWgYmynycRqJydM6emkT5xo63JEREQKDQWgYqx27dp85O4OgLFgAZw6ZeOKRERECgcFoGLMxcWFu0eN4nfAPi0N4733bF2SiIhIoaAAVMwNGjSIqf/0AqV/9hlcN/eaiIhISaQAVMyVLl2aekOHshmwT0nBmDLF1iWJiIjYnAJQCfDiSy/xvoN51pO0Tz6BS5dsXJGIiIhtKQCVAD4+Pvg88wy7AYcrV2DaNFuXJCIiYlMKQCXEmNdeo8ykSeYXH30ECQm2LUhERMSGFIBKiMqVK1NlxAioXh0uXoRPP7V1SSIiIjajAFSS2NvD6NEApL33HiQl2bggERER21AAKmGmx8VxErCPiYG5c21djoiIiE0oAJUwjVu04P1/fr42cSKkptq0HhEREVtQACphWrVqxb6WLYkGHE6fhv/9z9YliYiI3HYKQCXQy6+/TsZwiGnvvANpaTatR0RE5HZTACqBOnbsyB9163IJsD98GL791tYliYiI3FYKQCWQyWRi6Guv8fE/r9PfegsMw6Y1iYiI3E4KQCVU9+7d+aFKFRIAu927YflyW5ckIiJy2ygAlVAODg589s032A8ZYl7xzjvqBRIRkRJDAagEa9asGa6vvgrOzhAeDmvX2rokERGR20IBqKTz88N4+mkAjHfesXExIiIit4cCUAlnGAb99+8nFTCFhcGWLbYuSUREpMApAJVwJpMJ3+BgvvzntXqBRESkJFAAEl566SU+cHQkHTD9+CPs3m3rkkRERAqUApDg6+tL6wEDWJaxYuJEW5YjIiJS4BSABIARI0YwyWQCwPj6azh82MYViYiIFBwFIAEgKCiI2j178jNgSk+HSZNsXZKIiEiBUQASi1GjRpFxC7SxYAGcPGnTekRERAqKApBYNGrUiElr12Lcey+ma9fg/fdtXZKIiEiBUAASK23atMH0+uvmF59/DtHRti1IRESkACgASWb33Ud6ixaQlARTpti6GhERkXynACSZRJw4wdNHjgBgzJgBly7ZuCIREZH8pQAkmVSpUoVtfn78DZgSEmDaNFuXJCIikq8UgCQTOzs7Ro0eTcZwiMZHH0FCgk1rEhERyU8KQJKlnj178lfVqhwETBcvwqxZti5JREQk3ygASZYcHBwY/sorZAyHaHzwgfmmaBERkWLA5gFo+vTpBAQE4OLiQnBwMFu2bLlh+9jYWAYPHoyfnx/Ozs7UrFmT5cuX5+mYkrWnn36aVV5enABMUVEwZ46tSxIREckXNg1AS5YsYfjw4YwbN47t27fTqFEjQkJCiImJybJ9SkoK999/PxERESxbtoyDBw8ye/ZsKlWqlOtjSvZcXV0Z8n//h2U4xPfeg9RUW5YkIiKSL0yGYRi2evPg4GCaN2/OJ598AkB6ejr+/v4MHTqU0aNHZ2o/a9Ys3n//fQ4cOICjo2O+HDMrcXFxlClThsuXL1O6dOlcnl3xEBsbS8T+/TR+5BHzoIhz50K/frYuS0REJJOcfH/brAcoJSWFbdu20b59+3+LsbOjffv2hIeHZ7nPjz/+SMuWLRk8eDA+Pj7Ur1+fiRMnkpaWlutjAiQnJxMXF2e1iJmnpyeNW7aE4cPNK0JD4Z+/bxERkaLKZgHo/PnzpKWl4ePjY7Xex8eHqKioLPc5duwYy5YtIy0tjeXLl/PGG2/wwQcf8Pbbb+f6mAChoaGUKVPGsvj7++fx7IqhQYNI9/SEQ4fg229tXY2IiEie2Pwm6JxIT0/H29ubzz77jKZNm9KjRw9ee+01ZuXxEe0xY8Zw+fJly3Lq1Kl8qrj4+PLHH3kno2ds4kSw3ZVTERGRPLNZAPLy8sLe3p7o6ybbjI6OxtfXN8t9/Pz8qFmzJvb29pZ1derUISoqipSUlFwdE8DZ2ZnSpUtbLWLtzjvv5GPDIAFg505YudLGFYmIiOSezQKQk5MTTZs2JSwszLIuPT2dsLAwWrZsmeU+rVq14siRI6Snp1vWHTp0CD8/P5ycnHJ1TLk1QUFBtOveHUtf28SJN2ouIiJSqNn0Etjw4cOZPXs28+fPZ//+/QwaNIjExET69+8PQJ8+fRgzZoyl/aBBg7h48SIvvvgihw4d4pdffmHixIkMHjz4lo8puTdq1CimAMkAf/4J69fbuCIREZHccbDlm/fo0YNz584xduxYoqKiaNy4MStXrrTcxHzy5Ens7P7NaP7+/qxatYr/+7//o2HDhlSqVIkXX3yRUaNG3fIxJffuuOMO6t9/P3NXr+Z5MPcCrVhh67JERERyzKbjABVWGgcoe2FhYTzbvj2HAXuAbdugSRMbVyUiIlJExgGSoum+++6jXNOmfJ1xI3poqG0LEhERyQUFIMkRk8nEvHnzCPntN/OKb76BAwdsW5SIiEgOKQBJjtWvX59y99wDXbuaxwN6911blyQiIpIjCkCSe/88oWcsWgQnTti4GBERkVunACS51nPKFFYDpmvXYPJkW5cjIiJyyxSAJNcaN25MxnCIxuefm2eLFxERKQIUgCTXnn/+ebZ5eBAOmJKS4MMPbV2SiIjILVEAklzz9PTk+UGDLL1AzJgBly7ZsiQREZFbogAkefLSSy+x2tGRXQDx8TB9uq1LEhERuSkFIMmTihUr8lSfPliGQ5w6FRITbViRiIjIzSkASZ698sorLAMiHBzgwgWYPdvWJYmIiNyQApDkWa1atVj9++9UnjbNvGLyZEhOtm1RIiIiN6AAJPni3nvvxaF/f6hYEc6cgYULbV2SiIhIthSAJP84O5P2f/9n/nnSJLh2zbb1iIiIZEMBSPLNqVOnqDt1KhcAjh6FZctsXZKIiEiWFIAk31SuXBlXLy8swyFOnGieLFVERKSQUQCSfGMymRg5ciTTgXiTCXbvhl9+sXVZIiIimSgASb7q3r07ngEBTM/o+XnnHfUCiYhIoaMAJPnKwcGBl19+mQ+BJJMJNm2CtWttXZaIiIgVBSDJd08//TTpXl58ntHzM3HijXcQERG5zRSAJN+5ubkxbNgw3gfS7OxgzRrYssXWZYmIiFgoAEmBGDx4MEs3b8a+d2/zitDQG+8gIiJyG5kMQ3eoXi8uLo4yZcpw+fJlSpcubetyirb9+6FePfON0Hv2mH8WEREpADn5/lYPkBSsOnVIevBB88+TJtm2FhERkX8oAEmBWrhwIff9+qv5xeLFcOyYbQsSERFBAUgKWJMmTQhPSWElQFoavP++rUsSERFRAJKCVa9ePR566CEsD8LPmQORkbYsSURERAFICt7o0aNZD2wwmSAlBaZMsXVJIiJSwikASYFr1aoVrVq14u2MBw5nzoSLF21blIiIlGg5DkArV67kzz//tLyePn06jRs35sknn+TSpUv5WpwUH6NGjWIlsMvODhITYdo0W5ckIiIlWI4D0CuvvEJcXBwAu3fv5uWXX6ZTp04cP36c4cOH53uBUjw8+OCD1K1bl0l2//wn99FHEB9v26JERKTEynEAOn78OHXr1gXgm2++Md/gOnEi06dPZ8WKFfleoBQPdnZ2LFiwgCkREVCzJly6BJ9+auuyRESkhMpxAHJycuLKlSsArFmzhgceeACAcuXKWXqGRLLStGlTfCtVgtGjzSs++ACSkmxblIiIlEg5DkCtW7dm+PDhvPXWW2zZsoUH/xnl99ChQ1SuXDnfC5RiqFcvUnx9ISoK5s2zdTUiIlIC5TgAffLJJzg4OLBs2TJmzpxJpUqVAFixYgUdOnTI9wKl+OnRuzcvR0WZX7z7Lly7ZtuCRESkxHHI6Q5VqlTh559/zrT+ww8/zJeCpPirWbMmHwATHBwoFxEBX30FTz1l67JERKQEyXEP0Pbt29m9e7fl9Q8//EDXrl159dVXSUlJydfipHgaOnQohosL72f0/ISGQnq6bYsSEZESJccB6LnnnuPQoUMAHDt2jJ49e+Lm5sbSpUsZOXJkvhcoxY+3tzcDBgxgBpDo4AD79sGPP9q6LBERKUFyHIAOHTpE48aNAVi6dCn33HMP//vf/5g3bx7ffPNNroqYPn06AQEBuLi4EBwczJYtW7JtO2/ePEwmk9Xi4uJi1aZfv36Z2uj+pMLl5ZdfJtHenqkZvUATJ0LGSNEiIiIFLMcByDAM0v+5XLFmzRo6deoEgL+/P+fPn89xAUuWLGH48OGMGzeO7du306hRI0JCQoiJicl2n9KlSxMZGWlZTpw4kalNhw4drNosXrw4x7VJwQkMDKR79+58BCTb28PWrRAWZuuyRESkhMhxAGrWrBlvv/02CxcuZN26dZbH4I8fP46Pj0+OC5gyZQrPPvss/fv3p27dusyaNQs3NzfmzJmT7T4mkwlfX1/LktX7Ojs7W7UpW7ZsjmuTgjVy5EjOAf9zczOvmDjxhu1FRETyS44D0NSpU9m+fTtDhgzhtddeo3r16gAsW7aMu+66K0fHSklJYdu2bbRv3/7fguzsaN++PeHh4dnul5CQQNWqVfH396dLly7s3bs3U5u1a9fi7e1NrVq1GDRoEBcuXMhRbVLwGjduzIoVK+i1Ywc4OsLvv8MNPncREZH8YjKM/LnxIikpCXt7exwdHW95n7Nnz1KpUiU2btxIy5YtLetHjhzJunXr2Lx5c6Z9wsPDOXz4MA0bNuTy5ctMnjyZP/74g71791oGYvzqq69wc3MjMDCQo0eP8uqrr+Lh4UF4eDj29vaZjpmcnExycrLldVxcHP7+/ly+fJnSpUvn5K9BcuuZZ+CLL6BjR1i+3NbViIhIERQXF0eZMmVu6fs7x+MAZdi2bRv79+8HoG7dujRp0iS3h8qRli1bWoWlu+66izp16vDpp5/y1ltvAdCzZ0/L9gYNGtCwYUOCgoJYu3Yt7dq1y3TM0NBQJkyYUPDFS7aujRiB/fz5mFasgN9+g/vus3VJIiJSjOX4ElhMTAxt27alefPmDBs2jGHDhtGsWTPatWvHuXPncnQsLy8v7O3tiY6OtlofHR2Nr6/vLR3D0dGRO+64gyNHjmTbplq1anh5eWXbZsyYMVy+fNmynDp16tZPQvIsIiKCmp06MTujd27ECI0LJCIiBSrHAWjo0KEkJCSwd+9eLl68yMWLF9mzZw9xcXEMGzYsR8dycnKiadOmhP3n6Z/09HTCwsKsenluJC0tjd27d+Pn55dtm9OnT3PhwoVs2zg7O1O6dGmrRW4ff39/HB0deS05mWQXF9ixA7780tZliYhIMZbjALRy5UpmzJhBnTp1LOvq1q3L9OnTWbFiRY4LGD58OLNnz2b+/Pns37+fQYMGkZiYSP/+/QHo06cPY8aMsbR/8803+fXXXzl27Bjbt2/nqaee4sSJEzzzzDOA+QbpV155hU2bNhEREUFYWBhdunShevXqhISE5Lg+KXj29va88sornAfed/jnquyrr8KVKzatS0REiq8cB6D09PQsb3R2dHS0jA+UEz169GDy5MmMHTuWxo0bs3PnTlauXGl5tP3kyZNERkZa2l+6dIlnn32WOnXq0KlTJ+Li4ti4cSN169YFzF+mu3bt4uGHH6ZmzZoMGDCApk2bsn79epydnXNcn9weffr0oVq1arydkMDlMmXg9GmYOtXWZYmISDGV46fAunTpQmxsLIsXL6ZixYoAnDlzhl69elG2bFm+++67Ain0dsrJXeSSf7766iueeOIJnnZx4YukJPDwgCNHIBfjS4mISMmTk+/vHPcAffLJJ8TFxREQEEBQUBBBQUEEBgYSFxfHxx9/nOuiRbp3784dd9zB3KQkTvr4QEIC6Ok8EREpALkaB8gwDNasWcOBAwcAqFOnjtVghkWdeoBsZ/Xq1TzwwAOMatmSSeHhYG8Pu3fDf+45ExERyUpOvr/zbSDEAwcO8PDDD1tmii/KFIBsa+vWrTRv3hweeQS+/x4eegh++snWZYmISCFXoJfAspOcnMzRo0fz63BSgjVv3tz8w7vvgoMD/PyzeXBEERGRfJJvAUgkv50rW5ZdrVqZX2hwRBERyUcKQFIoJSQkULt2bdqtW8c1d3fz4IiLFtm6LBERKSYUgKRQ8vDw4Mknn+Q8MNPT07zytdc0OKKIiOSLW74JumzZsphMpmy3X7t2jcTERNLS0vKtOFvRTdCFQ0xMDEFBQaQmJHDBywv38+fhnXfMo0SLiIhcp0Bmg5+qUXnlNvP29mbEiBGMHz+eN+ztmQIQGgoDBmhwRBERyZN8ewy+OFEPUOERHx9P9erVORcTQ1TVqnifOAHPPw8zZ9q6NBERKWRs8hi8SEEoVaoUY8eOxQAGxsWZV86eDfv22bQuEREp2hSApNDLmPzWv1cvUh58ENLSYNQoW5clIiJF2C3fAyRiK05OTuzcuRMnJyc4dAhWrfp3cMT77rN1eSIiUgSpB0iKBCcnJ/MPNWua7wECDY4oIiK5luMAlJSUlO22yMjIPBUjcjN///03vQ4eJN3DQ4MjiohIruU4ADVp0oSdO3dmWv/NN9/QsGHD/KhJJFujRo3if6tXs6R6dfMKDY4oIiK5kOMAdO+993LnnXfy7rvvApCYmEi/fv3o3bs3r2qAOilgoaGhAPTfuZMUX184fRo0RpWIiORQrsYB+uWXX3jmmWeoXr06kZGReHh4sGjRIurXr18QNd52GgeocOvVqxf/+9//CG3QgNG7d4OHBxw5osERRURKuAIfB6hjx448+uijbNiwgZMnT/Luu+8Wm/Ajhd9bb72Fo6Mjr+7eTVzNmpCQAOPH27osEREpQnIcgI4ePUrLli35+eefWbVqFSNHjuThhx9m5MiRpKamFkSNIlaqVavGoEGDMICXM1ZqcEQREcmBHF8CK1WqFA8++CCzZs3C859Zujdu3EifPn0oVaoUO3bsKIg6bytdAiv8MiZKTUhI4EyLFlTcsgUeegh++snWpYmIiI0UyGSoGWbMmEHv3r2t1t11113s2LGDl156KaeHE8kVb29v3nnnHezs7PC691644w4NjigiIrdMk6FmQT1ARdDQofDJJ9C4MWzbBnYa41NEpKTJyfd3rgPQvn37OHnyJCkpKf8ezGSic+fOuTlcoaIAVPSkRkbiULs2prg4mD8f+vSxdUkiInKbFeglsGPHjvHII4+we/duTCYTGfnJZDIBkJaWlouSRXJv1apVDB06lBnBwbRfvdo8OGK3buDmZuvSRESkkMrxdYIXX3yRwMBAYmJicHNzY+/evfzxxx80a9aMtWvXFkCJIjcWFxfH4cOH6blxI2mVK5sHR/zwQ1uXJSIihViOA1B4eDhvvvkmXl5e2NnZYWdnR+vWrQkNDWXYsGEFUaPIDXXr1o1mzZpxITGRRXXrmldOmgTR0bYtTERECq0cB6C0tDRKlSoFgJeXF2fPngWgatWqHDx4MH+rE7kFJpPJMjXLwN9+I6lBAw2OKCIiN5TjAFS/fn3+/vtvAIKDg3nvvffYsGEDb775JtWqVcv3AkVuxX333UdISAgp167xnre3eaUGRxQRkWzkOAC9/vrrpKenA/Dmm29y/Phx7r77bpYvX87HH3+c7wWK3KpJkyYBMC4sjNh774W0NBg50rZFiYhIoZTjABQSEsKjjz4KQPXq1Tlw4ADnz58nJiaG+zQAndhQ48aN6dWrFwBf1KwJDg7wyy8QFmbjykREpLDRQIhZ0DhARVdERASHDx/m/vvv1+CIIiIlTIEOhJiUlMS0adP4/fffiYmJsVwOy7B9+/acV1zIKAAVE+fPQ1AQaHBEEZESoUAHQhwwYAC//vor3bp1o0WLFpYBEEUKm3OGQXLfvlSeNg1efVWDI4qIiEWOA9DPP//M8uXLadWqVUHUI5Iv/vzzTzp16kSl8uXZV6UKppMnzYMjvvaarUsTEZFCIMc3RVSqVMkyDpBIYXXHHXfg5ubGgYgIVrdta16pwRFFROQfOQ5AH3zwAaNGjeLEiRMFUY9IvnB3d2f8PwMh9lm+nLQmTcyDI/7f/9m2MBERKRRyHICaNWtGUlIS1apVo1SpUpQrV85qESksBgwYQI0aNYg+d445TZqAvT0sXgxffWXr0kRExMZy/BRY+/btOXnyJAMGDMDHxyfTTdB9+/bN1wJtQU+BFR/Lli3j8ccfx8PDg8iBA/GYMgU8PWH3bqhc2dbliYhIPsrJ93eOe4A2btzI0qVLGTVqFP369aNv375WS25Mnz6dgIAAXFxcCA4OZsuWLdm2nTdvHiaTyWpxcXGxamMYBmPHjsXPzw9XV1fat2/P4cOHc1WbFG2PPfYYLVq0ICEhgdeuXoXmzSE2Fvr1g+uGcBARkZIjxwGodu3aXL16Nd8KWLJkCcOHD2fcuHFs376dRo0aERISQkxMTLb7lC5dmsjISMty/f1I7733Hh9//DGzZs1i8+bNuLu7ExISQlJSUr7VLUVDxkSpDg4OmJycMBYsAFdX8+jQ06bZujwREbEVI4dWrVpl3HXXXcbvv/9unD9/3rh8+bLVklMtWrQwBg8ebHmdlpZmVKxY0QgNDc2y/dy5c40yZcpke7z09HTD19fXeP/99y3rYmNjDWdnZ2Px4sW3VNPly5cNIFfnI4XT6dOn/30xY4ZhgGE4OxvG3r22K0pERPJVTr6/c9wD1KFDB8LDw2nXrh3e3t6ULVuWsmXL4unpSdmyZXN0rJSUFLZt20b79u0t6+zs7Gjfvj3h4eHZ7peQkEDVqlXx9/enS5cu7N2717Lt+PHjREVFWR2zTJkyBAcHZ3vM5ORk4uLirBYpXipVqvTvi+efh44dITkZevWClBTbFSYiIjaR44EQf//993x78/Pnz5OWloaPj4/Veh8fHw4cOJDlPrVq1WLOnDk0bNiQy5cvM3nyZO666y727t1L5cqViYqKshzj+mNmbLteaGgoEyZMyIczksJu3759DBs2jHmhoVTesgV27oTx42HiRFuXJiIit1GOA1BgYCD+/v6Znv4yDINTp07lW2HZadmyJS1btrS8vuuuu6hTpw6ffvopb731Vq6OOWbMGIYPH255HRcXh7+/f55rlcJnyJAh/P777zz92mus+vRTTN26wbvvQqdO0Lq1rcsTEZHbJMeXwAIDAzl37lym9RcvXiQwMDBHx/Ly8sLe3p7o60bnjY6OxtfX95aO4ejoyB133MGRI0cALPvl5JjOzs6ULl3aapHiadasWbi4uLB69Wo+v3gR+vY1Pw3Wu7d50lQRESkRchyADMPIcgLUhISETI+j34yTkxNNmzYlLCzMsi49PZ2wsDCrXp4bSUtLY/fu3fj5+QHmgObr62t1zLi4ODZv3nzLx5Tiq2bNmkz853LX8OHDOTliBFStChERGiVaRKQEueVLYBmXiEwmE2+88QZu/5lVOy0tjc2bN9O4ceMcFzB8+HD69u1Ls2bNaNGiBVOnTiUxMZH+/fsD0KdPHypVqkRoaCgAb775JnfeeSfVq1cnNjaW999/nxMnTvDMM89Y6nvppZd4++23qVGjBoGBgbzxxhtUrFiRrl275rg+KX6GDRvGN998w4YNG3j6pZdYvWABpnvvhTlzoHNn0H8nIiLF3i0HoB07dgDmHqDdu3fj5ORk2ebk5ESjRo0YMWJEjgvo0aMH586dY+zYsURFRdG4cWNWrlxpuYn55MmT2Nn921F16dIlnn32WaKioihbtixNmzZl48aN1K1b19Jm5MiRJCYmMnDgQGJjY2ndujUrV67McQ+VFE/29vbMnTuXRo0aERYWxqfduvH8yJHme4GefRbuvBNu8RKsiIgUTbc0FcbHH3/Ms88+i6urK/379+ejjz4q1vfJaCqMkuGjjz7ipZdeol27dqz++WdMd94Jf/9tviH6558hi0u9IiJSeOXk+/uWApCDgwNnz57F29sbe3t7IiMj8fb2zreCCxsFoJIhPT2dRYsW8eSTT+Lg4AB79kCzZubxgWbNguees3WJIiKSA/k+F1jFihX55ptvOHHiBIZhcPr0aU6ePJnlIlJU2NnZ0adPH3P4AahfH/6514zhw+HQIdsVJyIiBeqWeoA+++wzhg4dyrVr17Jtk/F0WFpaWr4WaAvqASp5kpKSePPNN3nm6aep9txz8Ntv0KIFbNgADjkeLktERGwg3y+BAcTHx3PixAkaNmzImjVrKF++fJbtGjVqlPOKCxkFoJJnwIABzJkzhzZt2vDb/PnYNWoEly+bR4keN87W5YmIyC0okACUYf78+fTs2RNnZ+c8FVmYKQCVPMeOHaNBgwZcuXKFjz/+mKHly5vnCbO3h40bzb1BIiJSqBVoAMqwbds29u/fD0DdunVp0qRJbg5TKCkAlUzTp09nyJAhuLm58ffff1P9jTfgq6+gRg3YsQPc3W1dooiI3ECBBqCYmBh69uzJ2rVr8fT0BCA2Npa2bdvy1VdfUaFChVwXXlgoAJVM6enptGvXjrVr13L33Xez9rvvzJfCzpyBQYNgxgxblygiIjeQ70+B/dfQoUOJj49n7969XLx4kYsXL7Jnzx7i4uIYNmxYrosWsTU7OzvmzJmDu7s769evZ9qiRTBvnnnjzJmwYoVN6xMRkfyT4x6gMmXKsGbNGpo3b261fsuWLTzwwAPExsbmZ302oR6gkm3mzJm88MIL+Pj4cPz4cVzHjIGPPjKPDr17N3h52bpEERHJQoH2AKWnp+Po6JhpvaOjI+np6Tk9nEih89xzzzFmzBg2b96Mq6ureWygunUhKgoGDoTc3TYnIiKFSI57gLp06UJsbCyLFy+mYsWKAJw5c4ZevXpRtmxZvvvuuwIp9HZSD5BksmMHBAdDairMnQv9+tm6IhERuU6B9gB98sknxMXFERAQQFBQEEFBQQQGBhIXF8e0adNyXbRIYbV69WoOubvDhAnmFcOGwfHjti1KRETyJMdD3Pr7+7N9+3bWrFnDgQMHAKhTpw7t27fP9+JEbC3j0fi77rqLP37/HftffjGPDt2nD6xdax4nSEREipxcjwNUnOkSmGQ4efIk9evXJz4+nsmTJ/Pyo49Cw4aQkACTJsGoUbYuUURE/lEgl8DCw8P5+eefrdYtWLCAwMBAvL29GThwIMnJybmrWKSQqlKlClOmTAHg9ddf52BKCnz8sXnjG2/Azp22K05ERHLtlgPQm2++yd69ey2vd+/ezYABA2jfvj2jR4/mp59+IjRjJm2RYmTAgAGEhISQlJREv379SOvdG7p2Nd8Q/dRTkJRk6xJFRCSHbjkA7dy5k3bt2llef/XVVwQHBzN79myGDx/Oxx9/zNdff10gRYrYkslkYvbs2ZQuXZpNmzYx5cMP4bPPwMcH9u6FV1+1dYkiIpJDtxyALl26hI+Pj+X1unXr6Nixo+V18+bNOXXqVP5WJ1JI+Pv78+GHHwLwxhtvcCopCb74wrzxww8hLMyG1YmISE7dcgDKGBUXICUlhe3bt3PnnXdatsfHx2c5QKJIcdG/f3969+7NggUL8Pf3hwcfhOeeM2/s1w8uXbJpfSIicutuOQB16tSJ0aNHs379esaMGYObmxt33323ZfuuXbsICgoqkCJFCgOTycSCBQvo3r37vys/+ACqV4fTp2HwYNsVJyIiOXLLAeitt97CwcGBNm3aMHv2bGbPno2Tk5Nl+5w5c3jggQcKpEiRwujcuXMci46GRYvM4wEtXgzvv2/rskRE5BbkeBygy5cv4+Hhgf11A8BdvHgRDw8Pq1BUVGkcILmZ9evX89hjj1G1alXCw8NxmDoVXnnFvHHmTHj+eZvWJyJSEhXoVBhlypTJFH4AypUrVyzCj8itCAoKIjU1lb/++ov33nsPRoyA0aPNG194ARYutG2BIiJyQzkOQCICFStW5ON/BkQcP348u3fvhokTYcgQ82zx/frBt9/atkgREcmWApBILj311FN07tyZ1NRU+vXrR+q1a/DRR+bwk54OPXvCypW2LlNERLKgACSSSyaTiU8//ZSyZcuyfft23n33XbCzg88/h8cfN48U/cgj8Mcfti5VRESuowAkkgd+fn5MmzYNME8X8/fff5ufCFu0yDxOUFISPPQQbN1q40pFROS/FIBE8ujJJ5+kW7du9OjRgzp16phXOjnB0qXQti3Ex0NICOzebdtCRUTEIsePwZcEegxeciopKQknJyfs7K77N0V8PNx/P2zebJ477I8/oGZN2xQpIlLMFehj8CKSmYuLiyX8pKWlERoaSmxsLJQqBStWQKNGEB0N7dvDiRO2LVZERBSARPLbsGHDePXVV+natStJSUlQtiz8+ivUqgWnTplDUGSkrcsUESnRFIBE8tnAgQMpXbo069ato3fv3qSlpYG3N6xZAwEBcOSI+bLYhQu2LlVEpMRSABLJZ40aNeL777/HycmJZcuW8dJLL2EYBlSubA5Bfn6wdy906ABxcbYuV0SkRFIAEikAbdu2ZeHChZhMJj755BPzGEEAQUHmEOTlBX/9ZX5E/soV2xYrIlICKQCJFJDu3bvz4YcfAjBmzBjmzZtn3lC3LqxaBaVLw/r15sESk5NtV6iISAmkACRSgF588UVGjhyJi4sLnp6e/25o0sT8dJibm/kG6SeegGvXbFaniEhJo3GAsqBxgCQ/paenc+jQIWrXrp15Y1iYecTo5GR46imYP988nYaIiOSYxgESKUTs7Oyswk9ERASHDx82v2jXzjxitIODefqMwYPNs8mLiEiBUgASuY327t1Ly5YtCQkJISoqyryyc2dYuBBMJpg1C0aOVAgSESlghSIATZ8+nYCAAFxcXAgODmbLli23tN9XX32FyWSia9euVuv79euHyWSyWjp06FAAlYvkjJeXF+7u7hw/fpxOnToRl/EYfM+eMHu2+efJk+Gtt2xXpIhICWDzALRkyRKGDx/OuHHj2L59O40aNSIkJISYmJgb7hcREcGIESO4++67s9zeoUMHIiMjLcvixYsLonyRHPHx8WHVqlV4e3uzY8cOHn30UVJSUswbBwyAqVPNP48bB/88QSYiIvnP5gFoypQpPPvss/Tv35+6desya9Ys3NzcmDNnTrb7pKWl0atXLyZMmEC1atWybOPs7Iyvr69lKVu2bEGdgkiOBAUF8csvv+Du7k5YWBj9+vUjPT3dvPHFF//t/Rk+/N9eIRERyVc2DUApKSls27aN9u3bW9bZ2dnRvn17wsPDs93vzTffxNvbmwEDBmTbZu3atXh7e1OrVi0GDRrEhRtMO5CcnExcXJzVIlKQmjVrxjfffIODgwOLFy9m5MiR/2587TXzfUAAzz0H//ufbYoUESnGbBqAzp8/T1paGj4+PlbrfXx8/r1B9Dp//vknX3zxBbNv8C/jDh06sGDBAsLCwnj33XdZt24dHTt2NM/JlIXQ0FDKlCljWfz9/XN/UiK3KCQkxNLT+fvvv5OYmGjeYDLBpEnwwgvmm6H79IEffrBhpSIixY+DrQvIifj4eHr37s3s2bPx8vLKtl3Pnj0tPzdo0ICGDRsSFBTE2rVradeuXab2Y8aMYfjw4ZbXcXFxCkFyW/Tu3RsXFxc6dOiAu7v7vxtMJpg2DRISYMEC6N4dfvoJHnjAdsWKiBQjNg1AXl5e2NvbEx0dbbU+OjoaX1/fTO2PHj1KREQEnTt3tqzLuHfCwcGBgwcPEhQUlGm/atWq4eXlxZEjR7IMQM7Ozjg7O+f1dERy5fHHH7d6HR0dbe4VtbODL76AxET45hvzgInjxsHo0eZxg0REJNdsegnMycmJpk2bEhYWZlmXnp5OWFgYLVu2zNS+du3a7N69m507d1qWhx9+mLZt27Jz585se21Onz7NhQsX8PPzK7BzEckrwzCYNGkSNWrUYMeOHeaVDg7me4B69DBPlfHGG3D33ZAxkKKIiOSKzZ8CGz58OLNnz2b+/Pns37+fQYMGkZiYSP/+/QHo06cPY8aMAcDFxYX69etbLZ6enpQqVYr69evj5OREQkICr7zyCps2bSIiIoKwsDC6dOlC9erVCQkJseWpitxQWloav/76K/Hx8XTs2JFjx46ZNzg5weLF5kthpUvDpk3QuDHMnKkBE0VEcsnmAahHjx5MnjyZsWPH0rhxY3bu3MnKlSstN0afPHmSyMjIWz6evb09u3bt4uGHH6ZmzZoMGDCApk2bsn79el3mkkLNwcGB7777jkaNGhEdHU1ISAjnzp0zbzSZoHdv2L0b7rsPrlwx3yTdqROcPWvbwkVEiiBNhpoFTYYqthQZGUnLli05ceIEzZs357fffsPDw+PfBunp5hukR4+GpCQoV848hcZ19xKJiJQ0mgxVpAjz8/Nj1apVlC9fnq1bt9K9e3dSU1P/bWBnZx4wcds2aNIELl40PyX21FNw6ZLtChcRKUIUgEQKoVq1avHzzz/j6urKihUr+OWXXzI3qlsXwsPh9dfNoejLL6FBA1iz5vYXLCJSxOgSWBZ0CUwKi19++YVTp07x/PPP37jhpk3me4SOHDG/HjrUPJiim1vBFykiUkjk5PtbASgLCkBSWB07dozSpUtnPRBoYiK88or56TCA2rVh4UJo1uz2FikiYiO6B0ikGLp69Spdu3alcePG/Pnnn5kbuLvDjBmwYgX4+cGBA9CyJbz5pnkMIRERsVAAEikioqKiSE5O5syZM9x7771MmjTp31nk/6tDB/Pj8t27m4PPuHHQqhUcOnT7ixYRKaQUgESKiMDAQP766y969epFWloaY8aM4cEHH/x3rKD/Kl8evvrKfGO0pyds2WIePHH6dA2eKCKCApBIkVKqVCkWLlzI559/jouLCytXruSOO+7I+pKYyQRPPmnuDWrfHq5ehSFDzD1EZ87c/uJFRAoRBSCRIsZkMjFgwAC2bNlCrVq1OHPmDK+//jrZPs9QuTKsWgUffwwuLvDrr+bH5b/66vYWLiJSiCgAiRRRDRo04K+//mLQoEEsXLgQk8mUfWM7O/Oj8Tt2mJ8Ku3QJnnjCvFy8ePuKFhEpJBSARIowDw8PZsyYgb+/v2VdaGgo69evz3qH2rVh40bzjdH29uZeoAYNzL1CIiIliAKQSDGycuVKXn31Vdq2bUtoaGjWT4k5OsL48eYgVLOmeTLVkBDo1Qv27r3tNYuI2IICkEgx0rp1a5566inS0tJ49dVX6dSpU9ZPiQG0aGG+JDZkiPn1//4H9etD166wefNtq1lExBYUgESKEQ8PDxYsWMAXX3yBi4sLq1atonHjxvzxxx9Z7+DmZp5Z/q+/4LHHzE+O/fAD3HkntGtnnldMj82LSDGkACRSzJhMJp5++mm2bNlC7dq1OXv2LG3btuXDDz/MfqemTWHZMti3D/r1AwcH+O03uP9+CA6G77+HrC6niYgUUQpAIsVUgwYN2Lp1K7179yY9PZ2KFSvefKfatWHuXDh61PzUmIsLbN0Kjzxivll64UJITS344kVECpgmQ82CJkOV4sQwDMLDw7nrrrss6xITE3F3d7/5zjEx8NFH5hGkL182r6ta1Tzp6tNPg6trAVUtIpJzmgxVRCxMJpNV+ImKiqJWrVpMnDgx66fE/svbG955B06cgNBQ8+sTJ8w3TgcEwLvvQlxcwZ6AiEgBUAASKWG+/PJLzpw5w2uvvUbHjh2JiYm5+U5lysDo0RARAZ98AlWqmHuHRo82//z665Dd02YiIoWQApBICTN8+HDmzJmDq6srv/76K3fccUf2T4ldz9UVBg+GI0dg/nyoU8d8aeydd8yXxl58EU6dKtgTEBHJBwpAIiWMyWSif//+bN26lTp16lieEhs5ciSXLl26tYM4OkKfPrBnD3z7rXl6jatXzfONVatmvj/o4MGCPRERkTxQABIpoerVq8fWrVvp27cv6enpvP/++0yfPj1nB7GzMz8htmULrF4NbdvCtWvmJ8nq1IHHH4ft2wvmBERE8kABSKQEc3d3Z968efz000/cd999vPjii5ZtZ86c4dq1a7d2IJMJ2rc3jx0UHg4PP2weQHHZMvMYQyEhsGiReRJWEZFCQI/BZ0GPwUtJZxgGwcHBXL58mXfeeYfHHnvsxrPNZ2XPHpg0yTzhalqaeZ29PdxzD3TpYl4CAvK9dhEpuXLy/a0AlAUFICnpjh07xp133mmZR6xZs2ZMmjSJdu3a5eZgMGeOeYqNPXustzVs+G8YatLE3JMkIpJLCkB5pAAkAvHx8UyZMoXJkyeTkJAAQPv27Zk0aRJNmzbN3UGPHoUffzSHofXrrafXqFzZfOmsSxe4915wcsr7SYhIiaIAlEcKQCL/iomJYeLEicyYMYPUf6bB+OOPP7j77rvzduALF+CXX8xhaNUqSEz8d1vp0tCxozkMdepkHodIROQmFIDySAFIJLOIiAjGjh3L3r172bp1K3Z25mcoUlNTcXR0zNvBk5IgLMwchn78EaKj/93m4GDuEcq4VObvn7f3EpFiSwEojxSARLKXnJyMs7MzYJ5TrGHDhjz++OOMGjWKsmXL5v0N0tPNj9V//705EB04YL29SZN/w1DDhrpvSEQsFIDySAFI5NbMnTuXp59+GgBPT0/GjBnD0KFDcc3PSVIPHTIHoR9+gI0bzY/XZ6ha9d/LZE2bgpdX/r2viBQ5CkB5pAAkcmsMw+Dnn39mzJgx7N27F4CKFSsyfvx4+vfvj4ODQ/6+YUwM/PyzOQytXm0effq//P3hjjusF39/9RKJlBAKQHmkACSSM2lpaXz55ZeMHTuWEydOAFC7dm22bt2Kh4dHwbzplSvmEJTxRNmRI1m3K1cucyiqWdM8JpGIFCsKQHmkACSSO8nJycyaNYu3336btm3b8vXXX1u2GYaR88EUcyIuDnbuhB07/l327TNPzXE9Nzdo1Mg6FNWvD//c2yQiRZMCUB4pAInkTVxcHFeuXMHX1xeAXbt20bNnT5566imefPJJAm7XCNBJSbB3r3Uo+vtvc+/R9RwcoG5d61DUuLH5kXwRKRIUgPJIAUgkf40aNYr33nvP8vruu++md+/edOvWLX+eHMuJtDQ4fNg6FG3fDhcvZt0+KMjcO1SjBlSvbv6zRg2oVMk8GayIFBoKQHmkACSSv+Li4vj2229ZuHAhv//+Oxn/23FycuKhhx5ixowZ+Pj42K5Aw4BTp6xD0Y4d5nXZcXExh6Prg1H16gpHIjaiAJRHCkAiBef06dMsXryYRYsWsWvXLry8vDh79qxlMMWTJ09SuXJly0CLNnX+vPm+ooMHzb1Ghw+bb7Y+dizre4sy/DccXR+QKlZUOBIpIApAeaQAJHJ77Nq1i2PHjtG1a1cA0tPTCQgIwN7enl69evHUU09Ru3Zt2xaZlWvX4ORJ61B0q+HI1dUcjv4bigIDISDA/Mi+bsQWyTUFoDxSABKxjcOHD9O0aVPi4+Mt65o2bUrv3r3p2bOnbS+T3apr1+DECetQlBGUjh+/cTgymcDPzxyGqlY1//nfn6tUMQcoEclSkQtA06dP5/333ycqKopGjRoxbdo0WrRocdP9vvrqK5544gm6dOnC999/b1lvGAbjxo1j9uzZxMbG0qpVK2bOnEmNGjVuqR4FIBHbuXLlCj/99BOLFi1i5cqVXPsnMNjb2/Phhx8ydOhQG1eYB9eHo4yAFBFhXrJ6Ou16Pj7/BqOsgpKbWwGegEjhVqQC0JIlS+jTpw+zZs0iODiYqVOnsnTpUg4ePIi3t3e2+0VERNC6dWuqVatGuXLlrALQu+++S2hoKPPnzycwMJA33niD3bt3s2/fPlxcXG5akwKQSOFw7tw5vv76axYuXMjmzZv5888/adWqFQD79+/n5MmTtGvXLv9HnLYFw4ALF/4NQydOWP98/DgkJNz8OBUqWAejqlXNS5Uq5sXTUyNjS7FVpAJQcHAwzZs355NPPgHM9wD4+/szdOhQRo8eneU+aWlp3HPPPTz99NOsX7+e2NhYSwAyDIOKFSvy8ssvM2LECAAuX76Mj48P8+bNo2fPnjetSQFIpPA5cuQIQUFBlsEUBw0axKxZs/Dx8aFbt260adOGVq1aUbFiRRtXWkAMAy5dyjocRUSYA1Jc3M2P4+FhDkL/DUX/XSpVgn9uSBcpanLy/W3TfzalpKSwbds2xowZY1lnZ2dH+/btCQ8Pz3a/N998E29vbwYMGMD69eutth0/fpyoqCjat29vWVemTBmCg4MJDw/PMgAlJyeTnJxseR13K/8TEZHbqnr16lavy5cvT/ny5YmOjmb69OlMnz4dgICAAFq3bs3cuXOLR89QBpPJPK1HuXLQpEnWbWJjsw5HJ0+al3PnzL1I+/aZl+zep2LFzMFIvUhSzNj0/w7nz58nLS0t042NPj4+HDhwIMt9/vzzT7744gt27tyZ5faoqCjLMa4/Zsa264WGhjJhwoQcVi8itvT2228zduxYfv31V1auXMmGDRvYtWsXERERODk5WYWfMWPG4OrqSqtWrQgODi64+clszdPTvDRqlPX2q1fNYxtlBKL/LidOmLclJ8OZM+Ylu3+IZvQiZQSj6+9F8vHRo/5S6BWpfx7Fx8fTu3dvZs+ejZeXV74dd8yYMQwfPtzyOi4uDn9//3w7vogUjIyBFB966CHA/P+IzZs3k5iYaGlz7do1pk2bZllnb29Po0aNaNWqFa1ataJ169ZUqlTJJvXfdq6u5olga9bMent6urmXKKuAlLHExNy8F8nZ2ToQXb8oIEkhYNMA5OXlhb29PdHR0Vbro6OjLXMI/dfRo0eJiIigc+fOlnXp6ekAODg4cPDgQct+0dHR+Pn5WR2zcePGWdbh7OyMs8beECnySpUqZXX5GyA1NZVJkyaxYcMGNmzYwKlTp9i+fTvbt29n2rRphISEsHLlSkv7vXv3Urt2bexL4mzxdnbmcOLjA82bZ93m6lU4ffrfXqP/XnKLiDBvS06GQ4fMS1b+G5CyCkq+vgpIUuBsGoCcnJxo2rQpYWFhVgOhhYWFMWTIkEzta9euze7du63Wvf7668THx/PRRx/h7++Po6Mjvr6+hIWFWQJPXFwcmzdvZtCgQQV9SiJSyLi6ujJkyBDL/1NOnTplCUMbNmygTZs2lrZRUVHUr1+fUqVKceedd1p6iZo3b06ZMmVsdQqFi6vrvwM4ZiU11Xz57L+h6L9LxmW2GwUkJ6d/g1FgoHngyP8upUoVwIlJSWPzp8CWLFlC3759+fTTT2nRogVTp07l66+/5sCBA/j4+NCnTx8qVapEaGholvv369fP6ikwMD8GP2nSJKvH4Hft2qXH4EUkE8MwLE+WrV+/ngcffNBqIMYMlStXZvz48QwYMAAw9yxdu3YNVw1MmDO3EpD+6dnPVoUKmUNRxuLjoxu0S7Ai8xQYQI8ePTh37hxjx44lKiqKxo0bs3LlSstNzCdPnszxnEAjR44kMTGRgQMHEhsbS+vWrVm5cuUthR8RKVlM//myvPvuu7l06RJ79uyx9BBt3LiRiIgITp8+jZOTk6Xt+vXruf/++wkKCqJ+/fpWS40aNSxzm8l1HB3/vdSVlesD0rFjcPSoecDIo0fNYyWdO2deNm3KvL+7O1SrZp5q5PpwVKUKFKcnAyVPbN4DVBipB0hE/is2Npa9e/dSo0YNywCtM2bMYPDgwVm2d3JyYtGiRTz++OMAXLx4kcuXL1O1atXCMclrUXb5sjkIZbWcOmUeLyk7Dg7mS2v/DUW1akGdOuZAVhLv+ypmitRAiIWRApCI3IxhGERHR7Nnz55MS2JiIhs3bqRly5YAzJ49m4EDB+Lu7k69evUsPUUNGjSgfv36+Pj4WPVESS4lJ5t7jbIKR8eOmbdnx9nZ/HRc7drmpU4d85+1aml6kSKkSF0CExEpikwmE76+vvj6+lo9eZaens7JkyetnkI9f/48Tk5OJCYmsmXLFrZs2WJ1rD/++IO7774bgG3btnHgwAFq1KhBzZo18fT0vC3nUyw4O5sDS61ambelp8PZs9ah6PBhOHjQvCQnw+7d5uV6Vatah6KMPytU0P1GRZh6gLKgHiARyW+pqakcOXIkU2/RkSNHOHPmjGUIj1deeYXJkydb9vPy8qJmzZqWQPTss89SoUIFW51G8ZSWZn6c/8AB2L/f/GfGzxcuZL9f2bKZQ1Ht2uYn13Q5zSZ0CSyPFIBE5HZJSkrC2dnZcglsxowZfP311xw6dIjIyMhM7U+fPm0ZuPG9995j+fLlVgGpRo0aBAUFaWyz/HL+fOZQdOCA+VJbdl+fTk7my2l165qnLWna1PxnuXK3tfSSSAEojxSARKQwiI+P58iRIxw+fJjDhw9z7NgxPv/8c0tYeuyxx/j2228z7WcymahatSpbtmyx9Bbt27ePa9euERgYSCmNo5N3V6+axzG6vtfo4EFISsp6n8BAcxhq2hSaNVMoKgAKQHmkACQiRcHu3bv5+++/OXTokCUkHTp0iPj4eJydnbly5YrlqbMePXrw9ddfA1ChQgWqVatmtTz11FNWj/lLLqWlmUfJPnDAfD/Rtm3w11/mm7Cz8t9QlLEoFOWaAlAeKQCJSFFlGAYxMTGcPn2apk2bWtb369ePn3/+mQtZ3NPi5OTElStXLNN/vPzyy+zduzdTSKpWrZr+n5hbly7B9u3mQJSxHD2adduAgMw9ReXL39ZyiyoFoDxSABKR4ury5cscP36cY8eOWZakpCTmzJljadOiRQu2bt2a5f6+vr6cOXPG0rP0+++/AxAUFESlSpVK5hxquZXbUJSxKBRlogCURwpAIlKSbdy4kQMHDnD06FGroHT+/HmqV6/O4cOHLW2Dg4Mtj/U7OTkREBBg6S2qVasWw4YNs9VpFE2xsdah6K+/sg9FNWtC587mpVUrjXKNAlCeKQCJiGQWFxfH+fPnqVatmmXdk08+ybZt2zh+/DipqalW7YOCgjhy5Ijl9cMPP8z58+cJCgqyhKSMn/38/DQYZHauD0XbtpmnBvmvsmXhwQfNYSgkBEro5L0KQHmkACQikjNpaWmcOXOGY8eOWXqO3NzceO211yxtfHx8iImJyXL/OnXqsG/fPsvrr7/+Gjc3N6pXr061atV0g/b1Ll2CNWvgp5/gl1/g4sV/tzk6Qps28PDD5kCU3bxrxZACUB4pAImI5L/t27dbBaSMn0+ePEnbtm1ZvXq1pa2vry/R0dEA2NnZERgYaBnrqFmzZvTu3dtWp1H4XLsG4eHw44/mQHTwoPX2Bg3MQejhh6F5cyjG89EpAOWRApCIyO2TmppKXFwc5f+5qTctLY0ePXpw9OhRDh8+TGJiolX7tm3b8ttvv1le33fffZQuXZqaNWtaDQrp6+tbMi+rHTpkDkI//gh//mmeBiSDjw889JA5ELVvD+7utquzACgA5ZECkIhI4WAYBlFRURw6dMgy3lFgYCCDBg0CICEhIduBHT08POjZsyezZ8+2rNu+fTuBgYGULVv2ttRvcxcuwIoV5kC0YgXEx/+7zcXFHII6dzaHoooVbVdnPlEAyiMFIBGRoiE5OZm1a9daBoHMCEkRERGkp6czYMAAPv/8cwCuXr2K2z8zu5cvX56aNWtSr1496tevT/369WnYsGHxnmctJQX++OPfS2UREdbbmzX7976hRo2K5ESvCkB5pAAkIlK0JScnc/z4cRwcHKhevToAERERtG7dmjNnzmS5T+/evVmwYAFgviw3Z84c6tevT7169fD09Lxdpd8ehgF79vx7qWzLFuu5zfz9oVcvGDwYKle2XZ05pACURwpAIiLFV0JCAkeOHOHgwYPs3buXPXv2sGfPHgYOHMiIESMA2L9/P3Xr1rXsU7lyZerXr0+DBg2oX78+rVq1IigoyFankP+iosxPk/30E/z6q3muMzDPat+tG7z0Etx5p01LvBUKQHmkACQiUvIYhmG5aXrXrl2MHj2aPXv2cOrUqUxtJ0yYwNixYwGIjIxkxowZlktpNWvWxNHR8bbWnq+uXjXfLzRtGqxd++/64GBzEHrsMfOj9oWQAlAeKQCJiEiG2NhY9u3bZ+kp2rNnD6+88godO3YE4Oeff6Zz586W9o6OjtSqVYsGDRrQokULHnroIctluCJn50746CP43//M9xABVKpkvjQ2cGChm45DASiPFIBERORWbd26lc8++8wSjhISEqy2L1iwwDJu0aFDh/jjjz9o0aIFdevWxaGoTF8RHQ2ffgozZph/BnB1hd694cUX4T+XC21JASiPFIBERCQ3DMPg5MmT7Nmzhx07drB161Y++OADSw/QlClTePnllwFwc3OjadOmtGjRghYtWtC8eXMCAgIK99hFycmwZAlMnQo7dvy7/oEHzEGoQwebDrSoAJRHCkAiIlIQFi9ezOzZs/nrr7+I/++YPP8IDw/nzn9uNj579ixOTk54eXnd7jJvzjBg/Xrz5bHvv/93sMWaNc1BqE8f8PC47WUpAOWRApCIiBSk9PR0Dh48yJYtWyzLvn37OH/+PK6urgAMHjyYGTNmEBgYaOklatGiBXfccQfuhWkE5+PH4ZNP4PPPIS7OvM7TE555BoYMgapVb1spCkB5pAAkIiK3W2pqqtXTY926deObb77J1M7Ozo769esTHh5uGdixUIiPh/nzzb1CGbPV29nBo4+anx67664CH1xRASiPFIBERKQwiI2N5a+//mLr1q2WnqKzZ89StWpVIv4zkvPs2bPx8/Ojffv2uLi42K5gMF8OW77cfJ9QWNi/65s1Mwehxx8HJ6cCeWsFoDxSABIRkcLqzJkznDlzhhYtWgDmUa+9vb2Ji4ujVKlSPPjggzz66KN07NgRDxvch2Nl925zj9CiReYbqAH8/OCFF+C55yCfpx5RAMojBSARESkqLl68yLhx4/juu++spvlwdnYmJCSEgQMH8uCDD9qwQuDcOfjsM5g+HSIjzeu6dYOlS/P1bXLy/W27Z9VEREQkz8qVK8e0adM4efIkmzZtYuTIkQQFBZGcnMyPP/7Itm3bLG2vXr1KVFTU7S+yQgV47TXzBKyLFpkvhw0Zcvvr+A/1AGVBPUAiIlKUGYbBnj17+Oabb3jiiSeoVasWAEuXLqVHjx60atWKRx99lEceeYSAgABbFGj+M59vitYlsDxSABIRkeLotddeY+LEiVbrmjRpwmOPPcajjz5K7dq1bVRZ/lAAyiMFIBERKa5OnTrF999/zzfffMP69etJzxjEEDhx4gRVqlSxYXV5owCURwpAIiJSEsTExPDjjz/yzTffcOnSJTZt2mTZNnHiRKpWrUr37t2LzOz2CkB5pAAkIiIlTVpaGvb29oB5Go7AwEBSUlKoUqUKw4cPZ8CAAbZ/rP4m9BSYiIiI5EhG+AFwd3dn3LhxeHt7c/LkSV566SWqVKnCG2+8QUxMjA2rzD/qAcqCeoBEREQgKSmJBQsWMHnyZA4fPgyAi4sLS5cu5aGHHrJxdZmpB0hERETyzMXFhYEDB7J//36++eYbWrRogclkssxYD5CYmGjDCnNPAUhERERuyN7enkcffZRNmzaxZ88evLy8LNs6duxI27ZtWbFiBUXpopICkIiIiNwSk8lEtWrVLK+PHTtGeHg4a9eupVOnTjRs2JAFCxaQkpJiwypvTaEIQNOnTycgIAAXFxeCg4PZsmVLtm2//fZbmjVrhqenJ+7u7jRu3JiFCxdatenXrx8mk8lq6dChQ0GfhoiISIlSrVo1jh8/zssvv4yHhwd79uyhb9++BAUFMWXKFOLj421dYrZsHoCWLFnC8OHDGTduHNu3b6dRo0aEhIRke5d5uXLleO211wgPD2fXrl3079+f/v37s2rVKqt2HTp0IDIy0rIsXrz4dpyOiIhIiVK5cmUmT57MqVOnCA0NxdfXl9OnT/Pyyy/z008/2bq8bNn8KbDg4GCaN2/OJ598AkB6ejr+/v4MHTqU0aNH39IxmjRpwoMPPshbb70FmHuAYmNj+f7773NVk54CExERyZ3k5GQWLVrE119/zc8//2wZRHHNmjVUqVKFmjVrFth7F5mnwFJSUti2bRvt27e3rLOzs6N9+/aEh4ffdH/DMAgLC+PgwYPcc889VtvWrl2Lt7c3tWrVYtCgQVy4cCHf6xcRERFrzs7ODBgwgFWrVlnCT2pqKv3796d27dqWm6ltzcGWb37+/HnS0tLw8fGxWu/j48OBAwey3e/y5ctUqlSJ5ORk7O3tmTFjBvfff79le4cOHXj00UcJDAzk6NGjvPrqq3Ts2JHw8HCrgZ4yJCcnk5ycbHkdFxeXD2cnIiIiABcvXqRJkyacPn2a7777DpPJxDfffGPTmmwagHKrVKlS7Ny5k4SEBMLCwhg+fDjVqlXj3nvvBaBnz56Wtg0aNKBhw4YEBQWxdu1a2rVrl+l4oaGhTJgw4XaVLyIiUqL4+Pjwww8/sH//fiZPnszAgQNtXZJt7wFKSUnBzc2NZcuW0bVrV8v6vn37Ehsbyw8//HBLx3nmmWc4depUphuh/6tChQq8/fbbPPfcc5m2ZdUD5O/vr3uAREREipAicw+Qk5MTTZs2JSwszLIuPT2dsLAwWrZsecvHSU9Ptwow1zt9+jQXLlzAz88vy+3Ozs6ULl3aahEREZHiy+aXwIYPH07fvn1p1qwZLVq0YOrUqSQmJtK/f38A+vTpQ6VKlQgNDQXMl6uaNWtGUFAQycnJLF++nIULFzJz5kwAEhISmDBhAo899hi+vr4cPXqUkSNHUr16dUJCQmx2niIiIlJ42DwA9ejRg3PnzjF27FiioqJo3LgxK1eutNwYffLkSezs/u2oSkxM5IUXXuD06dO4urpSu3ZtFi1aRI8ePQDzcN27du1i/vz5xMbGUrFiRR544AHeeustnJ2dbXKOIiIiUrjYfBygwkjjAImIiBQ9ReYeIBERERFbUAASERGREkcBSEREREocBSAREREpcRSAREREpMRRABIREZESRwFIREREShwFIBERESlxFIBERESkxFEAEhERkRLH5nOBFUYZs4PExcXZuBIRERG5VRnf27cyy5cCUBbi4+MB8Pf3t3ElIiIiklPx8fGUKVPmhm00GWoW0tPTOXv2LKVKlcJkMtm6nAITFxeHv78/p06dKhGTvpak89W5Fk8l6VyhZJ2vzjV/GIZBfHw8FStWxM7uxnf5qAcoC3Z2dlSuXNnWZdw2pUuXLva/cP9Vks5X51o8laRzhZJ1vjrXvLtZz08G3QQtIiIiJY4CkIiIiJQ4CkAlmLOzM+PGjcPZ2dnWpdwWJel8da7FU0k6VyhZ56tzvf10E7SIiIiUOOoBEhERkRJHAUhERERKHAUgERERKXEUgERERKTEUQAqpkJDQ2nevDmlSpXC29ubrl27cvDgwRvuM2/ePEwmk9Xi4uJymyrOm/Hjx2eqvXbt2jfcZ+nSpdSuXRsXFxcaNGjA8uXLb1O1eRMQEJDpXE0mE4MHD86yfVH6XP/44w86d+5MxYoVMZlMfP/991bbDcNg7Nix+Pn54erqSvv27Tl8+PBNjzt9+nQCAgJwcXEhODiYLVu2FNAZ5MyNzjc1NZVRo0bRoEED3N3dqVixIn369OHs2bM3PGZufhduh5t9tv369ctUd4cOHW563ML42d7sXLP6/TWZTLz//vvZHrOwfq638l2TlJTE4MGDKV++PB4eHjz22GNER0ff8Li5/V3PCQWgYmrdunUMHjyYTZs2sXr1alJTU3nggQdITEy84X6lS5cmMjLSspw4ceI2VZx39erVs6r9zz//zLbtxo0beeKJJxgwYAA7duyga9eudO3alT179tzGinNn69atVue5evVqAB5//PFs9ykqn2tiYiKNGjVi+vTpWW5/7733+Pjjj5k1axabN2/G3d2dkJAQkpKSsj3mkiVLGD58OOPGjWP79u00atSIkJAQYmJiCuo0btmNzvfKlSts376dN954g+3bt/Ptt99y8OBBHn744ZseNye/C7fLzT5bgA4dOljVvXjx4hses7B+tjc71/+eY2RkJHPmzMFkMvHYY4/d8LiF8XO9le+a//u//+Onn35i6dKlrFu3jrNnz/Loo4/e8Li5+V3PMUNKhJiYGAMw1q1bl22buXPnGmXKlLl9ReWjcePGGY0aNbrl9t27dzcefPBBq3XBwcHGc889l8+VFbwXX3zRCAoKMtLT07PcXlQ/V8D47rvvLK/T09MNX19f4/3337esi42NNZydnY3Fixdne5wWLVoYgwcPtrxOS0szKlasaISGhhZI3bl1/flmZcuWLQZgnDhxIts2Of1dsIWszrVv375Gly5dcnScovDZ3srn2qVLF+O+++67YZui8LkaRubvmtjYWMPR0dFYunSppc3+/fsNwAgPD8/yGLn9Xc8p9QCVEJcvXwagXLlyN2yXkJBA1apV8ff3p0uXLuzdu/d2lJcvDh8+TMWKFalWrRq9evXi5MmT2bYNDw+nffv2VutCQkIIDw8v6DLzVUpKCosWLeLpp5++4cS9RflzzXD8+HGioqKsPrcyZcoQHByc7eeWkpLCtm3brPaxs7Ojffv2Re6zBvPvsclkwtPT84btcvK7UJisXbsWb29vatWqxaBBg7hw4UK2bYvLZxsdHc0vv/zCgAEDbtq2KHyu13/XbNu2jdTUVKvPqXbt2lSpUiXbzyk3v+u5oQBUAqSnp/PSSy/RqlUr6tevn227WrVqMWfOHH744QcWLVpEeno6d911F6dPn76N1eZOcHAw8+bNY+XKlcycOZPjx49z9913Ex8fn2X7qKgofHx8rNb5+PgQFRV1O8rNN99//z2xsbH069cv2zZF+XP9r4zPJief2/nz50lLSysWn3VSUhKjRo3iiSeeuOEEkjn9XSgsOnTowIIFCwgLC+Pdd99l3bp1dOzYkbS0tCzbF5fPdv78+ZQqVeqml4SKwuea1XdNVFQUTk5OmUL7jT6n3Pyu54Zmgy8BBg8ezJ49e256vbhly5a0bNnS8vquu+6iTp06fPrpp7z11lsFXWaedOzY0fJzw4YNCQ4OpmrVqnz99de39C+rouqLL76gY8eOVKxYMds2RflzFbPU1FS6d++OYRjMnDnzhm2L6u9Cz549LT83aNCAhg0bEhQUxNq1a2nXrp0NKytYc+bMoVevXjd9MKEofK63+l1TWKgHqJgbMmQIP//8M7///juVK1fO0b6Ojo7ccccdHDlypICqKzienp7UrFkz29p9fX0zPYUQHR2Nr6/v7SgvX5w4cYI1a9bwzDPP5Gi/ovq5Znw2OfncvLy8sLe3L9KfdUb4OXHiBKtXr75h709Wbva7UFhVq1YNLy+vbOsuDp/t+vXrOXjwYI5/h6Hwfa7Zfdf4+vqSkpJCbGysVfsbfU65+V3PDQWgYsowDIYMGcJ3333Hb7/9RmBgYI6PkZaWxu7du/Hz8yuACgtWQkICR48ezbb2li1bEhYWZrVu9erVVj0lhd3cuXPx9vbmwQcfzNF+RfVzDQwMxNfX1+pzi4uLY/Pmzdl+bk5OTjRt2tRqn/T0dMLCworEZ50Rfg4fPsyaNWsoX758jo9xs9+Fwur06dNcuHAh27qL+mcL5h7cpk2b0qhRoxzvW1g+15t91zRt2hRHR0erz+ngwYOcPHky288pN7/ruS1eiqFBgwYZZcqUMdauXWtERkZalitXrlja9O7d2xg9erTl9YQJE4xVq1YZR48eNbZt22b07NnTcHFxMfbu3WuLU8iRl19+2Vi7dq1x/PhxY8OGDUb79u0NLy8vIyYmxjCMzOe6YcMGw8HBwZg8ebKxf/9+Y9y4cYajo6Oxe/duW51CjqSlpRlVqlQxRo0alWlbUf5c4+PjjR07dhg7duwwAGPKlCnGjh07LE89TZo0yfD09DR++OEHY9euXUaXLl2MwMBA4+rVq5Zj3Hfffca0adMsr7/66ivD2dnZmDdvnrFv3z5j4MCBhqenpxEVFXXbz+96NzrflJQU4+GHHzYqV65s7Ny50+r3ODk52XKM68/3Zr8LtnKjc42PjzdGjBhhhIeHG8ePHzfWrFljNGnSxKhRo4aRlJRkOUZR+Wxv9t+xYRjG5cuXDTc3N2PmzJlZHqOofK638l3z/PPPG1WqVDF+++0346+//jJatmxptGzZ0uo4tWrVMr799lvL61v5Xc8rBaBiCshymTt3rqVNmzZtjL59+1pev/TSS0aVKlUMJycnw8fHx+jUqZOxffv22198LvTo0cPw8/MznJycjEqVKhk9evQwjhw5Ytl+/bkahmF8/fXXRs2aNQ0nJyejXr16xi+//HKbq869VatWGYBx8ODBTNuK8uf6+++/Z/nfbcb5pKenG2+88Ybh4+NjODs7G+3atcv0d1C1alVj3LhxVuumTZtm+Tto0aKFsWnTptt0Rjd2o/M9fvx4tr/Hv//+u+UY15/vzX4XbOVG53rlyhXjgQceMCpUqGA4OjoaVatWNZ599tlMQaaofLY3++/YMAzj008/NVxdXY3Y2Ngsj1FUPtdb+a65evWq8cILLxhly5Y13NzcjEceecSIjIzMdJz/7nMrv+t5ZfrnjUVERERKDN0DJCIiIiWOApCIiIiUOApAIiIiUuIoAImIiEiJowAkIiIiJY4CkIiIiJQ4CkAiIiJS4igAiYhkw2Qy8f3339u6DBEpAApAIlIo9evXD5PJlGnp0KGDrUsTkWLAwdYFiIhkp0OHDsydO9dqnbOzs42qEZHiRD1AIlJoOTs74+vra7WULVsWMF+emjlzJh07dsTV1ZVq1aqxbNkyq/13797Nfffdh6urK+XLl2fgwIEkJCRYtZkzZw716tXD2dkZPz8/hgwZYrX9/PnzPPLII7i5uVGjRg1+/PFHy7ZLly7Rq1cvKlSogKurKzVq1MgU2ESkcFIAEpEi64033uCxxx7j77//plevXvTs2ZP9+/cDkJiYSEhICGXLlmXr1q0sXbqUNWvWWAWcmTNnMnjwYAYOHMju3bv58ccfqV69utV7TJgwge7du7Nr1y46depEr169uHjxouX99+3bx4oVK9i/fz8zZ87Ey8vr9v0FiEju5evUqiIi+aRv376Gvb294e7ubrW88847hmGYZ49+/vnnrfYJDg42Bg0aZBiGYXz22WdG2bJljYSEBMv2X375xbCzs7PMMl6xYkXjtddey7YGwHj99dctrxMSEgzAWLFihWEYhtG5c2ejf//++XPCInJb6R4gESm02rZty8yZM63WlStXzvJzy5Ytrba1bNmSnTt3ArB//34aNWqEu7u7ZXurVq1IT0/n4MGDmEwmzp49S7t27W5YQ8OGDS0/u7u7U7p0aWJiYgAYNGgQjz32GNu3b+eBBx6ga9eu3HXXXbk6VxG5vRSARKTQcnd3z3RJKr+4urreUjtHR0er1yaTifT0dAA6duzIiRMnWL58OatXr6Zdu3YMHjyYyZMn53u9IpK/dA+QiBRZmzZtyvS6Tp06ANSpU4e///6bxMREy/YNGzZgZ2dHrVq1KFWqFAEBAYSFheWphgoVKtC3b18WLVrE1KlT+eyzz/J0PBG5PdQDJCKFVnJyMlFRUVbrHBwcLDcaL126lGbNmtG6dWu+/PJLtmzZwhdffAFAr169GDduHH379mX8+PGcO3eOoUOH0rt3b3x8fAAYP348zz//PN7e3nTs2JH4+Hg2bNjA0KFDb6m+sWPH0rRpU+rVq0dycjI///yzJYCJSOGmACQihdbKlSvx8/OzWlerVi0OHDgAmJ/Q+uqrr3jhhRfw8/Nj8eLF1K1bFwA3NzdWrVrFiy++SPPmzXFzc+Oxxx5jypQplmP17duXpKQkPvzwQ0aMGIGXlxfdunW75fqcnJwYM2YMERERuLq6cvfdd/PVV1/lw5mLSEEzGYZh2LoIEZGcMplMfPfdd3Tt2tXWpYhIEaR7gERERKTEUQASERGREkf3AIlIkaSr9yKSF+oBEhERkRJHAUhERERKHAUgERERKXEUgERERKTEUQASERGREkcBSEREREocBSAREREpcRSAREREpMRRABIREZES5/8BiG/pcGBB9D0AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8c0lEQVR4nO3dd1QUVxvH8e+CdCkqil3UGFvsBbuJvWHvxm6MisZY8trFEktiYkzsGmtsRGOLNYq9d2PvvSEWEJS69/1j4hoCqCAwwD6fc/ZkZ3Z29hkmuD/u3LnXoJRSCCGEEEKYEQu9CxBCCCGESGoSgIQQQghhdiQACSGEEMLsSAASQgghhNmRACSEEEIIsyMBSAghhBBmRwKQEEIIIcyOBCAhhBBCmB0JQEIIIYQwOxKAhBBCCGF2JAAJIaIwGAzv9di1a9cHf9bLly8ZNWpUvPa1adMmDAYDWbNmxWg0fnAtQgjzkkbvAoQQyctvv/0WZXnx4sVs27Yt2vqCBQt+8Ge9fPmS0aNHA/Dpp5/G6b1Lly7F3d2dmzdvsmPHDmrUqPHB9QghzIcEICFEFJ9//nmU5UOHDrFt27Zo6/UUHBzMunXrmDBhAgsWLGDp0qXJNgAFBwfj4OCgdxlCiP+QS2BCiDgzGo1MmTKFwoULY2tri5ubG19++SXPnj2Lst2xY8eoXbs2rq6u2NnZkTt3brp06QLAzZs3yZgxIwCjR482XVobNWrUOz9/zZo1vHr1ihYtWtC6dWtWr15NSEhItO1CQkIYNWoUH3/8Mba2tmTJkoWmTZty7dq1KMfy888/U6RIEWxtbcmYMSN16tTh2LFjpjoNBgMLFy6Mtv//1jtq1CgMBgPnz5+nbdu2pEuXjkqVKgHw999/06lTJ/LkyYOtrS2ZM2emS5cuPHnyJNp+7927R9euXcmaNSs2Njbkzp2bnj17EhYWxvXr1zEYDPz000/R3nfgwAEMBgPLly9/589QCHMnLUBCiDj78ssvWbhwIZ07d+arr77ixo0bTJs2jZMnT7J//36srKzw8/OjVq1aZMyYkcGDB+Pi4sLNmzdZvXo1ABkzZmTmzJn07NmTJk2a0LRpUwCKFi36zs9funQpn332GZkzZ6Z169YMHjyYP//8kxYtWpi2iYyMpEGDBvj6+tK6dWv69u3Lixcv2LZtG2fPniVv3rwAdO3alYULF1K3bl26detGREQEe/fu5dChQ5QuXTpeP58WLVqQL18+xo8fj1IKgG3btnH9+nU6d+5M5syZOXfuHHPmzOHcuXMcOnQIg8EAwP379ylbtizPnz+ne/fuFChQgHv37rFq1SpevnxJnjx5qFixIkuXLqVfv37Rfi6Ojo40atQoXnULYVaUEEK8hZeXl/r3PxV79+5VgFq6dGmU7bZs2RJl/Zo1axSgjh49Guu+Hz9+rADl7e393vU8evRIpUmTRs2dO9e0rkKFCqpRo0ZRtps/f74C1OTJk6Ptw2g0KqWU2rFjhwLUV199Fes2N27cUIBasGBBtG3+W7u3t7cCVJs2baJt+/Lly2jrli9frgC1Z88e07oOHTooCwuLGH9ur2uaPXu2AtSFCxdMr4WFhSlXV1fVsWPHaO8TQkQnl8CEEHGycuVKnJ2dqVmzJv7+/qZHqVKlSJs2LTt37gTAxcUFgA0bNhAeHp5gn79ixQosLCxo1qyZaV2bNm3YvHlzlEtwf/zxB66urvTp0yfaPl63tvzxxx8YDAa8vb1j3SY+evToEW2dnZ2d6XlISAj+/v6UK1cOgBMnTgDa5bi1a9fi6ekZY+vT65patmyJra0tS5cuNb22detW/P39k1VfLSGSMwlAQog4uXLlCgEBAWTKlImMGTNGeQQFBeHn5wdA1apVadasGaNHj8bV1ZVGjRqxYMECQkNDP+jzlyxZQtmyZXny5AlXr17l6tWrlChRgrCwMFauXGna7tq1a+TPn580aWK/0n/t2jWyZs1K+vTpP6im/8qdO3e0dU+fPqVv3764ublhZ2dHxowZTdsFBAQA8PjxYwIDA/nkk0/eun8XFxc8PT1ZtmyZad3SpUvJli0b1apVS8AjESL1kj5AQog4MRqNZMqUKUrrw7+97thsMBhYtWoVhw4d4s8//2Tr1q106dKFH3/8kUOHDpE2bdo4f/aVK1c4evQoAPny5Yv2+tKlS+nevXuc9/s2sbUERUZGxvqef7f2vNayZUsOHDjAN998Q/HixUmbNi1Go5E6derEaxyjDh06sHLlSg4cOECRIkVYv349vXr1wsJC/q4V4n1IABJCxEnevHnZvn07FStWjPGL/r/KlStHuXLlGDduHMuWLaNdu3asWLGCbt26xfky09KlS7GysuK3337D0tIyymv79u3jl19+4fbt2+TMmZO8efNy+PBhwsPDsbKyivVYtm7dytOnT2NtBUqXLh0Az58/j7L+1q1b7133s2fP8PX1ZfTo0YwcOdK0/sqVK1G2y5gxI05OTpw9e/ad+6xTpw4ZM2Zk6dKleHh48PLlS9q3b//eNQlh7uRPBSFEnLRs2ZLIyEjGjh0b7bWIiAhTUHj27JnpDqjXihcvDmC6DGZvbw9EDxexWbp0KZUrV6ZVq1Y0b948yuObb74BMN0C3qxZM/z9/Zk2bVq0/byuq1mzZiilTIMxxrSNk5MTrq6u7NmzJ8rrM2bMeK+aAVNY++/PY8qUKVGWLSwsaNy4MX/++afpNvyYagJIkyYNbdq04ffff2fhwoUUKVLkve6gE0JopAVICBEnVatW5csvv2TChAmcOnWKWrVqYWVlxZUrV1i5ciU///wzzZs3Z9GiRcyYMYMmTZqQN29eXrx4wdy5c3FycqJevXqAdqmoUKFC+Pj48PHHH5M+fXo++eSTGPvAHD58mKtXr9K7d+8Y68qWLRslS5Zk6dKlDBo0iA4dOrB48WL69+/PkSNHqFy5MsHBwWzfvp1evXrRqFEjPvvsM9q3b88vv/zClStXTJej9u7dy2effWb6rG7dujFx4kS6detG6dKl2bNnD5cvX37vn5mTkxNVqlTh+++/Jzw8nGzZsvHXX39x48aNaNuOHz+ev/76i6pVq9K9e3cKFizIgwcPWLlyJfv27TN1LgftMtgvv/zCzp07+e677967HiEEchu8EOLt/nsb/Gtz5sxRpUqVUnZ2dsrR0VEVKVJE/e9//1P3799XSil14sQJ1aZNG5UzZ05lY2OjMmXKpBo0aKCOHTsWZT8HDhxQpUqVUtbW1m+9Jb5Pnz4KUNeuXYu11lGjRilAnT59Wiml3Xo+bNgwlTt3bmVlZaUyZ86smjdvHmUfERERatKkSapAgQLK2tpaZcyYUdWtW1cdP37ctM3Lly9V165dlbOzs3J0dFQtW7ZUfn5+sd4G//jx42i13b17VzVp0kS5uLgoZ2dn1aJFC3X//v0Yj/nWrVuqQ4cOKmPGjMrGxkblyZNHeXl5qdDQ0Gj7LVy4sLKwsFB3796N9ecihIjOoNR/2mSFEEKkGCVKlCB9+vT4+vrqXYoQKYr0ARJCiBTq2LFjnDp1ig4dOuhdihApjrQACSFECnP27FmOHz/Ojz/+iL+/P9evX8fW1lbvsoRIUaQFSAghUphVq1bRuXNnwsPDWb58uYQfIeJBWoCEEEIIYXakBUgIIYQQZkcCkBBCCCHMjgyEGAOj0cj9+/dxdHT8oBmhhRBCCJF0lFK8ePGCrFmzvnNePAlAMbh//z45cuTQuwwhhBBCxMOdO3fInj37W7eRABQDR0dHQPsBOjk56VyNEEIIId5HYGAgOXLkMH2Pv40EoBi8vuzl5OQkAUgIIYRIYd6n+4p0ghZCCCGE2ZEAJIQQQgizIwFICCGEEGZH+gB9gMjISMLDw/UuQ7wHKysrLC0t9S5DCCFEMiEBKB6UUjx8+JDnz5/rXYqIAxcXFzJnzixjOwkhhJAAFB+vw0+mTJmwt7eXL9RkTinFy5cv8fPzAyBLliw6VySEEEJvEoDiKDIy0hR+MmTIoHc54j3Z2dkB4OfnR6ZMmeRymBBCmDnpBB1Hr/v82Nvb61yJiKvX50z6bQkhhJAAFE9y2SvlkXMmhBDiNQlAQgghhDA7EoDEB3F3d2fKlCl6lyGEEELEiQQgM2EwGN76GDVqVLz2e/ToUbp37/5Btd24cYO2bduSNWtWbG1tyZ49O40aNeLixYvvvY9OnTrRuHHjD6pDCCGE+ZC7wMzEgwcPTM99fHwYOXIkly5dMq1Lmzat6blSisjISNKkeff/HhkzZvygusLDw6lZsyb58+dn9erVZMmShbt377J582YZZ0kIIVKpyMhI3e/GlRYgM5E5c2bTw9nZGYPBYFq+ePEijo6ObN68mVKlSmFjY8O+ffu4du0ajRo1ws3NjbRp01KmTBm2b98eZb//vQRmMBj49ddfadKkCfb29uTLl4/169fHWte5c+e4du0aM2bMoFy5cuTKlYuKFSvy7bffUq5cOdN2d+7coWXLlri4uJA+fXoaNWrEzZs3ARg1ahSLFi1i3bp1phatXbt2JeSPTwghxAdQSnHixAlGjBhBkSJF+P777/UuSQJQQgoODo71ERIS8t7bvnr16p3bJobBgwczceJELly4QNGiRQkKCqJevXr4+vpy8uRJ6tSpg6enJ7dv337rfkaPHk3Lli35+++/qVevHu3atePp06cxbpsxY0YsLCxYtWoVkZGRMW4THh5O7dq1cXR0ZO/evezfv5+0adNSp04dwsLCGDhwIC1btqROnTo8ePCABw8eUKFChQ/+eQghhPhwv/76K7ly5aJUqVJ8++23nD179q1/GCcZJaIJCAhQgAoICIj22qtXr9T58+fVq1evor0GxPqoV69elG3t7e1j3bZq1apRtnV1dY22zYdYsGCBcnZ2Ni3v3LlTAWrt2rXvfG/hwoXV1KlTTcu5cuVSP/30k2kZUMOHDzctBwUFKUBt3rw51n1OmzZN2dvbK0dHR/XZZ5+pMWPGqGvXrple/+2331T+/PmV0Wg0rQsNDVV2dnZq69atSimlOnbsqBo1avTW2t927oQQQny44OBgtWbNGnX37l3Tuvnz5ytA2dvbq6ZNm6rffvtNPXnyJFE+/23f3/8lLUDCpHTp0lGWg4KCGDhwIAULFsTFxYW0adNy4cKFd7YAFS1a1PTcwcEBJycn0zQUMfHy8uLhw4csXbqU8uXLs3LlSgoXLsy2bdsAOH36NFevXsXR0ZG0adOSNm1a0qdPT0hICNeuXfuAIxZCCPGhnjx5wsKFC2ncuDGurq40adKE33//3fR6o0aNWL9+Pf7+/vzxxx98/vnnpE+fXseKNdIJOgEFBQXF+tp/O3u9LRBYWETNpa/7uiQ2BweHKMsDBw5k27Zt/PDDD3z00UfY2dnRvHlzwsLC3rofKyurKMsGgwGj0fjW9zg6OuLp6YmnpyfffvsttWvX5ttvv6VmzZoEBQVRqlQpli5dGu19H9oJWwghRNy9ePGC+fPns3btWvbs2RPl33h3d3dsbW1Ny+nTp8fT01OPMt9KAlAC+m+A0GPbhLR//346depEkyZNAC3gJUUYMxgMFChQgAMHDgBQsmRJfHx8yJQpE05OTjG+x9raOtY+REIIIT6MUoqnT5+a5sC0sLBg8ODBpv6txYsXp3HjxjRu3JiiRYumiJH35RKYiFW+fPlYvXo1p06d4vTp07Rt2/adLTlxderUKRo1asSqVas4f/48V69eZd68ecyfP59GjRoB0K5dO1xdXWnUqBF79+7lxo0b7Nq1i6+++oq7d+8C2l8cf//9N5cuXcLf31/m+xJCiA8UGRnJ3r17GTBgAB999BHVq1c3vebg4MCAAQP46aefuH79OidPnsTb25tixYqliPAD0gIk3mLy5Ml06dKFChUq4OrqyqBBgwgMDEzQz8iePTvu7u6MHj2amzdvYjAYTMv9+vUDtElM9+zZw6BBg2jatCkvXrwgW7ZsVK9e3dQi9MUXX7Br1y5Kly5NUFAQO3fu5NNPP03QWoUQwhycPHmSWbNmsWbNGh4/fmxab2try+PHj01dD7799lu9SkwQBqWU0ruI5CYwMBBnZ2cCAgKiXXIJCQnhxo0b5M6dO8o1TpH8ybkTQoi3GzhwID/++KNp2cXFBU9PTxo3bkzt2rV165Lxvt72/f1fcglMCCGEMFN37tzB39/ftPzpp5+SJk0aWrduzV9//YWfnx+LFy+madOmyT78xJUEICGEEMKMKKXYvn07TZo0wd3dnZ9//tn0Wt26dblz5w7Lly+nZs2a0e7qTU2kD5AQQghhBgICAli0aBEzZsyIMhfk1atXTc8tLS3JnDmzHuUlOQlAQgghRCr3zTffMHPmTNNUSmnTpqVjx4706tWLQoUK6VydPiQACSGEEKlMeHg4adKkMd2SHhQURHBwMIUKFcLLy4vPP//8nZ2EUzvpAySEEEKkEvfv32fUqFHkypWLI0eOmNYPHDiQnTt3cvbsWXr16mX24QekBUgIIYRI0ZRS7Nmzh+nTp7NmzRoiIiIAWLRoER4eHgDkzZuXvHnz6llmsiMBSAghhEiBwsLCmD9/PtOnT+fs2bOm9ZUqVcLLy4umTZvqWF3yJwFICCGESIEsLS2ZOHEit27dwt7ens8//5xevXpRrFgxvUtLESQACSGEEMlcREQEf/75J8uXL2fJkiVYW1tjaWmJt7c3AQEBdOrUCRcXF73LTFGkE7SZMBgMb32MGjXqg/a9du3ad263e/duqlWrRvr06bG3tydfvnx07NiRsLCw9/4sd3d3pkyZEu9ahRAiJXn06BHjxo0jT548NG3alJUrV7JmzRrT6507d+brr7+W8BMPySIATZ8+HXd3d2xtbfHw8IjScz0mU6ZMIX/+/NjZ2ZEjRw769etHSEiI6XV3d/cYv+S9vLwS+1CSrQcPHpgeU6ZMwcnJKcq6gQMHJurnnz9/njp16lC6dGn27NnDmTNnmDp1KtbW1kRGRibqZwshREqilOLAgQO0a9eOHDlyMHz4cO7cuYOrqyuDBw+mQoUKepeYOiidrVixQllbW6v58+erc+fOqS+++EK5uLioR48exbj90qVLlY2NjVq6dKm6ceOG2rp1q8qSJYvq16+faRs/Pz/14MED02Pbtm0KUDt37nyvmgICAhSgAgICor326tUrdf78efXq1at4HW9ysGDBAuXs7Bxl3dy5c1WBAgWUjY2Nyp8/v5o+fbrptdDQUOXl5aUyZ86sbGxsVM6cOdX48eOVUkrlypVLAaZHrly5YvzMn376Sbm7u7+ztr1796pKlSopW1tblT17dtWnTx8VFBSklFKqatWqUT4rrv/7poZzJ4RI/c6fPx/l3zkPDw+1ePFi+bfrPbzt+/u/dA9AZcuWVV5eXqblyMhIlTVrVjVhwoQYt/fy8lLVqlWLsq5///6qYsWKsX5G3759Vd68eZXRaHyvmuIcgIxGpYKCkv7xnsfzX/8NQEuWLFFZsmRRf/zxh7p+/br6448/VPr06dXChQuVUkpNmjRJ5ciRQ+3Zs0fdvHlT7d27Vy1btkwppYVNQC1YsEA9ePBA+fn5xfiZy5cvVzY2Nmr37t2x1nX16lXl4OCgfvrpJ3X58mW1f/9+VaJECdWpUyellFJPnjxR2bNnV2PGjDGF27iQACSESI6uXLli+jf1tRo1aqjOnTurY8eO6VRVypRiAlBoaKiytLRUa9asibK+Q4cOqmHDhjG+Z+nSpcrZ2VkdPnxYKaXUtWvXVIECBdS4ceNi/YwMGTLE+rpSSoWEhKiAgADT486dO3ELQEFBSkHSP/5pGYmr/wagvHnzRvvlGzt2rCpfvrxSSqk+ffqoatWqxRoggWjn8L8iIiJUp06dFKAyZ86sGjdurKZOnRrlZ9y1a1fVvXv3KO/bu3evsrCwMP28c+XKpX766af3PNKoJAAJIZKLiIgItX79elWnTh0FKBsbG/X48WPT6+/7B3uiuH9fqV69lBoyRKkbN/SrIx5STAC6d++eAtSBAweirP/mm29U2bJlY33fzz//rKysrFSaNGkUoHr06BHrtj4+PsrS0lLdu3cv1m28vb2jXVoxlwAUFBSkAGVnZ6ccHBxMDxsbG5UpUyallFLHjx9X6dOnV/ny5VN9+vRRW7dujbK/9wlAr929e1ctXrxYeXl5qSxZsqjs2bOr+/fvK6WUKl26tLK2to5Sh729vQLU+fPnlVISgIQQKdvjx4/VxIkTlbu7u+m7xmAwqLp166orV67oW1xkpFIzZijl5PTme8ZgUKpBA6U2b9ZeT+biEoBS3G3wu3btYvz48cyYMQMPDw+uXr1K3759GTt2LCNGjIi2/bx586hbty5Zs2aNdZ9Dhgyhf//+puXAwEBy5Mjx/kXZ20NQUJyOI0HY23/wLoL+qXvu3LmmEUNfs7S0BKBkyZLcuHGDzZs3s337dlq2bEmNGjVYtWpVnD8vW7ZstG/fnvbt2zN27Fg+/vhjZs2axejRowkKCuLLL7/kq6++iva+nDlzxuPohBAi+Vi/fj0tW7YkNDQUgHTp0tG1a1d69Oih/yjNZ85A9+5w6JC2XLo0pE8Pf/0FGzZoj48+gp49oXNnSJdO33oTgK4ByNXVFUtLSx49ehRl/aNHj8icOXOM7xkxYgTt27enW7duABQpUoTg4GC6d+/OsGHDsLB4c2PbrVu32L59O6tXr35rHTY2NtjY2MT/QAwGcHCI//t15ObmRtasWbl+/Trt2rWLdTsnJydatWpFq1ataN68OXXq1OHp06ekT58eKyureN3JlS5dOrJkyWKanbhkyZKcP3+ejz76KNb3yF1jQoiUIiQkhEePHpErVy4APDw8MBqNlCxZkt69e9O6dWvs7Oz0LfLlSxg7Fn74ASIiIG1aGD8eevUCS0u4fBlmzICFC+HqVRgwAIYPh7ZtwcsLSpTQt/4PoOtt8NbW1pQqVQpfX1/TOqPRiK+vL+XLl4/xPS9fvowScuBNS4VSKsr6BQsWkClTJurXr5/Alacuo0ePZsKECfzyyy9cvnyZM2fOsGDBAiZPngzA5MmTWb58ORcvXuTy5cusXLmSzJkzm8adcHd3x9fXl4cPH/Ls2bMYP2P27Nn07NmTv/76i2vXrnHu3DkGDRrEuXPn8PT0BGDQoEEcOHCA3r17c+rUKa5cucK6devo3bu3aT/u7u7s2bOHe/fu4e/vn7g/GCGEiAej0cjUqVPJnj07HTt2NK13c3PjwoULHDt2jM6dO+sffv76C4oUgYkTtfDTpAlcuAB9+mjhB+Djj2HKFLh3D2bPhqJF4dUrmDcPSpaEChVg2TL4p1UrRUn8K3Jvt2LFCmVjY6MWLlyozp8/r7p3765cXFzUw4cPlVJKtW/fXg0ePNi0vbe3t3J0dFTLly9X169fV3/99ZfKmzevatmyZZT9RkZGqpw5c6pBgwbFuSZzvA1+6dKlqnjx4sra2lqlS5dOValSRa1evVoppdScOXNU8eLFlYODg3JyclLVq1dXJ06cML13/fr16qOPPlJp0qSJ9Tb4EydOqM8//1zlzp1b2djYqAwZMqgqVaqo9evXR9nuyJEjqmbNmipt2rTKwcFBFS1aNEoH9oMHD6qiRYsqGxsbuQ1eCJHs3LhxQ3322Wem/j05c+ZUz54907usqB4+VKpt2zf9fLJnV2rt2vd7r9Go1N69SrVurVSaNG/2kSmTUsOGKXX7duLW/g4pphP0a1OnTlU5c+ZU1tbWqmzZsurQoUOm16pWrao6duxoWg4PD1ejRo1SefPmVba2tipHjhyqV69e0f4H27p1qwLUpUuX4lxPag9A5krOnRAisRiNRvXrr78qR0dHBSh7e3s1ffp0FRERoXdpb0RGKjV3rlLp0mmhxcJCqb59lQoMjN/+HjxQaswYpbJlexOELCyUatJEqe3b4z1Uy4eISwAyKPWf60aCwMBAnJ2dCQgIwMnJKcprISEh3Lhxg9y5c2Nra6tThSI+5NwJIRLDkydP6NChA5s2bQKgYsWKLFy48K39GZPchQvw5Zewd6+2XKIEzJmjdXb+UOHhsH49TJ8OO3e+WV+ggNaXqEMHcHb+8M95D2/7/v6vZDEVhhBCCJFSOTg4cOvWLWxsbJg0aRK7d+9OPuEnJARGjoRixbTw4+AAkyfDkSMJE34ArKygWTPYsQPOndM6R6dNCxcvwldfQbZs2t1jZ88mzOclEGkBioG0AKVOcu6EEAnF398fFxcX0qTRbqY+c+YMFhYWFC5cWOfK/mXHDujRA65c0ZYbNIBp0+Cfu9IS1YsX8NtvWqvQ+fNv1lepogWkJk204JTApAVICCGESCRr166lcOHCTJo0ybSuSJEiySf8+PtDp05QvboWfrJkgVWrtMtUSRF+ABwdtctfZ89ql8WaN9fuLNuzB1q10uqYMCFpaomFBKB4koazlEfOmRDiQzx//pyOHTvSpEkT/Pz8WLVqFREREXqX9YZS2ng9BQrAokXaGHVeXlr/n2bNtOWkZjDAp5/CypVw8yaMGAFubvDggVaXjiQAxZHVP012L1++1LkSEVevz5lVIjS7CiFSt7/++otPPvmExYsXY2FhYRq37PUlMN1dvqy1+HTuDE+eaOP1HDigXfJKog7I75Q9O4wZA7dvw/LlMHCgruUkkzOXclhaWuLi4oKfnx8A9vb2GPRI1eK9KaV4+fIlfn5+uLi4mAbOFEKIdwkKCuKbb75h1qxZAHz00UcsWrSIChUq6FzZP0JD4bvvYNw4CAsDOzsYNQr69UuUPjYJwtoaWrfWuwoJQPHxepqO1yFIpAwuLi6xTrEihBAxuXPnDgsWLACgT58+TJgwAYfkMvXR3r3a/F0XL2rLdepo01bkzq1vXSmEBKB4MBgMZMmShUyZMhEeHq53OeI9WFlZScuPEOK9GI1G05RLBQsWZMaMGbi7u1OtWjWdK0Pr53PoEPzyC6xYoa1zc4Off4aWLfXp55NCSQD6AJaWlvKlKoQQqcjRo0fp0qULc+fOpVy5cgB06dJF56rQJi1dtkxr4Tl58s36L7/U7qZKBbOzJzXpBC2EEMLshYWFMWLECMqXL8/Zs2cZPHiw3iVprl6F/v21wQS/+EILP7a2WmfnEydg1iwJP/EkLUBCCCHM2t9//02HDh04ffo0AG3atGHq1Kn6FRQZCZs3a4MIbtnyZn2ePNqIyp07Q4YM+tWXSkgAEkIIYZYiIiKYNGkS3t7ehIeHkyFDBmbOnEmLFi30KcjfH+bPh5kztTFzQOvTU7euNp5PnTpgIRduEooEICGEEGZpzZo1DB06FIBGjRoxe/Zs3Nzckr6Qo0e11p4VK7Tb2kG7rNW1qzaVRd68SV+TGZAAJIQQwiw1b96cVq1aUa9ePdq3b5+0Y7qFhICPjxZ8jh59s75kSejdWxsnx84u6eoxQxKAhBBCmI0rV66QM2dObGxsMBgMrHh9K3lSuXlTu8Q1b542YjNoAwO2bKld5vLwkFvZk4gEICGEEGbh6NGj1KlTh6pVq/L7778n3TQWRiP89ZfW2rNxozaWD0DOnNolrq5dIVOmpKlFmEgAEkIIkert2rULT09PgoKCePDgAcHBwTgn9hxZz57BggVai8/Vq2/W16yptfY0aKDNkC50IQFICCFEqrZx40aaN29OSEgI1apVY926daRNmzbxPvDkSa21Z9kyePVKW+fsDJ06Qa9e8PHHiffZ4r1JABJCCJFq+fj48PnnnxMREUHDhg3x8fHB1tY24T8oNBRWrdKCz8GDb9YXLaq19rRrB8llDjEBSAASQgiRSi1cuJAuXbqglKJt27YsXLgQq4SeIf3OHW005l9/hdcTZKdJA82ba8GnYkXp1JxMSQASQgiRKuXLlw87Ozs6dOjA9OnTTROcfjClYMcOmDYN1q/XOjkDZM2qdWr+4gvInDlhPkskGglAQgghUqWKFSty4sQJPv7444QZ4ycgABYt0iYkvXTpzfrPPtNaexo2hIRuYRKJRsbUFkIIkSoYjUaGDBnCqVOnTOvy58//4eHnzBmtZSdbNujbVws/adNqoefcOa01qFkzCT8pjLQACSGESPEiIiL44osvWLhwIQsWLODy5cs4OTnFf4fh4bBmjdapec+eN+sLFtSCT/v28CH7F7qTACSEECJFCw0NpV27dvzxxx9YWlryww8/xD/83L8Pc+ZojwcPtHWWltC4sRZ8Pv1UOjWnEhKAhBBCpFjBwcE0bdqUv/76C2tra3x8fGjcuHHcdqKU1sozfbrW6hMRoa13c4Pu3bVH9uwJXrvQlwQgIYQQKVJAQAD169dn//792Nvbs27dOmrUqPH+O3jxApYs0YLPuXNv1leqpLX2NG2qzdMlUiUJQEIIIVKkkSNHsn//fpydndm0aRMVKlR4/ze/7rj8/Lm2bG8Pn3+ujdRcrFii1CuSFwlAQgghUqRx48Zx69YtRo0aRfHixd//jQcOaLesBwdDvnxaa0/HjuDiklilimRIApAQQogUw9/fnwwZMmAwGEibNi1r166N2w6OH4e6dbXwU6uWNpChjU2i1CqSNxkHSAghRIpw9uxZihQpwrhx4+K7Ay30BAZClSpah2cJP2ZLApAQQohk78iRI1StWpWHDx+ycuVKXr2eZf19Xb4MNWrA06dQtixs2KD1+xFmSwKQEEKIZG3Xrl1Ur16dp0+fUq5cOXbt2oWdnd377+DmTaheHR490jo4b9kCjo6JVq9IGSQACSGESLY2bNhAnTp1CAoKolq1amzbto106dK9/w7u39fCz927UKAA/PUXxOX9ItWSACSEECJZWrVqFU2aNCE0NJSGDRuyceNG0qZN+/47ePxYu+x1/TrkyQPbt0OmTIlXsEhRJAAJIYRIliwtLYmIiKBdu3asWrUKW1vb93/zs2dQsyZcuKCN4uzrq01mKsQ/JAAJIYRIFoxGI5cvXzYtN2nShMWLF7N48WKs4jLT+osX2q3up09r01n4+oK7e8IXLFI0CUBCCCF0d/78eapWrUr58uV5/PixaX379u2xsIjDV9XLl9CgARw+DOnTa5e9Pv44ESoWKZ0EICGEELoJCQlhxIgRFC9enH379hEaGsrx48fjt7PQUGjSRJvY1MlJ6/D8yScJW7BINWQkaCGEELrYsWMHPXr04MqVKwB4enoybdo0cubMGfedhYdDq1Za6LG3h02boFSpBK5YpCYSgIQQQiQpo9FI165dWbhwIQBZsmRh6tSpNG3aFIPBEPcdRkZChw6wbp02svP69VCxYsIWLVIduQQmhBAiSVlYWGBnZ4fBYKBXr15cuHCBZs2axS/8GI3QvTusWAFWVvDHH9q4P0K8g0EppfQuIrkJDAzE2dmZgIAAnJyc9C5HCCFSvMuXL2NlZUXu3LkBCAgI4MKFC5QrVy7+O1UK+vaFqVPBwgJ8fKB58wSqWKREcfn+lhYgIYQQiSY0NJSxY8dStGhRunXrxuu/uZ2dnT88/AwdqoUfgwEWLpTwI+JE9wA0ffp03N3dsbW1xcPDgyNHjrx1+ylTppA/f37s7OzIkSMH/fr1IyQkJMo29+7d4/PPPydDhgzY2dlRpEgRjh07lpiHIYQQ4j/27t1L8eLFGTlyJKGhoVhZWREUFJQwOx83DiZO1J7PnAnt2yfMfoXZ0DUA+fj40L9/f7y9vTlx4gTFihWjdu3a+Pn5xbj9smXLGDx4MN7e3ly4cIF58+bh4+PD0KFDTds8e/aMihUrYmVlxebNmzl//jw//vhj3OaOEUIIEW9Pnz6lW7duVKlShYsXL+Lm5sby5cvZvHkzjgkxCelPP8GIEdrzyZPhyy8/fJ/C7OjaB8jDw4MyZcowbdo0QLszIEeOHPTp04fBgwdH2753795cuHABX19f07oBAwZw+PBh9u3bB8DgwYPZv38/e/fujXdd0gdICCHi58yZM1SvXt00mGH37t2ZOHFiwv0ROns29OihPR87FoYPT5j9ilQhRfQBCgsL4/jx49SoUeNNMRYW1KhRg4MHD8b4ngoVKnD8+HHTZbLr16+zadMm6tWrZ9pm/fr1lC5dmhYtWpApUyZKlCjB3Llz31pLaGgogYGBUR5CCCHiLn/+/Li6ulKoUCH27t3L7NmzEy78/PYb9OypPR88GIYNS5j9CrOkWwDy9/cnMjISNze3KOvd3Nx4+PBhjO9p27YtY8aMoVKlSlhZWZE3b14+/fTTKJfArl+/zsyZM8mXLx9bt26lZ8+efPXVVyxatCjWWiZMmICzs7PpkSNHjoQ5SCGESOXCw8OZNWsW4eHhAFhbW7Np0yZOnjxJpUqVEu6DVq2CTp20zs99+sD48VrnZyHiSfdO0HGxa9cuxo8fz4wZMzhx4gSrV69m48aNjB071rSN0WikZMmSjB8/nhIlStC9e3e++OILZs2aFet+hwwZQkBAgOlx586dpDgcIYRI0Q4ePEjJkiXp2bMnkydPNq13d3fH2to64T5o40Zo00Yb86dLF5gyRcKP+GC6jQTt6uqKpaUljx49irL+0aNHZM6cOcb3jBgxgvbt29OtWzcAihQpQnBwMN27d2fYsGFYWFiQJUsWChUqFOV9BQsW5I8//oi1FhsbG2xsbD7wiIQQwjw8f/6cIUOGMHv2bJRSuLq6xm/6ivexYwc0awYREVoImjNHG/NHiA+k2/9F1tbWlCpVKkqHZqPRiK+vL+XLl4/xPS9fvow2K7ClpSWAaWyJihUrcunSpSjbXL58mVy5ciVk+UIIYXaUUvz+++8ULFiQWbNmoZSic+fOXLx4kTZt2iT8Bx44AA0bapOcNmoEixbBP//mC/HBlI5WrFihbGxs1MKFC9X58+dV9+7dlYuLi3r48KFSSqn27durwYMHm7b39vZWjo6Oavny5er69evqr7/+Unnz5lUtW7Y0bXPkyBGVJk0aNW7cOHXlyhW1dOlSZW9vr5YsWfLedQUEBChABQQEJNzBCiFECjd8+HAFKEB9/PHHaufOnYn3YceOKeXkpBQoVbu2UiEhifdZItWIy/e3rgFIKaWmTp2qcubMqaytrVXZsmXVoUOHTK9VrVpVdezY0bQcHh6uRo0apfLmzatsbW1Vjhw5VK9evdSzZ8+i7PPPP/9Un3zyibKxsVEFChRQc+bMiVNNEoCEECK6CxcuKEdHR+Xt7a1CEjOQnDmjVPr0WvipUkWp4ODE+yyRqsTl+1vmAouBjAMkhBBw9OhR9u3bR79+/Uzrnj9/jouLS+J96OXLUKUKPHoEHh6wbRskxOCJwiykiHGAhBBCJE+BgYF89dVXeHh4MGDAAI4ePWp6LVHDz82b2kzujx5B8eKwebOEH5FodLsLTAghRPKzdu1aevfuzb179wD4/PPPk+Ymknv3tPBz9y4ULAh//QUyhZFIRBKAhBBCcOfOHfr06cO6desAyJs3LzNnzqRmzZqJ/+F+flCjBly/DnnywPbtkDFj4n+uMGsSgIQQwsyFh4dTsWJF7ty5Q5o0afjf//7H8OHDsbOzS/wPf/oUatWCixchRw7w9YWsWRP/c4XZkz5AQghh5qysrBg+fDgVKlTg1KlTjBs3LmnCT2Ag1K0Lp0+Dm5vW8uPunvifKwQ6zwafXMldYEKI1CwoKAhvb28+++wzGjRoAGgD0QLRBptNNC9fauFnzx7IkAF27YJPPkmazxapltwFJoQQIkYbNmygcOHCTJ48GS8vL0JCQgAt+CRZ+AkNhSZNtPDj5ARbt0r4EUlOApAQQpiB+/fv06JFCzw9Pbl9+za5cuVi1qxZ2NraJm0h4eHQqpV2l5eDg3are6lSSVuDEEgAEkKIVC0yMpIZM2ZQsGBBVq1ahaWlJd988w3nzp2jbt26SV0MdOgA69aBjQ2sXw8VKiRtDUL8Q+4CE0KIVGzfvn14eXkBULZsWebMmUOxYsWSvhCjEbp3hxUrwMoKVq+GatWSvg4h/iEBSAghUpknT56QIUMGAKpWrUqXLl0oUaIEPXv2xFKP2dSVgr59Yf58sLCAZcugXr2kr0OIf5FLYEIIkUpcvXrVNHLzgwcPTOvnzZtH79699Qs/Q4bAtGlgMMDChdC8edLXIcR/SAASQogU7t69e/To0YOCBQuydOlSgoOD2bhxo95lab79Fr77Tns+cya0b69vPUL8QwKQEEKkUI8fP2bAgAHkzZuX2bNnExERQd26dTl+/DjdunXTuzyYPBlGjnzz/Msv9a1HiH+RPkBCCJECvXr1isKFC/P48WMAKlWqxPjx46lcubLOlf1j1iwYMEB7PnYs9Ounbz1C/Ie0AAkhRAoRFhZmem5nZ0f79u0pUaIEmzdvZs+ePckn/CxeDD17as8HD4Zhw/StR4gYSAASQohkLiwsjJkzZ5I7d26OHDliWv/tt99y7Ngx6tSpg8Fg0LHCf1m5Ejp31p736QPjx2udn4VIZiQACSFEMhUZGcnixYspUKAAvXr14v79+0ydOtX0up2dXdJNX/E+Nm6Etm21MX+6dIEpUyT8iGQrGf3mCCGEAFBKsXr1aooWLUrHjh25ceMGbm5uTJs2jV9//VXv8mLm6wvNmkFEBLRpA3PmaGP+CJFMSSdoIYRIZpo2bcratWsBSJcuHYMGDaJ37944ODjoW1hs9u+Hhg21SU4bNYJFi0CPMYeEiAOJ50IIkQwopUzP69ati4ODAyNGjOD69esMGjQo+YafY8e0UZ1fvoTatcHHR5vqQohkTgKQEELo6NSpU9SvX58lS5aY1nXu3Jnr168zZswYXFxc9CvuXc6c0UJPYCBUqaLN72Vjo3dVQrwXCUBCCKGDS5cu0apVK0qUKMGmTZsYO3YsRqMRACsrKzJlyqRzhe/g56e1/Dx9Ch4esGED2NvrXZUQ700CkBBCJKFbt27RpUsXChUqxO+//47BYKBNmzZs3Lgxed3R9Tbh4dCiBdy9C/nzw+bN4Oiod1VCxIl0ghZCiCQyffp0+vXrR3h4OACNGjVi7NixFClSROfK4mjgQNizRws9a9dCunR6VyREnEkAEkKIJFKkSBHCw8OpXr063377LeXKldO7pLhbvBh++UV7/ttvUKCAvvUIEU8SgIQQIhEEBQXxyy+/YGlpyaBBgwCoUqUKx44do1SpUjpXF0/Hj7+Z0HTkSO2WdyFSKIP6972XAoDAwECcnZ0JCAjAyclJ73KEEClISEgIs2fPZvz48fj5+WFvb8+NGzeSf6fmd3n8GEqXhtu3oUEDWLdOBjoUyU5cvr/l/14hhEgAERERzJs3j48//pivv/4aPz8/PvroI3799VdcXV31Lu/DRERAq1Za+MmXT7v0JeFHpHByCUwIIT7Q4cOHad++PVeuXAEgW7ZseHt706lTJ6xSw6CAgwbBzp2QNq3W6Tk5j00kxHuSACSEEB8oc+bM3Lp1C1dXV4YOHUrPnj2xtbXVu6yEsWwZTJ6sPV+0CAoV0rceIRKIBCAhhIijnTt3smvXLkaPHg1Arly5WLduHRUrVsQxNY2Hc+oUdOumPR82DJo21bUcIRKSdIKOgXSCFkLE5MiRIwwbNozt27cDcPToUUqXLq1zVYnkyROt0/PNm1C3Lvz5p0xwKpK9uHx/SwuQEEK8w9mzZxkxYoRphnYrKyu6d+9O9uzZ9S0ssUREQOvWWvjJmxeWLpXwI1IdCUBCCBGLwMBA+vXrx4IFC1BKYWFhQYcOHfD29sbd3V3v8hLP0KGwfTs4OMhIzyLVkgAkhBCxePXqFRs3bkQpRfPmzRkzZgwFCxbUu6zE5eMDkyZpzxcsgE8+0bceIRKJBCAhhPgXpRQGgwEANzc3VqxYQZo0aahUqZLOlSWBv/+GLl2054MGaROeCpFKyUhWQgjxDz8/P+rXr4+Pj49p3aeffmoe4efpU2jSBF6+hFq1YNw4vSsSIlFJABJCCMDX15dixYqxefNm+vbty6tXr/QuKelERkLbtnD9OuTODcuXS6dnkepJABJCmLXw8HCGDh1KzZo1efjwIYUKFWL79u3Y2dnpXVrSGTECtm4FOztYswbSp9e7IiESnfQBEkKYrZs3b9K2bVsOHjwIQPfu3fnpp5+wt7fXubIktGoVTJigPZ8/H4oV07ceIZKIBCAhhFl6/PgxJUuW5NmzZzg7OzN37lxamFun33PnoFMn7fnAgdrYP0KYCQlAQgizlDFjRjp16sSBAwdYvnw5uXPn1rukpPX8OTRuDMHBUL36m1YgIcyEBCAhhNk4d+4cjo6O5MyZE4CJEydiMBhSx4ztcWE0Qrt2cPUq5MoFK1ZAGvk6EOYlWXSCnj59Ou7u7tja2uLh4cGRI0feuv2UKVPInz8/dnZ25MiRg379+hESEmJ6fdSoURgMhiiPAgUKJPZhCCGSKaUUs2fPpnTp0rRt25aIiAgArK2tzS/8AIwaBZs2ga2t1unZ1VXvioRIcrpHfh8fH/r378+sWbPw8PBgypQp1K5dm0uXLpEpU6Zo2y9btozBgwczf/58KlSowOXLl+nUqRMGg4HJkyebtitcuLBpwkKANPLXjRBm6fnz53zxxResWrUKgLRp0xIUFISLi4u+hellzRoYO1Z7PnculCihbz1C6ET3FqDJkyfzxRdf0LlzZwoVKsSsWbOwt7dn/vz5MW5/4MABKlasSNu2bXF3d6dWrVq0adMmWqtRmjRpyJw5s+nhKn/hCGF2Dh48SPHixVm1ahVp0qRh0qRJbNq0yXzDz4UL0KGD9vzrr+Hzz3UtRwg96RqAwsLCOH78ODVq1DCts7CwoEaNGqbbUv+rQoUKHD9+3BR4rl+/zqZNm6hXr16U7a5cuULWrFnJkycP7dq14/bt24l3IEKIZMVoNDJx4kQqV67MrVu3yJMnD/v372fgwIFYWOj+d58+AgK0Ts9BQfDpp/D993pXJISudL0u5O/vT2RkJG5ublHWu7m5cfHixRjf07ZtW/z9/alUqRJKKSIiIujRowdDhw41bePh4cHChQvJnz8/Dx48YPTo0VSuXJmzZ8/i6OgYbZ+hoaGEhoaalgMDAxPoCIUQeggLC2P58uVERkbSunVrZs+ejZOTk95l6cdohPbt4fJlyJFDm/DUHPs+CfEvKe5PoV27djF+/HhmzJjBiRMnWL16NRs3bmTs62vaQN26dWnRogVFixaldu3abNq0iefPn/P777/HuM8JEybg7OxseuTIkSOpDkcIkQhsbW3x8fFh3rx5LFu2zLzDD2h9fv78E2xsYPVqiKF/pRDmRtcWIFdXVywtLXn06FGU9Y8ePSJz5swxvmfEiBG0b9+ebt26AVCkSBGCg4Pp3r07w4YNi7F528XFhY8//pirV6/GuM8hQ4bQv39/03JgYKCEICFSkLCwMIYNG4azszPDhw8HoECBAnL3J8D69dpdXwCzZ0Pp0rqWI0RyoWsLkLW1NaVKlcLX19e0zmg04uvrS/ny5WN8z8uXL6OFHMt/Ju1TSsX4nqCgIK5du0aWLFlifN3GxgYnJ6coDyFEynDmzBkqVarEDz/8wKhRo7h+/breJSUf585pl74A+vSBjh31rUeIZET3S2D9+/dn7ty5LFq0iAsXLtCzZ0+Cg4Pp3LkzAB06dGDIkCGm7T09PZk5cyYrVqzgxo0bbNu2jREjRuDp6WkKQgMHDmT37t3cvHmTAwcO0KRJEywtLWnTpo0uxyiESFjh4eGsWrWKzz77jKJFi3L06FHSpUvHqlWryJMnj97lJQ/bt0OlShAYCJUrw48/6l2REMmK7oPjtGrVisePHzNy5EgePnxI8eLF2bJli6lj9O3bt6O0+AwfPhyDwcDw4cO5d+8eGTNmxNPTk3Hjxpm2uXv3Lm3atOHJkydkzJiRSpUqcejQITJmzJjkxyeESFjHjx+nUaNG3Lt3D9DuHG3SpAk//fSTXLp+bcYM+OoriIyEChW0fj/S6VmIKAwqtutGsXB3d6dLly506tTJNJx8ahMYGIizszMBAQFyOUwInSmlePLkiWksrxcvXpAtWzbs7Oz44osv+PLLLyX4vBYRoY3vM326tty+PcyZo434LIQZiMv3d5wvgX399desXr2aPHnyULNmTVasWBHlFnIhhEgIwcHBzJkzh+LFi1OjRg1THz9HR0d27NjB7du3+fbbbyX8vPb8OdSr9yb8TJgAixZJ+BEiFnFuAXrtxIkTLFy40DTWRtu2benSpQslS5ZM6BqTnLQACaGfy5cvM2PGDBYuXEhAQAAAdnZ2nD17Vvr3xObqVWjQAC5dAnt7WLIEmjTRuyohklxcvr/jHYBeCw8PZ8aMGQwaNIjw8HCKFCnCV199RefOnTEYDB+ya91IABIi6R08eBBvb2+2bdtmWpc3b168vLzo1KkT6dKl07G6ZGznTmjWDJ49g+zZtdveZX4vYabi8v0d707Q4eHhrFmzhgULFrBt2zbKlStH165duXv3LkOHDmX79u0sW7YsvrsXQpiZp0+fsm3bNgwGA/Xr18fLy4tatWqZ79QV72PuXOjVS+v74+GhTXQay3AfQoio4hyATpw4wYIFC1i+fDkWFhZ06NCBn376KcqAY02aNKFMmTIJWqgQInVQSnHkyBGmT59Ovnz5GDFiBAB16tRh7NixtGvXjty5c+tcZTIXGQkDB8KUKdpymzYwbx7Y2elalhApSZwvgVlaWlKzZk26du1K48aNsYrh1srg4GB69+7NggULEqzQpCSXwIRIeK9evWLFihVMnz6d48ePA5ApUybu3LmDtbW1ztWlIIGB0Lo1bN6sLY8dC8OGQQrtciBEQkrUS2DXr18nV65cb93GwcEhxYYfIUTCevToET/88APz58/n6dOngDb6euvWrfHy8pLwExfXr4OnJ5w/r7X2LF4MzZvrXZUQKVKcA5Cfnx8PHz7Ew8MjyvrDhw9jaWlJaZlnRgjxL9988w2//fYbALly5aJnz5507drVNK6PeE9790LTpuDvD1mzwrp1Mq+XEB8gzr0Lvby8uHPnTrT19+7dw8vLK0GKEkKkXEopXr16ZVoeM2YMlSpVYv369Vy7do1BgwZJ+ImrBQugenUt/JQqBUeOSPgR4gPFuQXo/PnzMY71U6JECc6fP58gRQkhUqazZ8/y9ddfkzlzZpYsWQJoo8fv3btX58pSqMhIGDwYfvhBW27eXBvc0N5e37qESAXi3AJkY2PDo0ePoq1/8OABadLoPrWYEEIH/v7+eHl5UaxYMXx9ffnjjz+4f/++3mWlbC9eaIMZvg4/I0eCj4+EHyESSJwDUK1atRgyZIhphFaA58+fM3ToUGrWrJmgxQkhkrfw8HB+/vln8uXLx4wZMzAajTRr1ozz58+TNWtWvctLuW7dgooV4c8/wcYGli2D0aNBxkQSIsHEucnmhx9+oEqVKuTKlYsS/4w2eurUKdzc3EwdHYUQqd+FCxdo2rQpFy9eBKBYsWJMmTKFTz/9VN/CUroDB7SWHz8/yJwZ1q7VBjkUQiSoeE2FERwczNKlSzl9+jR2dnYULVqUNm3axDgmUEok4wAJ8W4vXrwgX758GI1Gvv32W7p27YqlpaXeZaVsv/0G3bpBWBgUL65NayGTvQrx3pJ0LrDUSAKQENE9f/6cBQsW8PXXX5vm+Tt8+DAFChTA2dlZ5+pSOKMRhg/XZnAHrQXot9/AwUHfuoRIYZJkLrDz589z+/ZtwsLCoqxv2LBhfHcphEiGIiMjmTt3LiNGjMDf3x83Nzfatm0LEG08MBEPwcHQvr02jxfA0KHa6M7S30eIRBWvkaCbNGnCmTNnMBgMvG5Aev0XYWRkZMJWKITQzY4dO/j66685c+YMAIUKFZLOzQklMhI2bNDu7vr7b7C2hl9/1cKQECLRxflPjL59+5I7d278/Pywt7fn3Llz7Nmzh9KlS7Nr165EKFEIkdSuXbtGkyZNqF69OmfOnCFdunRMnTqV06dPSyfnD/X4sXapK08eaNxYCz8ZM8LOnRJ+hEhCcW4BOnjwIDt27MDV1RULCwssLCyoVKkSEyZM4KuvvuLkyZOJUacQIgl9/vnnHDp0CEtLS3r27MmoUaPIkCGD3mWlXErB4cMwfTr8/rvWyRkgQwbo2hX69tWmtxBCJJk4B6DIyEgcHR0BcHV15f79++TPn59cuXJx6dKlBC9QCJH4jEYjERERpolJv/vuO8aNG8fkyZMpXLiwztWlYK9ewfLlWvA5ceLN+jJlwMsLWrUCW1v96hPCjMU5AH3yySecPn2a3Llz4+Hhwffff4+1tTVz5swhT548iVGjECKRXLp0ibVr17J06VJatGjBiBEjAKhSpQpVqlTRuboU7No1mDkT5s+HZ8+0dTY20Lq1FnzKlNG3PiFE3APQ8OHDCQ4OBrRJDhs0aEDlypXJkCEDPj4+CV6gECLhGI1Gjh49ytq1a1m7dq1pEEPQprP43//+h42NjY4VpmCRkbBli9bas2WLdtkLwN0devaELl1AJoEVItlIkHGAnj59Srp06Ux3gqV0Mg6QSK0qVqzIgQMHTMtWVlZUq1aNJk2a0KxZM5mlPT6ePNFaembOhBs33qyvU0dr7albF2SASCGSRKKNAxQeHo6dnR2nTp3ik08+Ma1Pnz59/CoVQiSKoKAgtmzZwpYtW5g5c6ZplPYyZcrw999/U69ePZo0aULdunVlEMP4OnZMa+1ZsQJCQrR1Li5aS0/PnvDRR7qWJ4R4uzgFICsrK3LmzClj/QiRDPn5+fHnn3+yZs0atm/fTmhoKABt2rShevXqAIwcOZLvvvtOLnPFV0iIdhfX9Olw5Mib9SVKaK09bdrIbO1CpBBx7gM0bNgwhg4dym+//SYtP0IkAwcOHGDQoEHs37+ff1/Rzps3L02aNCFnzpymdfI7G083b8KsWTBvHvj7a+usrKBlSy34lCsHqaQLgBDmIs4BaNq0aVy9epWsWbOSK1cuHP4zV82Jf9/qKYRIUEopTp06hY2NDYUKFQLAzs6Offv2AVCqVCkaN25MkyZNKFSoUKrpl6ebO3dgwAD44w9tvi6A7NmhRw9t0lI3N33rE0LEW5wDUOPGjROhDCHE25w9e5a5c+eydu1abt++TYcOHVi0aBEAxYsXZ86cOdSuXTtKa4/4AJGRMG2aNkFpUJC2rnp1rbXH0xPSxHsaRSFEMhHn32Jvb+/EqEMIEYuDBw9SvXp1Xr16BWgtPmn+9QVsMBj44osv9Cov9Tl5Erp31zo5A5Qvr93hVayYvnUJIRKUTDcsRDJ2/vx56tevz6tXr6hcuTLr1q3D39+fefPm6V1a6hMUpF3uKl1aCz/Ozlrw2bdPwo8QqVCcW4AsLCze2q9A7hATImHcu3eP2rVr8+zZM8qVK8fmzZuj9bkTCWTDBu3y1u3b2nLLljBlCmTJomtZQojEE+cAtGbNmijL4eHhnDx5kkWLFjF69OgEK0wIc5chQwbKlCmDo6MjGzZskPCTGO7f1yYiXbVKW86VC2bMgHr19K1LCJHoEmQkaIBly5bh4+PDunXrEmJ3upKRoEVyERkZydOnT8mYMaPepaQukZEwezYMGQKBgdpIzf37g7c3SNAUIsWKy/d3gvUBKleuHL6+vgm1OyHMUnh4OPPnzzeN52NpaSnhJ6H9/TdUrKhd8goM1CYmPXYMvv9ewo8QZiRBAtCrV6/45ZdfyJYtW0LsTgizZDQa6dKlC127dsXLy0vvclKfly9h8GAoVQoOHwZHR5g6FQ4ehOLF9a5OCJHE4twH6L+TniqlePHiBfb29ixZsiRBixPCXCil+Oabb1iyZAmWlpY0aNBA75JSl61btfm5Xk9W2rQp/PyzNqihEMIsxTkA/fTTT1ECkIWFBRkzZsTDw4N06dIlaHFCmItJkyYxefJkABYsWEA96YSbMB4+1Pr2LF+uLWfPrs3j1bChvnUJIXQX5wDUqVOnRChDCPO1YMECBg0aBMCPP/5I+/btda4oFTAa4ddfYdAgeP4cLCzgq69gzBjt0pcQwuzFOQAtWLCAtGnT0qJFiyjrV65cycuXL+nYsWOCFSdEavfnn3+aRnH+3//+R//+/XWuKBU4dw6+/BL279eWS5aEOXO0vj9CCPGPOHeCnjBhAq6urtHWZ8qUifHjxydIUUKYi+DgYCwsLOjUqRMTJ07Uu5yU7dUrbe6uEiW08OPgAJMnax2eJfwIIf4jzi1At2/fJnfu3NHW58qVi9uvR1EVQryX1q1bkzdvXkqUKCEzt38IX19thvarV7VlT09tMlOZHFYIEYs4twBlypSJv//+O9r606dPkyFDhgQpSojU7NatW9y/f9+0XKZMmSiTm4r3ZDRqd3d5ekKNGlr4yZoV/vgD1q2T8COEeKs4/6vbpk0bvvrqKxwdHalSpQoAu3fvpm/fvrRu3TrBCxQiNXn8+DG1atUiNDSUbdu2kS9fPr1LSnmePYOFC7UpK163+BgM0KsXjBunTWIqhBDvEOcANHbsWG7evEn16tVNf7UajUY6dOggfYCEeIsXL15Qr149Ll++TK5cubC3t9e7pJTl1CntFvalS7X+PgBOTtCpkxZ+8ufXszohRAoT77nArly5wqlTp7Czs6NIkSLkypUroWvTjcwFJhJaWFgY9evXZ/v27bi6urJv3z7yyxf2u4WFaROVTp8OBw68WV+kiDaVRbt2kDatfvUJIZKVJJkLLF++fLRo0YIGDRp8cPiZPn067u7u2Nra4uHhwZEjR966/ZQpU8ifPz92dnbkyJGDfv36ERISEuO2EydOxGAw8PXXX39QjULE1+sW0u3bt+Pg4MCmTZsk/LzLnTvaHV05cmgh58ABSJMGWrWCPXvg9GntVncJP0KIeIpzAGrWrBnfffddtPXff/99tLGB3oePjw/9+/fH29ubEydOUKxYMWrXro2fn1+M2y9btozBgwfj7e3NhQsXmDdvHj4+PgwdOjTatkePHmX27NkULVo0znUJkRCUUvTt2xcfHx+srKxYvXo1ZcqU0bus5Ekp7W6upk0hd26tP4+fn9axefRouH0bVqyAypW1Pj9CCPEB4hyA9uzZE+Mw/XXr1mXPnj1xLmDy5Ml88cUXdO7cmUKFCjFr1izs7e2ZP39+jNsfOHCAihUr0rZtW9zd3alVqxZt2rSJ1moUFBREu3btmDt3rkzRIXQTGBjIjh07AFi0aBG1atXSuaJkKDBQm5S0UCHtbq41ayAyEj79FFauhJs3YeRIyJJF70qFEKlInANQUFAQ1tbW0dZbWVkRGBgYp32FhYVx/PhxatSo8aYgCwtq1KjBwYMHY3xPhQoVOH78uCnwXL9+nU2bNkULZV5eXtSvXz/KvmMTGhpKYGBglIcQCcHZ2Zm9e/fi4+NDmzZt9C4neTl7VpugNGtWbZqKixe1S1q9emmv7dwJzZuDlZXelQohUqE43wVWpEgRfHx8GDlyZJT1K1asoFChQnHal7+/P5GRkbi5uUVZ7+bmxsWLF2N8T9u2bfH396dSpUoopYiIiKBHjx5RLoGtWLGCEydOcPTo0feqY8KECYwePTpOtQvxNg8ePCDLPy0W6dOnp2XLljpXlEyEh8Patdoghf9uMS5YUOvU3L69dmeXEEIksjgHoBEjRtC0aVOuXbtGtWrVAPD19WXZsmWsWrUqwQv8r127djF+/HhmzJiBh4cHV69epW/fvowdO5YRI0Zw584d+vbty7Zt27C1tX2vfQ4ZMiTKHEyBgYHkyJEjsQ5BpHK7du2iXr16TJo0CS8vL73LSR4ePNDm45ozB14PAmlpCY0bay0+n30m/XqEEElLxcOGDRtUhQoVlL29vcqQIYOqVq2a2r17tzpz5kyc9hMaGqosLS3VmjVroqzv0KGDatiwYYzvqVSpkho4cGCUdb/99puys7NTkZGRas2aNQpQlpaWpgegDAaDsrS0VBEREe+sKyAgQAEqICAgTscjxMmTJ5WTk5MCVOPGjZXRaNS7JP0YjUrt3q1Uy5ZKpUmjlNbNWSk3N6VGjFDqzh29KxRCpDJx+f6O1/j79evXp379+oDWWrJ8+XIGDhzI8ePHiYyMfO/9WFtbU6pUKXx9fWncuDGg3TLs6+tL7969Y3zPy5cvsbCI2nXJ0tIS0O64qV69OmfOnInyeufOnSlQoACDBg0ybStEQrt27Rp16tQhMDCQKlWqsHz5cvOc3ysoCJYs0cbuOXv2zfqKFbXLXM2aQQz9CIUQIinFewKiPXv2MG/ePP744w+yZs1K06ZNmT59epz3079/fzp27Ejp0qUpW7YsU6ZMITg4mM6dOwPQoUMHsmXLxoQJEwDw9PRk8uTJlChRwnQJbMSIEXh6emJpaYmjoyOffPJJlM9wcHAgQ4YM0dYLkVAePHhA7dq1efToEcWKFWP9+vXvfQk21bh4UZueYtEi7c4uAHt7bRwfLy8oVkzf+oQQ4l/iFIAePnzIwoULmTdvHoGBgbRs2ZLQ0FDWrl0b5w7Qr7Vq1YrHjx8zcuRIHj58SPHixdmyZYupY/Tt27ejtPgMHz4cg8HA8OHDuXfvHhkzZsTT05Nx48bF6/OF+FBz5sxh4MCBvHjxgty5c7N582aczWU+qogI+PNPrbXH1/fN+nz5tL49nTqBi4te1QkhRKzeeyoMT09P9uzZQ/369WnXrh116tTB0tISKysrTp8+He8AlBzJVBgiLn7//XdatWpF8eLFWblyJR999JHeJSU+Pz+YOxdmz9ZGbQawsIAGDbTWnho1tGUhhEhCcfn+fu8WoM2bN/PVV1/Rs2dPmcFamK3w8HDmz5+PnZ0dHTp0AKB58+Zs2LCBunXrRuuflqooBYcOabewr1yp3dIO4OoK3bpBjx6QiuYEFEKkbu/9r/W+fft48eIFpUqVwsPDg2nTpuHv75+YtQmRbERGRrJkyRIKFChAjx49+OabbwgODga0wTvr16+fesPPy5cwbx6UKgUVKsCyZVr48fCAxYu1FqAJEyT8CCFSlPf+F7tcuXLMnTuXBw8e8OWXX7JixQqyZs2K0Whk27ZtvHjxIjHrFEIXSinWrl1LsWLFaN++PdevXydTpkwMGzaMNGnifQ9BynD1KgwYANmzay08J0+CrS107gzHjmmtQe3ba+uEECKFee8+QDG5dOkS8+bN47fffuP58+fUrFmT9evXJ2R9upA+QALg2LFj9OrVyzSiuIuLC//73//o06cPaVPrLOSRkbB5s9apecuWN+vz5NGmrejcGTJk0K8+IYR4i7h8f39Qm33+/Pn5/vvvuXv3LsuXL/+QXQmR7FhaWnL06FHs7e0ZOnQo169fZ8iQIakz/Dx5ApMmaXdveXpq4cdggLp1YeNGuHIFBg6U8COESDU+qAUotZIWIPP0999/c/jwYb744gvTuoULF1K3bt1o89WlGhER8Msv2mzr//RpIl066NJFa/HJm1ff+oQQIg7i8v0tASgGEoDMy5UrV/D29mbFihWkSZOGS5cukTt3br3LSnzHjkH37lrfHoDixaFPH2jdWhvAUAghUphEuQ1eiNTmzp07jBkzhgULFpimcGnatGnqvZvrtRcvYPhw7XZ2o1Fr8Zk0Sevfk9qPXQgh/iEBSJidp0+fMnbsWGbMmEFYWBgADRo0YOzYsRQvXlzf4hLb2rXQuzfcu6ctt2sHkydDpky6liWEEElNApAwO5GRkfz666+EhYXx6aefMn78eMqXL693WYnr7l3t8tbatdpy3rwwcybUrKlrWUIIoRcJQMIs+Pn5kemfVo6MGTPy888/kzNnTqpXr566Z2yPjNRuaR82TJulPU0a+N//tEtgdnZ6VyeEELqRC/4i1fvjjz9wd3dn7evWD6BLly7UqFEjdYefkyehXDno21cLPxUqaOvGjZPwI4QwexKARKq2cOFCWrZsyatXr1izZo3e5SSNoCBtBOfSpbU7vZydYdYs2LsXPvlE7+qEECJZkEtgItX65Zdf6Nu3LwDdunVj1qxZOleUBDZs0GZjv31bW27ZEqZMgSxZdC1LCCGSG2kBEqmOUoqxY8eaws+AAQOYM2cOlpaWOleWiO7fhxYttFGcb9/WJibduBF8fCT8CCFEDCQAiVRFKcXAgQMZOXIkAGPGjGHSpEmpt69PZCTMmAEFC8KqVWBpCd98A+fOQb16elcnhBDJllwCE6nOq1evAJgyZYqpFShV+vtvbSTnw4e15TJlYM4cbURnIYQQbyVTYcRApsJI2YxGI3v27OHTTz/Vu5TE8fIljBkDP/6ozeXl6Ajjx2tzd6Xmy3xCCPEOSTYbvBDJwatXrxg3bhzh4eEAWFhYpN7ws2ULFC4M332nhZ+mTeHCBW10Zwk/Qgjx3uQSmEjRAgMDadiwIbt37+batWvMnz9f75ISx6NH8PXXsGKFtpw9uzbAYcOGupYlhBAplQQgkWI9efKEOnXqcOzYMZycnOjcubPeJSWOgwehcWPw89MmK/3qK+0SmKOj3pUJIUSKJQFIpEj379+nZs2anD9/HldXV7Zu3UrJkiX1LivhLV0KXbtCaKg2iOHChVCqlN5VCSFEiid9gESKc+PGDSpXrsz58+fJmjUre/bsSX3hx2jU5u/6/HMt/DRqpLUESfgRQogEIQFIpCgRERHUrVuX69evkydPHvbt20fBggX1LithBQdrgxqOH68tDx4Mq1dD2rT61iWEEKmIBCCRoqRJk4aZM2dSqlQp9u7dS+7cufUuKWHdvQuVK2uBx9oaFi2CCRO0vj9CCCESjPQBEilCaGgoNjY2AHz22WccOXIEi9QWCo4c0S51PXwIGTPCmjVQsaLeVQkhRKqUyr5BRGq0ZcsW8uXLx/nz503rUl348fGBqlW18PPJJ1oYkvAjhBCJJpV9i4jUZtWqVTRs2JA7d+7w448/6l1OwlMKRo2C1q0hJAQaNIADB8DdXe/KhBAiVZMAJJKtBQsW0KpVK8LDw2nVqhUzZ87Uu6SE9eqVFnxGj9aWBw6EtWtlfB8hhEgCEoBEsvTzzz/TpUsXjEYj3bp1Y+nSpVhbW+tdVsK5f1+75PX772BlBfPmwaRJMp2FEEIkEQlAIllRSjFmzBi+/vprAAYMGMCcOXOwTE3B4MQJKFsWjh6FDBlg2zbo0kXvqoQQwqxIABLJSnh4ONu2bQNgzJgxTJo0CYPBoHNVCeiPP6BSJbh3DwoV0jo7V62qd1VCCGF25DZ4kaxYW1uzYcMGNmzYQLt27fQuJ+EopQ1sOHy4tlynjjaxqbOzvnUJIYSZkhYgoTulFNu3bzctOzs7p67wExIC7du/CT9ffw1//inhRwghdCQBSOhKKcWAAQOoWbMm48aN07uchPfwIXz2mTapaZo0MGsW/PST9lwIIYRu5F9hoStvb29++uknALJkyaJzNQns9Gnw9IQ7dyBdOli1CqpV07sqIYQQSAuQ0NF3333H2LFjAfjll1/okpruhFq3ThvJ+c4d+PhjOHxYwo8QQiQjEoCELqZOncrgwYMBmDBhAn369NG5ogSiFHz3HTRpos3qXqMGHDoE+fLpXZkQQoh/kQAkktz8+fP56quvABg+fLgpCKV4oaHQuTMMHqwFoV69YNMm7fKXEEKIZEX6AIkkFxAQAEC/fv0YM2aMztUkkMePtVaf/fu10Zx//hm8vPSuSgghRCwkAIkk169fP0qWLEmVKlVSxyCHkZFvwo+zM6xcCTVr6l2VEEKIt5BLYCJJ7N+/39TyA1C1atXUEX4AfvxRCz+OjnDwoIQfIYRIASQAiUS3e/duatSoQbVq1Xj27Jne5SSsM2dgxAjt+ZQpULCgruUIIYR4PxKARKI6fPgwDRo0ICQkhMyZM+Pg4KB3SQknLAw6dND+26CB1gFaCCFEipAsAtD06dNxd3fH1tYWDw8Pjhw58tbtp0yZQv78+bGzsyNHjhz069ePkJAQ0+szZ86kaNGiODk54eTkRPny5dm8eXNiH4b4j1OnTlGnTh2CgoKoVq0aq1atwtraWu+yEs6338KpU9qM7nPnQmq5pCeEEGZA9wDk4+ND//798fb25sSJExQrVozatWvj5+cX4/bLli1j8ODBeHt7c+HCBebNm4ePjw9Dhw41bZM9e3YmTpzI8ePHOXbsGNWqVaNRo0acO3cuqQ7L7F24cIGaNWvy/PlzKlSowLp167Czs9O7rIRz9Kg2uSnAzJmQObO+9QghhIgTg1JK6VmAh4cHZcqUYdq0aQAYjUZy5MhBnz59Yhwfpnfv3ly4cAFfX1/TugEDBnD48GH27dsX6+ekT5+eSZMm0bVr13fWFBgYiLOzMwEBATg5OcXjqMzbtWvXqFy5Mg8ePKBkyZLs2LED59Q08eerV1CyJFy8CG3awLJlelckhBCCuH1/69oCFBYWxvHjx6lRo4ZpnYWFBTVq1ODgwYMxvqdChQocP37cdJns+vXrbNq0iXr16sW4fWRkJCtWrCA4OJjy5cvHuE1oaCiBgYFRHiL+wsLCAChcuDBbt25NXeEHYOhQLfxkyQL/BHchhBApi67jAPn7+xMZGYmbm1uU9W5ubly8eDHG97Rt2xZ/f38qVaqEUoqIiAh69OgR5RIYwJkzZyhfvjwhISGkTZuWNWvWUKhQoRj3OWHCBEaPHp0wByUoWLAge/fuxcHBAVdXV73LSVi7dml3ewHMmwfp0+tZjRBCiHjSvQ9QXO3atYvx48czY8YMTpw4werVq9m4caNpUs3X8ufPz6lTpzh8+DA9e/akY8eOnD9/PsZ9DhkyhICAANPjzp07SXEoqcqTJ0/Yu3evaTlv3rxkTm39YgIDoVMn7Xn37lC3rq7lCCGEiD9dW4BcXV2xtLTk0aNHUdY/evQo1i/PESNG0L59e7p16wZAkSJFCA4Opnv37gwbNgwLCy3TWVtb89FHHwFQqlQpjh49ys8//8zs2bOj7dPGxgYbG5uEPDSzEhAQQO3atTl79ixr1qyhbmoNBv37w61bkDs3/PCD3tUIIYT4ALq2AFlbW1OqVKkoHZqNRiO+vr6x9td5+fKlKeS8ZmlpCcDb+nMbjUZCQ0MToGrxb8HBwdSvX5/jx4/j5OSEu7u73iUljo0btUteBgMsXKiN+iyEECLF0n0usP79+9OxY0dKly5N2bJlmTJlCsHBwXT+Z1C5Dh06kC1bNiZMmACAp6cnkydPpkSJEnh4eHD16lVGjBiBp6enKQgNGTKEunXrkjNnTl68eMGyZcvYtWsXW7du1e04U6OQkBAaNWrE/v37cXFxYdu2bRRMjSMhP3kC/7Q40q8fVKmibz1CCCE+mO4BqFWrVjx+/JiRI0fy8OFDihcvzpYtW0wdo2/fvh2lxWf48OEYDAaGDx/OvXv3yJgxI56enowbN860jZ+fHx06dODBgwc4OztTtGhRtm7dSk2ZoynBhIWF0bx5c3x9fUmbNi1btmyhWLFiepeVOHr1gocPtWku/vX/mRBCiJRL93GAkiMZB+jtIiIiaNOmDatWrcLOzo4tW7ZQJbW2iqxYoY31Y2kJhw5B6dJ6VySEECIWKWYcIJEyKaWwsrLC2tqatWvXpt7wc/++1voDMHy4hB8hhEhFpAUoBtIC9G6RkZGcOnWKUqVK6V1K4lAK6teHzZuhVCk4eBCsrPSuSgghxFtIC5BIcBERESxbtgyj0Qhod96l2vAD8OuvWvixsYHFiyX8CCFEKiMBSLyTn58fNWvWpF27dnTq1Omtww2kCjduaGP+gNbpOZYRxIUQQqRcut8FJpK3Q4cO0bx5c+7du0fatGlp2LAhBoNB77ISj9GojfYcFASVK8PXX+tdkRBCiEQgLUAiRkopZs2aRZUqVbh37x758+fnyJEjNG/eXO/SEteUKbBnDzg4aAMe/jO2lBBCiNRFApCI5tWrV3Tu3JmePXsSHh5O06ZNOXLkSOoc5PDfzp/XZnoHmDwZ8uTRtx4hhBCJRgKQiObu3busXr0aCwsLvvvuO1atWpX674YLD4cOHSA0VJvk9Isv9K5ICCFEIpI+QCKafPnysWTJEhwcHKhevbre5SSNCRPg+HFIl067Ayw193MSQgghAUhoE8VOmDCBChUq8NlnnwHQsGFDnatKQsePw9ix2vNp0yBrVn3rEUIIkegkAJm558+f06FDB/78808yZszIpUuXSJcund5lJZ2QEO3SV0QENG+uTXshhBAi1ZMAZMbOnDlD06ZNuXr1KjY2NkycONG8wg/AiBFa52c3N5g5Uy59CSGEmZAAZKaWL19Ot27dePnyJbly5eKPP/5I3SM7x2TvXvjxR+353Lng6qpvPUIIIZKM3AVmZiIjI/n6669p27YtL1++pGbNmhw7dsz8wk9QkDbgoVLQuTN4eupdkRBCiCQkAcjMWFhY8PjxYwCGDRvG5s2bcTXHlo+BA+H6dciZUxv8UAghhFmR2eBjkBpng1dKmaawCA4OZv/+/dSqVUvnqnSyZYs21g/Ajh3wz51vQgghUjaZDV6YKKWYOnUqLVu2NM3k7uDgYL7h59kz6NpVe/7VVxJ+hBDCTEkn6FQsODiYL7/8kqVLlwKwdu1amjZtqnNVOuvdG+7fh48/1gY/FEIIYZYkAKVSV69epWnTppw5cwZLS0smTZpEkyZN9C5LX6tWwbJlYGEBixeDvb3eFQkhhNCJBKBUaMOGDXz++ecEBASQKVMmfv/9d6pWrap3Wfp69Ah69NCeDxkCHh761iOEEEJX0gcolfn555/x9PQkICCA8uXLc+LECQk/ACNHwpMnUKyY9lwIIYRZkwCUypQrVw5ra2u8vLzYtWsX2bJl07sk/V2+DPPmac+nTQNra33rEUIIoTu5BJbKeHh4cO7cOT766CO9S0k+RoyAyEho0AAqVdK7GiGEEMmAtAClcAEBATRs2JDTp0+b1kn4+Zfjx+H337U5vsaN07saIYQQyYS0AKVgjx8/pk6dOpw4cYJLly5x7tw50qSRUxrF0KHaf9u1g6JF9a1FCCFEsiHflinUvXv3qFGjBhcvXiRjxoz4+PhI+PmvHTvgr7/AygpGj9a7GiGEEMmIfGOmQNeuXaNGjRrcvHmT7Nmzs337dvLnz693WcmLUtrt7gBffgl58uhbjxBCiGRF+gClMGfPnqVy5crcvHmTjz76iH379kn4icnatXDkCDg4wPDhelcjhBAimZEAlMKMGTOGBw8e8Mknn7B3715y5cqld0nJT0TEm74//fqBm5u+9QghhEh25BJYCjN//nxcXV359ttvSZ8+vd7lJE+LF8PFi5A+PQwcqHc1QgghkiFpAUoBLly4gFIKgLRp0zJjxgwJP7EJCQFvb+350KHg7KxvPUIIIZIlCUDJnI+PD0WLFmX8+PF6l5IyzJgBd+9C9uzg5aV3NUIIIZIpCUDJ2Ny5c2nTpg0RERGcP38eo9God0nJW0AAvA6Ko0eDra2+9QghhEi2JAAlUz/++CPdu3dHKUWPHj347bffsLCQ0/VWP/6oTXhaoAB06KB3NUIIIZIx+UZNZpRSjBw5koH/dN793//+x4wZMyT8vMujRzB5svZ83DiQQSGFEEK8hXxLJDMDBgzgp59+AmD8+PEMeT2Yn3i7ceMgOBjKlIEmTfSuRgghRDInASiZKVCgAAaDgalTp+IlnXjfz40bMGuW9nziRG3iUyGEEOItJAAlM927d6dSpUoUKlRI71JSDm9vCA+HmjWhWjW9qxFCCJECSMcSnQUHB+Pl5YW/v79pnYSfODhzBpYs0Z7LUAFCCCHekwQgHQUEBFC7dm1mzJhBs2bNTIMdxtvevdCwoRYKzMWwYdrEpy1aQOnSelcjhBAihZBLYDp5/PgxtWvX5uTJkzg7OzNhwgQMH9J3JTwcOneGa9fg77/h2DFwdU24gpOj/fvhzz/B0hLGjtW7GiGEECmItADp4O7du1SpUoWTJ0+SMWNGdu3aRYUKFT5sp/PmaeEH4NYtaN1amxQ0tVIKBg/WnnfpAvnz61uPEEKIFEUCUBK7du0alStX5uLFi2TPnp29e/dSvHjxD9vpy5fayMegTf/g4AC+vpCab6HfvBn27dNGex45Uu9qhBBCpDASgJKQUooOHTpw8+ZN8uXLx759+8ifEC0Xv/wCDx+Cu7s2GODChdr6H36AFSs+fP/JjdH4Jtz16aPN+yWEEELEQbIIQNOnT8fd3R1bW1s8PDw4cuTIW7efMmUK+fPnx87Ojhw5ctCvXz9CQkJMr0+YMIEyZcrg6OhIpkyZaNy4MZcuXUrsw3gng8HA4sWLqVOnDnv37iVXrlwfvtNnz+C777TnY8eCtTU0bx718tDp0x/+OcnJihVaPydn5zfHKYQQQsSB7gHIx8eH/v374+3tzYkTJyhWrBi1a9fGz88vxu2XLVvG4MGD8fb25sKFC8ybNw8fHx+GDh1q2mb37t14eXlx6NAhtm3bRnh4OLVq1SI4ODipDitWefPmZfPmzbi5uSXMDr/7Dp4/hyJFoE2bN+u//RZq1YJXr7SRkZ8+TZjP01tYGIwYoT0fNAjSp9e3HiGEECmSQX3wvdcfxsPDgzJlyjBt2jQAjEYjOXLkoE+fPgyO4a/73r17c+HCBXx9fU3rBgwYwOHDh9m3b1+Mn/H48WMyZcrE7t27qVKlyjtrCgwMxNnZmYCAAJycnOJ5ZEng3j346CMICdHuhmrQIOrrT59qt4bfuKGFoU2btDumUrIZM7R+Tpkzw9WrWn8nIYQQgrh9f+vaAhQWFsbx48epUaOGaZ2FhQU1atTg4MGDMb6nQoUKHD9+3HSZ7Pr162zatIl69erF+jkBAQEApE9trQVjx2rhp2JFqF8/+uvp08PatWBvD3/9BcOHJ3mJCSo4GMaM0Z6PHCnhRwghRLzpOg6Qv78/kZGR0S4Hubm5cfHixRjf07ZtW/z9/alUqRJKKSIiIujRo0eUS2D/ZjQa+frrr6lYsSKffPJJjNuEhoYSGhpqWg4MDIznESWhK1fg11+152+b/6poUe0W+TZttO1KltQGDUyJpkzRZn3Pmxe6ddO7GiGEECmY7n2A4mrXrl2MHz+eGTNmcOLECVavXs3GjRsZG8tAeF5eXpw9e5YVb7kbasKECTg7O5seOXLkSKzyE86IERAZqV32qlTp7du2bg0DB2rPO3eGs2cTv76E9uQJfP+99nzsWLCy0rceIYQQKZqufYDCwsKwt7dn1apVNG7c2LS+Y8eOPH/+nHXr1kV7T+XKlSlXrhyTJk0yrVuyZAndu3cnKCgIC4s3ma53796sW7eOPXv2kDt37ljriKkFKEeOHMm3D9CJE1CqlNbqc+qU1srzLhERUKeONj5Q3rxw9CikS5fopSaYb77RbusvVkw7fosUl92FEEIkshTTB8ja2ppSpUpF6dBsNBrx9fWlfPnyMb7n5cuXUUIOgOU/HXtfZzmlFL1792bNmjXs2LHjreEHwMbGBicnpyiPZO31GDjt2r1f+AFIk0a7fTxXLm3E6HbttBaklODuXZg6VXs+YYKEHyGEEB9M92+S/v37M3fuXBYtWsSFCxfo2bMnwcHBdO7cGYAOHTow5F8jGnt6ejJz5kxWrFjBjRs32LZtGyNGjMDT09MUhLy8vFiyZAnLli3D0dGRhw8f8vDhQ169eqXLMSaoHTu0Ds1WVm9Gf35frq6wZo02evLmzeDtnTg1JrTRoyE0FKpU0VqxhBBCiA+lkoGpU6eqnDlzKmtra1W2bFl16NAh02tVq1ZVHTt2NC2Hh4erUaNGqbx58ypbW1uVI0cO1atXL/Xs2TPTNkCMjwULFrxXPQEBAQpQAQEBCXSECcRoVKpsWaVAqd6947+f337T9gFK/fFHwtWXGC5cUMrCQqt1/369qxFCCJGMxeX7W/dxgJKjZDsO0Jo10LSpdvv3tWvwIYMp9uun3VWVNi0cPgyFCiVYmQmqRQtYtQoaNoQY+oQJIYQQr6WYPkAiDiIiYNgw7Xm/fh8WfkC7o+rTTyEoCBo3hn/GSkpWjh7Vwo/BAOPG6V2NEEKIVEQCUErx229w4YI2uOHrW9o/hJUV+PhAjhzamEKff65NMpqcvB7bqX17iGUMJyGEECI+JAClBCEhbzosDx2qTQKaEDJlgtWrwcYGNmx4M8pycrB9u/aIT2dvIYQQ4h0kAKUEM2fCnTuQPTv06pWw+y5dGubM0Z6PHg3r1yfs/uNDqTe3+vfsCe7uupYjhBAi9ZEAlNwFBr7p/zJqFNjZJfxndOgAffpozz//HGKZhiTJrF4Nx45pHbRf93sSQgghEpAEoOTuxx+1aSDy54eOHRP3cypXhhcvoEkTLXjp4d+dvQcM0C7TCSGEEAlMAlBy5uenBRPQWoHSJOLctVZWsHIlZMumtQB17KhPp+hFi+DSJW3Qxv79k/7zhRBCmAUJQMnZuHEQHKz102naNPE/z81Nu/xkbQ1r18L48Yn/mf/26pV2mQ+0VqDkNAaTEEKIVEUCUHJ186bW+Rlg4kRtLJykULbsm88dORI2bkyazwWYMUOb9ytnTujRI+k+VwghhNlJxGsq4oN4e0N4ONSoAdWrJ+1nd+midUKeOVObNPXoUciXL+E/58kTbd9Hjmj/fT0p7ujR2nxlQgghRCKRqTBioPtUGGfParO8K6WFgzJlkr6GsDD47DM4cECbJuPQIXB0jP/+goPhxImogef69ejbVa4MO3fCPxPbCiGEEO8rLt/f0gKUHA0dqoWf5s31CT+g9QNatQpKlYLz56FzZ62T9PtcigsP10Lcv8PO2bMxd6r++GPtsluZMtp/S5WS8COEECLRSQtQDHRtAdq/HypV0kLAuXPa7e96OngQqlbVQs348W8GKHxNKbh69U3QOXIETp7URq/+r2zZ3gSdMmW0zt0uLklyGEIIIVI/aQFKqZSCwYO155076x9+AMqXh2nT4MsvtTuzcufWBmN8HXiOHoXnz6O/z8VFCzn/DjxZsyZ19UIIIUSMpAUoBrq1AG3aBPXrax2Ar1zRpr5ILrp3h7lzY37N1hZKlIh6KStvXrCQmwyFEEIkHWkBSomMxjeXl/r0SV7hB2DqVLh8Gfbu1WZm/3fLziefaAMpCiGEECmEBKDkYsUK+Ptvbab315fBkhMbG9ixQ5uqwtpa72qEEEKIDyLXKJKDsDAYMUJ7/r//Qfr0+tYTGwsLCT9CCCFSBQlAycGvv2pj4ri5Qd++elcjhBBCpHoSgPQWHAxjxmjPR44EBwd96xFCCCHMgAQgvf38Mzx6BHnyQLduelcjhBBCmAUJQHp68gS++057Pnas9K8RQgghkogEID199x0EBmrzfrVurXc1QgghhNmQAKSXu3e1sXUAJkyQQQOFEEKIJCTfunoZM0abL6tyZahbV+9qhBBCCLMiAUgPly7B/Pna8wkT3m+GdSGEEEIkGAlAehgxAiIjwdMTKlbUuxohhBDC7EgASmrHjsHKlVqrz7hxelcjhBBCmCUJQEnt9YSnn38ORYroW4sQQghhpiQAJaXt27WHlRWMHq13NUIIIYTZktngk9KjR+DiAu3bQ+7celcjhBBCmC0JQEmpXTuoVw+U0rsSIYQQwqxJAEpq6dLpXYEQQghh9qQPkBBCCCHMjgQgIYQQQpgdCUBCCCGEMDsSgIQQQghhdiQACSGEEMLsSAASQgghhNmRACSEEEIIsyMBSAghhBBmRwKQEEIIIcyOBCAhhBBCmB0JQEIIIYQwOxKAhBBCCGF2JAAJIYQQwuzIbPAxUEoBEBgYqHMlQgghhHhfr7+3X3+Pv40EoBi8ePECgBw5cuhciRBCCCHi6sWLFzg7O791G4N6n5hkZoxGI/fv38fR0RGDwaB3OYkmMDCQHDlycOfOHZycnPQuJ9GZ0/HKsaZe5nS8cqypV2Idr1KKFy9ekDVrViws3t7LR1qAYmBhYUH27Nn1LiPJODk5mcUv3GvmdLxyrKmXOR2vHGvqlRjH+66Wn9ekE7QQQgghzI4EICGEEEKYHQlAZszGxgZvb29sbGz0LiVJmNPxyrGmXuZ0vHKsqVdyOF7pBC2EEEIIsyMtQEIIIYQwOxKAhBBCCGF2JAAJIYQQwuxIABJCCCGE2ZEAlEpNmDCBMmXK4OjoSKZMmWjcuDGXLl1663sWLlyIwWCI8rC1tU2iij/MqFGjotVeoECBt75n5cqVFChQAFtbW4oUKcKmTZuSqNoP4+7uHu1YDQYDXl5eMW6fks7rnj178PT0JGvWrBgMBtauXRvldaUUI0eOJEuWLNjZ2VGjRg2uXLnyzv1Onz4dd3d3bG1t8fDw4MiRI4l0BHHztuMNDw9n0KBBFClSBAcHB7JmzUqHDh24f//+W/cZn9+FpPCuc9upU6doddepU+ed+02O5/ZdxxrT76/BYGDSpEmx7jO5ntf3+a4JCQnBy8uLDBkykDZtWpo1a8ajR4/eut/4/q7HhQSgVGr37t14eXlx6NAhtm3bRnh4OLVq1SI4OPit73NycuLBgwemx61bt5Ko4g9XuHDhKLXv27cv1m0PHDhAmzZt6Nq1KydPnqRx48Y0btyYs2fPJmHF8XP06NEox7lt2zYAWrRoEet7Usp5DQ4OplixYkyfPj3G17///nt++eUXZs2axeHDh3FwcKB27dqEhITEuk8fHx/69++Pt7c3J06coFixYtSuXRs/P7/EOoz39rbjffnyJSdOnGDEiBGcOHGC1atXc+nSJRo2bPjO/cbldyGpvOvcAtSpUydK3cuXL3/rPpPruX3Xsf77GB88eMD8+fMxGAw0a9bsrftNjuf1fb5r+vXrx59//snKlSvZvXs39+/fp2nTpm/db3x+1+NMCbPg5+enALV79+5Yt1mwYIFydnZOuqISkLe3typWrNh7b9+yZUtVv379KOs8PDzUl19+mcCVJb6+ffuqvHnzKqPRGOPrKfW8AmrNmjWmZaPRqDJnzqwmTZpkWvf8+XNlY2Ojli9fHut+ypYtq7y8vEzLkZGRKmvWrGrChAmJUnd8/fd4Y3LkyBEFqFu3bsW6TVx/F/QQ07F27NhRNWrUKE77SQnn9n3Oa6NGjVS1atXeuk1KOK9KRf+uef78ubKyslIrV640bXPhwgUFqIMHD8a4j/j+rseVtACZiYCAAADSp0//1u2CgoLIlSsXOXLkoFGjRpw7dy4pyksQV65cIWvWrOTJk4d27dpx+/btWLc9ePAgNWrUiLKudu3aHDx4MLHLTFBhYWEsWbKELl26vHXi3pR8Xl+7ceMGDx8+jHLenJ2d8fDwiPW8hYWFcfz48SjvsbCwoEaNGinuXIP2e2wwGHBxcXnrdnH5XUhOdu3aRaZMmcifPz89e/bkyZMnsW6bWs7to0eP2LhxI127dn3ntinhvP73u+b48eOEh4dHOU8FChQgZ86csZ6n+Pyux4cEIDNgNBr5+uuvqVixIp988kms2+XPn5/58+ezbt06lixZgtFopEKFCty9ezcJq40fDw8PFi5cyJYtW5g5cyY3btygcuXKvHjxIsbtHz58iJubW5R1bm5uPHz4MCnKTTBr167l+fPndOrUKdZtUvJ5/bfX5yYu583f35/IyMhUca5DQkIYNGgQbdq0eevkkXH9XUgu6tSpw+LFi/H19eW7775j9+7d1K1bl8jIyBi3Ty3ndtGiRTg6Or7zklBKOK8xfdc8fPgQa2vraKH9becpPr/r8SGzwZsBLy8vzp49+87rxeXLl6d8+fKm5QoVKlCwYEFmz57N2LFjE7vMD1K3bl3T86JFi+Lh4UGuXLn4/fff3+svq5Rq3rx51K1bl6xZs8a6TUo+r0ITHh5Oy5YtUUoxc+bMt26bUn8XWrdubXpepEgRihYtSt68edm1axfVq1fXsbLENX/+fNq1a/fOGxNSwnl93++a5EJagFK53r17s2HDBnbu3En27Nnj9F4rKytKlCjB1atXE6m6xOPi4sLHH38ca+2ZM2eOdhfCo0ePyJw5c1KUlyBu3brF9u3b6datW5zel1LP6+tzE5fz5urqiqWlZYo+16/Dz61bt9i2bdtbW39i8q7fheQqT548uLq6xlp3aji3e/fu5dKlS3H+HYbkd15j+67JnDkzYWFhPH/+PMr2bztP8fldjw8JQKmUUorevXuzZs0aduzYQe7cueO8j8jISM6cOUOWLFkSocLEFRQUxLVr12KtvXz58vj6+kZZt23btigtJcndggULyJQpE/Xr14/T+1Lqec2dOzeZM2eOct4CAwM5fPhwrOfN2tqaUqVKRXmP0WjE19c3RZzr1+HnypUrbN++nQwZMsR5H+/6XUiu7t69y5MnT2KtO6WfW9BacEuVKkWxYsXi/N7kcl7f9V1TqlQprKysopynS5cucfv27VjPU3x+1+NbvEiFevbsqZydndWuXbvUgwcPTI+XL1+atmnfvr0aPHiwaXn06NFq69at6tq1a+r48eOqdevWytbWVp07d06PQ4iTAQMGqF27dqkbN26o/fv3qxo1aihXV1fl5+enlIp+rPv371dp0qRRP/zwg7pw4YLy9vZWVlZW6syZM3odQpxERkaqnDlzqkGDBkV7LSWf1xcvXqiTJ0+qkydPKkBNnjxZnTx50nTX08SJE5WLi4tat26d+vvvv1WjRo1U7ty51atXr0z7qFatmpo6dappecWKFcrGxkYtXLhQnT9/XnXv3l25uLiohw8fJvnx/dfbjjcsLEw1bNhQZc+eXZ06dSrK73FoaKhpH/893nf9Lujlbcf64sULNXDgQHXw4EF148YNtX37dlWyZEmVL18+FRISYtpHSjm37/r/WCmlAgIClL29vZo5c2aM+0gp5/V9vmt69OihcubMqXbs2KGOHTumypcvr8qXLx9lP/nz51erV682Lb/P7/qHkgCUSgExPhYsWGDapmrVqqpjx46m5a+//lrlzJlTWVtbKzc3N1WvXj114sSJpC8+Hlq1aqWyZMmirK2tVbZs2VSrVq3U1atXTa//91iVUur3339XH3/8sbK2tlaFCxdWGzduTOKq42/r1q0KUJcuXYr2Wko+rzt37ozx/9vXx2M0GtWIESOUm5ubsrGxUdWrV4/2M8iVK5fy9vaOsm7q1Kmmn0HZsmXVoUOHkuiI3u5tx3vjxo1Yf4937txp2sd/j/ddvwt6eduxvnz5UtWqVUtlzJhRWVlZqVy5cqkvvvgiWpBJKef2Xf8fK6XU7NmzlZ2dnXr+/HmM+0gp5/V9vmtevXqlevXqpdKlS6fs7e1VkyZN1IMHD6Lt59/veZ/f9Q9l+OeDhRBCCCHMhvQBEkIIIYTZkQAkhBBCCLMjAUgIIYQQZkcCkBBCCCHMjgQgIYQQQpgdCUBCCCGEMDsSgIQQQghhdiQACSFELAwGA2vXrtW7DCFEIpAAJIRIljp16oTBYIj2qFOnjt6lCSFSgTR6FyCEELGpU6cOCxYsiLLOxsZGp2qEEKmJtAAJIZItGxsbMmfOHOWRLl06QLs8NXPmTOrWrYudnR158uRh1apVUd5/5swZqlWrhp2dHRkyZKB79+4EBQVF2Wb+/PkULlwYGxsbsmTJQu/evaO87u/vT5MmTbC3tydfvnysX7/e9NqzZ89o164dGTNmxM7Ojnz58kULbEKI5EkCkBAixRoxYgTNmjXj9OnTtGvXjtatW3PhwgUAgoODqV27NunSpePo0aOsXLmS7du3Rwk4M2fOxMvLi+7du3PmzBnWr1/PRx99FOUzRo8eTcuWLfn777+pV68e7dq14+nTp6bPP3/+PJs3b+bChQvMnDkTV1fXpPsBCCHiL0GnVhVCiATSsWNHZWlpqRwcHKI8xo0bp5TSZo/u0aNHlPd4eHionj17KqWUmjNnjkqXLp0KCgoyvb5x40ZlYWFhmmU8a9asatiwYbHWAKjhw4ebloOCghSgNm/erJRSytPTU3Xu3DlhDlgIkaSkD5AQItn67LPPmDlzZpR16dOnNz0vX758lNfKly/PqVOnALhw4QLFihXDwcHB9HrFihUxGo1cunQJg8HA/fv3qV69+ltrKFq0qOm5g4MDTk5O+Pn5AdCzZ0+aNWvGiRMnqFWrFo0bN6ZChQrxOlYhRNKSACSESLYcHByiXZJKKHZ2du+1nZWVVZRlg8GA0WgEoG7duty6dYtNmzaxbds2qlevjpeXFz/88EOC1yuESFjSB0gIkWIdOnQo2nLBggUBKFiwIKdPnyY4ONj0+v79+7GwsCB//vw4Ojri7u6Or6/vB9WQMWNGOnbsyJIlS5gyZQpz5sz5oP0JIZKGtAAJIZKt0NBQHj58GGVdmjRpTB2NV65cSenSpalUqRJLly7lyJEjzJs3D4B27drh7e1Nx44dGTVqFI8fP6ZPnz60b98eNzc3AEaNGkWPHj3IlCkTdevW5cWLF+zfv58+ffq8V30jR46kVKlSFC5cmNDQUDZs2GAKYEKI5E0CkBAi2dqyZQtZsmSJsi5//vxcvHgR0O7QWrFiBb169SJLliwsX76cQoUKAWBvb8/WrVvp27cvZcqUwd7enmbNmjF58mTTvjp27EhISAg//fQTAwcOxNXVlebNm793fdbW1gwZMoSbN29iZ2dH5cqVWbFiRQIcuRAisRmUUkrvIoQQIq4MBgNr1qyhcePGepcihEiBpA+QEEIIIcyOBCAhhBBCmB3pAySESJHk6r0Q4kNIC5AQQgghzI4EICGEEEKYHQlAQgghhDA7EoCEEEIIYXYkAAkhhBDC7EgAEkIIIYTZkQAkhBBCCLMjAUgIIYQQZkcCkBBCCCHMzv8BHMFwk67OIgIAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ - "# A text classifier implemented in TensorFlow to classify SMS spam messages.\n", - "\n", - "# Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow.\n", - "\n", - "# The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function.\n", - "\n", - "#The output of the # code is the accuracy of the classifier along with some statistics\n", - "\n", - "# We implement an RNN in TensorFlow to predict spam/ham from texts\n", - "\n", "import os\n", "import re\n", "import io\n", "import requests\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", - "import tensorflow.compat.v1 as tf\n", + "import tensorflow as tf\n", "from zipfile import ZipFile\n", - "from tensorflow.python.framework import ops\n", - "tf.disable_v2_behavior()\n", - "ops.reset_default_graph()\n", - "\n", - "# Start a graph\n", - "sess = tf.Session()\n", - "\n", - "# Set RNN parameters\n", - "epochs = 20\n", - "batch_size = 250\n", - "max_sequence_length =25 \n", - "rnn_size = 10\n", - "embedding_size = 50\n", - "min_word_frequency = 10\n", - "learning_rate = 0.0005\n", - "dropout_keep_prob = tf.placeholder(tf.float32,name='dropout_keep_prob')\n", - "\n", + "from tensorflow.keras.preprocessing.text import Tokenizer\n", + "from tensorflow.keras.preprocessing.sequence import pad_sequences" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "b3fa5d09", + "metadata": {}, + "outputs": [], + "source": [ + "# Set random seed for reproducibility\n", + "tf.random.set_seed(42)\n", "\n", "# Download or open data\n", - "data_dir = 'tmp'\n", - "data_file = 'text_data.txt'\n", + "data_dir = \"tmp\"\n", + "data_file = \"text_data.txt\"\n", "if not os.path.exists(data_dir):\n", " os.makedirs(data_dir)\n", "\n", "if not os.path.isfile(os.path.join(data_dir, data_file)):\n", - " zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'\n", + " zip_url = \"http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip\"\n", " r = requests.get(zip_url)\n", " z = ZipFile(io.BytesIO(r.content))\n", - " file = z.read('SMSSpamCollection')\n", + " file = z.read(\"SMSSpamCollection\")\n", " # Format Data\n", " text_data = file.decode()\n", - " text_data = text_data.encode('ascii', errors='ignore')\n", - " text_data = text_data.decode().split('\\n')\n", + " text_data = text_data.encode(\"ascii\", errors=\"ignore\")\n", + " text_data = text_data.decode().split(\"\\n\")\n", "\n", " # Save data to text file\n", - " with open(os.path.join(data_dir, data_file), 'w') as file_conn:\n", + " with open(os.path.join(data_dir, data_file), \"w\") as file_conn:\n", " for text in text_data:\n", " file_conn.write(\"{}\\n\".format(text))\n", "else:\n", " # Open data from text file\n", " text_data = []\n", - " with open(os.path.join(data_dir, data_file), 'r') as file_conn:\n", + " with open(os.path.join(data_dir, data_file), \"r\") as file_conn:\n", " for row in file_conn:\n", " text_data.append(row)\n", " text_data = text_data[:-1]\n", "\n", - "text_data = [x.split('\\t') for x in text_data if len(x) >= 1]\n", - "[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]\n", - "\n", - "\n", + "text_data = [x.split(\"\\t\") for x in text_data if len(x) >= 1]\n", + "[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "d2d94450", + "metadata": {}, + "outputs": [], + "source": [ "# Create a text cleaning function\n", "def clean_text(text_string):\n", - " text_string = re.sub(r'([^\\s\\w]|_|[0-9])+', '', text_string)\n", + " text_string = re.sub(r\"([^\\s\\w]|_|[0-9])+\", \"\", text_string)\n", " text_string = \" \".join(text_string.split())\n", " text_string = text_string.lower()\n", - " return text_string\n", - "\n", + " return text_string" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "7c01c5b9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']\n", + "(5574, 25)\n" + ] + } + ], + "source": [ "# Clean texts\n", "text_data_train = [clean_text(x) for x in text_data_train]\n", - "#print(text_data[:5])\n", "print(text_data_train[:5])\n", "\n", "# Tokenize and pad sequences\n", - "vocab_processor = tf.keras.preprocessing.text.Tokenizer()\n", - "vocab_processor.fit_on_texts(text_data_train)\n", - "text_processed = vocab_processor.texts_to_sequences(text_data_train)\n", - "max_document_length = max([len(x) for x in text_processed])\n", - "#pads the text data to ensure all sequences have the same length (max_sequence_length).\n", - "text_processed = tf.keras.preprocessing.sequence.pad_sequences(text_processed, maxlen=max_sequence_length, padding='post')\n", - "print(text_processed.shape)\n", + "tokenizer = Tokenizer()\n", + "tokenizer.fit_on_texts(text_data_train)\n", + "text_processed = tokenizer.texts_to_sequences(text_data_train)\n", + "max_sequence_length = 25\n", + "text_processed = pad_sequences(\n", + " text_processed, maxlen=max_sequence_length, padding=\"post\"\n", + ")\n", + "print(text_processed.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "fe65852c", + "metadata": {}, + "outputs": [], + "source": [ "# Shuffle and split data\n", "text_processed = np.array(text_processed)\n", - "text_data_target = np.array([1 if x == 'ham' else 0 for x in text_data_target])\n", + "text_data_target = np.array([1 if x == \"ham\" else 0 for x in text_data_target])\n", "shuffled_ix = np.random.permutation(np.arange(len(text_data_target)))\n", "x_shuffled = text_processed[shuffled_ix]\n", - "y_shuffled = text_data_target[shuffled_ix]\n", - "\n", + "y_shuffled = text_data_target[shuffled_ix]" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "b107bb0b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Vocabulary Size: 8630\n", + "80-20 Train Test split: 4459 -- 1115\n" + ] + } + ], + "source": [ "# Split train/test set\n", - "ix_cutoff = int(len(y_shuffled)*0.80)\n", + "ix_cutoff = int(len(y_shuffled) * 0.80)\n", "x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:]\n", - "print(x_train)\n", "y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:]\n", - "vocab_size = len(vocab_processor.word_counts)\n", + "vocab_size = len(tokenizer.word_index) + 1\n", "print(\"Vocabulary Size: {:d}\".format(vocab_size))\n", - "print(\"80-20 Train Test split: {:d} -- {:d}\".format(len(y_train), len(y_test)))\n", - "\n", - "# Create placeholders\n", - "x_data = tf.placeholder(tf.int32, [None, max_sequence_length])\n", - "y_output = tf.placeholder(tf.int32, [None])\n", - "\n", - "# Create embedding\n", - "embedding_mat = tf.Variable(tf.random_uniform([vocab_size+1, embedding_size], -1.0, 1.0))\n", - "embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data)\n", - "\n", - "# Define the RNN cell\n", - "# tensorflow change >= 1.0, rnn is put into tensorflow.contrib directory. Prior version not test.\n", - "cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)\n", - "\n", - "output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)\n", - "output = tf.nn.dropout(output, dropout_keep_prob)\n", - "\n", - "# Get output of RNN sequence\n", - "output = tf.transpose(output, [1, 0, 2])\n", - "last = tf.gather(output, int(output.get_shape()[0]) - 1)\n", - "\n", - "weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1))\n", - "bias = tf.Variable(tf.constant(0.1, shape=[2]))\n", - "logits_out = tf.matmul(last, weight) + bias\n", - "\n", - "\n", - "# Loss function\n", - "losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output)\n", - "loss = tf.reduce_mean(losses)\n", - "print(loss)\n", - "accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32))\n", - "print(accuracy)\n", - "optimizer = tf.train.RMSPropOptimizer(learning_rate)\n", - "train_step = optimizer.minimize(loss)\n", - "init = tf.global_variables_initializer()\n", - "sess.run(init)\n", - "\n", - "train_loss = []\n", - "test_loss = []\n", - "train_accuracy = []\n", - "test_accuracy = []\n", - "# Start training\n", - "for epoch in range(epochs):\n", - " # Shuffle training data\n", - " shuffled_ix = np.random.permutation(np.arange(len(x_train)))\n", - " x_train = x_train[shuffled_ix]\n", - " y_train = y_train[shuffled_ix]\n", - " num_batches = int(len(x_train)/batch_size) + 1\n", - " # TO DO CALCULATE GENERATIONS ExACTLY\n", - " for i in range(num_batches):\n", - " # Select train data\n", - " min_ix = i * batch_size\n", - " max_ix = np.min([len(x_train), ((i+1) * batch_size)])\n", - " x_train_batch = x_train[min_ix:max_ix]\n", - " y_train_batch = y_train[min_ix:max_ix]\n", - " max_len = max([len(x) for x in x_train_batch])\n", - " x_train_batch = np.array([np.pad(x, (0, max_len - len(x)), 'constant') for x in x_train_batch])\n", - " # Run train step\n", - " train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5}\n", - " sess.run(train_step, feed_dict=train_dict)\n", - " # Run loss and accuracy for training\n", - " train_dict = {x_data: x_train, y_output: y_train, dropout_keep_prob:1.0}\n", - " temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict)\n", - " train_loss.append(temp_train_loss)\n", - " train_accuracy.append(temp_train_acc)\n", - " # Run Eval Step\n", - " test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0}\n", - " temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict)\n", - " test_loss.append(temp_test_loss)\n", - " test_accuracy.append(temp_test_acc)\n", - " print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc))\n", - " \n", - "# Plot loss over time\n", - "epoch_seq = np.arange(1, epochs+1)\n", - "plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')\n", - "plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')\n", - "plt.title('Softmax Loss')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Softmax Loss')\n", - "plt.legend(loc='upper left')\n", - "plt.show()\n", + "print(\"80-20 Train Test split: {:d} -- {:d}\".format(len(y_train), len(y_test)))" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "fdd3ca65", + "metadata": {}, + "outputs": [], + "source": [ + "# Create the model using the Sequential API\n", + "embedding_size = 50\n", + "model = tf.keras.Sequential(\n", + " [\n", + " tf.keras.layers.Embedding(\n", + " input_dim=vocab_size,\n", + " output_dim=embedding_size,\n", + " input_length=max_sequence_length,\n", + " ),\n", + " tf.keras.layers.SimpleRNN(units=10),\n", + " tf.keras.layers.Dropout(0.5),\n", + " tf.keras.layers.Dense(units=2, activation=\"softmax\"),\n", + " ]\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "34b221e2", + "metadata": {}, + "outputs": [], + "source": [ + "# Compile the model\n", + "model.compile(\n", + " optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0005),\n", + " loss=\"sparse_categorical_crossentropy\",\n", + " metrics=[\"accuracy\"],\n", + ")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "e7bef8d5", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/20\n", + "15/15 [==============================] - 3s 65ms/step - loss: 0.5753 - accuracy: 0.7575 - val_loss: 0.4707 - val_accuracy: 0.8756\n", + "Epoch 2/20\n", + "15/15 [==============================] - 0s 33ms/step - loss: 0.4656 - accuracy: 0.8433 - val_loss: 0.3906 - val_accuracy: 0.9283\n", + "Epoch 3/20\n", + "15/15 [==============================] - 0s 24ms/step - loss: 0.3762 - accuracy: 0.9162 - val_loss: 0.3093 - val_accuracy: 0.9574\n", + "Epoch 4/20\n", + "15/15 [==============================] - 0s 9ms/step - loss: 0.3103 - accuracy: 0.9422 - val_loss: 0.2595 - val_accuracy: 0.9652\n", + "Epoch 5/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.2693 - accuracy: 0.9498 - val_loss: 0.2225 - val_accuracy: 0.9664\n", + "Epoch 6/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.2285 - accuracy: 0.9686 - val_loss: 0.1987 - val_accuracy: 0.9664\n", + "Epoch 7/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.2024 - accuracy: 0.9795 - val_loss: 0.1820 - val_accuracy: 0.9619\n", + "Epoch 8/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.1825 - accuracy: 0.9748 - val_loss: 0.1675 - val_accuracy: 0.9630\n", + "Epoch 9/20\n", + "15/15 [==============================] - 0s 9ms/step - loss: 0.1647 - accuracy: 0.9821 - val_loss: 0.1631 - val_accuracy: 0.9608\n", + "Epoch 10/20\n", + "15/15 [==============================] - 0s 14ms/step - loss: 0.1546 - accuracy: 0.9837 - val_loss: 0.1623 - val_accuracy: 0.9574\n", + "Epoch 11/20\n", + "15/15 [==============================] - 0s 12ms/step - loss: 0.1400 - accuracy: 0.9865 - val_loss: 0.1622 - val_accuracy: 0.9552\n", + "Epoch 12/20\n", + "15/15 [==============================] - 0s 13ms/step - loss: 0.1302 - accuracy: 0.9868 - val_loss: 0.1632 - val_accuracy: 0.9552\n", + "Epoch 13/20\n", + "15/15 [==============================] - 0s 14ms/step - loss: 0.1285 - accuracy: 0.9865 - val_loss: 0.1640 - val_accuracy: 0.9540\n", + "Epoch 14/20\n", + "15/15 [==============================] - 0s 17ms/step - loss: 0.1194 - accuracy: 0.9871 - val_loss: 0.1579 - val_accuracy: 0.9552\n", + "Epoch 15/20\n", + "15/15 [==============================] - 0s 15ms/step - loss: 0.1190 - accuracy: 0.9874 - val_loss: 0.1647 - val_accuracy: 0.9518\n", + "Epoch 16/20\n", + "15/15 [==============================] - 0s 17ms/step - loss: 0.1103 - accuracy: 0.9874 - val_loss: 0.1596 - val_accuracy: 0.9563\n", + "Epoch 17/20\n", + "15/15 [==============================] - 0s 11ms/step - loss: 0.1033 - accuracy: 0.9879 - val_loss: 0.1530 - val_accuracy: 0.9585\n", + "Epoch 18/20\n", + "15/15 [==============================] - 0s 11ms/step - loss: 0.0954 - accuracy: 0.9905 - val_loss: 0.1611 - val_accuracy: 0.9552\n", + "Epoch 19/20\n", + "15/15 [==============================] - 0s 17ms/step - loss: 0.0937 - accuracy: 0.9896 - val_loss: 0.1640 - val_accuracy: 0.9552\n", + "Epoch 20/20\n", + "15/15 [==============================] - 0s 10ms/step - loss: 0.0924 - accuracy: 0.9907 - val_loss: 0.1848 - val_accuracy: 0.9484\n" + ] + } + ], + "source": [ + "# Train the model\n", + "epochs = 20\n", + "batch_size = 250\n", "\n", - "# Plot accuracy over time\n", - "plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')\n", - "plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')\n", - "plt.title('Test Accuracy')\n", - "plt.xlabel('Epochs')\n", - "plt.ylabel('Accuracy')\n", - "plt.legend(loc='upper left')\n", - "plt.show()" + "history = model.fit(\n", + " x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2\n", + ")" ] }, { - "cell_type": "markdown", - "id": "3bc90f40", + "cell_type": "code", + "execution_count": 11, + "id": "e8d94dcc", "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwoElEQVR4nO3dd3hUVeLG8e9Meg8hkIQQCL0ThEAERYpIURFUFFlWiihWLMiq/FxFdFd0bYhYsFCUVVGsawEBwUKRJr230BNqKmkz9/fHJSOhhITcSX0/zzNPZu7cOedMJiEv555iMwzDQERERKSSsJd1A0RERESspHAjIiIilYrCjYiIiFQqCjciIiJSqSjciIiISKWicCMiIiKVisKNiIiIVCoKNyIiIlKpKNyIiIhIpaJwIyKWeumll6hfvz4eHh60adOmrJsjIlWQwo1IFbZ+/XoGDBhA3bp18fX1JTo6mmuuuYY33njjksr76aefeOyxx7jiiiuYNm0azz//PAcPHuSZZ55hzZo11ja+lOzZswebzcbLL79c1k0RkSLyLOsGiEjZWLJkCd26daNOnTrcddddREZGsm/fPpYtW8brr7/OqFGjil3mzz//jN1u54MPPsDb2xuAlStXMn78eGJjY9WTIyKlQuFGpIr697//TUhICCtWrCA0NLTAc8nJyZdUZnJyMn5+fq5gIyJSFnRZSqSK2rlzJy1atDgn2ADUrFmzwOO8vDyee+45GjRogI+PD7Gxsfzf//0f2dnZrnNsNhvTpk0jIyMDm82GzWZj+vTptG/fHoDhw4cXOA7QtWtXWrZsybp16+jSpQv+/v40bNiQ2bNnA/DLL7+QkJCAn58fTZo0Yf78+QXalZiYyH333UeTJk3w8/OjevXq3HLLLezZs8d1jmEYdOvWjRo1ahQIbTk5ObRq1YoGDRqQkZFRkm8lYAa7ESNGEBERga+vL3FxccyYMeOc8z799FPatWtHUFAQwcHBtGrVitdff931fG5uLuPHj6dRo0b4+vpSvXp1rrzySubNm1fiNopUFQo3IlVU3bp1WbVqFRs2bLjouXfeeSdPP/00bdu25bXXXqNLly5MmDCB2267zXXORx99ROfOnfHx8eGjjz7io48+olmzZjz77LMAjBw50nX8qquucr3uxIkTXH/99SQkJPCf//wHHx8fbrvtNmbNmsVtt93GtddeywsvvEBGRgYDBgwgLS3N9doVK1awZMkSbrvtNiZNmsQ999zDggUL6Nq1K5mZmYAZuqZOnUpWVhb33HOP67Xjxo1j48aNTJs2jYCAgBJ9L0+dOkXXrl356KOPGDx4MC+99BIhISEMGzasQHCZN28egwYNolq1arz44ou88MILdO3alcWLF7vOeeaZZxg/fjzdunVj8uTJPPnkk9SpU4fVq1eXqI0iVYohIlXSTz/9ZHh4eBgeHh5Gx44djccee8yYO3eukZOTU+C8NWvWGIBx5513Fjg+ZswYAzB+/vln17GhQ4caAQEBBc5bsWKFARjTpk07pw1dunQxAOPjjz92HduyZYsBGHa73Vi2bJnr+Ny5c88pJzMz85wyly5dagDGhx9+WOD4lClTDMCYOXOmsWzZMsPDw8N4+OGHL/wNOm337t0GYLz00ksXPGfixImusvPl5OQYHTt2NAIDA43U1FTDMAzjoYceMoKDg428vLwLlhUXF2dcd911F22XiFyYem5EqqhrrrmGpUuXcsMNN7B27Vr+85//0KtXL6Kjo/n2229d5/3www8AjB49usDrH330UQC+//77ErUjMDCwQA9QkyZNCA0NpVmzZiQkJLiO59/ftWuX65ifn5/rfm5uLseOHaNhw4aEhoae09MxcuRIevXqxahRo7j99ttp0KABzz//fInanu+HH34gMjKSQYMGuY55eXnx4IMPkp6ezi+//AJAaGgoGRkZhV5iCg0NZePGjWzfvt2StolURQo3IlVY+/bt+fLLLzlx4gTLly9n7NixpKWlMWDAADZt2gSY41rsdjsNGzYs8NrIyEhCQ0NJTEwsURtq166NzWYrcCwkJISYmJhzjoF5GSvfqVOnePrpp4mJicHHx4fw8HBq1KjByZMnSUlJOaeuDz74gMzMTLZv38706dMLhKOSSExMpFGjRtjtBf9Jbdasmet5gPvuu4/GjRvTp08fateuzR133MGcOXMKvObZZ5/l5MmTNG7cmFatWvGPf/yDdevWWdJOkapC4UZE8Pb2pn379jz//PO8/fbb5Obm8vnnnxc45+wAYhUPD49iHTcMw3V/1KhR/Pvf/+bWW2/ls88+46effmLevHlUr14dp9N5zmsXLVrkGgS9fv16C1pfPDVr1mTNmjV8++233HDDDSxcuJA+ffowdOhQ1zlXXXUVO3fuZOrUqbRs2ZL333+ftm3b8v7775d6e0UqKoUbESkgPj4egEOHDgHmwGOn03nOZZKkpCROnjxJ3bp1Cy3PXaEIYPbs2QwdOpRXXnmFAQMGcM0113DllVdy8uTJc849dOgQo0aNomfPnlx//fWMGTOmxL1O+erWrcv27dvPCVRbtmxxPZ/P29ubvn378tZbb7Fz507uvvtuPvzwQ3bs2OE6JywsjOHDh/PJJ5+wb98+WrduzTPPPGNJW0WqAoUbkSpq4cKFBXpB8uWPsWnSpAkA1157LQATJ04scN6rr74KwHXXXVdoPfkzkc4XOErKw8PjnPfwxhtv4HA4zjn3rrvuwul08sEHH/Duu+/i6enJiBEjzvs9KK5rr72Ww4cPM2vWLNexvLw83njjDQIDA+nSpQsAx44dK/A6u91O69atAVw9SmefExgYSMOGDQtMuxeRwmkRP5EqatSoUWRmZnLjjTfStGlTcnJyWLJkCbNmzSI2Npbhw4cDEBcXx9ChQ3n33Xc5efIkXbp0Yfny5cyYMYP+/fvTrVu3Qutp0KABoaGhvPPOOwQFBREQEEBCQgL16tUr8Xu4/vrr+eijjwgJCaF58+YsXbqU+fPnU7169QLnTZs2je+//57p06dTu3ZtwAxBf//733n77be57777LlrXggULyMrKOud4//79GTlyJFOmTGHYsGGsWrWK2NhYZs+ezeLFi5k4cSJBQUGAOaX++PHjdO/endq1a5OYmMgbb7xBmzZtXONzmjdvTteuXWnXrh1hYWGsXLmS2bNn88ADD5T02yVSdZTtZC0RKSs//vijcccddxhNmzY1AgMDDW9vb6Nhw4bGqFGjjKSkpALn5ubmGuPHjzfq1atneHl5GTExMcbYsWONrKysAuedbyq4YRjGN998YzRv3tzw9PQsMJ27S5cuRosWLc45v27duuedDg0Y999/v+vxiRMnjOHDhxvh4eFGYGCg0atXL2PLli1G3bp1jaFDhxqGYRj79u0zQkJCjL59+55T3o033mgEBAQYu3btuuD3KX8q+IVuH330kWEYhpGUlORqi7e3t9GqVatzpr/Pnj3b6Nmzp1GzZk3D29vbqFOnjnH33Xcbhw4dcp3zr3/9y+jQoYMRGhpq+Pn5GU2bNjX+/e9/nzNFX0QuzGYYFvTJioiIiJQTGnMjIiIilYrCjYiIiFQqCjciIiJSqSjciIiISKWicCMiIiKVisKNiIiIVCpVbhE/p9PJwYMHCQoKcuuy8CIiImIdwzBIS0ujVq1a52xSe7YqF24OHjx4zm7DIiIiUjHs27fPtdL4hVS5cJO/DPq+ffsIDg4u49aIiIhIUaSmphITE+P6O16YKhdu8i9FBQcHK9yIiIhUMEUZUqIBxSIiIlKpKNyIiIhIpaJwIyIiIpVKlRtzU1QOh4Pc3NyyboZUMF5eXnh4eJR1M0REqjSFm7MYhsHhw4c5efJkWTdFKqjQ0FAiIyO1jpKISBlRuDlLfrCpWbMm/v7++gMlRWYYBpmZmSQnJwMQFRVVxi0SEamaFG7O4HA4XMGmevXqZd0cqYD8/PwASE5OpmbNmrpEJSJSBjSg+Az5Y2z8/f3LuCVSkeX//GjMlohI2VC4OQ9dipKS0M+PiEjZUrgRERGRSkXhRi4oNjaWiRMnlnUzREREikXhphKw2WyF3p555plLKnfFihWMHDmyRG3bvXs3f/vb36hVqxa+vr7Url2bfv36sWXLliKXMWzYMPr371+idoiISNWh2VIWynM4yXUY+HmX7gyZQ4cOue7PmjWLp59+mq1bt7qOBQYGuu4bhoHD4cDT8+IffY0aNUrUrtzcXK655hqaNGnCl19+SVRUFPv37+fHH3/UOkIiIuI26rmxSMqpXDYfSuXAyVOlXndkZKTrFhISgs1mcz3esmULQUFB/Pjjj7Rr1w4fHx9+//13du7cSb9+/YiIiCAwMJD27dszf/78AuWefVnKZrPx/vvvc+ONN+Lv70+jRo349ttvL9iujRs3snPnTt566y0uv/xy6tatyxVXXMG//vUvLr/8ctd5+/bt49ZbbyU0NJSwsDD69evHnj17AHjmmWeYMWMG33zzjasnatGiRVZ++0REpJJRuLkIwzDIzMm76A0MTuU6OJ6RTcqpnCK95mI3wzAsex9PPPEEL7zwAps3b6Z169akp6dz7bXXsmDBAv7880969+5N37592bt3b6HljB8/nltvvZV169Zx7bXXMnjwYI4fP37ec2vUqIHdbmf27Nk4HI7znpObm0uvXr0ICgrit99+Y/HixQQGBtK7d29ycnIYM2YMt956K7179+bQoUMcOnSITp06lfj7ISIilZcuS13EqVwHzZ+eWyZ1b3q2F/7e1nxEzz77LNdcc43rcVhYGHFxca7Hzz33HF999RXffvstDzzwwAXLGTZsGIMGDQLg+eefZ9KkSSxfvpzevXufc250dDSTJk3iscceY/z48cTHx9OtWzcGDx5M/fr1AfMymtPp5P3333dNoZ42bRqhoaEsWrSInj174ufnR3Z2NpGRkZZ8L0REpHJTz00VER8fX+Bxeno6Y8aMoVmzZoSGhhIYGMjmzZsv2nPTunVr1/2AgACCg4Nd2w2cz/3338/hw4f573//S8eOHfn8889p0aIF8+bNA2Dt2rXs2LGDoKAgAgMDCQwMJCwsjKysLHbu3FmCdywiIlWVem4uws/Lg03P9irSuVm5DnYkp2Oz2WgaGYiHvWTZ0c/LuoHJAQEBBR6PGTOGefPm8fLLL9OwYUP8/PwYMGAAOTk5hZbj5eVV4LHNZsPpdBb6mqCgIPr27Uvfvn3517/+Ra9evfjXv/7FNddcQ3p6Ou3ateO///3vOa8r6YBmERGpmhRuLsJmsxX50pC/tychfjlk5zlwOCHIt/x+excvXsywYcO48cYbAbMnJ38QrzvZbDaaNm3KkiVLAGjbti2zZs2iZs2aBAcHn/c13t7eFxyzIyIicjZdlrJYsJ8ZaFJP5ZVxSwrXqFEjvvzyS9asWcPatWv529/+dtEemOJas2YN/fr1Y/bs2WzatIkdO3bwwQcfMHXqVPr16wfA4MGDCQ8Pp1+/fvz222/s3r2bRYsW8eCDD7J//37AnLW1bt06tm7dytGjR7Vnk4iIFErhxmLBvuZlm7TsXJwWznay2quvvkq1atXo1KkTffv2pVevXrRt29bSOmrXrk1sbCzjx48nISGBtm3b8vrrrzN+/HiefPJJwNxk8tdff6VOnTrcdNNNNGvWjBEjRpCVleXqybnrrrto0qQJ8fHx1KhRg8WLF1vaThERqVxshpXzjSuA1NRUQkJCSElJOecySFZWFrt376ZevXr4+vpeUvmGYbD5UBp5Tif1wgMI8vW6+IukUrHi50hERAoq7O/32dRzYzGbzVZhLk2JiIhURgo3bpB/aSo1K9fShfhERETk4hRu3CDQxxO7zUauw8mpXM3yERERKU0KN25gt9tc08B1aUpERKR0Kdy4SbDfX5emREREpPQo3LhJkI8nNmxk5TrIztOlKRERkdKicOMmnh52AnzM7RN0aUpERKT0KNy4kevS1CldmhIRESktCjdulD8lPDMnjzyHtVsbiIiIyPkp3LiRt6cdPy8PDCA1q/xfmuratSsPP/yw63FsbCwTJ04s9DU2m42vv/66xHVbVY6IiIjCjZuVxqWpvn370rt37/M+99tvv2Gz2Vi3bl2xy12xYgUjR44safMKeOaZZ2jTps05xw8dOkSfPn0sretsDoeDF154gaZNm+Ln50dYWBgJCQm8//77RS5j0aJF2Gw2Tp486b6GiohIiXiWdQMqu2BfL5JSs0jPzsPpNLDbbZbXMWLECG6++Wb2799P7dq1Czw3bdo04uPjad26dbHLrVGjhlVNvKjIyEi31zF+/HimTJnC5MmTiY+PJzU1lZUrV3LixAm31y0iIqVHPTdu5utlx9vDjtMwSMt2z6Wp66+/nho1ajB9+vQCx9PT0/n8888ZMWIEx44dY9CgQURHR+Pv70+rVq345JNPCi337MtS27dv56qrrsLX15fmzZszb968c17z+OOP07hxY/z9/alfvz5PPfUUublmr9X06dMZP348a9euxWazYbPZXG0++7LU+vXr6d69O35+flSvXp2RI0eSnp7uen7YsGH079+fl19+maioKKpXr87999/vqut8vv32W+677z5uueUW6tWrR1xcHCNGjGDMmDGuc5xOJxMmTKBevXr4+fkRFxfH7NmzAdizZw/dunUDoFq1athsNoYNG1bo91BEREqfem4uxjAgN/OSX24DQjxzOJqVQ1pqHiEefkV/sZc/2C7e0+Pp6cmQIUOYPn06Tz75JLbTr/n8889xOBwMGjSI9PR02rVrx+OPP05wcDDff/89t99+Ow0aNKBDhw4XrcPpdHLTTTcRERHBH3/8QUpKSoHxOfmCgoKYPn06tWrVYv369dx1110EBQXx2GOPMXDgQDZs2MCcOXOYP38+ACEhIeeUkZGRQa9evejYsSMrVqwgOTmZO++8kwceeKBAgFu4cCFRUVEsXLiQHTt2MHDgQNq0acNdd9113vcQGRnJzz//zH333XfBXqkJEyYwc+ZM3nnnHRo1asSvv/7K3//+d2rUqMGVV17JF198wc0338zWrVsJDg7Gz68Yn6eIiJQKhZuLyc2E52uVqIio07di+7+D4B1QpFPvuOMOXnrpJX755Re6du0KmJekbr75ZkJCQggJCSnQQzFq1Cjmzp3LZ599VqRwM3/+fLZs2cLcuXOpVcv8fjz//PPnjJP55z//6bofGxvLmDFj+PTTT3nsscfw8/MjMDAQT0/PQi9Dffzxx2RlZfHhhx8SEGC+/8mTJ9O3b19efPFFIiIiALP3ZPLkyXh4eNC0aVOuu+46FixYcMFw8+qrrzJgwAAiIyNp0aIFnTp1ol+/fq73kJ2dzfPPP8/8+fPp2LEjAPXr1+f3339nypQpdOnShbCwMABq1qxJaGjoRb9vIiJS+nRZqpJo2rQpnTp1YurUqQDs2LGD3377jREjRgDmYNrnnnuOVq1aERYWRmBgIHPnzmXv3r1FKn/z5s3ExMS4gg3gCgBnmjVrFldccQWRkZEEBgbyz3/+s8h1nFlXXFycK9gAXHHFFTidTrZu3eo61qJFCzw8PFyPo6KiSE5OvmC5zZs3Z8OGDSxbtow77riD5ORk+vbty5133gmY37PMzEyuueYaAgMDXbcPP/yQnTt3Fus9iIhI2VHPzcV4+Zs9KCW0/8QpTmTmEB7oTVRIES9lePkXq44RI0YwatQo3nzzTaZNm0aDBg3o0qULAC+99BKvv/46EydOpFWrVgQEBPDwww+Tk5NT3LdyQUuXLmXw4MGMHz+eXr16ERISwqeffsorr7xiWR1n8vLyKvDYZrPhdBa+npDdbqd9+/a0b9+ehx9+mJkzZ3L77bfz5JNPusb0fP/990RHRxd4nY+Pj7WNFxERt1G4uRibrciXhgoTFOzN8dwMUhx2Ir38XeNirHTrrbfy0EMP8fHHH/Phhx9y7733uupZvHgx/fr14+9//ztgjqHZtm0bzZs3L1LZzZo1Y9++fRw6dIioKPMi27Jlywqcs2TJEurWrcuTTz7pOpaYmFjgHG9vbxyOwvfaatasGdOnTycjI8PVe7N48WLsdjtNmjQpUnuLKv/9Z2Rk0Lx5c3x8fNi7d68rFJ7N29sb4KLvQUREyo4uS5WSQB9P7DYbOXlOsnLds1pxYGAgAwcOZOzYsRw6dKjATJ5GjRoxb948lixZwubNm7n77rtJSkoqctk9evSgcePGDB06lLVr1/Lbb78VCDH5dezdu5dPP/2UnTt3MmnSJL766qsC58TGxrJ7927WrFnD0aNHyc7OPqeuwYMH4+vry9ChQ9mwYQMLFy5k1KhR3H777a7xNpdiwIABvPbaa/zxxx8kJiayaNEi7r//fho3bkzTpk0JCgpizJgxPPLII8yYMYOdO3eyevVq3njjDWbMmAFA3bp1sdlsfPfddxw5cqTADC4RESkfFG5KiYfdRqCP2VGWmuW+Bf1GjBjBiRMn6NWrV4HxMf/85z9p27YtvXr1omvXrkRGRtK/f/8il2u32/nqq684deoUHTp04M477+Tf//53gXNuuOEGHnnkER544AHatGnDkiVLeOqppwqcc/PNN9O7d2+6detGjRo1zjsd3d/fn7lz53L8+HHat2/PgAEDuPrqq5k8eXLxvhln6dWrF//73//o27evK6g1bdqUn376CU9P87N57rnneOqpp5gwYQLNmjWjd+/efP/999SrVw+A6Ohoxo8fzxNPPEFERAQPPPBAidokIiLWsxmGYZR1I0pTamoqISEhpKSkEBwcXOC5rKwsdu/eTb169fD19bW87uMZOew/kYmflweNIoIsL1/KB3f/HImIVEWF/f0+m3puSlGwryc24FSug5w8baQpIiLiDgo3pcjTw46/t/svTYmIiFRlCjelrDQ20hQREanKFG5KWbCv2XOTke0gz6FLUyIiIlZTuDkPd46x9vHywNfLAwP3baQpZauKjdEXESl3FG7OkL/ibWbmpW+UWRTBvro0VZnl//ycvYKyiIiUDq1QfAYPDw9CQ0Nd+xP5+7tnJWEfWx5GXg4p6blk+tmx262vQ0qfYRhkZmaSnJxMaGhogX2vRESk9CjcnCV/t+rCNmC0wrGULBxOA0eKN75e+iNYmYSGhha667mIiLiXws1ZbDYbUVFR1KxZk9xc9102+nb+Nr5de5DrWkUxumdDt9UjpcvLy0s9NiIiZUzh5gI8PDzc+keqU5Mo3v59H1+uO8IT17fWpSkRERGLaEBxGUmoV50gH0+Opmfz576TZd0cERGRSkPhpox4e9rp1rQmAPM2FX13bhERESmcwk0ZuqZ5BAA/bTpcxi0RERGpPBRuylDXJjXw8rCx60gGO5LTy7o5IiIilYLCTRkK8vWiU4NwQJemRERErKJwU8Z0aUpERMRaCjdlLD/c/Ln3JMmpWWXcGhERkYpP4aaMRQT70iYmFID5m927KrKIiEhVoHBTDujSlIiIiHXKRbh58803iY2NxdfXl4SEBJYvX37Bc6dPn47NZitw8/X1LcXWWq9XCzPcLNlxjPTsvDJujYiISMVW5uFm1qxZjB49mnHjxrF69Wri4uLo1atXoRtXBgcHc+jQIdctMTGxFFtsvQY1AqkXHkCOw8kvW4+UdXNEREQqtDIPN6+++ip33XUXw4cPp3nz5rzzzjv4+/szderUC77GZrMRGRnpukVERJRii61ns9noqUtTIiIilijTcJOTk8OqVavo0aOH65jdbqdHjx4sXbr0gq9LT0+nbt26xMTE0K9fPzZu3HjBc7Ozs0lNTS1wK496nr409fOWZHIdzjJujYiISMVVpuHm6NGjOByOc3peIiIiOHz4/D0YTZo0YerUqXzzzTfMnDkTp9NJp06d2L9//3nPnzBhAiEhIa5bTEyM5e/DCm1iqhEe6E1aVh5/7Dpe1s0RERGpsMr8slRxdezYkSFDhtCmTRu6dOnCl19+SY0aNZgyZcp5zx87diwpKSmu2759+0q5xUXjYbfRo5kuTYmIiJRUmYab8PBwPDw8SEoquPVAUlISkZGRRSrDy8uLyy67jB07dpz3eR8fH4KDgwvcyqv8S1PzNiVhGEYZt0ZERKRiKtNw4+3tTbt27ViwYIHrmNPpZMGCBXTs2LFIZTgcDtavX09UVJS7mllqOjUIx9/bg0MpWWw4UD7HBomIiJR3ZX5ZavTo0bz33nvMmDGDzZs3c++995KRkcHw4cMBGDJkCGPHjnWd/+yzz/LTTz+xa9cuVq9ezd///ncSExO58847y+otWMbXy4MujWsAME+XpkRERC6JZ1k3YODAgRw5coSnn36aw4cP06ZNG+bMmeMaZLx3717s9r8y2IkTJ7jrrrs4fPgw1apVo127dixZsoTmzZuX1Vuw1DXNI/hxw2F+2pTE6J5Nyro5IiIiFY7NqGKDO1JTUwkJCSElJaVcjr85mZlDu3/Nx+E0+PUf3ahT3b+smyQiIlLmivP3u8wvS0lBof7eJNQLAzRrSkRE5FIo3JRDf22kmXSRM0VERORsCjflUH64WbnnOMczcsq4NSIiIhWLwk05VLuaPy1qBeM0YMFm9d6IiIgUh8JNOaVLUyIiIpdG4aac6tncXKH5t+1HOJXjKOPWiIiIVBwKN+VUs6ggokP9yMp18tv2I2XdHBERkQpD4aacstlsrr2mdGlKRESk6BRuyrH8S1MLNieR53CWcWtEREQqBoWbcqx9bDVC/b04kZnLqsQTZd0cERGRCkHhphzz9LDTvWlNAObp0pSIiEiRKNyUc/mXpn7alEQV2wZMRETkkijcWMXphG0/wZbvLS32qsbh+Hja2Xs8k61JaZaWLSIiUhkp3Fhl3Sz4+BaY+6QZdCzi7+1J50bhAMzbqEtTIiIiF6NwY5XmN4BvCJzYDTvmWVq0VisWEREpOoUbq3gHwGW3m/f/mGJp0Vc3i8Bmg/UHUjh48pSlZYuIiFQ2CjdWan8nYIOdC+DodsuKDQ/0Ib5uNUCzpkRERC5G4cZKYfWgcW/z/vJ3LS26Vwtz1tQ3aw5YWq6IiEhlo3BjtYSR5tc1H0NWqmXF3tCmFh52G6v3nmRHsmZNiYiIXIjCjdXqd4PwxpCTDms/sazYmkG+dGtSA4DPV+23rFwREZHKRuHGajYbdDjde7P8XUunhd8SHwPAF6sOkKu9pkRERM5L4cYd4m4D7yA4tgN2/WxZsd2b1iQ80Juj6dn8svWIZeWKiIhUJgo37uATBJcNNu//Yd3AYi8PO/3bRAPw+ap9lpUrIiJSmSjcuEv7u8yv23+C47ssKzb/0tSCzckcTc+2rFwREZHKQuHGXcIbQsMegAHL37es2CaRQcTFhJLnNPj6T00LFxEROZvCjTt1uNv8+udMyE63rNhb2tUG4LOV+7RTuIiIyFkUbtypYQ8Iqw/ZKebGmhbpG1cLH08725LSWbc/xbJyRUREKgOFG3ey2wtOC7eolyXEz4veLc0VizWwWEREpCCFG3dr8zfwCoAjW2D3L5YVe+vpgcXfrDlIVq7DsnJFREQqOoUbd/MNgTaDzPsWTgvvWL860aF+pGXlMXfjYcvKFRERqegUbkpD/qWpbT/CiURLirTbbQw4PbD485XajkFERCSfwk1pqNEE6ncFwwkrrJsWnh9uFu88yr7jmZaVKyIiUpEp3JSW/Gnhqz+EHGuCSEyYP1c0rI5hwBer1XsjIiICCjelp3EvCK0DWSdh/eeWFXtLO3Ng8exV+3E6teaNiIiIwk1psXv8tSWDhdPCe7eMJMjXk/0nTrFs1zFLyhQREanIFG5KU9vbwcsfkjZA4hJLivT18qBvXC0APl+lS1MiIiIKN6XJrxq0vtW8v3yKZcXmr3nzw/pDpGblWlauiIhIRaRwU9ryp4Vv/g5SrOlpiasdQuOIQLLznPxv7UFLyhQREamoFG5KW0QLiO0MhgNWfGBJkTabzTWwWGveiIhIVadwUxbye29Wz4DcLEuK7H9ZNJ52G2v2nWRbUpolZYqIiFRECjdlocm1EFwbMo/Bhi8sKbJGkA/dm9YE4POV2kxTRESqLoWbsuDhCe1HmPeXT7FsWvgtpwcWf/XnAXIdTkvKFBERqWgUbspK26Hg4QOH1sK+5ZYU2bVJDcIDfTiansPCLcmWlCkiIlLRKNyUlYDq0OoW875F08K9POzc1DYagM80sFhERKoohZuylHB6YPGmbyD1kCVF3nJ6M82FW5NJTrNmsLKIiEhFonBTlqLioE5HcObBqmmWFNkoIojL6oTicBp8/ecBS8oUERGpSBRuylr+tPCV0yAv25Iiz1zzxrBosLKIiEhFoXBT1pr1haBakJEMG7+2pMjr46Lw9bKzPTmdNftOWlKmiIhIRaFwU9Y8vCD+DvO+RQOLg329uLZlFKCBxSIiUvUo3JQH7YaBhzccWAX7V1lS5IB4c2Dxd2sPcirHYUmZIiIiFYHCTXkQWANa3GTet6j35vJ61YkJ8yMtO485G62ZiSUiIlIRKNyUF/nTwjd8CeklX4DPbv9rM83PVujSlIiIVB0KN+VFdDuIjgdnLqyabkmRN7erjc0GS3cdY9/xTEvKFBERKe8UbsqThLvNryungiO3xMVFh/pxZcNwAD5fpd4bERGpGhRuypPm/SEwAtIOweZvLSlywOkVi79YtR+nU2veiIhI5adwU554ekO74eb9P961pMheLSIJ9vXkwMlTLNl5zJIyRUREyjOFm/ImfjjYPWHfMji4psTF+Xp50K9N/maa+0pcnoiISHmncFPeBEWal6cAllvTe3PL6TVv5mw8TEpmycfyiIiIlGcKN+VR/sDi9bMh42iJi2sVHULTyCBy8px8u+5gicsTEREpz8pFuHnzzTeJjY3F19eXhIQEli9fXqTXffrpp9hsNvr37+/eBpa22u0hqg04smH1jBIXZ7PZuCU+fzNNXZoSEZHKrczDzaxZsxg9ejTjxo1j9erVxMXF0atXL5KTC1/Ibs+ePYwZM4bOnTuXUktLkc32V+/NiqngyCtxkf3b1MLTbmPd/hS2HE4tcXkiIiLlVZmHm1dffZW77rqL4cOH07x5c9555x38/f2ZOnXqBV/jcDgYPHgw48ePp379+qXY2lLU4ibwrw6p+2Hr9yUurnqgDz2aRQDwuTbTFBGRSqxMw01OTg6rVq2iR48ermN2u50ePXqwdOnSC77u2WefpWbNmowYMeKidWRnZ5OamlrgViF4+ZobaoJl08LzBxZ/9ecBcvKclpQpIiJS3pRpuDl69CgOh4OIiIgCxyMiIjh8+PB5X/P777/zwQcf8N577xWpjgkTJhASEuK6xcTElLjdpSZ+BNg8IPF3OLyhxMV1aVyDGkE+HM/I4ectJd+/SkREpDwqdriZM2cOv//+u+vxm2++SZs2bfjb3/7GiRMnLG3c2dLS0rj99tt57733CA8PL9Jrxo4dS0pKiuu2b18FGlAbEg3N+pr3LZgW7ulh5+a2Zu+NBhaLiEhlVexw849//MN1aWf9+vU8+uijXHvttezevZvRo0cXq6zw8HA8PDxISkoqcDwpKYnIyMhzzt+5cyd79uyhb9++eHp64unpyYcffsi3336Lp6cnO3fuPOc1Pj4+BAcHF7hVKPkDi9d9BpnHS1xc/qWphVuTSU7NKnF5IiIi5U2xw83u3btp3rw5AF988QXXX389zz//PG+++SY//vhjscry9vamXbt2LFiwwHXM6XSyYMECOnbseM75TZs2Zf369axZs8Z1u+GGG+jWrRtr1qypWJeciqpOR4hoBXmn4M+ZJS6uQY1A2tWthtOAL/88YEEDRUREypdihxtvb28yMzMBmD9/Pj179gQgLCzskgbrjh49mvfee48ZM2awefNm7r33XjIyMhg+3NxjaciQIYwdOxYAX19fWrZsWeAWGhpKUFAQLVu2xNvbu9j1l3s2GySMNO+veA+cjhIXeevp3pvPVu7DMLSZpoiIVC7FDjdXXnklo0eP5rnnnmP58uVcd911AGzbto3atWsXuwEDBw7k5Zdf5umnn6ZNmzasWbOGOXPmuAYZ7927l0OHDhW73Eql1S3gVw1O7oVtc0pc3HWta+Hn5cGuIxms3uvecVIiIiKlzWYU87/ue/fu5b777mPfvn08+OCDrunYjzzyCA6Hg0mTJrmloVZJTU0lJCSElJSUijX+Zt7TsPh1qN8VhnxT4uIe/WwtX6zez23tY3jh5tYlb5+IiIgbFefvd7HDTUVXYcPNiUR4PQ4w4IGVEN6oRMUt23WM295dRoC3Byv+2QN/b09r2ikiIuIGxfn7XezLUqtXr2b9+vWux9988w39+/fn//7v/8jJySl+a6VoqtWFJn3M+yveL3FxCfXCqFvdn4wcBz+uP/+aQiIiIhVRscPN3XffzbZt2wDYtWsXt912G/7+/nz++ec89thjljdQztD+TvPrmo8hO71ERdlsNm5p99fAYhERkcqi2OFm27ZttGnTBoDPP/+cq666io8//pjp06fzxRdfWN0+OVP9bhDWALJTYd2sEhd3U9va2Gzwx+7jJB7LsKCBIiIiZa/Y4cYwDJxOc1+i+fPnc+211wIQExPD0aNHrW2dFGS3/9V7s+J9KOFwqVqhfnRuVAOA2au0maaIiFQOxQ438fHx/Otf/+Kjjz7il19+cU0F37179zl7RIkbtPkbePlD8iZIXFzi4vLXvJm9aj8OZ5UaWy4iIpVUscPNxIkTWb16NQ888ABPPvkkDRs2BGD27Nl06tTJ8gbKWfxCofWt5v3lRds8tDA9mkUQ4ufFoZQsft+hnjcREan4LJsKnpWVhYeHB15eXlYU5zYVdir4mQ5vgHeuALsnPLwegmuVqLhx32xgxtJErm8dxeS/tbWokSIiItZx61TwfKtWrWLmzJnMnDmT1atX4+vrW+6DTaUR2RLqdAJnHqyaXuLibok39+T6aWMSJzM1nV9ERCq2Yoeb5ORkunXrRvv27XnwwQd58MEHiY+P5+qrr+bIkSPuaKOcT4fTA4tXTYe8kgWSFrWCaRYVTI7DyYdLE0veNhERkTJU7HAzatQo0tPT2bhxI8ePH+f48eNs2LCB1NRUHnzwQXe0Uc6naV8IjID0JNjyvxIVZbPZuLdrAwDe+20XKZm5VrRQRESkTBQ73MyZM4e33nqLZs2auY41b96cN998kx9//NHSxkkhPL2hnblzuhUDi69vFUXTyCDSsvKY8uvOEpcnIiJSVoodbpxO53nH1nh5ebnWv5FS0m6YOah471JzkHEJ2O02Rl/TGIBpi/dwND3bggaKiIiUvmKHm+7du/PQQw9x8OBB17EDBw7wyCOPcPXVV1vaOLmI4Choer15f0XJe2+uaR5BXEwop3IdvLVQvTciIlIxFTvcTJ48mdTUVGJjY2nQoAENGjSgXr16pKamMmnSJHe0UQrTYaT5dd1ncOpkiYqy2WyM6Wn23sz8I5FDKadK2DgREZHS51ncF8TExLB69Wrmz5/Pli1bAGjWrBk9evSwvHFSBHU7Qc3m5orFaz6GjveVqLgrG4bToV4Yy3cf542fd/D8ja0saqiIiEjpsGwRvy1btnDDDTe4dgwvryrFIn5nW/EBfD/a3FTzgZXmHlQlsHz3cW6dshRPu42fH+1Kner+FjVURETk0pTKIn5ny87OZudOjdMoE60Hgk8wHN8JuxaWuLgO9cK4qnEN8pwGExeU77AqIiJyNsvCjZQhn0BzQ02wZFo44Bp78/WfB9iRnGZJmSIiIqVB4aayaH96xeJtc+BEyVcZbl07lJ7NI3Aa8Nq87SUuT0REpLQo3FQW4Y2gfjfAgJVTLSny0Z5NsNng+/WH2HAgxZIyRURE3K3I4aZatWqEhYVd8Na5c2d3tlOKosNd5tfVH0JuVomLaxIZxA1x5o7jr83T2BsREakYijwVfOLEiW5shliicW8IiYGUfbDxy7/G4ZTAwz0a8926QyzYkszqvSdoW6eaBQ0VERFxH8umglcUlXIq+Jl+exUWjIdabWFkyWdOATw+ex2zVu6jU4PqfHzX5ZaUKSIiUhxlMhVcyom2Q8DDGw6uhv2rLCly1NUN8fKwsWTnMZbsOGpJmSIiIu6icFPZBIRDi5vM+xbsNwVQu5o/f+tQB4CXf9pKFevsExGRCkbhpjLK329qw5eQYU1Py/3dGuLrZWf13pMs2nrEkjJFRETcQeGmMqrdDmpdBo5sc+aUBWoG+zK0Yyxg9t44neq9ERGR8qnY4SYr68JTjA8dOlSixoiF2p+eFr5yGjgdlhR5T5cGBPp4svFgKnM3HrakTBEREasVO9y0bduWNWvWnHP8iy++oHXr1la0SazQ8ibwC4OUvbBtriVFVgvw5o4r6wHwyrxtONR7IyIi5VCxw03Xrl25/PLLefHFFwHIyMhg2LBh3H777fzf//2f5Q2US+TlB21vN+8vf9eyYu/sXI8QPy92JKfzzZoDlpUrIiJilWKHm7feeosvvviCiRMn0rlzZ+Li4lizZg3Lly/nkUcecUcb5VLF3wHYzJ3Cj+6wpMhgXy/u7lIfgInzt5PrcFpSroiIiFUuaUBxnz59uOmmm1i8eDF79+7lxRdfpGXLlla3TUqqWiw07mXeX/G+ZcUO6xRLeKA3e49n8vnK/ZaVKyIiYoVih5udO3fSsWNHvvvuO+bOnctjjz3GDTfcwGOPPUZubq472iglkb/f1JqPITvdkiL9vT25r2tDAN74eTtZudYMWBYREbFCscNNmzZtqFevHmvXruWaa67hX//6FwsXLuTLL7+kQ4cO7mijlET97hBWH7JTYP1nlhX7t4Q6RIX4cigli4//2GtZuSIiIiV1SWNuPv30U0JDQ13HOnXqxJ9//knbtm2tbJtYwW6H9nea95e/DxatLuzr5cGDVzcC4K1FO8jMybOkXBERkZIqdri5/fbbz3s8KCiIDz74oMQNEjdo8zfw8ofkjbB3qWXFDmhXm7rV/TmansP0JXssK1dERKQkPC/1hZs2bWLv3r3k5OS4jtlsNvr27WtJw8RCftWg1S2weoY5LbxuJ0uK9fKw83CPRjwyay1TftnF4IS6hPh5WVK2iIjIpSp2uNm1axc33ngj69evx2azuTZRtNlsADgcGlxaLnW4yww3m/8HaYchKNKSYm+Ii+athTvZnpzOB7/vZvQ1jS0pV0RE5FIV+7LUQw89RL169UhOTsbf35+NGzfy66+/Eh8fz6JFi9zQRLFEZCuo0xGcebBqumXFethtrkDzwW+7OJ6Rc5FXiIiIuFexw83SpUt59tlnCQ8Px263Y7fbufLKK5kwYQIPPvigO9ooVskfWLxyGjism7bfq0UkLWoFk5HjYMovOy0rV0RE5FIUO9w4HA6CgoIACA8P5+DBgwDUrVuXrVu3Wts6sVazGyCgJqQfNi9PWcRutzGmZxMAZizdQ3LqhTdXFRERcbdih5uWLVuydu1aABISEvjPf/7D4sWLefbZZ6lfv77lDRQLeXpD/HDzvoUrFgN0bVKDdnWrkZXr5M2F1mz1ICIicimKHW7++c9/4nSa+wk9++yz7N69m86dO/PDDz8wadIkyxsoFms3DGwekLgYkjZaVqzNZuPRnubYm4+X72X/iUzLyhYRESmOYoebXr16cdNNNwHQsGFDtmzZwtGjR0lOTqZ79+6WN1AsFlwLml1v3l/+nqVFd2oQzhUNq5PrMJi0YLulZYuIiBTVJW2cebawsDDXVHCpADqMNL+umwWnTlpa9KOnx958sfoAu45Ys5eViIhIcRR7nZusrCzeeOMNFi5cSHJysusSVb7Vq1db1jhxk7pXQI1mcGQzrP0ELr/XsqLb1qnG1U1rsmBLMhPnb2fSoMssK1tERKQoih1uRowYwU8//cSAAQPo0KGDemwqIpsNOtwJ3z9qDizucLe5B5VFRvdszIItyfxv3UHu69aAppHBlpUtIiJyMTbDKN5OiiEhIfzwww9cccUV7mqTW6WmphISEkJKSgrBwVX4j252OrzaDLJT4favoIG146Xu/+9qvl9/iJ7NI3h3SLylZYuISNVTnL/fxf7venR0tGudG6nAfAIhbpB53+KBxQCPXNMIuw1+2pTE2n0nLS9fRETkQoodbl555RUef/xxEhMT3dEeKU35KxZvmwMn91padMOaQfS/LBqAV+Zts7RsERGRwhQ73MTHx5OVlUX9+vUJCgoiLCyswE0qkBqNoX5XMJywcqrlxT98dWM87TZ+3XaE5buPW16+iIjI+RR7QPGgQYM4cOAAzz//PBERERpQXNG1vwt2LYLVH0KXJ8DL17Ki61T359b2MXz8x15enruVWXdfrp8XERFxu2KHmyVLlrB06VLi4uLc0R4pbY17Q3BtSN0PG7+CNoMsLX5U94bMXrWf5XuO89v2o1zVuIal5YuIiJyt2JelmjZtyqlTp9zRFikLHp7Q/g7z/grrBxZHhfjx94S6ALz801byHM6LvEJERKRkih1uXnjhBR599FEWLVrEsWPHSE1NLXCTCqjtUPDwhgOrIHGJ5cXf160BAd4erNufwr9/2Gx5+SIiImcq9jo39tOLvZ09dsIwDGw2Gw6Hw7rWuYHWubmAbx+E1TMgrAHc8zt4+1ta/JwNh7hnprl69YSbWjGoQx1LyxcRkcqtOH+/iz3mZuHChZfcMCnHrnkWts+D4zth/ji49iVLi+/dMopHr2nMK/O28dTXG4itHkDHBtUtrUNERAQu4bJUvXr1uOqqq+jSpUuB21VXXUW9evUuqRFvvvkmsbGx+Pr6kpCQwPLlyy947pdffkl8fDyhoaEEBATQpk0bPvroo0uqV87gFwr9Jpv3l79rzqCy2APdG9I3rhZ5ToN7/7uKvccyLa9DRETkksLNkSNHzjl+/PjxSwo3s2bNYvTo0YwbN47Vq1cTFxdHr169SE5OPu/5YWFhPPnkkyxdupR169YxfPhwhg8fzty5c4tdt5yl4dV/Lez39X2W7xhus9l4aUBr4mqHcDIzlxEzVpCWlWtpHSIiIpc05iYpKYkaNQpO6U1MTKR58+ZkZGQUqwEJCQm0b9+eyZPNXgOn00lMTAyjRo3iiSeeKFIZbdu25brrruO555676Lkac3MRORnwzpVwfJe5PcON71heRVJqFv0mL+ZwahbdmtTg/aHt8bBr/RsREbkwt4y5GT16NGD+7/upp57C3/+vAacOh4M//viDNm3aFKuhOTk5rFq1irFjx7qO2e12evTowdKlSy/6esMw+Pnnn9m6dSsvvvjiec/Jzs4mOzvb9Vgzui7COwD6vwPTesPaT6Dp9dDsekuriAj25b0h8dwyZQkLtx5hwg+b+ef1zS2tQ0REqq4ih5s///wTMAPF+vXr8fb2dj3n7e1NXFwcY8aMKVblR48exeFwEBERUeB4REQEW7ZsueDrUlJSiI6OJjs7Gw8PD9566y2uueaa8547YcIExo8fX6x2VXl1EqDTg7B4IvzvIYhJgEBrF99rVTuEV25pw/0fr+b933fTKCKQge01g0pEREquSOFm0qRJ/PDDD/j5+TF8+HBef/31Mr2kExQUxJo1a0hPT2fBggWMHj2a+vXr07Vr13POHTt2rKvXCcyem5iYmFJsbQXV7f/M2VPJG+G7h2HgTLB464TrWkexPbkRE+dv55+nZ1Al1NcMKhERKZkiDSgePXo0aWlpAHz44YdkZWVZUnl4eDgeHh4kJSUVOJ6UlERkZOQFX2e322nYsCFt2rTh0UcfZcCAAUyYMOG85/r4+BAcHFzgJkXg6QM3TQG7F2z5DtZ+6pZqHrq6Ede1jiLXYXDvf1ez77hmUImISMkUKdzUqlWLL774gsTERAzDYP/+/ezdu/e8t+Lw9vamXbt2LFiwwHXM6XSyYMECOnbsWORynE5ngXE1YpHIVtD19KDuHx+DlP2WV2Gz2Xh5QBytokM4npHDnTNWkp6dZ3k9IiJSdRRpttS7777LqFGjyMu78B+dS12heNasWQwdOpQpU6bQoUMHJk6cyGeffcaWLVuIiIhgyJAhREdHu3pmJkyYQHx8PA0aNCA7O5sffviBJ554grfffps777zzovVptlQxOfLMwcX7V0C9LnD712Av9goCF3U4JYsbJv9Oclo2VzetybtD4jWDSkREXCyfLTVy5EgGDRpEYmIirVu3Zv78+VSvbs3YiIEDB3LkyBGefvppDh8+TJs2bZgzZ45rkPHevXtdWz4AZGRkcN9997F//378/Pxo2rQpM2fOZODAgZa0R87i4Qk3ToG3r4Ddv8CK9yFhpOXVRIaYM6hunbKUBVuS+c+cLYy9tpnl9YiISOVX7HVuZsyYwW233YaPj4+72uRW6rm5RH+8Cz/+Azz9zL2nwhu6pZpv1x7kwU/MmXkvDWjNLfEa/C0iIsX7+13scJNv1apVbN5s7vDcvHlz2rZteynFlDqFm0vkdMLMG81tGWq3h+FzzF4dN3j1p61M+nkH3h52Pr4rgfjYMLfUIyIiFUdx/n4Xe/BEcnIy3bt3p3379jz44IM8+OCDxMfHc/XVV593WwapJOx26Pcm+ISY428WT3RbVQ/3aEyflpHkOJzc/dEq9p/QDCoRESm6YoebUaNGkZaWxsaNGzl+/DjHjx9nw4YNpKam8uCDD7qjjVJehNSGPqdXgl70Ahxe75Zq7HYbr9waR4tawRw7PYMqQzOoRESkiIodbubMmcNbb71Fs2Z/DfZs3rw5b775Jj/++KOljZNyKO42c0sGZy58eTfkuWcKvr+3J+8NiSc80Icth9N4eNYanM5LuoIqIiJVTLHDjdPpxMvL65zjXl5eOJ1OSxol5ZjNBtdPBP9wc/XiRedfPNEKtUL9eG9IO7w97czblMRLP211W10iIlJ5FDvcdO/enYceeoiDBw+6jh04cIBHHnmEq6++2tLGSTkVWAP6vm7eX/w67P3DbVVdVqcaLw1oDcDbi3by5WrrFxIUEZHKpdjhZvLkyaSmphIbG0uDBg1o0KAB9erVIzU1lTfeeMMdbZTyqNn1EDcIDCd8dTfkZLitqn5torm/WwMAnvhiPav3nnBbXSIiUvFd0lRwwzCYP3++a+fuZs2a0aNHD8sb5w6aCm6hUyfNxf1S90P7O+G6V9xWldNpcO9/VzF3YxLhgT5888AVRIf6ua0+EREpX0plnZuKSuHGYrsWwYf9zPt//xIauu/SZEZ2HgPeWcrmQ6k0jwpm9r0d8fd2z1o7IiJSvrhlnZulS5fy3XffFTj24YcfUq9ePWrWrMnIkSO1eWVVVL8rdDi9HcM3D8Ap910yCvDx5P2h8YQHerPpUCqPaAaViIicR5HDzbPPPsvGjRtdj9evX8+IESPo0aMHTzzxBP/73/9cm1tKFdNjPIQ1gLSD8OPjbq0qOtSPKbfH4+1hZ+7GJF6dt82t9YmISMVT5HCzZs2aArOhPv30UxISEnjvvfcYPXo0kyZN4rPPPnNLI6Wc8/Y3N9e02WHdLNj0jVura1e3Gi/c3AqAyQt38M2aA26tT0REKpYih5sTJ064duoG+OWXX+jTp4/rcfv27dm3b5+1rZOKI6Y9XPmIef9/D0N6sluru6ltbe7pYs6g+sfsdazZd9Kt9YmISMVR5HATERHB7t27AcjJyWH16tVcfvnlrufT0tLOu7ifVCFdnoCIVnDqOPzvIXDzWPXHejWhR7MIcvKc3PXhSg6lnHJrfSIiUjEUOdxce+21PPHEE/z222+MHTsWf39/Onfu7Hp+3bp1NGjQwC2NlArC0xtufAc8vGHrD7DmY7dWZ7fbmHhbG5pGBnEkLZs7Z6wkM0d7UImIVHVFDjfPPfccnp6edOnShffee4/33nsPb29v1/NTp06lZ8+ebmmkVCCRLaHb/5n3f3wcTu51a3WBPuYeVNUDvNl4MJVHP1urGVQiIlVcsde5SUlJITAwEA8PjwLHjx8/TmBgYIHAUx5pnZtS4HTAtD6w7w+I7QxDvgV7sRfDLpaVe47zt/f+IMfhZFT3hjzas4lb6xMRkdLllnVu8oWEhJwTbADCwsLKfbCRUmL3gP5vg5c/7PkNlr/r9irjY8OYcJM5g+qNnzWDSkSkKnPvf6el6qreAHo+Z96fPw6OuH89mpvb1ebern/NoNIeVCIiVZPCjbhP/Aho0B3ysuDre8Dh/sG+/+jZhJ7NzRlUIz9cxYGTmkElIlLVKNyI+9hscMNk8AmBA6vg99fcXqXdbuO1gW1oFhXM0XRzBlVGtmZQiYhUJQo34l4h0XDdy+b9RRNgyw9ur/KvPah82HwolYe1B5WISJWicCPu1+oWuOzvYDjg82Gw53e3Vxkd6se7Q9rh7Wln3qYkXvppq9vrFBGR8kHhRtzPZoPrX4cm14IjGz4ZBIfWur3atnWq8dKA1gC8vWgnX6za7/Y6RUSk7CncSOnw8IQBU6HuFZCdCjNvhmM73V5tvzbRjOreEICxX65n5Z7jbq9TRETKlsKNlB4vPxj0CUS2gowj8FF/SD3k9mof6dGYPi0jyXE4ufujVew7nun2OkVEpOwo3Ejp8g2Bv38JYfXNrRlm3gSZ7u1NsdttvHJrHC2jgzmWkcOdM1aSrhlUIiKVlsKNlL7AmnD71xAUBcmb4OOBkJPh1ir9vc09qGoG+bA1KY0HP/kTh2ZQiYhUSgo3Ujaq1TV7cHxDYf9y+GwI5OW4tcqoED/eGxKPj6edn7ck88KPm91an4iIlA2FGyk7Ec1h8OfmHlQ75purGDudbq0yLiaUV26NA+C933Yza4V7dy0XEZHSp3AjZSumAwz8COxesOEL+PExKN5G9cV2fetaPNyjEQD//HoDy3Ydc2t9IiJSuhRupOw17AE3vgPYYMV7sOgFt1f50NWNuL51FLkOg3tnriLxmHvH/IiISOlRuJHyodUAuPYl8/4vL8AfU9xanc1m4+Vb4oirHcKJzFxGzFhJalauW+sUEZHSoXAj5UeHu6Dr/5n3f3wM1n3u1up8vTx4d0g8kcG+7EhO54GP/yTP4d4xPyIi4n4KN1K+dHkMOtxt3v/6Htg+z63VRQT78v7QeHy97Py67Qj//kEzqEREKjqFGylfbDbo/YK52aYzD2bdDnv/cGuVLaNDeO3WNgBMW7yH//6R6Nb6RETEvRRupPyx26H/29DwGsg7BR/fAkkb3Vpln1ZRjOnZGIBx32xkyY6jbq1PRETcR+FGyicPL7j1Q4i5HLJS4KOb4Phut1Z5f7eG9GtTizynwb3/Xc3uo5pBJSJSESncSPnl7Q9/+xRqtoD0w/DRjZCW5LbqbDYbL97cmjYxoaScymXE9BWkZGoGlYhIRaNwI+WbXzX4+xcQWhdO7IaZN8Opk26rzpxB1Y5aIb7sOprB/R+vJlczqEREKhSFGyn/gqPg9q8goCYkrYdPboOcTLdVVzPIl/eHtsff24Pfdxzlue82ua0uERGxnsKNVAzVG8DtX4JPCOxdCrOHg8N9l4ya1wrmtYFtsNngw6WJfLh0j9vqEhERayncSMUR2cocg+PpC9vmwDcPuHWjzV4tInmsV1MAxv9vE9+uPei2ukRExDoKN1Kx1O0Et8wAmwes+xR+etKtG23e06U+N7etjcNp8OAnf/LMtxvJydMYHBGR8kzhRiqeJr2h/1vm/WVvwW+vuK0qcwZVK+7t2gCA6Uv2cOuUpRw4ecptdYqISMko3EjFFHcb9Jpg3v/5OVg51W1VeXrYebx3U94fEk+wrydr9p3k+km/sWhrstvqFBGRS6dwIxVXx/ug8xjz/nejYc3Hbq2uR/MIvn+wM62izZ3Eh09fwas/bcXhdN9lMRERKT6FG6nYuv8T2g0HDPj6XvhypLmisZvEhPnz+T0dGZxQB8OAST/vYMjUPzianu22OkVEpHgUbqRis9ngulfgqn+AzQ7rZsHbV8Ce391Wpa+XB/++sRUTB7bBz8uDxTuOcd2k31i557jb6hQRkaJTuJGKz+5h9uAMnwPVYiFlH0y/Hn56CvLc16PS/7Jovn3gChrUCCApNZuB7y7jvV93Ybhx9paIiFycwo1UHnUS4J7foe0QwIAlk+C97m7dUbxRRBDfPnAlfeNq4XAa/PuHzdwzcxWpWdqTSkSkrCjcSOXiEwQ3vAG3fQz+4ZC0Ad7tCksmu23BvwAfTybd1obn+rXAy8PG3I1J9H3jdzYedN/YHxERuTCFG6mcml4H9y2Fxr3BkWMu9vfhDXByn1uqs9ls3N4xltn3dCI61I/EY5nc+NYSZq3Y65b6RETkwhRupPIKrAmDPoXrJ4KXP+z5zRxsvO4zt61qHBcTynejrqRbkxrk5Dl5/Iv1jPl8LadyHG6pT0REzqVwI5WbzQbxw82xONHxkJ0CX94Fs++ATPfMbqoW4M0HQ9vzj15NsNtg9qr93PjWYnYdSXdLfSIiUpDCjVQN1RvAHXOh6/+Z+1Jt/NLsxdm50C3V2e027u/WkJl3JhAe6M2Ww2ncMHkxP6w/5Jb6RETkLwo3UnV4eELXx2HEPAhrAGkH4aP+8OMTkOuevaI6NQjn+wc70yE2jPTsPO7772rG/0+bb4qIuJPCjVQ9tdvBPb9B/Ajz8R9vmzOqDq11S3URwb58fFcCd3epD8C0xXsY+O5SDmrzTRERt1C4karJOwCufxUGz4bACDiyBd672txh3Gn94F9PDztj+zTjvSHxBPl68ufek1w36Td+2XbE8rpERKq6chFu3nzzTWJjY/H19SUhIYHly5df8Nz33nuPzp07U61aNapVq0aPHj0KPV+kUI2ugXuXQtPrwZkLC56FadfCiT1uqe6a5hF8P6ozLaODOZGZy7Bpy3lt3jZtvikiYqEyDzezZs1i9OjRjBs3jtWrVxMXF0evXr1ITk4+7/mLFi1i0KBBLFy4kKVLlxITE0PPnj05cOBAKbdcKo2A6jBwJvR7C7yDYN8yc7DxnzPdMmW8TnV/Zt/Tib+d3nzz9QXbGTp1OXuPZVpel4hIVWQzyngjnISEBNq3b8/kyZMBcDqdxMTEMGrUKJ544omLvt7hcFCtWjUmT57MkCFDLnp+amoqISEhpKSkEBwcXOL2SyVzYg98ebcZcMDs0ek7yQxAbvDl6v08+dUGTuU68Pa0M7Jzfe7r1gB/b0+31CciUlEV5+93mfbc5OTksGrVKnr06OE6Zrfb6dGjB0uXLi1SGZmZmeTm5hIWFnbe57Ozs0lNTS1wE7mgarEw/Ae4ehzYvWDLd/DW5bDtJ7dUd1Pb2vxv1JVc2TCcnDwnkxfuoPvLv/DNmgPagFNE5BKVabg5evQoDoeDiIiIAscjIiI4fPhwkcp4/PHHqVWrVoGAdKYJEyYQEhLiusXExJS43VLJ2T2g82i4awGEN4GMZPj4FvhkEBxYbXl1DWsG8tGIDky5vR0xYX4cTs3ioU/XcOuUpWw4oP2pRESKq8zH3JTECy+8wKeffspXX32Fr6/vec8ZO3YsKSkprtu+fe7ZW0gqoag4uPsXSLgXsMHWH+C9bjDzZtj7h6VV2Ww2erWIZN4jXRjTszF+Xh6s2HOCvpN/Z+yX6zmWnm1pfSIilVmZhpvw8HA8PDxISkoqcDwpKYnIyMhCX/vyyy/zwgsv8NNPP9G6desLnufj40NwcHCBm0iReflBnxfg/uXQ+jZzdeMd82FqT5jRF3b/ZumgY18vDx7o3oifx3ThhrhaGAZ8snwv3V5exLTFu8l1aPE/EZGLKdNw4+3tTbt27ViwYIHrmNPpZMGCBXTs2PGCr/vPf/7Dc889x5w5c4iPjy+NpkpVV6Mx3DQFRq2EtkPA7gm7f4UZ18O0PmbgsTDkRIX4MWnQZXx2d0eaRwWTmpXH+P9t4trXf+P37Uctq0dEpDIq89lSs2bNYujQoUyZMoUOHTowceJEPvvsM7Zs2UJERARDhgwhOjqaCRMmAPDiiy/y9NNP8/HHH3PFFVe4ygkMDCQwMPCi9Wm2lFji5D5YPBFWfwiOHPNYdDu46h/QuLe5YadFHE6DWSv28dLcLZzIzAWgV4sI/nldc2LC/C2rR0SkPCvO3+8yDzcAkydP5qWXXuLw4cO0adOGSZMmkZCQAEDXrl2JjY1l+vTpAMTGxpKYmHhOGePGjeOZZ565aF0KN2Kp1EOwZBKsnAZ5p7dTiGxlhpymfcFuXedoSmYur83fxkfLEnE4Dbw97dx9VX3u7aqp4yJS+VW4cFOaFG7ELdKPwNLJsOJ9yEk3j9VoCp3HQMubzBlYFtmWlMb4/21k8Y5jAESF+DL22mb0bR2FzcIeIxGR8kThphAKN+JWmcdh2dvwxxTIPj2NO6wBdH4UWt8KHl6WVGMYBnM3JvGv7zex/4TZY9QhNoyn+zanZXSIJXWIiJQnCjeFULiRUnHqJCx/D5a9CadOmMdC68CVo6HN38DTx5JqsnIdvPfrLt5atJNTuQ5sNhjUoQ5jejYhLMDbkjpERMoDhZtCKNxIqcpOh5UfwJI3IOP0DuDB0XDFQ+asKy8/S6o5ePIUE37cwv/WHjSr8PXkkWsa8/fL6+LlUaGXsxKRiiQ3y5xsEd3O3JjYQgo3hVC4kTKRkwmrZ8Di1yHtkHksMAI6jYL4O8A7wJJq/th1jGf+t4nNh8xtRhpHBDKubwuuaBhuSfkiIhe0YwH8MAaO74LQuub6YF7nX2D3UijcFELhRspUXra52/jvEyFlr3nMvzpcfp8ZcvzPv0dacTicBp+u2MvLc7e6po5f0zyCf/RqQuOIoBKXLyJSQOpBmDMWNn1tPg6Kgt4ToHl/S5fFULgphMKNlAuOXFj7Kfz2CpzYbR7z9IVWA6DD3RB14VW3i+rsqeM2G/RvE83DPRpRt7o1PUUiUoU58mD5FFj4vDlL1GaHhHug61jwtf7vq8JNIRRupFxx5MHGL81p5IfW/nU85nJIGAnNbijxDKsdyWm88tM2ftxgbkbrabcxsH0Mo7o3IjLEui5jEalC9v4B34+GpA3m49od4LpXLPmP2YUo3BRC4UbKJcOAfcvN/wVt+gaceebxoCjzclW7YRBYs0RVrNt/kpd/2sav28yBzT6edoZ0rMu9XRtqZpWIFE3mcZg/zlydHcCvGvQYD5fdbumipeejcFMIhRsp99IOmyser5wKGcnmMQ9vaHEjdBgJtUu2n9ofu47x8k9bWbHHnKIe6OPJHVfW487O9Qj2tWYdHhGpZJxOWPNfmPc0nDpuHrvs79DjWQioXipNULgphMKNVBh5OWYvzvIpsH/FX8drtYWEu82wc4nr5RiGwS/bjvDS3K1sPGjOrAr19+LeLg0Y0jEWP2/rVlQWkQru8Ab4/lHYt8x8XLM5XPcq1L3wBtfuoHBTCIUbqZAOrDYXBdww+6+NOgNqmJer4u+A4FqXVKzTaTBn42Fe+WkrO49kAFAzyIdR3RsysH0dvD21Ro5IlZWdBoteMFddNxzgFQDdxpqDhi1abb04FG4KoXAjFVrGUVg13bxklXrAPGbzgGZ9zd6cOh0vaeplnsPJ12sO8tq8bRw4aW7nULuaH4/0aEz/y6LxsGvPKpEqwzDMXuM5YyHNXBiUZjdA7xcgJLrMmqVwUwiFG6kUHHmw5TtY/i4kLv7reEQr6HAXtLoFvP2LXWx2noNZK/bxxs87OJKWDUDDmoE8ek1jereM1MacIpXd8V3wwz9gx3zzcbVYuPZly1cbvhQKN4VQuJFK5/AGM+Ss+wzyzF4X/KqZsxfa3wnV6ha7yFM5DmYs3cPbi3aScspcCLBVdAhjejXhqkbhCjkilU1ulrmC+m+vgCPbnMRw5SPmzaJtYkpK4aYQCjdSaWUeN1c/XvEenDy9+rHNDo37QIv+UK2e+b+wgPAiX7pKzcrl/V938cHvu8nIcQDQoV4Y/+jVhPaxJV9NWUTKgZ0/w/dj4PhO83H9rnDtKxDesEybdTaFm0Io3Eil53TA9p/gjymwa+G5z3v5m/u+VKt71tdY877PuVs0HEvP5u1FO/lwWSI5eU4AujapwZieTWgZHeLmNyQibpF6COb+n7mQKEBgJPR+HlrcZOm2CVZRuCmEwo1UKUe2wappcHANnEw094DhIr/yfmEXCD6xHLKF88Yve/lsxT7ynGY517aKZGjHWNrVrYandiCXi3HkwZEt5orcuZlQvQFUbwTB0W5fBE5Oc+SZPbw//xty0swe3g53Q7f/c8u2CVZRuCmEwo1UaXnZkLIfTuwxbycT4UTiX1/zF+e6IBsE1yIrsDbr0kNZcjyAfc6apOOHp7cPzWqH07puOG3q1iQ40N+8bu/hY04b9fA+fTvjfkX6Y+Z0mmMR8rLN6fh5WeZaRBc75sgx9xIr9H5u0c5x5hY85nRAaB2IaGHeajY3vwaUk13gXUFmDRz80wzZSRvM79PZPP2gekMz7IQ3MgNPeEPzmK96By/KMMz9nTKOmLMqM46ccTta8H7aIThlLuJJdDxc/ypExZVt+4tA4aYQCjcihchKPTfwnPk1N9Pa+mwe54YeT++Cx+xeZ3SR24pwP/+QzTx+sftOx+lgkn06lJwOKa5jp786c6197+4UGPFX0MkPPTWagpcb9xJz5JpB5uCa02FmzYWDjHcQ1GpjXgI9tgOO7y78+xtQ83TgOR128sNPtbplst5KqcnL/iuYZB49N6Scff983+sL8Q2FHs9A26EV5j8ZCjeFULgRuUSGYf4D6go8e8yvJ/dh5GSSmXWKjMxMsrKyMPJy8LLl4UUe3uThbXPgTR4eOMr6XVjHw8dcIdrD+4yvvqfD2dnPXajnyvM8xy9wboH7p18HZjhI2gRJGyF5o/m5nI/NbgaD/NCT/zW0bvH/uBUnyPgEm70CUXFQ6zKIagNh9QvW6cgzf5aObjffz7HtcPT01/SkC7fD7mleMj2zl6d6IzP8BNQol+NGLujUSXN/ub1LzVvSJshOKX45XgFmz11AjdO3M++f8Tis/iUtF1GWFG4KoXAj4n4HT57i5y3JLNySzOKdR8nKNQch23AS4GlwVf0QujUMoXP9ECID7Be/JJM/Tsj1z5Vx4fsFzsu/b1zgPuYffVcgOTuYXCiseJffP5zZ6WbwSNpg/oFM3mTez78McTavAKjZ7NxLW/6nZ8OdE2T+NINUUYJMrcvMWXol6RnISj0deHYUDD/Hdhbek+gTYr6vqNZmeyJbm71XnuVkk9jUg5C4BPYuOx1mNnLe8XB2z/OHFP/q5wkt4eAdUOpvpbQo3BRC4UakdGXlOli68xgLtiSxcMsR1wrI+ZpGBtG9aU2ublaTNjHVtBqyOxiGuSFr8saCvTxHtv61ncfZgqLMP5pHtpqX687mjiBTHE6nuXrumaEn/+vJvZw3KHh4m4EnsvVfbY9o4f5AYBhwdNsZYWbJX8s1nCmsgbnKeN2OEN0OgiLNy0flNUiXMoWbQijciJQdwzDYmpTGz1uS+XlzMqv3nsB5xr9A1fy96NqkJt2a1qRLoxqE+Ffi8RTlgSPPXNukQC/PRvMS0Znyg0ytNuZlpdIOMsWVm2W+r8Mb4PA6c2bWoXXnv8xjs5uXsqJanxF6WpsLYV4qR65Z55k9M2cP1rfZzfryw0zM5RAUcel1VgEKN4VQuBEpP05k5PDLtiMs2JLML1uTSc3Kcz3nYbfRrm41ejSryY2X1aZG0KXtgC6XIDsNkjeb411qNi/fQaaoDMMMbflB59BaM/hcaExPaJ2CPTyRrc2elPP1omSnwf4VkHh6vMz+lX+tFp7P0w9qx/8VZmq3P++aUnJhCjeFULgRKZ/yHE5WJZ7g561mr8725HTXc94edq5vHcWwK2JpXTu07BoplU/aYTPsHD4j9Jzdc5UvoMZfQad6A7OXK3EJHF5v7pp9Jr9qZpDJv0XFlZ/xPhWUwk0hFG5EKoZ9xzP5eUsyX685wJ97T7qOt60TyvAr6tG7ZSReWjRQ3OHUCTOwHFr312Wto9vAcF74NaF1CoaZ8MYVv7ernFG4KYTCjUjFs3bfSaYv2cN36w6S6zD/yYoI9uH2y+syqEMdqgfqkpW4WU6m2VOT38NzfBfUaPJXmAmJLusWVnoKN4VQuBGpuJLTsvj4j73MXLaXo+nmDB5vTzs3xNViWKdY7XMlUokp3BRC4Uak4svOc/DD+kNMW7yHdfv/mgHTPrYaw6+oR8/mEdrnSqSSUbgphMKNSOVhGAZ/7jvJ9MV7+GH9IddmnlEhvtzesS63ta9DWIAGcYpUBgo3hVC4EamcklKz+O+yRP77x16OZZgL0/l42unfJpphV8TSLEq/7yIVmcJNIRRuRCq3rFwH3607xLTFu9l4MNV1PKFeGMOvqEePZjV1yUqkAlK4KYTCjUjVYBgGqxJPMG3JHuZsOIzj9CWr6FA/hnSsy8D2MYT665KVSEWhcFMIhRuRqudQyilmLkvk4z/2ciIzFwBfLzs3Xlabv19eh+ZRwdi0f49IuaZwUwiFG5GqKyvXwbdrDjJ18W62HE5zHa8V4kuXJjXp2qQGVzQMJ9DHswxbKSLno3BTCIUbETEMg+W7jzN9yR5+3pJMdt5fK896ediIrxtG1yY16Na0Jo1qBqpXR6QcULgphMKNiJwpK9fB0l3H+GXrERZuTSbxWGaB59WrI1I+KNwUQuFGRAqz+2gGi7Yms2jrEZbtOnZOr077WLNXp2sT9eqIlCaFm0Io3IhIUZ3KcbBs9zEWbUlm0bYj6tURKUMKN4VQuBGRS5Xfq7PwdK9Ojnp1REqNwk0hFG5ExAqnchws23XMvIRVSK9Os6ggArw9CfDxIMDH07ydfhzo44m/tyfenlpUUORiFG4KoXAjIu6w+2gGC09fvjq7V+divD3sBPh44O/tSaDPGUHI+3QYcj0uGJCCfD1pGR2i/bOkSlC4KYTCjYi4W36vzi/bjpCUmkV6dh4Z2Xlk5jhIP+NrcQLQhdhs0KJWMFc2rMGVDcOJj62Gr5eHBe9CpHxRuCmEwo2IlBe5DieZ2Q7Sc8zwY94cZJz5OMfx1/HsPNJz8sg8/fhoRja7jmQUKNPH006HemFc2TCcKxuF0ywyGLtdY3+k4lO4KYTCjYhUJslpWSzecZTftx/j9x1HSErNLvB89QBvOjUMp/PpsFMr1K+MWipSMgo3hVC4EZHKyjAMdiSn89v2o/y+4yjLdh0jM8dR4Jz6NQJOB50aXF4/jCBfrzJqrUjxKNwUQuFGRKqKnDwnf+49we87zLCzdt9JnGf8i+9ht9EmJpQrG4bTuVE4cTGheHlo5paUTwo3hVC4EZGqKuVULkt3mpevft9+lD1nTV8P9PHk8vrV6dwonCsahtOgRoDW6pFyQ+GmEAo3IiKmfcczzV6d7UdZvPMoJzNzCzwfFuCNn5cHdjvYbTY8bDbsdvOrzWb2/HjYbdhtNuynH9ttZxyz2/A447jrudPHqwf6cHn96nSoF0aIny6PSeEUbgqhcCMici6n02DjwVR+O92rs3LPCXIcJZ+qXhR2G7SMDqFjg+p0rF+d9rFhBGgrCzmLwk0hFG5ERC7uVI6DnUfScTgNHIaB02ngNMDhNHAahuured88bhjmua7nnLhe6zDM1zudfz2/62gGy3YeY9fRgtPZPe024mJC6dSgOh0bVKdtHa3dIwo3hVK4EREpXw6lnGLpzmMs3XmMJTuPceDkqQLPe3vaaVenGh0bVKdTg+q0rh2qLSuqIIWbQijciIiUb/uOZ7Jk51FX2ElOK7h2j5+XB+3rhdGxvhl2WkaH4KGFCis9hZtCKNyIiFQcxunLV0t2HmPZzmMs3XWM4xk5Bc4J8vUkoV4YHRuE07F+dZpGBmlV5kpI4aYQCjciIhWX02mwNSnN1avzx+5jpGXlFTinmr8Xl9evTnxsGK1rh9A8KlgDlCsBhZtCKNyIiFQeDqfBxoMprrCzYs/xc1ZlttugQY1AWtUOoXV0CK1qh9I8Khg/bw1SrkgUbgqhcCMiUnnlOpys23+SZbuOs2bfSdbvT+FwatY553nYbTSqGUjr2mbYaR0dQpPIIM3KKscUbgqhcCMiUrUkp2ax/kCKedufwtr9KRxNzz7nPE+7jSaRQWbgiQ6lde0QGkcEaWZWOVGhws2bb77JSy+9xOHDh4mLi+ONN96gQ4cO5z1348aNPP3006xatYrExERee+01Hn744WLVp3AjIlK1GYZBUmo26/afZP2BFNbtN4PP2QOVAbw97DSLCjp9SSuUltEhNIoI1B5cZaA4f7/LdITVrFmzGD16NO+88w4JCQlMnDiRXr16sXXrVmrWrHnO+ZmZmdSvX59bbrmFRx55pAxaLCIiFZ3NZiMyxJfIkEh6togEzMBz4OQpNpwRdtbtTyHlVC5rT/f2wF4AfDztNK8VTLs61YiPrUa7umHUCPIpw3ckZyvTnpuEhATat2/P5MmTAXA6ncTExDBq1CieeOKJQl8bGxvLww8/rJ4bERFxC8Mw2Hf8FOsOmGN38i9rpWXnnXNubHV/4mPDiK9bjfjYMG066gYVoucmJyeHVatWMXbsWNcxu91Ojx49WLp0aVk1S0REBDB7eOpU96dOdX+ub10LMKeiJx7PZO2+k6xMPM7KPSfYmpTGnmOZ7DmWyexV+wFzOnq7umG0jzV7d1pGh+DjqcHKpaXMws3Ro0dxOBxEREQUOB4REcGWLVssqyc7O5vs7L8GjqWmplpWtoiIVC12u4164QHUCw+g/2XRAKScymX13hOs3GOGnTX7TnIiM5f5m5OYvzkJMLeQiKsd4urdaVe3GqH+3mX5Viq1Sr+q0YQJExg/fnxZN0NERCqpED8vujWpSbcm5ljRnDwnGw+msHLPCVfvzrGMHFbsOcGKPSdcr2scEfhX707dMGLC/HQpyyJlFm7Cw8Px8PAgKSmpwPGkpCQiIyMtq2fs2LGMHj3a9Tg1NZWYmBjLyhcRETmTt6edy+pU47I61biL+hiGwe6jGaxM/Kt3Z9fRDLYlpbMtKZ1PlpsDlWsG+RB/Oui0qh1CiJ8XAT6eBHp74u/joRlaxVBm4cbb25t27dqxYMEC+vfvD5gDihcsWMADDzxgWT0+Pj74+GgUu4iIlA2bzUb9GoHUrxHIrfHmf66PpmezKvEEqxJPsGLPcTYcSCE5LZsf1h/mh/WHz1uOt6edQB9PAnw8CPD2JNDHE38fTwJPPw7w8Tz9/F/n/HXM4/TxqhGWyvSy1OjRoxk6dCjx8fF06NCBiRMnkpGRwfDhwwEYMmQI0dHRTJgwATAHIW/atMl1/8CBA6xZs4bAwEAaNmxYZu9DRESkOMIDfejVIpJep6eiZ+U6Tg9SNnt3tienk5njID07j5w8J2Be7jqel8PxDGva4Gm34eflga+3h/nVy376qwd+p4+d+Xz+OYU97+ftga+nB4G+noQFlN2YojINNwMHDuTIkSM8/fTTHD58mDZt2jBnzhzXIOO9e/dit/+VLA8ePMhll13mevzyyy/z8ssv06VLFxYtWlTazRcREbGEr5cHCfWrk1C/+jnP5TqcZGTnkZ6dR0a2GXgyc/JOH3Oc8VyeKxCdeazgaxzkOMywlOc0SMvOO+/U9pKKqx3CNw9caXm5RVXmKxSXNq1zIyIiVVl2noOsHCench3mLcf8mp3/+PSxLNd989ys3DOPOVzH/jrf6XrcunYIn47saGm7K8Q6NyIiIlL6fDw98PH0IAQvt9VR1v0mlXc0kYiIiJSJsp7SrnAjIiIilYrCjYiIiFQqCjciIiJSqSjciIiISKWicCMiIiKVisKNiIiIVCoKNyIiIlKpKNyIiIhIpaJwIyIiIpWKwo2IiIhUKgo3IiIiUqko3IiIiEilonAjIiIilYpnWTegtOVvw56amlrGLREREZGiyv+7nf93vDBVLtykpaUBEBMTU8YtERERkeJKS0sjJCSk0HNsRlEiUCXidDo5ePAgQUFB2Gw2S8tOTU0lJiaGffv2ERwcbGnZ5Y3ea+VVld6v3mvlVZXeb1V5r4ZhkJaWRq1atbDbCx9VU+V6bux2O7Vr13ZrHcHBwZX6B+xMeq+VV1V6v3qvlVdVer9V4b1erMcmnwYUi4iISKWicCMiIiKVisKNhXx8fBg3bhw+Pj5l3RS303utvKrS+9V7rbyq0vutSu+1qKrcgGIRERGp3NRzIyIiIpWKwo2IiIhUKgo3IiIiUqko3IiIiEilonBTTG+++SaxsbH4+vqSkJDA8uXLCz3/888/p2nTpvj6+tKqVSt++OGHUmrppZswYQLt27cnKCiImjVr0r9/f7Zu3Vroa6ZPn47NZitw8/X1LaUWl8wzzzxzTtubNm1a6Gsq4ucKEBsbe857tdls3H///ec9vyJ9rr/++it9+/alVq1a2Gw2vv766wLPG4bB008/TVRUFH5+fvTo0YPt27dftNzi/s6XlsLeb25uLo8//jitWrUiICCAWrVqMWTIEA4ePFhomZfyu1AaLvbZDhs27Jx29+7d+6LllsfP9mLv9Xy/vzabjZdeeumCZZbXz9WdFG6KYdasWYwePZpx48axevVq4uLi6NWrF8nJyec9f8mSJQwaNIgRI0bw559/0r9/f/r378+GDRtKueXF88svv3D//fezbNky5s2bR25uLj179iQjI6PQ1wUHB3Po0CHXLTExsZRaXHItWrQo0Pbff//9gudW1M8VYMWKFQXe57x58wC45ZZbLviaivK5ZmRkEBcXx5tvvnne5//zn/8wadIk3nnnHf744w8CAgLo1asXWVlZFyyzuL/zpamw95uZmcnq1at56qmnWL16NV9++SVbt27lhhtuuGi5xfldKC0X+2wBevfuXaDdn3zySaFlltfP9mLv9cz3eOjQIaZOnYrNZuPmm28utNzy+Lm6lSFF1qFDB+P+++93PXY4HEatWrWMCRMmnPf8W2+91bjuuusKHEtISDDuvvtut7bTasnJyQZg/PLLLxc8Z9q0aUZISEjpNcpC48aNM+Li4op8fmX5XA3DMB566CGjQYMGhtPpPO/zFfVzBYyvvvrK9djpdBqRkZHGSy+95Dp28uRJw8fHx/jkk08uWE5xf+fLytnv93yWL19uAEZiYuIFzynu70JZON97HTp0qNGvX79ilVMRPtuifK79+vUzunfvXug5FeFztZp6boooJyeHVatW0aNHD9cxu91Ojx49WLp06Xlfs3Tp0gLnA/Tq1euC55dXKSkpAISFhRV6Xnp6OnXr1iUmJoZ+/fqxcePG0mieJbZv306tWrWoX78+gwcPZu/evRc8t7J8rjk5OcycOZM77rij0E1kK/Lnmm/37t0cPny4wOcWEhJCQkLCBT+3S/mdL89SUlKw2WyEhoYWel5xfhfKk0WLFlGzZk2aNGnCvffey7Fjxy54bmX5bJOSkvj+++8ZMWLERc+tqJ/rpVK4KaKjR4/icDiIiIgocDwiIoLDhw+f9zWHDx8u1vnlkdPp5OGHH+aKK66gZcuWFzyvSZMmTJ06lW+++YaZM2fidDrp1KkT+/fvL8XWXpqEhASmT5/OnDlzePvtt9m9ezedO3cmLS3tvOdXhs8V4Ouvv+bkyZMMGzbsgudU5M/1TPmfTXE+t0v5nS+vsrKyePzxxxk0aFChGysW93ehvOjduzcffvghCxYs4MUXX+SXX36hT58+OByO855fWT7bGTNmEBQUxE033VToeRX1cy2JKrcruBTP/fffz4YNGy56fbZjx4507NjR9bhTp040a9aMKVOm8Nxzz7m7mSXSp08f1/3WrVuTkJBA3bp1+eyzz4r0P6KK6oMPPqBPnz7UqlXrgudU5M9VTLm5udx6660YhsHbb79d6LkV9Xfhtttuc91v1aoVrVu3pkGDBixatIirr766DFvmXlOnTmXw4MEXHeRfUT/XklDPTRGFh4fj4eFBUlJSgeNJSUlERkae9zWRkZHFOr+8eeCBB/juu+9YuHAhtWvXLtZrvby8uOyyy9ixY4ebWuc+oaGhNG7c+IJtr+ifK0BiYiLz58/nzjvvLNbrKurnmv/ZFOdzu5Tf+fImP9gkJiYyb968QnttzudivwvlVf369QkPD79guyvDZ/vbb7+xdevWYv8OQ8X9XItD4aaIvL29adeuHQsWLHAdczqdLFiwoMD/bM/UsWPHAucDzJs374LnlxeGYfDAAw/w1Vdf8fPPP1OvXr1il+FwOFi/fj1RUVFuaKF7paens3Pnzgu2vaJ+rmeaNm0aNWvW5LrrrivW6yrq51qvXj0iIyMLfG6pqan88ccfF/zcLuV3vjzJDzbbt29n/vz5VK9evdhlXOx3obzav38/x44du2C7K/pnC2bPa7t27YiLiyv2ayvq51osZT2iuSL59NNPDR8fH2P69OnGpk2bjJEjRxqhoaHG4cOHDcMwjNtvv9144oknXOcvXrzY8PT0NF5++WVj8+bNxrhx4wwvLy9j/fr1ZfUWiuTee+81QkJCjEWLFhmHDh1y3TIzM13nnP1ex48fb8ydO9fYuXOnsWrVKuO2224zfH19jY0bN5bFWyiWRx991Fi0aJGxe/duY/HixUaPHj2M8PBwIzk52TCMyvO55nM4HEadOnWMxx9//JznKvLnmpaWZvz555/Gn3/+aQDGq6++avz555+u2UEvvPCCERoaanzzzTfGunXrjH79+hn16tUzTp065Sqje/fuxhtvvOF6fLHf+bJU2PvNyckxbrjhBqN27drGmjVrCvweZ2dnu8o4+/1e7HehrBT2XtPS0owxY8YYS5cuNXbv3m3Mnz/faNu2rdGoUSMjKyvLVUZF+Wwv9nNsGIaRkpJi+Pv7G2+//fZ5y6gon6s7KdwU0xtvvGHUqVPH8Pb2Njp06GAsW7bM9VyXLl2MoUOHFjj/s88+Mxo3bmx4e3sbLVq0ML7//vtSbnHxAee9TZs2zXXO2e/14Ycfdn1fIiIijGuvvdZYvXp16Tf+EgwcONCIiooyvL29jejoaGPgwIHGjh07XM9Xls8139y5cw3A2Lp16znPVeTPdeHChef9uc1/P06n03jqqaeMiIgIw8fHx7j66qvP+R7UrVvXGDduXIFjhf3Ol6XC3u/u3bsv+Hu8cOFCVxlnv9+L/S6UlcLea2ZmptGzZ0+jRo0ahpeXl1G3bl3jrrvuOiekVJTP9mI/x4ZhGFOmTDH8/PyMkydPnreMivK5upPNMAzDrV1DIiIiIqVIY25ERESkUlG4ERERkUpF4UZEREQqFYUbERERqVQUbkRERKRSUbgRERGRSkXhRkRERCoVhRsRqZJsNhtff/11WTdDRNxA4UZESt2wYcOw2Wzn3Hr37l3WTRORSsCzrBsgIlVT7969mTZtWoFjPj4+ZdQaEalM1HMjImXCx8eHyMjIArdq1aoB5iWjt99+mz59+uDn50f9+vWZPXt2gdevX7+e7t274+fnR/Xq1Rk5ciTp6ekFzpk6dSotWrTAx8eHqKgoHnjggQLPHz16lBtvvBF/f38aNWrEt99+63ruxIkTDB48mBo1auDn50ejRo3OCWMiUj4p3IhIufTUU09x8803s3btWgYPHsxtt93G5s2bAcjIyKBXr15Uq1aNFStW8PnnnzN//vwC4eXtt9/m/vvvZ+TIkaxfv55vv/2Whg0bFqhj/Pjx3Hrrraxbt45rr72WwYMHc/z4cVf9mzZt4scff2Tz5s28/fbbhIeHl943QEQuXVnv3CkiVc/QoUMNDw8PIyAgoMDt3//+t2EY5s7099xzT4HXJCQkGPfee69hGIbx7rvvGtWqVTPS09Ndz3///feG3W537QZdq1Yt48knn7xgGwDjn//8p+txenq6ARg//vijYRiG0bdvX2P48OHWvGERKVUacyMiZaJbt268/fbbBY6FhYW57nfs2LHAcx07dmTNmjUAbN68mbi4OAICAlzPX3HFFTidTrZu3YrNZuPgwYNcffXVhbahdevWrvsBAQEEBweTnJwMwL333svNN9/M6tWr6dmzJ/3796dTp06X9F5FpHQp3IhImQgICDjnMpFV/Pz8inSel5dXgcc2mw2n0wlAnz59SExM5IcffmDevHlcffXV3H///bz88suWt1dErKUxNyJSLi1btuycx82aNQOgWbNmrF27loyMDNfzixcvxm6306RJE4KCgoiNjWXBggUlakONGjUYOnQoM2fOZOLEibz77rslKk9ESod6bkSkTGRnZ3P48OECxzw9PV2Ddj///HPi4+O58sor+e9//8vy5cv54IMPABg8eDDjxo1j6NChPPPMMxw5coRRo0Zx++23ExERAcAzzzzDPffcQ82aNenTpw9paWksXryYUaNGFal9Tz/9NO3ataNFixZkZ2fz3XffucKViJRvCjciUibmzJlDVFRUgWNNmjRhy5YtgDmT6dNPP+W+++4jKiqKTz75hObNmwPg7+/P3Llzeeihh2jfvj3+/v7cfPPNvPrqq66yhg4dSlZWFq+99hpjxowhPDycAQMGFLl93t7ejB07lj179uDn50fnzp359NNPLXjnIuJuNsMwjLJuhIjImWw2G1999RX9+/cv66aISAWkMTciIiJSqSjciIiISKWiMTciUu7oarmIlIR6bkRERKRSUbgRERGRSkXhRkRERCoVhRsRERGpVBRuREREpFJRuBEREZFKReFGREREKhWFGxEREalUFG5ERESkUvl/si3q3HgHsLMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpxUlEQVR4nO3dd3hTZf8G8DtJ26S7lO5SOhgtIJRdWSpaKKCVpQx52YIiqMjLqyLbQX+KIiKK42WpCIgCrwqCpYBs0LJXKaVQ6C7QTds0Ob8/QgKhg6ZNc5Lm/lxXriYnZ3wPac3t8zznORJBEAQQERERWRGp2AUQERERmRoDEBEREVkdBiAiIiKyOgxAREREZHUYgIiIiMjqMAARERGR1WEAIiIiIqvDAERERERWhwGIiIiIrA4DEBEREVkdBiAi0iORSGr02Lt3b52PVVxcjAULFtRqX9u3b4dEIoGfnx/UanWdayEi62IjdgFEZF6+//57vdffffcdYmNjKyxv1apVnY9VXFyMhQsXAgCeeOIJg7Zdt24dgoKCcPXqVezevRuRkZF1roeIrAcDEBHp+de//qX3+siRI4iNja2wXExFRUX43//+h5iYGKxevRrr1q0z2wBUVFQER0dHscsgogewC4yIDKZWq7F06VK0adMGCoUC3t7eeOmll3D79m299f755x9ERUXBw8MD9vb2CA4OxoQJEwAAV69ehaenJwBg4cKFuq61BQsWPPT4W7ZswZ07d/D8889jxIgR2Lx5M0pKSiqsV1JSggULFqBly5ZQKBTw9fXFkCFDkJSUpHcun332Gdq2bQuFQgFPT0/069cP//zzj65OiUSCNWvWVNj/g/UuWLAAEokE58+fxwsvvIBGjRqhZ8+eAIDTp09j3LhxCAkJgUKhgI+PDyZMmICbN29W2G9qaiomTpwIPz8/yOVyBAcHY8qUKSgrK8OVK1cgkUjw6aefVtju0KFDkEgkWL9+/UP/DYmsHVuAiMhgL730EtasWYPx48fjtddeQ3JyMpYvX44TJ07g4MGDsLW1RVZWFvr27QtPT0+8/fbbcHNzw9WrV7F582YAgKenJ1asWIEpU6Zg8ODBGDJkCACgXbt2Dz3+unXr0Lt3b/j4+GDEiBF4++238dtvv+H555/XraNSqfDMM88gLi4OI0aMwOuvv46CggLExsbi7NmzaNasGQBg4sSJWLNmDfr3748XX3wR5eXl2L9/P44cOYLOnTvX6t/n+eefR4sWLbBo0SIIggAAiI2NxZUrVzB+/Hj4+Pjg3Llz+Oabb3Du3DkcOXIEEokEAJCWloauXbsiNzcXkydPRlhYGFJTU/Hzzz+juLgYISEh6NGjB9atW4c33nijwr+Ls7MzBg4cWKu6iayKQERUjalTpwr3/6di//79AgBh3bp1euvt2LFDb/mWLVsEAMLff/9d5b6zs7MFAML8+fNrXE9mZqZgY2MjfPvtt7pl3bt3FwYOHKi33qpVqwQAwpIlSyrsQ61WC4IgCLt37xYACK+99lqV6yQnJwsAhNWrV1dY58Ha58+fLwAQRo4cWWHd4uLiCsvWr18vABD27dunWzZmzBhBKpVW+u+mrenrr78WAAgXLlzQvVdWViZ4eHgIY8eOrbAdEVXELjAiMsimTZvg6uqKPn36ICcnR/fo1KkTnJycsGfPHgCAm5sbAOD333+HUqk02vE3bNgAqVSKoUOH6paNHDkSf/zxh14X3C+//AIPDw+8+uqrFfahbW355ZdfIJFIMH/+/CrXqY2XX365wjJ7e3vd85KSEuTk5ODRRx8FABw/fhyApjtu69atiI6OrrT1SVvTsGHDoFAosG7dOt17O3fuRE5OjlmN1SIyZwxARGSQxMRE5OXlwcvLC56ennqPwsJCZGVlAQAef/xxDB06FAsXLoSHhwcGDhyI1atXo7S0tE7H/+GHH9C1a1fcvHkTly9fxuXLl9GhQweUlZVh06ZNuvWSkpIQGhoKG5uqe/qTkpLg5+cHd3f3OtX0oODg4ArLbt26hddffx3e3t6wt7eHp6enbr28vDwAQHZ2NvLz8/HII49Uu383NzdER0fjxx9/1C1bt24d/P398eSTTxrxTIgaLo4BIiKDqNVqeHl56bU+3E87sFkikeDnn3/GkSNH8Ntvv2Hnzp2YMGECPvnkExw5cgROTk4GHzsxMRF///03AKBFixYV3l+3bh0mT55s8H6rU1VLkEqlqnKb+1t7tIYNG4ZDhw7hP//5D9q3bw8nJyeo1Wr069evVvMYjRkzBps2bcKhQ4fQtm1b/Prrr3jllVcglfL/a4lqggGIiAzSrFkz7Nq1Cz169Kj0i/5Bjz76KB599FF88MEH+PHHHzFq1Chs2LABL774osHdTOvWrYOtrS2+//57yGQyvfcOHDiAZcuWISUlBU2bNkWzZs1w9OhRKJVK2NraVnkuO3fuxK1bt6psBWrUqBEAIDc3V2/5tWvXalz37du3ERcXh4ULF2LevHm65YmJiXrreXp6wsXFBWfPnn3oPvv16wdPT0+sW7cOERERKC4uxujRo2tcE5G14/8qEJFBhg0bBpVKhffee6/Ce+Xl5bqgcPv2bd0VUFrt27cHAF03mIODA4CK4aIq69atQ69evTB8+HA899xzeo///Oc/AKC7BHzo0KHIycnB8uXLK+xHW9fQoUMhCIJuMsbK1nFxcYGHhwf27dun9/6XX35Zo5oB6MLag/8eS5cu1XstlUoxaNAg/Pbbb7rL8CurCQBsbGwwcuRI/PTTT1izZg3atm1boyvoiEiDLUBEZJDHH38cL730EmJiYnDy5En07dsXtra2SExMxKZNm/DZZ5/hueeew9q1a/Hll19i8ODBaNasGQoKCvDtt9/CxcUFAwYMAKDpKmrdujU2btyIli1bwt3dHY888kilY2COHj2Ky5cvY9q0aZXW5e/vj44dO2LdunV46623MGbMGHz33XeYMWMGjh07hl69eqGoqAi7du3CK6+8goEDB6J3794YPXo0li1bhsTERF131P79+9G7d2/dsV588UX83//9H1588UV07twZ+/btw6VLl2r8b+bi4oLHHnsMH330EZRKJfz9/fHnn38iOTm5wrqLFi3Cn3/+iccffxyTJ09Gq1atkJ6ejk2bNuHAgQO6weWAphts2bJl2LNnDz788MMa10NE4GXwRFS9By+D1/rmm2+ETp06Cfb29oKzs7PQtm1b4c033xTS0tIEQRCE48ePCyNHjhSaNm0qyOVywcvLS3jmmWeEf/75R28/hw4dEjp16iTY2dlVe0n8q6++KgAQkpKSqqx1wYIFAgDh1KlTgiBoLj2fPXu2EBwcLNja2go+Pj7Cc889p7eP8vJyYfHixUJYWJhgZ2cneHp6Cv379xfi4+N16xQXFwsTJ04UXF1dBWdnZ2HYsGFCVlZWlZfBZ2dnV6jtxo0bwuDBgwU3NzfB1dVVeP7554W0tLRKz/natWvCmDFjBE9PT0EulwshISHC1KlThdLS0gr7bdOmjSCVSoUbN25U+e9CRBVJBOGBNlkiIrIYHTp0gLu7O+Li4sQuhciicAwQEZGF+ueff3Dy5EmMGTNG7FKILA5bgIiILMzZs2cRHx+PTz75BDk5Obhy5QoUCoXYZRFZFLYAERFZmJ9//hnjx4+HUqnE+vXrGX6IaoEtQERERGR12AJEREREVocBiIiIiKyOqBMh7tu3D4sXL0Z8fDzS09OxZcsWDBo0qNpt9u7dixkzZuDcuXMICAjAnDlzMG7cOL11vvjiCyxevBgZGRkIDw/H559/jq5du9a4LrVajbS0NDg7O9fpjtBERERkOoIgoKCgAH5+fg+/L56IcxAJ27dvF2bPni1s3rxZACBs2bKl2vWvXLkiODg4CDNmzBDOnz8vfP7554JMJhN27NihW2fDhg2CnZ2dsGrVKuHcuXPCpEmTBDc3NyEzM7PGdV2/fl0AwAcffPDBBx98WODj+vXrD/2uN5tB0BKJ5KEtQG+99Ra2bdumd6PAESNGIDc3Fzt27AAAREREoEuXLrr7/6jVagQEBODVV1/F22+/XaNa8vLy4ObmhuvXr8PFxaX2J0VEREQmk5+fj4CAAOTm5sLV1bXadS3qXmCHDx9GZGSk3rKoqChMnz4dAFBWVob4+HjMmjVL975UKkVkZCQOHz5c4+Nou71cXFwYgIiIiCxMTYavWFQAysjIgLe3t94yb29v5Ofn486dO7h9+zZUKlWl61y8eLHK/ZaWluruTg1oEiQRERE1XLwKDEBMTAxcXV11j4CAALFLIiIionpkUQHIx8cHmZmZessyMzPh4uICe3t7eHh4QCaTVbqOj49PlfudNWsW8vLydI/r16/XS/1ERERkHiyqC6xbt27Yvn273rLY2Fh069YNAGBnZ4dOnTohLi5ON5harVYjLi4O06ZNq3K/crkccrnc4HpUKhWUSqXB25F1s7W1hUwmE7sMIiKrJmoAKiwsxOXLl3Wvk5OTcfLkSbi7u6Np06aYNWsWUlNT8d133wEAXn75ZSxfvhxvvvkmJkyYgN27d+Onn37Ctm3bdPuYMWMGxo4di86dO6Nr165YunQpioqKMH78eKPVLQgCMjIykJuba7R9knVxc3ODj48P55kiIhKJqAHon3/+Qe/evXWvZ8yYAQAYO3Ys1qxZg/T0dKSkpOjeDw4OxrZt2/DGG2/gs88+Q5MmTfDf//4XUVFRunWGDx+O7OxszJs3DxkZGWjfvj127NhRYWB0XWjDj5eXFxwcHPglRjUmCAKKi4uRlZUFAPD19RW5IiIi62Q28wCZk/z8fLi6uiIvL6/CZfAqlQqXLl2Cl5cXGjduLFKFZOlu3ryJrKwstGzZkt1hRERGUt3394MsahC0OdCO+XFwcBC5ErJk2t8fjiEjIhIHA1AtsduL6oK/P0RE4mIAIiIiIqvDAES1FhQUhKVLl4pdBhERkcEYgKyARCKp9rFgwYJa7ffvv//G5MmT61RbcnIyXnjhBfj5+UGhUKBJkyYYOHBgtbcuedC4ceOqvYkuERHRgyxqIkSqnfT0dN3zjRs3Yt68eUhISNAtc3Jy0j0XBAEqlQo2Ng//1fD09KxTXUqlEn369EFoaCg2b94MX19f3LhxA3/88QfnWCIiaoAEQUBBaTnyipVwsJOhsZPhkxAbCwOQFbj/NiCurq6QSCS6ZXv37kXv3r2xfft2zJkzB2fOnMGff/6JgIAAzJgxA0eOHEFRURFatWqFmJgYREZG6vYVFBSE6dOnY/r06QA0LU3ffvsttm3bhp07d8Lf3x+ffPIJnn322UrrOnfuHJKSkhAXF4fAwEAAQGBgIHr06KG33vXr1/Hvf/8bf/75J6RSKXr16oXPPvsMQUFBWLBgAdauXas7PgDs2bMHTzzxhFH+7YiIzEFxWTmuZBfhSk4RkrIKkZxThOKycjjKbeAot4GT3AaOdjZwlMs0z+8uc1JolmuWyeAot4HcRlrnCzFKlCrkFiuRd0fzyC0u0z3XvL778+7r/Lvr5JeUQ6XWzL4zPbIFpke2NMY/T60wABmBIAi4o1SZ/Lj2tjKjXU309ttv4+OPP0ZISAgaNWqE69evY8CAAfjggw8gl8vx3XffITo6GgkJCWjatGmV+1m4cCE++ugjLF68GJ9//jlGjRqFa9euwd3dvcK6np6ekEql+PnnnzF9+vRK58NRKpWIiopCt27dsH//ftjY2OD9999Hv379cPr0acycORMXLlxAfn4+Vq9eDQCVHouIyNyp1QLS8u5ogk52oSbsZBfiSnYR0vNKjHYcG6nkXmi6G4qcdK81Px3sZChRqu8GmrIKoaasXF2nGuQ2UpSrxJ2GkAHICO4oVWg9b6fJj3v+3Sg42BnnI3z33XfRp08f3Wt3d3eEh4frXr/33nvYsmULfv3112rvqzZu3DiMHDkSALBo0SIsW7YMx44dQ79+/Sqs6+/vj2XLluHNN9/EwoUL0blzZ/Tu3RujRo1CSEgIAE2XnVqtxn//+19d2Fu9ejXc3Nywd+9e9O3bF/b29igtLa32hrdEROaisLRcE3DuBp2knCJcyS5Cck4hSpRVBwt3RzuEeDiimacTQjwd4WJvi6LSchSWlt/9qUKR7nk5isrKUVSq0r1fXKb5H/VytaBrqakLmVQCV3tbuNnbwsXeVvPcwVZvmZuDHVwfeM/V3hYKW/EngGUAIgBA586d9V4XFhZiwYIF2LZtG9LT01FeXo47d+7o3ZqkMu3atdM9d3R0hIuLi+62D5WZOnUqxowZg7179+LIkSPYtGkTFi1ahF9//RV9+vTBqVOncPnyZTg7O+ttV1JSgqSkpFqcKRFR/REEAUqVgJJyFfKKlUjKLkSStkUnuwhXcgqRmV9a5fa2MgkCGzsixMMRIXeDTjNPJzTzdISbg12dalOphbuhSD8waQPSg8sUtjK90HIv1GheO8ltLHpOMwYgI7C3leH8u1EPX7Eejmssjo6Oeq9nzpyJ2NhYfPzxx2jevDns7e3x3HPPoaysrNr92Nra6r2WSCRQq6tvKnV2dkZ0dDSio6Px/vvvIyoqCu+//z769OmDwsJCdOrUCevWrauwXV0HYRNR/RIEASq1gHL13Z8qAeVqNcq1y1QClGp1xffuPlepBdTnzZrUgoCycjVKytUoUapQWq5GqVKFEqUKJUo1Sss1P7XvlShVKNGuc9+6uvfubqOuQc0eTnYI8bgXcEI8NYEnoJE9bGT1c4G2TCqBi8IWLgrbh69sBRiAjEAikRitK8pcHDx4EOPGjcPgwYMBaFqErl69Wu/HlUgkCAsLw6FDhwAAHTt2xMaNG+Hl5VXlfV3s7OygUpl+DBZZh7JyNYpKyx/4ohag0vuy1rxWqu594Zer1LovfqVKfd/yitvKpIBMKoWtTAKZVAIbqQQ2UilsZJqfumX3vb63rnY9yd3l968vhQTQfUHf+6Ku+gu90nWqCAGl5WqUlat1YUV7/vefrzWzk0kR5OGgCzq6Fh0PJ7g6MISIrWF9a5PRtGjRAps3b0Z0dDQkEgnmzp370JYcQ508eRLz58/H6NGj0bp1a9jZ2eGvv/7CqlWr8NZbbwEARo0ahcWLF2PgwIF499130aRJE1y7dg2bN2/Gm2++iSZNmiAoKAg7d+5EQkICGjduDFdX1wotUUQPo1SpcTWnCJcyC5GQWYDEzAIkZBbg2s1i3VUrZBwybVirIrRpw5xMKoG0nrtY5LZSKGxkUNhKIb/7U2Erg8JWBrmNFHLbB96zufee4sH3bGWQ3/faTlb3q62o/jAAUaWWLFmCCRMmoHv37vDw8MBbb72F/Px8ox5DG14WLlyIq1evQiKR6F6/8cYbADQ3Dd23bx/eeustDBkyBAUFBfD398dTTz2laxGaNGkS9u7di86dO6OwsJCXwVO1VGoB128V3xdyCpGYWYCk7EIoH3JViu3dFhgbqQSy+59X0SJjU8UXu2bde6/V93UT6bUWqdW6ViJdq5Oq4rrKB1qVVGpN15K2+0gmlUCh/TK30X5Ra7/Epfpf6NowcHddud6XfcUvfNu756UNMTVpmWIoIHMgEYT67GG1TPn5+XB1dUVeXl6FbpeSkhIkJycjODgYCoVCpArJ0vH3qP4JgoDU3Du4lFmAS5mFuJRRgEtZBUjMLERpFZfwOtrJ0MLbGS29ndDS21n38HKWQyq1vC9ttVqAWhDqbUwJkbmp7vv7QWwBIiKLJggCsgpKcSmzAAkZmoCTkFmAy1mFKCwtr3QbuY0Uzb2cEOrtjBbezgj10QQeP1d7iww6VZFKJdCMAiKiBzEAEZHZKiotR2Z+CTLzS5FVUKJ7npFfgqy7zzPzS6ps0bGVSRDi4YSWPs5o6XX3p7czmro7QNaAgg4RGY4BiIhMrrRchSxdqClFRl4JMgtKkHU30GTma54XVNGC8yCpBAjycERLL+e7IUfTuhPk4Qhbdv8QUSUYgIio3qjVAvZeysKf5zKRnleiCze3i2s+A62jnQzergp4Oyvg7SKHt4sCXi73nvu4KODlIofcRvyZZYnIcjAAEZHR3SlT4ZfjN7DqYDKuZBdVuo6djVQTYpwV8HbRPrQBR65b5iTnf6aIyPj4XxYiMprM/BKsPXQVPx5LQe7dVh5nuQ2GdmqC1n4u8Lkv6Lja2/JyaCISDQMQEdXZ2dQ8rDyQjN9Pp+nm0glwt8f47sEY1iWArThEZHb4XyUiM3c85Tbe//08cu8o8VgLT/QO80JEsLvod1NWqQXEXcjEygPJOJp8S7e8a5A7JvQMRp/W3rzSiojMFgMQkZkqUaqwJPYS/rv/iu7mileyi7Dm0FUobKXo0cwDT4R5oXeoJ5o0cjBZXUWl5fg5XjO+59rNYgCAjVSCp9v5YmLPYLRr4mayWoiIaosBiGrsiSeeQPv27bF06VIAQFBQEKZPn47p06dXuY1EIsGWLVswaNCgOh3bWPuxFPHXbuE/m07jSo5mAPGQDv7o09ob+xKzsediNjLySxB3MQtxF7MAAC28nNA7zAu9Q73QOahRvVz6nZZ7B2sPXcX6YynIL9Fcnu5qb4uRXZtibPdA+LraG/2YRET1hQHICkRHR0OpVGLHjh0V3tu/fz8ee+wxnDp1Cu3atTNov3///TccHR2NVSYAYMGCBdi6dStOnjyptzw9PR2NGjUy6rEepFKpsHjxYqxZswbXrl2Dvb09WrRogUmTJuHFF1+s0T727t2L3r174/bt23BzczO4hjtlKnzyZwJWHkyGIABeznIsGtwWka29AQD92/pCEARczCjAnoQs7L2YjfiU20jMKkRiViG+2XcFTnIb9Grhgd6hXng81BPeLnW71cbJ67n47/4r+ONshu6moMEejpjQIwhDOzWBgx3/M0JElof/5bICEydOxNChQ3Hjxg00adJE773Vq1ejc+fOBocfAPD09DRWiQ/l4+NT78dYuHAhvv76ayxfvhydO3dGfn4+/vnnH9y+fbvejw0Af1+9hTd/Po3ku60+Qzs2wbxnWsPVQf/O9hKJBK18XdDK1wWvPNEcecVKTctQQhb+SsjGzaIy/HE2A3+czQAAtPFzQe9QL/QO80T7gEY1GpdTrlLjz/Oa8T3x1+6df7eQxpjYMxhPhnk1qFtGEJH14RSpVuCZZ56Bp6cn1qxZo7e8sLAQmzZtwsSJE3Hz5k2MHDkS/v7+cHBwQNu2bbF+/fpq9xsUFKTrDgOAxMREPPbYY1AoFGjdujViY2MrbPPWW2+hZcuWcHBwQEhICObOnQulUnO59Jo1a7Bw4UKcOnUKEonmjtHamiUSCbZu3arbz5kzZ/Dkk0/C3t4ejRs3xuTJk1FYWKh7f9y4cRg0aBA+/vhj+Pr6onHjxpg6daruWJX59ddf8corr+D5559HcHAwwsPDMXHiRMycOVO3jlqtRkxMDIKDg2Fvb4/w8HD8/PPPAICrV6+id+/eAIBGjRpBIpFg3Lhx1f4bAppWn4W/ncOwrw8jOacI3i5yrBrXGZ8MC68Qfirj6mCL6HA/LBnWHn/PjsT/pvbA9MgWCA9wg0QCnEvLx/I9lzF0xWF0ej8Wr60/gS0nbuBmYWmFfRWUKPHf/VfwxMd78cq644i/dhu2MgmGdmyCba/1xPrJjyKytTfDDxFZPLYAGYMgAMpi0x/X1gGowTwqNjY2GDNmDNasWYPZs2fr5l7ZtGkTVCoVRo4cicLCQnTq1AlvvfUWXFxcsG3bNowePRrNmjVD165dH3oMtVqNIUOGwNvbG0ePHkVeXl6lY4OcnZ2xZs0a+Pn54cyZM5g0aRKcnZ3x5ptvYvjw4Th79ix27NiBXbt2AQBcXV0r7KOoqAhRUVHo1q0b/v77b2RlZeHFF1/EtGnT9ELenj174Ovriz179uDy5csYPnw42rdvj0mTJlV6Dj4+Pti9ezdeeeWVKlu3YmJi8MMPP+Crr75CixYtsG/fPvzrX/+Cp6cnevbsiV9++QVDhw5FQkICXFxcYG9f/biYU9dv482tF3WDiYd1boLZT7eGq/3Dg09lpFIJwgPcEB7ghumRLZFTWIp9l7KxJyEbfyVkIbdYiV9PpeHXU2mQSIDwJm7oHeqFLsGNEHchCxv/vq67gWgjB1v869FAjH40EF517EYjIjI3DEDGoCwGFvmZ/rjvpAF2NRuDM2HCBCxevBh//fUXnnjiCQCa7q+hQ4fC1dUVrq6uei0dr776Knbu3ImffvqpRgFo165duHjxInbu3Ak/P82/xaJFi9C/f3+99ebMmaN7HhQUhJkzZ2LDhg148803YW9vDycnJ9jY2FTb5fXjjz+ipKQE3333nW4M0vLlyxEdHY0PP/wQ3t6a8TKNGjXC8uXLIZPJEBYWhqeffhpxcXFVBqAlS5bgueeeg4+PD9q0aYPu3btj4MCBunMoLS3FokWLsGvXLnTr1g0AEBISggMHDuDrr7/G448/Dnd3dwCAl5dXtWOAVGoBucVKzNxxCqkFKvi6KhAzpC2eCPWq7p/ZYB5Ocgzp2ARDOjZBuUqNk9dzsSchC7svZuNCej5OXs/Fyeu5ets093LChB7BGNLRX/RL7YmI6gsDkJUICwtD9+7dsWrVKjzxxBO4fPky9u/fj3fffReAZgDwokWL8NNPPyE1NRVlZWUoLS2Fg0PNLq++cOECAgICdOEHgC4k3G/jxo1YtmwZkpKSUFhYiPLycri4uBh0LhcuXEB4eLjeAOwePXpArVYjISFBF4DatGkDmezeF7ivry/OnDlT5X5bt26Ns2fPIj4+HgcPHsS+ffsQHR2NcePG4b///S8uX76M4uJi9OnTR2+7srIydOjQocb1F5aUI+Vmka6lZUSXALzzdCu4KGrX6lNTNjIpOge5o3OQO/4TFYaMvBL8dSkLey5m459rt9HK1xkTewbjsRae7OIiogaPAcgYbB00rTFiHNcAEydOxKuvvoovvvgCq1evRrNmzfD4448DABYvXozPPvsMS5cuRdu2beHo6Ijp06ejrKzMaOUePnwYo0aNwsKFCxEVFQVXV1ds2LABn3zyidGOcT9b24qDh9VqdbXbSKVSdOnSBV26dMH06dPxww8/YPTo0Zg9e7ZujNG2bdvg7++vt51cLn9oPSq1gIz8EtwsLIWgUsNGKkHMkHZ4rJUIrYcAfFwVGN6lKYZ3aSrK8YmIxMQAZAwSSY27osQ0bNgwvP766/jxxx/x3XffYcqUKbrxQAcPHsTAgQPxr3/9C4BmTM+lS5fQunXrGu27VatWuH79OtLT0+Hr6wsAOHLkiN46hw4dQmBgIGbPnq1bdu3aNb117OzsoFKpHnqsNWvWoKioSNcKdPDgQUilUoSGhtao3prSnn9RURFat24NuVyOlJQUXXB8kJ2dHQBUOIfCEiVu3L6DMpUmgLna28LGRY5mwe5GrZeIiGqGV4FZEScnJwwfPhyzZs1Cenq63hVKLVq0QGxsLA4dOoQLFy7gpZdeQmZmZo33HRkZiZYtW2Ls2LE4deoU9u/frxd0tMdISUnBhg0bkJSUhGXLlmHLli166wQFBSE5ORknT55ETk4OSksrXqk0atQoKBQKjB07FmfPnsWePXvw6quvYvTo0brur9p47rnn8Omnn+Lo0aO4du0a9u7di6lTp6Jly5YICwuDs7MzZs6ciTfeeANr165FUlISjh8/js8//xxr164FAAQGBkIikeD3339HdnY28vILkHq7GFdyilCmUsNOJkWwhyN8XO0h5Y1AiYhEwwBkZSZOnIjbt28jKipKb7zOnDlz0LFjR0RFReGJJ56Aj4+PQbMuS6VSbNmyBXfu3EHXrl3x4osv4oMPPtBb59lnn8Ubb7yBadOmoX379jh06BDmzp2rt87QoUPRr18/9O7dG56enpVeiu/g4ICdO3fi1q1b6NKlC5577jk89dRTWL58uWH/GA+IiorCb7/9hujoaF2YCwsLw59//gkbG01j6XvvvYe5c+ciJiYGrVq1Qr9+/bBt2zYEBwcDAPz9/bFw4UK8/fbb8Pb2xrhJL+NmkaYbsbGjHVp4O8O5nsf6EBHRw0kEQRDELsLc5Ofnw9XVFXl5eRUG6JaUlCA5ORnBwcFQKHhpMFWkUquRnleCW3eDj51MiiaN7OF0X/Dh7xERkfFV9/39II4BIjKigrtjfZR3x/o0dpLDx0XBu6ITEZkZBiAiI6jQ6mMjRRM3Bzgp+CdGRGSO+F9nojpSqdVIyi5CiVJz5ZeHkxzebPUhIjJrDEBEdaAWBFy7WYwSpQo2UimaNnaAk5x/VkRE5o7/pa4ljh0nQRCQevsOCkvLIZVIEOThAAe7mv1J8feHiEhcDEAG0s4uXFxc/NAbXVI9EARAUAPqckCtAgSV5qfe6/J7y3Tv333PiCQAAgAEaCeTuCkF7JwB+d2HjbzKm9UWF2tufvrgbNVERGQaDEAGkslkcHNzQ1ZWFgDNnDQSTmhXd4IaKC0EVMp7oUVQ64ccQQ0I5WJXWg0VoMwFinI1L6W2mhnC7RwBW0dAZgNBEFBcXIysrCy4ubnp3auMiIhMhwGoFrR3KteGIKoDQQDKCoHSAk2LTY1JAKkUkBj4MILScrXuai8nhQ2ctWN+BBWgLAHKS4DyUgAPdHPJ5JpWIRs53Bp7VXvHeyIiql8MQLUgkUjg6+sLLy8vKJVKscuxTKWFwNmfgZM/AnduaZbZNwaadALkrpouJIULIHe5+9z13k87Z8BWUWX3Un1KzCrAzA0ncUepQmQrb7zdP7TyFsCyYiDtBHD9KJByFLidpFkuCLAtualp+QnqCTR7UvNo3FyU8yEislacCboShswkSQYqugkcXQEc+wYoydMsc20K9HgN6PAvwNZ8x1Wl5t7B4C8OIqugFN1CGmPthK6ws6lhq1J+GnBlL5C0G0jaAxTn6L/v0gRo1lsThkKeABxMdJNUVbnmcyjNAxwaawImEZGFMuT7mwGoEgxA9SAvFTi8HIhfAyg1A4Dh0RLoOQNo+xwgM+/BwHl3lHj+q0O4lFmIlt5O2PRyd7ja17JmtRrIPHs3DO0GUg4DqrL7VpAAfu3vhqHeQEAEYGNX9f4EQdOFeOc2UJKr+Xknt5rXdx8luUBpvv6+7N0B92CgUfDdn0H3njv5aLodiYjMFANQHTEAGdHNJODgUuDkekB9t7vQtz3Q699A2DMW8YVaVq7G2FXHcPjKTXi7yLH5lR7wdzNiS1VZMZBySNMylLQbyDqv/76to6a7zC3gXnDRCzV5db/CzdbhXjCtio3iXiBqFKQflNyaasY3ERGJiAGojhiAjCDjLHBgCXBui+bqLQAI7An0mqFp2bCQ8S6CIGDGT6ew5UQqHO1k+OnlbmjjV8/dRPnpmu6yK3cDUVF2zbaTyQH7RncfbpqfCrcHnj/4XiNNt5fMRtOKdPsqcCsZuJ189+dVzfPc6w8JWRLAtcndgBT0QCtSsOaYRET1jAGojhiA6uD6MWD/J8ClHfeWteyn6epqGiFeXbX08c4ELN9zGTKpBKvGdcHjLT1NW4BaDWSd0wSikrxqgoxb/Y6fUimBvOv3wpEuKN39qSyqfnt7d8C3HeDXAfDrqPnp2sRigjARWQYGoDpiADKQIGhaKg58Clzdr1kmkQJtBgM93wB82opbXy39eDQF72w5AwD4aGg7DOsSIHJFZkoQNK1U97cY3d+KVFTFdBEOHpog5H83EPl1AJw5NQAR1Z4h39+8DJ5qT60GLv6uafFJP6lZJrUF2o8EekwHGjcTs7o62XMxC3P/dxYA8NpTLRh+qiORAE5emkdlrXylhcDNRCDtpGZqgLQTmnFOxTnA5VjNQ8vZ714Y0j4cG5vsVIjIerAFqBJsAXoIlRI487OmxScnQbPMxh7oPB7oNg1w9Re3vjo6cyMPw785jOIyFYZ2bIKPn2/H2b6NTVmiuRJOG4hSj2t+l7Tjxe7n1vS+QNQR8A3nmCIyPyX5+q2ft69qxtV5P3L3d7e9psua6hW7wOqIAagKyjvAiR+Ag8uAvBTNMrkrEDEZiHgZcPQQtz4juH6rGIO/PIScwlL0bO6BVeO61HyuH6qb0kIg48zdUHRc8/Pm5crXdW92LxT5d9R0s8qdTVsvWRdBAAoyKnbxart9i28+fB/uIQ+E+Xb8vTUyBqA6YgCqhLIE+PZJzYBcAHD0BLpNBTpP1MzY3ADkFSsxZMVBJGUXIczHGZte7gZnhXnPT9TgleQB6ac0LUTa1qLca5Wv6+hZ+SX6jYI13XNsxaOHKS8DclMqCTnJwO1rQPmd6rd38ND/3bO1B9JPawL97auVbCDRzId2/1g470cAO4f6ODurwABURwxAldi/BIhbqLmap/c7Zj9rs6FKy1UYvfIYjiXfgq+rAlte6QEfV4XYZVFlim/d10p0UhOOCtKq38bW8b5gFKQfktyamv1EnGRkapXmd+jqAeBW0r2WnPzUyrthtSQyzdWLDwZs7e9Vda05xbc0YyW1Xb5pJ4H8G5Ufw6uV/jg47zacZ6uGGIDqiAHoAYVZwLKOQFkBMPhrIHyE2BUZlVot4PWNJ/HbqTQ4y22waUo3hPnwc7coJXmVXKKfDNy6qvmSMeRL7cEWJHZRNAy3r96bbDT5r3u34nmQrYN+qLn/d8E1wLhhuTDr7sUBx+8Fo8qumpTZaULQ/d1nnmGa+btIDwNQHTEAPeC31zW3sPDrALy42yJmbzZEzB8X8PVfV2AjlWDthK7o0dzyxzLRfSrr1rh/HqOadGvU96BrubP+/E5VzfWkfW7nWD9demq15r5w2pnGq7u1Ssnd9WzkmtndtV04HqHm8cVckgck7783oeitK/rvK1yBoF6aLqf7w6+Y3aWCoLlvoLa7VxuM7tyuuK6NPeDiV4+1SoAmnYHOE4AmXSymC5kBqI4YgO6TeQ74qqfm/6DH/wEEdhe7IqP6/vBVzP2fZlzTJ8+HY2inJiJXRCZljIGtYpDaVgxKVT23tddcoaS7D1w194gryQNQx68EG/u7k17eN79T4+b1/z9OqnJNYNC28tz4W3/2cqkN0KTrvZsO+3UApLL6rckYBEEz7k3XdXZCMy7uwfv41SfvtpqrfNsNM/sWUQagOmIAuksQgO8HaWYhbj0QGPad2BUZVez5TLz0/T9QC8C/+7TEq0+1ELskMjcleZowVPaQ+6TVhaDWXC6t17qSW3XLi/aeevXJ1qGaVig3/ffu5N4d23L3UVZQcX92zprLwP3a3+vCaRRU91aFW8masHNlD3Bln6b16n6Nm9+7qXBQzwZzwQbUak2LVk1vk1MbyiLgzC/Auc1AeYlmmZ2TJgR1ngj4PFJ/x64DBqA6YgC669JO4Mdhmv7nqcc0zcQNxKnruRj+zWGUKNUY0SUAMUPacq4fMn+CoLlpbWWtN1W17JQVa7p7KrsnXFUhp7YDbtVqzdQF93fhpJ+uvJtR4aY/lYFfB8DFv/pQdCdXM9t80m5NS8/t5Ir7DHlCE3qa9dYMcKe6Kb4FnFoP/LNKf1qKJl2BLhOB1oMAW/O5YMSiAtAXX3yBxYsXIyMjA+Hh4fj888/RtWvXStdVKpWIiYnB2rVrkZqaitDQUHz44Yfo16+fbp0FCxZg4cKFetuFhobi4sWLNa6JAQiayQ6/7KaZwbf7a0Df98SuyGhSbhZjyIqDyCksw+MtPfHfsZ1hK2tY45qIzIaqXDPJ5f1dOJlnAVVZxXUdPfW7znzbaW7Em7Rb80iNr9itFRChCTshT2pamCyhW8sSCQKQvE8ThC7+DqjLNcvtGwHtR2nGCpnB7P8WcyuMjRs3YsaMGfjqq68QERGBpUuXIioqCgkJCfDy8qqw/pw5c/DDDz/g22+/RVhYGHbu3InBgwfj0KFD6NChg269Nm3aYNeuXbrXNjZmMCDP0vyzShN+HDyAx2aKXY3R3C4qw7jVx5BTWIY2fi74YlRHhh+i+iSz0VzB5N1GM30GoBmYnnX+3iDftBNA5nlNl07iTs2jKo1b3G3heRII6mH2Y1IaDIkECHlc8yjIAE58D8Sv1dwk+fByzSPkCU33WGh/i5haQtQWoIiICHTp0gXLly8HAKjVagQEBODVV1/F22+/XWF9Pz8/zJ49G1OnTtUtGzp0KOzt7fHDDz8A0LQAbd26FSdPnqx1XVbfAnTnNrCsg+bn00s0zZwNQIlShX/99yj+uXYb/m722PxKd3i7mE/TLZFVU94BMs7qd59lJ2i65LTdWiG9ATfel89sqFVA4p+a/2FOjIVuAL2zL9BxDNBxrMlvjWQRLUBlZWWIj4/HrFmzdMukUikiIyNx+PDhSrcpLS2FQqH/hWVvb48DBw7oLUtMTISfnx8UCgW6deuGmJgYNG3KvuAa+2uxJvx4ttL8AjcAarWAGT+dxD/XbsNZYYPV47sw/BCZE1t7IKCL5qGlLNGMQWxgU280GFKZprUntL/mYoH4tZqWoYJ04K8PgX2LgZb9gS4TNF2UZvY5ilZNTk4OVCoVvL299ZZ7e3sjIyOj0m2ioqKwZMkSJCYmQq1WIzY2Fps3b0Z6erpunYiICKxZswY7duzAihUrkJycjF69eqGgoJIrE+4qLS1Ffn6+3sNq3UwCjn2jeR71vnnM51EH5So1fj2VhujlB7D9TAZsZRJ8M7ozWnqz2ZzI7NkqzO5Lk6rQKAiInA+8cR54bhUQeHf6lIRtwA9Dgc87AAeWAkU5YleqY1Hfbp999hkmTZqEsLAwSCQSNGvWDOPHj8eqVat06/Tv31/3vF27doiIiEBgYCB++uknTJxYeVdOTExMhYHTVit2nuYy2+Z9gOaRYldTa8Vl5dj493WsPJCMG7c1V6AobKX4+PlwdGvWWOTqiIgaKBs74JGhmkd2gqZ77OR6TQvRrvnAng8006p0ngA07SbqBIuiRWsPDw/IZDJkZmbqLc/MzISPj0+l23h6emLr1q0oKirCtWvXcPHiRTg5OSEkJKTK47i5uaFly5a4fLmKu0oDmDVrFvLy8nSP69ev1+6kLF3yPs3ofokM6Pu+2NXUSk5hKZb8mYDu/7cbC387jxu378Dd0Q5vRLbEobefwjPt/MQukYjIOniGAv0/BP59EXh2ueYKP1UZcGYTsLo/sPUVUcsTrQXIzs4OnTp1QlxcHAYNGgRAMwg6Li4O06ZNq3ZbhUIBf39/KJVK/PLLLxg2bFiV6xYWFiIpKQmjR4+uch25XA653MpvNKdWATvf0TzvPB7wChO3HgNdzSnCt/uv4Of4Gygt19z3KbCxA17sFYLnOjaBvR0vjSUiEoWdA9BxtOaRdkLTKnTmZ830BSIStQtsxowZGDt2LDp37oyuXbti6dKlKCoqwvjx4wEAY8aMgb+/P2JiYgAAR48eRWpqKtq3b4/U1FQsWLAAarUab775pm6fM2fORHR0NAIDA5GWlob58+dDJpNh5MiRopyjxTi1Hsg4A8hdgSfeEbuaGjt5PRdf/5WEHecyoL2eMbyJK156vBmi2vhAJuXkhkREZsOvA/Ds50Cf9zQD30UkagAaPnw4srOzMW/ePGRkZKB9+/bYsWOHbmB0SkoKpPcNgCspKcGcOXNw5coVODk5YcCAAfj+++/h5uamW+fGjRsYOXIkbt68CU9PT/Ts2RNHjhyBp6enqU/PcpQWAnHvap4//h/A0bzHyKjVAvZeysJXf13BseRbuuW9Qz3x0uPNEBHszlmdiYjMWX3fYLgGRJ8J2hxZ3TxAu9/XXK7YKBiYerT20+DXs7JyNf53MhXf7r+CS5mFAABbmQTPhvtj8mMhCPXhlV1ERNbMIuYBIjORdwM49LnmeZ93zTL8FJQosf5YClYduIqMfM1N+ZzkNnghoinG9wiCr6u4zahERGR5GICs3a6Fmjv9BvYAWkWLXY2ezPwSrDqYjB+PpKCgVHPfGS9nOSb0DMYLEU3hojD/qdaJiMg8MQBZsxvxwJmfAEiAqA9EnY/hfomZBfhm3xVsPZkKpUrTQ9vcywmTe4VgYAc/yG14RRcREdUNA5C1EgRg593bkISP1IzMF1n8tVv4ck8S4i5m6ZZ1DXLH5MdC8GSYF6S8oouIiIyEAchandsCXD8K2DoAT80TuxrsTcjC+DV/QxA0DVFRrX0w+fEQdGzaSOzSiIioAWIAskbKEs2U5ADQYzrg4itqOcVl5Zi95SwEAejT2huz+ochxNNJ1JqIiKhhYwCyRke+BHJTAGc/oHv1s26bwqexl5Caewf+bvZYOrw9HOX8tSQiovrF2+xam8IsYP8SzfPI+YCdo6jlnE3Nw8oDyQCA9wc9wvBDREQmwQBkbfZ8AJQVaAY9t636HmqmUK5SY9bmM1ALQHS4H3qHeYlaDxERWQ8GIGuSeQ44/p3medQiQCrux7/m0FWcSc2Di8IG855pLWotRERkXRiArIUgaO72LqiB1gOBwO6ilnP9VjE++fMSAOCdAa3g6Wx+M1ATEVHDxQBkLRL/BK7sBWR2QORCUUsRBAHz/ncWd5QqdA12x7DOAaLWQ0RE1ocByBqolMDO2ZrnES8D7sGilrPtTDr2JGTDTibFosFtOcEhERGZHAOQNfhnNXAzEXDwAB6bKWopecVKLPj1PADgld7N0NyL8/0QEZHpMQA1dHduA3sXaZ73fgdQuIpazv/tuICcwlI083TElCeaiVoLERFZLwaghu6vxZoQ5NkK6DhW1FKOXrmJ9ceuAwBihrTjTU2JiEg0DEAN2c0k4Ng3mudR7wMy8SYZLC1XYdaWMwCAkV2bomuwu2i1EBERMQA1ZLHzALUSaN4HaB4paikr9ibhSnYRPJzkeLtfmKi1EBERMQA1VMn7gIu/AxIZ0Pd9UUu5nFWAL/ckAQAWPNsarg62otZDRETEANQQqVWaSQ8BoPN4wEu8Fhe1WsA7m8+iTKXGk2FeeLqtuHeeJyIiAhiAGqZT64GMM4DcFXjiHVFL2fjPdRy7egsOdjK8O7ANJBLO+UNEROJjAGpoSguBuHc1zx//D+DYWLRSsgpKELP9AgBgRp+WaNLIQbRaiIiI7scA1NAcXAoUZgKNgoGuk0Ut5d3fziO/pBxt/V0xrnuQqLUQERHdjwGoIcm7ARz6XPO8z7uAjXg3GN19MRO/n06HTCpBzJC2sJHxV42IiMwHv5Uakr3/B5SXAIE9gFbRopVRVFqOuVvPAQAm9AjCI/7izj5NRET0IAaghqK8DDj/q+Z579mAiIONP429hNTcO/B3s8cbfVqKVgcREVFVGIAaimsHgNI8wNELaNpNtDLO3MjDqoPJAID3Bz8CBzvxZp8mIiKqCgNQQ3Fxm+Zn2ABAKs7HWq5S4+3Np6EWgGfD/dA71EuUOoiIiB6GAaghUKuBi9s1z8OeEa2M1Qev4lxaPlwUNpj7TGvR6iAiInoYBqCGIP0EUJAG2DkBwY+JUsL1W8VYEnsJADD76VbwdBbvCjQiIqKHYQBqCC78rvnZoo8ol74LgoA5W8/ijlKFiGB3DOscYPIaiIiIDMEA1BDoxv+I0/312+l0/HUpG3YyKRYNacvbXRARkdljALJ0OYlATgIgtdW0AJlYbnEZ3v1NM+fP1N7N0czTyeQ1EBERGYoByNJpW3+CewEK0084GLP9InIKy9DcywkvPxFi8uMTERHVBgOQpdN1fz1t8kMfuXITG/+5DgCIGdIWchuZyWsgIiKqDQYgS1aQAdz4W/M8dIBJD12iVOGdLWcAAC9ENEWXIHeTHp+IiKguGIAsWcIfAATAvzPg4mfSQ3+5NwlXsovg6SzHW/3CTHpsIiKiumIAsmQidX8lZhZgxd7LAIAF0W3gam9r0uMTERHVFQOQpSrJB5L/0jw34eXvarWAWZvPQKkS8FSYFwa09THZsYmIiIyFAchSXd4FqMqAxi0AT9PdcX3D39fxz7XbcLCT4d1Bj3DOHyIiskgMQJZKhO6vrPwSxPxxAQDw776h8HezN9mxiYiIjIkByBKVlwGJf2qem7D7a+Hv51FQUo52TVwxrnuQyY5LRERkbAxAlujqfqA0H3DyBvw7meSQt4vKsO10OgBg0eC2kEnZ9UVERJaLAcgSabu/QgcAUtN8hMdTbgMAQjwd8Yi/6WecJiIiMiYGIEujVgMJ2zXPTdj9pQ1AnZo2MtkxiYiI6gsDkKVJOwEUpAN2zpr7f5lI/LW7ASiQAYiIiCwfA5Clufi75meLPoCN3CSHVKrUOHU9DwDQkQGIiIgaAAYgSyPC5e8X0wtwR6mCs8IGzT2dTHZcIiKi+sIAZElyEoGcBEBqq2kBMpH4a7cAAB2bNoKUV38REVEDwABkSbStP8GPAQrTXYkVn5ILgON/iIio4WAAsiQi3fz0OAdAExFRA8MAZCkKMoAbf2uehw4w2WEz8kqQmnsHUgkQHuBmsuMSERHVJwYgS5GwHYAA+HcGXHxNdljt/D9hPi5wktuY7LhERET1iQHIUojU/cX5f4iIqCFiALIEJfnAlb80z004+zNwLwB1DHQz6XGJiIjqEwOQJbgcC6iVQOMWgGdLkx22RKnCuTTNBIidmrqb7LhERET1jQHIEojU/XUmNQ9KlQAPJzkC3O1NemwiIqL6xABk7spLgUt/ap6L1P3VKdANEgknQCQiooaDAcjcXd0PlBUATt6AfyeTHprz/xARUUPFAGTutN1foQMAqek+LkEQdJfAMwAREVFDwwBkztRq4OJ2zXMTd3+l3CpGTmEZ7GRStPEz3W03iIiITEH0APTFF18gKCgICoUCEREROHbsWJXrKpVKvPvuu2jWrBkUCgXCw8OxY8eOOu3TrKUdBwozADtnILiXSQ+tHf/Txt8FCluZSY9NRERU30QNQBs3bsSMGTMwf/58HD9+HOHh4YiKikJWVlal68+ZMwdff/01Pv/8c5w/fx4vv/wyBg8ejBMnTtR6n2bt4u+any36ADZykx5aNwC6Kbu/iIio4RE1AC1ZsgSTJk3C+PHj0bp1a3z11VdwcHDAqlWrKl3/+++/xzvvvIMBAwYgJCQEU6ZMwYABA/DJJ5/Uep9mTTv+p5Vpu78AzgBNREQNm2gBqKysDPHx8YiMjLxXjFSKyMhIHD58uNJtSktLoVAo9JbZ29vjwIEDtd6n2cq+BORcAqS2QPM+Jj10QYkSCZkFAICODEBERNQAiRaAcnJyoFKp4O3trbfc29sbGRkZlW4TFRWFJUuWIDExEWq1GrGxsdi8eTPS09NrvU9AE6zy8/P1HqJLuNv6E/I4oHAx6aFPXc+DIABNGtnD20Xx8A2IiIgsjOiDoA3x2WefoUWLFggLC4OdnR2mTZuG8ePHQ1rHy8NjYmLg6uqqewQEBBip4joQafZngN1fRETU8IkWgDw8PCCTyZCZmam3PDMzEz4+PpVu4+npia1bt6KoqAjXrl3DxYsX4eTkhJCQkFrvEwBmzZqFvLw83eP69et1PLs6KsgAbvyteR46wOSHj+f8P0RE1MCJFoDs7OzQqVMnxMXF6Zap1WrExcWhW7du1W6rUCjg7++P8vJy/PLLLxg4cGCd9imXy+Hi4qL3EFXC3bl/mnQBnKsObvVBrRZwQnsHeF4BRkREDZSNmAefMWMGxo4di86dO6Nr165YunQpioqKMH78eADAmDFj4O/vj5iYGADA0aNHkZqaivbt2yM1NRULFiyAWq3Gm2++WeN9WgQRu78SswpRUFoOBzsZwnycTX58IiIiUxA1AA0fPhzZ2dmYN28eMjIy0L59e+zYsUM3iDklJUVvfE9JSQnmzJmDK1euwMnJCQMGDMD3338PNze3Gu/T7JXkA1f+0jw38ezPwL3xP+FN3GAjs6ghYkRERDUmEQRBELsIc5Ofnw9XV1fk5eWZvjvs7C/AzxMAj5bAtL9Ne2wA//7pFH45fgPTejfHzKhQkx+fiIiotgz5/ub/4psbEbu/AOAEB0ATEZEVYAAyJ+WlwKU/Nc9F6P66VVSGKzlFAIAOTd1MfnwiIiJTMTgABQUF4d1330VKSkp91GPdkvcDZQWAkw/g19Hkhz9+d/xPcy8nuDnYmfz4REREpmJwAJo+fTo2b96MkJAQ9OnTBxs2bEBpaWl91GZ9tDc/DRsA1HFyx9rQzf/Dy9+JiKiBq1UAOnnyJI4dO4ZWrVrh1Vdfha+vL6ZNm4bjx4/XR43WQa2+N/+PSON/tFeAdQx0E+X4REREplLrZoaOHTti2bJlSEtLw/z58/Hf//4XXbp0Qfv27bFq1Srw4jIDpcYDhZmA3AUIeszkh1eq1Dh1PRcAB0ATEVHDV+t5gJRKJbZs2YLVq1cjNjYWjz76KCZOnIgbN27gnXfewa5du/Djjz8as9aGTdv91aIPYGP68Tfn0/JRWq6Gq70tQjycTH58IiIiUzI4AB0/fhyrV6/G+vXrIZVKMWbMGHz66acICwvTrTN48GB06dLFqIU2eCJf/n48RXv7CzdIpRJRaiAiIjIVgwNQly5d0KdPH6xYsQKDBg2Cra1thXWCg4MxYsQIoxRoFbIvATcTAakt0LyPKCXwDvBERGRNDA5AV65cQWBgYLXrODo6YvXq1bUuyupou79CHgcU4tyI9bhuADQDEBERNXwGD4LOysrC0aNHKyw/evQo/vnnH6MUZXVE7v5Ky72DtLwSyKQShDdxE6UGIiIiUzI4AE2dOhXXr1+vsDw1NRVTp041SlFWJT8dSL0bHEMHiFKCdvxPK19nOMpFvT8uERGRSRgcgM6fP4+OHSvOUtyhQwecP3/eKEVZFe3cP026AM4+opSgm/+HEyASEZGVMDgAyeVyZGZmVlienp4OGxu2HhhM5O4v4N74Hw6AJiIia2FwAOrbty9mzZqFvLw83bLc3Fy888476NNHnCuYLFZJHpC8T/NchJufAkCJUoVzafkA2AJERETWw+Amm48//hiPPfYYAgMD0aFDBwDAyZMn4e3tje+//97oBTZoibGAWgl4tAQ8WohSwukbeShXC/BylqNJI3tRaiAiIjI1gwOQv78/Tp8+jXXr1uHUqVOwt7fH+PHjMXLkyErnBKJqmEH31/3z/0gknACRiIisQ60G7Tg6OmLy5MnGrsW6lJdqWoAAICxatDI4ASIREVmjWo9aPn/+PFJSUlBWVqa3/Nlnn61zUVYheT9QVgA4+wJ+HUQpQRCEe7fAYAAiIiIrUquZoAcPHowzZ85AIpHo7vqu7T5RqVTGrbCh0s7+HDoAkBo8Ft0ort4sxq2iMtjJpGjjJ84M1ERERGIw+Jv39ddfR3BwMLKysuDg4IBz585h37596Ny5M/bu3VsPJTZAavW9+X/MYPxP2yaukNvIRKuDiIjI1AxuATp8+DB2794NDw8PSKVSSKVS9OzZEzExMXjttddw4sSJ+qizYUmNBwozAbkLENRLtDK03V8c/0NERNbG4BYglUoFZ2dnAICHhwfS0tIAAIGBgUhISDBudQ2VtvurRV/Axk60Mo5zBmgiIrJSBrcAPfLIIzh16hSCg4MRERGBjz76CHZ2dvjmm28QEhJSHzU2PGZw+Xt+iRIJmQUAgI6BbqLVQUREJAaDA9CcOXNQVFQEAHj33XfxzDPPoFevXmjcuDE2btxo9AIbnOxLwM1EQGYHNI8UrYyTKbkQBKCpuwO8nBWi1UFERCQGgwNQVFSU7nnz5s1x8eJF3Lp1C40acSK9Grn4m+Zn8OOAQrwrrzj/DxERWTODxgAplUrY2Njg7Nmzesvd3d0ZfmrKDLq/AHD+HyIismoGBSBbW1s0bdqUc/3UVn6a5gowSDTz/4hEpRZwIiUXANCxqZtodRAREYnF4KvAZs+ejXfeeQe3bt2qj3oaNu3cP026AM7eopWRmFWAwtJyONrJEOrtLFodREREYjF4DNDy5ctx+fJl+Pn5ITAwEI6OjnrvHz9+3GjFNTgqJeDgIXr3l3b8T/umbrCRiTMLNRERkZgMDkCDBg2qhzKsxKNTgK6TAVXZw9etR7oB0Jz/h4iIrJTBAWj+/Pn1UYf1kMoAqb2oJegmQOQAaCIislLs/7AyOYWluHqzGADQgS1ARERkpQxuAZJKpdVe8s4rxMybtvWnpbcTXO1tRa6GiIhIHAYHoC1btui9ViqVOHHiBNauXYuFCxcarTCqH/EpvP8XERGRwQFo4MCBFZY999xzaNOmDTZu3IiJEycapTCqHyeu5QLg+B8iIrJuRhsD9OijjyIuLs5Yu6N6UFauxqkbuQB4CwwiIrJuRglAd+7cwbJly+Dv72+M3VE9OZ+ej9JyNdwcbBHi4fjwDYiIiBoog7vAHrzpqSAIKCgogIODA3744QejFkfGdf/8P7x3GxERWTODA9Cnn36q9+UplUrh6emJiIgINGrEbhVzxvl/iIiINAwOQOPGjauHMqi+CYKAf65p7t/G8T9ERGTtDB4DtHr1amzatKnC8k2bNmHt2rVGKYqMLy2vBJn5pZBJJQhv4iZ2OURERKIyOADFxMTAw8OjwnIvLy8sWrTIKEWR8Wm7v1r7usDeTiZyNUREROIyOAClpKQgODi4wvLAwECkpKQYpSgyPt0AaHZ/ERERGR6AvLy8cPr06QrLT506hcaNGxulKDK+4ykcAE1ERKRlcAAaOXIkXnvtNezZswcqlQoqlQq7d+/G66+/jhEjRtRHjVRHxWXlOJeWD4AtQEREREAtrgJ77733cPXqVTz11FOwsdFsrlarMWbMGI4BMlOnb+RBpRbg46KAn6tC7HKIiIhEZ3AAsrOzw8aNG/H+++/j5MmTsLe3R9u2bREYGFgf9ZER3D/+hxMgEhER1SIAabVo0QItWrQwZi1UTzgBIhERkT6DxwANHToUH374YYXlH330EZ5//nmjFEXGIwjCvQHQTd3ELYaIiMhMGByA9u3bhwEDBlRY3r9/f+zbt88oRZHxJOcU4XaxEnY2UrTxcxW7HCIiIrNgcAAqLCyEnZ1dheW2trbIz883SlFkPNrxP+FNXGFnY/DHTURE1CAZ/I3Ytm1bbNy4scLyDRs2oHXr1kYpioyH8/8QERFVZPAg6Llz52LIkCFISkrCk08+CQCIi4vDjz/+iJ9//tnoBVLd6K4Aa8oAREREpGVwAIqOjsbWrVuxaNEi/Pzzz7C3t0d4eDh2794Nd3f3+qiRainvjhKXMgsBsAWIiIjofrW6DP7pp5/G008/DQDIz8/H+vXrMXPmTMTHx0OlUhm1QKq9E3e7v4IaO8DDSS5yNUREROaj1qNi9+3bh7Fjx8LPzw+ffPIJnnzySRw5csSYtVEdcf4fIiKiyhnUApSRkYE1a9Zg5cqVyM/Px7Bhw1BaWoqtW7dyALQZOp6SCwDoyPE/REREemrcAhQdHY3Q0FCcPn0aS5cuRVpaGj7//PP6rI3qQKUWdF1gvAEqERGRvhq3AP3xxx947bXXMGXKFN4CwwIkZBSgqEwFJ7kNWno7i10OERGRWalxC9CBAwdQUFCATp06ISIiAsuXL0dOTk591kZ1EH+39adDUzfIpLwBKhER0f1qHIAeffRRfPvtt0hPT8dLL72EDRs2wM/PD2q1GrGxsSgoKKhVAV988QWCgoKgUCgQERGBY8eOVbv+0qVLERoaCnt7ewQEBOCNN95ASUmJ7v0FCxZAIpHoPcLCwmpVmyXTDYDm+B8iIqIKDL4KzNHRERMmTMCBAwdw5swZ/Pvf/8b//d//wcvLC88++6xB+9q4cSNmzJiB+fPn4/jx4wgPD0dUVBSysrIqXf/HH3/E22+/jfnz5+PChQtYuXIlNm7ciHfeeUdvvTZt2iA9PV33OHDggKGnafF0EyBy/A8REVEFdbo5VGhoKD766CPcuHED69evN3j7JUuWYNKkSRg/fjxat26Nr776Cg4ODli1alWl6x86dAg9evTACy+8gKCgIPTt2xcjR46s0GpkY2MDHx8f3cPDw6NW52epsgtKkXKrGBIJ0J53gCciIqrAKHfHlMlkGDRoEH799dcab1NWVob4+HhERkbeK0YqRWRkJA4fPlzpNt27d0d8fLwu8Fy5cgXbt2+vcHf6xMRE+Pn5ISQkBKNGjUJKSkotzspyae//FertDBeFrcjVEBERmZ9azQRtDDk5OVCpVPD29tZb7u3tjYsXL1a6zQsvvICcnBz07NkTgiCgvLwcL7/8sl4XWEREBNasWYPQ0FCkp6dj4cKF6NWrF86ePQtn58qvhiotLUVpaanutaXf1V47/qcDx/8QERFVyigtQKayd+9eLFq0CF9++SWOHz+OzZs3Y9u2bXjvvfd06/Tv3x/PP/882rVrh6ioKGzfvh25ubn46aefqtxvTEwMXF1ddY+AgABTnE694fgfIiKi6onWAuTh4QGZTIbMzEy95ZmZmfDx8al0m7lz52L06NF48cUXAQBt27ZFUVERJk+ejNmzZ0MqrZjn3Nzc0LJlS1y+fLnKWmbNmoUZM2boXufn51tsCCotV+F0ah4ABiAiIqKqiNYCZGdnh06dOiEuLk63TK1WIy4uDt26dat0m+Li4gohRyaTAQAEQah0m8LCQiQlJcHX17fKWuRyOVxcXPQelupcWj7KytVwd7RDUGMHscshIiIyS6K1AAHAjBkzMHbsWHTu3Bldu3bF0qVLUVRUhPHjxwMAxowZA39/f8TExADQ3I5jyZIl6NChAyIiInD58mXMnTsX0dHRuiA0c+ZMREdHIzAwEGlpaZg/fz5kMhlGjhwp2nma0v3z/0gknACRiIioMqIGoOHDhyM7Oxvz5s1DRkYG2rdvjx07dugGRqekpOi1+MyZMwcSiQRz5sxBamoqPD09ER0djQ8++EC3zo0bNzBy5EjcvHkTnp6e6NmzJ44cOQJPT0+Tn58YOP6HiIjo4SRCVX1HViw/Px+urq7Iy8uzqO4wQRDwaEwcMvNL8dNL3dA12F3skoiIiEzGkO9vi7oKjKqXmnsHmfmlsJFK0K6Jq9jlEBERmS0GoAZE2/3Vxs8FCluZyNUQERGZLwagBkQ3AJrjf4iIiKrFANSAnLyeC4AzQBMRET0MA1ADUa5S42JGAQCgrT/H/xAREVWHAaiBSMouQmm5Gk5yGwS6cwJEIiKi6jAANRDn0jS3v2jt6wKplBMgEhERVYcBqIE4m6q5g31rP8uZt4iIiEgsDEANhLYFqA0DEBER0UMxADUAgiDgfLqmBaiNHwdAExERPQwDUANw/dYdFJSUw04mRQtvJ7HLISIiMnsMQA2Atvsr1McZtjJ+pERERA/Db8sG4FyatvuL43+IiIhqggGoATjLAdBEREQGYQBqALQtQK05AJqIiKhGGIAsXFZBCbILSiGRAK18ncUuh4iIyCIwAFk4betPiIcjHOxsRK6GiIjIMjAAWbjzdwPQI7wBKhERUY0xAFk4zgBNRERkOAYgC6e9BxhngCYiIqo5BiALll+iRMqtYgBsASIiIjIEA5AF047/8Xezh5uDncjVEBERWQ4GIAt2b/4ftv4QEREZggHIgnEANBERUe0wAFkw3SXwHABNRERkEAYgC1WiVCExqxAA0MafLUBERESGYACyUAkZBVCpBbg72sHHRSF2OURERBaFAchCaQdAt/FzgUQiEbkaIiIiy8IAZKG0A6B5BRgREZHhGIAs1L0WIA6AJiIiMhQDkAVSqQVczNBeAcYWICIiIkMxAFmgK9mFKFGq4WgnQ1BjR7HLISIisjgMQBbo7N3xP618XSCVcgA0ERGRoRiALNC51HtXgBEREZHhGIAsEAdAExER1Q0DkIURBIGXwBMREdURA5CFuXH7DvJLymErk6Clt7PY5RAREVkkBiALo+3+auntDDsbfnxERES1wW9QC6Pt/uIAaCIiotpjALIwHABNRERUdwxAFoYtQERERHXHAGRBcgpLkZlfColEMwkiERER1Q4DkAXRdn8FezjCUW4jcjVERESWiwHIgtzr/uL4HyIiorpgALIg9wZAs/uLiIioLhiALMi5VA6AJiIiMgYGIAtRUKLE1ZvFANgFRkREVFcMQBbiQnoBAMDXVQF3RzuRqyEiIrJsDEAWggOgiYiIjIcByEJwADQREZHxMABZCAYgIiIi42EAsgCl5SokZmrGALXxZxcYERFRXTEAWYBLGYUoVwtwc7CFn6tC7HKIiIgsHgOQBbj/BqgSiUTkaoiIiCwfA5AF0I7/eYRXgBERERkFA5AF0LYAteYAaCIiIqNgADJzKrWgmwSRcwAREREZBwOQmUvOKcQdpQr2tjIEeziKXQ4REVGDwABk5rTjf1r5OkMm5QBoIiIiY2AAMnP3JkBk9xcREZGxMACZOe0A6Ef8OQCaiIjIWEQPQF988QWCgoKgUCgQERGBY8eOVbv+0qVLERoaCnt7ewQEBOCNN95ASUlJnfZprgRBYAsQERFRPRA1AG3cuBEzZszA/Pnzcfz4cYSHhyMqKgpZWVmVrv/jjz/i7bffxvz583HhwgWsXLkSGzduxDvvvFPrfZqztLwS5BYrYSOVoIW3k9jlEBERNRiiBqAlS5Zg0qRJGD9+PFq3bo2vvvoKDg4OWLVqVaXrHzp0CD169MALL7yAoKAg9O3bFyNHjtRr4TF0n+bsXKqm+6uFtzPkNjKRqyEiImo4RAtAZWVliI+PR2Rk5L1ipFJERkbi8OHDlW7TvXt3xMfH6wLPlStXsH37dgwYMKDW+zRnZ3kHeCIionphI9aBc3JyoFKp4O3trbfc29sbFy9erHSbF154ATk5OejZsycEQUB5eTlefvllXRdYbfYJAKWlpSgtLdW9zs/Pr+1pGdX5++4BRkRERMYj+iBoQ+zduxeLFi3Cl19+iePHj2Pz5s3Ytm0b3nvvvTrtNyYmBq6urrpHQECAkSquG909wPw5AJqIiMiYRGsB8vDwgEwmQ2Zmpt7yzMxM+Pj4VLrN3LlzMXr0aLz44osAgLZt26KoqAiTJ0/G7Nmza7VPAJg1axZmzJihe52fny96CLpVVIb0vBJIJEArX7YAERERGZNoLUB2dnbo1KkT4uLidMvUajXi4uLQrVu3SrcpLi6GVKpfskymGRwsCEKt9gkAcrkcLi4ueg+xaef/CWrsCCe5aDmViIioQRL1m3XGjBkYO3YsOnfujK5du2Lp0qUoKirC+PHjAQBjxoyBv78/YmJiAADR0dFYsmQJOnTogIiICFy+fBlz585FdHS0Lgg9bJ+WQtv9xTvAExERGZ+oAWj48OHIzs7GvHnzkJGRgfbt22PHjh26QcwpKSl6LT5z5syBRCLBnDlzkJqaCk9PT0RHR+ODDz6o8T4txdlUDoAmIiKqLxJBEASxizA3+fn5cHV1RV5enmjdYU9+vBdXcoqwdkJXPN7SU5QaiIiILIkh398WdRWYtSgqLUfyzSIAbAEiIiKqDwxAZuhCej4EAfBxUcDDSS52OURERA0OA5AZOscZoImIiOoVA5AZOscZoImIiOoVA5AZOpuqvQSeM0ATERHVBwYgM1NWrkZiVgEAtgARERHVFwYgM3MpswBKlQBXe1s0aWQvdjlEREQNEgOQmTl/3wBoiUQicjVEREQNEwOQmeEAaCIiovrHAGRm7l0CzwHQRERE9YUByIyo1QLOp3MOICIiovrGAGRGkm8WobhMBYWtFCGeTmKXQ0RE1GAxAJkRbfdXK18XyKQcAE1ERFRfGIDMCAdAExERmQYDkBk5zwHQREREJsEAZCYEQeBNUImIiEyEAchMZOSX4FZRGWRSCVp6O4tdDhERUYPGAGQmtDdAbeHlBIWtTORqiIiIGjYGIDNxbwA0x/8QERHVNwYgM8HxP0RERKbDAGQmzjMAERERmQwDkBm4XVSG1Nw7AIDWDEBERET1jgHIDGjv/xXY2AHOCluRqyEiImr4GIDMwNlUzgBNRERkSgxAZuAcZ4AmIiIyKQYgM8B7gBEREZkWA5DIisvKcSWnCABbgIiIiEyFAUhkF9ILIAiAl7Mcns5yscshIiKyCgxAIjvP7i8iIiKTYwASmfYeYOz+IiIiMh0GIJGdS2cLEBERkakxAIlIqVLjUkYhAOARf7YAERERmQoDkIgSMwtRplLDRWGDJo3sxS6HiIjIajAAiUg7/09rPxdIJBKRqyEiIrIeDEAi4gzQRERE4mAAEtF5XQDiAGgiIiJTYgASiVot3HcLDLYAERERmRIDkEiu3SpGUZkKchspmnk6il0OERGRVWEAEom29SfM1wU2Mn4MREREpsRvXpGc4/gfIiIi0TAAiYQBiIiISDwMQCIQBAHnUjkAmoiISCwMQCLIzC/FzaIyyKQShPk4i10OERGR1WEAEoF2AHRzTycobGUiV0NERGR9GIBEwPE/RERE4mIAEsH99wAjIiIi02MAEgHvAUZERCQuBiATyytW4sbtOwDYAkRERCQWBiAT03Z/Bbjbw9XeVuRqiIiIrBMDkIlpu78eYfcXERGRaBiATOzeHeDZ/UVERCQWBiAT4wBoIiIi8TEAmdCdMhWSsgsBsAWIiIhITAxAJnQxIx9qAfBwksPLRSF2OURERFaLAciEOAM0ERGReWAAMqG8O0oobKV4xJ8BiIiISEwSQRAEsYswN/n5+XB1dUVeXh5cXIwbVlRqAaXlKjjY2Rh1v0RERNbOkO9vtgCZmEwqYfghIiISGQMQERERWR0GICIiIrI6DEBERERkdcwiAH3xxRcICgqCQqFAREQEjh07VuW6TzzxBCQSSYXH008/rVtn3LhxFd7v16+fKU6FiIiILIDoo3E3btyIGTNm4KuvvkJERASWLl2KqKgoJCQkwMvLq8L6mzdvRllZme71zZs3ER4ejueff15vvX79+mH16tW613K5vP5OgoiIiCyK6C1AS5YswaRJkzB+/Hi0bt0aX331FRwcHLBq1apK13d3d4ePj4/uERsbCwcHhwoBSC6X663XqFEjU5wOERERWQBRA1BZWRni4+MRGRmpWyaVShEZGYnDhw/XaB8rV67EiBEj4OjoqLd879698PLyQmhoKKZMmYKbN28atXYiIiKyXKJ2geXk5EClUsHb21tvube3Ny5evPjQ7Y8dO4azZ89i5cqVesv79euHIUOGIDg4GElJSXjnnXfQv39/HD58GDKZrMJ+SktLUVpaqnudn59fyzMiIiIiSyD6GKC6WLlyJdq2bYuuXbvqLR8xYoTuedu2bdGuXTs0a9YMe/fuxVNPPVVhPzExMVi4cGG910tERETmQdQuMA8PD8hkMmRmZuotz8zMhI+PT7XbFhUVYcOGDZg4ceJDjxMSEgIPDw9cvny50vdnzZqFvLw83eP69es1PwkiIiKyOKIGIDs7O3Tq1AlxcXG6ZWq1GnFxcejWrVu1227atAmlpaX417/+9dDj3LhxAzdv3oSvr2+l78vlcri4uOg9iIiIqOES/SqwGTNm4Ntvv8XatWtx4cIFTJkyBUVFRRg/fjwAYMyYMZg1a1aF7VauXIlBgwahcePGessLCwvxn//8B0eOHMHVq1cRFxeHgQMHonnz5oiKijLJOREREZF5E30M0PDhw5GdnY158+YhIyMD7du3x44dO3QDo1NSUiCV6ue0hIQEHDhwAH/++WeF/clkMpw+fRpr165Fbm4u/Pz80LdvX7z33nucC4iIiIgAABJBEASxizA3eXl5cHNzw/Xr19kdRkREZCHy8/MREBCA3NxcuLq6Vruu6C1A5qigoAAAEBAQIHIlREREZKiCgoKHBiC2AFVCrVYjLS0Nzs7OkEgkRt23Np1aQ+sSz7Xhsqbz5bk2XNZ0vtZyroIgoKCgAH5+fhWGzzyILUCVkEqlaNKkSb0ew5quNuO5NlzWdL4814bLms7XGs71YS0/WqJfBUZERERkagxAREREZHUYgExMLpdj/vz5VnFJPs+14bKm8+W5NlzWdL7WdK41xUHQREREZHXYAkRERERWhwGIiIiIrA4DEBEREVkdBiAiIiKyOgxA9eCLL75AUFAQFAoFIiIicOzYsWrX37RpE8LCwqBQKNC2bVts377dRJXWXkxMDLp06QJnZ2d4eXlh0KBBSEhIqHabNWvWQCKR6D0UCoWJKq69BQsWVKg7LCys2m0s8TPVCgoKqnC+EokEU6dOrXR9S/pc9+3bh+joaPj5+UEikWDr1q167wuCgHnz5sHX1xf29vaIjIxEYmLiQ/dr6N+8KVR3rkqlEm+99Rbatm0LR0dH+Pn5YcyYMUhLS6t2n7X5WzCVh32248aNq1B7v379HrpfS/tsAVT69yuRSLB48eIq92nOn219YQAyso0bN2LGjBmYP38+jh8/jvDwcERFRSErK6vS9Q8dOoSRI0di4sSJOHHiBAYNGoRBgwbh7NmzJq7cMH/99RemTp2KI0eOIDY2FkqlEn379kVRUVG127m4uCA9PV33uHbtmokqrps2bdro1X3gwIEq17XUz1Tr77//1jvX2NhYAMDzzz9f5TaW8rkWFRUhPDwcX3zxRaXvf/TRR1i2bBm++uorHD16FI6OjoiKikJJSUmV+zT0b95UqjvX4uJiHD9+HHPnzsXx48exefNmJCQk4Nlnn33ofg35WzClh322ANCvXz+92tevX1/tPi3xswWgd47p6elYtWoVJBIJhg4dWu1+zfWzrTcCGVXXrl2FqVOn6l6rVCrBz89PiImJqXT9YcOGCU8//bTesoiICOGll16q1zqNLSsrSwAg/PXXX1Wus3r1asHV1dV0RRnJ/PnzhfDw8Bqv31A+U63XX39daNasmaBWqyt931I/VwDCli1bdK/VarXg4+MjLF68WLcsNzdXkMvlwvr166vcj6F/82J48Fwrc+zYMQGAcO3atSrXMfRvQSyVne/YsWOFgQMHGrSfhvLZDhw4UHjyySerXcdSPltjYguQEZWVlSE+Ph6RkZG6ZVKpFJGRkTh8+HCl2xw+fFhvfQCIioqqcn1zlZeXBwBwd3evdr3CwkIEBgYiICAAAwcOxLlz50xRXp0lJibCz88PISEhGDVqFFJSUqpct6F8poDmd/qHH37AhAkTqr0xsKV+rvdLTk5GRkaG3mfn6uqKiIiIKj+72vzNm6u8vDxIJBK4ublVu54hfwvmZu/evfDy8kJoaCimTJmCmzdvVrluQ/lsMzMzsW3bNkycOPGh61ryZ1sbDEBGlJOTA5VKBW9vb73l3t7eyMjIqHSbjIwMg9Y3R2q1GtOnT0ePHj3wyCOPVLleaGgoVq1ahf/973/44YcfoFar0b17d9y4ccOE1RouIiICa9aswY4dO7BixQokJyejV69eKCgoqHT9hvCZam3duhW5ubkYN25cletY6uf6IO3nY8hnV5u/eXNUUlKCt956CyNHjqz2RpmG/i2Yk379+uG7775DXFwcPvzwQ/z111/o378/VCpVpes3lM927dq1cHZ2xpAhQ6pdz5I/29ri3eCpzqZOnYqzZ88+tL+4W7du6Natm+519+7d0apVK3z99dd477336rvMWuvfv7/uebt27RAREYHAwED89NNPNfq/Kku2cuVK9O/fH35+flWuY6mfK2kolUoMGzYMgiBgxYoV1a5ryX8LI0aM0D1v27Yt2rVrh2bNmmHv3r146qmnRKysfq1atQqjRo166IUJlvzZ1hZbgIzIw8MDMpkMmZmZesszMzPh4+NT6TY+Pj4GrW9upk2bht9//x179uxBkyZNDNrW1tYWHTp0wOXLl+upuvrh5uaGli1bVlm3pX+mWteuXcOuXbvw4osvGrSdpX6u2s/HkM+uNn/z5kQbfq5du4bY2NhqW38q87C/BXMWEhICDw+PKmu39M8WAPbv34+EhASD/4YBy/5sa4oByIjs7OzQqVMnxMXF6Zap1WrExcXp/R/y/bp166a3PgDExsZWub65EAQB06ZNw5YtW7B7924EBwcbvA+VSoUzZ87A19e3HiqsP4WFhUhKSqqybkv9TB+0evVqeHl54emnnzZoO0v9XIODg+Hj46P32eXn5+Po0aNVfna1+Zs3F9rwk5iYiF27dqFx48YG7+Nhfwvm7MaNG7h582aVtVvyZ6u1cuVKdOrUCeHh4QZva8mfbY2JPQq7odmwYYMgl8uFNWvWCOfPnxcmT54suLm5CRkZGYIgCMLo0aOFt99+W7f+wYMHBRsbG+Hjjz8WLly4IMyfP1+wtbUVzpw5I9Yp1MiUKVMEV1dXYe/evUJ6erruUVxcrFvnwXNduHChsHPnTiEpKUmIj48XRowYISgUCuHcuXNinEKN/fvf/xb27t0rJCcnCwcPHhQiIyMFDw8PISsrSxCEhvOZ3k+lUglNmzYV3nrrrQrvWfLnWlBQIJw4cUI4ceKEAEBYsmSJcOLECd2VT//3f/8nuLm5Cf/73/+E06dPCwMHDhSCg4OFO3fu6Pbx5JNPCp9//rnu9cP+5sVS3bmWlZUJzz77rNCkSRPh5MmTen/DpaWlun08eK4P+1sQU3XnW1BQIMycOVM4fPiwkJycLOzatUvo2LGj0KJFC6GkpES3j4bw2Wrl5eUJDg4OwooVKyrdhyV9tvWFAagefP7550LTpk0FOzs7oWvXrsKRI0d07z3++OPC2LFj9db/6aefhJYtWwp2dnZCmzZthG3btpm4YsMBqPSxevVq3ToPnuv06dN1/y7e3t7CgAEDhOPHj5u+eAMNHz5c8PX1Fezs7AR/f39h+PDhwuXLl3XvN5TP9H47d+4UAAgJCQkV3rPkz3XPnj2V/t5qz0etVgtz584VvL29BblcLjz11FMV/g0CAwOF+fPn6y2r7m9eLNWda3JycpV/w3v27NHt48FzfdjfgpiqO9/i4mKhb9++gqenp2BraysEBgYKkyZNqhBkGsJnq/X1118L9vb2Qm5ubqX7sKTPtr5IBEEQ6rWJiYiIiMjMcAwQERERWR0GICIiIrI6DEBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIqAoSiQRbt24VuwwiqgcMQERklsaNGweJRFLh0a9fP7FLI6IGwEbsAoiIqtKvXz+sXr1ab5lcLhepGiJqSNgCRERmSy6Xw8fHR+/RqFEjAJruqRUrVqB///6wt7dHSEgIfv75Z73tz5w5gyeffBL29vZo3LgxJk+ejMLCQr11Vq1ahTZt2kAul8PX1xfTpk3Tez8nJweDBw+Gg4MDWrRogV9//VX33u3btzFq1Ch4enrC3t4eLVq0qBDYiMg8MQARkcWaO3cuhg4dilOnTmHUqFEYMWIELly4AAAoKipCVFQUGjVqhL///hubNm3Crl279ALOihUrMHXqVEyePBlnzpzBr7/+iubNm+sdY+HChRg2bBhOnz6NAQMGYNSoUbh165bu+OfPn8cff/yBCxcuYMWKFfDw8DDdPwAR1Z7Yd2MlIqrM2LFjBZlMJjg6Ouo9PvjgA0EQBAGA8PLLL+ttExERIUyZMkUQBEH45ptvhEaNGgmFhYW697dt2yZIpVLdXcD9/PyE2bNnV1kDAGHOnDm614WFhQIA4Y8//hAEQRCio6OF8ePHG+eEicikOAaIiMxW7969sWLFCr1l7u7uuufdunXTe69bt244efIkAODChQsIDw+Ho6Oj7v0ePXpArVYjISEBEokEaWlpeOqpp6qtoV27drrnjo6OcHFxQVZWFgBgypQpGDp0KI4fP46+ffti0KBB6N69e63OlYhMiwGIiMyWo6NjhS4pY7G3t6/Rera2tnqvJRIJ1Go1AKB///64du0atm/fjtjYWDz11FOYOnUqPv74Y6PXS0TGxTFARGSxjhw5UuF1q1atAACtWrXCqVOnUFRUpHv/4MGDkEqlCA0NhbOzM4KCghAXF1enGjw9PTF27Fj88MMPWLp0Kb755ps67Y+ITIMtQERktkpLS5GRkaG3zMbGRjfQeNOmTejcuTN69uyJdevW4dixY1i5ciUAYNSoUZg/fz7Gjh2LBQsWIDs7G6+++ipGjx4Nb29vAMCCBQvw8ssvw8vLC/3790dBQQEOHjyIV199tUb1zZs3D506dUKbNm1QWlqK33//XRfAiMi8MQARkdnasWMHfH199ZaFhobi4sWLADRXaG3YsAGvvPIKfH19sX79erRu3RoA4ODggJ07d+L1119Hly5d4ODggKFDh2LJkiW6fY0dOxYlJSX49NNPMXPmTHh4eOC5556rcX12dnaYNWsWrl69Cnt7e/Tq1QsbNmwwwpkTUX2TCIIgiF0EEZGhJBIJtmzZgkGDBoldChFZII4BIiIiIqvDAERERERWh2OAiMgisfeeiOqCLUBERERkdRiAiIiIyOowABEREZHVYQAiIiIiq8MARERERFaHAYiIiIisDgMQERERWR0GICIiIrI6DEBERERkdf4f85/lUTEjm9sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ - "## Your turn! 🚀\n", + "# Plot loss and accuracy over time\n", + "plt.plot(history.history[\"loss\"], label=\"Train Set\")\n", + "plt.plot(history.history[\"val_loss\"], label=\"Validation Set\")\n", + "plt.title(\"Softmax Loss\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"Softmax Loss\")\n", + "plt.legend(loc=\"upper left\")\n", + "plt.show()\n", "\n", - "Practice the Recurrent Neural Networks by following this TBD." + "plt.plot(history.history[\"accuracy\"], label=\"Train Set\")\n", + "plt.plot(history.history[\"val_accuracy\"], label=\"Validation Set\")\n", + "plt.title(\"Test Accuracy\")\n", + "plt.xlabel(\"Epochs\")\n", + "plt.ylabel(\"Accuracy\")\n", + "plt.legend(loc=\"upper left\")\n", + "plt.show()" ] }, { "cell_type": "markdown", - "id": "863d18f5", + "id": "3bc90f40", "metadata": {}, "source": [ - "## Self study\n", + "## Your turn! 🚀\n", "\n", - "TBD" + "You can practice your rnn skills by following the assignment [google stock price prediction rnn](../assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb)" ] }, { @@ -488,7 +518,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.13" + "version": "3.9.18" } }, "nbformat": 4, diff --git a/_sources/deep-learning/time-series.ipynb b/_sources/deep-learning/time-series.ipynb index 2947c75e1b..35bd8f304b 100644 --- a/_sources/deep-learning/time-series.ipynb +++ b/_sources/deep-learning/time-series.ipynb @@ -1700,12 +1700,18 @@ "\n", "## Your turn! 🚀\n", "\n", - "TBD.\n", + "You can practice your time series skills by following the assignment [time series forecasting assignment](../assignments/deep-learning/time-series-forecasting-assignment.ipynb)\n", "\n", "## Acknowledgments\n", "\n", "Thanks to [kaggle](https://www.kaggle.com/) for creating the open-source course [Time Series](https://www.kaggle.com/learn/time-series). It inspires the majority of the content in this chapter.\n" ] + }, + { + "cell_type": "markdown", + "id": "f258c933", + "metadata": {}, + "source": [] } ], "metadata": { diff --git a/assignments/README.html b/assignments/README.html index 96b07d8a02..91b898373f 100644 --- a/assignments/README.html +++ b/assignments/README.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

Ocademy Open Machine Learning Book

40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/analyzing-COVID-19-papers.html b/assignments/data-science/analyzing-COVID-19-papers.html index 6453757aca..1aa79f0cf0 100644 --- a/assignments/data-science/analyzing-COVID-19-papers.html +++ b/assignments/data-science/analyzing-COVID-19-papers.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/analyzing-data.html b/assignments/data-science/analyzing-data.html index 77a97545c8..17478978d9 100644 --- a/assignments/data-science/analyzing-data.html +++ b/assignments/data-science/analyzing-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/analyzing-text-about-data-science.html b/assignments/data-science/analyzing-text-about-data-science.html index 3ce31fb077..96c3b63814 100644 --- a/assignments/data-science/analyzing-text-about-data-science.html +++ b/assignments/data-science/analyzing-text-about-data-science.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/apply-your-skills.html b/assignments/data-science/apply-your-skills.html index 8300aa9569..4117ee79bb 100644 --- a/assignments/data-science/apply-your-skills.html +++ b/assignments/data-science/apply-your-skills.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/build-your-own-custom-vis.html b/assignments/data-science/build-your-own-custom-vis.html index 702a95fe68..a5e53858c3 100644 --- a/assignments/data-science/build-your-own-custom-vis.html +++ b/assignments/data-science/build-your-own-custom-vis.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/classifying-datasets.html b/assignments/data-science/classifying-datasets.html index 505dca5f30..c9860e3f46 100644 --- a/assignments/data-science/classifying-datasets.html +++ b/assignments/data-science/classifying-datasets.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/data-preparation.html b/assignments/data-science/data-preparation.html index 196b614e7e..e8501dbc15 100644 --- a/assignments/data-science/data-preparation.html +++ b/assignments/data-science/data-preparation.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/data-processing-in-python.html b/assignments/data-science/data-processing-in-python.html index 66f846f4cc..bf225e8b7d 100644 --- a/assignments/data-science/data-processing-in-python.html +++ b/assignments/data-science/data-processing-in-python.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html b/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html index e2b91df6a4..3bded09c9a 100644 --- a/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html +++ b/assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/data-science-project-using-azure-ml-sdk.html b/assignments/data-science/data-science-project-using-azure-ml-sdk.html index 8b6f850f49..ea2aa35f57 100644 --- a/assignments/data-science/data-science-project-using-azure-ml-sdk.html +++ b/assignments/data-science/data-science-project-using-azure-ml-sdk.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/data-science-scenarios.html b/assignments/data-science/data-science-scenarios.html index cde8054331..46e17dc79c 100644 --- a/assignments/data-science/data-science-scenarios.html +++ b/assignments/data-science/data-science-scenarios.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/displaying-airport-data.html b/assignments/data-science/displaying-airport-data.html index d4111b697b..6192f3ae34 100644 --- a/assignments/data-science/displaying-airport-data.html +++ b/assignments/data-science/displaying-airport-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/dive-into-the-beehive.html b/assignments/data-science/dive-into-the-beehive.html index a111204f8e..a49b073d70 100644 --- a/assignments/data-science/dive-into-the-beehive.html +++ b/assignments/data-science/dive-into-the-beehive.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/estimation-of-COVID-19-pandemic.html b/assignments/data-science/estimation-of-COVID-19-pandemic.html index e23cbfe4fe..210cd96cba 100644 --- a/assignments/data-science/estimation-of-COVID-19-pandemic.html +++ b/assignments/data-science/estimation-of-COVID-19-pandemic.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/evaluating-data-from-a-form.html b/assignments/data-science/evaluating-data-from-a-form.html index 452a1ef790..3808cbebf7 100644 --- a/assignments/data-science/evaluating-data-from-a-form.html +++ b/assignments/data-science/evaluating-data-from-a-form.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/explore-a-planetary-computer-dataset.html b/assignments/data-science/explore-a-planetary-computer-dataset.html index 4037597907..940ddfa9d9 100644 --- a/assignments/data-science/explore-a-planetary-computer-dataset.html +++ b/assignments/data-science/explore-a-planetary-computer-dataset.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/exploring-for-anwser.html b/assignments/data-science/exploring-for-anwser.html index f3b9503a79..fb2cf956ff 100644 --- a/assignments/data-science/exploring-for-anwser.html +++ b/assignments/data-science/exploring-for-anwser.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/introduction-to-statistics-and-probability.html b/assignments/data-science/introduction-to-statistics-and-probability.html index f7feddab58..ac31c813a9 100644 --- a/assignments/data-science/introduction-to-statistics-and-probability.html +++ b/assignments/data-science/introduction-to-statistics-and-probability.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/lines-scatters-and-bars.html b/assignments/data-science/lines-scatters-and-bars.html index d157d06026..7a0c566b42 100644 --- a/assignments/data-science/lines-scatters-and-bars.html +++ b/assignments/data-science/lines-scatters-and-bars.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html b/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html index 1f7222a1b0..1645c2560b 100644 --- a/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html +++ b/assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/market-research.html b/assignments/data-science/market-research.html index fae414a259..fad34f25f6 100644 --- a/assignments/data-science/market-research.html +++ b/assignments/data-science/market-research.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/matplotlib-applied.html b/assignments/data-science/matplotlib-applied.html index 772e3ae76a..450d44a205 100644 --- a/assignments/data-science/matplotlib-applied.html +++ b/assignments/data-science/matplotlib-applied.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html b/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html index 09e96c6e8c..c9a1a493aa 100644 --- a/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html +++ b/assignments/data-science/nyc-taxi-data-in-winter-and-summer.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/small-diabetes-study.html b/assignments/data-science/small-diabetes-study.html index 393a1a7bfb..d89a37a0e2 100644 --- a/assignments/data-science/small-diabetes-study.html +++ b/assignments/data-science/small-diabetes-study.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/soda-profits.html b/assignments/data-science/soda-profits.html index 781f096a1d..5732e0d8d7 100644 --- a/assignments/data-science/soda-profits.html +++ b/assignments/data-science/soda-profits.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/tell-a-story.html b/assignments/data-science/tell-a-story.html index 92afd1d949..e89a7530ca 100644 --- a/assignments/data-science/tell-a-story.html +++ b/assignments/data-science/tell-a-story.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/try-it-in-excel.html b/assignments/data-science/try-it-in-excel.html index 8f741a6da6..03bafa4f22 100644 --- a/assignments/data-science/try-it-in-excel.html +++ b/assignments/data-science/try-it-in-excel.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/data-science/write-a-data-ethics-case-study.html b/assignments/data-science/write-a-data-ethics-case-study.html index 17e93fcf77..7e819dfdc0 100644 --- a/assignments/data-science/write-a-data-ethics-case-study.html +++ b/assignments/data-science/write-a-data-ethics-case-study.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/assignments/deep-learning/autoencoder/autoencoder.html b/assignments/deep-learning/autoencoder/autoencoder.html index e42ae9eeeb..f81f57c752 100644 --- a/assignments/deep-learning/autoencoder/autoencoder.html +++ b/assignments/deep-learning/autoencoder/autoencoder.html @@ -6,7 +6,7 @@ - 40.104. Intro to Autoencoders — Ocademy Open Machine Learning Book + 40.106. Intro to Autoencoders — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,71 +1620,71 @@

    Ocademy Open Machine Learning Book

    @@ -1688,71 +1708,71 @@

    Contents

    @@ -1766,12 +1786,12 @@

    Contents

    -

    40.104. Intro to Autoencoders#

    +

    40.106. Intro to Autoencoders#

    This tutorial introduces autoencoders with three examples: the basics, image denoising, and anomaly detection.

    An autoencoder is a special type of neural network that is trained to copy its input to its output. For example, given an image of a handwritten digit, an autoencoder first encodes the image into a lower dimensional latent representation, then decodes the latent representation back to an image. An autoencoder learns to compress the data while minimizing the reconstruction error.

    To learn more about autoencoders, please consider reading chapter 14 from Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

    -

    40.104.1. Import TensorFlow and other libraries#

    +

    40.106.1. Import TensorFlow and other libraries#

    import matplotlib.pyplot as plt
    @@ -1790,7 +1810,7 @@ 

    40.104.1. Import TensorFlow and other li

    -

    40.104.2. Download models#

    +

    40.106.2. Download models#

    import os
    @@ -1875,7 +1895,7 @@ 

    40.104.2. Download models -

    40.104.3. Load the dataset#

    +

    40.106.3. Load the dataset#

    To start, you will train the basic autoencoder using the Fashion MNIST dataset. Each image in this dataset is 28x28 pixels.

    @@ -1898,7 +1918,7 @@

    40.104.3. Load the dataset -

    40.104.4. First example: Basic autoencoder#

    +

    40.106.4. First example: Basic autoencoder#

    Basic autoencoder results

    Define an autoencoder with two Dense layers: an encoder, which compresses the images into a 64 dimensional latent vector, and a decoder, that reconstructs the original image from the latent space.

    To define your model, use the Keras Model Subclassing API.

    @@ -1995,7 +2015,7 @@

    40.104.4. First example: Basic autoencod

    -

    40.104.5. Second example: Image denoising#

    +

    40.106.5. Second example: Image denoising#

    Image denoising results

    An autoencoder can also be trained to remove noise from images. In the following section, you will create a noisy version of the Fashion MNIST dataset by applying random noise to each image. You will then train an autoencoder using the noisy image as input, and the original image as the target.

    Let’s reimport the dataset to omit the modifications made earlier.

    @@ -2056,7 +2076,7 @@

    40.104.5. Second example: Image denoisin

    -

    40.104.5.1. Define a convolutional autoencoder#

    +

    40.106.5.1. Define a convolutional autoencoder#

    In this example, you will train a convolutional autoencoder using Conv2D layers in the encoder, and Conv2DTranspose layers in the decoder.

    @@ -2204,15 +2224,15 @@

    40.104.5.1. Define a convolutional autoe

    -

    40.104.6. Third example: Anomaly detection#

    +

    40.106.6. Third example: Anomaly detection#

    -

    40.104.7. Overview#

    +

    40.106.7. Overview#

    In this example, you will train an autoencoder to detect anomalies on the ECG5000 dataset. This dataset contains 5,000 Electrocardiograms, each with 140 data points. You will use a simplified version of the dataset, where each example has been labeled either 0 (corresponding to an abnormal rhythm), or 1 (corresponding to a normal rhythm). You are interested in identifying the abnormal rhythms.

    Note: This is a labeled dataset, so you could phrase this as a supervised learning problem. The goal of this example is to illustrate anomaly detection concepts you can apply to larger datasets, where you do not have labels available (for example, if you had many thousands of normal rhythms, and only a small number of abnormal rhythms).

    How will you detect anomalies using an autoencoder? Recall that an autoencoder is trained to minimize reconstruction error. You will train an autoencoder on the normal rhythms only, then use it to reconstruct all the data. Our hypothesis is that the abnormal rhythms will have higher reconstruction error. You will then classify a rhythm as an anomaly if the reconstruction error surpasses a fixed threshold.

    -

    40.104.7.1. Load ECG data#

    +

    40.106.7.1. Load ECG data#

    The dataset you will use is based on one from timeseriesclassification.com.

    @@ -2510,7 +2530,7 @@

    40.104.7.1. Load ECG data -

    40.104.7.2. Build the model#

    +

    40.106.7.2. Build the model#

    class AnomalyDetector(Model):
    @@ -2602,7 +2622,7 @@ 

    40.104.7.2. Build the model -

    40.104.7.3. Detect anomalies#

    +

    40.106.7.3. Detect anomalies#

    Detect anomalies by calculating whether the reconstruction loss is greater than a fixed threshold. In this tutorial, you will calculate the mean average error for normal examples from the training set, then classify future examples as anomalous if the reconstruction error is higher than one standard deviation from the training set.

    Plot the reconstruction error on normal ECGs from the training set

    @@ -2693,11 +2713,11 @@

    40.104.7.3. Detect anomalies -

    40.104.8. Next steps#

    +

    40.106.8. Next steps#

    To learn more about anomaly detection with autoencoders, check out this excellent interactive example built with TensorFlow.js by Victor Dibia. For a real-world use case, you can learn how Airbus Detects Anomalies in ISS Telemetry Data using TensorFlow. To learn more about the basics, consider reading this blog post by François Chollet. For more details, check out chapter 14 from Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville.

    -

    40.104.9. Acknowledgments#

    +

    40.106.9. Acknowledgments#

    Thanks to TensorFlow Core for creating the open-source course autoencoder. It inspires the majority of the content in this chapter.

    @@ -2739,13 +2759,13 @@

    40.104.9. Acknowledgments

    previous

    -

    40.102. Google Stock Price Prediction RNN

    +

    40.104. Google Stock Price Prediction RNN

    next

    -

    40.105. Base/Denoising Autoencoder & Dimension Reduction

    +

    40.107. Base/Denoising Autoencoder & Dimension Reduction

    diff --git a/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html b/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html index 401488de1f..798090dc80 100644 --- a/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html +++ b/assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.html @@ -6,7 +6,7 @@ - 40.105. Base/Denoising Autoencoder & Dimension Reduction — Ocademy Open Machine Learning Book + 40.107. Base/Denoising Autoencoder & Dimension Reduction — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -100,8 +100,8 @@ - - + + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1602,110 +1622,110 @@

    Ocademy Open Machine Learning Book

    @@ -1729,110 +1749,110 @@

    Contents

    @@ -1846,9 +1866,9 @@

    Contents

    -

    40.105. Base/Denoising Autoencoder & Dimension Reduction#

    +

    40.107. Base/Denoising Autoencoder & Dimension Reduction#

    -

    40.105.1. Introduction#

    +

    40.107.1. Introduction#

    Autoencoder is a neural network that simply copies input to output. In some ways, it looks like a simple neural network, but it makes a difficult neural network by constraining the network in various ways. For example, the number of neurons in the hidden layer is smaller than that of the input layer to compress the data (reduce the dimension), or add noise to the input data and then restore the original input. There are various autoencoders, such as learning These constraints prevent the autoencoder from simply copying the input directly to the output, and control it to learn how to represent the data efficiently.

    In this notebook, we will cover two autoencoders:

    @@ -1883,7 +1903,7 @@

    40.105.1. Introduction -

    40.105.2. Loading and Scaling Datasets#

    +

    40.107.2. Loading and Scaling Datasets#

    Train a basic autoencoder using the Fashon MNIST dataset. Each image in this dataset is 28x28 pixels. Inputs are scaled for training.

    @@ -1907,7 +1927,7 @@

    40.105.2. Loading and Scaling Datasets

    -

    40.105.3. Load model#

    +

    40.107.3. Load model#

    import os
    @@ -1963,7 +1983,7 @@ 

    40.105.3. Load model -

    40.105.3.1. Checking dataset by 2D plot#

    +

    40.107.3.1. Checking dataset by 2D plot#

    Autoencoding can be thought of as a kind of dimensionality reduction process. Therefore, after compressing the fashion MNIST dataset through UMAP in two dimensions, let’s check how it is mapped for each label.

    @@ -2023,7 +2043,7 @@

    40.105.3.1. Checking dataset by 2D plot<

    Ref: https://umap-learn.readthedocs.io/en

    -

    40.105.3.2. Checking dataset by 3D plot#

    +

    40.107.3.2. Checking dataset by 3D plot#

    import plotly.express as px
    @@ -2054,9 +2074,9 @@ 

    40.105.3.2. Checking dataset by 3D plot<

    -

    40.105.4. Base Autoencoder#

    +

    40.107.4. Base Autoencoder#

    -

    40.105.4.1. Modeling#

    +

    40.107.4.1. Modeling#

    An autoencoder always consists of two parts: an encoder and a decoder.

    • Encoder (Recognition network): it transforms an input into an internal representation.

    • @@ -2100,7 +2120,7 @@

      40.105.4.1. Modeling -

      40.105.4.2. Training#

      +

      40.107.4.2. Training#

      Train the model using x_train as input and target. The encoder learns to compress the dataset into a latent space in 784 dimensions, and the decoder learns to reconstruct the original image.

      @@ -2131,7 +2151,7 @@

      40.105.4.2. Training -

      40.105.4.3. Plotting the latent space after Dimension Reduction#

      +

      40.107.4.3. Plotting the latent space after Dimension Reduction#

      y_test = pd.DataFrame(y_test,columns=['class'])
      @@ -2157,7 +2177,7 @@ 

      40.105.4.3. Plotting the latent space af

      The \(28*28\) dimension input is compressed into the \(7*7\) latent space by the encoder. The latent space is compressed into 2D using Dimension Reduction. Although it is an approximate expression, it can be seen that each class is well clustered in the compressed latent space.

    -

    40.105.4.4. Checking results#

    +

    40.107.4.4. Checking results#

    n = 4
    @@ -2190,7 +2210,7 @@ 

    40.105.4.4. Checking results -

    40.105.5. Denoising Autoencoder#

    +

    40.107.5. Denoising Autoencoder#

    Another way to constrain the autoencoder to learn meaningful features is to add noise to the input and train it to reconstruct the original noise-free input. Noise can be generated by adding Gaussian noise to the input as shown in the figure below, or by randomly turning off the input unit (node) like a dropout.

    @@ -2218,7 +2238,7 @@

    40.105.5. Denoising Autoencoder

    -

    40.105.5.1. Adding random noise to the image.#

    +

    40.107.5.1. Adding random noise to the image.#

    noise_factor = 0.2
    @@ -2233,7 +2253,7 @@ 

    40.105.5.1. Adding random noise to the i

    -

    40.105.5.2. Plotting a noisy image.#

    +

    40.107.5.2. Plotting a noisy image.#

    n = 4
    @@ -2253,9 +2273,9 @@ 

    40.105.5.2. Plotting a noisy image.

    -

    40.105.5.3. Checking Noisy Dataset using Demension Reduction#

    +

    40.107.5.3. Checking Noisy Dataset using Demension Reduction#

    -

    40.105.5.3.1. 1) Noisy Dataset#

    +

    40.107.5.3.1. 1) Noisy Dataset#

    x_train_noisy_flat = x_train.reshape(x_train_noisy.shape[0], -1)
    @@ -2287,7 +2307,7 @@ 

    40.105.5.3.1. 1) Noisy Dataset -

    40.105.5.3.2. 2) Orignal Dataset#

    +

    40.107.5.3.2. 2) Orignal Dataset#

    x_train_flat = x_train.reshape(x_train.shape[0], -1)
    @@ -2316,7 +2336,7 @@ 

    40.105.5.3.2. 2) Orignal Dataset

    -

    40.105.5.4. Modeling#

    +

    40.107.5.4. Modeling#

    class Denoise(Model):
    @@ -2351,7 +2371,7 @@ 

    40.105.5.4. Modeling -

    40.105.5.5. Training#

    +

    40.107.5.5. Training#

    autoencoder.fit(x_train_noisy, x_train,
    @@ -2471,7 +2491,7 @@ 

    40.105.5.5. Training -

    40.105.5.6. Checking results#

    +

    40.107.5.6. Checking results#

    Plots both the noisy and denoised images generated by the autoencoder.

    @@ -2513,7 +2533,7 @@

    40.105.5.6. Checking results -

    40.105.6. Acknowledgments#

    +

    40.107.6. Acknowledgments#

    Thanks to TOH SEOK KIM for creating the Kaggle open-source project Base/Denoising Autoencoder + Dimension Reduction. It inspires the majority of the content in this chapter.

    @@ -2555,13 +2575,13 @@

    40.105.6. Acknowledgments

    previous

    -

    40.104. Intro to Autoencoders

    +

    40.106. Intro to Autoencoders

    next

    -

    40.106. Fun with Variational Autoencoders

    +

    40.108. Fun with Variational Autoencoders

    diff --git a/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html b/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html index 2175d5259f..2e446a58c2 100644 --- a/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html +++ b/assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.html @@ -6,7 +6,7 @@ - 40.106. Fun with Variational Autoencoders — Ocademy Open Machine Learning Book + 40.108. Fun with Variational Autoencoders — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,62 +1620,62 @@

    Ocademy Open Machine Learning Book

    @@ -1679,62 +1699,62 @@

    Contents

    @@ -1748,10 +1768,10 @@

    Contents

    -

    40.106. Fun with Variational Autoencoders#

    +

    40.108. Fun with Variational Autoencoders#

    This is a starter kernel to use Labelled Faces in the Wild (LFW) Dataset in order to maintain knowledge about main Autoencoder principles. PyTorch will be used for modelling.

    -

    40.106.1. Fork it and give it an upvote.#

    +

    40.108.1. Fork it and give it an upvote.#

    architecture

    Useful links:

      @@ -1764,7 +1784,7 @@

      40.106.1. Fork it and give it an upvote.

    -

    40.106.2. A bit of theory#

    +

    40.108.2. A bit of theory#

    “Autoencoding” is a data compression algorithm where the compression and decompression functions are 1) data-specific, 2) lossy, and 3) learned automatically from examples rather than engineered by a human. Additionally, in almost all contexts where the term “autoencoder” is used, the compression and decompression functions are implemented with neural networks.

    1. Autoencoders are data-specific, which means that they will only be able to compress data similar to what they have been trained on. This is different from, say, the MPEG-2 Audio Layer III (MP3) compression algorithm, which only holds assumptions about “sound” in general, but not about specific types of sounds. An autoencoder trained on pictures of faces would do a rather poor job of compressing pictures of trees, because the features it would learn would be face-specific.

    2. @@ -1806,7 +1826,7 @@

      40.106.2. A bit of theory -

      40.106.3. Load datasets#

      +

      40.108.3. Load datasets#

      datasets_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/autoencoder/variational-autoencoder-and-faces-generation/lfw-deepfunneled.zip"
      @@ -1882,7 +1902,7 @@ 

      40.106.3. Load datasets -

      40.106.4. Explore the data#

      +

      40.108.4. Explore the data#

      Image data is collected from DATASET_PATH and a dataset is created in which the person information for each image is extracted and used for subsequent data analysis or processing. Finally, the filter() function is used to limit the size of the dataset by retaining only information about people who appear less than 25 times.

      @@ -1927,7 +1947,7 @@

      40.106.4. Explore the data -

      40.106.5. Prepare the dataset#

      +

      40.108.5. Prepare the dataset#

      • Reads the attribute data from the txt file at the specified path and stores it in a DataFrame object called df_attrs. The txt file is tab delimited, skipping the first line.

      • @@ -2010,7 +2030,7 @@

        40.106.5. Prepare the dataset -

        40.106.6. Building simple autoencoder#

        +

        40.108.6. Building simple autoencoder#

        dim_z=100
        @@ -2116,7 +2136,7 @@ 

        40.106.6. Building simple autoencoder

    -

    40.106.7. Train autoencoder#

    +

    40.108.7. Train autoencoder#

    • get_batch: It uses the Generator method to generate batches of a specified size by iterating over them. The amount of data generated is batch_size each time, until the entire data set is traversed.

    • @@ -2282,7 +2302,7 @@

      40.106.7. Train autoencoder -

      40.106.8. Sampling#

      +

      40.108.8. Sampling#

      Let’s generate some samples from random vectors

      @@ -2301,7 +2321,7 @@

      40.106.8. Sampling

    -

    40.106.9. Adding smile and glasses#

    +

    40.108.9. Adding smile and glasses#

    Let’s find some attributes like smiles or glasses on the photo and try to add it to the photos which don’t have it. We will use the second dataset for it. It contains a bunch of such attributes.

    -

    40.106.10. Variational autoencoder#

    +

    40.108.10. Variational autoencoder#

    So far we have trained our encoder to reconstruct the very same image that we’ve transfered to latent space. That means that when we’re trying to generate new image from the point decoder never met we’re getting the best image it can produce, but the quelity is not good enough.

    In other words the encoded vectors may not be continuous in the latent space.

    @@ -2607,12 +2627,12 @@

    40.106.10. Variational autoencoder

    -

    40.106.11. Conclusion#

    +

    40.108.11. Conclusion#

    Variational autoencoders are cool. Although models in this particular notebook are simple they let us design complex generative models of data, and fit them to large datasets. They can generate images of fictional celebrity faces and high-resolution digital artwork. These models also yield state-of-the-art machine learning results in image generation and reinforcement learning. Variational autoencoders (VAEs) were defined in 2013 by Kingma et al. and Rezende et al.

    -

    40.106.12. Acknowledgments#

    +

    40.108.12. Acknowledgments#

    Thanks to SERGEI AVERKIEV for creating the Kaggle open-source project Variational Autoencoder and Faces Generation. It inspires the majority of the content in this chapter.

    @@ -2654,13 +2674,13 @@

    40.106.12. Acknowledgments

    previous

    -

    40.105. Base/Denoising Autoencoder & Dimension Reduction

    +

    40.107. Base/Denoising Autoencoder & Dimension Reduction

    next

    -

    40.107. Time Series Forecasting Assignment

    +

    40.109. Time Series Forecasting Assignment

    diff --git a/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html b/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html index 710634ff2d..85badd7a0f 100644 --- a/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html +++ b/assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.html @@ -6,7 +6,7 @@ - 40.93. How to choose cnn architecture mnist — Ocademy Open Machine Learning Book + 40.94. How to choose cnn architecture mnist — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,207 +1620,207 @@

    Ocademy Open Machine Learning Book

    @@ -1824,207 +1844,207 @@

    Contents

    @@ -2038,19 +2058,19 @@

    Contents

    -

    40.93. How to choose cnn architecture mnist#

    +

    40.94. How to choose cnn architecture mnist#

    -

    40.93.1. What is the best CNN architecture for MNIST?#

    +

    40.94.1. What is the best CNN architecture for MNIST?#

    There are so many choices for CNN architecture. How do we choose the best one? First we must define what best means. The best may be the simplest, or it may be the most efficient at producing accuracy while minimizing computational complexity. In this kernel, we will run experiments to find the most accurate and efficient CNN architecture for classifying MNIST handwritten digits.

    The best known MNIST classifier found on the internet achieves 99.8% accuracy!! That’s amazing. The best Kaggle kernel MNIST classifier achieves 99.75% [posted here][https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist]. This kernel demostrates the experiments used to determine that kernel’s CNN architecture.

    -

    40.93.2. Basic CNN structure#

    +

    40.94.2. Basic CNN structure#

    A typical CNN design begins with feature extraction and finishes with classification. Feature extraction is performed by alternating convolution layers with subsambling layers. Classification is performed with dense layers followed by a final softmax layer. For image classification, this architecture performs better than an entirely fully connected feed forward neural network. extract

    -

    40.93.3. Load libraries#

    +

    40.94.3. Load libraries#

    import pandas as pd
    @@ -2077,7 +2097,7 @@ 

    40.93.3. Load libraries -

    40.93.4. Load the data#

    +

    40.94.4. Load the data#

    train = pd.read_csv("https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/cnn/mnist_train.csv")
    @@ -2088,7 +2108,7 @@ 

    40.93.4. Load the data -

    40.93.5. Prepare data for neural network#

    +

    40.94.5. Prepare data for neural network#

    Y_train = train["label"]
    @@ -2109,7 +2129,7 @@ 

    40.93.5. Prepare data for neural network

    -

    40.93.6. Global variables#

    +

    40.94.6. Global variables#

    annealer = LearningRateScheduler(lambda x: 1e-3 * 0.95**x, verbose=0)
    @@ -2120,7 +2140,7 @@ 

    40.93.6. Global variables -

    40.93.7. 1. How many convolution-subsambling pairs?#

    +

    40.94.7. 1. How many convolution-subsambling pairs?#

    First question, how many pairs of convolution-subsampling should we use? For example, our network could have 1, 2, or 3:

    • 784 - [24C5-P2] - 256 - 10

    • @@ -2130,10 +2150,10 @@

      40.93.7. 1. How many convolution-subsamb

      It’s typical to increase the number of feature maps for each subsequent pair as shown here.

    -

    40.93.8. Experiment 1#

    +

    40.94.8. Experiment 1#

    Let’s see whether one, two, or three pairs is best. We are not doing four pairs since the image will be reduced too small before then. The input image is 28x28. After one pair, it’s 14x14. After two, it’s 7x7. After three it’s 4x4 (or 3x3 if we don’t use padding=‘same’). It doesn’t make sense to do a fourth convolution.

    -

    40.93.8.1. Build convolutional neural networks#

    +

    40.94.8.1. Build convolutional neural networks#

    nets = 3
    @@ -2169,7 +2189,7 @@ 

    40.93.8.1. Build convolutional neural ne

    -

    40.93.8.2. Create validation set and train networks#

    +

    40.94.8.2. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2200,7 +2220,7 @@ 

    40.93.8.2. Create validation set and tra

    -

    40.93.8.3. Plot accuracies#

    +

    40.94.8.3. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2219,12 +2239,12 @@ 

    40.93.8.3. Plot accuracies -

    40.93.8.4. Summary#

    +

    40.94.8.4. Summary#

    From the above experiment, it seems that 3 pairs of convolution-subsambling is slightly better than 2 pairs. However for efficiency, the improvement doesn’t warrant the additional computional cost, so let’s use 2.

    -

    40.93.9. 2. How many feature maps?#

    +

    40.94.9. 2. How many feature maps?#

    In the previous experiement, we decided that two pairs is sufficient. How many feature maps should we include? For example, we could do

    • 784 - [8C5-P2] - [16C5-P2] - 256 - 10

    • @@ -2236,9 +2256,9 @@

      40.93.9. 2. How many feature maps?

    -

    40.93.10. Experiment 2#

    +

    40.94.10. Experiment 2#

    -

    40.93.10.1. Build convolutional neural networks#

    +

    40.94.10.1. Build convolutional neural networks#

    nets = 6
    @@ -2263,7 +2283,7 @@ 

    40.93.10.1. Build convolutional neural n

    -

    40.93.10.2. Create validation set and train networks#

    +

    40.94.10.2. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2294,7 +2314,7 @@ 

    40.93.10.2. Create validation set and tr

    -

    40.93.10.3. Plot accuracies#

    +

    40.94.10.3. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2313,12 +2333,12 @@ 

    40.93.10.3. Plot accuracies -

    40.93.10.4. Summary#

    +

    40.94.10.4. Summary#

    From the above experiement, it appears that 32 maps in the first convolutional layer and 64 maps in the second convolutional layer is the best. Architectures with more maps only perform slightly better and are not worth the additonal computation cost.

    -

    40.93.11. 3. How large a dense layer?#

    +

    40.94.11. 3. How large a dense layer?#

    In our previous experiment, we decided on 32 and 64 maps in our convolutional layers. How many dense units should we use? For example we could use

    • 784 - [32C5-P2] - [64C5-P2] - 0 - 10

    • @@ -2332,10 +2352,10 @@

      40.93.11. 3. How large a dense layer?

    -

    40.93.12. Experiment 3#

    +

    40.94.12. Experiment 3#

    -

    40.93.13. Build convolutional neural networks#

    +

    40.94.13. Build convolutional neural networks#

    nets = 8
    @@ -2360,7 +2380,7 @@ 

    40.93.13. Build convolutional neural net

    -

    40.93.14. Create validation set and train networks#

    +

    40.94.14. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2392,7 +2412,7 @@ 

    40.93.14. Create validation set and trai

    -

    40.93.15. Plot accuracies#

    +

    40.94.15. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2410,22 +2430,22 @@ 

    40.93.15. Plot accuracies -

    40.93.15.1. Summary#

    +

    40.94.15.1. Summary#

    From this experiment, it appears that 128 units is the best. Dense layers with more units only perform slightly better and are not worth the additional computational cost. (We also tested using two consecutive dense layers instead of one, but that showed no benefit over a single dense layer.)

    -

    40.93.16. 4. How much dropout?#

    +

    40.94.16. 4. How much dropout?#

    Dropout will prevent our network from overfitting thus helping our network generalize better. How much dropout should we add after each layer?

    • 0%, 10%, 20%, 30%, 40%, 50%, 60%, or 70%

    -

    40.93.17. Experiment 4#

    +

    40.94.17. Experiment 4#

    -

    40.93.18. Build convolutional neural networks#

    +

    40.94.18. Build convolutional neural networks#

    nets = 8
    @@ -2452,7 +2472,7 @@ 

    40.93.18. Build convolutional neural net

    -

    40.93.19. Create validation set and train networks#

    +

    40.94.19. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.333)
    @@ -2484,7 +2504,7 @@ 

    40.93.19. Create validation set and trai

    -

    40.93.20. Plot accuracies#

    +

    40.94.20. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2503,11 +2523,11 @@ 

    40.93.20. Plot accuracies -

    40.93.21. Summary#

    +

    40.94.21. Summary#

    From this experiment, it appears that 40% dropout is the best.

    -

    40.93.22. 5. Advanced features#

    +

    40.94.22. 5. Advanced features#

    Instead of using one convolution layer of size 5x5, you can mimic 5x5 by using two consecutive 3x3 layers and it will be more nonlinear. Instead of using a max pooling layer, you can subsample by using a convolution layer with strides=2 and it will be learnable. Lastly, does batch normalization help? And does data augmentation help? Let’s test all four of these

    • replace ‘32C5’ with ‘32C3-32C3’

    • @@ -2517,7 +2537,7 @@

      40.93.22. 5. Advanced features -

      40.93.23. Build convolutional neural networks#

      +

      40.94.23. Build convolutional neural networks#

      nets = 5
      @@ -2636,7 +2656,7 @@ 

      40.93.23. Build convolutional neural net

    -

    40.93.24. Create validation set and train networks#

    +

    40.94.24. Create validation set and train networks#

    X_train2, X_val2, Y_train2, Y_val2 = train_test_split(X_train, Y_train, test_size=0.2)
    @@ -2668,7 +2688,7 @@ 

    40.93.24. Create validation set and trai

    -

    40.93.25. Create more training images via data augmentation and train network#

    +

    40.94.25. Create more training images via data augmentation and train network#

    datagen = ImageDataGenerator(
    @@ -2698,7 +2718,7 @@ 

    40.93.25. Create more training images vi

    -

    40.93.26. Plot accuracies#

    +

    40.94.26. Plot accuracies#

    plt.figure(figsize=(15, 5))
    @@ -2716,12 +2736,12 @@ 

    40.93.26. Plot accuracies -

    40.93.26.1. Summary#

    +

    40.94.26.1. Summary#

    From this experiment, we see that each of the four advanced features improve accuracy. The first model uses no advanced features. The second uses only the double convolution layer trick. The third uses only the learnable subsambling layer trick. The third model uses both of those techniques plus batch normalization. The last model employs all three of those techniques plus data augmentation and achieves the best accuracy of 99.5%! (Or more if we train longer.) (Experiments determing the best data augmentation hyper-parameters are posted at the end of the kernel here.)

    -

    40.93.27. Conclusion#

    +

    40.94.27. Conclusion#

    Training convolutional neural networks is a random process. This makes experiments difficult because each time you run the same experiment, you get different results. Therefore, you must run your experiments dozens of times and take an average. This kernel was run dozens of times and it seems that the best CNN architecture for classifying MNIST handwritten digits is 784 - [32C5-P2] - [64C5-P2] - 128 - 10 with 40% dropout. Afterward, more experiments show that replacing ‘32C5’ with ‘32C3-32C3’ improves accuracy. And replacing ‘P2’ with ‘32C5S2’ improves accuracy. And adding batch normalizaiton and data augmentation improve the CNN. The best CNN found from the experiments here becomes

    @@ -2771,13 +2791,13 @@

    40.94. Acknowledgments

    previous

    -

    40.92. Parameter play

    +

    40.93. Parameter play

    next

    -

    40.95. Sign Language Digits Classification with CNN

    +

    40.96. Sign Language Digits Classification with CNN

    diff --git a/assignments/deep-learning/cnn/image-classification.html b/assignments/deep-learning/cnn/image-classification.html new file mode 100644 index 0000000000..df11facb29 --- /dev/null +++ b/assignments/deep-learning/cnn/image-classification.html @@ -0,0 +1,2554 @@ + + + + + + + + + 40.99. Image classification — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +
    +
    # Install the necessary dependencies
    +
    +import os
    +import sys
    +!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython
    +
    +
    +
    +
    +
    +

    40.99. Image classification#

    +

    This tutorial shows how to classify images of flowers using a tf.keras.Sequential model and load data using tf.keras.utils.image_dataset_from_directory. It demonstrates the following concepts:

    +
      +
    • Efficiently loading a dataset off disk.

    • +
    • Identifying overfitting and applying techniques to mitigate it, including data augmentation and dropout.

    • +
    +

    This tutorial follows a basic machine learning workflow:

    +
      +
    1. Examine and understand data

    2. +
    3. Build an input pipeline

    4. +
    5. Build the model

    6. +
    7. Train the model

    8. +
    9. Test the model

    10. +
    11. Improve the model and repeat the process

    12. +
    +

    In addition, the notebook demonstrates how to convert a saved model to a TensorFlow Lite model for on-device machine learning on mobile, embedded, and IoT devices.

    +
    +

    40.99.1. Setup#

    +

    Import TensorFlow and other necessary libraries:

    +
    +
    +
    import matplotlib.pyplot as plt
    +import numpy as np
    +import PIL
    +import tensorflow as tf
    +
    +from tensorflow import keras
    +from tensorflow.keras import layers
    +from tensorflow.keras.models import Sequential
    +
    +
    +
    +
    +
    +
    +

    40.99.2. Download and explore the dataset#

    +

    This tutorial uses a dataset of about 3,700 photos of flowers. The dataset contains five sub-directories, one per class:

    +
    flower_photo/
    +  daisy/
    +  dandelion/
    +  roses/
    +  sunflowers/
    +  tulips/
    +
    +
    +
    +
    +
    import pathlib
    +
    +dataset_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/flower_photos.tgz"
    +data_dir = tf.keras.utils.get_file('flower_photos.tar', origin=dataset_url, extract=True)
    +data_dir = pathlib.Path(data_dir).with_suffix('')
    +
    +
    +
    +
    +

    After downloading, you should now have a copy of the dataset available. There are 3,670 total images:

    +
    +
    +
    image_count = len(list(data_dir.glob('*/*.jpg')))
    +print(image_count)
    +
    +
    +
    +
    +

    Here are some roses:

    +
    +
    +
    roses = list(data_dir.glob('roses/*'))
    +PIL.Image.open(str(roses[0]))
    +
    +
    +
    +
    +
    +
    +
    PIL.Image.open(str(roses[1]))
    +
    +
    +
    +
    +

    And some tulips:

    +
    +
    +
    tulips = list(data_dir.glob('tulips/*'))
    +PIL.Image.open(str(tulips[0]))
    +
    +
    +
    +
    +
    +
    +
    PIL.Image.open(str(tulips[1]))
    +
    +
    +
    +
    +
    +
    +

    40.99.3. Load data using a Keras utility#

    +

    Next, load these images off disk using the helpful tf.keras.utils.image_dataset_from_directory utility. This will take you from a directory of images on disk to a tf.data.Dataset in just a couple lines of code.

    +
    +

    40.99.3.1. Create a dataset#

    +

    Define some parameters for the loader:

    +
    +
    +
    batch_size = 32
    +img_height = 180
    +img_width = 180
    +
    +
    +
    +
    +

    It’s good practice to use a validation split when developing your model. Use 80% of the images for training and 20% for validation.

    +
    +
    +
    train_ds = tf.keras.utils.image_dataset_from_directory(
    +  data_dir,
    +  validation_split=0.2,
    +  subset="training",
    +  seed=123,
    +  image_size=(img_height, img_width),
    +  batch_size=batch_size)
    +
    +
    +
    +
    +
    +
    +
    val_ds = tf.keras.utils.image_dataset_from_directory(
    +  data_dir,
    +  validation_split=0.2,
    +  subset="validation",
    +  seed=123,
    +  image_size=(img_height, img_width),
    +  batch_size=batch_size)
    +
    +
    +
    +
    +

    You can find the class names in the class_names attribute on these datasets. These correspond to the directory names in alphabetical order.

    +
    +
    +
    class_names = train_ds.class_names
    +print(class_names)
    +
    +
    +
    +
    +
    +
    +
    +

    40.99.4. Visualize the data#

    +

    Here are the first nine images from the training dataset:

    +
    +
    +
    import matplotlib.pyplot as plt
    +
    +plt.figure(figsize=(10, 10))
    +for images, labels in train_ds.take(1):
    +  for i in range(9):
    +    ax = plt.subplot(3, 3, i + 1)
    +    plt.imshow(images[i].numpy().astype("uint8"))
    +    plt.title(class_names[labels[i]])
    +    plt.axis("off")
    +
    +
    +
    +
    +

    You will pass these datasets to the Keras Model.fit method for training later in this tutorial. If you like, you can also manually iterate over the dataset and retrieve batches of images:

    +
    +
    +
    for image_batch, labels_batch in train_ds:
    +  print(image_batch.shape)
    +  print(labels_batch.shape)
    +  break
    +
    +
    +
    +
    +

    The image_batch is a tensor of the shape (32, 180, 180, 3). This is a batch of 32 images of shape 180x180x3 (the last dimension refers to color channels RGB). The label_batch is a tensor of the shape (32,), these are corresponding labels to the 32 images.

    +

    You can call .numpy() on the image_batch and labels_batch tensors to convert them to a numpy.ndarray.

    +
    +
    +

    40.99.5. Configure the dataset for performance#

    +

    Make sure to use buffered prefetching, so you can yield data from disk without having I/O become blocking. These are two important methods you should use when loading data:

    +
      +
    • Dataset.cache keeps the images in memory after they’re loaded off disk during the first epoch. This will ensure the dataset does not become a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this method to create a performant on-disk cache.

    • +
    • Dataset.prefetch overlaps data preprocessing and model execution while training.

    • +
    +
    +
    +
    AUTOTUNE = tf.data.AUTOTUNE
    +
    +train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
    +val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
    +
    +
    +
    +
    +
    +
    +

    40.99.6. Standardize the data#

    +

    The RGB channel values are in the [0, 255] range. This is not ideal for a neural network; in general you should seek to make your input values small.

    +

    Here, you will standardize values to be in the [0, 1] range by using tf.keras.layers.Rescaling:

    +
    +
    +
    normalization_layer = layers.Rescaling(1./255)
    +
    +
    +
    +
    +

    There are two ways to use this layer. You can apply it to the dataset by calling Dataset.map:

    +
    +
    +
    normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
    +image_batch, labels_batch = next(iter(normalized_ds))
    +first_image = image_batch[0]
    +# Notice the pixel values are now in `[0,1]`.
    +print(np.min(first_image), np.max(first_image))
    +
    +
    +
    +
    +

    Or, you can include the layer inside your model definition, which can simplify deployment. Use the second approach here.

    +

    Note: You previously resized images using the image_size argument of tf.keras.utils.image_dataset_from_directory. If you want to include the resizing logic in your model as well, you can use the tf.keras.layers.Resizing layer.

    +
    +
    +

    40.99.7. A basic Keras model#

    +
    +

    40.99.7.1. Create the model#

    +

    The Keras Sequential model consists of three convolution blocks (tf.keras.layers.Conv2D) with a max pooling layer (tf.keras.layers.MaxPooling2D) in each of them. There’s a fully-connected layer (tf.keras.layers.Dense) with 128 units on top of it that is activated by a ReLU activation function ('relu'). This model has not been tuned for high accuracy; the goal of this tutorial is to show a standard approach.

    +
    +
    +
    num_classes = len(class_names)
    +
    +model = Sequential([
    +  layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    +  layers.Conv2D(16, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(32, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(64, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Flatten(),
    +  layers.Dense(128, activation='relu'),
    +  layers.Dense(num_classes)
    +])
    +
    +
    +
    +
    +
    +
    +

    40.99.7.2. Compile the model#

    +

    For this tutorial, choose the tf.keras.optimizers.Adam optimizer and tf.keras.losses.SparseCategoricalCrossentropy loss function. To view training and validation accuracy for each training epoch, pass the metrics argument to Model.compile.

    +
    +
    +
    model.compile(optimizer='adam',
    +              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    +              metrics=['accuracy'])
    +
    +
    +
    +
    +
    +
    +

    40.99.7.3. Model summary#

    +

    View all the layers of the network using the Keras Model.summary method:

    +
    +
    +
    model.summary()
    +
    +
    +
    +
    +
    +
    +

    40.99.7.4. Train the model#

    +

    Train the model for 10 epochs with the Keras Model.fit method:

    +
    +
    +
    epochs=10
    +history = model.fit(
    +  train_ds,
    +  validation_data=val_ds,
    +  epochs=epochs
    +)
    +
    +
    +
    +
    +
    +
    +
    +

    40.99.8. Visualize training results#

    +

    Create plots of the loss and accuracy on the training and validation sets:

    +
    +
    +
    acc = history.history['accuracy']
    +val_acc = history.history['val_accuracy']
    +
    +loss = history.history['loss']
    +val_loss = history.history['val_loss']
    +
    +epochs_range = range(epochs)
    +
    +plt.figure(figsize=(8, 8))
    +plt.subplot(1, 2, 1)
    +plt.plot(epochs_range, acc, label='Training Accuracy')
    +plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    +plt.legend(loc='lower right')
    +plt.title('Training and Validation Accuracy')
    +
    +plt.subplot(1, 2, 2)
    +plt.plot(epochs_range, loss, label='Training Loss')
    +plt.plot(epochs_range, val_loss, label='Validation Loss')
    +plt.legend(loc='upper right')
    +plt.title('Training and Validation Loss')
    +plt.show()
    +
    +
    +
    +
    +

    The plots show that training accuracy and validation accuracy are off by large margins, and the model has achieved only around 60% accuracy on the validation set.

    +

    The following tutorial sections show how to inspect what went wrong and try to increase the overall performance of the model.

    +
    +
    +

    40.99.9. Overfitting#

    +

    In the plots above, the training accuracy is increasing linearly over time, whereas validation accuracy stalls around 60% in the training process. Also, the difference in accuracy between training and validation accuracy is noticeable—a sign of overfitting.

    +

    When there are a small number of training examples, the model sometimes learns from noises or unwanted details from training examples—to an extent that it negatively impacts the performance of the model on new examples. This phenomenon is known as overfitting. It means that the model will have a difficult time generalizing on a new dataset.

    +

    There are multiple ways to fight overfitting in the training process. In this tutorial, you’ll use data augmentation and add dropout to your model.

    +
    +
    +

    40.99.10. Data augmentation#

    +

    Overfitting generally occurs when there are a small number of training examples. Data augmentation takes the approach of generating additional training data from your existing examples by augmenting them using random transformations that yield believable-looking images. This helps expose the model to more aspects of the data and generalize better.

    +

    You will implement data augmentation using the following Keras preprocessing layers: tf.keras.layers.RandomFlip, tf.keras.layers.RandomRotation, and tf.keras.layers.RandomZoom. These can be included inside your model like other layers, and run on the GPU.

    +
    +
    +
    data_augmentation = keras.Sequential(
    +  [
    +    layers.RandomFlip("horizontal",
    +                      input_shape=(img_height,
    +                                  img_width,
    +                                  3)),
    +    layers.RandomRotation(0.1),
    +    layers.RandomZoom(0.1),
    +  ]
    +)
    +
    +
    +
    +
    +

    Visualize a few augmented examples by applying data augmentation to the same image several times:

    +
    +
    +
    plt.figure(figsize=(10, 10))
    +for images, _ in train_ds.take(1):
    +  for i in range(9):
    +    augmented_images = data_augmentation(images)
    +    ax = plt.subplot(3, 3, i + 1)
    +    plt.imshow(augmented_images[0].numpy().astype("uint8"))
    +    plt.axis("off")
    +
    +
    +
    +
    +

    You will add data augmentation to your model before training in the next step.

    +
    +
    +

    40.99.11. Dropout#

    +

    Another technique to reduce overfitting is to introduce dropout regularization to the network.

    +

    When you apply dropout to a layer, it randomly drops out (by setting the activation to zero) a number of output units from the layer during the training process. Dropout takes a fractional number as its input value, in the form such as 0.1, 0.2, 0.4, etc. This means dropping out 10%, 20% or 40% of the output units randomly from the applied layer.

    +

    Create a new neural network with tf.keras.layers.Dropout before training it using the augmented images:

    +
    +
    +
    model = Sequential([
    +  data_augmentation,
    +  layers.Rescaling(1./255),
    +  layers.Conv2D(16, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(32, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Conv2D(64, 3, padding='same', activation='relu'),
    +  layers.MaxPooling2D(),
    +  layers.Dropout(0.2),
    +  layers.Flatten(),
    +  layers.Dense(128, activation='relu'),
    +  layers.Dense(num_classes, name="outputs")
    +])
    +
    +
    +
    +
    +
    +
    +

    40.99.12. Compile and train the model#

    +
    +
    +
    model.compile(optimizer='adam',
    +              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
    +              metrics=['accuracy'])
    +
    +
    +
    +
    +
    +
    +
    model.summary()
    +
    +
    +
    +
    +
    +
    +
    epochs = 15
    +history = model.fit(
    +  train_ds,
    +  validation_data=val_ds,
    +  epochs=epochs
    +)
    +
    +
    +
    +
    +
    +
    +

    40.99.13. Visualize training results#

    +

    After applying data augmentation and tf.keras.layers.Dropout, there is less overfitting than before, and training and validation accuracy are closer aligned:

    +
    +
    +
    acc = history.history['accuracy']
    +val_acc = history.history['val_accuracy']
    +
    +loss = history.history['loss']
    +val_loss = history.history['val_loss']
    +
    +epochs_range = range(epochs)
    +
    +plt.figure(figsize=(8, 8))
    +plt.subplot(1, 2, 1)
    +plt.plot(epochs_range, acc, label='Training Accuracy')
    +plt.plot(epochs_range, val_acc, label='Validation Accuracy')
    +plt.legend(loc='lower right')
    +plt.title('Training and Validation Accuracy')
    +
    +plt.subplot(1, 2, 2)
    +plt.plot(epochs_range, loss, label='Training Loss')
    +plt.plot(epochs_range, val_loss, label='Validation Loss')
    +plt.legend(loc='upper right')
    +plt.title('Training and Validation Loss')
    +plt.show()
    +
    +
    +
    +
    +
    +
    +

    40.99.14. Predict on new data#

    +

    Use your model to classify an image that wasn’t included in the training or validation sets.

    +

    Note: Data augmentation and dropout layers are inactive at inference time.

    +
    +
    +
    sunflower_url = "https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/CNN/592px-Red_sunflower.jpg"
    +sunflower_path = tf.keras.utils.get_file('Red_sunflower', origin=sunflower_url)
    +
    +img = tf.keras.utils.load_img(
    +    sunflower_path, target_size=(img_height, img_width)
    +)
    +img_array = tf.keras.utils.img_to_array(img)
    +img_array = tf.expand_dims(img_array, 0) # Create a batch
    +
    +predictions = model.predict(img_array)
    +score = tf.nn.softmax(predictions[0])
    +
    +print(
    +    "This image most likely belongs to {} with a {:.2f} percent confidence."
    +    .format(class_names[np.argmax(score)], 100 * np.max(score))
    +)
    +
    +
    +
    +
    +
    +
    +

    40.99.15. Use TensorFlow Lite#

    +

    TensorFlow Lite is a set of tools that enables on-device machine learning by helping developers run their models on mobile, embedded, and edge devices.

    +
    +

    40.99.15.1. Convert the Keras Sequential model to a TensorFlow Lite model#

    +

    To use the trained model with on-device applications, first convert it to a smaller and more efficient model format called a TensorFlow Lite model.

    +

    In this example, take the trained Keras Sequential model and use tf.lite.TFLiteConverter.from_keras_model to generate a TensorFlow Lite model:

    +
    +
    +
    # Convert the model.
    +converter = tf.lite.TFLiteConverter.from_keras_model(model)
    +tflite_model = converter.convert()
    +
    +# Save the model.
    +with open('model.tflite', 'wb') as f:
    +  f.write(tflite_model)
    +
    +
    +
    +
    +

    The TensorFlow Lite model you saved in the previous step can contain several function signatures. The Keras model converter API uses the default signature automatically. Learn more about TensorFlow Lite signatures.

    +
    +
    +

    40.99.15.2. Run the TensorFlow Lite model#

    +

    You can access the TensorFlow Lite saved model signatures in Python via the tf.lite.Interpreter class.

    +

    Load the model with the Interpreter:

    +
    +
    +
    TF_MODEL_FILE_PATH = 'model.tflite' # The default path to the saved TensorFlow Lite model
    +
    +interpreter = tf.lite.Interpreter(model_path=TF_MODEL_FILE_PATH)
    +
    +
    +
    +
    +

    Print the signatures from the converted model to obtain the names of the inputs (and outputs):

    +
    +
    +
    interpreter.get_signature_list()
    +
    +
    +
    +
    +

    In this example, you have one default signature called serving_default. In addition, the name of the 'inputs' is 'sequential_1_input', while the 'outputs' are called 'outputs'. You can look up these first and last Keras layer names when running Model.summary, as demonstrated earlier in this tutorial.

    +

    Now you can test the loaded TensorFlow Model by performing inference on a sample image with tf.lite.Interpreter.get_signature_runner by passing the signature name as follows:

    +
    +
    +
    classify_lite = interpreter.get_signature_runner('serving_default')
    +classify_lite
    +
    +
    +
    +
    +

    Similar to what you did earlier in the tutorial, you can use the TensorFlow Lite model to classify images that weren’t included in the training or validation sets.

    +

    You have already tensorized that image and saved it as img_array. Now, pass it to the first argument (the name of the 'inputs') of the loaded TensorFlow Lite model (predictions_lite), compute softmax activations, and then print the prediction for the class with the highest computed probability.

    +
    +
    +
    predictions_lite = classify_lite(sequential_1_input=img_array)['outputs']
    +score_lite = tf.nn.softmax(predictions_lite)
    +
    +
    +
    +
    +
    +
    +
    print(
    +    "This image most likely belongs to {} with a {:.2f} percent confidence."
    +    .format(class_names[np.argmax(score_lite)], 100 * np.max(score_lite))
    +)
    +
    +
    +
    +
    +

    The prediction generated by the lite model should be almost identical to the predictions generated by the original model:

    +
    +
    +
    print(np.max(np.abs(predictions - predictions_lite)))
    +
    +
    +
    +
    +

    Of the five classes—'daisy', 'dandelion', 'roses', 'sunflowers', and 'tulips'—the model should predict the image belongs to sunflowers, which is the same result as before the TensorFlow Lite conversion.

    +
    +
    +
    +

    40.99.16. Acknowledgments#

    +

    Thanks to Tensorflow for creating the tutorial notebook Image classification. It inspires the majority of the content in this chapter.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html b/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html index 7dc0f2e259..6634627100 100644 --- a/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html +++ b/assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.html @@ -6,7 +6,7 @@ - 40.97. Object Recognition in Images using CNN — Ocademy Open Machine Learning Book + 40.98. Object Recognition in Images using CNN — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,63 +1620,63 @@

    Ocademy Open Machine Learning Book

    @@ -1680,63 +1700,63 @@

    Contents

    @@ -1750,18 +1770,18 @@

    Contents

    -

    40.97. Object Recognition in Images using CNN#

    +

    40.98. Object Recognition in Images using CNN#

    -

    40.97.1. About Dataset#

    +

    40.98.1. About Dataset#

    CIFAR-10 is an established computer-vision dataset used for object recognition. It is a subset of the 80 million tiny images dataset and consists of 60,000 32x32 color images containing one of 10 object classes, with 6000 images per class. It was collected by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton.

    cifar10

    -

    40.97.2. Table of Contents#

    +

    40.98.2. Table of Contents#

    -

    40.97.2.1. Import Libaries#

    +

    40.98.2.1. Import Libaries#

    import os
    @@ -1784,7 +1804,7 @@ 

    40.97.2.1. Import Libaries -

    40.97.2.2. Exploring the Data#

    +

    40.98.2.2. Exploring the Data#

    Extract from tar archive file

    The dataset is extracted to the directory tmp/object-recognition-in-images-using-cnn/cifar10. It contains 2 folders train and test, containing the training set (50000 images) and test set (10000 images) respectively. Each of them contains 10 folders, one for each class of images. Let’s verify this using os.listdir.

    @@ -1955,7 +1975,7 @@

    40.97.2.2. Exploring the Data -

    40.97.3. Training and Validation Datasets#

    +

    40.98.3. Training and Validation Datasets#

    While building real world machine learning models, it is quite common to split the dataset into 3 parts:

    1. Training set - used to train the model i.e. compute the loss and adjust the weights of the model using gradient descent.

    2. @@ -2015,7 +2035,7 @@

      40.97.3. Training and Validation Dataset

    -

    40.97.3.1. training data single batch images#

    +

    40.98.3.1. training data single batch images#

    show_images_batch(train_dl)
    @@ -2033,9 +2053,9 @@ 

    40.97.3.1. training data single batch im

    -

    40.97.4. Convolutional Neural Network#

    +

    40.98.4. Convolutional Neural Network#

    -

    40.97.4.1. Defining the Model (Convolutional Neural Network)#

    +

    40.98.4.1. Defining the Model (Convolutional Neural Network)#

    The 2D convolution is a fairly simple operation at heart: you start with a kernel, which is simply a small matrix of weights. This kernel “slides” over the 2D input data, performing an elementwise multiplication with the part of the input it is currently on, and then summing up the results into a single output pixel.

    Let us implement a convolution operation on a 1 channel image with a 3x3 kernel.

    @@ -2244,7 +2264,7 @@

    40.97.4.1. Defining the Model (Convoluti

    -

    40.97.5. Training the Model#

    +

    40.98.5. Training the Model#

    In this mode, the result of every computation will have requires_grad=False, even when the inputs have requires_grad=True.

    @@ -2360,7 +2380,7 @@

    40.97.5. Training the Model -

    40.97.6. Testing with individual images#

    +

    40.98.6. Testing with individual images#

    test_dataset = ImageFolder(data_dir+'/test', transform=ToTensor())
    @@ -2465,7 +2485,7 @@ 

    40.97.6. Testing with individual images<

    -

    40.97.7. Acknowledgments#

    +

    40.98.7. Acknowledgments#

    Thanks to datajameson for creating the Kaggle notebook Cifar-10 Object Recognition(CNN) Explained. It inspires the majority of the content in this chapter.

    @@ -2507,13 +2527,13 @@

    40.97.7. Acknowledgments

    previous

    -

    40.95. Sign Language Digits Classification with CNN

    +

    40.96. Sign Language Digits Classification with CNN

    - +

    next

    -

    40.98. Intro to TensorFlow for Deep Learning

    +

    40.99. Image classification

    diff --git a/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html b/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html index f5cb56e29c..1c7cb30616 100644 --- a/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html +++ b/assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.html @@ -6,7 +6,7 @@ - 40.95. Sign Language Digits Classification with CNN — Ocademy Open Machine Learning Book + 40.96. Sign Language Digits Classification with CNN — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,69 +1620,69 @@

    Ocademy Open Machine Learning Book

    @@ -1686,69 +1706,69 @@

    Contents

    @@ -1762,9 +1782,9 @@

    Contents

    -

    40.95. Sign Language Digits Classification with CNN#

    +

    40.96. Sign Language Digits Classification with CNN#

    -

    40.95.1. Load libraries#

    +

    40.96.1. Load libraries#

    import numpy as np
    @@ -1783,7 +1803,7 @@ 

    40.95.1. Load libraries -

    40.95.2. Load data from numpy file#

    +

    40.96.2. Load data from numpy file#

    X = np.load(
    @@ -1848,7 +1868,7 @@ 

    40.95.2. Load data from numpy file

    -

    40.95.3. Preparing Data#

    +

    40.96.3. Preparing Data#

    We will re-organize data to match labels and images correctly.

    -

    40.95.6. Data Augmentation With Keras API#

    +

    40.96.6. Data Augmentation With Keras API#

    Data augmentation is a technique which generates new training samples without changing labels of images. To generate new samples, some features of images are changed like brightness, rotation or zoom level. To apply it, ImageDataGenerator class is used in KERAS API. This class refers parameters and changes images. After complete the changing process, it returns new samples. This is important! ImageDataGenerator returns only new images. It means that out training dataset consists of different from original dataset. It provides more generalizaton for model anf of course it is desirable.

    So, in implementation of CNN part, we will use data augmentation and we will change rotation and zoom level of images. we chose these parameters with a simple logic. Think of test data that we might encounter in real life. we don’t always hold our hand at 90 degrees. So it is quite possible that we have a rotational change when using sign language. Likewise, the zoom level of the photo to be taken may also change. So we thought we could train my model better by creating a more general data set with these two parameters. Let’s take a closer look at these parameters.

      @@ -1961,7 +1981,7 @@

      40.95.6. Data Augmentation With Keras AP

    -

    40.95.7. Changin zoom level#

    +

    40.96.7. Changin zoom level#

    datagen = ImageDataGenerator(zoom_range=0.5)
    @@ -1973,7 +1993,7 @@ 

    40.95.7. Changin zoom level -

    40.95.8. Changing rotaion#

    +

    40.96.8. Changing rotaion#

    datagen = ImageDataGenerator(rotation_range=45)
    @@ -1985,7 +2005,7 @@ 

    40.95.8. Changing rotaion -

    40.95.9. Changing rotaion, zoom#

    +

    40.96.9. Changing rotaion, zoom#

    datagen = ImageDataGenerator(zoom_range=0.5, rotation_range=45)
    @@ -1997,7 +2017,7 @@ 

    40.95.9. Changing rotaion, zoom

    -

    40.95.10. Model Implementation#

    +

    40.96.10. Model Implementation#

    model = Sequential()
    @@ -2047,7 +2067,7 @@ 

    40.95.10. Model Implementation -

    40.95.11. Conclusion#

    +

    40.96.11. Conclusion#

    plt.figure(figsize=(10, 5))
    @@ -2080,7 +2100,7 @@ 

    40.95.11. Conclusion -

    40.96. Acknowledgments#

    +

    40.97. Acknowledgments#

    Thanks to Görkem Günay for creating sign-language-digits-classification-with-cnn. It inspires the majority of the content in this chapter.

    @@ -2121,13 +2141,13 @@

    40.96. Acknowledgments

    previous

    -

    40.93. How to choose cnn architecture mnist

    +

    40.94. How to choose cnn architecture mnist

    next

    -

    40.97. Object Recognition in Images using CNN

    +

    40.98. Object Recognition in Images using CNN

    diff --git a/assignments/deep-learning/difussion-model/denoising-difussion-model.html b/assignments/deep-learning/difussion-model/denoising-difussion-model.html index 0862a234be..786f14823f 100644 --- a/assignments/deep-learning/difussion-model/denoising-difussion-model.html +++ b/assignments/deep-learning/difussion-model/denoising-difussion-model.html @@ -6,7 +6,7 @@ - 40.119. Summary — Ocademy Open Machine Learning Book + 40.122. Summary — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,52 +1620,52 @@

    Ocademy Open Machine Learning Book

    @@ -1669,52 +1689,52 @@

    Contents

    @@ -1728,11 +1748,11 @@

    Contents

    -

    40.119. Summary#

    +

    40.122. Summary#

    This notebook shows how to train Denoising Difussion Models.

    The code has been adapted and curated from this tutorial by Andras Beres.

    -

    40.119.1. Hyperparams#

    +

    40.122.1. Hyperparams#

    import numpy as np
    @@ -1763,7 +1783,7 @@ 

    40.119.1. Hyperparams -

    40.119.2. Dataset#

    +

    40.122.2. Dataset#

    def preprocess_image(data):
    @@ -1803,11 +1823,11 @@ 

    40.119.2. Dataset

    -

    40.119.3. Denoising Network#

    +

    40.122.3. Denoising Network#

    We will use the Residual U-Net model.

    -

    40.119.4. TODO: can we use something simpler?#

    +

    40.122.4. TODO: can we use something simpler?#

    embedding_max_frequency = 1000.0
    @@ -1833,7 +1853,7 @@ 

    40.119.4. TODO: can we use something sim

    -

    40.119.5. Custom Residual Network#

    +

    40.122.5. Custom Residual Network#

    def get_network_custom(image_size, block_depth=17, output_channels=1):
    @@ -1864,7 +1884,7 @@ 

    40.119.5. Custom Residual Network

    -

    40.119.6. Residual U-Net#

    +

    40.122.6. Residual U-Net#

    widths = [32, 64, 96, 128]
    @@ -1942,7 +1962,7 @@ 

    40.119.6. Residual U-Net -

    40.119.7. Difussion Model#

    +

    40.122.7. Difussion Model#

    class DiffusionModel(tf.keras.Model):
    @@ -2059,7 +2079,7 @@ 

    40.119.7. Difussion Model -

    40.119.8. Complete Model#

    +

    40.122.8. Complete Model#

    Chose one of the residual networks.

    @@ -2191,7 +2211,7 @@

    40.119.8. Complete Model -

    40.119.9. Visualize#

    +

    40.122.9. Visualize#

    num_rows = 2
    @@ -2220,7 +2240,7 @@ 

    40.119.9. Visualize

    -

    40.119.10. Acknowledgments#

    +

    40.122.10. Acknowledgments#

    Thanks to Maciej Skorski for creating Denoising Difussion Model. It inspires the majority of the content in this chapter.

    @@ -2258,17 +2278,17 @@

    40.119.10. Acknowledgments

    previous

    -

    40.118. Generative Adversarial Networks (GANs)

    +

    40.121. Comparing edge-based and region-based segmentation

    next

    -

    40.120. Car Object Detection

    +

    40.123. Car Object Detection

    diff --git a/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html b/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html index 43814b4075..419886796d 100644 --- a/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html +++ b/assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.html @@ -6,7 +6,7 @@ - 40.115. DQN On Foreign Exchange Market — Ocademy Open Machine Learning Book + 40.117. DQN On Foreign Exchange Market — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,27 +1620,27 @@

    Ocademy Open Machine Learning Book

    @@ -1644,27 +1664,27 @@

    Contents

    @@ -1678,9 +1698,9 @@

    Contents

    -

    40.115. DQN On Foreign Exchange Market#

    +

    40.117. DQN On Foreign Exchange Market#

    -

    40.115.1. Load dataset#

    +

    40.117.1. Load dataset#

    # This Python 3 environment comes with many helpful analytics libraries installed
    @@ -1884,7 +1904,7 @@ 

    40.115.1. Load dataset -

    40.115.2. Define envireonment#

    +

    40.117.2. Define envireonment#

    class Environment:
    @@ -1977,7 +1997,7 @@ 

    40.115.2. Define envireonment -

    40.115.3. Agent class#

    +

    40.117.3. Agent class#

    # Deep Q-learning Agent
    @@ -2041,7 +2061,7 @@ 

    40.115.3. Agent class -

    40.115.4. Train the DQN#

    +

    40.117.4. Train the DQN#

    if __name__ == "__main__":
    @@ -2498,7 +2518,7 @@ 

    40.115.4. Train the DQN -

    40.115.5. Acknowledgement#

    +

    40.117.5. Acknowledgement#

    Thanks to emrebulbul23 for creating DQN on foreign exchange market. It inspired the majority of the content in this article.

    @@ -2540,13 +2560,13 @@

    40.115.5. Acknowledgement

    previous

    -

    40.110. NN Classify 15 Fruits Assignment

    +

    40.112. NN Classify 15 Fruits Assignment

    next

    -

    40.116. Art by gan

    +

    40.118. Art by gan

    diff --git a/assignments/deep-learning/gan/art-by-gan.html b/assignments/deep-learning/gan/art-by-gan.html index 5487735130..365a38cf65 100644 --- a/assignments/deep-learning/gan/art-by-gan.html +++ b/assignments/deep-learning/gan/art-by-gan.html @@ -6,7 +6,7 @@ - 40.116. Art by gan — Ocademy Open Machine Learning Book + 40.118. Art by gan — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,79 +1620,79 @@

    Ocademy Open Machine Learning Book

    @@ -1696,79 +1716,79 @@

    Contents

    @@ -1782,7 +1802,7 @@

    Contents

    -

    40.116. Art by gan#

    +

    40.118. Art by gan#

    In this Notebook, we will build a Generative Adversarial Network (GAN) to illustrate the workings of a Generative Adversarial Network and to generate images. Generative modelling is an unsupervised learning task in machine learning that involves automatically discovering and learning the regularities or patterns in input data. As GANs work by identifying the patterns in the data, we will be using oil painted portraits. However, glancing over the dataset gives me an idea that it is going to be a long shot. The orientation and poses in the dataset vary vastly. Keeping that in mind we are still willing to give it a try. Only because portraits are our jam. We basically love oil painted portraits.

    @@ -1819,11 +1839,11 @@

    40.116. Art by gan

    -

    40.116.1. Data loading & Prepreprocessing#

    +

    40.118.1. Data loading & Prepreprocessing#

    For this project, We are using .jpg files of images of portraits. The dataset includes various artists. We are loading data as TensorFlow.Dataset, with a batch size of 64. We have reduced the image size to (64,64), presuming, it will be computationally less taxing on the GPU.

    -

    40.116.2. Loading the data#

    +

    40.118.2. Loading the data#

    import os
    @@ -1891,7 +1911,7 @@ 

    40.116.2. Loading the data -

    40.116.3. Preprocessing the data#

    +

    40.118.3. Preprocessing the data#

    Normalization: For the data normalization, we will convert the data in the range between 0 to 1. This helps in fast convergence and makes it easy for the computer to do calculations faster. Each of the three RGB channels in the image can take pixel values ranging from 0 to 256. Dividing it by 255 converts it to a range between 0 to 1.

    -

    40.116.4. Building GAN#

    +

    40.118.4. Building GAN#

    GANs employs deep learning methods. It is a dexterous way of posing the problem as a supervised learning problem. It is composed of two models namely Generator and a Discriminator.

    Two models are trained simultaneously by an adversarial process. A generator (“the artist”) learns to create images that look like the dataset while a discriminator (“the art critic”) learns to tell real images apart from fakes.

    During training, the generator progressively becomes better at creating images that look real, while the discriminator becomes better at telling them apart. The process reaches equilibrium when the discriminator can no longer distinguish real images from fakes.

    @@ -1922,7 +1942,7 @@

    40.116.4. Building GAN -

    40.116.5. The generator#

    +

    40.118.5. The generator#

    The Generator is a neural network that generates the images. It takes in a random noise as seed and outputs sample data. As the GAN’s training progresses the Generator output becomes more and more like the training set, as the Generator tries to improve the output so that the discrimination passes the output as a real image.

    Following steps are involved in the models building

      @@ -1931,7 +1951,7 @@

      40.116.5. The generator -

      40.116.6. Building a generator#

      +

      40.118.6. Building a generator#

      latent_dim = 100
      @@ -2046,12 +2066,12 @@ 

      40.116.6. Building a generator -

      40.116.7. The discriminator#

      +

      40.118.7. The discriminator#

      In GANs the Generator works along with the Discriminator.

      The Discriminator network decided whether the data is fake aka created by the Generator or real i.e. from the original input data. To do so it applies a binary classification method using a sigmoid function to get an output in the range of 0 to 1.

    -

    40.116.8. Building a discriminator#

    +

    40.118.8. Building a discriminator#

    discriminator = Sequential()
    @@ -2167,7 +2187,7 @@ 

    40.116.8. Building a discriminatorLet us proceed and build the GAN architecture to train.

    -

    40.116.9. GAN compilation#

    +

    40.118.9. GAN compilation#

    GAN training has two sections:

    Section 1: The Discriminator is trained while the Generator is idle. The discriminator is trained real images and random noise (from an untrained generator). This trains it to tell between fake and real. This accommodates the discriminator to predict as fakes.

    @@ -2244,7 +2264,7 @@

    40.116.9. GAN compilation -

    40.116.10. Training the model#

    +

    40.118.10. Training the model#

    Calling the above created GAN function trains the generator and discriminator simultaneously. To implement the GAN we must define:

      @@ -2303,7 +2323,7 @@

      40.116.10. Training the model -

      40.116.11. Ploting the Learning Curves#

      +

      40.118.11. Ploting the Learning Curves#

      import pandas as pd
      @@ -2320,7 +2340,7 @@ 

      40.116.11. Ploting the Learning Curves

    -

    40.116.12. AI makes artwork#

    +

    40.118.12. AI makes artwork#

    # Number of images to be generate
    @@ -2366,12 +2386,12 @@ 

    40.116.12. AI makes artwork -

    40.116.13. Conculsion#

    +

    40.118.13. Conculsion#

    In the evaluation of the model: We can see that the GAN picked up the patterns in the portraits. It worked quite well. For further improvement, as GANs are notorious for being data-hungry, I would consider increasing the dataset. There are many inconsistencies in the data which is rather complicated for the GAN to learn. Cleaning the data with some consistencies in the portrait styles would certainly help. Training it longer i.e. for more epochs would also help. Lastly, one can always strive to make a more robust architecture for the Neural Networks.

    -

    40.117. Acknowledgments#

    +

    40.119. Acknowledgments#

    Thanks to Karnika Kapoor for creating art-by-gan. It inspires the majority of the content in this chapter.

    @@ -2412,13 +2432,13 @@

    40.117. Acknowledgments

    previous

    -

    40.115. DQN On Foreign Exchange Market

    +

    40.117. DQN On Foreign Exchange Market

    next

    -

    40.118. Generative Adversarial Networks (GANs)

    +

    40.120. Generative Adversarial Networks (GANs)

    diff --git a/assignments/deep-learning/gan/gan-introduction.html b/assignments/deep-learning/gan/gan-introduction.html index 4916345a13..44a7df05d7 100644 --- a/assignments/deep-learning/gan/gan-introduction.html +++ b/assignments/deep-learning/gan/gan-introduction.html @@ -6,7 +6,7 @@ - 40.118. Generative Adversarial Networks (GANs) — Ocademy Open Machine Learning Book + 40.120. Generative Adversarial Networks (GANs) — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,91 +1620,91 @@

    Ocademy Open Machine Learning Book

    @@ -1708,91 +1728,91 @@

    Contents

    @@ -1806,9 +1826,9 @@

    Contents

    -

    40.118. Generative Adversarial Networks (GANs)#

    +

    40.120. Generative Adversarial Networks (GANs)#

    -

    40.118.1. Loading data#

    +

    40.120.1. Loading data#

    import os
    @@ -1843,7 +1863,7 @@ 

    40.118.1. Loading data -

    40.118.2. Importing the libraries#

    +

    40.120.2. Importing the libraries#

    from __future__ import print_function
    @@ -1872,7 +1892,7 @@ 

    40.118.2. Importing the libraries

    -

    40.118.3. Some dogs#

    +

    40.120.3. Some dogs#

    The Stanford Dogs dataset contains images of 120 breeds of dogs from around the world.

    @@ -1895,7 +1915,7 @@

    40.118.3. Some dogs

    -

    40.118.4. Image Preprocessing#

    +

    40.120.4. Image Preprocessing#

    batch_size = 32
    @@ -1930,7 +1950,7 @@ 

    40.118.4. Image Preprocessing -

    40.118.5. Weights#

    +

    40.120.5. Weights#

    def weights_init(m):
    @@ -1946,7 +1966,7 @@ 

    40.118.5. Weights

    -

    40.118.6. Generator#

    +

    40.120.6. Generator#

    class G(nn.Module):
    @@ -1984,7 +2004,7 @@ 

    40.118.6. Generator

    -

    40.118.7. Discriminator#

    +

    40.120.7. Discriminator#

    class D(nn.Module):
    @@ -2017,7 +2037,7 @@ 

    40.118.7. Discriminator -

    40.118.8. Another setup#

    +

    40.120.8. Another setup#

    class Generator(nn.Module):
    @@ -2083,7 +2103,7 @@ 

    40.118.8. Another setup -

    40.118.9. Training#

    +

    40.120.9. Training#

    EPOCH = 0
    @@ -2141,9 +2161,9 @@ 

    40.118.9. Training

    -

    40.118.10. Best public training#

    +

    40.120.10. Best public training#

    -

    40.118.10.1. Parameters#

    +

    40.120.10.1. Parameters#

    batch_size = 32
    @@ -2164,7 +2184,7 @@ 

    40.118.10.1. Parameters -

    40.118.10.2. Initialize models and optimizers#

    +

    40.120.10.2. Initialize models and optimizers#

    netG = Generator(nz).to(device)
    @@ -2202,7 +2222,7 @@ 

    40.118.10.2. Initialize models and optim

    -

    40.118.11. Show generated images#

    +

    40.120.11. Show generated images#

    def show_generated_img(n_images=5):
    @@ -2227,7 +2247,7 @@ 

    40.118.11. Show generated images

    -

    40.118.12. Training Loop#

    +

    40.120.12. Training Loop#

    for epoch in range(epochs):
    @@ -2299,7 +2319,7 @@ 

    40.118.12. Training Loop -

    40.118.13. Generation example#

    +

    40.120.13. Generation example#

    show_generated_img(7)
    @@ -2338,7 +2358,7 @@ 

    40.118.13. Generation example -

    40.118.13.1. Save models#

    +

    40.120.13.1. Save models#

    torch.save(netG.state_dict(), 'generator.pth')
    @@ -2350,7 +2370,7 @@ 

    40.118.13.1. Save models -

    40.118.14. Acknowledgement#

    +

    40.120.14. Acknowledgement#

    Thanks to jesucristo for creating GAN Introduction. It inspired the majority of the content in this article.

    @@ -2392,13 +2412,13 @@

    40.118.14. Acknowledgement

    previous

    -

    40.116. Art by gan

    +

    40.118. Art by gan

    - +

    next

    -

    40.119. Summary

    +

    40.121. Comparing edge-based and region-based segmentation

    diff --git a/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html b/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html new file mode 100644 index 0000000000..15d4c1c215 --- /dev/null +++ b/assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.html @@ -0,0 +1,1949 @@ + + + + + + + + + 40.121. Comparing edge-based and region-based segmentation — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + +
    +

    Comparing edge-based and region-based segmentation

    + +
    + +
    +
    +
    + +
    + +
    +
    +
    # Install the necessary dependencies
    +
    +import os
    +import sys
    +!{sys.executable} -m pip install --quiet seaborn pandas scikit-learn numpy matplotlib jupyterlab_myst ipython skimage
    +
    +
    +
    +
    +
    +

    40.121. Comparing edge-based and region-based segmentation#

    +

    In this example, we will try how to segment objects from a background. We use the coins image from skimage.data, which shows several coins outlined against a darker background.

    +
    +
    +
    import numpy as np
    +import matplotlib.pyplot as plt
    +
    +from skimage import data
    +from skimage.exposure import histogram
    +
    +coins = data.coins()
    +hist, hist_centers = histogram(coins)
    +
    +fig, axes = plt.subplots(1, 2, figsize=(8, 3))
    +axes[0].imshow(coins, cmap=plt.cm.gray)
    +axes[0].axis('off')
    +axes[1].plot(hist_centers, hist, lw=2)
    +axes[1].set_title('histogram of gray values')
    +
    +
    +
    +
    +
    +

    40.121.1. Thresholding#

    +

    A simple way to segment the coins is to choose a threshold based on the histogram of gray values. Unfortunately, thresholding this image gives a binary image that either misses significant parts of the coins or merges parts of the background with the coins:

    +
    +
    +
    fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)
    +
    +axes[0].imshow(coins > 100, cmap=plt.cm.gray)
    +axes[0].set_title('coins > 100')
    +
    +axes[1].imshow(coins > 150, cmap=plt.cm.gray)
    +axes[1].set_title('coins > 150')
    +
    +for a in axes:
    +    a.axis('off')
    +
    +plt.tight_layout()
    +
    +
    +
    +
    +
    +
    +

    40.121.2. Edge-based segmentation#

    +

    Next, we try to delineate the contours of the coins using edge-based segmentation. To do this, we first get the edges of features using the Canny edge-detector.

    +
    +
    +
    from skimage.feature import canny
    +
    +edges = canny(coins)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(edges, cmap=plt.cm.gray)
    +ax.set_title('Canny detector')
    +ax.axis('off')
    +
    +
    +
    +
    +

    These contours are then filled using mathematical morphology.

    +
    +
    +
    from scipy import ndimage as ndi
    +
    +fill_coins = ndi.binary_fill_holes(edges)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(fill_coins, cmap=plt.cm.gray)
    +ax.set_title('filling the holes')
    +ax.axis('off')
    +
    +
    +
    +
    +

    Small spurious objects are easily removed by setting a minimum size for valid objects.

    +
    +
    +
    from skimage import morphology
    +
    +coins_cleaned = morphology.remove_small_objects(fill_coins, 21)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(coins_cleaned, cmap=plt.cm.gray)
    +ax.set_title('removing small objects')
    +ax.axis('off')
    +
    +
    +
    +
    +

    However, this method is not very robust, since contours that are not perfectly closed are not filled correctly, as is the case for one unfilled coin above.

    +
    +
    +

    40.121.3. Region-based segmentation#

    +

    We therefore try a region-based method using the watershed transform. First, we find an elevation map using the Sobel gradient of the image.

    +
    +
    +
    from skimage.filters import sobel
    +
    +elevation_map = sobel(coins)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(elevation_map, cmap=plt.cm.gray)
    +ax.set_title('elevation map')
    +ax.axis('off')
    +
    +
    +
    +
    +

    Next we find markers of the background and the coins based on the extreme parts of the histogram of gray values.

    +
    +
    +
    markers = np.zeros_like(coins)
    +markers[coins < 30] = 1
    +markers[coins > 150] = 2
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(markers, cmap=plt.cm.nipy_spectral)
    +ax.set_title('markers')
    +ax.axis('off')
    +
    +
    +
    +
    +

    Finally, we use the watershed transform to fill regions of the elevation map starting from the markers determined above:

    +
    +
    +
    from skimage import segmentation
    +
    +segmentation_coins = segmentation.watershed(elevation_map, markers)
    +
    +fig, ax = plt.subplots(figsize=(4, 3))
    +ax.imshow(segmentation_coins, cmap=plt.cm.gray)
    +ax.set_title('segmentation')
    +ax.axis('off')
    +
    +
    +
    +
    +

    This last method works even better, and the coins can be segmented and labeled individually.

    +
    +
    +
    from skimage.color import label2rgb
    +
    +segmentation_coins = ndi.binary_fill_holes(segmentation_coins - 1)
    +labeled_coins, _ = ndi.label(segmentation_coins)
    +image_label_overlay = label2rgb(labeled_coins, image=coins, bg_label=0)
    +
    +fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True)
    +axes[0].imshow(coins, cmap=plt.cm.gray)
    +axes[0].contour(segmentation_coins, [0.5], linewidths=1.2, colors='y')
    +axes[1].imshow(image_label_overlay)
    +
    +for a in axes:
    +    a.axis('off')
    +
    +plt.tight_layout()
    +
    +plt.show()
    +
    +
    +
    +
    +
    +
    +

    40.121.4. Acknowledgments#

    +

    Thanks to Scikit-image for creating the open-source project Comparing edge-based and region-based segmentation. This inspires the majority of the content in this chapter.

    +
    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html b/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html index 7e8bff53c3..e4b3468e84 100644 --- a/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html +++ b/assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.html @@ -6,7 +6,7 @@ - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment — Ocademy Open Machine Learning Book + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,34 +1620,34 @@

    Ocademy Open Machine Learning Book

    @@ -1651,34 +1671,34 @@

    Contents

    @@ -1692,9 +1712,9 @@

    Contents

    -

    40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment#

    +

    40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment#

    -

    40.100.1. Load libraries#

    +

    40.102.1. Load libraries#

    import pandas as pd
    @@ -1725,7 +1745,7 @@ 

    40.100.1. Load libraries -

    40.100.2. Data Pre-processing#

    +

    40.102.2. Data Pre-processing#

    notclean = pd.read_csv(
    @@ -3424,7 +3444,7 @@ 

    40.100.2. Data Pre-processing -

    40.100.3. Exploratory Analysis#

    +

    40.102.3. Exploratory Analysis#

    # --------------Analysis----------------------------#
    @@ -4764,7 +4784,7 @@ 

    40.100.3. Exploratory Analysis -

    40.100.4. LSTM Model#

    +

    40.102.4. LSTM Model#

    from math import sqrt
    @@ -5585,7 +5605,7 @@ 

    40.100.4. LSTM Model -

    40.101. Acknowledgements#

    +

    40.103. Acknowledgements#

    Thanks to Paul Simpson for creating Bitcoin Lstm Model with Tweet Volume and Sentiment. It inspires the majority of the content in this chapter.

    @@ -5626,13 +5646,13 @@

    40.101. Acknowledgements

    previous

    -

    40.98. Intro to TensorFlow for Deep Learning

    +

    40.100. Intro to TensorFlow for Deep Learning

    next

    -

    40.102. Google Stock Price Prediction RNN

    +

    40.104. Google Stock Price Prediction RNN

    diff --git a/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html b/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html new file mode 100644 index 0000000000..adb93071a3 --- /dev/null +++ b/assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.html @@ -0,0 +1,2504 @@ + + + + + + + + + 40.126. Getting Start NLP with classification task — Ocademy Open Machine Learning Book + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    Learn AI together, for free! At Ocademy.
    +
    + + + + + + +
    +
    + + + + + + + + + + +
    + +
    + +
    + + + + +
    +
    + + + + +
    +
    + + + + + + + + + +
    +
    + + + +
    +
    +
    + + +
    + +
    + +
    +

    40.126. Getting Start NLP with classification task#

    +

    One area where deep learning has dramatically improved in the last couple of years is natural language processing (NLP). Computers can now generate text, translate automatically from one language to another, analyze comments, label words in sentences, and much more.

    +

    Perhaps the most widely practically useful application of NLP is classification – that is, classifying a document automatically into some category. This can be used, for instance, for:

    +
      +
    • Sentiment analysis (e.g are people saying positive or negative things about your product)

    • +
    • Author identification (what author most likely wrote some document)

    • +
    • Legal discovery (which documents are in scope for a trial)

    • +
    • Organizing documents by topic

    • +
    • Triaging inbound emails

    • +
    • …and much more!

    • +
    +

    Today, we are tasked with comparing two words or short phrases, and scoring them based on whether they’re similar or not, based on which patent class they were used in. With a score of 1 it is considered that the two inputs have identical meaning, and 0 means they have totally different meaning. For instance, abatement and eliminating process have a score of 0.5, meaning they’re somewhat similar, but not identical.

    +

    It turns out that this can be represented as a classification problem. How? By representing the question like this:

    +
    +

    For the following text…: “TEXT1: abatement; TEXT2: eliminating process” …chose a category of meaning similarity: “Different; Similar; Identical”.

    +
    +

    In this assignment section we’ll see how to solve the Patent Phrase Matching problem by treating it as a classification task, by representing it in a very similar way to that shown above.

    +
    +

    40.126.1. Import and EDA#

    +
    +
    +
    import pandas as pd
    +import numpy as np
    +from datasets import Dataset,DatasetDict
    +from transformers import AutoModelForSequenceClassification, AutoTokenizer, TrainingArguments, Trainer
    +import warnings
    +
    +warnings.filterwarnings("ignore")
    +
    +
    +
    +
    +

    First of all, let’s import the dataset.

    +
    +
    +
    df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/nlp/phrase_matching_train.csv')
    +df.head()
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    idanchortargetcontextscore
    037d61fd2272659b1abatementabatement of pollutionA470.50
    17b9652b17b68b7a4abatementact of abatingA470.75
    236d72442aefd8232abatementactive catalystA470.25
    35296b0c19e1ce60eabatementeliminating processA470.50
    454c1e3b9184cb5b6abatementforest regionA470.00
    +
    +
    +

    As you see, there are 5 columns, where anchor and target are a pair phrases, context is the common context they are in, score is the similarity score of anchor and target.

    +
    +
    +
    df.describe(include='object')
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    idanchortargetcontext
    count36473364733647336473
    unique3647373329340106
    top37d61fd2272659b1component composite coatingcompositionH01
    freq1152242186
    +
    +
    +

    We can see that in the 36473 rows, there are 733 unique anchors, 106 contexts, and nearly 30000 targets. Some anchors are very common, with “component composite coating” for instance appearing 152 times.

    +

    Earlier, I suggested we could represent the input to the model as something like “TEXT1: abatement; TEXT2: eliminating process”. We’ll need to add the context to this too. In Pandas, we just use + to concatenate, like so:

    +
    +
    +
    df['input'] = 'TEXT1: ' + df.context + '; TEXT2: ' + df.target + '; ANC1: ' + df.anchor
    +df.head(5)
    +
    +
    +
    +
    +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    idanchortargetcontextscoreinput
    037d61fd2272659b1abatementabatement of pollutionA470.50TEXT1: A47; TEXT2: abatement of pollution; ANC...
    17b9652b17b68b7a4abatementact of abatingA470.75TEXT1: A47; TEXT2: act of abating; ANC1: abate...
    236d72442aefd8232abatementactive catalystA470.25TEXT1: A47; TEXT2: active catalyst; ANC1: abat...
    35296b0c19e1ce60eabatementeliminating processA470.50TEXT1: A47; TEXT2: eliminating process; ANC1: ...
    454c1e3b9184cb5b6abatementforest regionA470.00TEXT1: A47; TEXT2: forest region; ANC1: abatement
    +
    +
    +
    +
    +

    40.126.2. Tokenization#

    +

    Transformers uses a Dataset object for storing their dataset, of course! We can create one like so:

    +
    +
    +
    ds = Dataset.from_pandas(df)
    +ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'score', 'input'],
    +    num_rows: 36473
    +})
    +
    +
    +
    +
    +

    But we can’t pass the texts directly into a model. A deep learning model expects numbers as inputs, not English sentences! So we need to do two things:

    +
      +
    • Tokenization: Split each text up into words (or actually, as we’ll see, into tokens)

    • +
    • Numericalization: Convert each word (or token) into a number.

    • +
    +

    The details about how this is done actually depend on the particular model we use. So first we’ll need to pick a model. There are thousands of models available, but a reasonable starting point for nearly any NLP problem is to use this (replace “small” with “large” for a slower but more accurate model, once you’ve finished exploring):

    +
    +
    +
    model_nm = 'microsoft/deberta-v3-small'
    +
    +
    +
    +
    +

    AutoTokenizer will create a tokenizer appropriate for a given model:

    +
    +
    +
    tokz = AutoTokenizer.from_pretrained(model_nm)
    +
    +
    +
    +
    +

    Here’s an example of how the tokenizer splits a text into “tokens” (which are like words, but can be sub-word pieces, as you see below):

    +
    +
    +
    tokz.tokenize("G'day folks, I'm Jeremy from fast.ai!")
    +
    +
    +
    +
    +
    ['▁G',
    + "'",
    + 'day',
    + '▁folks',
    + ',',
    + '▁I',
    + "'",
    + 'm',
    + '▁Jeremy',
    + '▁from',
    + '▁fast',
    + '.',
    + 'ai',
    + '!']
    +
    +
    +
    +
    +

    Uncommon words will be split into pieces just like ornithorhynchus. The start of a new word is represented by :

    +
    +
    +
    tokz.tokenize("A platypus is an ornithorhynchus anatinus.")
    +
    +
    +
    +
    +
    ['▁A',
    + '▁platypus',
    + '▁is',
    + '▁an',
    + '▁or',
    + 'ni',
    + 'tho',
    + 'rhynch',
    + 'us',
    + '▁an',
    + 'at',
    + 'inus',
    + '.']
    +
    +
    +
    +
    +
    +
    +

    40.126.3. Numericalization#

    +

    After completing Tokenization, we need to convert each token into a number, because the model only accepts numbers as input. But … how to do it? +We need a large token dictionary to map each token to a number!

    +
    +
    +
    vocab = tokz.get_vocab()
    +
    +
    +
    +
    +

    The above is the token dictionary that comes with the deberta-v3-small model. You can print it out to check.

    +
    +
    +
    tokz("A platypus is an ornithorhynchus anatinus.")
    +
    +
    +
    +
    +
    {'input_ids': [1, 336, 114224, 269, 299, 289, 4840, 34765, 102530, 1867, 299, 2401, 26835, 260, 2], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
    +
    +
    +
    +
    +

    According to this token dictionary, we can convert the original token sequence into a digital sequence. Input_ids is the number we need, token_type_ids represents whether all tokens belong to the same sentence, and attention_mask represents whether the token exists in the token dictionary.

    +

    Here’s a simple function which tokenizes our inputs:

    +
    +
    +
    def tok_func(x): return tokz(x["input"])
    +
    +
    +
    +
    +

    To run this quickly in parallel on every row in our dataset, use map:

    +
    +
    +
    tok_ds = ds.map(tok_func, batched=True)
    +tok_ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'score', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +    num_rows: 36473
    +})
    +
    +
    +
    +
    +

    This adds a new item to our dataset called input_ids. For instance, here is the input and IDs for the first row of our data:

    +
    +
    +
    row = tok_ds[0]
    +row['input'], row['input_ids']
    +
    +
    +
    +
    +
    ('TEXT1: A47; TEXT2: abatement of pollution; ANC1: abatement',
    + [1,
    +  54453,
    +  435,
    +  294,
    +  336,
    +  5753,
    +  346,
    +  54453,
    +  445,
    +  294,
    +  47284,
    +  265,
    +  6435,
    +  346,
    +  23702,
    +  435,
    +  294,
    +  47284,
    +  2])
    +
    +
    +
    +
    +

    Finally, we need to prepare our labels. Transformers always assumes that your labels has the column name labels, but in our dataset it’s currently score. Therefore, we need to rename it:

    +
    +
    +
    tok_ds = tok_ds.rename_columns({'score':'labels'})
    +tok_ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'labels', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +    num_rows: 36473
    +})
    +
    +
    +
    +
    +

    Now that we’ve prepared our tokens and labels, we need to create our validation set.

    +
    +
    +

    40.126.4. Test and validation sets#

    +
    +
    +
    eval_df = pd.read_csv('https://static-1300131294.cos.ap-shanghai.myqcloud.com/data/deep-learning/nlp/phrase_matching_test.csv')
    +eval_df['input'] = 'TEXT1: ' + eval_df.context + '; TEXT2: ' + eval_df.target + '; ANC1: ' + eval_df.anchor
    +eval_ds = Dataset.from_pandas(eval_df).map(tok_func, batched=True)
    +eval_ds
    +
    +
    +
    +
    +
    Dataset({
    +    features: ['id', 'anchor', 'target', 'context', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +    num_rows: 36
    +})
    +
    +
    +
    +
    +

    This is the test set. Possibly the most important idea in machine learning is that of having separate training, validation, and test data sets.

    +
    +
    +
    dds = tok_ds.train_test_split(0.25, seed=42)
    +dds
    +
    +
    +
    +
    +
    DatasetDict({
    +    train: Dataset({
    +        features: ['id', 'anchor', 'target', 'context', 'labels', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +        num_rows: 27354
    +    })
    +    test: Dataset({
    +        features: ['id', 'anchor', 'target', 'context', 'labels', 'input', 'input_ids', 'token_type_ids', 'attention_mask'],
    +        num_rows: 9119
    +    })
    +})
    +
    +
    +
    +
    +

    This is the validation set. We use train_test_split to separate it from the training set with a separation ratio of 25%.

    +
    +
    +

    40.126.5. Training our model#

    +

    Before starting training, we need to set some hyperparameters for our model. Here’s a concise explanation:

    +
      +
    • Batch Size (bs): 128 examples processed in each iteration.

    • +
    • Epochs (epochs): The model will be trained through the entire dataset 4 times.

    • +
    • Learning Rate (lr): The step size for adjusting model weights during optimization is set to 8e-5.

    • +
    • TrainingArguments (args):

      +
        +
      • Warmup Ratio: 10% of training steps used for learning rate warm-up.

      • +
      • Learning Rate Scheduler: Cosine learning rate scheduler.

      • +
      • Mixed Precision (fp16): Training with mixed-precision for faster computation.

      • +
      • Evaluation Strategy: Model evaluation after each epoch.

      • +
      • Batch Sizes: 128 examples per training device, 256 for evaluation.

      • +
      • Number of Training Epochs: Training for 4 epochs.

      • +
      • Weight Decay: L2 regularization with a rate of 0.01.

      • +
      • Report To: No reports sent during training (set to ‘none’). to ‘none’).

      • +
      +
    • +
    +
    +
    +
    bs = 128
    +epochs = 4
    +lr = 8e-5
    +args = TrainingArguments('outputs', learning_rate=lr, warmup_ratio=0.1, lr_scheduler_type='cosine', fp16=True,
    +    evaluation_strategy="epoch", per_device_train_batch_size=bs, per_device_eval_batch_size=bs*2,
    +    num_train_epochs=epochs, weight_decay=0.01, report_to='none')
    +
    +
    +
    +
    +

    Now, we can initialize a pre-trained sequence classification model and sets up a training environment using Hugging Face’s Trainer. The model is loaded with AutoModelForSequenceClassification.from_pretrained and configured with training parameters in the Trainer object.

    +
    +
    +
    model = AutoModelForSequenceClassification.from_pretrained(model_nm, num_labels=1)
    +trainer = Trainer(model, args, train_dataset=dds['train'], eval_dataset=dds['test'],
    +                  tokenizer=tokz)
    +
    +
    +
    +
    +
    Some weights of DebertaV2ForSequenceClassification were not initialized from the model checkpoint at deberta-v3-small and are newly initialized: ['classifier.bias', 'classifier.weight', 'pooler.dense.bias', 'pooler.dense.weight']
    +You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
    +
    +
    +
    +
    +
    +
    +
    trainer.train();
    +
    +
    +
    +
    +
    +
    + + + [856/856 00:53, Epoch 4/4] +
    + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
    EpochTraining LossValidation Loss
    1No log0.026275
    2No log0.021973
    30.0396000.022443
    40.0396000.023286

    +
    +
    +
    +
    preds = trainer.predict(eval_ds).predictions.astype(float)
    +preds
    +
    +
    +
    +
    +
    array([[-1.50489807e-03],
    +       [ 4.90570068e-03],
    +       [-5.05447388e-04],
    +       [ 2.69412994e-04],
    +       [-1.44767761e-03],
    +       [ 4.85897064e-04],
    +       [-1.81484222e-03],
    +       [ 8.22067261e-04],
    +       [ 4.36019897e-03],
    +       [ 4.40216064e-03],
    +       [-6.16550446e-04],
    +       [-4.18424606e-05],
    +       [-1.20639801e-03],
    +       [ 3.18288803e-04],
    +       [-6.15119934e-04],
    +       [-8.05377960e-04],
    +       [-2.66265869e-03],
    +       [ 2.60114670e-04],
    +       [ 3.48281860e-03],
    +       [ 1.68323517e-03],
    +       [ 1.38378143e-03],
    +       [-2.48527527e-03],
    +       [ 7.53879547e-04],
    +       [ 8.55922699e-04],
    +       [-2.27355957e-03],
    +       [-2.88581848e-03],
    +       [ 3.29780579e-03],
    +       [ 9.42707062e-04],
    +       [ 4.26769257e-04],
    +       [-1.19447708e-04],
    +       [-2.77519226e-03],
    +       [ 5.27381897e-04],
    +       [-8.44001770e-04],
    +       [ 4.88281250e-04],
    +       [-2.11715698e-04],
    +       [-1.00421906e-03]])
    +
    +
    +
    +
    +

    Look out - some of our predictions are <0, or >1! Let’s fix those out-of-bounds predictions:

    +
    +
    +
    preds = np.clip(preds, 0, 1)
    +preds
    +
    +
    +
    +
    +
    array([[0.        ],
    +       [0.0049057 ],
    +       [0.        ],
    +       [0.00026941],
    +       [0.        ],
    +       [0.0004859 ],
    +       [0.        ],
    +       [0.00082207],
    +       [0.0043602 ],
    +       [0.00440216],
    +       [0.        ],
    +       [0.        ],
    +       [0.        ],
    +       [0.00031829],
    +       [0.        ],
    +       [0.        ],
    +       [0.        ],
    +       [0.00026011],
    +       [0.00348282],
    +       [0.00168324],
    +       [0.00138378],
    +       [0.        ],
    +       [0.00075388],
    +       [0.00085592],
    +       [0.        ],
    +       [0.        ],
    +       [0.00329781],
    +       [0.00094271],
    +       [0.00042677],
    +       [0.        ],
    +       [0.        ],
    +       [0.00052738],
    +       [0.        ],
    +       [0.00048828],
    +       [0.        ],
    +       [0.        ]])
    +
    +
    +
    +
    +
    +
    +
    +

    40.127. Acknowledgments#

    +

    Thanks to Jeremy Howard for creating Getting started with NLP for absolute beginners. It inspires the majority of the content in this chapter.

    +
    + + + + + +
    + +
    + +
    +
    + + +
    + + +
    +
    + + + + + + + \ No newline at end of file diff --git a/assignments/deep-learning/nn-classify-15-fruits-assignment.html b/assignments/deep-learning/nn-classify-15-fruits-assignment.html index 7879be1f52..780b82d6e1 100644 --- a/assignments/deep-learning/nn-classify-15-fruits-assignment.html +++ b/assignments/deep-learning/nn-classify-15-fruits-assignment.html @@ -6,7 +6,7 @@ - 40.110. NN Classify 15 Fruits Assignment — Ocademy Open Machine Learning Book + 40.112. NN Classify 15 Fruits Assignment — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,46 +1620,46 @@

    Ocademy Open Machine Learning Book

    @@ -1663,46 +1683,46 @@

    Contents

    @@ -1716,11 +1736,11 @@

    Contents

    -

    40.110. NN Classify 15 Fruits Assignment#

    +

    40.112. NN Classify 15 Fruits Assignment#

    Fruit Example

    -

    40.111. Data collection#

    +

    40.113. Data collection#

    The database used in this study is comprising of 44406 fruit images, which we collected in a period of 6 months. The images where made with in our lab’s environment under different scenarios which we mention below. We captured all the images on a clear background with @@ -1759,7 +1779,7 @@

    40.111. Data collection -

    40.112. Load and visualize the dataset#

    +

    40.114. Load and visualize the dataset#

    The database used in this study is comprising of 70549 fruit images, which were collected in a period of 6 months. The images where made with in a lab’s environment under different scenarios which we mention below. All the images were captured on a clear background with resolution of 320×258 pixels.

    Type of fruits in the dataset:

      @@ -1935,7 +1955,7 @@

      40.112. Load and visualize the dataset

    -

    40.113. Train the neural network from scratch with Keras and w/o generator#

    +

    40.115. Train the neural network from scratch with Keras and w/o generator#

    # The pictures will be resized to have the same size for the neural network
    @@ -1952,7 +1972,7 @@ 

    40.113. Train the neural network from sc

    -

    40.113.1. Create and train the NN Model#

    +

    40.115.1. Create and train the NN Model#

    def cut_df(df, number_of_parts, part):
    @@ -2131,7 +2151,7 @@ 

    40.113.1. Create and train the NN Model<

    -

    40.113.2. Predictions#

    +

    40.115.2. Predictions#

    import warnings
    @@ -2182,7 +2202,7 @@ 

    40.113.2. Predictions

    -

    40.113.3. Visualize the result with pictures of fruits#

    +

    40.115.3. Visualize the result with pictures of fruits#

    fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(10, 10),
    @@ -2201,7 +2221,7 @@ 

    40.113.3. Visualize the result with pict

    -

    40.114. Acknowledgments#

    +

    40.116. Acknowledgments#

    Thanks to DATALIRA for creating the open-source course Classify 15 Fruits with TensorFlow . It inspires the majority of the content in this chapter.

    @@ -2242,13 +2262,13 @@

    40.114. Acknowledgments

    previous

    -

    40.109. Neural Networks for Classification with TensorFlow

    +

    40.111. Neural Networks for Classification with TensorFlow

    next

    -

    40.115. DQN On Foreign Exchange Market

    +

    40.117. DQN On Foreign Exchange Market

    diff --git a/assignments/deep-learning/nn-for-classification-assignment.html b/assignments/deep-learning/nn-for-classification-assignment.html index fba1decde4..767fcdbb70 100644 --- a/assignments/deep-learning/nn-for-classification-assignment.html +++ b/assignments/deep-learning/nn-for-classification-assignment.html @@ -6,7 +6,7 @@ - 40.109. Neural Networks for Classification with TensorFlow — Ocademy Open Machine Learning Book + 40.111. Neural Networks for Classification with TensorFlow — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,101 +1620,101 @@

    Ocademy Open Machine Learning Book

    @@ -1718,101 +1738,101 @@

    Contents

    @@ -1826,14 +1846,14 @@

    Contents

    -

    40.109. Neural Networks for Classification with TensorFlow#

    +

    40.111. Neural Networks for Classification with TensorFlow#

    -

    40.109.1. Getting Started: Binary Classifier#

    +

    40.111.1. Getting Started: Binary Classifier#

    We will first practice building neural networks for binary classifier. In binary classification, we have two classes.

    We will use a classical cancer dataset to predict if a given patient has a malignant or benign based on their medical information. We will get it from sklearn datasets. You can read more about the dataset.

    The dataset contains two labels: malignant, benign.

    -

    40.109.1.1. Getting the data#

    +

    40.111.1.1. Getting the data#

    We will get the data from sklearn datasets.

    @@ -1912,7 +1932,7 @@

    40.109.1.1. Getting the data -

    40.109.2. Taking a look in the data#

    +

    40.111.2. Taking a look in the data#

    # Looking from the head 
    @@ -1942,7 +1962,7 @@ 

    40.109.2. Taking a look in the data

    -

    40.109.3. Preparing the Data#

    +

    40.111.3. Preparing the Data#

    The data from sklearn is reasonably cleaned. Let’s split the data into train and test sets, and we will follow with scaling the values to be between 0 and 1.

    @@ -1985,7 +2005,7 @@

    40.109.3. Preparing the Data -

    40.109.4. Creating, Compiling and Training a Model#

    +

    40.111.4. Creating, Compiling and Training a Model#

    In TensorFlow, creating a model is only putting together an empty graphs. We are going to use Sequential API to stack the layers, from the input to output.

    In model compilaton, it’s where we specify the optimizer and loss function. Loss function is there for calculating the difference between the predictions and the actual output, and optimizer is there for reducing the loss.

    Also, if we are interested in tracking other metrics during training, we can specify them in metric.

    @@ -2038,7 +2058,7 @@

    40.109.4. Creating, Compiling and Traini

    ‼️ If you retrain again, it will continue where it left. So, for example, if you train for 30 epochs, and you rerun the cell, it will train for same more epochs again.

    -

    40.109.5. Visualizing the Results#

    +

    40.111.5. Visualizing the Results#

    Visualizing the model results after training is always a good way to learn what you can do to improve the performance.

    Let’s get a Pandas dataframe containing training loss and accuracy, and validation loss and accuracy.

    @@ -2056,7 +2076,7 @@

    40.109.5. Visualizing the ResultsLet’s evaluate the model on the test set.

    -

    40.109.6. Evaluating the Model#

    +

    40.111.6. Evaluating the Model#

    Quite often, you will want to test your model on the data that it never saw. This data is normally called test set and in more applied practice, you will only feed the test to the model after you have done your best to improve it.

    Let’s now evaluate the model on the test set. One thing to note here is that the test set must be preprocessed the same way we preprocessed the training set. The training set was rescaled and that was applied to the test set.

    If this is not obeyed, you would not know why you’re having poor results. Just look up on the next next cell how poor the accuracy will be if I evaluate the model on unscaled data when I trained it on scaled data.

    @@ -2174,13 +2194,13 @@

    40.109.6. Evaluating the Model -

    40.109.7. Going Beyond Binary Classifier to Multiclass Classifier: 10 Fashions Classifier#

    +

    40.111.7. Going Beyond Binary Classifier to Multiclass Classifier: 10 Fashions Classifier#

    So far, we have built a neural network for regression(in previous labs) and binary classification. And we have only been working with structured datasets(datasets in tabular format).

    Can the same neural networks we used be able to recognize images? In this next practice, we will turn the page to image classification. We will build a neural network for recognizing 10 different fashions and along the way, we will learn other things such as stopping the training upon a given condition is met, and using TensorBoard to visualize model.

    That is going to be cool! Let’s get started!

    -

    40.109.8. Getting the Fashion data#

    +

    40.111.8. Getting the Fashion data#

    Let’s get the dataset from Keras.

    @@ -2195,7 +2215,7 @@

    40.109.8. Getting the Fashion data

    -

    40.109.9. Looking in the Fashion Data#

    +

    40.111.9. Looking in the Fashion Data#

    As always, it is a best practice to peep into the images to see how they like.

    Let’s display the pixels values of a given image, image, and its corresponding label.

    -

    40.109.10. Preparing the Data#

    +

    40.111.10. Preparing the Data#

    In many cases, real world images datasets are not that clean like fashion mnist.

    You may have to correct images that were incorrectly labeled, or you have labels in texts that need to be converted to numbers(most machine learning models accept numeric input), or scale the pixels values.

    The latter is what we are going to do. It is inarguable that scaling the images pixels to value between 0 and 1 increase the performance of the neural network, and hence the results. Let’s do it!!

    @@ -2285,7 +2305,7 @@

    40.109.10. Preparing the Data -

    40.109.11. Creating, Compiling, and Training a Model#

    +

    40.111.11. Creating, Compiling, and Training a Model#

    There are few points to note before creating a model:

    • When working with images, the shape of the input images has to be correctly provided. This is a common error done by many people, including me (before I learned it).

    • @@ -2335,7 +2355,7 @@

      40.109.11. Creating, Compiling, and Trai

      But also, training mnist for 20 epochs is not slow that we would need to activate GPU. We will take an advantage of GPU in later labs.

    -

    40.109.12. Visualizing the Model Results#

    +

    40.111.12. Visualizing the Model Results#

    Let’s visualize the model results to see how training went.

    @@ -2354,7 +2374,7 @@

    40.109.12. Visualizing the Model Results

    Let’s see how the model performs on unseed data: test set.

    -

    40.109.13. Model Evaluation#

    +

    40.111.13. Model Evaluation#

    # if you need a model trained, you can use this cell
    @@ -2385,11 +2405,11 @@ 

    40.109.13. Model Evaluation -

    40.109.14. Controlling Training with Callbacks#

    +

    40.111.14. Controlling Training with Callbacks#

    We can use Callbacks functions to control the training.

    Take an example: we can stop training when the model is lo longer showing significant improvements on validation set. Or we can terminate training when a certain condition is met.

    -

    40.109.14.1. Implementing Callbacks#

    +

    40.111.14.1. Implementing Callbacks#

    There are various functionalities available in Keras Callbacks.

    Let’s start with how to use ModelCheckpoint to save the model when the performance on the validation set is best so far. By saving the best model on the validation set, we avoid things like overfitting which is a common issue in machine learning model training, neural network specifically. We also train for less time.

    I will rebuild a same model again.

    @@ -2565,7 +2585,7 @@

    40.109.14.1. Implementing Callbacks

    -

    40.109.14.2. Custom Callback#

    +

    40.111.14.2. Custom Callback#

    Keras offers various functions for implementing custom callbacks that are very handy when you want to control the model training with a little bit of customization.

    You can do certain actions on almost every step of the training. Let’s stop the training when the accuracy is 95%.

    @@ -2630,7 +2650,7 @@

    40.109.14.2. Custom Callback -

    40.109.15. Using TensorBoard for Model Visualization#

    +

    40.111.15. Using TensorBoard for Model Visualization#

    Tensorboard is incredible tool used by many people (and not just only TensorFlow developers) to experiment with machine learning.

    With TensorBoard, you can:

      @@ -2721,7 +2741,7 @@

      40.109.15. Using TensorBoard for Model V

      As you can see, TensorBoard is very useful. The fact that you can use it to visualize the performance metrics, model graphs, and datasets as well.

    -

    40.109.16. Acknowledgments#

    +

    40.111.16. Acknowledgments#

    Thanks to Jean de Dieu Nyandwi for creating the open-source course machine learning complete . It inspires the majority of the content in this chapter.

    @@ -2763,13 +2783,13 @@

    40.109.16. Acknowledgments

    previous

    -

    40.107. Time Series Forecasting Assignment

    +

    40.109. Time Series Forecasting Assignment

    next

    -

    40.110. NN Classify 15 Fruits Assignment

    +

    40.112. NN Classify 15 Fruits Assignment

    diff --git a/assignments/deep-learning/object-detection/car-object-detection.html b/assignments/deep-learning/object-detection/car-object-detection.html index e7c303b30f..a73140b98c 100644 --- a/assignments/deep-learning/object-detection/car-object-detection.html +++ b/assignments/deep-learning/object-detection/car-object-detection.html @@ -6,7 +6,7 @@ - 40.120. Car Object Detection — Ocademy Open Machine Learning Book + 40.123. Car Object Detection — Ocademy Open Machine Learning Book @@ -27,8 +27,8 @@ - + @@ -98,8 +98,8 @@ - - + + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,44 +1620,44 @@

    Ocademy Open Machine Learning Book

    diff --git a/data-science/working-with-data/relational-databases.html b/data-science/working-with-data/relational-databases.html index 16b8b2eb89..de4bb8a83d 100644 --- a/data-science/working-with-data/relational-databases.html +++ b/data-science/working-with-data/relational-databases.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/data-science/working-with-data/working-with-data.html b/data-science/working-with-data/working-with-data.html index bfdd8f9710..a8666c714d 100644 --- a/data-science/working-with-data/working-with-data.html +++ b/data-science/working-with-data/working-with-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/autoencoder.html b/deep-learning/autoencoder.html index 568f2e2a81..3b55978560 100644 --- a/deep-learning/autoencoder.html +++ b/deep-learning/autoencoder.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/cnn/cnn-deepdream.html b/deep-learning/cnn/cnn-deepdream.html index 5b03d3d5c2..75eb8d9c4f 100644 --- a/deep-learning/cnn/cnn-deepdream.html +++ b/deep-learning/cnn/cnn-deepdream.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1899,7 +1919,7 @@

    23.3.1.2.1. Code

    23.3.1.2.2. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your cnn skills by following the assignment sign language digits classification with cnn

    23.3.1.2.3. Acknowledgments#

    diff --git a/deep-learning/cnn/cnn-vgg.html b/deep-learning/cnn/cnn-vgg.html index 224cd5e214..75b4faf4ce 100644 --- a/deep-learning/cnn/cnn-vgg.html +++ b/deep-learning/cnn/cnn-vgg.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2038,7 +2058,7 @@

    23.3.1.1.1.4. Style Transfer Implementat

    23.3.1.1.2. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your cnn skills by following the assignment object recognition in images using cnn.

    23.3.1.1.3. Self study#

    diff --git a/deep-learning/cnn/cnn.html b/deep-learning/cnn/cnn.html index cbb5d79d26..08dc345f39 100644 --- a/deep-learning/cnn/cnn.html +++ b/deep-learning/cnn/cnn.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1827,6 +1847,30 @@

    23.1. MNIST handwritten digits
    from IPython.display import HTML
     display(HTML("""
     <p style="text-align: center;">
    +<iframe src="https://static-1300131294.cos.ap-shanghai.myqcloud.com/html/cnn-vis-3/index.html" width="105%" height="600px;"
    +style="border:none;" scrolling="auto"></iframe>
    +A demo of CNN. <a
    +href="https://poloclub.github.io/cnn-explainer/"> [source]</a>
    +</p>
    +"""))
    +
    +

    +
    + +
    +
    +
    +
    from IPython.display import HTML
    +display(HTML("""
    +<p style="text-align: center;">
     <iframe src="https://static-1300131294.cos.ap-shanghai.myqcloud.com/html/cnn-vis-2/index.html" width="105%" height="600px;"
     style="border:none;" scrolling="auto"></iframe>
     A demo of CNN. <a
    @@ -1907,7 +1951,7 @@ 

    23.1.1. Code +../../_images/cnn_11_1.png

    @@ -2410,7 +2454,7 @@

    23.3.1. Code

    23.4. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your cnn skills by following the assignment how to choose cnn architecture mnist.

    23.5. Self study#

    diff --git a/deep-learning/difussion-model.html b/deep-learning/difussion-model.html index a2a13748a6..6e0a59ed76 100644 --- a/deep-learning/difussion-model.html +++ b/deep-learning/difussion-model.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/dl-overview.html b/deep-learning/dl-overview.html index c7d80d0a18..e9e82d8ce9 100644 --- a/deep-learning/dl-overview.html +++ b/deep-learning/dl-overview.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/dqn.html b/deep-learning/dqn.html index fd7c3e81e4..88c4942f14 100644 --- a/deep-learning/dqn.html +++ b/deep-learning/dqn.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/gan.html b/deep-learning/gan.html index 2eced21695..6b2eafca88 100644 --- a/deep-learning/gan.html +++ b/deep-learning/gan.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/image-classification.html b/deep-learning/image-classification.html index 90c77a6fbe..f91d94831e 100644 --- a/deep-learning/image-classification.html +++ b/deep-learning/image-classification.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1956,8 +1976,8 @@

    31.4.1. VGGNet
  • Using small 3×3 filters to replace large convolutional kernels.

  • After replacing the convolution kernel, the convolution layers have the same perceptual field.

  • -
  • Each layer is trained by Re LU activation function and batch gradient descent after convolution operation.

  • -
  • It is verified that increasing the network depth can improve the model performance Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming.

  • +
  • Each layer is trained by ReLU activation function and batch gradient descent after convolution operation.

  • +
  • It is verified that increasing the network depth can improve the model performance. Although, VGG has achieved good results in image classification and localization problems in 2014 due to its deeper network structure and low computational complexity, it uses 140 million parameters and is computationally intensive, which is its shortcoming.

  • https://static-1300131294.cos.ap-shanghai.myqcloud.com/images/deep-learning/imgcls/02_VGG.png @@ -2585,7 +2605,7 @@

    31.6.2. Top-5 accuracy

    31.7. Your turn! 🚀#

    -

    TBD.

    +

    Assignment - Image classification

    31.8. Acknowledgments#

    diff --git a/deep-learning/image-segmentation.html b/deep-learning/image-segmentation.html index c1f29672f9..edf0f5ca61 100644 --- a/deep-learning/image-segmentation.html +++ b/deep-learning/image-segmentation.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -3338,7 +3358,7 @@

    32.3.4.1. Code

    32.4. Your turn! 🚀#

    -

    TBD.

    +

    Assignment - Comparing edge-based and region-based segmentation

    32.5. Acknowledgments#

    diff --git a/deep-learning/lstm.html b/deep-learning/lstm.html index cc046448ab..d348ce152e 100644 --- a/deep-learning/lstm.html +++ b/deep-learning/lstm.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -6248,7 +6268,7 @@

    28.2.1. Code

    28.3. Your turn! 🚀#

    -

    Practice the Long-Short Term Memory Networks by following this TBD.

    +

    Assignment - Bitcoin lstm model with tweet volume and sentiment

    28.4. Acknowledgments#

    diff --git a/deep-learning/nlp.html b/deep-learning/nlp.html index 565d92a3c5..7696ec0256 100644 --- a/deep-learning/nlp.html +++ b/deep-learning/nlp.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2206,7 +2226,7 @@

    26.5.2. Model

    26.6. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your nlp skills by following the assignment getting start nlp with classification task.

    26.7. Acknowledgments#

    diff --git a/deep-learning/nn.html b/deep-learning/nn.html index 94e8a40e0e..c96b6d24d5 100644 --- a/deep-learning/nn.html +++ b/deep-learning/nn.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/object-detection.html b/deep-learning/object-detection.html index e4ea5a56f5..cde938572f 100644 --- a/deep-learning/object-detection.html +++ b/deep-learning/object-detection.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/deep-learning/rnn.html b/deep-learning/rnn.html index c7631b9f19..aa492b2ef4 100644 --- a/deep-learning/rnn.html +++ b/deep-learning/rnn.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1610,14 +1630,9 @@

    Ocademy Open Machine Learning Book

    25.2. Your turn! 🚀 -
  • - - 25.3. Self study - -
  • - 25.4. Acknowledgments + 25.3. Acknowledgments
  • @@ -1649,14 +1664,9 @@

    Contents

    25.2. Your turn! 🚀 -
  • - - 25.3. Self study - -
  • - 25.4. Acknowledgments + 25.3. Acknowledgments
  • @@ -1679,6 +1689,12 @@

    Contents

    +
    +
    WARNING: Ignoring invalid distribution -fds-nightly (c:\users\16111\.conda\envs\open-machine-learning-jupyter-book\lib\site-packages)
    +WARNING: Ignoring invalid distribution -fds-nightly (c:\users\16111\.conda\envs\open-machine-learning-jupyter-book\lib\site-packages)
    +
    +
    +

    25. Recurrent Neural Networks#

    @@ -1750,260 +1766,256 @@

    25. Recurrent Neural Networks

    25.1. Code#

    +

    A text classifier implemented in TensorFlow to classify SMS spam messages. +Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow. +The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function. +The output of the # code is the accuracy of the classifier along with some statistics +We implement an RNN in TensorFlow to predict spam/ham from texts

    -
    # A text classifier implemented in TensorFlow to classify SMS spam messages.
    -
    -# Code first downloads and processes the SMS Spam Collection dataset from the UCI Machine Learning Repository and then builds a basic Recurrent neural network (RNN) for text classification using TensorFlow.
    -
    -# The code first cleans and preprocesses the text, then splits it into training and test sets, followed by tokenizing and padding the training set. Next, the code uses an embedding layer to convert the tokenized text into a vector representation, which is then fed into a recurrent neural network and finally classified using a Softmax loss function.
    -
    -#The output of the # code is the accuracy of the classifier along with some statistics
    -
    -# We implement an RNN in TensorFlow to predict spam/ham from texts
    -
    -import os
    +
    import os
     import re
     import io
     import requests
     import numpy as np
     import matplotlib.pyplot as plt
    -import tensorflow.compat.v1 as tf
    +import tensorflow as tf
     from zipfile import ZipFile
    -from tensorflow.python.framework import ops
    -tf.disable_v2_behavior()
    -ops.reset_default_graph()
    -
    -# Start a graph
    -sess = tf.Session()
    -
    -# Set RNN parameters
    -epochs = 20
    -batch_size = 250
    -max_sequence_length =25 
    -rnn_size = 10
    -embedding_size = 50
    -min_word_frequency = 10
    -learning_rate = 0.0005
    -dropout_keep_prob = tf.placeholder(tf.float32,name='dropout_keep_prob')
    -
    +from tensorflow.keras.preprocessing.text import Tokenizer
    +from tensorflow.keras.preprocessing.sequence import pad_sequences
    +
    +
    +
    +
    +
    +
    +
    # Set random seed for reproducibility
    +tf.random.set_seed(42)
     
     # Download or open data
    -data_dir = 'tmp'
    -data_file = 'text_data.txt'
    +data_dir = "tmp"
    +data_file = "text_data.txt"
     if not os.path.exists(data_dir):
         os.makedirs(data_dir)
     
     if not os.path.isfile(os.path.join(data_dir, data_file)):
    -    zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip'
    +    zip_url = "http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip"
         r = requests.get(zip_url)
         z = ZipFile(io.BytesIO(r.content))
    -    file = z.read('SMSSpamCollection')
    +    file = z.read("SMSSpamCollection")
         # Format Data
         text_data = file.decode()
    -    text_data = text_data.encode('ascii', errors='ignore')
    -    text_data = text_data.decode().split('\n')
    +    text_data = text_data.encode("ascii", errors="ignore")
    +    text_data = text_data.decode().split("\n")
     
         # Save data to text file
    -    with open(os.path.join(data_dir, data_file), 'w') as file_conn:
    +    with open(os.path.join(data_dir, data_file), "w") as file_conn:
             for text in text_data:
                 file_conn.write("{}\n".format(text))
     else:
         # Open data from text file
         text_data = []
    -    with open(os.path.join(data_dir, data_file), 'r') as file_conn:
    +    with open(os.path.join(data_dir, data_file), "r") as file_conn:
             for row in file_conn:
                 text_data.append(row)
         text_data = text_data[:-1]
     
    -text_data = [x.split('\t') for x in text_data if len(x) >= 1]
    +text_data = [x.split("\t") for x in text_data if len(x) >= 1]
     [text_data_target, text_data_train] = [list(x) for x in zip(*text_data)]
    -
    -
    -# Create a text cleaning function
    +
    +
    +
    +
    +
    +
    +
    # Create a text cleaning function
     def clean_text(text_string):
    -    text_string = re.sub(r'([^\s\w]|_|[0-9])+', '', text_string)
    +    text_string = re.sub(r"([^\s\w]|_|[0-9])+", "", text_string)
         text_string = " ".join(text_string.split())
         text_string = text_string.lower()
         return text_string
    -
    -# Clean texts
    +
    +
    +
    +
    +
    +
    +
    # Clean texts
     text_data_train = [clean_text(x) for x in text_data_train]
    -#print(text_data[:5])
     print(text_data_train[:5])
     
     # Tokenize and pad sequences
    -vocab_processor = tf.keras.preprocessing.text.Tokenizer()
    -vocab_processor.fit_on_texts(text_data_train)
    -text_processed = vocab_processor.texts_to_sequences(text_data_train)
    -max_document_length = max([len(x) for x in text_processed])
    -#pads the text data to ensure all sequences have the same length (max_sequence_length).
    -text_processed = tf.keras.preprocessing.sequence.pad_sequences(text_processed, maxlen=max_sequence_length, padding='post')
    +tokenizer = Tokenizer()
    +tokenizer.fit_on_texts(text_data_train)
    +text_processed = tokenizer.texts_to_sequences(text_data_train)
    +max_sequence_length = 25
    +text_processed = pad_sequences(
    +    text_processed, maxlen=max_sequence_length, padding="post"
    +)
     print(text_processed.shape)
    -# Shuffle and split data
    +
    +
    +
    +
    +
    ['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']
    +(5574, 25)
    +
    +
    +
    +
    +
    +
    +
    # Shuffle and split data
     text_processed = np.array(text_processed)
    -text_data_target = np.array([1 if x == 'ham' else 0 for x in text_data_target])
    +text_data_target = np.array([1 if x == "ham" else 0 for x in text_data_target])
     shuffled_ix = np.random.permutation(np.arange(len(text_data_target)))
     x_shuffled = text_processed[shuffled_ix]
     y_shuffled = text_data_target[shuffled_ix]
    -
    -# Split train/test set
    -ix_cutoff = int(len(y_shuffled)*0.80)
    +
    +
    +
    +
    +
    +
    +
    # Split train/test set
    +ix_cutoff = int(len(y_shuffled) * 0.80)
     x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:]
    -print(x_train)
     y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:]
    -vocab_size = len(vocab_processor.word_counts)
    +vocab_size = len(tokenizer.word_index) + 1
     print("Vocabulary Size: {:d}".format(vocab_size))
     print("80-20 Train Test split: {:d} -- {:d}".format(len(y_train), len(y_test)))
    -
    -# Create placeholders
    -x_data = tf.placeholder(tf.int32, [None, max_sequence_length])
    -y_output = tf.placeholder(tf.int32, [None])
    -
    -# Create embedding
    -embedding_mat = tf.Variable(tf.random_uniform([vocab_size+1, embedding_size], -1.0, 1.0))
    -embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data)
    -
    -# Define the RNN cell
    -# tensorflow change >= 1.0, rnn is put into tensorflow.contrib directory. Prior version not test.
    -cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)
    -
    -output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)
    -output = tf.nn.dropout(output, dropout_keep_prob)
    -
    -# Get output of RNN sequence
    -output = tf.transpose(output, [1, 0, 2])
    -last = tf.gather(output, int(output.get_shape()[0]) - 1)
    -
    -weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1))
    -bias = tf.Variable(tf.constant(0.1, shape=[2]))
    -logits_out = tf.matmul(last, weight) + bias
    -
    -
    -# Loss function
    -losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output)
    -loss = tf.reduce_mean(losses)
    -print(loss)
    -accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32))
    -print(accuracy)
    -optimizer = tf.train.RMSPropOptimizer(learning_rate)
    -train_step = optimizer.minimize(loss)
    -init = tf.global_variables_initializer()
    -sess.run(init)
    -
    -train_loss = []
    -test_loss = []
    -train_accuracy = []
    -test_accuracy = []
    -# Start training
    -for epoch in range(epochs):
    -    # Shuffle training data
    -    shuffled_ix = np.random.permutation(np.arange(len(x_train)))
    -    x_train = x_train[shuffled_ix]
    -    y_train = y_train[shuffled_ix]
    -    num_batches = int(len(x_train)/batch_size) + 1
    -    # TO DO CALCULATE GENERATIONS ExACTLY
    -    for i in range(num_batches):
    -        # Select train data
    -        min_ix = i * batch_size
    -        max_ix = np.min([len(x_train), ((i+1) * batch_size)])
    -        x_train_batch = x_train[min_ix:max_ix]
    -        y_train_batch = y_train[min_ix:max_ix]
    -        max_len = max([len(x) for x in x_train_batch])
    -        x_train_batch = np.array([np.pad(x, (0, max_len - len(x)), 'constant') for x in x_train_batch])
    -        # Run train step
    -        train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5}
    -        sess.run(train_step, feed_dict=train_dict)
    -    # Run loss and accuracy for training
    -    train_dict = {x_data: x_train, y_output: y_train, dropout_keep_prob:1.0}
    -    temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict)
    -    train_loss.append(temp_train_loss)
    -    train_accuracy.append(temp_train_acc)
    -    # Run Eval Step
    -    test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0}
    -    temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict)
    -    test_loss.append(temp_test_loss)
    -    test_accuracy.append(temp_test_acc)
    -    print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch+1, temp_test_loss, temp_test_acc))
    -    
    -# Plot loss over time
    -epoch_seq = np.arange(1, epochs+1)
    -plt.plot(epoch_seq, train_loss, 'k--', label='Train Set')
    -plt.plot(epoch_seq, test_loss, 'r-', label='Test Set')
    -plt.title('Softmax Loss')
    -plt.xlabel('Epochs')
    -plt.ylabel('Softmax Loss')
    -plt.legend(loc='upper left')
    -plt.show()
    -
    -# Plot accuracy over time
    -plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set')
    -plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set')
    -plt.title('Test Accuracy')
    -plt.xlabel('Epochs')
    -plt.ylabel('Accuracy')
    -plt.legend(loc='upper left')
    -plt.show()
     
    -
    ['go until jurong point crazy available only in bugis n great world la e buffet cine there got amore wat', 'ok lar joking wif u oni', 'free entry in a wkly comp to win fa cup final tkts st may text fa to to receive entry questionstd txt ratetcs apply overs', 'u dun say so early hor u c already then say', 'nah i dont think he goes to usf he lives around here though']
    -(5574, 25)
    -[[ 191    3   17 ... 2725    0    0]
    - [ 365 1206   41 ...    0    0    0]
    - [  81   40    4 ...    0    0    0]
    - ...
    - [7814 7815  533 ...    0    0    0]
    - [   2   28 1439 ...    7  161    3]
    - [  51   20    3 ...    0    0    0]]
    -Vocabulary Size: 8629
    +
    Vocabulary Size: 8630
     80-20 Train Test split: 4459 -- 1115
     
    -
    C:\Users\fuqiongying\AppData\Local\Temp\ipykernel_1816\2116000173.py:115: UserWarning: `tf.nn.rnn_cell.BasicRNNCell` is deprecated and will be removed in a future version. This class is equivalent as `tf.keras.layers.SimpleRNNCell`, and will be replaced by that in Tensorflow 2.0.
    -  cell = tf.nn.rnn_cell.BasicRNNCell(num_units=rnn_size)
    +
    +
    +
    +
    +
    # Create the model using the Sequential API
    +embedding_size = 50
    +model = tf.keras.Sequential(
    +    [
    +        tf.keras.layers.Embedding(
    +            input_dim=vocab_size,
    +            output_dim=embedding_size,
    +            input_length=max_sequence_length,
    +        ),
    +        tf.keras.layers.SimpleRNN(units=10),
    +        tf.keras.layers.Dropout(0.5),
    +        tf.keras.layers.Dense(units=2, activation="softmax"),
    +    ]
    +)
    +
    +
    +
    +
    +
    +
    +
    # Compile the model
    +model.compile(
    +    optimizer=tf.keras.optimizers.RMSprop(learning_rate=0.0005),
    +    loss="sparse_categorical_crossentropy",
    +    metrics=["accuracy"],
    +)
     
    -
    Tensor("Mean:0", shape=(), dtype=float32)
    -Tensor("Mean_1:0", shape=(), dtype=float32)
    -Epoch: 1, Test Loss: 0.69, Test Acc: 0.81
    -Epoch: 2, Test Loss: 0.65, Test Acc: 0.82
    -Epoch: 3, Test Loss: 0.6, Test Acc: 0.82
    -Epoch: 4, Test Loss: 0.55, Test Acc: 0.82
    -Epoch: 5, Test Loss: 0.51, Test Acc: 0.83
    -Epoch: 6, Test Loss: 0.47, Test Acc: 0.83
    -Epoch: 7, Test Loss: 0.45, Test Acc: 0.83
    -Epoch: 8, Test Loss: 0.43, Test Acc: 0.84
    -Epoch: 9, Test Loss: 0.42, Test Acc: 0.84
    -Epoch: 10, Test Loss: 0.41, Test Acc: 0.84
    -Epoch: 11, Test Loss: 0.41, Test Acc: 0.84
    -Epoch: 12, Test Loss: 0.4, Test Acc: 0.85
    -Epoch: 13, Test Loss: 0.4, Test Acc: 0.85
    -Epoch: 14, Test Loss: 0.4, Test Acc: 0.85
    -Epoch: 15, Test Loss: 0.4, Test Acc: 0.86
    -Epoch: 16, Test Loss: 0.39, Test Acc: 0.86
    -Epoch: 17, Test Loss: 0.39, Test Acc: 0.87
    -Epoch: 18, Test Loss: 0.38, Test Acc: 0.87
    -Epoch: 19, Test Loss: 0.38, Test Acc: 0.87
    -Epoch: 20, Test Loss: 0.37, Test Acc: 0.87
    +
    +
    +
    +
    +
    # Train the model
    +epochs = 20
    +batch_size = 250
    +
    +history = model.fit(
    +    x_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2
    +)
     
    -../_images/rnn_7_3.png -../_images/rnn_7_4.png +
    +
    +
    Epoch 1/20
    +15/15 [==============================] - 3s 65ms/step - loss: 0.5753 - accuracy: 0.7575 - val_loss: 0.4707 - val_accuracy: 0.8756
    +Epoch 2/20
    +15/15 [==============================] - 0s 33ms/step - loss: 0.4656 - accuracy: 0.8433 - val_loss: 0.3906 - val_accuracy: 0.9283
    +Epoch 3/20
    +15/15 [==============================] - 0s 24ms/step - loss: 0.3762 - accuracy: 0.9162 - val_loss: 0.3093 - val_accuracy: 0.9574
    +Epoch 4/20
    +15/15 [==============================] - 0s 9ms/step - loss: 0.3103 - accuracy: 0.9422 - val_loss: 0.2595 - val_accuracy: 0.9652
    +Epoch 5/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.2693 - accuracy: 0.9498 - val_loss: 0.2225 - val_accuracy: 0.9664
    +Epoch 6/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.2285 - accuracy: 0.9686 - val_loss: 0.1987 - val_accuracy: 0.9664
    +Epoch 7/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.2024 - accuracy: 0.9795 - val_loss: 0.1820 - val_accuracy: 0.9619
    +Epoch 8/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.1825 - accuracy: 0.9748 - val_loss: 0.1675 - val_accuracy: 0.9630
    +Epoch 9/20
    +15/15 [==============================] - 0s 9ms/step - loss: 0.1647 - accuracy: 0.9821 - val_loss: 0.1631 - val_accuracy: 0.9608
    +Epoch 10/20
    +15/15 [==============================] - 0s 14ms/step - loss: 0.1546 - accuracy: 0.9837 - val_loss: 0.1623 - val_accuracy: 0.9574
    +Epoch 11/20
    +15/15 [==============================] - 0s 12ms/step - loss: 0.1400 - accuracy: 0.9865 - val_loss: 0.1622 - val_accuracy: 0.9552
    +Epoch 12/20
    +15/15 [==============================] - 0s 13ms/step - loss: 0.1302 - accuracy: 0.9868 - val_loss: 0.1632 - val_accuracy: 0.9552
    +Epoch 13/20
    +15/15 [==============================] - 0s 14ms/step - loss: 0.1285 - accuracy: 0.9865 - val_loss: 0.1640 - val_accuracy: 0.9540
    +Epoch 14/20
    +15/15 [==============================] - 0s 17ms/step - loss: 0.1194 - accuracy: 0.9871 - val_loss: 0.1579 - val_accuracy: 0.9552
    +Epoch 15/20
    +15/15 [==============================] - 0s 15ms/step - loss: 0.1190 - accuracy: 0.9874 - val_loss: 0.1647 - val_accuracy: 0.9518
    +Epoch 16/20
    +15/15 [==============================] - 0s 17ms/step - loss: 0.1103 - accuracy: 0.9874 - val_loss: 0.1596 - val_accuracy: 0.9563
    +Epoch 17/20
    +15/15 [==============================] - 0s 11ms/step - loss: 0.1033 - accuracy: 0.9879 - val_loss: 0.1530 - val_accuracy: 0.9585
    +Epoch 18/20
    +15/15 [==============================] - 0s 11ms/step - loss: 0.0954 - accuracy: 0.9905 - val_loss: 0.1611 - val_accuracy: 0.9552
    +Epoch 19/20
    +15/15 [==============================] - 0s 17ms/step - loss: 0.0937 - accuracy: 0.9896 - val_loss: 0.1640 - val_accuracy: 0.9552
    +Epoch 20/20
    +15/15 [==============================] - 0s 10ms/step - loss: 0.0924 - accuracy: 0.9907 - val_loss: 0.1848 - val_accuracy: 0.9484
    +
    +
    +
    +
    +
    +
    +
    # Plot loss and accuracy over time
    +plt.plot(history.history["loss"], label="Train Set")
    +plt.plot(history.history["val_loss"], label="Validation Set")
    +plt.title("Softmax Loss")
    +plt.xlabel("Epochs")
    +plt.ylabel("Softmax Loss")
    +plt.legend(loc="upper left")
    +plt.show()
    +
    +plt.plot(history.history["accuracy"], label="Train Set")
    +plt.plot(history.history["val_accuracy"], label="Validation Set")
    +plt.title("Test Accuracy")
    +plt.xlabel("Epochs")
    +plt.ylabel("Accuracy")
    +plt.legend(loc="upper left")
    +plt.show()
    +
    +
    +
    +
    +../_images/rnn_17_0.png +../_images/rnn_17_1.png

    25.2. Your turn! 🚀#

    -

    Practice the Recurrent Neural Networks by following this TBD.

    -
    -
    -

    25.3. Self study#

    -

    TBD

    +

    You can practice your rnn skills by following the assignment google stock price prediction rnn

    -

    25.4. Acknowledgments#

    +

    25.3. Acknowledgments#

    Thanks to Nick for creating the open-source course tensorflow_cookbook and Sebastian Raschka for creating the open-sourse stat453-deep-learning-ss20. It inspires the majority of the content in this chapter.

    diff --git a/deep-learning/time-series.html b/deep-learning/time-series.html index 895fb24ffa..fc37d26ba3 100644 --- a/deep-learning/time-series.html +++ b/deep-learning/time-series.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2956,7 +2976,7 @@

    29.5.4.2. Direct strategy

    29.6. Your turn! 🚀#

    -

    TBD.

    +

    You can practice your time series skills by following the assignment time series forecasting assignment

    29.7. Acknowledgments#

    diff --git a/genindex.html b/genindex.html index 41bc5a1ea2..90986e64cf 100644 --- a/genindex.html +++ b/genindex.html @@ -26,8 +26,8 @@ - + @@ -1107,114 +1107,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/intro.html b/intro.html index 6ef1449c1d..ad1dd28f2c 100644 --- a/intro.html +++ b/intro.html @@ -27,8 +27,8 @@ - + @@ -1109,114 +1109,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/machine-learning-productionization/data-engineering.html b/machine-learning-productionization/data-engineering.html index 246cde3689..3b8c685dfe 100644 --- a/machine-learning-productionization/data-engineering.html +++ b/machine-learning-productionization/data-engineering.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/machine-learning-productionization/model-deployment.html b/machine-learning-productionization/model-deployment.html index e46fba8b34..fc455fccdf 100644 --- a/machine-learning-productionization/model-deployment.html +++ b/machine-learning-productionization/model-deployment.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/machine-learning-productionization/model-training-and-evaluation.html b/machine-learning-productionization/model-training-and-evaluation.html index a45a9f49c1..6308a50773 100644 --- a/machine-learning-productionization/model-training-and-evaluation.html +++ b/machine-learning-productionization/model-training-and-evaluation.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/machine-learning-productionization/overview.html b/machine-learning-productionization/overview.html index 4aafc03a50..b2e99231be 100644 --- a/machine-learning-productionization/overview.html +++ b/machine-learning-productionization/overview.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/machine-learning-productionization/problem-framing.html b/machine-learning-productionization/problem-framing.html index 04862a0b8d..fef9e34520 100644 --- a/machine-learning-productionization/problem-framing.html +++ b/machine-learning-productionization/problem-framing.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/clustering/clustering-models-for-machine-learning.html b/ml-advanced/clustering/clustering-models-for-machine-learning.html index 947bbaba84..88f25394bb 100644 --- a/ml-advanced/clustering/clustering-models-for-machine-learning.html +++ b/ml-advanced/clustering/clustering-models-for-machine-learning.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/clustering/introduction-to-clustering.html b/ml-advanced/clustering/introduction-to-clustering.html index 831af03dec..683116dc99 100644 --- a/ml-advanced/clustering/introduction-to-clustering.html +++ b/ml-advanced/clustering/introduction-to-clustering.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/clustering/k-means-clustering.html b/ml-advanced/clustering/k-means-clustering.html index 6dad1580cc..f94a948d84 100644 --- a/ml-advanced/clustering/k-means-clustering.html +++ b/ml-advanced/clustering/k-means-clustering.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/ensemble-learning/bagging.html b/ml-advanced/ensemble-learning/bagging.html index 08883c2f06..e00168729e 100644 --- a/ml-advanced/ensemble-learning/bagging.html +++ b/ml-advanced/ensemble-learning/bagging.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1938,7 +1958,7 @@

    15.1.2. Bootstrapping -
    <matplotlib.legend.Legend at 0x7fda965d69d0>
    +
    <matplotlib.legend.Legend at 0x7f9b21c61670>
     
    ../../_images/bagging_10_1.png diff --git a/ml-advanced/ensemble-learning/feature-importance.html b/ml-advanced/ensemble-learning/feature-importance.html index cf5ac634f6..b4236acc2b 100644 --- a/ml-advanced/ensemble-learning/feature-importance.html +++ b/ml-advanced/ensemble-learning/feature-importance.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html b/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html index 19f75b3e59..6f64e577d6 100644 --- a/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html +++ b/ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/ensemble-learning/random-forest.html b/ml-advanced/ensemble-learning/random-forest.html index 47556b5e7f..107cc09f8e 100644 --- a/ml-advanced/ensemble-learning/random-forest.html +++ b/ml-advanced/ensemble-learning/random-forest.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/gradient-boosting/gradient-boosting-example.html b/ml-advanced/gradient-boosting/gradient-boosting-example.html index 4c4d684ce1..82a41519ca 100644 --- a/ml-advanced/gradient-boosting/gradient-boosting-example.html +++ b/ml-advanced/gradient-boosting/gradient-boosting-example.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/gradient-boosting/gradient-boosting.html b/ml-advanced/gradient-boosting/gradient-boosting.html index debd4517ea..59970fa598 100644 --- a/ml-advanced/gradient-boosting/gradient-boosting.html +++ b/ml-advanced/gradient-boosting/gradient-boosting.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html b/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html index 5c9a6ec64e..b0088f2cae 100644 --- a/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html +++ b/ml-advanced/gradient-boosting/introduction-to-gradient-boosting.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html b/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html index 78594ec788..3381625259 100644 --- a/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html +++ b/ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/gradient-boosting/xgboost.html b/ml-advanced/gradient-boosting/xgboost.html index 3f4ec55989..094be52aab 100644 --- a/ml-advanced/gradient-boosting/xgboost.html +++ b/ml-advanced/gradient-boosting/xgboost.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1854,7 +1874,7 @@

    16.3.2. Example

    -
    Mean Absolute Error : 17878.656881421233
    +
    Mean Absolute Error : 19123.337178938356
     
    diff --git a/ml-advanced/kernel-method.html b/ml-advanced/kernel-method.html index 569c005a3f..142f4b0f2b 100644 --- a/ml-advanced/kernel-method.html +++ b/ml-advanced/kernel-method.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1882,7 +1902,7 @@

    18.1. Motivating Support Vector Machines

    -
    <matplotlib.collections.PathCollection at 0x7f5e393fbf70>
    +
    <matplotlib.collections.PathCollection at 0x7fe83267c070>
     
    ../_images/kernel-method_9_1.png @@ -2069,7 +2089,7 @@

    18.3. Fitting a support vector machine
    <function __main__.plot_svm(N=10, ax=None)>
     
    @@ -2127,111 +2147,111 @@

    18.4. Beyond linear boundaries: Kernel S

    <function __main__.plot_3D(elev=30, azim=30, X=array([[ 5.95705480e-02, -4.38163860e-02],
    -       [-1.62477454e-01,  8.65543325e-02],
    -       [-2.40660274e-03, -2.98693918e-02],
    -       [-6.52889119e-01,  5.69147803e-01],
    -       [-4.65872906e-02, -1.08106401e-01],
    -       [-8.01057247e-01,  7.61571016e-01],
    -       [ 3.12592925e-01,  1.08662089e+00],
    -       [ 1.09721540e-01,  5.76700042e-02],
    -       [-7.51393182e-02, -7.31722824e-02],
    -       [-1.42577697e-01,  4.20453655e-02],
    -       [-8.96984417e-02,  2.13129353e-02],
    -       [-1.60611176e-04,  1.41867679e-01],
    -       [ 7.74871473e-01,  5.33837964e-01],
    -       [-1.47178350e-01,  3.92483335e-02],
    -       [-6.85461521e-01, -6.37446555e-01],
    -       [ 5.15858217e-02, -1.71140282e-01],
    -       [ 6.07499715e-01, -6.69710373e-01],
    -       [ 8.07161290e-01, -6.22003671e-01],
    -       [-1.06568076e+00, -3.71069972e-02],
    -       [ 1.03681898e+00, -9.26129238e-02],
    -       [ 5.32911502e-03,  1.27811128e-01],
    -       [ 7.66867670e-02,  5.83709456e-02],
    -       [-5.21018933e-02,  1.38616702e-01],
    -       [-7.28924647e-02,  6.37284549e-02],
    -       [ 1.63424116e-01,  5.22065768e-02],
    -       [ 1.03328308e-02, -2.02673422e-01],
    -       [-1.36178972e-01,  1.76014705e-01],
    -       [ 8.81485948e-01,  4.87699381e-01],
    -       [ 6.44468627e-02, -4.96658114e-02],
    -       [ 5.74038093e-01, -7.00584401e-01],
    -       [ 2.05311586e-02, -1.68543687e-01],
    -       [-2.85885311e-02, -1.40815161e-01],
    -       [ 2.72973067e-01, -8.37114243e-01],
    -       [-2.23356147e-01, -6.37381055e-02],
    -       [ 1.15409465e-02, -1.11047708e+00],
    -       [ 6.29098517e-02,  8.71327164e-02],
    -       [ 9.72645393e-01, -4.06293699e-01],
    -       [ 9.10711052e-01,  3.24153448e-01],
    -       [-1.50409232e-01, -9.06474761e-02],
    -       [-5.59908764e-01, -9.82774910e-01],
    -       [-9.55588338e-01,  3.89779848e-01],
    -       [ 2.13957641e-01,  1.10059785e-01],
    -       [ 1.16272558e+00, -1.17338595e-01],
    -       [ 1.88114261e-01,  1.04690013e+00],
    -       [ 6.83892432e-01,  5.17684239e-01],
    -       [-1.61510254e-02, -8.64061041e-01],
    -       [ 2.21178094e-02,  1.03265407e-01],
    -       [ 8.01461712e-01, -4.27437630e-01],
    -       [-1.00897398e+00,  9.17312490e-02],
    -       [ 6.39810246e-01,  5.17387827e-01],
    -       [ 1.75404635e-01,  8.83715245e-02],
    -       [ 1.94250252e-01, -1.93695094e-02],
    -       [-5.18575038e-01,  1.11571171e+00],
    -       [-4.59024648e-01, -8.80949747e-01],
    -       [-7.80936101e-02,  8.32483282e-02],
    -       [-1.10944131e+00, -2.99959714e-01],
    -       [-1.04294934e-02, -8.97009000e-02],
    -       [-8.49715067e-01, -3.80304767e-01],
    -       [ 4.53662042e-01,  1.01249051e+00],
    -       [ 3.28964919e-02,  8.24968114e-02],
    -       [ 3.00009609e-01,  4.39051546e-02],
    -       [-6.26190327e-01, -7.85097502e-01],
    -       [-3.38176979e-01, -9.88268548e-01],
    -       [ 9.97085104e-02, -2.15280148e-02],
    -       [ 2.58087908e-01, -1.60665929e-01],
    -       [ 1.05129232e-01,  5.13054062e-02],
    -       [ 1.33107226e-01,  3.11048534e-02],
    -       [ 5.99235819e-02,  5.20964977e-02],
    -       [ 4.59282124e-01, -8.35979533e-01],
    -       [ 7.31461064e-01,  7.22083016e-01],
    -       [ 1.48832919e-02, -1.03925315e+00],
    -       [-1.69276335e-01,  2.03021648e-01],
    -       [-5.29691915e-02,  2.01187949e-03],
    -       [-8.64536975e-01, -2.56366747e-01],
    -       [-9.16997346e-01, -3.42367235e-01],
    -       [-1.81655049e-02,  9.89720787e-02],
    -       [-4.68123130e-02, -2.37265943e-01],
    -       [-3.24597409e-02, -8.75880184e-02],
    -       [ 9.76750129e-01,  4.69301037e-02],
    -       [-3.98901172e-02, -2.12944592e-02],
    -       [ 1.75449424e-01, -9.27242692e-01],
    -       [-1.57094815e-01,  3.43420830e-03],
    -       [-3.16158268e-01,  1.02429656e+00],
    -       [-5.28528881e-01,  8.45520541e-01],
    -       [ 2.07057328e-01,  1.06279592e-01],
    -       [-1.10411186e-01,  9.67819323e-01],
    -       [ 5.19932988e-01,  7.05623794e-01],
    -       [-8.72038896e-01,  3.41140729e-01],
    -       [-8.53067604e-01,  4.68006699e-01],
    -       [-3.05375897e-02, -1.41331878e-02],
    -       [-1.73640977e-01,  2.35751418e-01],
    -       [-3.19071257e-01,  8.35991534e-01],
    -       [ 1.28255050e-01,  3.14759957e-02],
    -       [-9.13470853e-01,  1.59028151e-01],
    -       [-8.02406323e-01, -6.13680487e-01],
    -       [ 9.56112253e-01, -3.15611466e-01],
    -       [ 7.57887324e-02,  5.55284461e-04],
    -       [-4.12335207e-03, -4.10032834e-02],
    -       [-1.06756605e-02,  1.06192831e+00],
    -       [ 2.36953161e-01, -9.73781752e-01]]), y=array([1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1,
    -       1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
    -       0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
    -       1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
    -       0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0]))>
    +{"version_major": 2, "version_minor": 0, "model_id": "6cbe9f6c6e5e4a33b96bb66957fdf94e"}
    +
    <function __main__.plot_3D(elev=30, azim=30, X=array([[-1.86057123e-01,  6.13997155e-02],
    +       [-7.88819707e-01, -6.94038234e-01],
    +       [-7.51612345e-04, -5.78709665e-02],
    +       [ 4.60220868e-01,  7.58181501e-01],
    +       [ 1.11111749e-01, -5.80864142e-02],
    +       [ 7.65670227e-02, -1.04922013e+00],
    +       [-1.59420865e-01,  9.52187305e-02],
    +       [-1.06866593e+00,  5.12147502e-01],
    +       [ 2.03530027e-01, -7.79028106e-02],
    +       [ 9.74989164e-01, -1.18237040e-01],
    +       [ 7.95089302e-01,  4.42932572e-01],
    +       [-1.17449102e-01,  2.80336271e-01],
    +       [-5.35650803e-01,  1.08207602e+00],
    +       [ 5.98925569e-01, -7.90998233e-01],
    +       [ 9.54900465e-01, -6.28393465e-02],
    +       [-4.74108070e-02, -1.18844927e-01],
    +       [-1.24364250e+00,  1.35775710e-01],
    +       [-1.09759183e+00,  6.22708941e-02],
    +       [-1.71747425e-01,  1.84983913e-01],
    +       [ 1.87381744e-01,  1.01304349e-01],
    +       [-8.63726835e-02,  9.19991344e-01],
    +       [-6.22611444e-02, -8.88172306e-01],
    +       [-1.10639190e-01, -1.21845922e-01],
    +       [ 2.60332519e-01,  1.09091988e+00],
    +       [ 3.77909926e-02,  4.59525364e-03],
    +       [-1.05736295e-02, -6.78892774e-03],
    +       [-5.62557666e-02,  1.03446420e-01],
    +       [-5.30404801e-01, -6.09531643e-01],
    +       [ 3.58549785e-02, -7.74307116e-02],
    +       [-1.78428669e-01, -8.63958699e-02],
    +       [ 2.08963869e-01,  9.96537550e-01],
    +       [ 2.25931094e-02,  5.18647253e-02],
    +       [ 8.73307516e-02,  1.49322154e-02],
    +       [-9.94465006e-02,  1.20583705e-01],
    +       [ 1.14234563e+00, -2.83130016e-01],
    +       [ 2.05345990e-01, -9.13502571e-01],
    +       [-4.71578957e-02,  2.13554822e-02],
    +       [ 4.92615075e-02, -8.32622333e-02],
    +       [ 9.05729737e-01,  5.13669937e-01],
    +       [ 2.17339829e-02,  1.56749644e-01],
    +       [ 2.28813776e-01,  1.30189633e-01],
    +       [-9.40996577e-01,  4.74875226e-01],
    +       [-9.55422993e-01, -2.21753011e-01],
    +       [-6.96430733e-02, -7.76170674e-03],
    +       [-1.99713160e-01, -9.45266050e-02],
    +       [-1.81746018e-01,  1.29630879e-01],
    +       [-1.26989269e-02, -4.40675528e-02],
    +       [-7.10553714e-01, -5.06468739e-01],
    +       [-3.36644657e-01, -8.60548791e-01],
    +       [-4.12966134e-01, -9.89217494e-01],
    +       [ 2.18517844e-01,  9.21783545e-03],
    +       [-6.49630006e-02, -8.15973821e-03],
    +       [ 7.83300943e-01,  7.48772751e-01],
    +       [ 1.41800805e-01, -7.47191825e-01],
    +       [-5.63420490e-01,  7.75548704e-01],
    +       [ 3.60381281e-02, -4.81845995e-02],
    +       [ 7.65907190e-01,  7.45299624e-01],
    +       [ 1.35903936e-01, -4.14160174e-02],
    +       [-6.17067697e-02,  1.56792380e-03],
    +       [-8.56215161e-02,  1.56319105e-01],
    +       [-1.13982857e+00,  5.07117926e-02],
    +       [-8.59849616e-01, -2.70895915e-01],
    +       [-5.60357230e-01,  8.89342825e-01],
    +       [ 9.03501685e-01,  3.29518659e-01],
    +       [ 8.81860620e-01, -7.91034463e-01],
    +       [ 6.22545290e-02, -9.45025583e-02],
    +       [ 4.80614819e-01,  9.02749798e-01],
    +       [-8.83334957e-02,  1.64982451e-01],
    +       [ 4.09941497e-02, -2.04218550e-01],
    +       [-1.91505991e-01,  6.79997071e-02],
    +       [ 9.27735919e-01, -5.15615109e-01],
    +       [ 2.83115470e-01, -1.11683491e+00],
    +       [ 8.84402835e-01,  6.41915124e-01],
    +       [ 2.66952876e-02,  8.31754741e-02],
    +       [-7.54119856e-01, -8.61158124e-01],
    +       [ 6.21447655e-02, -1.79692861e-03],
    +       [ 8.35313706e-02,  1.02935816e+00],
    +       [-4.92162351e-01,  8.67372042e-01],
    +       [ 8.55095091e-01,  1.83425452e-01],
    +       [ 4.68667298e-02, -1.19437386e-03],
    +       [ 8.29340409e-01, -5.01273177e-01],
    +       [-8.22969874e-03,  1.81307829e-02],
    +       [-7.73625860e-01,  5.90671616e-01],
    +       [-1.03121360e+00, -1.54153669e-01],
    +       [-1.54643578e-01, -8.48168319e-03],
    +       [ 1.80634378e-01, -3.16024654e-02],
    +       [ 3.15190726e-01,  2.81864488e-01],
    +       [-5.88807373e-01, -9.00978788e-01],
    +       [ 4.83094042e-01, -7.17533917e-01],
    +       [ 1.80933237e-01, -5.41473335e-02],
    +       [-5.07769945e-02,  8.47861920e-02],
    +       [-6.17925531e-01,  5.64211531e-01],
    +       [ 4.92086185e-02,  1.02497744e+00],
    +       [ 8.44221823e-01, -4.39972045e-01],
    +       [ 1.42685419e-01, -8.50276894e-02],
    +       [-2.49527669e-02,  8.73825064e-03],
    +       [ 2.18441446e-01,  1.59591482e-02],
    +       [-4.91312281e-02, -9.56430225e-01],
    +       [ 2.09772872e-02, -4.67209274e-02],
    +       [ 8.72627890e-02,  3.72226459e-03]]), y=array([1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
    +       1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,
    +       1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1,
    +       0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0,
    +       0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1]))>
     
    @@ -2264,7 +2284,7 @@

    18.4. Beyond linear boundaries: Kernel S

    -
    <matplotlib.collections.PathCollection at 0x7f5e36f43ca0>
    +
    <matplotlib.collections.PathCollection at 0x7fe8301c2fa0>
     
    ../_images/kernel-method_39_1.png @@ -2391,7 +2411,7 @@

    18.15. Acknowledgement -{"state": {"6400956cf7d94cb488705f5a5534273b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "fe7acd583b384a31997968f591cd6427": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_d1d5b6e673d143ec963c4792e710b06d", "IPY_MODEL_ac8fe88446cc47f9b8d77ee8bdb7af7e"], "layout": "IPY_MODEL_6400956cf7d94cb488705f5a5534273b"}}, "8b16c470f5f846cd8946cf1a602319eb": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "3303caed879b4c0ea4021331f71d9723": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "d1d5b6e673d143ec963c4792e710b06d": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_8b16c470f5f846cd8946cf1a602319eb", "style": "IPY_MODEL_3303caed879b4c0ea4021331f71d9723"}}, "084349da469546ec9ec570e704565505": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "ac8fe88446cc47f9b8d77ee8bdb7af7e": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_084349da469546ec9ec570e704565505", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABksklEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXa6KjOvdPfLsyvE8K+5BXVbPkXWfc55nl1U4qHhhWRUVV1dxvAAiC6KCMCJMV1Wnc79n0kknne5Od1c9f3RSTGQumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYvve97+HP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+KLX/wiPvShD2Hv3r2Ix+P41a9+hXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+SeiRRx5Be3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF26++WYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W7cd999UBQFP/3pT1FfX7+m59V1HYIgrHO1REREVIqKvuhW13UsLCzgn/7pnxAOhwEAe/bswYEDB/Cv//qv+Ou//us1Pa8gCEgkUsjntfUsl86Q1WqB1+vmsSgBPBalg8eidPBYlJbqajcslrVd3Cl6YPF6vaipqTHCCgDU1NRgx44diEajZ/Xc+byGXI6/gKWAx6J08FiUDh6L0sFjURrO5ppO0dewBIPBkz6WyWSK/fJERES0CRQ9sFx++eWYmZnB0aNHjbF4PI6XX34ZO3fuLPbLExER0SZQ9EtCBw8exDnnnIO/+qu/wu233w6n04n7778fDocD73jHO4r98kRERLQJFP0Mi8Viwf3334+9e/fik5/8JP7rf/2vqKysxEMPPYTGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zrGx8fxn//5Szz00NeRzS6e1fPZ1qkuIiIiIszNzUFVZShKBPF43Bjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3j66acwMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9+9TSOHHnBWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9OnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrprBF/hjGxkaxd+95AAC73YH29nYkk0lIUhjBYMjYT6VUMbAQERFtQonELGQ5AlWVMTs7CwDw+4PGHikHD77JuB25HDCwEBERbRKZTAY9PYV1KaOjI8a43W6H3x+ArmsrxsoJAwsR0enoOmwvPA+rqgB2O7L79kNraze7KqLX6O/vw5NPPgEAEAQB7e0dEMUwuru7Ybebv3D2bDCwEG1StpeOwPXAF+F4/OcQslnkgkGk/+J9yFxzLVACK/7LheOxn8Lzd5+ATT5qjOmCgMU3XY35//E5aB2dJlZHW5Wu65icnICiyKitrcXOnYVbkLu7u9HcvA3d3QGEQiIqKytNrnT9CPry1nVlKB5PIpfTTv+NVDQ2mwW1tR4eixJgHIvpeTj+x6fh+d+fg261QcjnAAC6xQJB05DbuQszD38femOjyRWXPue/fxdVH3wPAED4o7dK3WqFXlOL+E+egNbpW/EY50Xp2GzHYm5uDtGoAlmOIB6fBgDU1dXjxhvfDkEQTK7u9OrqPLBaLWv6WZ5hIdpkHF/5Ejz/+3MAYIQVABC0wpu1NXIU1e+4HjM/eQKwrO2NYysQZuKo+r8+VPjnE3yuE/J5YCaOqo/+FWa//f2NLo+2mGhUwSuvvIyRkWFji3ybzYaurm6IYvH695QSBhaizSSXg/sfPgsdwMk+awn5POxHXoD9F48je+DgRlZXVlzfeAhYXDxhWFkm5PNwPPkELLEeaP7ABlZHm52mabAc94GitzeG4eEhAEBraxskKYzu7gCcTqdZJW44BhaizeRnP4NlcuK036ZbrXD924MMLKdgf/JxYBVXzHVBgOOpJ5FmYKF1cOzYFGQ5gmhUwTXXXIu6unoAwM6d56Curh6hkGTclrzVMLAQbSYDA6c8u7JMyOdh7e/bgILKl5BKnfa/Y+EbBQiLmWKXQ5vYwkISqqpAUWRMTU0a49GoigsvLASW1tY2tLa2mVViSWBgIdpMPJ5V/ZHVAeib6O6BYsgHQ9B/82xhrcopCJqGfFf3BlVFm0kyOY9f/OIJDA72G+tSrFYrfL4uiGIYnX+0mHurY2Ah2kyuvBK61XraP7IQBCxe9eaNqalMpd/5Lrgf/Oopv0cHoDU1Y/FyXlqj09N1HfPz86iqqgIAuFxuTEyMQdd1bNvWAlGUEAiE4HK5TK60NDGwEG0mzc1YfNt1cHzvuycNLbogAC4X0je9Y4OLKy+5c1+HzJ9cDcfPf2LcYfXHBADJ//4poAQbxVHpiMfjUJQIFEWGIAi45ZZDEAQBVqsVBw4cRHV1DWpqas0us+RxlhFtMql/+H9gffEFWHtjrwktusUKCEDi/q9C5xvkaSX+zwPwvvcQnI//bOWeNlYroGlIfuozyLz9nSZXSaUolUohGlWhKBFMTIwb4w6HA4nELKqrawAAPh8vJ65W0QPLI488go9//OOvGX//+9+P//bf/luxX55oy9Fr6zDz6M/hufszcH3jIQipBeOx7P7XI/mxO5G7aL+JFZYRjweJb3wH9mefgetrD8AWOQrdbkf2sjci9a73vGbDOCIAeOml3+OZZ56CtnRmzmKxoKOjE6IYhs/XVXY9fErFhp1h+dKXvmRctwOA5ubmjXppoi1Hr6nF/N3/C8k7/w62F18AFheR7/ZD6/abXVr5EQRk91+M7P6Lza6ESpCu6xgfH4Pb7TbOmtTX10PTNDQ2NkIUwwiFRLjdFeYWuglsWGDZuXMn6urqNurliAiAXlmF7CWXmV0G0aaTSMxCUWQoSgSzs7PYtWs3Lr30DQCAlpZW3HTTLfybt864hoWIiGgVMpkMenpUKIqM0dERY9xut6/YlVYQBIaVItiwwHLNNdcgHo+jtbUVN954I973vvfBarWe1XOutYESrZ/lY8BjYT4ei9LBY1E61utY6LqO733v25idnTGer729Y+lW5ADsdnZAX42z6c9Y9G7NTz31FI4cOYI9e/ZAEAQ8/vjj+MY3voG3v/3t+OQnP1nMlyYiIjpjuq5jYmICsizjkksuMc6e/PKXv0QsFsPOnTsRDodXrMuk4it6YDmRf/iHf8DXvvY1/OIXv0BTU9OanyeRSCGfL/924eXMarXA63XzWJQAHovSwWNROs7kWMzPz0NRIpDlCKanpwEA11zzp/D5ugAA+XweFosFwtmcJtjiqqvdKy6fnQlT1rBcffXVeOCBB3D06NGzCiz5vIZcjm8GpYDHonTwWJQOHovScbJjkc0uIhaLQVEiGB4eMrbIt9ls6Orqht3uPO7nBOTzOgp7HNNanM0pEi66JSKiLWtmZgaPP/4z4+uWllZIUhh+fxBOp9PEyuiPmRJYHn30UVitVuzYscOMlycioi1oevoYZDkCANi/tK9OQ0Mjurq60djYBFGU4PVWm1kinULRA8t73/te7Nu3D5IkAQAee+wxPPzwwzh06BAaGxuL/fJERLSFLSwk0dNzFM899yImJiYAFG5DPv/8C2C3OyAIAq6++hqTq6TVKHpg6e7uxne/+12MjY1B0zR0dXXhb//2b3HrrbcW+6WJiGiL6u/vwx/+8BJGRgbhdNqQSi3CarXC5+tCKCTBYjm7bTVo4xU9sNx5553FfgkiItridF2HruvGHSiTkxMYGOiDxSKgpaUF7e3d6OoKwO12m1wprRUX3RIRUdmamYkvbZEv46KLXo9gMAQAEMUwNE3Djh3b0d3djng8yTu2yhwDCxERlZVUKoWenigUJYLx8TFjvKcnagQWr9eLCy+8CDYbdxveLBhYiIioLORyOfz85z/BwEA/8vk8AMBisaCjoxOiKMHn6za5QiomBhYiIipJuq5jdnYGNTW1AAqbuS0sLCCfz6OxsRGiGEYwGEJFhcfkSmkjMLAQEVFJSSRmoSgyVFXG3NwcDh16D1wuFwDg9a+/BA6HA3V19SZXSRuNgYWIiEyXyWQQi0UhyxGMjo4Y4zabHVNTk2hv7wAAbNvWYlaJZDIGFiIiMlV/fy9++tPDyOVyAABBENDW1g5RDMPv98Nud5hcIZUCBhYiItowuq5jamoSmqahuXkbAKCxsQn5fB61tXWQpDBCIQmVlZUmV0qlhoGF1kSIT8P5wx/ANjUBtDRBeOOVwLY2s8siohI1Pz8PVS3slzI9fQxtbe340z99GwCgosKDt7/9nfB6qyEIgsmVUqliYKEzs7gIz9/dCffXHgByWcBqBfJ5VANYfPNbMfe//xl6bZ3ZVRJRCchmFxGLxaAoEQwPD0HXdQCFu33cbjc0TTN2pq2urjGxUioHDCy0evk8vO89BMdPD0PQl3aMXL7mDMBx+Eeo6VEx86OfQa/ymlcnEZWEn/70JxgY6DO+bmlphSSF4fcH4XQ6zSuMyhIDC62a84ffh/Mnj570cSGfh1VR4P78P2PhDvaQItpKpqePQZYj2L17DzyewvqTYDCE2dk4RDEMUZTg9VabXCWVMwYWWjXXl/4PdIsVgpY/6fcIWh7ur34ZCx/9GGC3b2B1RLTRFhaSUFUFqipjcnISAOB2u7F373kAgFBIhChKXJdC64KBhVZH12F/7jenDCvLLNPHYO3vQ36ppwcRbR65XA59fTHIsoyhoQFoWuHysNVqRWenD42NTcb3Lq9PIVoPDCy0OroOaGfQ6XRpbQsRlb/lxbJAIbA88cRjxp4pzc3bIIphBAJBuN1us0qkLYCBhVbHYkE+EIS1JwrhuDevE9FdLuSXdqUkovI1MxOHosiIx+N405uuBgC4XC7s2LELdrsdoigZfX6Iio2BhVYt9d4PoPJv/+aU36NbrUjfdAvATZ+IylIqlUJPTxSKEsH4+JgxHo/HUVtbCCcXX3ypWeXRFsbAQquWvukWuL/ypcJZlvxr17LoViv0qios/F8f2fjiiGjNdF3H+PgYXnzxdxgY6Ed+aX5bLBa0t3dCkrjzLJmPgYVWr7ISM9/9IaoP3QT7C7+DbrMBuRyEpc3jtJZWzD70bWidPrMrJaLT0HUd+XweNlvhz0AymURvbwwA0NDQCFGUEAqJqKjwmFkmkYGBhc6I3tyMmcNPwP7sM3B+51uwTk7A0VCH+auuQerAnwA2/koRlbJEIrG0RX4EwaCICy7YB0EQ4PN14bzzzkcwGEJ9fYPZZRK9Bv+60JkTBGT3X4zs/oths1ngqPUgG08CuTO4i4iINkwmk0EsFoUsRzA6OmKM9/bGcMEF+wAUtsvft2+/WSUSnRYDCxHRJvbkk49DUWTjNmRBENDW1g5RDMPv95tcHdHqMbAQEW0Suq4jHp9GbW2dsbuspunI5XKora2DJIURCnEBLZUnBhYiojI3Pz8PVVWgKBFMTx/DddfdiKamZgDA3r3nYefOXWhsbOIW+VTWGFiIiMpQNruIWCwGVZUxNDRo7EZrs9kwPX3MCCzLe6cQlTsGFiKiMjM9fQyPPPJtZLNZY6ylpRWiKCEQCMHpdJpYHVFxMLAQEZW46eljmJubg8/XBQCoqamFw+FARUUFRDEMUZTg9VabWyRRkTGwEBGVoFRqwViXMjk5CY/Hg3e+8y9gsVhgsVjwtrfdgMrKSq5LoS2DgYWIqERks1n09/dBUSIYHByAttQh3WKxoKmpGZlMGm53BQCgqqrKzFKJNhwDCxFRifjtb5/FkSMvGl83NTVDFMMIBkNwu93mFUZUAhhYiIhMMDMTh6rK6OzsQnPzNgBAICCip6fH2C+Fd/gQvYqBhYhog6TTaUSjKhQlgvHxMQDA/HzSCCxNTU145zvfxXUpRCfAwEJEVES6rqOvrxeKEkF/fx/y+TyAwhb5HR0+486f5TEiOjEGFiKiInvmmf9EIjELAGhoaIQoSgiFRFRUeEyujKh8MLAQnUwyCedPfwzL5AQ0bzUWD74JekOD2VVRCUskElBVGYOD/Xj3u28FUDhrsnv3HszNzUGSwqiv5+8Q0VowsBD9sXweFf/4P+H+P1+AJZmEbrFA0DToNhvS19+E5P/8HPRK3lJKBZlMBrFYFIoiY2RkGABgsQjo7e1FQ0MrAOCcc/aYWSLRpsDAQnQ8XUfVbR+E85FvQ1jqzSIs7YUh5HJwffubsL3yMma+/2PAw9P5W9n09DSef/436OvrRS6XA1A4m9LW1o7t28Po7OzEwkLO5CqJNg8GFqLjOA4/Ctd3Hz7p40I+D9sffo+K+/4FCx/92AZWRmbTdR25XA52u90Yi0ZVAEBtbR0kKYxgUERVVRVsNgucTicDC9E6YmAhOo77S/dBt1ohLN3JcSKCpsH9wBex8NcfBWycQptdMjkPRSlskV9XV4crr7wKAFBXV4eLLno92tra0djYxDt8iIqM77ZEy3Qd9l89fcqwsswyOQFrXy/ywdAGFEYbLZtdRG9v4VbkoaFB6EuXB5PJeeRyOdiWguq5577OzDKJykI2m0VfXwyKIuPmm6+D1epa0/NseGBJJpO4+uqrMT4+ju985zs455xzNroEopNbRVgxLC4Wrw4yzW9/+2scOfICstmsMdbS0gpRlOD3B42wQkQnp+s6RkaGoSgyYrEoFpfeL7PZLFyuMgksX/jCF4yNk4hKiiAg39UNa1+vseD2ZHS7A1pHxwYVRsU0PT2NqqpK2O0OAIDNZkc2m0V1dTVEMQxRlOD1VptcJVF5iMfjUJQIFEXG/PycMe71VkMURbhca++JtaGBpaenB//2b/+Gj33sY/jUpz61kS9NtCrpd78Pnk/991N+j261In3djdCrvBtUFa23VGoB0agKWY5gcnICBw5cCUkKAwDC4TC2bduGbdtauC6FaBVSqZTRcmJiYtwYdzqdCASCCIUktLS0QhAEWCyWNb/OhgaWz3zmM7j55pvR3d29kS9LtGrpWw7B/eX7YRkaPOFaFt1ihe5yIfXXt5tQHZ2NXC5nbJE/ODgAbel2dYvFYuxCCwBudwXc7gqzyiQqC7lcDv39fVCUCAYG+lfMp46OTohiGF1d3et6CXXDAsvhw4ehKAruuecevPzyy+vynFbr2pMarY/lY7BpjkVtDeb+4zCqbnwbrJGjxh1DxuZxdbWY/8Z3IEhSya1Y33THYh1lMhk89NDXkE6njbGWlm3Grchu99pPU58Ij0Xp4LFYP7quY2xsDLIcQU+PumI+bdvWDEnajmAwhIqKkwf+szlpuSHvualUCnfffTduv/12VFZWrtvzer3r+yZDa7epjkWtBPzhJeAnP4Hw4IPA8DCE2lrg+uthueEGeNe4YGyjbKpjsUbxeBwjIyPYuXPn0ogHHR2tmJ2dxfbt27Fz507U1dUVvQ4ei9LBY7F2MzMzeOWVV3D06FHMzMwAKASPxsY6Yz7V19cXvY4NCSz33nsv6uvrcd11163r8yYSKeTz2ro+J50Zq9UCr9e9OY/F/jcU/ne8VB5IJc2p5zQ29bFYhXQ6baxLGRsbhcViQU1No9Fg8JJLDsDtdhvrUuLx4h3HrX4sSgmPxdpkMhljPo2OjhjjdrsdgUAQoiihra3dWJOy2vlUXe1e8zqWogeW4eFhPPDAA/j85z+PubnCiuGFhQXj/5PJJDxr3OI8n9eQy/EXsBTwWJSOrXQs8vk8Bgb6oSgR9Pf3GXcgCoKA1tZ2JJNpOByFT9YOhwv5vA7g1HeArW99W+dYlDoei9PL5/MYHOyHoijo71/ZcqK9vQOhkAS/32/cUadpMNaurNZpbsA8paIHlqGhIWSzWXzgAx94zWOHDh3Cnj178PDDJ98KnYjoZGT5KJ588gnj6/r6BoiihFBIhMezfpefiTYrXdcxOTkBRZERjapIpRaMx+rq6iGKYYRC4rou51irogeW7du34+tf//qKsaNHj+Kzn/0s7rrrLm4cR0SrkkgkoKoyqqtrEFzaYdjvD+J3v3sefn8AoiihoaHR5CqJysPc3BxUVYaiyIjHp43xiooKhEIiRDGM+vqGkrq1v+iBxev1Yt++fSd8bOfOncctiiMiWmlxcRGxWBSyHMHIyDAAoLl5mxFYXC4XbrnlUEm9qRKVqsJ86oGiFObTcssJm82Grq5uiGIYHR2dZ7VXSjGV2p2ZREQYHByALB9Fb29sxXX01tY2iGIYuq4bIYVhhejkNE3D0NAgVFVGLBZDLvdqy4nW1jZIUhjd3QE4nU4Tq1wdUwLLvn37IMuyGS9NRGXgpZeOoL+/DwBQW1u7dB1dQlVVlbmFEZWJY8emIMsRRKMKkslX7+Cpqakx5pPXW167dfMMCxGZJpmch6oqUFUFb3rTm4030J07dy31HpHQ2NjEsyhEq7CwkISqKlAUGVNTk8a4y+VCIBCCJG1HU1P5zicGFiLaUNnsInp7C1vkDw0NGtfRVVXG6153AQDA5+uGz8cWHkSnk81m0dcXg6LIGBwcMOaT1WqFz9cFUQyjs9MHq9VqcqVnj4GFiDZEMjmPX//6WcRiUWSzr15Hb2lphShK8PuDJlZHVD50XcfIyDAURUYsFsXi4qLx2LZtLRBFCYFACK4S35X7TDGwEFHRLC4uwuEobDLlcDiMsLJ8uUcUJVRX15hbJFGZiMfjUJQIFEXG/PycMV5V5YUkSQiFJNTU1JpYYXExsBDRukqlFowtvfP5PG688e0QBAF2uwOXXPIGVFdXY9u2lrK9jk60kVKpFKJRFYoSwcTEuDHudDoRCAQRCkloaWndEvOJgYWIztqpWs3PzSXg9VYDAMLh7WaWSVQWlueTqsro7+9bMZ86OjohimH4fF2w2+0mV7qxGFiI6KwcPfoyfvWrp5HJZIyxxsYmSFIYwWAIbvfJW80TUYGu6xgfH4OiRNDTE0U6nTYea2xsNLbI38rziYGFiM7I7OwMbDab0aunosKDTCaDyspKY3+Huro6k6skKg+JxCwURYaiRDA7O2uMV1ZWIhQqrPOqq6s3scLSwcBCRKeVTqfR06NCUWSMjY3i3HNfh4suej0AoKOjE3/6p29Da2vblriOTnS2MpmMMZ9GR0eMcbvdvtQXK4zW1raS3SLfLAwsRHRC+XweAwP9UBQZ/f29yOfzAApb4S8svNrR1WKxoK2t3awyicpCPp/H0NAAZLkwn45vOdHe3gFRDKO7uxt2u8PkSksXAwsRvYau6/j2t7+BeDxujNXXN0AUJYRConE5iIhOTtd1TE5OGLs5p1KvBv26unpjXUplJefTajCwEBHm5ubQ1xfDrl27IQjCUqPBdmQyGeM6ekNDo9llEpWF+fl5qKoMWY4gHp82xt3uCoRCojGfeAn1zDCwEG1RJ2o139DQiJaWVgDAvn37cckll/E6OtEqZLOLiMViUJQIhoeHjC3ybTYburq6IYphdHR0cj6dBQYWoi1kudW8okTQ29u7otX8H69DKYd280Rm0jQNw8NDUJQIYrHYivnU0tIKSQrD7w9yLq0TBhaiLWRsbBQ/+tEPjK9ra2sRCkll2WqeyCzT08cgyxGoqoxkMmmM19TULF1CDXM+FQEDC9EmlUzOQ1UVAMDevecBKHzqa2xsQnPzNohiuKxbzRNtpIWFJFRVgaLImJqaNMZdLhcCgRAkKYympmbOpyJiYCHaRLLZLBRFxtGjR41W8y6XG+ecswdWqxWCIOC6627kmyrRKmSzWfT390KWZQwNDRhb5FutVvh8XQiFJHR2+mCz8U/pRuB/ZaJNYGxsFLL8CkZGBpBIJKFphQV/y63mlxcAAmBYIToFXdcxMjIMVVXQ06NicXHReGz5zGQgEITb7Taxyq2JgYWoTOm6boSP3t4YIpGjcLsd8HqrEQwWbp2srq4xt0iiMhGPx6GqMhRFxtxcwhivqvJCFAu39tfU1JpYITGwEJWRVGoB0agKWY7gwgsvQmenDwAgSWHk81lceOF5cLurkc/rp3kmIkqlUohGVaiqjPHxMWPc4XAgEAghFBLZcqKEMLAQlbjlVvOKEsHAQL9xHV1RIkZgqaurxxvfeAC1tR7E40kADCxEJ5LL5ZZaThTm03LLCYvFgvb2TkiSBJ+vG3a73eRK6Y8xsBCVqFwuh6ef/iV6eqLIZDLGeGNjEyQpjGAwZGJ1ROVD13WMjo7i6NGj6OlRkU6njccaGxshioX5VFHhMbFKOh0GFqISkk6n4XK5ABTuRBgbG0Mmkzmu1XwYdXV1JldJVB4SiVn09KgYHIxhdHTCWIzu8XgQCkmQpDDq6upNrpJWi4GFyGTpdBqxWBSKIuPYsSkcOvQe2O12CIKAiy56PaxWK1vNE61SJpNBLBaFLEcwOjoCi0WA2+2AzWZHd7cfohjmfCpTDCxEJsjn8xgc7DdazS9fRxcEAePjY2hv7wAA+HxdJlZJVB7y+TyGhgaM+ZTL5QAU5lN7ewcuuOBcNDa2QhD4J6+c8egRbbCBgX489tjPkE6njLG6unpIUqHVvMfDVvNEp6PrOqamJqEoMlRVQSq1YDxWW1u3NJ8k1NR4jcXouZxmYsV0thhYiIpsbm4O2WzWWHtSU1ODdDqFiorlVvNh1Nc38NZJolWYn59f2iI/gunpY8a42708nyQ0NDRyPm1CDCxERbC4uIhYrAeKEsHIyDB8vi5cffU1AACvtxpve9v1aGpq5nV0olXIZhcRi8WgKBEMDw8ZOzfbbDZ0dXVDFCW0t3fCarWaXCkVEwML0TrRNA1DQ4NQlAh6e3tXtJrP5/PQNM0IKNu2tZhVJlFZ0DQNw8NDUFUZPT09K+ZTS0srJCkMvz8Ip9NpYpW0kRhYiNbJ4cM/Qn9/n/F1bW0tQiEJoZDEVvNEqzQ9fQyyHIGqykgmk8Z4TU3N0q39ErzeahMrJLMwsBCtQTJZuI4eDu8w9k3p6PBhfHwcwWAIohhGU1MTr6MTrcLCQhKqqkBVZUxOThrjLpcLgUAIkhRGU1Mz59MWx8BCtErZbBZ9fTEoiozBwQHoug6Hw4EdO3YBAMLh7dixYyevoxOtQjabRX9/L2RZxtDQgNFywmq1orPTB1EMo7PTB5uNf6aogL8JtHXk8xASs9CdLqCiYlU/stxqXlFkxGLRFa3mt21rQcVxz8PeI0SnVtgifwSKIqOnR10xn5qbt0EUwwgEgnC73SZWSaWKgYU2PcvIMNz33wvXg1+FZaltfPa885F6/4eQedv1wCnu1EmlFvAf//Hvxl0JXm+10Wq+urpmI8onKnszM3EoigxFkTG3NAcBoKrKa8ynmppaEyukcsDAQpua7aUjqP7zt0KYn4OwtJssANhe/B28f/k+pH96GHNf+CJgtRqt5mdnZ3DJJZcBACoqPAgGQ7Db7RDFMLZta+F1dKJVSKVS6OmJQlEiGB8fM8YdDgcCgRBEUUJLSyvnE60aAwttXskkqm9622vCCgAIy9fL//27GGluxpH9F2NgoB+apkEQBOzZcy6qqqoAAAcPvmnDSycqR/l8HgMD/VCUCPr7+4yWExaLBe3tnZAkCT5fNy+f0powsNCm5Xrk2xCmpnCiz2+TFgtetNuh2O1IffdhLDQ1A1ar0Wre4XBseL1E5UjXdUxMjEOWI+jpUZFOp43HludTMBhCRYXHxCppM2BgoU3L+Z1vAYIALK0/0QEjvIxbLPj9UiipWljATqsV/pvewVbzRKuUSMwu9fGRMTMzY4x7PB5jv5T6+gbzCqRNh4GFNi3L1CTSug7VbscrNhuCuRzOzxZ2ywzlchjOZhHOZtGRz2O+rh4ZhhWiU8pkMojFopDlCEZHR4xxm80Ov98PUQyjra2dLSeoKIoeWJ588kl88YtfRDQaxfz8PJqbm3Hw4EHcdtttxhoBovWUz+cxONiPp1xuDFRVYXn1SlYQjMDiBPCm405d60uNCYloJU3TMDg4AEWJoK+vF7lcDgAgCALa2tohimH4/X7Y7byMSsVV9MAyMzOD3bt349Zbb0VNTQ1UVcU999wDVVXxwAMPFPvlaYv51a+eRiRyFOl0CrZgCI6+GBryeezM5RDOZk/4M5q3GouXvnFjCyUqYbquY2pqcumSj4JUasF4rLa2DpIURjAo8kMnbaiiB5Zrr712xdf79u2Dw+HAJz7xCYyPj6O5ubnYJdAmtrCQXLGYL5FIIJ1OoaKiAqEbb8a+XzyOpuQCLFr+hD+vCwJS7/8QsLS9PtFWNj9faDmhKBFMTx8zxt3uCoRCIkIhEY2NbDlB5jBlDUtNTQ2AwtbMRGdqcXERsVgPVFXG8PAQbrrpFtTWFjadOvfc8xAOb0dHRycsFgts3/gOcMO10BcWVtzarFssgKZh8eprsPDRj5n1r0Jkumx2EbFYDKoqY2ho0Ngk0WazwefrhiRJaG/vZMsJMt2GBZZ8Po9cLodoNIrPf/7zOHDgANrb2zfq5anMLbeaV5QIYrHYilbzo6PDRmBpalp5xi533vmIP/403P/n83D/24MQFgqntvPhHUh94C+RvukdAN+IaYvRNG2p5UQEsVjPig+PLS2tEEUJgUAITqfTxCqJVhL05ThdZJdddhnGx8cBAJdeein++Z//eUUflrVIJFLI57X1KI/WyGq1wOt1F/VYTE1N4Yc//P5rWs1L0valVvPe1T3R4iKEY8cAlxN6TW3hludNZCOOBa1OqR6LY8eOQVEiUBQZ8/Pzxnh1dQ1EUYIkhVFdXW1iheuvVI/FVlVd7V7zXWQbFlgikcjS1udR3HvvvWhvb8dXvvIVnmak10gmk5idnUVraysAIJfL4b777oMgCJAkCTt27EBLC7fIJ1qNhYUFHD16FK+88gomJiaMcafTacyn1lZukU+lb8MCy/EikQiuvfZa/NM//ROuuuqqNT8PE7P51uvTSzabRV9fL2Q5gsHBAVRVeXHLLbcab6JTU5Oora1jwD0FfpIsHWYfi+X5pCiy0XICKGyR7/N1QZLC8Pm6YLNt/q24zD4WtNLZnGEx5bdVkiTY7XYMDAyc1fPk8xpyOf4CloK1HAtd15euo8uIxaIrWs07HE7Mzy8YbeZrauqh6+DxXgXOi9KxkcdC13WMjo5AUWT09Kgr5lNTU7OxRf7ynAK21nzivCgNZ3OKxJTAcuTIEWSzWS663eKeeeY/8fvfv2h8XVXlhSRJCIXYap5otWZm4lBVGbIsY24uYYxXVlZBksIIhSRjUTpROSt6YLntttuwa9cuSJIEl8uFSCSCL3/5y5AkCQcPHiz2y1OJKKxfUtHW1mb06+nq6kYk8gpbzROdoXQ6jWhUhaJEMD4+Zow7HA74/UGIooTW1jbOJ9pUih5Ydu/ejUcffRT3338/dF1HW1sbbrjhBrz3ve9lR9xNLpfLrWg1r2kadu/ei4svvhQA0NrahkOH3sNW80SrkM/nV8yn/NK+QoIgoKOjE6IooavLz/lEm1bRA8sHPvABfOADHyj2y1CJ0HUd4+NjUJQIenqir2k1X1//aoNBQRD45kp0CrquY2JiHIoiIxpVkU6njMcaGhohihKCwRA8nkoTqyTaGJt/iThtKF3X8ZOfPIqFpQ3allvNS1LYuBRERKeWSCSgqjIUJYKZmRlj3OPxIBgUIUlh1Nc3mFcgkQkYWGjNMpkMZLkHx46N4ZJLDgAo3Da5Y8dOzM3NQRTDaG1tY6t5olXIZDKIxaJQFBkjI8PGuM1mh9/vhyiG0dbWzvlEWxYDC52RfD6PoaEByLKM/v5eaFoebrcD3d0iWloKd31dcMFFJldJVB40TcPg4AAUJYK+vl7kcjkAhculra1tEMUw/P4A1/sRgYGFVimRmMVLL/3+Na3mGxsbcP75565Ym0JEJ6frOqamJqGqMlRVMS6fAkBtbR0kKYxgUERVVZWJVRKVHgYWOild143bIlOptLFnynKreVGUsG1bM+rqKhGPJ7kpE9EpzM/PQ1UVKEoE09PHjHGXy23Mp8bGJt6KTHQSDCy0wnKreUWJwOv14g1vKKxNaWpqwu7de9He3oH29g5ji3y+uRKdXDa7CFXtgaJEMDQ0iOVOKDabDT5fNyRJQnt7J1tOEK0CAwtB0zQMDw8ttZqPIZcrtJp3Op245JI3wGq1QhAEY/8UIjq5wrqUITz7bB9+//uXkcm8ukV+S0srRFFCIBCC0+k0sUqi8sPAssUdOfICjhx5Aclk0hirqamBKIYRCon85Ee0StPTx6AoMlRVxsJCEm63A9lsFtXV1RDFMERRgtdbbXaZRGWLgWWLWVhIwul0GUFkcTGDZDIJl8uFQCAESQqjqamZl3qIViGVWjDWpUxOThrjbrcLu3efg7a2bjQ0cF0K0XpgYNkCstks+vt7IcsyhoYGcOWVV8HvDwAAwuGdqK9vRGenb0u0mic6W7lcDn19vVCUCAYHB6BphcXmFosFPl8XQiEJgYAfjY3VXIxOtI74F2qT0nUdIyPDUFXlNa3mJybGjcBSVVXF2yeJTkPXdYyOjkBVZfT0RJHJZIzHmpqaIYphBIMhuN1uAIDNxs3diNYbA8smlE6n8Z3vfGtFq/mqKi8kSUIoJKGmhq3miVZjdnYGihKBoihIJGaN8crKKoiiBFEMo7aW84loIzCwbAKpVAqTkxPo7PQBAFwuF1wuFzKZNAKBEERRQktLK6+jE61COp1GT48KRZExNjZqjNvtdmM+tba2cT4RrUImk0FPj4q+vl686U1vPqvnYmApU7lczmg1PzDQD0EQcOjQe4xbJQ8e/BN4PJXshky0Cvl83phP/f19yOfzAAr7DHV0dEIUJXR1+TmfiFYhn89jcLAfiqKgv//VlhODg/1obDxnzc/LwFJGdF3H+PgYFEVGT4+KdDptPNbY2Ihkct4ILLzsQ3Rquq5jYmICihJBNKoinU4Zj9XXN0AUJYRCIjyeShOrJCofiUQCv//9i4hG1RUtXOrq6iGKhTtQzwYDSxl5+eU/4KmnfmF87fF4EApJkKQw6urYy4doNRKJBKLRwq3I8XjcGK+oqEAoJEEUJTQ0NJpYIVH50DTN6CCey2Xx0ktHABRauIiiCFEMo76+YV0uoTKwlKjlVvOVlVXo6OgEAHR3d+PXv34G3d2FVvOtrW1sNU+0CouLi4jFopDlCEZGho1xm82O7u5uiGIY7e0dnE9Eq1CYT4WWEx6PB1dc8ScACmdS9u49D62tbejo6Fz3+cTAUkLy+TyGhgYgy7Jx3a+jo9MILB5PJd71rvdyvxSiVdA0DUNDg1CUCHp7Y8Z1dEEQ0NraBlGU4PcH4XA4TK6UqPSdrIWLzWbHZZdljfVd+/dfXLQa+JevBExOTixt6a2suO5XW1uH9vaOFV2TGVaITm1qahKKEoGqKlhYOH4+1S61nJC49xDRGfj971/Eiy/+7iQtXKQNW4zOv34l4Jln/tM4Te12Vxit5hsaGnnrJNEqJJPzS1vkyzh2bMoYd7ncCIVEhEISmpq4RT7RaiwsJGG3O4wgks/njRYuwWDh75MZLVwYWDZQNruIWCwGVZVxxRVXwu2uAABs374TFRUVEEW2midarWx2Eb29hS3yh4YGoes6AMBqtcLn64YkSejo8HE+Ea1CNptFX18MiiJjcHAAV1xxJUIhCQAgioUNRzs7zZ1PDCxFpmkaRkaGl6779SCbLVz3U1UFu3fvBYClHTMlE6skKg/LLSdkOYJYLGrMJwBoaWlFKCQiEAjB5XKZWCVReVieT4oiIxaLrmjhMjk5YQQWj6cS3d3m397PwFIkqdQCXnzxBaiqvOK633Kr+a4uv4nVEZWX6enppXUpMubn541xr7faCPzV1TXmFUhUZrLZRXzrW99Y0cKlMJ/Ekm3hwsCyjo6/Hx0Q8NJLR5DP5+FyuRAIhCBJYVOu+xGVo1RqAdGoClmOYHJywhh3Op0IBIIQxTC2bWvhfCJahVQqhYmJMfh83QAAu92ByspKLC5mymY+MbCcpWw2i/7+XsiyjGx2EX/2Z9cBANxuNy64YB+qq2vQ2enj3T1Eq5DL5dDXV1iXMjg4AE3TAAAWiwWdnT6IYhg+XxfnE9Eq5HI59Pf3GS1cAODQofcYXcUPHDgIt7uibFpOcNavwXKr+eUt8o+/7jc3N2fcMnnuua8zq0SisqHrOsbGRqEoEfT0RJHJZIzHmpqaIYoSgsGQsUidiE7u1RYuhfl0ohYuy4HF6602q8w1YWA5Q6oq49e/fnbFdb+qKu9S3xHu70C0WrOzM1CUCBRFQSIxa4xXVlYt3dofRl1dnYkVEpUfWT6KJ554zPi6srLSaDlR7i1cGFhOI5VKQRAE464DQRAwN5eAw+GA3x9kq3miM5BOp9HTo0JRZIyNjRrjdrsdfn8QkhTmfCJapUwmg54eFRUVFcaNHD5fN5xOJ7q6ujddCxcGlhPI5XJGq/mBgX6cf/6FOO+88wEUfhmuvPJN8Pm6y+a6H5GZ8vn80nwqtJzI5/MACuG/o6MToiihq8vP+US0Cidq4dLS0moEFrfbjXe9672bcv8hBpYlhVbz45DlCHp61BXX/SYnJ41/ttvtCAZFM0okKhuF+TQBRYkgGlWRTqeMx+rrG5YuoYrweMzf24GoHExOTkCWC/Pp+BYudXX18Pm6V7Rw2YxhBWBgAVB4c/3ud7+1Iph4PB7jul99fYOJ1RGVj7m5OaiqDEWJIB6PG+MVFRXGfGpoaDSxQqLy9JvfPGvc6eN2Vxj7pWylFi5bMrBkMhkMDg4gGAwBKJyarqurRzw+A7/fD1EMo62tfdNc9yMqpkKr+ShkOWL0xAIKXVy7uwvX0dvbOzifiFZhuYWLokTwxjdeYdzIEQ7vgMPhgCiG0dHRuSXn05YJLJqmYXBwAIoSQV9f4bpfTU2N8Wlv3779uPTSN8BuZ6t5otPRNA1DQ4NQlAh6e3uNVvMA0NbWDlGU4PcH4XBwPhGdjqZpGB4eWmrhEjPmUzSqGNtjBAJBBAJBM8s03aYOLLquL7Wal6GqyorrfrW1dSvWqfBaOtHpFeZTBKqqYGHh+PlUa7Sa5639RKuTSqXw4ou/e00Ll5qaGohiGIFAyMTqSs+mDiwjI8P4wQ++Z3ztdlcgGAxBFCU0NrLVPNFqJJPzUFUFiiLj2LEpY9zlciMUKlxHb2rifCJajXw+byyKtVqt+MMfXkIul2ULl1XYNIFl+bqfrusIh7cDALZta0FlZRWam7dBkiS0t3du2tXTROspm11Eb28vVLXQal7XdQCFN1ifrxuSJKGjw9xW80Tl4vgWLqnUAq6//iYAgMPhwL59F6GqyovOTs6n0ynrwHL8dfRYrAfZbBaVlZWQpDAEQYDVasU73nErfwmIVmG51bwsRxCLRZHNvrouZdu2FoiihEAgZGyiSEQntzyfFEVGLBZd0cJlZiZudEPevXuvSRWWn7INLKlUCg8++FUkEnPGWHV1NUQxjFwuZ2xCxbBCdGrT09NLtyLLmJ9/dT4VWs0XbkWurq4xr0CiMhONKnj22V+9poWLJBVauCyHFTozZRtYMpkM5ufn4XQ6l9alhNHcvI3X/YhWIZVaQDSqQpYjmJycMMadTmfZtJonKhWpVGFjxOWmgjabzWjhEggU1k22tLRyPp2lsg0sdrsdV131ZrS1dbLVPNEq/HGreU3TAAAWiwWdnT6EQhK6uro5n4hW4Y9buOzdex4uvPAiAEBHhw9XXnkVfL4utpxYR0V/Z/rxj3+MH/zgB3j55ZeRSCTg8/lw66234rrrrjurtOnxeBAIBJHLaetYLdHmcnyr+WhURSaTMR5rbGyCJIURDIbgdleYWCVReTh+PvX0RFdsjTE9fcz4Z6vVamxMSuun6IHlq1/9Ktra2nDHHXegtrYWzzzzDD7xiU9gbGwMt912W7FfnmhLmp2dWdp/SMbs7KwxXllZaeyXUldXZ2KFROVF13U88si3MTExboxVVlYaLSfq6upNrG5rKHpguffee1e8Me7fvx8zMzP4yle+gv/yX/7LltxemKgY0uk0fv/7Hvz2ty9gePjVLfLtdjv8/iAkqdBqntfRiU4vk8mgv78PoZAIQRAgCAIaGhoQj0/D7w9AFAvziX/DNk7RA8uJPsVt374dDz/8MBYWFlBZyR1midYqn89jcLAfsixjcLAPDocVqdQiBEFAR0cnRLGwLoUtJ4hOL5/PY2hoALIso7+/0MLF6/Vi27YWAMAFF+zD619/CeeTSUxZXff888+jubn5rMOK1cpka7blY8BjsXF0XTdazRdaThTuULBYBDQ0NKOrq9BzhO0mzMN5UTpOdyyWW7jIcgSKsrKFS0NDPTQtD5ut8LNeL9tOnK2zOcG74YHlueeew6OPPoqPfexjZ/1cXq97HSqi9cBjUXyJRAJHjx7FK6+8gunpaWO8oaEW4XAYO3bsQFNTk4kV0h/jvCgdJzsWw8PD+I//eMT4ur6+ZsV84iXU0rGhgWVsbAy333479u3bh0OHDp318yUSKeTzvEvITFarBV6vm8eiSBYXFxGLRSHLEQwPDxtb5NtstqXr6JLRan75EySPhfk4L0rH8ccinU6jp6cHuVwOu3adAwBwu6vhdFagoaERkhRGR8erLVxmZhZO9dS0BtXV7jWv+9mwwJJIJPD+978fNTU1uOeee9ZloVI+r/G25hLBY7F+jm850dvba7SaB4DW1jZIUhh+fxAOh2Pp+2HsqQLwWJQSHgvzaZqGvr4+/OY3v0M02oNcLgu3uwKhUNgIJjfc8A7jb5Kug8esiJY+c63JhgSWdDqND37wg5ibm8O3vvUttp8nOoFjx6YgyxFEo8oJW82HQhK8Xq+JFRKVj+npacjyUfT0KNC0LFKpRWiajpqaGoRCEjTt1a7JvNOnPBQ9sORyOXzkIx9BLBbDQw89hObm5mK/JFHZWFhIQlUVKIqMqalJY9zlchstJ3gdnejMRSIv48iRF2GxCKit9SIQkBAMSmhqauZ8KlNFDyx33XUXnnjiCdxxxx2Yn5/Hiy++aDy2Y8cO47Q20VaRzWbR1xeDosgYHBww1qVYrVb4fF0QxTBbzROtUjabRX9/L2RZxp49e9He3gEAEMUwEokEtm/fjr17d2JuLsNLPWWu6IHl6aefBgDcfffdr3nsscceQ3t7e7FLIDLdqVrNNzdvgySFEQiE4HK5TKySqDzouo7R0REoioyeHtWYT263ywgsDQ2NuOqqt8Bmsyz1x8qc4hmpHBQ9sDz++OPFfgmikhWPx6EoESiKjPn5OWPc662GKIpsNU90BnK5HH73u+egKDLm5hLGeFWVF6JY2CKfNi+2ZSVaZ6lUCtGoCkWJrOg74nQ6EQgEIYphbNvWwuvoRKuQy+WMDuJWqxWxWBRzcwk4HA4EAiGIooSWllbOpy2AgYVoHeRyOfT39xmt5pdvM7ZYLEtb5IfR1dVtvPES0cnlcjkMDPRDUSIYGxvDLbccgt1uhyAIOP/8fQB0+HzdsNvtZpdKG4jvnkRrdHyr+WhURSbz6jXyxsYmSFIYwWAIbneFiVUSlQdd1zExMQ5ZjqCnR0U6nTYeGxkZhs/XBQAIBkMmVUhmY2AhOkOzszNQFBmqKmN2dtYYf7XVfPiETT+J6MSGh4fwy18+gZmZGWPM4/EszScJ9fUN5hVHJYOBhWgV0uk0YrEoFEXG6OiIMW632+H3ByGKElvNE61SJpNBJpMxNkL0eDyYmZmBzWaH3++HKIbR1tbO+UQrMLAQnUQ+n8fgYD9kWcbAQB9yuRwAQBAEtLd3QBTD6O7uZqt5olXI5/MYGhqAosjo6+tFZ6cPb3rTmwEANTW1uPrqt6CtrZ3ziU6KgYXoOLquY3JyYumSj4J0OmU8VldXv7RFvojKykoTqyQqD7quY2pq0phPqdSrzQQTiQQ0TTPOonR1+c0qk8oEAwsRgLm5OaiqDEWJIB6PG+MVFRUIhUSIYhj19Q28dZJoFXRdhyAI+PnPf4JoVDXGC00HRYRCIhob2XKCzgwDC21Zi4uLiMV6oCgRjIwMG1vk22w2dHV1QxQLreZ5HZ3o9LLZRcRiMXR1dRstV7Zta0FfXy98vm5IkoT29k62nKA1Y2ChLUXTNAwNDUJVZcRiMeRyWeOx1tY2SFIY3d0BOJ1OE6skKg+api21nIigp6cHuVwWl19+BcLhHQAASdoOUQxzPtG6YGChLeHYsSnIcgTRqIJkMmmM19TULK1LkYw7Fojo1Kanj0GWI1BVecV8qq6uhsXy6hkUNrel9cTAQpvWwkISqqpAUWRMTU0a4y6XC4FACJK0HU1NvI5OdCYWFpJ4+OFvGJdQC/Op0HKiuXkb5xMVDQMLbSrZbBZ9fTEoiozBwQHjTdVqtcLn64IohtHZ6eN1dKJVyGaz6O/vRTw+jQsuuAgAUFHhQUeHD1arxZhPbDlBG4G/ZVT2dF1fuo4uIxaLGq3mgcKiP1GUEAiE4HK5TKySqDzouo7R0REoioyeHhWLi4sQBAHbt+8ybud/85uv4ZkU2nAMLFS24vE4VFWGLEcwPz9njFdVeSFJEkIhCTU1tSZWSFQ+EolZyPJRyLKMubmEMV5ZWQVJCsNieTWgMKyQGRhYqKykUilEoyoUJYKJiXFjnK3mic7O8PAQnnvutwAK8+n4lhOcT1QKGFio5B3far6/vw+apgEALBYLOjo6IYph+HxdbDVPtAr5fN6YT21tHdi16xwAgN8fRF9fL4LBELq6/JxPVHIYWKgk6bqO8fGxpf0doitazTc2Nhpb5LvdFSZWSVQedF3HxMQ4ZDmCnh7VmE9zc3NGYHE6nbj66mvMLJPolBhYqKQkErNQlMIW+bOzs8Z4ZWWl0Wq+rq7exAqJyssLL/wOkcjLmJmZMcY8Ho8xn4jKBQMLmS6TyaCnR4WiyBgdHTHG7XY7/P4ARDGM1tY2bpFPtArZ7OKKjscTE2OYmZmBzWaH3++HKIbR1tbO+URlh4GFTLHcal6WZfT39yKXywEo3H3Q1tYOUQzD7/ez1TzRKmiahsHBAShKBH19fbjxxptRXV0DANi9ey98vm74/QHuPEtljYGFNoyu65icnICqKq9pNV9XV2+sS1ne64GITk7XdUxNTUJRZESjChYWXp1PfX292LPnXABAS0srWlpazSqTaN0wsFDRzc3NIRpVIMsRxOPTxvhyq3lRlNDQ0MhbJ4lWKR6P46c//TGmp48ZYy6X25hPjY1NJlZHVBwMLFQUy63mFSWC4eEhY4t8m82Grq5uiGIY7e0d3CKfaBWy2UXMzc0ZC84rKysxPz8Hm80Gn68boigubZfP+USbFwMLrRtN0zA8PARFiSAWiyGXyxqPtbS0QpLC8PuDbDVPtAqapi21nIggFutBZWUlbrrpFgiCALvdjquvvgb19Q2cT7RlMLDQWZucnMRvfvMCIpGjK1rN19TULK1LkeD1ek2skKh8TE8fg6LIUFUZ8/PzxrimaUilFlBR4QEAtLa2mVUikSkYWGhNFhaSUFUF0aiCZHIWqdQiNE1fajUfgiSF0dTUzHUpRGfgN795Fs8//1vja6fTiWAwBFEMo7l5G+cTbWkMLLRqy63mZVnG0NAANE2DxSLA43HB7w8gEBDZap5olXK5HPr6etHQ0GA06WxpaYXFYoHP14VQSILP18X5RLSEM4FOSdf1pevoMmKxKBYXF43Hmpu3Yfv27bjggr1IpzXkcpqJlRKVPl3XMTo6AlWV0dMTRSaTwZ49e/H6118KAGhra8ehQ+9mywmiE2BgoROKx+NQVRmKsrLVfFWVF6JY2NK7pqYWNpsFbrcb6XTyFM9GtLXNzs5AUSJQFAWJxPEtJ6qMNSlAoaEnwwrRiTGwkCGVSiEaVaGqMsbHx4xxh8OBQCAEUZTQ0tLK6+hEZ0DTNHzve981Nkq02+3GfGptbeN8IlolBpYtLpfLGa3mBwb6kc/nARQ+6bW3d0KSJPh83Ww1T7QK+XweAwP9GBrqx9ve9lYAhbkkihLi8WmIooSuLj/nE9EaMLBsQSdrNQ8AjY2NEMUwgsHQilPVRHRihfk0AUWJIBpVkU6nYLEIOP/8vaiqKmz0tn//xTyTQnSWGFi2kERi1tjf4USt5iUpbOykSbSVWCw9cLu/Dqv1KAA7stn9SKdvga7XnvRnFhaSOHr0FShKZMV8qqioQDi8HV6vF0sbPJdxWMnAZnsBgpCCpnUgnw+aXRBtYQwsm1wmk0EsFoUsRzA6OmKM22x2BAIBiGIYra1tbDVPW1QOlZV/A7f7S9B1K4A8AAEOxw/h8dyFubn/F5nMO0/4k4lEAr/5zbMACvPJ7/cjFJLQ3t4Bh8OGmhoP4vFyXYyeQkXFP8Lt/hIslhljNJu9EMnkx5HNXmFeabRlMbBsQvl8HkNDA1AUGX19vcjlcgAKn/La2tohimH4/X7Y7Ww1T1tbZeXfwOX6MgBAEPJLo4XTIrqegdf7XzAz40Q0egFUVYbbXYGLLy7cgtzcvA2SFEZrazv8/gAcjs0yn1KoqflT2Gy/hSCs3KrAZnsO1dV/jrm5e5HJvMOk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/dMLHdB2YnLTg5ZftOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9TXouvW4MysFf/iDDc8/78DU1HLn43lUVg6hu/sahELSJu+InILL9eUThpVlglAIdG73V5BM/t3GlUZbHgNLGcpmFxGLxaAoEQwPD0FfWtlns9nQ1dUNUZTQ3t65yd9Yic6O1foKgDwWFwGbDVhexhWPWzA1ZYXFoiMQyGHHDg2NjS1YXLzM1Ho3gt3+a1gsc6f9PkHIw+H4AQMLbSgGljKhaRqGh4eWWs3HkMtljcdaWlohSWH4/UG2midaBV3XMTioQ1VdUFUb3vzmFILBwpmWXbuyqK7WEQpl4XYDum5BMrk19k0RhIXTf5PxveW6oJjKVdEDS39/P7785S/jyJEjUFUVfr8fP/zhD4v9spvG9PQxyHIEqiojmXz1DaKmpgahUGGLfK+32sQKicrH9PQ0FCUCVVWQyVTAbrdDEIC+PpsRWGprddTWvvqBQBA0ZLP7zSp5Q2la26q+T9ct0LSOIldDtFLRA4uqqnjyySexZ88eaJpmXL6gk1tYSEJVFaiqjMnJSWPc5XIhEAhBksJoamrmuhSiVcpkMviP//h3TE5OGGNO5/nYs+cx7NiRQmvridds6LoVudwu5HKv26hSTZXL7UYuF4bVKkMQTvVerSGV+ouNKosIwAYElgMHDuDgwYMAgDvuuAN/+MMfiv2SZSmbzaK/vxeyLGNoaACaVngDtVqt6Oz0QRTD6Oz0sdU80SrkcjkcOzaF5uZtAACn0wld12GxWIz55PN1obKyBlVVf4UTfY4q7MviwPz8PRtbvKkEJJN/i+rqQyf9Dl23QtPakMn8+QbWRbQBgYUbkp2crusYGRmGqiro6VGxuLhoPNbcvA2iGEYgEITb7TaxSqLyoOs6xsZGoSgR9PREkc9reNe73mPsj/LGNx5AZWXlim7I6fRfQNfd8HjuhNU6vhRSdAiChnx+O+bmvoBcbq85/0ImWVz8M8zP3w2P5+MALMZdVLouANChaa2YmfkPAOwqTRurrD+uW63lGYZmZuKQ5QgURUYikTDGa2qqIYqFLfJrak6+JXgpWT4G5XosNpOteixmZ2cgyxHIsoxEYtYYr6qqQjKZQEVFEwCgpWXbCX8+n387EokbYLf/FBZLYWv+XO71yOdfB0DAWk5qlvuxyGZvQyJxAE7nF+Fw/AhACprWiUzmvVhcvAkWiwfl8lm03I/FZnM2KxnKOrB4veVz5iGVSkGWZbzyyisYHR01xqurKyFJErZv34729vayXZdSTsdis9tKx+IPf/gDfvKTnxhfe70eiKKIHTt2oKOj4wzn0w3rXl95H4sLlv5XYLEUbv/2lGlP1PI+FgSUeWBJJFLI50++wZHZcrkc+vv7IMsRDAz0I58vnFq1WCzo6OiEJIXR1dVttJqfmVn9LYWlwmq1wOt1l/yx2Ao2+7HI5/Po7++Dy+VCa2vhbhavtwGZTA7t7R2QpDC6u/0lMZ82+7EoJzwWpaW62r3mpSJlHVjyeQ25XGn9AhZazY9DliPo6VGRTqeNxxobGyGKYQSDIVRUvPoxpdT+HdaiFI/FVrWZjkVhPk1AUSKIRlWk0yl0dvrwlre0AADcbg9uvfU9cLlcxs+U0r/7ZjoW5Y7HojSczY3CZR1YSkkikYCqyq9pNe/xeIz9UurrG8wrkKiMJBIJRKMKFCWCeDxujFdUVKCurh66rhuXe44PK0S0eTGwnIVMJoNYLApZjmB0dMQYX241L4phtLW1804pojP0+OM/M+aUzWZHd3c3RDGM9vYOzieiLarogSWVSuHJJ58EAAwPD2N+fh6HDx8GAFx44YWoq6srdgnrStM0DA4OQFEi6OvrRS6XAwAIgoC2tnaIYhh+vx92+2ZpNU9UPJqmYWhoEKoq4/Wvv9S4hV+SwrBYLEvzKWDcmkxEW5egF3nr2aGhIVxxxRUnfOzrX/869u3bt+bnjseTG3JNUtd1TE1NQlFkqKqCVOrVxXy1tXWQpDBCIQmVlZVFr6XU2GwW1NZ6NuxY0MmV07EozKfCFvkLC4X5dMklb8A55+wGgBWXfMpROR2LzY7HorTU1XnWfIt50c+wtLe3Q5blYr9MUczPz0NVC9fRp6ePGeNudwVCIRGiKKGhobGs31iJNkomk8HRoy9DUWQcOzZljLtcbgSDIbS2thpjnFNE9Me4huWPZLOLiMViUFUZQ0ODRu8jm80Gn68bkiShvb0TVqvV5EqJSt/xZ0o0LY9f//pX0DQNVqvVmE8dHT7OJyI6LQYWFK6jj4wMQ1EiiMV6kM2+2qm1paUVoighEAjB6XSaWCVReVhuOSHLEaRSKbzlLW8FUDgzuXfveaisrEQgENpUd/cIwjSczu/Aah2ArjuRz/8JgBNfCieitdnSgWV6+tjSuhQZ8/Pzxnh1dTVEMQxRlOD1VptYIVH5mJ6eXrq1X8b8/JwxnkjMGvNo3779ZpVXJHl4PJ+B230PgCwKb6k6BOEfAeyCxfIAgLCpFRJtFlsusKRSC8a6lMnJSWPc5XIhEAhCFMNobt7Ga+hEq9TXF8Nzz/0Wk5MTxpjT6TTmU1WV18Tqiquy8r/B5XoAgrB870L2uEePoqrqIGZmnkA+HzKjPKJNZUsElmw2i/7+PihKBIODA9C0wkpxi8UCn68LohhGZ6cPtrV0OSPaYnK5HHRdM27dz2azmJycgMViQWenD6GQhK6ubpPmUx52+y9gtQ5C191YXLwcut5UlFey2Z6H2/3lU9YiCEl4PP8dicTDRamBaCvZtH+hdV3H6OgIFEVGT4+KxcVF47GmpmZji/zlfR+I6OR0XcfY2CgUJYKenijOPfd1OPfc1wEAurr8uOSSy5bmU4VpNbpcX0NFxf+A1TpmjOm6FZnM2zA//4/Q9fp1fr0vQ9dtEITcSb9HEPJwOH4Ci2UImta+rq9PtNVsusAyMxOHqsqQZRlzcwljvLKyytgvpba21sQKicrH7OwMFKWwLiWRmDXGh4YGjcBit9txzjl7zCoRAFBR8Tl4PJ95TZ8SQcjD6fwebLYXMDPz83UNLXb7r04ZVl6tQYfN9gIWF7dqYCmENofj5wDS0LQupNPvYICjM7YpAks6nUY0qkJVZYyNjRrjDocDfn8QoiihtbWN61KIVknXdfzoRz/A4OCAMWa32+H3ByFJYaNbcimwWl+Gx/MZAMCJprgg5GG19sHj+TTm5/+/dXzlM9lzs6j7c5Ysm+3X8HrfBat1BLq+/OdGR0XF/0A6/W7Mz/8jALuZJVIZKdvAous6YrEeHD16FP39fcjn8wAKG051dPggiiK6ul5tNU9EJ5fP5zE2Noq2tsKnXkEQ4HK5luZTJ0SxsC6lFFtOuN1fWtWlGZfr35BM3gVdX587/3K5c2G1DqzqLEsut2tdXrOc2GxHUFPzViwvRP7j/04u11cgCHOYm/sSAH6YpNMr28CSSCTw4x//CJpW+OTS0NAIUZQQDIbg8Wy9LfKJzpSu65icnDBaTqTTKdx00ztQV1e4bHLhhRdh//6LS34+ORw/X+WlmTRstueRzR5Yl9dNp98Hl+u7p/weXbcim70UmuZfl9csJx7PnQCyEIT8CR8XBB0u17eRSn0AudzaW7TQ1lG2gUXXdXg8Hvj9IUhSGPX1DWaXRFQW5ubmlvZLiSAejxvjFRUVmJtLGIGlfPYgyqz6OwVh9d97Otns65FOvw1O5/chCCfqUWMBYEcy+el1e81yYbH0wOF48rTfp+s2uN1fwtwcAwudXtkGFo/Hg0OH3g2NvayIVm10dATf//4jK1pOdHf7EQpJ6OjohMWytqZkZsrnRVgskyf9JL/ye4Pr+MoC5ua+CF2vgsv1IAoBpTBeOOPTjLm5B5HLmbsg2Qw220ur+j5ByMFme77I1dBmUbaBxW63w2JZNPZUIaKVNE3D0NAgstksAoHCH+qmpma4XG7U1tZCksLw+4NwOEpvXcqZSKffA4fjl6f8Hl23IJe7sAgbuDkwP/8vWFj4v+FyPQSrtR+67kY+fyUqK69HPp8BsBXfo85kTQrXr9DqlG1gIaITm5qawiuvvAJVlbGwsICqKi/8/gAEQYDVasU73nFr2YeU42Uyb0U2uwc22x9OeJZF1wUAApLJTxStBk3zYWHhb42vbTYLCm+v63cJqpzkcnuh68JxOwCfWGGNDy8H0eowsBBtAsnkPGKxKAYHYxgcHDEWo7tcbvh8XcjlssYdPpsprBTYMTv776iuvh52+/PQdSsEIb+0J4sAwIFE4gFks5eaXOfWoWk+LC4ehMPx+Ckv1QlCHun0+zawMipnDCxEm8Bzz/0GkcgrcLsdsFqt6OrqgiRJ6OjwwWq1ml1e0el6PWZmHoPd/jhcrgdhtfZC1yuwuPhmpNO3rPsut3R6yeT/hN1+OYDUSc98pdN/gVzuvI0vjsoSAwtRGdF1HSMjw1AUGTt27EJzczMAQBTDmJmJ44ILzkVTUztsts12FmU1LMhmDyKbPWh2IQQgn5cwM/MTeL1/AZtNXdo4TgCQB2BFKnUbkslPmlwllRMGFqIyEI/HoSgRKIqM+fk5AIDVajUCS0tLK6677gbU1noQjyeRy23FhZ5UavL5cxCPPwe7/Wk4HI8BSEHTfEinb+RZLzpjDCxEJSqXy+Ho0VegKBFMTIwb406nE4FAYYt8otInIJu9BNnsJWYXQmWOgYWohOi6bvS8slqtePHF5zE/Pw+LxbK0RX4YXV3dsNk4dYloa+G7HpHJdF3H+PgYFCWCkZFh3HjjO2CxWCAIAs4993xoWh6hkAi3u8LsUomITMPAQmSSRGIWshyBqsqYnZ01xoeGBtHZ6QMA7Np1jlnlERGVFAYWog02NjaKZ599BqOjI8aY3W6H3x+AKIbR2tpmYnVERKWJgYWoyPL5PBYXF+F2uwEU+veMjo5AEAS0t3dAFMPo7u42NnYjIqLXYmAhKgJd1zE5OQFFkaGqCnw+Hw4cuBIAUF/fgDe84XJ0dnahsrLS5EqJiMoDAwvROpqbm4OqylAUGfH4tDE+NjYKTdOMxbQ7duwysUoiovLDwEK0Tn7xi8cRibwCvdDEBjabDV1d3RDFMDo6OmGxWEyukIiofDGwEK2BpmkYHh7Ctm0tsNvtAICqqirouo7W1jZIUhjd3QE4nU6TKyUi2hwYWIjOwLFjU5DlCKJRBclkEldeeRWCwRAAYMeOXQiFJHi9XpOrJCLafBhYiE5jYSEJVVWgKDKmpiaNcZfLjcXFjPG12+027gQiIqL1xcBCdArJ5Dz+9V+/Bk0rNBO0Wq3w+bogimF0dvpgtVpNrpCIaGtgYCFaous6RkaGMT09jXPO2Q0A8Hgq0djYBEEQIIoSAoEQXC6XyZUSEW09DCy05cXjcShKBIoiY35+DlarFaGQaASTt771z4yFtUREZA4GFtqSUqkUolEVihLBxMS4Me5wOBAIhJDL5YwxhhUiIvMxsNCWpKoynn76KQCAxWJBR0cnRDEMn6+LAYWIqAQxsNCmpus6xsfHoCgRtLa2IRgUAQDBYAiqqiAUEhEMhlBR4TG5UiIiOhUGFtqUEolZKIoMRYlgdnYWQGGtynJgqajw4LrrbjSzRCIiOgMMLLSpRCKvIBI5itHREWPMbrfD7w9AFMMmVkZERGeDgYXKmq7rEATB+FpVFYyOjkAQBLS3d0AUw+ju7obd7jCxSiIiOlsMLFR2dF3H5OQEVFVBNKrg+utvgsdTCQDYvXsP2ts7EQqJqKysNLlSIiJaLxsSWHp6evCZz3wGL7zwAjweD6699lp85CMfgcPBT720enNzc4hGFchyBPH4tDHe0xPF7t17AQA+Xzd8vm6TKiQiomIpemCZnZ3Fu971LnR1deGee+7B+Pg47r77bqTTaXzyk58s9svTJjAzE8dTTz2J4eEh6LoOALDZbOjq6oYohtHe3mFyhUREVGxFDyzf/OY3kUwm8S//8i+oqakBAOTzedx111344Ac/iObm5mKXQGVG0zQsLCwYl3Tc7gqMjY1C13W0tLRCksLw+4NwOp0mV0pERBul6IHll7/8Jfbv32+EFQC4+uqr8alPfQpPP/00/vzP/7zYJVCZmJ4+BlmOQFVlVFR4cP31NwEAnE4nDhy4Eo2NjfB6q02ukoiIzFD0wBKLxXDdddetGPN6vWhsbEQsFjur57ZaLWf183T2lo/BWo/FwkISilJYlzI1NWmM67qGxcU0KioqAACSJJ59sZvc2R4LWj88FqWDx6K0HHdT5xkremBJJBLwer2vGa+urjY29Forr9d9Vj9P62ctx+LZZ5/Fr371K2iaBgDweFzw+/3YsWMHuru7YbPxJra14LwoHTwWpYPHovyV9V+ERCKFfF4zu4wtzWq1wOt1n/ZY6LqOkZFhVFfXGGtTbDY3ksk0mpu3QZLCCAZDcLsLbypzcxkAmY34V9g0VnssqPh4LEoHj0Vpqa52w2JZ29muogcWr9eLubm514zPzs6iuvrs1iPk8xpyOf4CloKTHYt4PA5VlaEoMubmEjj//AtxwQX7AABtbZ246aZbUFNTa3w/j+fZ47woHTwWpYPHojQs3ei5JkUPLH6//zVrVebm5jA5OQm/31/slycTpFIp9PREoSgRjI+PGeOFfXde/W212WwrwgoREdHJFD2wXHbZZbjvvvtWrGU5fPgwLBYLLr744mK/PG0wTdPwzW8+hHQ6BQCwWCzo6OiEKIbh83XBbrebXCEREZWjogeWm2++GQ8++CA+/OEP44Mf/CDGx8fxuc99DjfffDP3YClzuq5jdHQUr7wyju3b9wAoBJTubj+mpiYgioV1KRUVHpMrJSKiclf0wFJdXY2vfe1r+PSnP40Pf/jD8Hg8uP7663H77bcX+6WpSBKJWSiKDEWJYG4uAbfbgYaGFtTVNQIALrnkMt7hQ0RE62pD/qoEAgF89atf3YiXoiLJZDKIxaKQ5QhGR0eMcYfDgR07dsBme/VSD8MKERGtN/5loVWZmBjHL37xOABAEAS0tbVDFMMQxSCammoRjye5Ap+IiIqGgYVW0HUdU1OTUBQZbrcb5513PgCgra0d7e0daG/vRCgkHreXCnePJCKi4mNgIQDA/Pw8VFWGLEcQj08DACoqKrB373mwWCywWCx461v/zNwiiYhoy2Jg2eJisR68/PJLGB4egr60o4/NZoPP1w1JkkyujoiIqICBZYvRNA2CIEBY6kA1MjKMoaFBAEBLSyskKQy/Pwin02lmmURERCswsGwR09PHIMsRqKqMK674E7S1tQMAtm/fAZfLBVGU4PWeXasEIiKiYmFg2cQWFpKIRlUoSgSTk5PGeE+PagSW+voG1Nc3mFUiERHRqjCwbELpdBqPPfYzDA0NQNMKtxpbrVZ0dvogimF0dvpMrpCIiOjMMLBsArquI5GYRXV1DQDA6XRidjYOTdPQ3LwNoZCEYDAEt9ttbqFERERrxMBSxmZm4ktb5MtYXMzg0KH3wGazQRAEvOENB1BR4UFtLbshExFR+WNgKTOpVAo9PVEoSgTj42PGuMPhwPT0MTQ1FRpKLq9RISIi2gwYWMqIosj4xS8eQz6fB1DojNze3glJkuDzdcNut5/mGYiIiMoTA0uJ0nUdExPjsFqtaGgodEFubGxCPp9HY2MjRDGMYDCEigqPyZUSEREVHwNLiUkkElBVGYoSwczMDAKBEP7kT64CANTW1uLtb38namq4LoWIiLYWBpYSkMlkEItFIcsRjI6OGOM2mx0OhwO6rhs70zKsEBHRVsTAUgJ+9KMfGAtoBUFAW1s7RDEMv98Pu91hcnVERETmY2DZQLquY2pqEqoq44IL9hlhxO8PYHFxEZIURigkobKy0uRKiYiISgsDywaYn5+HqipQlAimp48BAOrrGyFJYQDA7t17sWfPucZlHyIiIlqJgaVIstksYrEeKEoEw8ND0HUdAGCz2eDzdaO6+tVGgxaLxawyiYiIygIDS5Gk02k8/vjPjK9bWlohihICgRCcTqeJlREREZUfBpZ1MD19DLIcQSaTwRvfeAAAUFVVhXB4B6qqqiCKErze6tM8CxEREZ0MA8sapVILxrqUyclJAIVLOxdeuM/YzO3yy68ws0QiIqJNg4HlDA0PD+HIkRcwODgATdMAAFarFZ2dPohiGA4HL/cQERGtNwaW09B1HZqmwWq1Aih0SO7v7wMANDU1G1vku91uE6skIiLa3BhYTmJmJg5VlSHLMvbuPQ+7dp0DAAgEQkgmkwiFJNTWctdZIiKijcDAcpx0Oo1oVIWiRIydZwEgFosagcXlcuHCCy8yq0QiIqItiYEFhcs+P//5T9DbG0M+nwdQWEDb3t4JSZLg83WbXCEREdHWtiUDi67riMenUVdXD6DQvyebzSKfz6OhoRGiKCEUEo27fYiIiMhcWyqwJBIJqKoMRYlgZmYGt9xyyNgf5cILL8K+fftRX99gcpVERET0xzZ9YMlkMojFopDlCEZHR4xxm82OqakpI7A0NDSaVSIRERGdxqYOLKOjI/jhD7+PXC4HoHDpp7W1DaIYht8fgMPhMLlCIiIiWo1NE1h0XcfU1CQWFxfR1tYOAGhoaIAgCKitrYMkhREMiqiqqjK5UiIiIjpTZR9Yksl5KEphi/zp6WOora3DTTe9A4IgwG534KabbkFlZSUEQTC7VCIiIlqjsg0si4uL+MEP/h0DAwPQdR0AYLPZUFdXj1wuC7u9cLmHZ1SIiIjKX9kGloWFBQwOFsJKS0srRFFCIBCC08lePkRERJtN2QaWQmfkixAIhIw7fYiIiGhzKtvAUlVVhQsuuBC5nGZ2KURERFRkFrMLWCsuoiUiIto6yjawEBER0dbBwEJEREQlr+iB5emnn8ZHP/pRHDx4EJIk4e///u+L/ZJERES0yRQ9sDz11FOIRCK44IIL4PV6i/1yREREtAkV/S6hv/mbv8Edd9wBAPj1r39d7JcjIiKiTajoZ1gsFi6TISIiorNTtvuwAEB1tRtLu/KTSZbvLuexMB+PRengsSgdPBalxWJZ+5YkZR1YePamdPBYlA4ei9LBY1E6eCzK3xkHlrm5OUxMTJz2+zo6OuBwONZUFBEREdHxzjiwHD58GHfeeedpv+/RRx9FIBBYU1FERERExzvjwHLDDTfghhtuKEYtRERERCfEi3pERERU8oq+6HZ4eBgvvfQSACCVSmFgYACHDx8GAFx11VXFfnkiIiLaBARdL+6NXo888gg+/vGPn/AxWZaL+dJERES0SRQ9sBARERGdLa5hISIiopLHwEJEREQlj4GFiIiISh4DCxEREZU8BhYiIiIqeQwsREREVPLKPrA8/fTT+OhHP4qDBw9CkiT8/d//vdklbQk9PT1497vfjb179+Liiy/G5z73OSwuLppd1pbU39+PT37yk7j22muxY8cOXHPNNWaXtCX9+Mc/xl/+5V/isssuw969e3HttdfiO9/5DrhzhDmefPJJvPOd78RFF12EXbt24YorrsBnP/tZzM3NmV3alpdMJnHZZZdBkiRjY9nVKPpOt8X21FNPIRKJ4IILLsDs7KzZ5WwJs7OzeNe73oWuri7cc889GB8fx9133410Oo1PfvKTZpe35aiqiieffBJ79uyBpmn8A2mSr371q2hra8Mdd9yB2tpaPPPMM/jEJz6BsbEx3HbbbWaXt+XMzMxg9+7duPXWW1FTUwNVVXHPPfdAVVU88MADZpe3pX3hC19APp8/8x/Uy1w+nzf++fLLL9fvuusuE6vZGu677z597969ejweN8a++c1v6tu3b9fHxsbMK2yLOn4OfOxjH9Pf8pa3mFjN1nXs2LHXjN155536eeedt+IYkXm+9a1v6aIo8n3KRNFoVN+7d6/+jW98QxdFUf/973+/6p8t+0tCFkvZ/yuUnV/+8pfYv38/ampqjLGrr74amqbh6aefNq+wLYpzoDTU1dW9Zmz79u2Yn5/HwsKCCRXRH1t+z8pms+YWsoV95jOfwc0334zu7u4z/lm+09EZi8Vi8Pv9K8a8Xi8aGxsRi8VMqoqo9Dz//PNobm5GZWWl2aVsWfl8HplMBi+//DI+//nP48CBA2hvbze7rC3p8OHDUBQFH/7wh9f082W/hoU2XiKRgNfrfc14dXU11xERLXnuuefw6KOP4mMf+5jZpWxpl19+OcbHxwEAl156Kf7X//pfJle0NaVSKdx99924/fbb1xzgSy6wzM3NYWJi4rTf19HRAYfDsQEVERGdmbGxMdx+++3Yt28fDh06ZHY5W9r999+PVCqFaDSKe++9Fx/60Ifwla98BVar1ezStpR7770X9fX1uO6669b8HCUXWA4fPow777zztN/36KOPIhAIbEBF9Me8Xu8Jbw2cnZ1FdXW1CRURlY5EIoH3v//9qKmpwT333MM1RiYLh8MAgHPPPRfnnHMOrr32WvzsZz/DVVddZXJlW8fw8DAeeOABfP7znzf+diyv61pYWEAymYTH4znt85RcYLnhhhtwww03mF0GnYLf73/NWpW5uTlMTk6+Zm0L0VaSTqfxwQ9+EHNzc/jWt76Fqqoqs0ui40iSBLvdjoGBAbNL2VKGhoaQzWbxgQ984DWPHTp0CHv27MHDDz982ucpucBCpe+yyy7Dfffdt2Ity+HDh2GxWHDxxRebXB2ROXK5HD7ykY8gFovhoYceQnNzs9kl0R85cuQIstksF91usO3bt+PrX//6irGjR4/is5/9LO666y6cc845q3qesg8sw8PDxk55qVQKAwMDOHz4MADwlF+R3HzzzXjwwQfx4Q9/GB/84AcxPj6Oz33uc7j55pv5Jm2CVCqFJ598EkBhPszPzxtz4MILLzzh7ba0/u666y488cQTuOOOOzA/P48XX3zReGzHjh1cc7fBbrvtNuzatQuSJMHlciESieDLX/4yJEnCwYMHzS5vS/F6vdi3b98JH9u5cyd27ty5qucRdL28t8V85JFH8PGPf/yEj8myvMHVbB09PT349Kc/jRdeeAEejwfXXnstbr/9dr4pm2BoaAhXXHHFCR/7+te/ftI3ClpfBw4cwPDw8Akfe+yxx/ipfoPdf//9ePTRRzEwMABd19HW1oYrr7wS733ve3mbeQn49a9/jUOHDuE73/nOqs+wlH1gISIios2Py9eJiIio5DGwEBERUcljYCEiIqKSx8BCREREJY+BhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUcljYCEiIqKS9/8DQLeYnUD1XxEAAAAASUVORK5CYII="}}]}}, "8395c77c7184403180f4c62f8901907e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "144bd55697404e1fb69bc9d8d7b52773": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_6212307a14184291acddcee24e3d2b3f", "IPY_MODEL_d182cfdeb4be4c709b1ef68789ac0468", "IPY_MODEL_0f8ea0f581b341de87b7713c08427bbe"], "layout": "IPY_MODEL_8395c77c7184403180f4c62f8901907e"}}, "54e1f485790e424d8b1963e05ad1cb7f": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0c5d607aea4d4b26977c1bf3ff1ede2b": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "6212307a14184291acddcee24e3d2b3f": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_54e1f485790e424d8b1963e05ad1cb7f", "style": "IPY_MODEL_0c5d607aea4d4b26977c1bf3ff1ede2b"}}, "e3743025599047e9969fe1d996a5653c": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "91d819ef924b4aefb1504456f226545b": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "d182cfdeb4be4c709b1ef68789ac0468": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_e3743025599047e9969fe1d996a5653c", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_91d819ef924b4aefb1504456f226545b", "value": 30}}, "03f3b20d931b4ddb9b54257e4615470e": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "0f8ea0f581b341de87b7713c08427bbe": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_03f3b20d931b4ddb9b54257e4615470e", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGFCAYAAACyvIemAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrYElEQVR4nOydd5gkZbm+769y5wmbSLtLRkBARSUcMxmULBKVKCgKInoU5aiHoAcVf2AElayASI4KgiASRQxkSQvLptlJnau7qr7fH9XdO6G7p2emu6dnqPu6vFxmu6ura3v6re/9nvd5hJRSEhAQEBAQMMMoM30CAQEBAQEBEBSkgICAgIAOIShIAQEBAQEdQVCQAgICAgI6gqAgBQQEBAR0BEFBCggICAjoCIKCFBAQEBDQEQQFKSAgICCgI9AafWBfX6qV5xEQEBAQ0GLmz4/N9CnUJVghBQQEBAR0BEFBCggICAjoCIKCFBAQEBDQEQQFKSAgICCgIwgKUkBAQEBARxAUpICAgICAjiAoSAEBAQEBHUFQkAICAgICOoKgIAUEzHIMQxAKqUjpzvSpBARMi4adGgICAjoLVRVEIiamqQPguh627SGEmOEzCwiYGkFBCgiYZQgBoZBOOGwipSSVSqNpGrFYGNtOAupMn2JAwJQIClJAwCzCNFUiERNFUbDtIrlcHscpImUe0+whGjVJp4vBKilgVhLsIQUEzAJUVRCPW8TjYaSEVCqLbReIRELMm9eDoqikUllCIQtF8ZBSzvQpBwRMmqAgBQR0MEJAOKzT3R1B11UymRypVBZd14jHI2iaiuu6JBKx0mrJJR6PAN5Mn3pAwKQJWnYBAR3K2PZcPm+jqirxeARFEdh2kXQ6BQh6e7sJhy2SyTS9vV2YphYIHAJmHcEKKSCgw6jVnguHLWKxMJ7nkUxmKRSKxGJ+vk0ulycaDeO6LtlsnlgsTLBKCphtBCukgIAOYax6LpPJUSg4WJaBZRlIKUmncziOSzhsYhg6Ukri8RiDg0ksyyQWi5BKZbAsIxA4BMw6ghVSQEAHYJoq3d1hwmET2y6STGbwPEk8HsGyDGy7yPBwBkURJBL+3lE6nWFwcAjD0LEsg1QqQyhkoaqBwCFgdhIUpICAGaTR9lyx6BCPhwmF1hUsAM+T5HJ5YrEI+XyBQqFIPB4NBA4Bs5KgZRcQMANMpT3nOC6pVBZFUYjFIqiqgmWZDAwMY5oGsVi4ImoIBA4Bs5FghRQQ0Gam0p7LZHJkMjlCIZNoNITrugwODqGqKqGQRTrtt+hABAKHgFlLUJACAtrEdNpziqKU5N4K6XSWfD5fWVlFImHy+QKO45JIREilsgDEYhHSab+1F42awV5SQMcTtOwCAlqMEBCLrVPFTbY9F49HEEJU9ohCIRPD8AtYf/8QoZBFPB6ptOjKAodEIkY2myeVyhKPR8hmbTxPCVp3AR1LsEIKCGgh5fZcuRhNpT3nOF5FxBCP+3tHqVQKgGg0XJJ5mwghAoFDwKwmWCEFBLSAkdEQjuPiOC5SSsJhC8PQKRYd0mkbRRHE4+FRbgymaRCPW3ieJJ3222/RaBhF8QtOLpfH8yRSZojHY+Rydqn4RAKBQ8CsJlghBQQ0kVrec6qqoOtaaX4oRyaTJxTyC0d5P6m8irEsg3y+QDqdxTD0ikBhaGiYbDaHlCCEwLYLJbcGv10XCBwCZjtBQQoIaBL11HNCCIpFd8rtuWQyhet6wMiVjSCdzqBpKoahk83mA4FDwKwmKEgBAdOkEfWcEALHmVg9VygUiEbDWJZBLpdnaCiJbRfxC9HoNpsQAtd1K6sgf/UkKwIHXQ8cHAJmF0FBCgiYIo1EQ6TTuVJBgXDYmlJ7bmwhGn0OCtlsDggEDgGzn6AgBQRMgckMt0YiFsA023O1kRLSaX8V5HleReCQSvnHLgscNE2tCBwMQ8c0tWCVFNBRBAUpIGASTGW41XU9PM+bVnuuHoHAIWCuEBSkgIAGaLQ9V009J6W/hzTd9twEZxgIHAJmPUFBCgiYgOl6z+n6uqFYmF57rhaBwCFgLhAUpICAGjTLe851PRzHbUp7rh6BwCFgthMUpICAMUynPVdNPacoAsPQm9ieq00gcAiYzQQFKSBgBM2IhhirnvNXKLmmtefqMRWBQz5vl1ZzQUEKmFmCghQQQHOjIcaq5xzHQdN0mtmeq8/kBA6e57frwmEjWCUFzCiBuWrA25rpJrdWj4bQKRT8YuW6ftusqyuOaRrYdqEN72m0wKG/fwjLMmtGVPitvQKhkBVEVATMKMEKKeBtSyvac9XUc47jt8UikVDbvugbFTg4josQguHhTCBwCJhxgoIU8Lajle25Wuq5TMYvDuFwqG3vsxGBQ7lFZ1lGIHAImHGCll3A24Z2tOdq7RNJKUt7OSFs28Zx3Da839ECh+HhFL29XRWBQyxWfj820WiYtWsHKw4Otp0E1JafY0DASIIVUsDbgna15+qRz9u4rkskEm7DOy5TW+AgpURKyfBwGggcHAJmnqAgBcxpZqI9V4902p9nMk2jpe+7TD0HByFExdIocHAI6ASCghQwJ2n2cGuzvOc6SeAABA4OAR1FUJAC5hyd0J6rRycIHMrtusDBIaCTCEQNAXMGVRVEIiamuU6MIKUkHLYwDJ1i0SGdtlEUQTweRlEUbLtIPm9jmgbxuIXnSdJpf2g0Gg2jKL5MOpfLl76Yp7+qmWmBQzwerazORgocslm70toLBA4BM0GwQgqY9XRqe64eMylwUFWlkokURFQEdBJBQQqY1ViWSk9PpGPbc/WYCYFD+bUURQkiKgI6jqAgBcxKyuq5WCxc+nLNz6h6biq0U+Cg6zrd3XHC4VCl/RhEVAR0GkFBCphVVGvPSSk7uj1Xj1YLHBRFIRaLkEhEcV2PoaEkmUwuiKgI6EiCghQwa6ilngPQda2j23O1KAscLMtA05orHAiFLLq742iaRjKZJplM47relCIqygKHYJUU0EqCghTQ8Uw03CqlxHHcjm7P1aPZAod17TmLXC7P4OAwhUJxzKMmF1ERCBwC2kFQkAI6lkbVc7ZdRNPUjm/P1aMZAodq7blsNl/1sfUcHAKBQ8BMERSkgI5kMsOtlmUghCCbzXd0e64e0xU41GrP1aPRiIpA4BDQLoLB2ICOYirDrYVCEdM0SvsgZluGW1tBJpPDMHTC4RCZTLah5+i6TjQaQlEUcrl8zRVRLcoODvF4jFzOrggcBgaGMU2jInDo7e2qCBx6e7swTQ3b9oIgv4CmEqyQAjqC6Qy3FosuUkoMQ5sV7blaTEbgMJn2XD0CgUNAJxEUpIAZpxnec1JS2bjv9PZcPRoROEylPVefQOAQ0BkEBSlgxmhmNITruhiG3lHqualSS+DQmHpu8gQCh4BOIShIAW2nFd5zuu5vhw4Pz472XD3GChya1Z6rRyBwCOgEgoIU0FZaFQ1RbiOZpr/nMdspOzjE49Emt+dqMzaiInBwCGg3gcouoC20IxpCCEE4HCrtw8zuu3ZN00r/r2LbNul0ruWvOVbgMDycore3K4ioCGgbwQopoKW0Mxoil/MLUTTazkiH5jKyPec4Lq7roartvG8MBA4BM0dQkAJaxkwkt2YyWXRdb1ukQzOppp5LpzNtj6gIBA4BM0VQkAKaTjPVc5P1nisWHWy7UBIEtP2tT4l66rl2RlSUCQQOATNFUJACmkanJLdmMtnKflIn06h6rtURFdUIBA4BM0FQkAKawky052rheZJsNodlmahqZ37EJzPc2sqIiloEDg4BM0Fn/rYGzBpmsj1Xj04VOEx1uLXZERWNEQgcAtpLUJACpkSntOfq0UkCh2YMtzYjomIyBAKHgHYTFKSASdNJ7bl6dIrAoVnec4HAIWCuExSkgIbp1PZcPWZS4NAK77lA4BAwlwkKUsCEzIb2XC1mQuDQSu+5QOAQMJcJClJAXWZLe64e7RQ4ND8aYjyBwCFgrhIUpICqqKqguzs0q9pz9Wi1wKFV0RC1CAQOAXORoCAFjGJke05VVTzPmzXtuXq0SuDQjmiIagQCh4C5SFCQAiqMbc+lUr4gIJGYPe25ejRb4NCO9lw9AoFDwFwjKEgBNdVzlmUghEAIQTo9e9pztWiWwKHd7blaBAKHgLlGUJDexjSqnvNzi0Kzpj1Xj+kIHGaqPVeP2SJw8Ffa4WCVFFCXoCC9TZmMek4Igaoq5PP2rGnP1WMqAoeZbs/Vo9MFDvF4FADD0AOBQ0BdgsTYtxlTTW5VVQXDMDBNY8Lk1k4tRGVGChwKhQL1vh91XScaDaEoCrlcfsZXRNUYKXAoFIpt+cIvCxwsy6wIHLq6YmSz+YrAoa9vkEjExbJMhodThMMh4vEIQ0MZgnTZgGoEK6S3CdMdblVVBSH8L7/Z0p6rx0QCh05sz9WjEwUOiUQUVVUq8fKBwCFgIoIV0tsA01SJRMzKaieft1FVtSRGENh2kVzOxjR1EokIUkoymRyO4xIOW+i6RqHg4HkupmkQj0dKcvBUSbAAs6UQlSkLHMLhUGkfZl37LRSyCIctPE+STKZnRLAwWcoCh0gkhG3bOI7b8tccK3AYHk7R29tFKGSRyeSIRsM4jkuxWCQaDbN27WBF4GDbSYJVUsBYgoI0h5lqey6ft0uFxxrVnvMVVOB5/ophNrTn6uEXYb/lNDycxli1iuhtNyPuvBM5PIy7cBHigAMR++2HjMWb/eIYf7oPddnrSFXD2XFHnPfsyHSGpPJ5G8syiETCDA+nmniy9fAFDt3diVECB9ddVxBTqSyWZRKLRUqzSwbRqEk6XWzbDFXA7EDIBtfOfX3t+oAHTBchIBTSCYd925ZczqZQcLAsA8sySnfTdmkFZGIYfsHKZvMoikI47A87loccQyH/MYVCkULBJhqNzpqVw0ToukYiEcO58Sa0009DplJIIUBRwXEAibt0KelLfom72ebTf0EpMa+/jtCPLkTpW+P/Y0lAVXDesTWZ87+Hu+22Uz68pql0dcVJpTLYdmH659sAUnpEImEsy6S/f4h587oBGB5O0dUVrxTHRCJGf/8Qmua3ifv7h/E8JShKbWT+/NhMn0JdgoI0x6jVnguHrXHtuVBoXcEa257L5fIYhq+W8jyPbDZbac/F4zFUVWFwMDnD73b6hEIW4X/9Aw4+GJnNIRMJUEZsrToOIjmMu2QpyZtv9f9+GliXX0b4/HPBdZHRKGiavxlTKCCyWWR3N8mrf4u7zTZTfo1oNIxh6AwOJtu4VyPp6enCdV10XQdgYGCYUMjENA36+gbp7o4jhKC/f4je3i6klAwNZRAiaN21i04vSIGoYY7QzmiIdDpbWklZM/22p8zI4Vb3ooshm4We7tHFCEDTkIku1DeWYdx2y7ReU6xaReiH3wcpkV1dfjECf5VkmshEAjE4SOTc70zrdWZK4JDP2+i6Ti6Xr+HgkAkcHALqEhSkWc5MREN4nkculy8ZZ86uj9BY9dzwCy+hPHA/0rIQilJ9S0z17+DN3/9+Wq9t3nKTvwqKRmudHDIUQnvq76jPPzfl12m3g4OiKCQSMcLhEJ7nVWa1xjs4EDg4BNRldn2bBIxiJqMhstk8nteeSIdmUW24Va5YCUUHqfltppoFVtNRV7w1rdfX/vEP8Lzxq7CRmCYUC2j/+te0XqtdDg7hsH9NVVVheDjF0FAyiKgImDKBym4W0mz1XGW4NZOleO+9GLfdijE4hNfTQ+Hjn6D4Xx+oqv7KZHLE49GK4KETEIODmLfdinHbrShrViOjMdx990U/+iiU3k3GD7eGLFAEeC6e56Eq/ib7uC9Iz0OGwpU/K6tWgl1Azp+HjDbYl3cnIcX2pr9qSKezdHXFMU2j6QIHw9CJRMYPDEvpVVZB/f1DWJZZcXDo7e2qODgkEv4QbSqVJR6PkM3agcAhIBA1zCZaqZ7LPf88kaOPQn3+ef8O3nX9VpXn4WyzDakrrsbbcMNx5xSPRztG4KA+8wyxL3weZcVbIARS1xGui+J5yHiczHnnk999z9FPcl0S++yF+srLyO4eFEWAEHie56vfAKREDA6QP+bTuFtvg3n9daivvAyeRIZCFPbZl/yRR+Jtulnd8wv98AeEfvpjXxhR64vXthGFAsnrfufLwKdJswUOiqJUjlkoFEmns/61GoUvcLDtArZdpKsrFggcOoROFzUEBWmW0Er1XGHFKrr23KPyRY6ilOTI0r9Tl+ButBHD9/wR2d096rwURaG7Oz7jtjqir4/EoQehrFiB19uLoukIxf/S9xwH0d+PDIVJXX4Fzg7vGvVc86oriPzv/yJDFoT8u34pJdKTfjFKJkHXKOy8K8ajfwUp8SJRUBVEPo/I5/HmzSN90Y/rFhHl9dfp2mt3f7VVbR9JSsTgEM4730nytjumNZNUuS5C0N0dx7aLZDLZuo9VXnsN65qrMW+9BZFM4vX0YB9yCPYRR+KtvwHhsFVxZchkcjVXxVJKTFMnHvcLUXkFPjAwzLx53eTzNtmsTW9vglQqQ7Ho0NvbxfBwGtv2glVSC+n0ghTsIXU47VDPWZdf5hcjRfFXReUvBCH8/1YE6ptvYF1x+bjz6xSBg3nLzSgrVyLnzUM1DITit91c10UKgdfbi8ikMa+6ctxz7SOOorDvvohcHjEwiMznEa4L+RxicABUhcJ/fQDjkYfxIlG8BQshEgErhOzqxluwENHfT/TML/vFqwbe0qXkP3McOC4inR7dlnMcxNAwhENkv3ZWU4oRNC5wMO68g67dP0bo0l+grF4Fdh51+ZuEL/p/dO32Ubr/8RShUDluI1m3RdtYREUgcAgYT1CQOpS2qedcD+vKK+pvtisKeB7WlZdX3dvoBIGDefNNoCiouo6UEs/1RreShECGQhgP3I8YGBj9ZE0j/cMfkT3rG7iLF0MuB8kkiuvivPd9pH50kd/SU1QIV3mPioLsnYeyahXG3XfVPc/sV75K7nOfB01HJJOIoSH/f+k03sKFpH7yM5xdd23CFVnHRAIH9Z//JPrFUxH5HNKykKGQL0MPh/0VYyqFcvjhDD/9r0msgicfUQGBwOHtTiBq6ECa5T1Xbs/V854Tg4Mo/f0VaXNNVBVlzRrE8PC4th3MrMAhZJlofWvANHG92vEG0jAQuRxK/1rcnp7Rf6lp5I87nvwxn0Z97jn0gk10042xF66HfOgvKKtWIeN1hmI1DZAY992Hfdinaj9OVcmd+RXyRx2NeestqK+/DrpG8d3vobDnXhBqzexQPYFD6FeXIgoFvxCVVmYj22aeZSHSaYwrLsP5n2839HpjIyoCgUNAIwQFqYNomXquXjREo2228nNrFC7fVqhYiUBoByOjIWQohMxm695dC9ctzfrUWclpGu522+ECeixCRNdIZ9MI10Vq9X9dpKoihocaOne5aBH5z57c0GObQa2ICpFOYdx9F7K8b8joYiSl9FeXgPm768me/a2G24mNRlSEQkXi8Sj9/UOEw1YQUfE2JmjZdQAzMdxaRnZ342688cQyYylxN98MGau9KdouB4dq0RD5j+2OKBapF24kMhncd2yNt8EGDb1OOaLCWG89pK5DYQLptOviLVgwmbfSVqo5OIj+Af+6leTuSqnYSClHF3dV9fe9svWFEWOZKKIicHAIGElQkGaY1gy3qo0ntwpB/tjj/T/XKkqln+ePO6Hu3fFEAgf1Py8RuvCHRM48g8g3z8K443bIT06ZVyu51T7kUGQojBgcrFqURCYDikL+8CMavsMvR1SYO++Et/EmKHUECxQLCCEo7LPvpN5PO6kmcJDRKAhR+YR4YwtRGc8DVQNrcjcbgcAhYDIEBWmGaK16bniU99xE5I86Gue97/O/dBxn3Re6lP5/ex7FnXYm/6nD1z3JdaE4vjVXVeCQyxH5ypeJH7g/oZ//DPOWmzGvu47oGV+ia+890B5/bMJzHOk95yu9hke1Bt1ttiH7ta+DqqH09fkFqFCAXM7/73ye/KcOp/CJ/Sd8rZHkcjYuAnHyZ5GKQAwPjyp4IpdFrO1DWb4cr7ub4o7vndTx281IgYNh6HRttjHsvDM4Tu0ViZQIKSnssUf1lq3joD36KMadd6D/9eEqK8lA4BDQGMEcUpsRAiKRdYOszRxuzWQyE6+IapFOE/3G1zFvutEvQqrqFx1Nwz74UNLnnQ+hEPp992H99hr0xx8H6eFusCH2EUf6K5SSE7YvpChFVORtoqd/EeOeu30FVySyboVSLKIMDyMTCZKXXYn7zneOOy1FUYhEQpimUXqP2VFhemPRH3oQ6/LL0J76G8JxkIqKu9mm2EcejX3wIY3vmY08pq6RiEexzzkX7dJLIG/7Lazk8Lo2oabh9fTiLVyIffQx5I8+Zkqv1Q7K/z7g7/3Z1/+O6GdP9GM3THP0g6X0h3WFYPh3v8d5/07r/s7zsH79K0KX/AJl5Qr/sULgLVhA/vgTyJ3y+UoBGxtR0dPTRbFYJJPJlWaQgoiKdtDpc0hBQWojI9Vz4G8027ZfVKY+3CrJZjNNS24Vq1Zh3nM3YmAA2dODvfc+yIULwXGInPU1zBt/76+kdB0pBKJ0N+xuthmpy6+quDmUHRxSd/+R+LGfxrPM6goyKVH61lLYfXfSP79k1F+NTG7NZLKTEksob7yBMtCPjERwN91s2sUhFougayqpe+/DvOwyzNtvg2IRaYXwFi5A9s4DQAwMIJwiueNPJH/K56b1mq2gPNxaFrgMDg4jPY/weecQuuQXIEHqWsWtQzgOKCqZs84if/KI9yMlka9/DevqK333cl2vjAeIYhGEwD7gQNI//umIax84OMw0QUEKGKeey2bzCKEQjVoIIXAcl0wmj6IIwmFznHquXHhyOX+/xd+jmUA912RCP7mY0A9/gDTN8fsIrj/o6W6zDcO33A6aVnFwcD57MuoNN+DN6625dyMyGfA8hu+4G2/JklHquZl2gCijKILu7gT5vA2nnopx9914G21UtYUl+vtBCJJXXYO3ySYzcLbjGes9l8vZox0cpMS45SZCl16K9tyz4ElQBMX37Eju5FMo7jHacsn4wz3Ejj/WX1WV8o9G4TgI1yX9o4uwP3kYEDg4dAKdXpAC2XcLGes959utjG7Pua6HqipEIhaaplbk3uV9olrtuWRyZHuuxb+o2SzW5Zf7d7rVNrVVFRkOoz73PPpfHqL4kY+uEzi89CJypPtDFaRloQwOoS1bhrnt1pX2XFmw0AmUBQ7htX14j/wV2d21rhgVCv48VyoJroc0DUSxiHnXHeRO/eKUXk8MDmL84R5/TyabxdtgA4p77kXx/Tuty1FqgLHec8PD6crAsL+XE8K2/VV44cCDKRxwEMrrryOSw8ieXr/oVsG67Nf+H6oVI/DP0XWxLvs19qGf9IUTYwQOw8Mpenu7KgKHWMyfQSoLHNauHawIHGw7SSADn/sEBalFTGa4NRQyK8Uom80RCtUabpVVh1tbjf7wXxAD/bVzfMD/YspmMe64neJHPgr4X3ghVUUwwSJcSoQiiHXF8ErquU5xDx9JLmdjPf88SjaLs2g9AMTgAMry5ZU2FUIgMmlwXcwrryB/5NFVB4nroT/0IOH//c66iHNVhb89iXnnnRR33JHM+d9D9vZOeJyR3nPVrmk+b2NZBpFIuLKHgxB4G29c/8C2jf7oI/7qqA5SUdCefcZv/1bO1xc4dHcnRgkc1q4dJBSySCQiDAwksSyTWMyXh1uWQTRqkk4Xg1XSHKczd11nMVNVz6VSWVTVn69R1eao55qFsnatv2E9kZuDlChr1oz6UeE9OyKkrHm2QgjUfB5iMXKbbzFOPddp5PP+Br9QBCKVRH3jDX9o1rKQpok0DP/PioLS10fk2//ji0QaRP3nP4h88xso/Wvx1lsfb4MN8Rath7fhRniJBPqjjxD5+n/XnYkyDF+R2Ij3XDrtz7uZptHwOYpigYnuMfwHlgZt7fyIH412cPBn5GTFwUHX9YqDQyhklUYYsqU2dW0XjoC5QVCQmsR0h1sjEb8VJqVECFGZbm9kuLXVyHjc/8OEeT5i3Goge+BBfksulRrzSIGiKKieB/k89t77kA1FmnjWrcFesjFeOIyaTqOsXg2uizTGfJmX/g29nh60J55Ae+KJho9vXXklYmgQb731x98AhEJ48xegP/kk+sN/Gfdcv80bJR73B4YHB5MT7r+NdHBodPUhwxG8ri7ERMPUpULtdY+2aSo7OAAVBwfL8tWjZQeHcps6Ho+Sy+UrA+DBbNLcJihITaCZw63ldpymqeTzdmPDrS2m+IEPIuNxRC5X+0GOAwIKYza/3c23IPfZU8B1UQYHfam3UFAUgchk8Nauxdl4EzKf/0KL30Vz8DbaiMLOu8DatYh02leXjcVxkKqKt956UCxi3PuHho6tvLUc/bFH6+clWRZ4HsYdd4z68cjk1vLA8PicoupUc3Cof6IK9hFHrIsoqUapKNuHfLKqujJwcAioRlCQpkErh1tzuTymaZQk4jPbN5eJhL8x7brVW0We5xeXxYsp7L7HuL/OnvI5Ct/5DmLRItRUCtG/FtaswXMcCrvvQeqKK31p+Swhe9Jn8bq7/cFgKUcPEhcK4Hl4ixb5zuCmgbr8zYaOq6xahbDz9b32AGkaqG+8DkyuPVfzeA1GVIwk/5lj8bp7fNn/2MLneb5ZazRK7sSTqj4/cHAIqEYgapgCjajn0uncuOHWyajnhBCYpr/hXL5rnEmyZ34V9aWXfNVXzo8pAPzNfNdFzl9A6ueXjh+sBBRVheOORxx7LN6995J7+RU83aD4/p0m3kDvQLxNNyNz2peIffkMhOsgHadyyyB1HW+99fDWX9//gesircZiOaRugCil9dZSrwHC9cC0Rrmrj1TPTYWqAoc6eOutT/K31xE/5sjR+4bl4djublKXXTGB7D0QOASMJihIk6Q10RDj1XNS+q0Uv59uUyw2vjHeEkIhUr+6DOva32JeczXqG8v8gchYDPugQ8gfe1zViPORw61Z2yb88Y/jdqiKbjIU9tob98rL0VatwtN0PM8Fw8Dr6VlXTFwX4bgUd9qp/sFKuFtsgbdgAUrfGrxannFSIpwi+m4fwyu155p1LetFVFQ933e+k6G//BXj5psxb74RZU0fXm8Phf0PxD74kIpzRy2CiIqAsQSDsQ1SbbhVSllZ3RSLDtms3fTh1kQiihAKQ0N1jD3bjeehrFoJhaLvbl0ltK7WcGvZwWFwsIPezxSxLr2E8K8uRay/PsWxKxopUd5a4dsiXXUNskEXcOuSXxD62U/w5s0fN/MlFIHa1wemSf7635FZtH6z3kqF8szS4GCyjXs1gYNDu+j0wdhgD2kCZjIaAvy7VlVVCIXGt8JmDEXBW38DvKVLxxWjatEQI5Ve7YqoaAf5I4+iuPPOsHIl2po1YNu+Q0Eyifr6MqRlkT3zKw0XI/CNbou77Iqytg/R11fZp1LtPNpbb4EQZL5wWkuKEUxB4FDGtjFuupH4IQfSs/WWdG/zDmLHHIVxz90TqjMDgUNAmWCFVIda7blw2Gqr91wkEsKyTAYHh/G8zv0FbNR7rjywOTiYnNa+R0eQyRC74XqM22/DW7nSd2qwLJwddljnoj5Z0mlCl/0a4/bbUAf6EVKCYeBstRXZoz9N8WO7Nf99jMCyTCKREMPDKRxnIqk/iGSS2AnHoT/+mD+epGn+nJLnP7ew9z6kL/oxjJXHj0BKj0TCXwWVHRzSaT9wMRbzTVbDYRPLMlm7dpBo1L/RW7s2GaySJkGnr5CCglSFmWrP1UII6O5OUCw6HSFwGMtUvOe6u+O4ru8gMBfoMjR49hnS/UN4Cxb4Yo1p7G8Yhk7Ec1D++U/s4SS5WAJ3m23a5iDe1RVDShoSOERPOA7z3j/iWaHxYoyCjWLb5I49nuy3v1PzGFJKVFWhu9v3sSsr7tau9dt1IBkYSDJ/fje2XSCVylT87wKBQ+MEBWkWMVY91zHREIBpGhX/rxkXOJSYbDTESEZFVMxygQOUIioSMVKpTEOCgFqM9Z5Lp7MzsorUNJWurviE70d9/jkS++3jR6Cb1duwIpsF02Dwob8i58+veawgoqL1dHpBCvaQSsx4cusE2HaBYrFIJNKYhLjV1EpubZRCoUihUCQSmeReRYdSLDrYdqHkeDC1Y0xnuLXZNOrgYN5+m79HZNTe45SWhchm/f2kOgQODgFve9n32PZcKuX3rcNhq9KeS6f99lw8Hh7XnovH/T2TdNpPvCxb6rciGqIsyw2FTHI5e9rHU59/DvXll0FVcbZ9J97ixRM+p5nREOl0tpIC2wkRE9Mlk8nS3Z0gHA5VxAGNMDYaolOuRSaTwzD00vvJVn2M6OtDSOobrSoKUlFR+vomfM2ywCEej5U6FL7AYWBguNQl8AUOvb2JisCht7cL09SCiIo5wNu2ILVjuLXZJqiu65HP24TDIWy7MGWBg/a3Jwlf+EO0v/8dCrZ/MUyLwoc+TPar/111WHVse64Z0RCViIqQRT5fmPUCh0pERThUigqv/37qRUN0AmUHh5ERFeMeE4shBZWB2BoHAunVd4svEURUvL15W7bsOr09V4+yO/JUW3f6w38hdtyxaI89itQ0ZE8vsqsbCRh/vIf4kYejvPLyqOdMtz1Xj2w2j+d5RKOd0YqcLrmcX4gmej+d1J6rh19Y3Zqft+LHdvMLUT1Hc9sGTaPQsDrQd3DQNHWUg0M+X8BxXBKJCKmUv2KLxSKk0/7vYTRqBjLwWc7bStTQaeq5qdKIwEGsXYv+0IOIdArZO4/Chz4MqkrX7h9DWbkC2d0z/o7W8xBDgzjv34nkb69rW3Lr20ng0KntuXrUFTh4Hol990J97jlkJDpeBeg6KNkshd12J/Xryxt+zckIHIaGkkQiYTRNDQQOE9Dpooa3RUHqZPXcVKnl4CDSKcLnn4d5882QzYLwz8zr7qb4/p0w7v0jMp6onTqayyFcB+euuzHeu+Ok1XNTZS45OIB/567rGoODw0jZOeq5qVLPwUF55RXiRx2OsnIlCKUSxyFsG5C4m29B8rfX1VXYVae+g8PatUP09iZQFAXP85DSbwMHDg616fSCNOdbdrO5PVePqg4O2SyxYz+D+dvfQLGAjEWR8TheJIIYHsa87VY/QqJO0J4IhxCOg/bE401vz030fuaKgwP4AgchBOFwaNa05+pRz8HB23RTkjfdQv6445GxKKJYQBQLyHm95E79AskbbpxCMarv4CCEYN68boRQKuc3PJwKHBxmOXNW1DCb1HNToZrAwbrqCrQnn0CGxgwoqioyGvWjAmwbcrnx/nNCoCii8ufscKqt7bO5KHCw7QKW5d8wzJb2XC0mEjh4661P9n++TfaMM1HfWg5C4C5ZWtX9vVFqCRx6e7tKLTnJ4GCy5AAeCBzmAnNuhTTT3nPtZJTAwXGwrrnG/4sa0QWyNCsiRqa3ClAUgaoIkOAVCkjPw9too1af/jjmisChnNxaLkbl9u9sZyKBAwDRKO6WW+FuseW0itE61gkcEokYQvhJw4ODwziOSywWDgQOc4g5VZAsS6WnJzrn2nO1KEdUmKaBuWoFyqqVlZyiqoQsEAKRz/kxBor/y40QeJ7E8zxEMoW3YCGFj3y0fW9kBOXZF8OonQfUyVRrz+m6hmnW9nGbTaTT2ba+n3IuGPjiiuHhFJ4nCYWs0rXVKxEVoZBV+n3NlgRHXlCUZhlzomU3sj0nS9HJhqGh6xqqqsz69lw9/LaQQUjXfUPLOkhVBcNAFAoouSxEo0gpkZ70FXbpNCiC3KlfGBd90C5GOjjMJsVdPfVc2cGhUCjUTPyeLYx0cCgUii39wh95TbPZHKGQ325PpTJ0dfn5SGUHh76+QUIh38Ghv3+IcNgiHo8wNJQhaN3NHmZ1Qao13OqrcPSKqlkIQSRioWnqjA+3toJ0OkvX4o2QkTAik6monMYiEAhNQ/T0IB0HuXatv2IqF1zLJHvamdiHH9HeNzCG2eTg0Mhw61QdHDqVRhwcJkJ59VXMm29EXbYMaRg4O++Cvfc+EA5Xvaau6+K6buDgMMeZtbLvRqMhfBHDurpbLDooioKmqU2JhugUIpEQ1je/gbzkEn8ifsw8iBAC4bqQyZA//7vkt9sB86bfo77wAigKzrvfg33IoTOyd1SN2RBRUT5Hz/NKN0O1V3ShkEk4HGJoKNkW1WKrmWxERYVCgcj/fBPz9zf4w7TeumLhzZtP8Sc/wdxv36rXNIiomD6dLvuedQVpqsOttl0gHPZXSX50sofjuGiaOmvac/UQArqHB2G33WH1KmQkAprmFyLwg96yWZyttyH5uxuQ0c7+YELnRlRMdbi1qyuOlB7Dw531fqbKZCIqAJCSyJe/hHXj75Ga7u93loqR8FzfFTwcxr72OtLbv6vK04OIiunS6QVp1ogapquei8X8Se58vkAq5bdNTFNHUXwVTyep56aClJCZvxDllpuRS5eiZHMoySTK8DAMD0M+T/Hd7yZ52RWzohhB5wkcyuq5eNxPwx0cTE6qpZjJZNF1/W0rcFD/9U/MW27B0w1/NKF0s6QoAkXTIBaDdBrlnHOqPt+/kXQrPnZllWk8HgkEDnOEWbGHVKs9F49HxiW3JhKRyn5SreTWaNQXMaRSKSwrRChkjWjTzV5su4D1jnegPvUU3H038o47cfr7cebNx/74J3B23rltAW/NoJMEDiPbc1O1OBoZUfF2FDhYv7veT5EN+cO1QrCuXSelfz1MC+3pv6M+9xzu1luPO0Y5osKyzEpERSBwmDt0dEFqx3Cr60oSiRiWZZLPTz/SYSbRdR1FURCaRnHf/Uh+4MMzfUrTZqYFDs32nns7CxzU556rjBuUC5EsF6IyhoFIJVH/81LVguQ/J4iomKt05O1yO4dbHcet7C/N1g+qoijEYhESCb+VZNsFdF1b57wwixnp4KC0cXU33fZcLcoRFZZloqod+es3KcoODpZloGkTrD40zW/RlYuRJ8evEss/qGdvNcbBIZlMV/aT0mm/RQdUWnuu61YcHIIgv86m434jZsJ7rnynOhvTS6tFQ2Qy2WlFVHQa7XZwaLX3XKMRFbOFRhwcwmEL/UMfLA1he3ierDo2Jwo20jRxtt9hglcNIirmIh1TkFRVEI9bxOPrVjvllUssFi717rMUiw7xeJhQaF3BKs8UKYpCOp2lUCgQjYaxLINcLs/Q0HBpj6j6TJF/l+fftU54l9ch6LpeaWXlcnkGB4cr+xojHRx0vUZXNptFeWs5Ys0aZsNmRjsEDobhX9NQqHxNky3bu3q7CBxGXtP8Jw9D6jrUau15HqJYpPCRj044fhAIHOYmMy777qRoCN8rC4aGOkPiXo2xya31oiGqRVQob7yBed21mHfegchkQBE4W26FfcihFPb7eN1WyUzTqoiKmYqGGBtRMdsZGVEhhKh6TUM/+wmh718AnkSGQ6Bq/g1RoYBSsPEWLGT4hhvxli5t8FXrR1T09fmScCEE/f1D9PZ2IaV820ZUdLrse0YLUqPDraapEwqtK1i11HPTHW4tGzhmMrmOFDiEQhbhsC/UyGSyE969q6pCV1ecbDZHLmej/vOfRM84DWXVaqRlIUMhhOsi0ilQFAr7fZzMd86pnZU0wyiKQnd3vKnO2ZMZbm02iiLo7k6Qz9tzQuAghKjMjmmaWv2aSol5zVWEL/p/KH19SEUBzwNNw9nxvaTP/x7epps2/JpSSkxTJx73C1FZuDQwMFyZQcpmbXp7/dmlYtEpBfyl35YCh6AgVaGTk1vrBZHNFLqulX7RJq/0ikRCWJbJ4BvLiR18EMqbb+Ktt954J4d0GpFKkfvymeQ/c2yz30LTaJaDQ6ckt84lB4eyeMgXHdik03WKbD6Pcf+fUN5YBoZJcaeda6rqJiJwcGicoCBVIRLRS/s7nZfcWr7LK7cZZpLJtOdqIQR0dydwr/kNyn9/FW/+gporIGXNGrz112P4ltuhhh9eJzAdB4dOTG6d7Q4OY6+poihIKRt3cJgmgYND43R6QZqR3kwmUySbLSKl/4Wp6xr5vL8CMozGhlvj8UhluLWZ3nNlgUM0GiGfHx9E1i5GtuemOogJ6wQOsT/d5wte67TjvEQCZcUKtH88jfO+90/txNtAJpMjHo9WvgAbpRnDra0gk8mSSMQwTQPbLsz06UyKatdU01S6uuKj3o9IpzDuuQf94b8gMhncDTaksN9+OO/ZsWIfNFXGChz6+4ewLLMicOjt7aoIHBIJf4g2lcoSj0fIZm08T3lbFaVOZsY2C8rrMilhcHDdSkTXGVGctErhaWc0RD5fwDT9SfB2Cxym056rhW0XiPT3IybaG9J1cFw/hqKDmayDQ6e052oxGx0c6l3TsQ4O6iOPEP3qmSirV4P0QAh06Ts3FHfZhfQPLkR2dU3rfAIHh7lBx8i+y+RyRdJpG8cB23bJ5QqlD4yv2vG89iS3ZjJZVFWtpH62mnXDrTFc12NoqDmDmGWKPb3guvWHZQsF0DVkd3fTXrdVpNPZUhu3dm5Tq4ZbW0Emk0UIQTjc2bNwjV7Tymzff14i9sXPo6xehdfdhbdgAd78+Xjz5+FZJvpDDxI9/Yu++e80KTs4lFdsZQeHVMqfQSo7OGiaWnFwMAwd09Q6Zr/47U7HFaSRuK4kkyngeX5xKofvtSO5tZ0ODtWGW5u9wW3vvgcSgeI4Na+cMjSIu3RjnO22b+prt4KJHBxaPdzabGaDg8NkrmnZwcH8xc8QQ0N48+aNbhf78x548Tj6Y4+iP/jnaZ9f4OAw++nMT34VPE+SzxfQNK1tq5ZWOzjoulZzuLUmUqI+9xzGbbdi3HUnyvLlDb1W4cMfwdlsM1i9GkWO/+UTw0MgBPZRR3f0LNJIqjk4tHO4tdl0qoPDVK9p4dVX4b77EJFo7X0i0wTPw7zpxiadbeDgMJvpzIGTGmQyBUzTN3K07db32lslcBirnmt0RaQ98TjhH/4A7R9P++01IcCyKHz0Y2S/8t94S5bUfnIoRPoHFxI/43S0V19BCoG0QuC5iFwODJP8ccdjH3RwU95juygLHEzTwDSNusmts4FOEjg0koZb9/lvvIm0bZSuLoQQNb/wpaahvvxyU845EDjMbmbNCgnKijG79IXenrvIfL5Aseg07a51qu05/cE/Ezv+WLQnHkfqOrKnB9nlT50bd91J/MhPobz2Wt1jeJtswvBlV+CcfTZi8y1AEWCaFPbZj9RPf07ui6dPW/HUbgqFIq7rEo2GZ017rh4jBQ4z+U/RlJZnybbK87xSW7XGG5ISmmgJVRY4ABWBg2X5IyNlgUN5dCQej5LL5SumzEHrbmaZceugqdDVFULXNYaGkm2RZTfDwWFa6rlslq6PfRhl9Rpkd9f4ouF5iKEhirv+F6mrfzPh4SoODkPD5IrurMpIGslIpRfQkQq6qTCTDg5NVSSm03Tt8THE0DDKvF6klOOLmpQofWvJf+YzZL9x9vROftRhAweHanT6HNKs/CZKp325d7t67dMRODRDPWf84W6/GMVj1VcwioIMhdCffAL1hecnPJ7reuTzNuGuBMosMZMdSdlMd6TSayYiKlrFTAgcWqJIjEaxDzoY4RSRto0QYtzvj0gmkSEL++BDpvdaYwgEDrOTWfnb6zgjBQ7tcRSYisChWeo5/fEnAFnfY86yoFhEe+Lxho5ZdkeebREV61pJ6qhWUrsjKlpNOwUOrVQk5k/8rK/aHByE4WEUT64zU127FuF55D73edyt3tGU1xtNIHCYbczKggSU5OAe4XB7eu2TiaiYknquDqJgTxwR4edBI4pOQ8dsKKKig2hE6dWOiIp20uqIinYoEmUiQepXl2F/8lN4moboX4uydi1KKo27eAmZ75xD/rOnNPU1ywQRFbOPzv8mqkFZ4BCLhYhEwm3xnZvIwWGq6rmJcDdaDEKh4rVUjWIRpMTbcMOGj2vbBSzLIBIJj4qo6CR8pVcIwzAmVHpN1sGh02mVg8N01XOTRXZ1kTn3PLKnnU7sX/9AKxZIRRMUd9qp5c7ygYPD7GJWihpG0ikCh8lGQ0wG5dVX6dp3LwBkJFL1MWJwEG/RIobuf9Cf7WiQsREVncRUoiFaEVExkzRb4DCTcRuwzrzYtn2z4HYQCBzWEYgaWsxMCxya3Z6rhrfJJtgHH+rPHmWzo9t3UiKSSVBVcl84bVLFCEYIHMKh+rZCbWQ6raSJHBx8XCBX+v/OplkCh04ZGC47OFiWMel0ZmX5ctR//Qvl9dcnlXIcCBxmD7N+hQQQjRqEQibpdIZ8vvXDhOW7PN/2Xp1yNMSkKBSInP0NzFtuhqLjj3SUjWVDFtnTzyB/wolTmiMqR1QUi07F92smGNuem040RLWICiHWoqovoGn/BmzAwHW3xnG2RsoFzXkTLWKqERWdGLcB0NUVQ0oaiqjQ772X0C8vQXvqb36Yn6LgbLMt+eNPoPCJ/Rv6zAcRFT6dvkKaEwVJCOjp8VtZ7YiDLrfnhBBkMtn2tbqkRH3mGcwbf4/2wvNIVcXZ8b3YhxyKt9FG0zq0aRrEYhGGh1MUGxRGNJNmt5L8iJJoJRJBUV7BMO5GUdYgZRdSWghhI8QQntdNsbg3rrtlk95N89F1jUQiRiqVadjBYabbc/UoR1RM9H6sS35B+P++C64LuuHbWrkuFGxQVPKfPZns177eYFHyiETCWJZJf/8QPT1dFItFMplcqUXnf8clEjH6+4fQND9toL9/eM44OAQFqU1YlkYsFird0bSmNz12uFXXdYSg7REVrSKRiCKE0laBQyujIeLxKKqqMDT0GqZ5LUIk8byljHUMUJRlSGlh24cj5cKmvX6zicUi6Lo24U1Xp8dtlJkonVl7/DHiR3zKXxWFwuOLTi4H0iN1yS8p7rFng68q6enpwrYL2HaRri5/XykUMjFNg74+f8UkhKC/f4jeXt8NZWgoMyfSZTu9IM36PaQy+bxDseg0JMueLLWGW9sdUdFq0uksqqoQCrX+/VQbbm32F2c5oiISeRVFWV21GAF43hIUZQBNe670kwyq+gKq+k9U9TmEGGrqeU2ViSIqZlPcBqyb7av1fqyrrgLHqV6MAEIhhOcRuuLyhl8ziKjobGat7Lsa6XSerq5IU4P16iW3jhQ4+Gavs/sDO1LgYNsFPK8176ddya2+wCFHKPQCuVw39SJLPK8HVf03Uqro+sMoymsIUQA0PG8DisWdKRY/DMxcXlFZ4BAO+52AkXuWnZqGW4+ywCESCWHbY8yLHQfjT/f6Lbo6rTKp6WhPPI4YHGwox2uswGF4OEVvb1dF4BCL+SarZYHD2rWDFYGDbScJZOCtZc6skKC5Dg6NqudaHVHRblrp4DATSq9sNoWUOQxjolaFgao+h2VdgqY9jRA2oAMOivIClnUlpnk9vhhi5hjr4NAp6rmp4hdWd/znLZ/3V0cTWUEpiu/lmJmMGCdwcOhU5lRBguk7OEzWe24yDg6zgVY4OLSjPVcbHdtW0bRi3X8fIVagqs8CBVx3IzxvPTyvF89bhOctRkoVw7gbTXuyTeddm7KDQ1dXbNa05+qRTmfRdW20I0U4jIxGYaLZQtcBw8CbRAT6VBwcyvJwTSMoSi1kzhWk6URUTNV7rtkRFTONbRcoFotNWSXV8p5rHwLbfgeO049p1rYUKu8fed5iABRlEEXpQ1H6EaKI522AEHl0/X5men5J17XKyMFsj9sAv/Wdz9ulyI3SXaSi+LN30qs9cyQlwnWx99kXotFJvWatiApVVbDtArFYFE3T8DyPnp4E8XgUIUQQUdFi5lxBgskLHJox3BoIHEbTSa0k190S2+5BiFcxjPGrPkVZhhBJpOwqiRv+g6K8hqIsR1GWoar/QVXfwPNiqOp/EGJgBt7F6GtadgmZDT6EjVBN4JA/6mhkLA7p1PiiJCVk0kjLIn/s8VN6TSn9FmgoZBGNhpBS0tUVxzSNUvalSaHgj0Bks3mGhlJomhoIHFrI3Pg0V6ERgUMzvedmWuAg1q7FuOsOjD//GZFO4663PsV99qHwoQ/7TuCTZKoCh8l4z7ULKXux7b3Q9fswjJdw3RCeV55DGsTzepGyFyGSCLEcMJEyQfl+TYgCQvQDGlJGECLf8lm3kdTyniu3pscKHDoOz0P7x9OoL74IgLvppjg7vnfU/lA1gYO38cakL7mU6MknoSSTgECqKniuX03CYdI/ugj3ne+c9Cmpqt9BMQy9EiCYyeSIREJkMjk8zyvtH2XxPBPL8gfvA4FDa5kzc0jVqOfg0ArvubKDQ3kivl3oDz1I5FtnI/r6/F9yVfU3hIXA2XobMj+8EG+Dxk1Xy0zWwaGTBzHBd2ro6noTKZ8mnx8GTFx3GxznHYTDZ6Prj5QKjoKUfvGRMoR/3+ahKG/geRuQTl+GlBMruprBRNd0qg4O7UL7+1OEfvgDtBee9w2AATQNd/PNyX7pTJyddhr1+GoODsqKtzCvuw7zxt+jDA7gxRMU9t+f/KeOwNt440mf08hrmk5ncV33bePg0OlzSHO6IFVzcJhWcmsDWJZBNBppm9mr+u9/Ezv5REQqhbdggV+MyhQKKH19uFtvQ/KyKybdZ4fGHBxmyyCmEEOY5utEo6+Sy/XjOCFcd2uk1AmHz0PTHkPK+fgFSAIOUlpI2YuUGoryOo6zLZnMJcDkV52TodFrOhUHh3ah/e1Jol86HTE4gNfTA6FSOy6fR+kfQMZjZL7/Q4q7/te65zTo4DAVDEMnErJQHrif4l8eplgo4G6zLfbuuxNJxN8WDg6dXpDm5B5SmZECh6eeepKjjjqcCy743pSTWxuh3QIH6+orEUPDeIsWjS5G4KuP5s9Hff55jHv/OKXj1xM4zKx6zkVR3kJRXkFR3gTq2x0pyhsYxs0I8UeKxSEMI4oQKQzjVizrx0jp4HnzARspQUqjtFqyEWIVirIaKbvxvI0QonV+f5Mdbh0ZUdFR34uuS/j/vosYGsTbYAMIhyuZXYRCeBusj0ilCX/3fN80uERVgcM0UdXSNf3bE4gtNkfsuSf6d88nfOEPiX/6aHq3fyfOb68FRgschBCViIp8vlAaoo2Sy+VxHDcQOLSAOV2QAF555XVOOukkvvCFL7B8+XI23XSzpuUU1aJdAgexZg36Qw8ioxFEJoOyYgXK8uUoq1atcwU3DBBg3n7blF+nmsBh5tRzElV9DtP8LaZ5FZZ1DaZ5FaZ5JZr2d6op4IQYQNf/hBBJXHcL8vn5KMp8dH0pUoZLSroCnjcPAEVZixBrSg4NNkIMI6VKsbhzS62FpprcOpGDw0ygPfYY6ssv4/X2Vh9sFQJv/jyUN99E/8tDo/5qIgeHyRAOW3R1xVEf/DNyjz0Qb7zhv7zrIhz/Jkb09RE/8XjsX/86cHCYYeasqMG2ba655gp+85srKRQK7LLLLpx11ll0d89r+Wu3S+CgrFmDyGQR6RTCHp0qq6xdi4xEcDfaCGmaKG++OeXXGSlw8DxJOGzNWHtO0x5H1+8DFDxvIb5zgo2irEFVb0eIAYrFjzLyXktVX0ZR1uK6mwMCKf0vHMMAKVfheQk07e8oShbPMxDCQYg0QoDnGUgZRcp5QBdS9iBlc9se02151nNwmCm05571TVDrCWoMA6SH9uyzFD+2W+XHdR0cGsS/pn7uUTadxTruOF8mXqXAC/wGrXXa6RQOPoRYLBY4OMwQc3aFdO21V3P55b+kq6ubc875Hj/96c/ZfPPNp+3g0CjtcHAQmRTK4AAil0OqKtIw/P/pOlIIRCqFumwZolicktJuJGVH81gsMmODmIqyHF3/C1LG8byNgTD+14mF5y3G8xaiaY+hqi+NeJaLqr6AlHFGWgf5ysECmpZF0/5DuVXnt4lUQEdKpVSc8ijKq2jao7jufHwHh2a8n+Z5z411cJhxPI96Vk2jcMcXnJoODhNQac/FoziOw+BgEueuu1CXL69ajMoIgFyW4hVXBA4OM8icXSHtvvtexOMJ9t57P0KhENlsEcsyKjLmVn9+yg4O0WiEfH5qd3kToT/xhP+LL8RoixUhQFX9opTJgJS+/HuKlFVJUspKX30mpNyq+jxCZPC86opBKRMoSh+q+kwpSkIABaCAlOMLsm27hMMrcJzhkmpuCCEG8QtSqPT8HEJkEcIBXEzzNyhKH563Ja67MVL2Tum9tMJ7LpPJkkjEME1jxgUO3tKlgPSVdXqNAl5qmblLl1b963Q6W5kLauT9jLymw8NpiiVVn/XkE0hNq7ToaqKqqI8/XlkF9fcPYVlmxcGht7er4uCQSPgx6KlUlnjcXz3NNoFDJzJnV0gbbLAhBx10KKGSsmc6Dg5TpaUCB9vGuPVW317F7y2Nf0zZ58txKHziE5N+ibHDrQMDw01zcJg8ElV9uTQfVBvP60VVlwNl4YGOf981/gvNdTO4bhohFEAgRAEpDcAE8kC69LwiUESIIpr2b1T1WTTtYQzjdlT1P5N6F60cGO4kgUPhgx/CW299lP7+mo9RBgaQvfMo7rZb1b9vVODgX9MEoZBFNutf03IxAsD1Gg+u9LyqDg6BwKE9zNmCVI1WRlTUolUCB6WvD2VoCHf+fGQ87m/SFouUJGIIz/P/W1HwojHcTTdr/Nh11HPtjKgYjQQ8pJzo300FXIQofzlouO6WKMpQlccO43n+TYqirMYvPpFSUVJK/5OV44CJECk07REUZRWq+gKm+WsM43IM4zoM42o07Y+lIjW69dauaIiOETiEQuQ+93nQdJTVq0e35VwXpa8PEOQ+e7LvxlCDegKHau25XG78NXW2fof/uzARUuK+Y+sgomIGmbMtu1q0IqKiHi0TOCgCBAgE7kYboaxdixgYWPeLJwQyHEZaFjKRaPgOcaJWUrsiKsajIGUvivJKaVaoOkKkkDKOlOtWca67Gar6DIqyfES7r4CqvowQKTzPRVEcPM8uOTKMvNOV+KssiRApIFOyFhoCLIQYLE37dyPlvNL+1gIcZwcc50N43oZtjYboJIFDYf8DfPn3xf/PV36WP/tCILu6yZ18CvZhn6p7jFoCh1rtuarnsc9+eIkEYni4/q6WEOQPPyKIqJhB3nYFqRxREQqZWJYxzsGhFWQyuYqSqlkODt7CRbgbbIj66qvISARv/gLonYfI5fz2na4hLQtlxUqcHd49oY3/ZJRe2azvBh6JhBtycGgWjrMtpvkC/kqmmjjFRYgkxeIHGPnRlnI+jvNhNO0BVPUlPC+BoryGqr4FgOdpQIx1bT0XvxCVBQ7louv/TEoFRckiZQEhikipARF8IUQUIYbR9afRdRfDOARF6WqrIjGXszFNk2g0POMODoWDDqb4sd0w/nCPbx0kJe7mm1PYcy9kT09Dx8jnbSzL/7zlcvl16rlsvuqKaBymSeZ/zyV22hcq/6rVyH75TOT88s2OH1HR3Z0YJXBYu3aQUMgikYgwMJDEskxisUiptWcQjZqz0sGhU3jbFSTwIypMU5/dAgdVxT74EMIXfA/sPJgWKAoyEqk8RGQy/uMOOqjmYabiPVeOqPD76XZNB4dm47qb4bpboqrP47pL8FV2ZWxU9TVcdymu+44qz90cz0ugqi+haY+jqm/ieeshJWjas0gZRdNiuG4Of4Uk8Vt25eIUwh++FaXXzQBhpAyV9p4cIFv68zwMI4uqrqBY/CfDw9G2i0A6SeAgEwnsTx42rWNks3ni8Si6HsW2CxW/uUaxjzgSnCLRr38NWSyO7hgIQe6ML5M786sjfjQ6oiIQOLSHOW0dVA/L0ojFQiVPqvb4ziUSMYSgea3CbJbYaV9Ae+QRZCSMjCf8lZDj+O0J26bwif3JnHPueBcHpu89l0hEEUJhaCjZnPfTAEIk0fV7Sq7bRaTUEcJBSgXPW0qhsFfdlh6Arv8RVX0Gz1sfXX8AXX+wlA4LUC5I5WIEZWm5L24oix6GSn82gCJSxpCyGyEMVHVzPG8Ix1mPQmErCoUjSrLz9hKLRdB1rWKbNVsZqfIEUXo/U3tDYmgI8/rr0P/2JHgezjbbkj/yKOTCWgPPkp6eLmy7gG0X6eqKMTAwTChkYpoGfX2+550Qgv7+IXp7u5BSMjSUQYjOa911unXQ27YgAXR1hdB1rW2+c5qmkkjEyGRylfiA6SLSKUI//AHGPfcgUqnSnZ9E9vRgH3wIuZM/5w8gjqBZ3nOqqtDVFSebzVXmlNqDi6K8iaq+iq+EC+F5S3HdpTQyI2QYN6CqL6Gqz6Oqz5bSYfOleaNC6c67LGqAdW07HSkTCJHEFy2EAAMpVYTwV1SK4uC66+N5OqDguhth26fgODs2+yJMiKIIursT5PN2RRwwmxg13JrNk8/bdHfHse0imUx7biKllJimTjzuFyLfB1MwMDBcMVnNZm16e31z1mLRKfnfpbFtr+NWSUFBaoDly9/k2muv5tlnn+G1115h8eIlXH317yZ8npSSa665kptvvoGhoSE233wLvvCFM9h228bs6DVN0NUVwXXdtggcgEqMwOBgsqmKHLF6Nfojf0Wk08juboof+KAvZhjB2Pacb60/vVZSJBLCskwGB4fbKHCYHqb5M0zzHiCDEDn8FpwKZFGUNShKP54n8FdC5fadVnJoUEbkIemlx2ioah7XjQJFPK8bz1uAL8QwcZydKBQOxfPWb/dbJRQyCYdDDA0lO8LBoRFGRkOMbc9ZlkkkEmJ4ONWWm0gAKT0SCX8VVBY4pNNZpJTEYr7JajjsR1SsXTtINBrBsgzWrk123Cqp0wtSR8i+X3vtFR599K9suOGGLF3auJ38NddcyWWXXcJhhx3BBRf8iN7eeZxxxqm89dbyhp5fFjhomjbrHRzkwoUUDjwI++hjKOz38XHFqFXec+X455mZTZoKDoqyGiEGSnZAJusEDBE8b2nJkkjH82Kl+PIo5T0kX2mnlB4vUBQLP/ZcQ0qlFFfhoShJQMPzliCEi6r+g3XiiPbRcQ4OExAOW3QlYqivvUr6vvvJPvk3vBEDrVN1cJgevsAhcHBoPR1RkHbd9YPcdNOdnHvuBWyxxVYNPcf3qrucT33qKA477Eh23PF9fOc75xOPx7n22msafu1MplAJOmvH6roscGjXLFSrk1vLAgfTNGZFeqmirCyZpVqARMoIo4dmXaQ0UVUVIQSeF0EIvzita+NZQBRFieN5/tCsr7Qrlo4rABu/qG2A666Pqr6BEKvx96iqiUAkrSpYmUwWXdcxzfbcdE2FynDrA/fj7r0P4gMfIHzYoSQO3J/Ex/fFvP66yvB3Op1F17W2vZ+xAofyTVhZ4KDrekXgEApZqKpKKpUlFLJQFC8oSpOgI75BlAkkydV45pl/kclk+OhH101567rOhz70ER588IGGj1N2cIjFQkQi4bYIHPL5QkWW26pWYTuTW227UJHltlPgMBWEyCCEg+dtWNoLKheCbOnvhgAH1wUhsqjqKlw3gpQLAAdNW4Gq9uC6Oo6zojSP5CKEi580q5bEFvNwnC3xvI3wzV//g2n+BogCGo6zOa67KULYpb0s34XadTfCdd+B5y2lWfMsIx0cCoXWq0onw8j2XPGiixDnnodSLCDDET8/yXFRX3qRyNnfQH3uObLf+jaOQ8XBoVAotuULXwilciNZdnDo6opVpOexWIS+vkFCId/Bob9/iHDYIh6PMDSUIZhNaoyOWCFNhWXLXgdg8eKlo36+ZMnGrF69CttufKN+Ljk4wMxEQ8ycg0M9PIQYLu35lD8PKv4sUQLP2wTPm4eUJoryFkKswneDCJcC+bxSfHkOVR3GMLqA9XAc3yVcUVKsU+K5QAFFSQMerrsE1922NJP0GJr2MkJkkVJHygymeSPR6KlEIl/GMG5BiLWAja4/jWleh67fSzW7o6nSMQ4OI6hEQ6gK6QceRD3/fJAS2TvPL0aaDpaF7OlFmibWdb/FKMWoNDOiolECB4fW0xErpKmQSiUxDAPTHP0FGIvFkFKSSqUwzcYdrmeDg4MYGsK443bMO25H9PUhEwkKe+5FYf/98RatN6PJrTPn4FD1bFDVl1HV51GUcpEJ4bpb4XmL8LxFqOqreN7S0iDrYCmQL1pSRWVK+UgWihLBX+EM4rpqycs2i7/f5KfLKsrakt2Q3wr1vG7AKCkB30BR1uC6i/G8TRAiiaq+hKK8jKqurJi+KkqhtDraEiFsdP0xIESx+KGmXJFOcnAYq57L5fJEfnMN2Dayp4ZZbTgCuRzWb66m8In9/TXtNCMqJkvg4NB6Zu0Kqdl0usBBfeYZEgcfQOTc/0X7x9Moa1ajPv+cn3p50IEknnpihpJb19EZAgcXTXsEw7gLRXkTKWN4Xi/goWl/RdcfLsnDiwjxGoryHKr6Gr41kIJfVPL492oRhBAIoeG6EilzCJFEiFRJtGAg5QKk7MGfR0rgq/AMpAyX3MnXIqWJ560HZNG0fyDEEEJIXHe90h5W+fEvo6ovImWkZBL7z1JbsTnMtMChpveclBj33Qu6UdfiSobCqM8+i7J6FRAIHOYis7YgxWJxCoUCtj16/iWVSiGEIBabvLyxUwUOYvVqYl/4HMry5Xi9vXgLFiC7u32bkwULUIcG0U49lfTjT7YxuXU8nSBwUNUX0PUn8bwFJd+6XMmd4XkUZXUpiG8NnjcfTXuhVIzKn6EMQvQhRLG0MlJwXR1FiSKEDuRKbTobKX1nCEV5CSkL+DEVGTyvFyl1fAXeqwgxUDqXpajq60AWKc3Sa1r4hq3DpVZeN6r6JkIMlXz7BlGUZU29PjMlcBjZnhseTpNKZdZ9Tj0PCgXkRHvJqorwJGTXzVQFAoe5xawtSEuWLAXgjTdG/8IuW/Y6CxcumlS7rkynRlSYN9+IsmIF3rx5FccFIYSvBNNU5Lz5yIEB1Msvb8s518O2CzMYUeGgqs8ipVVSyv0bXX8SRVmOL9kulJwe7keIIQqF9+PHTmRKCbFZ/EKi43lZpPQdIHyjahtFyQK++k7KbjwvgS8bV/G8DXGcTYEwipJEUdYghI3nbYTrvhMolgphAiHc0g2PKLmXe/jqvhBQQIg1lH81/Tmp5tHuiIoJoyEAVBVv3rwJHblFoeAHUM5bl/rcaERFMykLHCCIqGg2s7YgbbvtdkQiER544L7KzxzH4aGHHmCnnXad8nE7UeBg3nQjUlVLxUigKAqqoiClxHU9PCTSsjD+cA8iPfOOGjMlcBCiv/Sl34uqPoOm/Ru/Bed/8ftO3OsjRBpNex5VXYvnxfG8HiCBqnbhp8/6seh+MfCQ0kZR8pRXNH6ybBF/oDaMH+5nAzE8byFSmkjpVlZKvjjBprwq8ueVwG8Tuvi/huXPml4qjL76z9+bai7tEDg0Gg1RpnDwIeC51XO9wL9bLNgU9twTGR9twxQIHOYOHSFqyOfzPProwwCsWrWSTCZTKTQ77PAeuru7Oe20U1i1aiXXX38LAKZpctRRx3L55ZfS1dXNpptuxs0338Dw8DCHH37UtM6nowQOhQLK2n4wTRShIBT/LtD1Ri//pWEg7DxiYBAZndlp7JkSOPhx4wVU9Xl0/RGE8JAyjf/FXnbkdhGiHyGK6PrjQAhFyeN54LoO/v5REV81lym16hw8T6AoPaVAP1EqKGmEWIuqqvgtu1eQMlQyXI3heeuhKG+i625p2FbgF7go/p6TX6R8773yr6KHvwobKhXQjZp+nVotcJhMNESZ/MGHYl77W5SVq5Dd3aO9Fz0PMTSIjEbJH/OZcc+tFVHRSgKBQ2voiII0ODjA2Wd/bdTPyv998cW/oLt7R1zXxXVHf9COOurTgOS6665haGiQzTbbggsv/DEbbFA94rpROiqiQtfB0FHyeVAE0pN4cvwXiHBd3+3bmnyrshXMRESFlCZCrERVX0DKIlIuYl3YQA5VfRUp3ZLvHPiOCgk8T8E3Sy0yPgspDTilFl0MIXJI6RckP9RPR8pIqf2VR4giQuTwvEU4zk5o2isoyioUpYAvQ0+VjtWNqr5eMmXtqpxPuWApykqKxZ2ZakT6RLQioqKaeq5R5KJFpH52CbHPn4yycqUvbtA0P9jP85DxBOnv/wB3222rPn9kRMXwcLu6BEFERbPpCC+7TkQI6Onxoxza5Zbsf1gjFbPXynDrmWcif/tb3PkLaoa5KGvWUHzv+0hddU3jcc0txjSNyt1jOyIqFGUFodC5KMoyhJAjvuhBiIHS/5zSXJGL62ol6bYo7TPl8YuCU/p/Qdnd2w/860XTsjhOAfDFDWUfvHKbTcpy4mw3+fxhQBhN+2dJnOAbsPr7SHkUZRB//6kHKcMoSj8gcN0tcJwdKBT2xl/VtQZd10gkYqRSmWlFVNTznpssYmAA8/bbMG65GWXNGn+0YZ99sA86GG/9Deo+V9NUurri034/k0FKj0gkjGWZ9PcP0dPTRbFYJJPJlUxW/e/NRCJGf/8QmqYRj/v+dzMRUdHpXnZBQarDTEZUFArFStsj99BfCB11pD802NU17jkinUbYNukLfkBh3/3acp6N0s6ICk17GMO4G1V9GUVZXZJaC3z/uhUoCihKDs/L4RcTs2SCWiwN0DpIKUvFpYC/txPC86Kln0URohu/GK3AL1Zq6bHFksR8E6SMoyircZwdKBZ3AzIoypto2r/w94iSpcHZpShKvpRcuwqwKBbfT7H4MVx3K/w9q9Yy3YiKke25dDrXUHuulbTKvLg+syeiotMLUke07DqVfN7BsnyBQ9OC9SagrIAKhdR1w63v3B6+cBqhi36EsnoNXizqt/IcByWdrkQvF/bep+XnN1nS6SxdXXFCIbPlERV+EVofKaPo+p9KM0AhFMVBUbIoionnJUp7Wm5JmKAiRBrfzVvFnwkK4bfviqU/C4SQeJ6LlEU0bQjP6yqtriRCDAPDSJkoDbqaSBlBUV4vHSeC522F46gUCh9DUWw07d+lFZGH626F4+yO674Tz9ucdu4vZDJZursThMOhSUVUTKc910rKrW///bQrosIXOMTjMXI5uyJwGBgYLnUJfIFDb2+iInDo7e3CNLWOjKiYSYKCNAHtEjiM9J5zXa8kIV33BZ4/4UTcxYuxrrgc7Zl/I7I5pKrgbLEl9lFHYx98yIQx5TPBTAgcXHcrhFiBrj+PqhZQVQfX1SkWyzZBSSCOXyxS+Ian/koKBJ63CCkFipLCcbYDdBTldRRlJZ4XxfO6URQLzzNZlyIbBUwUZRDPC5UUdk7pf/6f/cHbbhxnCY6zA4rSx7o2X2Nx3s1msgKHZrbnWkEgcJjdBAVpAtohcBjZ9kgm0xSLDt3d8XECh+Iee1LcfQ+UV19BGRhAxmK4W2zZkYVoJO0SOHjeBqjqi6hqP4aRR1VVpEzjpxfYJb84Az8WYj6etwBNewMpi6V2nYWUC0sihbW47gZ43uZIqeO680sDt9143loghaJIPE/geV0libiOvw+VQ4j8CDWdL0n3vJ6S2g78duH0xDfNolGBw1TUczNBIHCYvQQFqQEymQKmqVfu8pvVmq7nPZfN5ohGI+NbhULgbboZ3qbNOYd2UHZw8AcG7ZYJHFx3MaHQajStD0XZAMfpwXUHSvNJHkL0AzEcZxd80YKF4/itNd9Fwc80Ku8nCQGq+jxAaY/HwHF2BlQM45+o6jw8z0RKDSFWIUSmNKOUQ4gcjrM9/t1vDkUZplj8MO3YF5oKmUyWRCKGaRrjBAGd2p6rR7lVXO39tIKxDg79/UNYlllxcOjt7ao4OCQSvkt4KpUlHvdXTzMhcOhEOvvWukNotoODoijE45G63nONODjMJlrt4KAoCrEYJbNdC9tOUyxKPG8errt5KdJhEaDjugvxvC3wW3USz1uvZO+zECEMhLBLooMt8bz1kFLH83pLM07LcJz34Tgb4roZFMWPKvddw0MIkUWI1XheAtddjKK8gaK8heNsX2r/dSbVHBwmO9zaSQQODrOToCA1SLMcHCYTDTGtiArPQySTkMnQFs16A7TKwWHdNX2BfH4Budx2pb2ivtIM0GqkNHCcXXGcbVHVV4ECUnaVVjNFHOedSJkoec8tQsr5CDGEoqxCyjCu+15cd0lJUm7jOB/GcWIoympUdQ2QRMry4GsXrrsdfrDf+hSLe5VWR50bkAejHRzqes/NEgIHh9lH0LKbBNMROEwlGmJKERXJJMatt2DecjPKKn/A0N1yK+yDDqawx56+Om+GaLbAYfQ1zeF5r5YEAgtKLgkDlOXbUnYhZRghUgiximLxg/g2Pib+3o9A0/5akmaH8PeCDFx3EVKWVz9DaNpKNO05isUdKRT2QFHeQtOW47oZpLQoFrcmlzsRKZfgWxaVk2Y7H8+TpbBF/4ZhtrTnahEIHGYfQUGaBFMROEw3ubWmg0MVxKpVRM84He2ZZ0BVkZEISIn21N/Q/v539Af/TOac88Bsr8fcSJohcPCvqa/0WndNXSxLKQ3Egi9cWFDl2RLfc+4dpWIxksfxvM1Krb1xZ44QNn6e0TL8FVEvhcL6KMruKEqSQiFNobAHnte5rblajFTPeZ6s7IfMdgKBw+xidty6dRCTiahoRnJroxEVeB7Rb56F9u9/4y1ciLfeesh4HJlI4K2/AV4ijvGHewj94ueTev1mM92IinXXVBlzTQWuu5iJ8oP8lpyvpBuPgl+wxpJB1/+OorxeCvibDxgI0Y+mPYbr/gFdDyHlx0vO3rOL8e25dFsjHVrNTERUlFeZsVgE09RLzi8JCoUiuq4TDvsrpiCiYjRBQZokjQgcfMv9OKGQRS7nW+4XClOXyDYicND+/hTaP/6B19tbvS0XjiAtC/OWmxHDw1M+l2YwFYFDI9fUdbcs+dkN1ThKFiEcXHdrqn30PW+D0pDsaDTtBYRYg+etD4RxnG1xnF1wnPfiOB/AdRdQLHYRCu1ITW+nDqRWNES7IypaTTsFDqOvaa5SXIpFB01TK/unsZgvapJS0tOTwDT9lWlXV4y3s8AhKEhToJbAoRH13FSZSOCgP/ggFAoQqr2BKxNdiIEB9Ef+2pRzmg6NChz8axpt6Jr6mUTvLYkZVlKOFPddGdagqm/iONvhultUfb7rblraKxqs/EyI4VKkRTe+A3gRz9sQz5uH5y3BdTehWNyOYvF1FGUV4XBnyrpH0oh6rh0RFe2k1QKHatc0m82X0mU10ukshUIRz/Po6xuo7NeVP8uapiKlh6apb2uBQ7CHNEVGChyeeeZ5nnrqSY444vBKe246K6JqTCRwEMlhSkMwtQ+i+f/cM71CgsYEDmMHhie+pgLH2QUpI+j6P1DVNyibpErZTbH4ERznPdT62Eu5EMd5L7r+MFLm8Lz5pRZgDiF0hBjC8zaqsscUQcoV5PPLCIU2IJ8vdKwirdHh1klHVHge2pNPYNx+O/pTfwPPw91iC+yP70/xwx8GY2bbf60UOITDIUIhs3RN1xkJ1xI4WJZJOp0p7R9lEQIsy2Tt2kGi0cjbWuAQFKQp4jiSwcFhrr76Sn71q19RKBR417vexeLFS1v2mvUEDjKe8ItRvaJUiu8YG3A2U9QSOExFkbgOBdd9F667NYryFkLk8WeP1mdi52yB47wHKcOo6j9R1TdKpqxDuG4c190S192EWr82tp3DMDyi0TDJZHMiHZrFVIZbG46ocF1CP/g+5k2/R9gFZMgCoaA//Bf0v/6V4i67kDn/ezP+uWu2wKGxaxoIHCZDUJCmgJSSv/71IS666IesXLmC9ddfny9+8bSWFqPy69ZycCh+8INY1/4GcjkIV9+bEUNDyO5uijvv0tLzbJSxDg6u61VRz011pWHieZtM4XkKrrsNrrs5irISVX0JXddwnK2AWk7Jvp+dlBEymRzxeLTyHmaa6XrP1XNwKGNdfhnW9dciozG8BQsrP5f0Qi6H/pe/ED7nO2Qu+EFzolGk9NvThjHp4zXDwWEy1zRwcJgcQUGaJK7r8q1vncWf//wnNE3j2GOP54tfPBVFUdsSUZHPFyp3rSNnoZz37Ijzzu3RnnoST9fHCxuyWUQuR/5Th/uJnB2CP/fi5yYJISbRnms1Bp63pDTPtBJFGcLzqhckRelDyt6Su0ORQqFIJBKa8ffQDO+5kQKHQqGKbVY6jXnD9UjdQCYS4w8QCiG7u9Ef/gvqiy/gbvWOqb0ZQFm2DOuqKzFvuB6RTIGhU9hzL/KfORbnPTs2dIyRAodCoTjpvZpa7bl6lB0cLMusODh0dcUqq6pYLEJf3yChkO/g0N8/RDhsEY9HGBrK8HZq3QWihkkipeTFF1/g/e/fhauuup7jjz8FXTem7eDQKMrrr5O//wHUZ57BGimbVhQy55+P+453oKxZjbJqFSKVQiSTKCveQhkeorD77uRO+VzLz3EyGIaOovh3gcWiM21FYvMxcJwdEaJYSogdnSgrRB9C5CgWd8QfqPXvwhVFmTGBQy313FSpJ3DQH3kEpa8P2VP7JkdGo4hcDuP+P035HPS/PkzXXrsTuvQXiMFBQEI+j3nLzSQOOhDrV79s+FhTETisu6bmiGvauCdj4ODQGMEKaZJomsYNN9w66mftiKjQH3oQ69JL0P/+FDgOqCqRJUvgsMPJH30MaBreeuuTuuRXmLfegnHzTShr1oAAZ4d3YR94EIV99p1Rp4aRjB1uLRYdTNNAUURbIiomg+u+ozQ/8hiq+p9SIqxACBspuygWP4zrrhuG9TyPXC5PKGS1VeDQqmiIegIHZaDf/7bV6nyuSnubon9gSq+vvLWc2AnHQSpd2p9a18KS0i9MkXO+g7vxxhQ/ttuEx5uMwKFZ1zRwcGiMoCA1gVZHVJi/u57It/8HCgVkKARWCOm6KK++SuS756E9/XfSF/4/0DRkVxf5T3+G/NHH+Go6VUXGYh0Taw7V1XNCrNskbmVExdQQuO72eN5SVPVVhFgNgJTzcd1NkHL86iCbzWOaRtsEDq2OhqglcJDl/UrPmyAGRSCnKLk2f/sbRHp8MfIPK8CyIJ8ndOkvGipI0JjAYSrtufoEAoeJCApSk2hVRIX68n8In/MdcBxkd8+6X0hNQ4YslHwe4+67CC1aD6EoKK+/BqZJccf3Utjv4zOubBpJPfVcuyIqpoOUCRznXQ0/vh0Ch3ZGQ1QTOBTf935kLIYYHq69N5nPga5T3GlqYhrr9zf4f6j1hSwEUlXRH38cZcVbeOtv0NBxawkcWnVNA4HDxAR7SE2i2REVZcwbfuenwya6xv1CSk8iTRORyxH+ycVYl/8a48E/Y9xzD5HzziWx714Yd9/VtHOZKo0Ot7Y6oqLdFArrBA7NZiaiIao5OMhFiyjstjsilQK7SkS966L09eFssQXO+98/pdcVAwPIiUIoFcV3uF/b3/Bxxzo4tOOaBhEV9QkKUhNpVkTFSIx7/wiqWvPuUK5dC8UiuC5eV1fJx24R3vx5iKFhImd9Hf0vDzXlXKZCbe+56rQqomKmaIXAYSajIaoJHHKnfQlnx/eirFmDsmoVZLOQyyHW9qG89RbekiW+qa82tYaMjMX8lmDdB/nzd1WVfnUoCxzi8eiIa5pq6TUNBA61CQpSk0mn80gpmxesl82BWuOfqWAjMhm/WI0tWKqKnD8PkcsS+ulP2p6JNFU/v5EODooy+9sTIwUOyjSj5putnpsKZYGDZZmopc+lTCRIX3QRuS+ehrv++ohMGpFKISNR8p/+DKmfX4K36dQjju39D/AdAut9hh0HZ5tt8RYvntSxywa/mqaSz9uTVs9NhbECh2QyjaqqFYFDKOTfvJRbe67rVgQOc32VFOwhNZlmCxy89ddHWdtX9e9EuhS+V/qiUwxj9MdVCLxEAvW5Z1H//W/c7Vofi1A9GmJyv0TNiKjoJKYrcGiVem6qVBM4yGiM/HHHkz/qaJQ330R4ru84H601TNw49pFHYV19FSKX80U9Y2++bBsB5E48sWHxzthrqqoq2hRXcFMjEDhUY84XpGXLXudHP7qAZ575F+FwhL322ocTT/wc+gTy50MO+TirVq0c9/M//emvpZjs2jRT4GAfdDDav/4JrgPqmH8up3R37HnIaBTFMJCuhxwZoWBZiKEh1DffaHlBmrz3XHVmg8BhskxV4NBq9dxUqengYBjTWg1Vw91sc9I/uJDoGacj8nl/P0lV/T0j1wUhyJ14EoUDDmroeNXUc5qmTtvBYTIEAofqzOmClEwm+eIXT2ajjRZz3nnfp69vDT/5yY/I5/OcccZ/T/j8D3/4Y3zqU0eN+pnRgElkWeAQi4WIRMLTcnAofGJ/rMsvQ339NV/YMPYuzvP8GaSeHoSUKIrAHTnHU+6tt3D+aHrec9UpOzhEImGGhupnHM0GRgocGilI7VTPTYUJHRyaTOGAA0kuXoz1y0sx/nBPpRAV3/s+8scdT2Hf/SZcHdW7ptN1cJgKgYPDeOZ0Qbr11hvJZjOcf/73icf9zU7Xdbnwwv/jmGOOY968+XWf39PTw7bbTi1wLZ93sCxf4DDWd24yyHic1KW/JHbSiajLXgcEaCq4pbtDRcFbuBAiETxPoqj+nVP5F0qkUshoDGe77af0+vVoRnuuHmVZbihkkstVUXDNMtLpLN3dccJhq2bR7rT2XD0ymSzd3QnC4VBFHNBKnHe/h/TPL0EMDyP6+5HRKHJBtVTg0TR6Tcvmxf77ab0NGKwTOMTjMXI5uyJwGBgYxjSNisChtzdRETj09nZhmhq27c25VdKcFjU89tgj7Ljj+yrFCOCjH90dz/N44onHWv76zRI4eJtuRvKWW8mccx7Ou96FN38+7qabkjvpZNwNNvRVdlIikUgp122eOw4im6Ww227IRdViuafOZNVzU+HtJnCYSfXcVKgmcGgHMpHA22SThopROBxqWD1XdnCwLKMtNmAQCBzGMqdXSMuWvc6++35i1M9isRi9vfNYtuz1CZ//xz/ew+2334KmaWy//bs45ZQvsummmzX8+s0UOMhYHPvwI7APP2L0a2y7LZHvfBtl9Wpf9m2aqIqCkkpBOoO72eZkTz9jyq87lla05+rxdhA4dHp7rh4NR1S0male02ZHVDSGL3A444zT2XDDjfj6188in8+RTGbedgKHOV2QUqkk0Soqn1gsRjJZf1/iv/7rg2y99bYsXLiIFSve4sorL+Nznzueyy77DRtssGHD59AqB4cyhQMPQsZihH72U9T/vIQYHEIKUOJx7P33J3PGl5uyOmp1e64Wc1ngYFkGhmHMivZcPRqJqGgXzWh5NiOiYjKUBQ6O43DDDb/jwx/+CBdffBHFYoHLLruSTCbJK6+8xk477TTnBQ5zuiBNh9NP/0rlz9tv/y7e+96dOPLIg7n22ms488yvNXycZgocalHcbXeKH/0Y2t+fQlm+HAyD0Af+C3WjDfGaYPbaLPXcVJmLAgfXdYlEwh2nnpsK7RY41KJZ3nPtFjjoukYkEuYb3/gGBx10EBde+AN22WUXrr76am688QZefvk/3HPPPfziF79kk02WcMUVV/LJTx5OOLx0zgkc5vQeUiwWJ5MZ30ZIpVLEJ+nxNm/ePLbbbgdefPH5SZ9HKxwcxqEoODu+l8IBB1LYZ18y3T2oqoplTeB4kM+j//GPRL56JrHPHE30i6di3HQjIpmc8nBrK5grDg7l4dbyHlLZLmm2Uy+iotVMNxqiGlOJqJgsiiKIxSIkEjFUVWHJkk05+OBDeeWVV+jq6mb+/Pn88peXstdeeyGl5OKL/x/PPPMsv/nNNVxyyc9IJtN897vnc91118wZB4c5XZCWLFk6bq8onU7T37+WJUuWtvVcmu7gMAGO42LbBcJhq+ZyXnnjDeLHfYbo176Kce8f0Z59Fv0vfyFyznfoPvoI4i8+X9d7rp3MdoFDLZ+0Zjg4dAIzIXBopfdcqwUOoZBFd3cC0zQoFBwGB7NkMjbHHXcyXV3d/OpXv+LII48ln89z222384lP7M+zzz5DMjnMdtttx1133cmLLz7Pv//9b372s5/wwgvPNv0cZ4LZ/5tQh5122oW//e0JUql1basHHrgPRVF43/t2mtSx1q7t41//+gfveMfWUzqXssBB0zQsa+JZpmZQvsurZu4pkkmiX/ky6rPP4M2fh7fhRniL1oMli1E22gjx5ps4J59C+h//6ph9jWw2h5Ry1pmv1lLPZbN5PM9r201Kq8nlSjH0dg7ryiuInn4a0c+dTOjCH6K88nJTX2sy6rmp4mc/uU39vOm6RldXnEgkhOdJkskcw8O5SsZULBbjc5/7IrlclkwmzQ47vJs//ek+3v3u9xGJRPjhDy/klFM+jxCC7373fL7yla8gpeTHP76wfvrHLEHIBtd6fX3tUpw0j2QyydFHf5KNNlrMMcccR1/fGn784x+xxx57jRqMPe20U1i1aiXXX38LAPfeew+PPPIwO++8K/PmzWfFiuVcffUVJJNJfv3rq1m/QXv7sQgBPT0RAAYHh9vSa/fVOBGGhpKjZqHM668j/L3z8RYuAl1HKAJVUXy7Ic/DKzooy98kf+RR5L7a+J5Zq/FnMyJNyqdpLY0ovQxDJx6Pdkhs+/QJ33YL4fPOxRsaGmGIKpAhC/vQT5L92lnTColstyKx7OCQSmWmJXBQFEEkEsY0DaSU5HJFslm76neAlJL777+P7bd/F8nkEMcddxT77XcAS5Ys5aKLfsAnPnEgQghuvfUmvvSlr/Dii89z11138PWvn82+++5f9zzmz5++lVMrmdMFCeD111/jRz/6Ps8888+SddC+nHTSaOugU089iVWrVvL7398OwDPP/JtLLvkJr732CqlUilgsxrvf/V5OOOGzLF68dFrnY1kasZifvNkKgUM1EokYQjAqzTZ21OFozz+Pt8EGqKqKIgSelLiuS9l5SPSvRYZCJG+9vSmeZM0ikYgihNKxAofJKr3i8SiqqjA42Jnvp1GMP9xD5MwzEI6D6OmhcvsjJSKdRtg2+aOPIfvN/5n0sWdyYLisLh0cTE5pryYUsiqt80LBIZ0enbo7EW+8sYyurm7C4TAnn3wcnufxox/9hCOOOBjHcfj5z3/NKaccj6ZpXHvtTaPmLscSFKSAcXR1hdB1bdyqpVVomkoiESOTyZHP2+B5dH30QwjPQ5k3D6TE9Tzk2OjwbBaRzZC87ga8JUtafp6NoqoKXV1xstlcxzk4jFQkptO5hgQLiqLQ3R1vy1xXy3BdEvvujfrqK8h581E0FSnlqKIhSq3z4dvuxFu6tOFDj1TPpdPZtq+MhRB0d8ex7eKkHBzK6jlNU3Fdj0zGxrand+62ncfzJKFQiD/+8W6+971zueyya3jiice4+OIfcsghh41SCI+l0wtSIPueAdLpPF1dEaLR8KhVy5RxXUQm4/vVhcbvF40UONh2Ad00UEMhSKX89lyNuzXfL0wBo3U+eFNhpMDBtgt4YwvpDDCdVtJIB4d8vtAxe3aTQX/sUdRlr+PF4yD88EihCASiYvYro1GUtWsxb7uV3BdPm/CYnTIwXBY4RCIhbHtiG7Cx7blstlCzPTdZTHNdrtYee+zNbrvtiaIobLjhRvzlL38mn5+lNzQlgoI0AzTLwUFZuQLzt7/Buv56xPBQxWzSPupoCnvsOcpssuzTVd4Idj/0IbjuOryu7pqmlCI5jLPtO/19pg6jUxwcmtVKmm5ExUyjLFvm7xmVnPA96aGijjb7FQKkRHn9tbrH6kQ/v0YdHKbbnpssZYWmpmn8+MeXALB8+Ztce+3VPPvsM7z66ssYhglIwuEIBx54AKeffnpVk2gpJb/85S/57W9/y8DAANFoFIBsNsuGG27IkUceyeGHH96y9wJzXGXXyWQy/p1wOBxqNMJlFOozzxA/YH9CP/mxv9cjBHge+sN/Ifq5k4mc/c1RKZuhkFmJac5ksqT22gcZCiMGB6oeX6TTIBTsgw6mE+U7ZQcH0zQqIWvtptnec+WbBqPDVqQNoWn+P8qIZYDn+eaf48YO6uQOtUM9N1XS6Sy6rmGa47/MJ1LPtZPXXnuFRx/9KwsXLipde8l5532fk076HNdddx277747O+ywA7vuuisXXHABhYJ/Q/zLX/6Siy++mM985jNsvPHGpFIp0uk03/nOd/jABz7At7/9bQ477DB22mkntttuO/bee29uu+22pp57533TvE0oOzgoijJ5WWk6TeyzJ6CsXoWMxfyIZ8tChsPIRAKpaZi/vQbryivGDbcWiw6maeBsvwP5409AFIoob73lx067LuTzKKtWIYaHsPfZl8J+H2/NBWgC5aHSdsvAW5XcOjKiopMRAwMoy5YhhoYqP3Pe9S6kaSKy6/ZYpJR4I81+S5ERzrvePe6YrRhubTZlB4d//vNpBks3cmOHW7PZAoODmWnvFU2HXXf9IDfddGclqWDhwkW8//0788EPfgQhBKtWreKcc87hS1/6UqVAbb/99lx44YVsvfXW7LHHHrzwwgucffbZzJs3j6effppjjz0WwzB47bXXOOecc7jkkks4/PDDKRQKXHHFFWy55ZZ89rOfnfa5By27GWRKERWui3nH7SgrVviFqNrqJRSCQpHwlVegfOk0Cq5X8Z7TtCKJRAwrZJE//gS89dbD/O1vUF/+D2JgADQVd/0NsA85BPtTR9S9m+0E2hlR0Y5WUiMRFTOF/teHMX/7G/THHwPHBU2j8IEPYh9xBM5734fzvvehP/SQn+pa+lxKTyJUgeLLPPF6e/3sohKd2J6rx+DgMCeccAJbb70NV155FdFouG3tuUYp3wA89tgj9PbOq/z3rbfeiOu6CCEoFovsvvvufPe732XVqlV89rOf5ZJLLuHFF1/kk5/8JAAXXHABixcv5sEHHySTyWBZFltttRW77747ADvvvDN9fX3stddeWJbFk08+ybve9S5isRjvfe97OeOMM9hgg8mNyHT2t83bgEYEDsqbb2JdcxXmDb9DDA4ibNuPmwiF/OTMMQghEJEwLH+TzP0PkHv3jpW/GytwKOy7H4W990F99lmUoUFkOIyz7TsrewGdTrsEDu1Kbu1UgYN1xeWE/t+PEHYeGYkgLQtRLGLecxfGg38m+41vkjnrbOL/OQZl5Ur/MeGwH4mStRGpJNK0yJ79LWTJtqtZ3nPtRNd19t13P+6443buvvtODj74EDKZ/IyuiGqxbNnr9PT0VKTqjz32CLvssgv//ve/efXVV+nr66sUqJUr/XRsVVXp6+tjiy22IJPJ8J///IdCocAdd9yBoigceeSRo17j+9//Pttuuy1PP/00CxYs4Fvf+haDg4P8/Oc/59BDD+WOO+6gp6en4XMOWnYzzEQODtqjj9K1526EfvZTlL4+f1/IccBxUNauRWTWbegLIVCUUkCfqiIdB3dN37hjjnNwUBTcd76T4gc+iPOeHWdNMSrTSgeHVrXn6tFpDg7aI48QuuhHgMRbtB4yFodQCBmP+4KXYpHw+echMhmSV1xN4SMfBddD6etDWbsWshnkttvi/eqXFPbZd1a056pRbs99/etfIxqN8oMf/IDXX3+rI4sR+GkHmrZuP3LZstfZZJNNSCQSDA8P89BDD7HLLrswf/58VqxYgaqqlX2/I488ks0337yyv+R5HgcccABXX30122yzDbvuuitf/vKXuffee/nWt77Fdtttx5IlS9h5553ZZ599+OUvf8nAwAC33HLLpM45KEgdQC2Bg7LiLeLHfwaRTCIty18Rmea6NpqUiOFhyPt7UUrpyZ4nkY4DqoqX6Br3er4UNddas9c20gqBQyt90hqhkwQO5vXXIvJ5ZFf3+L8UAtnbi8hmMG/8Pd4mm5C+9FcM33Ir6Qu+T+a875K88mpSt9yGts8+dHXFZuyaToeR3nPxeBcnnngKw8PD/OIXP53pU2uYVCo5ylT61VdfrRSofN6/Cdpll12YN28eV1xxBa+//jqf+tSnKo///e9/Tzgc5te//jXHHHMMd955J9tuuy2bbLLJOOHKokWL6OnpYc2aNZM6x6AgdQC1BA7mb3/jR5CHQqOl2SOtV6REKTmae5VBRInI5fAWLcLZcV27biT5fIFi0emYu/Dp0kyBQyckt3aKwEGkkhiP/BUZDtccD0AIpGlh/PEP4DiozzyD/re/IQpFnC23wtnxveimiZQSVVU7Tj1Xj1rquf33P5hNN92c22+/hf/858WZPs2qxGJxHGf8an54eJhEIkEyua5AGYY/M7V48WI0TeO1117j4osvZptttqk8b4MNNuD5559np512IhwOE4vF+Mc//lF19um1116jv7+fTTfddFLnHBSkDqFaRIV1w+/8vxzzRSANY7SYwbbxiiNyW0ofkPynj63rG5bJZBuLqJglTDeiYibac/VIp7MoikI4bE384BYhMhlwXaQ2wUpN0xDpNPFPHkLiwP2J/PdXiPz3V0gcfCC9nzqU0L/+URGddMKqbyImUs9pmsZXvnIW3d09o8ybO4klS5aSTq+baYvF4vT399PX18cmm2xS+fnw8DCLSiGejuNQKBQQQrDFFlvw6quvopb2qbfbbjvWrFnDW2+9xcUXX8xxxx1HoVBg2bJlo15XSsm5557LggUL2HfffSd1zkFB6iDGRlSItWuRVVR0QlEQIxV2UvpFKJdDDA8jCgXsgw8hf/wJdV+vkYiK2cRUIypmuj1Xi5ECh5mKqPBicdANRGGC4e1MGmVtH9rfn0JqKrKrC9HTg2Lo8MQTyAMPpHD/A22PqJgKtaIhxjotbLvtO7nttj/w7ndX70LMNDvttAv9/WsrK9ElS5by+OOPoygKu+66K/H4ugK1005++sFLL71EsXRz++yzz/LHP/6RcNj/Plq5ciW9vb1ccsklbLnllmy55ZYADAwM4DgOjuOQTCa56KKLeOyxx7jgggsqz22UwMuuw4hGDUIhk3Q6Q2irLRH9/RU7oJFFQ0oJnufPfTiOLwHXNJzttid/1NEUPv6JhgZayz5dhUKxbWavrUQI6O5OUCw6DTk4TMV7rt10d8dxXW/GHBwi3zzL3x9auKh6287zUF98wd+znD/fv2EqPU56Eik9xPAw3pKlDN13P13zepDSVyt2Eq3wnpsJ8vk8jz76MLlcjgsuOB8h4IgjjuHJJx/nueee4dBDD+XNN9/k6aefZpNNNuH5559ngw02YGBgANu28TyPSCSCLJktG4ZBsVgkn89z2mmn8eijj/LEE0/UPYfzzjuPQw45ZNLn3rm3KW9TRgocCh//BAJ88cLYYgR+wVFUnPfsyOBfH2PwiadI3nAjhf0PaNhd4e0qcOi09lw9ZlrgkP/UEchoDLG2j3HLBM9DeWu5P4YQi6Ooqq/yLO1nSqS/xxSJoLzxBvqfHyCTyaLrelXHg5mgE4dbp8Pg4ABnn/01zj//OzhOkWKxyJVX/prnnnumMtw6ODiIEILnn3+e+fPnA7D11lvT29sLQCaTQdd1QqEQqVQKy/Lbxv39/eyzzz4ccsghqKrKJz7xCa666iq22morli5diqIonHTSSVMqRhDMIXUcZYFDNGrx5Pbb8+5iEbNYRIvHGbeUtW0QkDvxJOSiqfvN5fMFTNNsntnrDGPbhYrv2NiIitk2iAmjBQ4zkZnkbrstmf89h8i3/sd3BzEM0HQoFhHFgq/6tCyUSBgpfR+7ceg6kEX/25Nkd9sd2y6U3k+hLblgtWi391w7WG+99Xn44b9V/btkcg3nnHMOy5YtIxz2h3qXLFnCKaecwvXXX89TTz3F/PnzMQyD+++/nxtuuIFvfvObRCIRvvWtb/Gzn/2M66+/ngULFnDaaadx0kknVW6Wly1bxmGHHcaXv/zlKZ970LLrQN588w1++tMLefjhhzkgk+Gc/n508PeTVLU0i+QiBOSOP5Hst75dWwHVIOMiKmY51SIqZkN7rhadEFGhvvwfjJtuwrzzDkQui4xG8Q4+BH1tH1x9NTIWrzh7V0Mkk+Q/cxzZs/8HRRF0dyfI5+3KXFw7mSvtuckyNn7ilVde4ZxzzuHpp58mHA6Ty+XYZpttOOWUU1i9ejXf+973sCwLXde5//77Afj0pz/NihUruPfeeyvH+PjHP45lWfzqV78atd/Z09PD4sWLGz6/YIXUQdh2niuvvIxrr72aYrHIBz/4QU762tfIvvASoV9eiv6n+xCOA0LBede7yB1/gt+ea4IgYayDw1SCyDqJkQIHz5MVocNMxhhMh5Y6OEjZ0GfI3Wxzcl/9b3Jf+SqGIoh0JdAVQeFXv0Z3r0C6TlXnkNIbAM/DLeUgeZ7fKg6HQ6Wo8PasSloZDTEb2XTTTbniiisq/10uUJ///OeJRCIccsghfOlLXxrlDu55nh/kWeKf//wnruuSyWTGuYEfeOCBfO9732v4fIIVUgdx2WWXctlll7Jo0XqcdtqX2WuvPQiHfYFDPl9A9PejDPT7d6brrd/0159rAofyKkkIMWvacxPRLIGDsnIFxq23YN52G2JgABmPUdhzb+wDD8IbIQkeS7WWpxweousDu/ozcyMGL0ciUilkOMzQgw8ju9cN2HZ1xdsmcJiL7bnJ0ukBfUFB6iDeems5Tz75OHvttS+WZSEE9PREAN/UsR13cZZlEI1G2pZm2yrK7TlZcpueLV5pE2EYOvF4lGQyPeX9JO3JJ4ieeQairw9UzQ9gdBxEoYiXiJP99v9S2Gvvcc+rl9xq/fJSwt87HxQFGYmsW3FJWZllyp35FXKfO3XUMXVdI5GIkUplsO2p5YJNxNu1PVeNoCAFTAvL0ojF/LZGu1YtiUQM35x59v2bV0sZTSSiCKGMEzjMVuLxKKqqMDg4+fejLF9O/MhPIfr6kAsWjlZjSun/PBwm9evLcd/pxxc0lNwqJaGf/pjQT3/iz8SVv1aEANMkd9LJ5E7/UlX1ZywWQde1pt90jW3P5XLFt3V7DoKCFNAEurpC6LrWtlXLbBQ41FPPVRM4zGamI3AI/fhiQj//Kd7YYlRGSsTqVRQOOJD8/10waUWisnw55u9vQPv3vwBwttkW+5BD8epsbLdC4BC056oTFKSAaaNpgq6uCK7rtm3VEo36X0SDg8mOFzg0op6LREJYlsng4HDLIiraSfk9Dw4mG98Xk5LE7h9DWbMGOW9ezYeJ4SGEYSCefBIvFhvXnmsFoZBJOBxiaCg5rcIRtOfq0+kFKRiMnQX4ERXFmhEVrWBcREUHMpnh1lZGVMwEU4qoKBZRksNg1P4MCSFQQiFEsUhuxaq2RUPkcv4KZqpmv3NtuPXtSiD7niVkMjamqVWC6Fq9aCk7OESjkcbTbNvEVIZbyw4OsZj/fuaCwCGTyRGPRzEMvTGBg677MeOpKoo2QSXCxCsWkQhyanu/HjKZLIlEDNM0JiVwaHd7bvnyN7n22qt59tlneO21V1i8eAlXX/27CZ8npeSaa67k5ptvYGhoiM0334IvfOGMStR4QLBCmjXUiqhoJZ0YUTGdaIhmRlR0ApOOqBCCwu57Iuz8KAsgRVFQS5Y/rushUymKO+6ILNnItIti0ak4ODQyWlcrGqLVe0WvvfYKjz76VzbccEOWLt244eddc82VXHbZJRx22BFccMGP6O2dxxlnnMpbby1v4dnOLoKCNIuoFlHRajoloqJZ3nPTjajoNCYbUWEffAgyEkH09yMAVVMRivCHHR0XBgdBN7AP+9SEx2oFmUwWIQThcO0iO9PtuV13/SA33XQn5557AVtssVVDz7Ftm2uuuZxPfeooDjvsSHbc8X185zvnE4/Hufbaa1p8xrOHoCBNkWXLXuf00z/Hbrv9F5/4xJ787GcXNfQFKaXk6quv4KCD9uWjH92Vz372WJ555t8Nv+7YiIpWM9MRFc2OhphqREWnMtmICnebbcif9Q0UQ0ddvQo5PIybyUAyhVi1ElyH/IknUfzwR9pw9uMpOzjUiqhoNBqilUwlCuSZZ/5FJpPhox/drfIzXdf50Ic+wmOP/bWZpzerCQrSFEgmk3zxiyfjOA7nnfd9Tjrpc9x22838+McXTvjc6S7b2yZwcByUlStQVq0kM+wr+9otcGhVcuvbWeAQDocIn3gC3pVXUth9D6TrlQZXHZyddib9gx+R+/ypTbGjmiq5nE0ul+fPf74f2/Zl+jPVnmsWy5a9DsDixUtH/XzJko1ZvXoVtj377KxaQSBqmAK33noj2WyG88//PvF4AgDXdbnwwv/jmGOOY968+VWfN3bZDrD99u/i8MMP4tprr+HMM7/W0Ou3UuAghoawrr4K89rfoPT1AeCttz7FT38a63OnkNfUlgscGhrEnAZvR4HDuGu65dbo+30cbeFCRDaH+453YB90MFgzl047koceeoivfe1rHHnkkfz3f39t1nvPpVJJDMPANEe3imOxGFJKUqkUptkZ134mCVZI+KamRxxxMEcccfCoO5Vkcpj999+Tk08+bpSZ4GOPPcKOO76vUowAPvrR3fE8jyeeeKzm6zRr2d4qgYNYtYr4Jw8mdOEPUFauRKoqUlVR3nwD/dxz8PbZl6jdOmfmdia3vl0EDtWuqXP33XTt/jFiJ3+W0K9/jXXtb4j8zzfp2u2jGHfdOUPvYDTbbbcDS5cu5brrrmPZstdnrD0X0F6CggSYpsU3vvEd3nprOZde+rPKz3/4w/8jnU5z1lnfquTKg7/8Hrv0jsVi9PbOqyzNq9HMZXvTBQ5SEvvSF1FfegkZifgmmaYJpomMx5HhMOIfT6OefnpLBA6tas/VY64LHMLh0IhrmiKVyqDe/ydinz8FZdkyZDSC7O5Cdncjo1GUlSuIfvlLGHfcPqPvQ9c1FiyYx9lnn43ruvzP/3yboaHsrGnPVSMWi1MoFCotyDKpVAohBLFYZw+stougIJXYZpttOeKIY7jhhuv45z+f5oEH7uNPf/ojn/3sqSxevGTUY1OpJNHo+A9QLBYjmaztL9bIsn0yNFPgoP7rX2hPPom0rOoRApqGp+vwhz8QXrF8YoGD541PF63CTCa3zmWBg39NzRHX1AHHIfLtb0Euj+zpLoXmldB134W7UCR87jmQbb/b+1j13Lvf/T4+/OGP8vTTT3Hvvfe0/XyayZIlSwF4441lo36+bNnrLFy4KGjXlQgK0giOO+4kNt54E84999v88If/xw47vJtDD50Z+WsjNFPgYNz7B3DdulP8WBayWIQ776wqcBCpJObVV5H4xH50v2s7und8F9FTP4f+l4fGFad2tufqMZcEDqqqoGla5WZh7DXV//wAyvLlyHisumhBCGQ8htK3BuMP7S0AtdRzp556BpZl8dOf/r9xq4vZxLbbbkckEuGBB+6r/MxxHB566AF22mnXGTyzziIQNYxA13W+/vX/4YQTjsEwTM4661tVVwKxWJxMZvy0eyqVIl4jD6b8vPKyfeQqaTrL9mYJHJThYf9Lqt7Kp/T3Tl8flmWOcnBQVrxF7KQTUF94AYTiF7ZiEeOeezDuu5f8EUeR/ebZUGoplb3nhofTM5rc2jaBQyaD8af70B99BJFO4y1aj8Kee+K8+z3VTU4nychoiEwmRyQSQtNUCoV1bS7t2WcBOXplNBZNAyHQnn2WwoEHTfu8JmK891x+1DzRokWLOPXU0/nd767FcYrjugszQT6f59FHHwZg1aqVZDKZSqHZYYf30N3dzWmnncKqVSu5/vpbADBNk6OOOpbLL7+Urq5uNt10M26++QaGh4c5/PCjZuqtdBxBQRrD448/CkChYLN8+Zusv/4G4x6zZMnScXtF6XSa/v61laV5NUYu2zfffIvKz6ezbC8LHGKxEJFIeMoRFV5Pr3+weumhpb8vxBKIkoPD0FAKXJfoqZ9DfeEFZKLL/1IbSSaDdfVViCVLME4/reOSW227gGUZRCLhlkRUaE/9jcg3zkJ56y2/lakI8CTmjTdQ3GknMud9b1Ro3WSopUj0v+hDoxV3UgINtiZbrByYTHLrAQccwgEHHNLS85kMg4MDnH32aEVs+b8vvvgXdHfviOu6o4RQAEcd9WlAct111zA0NMhmm23BhRf+mA022LBdp97xBAVpBC+//B+uuOJX7LPPx3n55Zf43vfO4aqrricajY563E477cJVV11OKpWqrGoeeOA+FEXhfe/bqebxRy7bywWpGcv2fN7Bspxxq5bJUNh7b0I/+wnYdk3pr8jnwTAo7L0PTsl3zLJM3LvvRnvmWWQsNr4YAUQjiGKB0BWXYZ94AhnH67jk1nQ6S1dXnFDIbGpEhfriC0S//CVEfz/e/PnrVidSQi6H/uBDRL96Jqmf/rx+u3TscSfw80uns3R3xwmHrUpEhbvlloCEYrH2Ksl1QcrSY1vDbI+GWG+99Xn44b/VfcxPfnLpuJ8JITj66GM5+uhjW3Vqs55gD6mE4zicf/63mTdvPqeffiZnnfVtBgcHuPjiH4577P77H0w4HObrX/8yTzzxGHfeeRs//elF7L//QaNmkE477RQOO+yAyn+Xl+3XXXcNv/vdtTz11JN8+9tnNWXZPl2Bg7vVOyh88EMI2/a/sMZSLEKhgL3PfngbbjjKwcG8+y7wXDDGt1OEIvzJ9ngc7623yN97X8cVI2idwMG64gpEXx/eokWji4AQEA7jzetFe/xx9AcfbPiY1dRzY69pNQeHwkc/hrdwESKVqrkCEskksqeHwj77TP7NTsBsH24NaD1BQSpx5ZW/5j//eYmvf/1/CIcjbLbZ5nzmMydw1123V/rFZeLxOBdd9HNUVePrX/8yv/jFT/j4xw/gC184Y9Tjai3bjz32RK677hq+8pXTWLNmTVOW7c0QOGR+cCHOu9+NyOUQw8OQy0HpzyKXo7jrf5E559x1jy9FVOj9axnXChKgqApCCKSUeEIB10VZu3aqb7EhxPAw6n9eQnnjDb89NgmaLXAQa9ag//l+ZDRae5/IssDzMG+7ZcLjrVMkjlHP1WCcg4Npkj3rG2AYiMEhcEY813URQ0OgqmS//BVkFRXpVJlp77mA2UMQ0Ae8+OILnHTSpznwwEM4/fSvVH7uui4nn3wsfX19XH317zp+VkAI6OmJAEw9DjqbxbzpRqzfXIP66isAOFtuhX3kUdgHHOjPJo3AsgyiX/wC3k03IXvn+YVICIQQeFL64X6Syhde6mc/p7jHntN8p+NRX3wB6+qrMO79I+RtUATuJptgH3oY9iGHVm8lVsE0DWKxCMPDqYkFDlKi/utfGPfdizI4gIxGKXzwwzg77QSKgvrPfxD/zDF4XV31M4j6+5ELFzF8593V39sU4jbKGIZOPB4lmUxX9pOM224lfN65KGv71u0XSons7iZ75lexP3V4Q8duhNnenptrdHpAX1CQ5hiWpRGLhcjn7SkLHCrk8+WD1n1Y171/QP3855CJBKLUlvI8zy9EJURyGBmNMvSnP/tDt01Ee/RRomd+CaW/HxkOI01/1aGkU0igsPc+ZL77f/XVZSNIJKIIodQVOIiBASJn/Tf6Y48hbNt/q0KApuG+Y2vS//d9RDpN/Jgj8WKxutdQ6evDXbyY5C3jB1JHqucmndxaKKA9/XcinouyaCGDSzddV4CyWYw/+Ht/5T2jwr77Nm1lFCS3diadXpACUcMcoxkChwoN+prld9udyOLFiGXLkD09yLHtu9K+lH3woQ0VI2XVSsTqNRCycDfdrPqgbgkxOEj0a19FDA7iLVw0qjXmhcP+iu+uu3C3egf5E05s6P1MKHDIZIh+8VT0p57Ci8eR3T3rvujzedR//YvY508h+fNL8ObPR+nrw6t1LaWEQgFnp51H/Xhafn7FIqFLfu4rG9esQXgeaBrdW2xB5qSTfTl3OEzhwIMpHHhw48dtgMmo5wICxhLsIc1B2hVRUR5ujc7vxfvVr2DhQujvRySTfhHK5xAD/YhMhuIHP0T2tNPrHk/725NEP3siXR/7CIlDDybxif1I7L0n5lVXjN7vGIFx150oa1Yj582vvk8TDiNVBfN31/nn1AATCRzMe+5Ge/rveL29EImMlslbFnL+fNRXX8G6+Sa/zVks1nxtMTgIoTD2Jw4AmjAwXCwSPfVzhH/wfcTq1UjTwotEkZqG8vzzRL/8JUI//XHjx5sEnRANETC7CQrSHKQdERVjveeGNt4MeccdeMcdjwyHELaNKBZxN92M7DfPJvWzX0CodnyFcfddxD7zaYz77vXHncJhpGGgvvoKkf/9DtEzTq9alIw/3ecXhDqrKBmL8//bu/P4qMpzD+C/c2bPzCQBwiJbEhGVQNkEEiSCLMFYwlIUqkWWyuZVBEUQkarXBQUEohe0akR2LTWA2IuySUCBBgRUGkAvWBJICIg2ySyZmTNz5tw/ThIymX2fJM/38+mnZTLLO3V5ct7ze5+HLS+H9MwPPn8/TwEHef6n4naku/tCEgkEhoHyvXfFe1p2OyTFxWCuX6+LVcNiAXvtGhibDaYZM8GnpfmUnvNGuWUz5Hv3wC5XiNtvUinAshBkciA+HgzDQLV6FaSnT/n1vp5Qeo6ECm3ZNVHhGlHhaSuput0t0Kxehcr5z8BeVgbI5LB36OCxWAAAW1YK9eJFYMwmx+0vyMT7QWYz5F/shrJXb5inz3B4LaPTQZB4+dtYKgXD82D86M/mtoOD3Q7pv392X1wFQdxyrKgA7HYw//oXwDBgeB6Sa9chVFVBiIsDZDLwySmwTJ0G4aGH0EKjDv7AMM9DuXmjuHgXxVIQBLBxcYBeD8XWrWKXiCDQ9hwJNSpITVSoOjjU8iXpZTZzUCgU0LRrg0ql78P8FPn5YPQGCImJrrtEKJWAyQTF1i0wT53mkJizt20Lybmznj+A4yDIZLC3aOnzmgD3HRwElgUjuN5CZK9fF4sRIF6ZtGgBQSoFBAFMlQ6M2QRuRBYsD/0JQvoAqBMTAkrPufzs4mKxi7ebjh+CAAgsA7As5AcPwBjwJ1F6joQHbdk1YaEaUeHPaAijsRoSicSvERXyfXvFQuShp5ugjoOkrBSSs47FhxuVI/Yb5Di3r2V1VeC73g6+Rw+f11TLaUQFy8LWpy9gdjEXymoFU1lxs6jK5GIxAsTGpYkJEBQKyAoLIR/QH4mtWwW1PdcQY7F4bv0EQLALAMuCDbBRKW3PkXCiK6QmzmAwIzFRfbPvnB+8Jr0MBih25EO5eRMkly4BUim4ewbDOnsW4rKyarYKve/fMAYDIPHyuxErEbfAGmy7ccOGw9a1K6Q//QR7UmvH80aCAKayEoJUCvPUaWCLiyE7cRzgLLB37ATrPYO9RsHrBxwsFg52uwDL+AfEDuZGoxhqqP0eVVU1vepY8VxPvIuIbXw8JJWVUBV8herRY0Paz8/etq24PWmzQXDzvQQAjNUKdOkClmV9LoLR2J4rKSlGbu4KFBWdQVycGtnZv8fMmY9D5uWv2YMPjsa1a+VOj3/11dGYaM5K3KOC1MTVBhxUKjmUSjnMZvdXErV82Z5jy68i/uGHILnwfwAAoea3csWXXwBffgHMng31G8tgqPb+L1x7u3ZgS0s9P8lqFWcytWkwHl6phOHttdA++QQkFy4ALANBoQB4OxjOAkGlgvlPUyDf9Rk0zy4ALJzYVIJhYG/fAaYn58IyYaLHj66uNkGhELfu9HojrMOGgxuVA8Xnn0OwWCAkJAASCRiOE69Q7HYIKhXs2psRdwYMWJYBI5FAYADT/10M/Wj2Vq3AZY0UB+wJStdXSjwvnpmaOhUaTRx0Oueu9Q1FY3tOp9Nh7tzH0KlTZyxd+iZu3PgFa9fmwmw2Y/78RV5ff++9w/HQQ47tuOR+9Aok0UEFqRnwJ+Dg02gInod2ymRILl4QfxOvt9UmCAJgs4F57z0oU1Jg/vN0r2ehLH8YD+nJk2KKzlVHBUEAY6qGrf8A2G/t4vRje3IydFs+hvx//wHFzh1gr1wBlApYhgwFl5kJzdJXwV6+DEGlAlq2EP9FbbWKYYolz4PR6ZzCEg0+3ingYHzlNdjb3QJF/t/B/HoDAMCYxKs3QRsPe6uWYldvACzL1o0x4XkejN0Ou4+dI/xlmvUY5Ae/AmPQQ1A3aFnE82CqjbB37ITqMeMQL5dBLpc5dgSvx9toiHDatWs7qquNeP31NxEfn1CzfB6rVy/HlCmPOvSMdKVly5bo0eN3kVgqCSG6h9QM1AYcWJZ126fNn8mtsoKDkJ47C0Eicb7vwzDiNpggQFi1ChqZ93tXXE4O+JRkMLoqMRbdYPGMTgfI5TDNnOX2/ogQHw/LnyZB9+l2VBaeQOWhb1D98itQfLFbLEaJiUBcXL37OzIILVsCEBC3epVYxDywWDhYrdab///J5TA99TSqdu+BcdkKVC96DtUzZkJISIA9IR6oKUISiUTs52cXwPM8BJMJkMlgTXffFT4YfK9e0K99F4JWC9ZoAKPXgan5b7baCHvnZOg3bgKn0YLjrC4HLcZC77nCwmPo129AXTECgGHDsmC323HiRGHE1kEiiwpSM+Eu4BDIQUzF9u3ez/7I5cCNG5AcPOg14CBotDC8nwc+OQWMrgpMxX/A6PViU9eK/wAyKYxLXoB1+Ai/vjN7rVw8B6RQuF2roNUCZhMU+Z96fT+ngAMAISEB3OgxsEyZBtPiJeBTbwVbVQUJAAnLio1leTvsgr2mnZEBtp69wPfs6dd38Yd1+AhUHjyM6kXPwdazF+zJybANvBuGFStR+eVe8Ld1rfs+paWlOHLkcN29vlg53FpSUozOnVMcHtNqtWjVKslpFpkr+/btwdChA5GVdQ8WLJiLn3++GJ6FkpCiLbtmpH7A4YcfinDq1AlMnjy5Lj3n6+RWtvyq907aDAMIAmylpYiLU3oNOPC3dYVu5y7IP98FRf6nkFwtg6CKA5eVBcuEieDv7ObPVwUASM6cAWMyifd43H4Z8Xcy6bcnvL6fq4CDA6kU/FtvQfron4EbN8Cr1RCUSvEqr7oajMkE+y3tYXhtqefJvCEgtGkD0+NzYHp8jtvn2O12bNq0GVu2bMbKlatw//33R2V7zhW9XgeNi756Wq0WOp3nIYqZmYORltYDbdu2w9WrZdi48SM8/vh0fPTRVhqGF+OoIDUjNpuAiooqrF+/DuvXr4fVakX//uno1KmzX+/j8V/wdU8S/2VtlimgBqBWq7yehRISEmCZPAWWyVP8Wo87jM3mNQYtPpERAwk+aBhwqFWXSMwcBNOWrWBXrIDs2FGw//kPAEBQqWDJGQ3TvKdhT00N+DuF2pgxY7Bt29+Qm7saw4cPA8dJG/3h1vod+3v16oP+/TMwadID+OSTLViw4DkPryTRRgWpmRAEAYcOfYW1a3Nx/fp1dOzYEU899bTfxQgAuOz7Id+//2bE2RWbDYJKBW7IvWCqTdBo1ME3e/UTn5oqdiywWDx2VoBdAH/nnT69Z8OAg91ud04kdukKvJ8H9tIlSC5eBBiA79YN9hj77VylUqJnz99h+vTpeO+99/D22+9gxozHor0sAIBWGw+j0TkBqNfrEe9nt/ikpCT07NkbP/10PlTLI2FC95CaAZ7nsXjxM3jhhedQUVGBmTNnY/fu3cjKygro/SxjxsKe1Eo8z+LqV2meByMIsDw4AUKLFjCbOVittrA3e3Vaxp3dYOvdRzy75O5XfpMJkElheeBBn9+3NuCg1ao99p6zp6bCmpUF64ismCpGDQ+3Tpo0FW3btsPWrRtRWuo53BEpyckpTveKDAYDfvvtVyQnp0RlTST8qCA1A3a7HZcu/RuDBt2DzZv/jqlTZ0IikQbewUGthj5vHQS1Wtzq4jgxHcfzYMxmMDwPW9+7YHzhpbqXBNLBIWgMg+qn54vrrKhwbM4qXuqAMZthuX8UbL37+Py2crkMLCum56xWm9fJrbGCZVmX6TmGkWHu3GdgtVrx7rv/E+1lAgAyMu7GyZMnoNffPMxdUHAALMtiwAD/Eoq//noDZ858j27d0kK9TBJiNKCvmZJKGSQmqsHzvN8dHGpJfjwP1do1kO/+X/FqCYC9TRuYJ0+FafZjYsy6Ho1G3NqqqND51MEhVGSHCqBetBDsr7+J24w1B2Mhl8OSMwbGV1712Im8VsMDw4IgQKGQo6KiyjngEKjqakiKiwG7HXxKCqDRhORtvR1uFQQBy5a9CkEQ8PzzL3l4p8jQ6XSYPHkiOnXqjClTHsWNG79gzZpcjByZ7XAwdt68/8K1a+XYtu0zAMD+/Xtw7NgRDBw4CElJrXH1aik2b94AnU6Hdes2o337DlH6RrEh1gf0UUFqxjQaBVQqOQwGo08dHNxhKirEczxyGfhbu7gdy8AwDFq0iAfHWYOfZusvgwGKL3ZDevw4GM4Ce6dOsIwdB/4O3+4duZrcyjBAixYJsFptDgGHQDC//grVu2uh/HgrmJqrAkEVB8vEiTA9ORf2W9oH9L6NeXJrcfEl5Oa+iaKiH2paB43CrFmOrYPmzJmFa9fKkZ8vTtstKvoX3n9/LS5d+hl6vR5arRZ9+/bHjBmznWLkzREVJBKzGAZo2VLsxVZRURWRZJVSKYdGo0ZlpS6iAYdAeevnp1DIodWqUVWlD3jbji2/ivg/jIXkyhXxQHHtOA2eB8MA9jZtUbV9J+y33ur7e7Is1GpVXe85k8na6NNzJHixXpDoHlIz5ksHh1CLVsDBX74eGHbq4BAAzZNPQHLlCgSJFIK85hCvRALIxW7h7C/XoZ01w30wowHxcGt81A+3EuIvKkjNXKhGVPgjKgEHP/g7udVVBwdfSc6eheyfhRAY1nWEnmEhsBJIz5+DtNBzyxwaDUEaOypIBAaDGYIgROyqxWbjYbFwdTfZY8XNfn6Kev38vG/D1e/gwLL+fR/5vr3i//A0VZdlAYaBfO+Xbn7sOj3XWO4VEVKLChKpG1EhlUqhVEamRb/RKA64c9XcM9IC6efXUHW1CYIg+L11xxgMYldwT4W55meMwfmgKG3PkaaEOjU0EkeOfI28vL/iypUStGnTDpMnT8OoUWM8vqa8/ComTHB+TlpaD3zwwQaHx/wZUREK4pC36HRwqK9+ei6YYIKrERW+sLdpU9PxwkOLI0EABEBofXPkQjRHQxASLlSQGoEffvgeS5YsRE7OWMyb9wxOnfoWy5a9iri4OAwd6r0D9uzZT6BPn351f46Lc/4tvjbgoNWqoFbHRSSWbTZzUCgUAU2zDZbXabgBsFg4KJVin7vKSs8NQGtxY8ZAvfRV8dCuu0movA1gAMv4B5zSc5GY3EpIpFBBagQ2bvwQaWndsXDh8wCAvn37oaysFOvWve9TQerYsZNPw8rMZhuUSjHgEKmrFqOxGgkJ2rrPDDdfpuEGw2CoRmJiPFQqBUwm79/Hfkt7mCdMhPJvn0DgbYCkwT+SNW2YuPuyIe/ZM+KTWwmJJLqHFOM4jsPp0yedCs+IESNRXHwJ5eVXQ/p5TTng4G96LhCBBByMr70ObvgIMDwPxsoBNf9hrBwY3gZbRgYkGzdSeo40eVSQYlxZWSlsNpvTKfPkZHGEgS/DylatWobBgwcgJycLy5e/Bp2uyu1zm2LAIdD0XKD8DjioVNB/tAH6Dz6E9e5BYhsjpRK2u/rB9uE6yPbvhyQxgdJzpMmjLbsYp9eL9yIaDivTasUW/J6Glclkcowb9yDS0zOg0Whx7lwRNm36CD/+eA55eZsglbr+y99UAg7h3p5zJ6CAg1QKLmc0uJzRAFz0nquopisi0uRRQYqC2jb63gTbCDIpKclhIFmfPnchNbULnn32KRw+XIDhw12Pn2gKAYdQpecCFUjAAYhOeq6kpBi5uStQVHSmpmfc7zFzpmPPOFcEQcCWLRuxc+enqKysRNeut+PJJ+f7dL+SEFeoIEVBQcEBLF/+mtfnbd2aX3cl1HBYWe2Vk7/DygYOHASVSoWffjrvtiABjTfgEI70XKD8CThEKz2n0+kwd+5j6NSpM5YufRM3bvyCtWtzYTabHbpqu7Jly0Z89NH7eOyxOejSpSt27PgU8+fPwfr1NCqcBIYKUhSMHj0Oo0eP8+m5HMdBKpWipKQY6ekD6x6vvXcUzmFlBoMZiYnqiMWy6wccasc7+Cpa23Oe1A84WCyc2xEV3kZDhNOuXdtRXW3E66+/ifj4hJp181i9ejmmTHkUSUmtXb7OYrFgy5b1eOihR/DHP04CII4Lf/jh8TQqnASMQg0xTi6Xo2/ffjh06CuHxw8e3I+UlFTc4udYgqNHv4HJZPJpWFljCThEIj0XKE8Bh1joPVdYeAz9+g2oK0YAMGxYFux2O06ccN87r6joDIxGI4YNu5n+lMlkGDJkKAoLj4Z1zaTpoiukRmDq1BmYO3c2Vq5chmHDRuC7705h//49ePnlNxyeN2RIOrKzR2Hx4hcBAGvW5IJlWXTv3gMajRbnz5/F5s0bcOedabjnnnt9+uxYDjjE0vacO7UBh+++OwWrlUevXr1j6nBrSUmxU8cPrVaLVq2SPCY4a3/mKv15/fonsFjMUCiUIV4taeqoIDUCvXr1xtKlK5CX91fs3r0Lbdu2w6JFf3H47RQQt1rqXxmkpqZix458fP75DpjNZrRu3QY5OWMwffpstwm7hmIx4BCL23OeWCwcVq5cicuXL2P79p249daUmDncqtfrnBKcgFiUPCU49Xod5HI5FArHDudarRaCIECv11NBIn6jgtRIZGYOQWbmEI/POXLkpMOfc3LGISdnXNCfHUsBh2in5wI1adIjePHFF/D227nIzX2Les8R4gLdQyI+iXYHh0gfbg2V2tEQEydOQL9+/bB3717s3ftVzBQjrTbeKcEJAHq93mOCU6uNB8dxsFgc04N6vR4Mw0Crje3JpCQ2UUEiPolmwCExMT6o0RDRUn80hNXKY968BZBIJFi9egU4jov28gCIKc2G94pqz8l5SnDW/uzy5RKHx0tKitG2bTvariMBoYJEfGY0WmC32xEXp/I4vidUVCrx6kgiYWEwGGMqPeeJu/RcauptGD9+Iq5cuYxdu3ZEe5kAgIyMu3Hy5Ano9Tfv1RUUHADLshgwIMPt63r06Am1Wo2CggN1j9lsNnz9dQEyMgaFdc2k6aJ7SMRnkQo4NEzPyeWymntJsXFV4Y4v6bnp02fj3/++CI1GE72F1jN27APIz9+GxYufwZQpj+LGjV/wzjtvY+zY8Q5nkObN+y9cu1aObds+AwAoFAo88sifsX79B0hMbIEuXW7Dzp2foqqqCg8//EiUvg1p7BjBx9OHN25Edl4NiV2JiSrIZFJUVupCGnBwl56TSiVISNDCaDRFZERFIKJ5uDVYxcWXkJv7JoqKfqhpHTQKs2Y5tg6aM2cWrl0rR37+P+oeE1sHbcDOnfmorKzAbbfdjrlz56NHj57R+BrEB61bx/a9PSpIxG9SKYPERDV4ng9ZB4f66TmDodopsKDRiIWqokLnVweHcHPuPWeJmcACIQ3FekGie0jEb6EMOPiangv3iAp/1abnEhK0kEjYZj8a4vTpk8jM7IfDhwucfrZv3x5kZvZDUdGZKKyMNCZUkEhAgg04SCQs4uM1Pqfnajs4KJUKSKWSIFYevPrpOY6zoaKiGkZj8x4j3qfPXWjTpi327//S6Wf793+JDh060lYe8YoKEglIbcBBvJHv39mkQHvPmc0crFZbxM5CNRQLvediFcMwuO++3+PYsSMwGG6ea6qoqMCJE4UYOfL+KK6ONBZUkEjAzGYbrFabz1ctoTjcajRWQyKRQKlUeH9yiND2nG+ys0eB4zgcOnQzCn7w4D7wPI/77vt9FFdGGgsqSCQovnRw8Hd7zpOGHRzCjbbnfJecnIJu3dKwb9+eusf27duD7t1/h44dO0VxZaSxoIJEguIt4BCO0RCRCDjQ9lxgsrNH4fvvT+OXX66jrKwUZ8/+i7briM+oIJGguQo4yGTSsPWeC2fAgbbngjN8+H1gWRYHDuzFvn1fQiqVYvjwkdFeFmkkqCCRoNUGHBiGwdGj32DChPFYsWJZWHvPhSPgQNtzwUtMTERGxt3Yu/dL7Nv3JdLTByIxMTHayyKNBBUkEhI//ngB06ZNw8KFC/Hbb78hLa172HvPhSrgQNtzoZWdPQo//3wBV65cxsiRFGYgvqNediQoJpMJ69fnYdu2reB5HsOGDcOiRYug0SR4f3GQ6gccxGm2/l3KxNLk1qZk0KDB0GrjIQh2ZGYOjvZySCNCBYkE5eOPN+HjjzehffsOeOqphRg5cjhUKjkMBmNEmqEajaaaZqwqv5q9xlrvuSNHvkZe3l9x5UoJ2rRph8mTpzmNFm+ovPwqJkxwfk5aWg988MGGMK3UO7FDuwSDBt3rNFGWEE+oIJGgZGePQtu27ZCVlQ2FQgGj0QKFQoq4OFXNVUt4P7824KDRqH2aZuvcey76k1t/+OF7LFmyEDk5YzFv3jM4depbLFv2KuLi4jB06Aivr589+wn06dOv7s9xcdE5OFzrm28OobKyAtnZo6K6DtL4UEEiQenQoSM6dOhY9+dIjaioz2zmoFAooNHEuW32Gsvbcxs3foi0tO5YuPB5AEDfvv1QVlaKdeve96kgdezYCT16/C7cy/Tq7Nki/PzzBWzY8CFuv/0O9OlzV7SXRBoZCjWQkPO3g0MoeAo4xHJ6juM4nD590qnwjBgxEsXFl1BefjVKK/PfZ5/lY9WqZWjRoiX+8peXo70c0ghRQSJh4UsHh1Cy2XiYTGb8/e9/Q2npFQCNIz1XVlYKm82Gzp1THB5PTk4FAKfx4q6sWrUMgwcPQE5OFpYvfw06XVUYVurdkiX/jcOHj2Pdus249dbborIG0rjRlh0Ji9oODiqVHEqlPCIBh6tXr2HFihW444478PHHn0Ctjou57bmG9HodAECjcZxTo9XGAwB0Op3b18pkcowb9yDS0zOg0Whx7lwRNm36CD/+eA55eZsgldI/3qRxob9jSdhEOuCQmJiIP/xhPHbs2I6dO3dg4sSHopKeMxgM+O23X70+r337DkF9TlJSEhYseK7uz3363IXU1C549tmncPhwAYYPzwrq/QmJNCpIJGwiGXCoTc8tXLgABw4cQG5uLvr3z0TLlq3C9pnuFBQcwPLlr3l93tat+XVXQkajweFntVdO8fHxfn32wIGDoFKp8NNP56kgkUaHClIz9+23hdi9+x84d64IV6+WYfz4CZg/f5FPrzUYDFizZjW+/voQbDYb0tMz8NRTzyIpKanuOWazDUqlGHDwJZbtr4bpOaVSg9mzH8ebb76B995bi+effymkn+eL0aPHYfTocT49l+M4SKVSlJQUIz19YN3jtfeOkpNTQr9AQmIUhRqaucLCf+LixQvo3buv030Mb158cTG+/fY4FixYjJdeehWXL5dgwYK5sNkcz/WEK+DgLj2XkzMOd9zRDV988Q9cvHghpJ8ZanK5HH379sOhQ185PH7w4H6kpKTillva+/V+R49+A5PJhG7d0kK5TEIigq6QmrknnpiHJ598GgBw+vRJn19XVHQGJ078E6tXr8WAARkAgM6dkzFp0gSn+xehDjh4O9wqkUjw3HMv4K233mwUnQKmTp2BuXNnY+XKZRg2bAS+++4U9u/fg5dffsPheUOGpCM7exQWL34RALBmTS5YlkX37j2g0Whx/vxZbN68AXfemYZ77rk3Ct+EkOBQQWrmWDawi+TCwmPQaLTo3z+97rHOnVPQtevtKCw86nT/IhQBB38Ot3btejveeSfP/w+Jgl69emPp0hXIy/srdu/ehbZt22HRor9g2DDHs0k8zzs0q01NTcWOHfn4/PMdMJvNaN26DXJyxmD69NmUsCONEv1dSwJSUlKMzp2Tnaa2Jienujw7E2zAIdZ6z4VaZuYQZGYO8ficI0ccr2BzcsYhJ2dcGFdFSGRRQSIB0et1Lu85abVat2dnAgk4xGLvOUJIeFBBamL8OQMjk8kisCJHBoMZiYlqj33ngNjuPUcICQ8qSE2MP2dggokUa7Xx+OWX606P6/V6j2dnfAk4NPXtOUKIa1SQmhh/zsAEIzk5BSdPnoAgCA73kUpKitGli+c+Zu4CDrQ9R0jzRueQSEAyMu6GXq/DyZMn6h67fLkEFy78hIyMQR5fWxtwELfl4sCyLLRaNRIStJBIWFRXc6ioMFIxIqSZoSukZu7atXKcP38WAGA2m1FWVoaCggMA4DASoeEZmB49emLAgIF4441XMGfO05DL5cjLexddunTFkCFDvX5u/YCDQiGn7TlCCBWk5u706ZN4/fWbs2uOHz+G48ePAXCMGTc8AwMAr7zyBtasWY0VK5aC53kMGJCOp59+1uczMLUBB0EA9HoTXRER0swxguBbbunGDfeJKEICJZWysNnoioiQSGjd2r/2YJFG95BIVFExIoTUooJECCEkJtA9JNJshHvUBiEkOHSFRJqNSIzaIIQEjq6QSLMRiVEbhJDA0RUSaTbCNWqDEBIaVJAI8cLfURuEkMBQQSLEi0BGbRBC/Ef3kEijFeujNggh/qGCRBqtWB+1QQjxDxUk0mg1hlEbhBDf0T0kQrwIZtQGIcR3dIVEmo1ojdoghPiGChJpNqI5aoMQ4h2NnyCEkGaCxk8QQgghPqCCRAghJCZQQSKEEBITqCARQgiJCVSQCCGExAQqSIQQQmICFSRCCCExgQoSIYSQmEAFiRBCSEyggkQIISQmUEEihBASE6ggEUIIiQlUkAghhMQEKkiEEEJiAhUkQgghMYEKEiGEkJhABYkQQkhM8HliLCGEEBJOdIVECCEkJlBBIoQQEhOoIBFCCIkJVJAIIYTEBCpIhBBCYgIVJEIIITGBChIhhJCYQAWJEEJITKCCRAghJCb8P+jQUp0Z+T1sAAAAAElFTkSuQmCC"}}]}}}, "version_major": 2, "version_minor": 0} +{"state": {"d796a52aef934de08dddb19cf081ad90": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "917fe49570b34302a395d8b7e342a0f2": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_e24f14f80adf4d9eacd7ed6838fc20f9", "IPY_MODEL_505301c2ad514208bc9457928322a019"], "layout": "IPY_MODEL_d796a52aef934de08dddb19cf081ad90"}}, "11fadcac5b50441e9ec3ea9e6494f36b": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "93e2ac111efc4262b32f68afae31b030": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "e24f14f80adf4d9eacd7ed6838fc20f9": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["10", "200"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "N", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_11fadcac5b50441e9ec3ea9e6494f36b", "style": "IPY_MODEL_93e2ac111efc4262b32f68afae31b030"}}, "b94bd50054cd4825a5a9ed5e46e38928": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "505301c2ad514208bc9457928322a019": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_b94bd50054cd4825a5a9ed5e46e38928", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAiwAAAGnCAYAAACU6AxvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAABksklEQVR4nO3de3wkdZ0v/E/1vdNJ555Mrp30parnwsyAwDByUYZhBcVlXa6KjOvdPfLsyvE8K+5BXVbPkXWfc55nl1U4qHhhWRUVV1dxvAAiC6KCMCJMV1Wnc79n0kknne5Od1c9f3RSTGQumUw61Z183q+XL8mvk+4vVH6dT1f96vcVdF3XQURERFTCLGYXQERERHQ6DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5GxZYvve97+HP/uzPcM4552Dfvn143/veh3Q6vVEvT0RERGXMthEvcu+99+KLX/wiPvShD2Hv3r2Ix+P41a9+hXw+vxEvT0RERGVOKHYvoVgshre+9a34whe+gDe84Q3FfCkiIiLapIp+SeiRRx5Be3s7wwoRERGtWdEDy5EjRyCKIr7whS9g//792LVrF26++WYcOXKk2C9NREREm0TRLwldddVVGB8fR1NTE26//Xa43W7cd999UBQFP/3pT1FfX7+m59V1HYIgrHO1REREVIqKvuhW13UsLCzgn/7pnxAOhwEAe/bswYEDB/Cv//qv+Ou//us1Pa8gCEgkUsjntfUsl86Q1WqB1+vmsSgBPBalg8eidPBYlJbqajcslrVd3Cl6YPF6vaipqTHCCgDU1NRgx44diEajZ/Xc+byGXI6/gKWAx6J08FiUDh6L0sFjURrO5ppO0dewBIPBkz6WyWSK/fJERES0CRQ9sFx++eWYmZnB0aNHjbF4PI6XX34ZO3fuLPbLExER0SZQ9EtCBw8exDnnnIO/+qu/wu233w6n04n7778fDocD73jHO4r98kRERLQJFP0Mi8Viwf3334+9e/fik5/8JP7rf/2vqKysxEMPPYTGxsZivzwRERFtAhuyNX9dXR3+8R//cSNeioiIiDYhdmsmIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqOQxsBAREVHJY2AhIiKiksfAQkRERCWPgYWIiIhKHgMLERERlTwGFiIiIip5DCxERERU8hhYiIiIqKh0XT/r52BgISIionWn6zrGx8fxn//5Szz00NeRzS6e1fPZ1qkuIiIiIszNzUFVZShKBPF43Bjv7e1Fc3Ptmp+XgYWIiIjO2rFjU3j66acwMjJsXAKy2ezo7u6GKIbR3t5xVs/PwEJERERnTNM0ZDJpuN0VAACHw4nh4SEAQGtrGyQpDL8/CIfDsS6vx8BCREREq3bs2BRkOYJoVEF9fSPe8pa3AgCqqqpw4MCVaGlphdfrXffXZWAhIiKiU1pYSEJVFSiKjKmpSWNc03Rks1nY7XYAgCSFi1YDAwsRERGd1K9+9TSOHHnBWJditVrh83VBFMPo7PTBarVuSB0MLERERASgcCvyyMgw6usb4HK5AABerxe6rqO5eRskKYxAIGQ8tpEYWIiIiLa4eDwORYlAUWTMz8/h0kvfiF27zgEAhEIS2traUVOz9luS1wMDCxER0RaUSi0gGlWhKDImJsaNcafTiWw2a3ztcDjW7U6fs8HAQkREtMVks4v413/9OnK5QjCxWCzo6OiEKIbR1dUNm6304kHpVURERETrprBF/hjGxkaxd+95AAC73YH29nYkk0lIUhjBYMjYT6VUMbAQERFtQonELGQ5AlWVMTs7CwDw+4PGHikHD77JuB25HDCwEBERbRKZTAY9PYV1KaOjI8a43W6H3x+ArmsrxsoJAwsR0enoOmwvPA+rqgB2O7L79kNraze7KqLX6O/vw5NPPgEAEAQB7e0dEMUwuru7Ybebv3D2bDCwEG1StpeOwPXAF+F4/OcQslnkgkGk/+J9yFxzLVACK/7LheOxn8Lzd5+ATT5qjOmCgMU3XY35//E5aB2dJlZHW5Wu65icnICiyKitrcXOnYVbkLu7u9HcvA3d3QGEQiIqKytNrnT9CPry1nVlKB5PIpfTTv+NVDQ2mwW1tR4eixJgHIvpeTj+x6fh+d+fg261QcjnAAC6xQJB05DbuQszD38femOjyRWXPue/fxdVH3wPAED4o7dK3WqFXlOL+E+egNbpW/EY50Xp2GzHYm5uDtGoAlmOIB6fBgDU1dXjxhvfDkEQTK7u9OrqPLBaLWv6WZ5hIdpkHF/5Ejz/+3MAYIQVABC0wpu1NXIU1e+4HjM/eQKwrO2NYysQZuKo+r8+VPjnE3yuE/J5YCaOqo/+FWa//f2NLo+2mGhUwSuvvIyRkWFji3ybzYaurm6IYvH695QSBhaizSSXg/sfPgsdwMk+awn5POxHXoD9F48je+DgRlZXVlzfeAhYXDxhWFkm5PNwPPkELLEeaP7ABlZHm52mabAc94GitzeG4eEhAEBraxskKYzu7gCcTqdZJW44BhaizeRnP4NlcuK036ZbrXD924MMLKdgf/JxYBVXzHVBgOOpJ5FmYKF1cOzYFGQ5gmhUwTXXXIu6unoAwM6d56Curh6hkGTclrzVMLAQbSYDA6c8u7JMyOdh7e/bgILKl5BKnfa/Y+EbBQiLmWKXQ5vYwkISqqpAUWRMTU0a49GoigsvLASW1tY2tLa2mVViSWBgIdpMPJ5V/ZHVAeib6O6BYsgHQ9B/82xhrcopCJqGfFf3BlVFm0kyOY9f/OIJDA72G+tSrFYrfL4uiGIYnX+0mHurY2Ah2kyuvBK61XraP7IQBCxe9eaNqalMpd/5Lrgf/Oopv0cHoDU1Y/FyXlqj09N1HfPz86iqqgIAuFxuTEyMQdd1bNvWAlGUEAiE4HK5TK60NDGwEG0mzc1YfNt1cHzvuycNLbogAC4X0je9Y4OLKy+5c1+HzJ9cDcfPf2LcYfXHBADJ//4poAQbxVHpiMfjUJQIFEWGIAi45ZZDEAQBVqsVBw4cRHV1DWpqas0us+RxlhFtMql/+H9gffEFWHtjrwktusUKCEDi/q9C5xvkaSX+zwPwvvcQnI//bOWeNlYroGlIfuozyLz9nSZXSaUolUohGlWhKBFMTIwb4w6HA4nELKqrawAAPh8vJ65W0QPLI488go9//OOvGX//+9+P//bf/luxX55oy9Fr6zDz6M/hufszcH3jIQipBeOx7P7XI/mxO5G7aL+JFZYRjweJb3wH9mefgetrD8AWOQrdbkf2sjci9a73vGbDOCIAeOml3+OZZ56CtnRmzmKxoKOjE6IYhs/XVXY9fErFhp1h+dKXvmRctwOA5ubmjXppoi1Hr6nF/N3/C8k7/w62F18AFheR7/ZD6/abXVr5EQRk91+M7P6Lza6ESpCu6xgfH4Pb7TbOmtTX10PTNDQ2NkIUwwiFRLjdFeYWuglsWGDZuXMn6urqNurliAiAXlmF7CWXmV0G0aaTSMxCUWQoSgSzs7PYtWs3Lr30DQCAlpZW3HTTLfybt864hoWIiGgVMpkMenpUKIqM0dERY9xut6/YlVYQBIaVItiwwHLNNdcgHo+jtbUVN954I973vvfBarWe1XOutYESrZ/lY8BjYT4ei9LBY1E61utY6LqO733v25idnTGer729Y+lW5ADsdnZAX42z6c9Y9G7NTz31FI4cOYI9e/ZAEAQ8/vjj+MY3voG3v/3t+OQnP1nMlyYiIjpjuq5jYmICsizjkksuMc6e/PKXv0QsFsPOnTsRDodXrMuk4it6YDmRf/iHf8DXvvY1/OIXv0BTU9OanyeRSCGfL/924eXMarXA63XzWJQAHovSwWNROs7kWMzPz0NRIpDlCKanpwEA11zzp/D5ugAA+XweFosFwtmcJtjiqqvdKy6fnQlT1rBcffXVeOCBB3D06NGzCiz5vIZcjm8GpYDHonTwWJQOHovScbJjkc0uIhaLQVEiGB4eMrbIt9ls6Orqht3uPO7nBOTzOgp7HNNanM0pEi66JSKiLWtmZgaPP/4z4+uWllZIUhh+fxBOp9PEyuiPmRJYHn30UVitVuzYscOMlycioi1oevoYZDkCANi/tK9OQ0Mjurq60djYBFGU4PVWm1kinULRA8t73/te7Nu3D5IkAQAee+wxPPzwwzh06BAaGxuL/fJERLSFLSwk0dNzFM899yImJiYAFG5DPv/8C2C3OyAIAq6++hqTq6TVKHpg6e7uxne/+12MjY1B0zR0dXXhb//2b3HrrbcW+6WJiGiL6u/vwx/+8BJGRgbhdNqQSi3CarXC5+tCKCTBYjm7bTVo4xU9sNx5553FfgkiItridF2HruvGHSiTkxMYGOiDxSKgpaUF7e3d6OoKwO12m1wprRUX3RIRUdmamYkvbZEv46KLXo9gMAQAEMUwNE3Djh3b0d3djng8yTu2yhwDCxERlZVUKoWenigUJYLx8TFjvKcnagQWr9eLCy+8CDYbdxveLBhYiIioLORyOfz85z/BwEA/8vk8AMBisaCjoxOiKMHn6za5QiomBhYiIipJuq5jdnYGNTW1AAqbuS0sLCCfz6OxsRGiGEYwGEJFhcfkSmkjMLAQEVFJSSRmoSgyVFXG3NwcDh16D1wuFwDg9a+/BA6HA3V19SZXSRuNgYWIiEyXyWQQi0UhyxGMjo4Y4zabHVNTk2hv7wAAbNvWYlaJZDIGFiIiMlV/fy9++tPDyOVyAABBENDW1g5RDMPv98Nud5hcIZUCBhYiItowuq5jamoSmqahuXkbAKCxsQn5fB61tXWQpDBCIQmVlZUmV0qlhoGF1kSIT8P5wx/ANjUBtDRBeOOVwLY2s8siohI1Pz8PVS3slzI9fQxtbe340z99GwCgosKDt7/9nfB6qyEIgsmVUqliYKEzs7gIz9/dCffXHgByWcBqBfJ5VANYfPNbMfe//xl6bZ3ZVRJRCchmFxGLxaAoEQwPD0HXdQCFu33cbjc0TTN2pq2urjGxUioHDCy0evk8vO89BMdPD0PQl3aMXL7mDMBx+Eeo6VEx86OfQa/ymlcnEZWEn/70JxgY6DO+bmlphSSF4fcH4XQ6zSuMyhIDC62a84ffh/Mnj570cSGfh1VR4P78P2PhDvaQItpKpqePQZYj2L17DzyewvqTYDCE2dk4RDEMUZTg9VabXCWVMwYWWjXXl/4PdIsVgpY/6fcIWh7ur34ZCx/9GGC3b2B1RLTRFhaSUFUFqipjcnISAOB2u7F373kAgFBIhChKXJdC64KBhVZH12F/7jenDCvLLNPHYO3vQ36ppwcRbR65XA59fTHIsoyhoQFoWuHysNVqRWenD42NTcb3Lq9PIVoPDCy0OroOaGfQ6XRpbQsRlb/lxbJAIbA88cRjxp4pzc3bIIphBAJBuN1us0qkLYCBhVbHYkE+EIS1JwrhuDevE9FdLuSXdqUkovI1MxOHosiIx+N405uuBgC4XC7s2LELdrsdoigZfX6Iio2BhVYt9d4PoPJv/+aU36NbrUjfdAvATZ+IylIqlUJPTxSKEsH4+JgxHo/HUVtbCCcXX3ypWeXRFsbAQquWvukWuL/ypcJZlvxr17LoViv0qios/F8f2fjiiGjNdF3H+PgYXnzxdxgY6Ed+aX5bLBa0t3dCkrjzLJmPgYVWr7ISM9/9IaoP3QT7C7+DbrMBuRyEpc3jtJZWzD70bWidPrMrJaLT0HUd+XweNlvhz0AymURvbwwA0NDQCFGUEAqJqKjwmFkmkYGBhc6I3tyMmcNPwP7sM3B+51uwTk7A0VCH+auuQerAnwA2/koRlbJEIrG0RX4EwaCICy7YB0EQ4PN14bzzzkcwGEJ9fYPZZRK9Bv+60JkTBGT3X4zs/oths1ngqPUgG08CuTO4i4iINkwmk0EsFoUsRzA6OmKM9/bGcMEF+wAUtsvft2+/WSUSnRYDCxHRJvbkk49DUWTjNmRBENDW1g5RDMPv95tcHdHqMbAQEW0Suq4jHp9GbW2dsbuspunI5XKora2DJIURCnEBLZUnBhYiojI3Pz8PVVWgKBFMTx/DddfdiKamZgDA3r3nYefOXWhsbOIW+VTWGFiIiMpQNruIWCwGVZUxNDRo7EZrs9kwPX3MCCzLe6cQlTsGFiKiMjM9fQyPPPJtZLNZY6ylpRWiKCEQCMHpdJpYHVFxMLAQEZW46eljmJubg8/XBQCoqamFw+FARUUFRDEMUZTg9VabWyRRkTGwEBGVoFRqwViXMjk5CY/Hg3e+8y9gsVhgsVjwtrfdgMrKSq5LoS2DgYWIqERks1n09/dBUSIYHByAttQh3WKxoKmpGZlMGm53BQCgqqrKzFKJNhwDCxFRifjtb5/FkSMvGl83NTVDFMMIBkNwu93mFUZUAhhYiIhMMDMTh6rK6OzsQnPzNgBAICCip6fH2C+Fd/gQvYqBhYhog6TTaUSjKhQlgvHxMQDA/HzSCCxNTU145zvfxXUpRCfAwEJEVES6rqOvrxeKEkF/fx/y+TyAwhb5HR0+486f5TEiOjEGFiKiInvmmf9EIjELAGhoaIQoSgiFRFRUeEyujKh8MLAQnUwyCedPfwzL5AQ0bzUWD74JekOD2VVRCUskElBVGYOD/Xj3u28FUDhrsnv3HszNzUGSwqiv5+8Q0VowsBD9sXweFf/4P+H+P1+AJZmEbrFA0DToNhvS19+E5P/8HPRK3lJKBZlMBrFYFIoiY2RkGABgsQjo7e1FQ0MrAOCcc/aYWSLRpsDAQnQ8XUfVbR+E85FvQ1jqzSIs7YUh5HJwffubsL3yMma+/2PAw9P5W9n09DSef/436OvrRS6XA1A4m9LW1o7t28Po7OzEwkLO5CqJNg8GFqLjOA4/Ctd3Hz7p40I+D9sffo+K+/4FCx/92AZWRmbTdR25XA52u90Yi0ZVAEBtbR0kKYxgUERVVRVsNgucTicDC9E6YmAhOo77S/dBt1ohLN3JcSKCpsH9wBex8NcfBWycQptdMjkPRSlskV9XV4crr7wKAFBXV4eLLno92tra0djYxDt8iIqM77ZEy3Qd9l89fcqwsswyOQFrXy/ywdAGFEYbLZtdRG9v4VbkoaFB6EuXB5PJeeRyOdiWguq5577OzDKJykI2m0VfXwyKIuPmm6+D1epa0/NseGBJJpO4+uqrMT4+ju985zs455xzNroEopNbRVgxLC4Wrw4yzW9/+2scOfICstmsMdbS0gpRlOD3B42wQkQnp+s6RkaGoSgyYrEoFpfeL7PZLFyuMgksX/jCF4yNk4hKiiAg39UNa1+vseD2ZHS7A1pHxwYVRsU0PT2NqqpK2O0OAIDNZkc2m0V1dTVEMQxRlOD1VptcJVF5iMfjUJQIFEXG/PycMe71VkMURbhca++JtaGBpaenB//2b/+Gj33sY/jUpz61kS9NtCrpd78Pnk/991N+j261In3djdCrvBtUFa23VGoB0agKWY5gcnICBw5cCUkKAwDC4TC2bduGbdtauC6FaBVSqZTRcmJiYtwYdzqdCASCCIUktLS0QhAEWCyWNb/OhgaWz3zmM7j55pvR3d29kS9LtGrpWw7B/eX7YRkaPOFaFt1ihe5yIfXXt5tQHZ2NXC5nbJE/ODgAbel2dYvFYuxCCwBudwXc7gqzyiQqC7lcDv39fVCUCAYG+lfMp46OTohiGF1d3et6CXXDAsvhw4ehKAruuecevPzyy+vynFbr2pMarY/lY7BpjkVtDeb+4zCqbnwbrJGjxh1DxuZxdbWY/8Z3IEhSya1Y33THYh1lMhk89NDXkE6njbGWlm3Grchu99pPU58Ij0Xp4LFYP7quY2xsDLIcQU+PumI+bdvWDEnajmAwhIqKkwf+szlpuSHvualUCnfffTduv/12VFZWrtvzer3r+yZDa7epjkWtBPzhJeAnP4Hw4IPA8DCE2lrg+uthueEGeNe4YGyjbKpjsUbxeBwjIyPYuXPn0ogHHR2tmJ2dxfbt27Fz507U1dUVvQ4ei9LBY7F2MzMzeOWVV3D06FHMzMwAKASPxsY6Yz7V19cXvY4NCSz33nsv6uvrcd11163r8yYSKeTz2ro+J50Zq9UCr9e9OY/F/jcU/ne8VB5IJc2p5zQ29bFYhXQ6baxLGRsbhcViQU1No9Fg8JJLDsDtdhvrUuLx4h3HrX4sSgmPxdpkMhljPo2OjhjjdrsdgUAQoiihra3dWJOy2vlUXe1e8zqWogeW4eFhPPDAA/j85z+PubnCiuGFhQXj/5PJJDxr3OI8n9eQy/EXsBTwWJSOrXQs8vk8Bgb6oSgR9Pf3GXcgCoKA1tZ2JJNpOByFT9YOhwv5vA7g1HeArW99W+dYlDoei9PL5/MYHOyHoijo71/ZcqK9vQOhkAS/32/cUadpMNaurNZpbsA8paIHlqGhIWSzWXzgAx94zWOHDh3Cnj178PDDJ98KnYjoZGT5KJ588gnj6/r6BoiihFBIhMezfpefiTYrXdcxOTkBRZERjapIpRaMx+rq6iGKYYRC4rou51irogeW7du34+tf//qKsaNHj+Kzn/0s7rrrLm4cR0SrkkgkoKoyqqtrEFzaYdjvD+J3v3sefn8AoiihoaHR5CqJysPc3BxUVYaiyIjHp43xiooKhEIiRDGM+vqGkrq1v+iBxev1Yt++fSd8bOfOncctiiMiWmlxcRGxWBSyHMHIyDAAoLl5mxFYXC4XbrnlUEm9qRKVqsJ86oGiFObTcssJm82Grq5uiGIYHR2dZ7VXSjGV2p2ZREQYHByALB9Fb29sxXX01tY2iGIYuq4bIYVhhejkNE3D0NAgVFVGLBZDLvdqy4nW1jZIUhjd3QE4nU4Tq1wdUwLLvn37IMuyGS9NRGXgpZeOoL+/DwBQW1u7dB1dQlVVlbmFEZWJY8emIMsRRKMKkslX7+Cpqakx5pPXW167dfMMCxGZJpmch6oqUFUFb3rTm4030J07dy31HpHQ2NjEsyhEq7CwkISqKlAUGVNTk8a4y+VCIBCCJG1HU1P5zicGFiLaUNnsInp7C1vkDw0NGtfRVVXG6153AQDA5+uGz8cWHkSnk81m0dcXg6LIGBwcMOaT1WqFz9cFUQyjs9MHq9VqcqVnj4GFiDZEMjmPX//6WcRiUWSzr15Hb2lphShK8PuDJlZHVD50XcfIyDAURUYsFsXi4qLx2LZtLRBFCYFACK4S35X7TDGwEFHRLC4uwuEobDLlcDiMsLJ8uUcUJVRX15hbJFGZiMfjUJQIFEXG/PycMV5V5YUkSQiFJNTU1JpYYXExsBDRukqlFowtvfP5PG688e0QBAF2uwOXXPIGVFdXY9u2lrK9jk60kVKpFKJRFYoSwcTEuDHudDoRCAQRCkloaWndEvOJgYWIztqpWs3PzSXg9VYDAMLh7WaWSVQWlueTqsro7+9bMZ86OjohimH4fF2w2+0mV7qxGFiI6KwcPfoyfvWrp5HJZIyxxsYmSFIYwWAIbvfJW80TUYGu6xgfH4OiRNDTE0U6nTYea2xsNLbI38rziYGFiM7I7OwMbDab0aunosKDTCaDyspKY3+Huro6k6skKg+JxCwURYaiRDA7O2uMV1ZWIhQqrPOqq6s3scLSwcBCRKeVTqfR06NCUWSMjY3i3HNfh4suej0AoKOjE3/6p29Da2vblriOTnS2MpmMMZ9GR0eMcbvdvtQXK4zW1raS3SLfLAwsRHRC+XweAwP9UBQZ/f29yOfzAApb4S8svNrR1WKxoK2t3awyicpCPp/H0NAAZLkwn45vOdHe3gFRDKO7uxt2u8PkSksXAwsRvYau6/j2t7+BeDxujNXXN0AUJYRConE5iIhOTtd1TE5OGLs5p1KvBv26unpjXUplJefTajCwEBHm5ubQ1xfDrl27IQjCUqPBdmQyGeM6ekNDo9llEpWF+fl5qKoMWY4gHp82xt3uCoRCojGfeAn1zDCwEG1RJ2o139DQiJaWVgDAvn37cckll/E6OtEqZLOLiMViUJQIhoeHjC3ybTYburq6IYphdHR0cj6dBQYWoi1kudW8okTQ29u7otX8H69DKYd280Rm0jQNw8NDUJQIYrHYivnU0tIKSQrD7w9yLq0TBhaiLWRsbBQ/+tEPjK9ra2sRCkll2WqeyCzT08cgyxGoqoxkMmmM19TULF1CDXM+FQEDC9EmlUzOQ1UVAMDevecBKHzqa2xsQnPzNohiuKxbzRNtpIWFJFRVgaLImJqaNMZdLhcCgRAkKYympmbOpyJiYCHaRLLZLBRFxtGjR41W8y6XG+ecswdWqxWCIOC6627kmyrRKmSzWfT390KWZQwNDRhb5FutVvh8XQiFJHR2+mCz8U/pRuB/ZaJNYGxsFLL8CkZGBpBIJKFphQV/y63mlxcAAmBYIToFXdcxMjIMVVXQ06NicXHReGz5zGQgEITb7Taxyq2JgYWoTOm6boSP3t4YIpGjcLsd8HqrEQwWbp2srq4xt0iiMhGPx6GqMhRFxtxcwhivqvJCFAu39tfU1JpYITGwEJWRVGoB0agKWY7gwgsvQmenDwAgSWHk81lceOF5cLurkc/rp3kmIkqlUohGVaiqjPHxMWPc4XAgEAghFBLZcqKEMLAQlbjlVvOKEsHAQL9xHV1RIkZgqaurxxvfeAC1tR7E40kADCxEJ5LL5ZZaThTm03LLCYvFgvb2TkiSBJ+vG3a73eRK6Y8xsBCVqFwuh6ef/iV6eqLIZDLGeGNjEyQpjGAwZGJ1ROVD13WMjo7i6NGj6OlRkU6njccaGxshioX5VFHhMbFKOh0GFqISkk6n4XK5ABTuRBgbG0Mmkzmu1XwYdXV1JldJVB4SiVn09KgYHIxhdHTCWIzu8XgQCkmQpDDq6upNrpJWi4GFyGTpdBqxWBSKIuPYsSkcOvQe2O12CIKAiy56PaxWK1vNE61SJpNBLBaFLEcwOjoCi0WA2+2AzWZHd7cfohjmfCpTDCxEJsjn8xgc7DdazS9fRxcEAePjY2hv7wAA+HxdJlZJVB7y+TyGhgaM+ZTL5QAU5lN7ewcuuOBcNDa2QhD4J6+c8egRbbCBgX489tjPkE6njLG6unpIUqHVvMfDVvNEp6PrOqamJqEoMlRVQSq1YDxWW1u3NJ8k1NR4jcXouZxmYsV0thhYiIpsbm4O2WzWWHtSU1ODdDqFiorlVvNh1Nc38NZJolWYn59f2iI/gunpY8a42708nyQ0NDRyPm1CDCxERbC4uIhYrAeKEsHIyDB8vi5cffU1AACvtxpve9v1aGpq5nV0olXIZhcRi8WgKBEMDw8ZOzfbbDZ0dXVDFCW0t3fCarWaXCkVEwML0TrRNA1DQ4NQlAh6e3tXtJrP5/PQNM0IKNu2tZhVJlFZ0DQNw8NDUFUZPT09K+ZTS0srJCkMvz8Ip9NpYpW0kRhYiNbJ4cM/Qn9/n/F1bW0tQiEJoZDEVvNEqzQ9fQyyHIGqykgmk8Z4TU3N0q39ErzeahMrJLMwsBCtQTJZuI4eDu8w9k3p6PBhfHwcwWAIohhGU1MTr6MTrcLCQhKqqkBVZUxOThrjLpcLgUAIkhRGU1Mz59MWx8BCtErZbBZ9fTEoiozBwQHoug6Hw4EdO3YBAMLh7dixYyevoxOtQjabRX9/L2RZxtDQgNFywmq1orPTB1EMo7PTB5uNf6aogL8JtHXk8xASs9CdLqCiYlU/stxqXlFkxGLRFa3mt21rQcVxz8PeI0SnVtgifwSKIqOnR10xn5qbt0EUwwgEgnC73SZWSaWKgYU2PcvIMNz33wvXg1+FZaltfPa885F6/4eQedv1wCnu1EmlFvAf//Hvxl0JXm+10Wq+urpmI8onKnszM3EoigxFkTG3NAcBoKrKa8ynmppaEyukcsDAQpua7aUjqP7zt0KYn4OwtJssANhe/B28f/k+pH96GHNf+CJgtRqt5mdnZ3DJJZcBACoqPAgGQ7Db7RDFMLZta+F1dKJVSKVS6OmJQlEiGB8fM8YdDgcCgRBEUUJLSyvnE60aAwttXskkqm9622vCCgAIy9fL//27GGluxpH9F2NgoB+apkEQBOzZcy6qqqoAAAcPvmnDSycqR/l8HgMD/VCUCPr7+4yWExaLBe3tnZAkCT5fNy+f0powsNCm5Xrk2xCmpnCiz2+TFgtetNuh2O1IffdhLDQ1A1ar0Wre4XBseL1E5UjXdUxMjEOWI+jpUZFOp43HludTMBhCRYXHxCppM2BgoU3L+Z1vAYIALK0/0QEjvIxbLPj9UiipWljATqsV/pvewVbzRKuUSMwu9fGRMTMzY4x7PB5jv5T6+gbzCqRNh4GFNi3L1CTSug7VbscrNhuCuRzOzxZ2ywzlchjOZhHOZtGRz2O+rh4ZhhWiU8pkMojFopDlCEZHR4xxm80Ov98PUQyjra2dLSeoKIoeWJ588kl88YtfRDQaxfz8PJqbm3Hw4EHcdtttxhoBovWUz+cxONiPp1xuDFRVYXn1SlYQjMDiBPCm405d60uNCYloJU3TMDg4AEWJoK+vF7lcDgAgCALa2tohimH4/X7Y7byMSsVV9MAyMzOD3bt349Zbb0VNTQ1UVcU999wDVVXxwAMPFPvlaYv51a+eRiRyFOl0CrZgCI6+GBryeezM5RDOZk/4M5q3GouXvnFjCyUqYbquY2pqcumSj4JUasF4rLa2DpIURjAo8kMnbaiiB5Zrr712xdf79u2Dw+HAJz7xCYyPj6O5ubnYJdAmtrCQXLGYL5FIIJ1OoaKiAqEbb8a+XzyOpuQCLFr+hD+vCwJS7/8QsLS9PtFWNj9faDmhKBFMTx8zxt3uCoRCIkIhEY2NbDlB5jBlDUtNTQ2AwtbMRGdqcXERsVgPVFXG8PAQbrrpFtTWFjadOvfc8xAOb0dHRycsFgts3/gOcMO10BcWVtzarFssgKZh8eprsPDRj5n1r0Jkumx2EbFYDKoqY2ho0Ngk0WazwefrhiRJaG/vZMsJMt2GBZZ8Po9cLodoNIrPf/7zOHDgANrb2zfq5anMLbeaV5QIYrHYilbzo6PDRmBpalp5xi533vmIP/403P/n83D/24MQFgqntvPhHUh94C+RvukdAN+IaYvRNG2p5UQEsVjPig+PLS2tEEUJgUAITqfTxCqJVhL05ThdZJdddhnGx8cBAJdeein++Z//eUUflrVIJFLI57X1KI/WyGq1wOt1F/VYTE1N4Yc//P5rWs1L0valVvPe1T3R4iKEY8cAlxN6TW3hludNZCOOBa1OqR6LY8eOQVEiUBQZ8/Pzxnh1dQ1EUYIkhVFdXW1iheuvVI/FVlVd7V7zXWQbFlgikcjS1udR3HvvvWhvb8dXvvIVnmak10gmk5idnUVraysAIJfL4b777oMgCJAkCTt27EBLC7fIJ1qNhYUFHD16FK+88gomJiaMcafTacyn1lZukU+lb8MCy/EikQiuvfZa/NM//ROuuuqqNT8PE7P51uvTSzabRV9fL2Q5gsHBAVRVeXHLLbcab6JTU5Oora1jwD0FfpIsHWYfi+X5pCiy0XICKGyR7/N1QZLC8Pm6YLNt/q24zD4WtNLZnGEx5bdVkiTY7XYMDAyc1fPk8xpyOf4CloK1HAtd15euo8uIxaIrWs07HE7Mzy8YbeZrauqh6+DxXgXOi9KxkcdC13WMjo5AUWT09Kgr5lNTU7OxRf7ynAK21nzivCgNZ3OKxJTAcuTIEWSzWS663eKeeeY/8fvfv2h8XVXlhSRJCIXYap5otWZm4lBVGbIsY24uYYxXVlZBksIIhSRjUTpROSt6YLntttuwa9cuSJIEl8uFSCSCL3/5y5AkCQcPHiz2y1OJKKxfUtHW1mb06+nq6kYk8gpbzROdoXQ6jWhUhaJEMD4+Zow7HA74/UGIooTW1jbOJ9pUih5Ydu/ejUcffRT3338/dF1HW1sbbrjhBrz3ve9lR9xNLpfLrWg1r2kadu/ei4svvhQA0NrahkOH3sNW80SrkM/nV8yn/NK+QoIgoKOjE6IooavLz/lEm1bRA8sHPvABfOADHyj2y1CJ0HUd4+NjUJQIenqir2k1X1//aoNBQRD45kp0CrquY2JiHIoiIxpVkU6njMcaGhohihKCwRA8nkoTqyTaGJt/iThtKF3X8ZOfPIqFpQ3allvNS1LYuBRERKeWSCSgqjIUJYKZmRlj3OPxIBgUIUlh1Nc3mFcgkQkYWGjNMpkMZLkHx46N4ZJLDgAo3Da5Y8dOzM3NQRTDaG1tY6t5olXIZDKIxaJQFBkjI8PGuM1mh9/vhyiG0dbWzvlEWxYDC52RfD6PoaEByLKM/v5eaFoebrcD3d0iWloKd31dcMFFJldJVB40TcPg4AAUJYK+vl7kcjkAhculra1tEMUw/P4A1/sRgYGFVimRmMVLL/3+Na3mGxsbcP75565Ym0JEJ6frOqamJqGqMlRVMS6fAkBtbR0kKYxgUERVVZWJVRKVHgYWOild143bIlOptLFnynKreVGUsG1bM+rqKhGPJ7kpE9EpzM/PQ1UVKEoE09PHjHGXy23Mp8bGJt6KTHQSDCy0wnKreUWJwOv14g1vKKxNaWpqwu7de9He3oH29g5ji3y+uRKdXDa7CFXtgaJEMDQ0iOVOKDabDT5fNyRJQnt7J1tOEK0CAwtB0zQMDw8ttZqPIZcrtJp3Op245JI3wGq1QhAEY/8UIjq5wrqUITz7bB9+//uXkcm8ukV+S0srRFFCIBCC0+k0sUqi8sPAssUdOfICjhx5Aclk0hirqamBKIYRCon85Ee0StPTx6AoMlRVxsJCEm63A9lsFtXV1RDFMERRgtdbbXaZRGWLgWWLWVhIwul0GUFkcTGDZDIJl8uFQCAESQqjqamZl3qIViGVWjDWpUxOThrjbrcLu3efg7a2bjQ0cF0K0XpgYNkCstks+vt7IcsyhoYGcOWVV8HvDwAAwuGdqK9vRGenb0u0mic6W7lcDn19vVCUCAYHB6BphcXmFosFPl8XQiEJgYAfjY3VXIxOtI74F2qT0nUdIyPDUFXlNa3mJybGjcBSVVXF2yeJTkPXdYyOjkBVZfT0RJHJZIzHmpqaIYphBIMhuN1uAIDNxs3diNYbA8smlE6n8Z3vfGtFq/mqKi8kSUIoJKGmhq3miVZjdnYGihKBoihIJGaN8crKKoiiBFEMo7aW84loIzCwbAKpVAqTkxPo7PQBAFwuF1wuFzKZNAKBEERRQktLK6+jE61COp1GT48KRZExNjZqjNvtdmM+tba2cT4RrUImk0FPj4q+vl686U1vPqvnYmApU7lczmg1PzDQD0EQcOjQe4xbJQ8e/BN4PJXshky0Cvl83phP/f19yOfzAAr7DHV0dEIUJXR1+TmfiFYhn89jcLAfiqKgv//VlhODg/1obDxnzc/LwFJGdF3H+PgYFEVGT4+KdDptPNbY2Ihkct4ILLzsQ3Rquq5jYmICihJBNKoinU4Zj9XXN0AUJYRCIjyeShOrJCofiUQCv//9i4hG1RUtXOrq6iGKhTtQzwYDSxl5+eU/4KmnfmF87fF4EApJkKQw6urYy4doNRKJBKLRwq3I8XjcGK+oqEAoJEEUJTQ0NJpYIVH50DTN6CCey2Xx0ktHABRauIiiCFEMo76+YV0uoTKwlKjlVvOVlVXo6OgEAHR3d+PXv34G3d2FVvOtrW1sNU+0CouLi4jFopDlCEZGho1xm82O7u5uiGIY7e0dnE9Eq1CYT4WWEx6PB1dc8ScACmdS9u49D62tbejo6Fz3+cTAUkLy+TyGhgYgy7Jx3a+jo9MILB5PJd71rvdyvxSiVdA0DUNDg1CUCHp7Y8Z1dEEQ0NraBlGU4PcH4XA4TK6UqPSdrIWLzWbHZZdljfVd+/dfXLQa+JevBExOTixt6a2suO5XW1uH9vaOFV2TGVaITm1qahKKEoGqKlhYOH4+1S61nJC49xDRGfj971/Eiy/+7iQtXKQNW4zOv34l4Jln/tM4Te12Vxit5hsaGnnrJNEqJJPzS1vkyzh2bMoYd7ncCIVEhEISmpq4RT7RaiwsJGG3O4wgks/njRYuwWDh75MZLVwYWDZQNruIWCwGVZVxxRVXwu2uAABs374TFRUVEEW2midarWx2Eb29hS3yh4YGoes6AMBqtcLn64YkSejo8HE+Ea1CNptFX18MiiJjcHAAV1xxJUIhCQAgioUNRzs7zZ1PDCxFpmkaRkaGl6779SCbLVz3U1UFu3fvBYClHTMlE6skKg/LLSdkOYJYLGrMJwBoaWlFKCQiEAjB5XKZWCVReVieT4oiIxaLrmjhMjk5YQQWj6cS3d3m397PwFIkqdQCXnzxBaiqvOK633Kr+a4uv4nVEZWX6enppXUpMubn541xr7faCPzV1TXmFUhUZrLZRXzrW99Y0cKlMJ/Ekm3hwsCyjo6/Hx0Q8NJLR5DP5+FyuRAIhCBJYVOu+xGVo1RqAdGoClmOYHJywhh3Op0IBIIQxTC2bWvhfCJahVQqhYmJMfh83QAAu92ByspKLC5mymY+MbCcpWw2i/7+XsiyjGx2EX/2Z9cBANxuNy64YB+qq2vQ2enj3T1Eq5DL5dDXV1iXMjg4AE3TAAAWiwWdnT6IYhg+XxfnE9Eq5HI59Pf3GS1cAODQofcYXcUPHDgIt7uibFpOcNavwXKr+eUt8o+/7jc3N2fcMnnuua8zq0SisqHrOsbGRqEoEfT0RJHJZIzHmpqaIYoSgsGQsUidiE7u1RYuhfl0ohYuy4HF6602q8w1YWA5Q6oq49e/fnbFdb+qKu9S3xHu70C0WrOzM1CUCBRFQSIxa4xXVlYt3dofRl1dnYkVEpUfWT6KJ554zPi6srLSaDlR7i1cGFhOI5VKQRAE464DQRAwN5eAw+GA3x9kq3miM5BOp9HTo0JRZIyNjRrjdrsdfn8QkhTmfCJapUwmg54eFRUVFcaNHD5fN5xOJ7q6ujddCxcGlhPI5XJGq/mBgX6cf/6FOO+88wEUfhmuvPJN8Pm6y+a6H5GZ8vn80nwqtJzI5/MACuG/o6MToiihq8vP+US0Cidq4dLS0moEFrfbjXe9672bcv8hBpYlhVbz45DlCHp61BXX/SYnJ41/ttvtCAZFM0okKhuF+TQBRYkgGlWRTqeMx+rrG5YuoYrweMzf24GoHExOTkCWC/Pp+BYudXX18Pm6V7Rw2YxhBWBgAVB4c/3ud7+1Iph4PB7jul99fYOJ1RGVj7m5OaiqDEWJIB6PG+MVFRXGfGpoaDSxQqLy9JvfPGvc6eN2Vxj7pWylFi5bMrBkMhkMDg4gGAwBKJyarqurRzw+A7/fD1EMo62tfdNc9yMqpkKr+ShkOWL0xAIKXVy7uwvX0dvbOzifiFZhuYWLokTwxjdeYdzIEQ7vgMPhgCiG0dHRuSXn05YJLJqmYXBwAIoSQV9f4bpfTU2N8Wlv3779uPTSN8BuZ6t5otPRNA1DQ4NQlAh6e3uNVvMA0NbWDlGU4PcH4XBwPhGdjqZpGB4eWmrhEjPmUzSqGNtjBAJBBAJBM8s03aYOLLquL7Wal6GqyorrfrW1dSvWqfBaOtHpFeZTBKqqYGHh+PlUa7Sa5639RKuTSqXw4ou/e00Ll5qaGohiGIFAyMTqSs+mDiwjI8P4wQ++Z3ztdlcgGAxBFCU0NrLVPNFqJJPzUFUFiiLj2LEpY9zlciMUKlxHb2rifCJajXw+byyKtVqt+MMfXkIul2ULl1XYNIFl+bqfrusIh7cDALZta0FlZRWam7dBkiS0t3du2tXTROspm11Eb28vVLXQal7XdQCFN1ifrxuSJKGjw9xW80Tl4vgWLqnUAq6//iYAgMPhwL59F6GqyovOTs6n0ynrwHL8dfRYrAfZbBaVlZWQpDAEQYDVasU73nErfwmIVmG51bwsRxCLRZHNvrouZdu2FoiihEAgZGyiSEQntzyfFEVGLBZd0cJlZiZudEPevXuvSRWWn7INLKlUCg8++FUkEnPGWHV1NUQxjFwuZ2xCxbBCdGrT09NLtyLLmJ9/dT4VWs0XbkWurq4xr0CiMhONKnj22V+9poWLJBVauCyHFTozZRtYMpkM5ufn4XQ6l9alhNHcvI3X/YhWIZVaQDSqQpYjmJycMMadTmfZtJonKhWpVGFjxOWmgjabzWjhEggU1k22tLRyPp2lsg0sdrsdV131ZrS1dbLVPNEq/HGreU3TAAAWiwWdnT6EQhK6uro5n4hW4Y9buOzdex4uvPAiAEBHhw9XXnkVfL4utpxYR0V/Z/rxj3+MH/zgB3j55ZeRSCTg8/lw66234rrrrjurtOnxeBAIBJHLaetYLdHmcnyr+WhURSaTMR5rbGyCJIURDIbgdleYWCVReTh+PvX0RFdsjTE9fcz4Z6vVamxMSuun6IHlq1/9Ktra2nDHHXegtrYWzzzzDD7xiU9gbGwMt912W7FfnmhLmp2dWdp/SMbs7KwxXllZaeyXUldXZ2KFROVF13U88si3MTExboxVVlYaLSfq6upNrG5rKHpguffee1e8Me7fvx8zMzP4yle+gv/yX/7LltxemKgY0uk0fv/7Hvz2ty9gePjVLfLtdjv8/iAkqdBqntfRiU4vk8mgv78PoZAIQRAgCAIaGhoQj0/D7w9AFAvziX/DNk7RA8uJPsVt374dDz/8MBYWFlBZyR1midYqn89jcLAfsixjcLAPDocVqdQiBEFAR0cnRLGwLoUtJ4hOL5/PY2hoALIso7+/0MLF6/Vi27YWAMAFF+zD619/CeeTSUxZXff888+jubn5rMOK1cpka7blY8BjsXF0XTdazRdaThTuULBYBDQ0NKOrq9BzhO0mzMN5UTpOdyyWW7jIcgSKsrKFS0NDPTQtD5ut8LNeL9tOnK2zOcG74YHlueeew6OPPoqPfexjZ/1cXq97HSqi9cBjUXyJRAJHjx7FK6+8gunpaWO8oaEW4XAYO3bsQFNTk4kV0h/jvCgdJzsWw8PD+I//eMT4ur6+ZsV84iXU0rGhgWVsbAy333479u3bh0OHDp318yUSKeTzvEvITFarBV6vm8eiSBYXFxGLRSHLEQwPDxtb5NtstqXr6JLRan75EySPhfk4L0rH8ccinU6jp6cHuVwOu3adAwBwu6vhdFagoaERkhRGR8erLVxmZhZO9dS0BtXV7jWv+9mwwJJIJPD+978fNTU1uOeee9ZloVI+r/G25hLBY7F+jm850dvba7SaB4DW1jZIUhh+fxAOh2Pp+2HsqQLwWJQSHgvzaZqGvr4+/OY3v0M02oNcLgu3uwKhUNgIJjfc8A7jb5Kug8esiJY+c63JhgSWdDqND37wg5ibm8O3vvUttp8nOoFjx6YgyxFEo8oJW82HQhK8Xq+JFRKVj+npacjyUfT0KNC0LFKpRWiajpqaGoRCEjTt1a7JvNOnPBQ9sORyOXzkIx9BLBbDQw89hObm5mK/JFHZWFhIQlUVKIqMqalJY9zlchstJ3gdnejMRSIv48iRF2GxCKit9SIQkBAMSmhqauZ8KlNFDyx33XUXnnjiCdxxxx2Yn5/Hiy++aDy2Y8cO47Q20VaRzWbR1xeDosgYHBww1qVYrVb4fF0QxTBbzROtUjabRX9/L2RZxp49e9He3gEAEMUwEokEtm/fjr17d2JuLsNLPWWu6IHl6aefBgDcfffdr3nsscceQ3t7e7FLIDLdqVrNNzdvgySFEQiE4HK5TKySqDzouo7R0REoioyeHtWYT263ywgsDQ2NuOqqt8Bmsyz1x8qc4hmpHBQ9sDz++OPFfgmikhWPx6EoESiKjPn5OWPc662GKIpsNU90BnK5HH73u+egKDLm5hLGeFWVF6JY2CKfNi+2ZSVaZ6lUCtGoCkWJrOg74nQ6EQgEIYphbNvWwuvoRKuQy+WMDuJWqxWxWBRzcwk4HA4EAiGIooSWllbOpy2AgYVoHeRyOfT39xmt5pdvM7ZYLEtb5IfR1dVtvPES0cnlcjkMDPRDUSIYGxvDLbccgt1uhyAIOP/8fQB0+HzdsNvtZpdKG4jvnkRrdHyr+WhURSbz6jXyxsYmSFIYwWAIbneFiVUSlQdd1zExMQ5ZjqCnR0U6nTYeGxkZhs/XBQAIBkMmVUhmY2AhOkOzszNQFBmqKmN2dtYYf7XVfPiETT+J6MSGh4fwy18+gZmZGWPM4/EszScJ9fUN5hVHJYOBhWgV0uk0YrEoFEXG6OiIMW632+H3ByGKElvNE61SJpNBJpMxNkL0eDyYmZmBzWaH3++HKIbR1tbO+UQrMLAQnUQ+n8fgYD9kWcbAQB9yuRwAQBAEtLd3QBTD6O7uZqt5olXI5/MYGhqAosjo6+tFZ6cPb3rTmwEANTW1uPrqt6CtrZ3ziU6KgYXoOLquY3JyYumSj4J0OmU8VldXv7RFvojKykoTqyQqD7quY2pq0phPqdSrzQQTiQQ0TTPOonR1+c0qk8oEAwsRgLm5OaiqDEWJIB6PG+MVFRUIhUSIYhj19Q28dZJoFXRdhyAI+PnPf4JoVDXGC00HRYRCIhob2XKCzgwDC21Zi4uLiMV6oCgRjIwMG1vk22w2dHV1QxQLreZ5HZ3o9LLZRcRiMXR1dRstV7Zta0FfXy98vm5IkoT29k62nKA1Y2ChLUXTNAwNDUJVZcRiMeRyWeOx1tY2SFIY3d0BOJ1OE6skKg+api21nIigp6cHuVwWl19+BcLhHQAASdoOUQxzPtG6YGChLeHYsSnIcgTRqIJkMmmM19TULK1LkYw7Fojo1Kanj0GWI1BVecV8qq6uhsXy6hkUNrel9cTAQpvWwkISqqpAUWRMTU0a4y6XC4FACJK0HU1NvI5OdCYWFpJ4+OFvGJdQC/Op0HKiuXkb5xMVDQMLbSrZbBZ9fTEoiozBwQHjTdVqtcLn64IohtHZ6eN1dKJVyGaz6O/vRTw+jQsuuAgAUFHhQUeHD1arxZhPbDlBG4G/ZVT2dF1fuo4uIxaLGq3mgcKiP1GUEAiE4HK5TKySqDzouo7R0REoioyeHhWLi4sQBAHbt+8ybud/85uv4ZkU2nAMLFS24vE4VFWGLEcwPz9njFdVeSFJEkIhCTU1tSZWSFQ+EolZyPJRyLKMubmEMV5ZWQVJCsNieTWgMKyQGRhYqKykUilEoyoUJYKJiXFjnK3mic7O8PAQnnvutwAK8+n4lhOcT1QKGFio5B3far6/vw+apgEALBYLOjo6IYph+HxdbDVPtAr5fN6YT21tHdi16xwAgN8fRF9fL4LBELq6/JxPVHIYWKgk6bqO8fGxpf0doitazTc2Nhpb5LvdFSZWSVQedF3HxMQ4ZDmCnh7VmE9zc3NGYHE6nbj66mvMLJPolBhYqKQkErNQlMIW+bOzs8Z4ZWWl0Wq+rq7exAqJyssLL/wOkcjLmJmZMcY8Ho8xn4jKBQMLmS6TyaCnR4WiyBgdHTHG7XY7/P4ARDGM1tY2bpFPtArZ7OKKjscTE2OYmZmBzWaH3++HKIbR1tbO+URlh4GFTLHcal6WZfT39yKXywEo3H3Q1tYOUQzD7/ez1TzRKmiahsHBAShKBH19fbjxxptRXV0DANi9ey98vm74/QHuPEtljYGFNoyu65icnICqKq9pNV9XV2+sS1ne64GITk7XdUxNTUJRZESjChYWXp1PfX292LPnXABAS0srWlpazSqTaN0wsFDRzc3NIRpVIMsRxOPTxvhyq3lRlNDQ0MhbJ4lWKR6P46c//TGmp48ZYy6X25hPjY1NJlZHVBwMLFQUy63mFSWC4eEhY4t8m82Grq5uiGIY7e0d3CKfaBWy2UXMzc0ZC84rKysxPz8Hm80Gn68boigubZfP+USbFwMLrRtN0zA8PARFiSAWiyGXyxqPtbS0QpLC8PuDbDVPtAqapi21nIggFutBZWUlbrrpFgiCALvdjquvvgb19Q2cT7RlMLDQWZucnMRvfvMCIpGjK1rN19TULK1LkeD1ek2skKh8TE8fg6LIUFUZ8/PzxrimaUilFlBR4QEAtLa2mVUikSkYWGhNFhaSUFUF0aiCZHIWqdQiNE1fajUfgiSF0dTUzHUpRGfgN795Fs8//1vja6fTiWAwBFEMo7l5G+cTbWkMLLRqy63mZVnG0NAANE2DxSLA43HB7w8gEBDZap5olXK5HPr6etHQ0GA06WxpaYXFYoHP14VQSILP18X5RLSEM4FOSdf1pevoMmKxKBYXF43Hmpu3Yfv27bjggr1IpzXkcpqJlRKVPl3XMTo6AlWV0dMTRSaTwZ49e/H6118KAGhra8ehQ+9mywmiE2BgoROKx+NQVRmKsrLVfFWVF6JY2NK7pqYWNpsFbrcb6XTyFM9GtLXNzs5AUSJQFAWJxPEtJ6qMNSlAoaEnwwrRiTGwkCGVSiEaVaGqMsbHx4xxh8OBQCAEUZTQ0tLK6+hEZ0DTNHzve981Nkq02+3GfGptbeN8IlolBpYtLpfLGa3mBwb6kc/nARQ+6bW3d0KSJPh83Ww1T7QK+XweAwP9GBrqx9ve9lYAhbkkihLi8WmIooSuLj/nE9EaMLBsQSdrNQ8AjY2NEMUwgsHQilPVRHRihfk0AUWJIBpVkU6nYLEIOP/8vaiqKmz0tn//xTyTQnSWGFi2kERi1tjf4USt5iUpbOykSbSVWCw9cLu/Dqv1KAA7stn9SKdvga7XnvRnFhaSOHr0FShKZMV8qqioQDi8HV6vF0sbPJdxWMnAZnsBgpCCpnUgnw+aXRBtYQwsm1wmk0EsFoUsRzA6OmKM22x2BAIBiGIYra1tbDVPW1QOlZV/A7f7S9B1K4A8AAEOxw/h8dyFubn/F5nMO0/4k4lEAr/5zbMACvPJ7/cjFJLQ3t4Bh8OGmhoP4vFyXYyeQkXFP8Lt/hIslhljNJu9EMnkx5HNXmFeabRlMbBsQvl8HkNDA1AUGX19vcjlcgAKn/La2tohimH4/X7Y7Ww1T1tbZeXfwOX6MgBAEPJLo4XTIrqegdf7XzAz40Q0egFUVYbbXYGLLy7cgtzcvA2SFEZrazv8/gAcjs0yn1KoqflT2Gy/hSCs3KrAZnsO1dV/jrm5e5HJvMOk+mirYmDZJI5vNa+qinFHAgDU1tZBkgpb5FdWVppYJVHpsFqjcLu/dMLHdB2YnLTg5ZftOHr0TkxNfRiAAKfTiX379sNms0EQBBw4cOXGFr0BPJ7PnjCsAIAgaNB1oKrqw8hmL4am+UyokLYqBpYyNz8/D1WVIcsRxOPTxrjbXYFQSEQoJKKxsamMr6ETFYfL9TXouvW4MysFf/iDDc8/78DU1HLn43lUVg6hu/sahELSJu+InILL9eUThpVlglAIdG73V5BM/t3GlUZbHgNLGcpmFxGLxaAoEQwPD0FfWtlns9nQ1dUNUZTQ3t65yd9Yic6O1foKgDwWFwGbDVhexhWPWzA1ZYXFoiMQyGHHDg2NjS1YXLzM1Ho3gt3+a1gsc6f9PkHIw+H4AQMLbSgGljKhaRqGh4eWWs3HkMtljcdaWlohSWH4/UG2midaBV3XMTioQ1VdUFUb3vzmFILBwpmWXbuyqK7WEQpl4XYDum5BMrk19k0RhIXTf5PxveW6oJjKVdEDS39/P7785S/jyJEjUFUVfr8fP/zhD4v9spvG9PQxyHIEqiojmXz1DaKmpgahUGGLfK+32sQKicrH9PQ0FCUCVVWQyVTAbrdDEIC+PpsRWGprddTWvvqBQBA0ZLP7zSp5Q2la26q+T9ct0LSOIldDtFLRA4uqqnjyySexZ88eaJpmXL6gk1tYSEJVFaiqjMnJSWPc5XIhEAhBksJoamrmuhSiVcpkMviP//h3TE5OGGNO5/nYs+cx7NiRQmvridds6LoVudwu5HKv26hSTZXL7UYuF4bVKkMQTvVerSGV+ouNKosIwAYElgMHDuDgwYMAgDvuuAN/+MMfiv2SZSmbzaK/vxeyLGNoaACaVngDtVqt6Oz0QRTD6Oz0sdU80SrkcjkcOzaF5uZtAACn0wld12GxWIz55PN1obKyBlVVf4UTfY4q7MviwPz8PRtbvKkEJJN/i+rqQyf9Dl23QtPakMn8+QbWRbQBgYUbkp2crusYGRmGqiro6VGxuLhoPNbcvA2iGEYgEITb7TaxSqLyoOs6xsZGoSgR9PREkc9reNe73mPsj/LGNx5AZWXlim7I6fRfQNfd8HjuhNU6vhRSdAiChnx+O+bmvoBcbq85/0ImWVz8M8zP3w2P5+MALMZdVLouANChaa2YmfkPAOwqTRurrD+uW63lGYZmZuKQ5QgURUYikTDGa2qqIYqFLfJrak6+JXgpWT4G5XosNpOteixmZ2cgyxHIsoxEYtYYr6qqQjKZQEVFEwCgpWXbCX8+n387EokbYLf/FBZLYWv+XO71yOdfB0DAWk5qlvuxyGZvQyJxAE7nF+Fw/AhACprWiUzmvVhcvAkWiwfl8lm03I/FZnM2KxnKOrB4veVz5iGVSkGWZbzyyisYHR01xqurKyFJErZv34729vayXZdSTsdis9tKx+IPf/gDfvKTnxhfe70eiKKIHTt2oKOj4wzn0w3rXl95H4sLlv5XYLEUbv/2lGlP1PI+FgSUeWBJJFLI50++wZHZcrkc+vv7IMsRDAz0I58vnFq1WCzo6OiEJIXR1dVttJqfmVn9LYWlwmq1wOt1l/yx2Ao2+7HI5/Po7++Dy+VCa2vhbhavtwGZTA7t7R2QpDC6u/0lMZ82+7EoJzwWpaW62r3mpSJlHVjyeQ25XGn9AhZazY9DliPo6VGRTqeNxxobGyGKYQSDIVRUvPoxpdT+HdaiFI/FVrWZjkVhPk1AUSKIRlWk0yl0dvrwlre0AADcbg9uvfU9cLlcxs+U0r/7ZjoW5Y7HojSczY3CZR1YSkkikYCqyq9pNe/xeIz9UurrG8wrkKiMJBIJRKMKFCWCeDxujFdUVKCurh66rhuXe44PK0S0eTGwnIVMJoNYLApZjmB0dMQYX241L4phtLW1804pojP0+OM/M+aUzWZHd3c3RDGM9vYOzieiLarogSWVSuHJJ58EAAwPD2N+fh6HDx8GAFx44YWoq6srdgnrStM0DA4OQFEi6OvrRS6XAwAIgoC2tnaIYhh+vx92+2ZpNU9UPJqmYWhoEKoq4/Wvv9S4hV+SwrBYLEvzKWDcmkxEW5egF3nr2aGhIVxxxRUnfOzrX/869u3bt+bnjseTG3JNUtd1TE1NQlFkqKqCVOrVxXy1tXWQpDBCIQmVlZVFr6XU2GwW1NZ6NuxY0MmV07EozKfCFvkLC4X5dMklb8A55+wGgBWXfMpROR2LzY7HorTU1XnWfIt50c+wtLe3Q5blYr9MUczPz0NVC9fRp6ePGeNudwVCIRGiKKGhobGs31iJNkomk8HRoy9DUWQcOzZljLtcbgSDIbS2thpjnFNE9Me4huWPZLOLiMViUFUZQ0ODRu8jm80Gn68bkiShvb0TVqvV5EqJSt/xZ0o0LY9f//pX0DQNVqvVmE8dHT7OJyI6LQYWFK6jj4wMQ1EiiMV6kM2+2qm1paUVoighEAjB6XSaWCVReVhuOSHLEaRSKbzlLW8FUDgzuXfveaisrEQgENpUd/cIwjSczu/Aah2ArjuRz/8JgBNfCieitdnSgWV6+tjSuhQZ8/Pzxnh1dTVEMQxRlOD1VptYIVH5mJ6eXrq1X8b8/JwxnkjMGvNo3779ZpVXJHl4PJ+B230PgCwKb6k6BOEfAeyCxfIAgLCpFRJtFlsusKRSC8a6lMnJSWPc5XIhEAhCFMNobt7Ga+hEq9TXF8Nzz/0Wk5MTxpjT6TTmU1WV18Tqiquy8r/B5XoAgrB870L2uEePoqrqIGZmnkA+HzKjPKJNZUsElmw2i/7+PihKBIODA9C0wkpxi8UCn68LohhGZ6cPtrV0OSPaYnK5HHRdM27dz2azmJycgMViQWenD6GQhK6ubpPmUx52+y9gtQ5C191YXLwcut5UlFey2Z6H2/3lU9YiCEl4PP8dicTDRamBaCvZtH+hdV3H6OgIFEVGT4+KxcVF47GmpmZji/zlfR+I6OR0XcfY2CgUJYKenijOPfd1OPfc1wEAurr8uOSSy5bmU4VpNbpcX0NFxf+A1TpmjOm6FZnM2zA//4/Q9fp1fr0vQ9dtEITcSb9HEPJwOH4Ci2UImta+rq9PtNVsusAyMxOHqsqQZRlzcwljvLKyytgvpba21sQKicrH7OwMFKWwLiWRmDXGh4YGjcBit9txzjl7zCoRAFBR8Tl4PJ95TZ8SQcjD6fwebLYXMDPz83UNLXb7r04ZVl6tQYfN9gIWF7dqYCmENofj5wDS0LQupNPvYICjM7YpAks6nUY0qkJVZYyNjRrjDocDfn8QoiihtbWN61KIVknXdfzoRz/A4OCAMWa32+H3ByFJYaNbcimwWl+Gx/MZAMCJprgg5GG19sHj+TTm5/+/dXzlM9lzs6j7c5Ysm+3X8HrfBat1BLq+/OdGR0XF/0A6/W7Mz/8jALuZJVIZKdvAous6YrEeHD16FP39fcjn8wAKG051dPggiiK6ul5tNU9EJ5fP5zE2Noq2tsKnXkEQ4HK5luZTJ0SxsC6lFFtOuN1fWtWlGZfr35BM3gVdX587/3K5c2G1DqzqLEsut2tdXrOc2GxHUFPzViwvRP7j/04u11cgCHOYm/sSAH6YpNMr28CSSCTw4x//CJpW+OTS0NAIUZQQDIbg8Wy9LfKJzpSu65icnDBaTqTTKdx00ztQV1e4bHLhhRdh//6LS34+ORw/X+WlmTRstueRzR5Yl9dNp98Hl+u7p/weXbcim70UmuZfl9csJx7PnQCyEIT8CR8XBB0u17eRSn0AudzaW7TQ1lG2gUXXdXg8Hvj9IUhSGPX1DWaXRFQW5ubmlvZLiSAejxvjFRUVmJtLGIGlfPYgyqz6OwVh9d97Otns65FOvw1O5/chCCfqUWMBYEcy+el1e81yYbH0wOF48rTfp+s2uN1fwtwcAwudXtkGFo/Hg0OH3g2NvayIVm10dATf//4jK1pOdHf7EQpJ6OjohMWytqZkZsrnRVgskyf9JL/ye4Pr+MoC5ua+CF2vgsv1IAoBpTBeOOPTjLm5B5HLmbsg2Qw220ur+j5ByMFme77I1dBmUbaBxW63w2JZNPZUIaKVNE3D0NAgstksAoHCH+qmpma4XG7U1tZCksLw+4NwOEpvXcqZSKffA4fjl6f8Hl23IJe7sAgbuDkwP/8vWFj4v+FyPQSrtR+67kY+fyUqK69HPp8BsBXfo85kTQrXr9DqlG1gIaITm5qawiuvvAJVlbGwsICqKi/8/gAEQYDVasU73nFr2YeU42Uyb0U2uwc22x9OeJZF1wUAApLJTxStBk3zYWHhb42vbTYLCm+v63cJqpzkcnuh68JxOwCfWGGNDy8H0eowsBBtAsnkPGKxKAYHYxgcHDEWo7tcbvh8XcjlssYdPpsprBTYMTv776iuvh52+/PQdSsEIb+0J4sAwIFE4gFks5eaXOfWoWk+LC4ehMPx+Ckv1QlCHun0+zawMipnDCxEm8Bzz/0GkcgrcLsdsFqt6OrqgiRJ6OjwwWq1ml1e0el6PWZmHoPd/jhcrgdhtfZC1yuwuPhmpNO3rPsut3R6yeT/hN1+OYDUSc98pdN/gVzuvI0vjsoSAwtRGdF1HSMjw1AUGTt27EJzczMAQBTDmJmJ44ILzkVTUztsts12FmU1LMhmDyKbPWh2IQQgn5cwM/MTeL1/AZtNXdo4TgCQB2BFKnUbkslPmlwllRMGFqIyEI/HoSgRKIqM+fk5AIDVajUCS0tLK6677gbU1noQjyeRy23FhZ5UavL5cxCPPwe7/Wk4HI8BSEHTfEinb+RZLzpjDCxEJSqXy+Ho0VegKBFMTIwb406nE4FAYYt8otInIJu9BNnsJWYXQmWOgYWohOi6bvS8slqtePHF5zE/Pw+LxbK0RX4YXV3dsNk4dYloa+G7HpHJdF3H+PgYFCWCkZFh3HjjO2CxWCAIAs4993xoWh6hkAi3u8LsUomITMPAQmSSRGIWshyBqsqYnZ01xoeGBtHZ6QMA7Np1jlnlERGVFAYWog02NjaKZ599BqOjI8aY3W6H3x+AKIbR2tpmYnVERKWJgYWoyPL5PBYXF+F2uwEU+veMjo5AEAS0t3dAFMPo7u42NnYjIqLXYmAhKgJd1zE5OQFFkaGqCnw+Hw4cuBIAUF/fgDe84XJ0dnahsrLS5EqJiMoDAwvROpqbm4OqylAUGfH4tDE+NjYKTdOMxbQ7duwysUoiovLDwEK0Tn7xi8cRibwCvdDEBjabDV1d3RDFMDo6OmGxWEyukIiofDGwEK2BpmkYHh7Ctm0tsNvtAICqqirouo7W1jZIUhjd3QE4nU6TKyUi2hwYWIjOwLFjU5DlCKJRBclkEldeeRWCwRAAYMeOXQiFJHi9XpOrJCLafBhYiE5jYSEJVVWgKDKmpiaNcZfLjcXFjPG12+027gQiIqL1xcBCdArJ5Dz+9V+/Bk0rNBO0Wq3w+bogimF0dvpgtVpNrpCIaGtgYCFaous6RkaGMT09jXPO2Q0A8Hgq0djYBEEQIIoSAoEQXC6XyZUSEW09DCy05cXjcShKBIoiY35+DlarFaGQaASTt771z4yFtUREZA4GFtqSUqkUolEVihLBxMS4Me5wOBAIhJDL5YwxhhUiIvMxsNCWpKoynn76KQCAxWJBR0cnRDEMn6+LAYWIqAQxsNCmpus6xsfHoCgRtLa2IRgUAQDBYAiqqiAUEhEMhlBR4TG5UiIiOhUGFtqUEolZKIoMRYlgdnYWQGGtynJgqajw4LrrbjSzRCIiOgMMLLSpRCKvIBI5itHREWPMbrfD7w9AFMMmVkZERGeDgYXKmq7rEATB+FpVFYyOjkAQBLS3d0AUw+ju7obd7jCxSiIiOlsMLFR2dF3H5OQEVFVBNKrg+utvgsdTCQDYvXsP2ts7EQqJqKysNLlSIiJaLxsSWHp6evCZz3wGL7zwAjweD6699lp85CMfgcPBT720enNzc4hGFchyBPH4tDHe0xPF7t17AQA+Xzd8vm6TKiQiomIpemCZnZ3Fu971LnR1deGee+7B+Pg47r77bqTTaXzyk58s9svTJjAzE8dTTz2J4eEh6LoOALDZbOjq6oYohtHe3mFyhUREVGxFDyzf/OY3kUwm8S//8i+oqakBAOTzedx111344Ac/iObm5mKXQGVG0zQsLCwYl3Tc7gqMjY1C13W0tLRCksLw+4NwOp0mV0pERBul6IHll7/8Jfbv32+EFQC4+uqr8alPfQpPP/00/vzP/7zYJVCZmJ4+BlmOQFVlVFR4cP31NwEAnE4nDhy4Eo2NjfB6q02ukoiIzFD0wBKLxXDdddetGPN6vWhsbEQsFjur57ZaLWf183T2lo/BWo/FwkISilJYlzI1NWmM67qGxcU0KioqAACSJJ59sZvc2R4LWj88FqWDx6K0HHdT5xkremBJJBLwer2vGa+urjY29Forr9d9Vj9P62ctx+LZZ5/Fr371K2iaBgDweFzw+/3YsWMHuru7YbPxJra14LwoHTwWpYPHovyV9V+ERCKFfF4zu4wtzWq1wOt1n/ZY6LqOkZFhVFfXGGtTbDY3ksk0mpu3QZLCCAZDcLsLbypzcxkAmY34V9g0VnssqPh4LEoHj0Vpqa52w2JZ29muogcWr9eLubm514zPzs6iuvrs1iPk8xpyOf4CloKTHYt4PA5VlaEoMubmEjj//AtxwQX7AABtbZ246aZbUFNTa3w/j+fZ47woHTwWpYPHojQs3ei5JkUPLH6//zVrVebm5jA5OQm/31/slycTpFIp9PREoSgRjI+PGeOFfXde/W212WwrwgoREdHJFD2wXHbZZbjvvvtWrGU5fPgwLBYLLr744mK/PG0wTdPwzW8+hHQ6BQCwWCzo6OiEKIbh83XBbrebXCEREZWjogeWm2++GQ8++CA+/OEP44Mf/CDGx8fxuc99DjfffDP3YClzuq5jdHQUr7wyju3b9wAoBJTubj+mpiYgioV1KRUVHpMrJSKiclf0wFJdXY2vfe1r+PSnP40Pf/jD8Hg8uP7663H77bcX+6WpSBKJWSiKDEWJYG4uAbfbgYaGFtTVNQIALrnkMt7hQ0RE62pD/qoEAgF89atf3YiXoiLJZDKIxaKQ5QhGR0eMcYfDgR07dsBme/VSD8MKERGtN/5loVWZmBjHL37xOABAEAS0tbVDFMMQxSCammoRjye5Ap+IiIqGgYVW0HUdU1OTUBQZbrcb5513PgCgra0d7e0daG/vRCgkHreXCnePJCKi4mNgIQDA/Pw8VFWGLEcQj08DACoqKrB373mwWCywWCx461v/zNwiiYhoy2Jg2eJisR68/PJLGB4egr60o4/NZoPP1w1JkkyujoiIqICBZYvRNA2CIEBY6kA1MjKMoaFBAEBLSyskKQy/Pwin02lmmURERCswsGwR09PHIMsRqKqMK674E7S1tQMAtm/fAZfLBVGU4PWeXasEIiKiYmFg2cQWFpKIRlUoSgSTk5PGeE+PagSW+voG1Nc3mFUiERHRqjCwbELpdBqPPfYzDA0NQNMKtxpbrVZ0dvogimF0dvpMrpCIiOjMMLBsArquI5GYRXV1DQDA6XRidjYOTdPQ3LwNoZCEYDAEt9ttbqFERERrxMBSxmZm4ktb5MtYXMzg0KH3wGazQRAEvOENB1BR4UFtLbshExFR+WNgKTOpVAo9PVEoSgTj42PGuMPhwPT0MTQ1FRpKLq9RISIi2gwYWMqIosj4xS8eQz6fB1DojNze3glJkuDzdcNut5/mGYiIiMoTA0uJ0nUdExPjsFqtaGgodEFubGxCPp9HY2MjRDGMYDCEigqPyZUSEREVHwNLiUkkElBVGYoSwczMDAKBEP7kT64CANTW1uLtb38namq4LoWIiLYWBpYSkMlkEItFIcsRjI6OGOM2mx0OhwO6rhs70zKsEBHRVsTAUgJ+9KMfGAtoBUFAW1s7RDEMv98Pu91hcnVERETmY2DZQLquY2pqEqoq44IL9hlhxO8PYHFxEZIURigkobKy0uRKiYiISgsDywaYn5+HqipQlAimp48BAOrrGyFJYQDA7t17sWfPucZlHyIiIlqJgaVIstksYrEeKEoEw8ND0HUdAGCz2eDzdaO6+tVGgxaLxawyiYiIygIDS5Gk02k8/vjPjK9bWlohihICgRCcTqeJlREREZUfBpZ1MD19DLIcQSaTwRvfeAAAUFVVhXB4B6qqqiCKErze6tM8CxEREZ0MA8sapVILxrqUyclJAIVLOxdeuM/YzO3yy68ws0QiIqJNg4HlDA0PD+HIkRcwODgATdMAAFarFZ2dPohiGA4HL/cQERGtNwaW09B1HZqmwWq1Aih0SO7v7wMANDU1G1vku91uE6skIiLa3BhYTmJmJg5VlSHLMvbuPQ+7dp0DAAgEQkgmkwiFJNTWctdZIiKijcDAcpx0Oo1oVIWiRIydZwEgFosagcXlcuHCCy8yq0QiIqItiYEFhcs+P//5T9DbG0M+nwdQWEDb3t4JSZLg83WbXCEREdHWtiUDi67riMenUVdXD6DQvyebzSKfz6OhoRGiKCEUEo27fYiIiMhcWyqwJBIJqKoMRYlgZmYGt9xyyNgf5cILL8K+fftRX99gcpVERET0xzZ9YMlkMojFopDlCEZHR4xxm82OqakpI7A0NDSaVSIRERGdxqYOLKOjI/jhD7+PXC4HoHDpp7W1DaIYht8fgMPhMLlCIiIiWo1NE1h0XcfU1CQWFxfR1tYOAGhoaIAgCKitrYMkhREMiqiqqjK5UiIiIjpTZR9Yksl5KEphi/zp6WOora3DTTe9A4IgwG534KabbkFlZSUEQTC7VCIiIlqjsg0si4uL+MEP/h0DAwPQdR0AYLPZUFdXj1wuC7u9cLmHZ1SIiIjKX9kGloWFBQwOFsJKS0srRFFCIBCC08lePkRERJtN2QaWQmfkixAIhIw7fYiIiGhzKtvAUlVVhQsuuBC5nGZ2KURERFRkFrMLWCsuoiUiIto6yjawEBER0dbBwEJEREQlr+iB5emnn8ZHP/pRHDx4EJIk4e///u+L/ZJERES0yRQ9sDz11FOIRCK44IIL4PV6i/1yREREtAkV/S6hv/mbv8Edd9wBAPj1r39d7JcjIiKiTajoZ1gsFi6TISIiorNTtvuwAEB1tRtLu/KTSZbvLuexMB+PRengsSgdPBalxWJZ+5YkZR1YePamdPBYlA4ei9LBY1E6eCzK3xkHlrm5OUxMTJz2+zo6OuBwONZUFBEREdHxzjiwHD58GHfeeedpv+/RRx9FIBBYU1FERERExzvjwHLDDTfghhtuKEYtRERERCfEi3pERERU8oq+6HZ4eBgvvfQSACCVSmFgYACHDx8GAFx11VXFfnkiIiLaBARdL+6NXo888gg+/vGPn/AxWZaL+dJERES0SRQ9sBARERGdLa5hISIiopLHwEJEREQlj4GFiIiISh4DCxEREZU8BhYiIiIqeQwsREREVPLKPrA8/fTT+OhHP4qDBw9CkiT8/d//vdklbQk9PT1497vfjb179+Liiy/G5z73OSwuLppd1pbU39+PT37yk7j22muxY8cOXHPNNWaXtCX9+Mc/xl/+5V/isssuw969e3HttdfiO9/5DrhzhDmefPJJvPOd78RFF12EXbt24YorrsBnP/tZzM3NmV3alpdMJnHZZZdBkiRjY9nVKPpOt8X21FNPIRKJ4IILLsDs7KzZ5WwJs7OzeNe73oWuri7cc889GB8fx9133410Oo1PfvKTZpe35aiqiieffBJ79uyBpmn8A2mSr371q2hra8Mdd9yB2tpaPPPMM/jEJz6BsbEx3HbbbWaXt+XMzMxg9+7duPXWW1FTUwNVVXHPPfdAVVU88MADZpe3pX3hC19APp8/8x/Uy1w+nzf++fLLL9fvuusuE6vZGu677z597969ejweN8a++c1v6tu3b9fHxsbMK2yLOn4OfOxjH9Pf8pa3mFjN1nXs2LHXjN155536eeedt+IYkXm+9a1v6aIo8n3KRNFoVN+7d6/+jW98QxdFUf/973+/6p8t+0tCFkvZ/yuUnV/+8pfYv38/ampqjLGrr74amqbh6aefNq+wLYpzoDTU1dW9Zmz79u2Yn5/HwsKCCRXRH1t+z8pms+YWsoV95jOfwc0334zu7u4z/lm+09EZi8Vi8Pv9K8a8Xi8aGxsRi8VMqoqo9Dz//PNobm5GZWWl2aVsWfl8HplMBi+//DI+//nP48CBA2hvbze7rC3p8OHDUBQFH/7wh9f082W/hoU2XiKRgNfrfc14dXU11xERLXnuuefw6KOP4mMf+5jZpWxpl19+OcbHxwEAl156Kf7X//pfJle0NaVSKdx99924/fbb1xzgSy6wzM3NYWJi4rTf19HRAYfDsQEVERGdmbGxMdx+++3Yt28fDh06ZHY5W9r999+PVCqFaDSKe++9Fx/60Ifwla98BVar1ezStpR7770X9fX1uO6669b8HCUXWA4fPow777zztN/36KOPIhAIbEBF9Me8Xu8Jbw2cnZ1FdXW1CRURlY5EIoH3v//9qKmpwT333MM1RiYLh8MAgHPPPRfnnHMOrr32WvzsZz/DVVddZXJlW8fw8DAeeOABfP7znzf+diyv61pYWEAymYTH4znt85RcYLnhhhtwww03mF0GnYLf73/NWpW5uTlMTk6+Zm0L0VaSTqfxwQ9+EHNzc/jWt76Fqqoqs0ui40iSBLvdjoGBAbNL2VKGhoaQzWbxgQ984DWPHTp0CHv27MHDDz982ucpucBCpe+yyy7Dfffdt2Ity+HDh2GxWHDxxRebXB2ROXK5HD7ykY8gFovhoYceQnNzs9kl0R85cuQIstksF91usO3bt+PrX//6irGjR4/is5/9LO666y6cc845q3qesg8sw8PDxk55qVQKAwMDOHz4MADwlF+R3HzzzXjwwQfx4Q9/GB/84AcxPj6Oz33uc7j55pv5Jm2CVCqFJ598EkBhPszPzxtz4MILLzzh7ba0/u666y488cQTuOOOOzA/P48XX3zReGzHjh1cc7fBbrvtNuzatQuSJMHlciESieDLX/4yJEnCwYMHzS5vS/F6vdi3b98JH9u5cyd27ty5qucRdL28t8V85JFH8PGPf/yEj8myvMHVbB09PT349Kc/jRdeeAEejwfXXnstbr/9dr4pm2BoaAhXXHHFCR/7+te/ftI3ClpfBw4cwPDw8Akfe+yxx/ipfoPdf//9ePTRRzEwMABd19HW1oYrr7wS733ve3mbeQn49a9/jUOHDuE73/nOqs+wlH1gISIios2Py9eJiIio5DGwEBERUcljYCEiIqKSx8BCREREJY+BhYiIiEoeAwsRERGVPAYWIiIiKnkMLERERFTyGFiIiIio5DGwEBERUcljYCEiIqKS9/8DQLeYnUD1XxEAAAAASUVORK5CYII="}}]}}, "190d57b7eca94fd5965cf7c85c14e0c7": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "6cbe9f6c6e5e4a33b96bb66957fdf94e": {"model_name": "VBoxModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": ["widget-interact"], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "VBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "VBoxView", "box_style": "", "children": ["IPY_MODEL_f8cb5cb6f479434f92440904e3d9a825", "IPY_MODEL_aaad216f57764ae1a13abc4d66b63c11", "IPY_MODEL_2234ee95cfef46d79b5b63e450ae1642"], "layout": "IPY_MODEL_190d57b7eca94fd5965cf7c85c14e0c7"}}, "b860a5e9a735430d8a4d46f421f6a5e6": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "685d6392753d4454953f989bb34f3145": {"model_name": "DescriptionStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": ""}}, "f8cb5cb6f479434f92440904e3d9a825": {"model_name": "DropdownModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DropdownModel", "_options_labels": ["-90", "90"], "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "DropdownView", "description": "elev", "description_tooltip": null, "disabled": false, "index": 0, "layout": "IPY_MODEL_b860a5e9a735430d8a4d46f421f6a5e6", "style": "IPY_MODEL_685d6392753d4454953f989bb34f3145"}}, "5703170ed9984a5a9f48833b0c4b0541": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "f45d7e66f59f460093c00c2894cc057e": {"model_name": "SliderStyleModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "SliderStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "", "handle_color": null}}, "aaad216f57764ae1a13abc4d66b63c11": {"model_name": "IntSliderModel", "model_module": "@jupyter-widgets/controls", "model_module_version": "1.5.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "IntSliderModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "IntSliderView", "continuous_update": true, "description": "azim", "description_tooltip": null, "disabled": false, "layout": "IPY_MODEL_5703170ed9984a5a9f48833b0c4b0541", "max": 90, "min": -30, "orientation": "horizontal", "readout": true, "readout_format": "d", "step": 1, "style": "IPY_MODEL_f45d7e66f59f460093c00c2894cc057e", "value": 30}}, "bb643f0cfd414dc686309016af3154af": {"model_name": "LayoutModel", "model_module": "@jupyter-widgets/base", "model_module_version": "1.2.0", "state": {"_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null}}, "2234ee95cfef46d79b5b63e450ae1642": {"model_name": "OutputModel", "model_module": "@jupyter-widgets/output", "model_module_version": "1.0.0", "state": {"_dom_classes": [], "_model_module": "@jupyter-widgets/output", "_model_module_version": "1.0.0", "_model_name": "OutputModel", "_view_count": null, "_view_module": "@jupyter-widgets/output", "_view_module_version": "1.0.0", "_view_name": "OutputView", "layout": "IPY_MODEL_bb643f0cfd414dc686309016af3154af", "msg_id": "", "outputs": [{"output_type": "display_data", "metadata": {}, "data": {"text/plain": "
    ", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAGFCAYAAABQYJzfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACr2klEQVR4nOydd5hjZdnGf+97WnpmtsPC7sJSVBA7VbqAivTesYvlUxH9xK4gVlCxN7qChaqoH0gRC4gFQXpfYPvMTiY9OeX9/jhJdloySSaZyQznd117wc5OknNmkvOc93nv576FUkoREBAQEBAwg8iZPoCAgICAgICgGAUEBAQEzDhBMQoICAgImHGCYhQQEBAQMOMExSggICAgYMYJilFAQEBAwIwTFKOAgICAgBknKEYBAQEBATOO3uw3btyY6eZxBAQEBAR0mYUL4zN9CHUJVkYBAQEBATNOUIwCAgICAmacoBgFBAQEBMw4QTEKCAgICJhxgmIUEBAQEDDjBMUoICAgIGDGCYpRQEBAQMCMExSjgICAgIAZJyhGAQGzHF1X6LpCKXemDyUgoG2admAICAjoLaSEcNgkHDYRQjA4OIzrKoQQM31oAQEtE6yMAgJmGUKAZWn09UUJh00KhSK2bZNIRILVUcCsJVgZBQTMIgxDEIlYmKaBbTtks0VKpSKaJpk3r59wWKdYDFZHAbOPYGUUEDALkBKiUZNkMoqua2SzBbLZAqZpMH9+P64LhUKRWCwKOCilZvqQAwJaIihGAQE9zNiWXKlkMzycQwhIJqOEQiYgSCRiZDJ5AGKxMODN6HEHBLRK0KYLCOhRxrfkSgjhFxvD0CmXbTKZLFIK+vv7KBQMMpk8yWSMQqEciBkCZhXByiggoMeo15KzLIN4PIKUgkwmT6FQIhIJ4zgOxWKZRCJKoVCkXA7EDAGzj2BlFBDQIwgBpqkRjYaQUlAq2RQKJUxTJ5mMIoSgUChRLtuEQhaWZSCEQEpJOp1lwYJ+YrEImUyOefOSgZghYFYRFKOAgB6gmZZcPl/CMDQSCb8w5fMFbLtMX18fuq6TyxWIRsMUCsWamKFYTKGUHhSkgJ4nKEYBATPIyMFVpRTZbAHbdgiH/ZWP53lkMnmUUsRiYXRdq62YNE3gOG6tRTcwMEQoZJFIxEilMoRCFrFYmGy2BGgzfaoBAQ0JilFAwAzQTkuuWpgA4vEImiYJhSxSqTQLFvQTjfotuv7+BKYZiBkCZheBgCEgYJoxDEEiESKRiOB5Hul0nnLZJhYLE42GcRyX4eEcSikSiSiWZVAolEaJGFzXJZUaRtc1LMskm81XHhuIGQJmJ0ExCgiYJqSEZDI8qUquWCzXCpNtu5W5IkEisflxxWIRpTzy+SKxWIRCoYjrepV5oyxSypqYQdd1wmE9GIQN6GmCNl1AQJcZ25LzPEU6nWupJSeloFgsUy7bhMMWphnG8zwGB4cJhy3i8SiZTJb+/mQgZgiYlQQro4CALjK2Jee6Hq7rttSS81t5OQASiSiaJslkMijlq+0ymRzhcAjPU7UWXS6XH7FSCpwZAnqfoBgFBHSBeoOrmiYxDL2lllypZBOLRQiFfIfuVCpNsWiTzfpFyHW9yt7Q5hZdVcxgWWZNzBCJhNE0EbTrAnqSoBgFBHSQybzkhBCUyw6ZTB7D0InHIwgBmYwvYojH/aJTLJbJZPKYpk4sFq4JFvL5AkpReZ4y5bK/Ekqns4GYIWBWExSjgIAOMZlKznX9FpnneS215NLpDOl0pvL4kfs9gmw2j6ZpmKYRiBkCZjVBMQoImCLNesnZtgNAOGy11JIrl238IjRaeCCEwHXdmkAhny8C1MQMlmWOEjN4nhfETAT0LEExCghok8lactWVT7UlFw5bKKVabsmNLUKjj0FWvk8FYoaAWU1QjAIC2qCdwVXXdXFdr82WXH2UIhAzBMx6gmIUENACzbbk6qnkNE221ZJrRCBmCJgLBMUoIKAJWm3JTaSSk1Lium7bLblJjjAQMwTMaoJiFBAwCZ3wkvO8qpJOTaklV49AzBAw2wmKUUBAHabakhupkiuXbYQQGIY+pZZcI9oRMwghmDcvSSBmCJhpAm+6gIAxdCLeYbyXnAFAJpPteBEaSVXMkEzGa8fo5xuNj5mwLAOlFLquoWkiiJkImFGClVFAwAg61ZKbSCXnui6WZdGNIlSlNTFDDCkltu0EYoaAGScoRgEBdLYlV08ll8sVavLq7tKcmEEIPynWL1iBmCFgZgnadAEvarrVkiuXbdLp3AhxgqBctimXbaLRcKVV161zGi1mGBxMjYuZsCyzJjUfKWYIYiYCZopgZRTwoqWbLbl6KrlsNo+UknA41NVzm0zMEIttjrQInBkCeoGgGAW86JiOllw9gUJ1FRKJhJCyux+/Rs4M1RZd4MwQ0CsExSjgRUMnBlen6iUHkM8X8TxFNBru8vlOLGaIxSI1mXngzBDQKwTFKOBFwUy05BqRy+VnTMwQClmUy3bgzBDQUwQChoA5jZQQDpuEwyZKKbLZArbtEA6PFiNU91Z0XauJGCzLIJGI1h4HEIv5bbxCoUihUKxcsFvf7J8pMUMqNVxbkVXFDCOdGarnFYgZAqabYGUUMCfplZZcI2ZCzBCPx/A8D9M0gpiJgJ4iKEYBc45ea8nVYybEDIahUyrZQcxEQM8RFKOAOcNMquTaZbrEDJomCYVMAAxDD2ImAnqOoBgFzHqEgGjUoL+/d1tyjei2mCEctip7QwbZbA5Nk0HMREDPEQgYAmY1hiGIRHzXA6UU6XQeIfz9DsPQKZdt8vkShqGRSGx2VKiKGEzTwLYdstkipukLFvwWXWaEsKC7G/jdEjMYhk40GkHTJMViiXy+gOd5lWIzsTNDIGYImCmClVHArGRsS65YLCOE6OmWXCM6KWaQUhCPR0km4yjlkUqlyeX81V07MRMQiBkCuk+wMgqYVdTzkqvuh1Rbcp3wkptORooZSqVyLYyvVcJhi0gkjFKKTCZHqVQe9z2txExUxQzJZIxCoRzETAR0jWBlFDBraKSSC4ctgNrsz0yq5NplKmIGw9Dp60sQiYQpFksMDQ1PWIig1ZiJQMwQMD0ExSig52lWJed5HpZl9XxLrhGtihkateQa01zMRCBmCJgugjZdQM/SarxDtX3U6y25RrQiZmimJVePZmImAjFDwHQSrIwCepJ2Blcdx0Upb1a05BoxmZihlZZcIwIxQ0AvEayMAnqKqXjJRSIWUmoIITruJTed1BMzSCmIRiNYlolt26RS2UpRbZ9AzBDQKwQro4CeoBNecobht45yucK0D652mrFihurgqmHoZDI5hoenXoggEDME9A5BMQqYcTrlJbe5jRSZNS25RlTFDP39U2/JNSYQMwTMPEGbLmDG6HS8QzTqb+Y7jkM6nZ0VLbl6SCmwLLPy/5JUKt2RldBEBGKGgF4gWBkFTDvdjHcol8tomkavqeRaYWRLLpv1V3umaXb1NQMxQ8BMExSjgGml2/EO1Yt3t12wu8FEKrlisTTtMRPhcAjX9YKYiYBpJShGAdPCdMU7KAX5fIFQyELXtZk+7aaYbHB1umImAjFDwEwSFKOArjITiavFYhnbdojFIjN23s3SrEqu2zETmwnEDAEzQ1CMArrGTCau5nL+BTUUsqbxjJun1cHVkc4M3WSsmCGfLwLUxAyWZY4SM1RnomKxKOAEBSmgbYJiFNBxeiFx1XFcSqUykUiop5Re7XvJdTZmohGBmCFgJgiKUUDHmImWXCNyuc2S715gqoOrI50ZAjFDwFwjKEYBHWEmW3L1UEr1hJihU15yEIgZAuYuQTEKmBK90JJrxEyKGabSkmtEIGYImIsEDgwBbdFqvMNMJq7mcnmSyTihkEWxWJry8zXDVOIdJqOVmImpEDgzBEwnwcoooGV6sSXXiOkUM3SyJdeIQMwQMNcIVkYBTdNpL7npjHfwnbwNotFwzaVhyiiFfs89hH5+FcY/7kUohXzlK3FOO43UXnvjiu7d69WLmegGQcxEwHQgVJPN3Y0bM90+loAepVFLLhy26rbk8nm/JearvyZuyeVyuWlz1Q6FTGKxKKlUGseZ4ia74xD95LlYv/wFwvP8Sg1QKQrlffYl8/0fQiw2xaNuTH9/EsdxyGRyXX0dpTySyXjFtDXD/Pl9ZDL+vl8sFmFgYIh4PIZhaGzcOMS8eUmEgE2bskgZ3PP2CgsXxmf6EOoSFKOAhhiGIBYLoes6tu2Qz5cQwt8TMQydctkmny9hGNqowlRdMZmmUXlcEdM0CIVMPM8jl8uP2O+YvjvnZDKOEJBKTe39HP7aV4l852IwDLAsQKBQoAC7jCiXKR36FrLf+8HET1AqYfz5LuTGjah4HHvvfVDJZMvHYZoGiUSMdDrb1f0jpRSaJunvT5LJ5NA0//c9MDDEvHl9uK5LOp1lwYJ+crkCpVKZefP87y0WvWB11CMExShg1jGyJQeQz5dqq5qRKx+lFJFIaFxLLhQyK9Jqf3UUDls9kbiq6xrJZJxcrtC2mEHLpunbbVdEPo+K+q1Hxn6KSkVQiuE/3IK7w46bv+55hH70Q8I/+RFy40bwFAhQsRjFY48n/78fh2i0peNJJGJommRoKN3W+TSLUh7RaIRQKMTgYIr585OUSmWKxRL9/UmGhtIYhk40GmZgYIhEIoZpGgwMpFBKCwpSD9DLxSgQMASMYqLBVaVUTSU33YOrnWaqYoZw2KLvzjsgm8ULhVDeBIUIwLTAdbFuuH7z15Qi+tlPE/3SF5EbNvhFzHXAcRCpFOFLf0ribWdCodDSMfWimCGZjNek59FoiEDMEDAZQTEKqFFPJaeUrxJzXa+nVHLt0tCZIZvF+sU1xM88ncSRhxN79zsxf3MThufWVHLOc8+DkP6fegjhCxrWrat9yfjzXVhXXYlyXSgWEcUi2DY4fkGiWMS460+ELvlJS+fTa84M2WwO0zRwXf+9EDgzBDRDsLMY0JRKznXdymZ1b6nk2qHqzODPw5RqYgb9vn8Te+9ZyPXr/KuulHC/wvrjrYjvfxf78stJLdkSQzfQlOd/T4PVlRICFd5c8KyfXYUol6Fc9h9X/TMSxyHyzW9SfPdZoDf/8czni1iWRTQa7qqYYawzQ1XMUHVmiMUitdW0EFAoFAmHLRKJCJs2ZREiuOQETEywMnoR04qXnOt66LpWc1SYDS25Rox1ZpDPPEP8nW9Hrl+HisdR/f3Q14eYPw9iMdSjjyKOPwFvYBB7//1B0/yiUg/HQQDl/Q6ofcn4y5/9ldBERQhqXxOpIfS7/9byOfWCM4NSilDIJJ0OnBkCWiMoRi9SWh1cNQy9toIIhWZPS64RI2MmQpdeghjchEokEJqOlBIh/NaSp2l48Thy1bNYv/ol7vY7YO/1er+wuBNIxD0PSkXc5Sv8wgWgFCJfmHQ1Vf038/e/b/l8ZjpmIpGI1/bhPE8FMRMBLREUoxcZU/GSs20HIQS6rnfNS246qYkZlIt10w1g6EhNR8rqBdXbfOHUfKPV0DU/ByD31a/hLV8OxQLk8/6ej+tAoYDI51D988h87webW21CoPqal27L9HBb5zRzYoY8oZCJ47iBM0NAWwTF6EVCp+IdqqsjyzJmTUuuEblcAdavRxYKCMsCAZ5SEzoaKNNErl0Hto23xZYMX3s9pTPOREWjUC4hiiUwDEpHHcPwtdfj7rzzqMfbr9u18kR1VgbVr+s6KtresOxMiRmq+43+eyaImQhonWDO6EWAYQgikZEDqFMfXAX/ojMTg6udxDB0YsMptNe8GiUlnlU/GVZksyjTYuiBBzc7LgAik0Z7/HHwPNxttkUtWDDh47V//IO+t7zJb+ON3TdSqiaaUJZF9lvfpnzU0W2f13Q6M8yb14emaaTT2YqJauDM0KsEc0YBM0K34h3K5XJlb2Dkn9nFyHgHb8livO23h2Kx8YMcB3uvvUYVIgAVT+C85rU4r9u1biECcF/3Ouzddh9tHeR5m1dEmoYyTdSSJZTf+KapnN60iBmklCQScTRNq610JouZSKcDMUPAxATFaA7S7cTVaiRCNBppuBffq4xLXE3nKJ58ij8bVE8hl8+DplE66eQpvXb2G9/E23prME3fSsg0UZaFikT8r8XiZL9+EYSnJkLotpghEgnR359A1zWGh9PjxAzVmAnLMkfFTCgViBkCJiYoRnOM6Yp3yOUKSCkIT/GiOZ00infIH3s83pvehCgUEOm0L0hQCmwbkUohbJviaWdg77vflI7BW7kdw7+8ltKb3uzvC+k6QkrQdezddid9xZXY++zbgbPtjpjBNA36+xOEwyEKhSJDQ2ls2w1iJgKmTLBnNEcYO7iaz5fGDa522ksuHA4RiYRIpdKVItUbyKeewrrhOsz/+wMim0MtXgTHH49x0knYySTZbH7C4xW2Tf+lP4Gf/hQGBsD1QNPwlm5J8W3voHj6GeNadFM6zueeQ3/gfnBd3O13wH3Zyzr23FUikRDhcIihofSUYiaqbbaq23o2mx/1fL5llEEyGWfTpmFisQhCiFrMRC7nD1L39ycYGkojpSSZjDE4OIzrisC3bpro5T2joBjNcmY63qG/P1GxfclO0xk3xrzpRqJf+Dwim0HpOkLXEbYNnoe3dCnpb357nMptJKGQSUwKsv93C15qGG/efJxdd/VbarOUqYoZqgXNd1sv1HUHrxcz4SvrwoGYoQcIilFAV+iGSq7VeAfD0Ekm412PMGgG/R/3En/3O30hwoKFSE3zHbGVwrNt5MaNeEu3YviXv24oNOhUzESv0G7MRDWMUEpJoVCs7QfVo9WYiWKxzPz5STKZLMViEMI3HfRyMQpuR2YhvZS4attOTcxg28N1R2img9AVlyNyOdhiC6SUKKU2t+M0DW/hQuSa1Vi/uYniW9827vFieBjz979D3fxb9PXr6AuFKO27H+UjjsTdbvtpPpvO4T7wAM6jjxDzXNJLluLstlttiHcixrbkhoezTbX4xjozDA6mCIetmpihvz85SsxQfb/5HoEplNKDgvQiJlgZzSJmuiVXDykl/f0JCoUS+Xxr8QedQmzYQP+bDvYvZonEaPeEkd+3cSPu9tuTvvG3o74un3qK2NkfQnv6KV9VFw4jXBevWETF4uQ/9r+Ujz5muk6nI2iPPUrkC5/H+Nc/fSGGECAlzjbbkD/nf7EPOmjcY5ptyTVG0d/fVzFUtUkm4wwOpohGIxiGxsDAEPPn91fUmRkWLuynWCyRzZYQon6RDJg6vbwyCtR0s4TpUsm1g1/wfHdmTZv+t5Rh6CTLRYTjoEwT13XrS4ZNE7l+w6gviWyG2Ec+hPbUk3iLFuFtsQVuXz8sXozYamtEuUT0Sxdg/PUv03A2nUF77FHip52KcfffULqO6u9HzZsHkQjak08S/5/3Y/7mptr3T6SSa7ft2kzMRODMEDCWoBj1ON0aXO20l1yhUMTz/CTQ6WLk4KqKhFFC4NmTXEAdx7fvGYFxyy1oTz2Ft2jRiNgG3xJIahK1cCEU8lhXXtGdE+kC0c9/Djkw4LuPh8O+N55SYFmIefOgXCb6uc+iZdIkEjESiRiu6zE0lJ50b2gyxsZMpNNZdF3Dssxai85xnJrsu1AoVgpWBKUmMJ4NeFEQFKMepduDq93wkstm85imMQ0RBhMMrvYvwNlhB2SmgapPKYTtYB98yKgvW7/9jf8DH6OY8zwPTynfYSCRwPjXv5CrVnXjdDqK9vDD6P/+FyoSHu8W4Sl/rimZRKaG6Lv9j5UVcpZ0urm9oeaYOGYiny8EzgwBExIUox6kl1tyjRgpZujWPnTdwVUhKJ58KkqTiOwEBUkpxOAgKhaldPRozze5fj3KNCd8Pa/iIyfCYbBt5OBAN06ro+j//pcfbxEaP+yqUChAGP4K0Ln77im15OpRL2YicGYIqEdQjHqI2dKSa0S3nBlGteSURyqVJpcrjFLvlQ8/gtKJJ0Gh6O8L5fNQKiEyGeSGDWCY5D71Gdztdxj13CoWQzjOhK+rlEJ5Cul5oEnftqfHEa5bN8BPCrn5t68UbmFqLbmGxzEuZiJwZgioTyDt7gEaqeSSyWhdlVz1w1stVBOp5NLDWdx0BjR9yn5nzVAVM0QiIUqlUkecGcJhi0gkjFKq5os3IVKS/+SncXbemdDPf472+GO+i4KhUz7gDRRPPwNn993HPax8wIGEH3rQNy2dwGHB9Tz0VAq2335cIetF3G228d9U5bLvd4e/UhkZfAd+u85buV3HXleuWoXxpzsQ+QLekiWUDz4EFQ6TzeZIJuO193AiEas5M1TFDP39iZqYIZmMUSiUcd1g9ujFRCDtnmG6Nri6eg3apZcSuuxS5Jo1ADg77UTxrW+ndOxxXXcU6IQzg2HoRKMRNE1SLPqycZXNYfz1L8j168C0cF796okLhFLIZ59F5POo+fPwlmxR93XkmtUkTjgOkU7jLV48bkUhsllkNou84AJSRxxVy3TqWVyX5MFvQHv2Geifh6goHJVStfaXyGYRmkb5T3eRmb9wSi8n1q8ndu7/Yt5+m+/pJ6XveNHXT/Gss8i/5yyS/cnAmaEH6GVpd1CMZohqS86yOu8lV3rqKeLHHI327LO1jByglplj77sf6Usv7+pKaSrODFIKotEIlmVi274Pmms7WNdcTejKK/xCBKAUKhzGee3ryH/s43hbbdX+8d56K9HPfgqRTqNiMVQohHAcRMZ/35cOOxzjm99E6NqscGaw/vB7Ymd/yJe7xxN4lfRalPIHg8s29jvfifX1r03JPUMMDJA8+gi0Z55BaZp/kyMEeB6i5L83C29/B8UvnBc4M/QAQTEKqFFtycViIYQQ2LZDLlfs3OCq45I85GD0hyoBcGPbTq4LnkfxtNPJfeVrXT3XeDyKruukUs07M4xsyeVyhVpLLvSjHxL+0Q9ASrx58/2LnlKIbAYxNIS7cjuy3/0e3hZbtn28+n/uw/rZVRh/vsuPkpAa7sptKR13AqWjjka3TJLJeOWCWWr7daZELod52x8xf3cz2urVqGiU8r77Uj70MLxly4DNg6vq6qvh4x+H4WG/BQn++8GyKJ58KvlzP0GiP4mmSYaG0m0dTvRTnyB0+WUoy5rYRLZUQgCpa6/H2mdvQqEQg4Mp5s9PUiqVKRZL9PcnGRpKV1bC/kopGg0TClkMDKSAwJmhUwTFKAAY35IDhWH4xUZK2REvOeOvfyVx3DH+haGe5Yttg2Gy6V/3NfRomyqtODNM2JKrvDPlU0+SOP00fyU0f/74BzsOcs1qSsceT/7Tn5nycYsNG/wZnVAIb8WKURfZqk3O0FB62hVf8vnniX30bLRHHwUEyjIRjguOjUomKX/yU1gnnjDKS04MDWH+5kaMf/8bHAd35XaUjjraPy82/47yed+apxVEOk3/rq/xhSITKPcA/4ahWKR07HFkv/HNwJlhhunlYhQ0ZKeBRl5yuu63IRzHrSjgpuYlZ954g7/8ahR1oOtQLmH+/neUTju9cydaKvn7OWvWgGVhv/Z15F/20oZihrEtuVQqO+77rJtvRuSyeFttXfd8VCyGedutFM5675QLrFq0CHfRogn/LZcr1AxEs9n8lF6nJXI5Yh/9CNrDD+MtXlITJigApdA2biBy/nnYS5cyvMsra/NCqr+f0ulnUjr9zAmf1vN8SbX/Oyq3NGekPfIwIperK4sH/GFbQL/7bzVnhkDMEDARQTHqIs2q5FzXIxYLE4uF8TzVnEouPdJLbvOHVA4O+q04vcGvVgjQNP9720SufgH9P/8B28bbaiu0p54i9JMfIVevRihAeahwGHvPvfC++hWiW2w5TszQrEpOu/8//vk0uBipRAK5YQPaE0/gdHG15+/TFSrmnqVpEzOYd9yO9ugjowoRgNQkUkrYYgu8Vc/h/vCHeN/+bkvPnc8XsSyLaDTcUsxEPTn8+G8U/v7bGGeGqphhpDPDwMBQTfa9ceMQ4bBFIhFh06YsQgSXq7lM8NvtEmNbcn6rwZ+hGKuSi0b9FofnqcqMjoWua5XHFSsRANHKIGumYbyDSib99pxS9S/eSoHnofr6Wj4vuWY14a9+BfOOOxD5yoXLcRClEl4kglq0yL9TrmyUm7f9Ee/44zGvvx4zlqBcthu25CZCeO6E5zrmu2oCjW5TLJaxLItYLDJtYgbz5psr/1ORakuBJiUI4TtFuB4imUD/5z+Qzz1X2z9qllwuTyIRo1QqNy1mcLfdFqXrvoKugQu4UAr7JS+t/o1sNk9/f3KUM8PAwBChkFWLuliwoL/mzDB/fpJwWA/EDHOcYOi1w0w0uJrLNTe4Wr0IVAtRO4Orpbcc5m9WN2q3VC4epTe+qbVzW7Oa+JmnY938W1Ae3oIFqL4+RKHg79vkcohiZd9BCFQshrdgAfLJp3C+/GViscikg6sT4e74UnDshoVGZLOoSBRvxfKWzqldcjnf6iYUsqbl9eTaNSjTAiHQdA1d01CA47h4lbamskKIcnsuEeWyTblsE402r7D0ttiS8oEHIVyv/u+msnoqnXoaEDgzBNQnKEYdopGX3EjLnma85PL5IrquteUlZ++7H+7229dfJVSKVOnIo1BLlrR0juGvfgXtmWfw5s9HxeMgR1jv6Lo/27N+fe0CVP26ioSRv/0tYuPGyl5AjuHh8XtD9Si9+VBUKIxI11F8eR5ieBj79Xvjbbm0pXNqF3+Pr0wkEpqWu3UViSA9F13XEIDjuriOO/p37LooTaKsOmKCSchm80gpCYcneXyxiP6PezH+fBelY45GxaL+TYg7omWpFJTLCNvG3nNPym/YHFcRODMETERQjDpAp73kwmHLTyf1PJTyWvOS0zTSl16Bt2ixXxTKZf8i4bq1/3de/WpyX/pyS+coV7+AecftqHB4dEumUFHJVdV7rjuqaAgEMp5A5HK4990HgNPsXkMF9+Uvp/yWwxCZNGLTptGrvmIRufoFvC22oPj2t7f0vFMll/PPvZXVRDuYpoHxpjf6+UqOg+O4KG/8jYZMpfC22tq/GWmDkWIGOZEAplgk/O2L6TtwPxKnnET8rWcQ//CHcZevQMXjiFIJkc8jKitk4SnKBxxI5ieXjNvDDGImAsYS7BlNgYlUco7jjLPsaTdx1TQN4vEYxWK5IgVvDm/lSlJ/uIXwT35M6KorasXBXb6c4plvo3j6GdCix5p+332IfB5vjDhgVImsrBBEPo+aNw8pJVII35zT88ils8QqMRMtOTMIQf5j/4uKhLGuuw65+oXNr65ruDvsSO7Tn512q55uixlGJa4efgTypz9FrF0Li5eM3w/M5UB5lI45dkruGnXFDMUi8fe+B+OuP4GQfgyHlGCX0Z58AgyD4smn1AqSu3QppaOPxd1llwlfJxAzBIwlmDNqg+lMXE0mYwghSaXaG0qkXEYObERJDbVoUWPJdwPM668j9rFz8BYuHHUhlBs3+sVO0/yvV/KCRGWOxfM8yGTAcRm+9nq0l+zYtjMDVFZof/wjcv06lGnhvOY12Lvv0XV7o0Ykk3GEoKNihokSV83/+wORL3wekcmgkglUKAyug0wNg1KUD3kjufPOn/LPwhfMxEb9jsLf+w7hiy5ERaJgjdknUwoxPIyyLIZv/A3eypVNvY5SCk2TgTPDNBLMGc0hWlHJJRKb5dtjB1ebVclls3n6+hKEwxaFQhtT/6bZkX0Ub9ky/yJXKo0acFTxuG+ZM+KeRlib24wohcxkKO+3P97KlXgjYiZsu3lnhtpxLN2K4hlnTvl8OkkulyeZjBMKWVN2ZqjOMI0cXK1SPuSNePPnY111Jca9f0cObUJJibvttpSOPobSccd3pCiPFDOUyzaUy1hXX13dGB3/ACFQySRiaBOha39F/mMfb+p1xooZBgdThMNWTczQ358cJWaodgz8lWgKpQJnhrlEUIyapNstuZGDqyNxXY9isUQkEq4MJc5Mv9x51atxtt8B/ZGH8SyrtjpSoZAfwZDJIAAlBG4i4e/r2DZi0yZUXz+F976v9ly5XKEScR2e1JlhNjBSzFAqldva0xjVkivbDA9PHHTnvPZ1OK99HXLNasTGjRAK4a7crvFcWRv48ms/hrx8/3+QG9b7q6J6CAFSw7jtNmiyGPkP88UMvlTebw0mk3Hy+WKtRTdS9p1KZQiF/O/NZktA4MwwVwgEDJPQSZVcu4mrVeXRdEZ6j0NKCv/zQd9AdISIQAqJWLwYwmGU5/nDtJuGkGvXITcNobbcksw3L8Z9xStrT1WNmQiHLTRtbrwFpyJmiERC9PcnWkpc9bZcivuKV+Lu+JKOFyIYLWbQSqW68RqjkBJRaN2VIhAzBECwMmrIdLfk6qGUf7GLx/2N8lbEDJ3EPvAN5L5wPtEvnocc3OQvjoQ/bKqiUcoHH4y740t9V23Lwt51N8oHvmFCd/BCoUgoZLYuZuhR2hEzNGrJ9QJVMYO17TZ++69cblz4HBt369aGbWEqYoYomzZlAjHDHCEQMEzA2JZcPl8a15JrN96hUUtuMqYsZugAUgqihTzWTTfi/fWv2Lk87jbbUDriKNyXvayhZc9YphIz0as0I2YY25LLZvMtecJNJ1Uxg334EWh/uhPVP2/i37FtI7IZsl/9OuWjjka//z/Ip58GXcd55asmdYRoVcygaZJQyKJQKJLN2sHeUZP0soAhKEYjmE6VXDtomqSvL0E+X2hPzDBF6sU7TIV2YiZ6GV3XGsZMTKSS63USiRja3X+D409AlEq+5dTIlp1tIzJp3B13JH/2OYS/8230hx/y3eEBQiHK++xL/hOfwlte3yFDKV/23yhmwrJMwmGr8rIOuq4FMRMtEBSjWUDXEldHxDtMpRBVqea8DA0NT5uYoVUvuVZoJWZitjBRzESvt+QaUf0dla6+BuOj5/iuGxXBAq4DQuDu+BKKp5xK9PzzoFBAxaKbDV0LBUSxiLfllqSv/DneNts0eDU1YcxELBbBMHSklCilsG2HoaF0EDPRIkEx6mF6tSVXDyGgvz+JbTstOSy3w4SJq01a+LRCOBwiEgmRSqW78vzTjRCC/v5E5QamOGtaco2oruhSDz6Ced2vMW69xR+C3mprSkcehb37HvQd+saKerIPEIhS0d9nAr9wlUvY++xL5rIr6r6OUgrTNEgm42zaNFxRncpKKoqs/Uz7+xMMDaWRUpJMxhgcHMZ1RbA6moSgGPUgvd6Sa4RlmcTjUYaHM10TM3SjJdeI/v4EruvNCTEDQChkEotFa/NWs6Ul14j+/iSOM/FNkHX1z4l+8ly/hWfbyKEh345q5OVFSlQkwvAtf8Tdrr5lkVIeyWQcKSWO4xIKWTiObxwciYQYGBgiHo9hGBobNw4xb14SIWDTpixSBmKGRvRyMZobutoW6bSXXCIRrchyM6TTma4WIoBSqYxt212RehuGTl9fgkgkTLFYYmhouOuFCPy5FtM0MM2Zc1LoFKZp+LHfSqGUYmgoPesLEfjDvVV59Vj0f/zDLzy2jRwY8PeLKrlZaJrfgnBdRDZL6Cc/nuSVBOWyjaZpmKZBqVRGSjnGPDVbE4Kk0zl0XScc1gOp9yzmRVWMphLvIIQgkdj8uHbiHTpJNptH02RtM3eqSCnainfoFPYIZ4bZ2mmRUpJIxEgkYpVVnv++ma6YiW7TKGZC2P4Nixwa8meSqvZQtW8QNWd384Yb/KjyCfBFOnFisSiu6+dYVW/6gpiJuc2Lohj1wuBqpxnpzCDl1F43HLbo709iGHrL8Q6dJJcrVMIFu+uC3Q0mGly1bXtaYyamg3oxE+6KFTXXjbrDsZXAR1HIY/7f70f9kxC+OKevL4EQkuHhDKlUOoiZeBEx54vRbG/JNWKqzgwz1ZKrx2x0ZjBNo2abUygUx7XkpitmYrqoFzNROvIo/38aJQx7nr860nX0//639mXLMujrSxIKWeTzBVKpNLbtBM4MLzJmxye+DeZSS64eVWcGyzIxjOY3bme6JdeIQqGIV4mZ6GXGtuSGhtITyrWrzgyhkB8lPxfI54t4nhpVYL2V2+Hu/PLKX8Ykv1Zi7hHCV9oJAZ6HpvlKuHg8huM4DA0Nj5qfG+vMkE5n0XVtlDOD4zi1lVKhUKwUrAhKdTbOI6D7zLliJOXca8k1olUxQ6+05BrR62KGVr3kqnlUsVhvF9hWmEjMUDjrvZtnizxvc6hjtRD196NCIVAKfaedRrXkMplcnbk5Udkf9cUMVal8Pl8IxAxzjDkl7TYMQTzuD2e6rt/yUUr13OBqp2nGmaGbg6vdoBedGaYyuDqZM8NsJJGIoWmSoaGKPVW5TN8B+yFfeB40DWHbqErshIpGQdcRqWFEIg7/+Q95s7lYlGacGfz3t+9hVx0MD5wZxhNIu7vMyJacEL4yy29FRWrFaba35CZCe+RhrGuuRr/ySsp33kkkHBonZujlllwjeknM0GxLrhEjYybmysVxnJjBNMmf+wnfGFcIvAULUIsW+bNHQiDTaaQmcT76MYaUaNrSqhozEYgZ5jazekKs0eBqdQPc8zw0Tau8McHzVO3NWt07mmhwNZ0eObjaWxcP7eGHiX7hc+j/+ieUbf/wNA122onYpz9D+nW7AaMHVzOZ3IyKE1qlKmbwM4JKM9ZKHOklN1VD11yuUFtdZbOtRy30GiPFDH7Wlkf50LeQtW2iXzwfsWkQYHPxTSYpfOjD5E44CVq0sqqKGZLJeG0Y3c83SrNgQX9NzNDfn6iJGZLJGIVCGdcNUmFnA7O2TdeOl5xSCiklnqeQUszOltxDD5E49WTE0CaUZW1O3rRtZKGACIcpfO8HGEcdOWtaco2YKWeGbnnJVZ0ZUql0UzETs4EJnRmyWaK3/h/WI48gUJRXbkf2jW/2V0ltMtKZoRozkcnkKsq6cODM0AS93KabdcWoE15yE9EtL7mOohSJIw9Hv/8/qHh8/DxHJeJbLFyI/e9/k1XCX1F4Hvp9/0Y+/zyYJs4rX9mRKPLpYLpjJqYj3qGZmInZRDVmovo70jRZMTb13RNyuXxHTH1bjZkoFsvMn58kk8lSLAarI+jtYjRrbhcateRGBtuN9ZKr15KLREIYhl6zbPELEfRsIQL0/9yH/tCDviJpTCESQiCkhFgMtXEj7nXX4R5+FMbttxH+3nfRHn8MUTGtVLEY5f0OoPCRj+BtseVMnErTjHRmsO3uihk62ZJrRC6XJ5mMEwpZc0LMMNKZwTB0QiEL1/U67p0ohMB13ZrbwuBginDYqjkz9PcnRzkzVG8w/cDDFEoFYoZeZlYUo24mrtq2Q39/H5FIuDag2Kvo//ynL5WNbJYIC7HZqVgphZISCVj/+he21Il8+pOIQhGvr88PRlMKkc1i/eYm9EceIvPTS/GWbDFDZ9QcuVyhMlga7krMxHTHO4wUM5RK5TkhQS6XyxXFm9XVvK2qmMGyrJqYIZmMk88Xa2KGgYEhQiGrsqeUIRTyvzebLQFzY9ZrLtLTarrpGFxVitpQoqb1+BvVqZhPVoqPFBJZLUSeql3UlL/bS/RLX4RyGW/xYgiFKhk0EpVI4C1ciPbkU4QvvHDGTqdZuuXM0AmVXLvMFWeG6uCq7yXntzNLpe62UwNnhrlJT66MOt2Sm0wlVyyWKndPEYaHe7eP72270l/ZuC7C8IcNPaVGf8Aq+xvu08+gb9iAO2/exE+m66hoFPOO2yisWd3ze0iFQpFQyCQajXREzDBdLbl6VJ0Z/BZSadaJGYSASCQ8uiU3nKb/3rtJPPIopVIZd8cdKe+3vy/17uhrj3ZmqIoZRjozDAwM1VZKGzcOEQ5bJBIRNm3KIkRPXvZe9PTcb6WbLblGKrlsNk9fXxzLMntWAq0OPhix5ZawZg0qmRx/l6dApFII20b7x72ochmZzaJCIdS8+b7oYeS3x2LIDRvQH3iAco8XI/B/R8lkvHZj0Q69lLhaLJYr7abIrBIzWJZBJOLf8FVbcuZvf0Pymxch1q9HkxLpeSgF4S23IH/Ox7APPqTDR+E7M/T3J0c5M4xs0VXFDFVnhvnzk4TDeiBm6FF6pk03015yvsdViWg03HNv1Nrg6sL5uOeei9I0SKdrqyAAPIUc2IgoFlGWhTKMWltOFArINasRQ0Ojn1gIwM+gmQ1MJWai8y05VfkzNXI53+pmNsRM1POSM3/7G6Kf/Qxy/Qbc+QvwttgCsdVWeAsWINeuI/bJczFu+b+OHstYMUP1dxnETMxeZnxlNN0tuUb4Q4kmkUioZ8QM4wZX33IE1qYhol/+MiKTBeUXJOG64Dj+ftCWWyI3DkChsDlHxnWRGzfgRsJgVSbmi0WUaeJtvfUMnmFrtCNm6FxLzkXTnkDT7kfTngbA85bjOK/EdXeknc3x2SBmmLAlV1XJ5fOEv3nR5r1JIWqD5tIy8RYvRq5fR+SiCxned7/Nc3EdOa5AzDCXmNFiNFMtuXpU+/jRaJhisVwJ95oZGnnJlU4/k/Ib34x13a/R//1vhOOg//MfUCqhFi/2zyWRQAynNgedaRo4DjI1jLfYN6uUwymcXV6Bs8srZuw8W6UVZ4bOtuRsTPO3GMZf8e+sk4BA1/+Brv8L296NcvkIoPWLbS87M0zUkhuJecftyHXr8RYsqAlrfJNuDyklylN48+YjV7+A8ac/YR98cEePL3BmmDvMSDEaO7iazRbGDa5mMvmaF9XYwdVEIlp7HEAs5n9YOjG4OtNiBikF0WgEyzKxbZtUamJXbbVoEcX3vBcA7dFHSBx3zKjpdhWyUPE4Iu2bWApN85tKuSy4CxCbBlGRCIX3vb9+GFqPMpmYYezg6vBwY1ftZjCM2zGMO/G8LSuFqMoShMhgGH8GopTLh7b83L0oZmh2cFV74gn/f4zRDuu+ywlITeJWnLy1p57AprPFKBAzzB1m5CpkmlpPxztks/7rW9bEbg3dou14h1IZ4Xnjioq3aDEqkQClULYNnocol5EDG1HJPnLnfRF73/26czJdpl7MRKvxDs0gRBrDuBel+scUIh+l4njeQnT9HwgxNMEzTE6vxExMlLhaP96BzfuOE+C5HlKI2vhB9whiJuYCM3JbUCy6lMv+G9zfMzKwbZdCoYSuT09LrhEjxQz+LFJ337BTjXdQixehTBNRKqHMEQVUCrwlSxB9/YhMGpHJoBYuJHf2OZQPfQuqnux7FjDWmcEwuqeS07QnEWIA192h7vcotQApH0PTHsdxdmvrdWbamWGyltxEuDvuSMUqf/zqSCmEUkjHxhMCd4cdu3LcgTPD3GDG+jPVOy2lIJUqkE4XsW2FUmDbLqmUX6xmKt7BFzAIIpFQR593JJ2Kd/CWbIH9+r0R+TwTPViFLLy+PojHEV/+MvYZZ8zqQlSlGjPR15fo8uCq/15ovOHtf5SEaF/4MlMxE5MlrjaivN/+vmBmcGDC957nujAwAMtXYO+9T6cPvUYQMzH76bnNgmLRIZ0u4jiKUsmlUCgzNOS7AcdiYTxvehJXR8ZFd8OZodOJq8W3v8OfGxoYGC35Bt/Re3ATzg47oA47rOcjvZulanorpSSbzXWkJTcxBv4Fq9FzK4RQKDW11u50OjO03JKbiFCI/Ec+CqEQct06KI+Y0SuVEGvXoiIR5Oc/hwx178YOAmeG2U5P7955niKX89/cpZJLNKoqS/KqXLu7dErMIDZuxPzD75FDQ4iFCzCPOQZtfl9H4x2cV76K7Fe+RvRTn/Bl3QKUpiEcF4TAedlLyX77exhCI26ZFIuljppYTidjVXL+xcXfS+wGrrstSvUjxBBKzZ/we4RI4XkJXHfbKb3WdIkZ2mnJ1cM++BCyCCLfuNBPeQV/G0kKvOUryJ/zUWIHvoHo2JiJDhOIGWY3sypCIhYzCYctstlc1y48Y9F1nb6+eHvhdLkc0c9+htAvr/F76pqGcF2UaVI+/ngynz9/lOlpJxDr12P95iaM2/6IyGbxttyS8uFHUD7wDb4/HZBMxhBCkkqlO/ra3aZevMN0xEyY5nWY5h04zkpg7B1+CU17Etvei3L5xI68XrdiJroV7wBAuYxx15/QnngcKntE9uv3BtMcFzPRLYKYicb0coTErCpGQsC8eVEAhoa6GycwkuoFcGgo3fxyvlQicfKJGHf/zf+7pvknoJTvvA3Yu+9B+upfdHQQsBk0TdLXl+iqu3KnGTm4mssVxl3Q4vEouq6TSnXrfZEjFPolmvYflAqhlL/nJsQQQuRx3V0olY5HqURHXk3XNZLJeOWCOfXf0djB1VwuP+0r40QihqZJhoa6exOklFdxEA8xOJhi/vwkpVKZYrFEf3+SoaF0RTTkr5SiUf/nMjCQAua2mKGXi1HP7Rk1QinI5Uq1/u900Y6YIXTN1Rh/++tmB4TqG3zE3427/0bomqu7c9ANcF2PYrFEJBJGyt7+4JmmUXFcCFEoFBkaSk94Z10VM4Q7bMq5mSjF4omUSifheVshRBYhsnjeFpRKJ1IsntyxQgSdFTNYlkFfX7IW75BKpWekRZvL5ZFSEg53d+8oEDPMTmbVyqhKX5/v0DCd0c2hkEU0GiaVykzqzCAF9O23D/LRR32PuHrYNu4OO5C688+bi9U0IYQfF23b3e3jt0s7iavhcIhIJEQqlZ6SGGRyXITwPw9KxejW1qsQgv7+RO38W6WrLbk2qa5wh4bSXRKb+CilME2DZDLOpk3DxGIRhBA1Z4ZcrlDJMkswNJRGSl9RODg4jOuKObs6ClZGHSabLVbueqZvdVQs+tYzk71mOGzRL0E8/jhqMmcDKdGeeKLmkjCd+KvMApZlYhi9tXHb7uBqoVDE87xpWDVrKNWHUn10UwM0UtGp680rOjuikusS+XwRz1NdVwuOFTOk01l0XRslZvDnCf1/LxSKFfVdBKVm3gHjxcisLEaO4y+3dV2vyXung0bODIah09eXIBIJU8zmJpy5qIszM6q2UqmMbds9I/VutiXXiHrODK2RRYh1CLEemNk4kVadGXqlJdeIXC5fk1d3l8CZYTbRW7fELZDLlSvy1HDF7bj7rzmRM8OEXnJmCHP+fOTGjb5woR6ui7dwIaqvr/sHXwc/xylBOGzNmJihk15yY50ZWnlfCLEJXX8ATXsYIXKAwPPm47ovx3FeTjsmqJ2gGWeGXmzJ1aNctimX7drnqFsEzgyzi1m5MoLeEDPUHVzVNIpnnOl7xdW7GioFUlI8862NC1aXmWkxQze85NoRMwixDtO8HsO4CwDP2wLPW4SUwxjG7zHN3+M7MUw/jcQMvdySa0QgZggYy6wtRuC7Ndi203JPfSoopSiV/GHYSCRMsVhiaGh43AxS8a1v96O8Xdf/Uy1KVWm36+JtuZTimW+bluNuRPXDOp1FvRMtuXpUYybCYQtNa+Yt7mCatyPlOlx3R5RaiL8KCuN5S/G8Fej6A+j6vzpyfO0wkTPDbGjJ1cN1/bC7SCSE7LJrfLvODKapBe26aWRWFyOYXjFD1Uuuejfnum5dLzk1fz7D116Pu8MOvj2P60Kp5P/X83B32IHha69HzZ94on86mU4xQ+cTVyemFTGDlM8h5So8bzkTfyRCeN58dP1BYGaUhyPFDL5KrD0vuV6il8QMUkocx6WvL04i4c8y+lE1gZhhupi1e0ZVqmKGcNiqxUt0g7GJq67r0dcXx7LMus4M3vLlpG7/E8af78K68QbE4CBq/nxKhx+Bvc++PZUjVCqVaxlB3XJm6FzianNks/5eS3Uvqh5SrgHcyv+vRogNgI2/MlqEUvNRaj5SPoWU6/C8lV097nr4rbow8Xh0fOLqLCWXy5NIxCiVyl1+P/hihv5+fyXpR9L4P0chBMlkrDayUS772WnJZIxwWH9RODP0ArO+GEF3xQyN4h2aipmQEnvf/WZFblC3xAydTVxtnvpihiLg4LfiDISwESI7Io9Ix3fo3oiUz+F5i3DdnRBCIcTMXPyrXnLVi+Js9hYcyXSKGaqr/lgsMuLzqshm8zU1XdWZIZ3OBmKGaWZOFKOqmCEeDxONRjoS3dxM4qofF20SiYRqPf3ZzEgxQ6lUnvImeDcSV1sllytU9qbClEp/xzD+ipSPIYTC8xbgOHsAGTTtSZSK4nmLGd2qc5ByLVBCqSUoFZ3W459IJReJhCux6+U5saeRy1Vvgvz9w06j6xrRaATD0CkWS5imUVuJJZNxSqUsuq6TSEQZGBgiFLIq0eWZilFymGy2ROMIkYCpMieKEfhihlDIqclfp+LMMLYlV68NV+3jR6NhisXypM4Ms4F83t87qm7qtst0t+Tq4YsZskQiv0DXrwUyeF4ckOj6anT9v3hetGLts4jxe0Y6nrcITXsSx1mG520xLcc91ktuZEvOvwnyV5uduPGaaUaKGfyboM7csAghKj9Ds5IG7Qs8qs4MhUKpJmaoOjNU3/f9/YmKmCFX+d4yrhu067pJ72xadICpihlGDa7WUcmNpVlnhtnCVMUM3VTJtYvjXItSv0TTojjOy/G8FXjeMlx3O5RKouuPAmWkHGS8fFshRBbQ8LwI03F3PJlKrl1nhl6m02IGyzLp70/URAqpVAbHcdtwZigFzgzTxJwqRu06M0w1cbWRM8NspB1nhulSybWKEKlK9INE07YeI/WWFXNTA3DwvHlImUXKNQgxiBADaNoahADH2RnoruqrlcTVVp0ZZgOdcGaoup3H41Hse/5O+W1vw9prD5IHHUD03I+jPfIwgTNDbzJn2nRVWhUzNNuSa8REzgyznVbEDL3SkpsIKR9Dyhdw3S1wnCKGAZ7nolR1RSFQKooQwwDY9p5IuRYh0oDAcRbieUsqf+/OzUajllwjmnFmmE1MRcwwqiVXKlF6xzswf3aVr1ittM/1hx4idOlPKbz7PeQ+89k6zgx+iy5wZph+5lwxalbM0Egl1w4vRjHDTKnkJkOINFI+hxA5NO2fCDGElB6eZ6NpOoYhcJwkSvVXsomSCDGAEAWUmo/rjp39Uki5Gsd5XcePdSqJqyOdGV7MYgZ/jzMMCHK5AtrZZxP62VWbv0GvXOYqP5/wD3+AisfJn/NRLMuqOTMkk3Hy+WKtRReIGaaXWRkh0Qz1YibGquSy2XzH4gZaiZmYDdSLmWgn3mF6cNH1f6Lr/0GIFELk0fW70fVHUMpAqT6E6EfKEK7r4HlhPG8ZYKNp9+I4O2PbR457Vn8OSadUOrZu7HirdMpLbqoxE71IszETY1VyuVwBsWY1/a95lT9oXs9my3EgFGLw/gcxFi5oIWZCkEzGZ3XMRBAhMQOMFTMopep7yXWIF4OYoRtecp1Boet/xzD+hFISpfoqq6NhlLLwfcaKKJVCqRRCWEAJKZ9HKbeS3NqPlM8CWaCMEMNo2lMA2PY+ExQiFylXo2mPommPI8TgpEfZaS+5F6OYQQj/hnJzNHuabDaPUgrrF7+o+T7WRdOgVCJ0w/WBmKGHmLPFqCpm8DyPX/zi5xxyyBu44Ybrm1bJtctcFTPEYtGeU8mNRIiN6Pq/8LwFQARNexgpN6JUP563EH+4tQQ4KFVE09YhpUF1xsi2d6dYPAPPW46Uqcq+UR7H2Zly+XBc96WjXk/K5zDNmzDN6zDN32Oav8Wyfo1h3FIZnB1Pt7zkXkxihnoquSraqmf9it9o1SIEaBpy1bMEYobeYc7tGY3kjjvu4uKLL+SZZ55hwYIFbL31sq7v53RUzOC6GPfcjXz2WdB1nFe9CneHHTt2rM1QNbHUNN+7q9sJne2iaU8jRB7P2wpNe7Yi0xZABM8LATk0rSrdjuB5LlKmEULiODtQLh8MCFx3O1x3ezxvHhCtBOiNRsqnMYzbEKKA5y2hqrITIo2u/xchNmHbb6w9djriHea6mGGiltxEny1lNhHzUX2cZU0SMxGIGaaTOVmMNm7cwLe+dSF33nkbmqZx5pln8s53vovpWgh2Qsxg3PJ/RL5xIdozz4DrgVIoy8LZ9XXkPvUZvJXbdfioxzNSJVcqlSt3qb15NyjlBpTyDWyFWItSBkIU8YvQML6DQgQ/LE9WOjleZXYoTTh8KaBQKoxSi3Gcl+E4e9QKihBDlajxEoZxF0KU8bxtRh2DUglcN1Zxc/g3jnNAWyq5dpgLYgb53HPI9etQ4QjuS15SEzMkk3F0XasNrjYaaLf32YfQZZf4bbp6rTqlQCnKe+8LbI6ZCMQMM8ucLEZf/vL5/P3vf+MVr3gVZ5/9v7zmNS+fUMzQLabqzGDecD3RT30CUSrhxRNgWaAUopDH+POfSZxxOunLr+haQZpIJVcVM0zVmaFbKCWpFkohChUF3SC+AWoR/0bE/z14XhilYkAJTSsixHrK5W1RakHlsWswjEGEGMJxdkXKTUj5LELkEGIAXX8ax3lZRX03dl9D4nmLMM1niMU8pLQaquT8eaY8VaeHqVzYZqszg/7XvxL+yY/Q/3EvwnZAStylS3FPPx3e/z50w2+fNaOuKx98CN6SLZAb1vtFZ+yqpVKk3e22x9lzz1FfzmZzgTPDDDIn1XQPPvgAQ0ObeP3r90UIga4L+vqilTur6TuPvr4ESimGh5t/TTE0RN9BByIyabz+eeM/TJ6HHBzA3ndfMj+9rKPHO5lKzrJM4vFoT7pF6/q/MYxbcN0dMM1r0bTnUEpHyo2AjRAe1QhxfwUlKs4KYWAJrhurrIIknhdDiHKtwCm1AM9bjOctQdPWo+sP4Hmhigx8l8qKy0dKQShkoutPUyodQS635YQtOSmfRdf/jaY9jV8sdTxvCY7zSlz35bRblEIhk1gsOm03XlPFvOF6op/+JKJQQEWjKMNEKA+ZzSFQOIceivjRj3GEaPomSL/7bpInHgflyr5w9TPkeSAEKhpl+PqbcF/+8lGPU8ojmYwjpSSVyjB/fh+ZTK6SeRRmYGCIeDyGYWhs3DjEvHlJhIBNm7JIOTvu6wM13TSz8867sPfe+9XuVtp1Zpgq7YgZzN/ehBhO4SX7Jt6ElRIVjaL//e9oTzzesWNtRiXXjjPDdOG626JUP1I+jRAu/oBqAr8QFfFXRbJidGpUViMAHpo2hJTrkHI1Uj6Jrv8LTfsvhnEPuv4AUm5A057GMP6BlE+glIZSixFiECmfBvxfVdXTTwiNQqFUd29I0x7Gsq5F1/+LUjE8bxmetxAp12FZN2IYt1FdxbXKbBIzyGefJfq5z0K5jLdgIUSiSMtEhsOwcAFuJIL87c2Uv/u9lpwZnD32YPj6G7F3221UmCUI7L1ez/Bvbh5XiHwCMcNMMjvKeQfoZsxEPdoRM+j33ed/gBpEkatwBDkwgH7//bjb7zD6H0sl5Nq1oBTekiUwSfR2q4Or3YqZmCpK9WHbexIKXQkUUCqOv+LQ8C/sCr9AicrXbcBEKQPXzSGEpLpy8lV3BcBFqcUolUCpxfhS8KeRclOlpdaHlBuQsoBpzkdKUSnYQwhhVqyGRiPEJgzjVsDFdUf+7gw8bzlCpDGMv+N5W+K6O7f1s5gtYgbr2l8jclm8+QsQUtTEMspTeEpBKIzI5tB/8mPKbzyE6LbbNK3gdF79GtI3/AbtsUfRHnoIBDiveBXettvWfUwgZphZXjTFqBsxE83QqphB2E3KpQUw4ntFOo31619h3nQDcsMGAFT/PEpveQul405ALVgw6uHtxjt0Omaik7juy7HtV2AYGxHCQdOGK/s6OpsVby5KmfiFRiKEwi8yBp5XzblxKt+fRspBhFiHUosAC8/btlKAXkCpZZjmMJq2DtvWyed1hFiFYdyDUpJQaD2etw2Oszuuuw1gommPI+UgrvuSCc/BL3wD6Pp/cd2X0U7zYraIGcw/3gqahqZpCAGeUihP+Tt/rosYHkZkM+iPpVB77I7YYgsSJ59C5uRTUf39Tb2Gu+NLcHec+Gc9EYGYYeZ40RQj6GzMRLO0KmZwt13p93wm2nytUi6DpuNu49/licFBYh/5MPr994Np+KIHIRCbBgn/6IeYd95J9qJv4C3dCpi6l1ynYia6gedth+etxfPm4bprMIw/VYZRTfz9HwN/v2j1iBWQg+eZSKlw3RL+gKxHpeKjaU+g1KLK6kjieVEM4wGkfBzPc7HtIRxnMaa5rpIUK3DdpUj5KEo9jK7/FdveH9s+tPJc0cpzT4xSC5HyBYRIVYZxW6fXxQxCCLRiAaHrIMD1vM3dCsdBW7tm854PgKah1q3DuPDrJG66kfQVP0MtXtyVYwvEDDPDnNwzasRUYybaoRVnhtIRR6KsECKbnfgblEJm0rjbrcR5ne+VFvn6V9H/cx/eksV4S7aAaBQiEdSixXhbLkV77FEiX/g8pqF3ZHB1qjET3cSf+/FbZJ63EtddiVILgCJC5BFiE1I+h++ykMdv2XlACc8brBiiFkZ8XSBlGl1/GCkfwjAewDDWIWUZ17VRqgCsRdf/hq4/ALjY9qtw3Z0r80rbIEQZ07wVXb+VqlihEb6Jq0e7+0b+c/SuM0N1cFUsW44ql3HdEYUIfCVcubxZni0Eygqh4nGIxdAff4LYOWd37fiCmImZ4UVXjHpdzOBtuy2lE05AlEuITIZRn1LXRQ5tQlkh8h86uzJFvgrjz39G9fXBRAN/uo63YAHWg/8l8dQTHYt36FUxg+ctxXW3RtOeRymzItXO47/VSxUFXbXQ1B6Fv1Ipo2k5/CJVZnNBKAGDGMaTGMYqfDfvBbjuEjxvBzxvEVLmauo7XX8EITYgRBkwK4F8HobxTwCEaLyaFCJXmXea2s+218QMI+MdymWb7FsO89/fzghlZqmEKBY3uyh4HpgmVAqq0jREyML4+z2VOIhuEYgZppsXXTECX8zgeR6RSLiha0gnGSlmmGwZnz/3kxTPeCsIkIMDyI0b/D9Dm1DJPnJf+jL2Gw4CwLjnbkQuh4qP3ywHkJpETyahWKR46x876iWXzRbQNEk43MTU+7ShY9t747pboOv3VVY6DlU1nY+Jvyc08vdQBApjvAqrgocSur4B2IjrbsLzCviCCAvPiyPl+so9g4a/6smi608g5TMIUQB0lAoh5QbAqjy23s2AQsoBXHcnYOoR57mcf0ENhWbud1TPS678pjfhbrc9cmioVpBELre5RV2VYsditedSSqFCIYTjYN56a1ePeaSYoXrzVhUzWJY5SsyglFf7Xt9yKihIrTLjPZYXXnieq6++koceepBnnnmKZcuWc+WVv5z0cUoprrrqcq6//lekUim2334HPvCBs9l554kkm2Mf2+NiBl0n/8lPUTz5FKybbkR75mmUruO86tWU33IYKpmsfavI50GKcdPmQgq0SovD83wHB3c43dHzcV23J8UMSi3Att+ElINI+RT+HpG/GvKzixz8AqVV/jsaKakUbF8OLGXlZ4gNOEjp4nkLUGo+QqwDXISwRgzemnheCCGySPk8rrscIYpIuRpd/w+eZ6Hr/8BxXoEvP6/iomnP4nmLcZzJ38fNMNNihrHxDlV1n8hm0B5/nMJZ7yV88bc2e8oVS/4H1PP8MYZEEmWNLqRKgZASo5Afl8vbSQIxw/Qy48XomWee4u67/8rLXrYTSnlN37VfddXlXHLJD3nPe97PypXbc911v+Lss9/PpZf+jKWVjfpGzAYxg7fNNhQ++KHG39PXt3mWQtNAgKZpSCHwlMJ1HPAUUoGa195meCN6VcygVBLPm1+RRwukjCBEGSE24LfgFH7Ca1X2vZnKdRAhHFxXw/PkiO8RKGXieQmgUFlZmyjltwJ9tZ4v8VUqjp8Wm0bK6v5UEZiHlM9jmnfgustRal6lpefguksrvnaLOvazmAkxQz0vOTE4SPgnP8a88Qbk8DBQsbna5RXgOmhPPokoFf0B2EhkcxbRCJTyEJ6HscUSpJRd9UoMxAzTx4y36fbaax+uu+5mzj//q+ywQ3MSzFKpxFVXXcqJJ57KCSecwmtfuyuf//wFJBIJrr76qsmfoEKvixmawd5nX1RfH2JoyG/J6ToCcFwX13FBgRgeRkWjlPfbvyOvOZLeEzO4bN74F/gFQgIxPG/ryuyPht+Cq7brRn8MqotM/16h+nxVBwcJhIAiUg6gVAylYpWLTplq68+Xk3sVW6JN+HlKC3Ddl+K6L6VUejOuuwyg4rywC6XSsZRKp1YyljrHdIoZGsU7iI0bib/9TEKX/ASRzeAl4njJJCiF/uB/kYODZL9+ESqZRBnGhIUI8N0aDAPviCPrxkx08nwCMcP0MOPFSDbKHanDgw8+QC6X44AD3lD7mmEY7Lvv/txzz1+bfp5eFzM0g5o/H+eYY9FKRWTW3w9yHBdVbZnl84j0MOUD34C3YsWUX28iZl7M4MuvDeM3WNblWNblGMYtgF5pzwk2D71abC5WHn5hMqi2VPwWXTWbTVQeE2FzE8GlOhDrCyM0lIrjeVZFKl51e7CRcn3Fz86uOYr7ERcAFo7zWpRK4rq7UC4fUbEB6s7PcDrEDJPFO0QuOB/9kUfw5s/354RMEwwDlUjgLVqE3LiRyMXfonzwIYhyebS0u0q5DLZN6c1vIbdwUUvODO0TiBmmgxkvRu2watWzACxbtmLU15cv34b169dRKjWvFOt1MUMjpJQkEjFC534c76ij8VLD8MwziIEBxOAg8vnnkEObKO9/APmPfqyDZzCemRMzFDGM2zDNG9G0J6nOCOn6f9G0hxAig+dZ+Ps9Np5X9eaq7hX5BUfTQvh7PZuf2XVN/EKl4xcxvyAJUUbK6v6bW/G9c/Cth9IIMYimPV6JtchU5pxU5bVHXpw0lIqiaQ8yWt3XHbolZhirkhsaGh7n/CBXrcK88w5UNArGBMVDSrz+frRnn6F0yBux99wLUSj4g6/5vP8nNYwoFLD3ej25884fFTPRTQIxw/QwK4tRJpPGNE2sMRub8XgcpRSZTPPGpFUxg2+GOH139r6AQRCJhNp6/CgvuWKZoY9/guyFF1E+6GBULIaKRLD33ofsV75G7itfgxGKpG4wUswg5fT1yQ3jb+j6/bjuUjxvG5RaUGmHraxEPHiVmwwXGADiFaNUfxUjpS/rdl3F6I+D//9SKvwC4uIXpKpQIYtSCimfQognAA/XXYbnLaq0BV2U8gue626L674cKTeg6/+lajsEoFSkIvXuflDhSDFDJ/YyGrXkxmLcc3fNDLUupulneN33bzKXXEb2wm/gvOrV/l6opuG85jVkL/oGmUsuq72fc7k8UkrC4fY+R81SFTP4bX1fzFAdHK+26HK5/IiVkr83F4uFmY4bjblALzT5Z5zZIGaoUtdLTtOw994He+99unjUjZluMYMQm9C0x0YF3I1EqTiu+xKE2ITrLsEw7kLK5ytiAYGUCs+z8Q1UtcpzSvzVkn+x9kP4RCWgz0QpCyEyKGXiui9B1+8H+nDdlYCFlM/iuksArzJcq6HUfDyvH1+JtxopF43YF6qq+qbno9gpMUM9lVw9RLGIEg0yhqooEIUiWBblo4+hfPQx1c27Cf0aXddfhVTVgoGYYfYyK1dG8XiCcrlMqTT6A5DJZBBCEI+3bpPe62KGaksukYh1bHC100y3mMG3zMlMaEhaxd+jMSmVjsNx3oQQK9G0pcBCPK8fpeIVP7g+IMbI/aOq4s7zYkCsIlboRymB4+xMsfgObPvVeF4STXsEXb8LKZ9EyjUIkcXzFuF5/ZV9Iz+zyG8JvkD1blnKIVx3e6ZLBjxVMUMzLbmJ8BYtQjBmwHX8wYEUeGNtfioro3rk80U8TwVihlnOrCxGy5evAOC551aN+vqqVc+yePESLKv1JXsvixmaiXfoFaZTzOALBjavYiZGRwhFNLqWcLgfeB/5/Lsolw/AcXaoODZsi+dth1JJ/BVWtFac/GIVqph5Fiqedh6uux26/iC6/ixSbqrEVtiV48ogxFDFB8+PPPePlcqcUxYhigixAaWiY9y7u087YoZWWnITUd5nX7wFCxHDw/VfI5dDWRblN7+56eOqksvlAzHDLGdWFqOdd96FaDTKHXf8sfY1x3G466472H33vdp+3l4TM5im0REvuelmusQM/sW+8QfcMASWZWGaqymXLXI5F8eZj23vi22/qeKMrSNlFn+GyMLzYii1FY7z2orbtsR1/cgJX4iwJVIWsKxrkHItnrcI190epZag1CI8b2sgjKZtxB+4dSsihjx+wSqiac8gRBHb3hfPW9rNH9OEtCJmmEwl1xTRKMW3vg3heYh0erTNFUChgMjmKL/hINwddmztuSEQM8wBZnzPqFgscvfdfwFg3bq15HK5WpF55StfQ39/Px/84FmsW7eWX/ziBgAsy+LUU9/KpZf+iL6+flau3I7rr/8Vw8PDnHTSqW0fS684M7Qb79ArTJczg+ctraw00uNadVLKSuLqJmw7QrFYruzbVNFQKlLxjRMoVazsG+UqSjkHyCLlJkCruCYU8bwFlEqH4K+4spXv88/Pt/wZRikqs0fpippvC1x3a6TMI8QgSvVj27vgurvgefXzdbpJM84M9QZX26V45lsRg4OErroCuWEDStd9d3nbBk2jfOCB5D5/XtvPn8tVs7ZCTUWUt0vgzNAdZrwYDQ1t4tOf/vior1X/fvHFP6C//7W4rjtug//UU88AFNdccxWp1BDbbbcDF1307abcFxox02IGgFDIajveoVeYDjGDUgtx3e3R9ftwXV9gIASYpt+u8bwshcIaSqXXoGnPsHkV5aBpD1fEDB5KhSrFYyNKhXCcvZDyKTTtSYTIVlZg4LpL0bR9UWpbNO3/KkamZaQcrGQhRYEMfoHSK0atwyj1UhxnbyCFrj9DuXwojrNHV34mrVBPzCCEIBIJEwqZuK7buQhzKSmc81HKBx+Cdf21GPfeC56Ls+NLKB99DPbr9264NzQZgZhhdiNUk7c6Gzc2L5ee7ei6oK8vWvkgTs95m6ZBPO7LXptJXJ0NWJZJPB5leDiDbTfYuJ4SOQzjNnT9UTQtimEsREpFubwBxynjOLtg23tjmrci5fN43nI07WE07Qk8bz6+XNtHynV43iKUmodt74Jh3ImmPYVS/XjeEjxvBZHIFnheHte9thKwZyDlxopQIoYQKYRIAVpln0hRLh+E674UKTfgODth24eMet2ZJBQyicWitYIzUiWXz0+ukutF+vuTOI7TdUWnUh7JZBwpJalUhvnz+8hkcpUxkTADA0PE4zEMQ2PjxiHmzUsiBGzalEXKmVkHLFzYurhrupiVe0bdZjrFDCNVco7jVnrSs6cl14jpETNE8bw3YprHEQpti+flyefTFIvLKJffgm3vD4Rw3R3x92sGkPIFPC/JyIIgRB6ldFx3W8DBMO7G3x/aprJ3tAtK9VEsljGMEEJU3bcjKNUPhGqODP7eUhmlPPx2Xh4hSjjOrtj2G+iVQgQjxQzRtlRyvUggZpidzHibrlfJ5cpYllHb9+jGe2eixNVYLEI0GqZctufEGzabLdDXFycctigUOntxE4JKO6kP113A8PBKbNsXIvgqts2tENfdFilfjmn+H0IMoNTK6r8gRAYo4nnbIOXzSPkCmrYBz4sgRKnSvluI4+yM68awbQNd3xHPewp/+DWK625XmV+qDrSKykqrj3L5KBzndRWFXm9RvfmxLAPP8zrXkptBRooZutnmrooZisUi8bi/ugyHrZqYob8/MUrMUCgUa2KGYjFVM9QN8AmKUR26KWaoO7hKCzETs4RuiRn8G4UIUgry+eKIDet6qzAd2349Uq7GNNfgh9+BUgI/FXbbyhDtc3heGKUEfqutiD+s+hyG4WDbr6FYFMRiK/C8pQjxMJ63EghVnB3Ad33YAIRxnAMrq7Pe+6iNbMk5joumyeZW5fk85p/uxLjzDkQqheqfh73//pT33gcivRHkN11ihnA4jGVZCCHo709WvhYiFLJQStHXF6+1qOfNS1IslhFC0NcXJ5XKEYgZNtN7n5AeotNihmZUcu06M/QynRQzaJr/MzQMg1KpTC6Xb6HAmTjOyxFiNUotRAin4qbdh5SDlWFUB11fVXFt2Aooo+uPVYZdC0i5BZ63klIpimXtgm0PVNR3T1UUfW5FUWdg23tTLr+ZXvuYTaSSA+jvT0zqzKA98TjRT38K+fRTCE+hTANh25i3/RFr++3JnXc+3srtputU6tJtMYOu68RiYTRNq10b4nF/ELY6GlIobB7ZsG0H0zSwLBOlFKZpoGkiEDOMIBAwTEKnxAwjW3K5XGHS9kFfXwKlFMPDc+PnPlUxw+aWnIXreuRy+TafZx2WdX1F5r3ZJ03T/o2u31/xiZP4rto7IISNlM8hxABC2LjuSmx7H4TIEg4vxHVfRrH4NLp+N0JUZeDbVNJmX4VSvbNhPFYll83mR91gjRUzjHv8unXE33cWctWzeFtu6XvJVSmX0daswV2xDZnv/xC1cOF0nNKkdFrM4A//+u9D23bIZvO4rjtrxAy9LGDorVu2HqQqZgiHLUIhk2JxAlv7BjRqyTUim83T1xfHskxKpdZesxcplcqEQv7qKJVqLXG2fkuudZRajOuuQNMersz4+B8BKQcqMm4TIWw8bx6+PFuvtPDmV6x+/GRXx9mTXG57EomVFIu7kc8fCWQQQlYk3r310WrGS65YLFdmZyIT3nhZv7kJ7dlncZdtPV6CbZq4W2+N9uwzWL+7meIZZ3bnRFokl8uTSMQolcpT3j8KhSwikTCgyGRyYz6Xvpihvz85Sswwct4onc6yYEF/Tcwwf36ScFinWAxWRxCo6ZqiHWeGqXrJdSpmopdo1ZlB0yTJZIx4PIbjOAwNDXeg/y9wnL3wvG3RtKeQcg2+Xc9QRZbt4HkL8LzNSatKGXjeAlz3ZSjVj+Psi+PsRrk8j1KpTDQaQQgd6K9YCvVOIWrVS66uM4PjYP7ut6hwqP4skKahLAvzphuhR4a0O+HMoOs6fX1xotEwpVKJoaH0uBvEwJlh6gTFqAlajZnolJfcVGMmeo1mYyaEgGg0TF9fAiEkw8MZMplcx8QPSiUolw+mXD4Iz0sg5TD+RrKG562o2PmM/2gIUaoMum4+dt8xQxAOd9eGplXa9ZKrFzMhMhlEatiPAm+AikQQQ0OIXLYj59EJ2o2ZEEIQi0Xo64ujFKRSmYYuFEHMxNTonVu4HqcZMUO7Lbl6TKuYoVj0PcMsC5VI0C1zvsnEDJ1syTUmiuu+Atd9GUIU8LwFWNbPUMpk4nu0En5G0UL8SHEfz/PI56sb5aWemBFrNd5hLBM5MyjD8OMfJnsPui5IDWVMn9nwZLQjZmjckqtP4MzQPkExaoFstkhfX3RcT72bXnLFYqniaxXpiphBPv885u9vxrz1VkQuB7qG8/JdKL/5UOw99+p4UarGTMTjUYrFUk2EMDWV3FQwUMrAcV6DYfwVITYhRKkyFKvj5xKlgULFfmgFSi0a9QyFQrG2H5ZOz9yKoFNectWbIH8epnLjFYvh7rILxl/+jNvfX/exMp2hfMCBEOqt1Xw+X8SyLKLRcEMxw1iVXD5fbOlnODZmoipmGBkzMTAwVFspbdw4RDgcIpGIsGlTttLufXEStOlaYKwzw7p1a3n++VVdj3doJmaiHbQHHiB2ztmErrwCkc2iwmGUkBh/+TORz36G0I9/NN5duQOMdGbodkuuWTxvKxxnVzxvcaV1N4SU65ByYyVI76UolazsG43PT8pm85imMQ1T/+OZarzDREwUM1E6/AiUbiBSqYmPI5VCmSblww9v+3W7SSNnhlZbco0JnBna4cVbhtvEFzM4/PjHP+KnP/0pkUiEO+/8U1e95EaKGTrlzCCGhoh85QLkurW4264clcDpzpuH2DRI6BfX4K5YgX3wIVN+vbFUnRn6+5MI0e2WXDPo2Pa+QAEp1+G6W6CUhZ8Cq5ByGMfZEdt+7YSPtm2nJmaw7eGuOHZMxFRbco3I5fIkk/Faa9reb39KxxyL9atfIHI5vHnzfHl3uYwcHEQoRfGkU7D3en3HjqGT1HNmaLclV4+xYobBwVTgzNAEQTFqAaUUd931J7797QtZu3YtW2yxBeec87FpMTWt58ygPfkE+v33g+PgLluOs+uuTTkfG3+6E+3553FXrJgwClrNm49KZ7BuvAH7DQdNHhfdAn5LbrNKMJVK98Rei+dtQbn8FnT9ATTt8crMkahEPrwSx3kFI2eTxpLLFSr5U2Hy+e66Z3Q63mEixsVMAIWzP4K3YgXWr3+FfG4VwnZQhoG7zbaUjjue8pFHjW/tFgqIdBoVjUIs1tFjbJWRzgz+yq/9llwjgpiJ1gmGXpskm83yuc99gnvu+RuGYfDWt76V9773vZRK9rR5eYVCfs87lcqgnniCyNe+gvH3exCFIgiB0jXcbbal8P7/wT7ooIbPFT3nbPR//RNvxTZ1v0dkM4h0hsz3vt+RqfqJBlfj8Si23X2H5VYRYrjiWUdl5qg5m5twOEQkEupagZ1scLUbr9ffn6Bctkc7M9g2+kMPIjIZvEQCd6edQR99b6s9/DChq3+G+YffQ7kMUsPee2+KJ56Ms+eeXTvmyYhEwoTDVs0ZoTq42mmqTgvJZJxNm4aJxSIIIWpihlyugG079PcnGBpKI6UgmYwzODiM64qurI6Codc5wH//ez/33PM3dt11Dz784Y+yzTbLCYVCGIYxbTETNTHDujXwrrcjV6+GeAJvSZ9/pS8W0Z54gtj/fpRc8QuUD6vfuxepYTAbz/so00I4mxC5qfvy1VPJTSRm6AWUSlZmhlqjm2KGbrbk6jGhmAHAMHBe+aq6jzNuuYXYuR/z9yItC2UYCNfF/L8/YNxxB4UPfZji29/R9eMfSyhk1WaoHMfpqsNJIGZojUDA0CR77LEXN9zwey688GK23nrZtMZMjCSbzWN86QK01atRi5egYrHNbZFQCLV4MdhlIl/5Ut2NZgC1YD6i1PhiJopFME1UvP27qckGV6cnZmJ66bSYodXB1U4zkZihEfKpp4h94uOIfB5v4UJUMgmRCCoex1u0CFCEv3kRxp/u7Opxj2Ts4Go2m0fX9SBmoocIilELLFiwcNTSuR1nhqniPfYY3l13Ifr6Jt7HEQI1bz5y0ybM391c93nsffb1p+Tt+hYpcmAA56Uvw1uxouXjbEUl16ozQ68zUswwlfdFN1Ry7VLXmWECrOt+jUin8ebPn3A0QPX1IcplrKuu7MahjqKeSq5qDzQVZ4ZmXz9wZmiOoBhNgWadGbQnHify2U/Tt8du9L/qFSSOPBzrF9dAofVNbv2/D0AuD7EYsp6oQNPAU+j3/6fu89j77IO7ciXaqmfBHdMeUwq5fj3KMifekJ4EyzLo60sSClnk80VSqXTDFlyzzgyziak6M1iWSX9/otbSSaUyM5ozVM+ZYSKs3/4WZegN3zcqEsH4x72IjRs7fag1QiGr5hWXyeQYHs6M2htq15mhVQJnhuYIitEUKRYdbNt3ZtD18QqY0E9/Qt+B+xP+6U/QnluF2LAe4x/3EvvwB+l748HI1S+09Hqi8mHyPA8hxUhnmjHfKMCpXwBULE7+k5/C3XYl2jPPIl94HjE4iFy/Hu2pJ0Epim9/J/be+zR9bFPxkqt+WOdKu67qzBAOW2ha8x+zmW7JNaKq4my4mvA8RCYDRuP2l9J1cF3f9aPDNOMlB6OdGere2HWIqjNDOBzCdb2aM0O1RVd1ZqjOQWUyOSKRMJomXjSro6AYdYBstli56xl9ITVv/i3Rz34aXBdlGCjL8u12LAtlmmhPPUnilJNhkr2bkbjLlvnPVSiCAm2iD1Hlzettu23j59pue7IXfoPC+z+At9XWfosvHKZ05FFkv/I1Siec2NSqqBODq1VnBssyMYy5sXFbKBTxPK+pAttLLbl6VMUM9W68AJDS3yNq0P4FEI7jG6smxg8Qt0s7g6v5fBHPU9PSrhspZkins+i6NkrM4M8T+v++2UooglKzP9OsGebGp36GmTBmQinCF10ISqFMc/xFXUqUpqE9/hjm73/nt8Oaea3XvBZ3h+3RHnoYNxRC1zWEFKgRF36RTqMiYUqHHjbp86kFCyidcCKl40/w5be63tScUpVOeslNJWaiV8lm/cHRqlXURMyESq5dJouZACgddjjhH37fLwIT3cwohcjnKR/4ho7lHk1lcLWTMRONCWImGhGsjDrEWDGD9sAD6I89itK0+quLyr+Frrm6+ReSksL7/wciEcSG9Xi2vbnF4HmI4WEoFigdf0JrwgMhwLKaLkTdiXd4cYkZerkl14jJxAylY47F6+tDbtw43k5KKcTQEMqyKJ5y2pSPpdmWXCM6ETPRDIGYoTFBMeoQY8UM2to1vlqtiYu7fP65ll7L3m9/cl+8ANU/DzZsgBdeQFu3FrlhPQDFM84kf/Y5bZ3HZHTbS+7FIGaYDS25RkwmZvCWLyf3tQvxkn5B8iMlcojhYeSGjaDr5P/3XJy99mr7GDrrJReIGXqBOdmmW7XqWb7xja/y4IMPEIlEeeMb38w73/lejEk2VY899jDWrVs77uu33fZXLGvyO/WRMRNOLOpfueu1KqoohYrUt5ipR/mNb8Lecy/M3/8O66EHMVAUl2xJ8dC34C1f3vLzNcN0xTtMFjMx2xgZM6GUV7ng9X5LrhETxUyMxN5nX9JXX0Pol7/A/M1NiHwBTIvSm99C6fjjcV79mrZfu9NectBezES7BDETEzPn7IDS6TSnnXY8W2+9jNNOeysbN27gO9/5Bgcf/CbOPvt/Gz722GMP4yUveRknnnjqqK/vtNPOTb8BdF3Q1xfFTaeRK7eDjJ8RNCFKIcpl8md/hMJHPtrU89ejry+BUqorE+UzEe9gWSbxeJTh4UxPOTO0S7UlJ4TompfcdBMKmcRiUVKpdGPZuesicjlUODypyq4RU413aIb+/iSO0317KqU8ksk4UsqaM0Mmk6t0Vnxnhng8hmFobNw4xLx5SYSATZuySNn+GiKwA5pGbrzxWvL5HBdc8DUSCd/OxXVdLrroK5x++ttYsKDxhum8efPYeeeXt/36NTFDMkn5jDMwvvNtlOuOb9dVCpGyLEonn9L261XJZvP09cWxLLMjd4ow3ktuOgvDXBEzjPSS8zwPTdM65rw+0zQjZgCmrJrz25r++9C2HVKpTFe85CAQM8wkc27P6J57/sZrX7trrRABHHDAQXiex7333jMtx1AVM+if/xzOa1+HcFzfesd1a64HoqJcy154Ed4WW075NUfGTHTijdrq4Go3mO1ihrGDq9XN9ak6M/QSrTgztMNkg6udJhAzzBxzrhitWvUsy5atGPW1eDzO/PkLWLXq2Ukff8stf2D//ffgoIP25pxz/oennnqy5WOoiRliMdzf/IbCBz6A19+PcByEbSMAe/c9SF/1c8pHHdPy89fDH0oURCLtb8J2SyXXDrNVzNBIJTdVZ4ZeoxVnhlbohEquXQIxw8ww59p0mUyaWGx8XzQej5OeZNr79a/fh5e9bGcWL17CmjWrufzyS3jve9/OJZf8jKVLt2rpOGpihnn9pD71afIf/DD6fx9AFIu4W2096UBqO1SHEqPRMMViuaU7yJlsyTViNokZxsY7TLSXMlLMUCqVeiLHaapMJmZohelsydUjEDPMDHOuGE2FD31os4jgFa94Fa973e6ccsoxXH31VZxzzsdbfr5stkhfX9TvqTsuzq67tXdgxSLmH36P/sAD4Lm4221P+bDD/Un3cd9aiZmIRZoWM0yXSq4dqs4MvRgzMZJWBle7GTMxE9SNmWiRbqjk2iWfL2JZfn5YN2+CgpiJzcydM6kQjyfI5cZ/wDOZDIkWN1EXLFjALru8kscee6StY5nQmaFFjFv+j9inPonYuGGzRNxTRL76FT8T5q1vGycdb1bMMBMquXboZTFDu4mrzTgzzCaaFjNMwHSo5NphusUMH/nIh9liiy345Cc/TaGQI5crsmzZVi8aMcOcK0bLl68YtzeUzWYZHBxg+fIV0348uVy5svII+9HNLXzGjD/eSvwD74dyyY9sriZpui4ilyXyxfPA8yi+452jHjdSzDCRcksIiDg2obv+grd2HXkhKb7mNR1Jc+0W2WyBvr444bBFoTDzsznNtOQaMdKZwbaHW3pf9Cq5nF9gQyGLYrGEWL8e475/g23jLluOu8suo26ceqEl14iRYoZuFqOqmMHzPK699lr2229/vv71r2FZFpdccjlr177A+vUb2WOPPYhGwxQKxZqYoVhMoZQ+JwrSnCtGu+++J1dccSmZTIZ4JRTujjv+iJSSXXfdvaXnGhjYyAMP/IdDDnlz28dTFTPE42Gi0UjzPXXHIXr+eX4hSiRGr340DRWPIzIZIt+8iNLRx6DmzRv1cL+PbxKJhGpuywCWoRG9/HLE5ZehNmwApbA8hRkJY+++B/mPfwK1ZEnb59stRooZ/D7+zF29O+Ull8sV6O9PEA6HyedbjxPpNWpihuEh9E98EvP3v4N8AVCg6zg77UzhI+dg77NvT7XkGpHL5enrSxAOh7rWvjYMnWg0wrnnnsvRRx/NRRddyG677cYvf/lLrr/+Wv7yl7/wr3/9k8suuwJd17jpphs588x3sPXWWxCLhclmS0DzfpK9ypxT0x1xxDFEIhHOPfcj3HvvPdx8801897vf4ogjjh41Y/TBD57FCSccWfv7rbf+gc9//lPccsvv+fe//8lvf3sD73vfO5FSGzcE2yqTxUxMhPGXPyOfew4VidR1cFDRKORyWDdcP/7fRjgsa5rmq+QSUeLfvhjx9a/hDg3hLlyEt+VSvKVLQTcwb7uN+Afe29WMmakw0zETnfaSazdmopfJP/UM4i1vwbruWrBtVCKOSiZRhoF+/3+Iv+sd9N/xxxlRybVDN2MmpBTE41GSyTiaJlm2bFuOO+4EnnnmGebPn09/fz8/+MH3OfLII3Ach+997zvcd999/PznP+fnP7+KDRsGeNe73sntt9/aE23NqTI3PgEjSCQSfOtb30fTdM499yP84Aff4bDDjuQDHzh71Pe5rjuqJbDFFksZGNjIxRdfyIc//D5+8IPvsOOOL+WHP7yELbdcOuXjqhczUQ/t0UcA1XhiXUo/RuLRCfa0lML5299QH/owfW86mL6D34B29NG43/0erhVCLVi4ue0nBCqRwNtiCdqjjxG6/LKWz286mKmYiW56ybUSMzEbiJz/BXjySUQiAdGY/x6tmPCKvj5kuYz88IcZfnrVrHGh6EbMRDgcor8/iWWZlMsOQ0N5crkSZ575LubNm89ll13GSSedRi6X4667/sw+++zL3/72NxYuXMDSpUv52c+uZGBgI4899hhf//pX2LSpN28gW2HO2QH1MrGYSThskc3mJhUzhH74AyJf+RIqHm/obSeGhykddwK5r35t8xc9j8hXv0zo6p8jymWEaeL5XiKIUgnV14e7YpsJTVzF4ABEowzf8JuOZs10kmQyhhByWsQMI1ty+Xx3vOQMQyeZjJNOZ2e1mEGuXUPf/n6cvYjFgEoIpBC1PQ3lupBOk//0Zym+7e0zebgtYZpGTUgwld9RtSWn6xqu65HLlSiVRitE//CHmzn//M/y9re/m3vu+RsPPfRfPvOZ8/jyl8+jr6+fD3/4I5x77sd4/etfz4EHHsjnP/95jjrqKP73fz+N4zSWofeyHdCcWxn1MmNjJhrh7Pxyvwg1CilzXX8F9PKdR305culPCV95BdIwUEuW4M2fj5g/379LlRKRTtd1ClexOGI4jfb0U62e3rQxHc4M0xnv0ChmYjah//3vUCyiQqFavpaUEiH8tFLP81BCgOdh/PUvM3y0rTFVZ4axLbl8vszQUG5cIQI45JA38/nPf4m3vOUIzj77f9E0jccee5RTTjmDDRvW89BDD7P77nvyl7/8hVAoxktf+jKuv/567r///qme5owSFKNpZGzMRCOcPfbAXbkSkc+Pz4SpIHI5VCJJ+fAj/b8LiCqX8JVXgKbjxuJ4lYsAVBLKhQApkcPDUJhg01wIQNV9zV6gm84MMxXvMBecGUT1xkkIhKi83wDlqdE/PyGg2DuzbM3SrjNDvZZcvbeUEIIDDzyIhQsXseOOL+HKK3/J2972Tk499QyWL1/Bk08+zoc+9FEMw+Cb37yQ97/f34L4+te/hOP05hxeMwTFaJppWswgJbnPneeH6A0Pj14hOY7/NU0jf+4nUMnkZi+5v/wZtWEDbiKOYvO73fM8CIf9IiMleB4yNTTuZUUui4pGcbde1snT7jjdEDOM9ZJLpTJtD3C2ylwQM7hbL0NoOtJ1QQi8ytV21GqvEqnibbPNzBzkFGhVzGAYOn19CaLRMJ6nSKcLDA8XWnbdWLZsOdFoDMsKccklV/GlL13IVlttzTvf+V4cx2blyu047LAjeeKJx/nd737T7unNOLPzXT/LaVbM4Oy5J5kf/xRvxTaIQgGRziAyGX9FtHAhuS99BefUU0d5yeWffsYvQfroDX6lFCSTFdFDpUiNbQG6LiKbpfyGg1ELFnTuhLtAJ8UMvZK4OpvFDLquEzvoANh+O8jl8FwXpfwVkRACUV0nlUqgaZSOOXb0E6jeXo1XaUbM0EpLrlUsK1TLZTv55NO44YY/EIvFePe7388OO+w45eefSebcnNFsoBVnBnuv15P64+0Yd/3JtwNyXdztt8c++GAi8+cRG+MlZ4UjCM9DeZ5feEbghUJoiQQqlQJvTOhfoYAcHMDbamuKZ5zZnRPvMFN1Zpjq4Go3mG3ODGMHV3P/8yEiH/wAIpNBxWIoKVGVtp0qlhClEuWDD8F55augUMC69teELrsU/fHHQErs17yW4lvfRvlNb24qJXkmaOTMEA6Haqax5bJDNttd/8GqMKSvr49LLvkZAC+88DxXX30lDz30IE8//SSmaQGKSCTKUUcdyYc+9CFM0xz3XEopfvzjH/Pzn/+cTZs2EauIUPL5PFtttRWnnHIKJ510UvfOJVDTzQxCwLx5fsLr0FBrE/iNvOTkc8+RPOIwkMJX4o1BAmLNGkin8ZJJCIVAAYaBs8MO5D//BdxZdIelaRp9fXHy+UJLzgzToZJrl3g8iq7rpFK97cwwcnA1lyvU5oWsn/+M6Plf8PcklUII6W8gSUlp/wPIfuNbiHKZxInHo//3Af/JRt4YKUX5TW8m84MfwQQXzV4gEglx3XXXsttue9Lf39+USm66+POf7+Qb3/ga22+/I/fc81cMw+CLX/waGzdu4Nvfvoh4PM7w8DDRaJQjjjiiVpx+9KMfcfHFF3POOedw/fXX8/TTTyOE4LzzzuPRRx/lkksu4ZWvfCWrVq0in8+zdOlSzjrrLA4//PCOHHdQjGaQUEgnHg9TLJaacmZo1ksu+uEPYf3+Zrz588fPKXke2sAA3tbLKBx7HHLTIMoKYe+6G85uu/Xs3WgjqnfmQ0PDkzoztOslN51IKenvT1AolHrSmaEZLzm5dg3Wr36F8be/QqmEfOlLkKefztBLdkIpReLYozHu/ltN4TmKSu5X8e3vIHf+BdN4Zs3z7LPPcMopJ7HPPvvwne98F8syUUpRKNjk8/XFCdOB53lIKbnyykv5yU9+wFZbbc3PfvZr0uk0xx9/ONlslq9//euUSiUuuOAC4vE4qVSKUqnELrvswje/+U32339/zjvvPH7wgx+wzz778N73vpcDDzyQcDjMF7/4RWKxGE888QSRSIRsNsuXvvQl9ttvP374wx+2fdxBMZph+vrCGIbesEU0Nt4hl8s3dK8WAwPE3/UO9IcfQpmm79QghL/vlM+jttwS+bOfkdp6RU95gbWLEH5ctG3Xj4se25LLZvMz3pJrRLXdk0qleyZmYmxLLpvNN/3+EULQ35+gXLYp/vkvJA99k/+Lq3fzY9tgWWz69/3jrK56AaUUH/3o2dx99918//vf5/Wv36frLblWed/73snatWuIRqNceeUvufLKS7niiksoFotccMEFHHjggRxwwAFks1ne/e5388Mf/pBQKEQ8Hmfjxo3E43GWLVvG0NAQr33ta7nzzjt56UtfyhVXXFF7jY0bN/LGN74Rx3HQNA2lFPF4nNe97nWcffbZLF3avGFAIGCYYSYTM7STuKoWLCDz00spvPNdqGQfIptFpNOgGxSPP5HhSy7HfdlOTbtB9DqTiRlmUiXXLr0mZphq4upIe6rQ9dfVRgzqoutQKmHe3HvqMMPQ6e9P8pnPfAZdNzjvvPPZsGGopwoR+EGj1X0f8FOw99xzTxYuXMjTTz/NNddcg+u6CCFYu3Yt4Le9N27cyA477EAikeCJJ55gzZo1/Pa3vyWfz3PKKaeMeo2vfe1r7LzzziilWLRoEd/73vf4+Mc/zuOPP85xxx3Hpk2bmj7eoBjNMFUxg67rhEKb++NTTVxV/f0UPvJRUn+4hfTPriFz1c9J/eEW8uedj7fNNmSzeQxDx7J6syffKqVSGdu2R128e0Ul1y7ZbB7TNDDNBpZQXaaTiavFYhnbdjA3DfqtuEYTvpVVk9zQOzY3Y1VyS5ZsxYknnsKaNau56qrLZ/rwxpHJpNH1ze+dVaueZdtttyWZTDI8PMxdd91VK05r1qxB07SaY8Ypp5zC9ttvT7ns/649z+PII4/kyiuvZKeddmKvvfbiIx/5CLfeeiuf/exn2WWXXVi+fDl77LEHb37zm/nxj3/Mpk2buOGGG5o+3qAY9QAjnRmeeeYpvv/971Ao5BBCMjycIZPJte9SHY3i7rILzitfhZo/v/blkTETc8F+HkY6M4RmZHC108ykM4MQglgsQl9fHKUglcp0ZH8tl8sjksnJ9yaVAs9Djbizn0nqDa6eccbbWbRoMT/72eUMDAzM9GE2JJNJj8p0e/rpp2vFqVj0V+J77rknCxYs4LLLLuPZZ5/lxBNPrH3/r3/9ayKRCD/96U85/fTTufnmm9l5553Zdtttx11DlixZwrx589iwYUPTxxcUox5AKVi/fpCvfOUrnHHG6Vx11VU8+ODDTbXkpoIfLSGIRFqbKO9VXNfFth0ikdCsask1YiacGabakmuE47jYbz4UPM//U4/Kyql8yBs78rrtMtngajgc5uMf/zTLl69Aqd5q08XjCRxn/HjA8PAwyWSSdHpzcTJNX4CxbNkydF3nmWee4eKLL2annXaqPW7p0qU88sgj7L777kQiEeLxOP/5z38oTuCm8cwzzzA4OMjKlSubPt6gGM0wSiluueX3HHPMEVx22WVsvfXWfOtb3+bVr37NtLz2yJiJ2Uy1JVdtadm2PatacvWYTmeGTrbkGpHZYy/Ybju/GE200qoUqfJBB+OtWNHx12+GVgZXd911dy699OcsXLhoBo60PsuXryCb3Zx6HY8nGBwcZOPGjWy77ba1rw8PD7OkkmHmOA7lchkhBDvssANPP/107dqwyy67sGHDBlavXs3FF1/M2972NsrlMqtWrRr1ukopzj//fBYtWsShhx7a9PEGxWiG+fSnP84XvvBpstksZ531Pm666Sbe8IYDpu31i0VfATRbxQz1vOSmO2aim3RbzNCtllw9lJTkr7zKN+/1PF8553n+aqjy/+7225O98Btdef3JaNVLrlfZffc9GRwcqHlTLl++gr///e9IKdlrr71IJDYXp91394NHH3/8cWzbT4d+6KGHuOWWW4hE/Pfd2rVrmT9/Pj/84Q/Zcccd2XFHfx5x06ZNOI6D4zik02m+9a1vcc899/DVr3619thmCKTdM8xnP3suIDjrrP9hyZIlLcVMdIrqHXEvJ25ORKPB1emMmZgOuhUzUW9wdTpIDg+hXfh1uOoqRKHg52r191M87XQK733/tEeY9NLg6lQoFovcffdfKBQKfPWrFyAEnHzy6fzjH3/n4Ycf5LjjjuP555/nvvvuY9ttt+WRRx5h6dKlbNq0iVKpVLnxiaKUwnVdTNOsdBqKfPCDH+Tuu+/m3nvvbXgMX/ziFzn22GMbfs9YgmLUY0zFmWEqxGIRTNNgaCjd8I5Ye+JxzBtvxLjrT4hiEW/rrSkddjjlgw+BFu6CpkIzg6vtOjP0Mp10ZmhmcLXbVFuruXUbsJ98EjQNd/kKsLoXDTIRUvqr614aXJ0Ka9eu4bjjJnZFME2TXXbZhUwmw6pVqygWiyxcuBDTNFmyZAnPPfccGytJz8lkEiEEqVSKvr4+UqkUp556Kttttx0PPvgg119/PYceeijHHnssF1xwAcVikeeee453vOMdfOQjH2n5uINi1IO06szQCfyhxCSlUqkibBiPdfXPiXzjIshlwTBRmkSU/Au9+9KXkf3WxXgdSMWte4zFItHhIaxwCHfJErJlp6E4oRVnhtlAJ5wZpjK42g2avQnqFtPtJTfTpNMbOO+887jvvvuIRCIUCgV22mknzjrrLH7xi19wyy231IrT7bffzq9+9Ss+9alPsXTpUs455xy+973v8eyzz7Jo0SJOOOEE3vWudyGE4IgjjuCxxx7jhBNO4POf/3xbxxYUox6lGWeGThMKWUSjYVKp8eop47Y/EvvYOeAp32ZopJSzXEbbuAFnl1eQvvzKjt/ZioEBor+5Eev3v4NNQ3jKw12wkNJb3kL5yKNQ8YnbOc04M8w2puLMMJMtuXqMdGaYrhsvmDstuVYZm/T61FNP1S1O69ev58tf/jKhkO8UfvvttwNwxhlnsGbNGm699dbacxx22GGEQiF+8pOfjIrXmDdvHsuWNRdHExSjHkXXBX190Yqb9PT97Pv6EiilGB4e8ZpKET/tFPT/3Ie3ZIuJhxVLJeTQJrIXfgP74EM6djzG+nXEP/Fx5COP4IXDOFF/7kQOp6BUwnnVq8ld8GVUf/+Ej7csk3g8WnM1nwv09ydwXY90Ojv5N9MbLblGhEImsVh0Wm685lpLrlUmix0fWZyqRqof/vCHR7l8n3baaaxevbpWnK677jrOPffcCZ/vqKOO4stf/nJTxxYUox4mFrMIh80ZFzNojzxM4pSTUOEIqsG+kFyzhvJBB5H75sVTPg4hBJFwiND7zoK//AVnq61RYzKaKJXQVr9A6c2Hkv9s/dbAi1XM0GstuUZsVkN27zrzYmvJTcRkxWgmCaTdPUwuV6o5M0zXBP5EzgxyYABsGzVZ+83Q0dasmfIx1LzkHnkY75//xFmwcHwh8r8Rr38exl/+gnz++brPt9mZYXo3xrtFM84M3Rxc7Qa5XB5N0wiFOv876lTiakB3CYpRD+MbgJaQUk6rYeZYZwYVDvumls4kbS7X9R3C22Ssl1z+9ttRhULD51TJJCKTRv9nfamp67oUiyUikTBSzg3ro3rODNM1uNppHMelVCrXVi6doJuJqwGdJyhGLbBq1bN86EPv5Q1veD2HH34I3/vet7DHRndPgFKKK6+8jKOPPpQDDtiLd7/7rTz44H+bes1i0cG2HUIhC12fHpeEsc4Mzs4vx1u8BJlu0OZyXVAKe7/9W369eoOrIp8HRGNDTSlBSMQk6rJ83pd/94oL9lQZ68ww3YOr3aCq4mwU6d0sc2Vw9cVEUIyaJJ1O8z//8x4cx+GLX/wa73rXe7nppuv59rcvmvSxV111OZdc8kNOOOFkvvrVbzB//gLOPvv9rF79QlOvPVnMRDcY5cwQClE65lhwbChMoHhSCrlxA2r+fEpvbt7+AxrHO3jJvpphZl1cF1B1BQwjDrFhzMRspOrMEI/HZlVLrh4jb4LavfEKWnKzl7nxqZwGbrzxWvL5HBdc8DUSiSTgt38uuugrnH7621iwYOGEjyuVSlx11aWceOKpnHCCnwXyile8ipNOOpqrr76Kc875+KSv7cdM2ITDJqGQOW1ihmw2T19fHMsyKZ75VvSHHsS443ZIZ/ASCdA0RLGAyGRRySS5L5yPWjjxz2EszQyu2nvvQ+iySxHDw3WLjRgcRM2bj73HnpO+ZqlUJhQyiUYjc0LMoFf20XRdo1wuk8nMPmfysRSLZSzLIhaLtCRmGKuSy+fLXVfJvfDC81x99ZU89NCDPPPMUyxbtpwrr/zlpI9TSnHVVZdz/fW/IpVKsf32O/CBD5zNzju/vHsHOwsIVkZNcs89f+O1r921VogADjjgIDzP495776n7uAcffIBcLscBB7yh9jXDMNh33/25556/Nv36My5mCIXIfv0iCud8DG/ZMmQ+hxxOIRSU3/QmMj/4Efa++036nPVachNdRL3ly7EPOBAxtAly4+eERDqNyOcoHXHkpCsjAFyX/L3/QvvHvURWPz+xSWcnKBbR774b49Zb0f9+j++31kFGtuQ8T1Eu22iaDszuQlSlVTHDTLXknnnmKe6++69stdVWrFixTdOPm2qnZK4SrIyaZNWqZzn00NEWG/F4nPnzF7Bq1bMNHwewbNmKUV9fvnwb1q+/mlKpiGVNHuFQFTPE42Gi0ci0DQjmcgVM0yQSCZFTiuIZZ1I8+RS0p5+CYglv8WJUxfF3MkZ6yeVyhaZctfMf/BAik8G460+wcYMvZlAgclkwTcqHH0nxzLc2fhLXxbr+Oqxf/RL57LMozyVsWWgv24niyae0tc81IY5D6MorsH55DXLdOnBcMHTcpVtROulkSiee1DjdtAlGDq5W5fdVZ4ZwONy2M0MvMVLMUCqV6672xg+uFqdVnLDXXvuw9977AfDFL36ORx99eNLHdKJTMlcJilGTZDJpYrHxGv14PE66wcZ+JpPGNE2sMbLoeDyOUopMJtNUMQJfzBAK+WKGYrE0Lc4M1T5+NBqmWCz7exGGgbvjS5p+jmZacnWJRsl94TyMv/0V83c3oz32GAD2Xq+n/KY34+y2W+MLvOcR+dIXsa6/zv9rXz+uYaC7DuY//4n2wAMUPvghSied3PT5TIjrEvn857BuugF0HW/ePD8627bRXnieyFe/jHzheQrnfKytgtRocLUqZvAv3nNjdsa/CTKIRsPjbrxmoiU3EbKN32OjTsmf/nRHJw9v1hEUo1lGNlukry/ack+9WeSqVYR+cTXmDTf4ezV9fZSOOgr3Xe8itvXWo50ZJkEIQSQSJhQyK04SbU7YGwb2vvs11QYci3nzb7FuuB4Vj4+yDXItEz0eR6xdS/g738Z5xStxX/ay1o+t+jp/+D3Wb3+DSiRGp5NaFt6SJYjhYUK/uAZn9z2w99m36ecdO7g6kVUT+GKG6n5YXWcGpdD/cS/mbX9E5HJ4ixZTOvyIGcsMakT1JmhwcIDh4TRbbrkVMPsHVzvVKZmLBMWoSeLxBLnc+A95JpMZFeU70ePK5TKlUmnU6iiTySCEIB5vbSK6m2IG49ZbiX/oA5X9GeELFFavJvLtb6Muvxx55RVYu+3R1NxKOy25jqMU1nXXguuN869TnsKTCrl4Md4zz2D+9iYK7RYjpbCu/TW4Tt2YbJVMIl5YjXn9dU0Xo4laco3IZvO1gMGxzgzy6aeJf+B96A89CEqhAAGEv3kR5cOPIHvBl6fNdb1ZisUyH//4x3niiSf45S9/zbJlW89YS65TdLJTMtcIBAxNsnz5inF7Q9lslsHBAZYvX9HwcQDPPTc6DXHVqmdZvHhJW2+8bogZtEceJv4/74NsFhWL+yuJSAQVj+PF45AeRp12GtHVzzccShw7uDo0NDxjiaty7Rq0xx5DJZMT/rvreiAlIhLFvLP9FolIpdAeeRg1yY2FikYw/nGvL2hQCopF/8+Y/lK7g6v1nBnk2jUkTjoe/b8PoAzDt3SKRmvWTtZ11xJ/z7smH2qeAQ466GAymQw//vEPg8HVOU5QjIBSqcjJJx/DyScfQ6m0Oc89nR7miCMO4T3veRu77ro7//znvWQym9tUd9zxR6SU7Lrr7nWfe+eddyEajXLHHX+sfc1xHO666w52332vto63G84Mocsvh0LBX0GMLTZCoOIJVCaD+MlPa84Mo7+leZXctFEogudObCUEoBSe5yFMAzFBUWiachk8NfleUMXFwrrmahLHHk3/7q+jf/fXkTj+WKxf/wpRKk15cHUiZ4bwd7+DtnatX3wMY/PvVwgIhVCWhfmnOzFvvaWds+8a4XCI008/jZ122onrrruOP/3p7lk/uDqyUzKSdjslc4mgGAGWFeKTn/w8q1e/wI9+9L3a1y+88Ctks1k+8YnPctRRxxGJRDj33I9w7733cPPNN/Hd736LI444etSM0Qc/eBYnnHDkiOe2OPXUt3LNNVfxy19ezb/+9Q8+97lPMDw8zEknndr2MXfUmaFYxLrpRtC0+m4HQoCUqKt/TkjX0LTNr9locHUmUQsWQCjsp4jWwXM9KBQQW23d2Omh0ev09/uppA1eB0DkcshNm4ie/wX0B//rFz+l0O//D9FPfYJ5H3gvZqk4pcHVcc4M6TTWddeipNxcLB0H8nlENgv5vH/eSmFddWU7p99xRg6uCiFrCrOvf/1LOD24emuFbnRK5gpBMaqw0047c/LJp/OrX13D/fffxx13/JHbbruFd7/7/SxbtpxEIsG3vvV9NE3n3HM/wg9+8B0OO+xIPvCBs0c9j+u64y4ip556Bm996zu55pqr+OhHP8iGDRu46KJvs3TpVlM65k45M4hUCsollNZ4C1HpOuTzuKlhYrFIT7XkJkIlk5T339+/6Na7nXYclG2jHX9c+84Mpkn58CP8oMF6BcRxEENDiFIJL5HAW7DA31+KxxFLliCSSbjzTsof+vDmllyxiPbf/6L/+1+IDRuaPpyqM0M0GkE++6xvq2Sa4HmI4WH/OHI5vwjncoihISiX0R+4v73z7xD1vOS23/6lHHbYkTzxxOP85jc3zOgxTpVudErmCkGExAhs2+Yd7zitElWdZ8WKbfj2t3/YMePGbtCJmAmRzdD/6leCp3xT1Hrfl8+DrpF55DGSixaglMJ1XbLZfE+shCZCe/QRYme9BzmcwttiC5AjVpG2jVy7FnflSsSvf4WYN79tZwa5dg3xt70V+cLzeIsX++2wKuUycvUaZCaNN2+ev4pCIKVAClFxPPIgmwEFw7/8Ndbvf4d1zdXITYN+ITVNygcdTOHdZzWl+qvGTGT//FeibzoEZRh+UR65sqisiEY8iMEnnoYpmN22y2QquVQqxdvffiqHHPJm3vWu90778U1EsVjk7rv/AsB11/2K1atf4AMf+DAAr3zla+jv7+eDHzyLdevW8otf3FB73JVXXsall/6I97znA6xcuR3XX/8r7r3371x66c+mfIM6Gb0cIREUozE8+ujDvOMdp2OaFldd9Uu27GKMdicQAubN8y8eQ0PDbffT42echvGnO+umpqIUIpvBffOhaNdcXSvQmzYN97wFjf7XvxL93GeQGzeCJlG6gSj7hdtduZLsV76K2GFH+vrilRuR9lZ32qOPEP3YR9FWPevvIemaf/GXGiocRg5sxFu0CCk1RMU93PO8zT8/z0MODODNX4DcsN5vi4ZCvsiiVIJyGZVMkvnBj3F2r79PWSUej6IXCoiX7AhDQ7VznrAdqfw9r9wXzqf47ve0df7t0Eriqud5bc32dIu1a9dw3HGHT/hvF1/8A1796tfy/ve/i3Xr1vLrX/+m9m++HdBlXH/9r0mlhthuux34n/85m5133qXrxxwUo1nE5Zf/lB//+PsAXHTRdxqKE3qFUEgnHg9TLJbadmYwbr+N+Dve7osVJpD4inwOIQTixhsp7rY7+XyRvr4EpVKp5rbcy4gNGzD/7/eYt92OyKTxFi2i/MY3YR94IKoyzFyd5xkaGsbz2iywhQLmHbdj3H4bcmgIb8ECygcehHHv3wldeQVi8SLAvyD5rzH6dbTnngPP84dmR66u/AchUsN4ixaRuu0OqCMjr1J1ZnA+9GH0b1/sF5x6hQhA13G3XUnqL38b933y+efRnn4KZZg4u+wy6WtPxos9cXWmCIrRLOHJJ5/gne88nYMOeiNPPvk4qVSKK674BbEpfvCmg76+MIahTym6OXzRhYS/c7GfS2RZ/pyR6/p31LqO98lPknnnu2vPHwpZRKPhzYOYSqH//e9Yv7wG/ZFHUJqGs/selE48EXe77Tt5ul1BCOjv///27jywiTL9A/h3cidNSoECCtgWC/w4qgJCWwRF7iJF+CGHB4eKwk9EQETYCssicp+LVVG7sHIpKCKgsAhoEYEtpZxbQATXFik30iZp7mR+fwwJTZOmaXPMpH0+f9npTOZNg336vvO8z1MHVqsNOp1nLbzqvy6D6KxPIF26BGxsAzhYFqy3OnI2G8S//w5WoeCSL7yx28HodChduBjmYcMrvbdSqYDqUgHQtu29oFM20DiPSaVgJRIwAP48le+q9Sc5fgyqBfPdUt9ZpRKm50fA8JcMsDExlf8AvI0pgjeuRjIKRhHAZrNh7NjR0Ol0WLv2C1y5csUVmN555298D69SEgmDmJiou5UOqvlZsSxku3ZCsToLktOnwTgcXIZdcjJMr4xFafceHpfExESDZVmUXLsB9ZTJkH2/G4zdAZbBvT/6pRIY35gE48RJ1c5YCxe5XAaNJgolJTpYrYFnbrk2rp7JB/r0ASuRVNi6nbl1i5tNNWgIyGUVvibz5x1Y+qZB/8mnfo2hLmuDKC7ubgq6l1/6Mhm3HGi1csHo5H/A1qsH6Y8/IHrE81ziQ7nEDFYshj0hASU7d4OtX9+vcVRlSY6EhpCDkXAWYHm2du1qXLjwKzIyZkGlikLz5i3w4ouvYNeub10PKYXMWZlBIpFAoaj4F5lPDANL/3QYtn8L+9E8MD/9BHPOEfz5+WavgQjgdv1LpRJEz3wH8l07wYolcKjV9zbOqtWAwwHl35dDsW5tAO8wPMxmC6xWa8D7tzw2rjZ+ANbUzlwSgbcq3lYrt9dJLAZkUs/vl8Vwy6b+0ktkYOLiAIkEbJQakMsBmZzbY6TRcIEIAGO3w35/Y7AxMWB0WmhefpGbiXnJEGTsdogLCqD+y7RK708dV4k/KBgBOH/+F6xbtwbPPDMMHTp0dB0fMeJFtG7dBosWzXPb7CpUgVZmcG1cjYkG0ywBxc0Soa/fwGeCgs1mg/nkKUi3bwMrlXG/6MrenGHAqqIABwtl5kqu4oDA6fVGiMUiKJX+tTAoy1fHVf38hbA99DBExSVgbt/m9voYDBDdugVRcQnsic25bEZfe2lYrpCPo3Fjv8dktTtgGzPm7ufCgpXLwSrkYGWye5+V3Q4wDEwvvgiIRJB/9RUYg4GbHVf0Xu12yL7dAebatQrPoY6rxF+0TFfDVDeZoWwtOYOharXkVAvnQ/nJx0BUFByoIArabWAMBug//hSWfk/5/dp8qU4yQ9lacqWlRq8lfBitFvIvN0O+eRNE17lf4o77G8M8bDjMgwejzoD+EF25UvGzGLMZjNkM3dr1sHbp6vf7EZWWou7ggcCZM9wGWInkXmq3zQbG4YDtf1pBu207WE00oocNgXR/Nhg/fj3oVmbC/PwLbsdoSU6YhLxMR4VSa5iqtpkIqL3DXaI//uD+shaJwLCs9796xRKAEXHnBoH41/OQb94M2Z7dYAxG2Bs3hnnoUFgGDb67jycwBoPxboBWVZrM4Ku9Q3lsdDRMr7wK00svc7MjgHvmcreihXHca4iaPQtMaSn3bKnsLNNqBWMwwtapk1+dbctyREXB8PU3UL02Dsz+/R5LhdYuXaH74CNXaj+j1/sViFiG4faf3SWU9g4k8lAwqoH8aTMRtPYOgOuZg/N1vf4iZlkwrINbxguQfOMGRM2dwy353S1zI/nzNiT5/4Fy9WroVq8JOHuPq/9nhEYTBZPJ7DWZwd/2Dl6JxWAbNvQ4bB4xEqIb16H85BMwJSWu9+dcurO1bwfdh6uq1RPJqNZA8d13cJw4AeumzWDuFIOtGwNz+tOwJyW5nWt/II6r/FDJ+2FYFo4m3F48ypIjgaBluhrKV2WGQJbkvJFt/RqaNyeBjYqCSCLhUpfL/6symcCwLEq+3xNQoJD++ANXYdpu56pkl5053E17dsTFo2TnLtf+oUDUqaMGw4g8KjP4syQXCMmJ45Bv+gLSQwfBWK2wP5gI0/BnYUnrByiqX7/MWZlBq9V7tJlwO29/NuoMfabS13PUqwfdL78iqm4MLclFACEv01EwqqG8VWYIxpKcV0Yj6j7+GJibN8FoogERA9ZRZieNwwFRqR6WJ7pBt35jQLeKHjYEktxcsDF1vKeJO/fhzFvg8RyjOsRisVtlhqosyQmVRhMFiUSC4mIfFTscDtRJ6wPJ6VM+Z0e2xYsheftt2rgaIYQcjCibroYq22aioOB3TJw4AStWLAtNewelEvoVK7nmbFrt3VmQg9ufYjSAKdXD3qQJSucvDOg2ot9+g+TkCbBKRcX7le5WHpd/vSWgeznZ7XaYTGaoVMqA2zsIhbc2Ex5EImg/3wR769YAwCU93OVsycG+9RYkU6dSlhwJCnpmVINdv34LixZ9ii1bvgLLsmjXrl1IWpUDgPXxJ6Dd8DlUy5ZCmnsE0OshAvc8yZL+NAzTpsERYBFI0Y0bgM1e+XMnkQiiK1cCuldZzucecrnMr46rQudsM6FSKWA2V/xch42NRfH3+yD/dgcU/1wN8a+/AlIZ0Kc3mAkT4OjYCaW60HdcLSwswIoVi5GffxoqVRTS0p7Cq6+Oh7R8uaRyhgwZgGvXrnoc/+GHQx6dVgn/KBjVQA6HA999tx0ff/wBtNoStGzZEjNnzkRiYsuQ3tf2aEdoP98E8cULiL56BaxYjJLEFmAbNfI8mWUhOXkC8m+2QnTtGli1GpZevWHp3cezJpvzEpUKEDHeqwiU5XCA1QRewqnskpzVaoVMJuOqa9cARqMJCgWXLajV6is+USaD+ZkhsA4d6p4lZ7TCcKc05DMhrVaLiRP/Dw88EId585bg5s0b+OCDFTCZTJgyZXql1z/5ZE88+6x73zCZrJqbwklIUTCqgbZt+xrLly9CVFQUJk58C6NGjYBGowqozURV2Ju3gK5Va8TEaCDzMpNgiouhfm0cZAd/5koGObi0cPnmTbA3bQpd1hrYH/asYGxv2xaOxk0guvwHt2HTm7sN6yx9+1V7/BVlydWpw6UtV7fNhNDo9QbUqaOBTCb1mczAZ5bc9u1fw2Aoxfz5SxAdzbWPt9vtWL58EUaNetmtsaU39erVQ1LSQ+EYKgkQPTOqgTp27ISXXnoVn3/+NYYNew5msz2gygzVYbPZYDKZ73brLHNTsxma0SMh+/kAWIYBK5OCVSq5qgBSKcRFRajz7DCIfvvN80UlEphGjnK9jgeWBaPVAioVzEOGVmvcCoUcdevWgUwm9ei4GkhlBiGyWm0wmy2IilJ5/XdRtuOqw8FCqzWipMQY1nTtnJzD6Ngx2RWIAKBHj95wOBzIzc0J2zhI6FEwqoHi4hIwZsw41K/PVX4um8wQaM21quBaSzBQqe6lIst2fQdp3lHuIbhU6p6IIBaDlcnAaEugylzp9TVNL70MS99+YEwmbh+O2cztwTEaua9lMujnL4QjPr5KY/WoJXdH6zGjK5vMIBIJu+Crv7jPiEVJSYnrmJBqyRUWFiAuLsHtmEajQf36sSgsLKj0+j17dqN7987o3ftxTJ06Eb/9djE0AyUBo2BUS5hMNlitXGUGiURc+QVBwO3AN0KhkEN8t8KAYv06AIyr4oAHhgHLMJDt2A7mzz89vy+RQJ/5AQwzZ8GRkADmblUChmVhfbI7tJ+th2XgIL/H6KuWnDcGA/e9cAb1UHI4HNi5cxf69euL7OwfBFdLTqfTQu1lv5hGo4FW63u5tGvXJzBlyjT8/e8fYcqU6bh8+TLGjx+DoqLLoRouCQA9M6pF/KnMEGwmkxkKhRxqtQolJTquz1FlkwqxGIzFAnHB77DVq+f5fYkEppfHwDRqNMQXL4AxGuFo1AiOKnblLbtx1d8sOX8qM0SaBx9MhEKhwPvvr0S/fmlwOFiUloY+Sy7UJk9+2/XfjzzSHp06peKFF57BF19swNSpf+FxZMQbmhnVIkFpM1ENzjYTcrkMEPk/K2Mrmj05SSSwt2oNW/sOVQpE/izJ+RKsNhNCIBIxaNGiOcaNG4cbN25g5cpMQbV30GiiUVrqme2n0+kQXcUahLGxsXj44XY4f/5csIZHgoiCUS0TaJuJ6iibzGBNTeXqevta97HZwEZHw94iuKnoVV2S86UmJDOUXZIbOXI0mjZ9ABs3rsd///tfvofmEh+f4PFsSK/X4/btW4iPT+BlTCQ0KBjVMnwnM+DVV7kDFfXscXBNKEzPPs9VdAgSX1ly1RHJyQzesuRMJgcmTZoKu92OFSsW8z1El9TUx5CXl+vWTyw7ex9EIhGSk1Or9Fq3bt3E6dMn0bp1m2APkwQBPTMSqIMHDyAraxX++KMQDRveh5EjX0T//k/7vObq1SsYOtTznDZtkvDpp5+5vq5qm4lgcCYzRD3VD5bhz0K26QuwDgeXUScSufXVsSc2h/GNiUG5byhryVWlzYQQcH+AKCts79C5cxc8+WRP5OQcgsViEcTm0IEDn8GWLZuRkfEWRo16GTdv3sCHH67EwIGD3fYYTZr0Gq5du4rNm7cBAPbu3Y3Dhw+ic+cuiI1tgCtXLmP9+s8gEok9NsESYaBgJECnTp3EjBlvIz19ICZNegvHjh3FwoXvQaVSoXv3XpVeP27c62jf/l7HWpWXGQafyQyijz+GsWFDKFb/A0xpKfcciXUAIhEsvftAv3gp2Lp1A7pXQO0d/BRJyQz+blydPXseiouLBRGIACA6OhorV67CihVLkJHxFlSqKAwYMAhjx453O89ut7t9vvff3wS3bt3E++8vg06ng0ajQYcOnfDKK+PQuIqJLiQ8qGq3AE2ZMgFGowGrVq1xHZs9ewYuXvwVGzZ8VeF1zpnRe+8t9Cto+WozESrO5AGdrhSWW7cg2737XjmgHj2rvD/Im1C3dyivojYTQkAdV0lZQq7aTTMjgbFYLDh+PA/jx7svU/Xq1Qf79n2Pq1ev4P77GwflXqWlZsjlEqhUSpjNlrDsJSmbzGCx1IF56LCgvTZf7R30eiNiYjRQKuUwGgPrDRUslS3JESI0lMAgMEVFl2Gz2Tx2ncfHNwMAv3adL1u2EE88kYz09N5YtGgutNoSr+fxncxQtjJDIIKZJVcdQktm4LLkogWzcZUQf9DMSGB0Om6pp/yuc42G21Pha9e5VCrDoEFDkJKSCrVag7Nn87Fu3Rr88stZZGWtg0Ti+XHzmswQpYTJZAnoWU51Nq6GghCSGTyX5CJ/4yqpPSgYhYFzX0RlAn2wGhsb67azvH37R9GsWSKmTZuMn37KRs+evSsYH/+VGapKaB1X+UxmoCU5UhNQMAqD7Ox9WLRobqXnbdy4xTUDKr/r3Dljququ886du0CpVOL8+XMVBiNnZQalUgaFQha2ZAa93oCYGA3kcpnfM5pwZMlVl9lscfUIClcyA5/tHQgJJgpGYTBgwCAMGDDIr3MtFgskEgkKCwuQktLZddz5rChUu875T2awVjqzEcqSnC/hSmagJTlS01ACg8DIZDJ06NAR+/f/4Hb8xx/3IiGhWZUz6Q4d+hlGo7HSXedCTmYItJZcOIU6mUEkEgmmvQMhwUQzIwEaPfoVTJw4DkuXLkSPHr1w4sQx7N27G+++u8DtvG7dUpCW1h8ZGbMAAJmZKyASidC2bRLUag3OnTuD9es/Q6tWbfD4409Wel+hJTMIeUnOl1AlM9CSHKnJKBgJ0COPtMO8eYuRlbUKO3duR6NG92H69Jno0cN9I6vdznVwdWrWrBm2bt2CHTu2wmQyoUGDhkhPfxpjxozzmknnjVCSGSJhSa4iwU5moCU5UhtQBQbigc/KDAaDETKZVDBZcoEItDJD+Sw5o9FKWXIkIFSBgUQUPpIZnLXFVCplRC3J+RJIMgMfS3KFhQVYsWIx8vNPQ6WKQlraU3j11fGQSqU+r2NZFhs2rMU333yF4uJitGjREm+8MQVJSQ+FdLykZqEEBuIh3MkMzvYODMOAZVnYbLaID0RA9ZIZvLV3KCkxhjwQabVaTJz4f7DZbJg3bwnGjh2PHTu+QWbm8kqv3bBhLdas+QTDhz+PxYtXoH79WEyZMoHae5MqoZkR8SocyQzeNq5yD/4Dr8wgFP4mM/C9cXX79q9hMJRi/vwliI6uA4ALpsuXL8KoUS+7tWsoy2w2Y8OGf+LZZ0dg+PAXAHAtvp97bjC19yZVQjMjUiG9nnteo1YHd3bkq5acycQtRwX7nnxxJjPI5TJIpd7/9hNCLbmcnMPo2DHZFYgAoEeP3nA4HMjNzanwuvz80ygtLXVLrpFKpejWrTtycg6FdMykZqFgRCrkrMwgkUigUASnv40/HVf1egOkUgnkcmH01AmU2WyB1WqFSqV0S8bga0nOm8LCAo/ivBqNBvXrx/oszuv8nrfCvtevX4PZbAruQEmNRcGI+FRaaobD4YBKpQQTwB7OqmxcLVuZgQnkpgKi0xmQnt4fS5YsFOTGVZ1O61GcF+ACkq/ivDqdFjKZDHK53OM6lmXd2oUT4gsFI+JToMkM1W3vEOw2E3xzOByIjY3F9u3bce5cPrV3IKQcCkakUiaTDVYrl8wgkYj9vs6fJbmKOCszKBRyiMX+31OopFIJ3nlnBsRiMd577z3cvq3lbUnOG40m2qM4LwDodDqfxXk1mmhYLBaYze6p6zqdDgzDQKMR7r4WIiwUjIhfqpLMEKxacjUhmaHsklybNq0xfPhz+P3337Fu3Vq+h+YmPj7B49mQs/WJr+K8zu9dulTodrywsACNGt0HubxmzGxJ6FEwIn7xJ5khFB1XIzmZwVuW3KhRr6BevfpYu3Y1rl+/xvcQXVJTH0NeXq7bM57s7H0QiURITk6t8LqkpIcRFRWF7Ox9rmM2mw0HDmQjNbVLSMdMahYKRsRvvpIZAlmS8yUSkxl8Zcmp1Wq8/vokGI1G/Pzzfp5Hes/Agc9ApVIhI+Mt5ObmYOfOHfjww5UYOHCw2x6jSZNew/Dhg1xfy+VyjBjxEjZt2oAvv/wCx44dxezZ76CkpATPPTeCh3dCIhVteiV+cyYzaDRKVwO5W7duoVWrFiGtJVdaaoRMJoNKpbib2CBM/m5c7dOnHxo1ug8tW7biZ6BeREdHY+XKVVixYgkyMt6CShWFAQMGYezY8W7nOcs2lTVixGgALDZt2oDi4jto3rwlli/PRJMmTcP4Dkiko0KppMpiYpQ4deokZs+ejQsXLuDrr7eiSZMHQloxQaGQIypKKdiaddTegUQCKpRKaozbt29h7tz3sXv3LjAMgyFDhiI2tmHIA4S3NhNCQO0dCAkOemZE/LZt2xY8//wz2L17F5KSHsJXX32FjIwMv3slBUpIyQxC3LjKp+PH89C1a0f89FO2x/f27NmNrl07Ij//NA8jI5GCghHxi8FQimXLFkEikWD69JlYtWo12rZtG3BlhqoQSjKDEGrJCU379o+iYcNG2Lv3Xx7f27v3X2jSpCmSkh7mYWQkUtAyHfGLShWFtWu/QGxsQ9cmyLLJDHq9ISzj4DOZgZbkKsYwDPr2fQqbN2+EXq+HWq0GANy5cwe5uTkYNeplnkdIhI5mRsRvDz7Y3G03fnUrMwSCj8oMtCTnn7S0/rBYLNi//96eox9/3AO73Y6+fZ/icWQkElAwIgEJVZsJX8JZmYGW5PwXH5+A1q3bYM+e3a5je/bsRtu2D6Fp0wd4HBmJBBSMSEBC0WbCH6FOZhBSe4dIkpbWHydPHseNG9dRVHQZZ878B3369ON7WCQCUDAiAQtWm4mqCFUyAy3JBaZnz74QiUTYt+977NnzL0gkEvTs2YfvYZEIQAkMJGDlKzNEajIDbVwNXExMDFJTH8P33/8LFosZKSmdERMTw/ewSASgmREJikhOZqAlueBKS+uP3367gD/+uIQ+fShxgfiHZka1xNGjOdi581ucPZuPK1eKMHjwUEyZMt2va/V6PTIzl+PAgf2w2WxISUnF5MnTEBsbW+48E2JioqBWq1BcHJ4qCYFUZvC3llw4HDx4AFlZq/DHH4Vo2PA+jBz5Ivr3f9rnNVevXsHQoZ7ntGmThE8//SxEI61cly5PQKOJBss60LXrE7yNg0QWCka1RE7Ov3Hx4gW0a9fBZxtpb2bNykBBwX8xdWoG5HIZPv30I0ydOhH/+Mc6t+oLzmQGpVIGhUIGk6nqPYyqQ683ICZGA7lc5nffJCEtyZ06dRIzZryN9PSBmDTpLRw7dhQLF74HlUqF7t17VXr9uHGvo337jq6vVSp++z8xDAOxWIwuXZ70aEdOSEUoGNUSr78+CW+88SYArnSLv/LzTyM3999YvvwDV1+buLh4vPDCUPz0UzZ69uztdn5pqRlyuQQqlRJmsyUss4yyyQwWi9Vn1XAhblxdu/YfaNOmLd5++x0AQIcOHVFUdBmrV3/iVzBq2vQBJCU9FOph+u3nn/ejuPgO0tL68z0UEkHomVEtIRJV76POyTkMtVqDTp1SXMfi4hLQokVL5OQc8jjfmczALYGF7y90LoGBgUrlvbOoULPkLBYLjh/P8wg6vXr1QUHB77h69QpPI6u6M2fysWPHN8jMXIGWLf8H7ds/yveQSAShYER8KiwsQFxcvEf6dHx8M4821U5CS2YQ8sbVoqLLsNlsiItLcDseH98MACr8GZe1bNlCPPFEMtLTe2PRornQaktCMNLKbdu2BcuWLUTduvUwc+a7vIyBRC5apiM+6XRaqNWePVA0Go3PZ098JTPs27cHX375JebOnY/69esLbkmuPJ2O+xmW/xlrNFzZJV8/Y6lUhkGDhiAlJRVqtQZnz+Zj3bo1+OWXs8jKWhe2aupOM2bMxowZs8N6T1JzUDCKUHq9Hrdv36r0vMaNm0AqlYZhRO74Smb4889iHDt2DJ99tgZz5szhJUuuKp9NIGJjYzF16l9cX7dv/yiaNUvEtGmTvT7PI0TIKBhFqOzsfVi0aG6l523cuAXx8QnVvo9GE40bN657HNfpdG5FU73hI5lh8ODB2Lp1C7788kv87/8+g/j45mHPkqvKZ+OcAZWW6t2+55wxVfYzLq9z5y5QKpU4f/4cBSMSUSgYRagBAwZhwIBBIb9PfHwC8vJywbKs23OjwsICJCY293ltOCszlM2S++tf/4pRo0Zhzpw5+PjjNdVO3qiuqnw2FosFEokEhYUFSEnp7DrufFYUyB8ShEQSSmAgPqWmPgadTou8vFzXsUuXCnHhwnmkpnap9PpQJzN4y5JLTGyDPn364ezZfOzatSPo9wwmmUyGDh06Yv/+H9yO//jjXiQkNMP99zeu0usdOvQzjEYjWrduE8xhEhJyNDOqJa5du4pz584AAEwmE4qKipCdzfWdKZtW3K1bCtLS+iMjYxYAICnpYSQnd8aCBXMwYcKbkMlkyMr6CImJLdCtW3e/7h2qZAZfG1fHj5+EgwcPYNOmjUhPHxS0e4bC6NGvYOLEcVi6dCF69OiFEyeOYe/e3Xj33QVu55X/bDIzV0AkEqFt2ySo1RqcO3cG69d/hlat2uDxx5/k4Z0QUn0UjGqJ48fzMH/+vXTbI0cO48iRwwCAgwfvbYK12+1wONyfscyZswCZmcuxePE82O12JCen4M03p/mdrRXsZAZ/Nq7GxsZi6dKVMBrD2w22Oh55pB3mzVuMrKxV2LlzOxo1ug/Tp89Ejx7ue4/KfzbNmjXD1q1bsGPHVphMJjRo0BDp6U9jzJhxYc+kIyRQDOtru3oZN2+GJz2X1EwMA9SrFwUAuHOnpFrJDOVryRmNVt5qyRESiRo08NymIRT05xMJi0CTGYRUS44QEnwUjEjYmEw2KBRcMoPJZIbNZq/0GiHWkiOEBB9l05Gw0utNYFkWarXvunVCrSVHCAkNmhmRsPInmYGW5AipfSgYkbCrqDIDLckRUntRMCJhVz6ZwWAwCabjKiGEHxSMCC/KJjPI5TJakiOklqMEBsIbZzIDywJarRElJUYKRITUUjQzIryx2VgUFxtgs1EAIqS2o5kR4RUFIkIIQDMjUoscPZqDnTu/xdmz+bhypQiDBw/FlCnT/bpWr9cjM3M5DhzYD5vNhpSUVEyePA2xsbEhHjUhtQPNjEitkZPzb1y8eAHt2nXw2krdl1mzMnD06BFMnZqBv/3tPVy6VIipUyfCZqPUc0KCgWZGpNZ4/fVJeOONNwFwVcz9lZ9/Grm5/8by5R8gOTkVABAXF48XXhhK7b0JCRKaGZFao7odX3NyDkOt1qBTpxTXsbi4BLRo0RI5OYeCNTxCajUKRoRUorCwAHFx8W5t1wEgPr6Zqz04ISQwFIwIqYROp/X6jEmj0UCr1fIwIkJqHnpmRCKWXq/H7du3Kj2vceMmkEqlYRgRIaS6KBiRiJWdvQ+LFs2t9LyNG7cgPj6h2vfRaKJx48Z1j+M6nQ7R0dHVfl1CyD0UjEjEGjBgEAYMGBTy+8THJyAvLxcsy7o9NyosLEBiYvOQ35+Q2oCeGRFSidTUx6DTaZGXl+s6dulSIS5cOI/U1C48joyQmoNmRqTWuHbtKs6dOwMAMJlMKCoqQnb2PgBA9+69XOd165aCtLT+yMiYBQBISnoYycmdsWDBHEyY8CZkMhmysj5CYmILdOvWPfxvhJAaiIIRqTWOH8/D/Pnvur4+cuQwjhw5DAA4ePDeJli73Q6Hw71m3pw5C5CZuRyLF8+D3W5HcnIK3nxzGiQS+l+IkGBgWNa/FmY3b+pCPRZCCCEh1KBB1cpghRM9MyKEEMI7CkaEEEJ4R8GIEEII7ygYEUII4R0FI0IIIbyjYEQIIYR3FIwIIYTwjoIRIYQQ3lEwIoQQwjsKRoQQQnhHwYgQQgjvKBgRQgjhHQUjQgghvKNgRAghhHcUjAghhPCOghEhhBDeUTAihBDCOwpGhBBCeOd323FCCCEkVGhmRAghhHcUjAghhPCOghEhhBDeUTAihBDCOwpGhBBCeEfBiBBCCO8oGBFCCOEdBSNCCCG8o2BECCGEd/8P/4Rdq+R1g8cAAAAASUVORK5CYII="}}]}}}, "version_major": 2, "version_minor": 0} diff --git a/ml-advanced/model-selection.html b/ml-advanced/model-selection.html index 96b1c54348..1dd82ced85 100644 --- a/ml-advanced/model-selection.html +++ b/ml-advanced/model-selection.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/unsupervised-learning-pca-and-clustering.html b/ml-advanced/unsupervised-learning-pca-and-clustering.html index e53fea58bc..228a6fcfc0 100644 --- a/ml-advanced/unsupervised-learning-pca-and-clustering.html +++ b/ml-advanced/unsupervised-learning-pca-and-clustering.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-advanced/unsupervised-learning.html b/ml-advanced/unsupervised-learning.html index 1211428054..3d81dab62d 100644 --- a/ml-advanced/unsupervised-learning.html +++ b/ml-advanced/unsupervised-learning.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html index 443a9d98d4..370dc0494c 100644 --- a/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html +++ b/ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2079,7 +2099,7 @@

    12.4.4. Exercise - build your model

    diff --git a/ml-fundamentals/classification/getting-started-with-classification.html b/ml-fundamentals/classification/getting-started-with-classification.html index 9fb929a987..0d1c0b8448 100644 --- a/ml-fundamentals/classification/getting-started-with-classification.html +++ b/ml-fundamentals/classification/getting-started-with-classification.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/classification/introduction-to-classification.html b/ml-fundamentals/classification/introduction-to-classification.html index 9032c775d4..a60d80157b 100644 --- a/ml-fundamentals/classification/introduction-to-classification.html +++ b/ml-fundamentals/classification/introduction-to-classification.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/classification/more-classifiers.html b/ml-fundamentals/classification/more-classifiers.html index 2d317cccad..d636dcf70b 100644 --- a/ml-fundamentals/classification/more-classifiers.html +++ b/ml-fundamentals/classification/more-classifiers.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2245,7 +2265,7 @@

    12.2.4. Exercise - apply logistic regres

    -
    Accuracy is 0.8006672226855713
    +
    Accuracy is 0.7798165137614679
     
    @@ -2268,10 +2288,10 @@

    12.2.4. Exercise - apply logistic regres

    -
    ingredients: Index(['beef', 'black_pepper', 'mustard', 'sesame_oil', 'soy_sauce',
    -       'vegetable_oil', 'vinegar'],
    +
    ingredients: Index(['barley', 'cane_molasses', 'fish', 'sake', 'scallion', 'soy_sauce',
    +       'soybean', 'wine'],
           dtype='object')
    -cuisine: korean
    +cuisine: japanese
     
    @@ -2320,25 +2340,25 @@

    12.2.4. Exercise - apply logistic regres + + japanese + 0.940964 + korean - 0.685323 + 0.053126 chinese - 0.209312 + 0.004265 - japanese - 0.102098 + thai + 0.001630 indian - 0.001763 - - - thai - 0.001504 + 0.000014 @@ -2359,15 +2379,15 @@

    12.2.4. Exercise - apply logistic regres
                  precision    recall  f1-score   support
     
    -     chinese       0.73      0.74      0.74       244
    -      indian       0.92      0.91      0.92       233
    -    japanese       0.75      0.76      0.75       232
    -      korean       0.86      0.78      0.82       256
    -        thai       0.75      0.82      0.78       234
    +     chinese       0.69      0.69      0.69       231
    +      indian       0.92      0.88      0.90       250
    +    japanese       0.64      0.80      0.71       233
    +      korean       0.85      0.78      0.81       236
    +        thai       0.84      0.75      0.79       249
     
    -    accuracy                           0.80      1199
    -   macro avg       0.80      0.80      0.80      1199
    -weighted avg       0.80      0.80      0.80      1199
    +    accuracy                           0.78      1199
    +   macro avg       0.79      0.78      0.78      1199
    +weighted avg       0.79      0.78      0.78      1199
     
    diff --git a/ml-fundamentals/classification/yet-other-classifiers.html b/ml-fundamentals/classification/yet-other-classifiers.html index c9e4855ef1..08b1900344 100644 --- a/ml-fundamentals/classification/yet-other-classifiers.html +++ b/ml-fundamentals/classification/yet-other-classifiers.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1903,11 +1923,11 @@

    12.3.4.1. Exercise - apply a linear SVC<
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
    @@ -1938,28 +1958,28 @@ 

    12.3.5.1. Exercise - apply the K-Neighbo
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
     weighted avg       0.79      0.78      0.78      1199
     
    -Accuracy (train) for KNN classifier: 73.6% 
    +Accuracy (train) for KNN classifier: 70.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.62      0.78      0.69       238
    -      indian       0.86      0.75      0.81       236
    -    japanese       0.70      0.87      0.77       269
    -      korean       0.93      0.58      0.72       230
    -        thai       0.71      0.67      0.69       226
    +     chinese       0.61      0.73      0.67       230
    +      indian       0.83      0.79      0.81       251
    +    japanese       0.62      0.85      0.71       242
    +      korean       0.91      0.47      0.62       231
    +        thai       0.72      0.69      0.70       245
     
    -    accuracy                           0.74      1199
    -   macro avg       0.76      0.73      0.73      1199
    -weighted avg       0.76      0.74      0.74      1199
    +    accuracy                           0.71      1199
    +   macro avg       0.74      0.70      0.70      1199
    +weighted avg       0.74      0.71      0.70      1199
     

    @@ -1990,42 +2010,42 @@

    12.3.6.1. Exercise - apply a Support Vec
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
     weighted avg       0.79      0.78      0.78      1199
     
    -Accuracy (train) for KNN classifier: 73.6% 
    +Accuracy (train) for KNN classifier: 70.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.62      0.78      0.69       238
    -      indian       0.86      0.75      0.81       236
    -    japanese       0.70      0.87      0.77       269
    -      korean       0.93      0.58      0.72       230
    -        thai       0.71      0.67      0.69       226
    +     chinese       0.61      0.73      0.67       230
    +      indian       0.83      0.79      0.81       251
    +    japanese       0.62      0.85      0.71       242
    +      korean       0.91      0.47      0.62       231
    +        thai       0.72      0.69      0.70       245
     
    -    accuracy                           0.74      1199
    -   macro avg       0.76      0.73      0.73      1199
    -weighted avg       0.76      0.74      0.74      1199
    +    accuracy                           0.71      1199
    +   macro avg       0.74      0.70      0.70      1199
    +weighted avg       0.74      0.71      0.70      1199
     
    -
    Accuracy (train) for SVC: 82.9% 
    +
    Accuracy (train) for SVC: 81.3% 
                   precision    recall  f1-score   support
     
    -     chinese       0.74      0.81      0.77       238
    -      indian       0.92      0.87      0.90       236
    -    japanese       0.84      0.78      0.81       269
    -      korean       0.90      0.79      0.84       230
    -        thai       0.78      0.90      0.84       226
    +     chinese       0.73      0.74      0.74       230
    +      indian       0.88      0.92      0.90       251
    +    japanese       0.80      0.82      0.81       242
    +      korean       0.91      0.72      0.80       231
    +        thai       0.76      0.84      0.80       245
     
    -    accuracy                           0.83      1199
    -   macro avg       0.83      0.83      0.83      1199
    -weighted avg       0.83      0.83      0.83      1199
    +    accuracy                           0.81      1199
    +   macro avg       0.82      0.81      0.81      1199
    +weighted avg       0.82      0.81      0.81      1199
     
    @@ -2053,70 +2073,70 @@

    12.3.7. Ensemble Classifiers
    Accuracy (train) for Linear SVC: 78.1% 
                   precision    recall  f1-score   support
     
    -     chinese       0.64      0.72      0.68       238
    -      indian       0.92      0.85      0.88       236
    -    japanese       0.77      0.73      0.75       269
    -      korean       0.85      0.74      0.80       230
    -        thai       0.76      0.87      0.81       226
    +     chinese       0.63      0.74      0.68       230
    +      indian       0.91      0.89      0.90       251
    +    japanese       0.78      0.78      0.78       242
    +      korean       0.87      0.64      0.73       231
    +        thai       0.77      0.84      0.80       245
     
         accuracy                           0.78      1199
        macro avg       0.79      0.78      0.78      1199
     weighted avg       0.79      0.78      0.78      1199
     
    -Accuracy (train) for KNN classifier: 73.6% 
    +Accuracy (train) for KNN classifier: 70.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.62      0.78      0.69       238
    -      indian       0.86      0.75      0.81       236
    -    japanese       0.70      0.87      0.77       269
    -      korean       0.93      0.58      0.72       230
    -        thai       0.71      0.67      0.69       226
    +     chinese       0.61      0.73      0.67       230
    +      indian       0.83      0.79      0.81       251
    +    japanese       0.62      0.85      0.71       242
    +      korean       0.91      0.47      0.62       231
    +        thai       0.72      0.69      0.70       245
     
    -    accuracy                           0.74      1199
    -   macro avg       0.76      0.73      0.73      1199
    -weighted avg       0.76      0.74      0.74      1199
    +    accuracy                           0.71      1199
    +   macro avg       0.74      0.70      0.70      1199
    +weighted avg       0.74      0.71      0.70      1199
     

    -
    Accuracy (train) for SVC: 82.9% 
    +
    Accuracy (train) for SVC: 81.3% 
                   precision    recall  f1-score   support
     
    -     chinese       0.74      0.81      0.77       238
    -      indian       0.92      0.87      0.90       236
    -    japanese       0.84      0.78      0.81       269
    -      korean       0.90      0.79      0.84       230
    -        thai       0.78      0.90      0.84       226
    +     chinese       0.73      0.74      0.74       230
    +      indian       0.88      0.92      0.90       251
    +    japanese       0.80      0.82      0.81       242
    +      korean       0.91      0.72      0.80       231
    +        thai       0.76      0.84      0.80       245
     
    -    accuracy                           0.83      1199
    -   macro avg       0.83      0.83      0.83      1199
    -weighted avg       0.83      0.83      0.83      1199
    +    accuracy                           0.81      1199
    +   macro avg       0.82      0.81      0.81      1199
    +weighted avg       0.82      0.81      0.81      1199
     
    -
    Accuracy (train) for RFST: 84.7% 
    +
    Accuracy (train) for RFST: 82.7% 
                   precision    recall  f1-score   support
     
    -     chinese       0.78      0.84      0.81       238
    -      indian       0.94      0.88      0.91       236
    -    japanese       0.89      0.81      0.85       269
    -      korean       0.86      0.80      0.83       230
    -        thai       0.78      0.91      0.84       226
    +     chinese       0.77      0.79      0.78       230
    +      indian       0.91      0.90      0.91       251
    +    japanese       0.80      0.81      0.80       242
    +      korean       0.86      0.75      0.80       231
    +        thai       0.79      0.87      0.83       245
     
    -    accuracy                           0.85      1199
    -   macro avg       0.85      0.85      0.85      1199
    -weighted avg       0.85      0.85      0.85      1199
    +    accuracy                           0.83      1199
    +   macro avg       0.83      0.82      0.83      1199
    +weighted avg       0.83      0.83      0.83      1199
     
    -
    Accuracy (train) for ADA: 72.8% 
    +
    Accuracy (train) for ADA: 70.0% 
                   precision    recall  f1-score   support
     
    -     chinese       0.65      0.61      0.63       238
    -      indian       0.91      0.81      0.85       236
    -    japanese       0.66      0.68      0.67       269
    -      korean       0.75      0.70      0.73       230
    -        thai       0.70      0.85      0.77       226
    +     chinese       0.60      0.50      0.55       230
    +      indian       0.83      0.86      0.85       251
    +    japanese       0.64      0.70      0.67       242
    +      korean       0.75      0.71      0.73       231
    +        thai       0.67      0.71      0.69       245
     
    -    accuracy                           0.73      1199
    -   macro avg       0.73      0.73      0.73      1199
    -weighted avg       0.73      0.73      0.73      1199
    +    accuracy                           0.70      1199
    +   macro avg       0.70      0.70      0.70      1199
    +weighted avg       0.70      0.70      0.70      1199
     
    diff --git a/ml-fundamentals/ml-overview.html b/ml-fundamentals/ml-overview.html index 613f0f3e02..9a7bb4c2ee 100644 --- a/ml-fundamentals/ml-overview.html +++ b/ml-fundamentals/ml-overview.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/parameter-optimization/gradient-descent.html b/ml-fundamentals/parameter-optimization/gradient-descent.html index 84019e2e10..6adc36c765 100644 --- a/ml-fundamentals/parameter-optimization/gradient-descent.html +++ b/ml-fundamentals/parameter-optimization/gradient-descent.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2083,19 +2103,19 @@

    13.2.5.1. Linear regression With gradien

    -
    {'lr': 0.0003, 'n_iters': 5000, 'weights': array([ 0.44776251,  0.22740589,  0.01286507,  0.09545673,  0.14355988,
    -        0.14322558,  0.12452009, -0.00821301]), 'bias': 0.023118075851907716}
    -0    -1.883562
    -1    -1.657761
    -2    -1.897425
    -3    -1.555480
    -4    -1.982423
    +
    {'lr': 0.0003, 'n_iters': 5000, 'weights': array([0.43641024, 0.21556523, 0.00544156, 0.08104258, 0.13653559,
    +       0.13533305, 0.11569134, 0.00153348]), 'bias': 0.021057989893612013}
    +0    -1.462067
    +1    -1.175069
    +2    -1.484010
    +3    -1.075604
    +4    -1.448885
             ...   
    -92    0.759003
    -93    0.633167
    -94    1.223238
    -95    1.700592
    -96    0.917709
    +92    0.818377
    +93    0.727484
    +94    1.655365
    +95    1.608724
    +96    1.414184
     Name: lpsa, Length: 97, dtype: float64
     
    diff --git a/ml-fundamentals/parameter-optimization/loss-function.html b/ml-fundamentals/parameter-optimization/loss-function.html index 1c8cef0a84..4c93234e54 100644 --- a/ml-fundamentals/parameter-optimization/loss-function.html +++ b/ml-fundamentals/parameter-optimization/loss-function.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/parameter-optimization/parameter-optimization.html b/ml-fundamentals/parameter-optimization/parameter-optimization.html index e7b15cc4ff..c413b56bd7 100644 --- a/ml-fundamentals/parameter-optimization/parameter-optimization.html +++ b/ml-fundamentals/parameter-optimization/parameter-optimization.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/regression/linear-and-polynomial-regression.html b/ml-fundamentals/regression/linear-and-polynomial-regression.html index b00837b842..790629ab00 100644 --- a/ml-fundamentals/regression/linear-and-polynomial-regression.html +++ b/ml-fundamentals/regression/linear-and-polynomial-regression.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2287,7 +2307,7 @@

    11.3.3. Correlation

    -
    -
    [<matplotlib.lines.Line2D at 0x7fee24c9a220>]
    +
    [<matplotlib.lines.Line2D at 0x7f880645a550>]
     
    ../../_images/linear-and-polynomial-regression_34_1.png diff --git a/ml-fundamentals/regression/logistic-regression.html b/ml-fundamentals/regression/logistic-regression.html index b91ed11235..fbaab8f014 100644 --- a/ml-fundamentals/regression/logistic-regression.html +++ b/ml-fundamentals/regression/logistic-regression.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -2166,7 +2186,7 @@

    11.4.5.1. Visualization - side-by-side g

    -
    <seaborn.axisgrid.PairGrid at 0x7f2ed47b3070>
    +
    <seaborn.axisgrid.PairGrid at 0x7ff23cb12580>
     
    ../../_images/logistic-regression_19_1.png @@ -2225,7 +2245,7 @@

    11.4.5.3. Violin plot -
    <seaborn.axisgrid.FacetGrid at 0x7f2eaf733550>
    +
    <seaborn.axisgrid.FacetGrid at 0x7ff214796dc0>
     
    ../../_images/logistic-regression_24_1.png diff --git a/ml-fundamentals/regression/managing-data.html b/ml-fundamentals/regression/managing-data.html index 48bdf75c71..30468fe624 100644 --- a/ml-fundamentals/regression/managing-data.html +++ b/ml-fundamentals/regression/managing-data.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/regression/regression-models-for-machine-learning.html b/ml-fundamentals/regression/regression-models-for-machine-learning.html index 58a64f40ba..feb5c0cb41 100644 --- a/ml-fundamentals/regression/regression-models-for-machine-learning.html +++ b/ml-fundamentals/regression/regression-models-for-machine-learning.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/ml-fundamentals/regression/tools-of-the-trade.html b/ml-fundamentals/regression/tools-of-the-trade.html index a727510f6c..d6640a7f2a 100644 --- a/ml-fundamentals/regression/tools-of-the-trade.html +++ b/ml-fundamentals/regression/tools-of-the-trade.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/objects.inv b/objects.inv index c347cc4bf4..7ea44a60d7 100644 Binary files a/objects.inv and b/objects.inv differ diff --git a/prerequisites/python-programming-advanced.html b/prerequisites/python-programming-advanced.html index 6022ef77d2..6466aea631 100644 --- a/prerequisites/python-programming-advanced.html +++ b/prerequisites/python-programming-advanced.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/prerequisites/python-programming-basics.html b/prerequisites/python-programming-basics.html index 2c8b6312cc..913d8be6e2 100644 --- a/prerequisites/python-programming-basics.html +++ b/prerequisites/python-programming-basics.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/prerequisites/python-programming-introduction.html b/prerequisites/python-programming-introduction.html index c07f7e5d8b..2dd7d3a03e 100644 --- a/prerequisites/python-programming-introduction.html +++ b/prerequisites/python-programming-introduction.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/search.html b/search.html index e2540df75a..39541014a1 100644 --- a/search.html +++ b/search.html @@ -26,8 +26,8 @@ - + @@ -1113,114 +1113,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/searchindex.js b/searchindex.js index 2fcc2452a9..b931efbe56 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/difussion-model/denoising-difussion-model","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/object-detection/car-object-detection","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/build-ml-web-app-1","assignments/ml-fundamentals/build-ml-web-app-2","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression/california_housing","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas/advanced-pandas-techniques","data-science/working-with-data/pandas/data-selection","data-science/working-with-data/pandas/introduction-and-data-structures","data-science/working-with-data/pandas/pandas","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn/cnn","deep-learning/cnn/cnn-deepdream","deep-learning/cnn/cnn-vgg","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/nlp","deep-learning/nn","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-advanced/unsupervised-learning-pca-and-clustering","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/parameter-optimization/gradient-descent","ml-fundamentals/parameter-optimization/loss-function","ml-fundamentals/parameter-optimization/parameter-optimization","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/difussion-model/denoising-difussion-model.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/object-detection/car-object-detection.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/build-ml-web-app-1.ipynb","assignments/ml-fundamentals/build-ml-web-app-2.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression/california_housing.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.ipynb","data-science/data-science-lifecycle/analyzing.ipynb","data-science/data-science-lifecycle/communication.ipynb","data-science/data-science-lifecycle/data-science-lifecycle.ipynb","data-science/data-science-lifecycle/introduction.ipynb","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.ipynb","data-science/introduction/defining-data.ipynb","data-science/introduction/defining-data-science.ipynb","data-science/introduction/introduction.ipynb","data-science/introduction/introduction-to-statistics-and-probability.ipynb","data-science/working-with-data/data-preparation.ipynb","data-science/working-with-data/non-relational-data.ipynb","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas/advanced-pandas-techniques.ipynb","data-science/working-with-data/pandas/data-selection.ipynb","data-science/working-with-data/pandas/introduction-and-data-structures.ipynb","data-science/working-with-data/pandas/pandas.md","data-science/working-with-data/relational-databases.ipynb","data-science/working-with-data/working-with-data.ipynb","deep-learning/autoencoder.ipynb","deep-learning/cnn/cnn.ipynb","deep-learning/cnn/cnn-deepdream.ipynb","deep-learning/cnn/cnn-vgg.ipynb","deep-learning/difussion-model.ipynb","deep-learning/dl-overview.ipynb","deep-learning/dqn.ipynb","deep-learning/gan.ipynb","deep-learning/image-classification.ipynb","deep-learning/image-segmentation.ipynb","deep-learning/lstm.ipynb","deep-learning/nlp.ipynb","deep-learning/nn.ipynb","deep-learning/object-detection.ipynb","deep-learning/rnn.ipynb","deep-learning/time-series.ipynb","intro.md","machine-learning-productionization/data-engineering.ipynb","machine-learning-productionization/model-deployment.ipynb","machine-learning-productionization/model-training-and-evaluation.ipynb","machine-learning-productionization/overview.ipynb","machine-learning-productionization/problem-framing.ipynb","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.ipynb","ml-advanced/ensemble-learning/feature-importance.ipynb","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.ipynb","ml-advanced/ensemble-learning/random-forest.ipynb","ml-advanced/gradient-boosting/gradient-boosting.ipynb","ml-advanced/gradient-boosting/gradient-boosting-example.ipynb","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.ipynb","ml-advanced/gradient-boosting/xgboost.ipynb","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.ipynb","ml-advanced/kernel-method.ipynb","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-advanced/unsupervised-learning-pca-and-clustering.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.ipynb","ml-fundamentals/parameter-optimization/gradient-descent.ipynb","ml-fundamentals/parameter-optimization/loss-function.ipynb","ml-fundamentals/parameter-optimization/parameter-optimization.ipynb","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.ipynb","ml-fundamentals/regression/managing-data.ipynb","ml-fundamentals/regression/regression-models-for-machine-learning.ipynb","ml-fundamentals/regression/tools-of-the-trade.ipynb","prerequisites/python-programming-advanced.ipynb","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,79,80,81,82,83,85,86,87,88,89,97,98,99,106,113,114,115,116,121,122,124,125,126,127,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,149,150,151,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,188,190,191,194,196,198,199,200,201,202,204,205,206,207],"00":[25,29,37,39,59,61,62,69,127,132,165,169,179,184,191],"000":[7,29,33,43,52,58,65,67,122,139,169,191,204],"0000":[63,123,192],"000000":[39,60,63,66,69,72,79,88,121,125,126,127,154,157,164],"00000000":[123,192],"000000000":39,"000000001":39,"000000002":39,"000000003":39,"000000004":39,"000000e":69,"000001":97,"000004":154,"000006":127,"000035e":61,"00009609e":165,"0001":[56,58,63,66,79,135,137,150,175,194,200],"000140":127,"000169":154,"000187":154,"0002":205,"000234":154,"0003":[156,175],"00030352119521741776":14,"0004":156,"0005":[38,68,145],"000537":154,"00058":79,"000581":63,"000584":127,"0006070423904348355":14,"000665":154,"0009105635856522532":14,"000z":123,"001":[14,31,33,34,36,38,47,56,62,66,68,86,98,137,141,144,150,175,201],"001118":127,"001133":69,"001214084780869671":14,"001238e":61,"0012919896640826":79,"001413":39,"001504":172,"001667":157,"001763":172,"001768":127,"002":205,"00228":145,"00259226":182,"00270041":175,"002962":164,"003043":127,"003411e":61,"003604":131,"003652":131,"003750":164,"003900":131,"00390625":141,"00398532":79,"003990":131,"004013":131,"004016":131,"004066":131,"004198":131,"004663":131,"004767":131,"004884":131,"005":[58,132,154],"005005":131,"005355":131,"005524":131,"00561v3":140,"00584401e":165,"006":138,"00605086":140,"006220":131,"006235":127,"006323":131,"006457":164,"0067286862703357":126,"006729":126,"0068":30,"0069":30,"0070":30,"007000":154,"0071":30,"007185":[65,67],"0072":30,"007236":131,"007273":39,"0073":30,"007380":164,"0074":30,"0076":30,"0077":30,"0078125":141,"0079":30,"008080":164,"0081":30,"00821301":175,"008281":164,"008460":131,"0085":30,"008532e":69,"00856072":121,"008662":127,"008906e":61,"00897398e":165,"009":138,"0090":30,"0092":156,"009477":69,"0097":30,"0098":156,"01":[1,14,31,36,39,47,50,52,56,58,61,62,66,69,73,79,81,87,119,123,126,127,131,132,133,138,144,146,156,161,165,167,188],"010000":63,"010309":121,"01057247e":165,"010679":131,"010a691e01d7":[123,192],"01130490957":79,"011305":63,"01138062":175,"01171875":141,"01187949e":165,"012114":39,"01246024":[63,79],"01249051e":165,"012635":69,"01286507":175,"0129":37,"013":138,"013246":157,"01324612":157,"013417":164,"013538":69,"013547":164,"01355":144,"014371":164,"014542612245156494":175,"01461712e":165,"014940":39,"01497":144,"014987":126,"015":[138,154],"0152":156,"015625":[61,141],"016186":164,"016305":154,"01632993161855452":66,"016520":131,"016667":39,"016750":127,"017":178,"0170":61,"0171":132,"017174":127,"01743954":140,"017500":39,"01764613":182,"017692":39,"018059":127,"0183":36,"018352":69,"0189":39,"019181e":127,"019231":39,"0195":39,"01953125":141,"0196":[30,39,156],"019620":127,"0196warn":30,"0198":39,"01990749":182,"02":[14,35,38,39,58,61,69,126,127,135,140,146,159,165],"0204":39,"0205":39,"020545":127,"02060786":140,"0207":39,"020724e":39,"0210":39,"0212":39,"0213":39,"02137124":167,"021448":39,"0215":39,"021618":127,"0218":39,"02187239":182,"021919":29,"0220":39,"022331":[65,67],"022377":29,"0226":39,"022692":69,"022738":39,"02277928":140,"0229":[39,132],"0230":39,"0231":39,"023118075851907716":175,"0233":39,"0234":39,"0234375":141,"02356819":140,"0238":39,"02406323e":165,"02429656e":165,"024332":127,"0246":39,"024613e":61,"025304":127,"0255":[39,132,156],"025568e":61,"025820":157,"025921":127,"0260":39,"026109":79,"026389":126,"02653783":79,"02673422e":165,"0268":39,"02689146":[63,79],"02734375":141,"02744117":140,"027520":127,"0276":39,"02763018":79,"027800":154,"0283":132,"028300":154,"028881":69,"0289":14,"0292":39,"029388":127,"0296":39,"029806":127,"02d":37,"03":[14,38,39,61,69,123,126,127,146,165,192],"0301":132,"0302":39,"03021648e":165,"03026961":140,"0311":[39,132],"03125":141,"031506725":29,"032":73,"032120":126,"03265407e":165,"03265429":140,"03265986323710903":66,"03267463":140,"0327":39,"0328":39,"033114":69,"033153":127,"03328308e":165,"033892e":39,"0339":39,"0342":39,"03482076":182,"0348944":140,"035":73,"035077":157,"03515625":141,"0352":39,"0353":39,"035499e":61,"035711":[65,67],"035785":157,"0358":39,"036":138,"0362":132,"03669362":140,"03676084":79,"03681898e":165,"0372":39,"0375":39,"037540":39,"0376":39,"037692":39,"0377":39,"03807591":182,"0382":37,"0383":39,"0386":39,"038731":126,"0390":39,"0390625":141,"039105":157,"039164":39,"0392":39,"039250":154,"03925315e":165,"0393":39,"0394":39,"03942163":79,"039738":157,"039893":39,"0399":39,"03_intellij":39,"03d":[31,38],"04":[14,39,50,61,69,116,121,126,127,146,165],"0400":39,"04000000001":39,"040021":69,"04015012":140,"0402":39,"0404":39,"040414":126,"0407":39,"04124236":79,"0416":39,"0418":39,"0420":39,"042143e":61,"0423":39,"042321":29,"0424":154,"04251990648936265":167,"04294934e":165,"04296875":141,"043":138,"0430":39,"04340085":182,"043441":127,"0435":39,"0436":39,"044":154,"0440":39,"0442235":182,"0443":132,"044354":127,"044444":121,"044527":127,"04460606335028361":178,"0447":[39,154],"0447134":140,"0448":39,"045":138,"045000":39,"04555172":79,"045561":39,"045637":39,"0458":39,"04597":140,"0463":39,"0467":39,"046875":141,"04690013e":165,"04690235":79,"047":138,"0471":39,"04764906":79,"048622":79,"04915341":140,"0496":39,"049672":79,"04d":137,"04t22":59,"05":[14,37,39,49,61,68,87,125,127,138,146,150,156,163,167,175],"0500":161,"0506":39,"05068012":182,"05068934":140,"05078125":141,"05093587":124,"051":138,"051164":61,"05129013":79,"05129232e":165,"05163977794943221":66,"051695":39,"0517":39,"05174632":140,"052646":39,"0528":39,"05283644":79,"05311586e":165,"053607":39,"05375897e":165,"053899":157,"053903":39,"054000":[66,88],"05409845":140,"0541":39,"054430e":61,"0546875":141,"05504988":140,"0555621":140,"05558296":79,"05581988":140,"05587v3":140,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":61,"056":138,"05623794e":165,"05667198":140,"057":138,"0571":132,"05743935":140,"057504":[65,67],"0580":50,"05816076":140,"05856981":127,"0585698110469435":127,"058570":127,"05859375":141,"0589":39,"05899204":140,"059025":29,"059100":154,"059136e":61,"05919117":140,"0595":39,"059532":69,"059737":127,"05d":[38,137],"05vabnfa1d":165,"06":[14,36,39,61,69,127,138,178],"06040135":140,"0612":36,"06123253":121,"061476":157,"06156753":[165,196],"06164216":140,"06169621":182,"061881":157,"06192831e":165,"0621118":156,"06227022":140,"0625":[141,165,196],"06279592e":165,"062868":39,"06293699e":165,"0638174":140,"064":138,"064079":69,"06474761e":165,"06525736":140,"06537655":140,"065508":79,"06556804":140,"06568076e":165,"06576":134,"0660":36,"06640625":141,"0664977131233107":127,"066498":127,"0668":39,"06704963":140,"067239":127,"067482e":61,"06756605e":165,"0677799":140,"068415":61,"06870":144,"06870405":140,"0688":61,"0688029":140,"06886704":140,"0694":39,"069473e":61,"06948027":140,"069987":69,"07":[1,39,52,61,125,126,127,132,138,156,178,191],"070208":127,"0703125":141,"07057328e":165,"070833":39,"07103796":175,"071203171893359e":191,"071268":39,"0713":39,"0716":37,"07161290e":165,"071715":127,"071856":60,"07194882":121,"072046":69,"0721":37,"07272727":87,"073":138,"07383654":79,"07394277":140,"07421875":141,"074246":39,"07432988":79,"074776":157,"07499715e":165,"075":[138,168,198],"07534395":140,"075361":69,"0754":39,"07554621":140,"07555147":140,"075650":154,"07604103":79,"07665441":140,"076661":69,"076923":39,"07737338323":63,"077500":39,"077712":157,"0781":50,"078125":141,"07878788":87,"078843":39,"078910":[65,67],"078934e":61,"079167":39,"079437":127,"07959982":79,"079714":127,"079951":127,"08":[39,50,61,69,97,116,121,123,127,178,183,188,205],"0801":35,"080211":127,"080870":39,"081":138,"08106401e":165,"0813":35,"08157576":140,"081661":127,"0819":39,"08203125":141,"08206309":140,"0822":154,"0823":35,"0829":154,"083165":127,"083333":39,"0835":35,"08377614":140,"0839":36,"0841":35,"08421487":140,"0843":50,"08484848":87,"085":[168,198],"085537":191,"085774":127,"08588317":140,"085890e":127,"0859375":141,"086":138,"0864":35,"08662089e":165,"086798":29,"087":[138,154],"0881":35,"088730":157,"08898591":140,"088992":39,"08925183":140,"0893":39,"08946078":140,"089525":154,"08964461":140,"08984375":141,"09":[25,36,39,61,69,79,127,138],"090000":39,"090298":39,"090321":154,"090548":39,"090717":39,"09090909":87,"091":138,"091439":39,"09146885":175,"091489":39,"091574":61,"091606":69,"09207596":140,"0924":36,"092517":127,"09274592":140,"092939":154,"09312624":140,"0934":35,"09375":141,"094025":39,"094383":39,"0944":36,"094493":39,"094830":127,"095000":39,"095163":39,"09545673":175,"095922":39,"09592476":140,"096093":127,"096164":39,"0964":154,"096441":127,"096545":39,"096688":39,"096822":126,"096907":69,"09704554168":79,"097061":39,"097124":39,"09721540e":165,"09736372":79,"097565":39,"09765625":141,"097692":39,"0978":140,"097950":154,"098004":39,"098327":39,"098485":39,"0985":39,"098512":39,"09913234":140,"099139":39,"099198":39,"099369":39,"099380":39,"099428":39,"099534":39,"099587":39,"099596":39,"099674":39,"099944":127,"0a":[125,126,127,183],"0aarrai":125,"0ad":127,"0adel":127,"0adf":[125,127],"0adf1":[125,126],"0adf2":125,"0adfd":126,"0adfl":126,"0afor":183,"0aget_age_group":183,"0aimport":[125,126,127],"0aindex":125,"0al":125,"0amask":126,"0anp":126,"0aother":125,"0as1":126,"0ax":126,"0cm":48,"0f":43,"0n":32,"0nb81h2lf3u6tgo":61,"0rvhljoesr6bt4cmi":61,"0s":[29,30,36,39,42,50,56,62,63,72,79,132,140,143,167,174],"0th":[43,126],"0x0000020ad04ad280":30,"0x0000020ad0975280":30,"0x132a05eb0":190,"0x15efcfd6708":168,"0x15efe146708":168,"0x1799f6b3e80":72,"0x1799f7b00d0":72,"0x1f49b239f08":79,"0x1f4a26c7b08":79,"0x1f4a26efc48":79,"0x1f4a2788808":79,"0x1f4a27bb588":79,"0x1f4ad02ae08":79,"0x1f4ad061988":79,"0x20ad0773190":30,"0x227c78bf790":60,"0x24c343c74c8":69,"0x24c38b8cfc8":69,"0x25c6dfaf370":35,"0x28523a37dc0":154,"0x7e1538110d60":167,"0x7e3d355e1e70":50,"0x7e3d441045e0":50,"0x7f0688608450":124,"0x7f2eaf733550":179,"0x7f2ed47b3070":179,"0x7f5e36f43ca0":165,"0x7f5e393fbf70":165,"0x7f8e393be730":116,"0x7fda965d69d0":156,"0x7fee24c9a220":178,"0x7fee359bd610":178,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,53,57,64,65,66,68,69,70,73,81,82,83,86,89,97,98,99,100,101,105,106,113,114,115,116,117,119,121,122,125,126,127,129,131,132,133,134,135,136,137,138,140,141,142,143,144,145,146,148,149,150,151,154,155,156,157,159,160,161,163,164,165,166,167,169,171,172,173,174,175,176,178,179,180,182,183,184,185,198,199,201,204,205],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,40,42,43,45,46,47,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,79,80,81,85,87,88,89,97,98,106,109,114,117,119,121,124,125,126,127,134,135,136,138,141,143,145,146,150,151,154,155,156,157,159,160,164,165,167,168,169,171,173,178,182,183,184,188,190,191,196,198,199,200,201,202,204,205,206,207],"100":[7,14,18,31,34,36,37,38,41,43,48,49,50,51,52,54,55,56,58,62,64,65,66,67,68,71,73,79,80,81,82,85,87,88,97,115,124,132,133,134,137,138,140,141,143,150,151,152,154,156,159,163,164,165,167,168,169,173,178,179,180,183,184,190,191,194,196,198,199,204,205,206],"1000":[3,14,18,31,33,35,49,52,56,58,60,62,63,66,81,86,87,89,107,112,121,131,135,138,140,141,150,156,157,159,161,163,167,175,179,183,186,190,199,201,202,205],"10000":[14,29,30,33,35,38,58,66,72,87,131,135,137,139,169],"100000":[56,66,88,135],"1000000":[165,183,185,191],"10000000000":165,"1000px":159,"1001":151,"1003":151,"10032834e":165,"1004":141,"100486":39,"1005":151,"10059785e":165,"1006":141,"10061107":140,"1007":[72,79,151],"10071":125,"10072":125,"10073":125,"100795":146,"1008":42,"10086":125,"10087":125,"100878":29,"10088":125,"1009":[72,141,151],"10090":125,"10091":125,"10092":125,"10093":125,"10094":125,"100942":39,"10095":125,"10096":125,"10097":125,"10098":125,"10099":125,"100k":173,"100m":[36,150],"100tl":36,"101":[81,141,157,167],"1010":[72,154,169],"10100":125,"10101":125,"10102":125,"10103":125,"10104":125,"1011":42,"10119387961131":[65,67],"1012":72,"1012000":116,"10134804":140,"1014":141,"10143793":175,"101451":39,"1015":141,"1015625":141,"101744868":42,"101761236":42,"1018":39,"101m":36,"102":[52,61,81,141,154,157],"1020":[114,138,190],"102098":172,"1021":141,"1022":72,"10220":54,"1023":141,"102352":146,"1024":[32,33,37,38,42,64,135,138,139,140,194],"1024n":32,"1026":141,"102657":39,"1027":141,"102724":39,"1028":[34,72,141],"1029":141,"102b":151,"102k":52,"102m":36,"103":[52,58,61,81,141,156,157,180],"1030":[34,141],"103095":39,"103180":127,"1032":[72,141],"1033":141,"103500":154,"103536":146,"10359594":134,"1036":141,"1037":168,"1038":141,"103997":39,"104":[52,61,81,156,157],"1040":[115,138,141,190],"1040000":116,"10411186e":165,"1044":72,"104412":39,"10444444444444445":167,"104462":127,"10449817":140,"10452":39,"10460062":140,"1048":[39,69,141],"1048832":42,"105":[81,132,138,139,140,141,151,154,155,159,165,167,168,171,175,176,178],"1050":[114,141,190],"10509942":140,"1052":141,"105237":79,"1053":79,"10546875":141,"105586":39,"1056":141,"105651e":39,"105748":157,"105896":126,"105937":164,"105m":36,"106":[61,81,141],"1060":138,"10601041":140,"1060762990306165":81,"10613463":140,"1063":141,"1064":141,"1065":126,"10651042":140,"10655":164,"106569":146,"1066":[114,126,190],"106649":39,"1067":126,"1068":[126,141],"1069":[39,126],"106m":36,"107":[52,81,141,156],"1070":126,"1071":141,"10711052e":165,"1072":[115,126,190],"107282":39,"1073":[126,141],"1075":141,"10782758":140,"107m":36,"108":[81,125,141,194,205],"1080":138,"108004":126,"108032":39,"108257":127,"1084":141,"1085":141,"1086":127,"1087":141,"108706":126,"1088":[127,141],"1089":127,"109":[81,125,138],"1090":127,"109091":121,"1091":141,"109167":39,"10928802805393":60,"1093":141,"109327":127,"109375":141,"10944131e":165,"1096":[141,191],"1097":59,"1098":141,"1099":33,"109m":36,"10m":[117,188],"11":[14,22,25,36,39,42,49,50,52,59,61,62,64,66,69,72,73,81,88,89,97,98,106,107,116,121,124,125,132,137,141,142,143,145,146,149,154,155,156,157,159,167,171,178,179,180,183,184,186,205,206],"110":[14,52,60,61,68,81,125,132,156,159,183],"1100":[138,154],"11000":131,"110000":39,"110296":127,"1104":141,"110426":61,"11047708e":165,"11048534e":165,"1105":[63,79],"1106":[63,79,141],"1107":[50,141],"11088":25,"110m":36,"111":[36,61,69,72,80,81,125,137,138,141,154,155],"111000":154,"11109":97,"1111":[129,192],"111101":39,"11111":97,"1112":141,"1114":141,"1115":145,"1116":69,"1116058338033":66,"111618":39,"1117":141,"111700":39,"11171325":140,"111752":39,"1119":88,"111982":69,"111m":36,"112":[66,81,125,141,154],"1120":138,"112151":164,"1123":141,"11234131":140,"1123949416":192,"1124":141,"112425":39,"11250":68,"112522":29,"1127":72,"1128":141,"1129":141,"112m":36,"113":[39,52,59,81,114,141,156,190],"1130":154,"1132":141,"11328125":141,"1133":141,"113362":39,"113402":121,"1135":[39,72],"1136000":[116,190],"1137":141,"1138":[63,79],"113m":36,"114":[52,63,79,81,138,141,156],"1140":138,"11404718":140,"1142000":116,"1143":72,"1144":[115,190],"114460":127,"1145":141,"114639":[65,67],"1147":39,"114700":79,"115":[50,59,61,81,132,141,145,154],"1151":36,"115161":168,"115237":63,"115238":79,"1153":141,"11530945":[165,196],"115337":157,"115588":69,"11567072":140,"1157":141,"11571171e":165,"116":[36,66,81,114,141,154,190],"1160":[29,30,138,141,154],"1160103":39,"11609933":79,"1162":141,"1163":141,"1164":141,"1166":[63,79],"11663747":79,"1167":141,"1168":[29,30,42],"116819":157,"116m":36,"117":[63,73,81,141],"1170px":125,"117140":127,"1171875":141,"11742":79,"1175":141,"117513":63,"117522":154,"1176":[129,192],"11761":60,"11770":25,"117788":127,"118":[50,63,79,81,141],"1180":[138,141],"1180160":[37,42],"1183":141,"1184":141,"1187":141,"118m":36,"119":[42,63,79,81,138,141,167],"11903076":140,"119048":39,"1191":[61,141],"11912291":140,"1192":141,"1196":164,"119621":29,"1197":156,"1197000":116,"1198":156,"11983416102879":167,"11988789":140,"1199":[141,172,173],"11anon_oac":180,"11th":46,"12":[14,22,25,36,38,39,40,42,43,45,46,50,51,52,53,54,55,56,61,63,68,69,71,72,79,81,85,88,97,98,106,114,116,121,124,125,126,127,132,138,139,141,145,146,154,155,156,157,159,161,164,167,168,169,175,179,183,184,190,198,201,202,205,206],"120":[14,38,39,62,66,81,97,132,138,141,165,196,205],"1200":[58,138,141],"12000":[131,164],"120000":[63,79,184],"1201":141,"1202":139,"1206":145,"1207":141,"120m":36,"121":[49,52,63,66,79,81,141,156,167],"121005085892223":81,"12108":60,"12109375":141,"1211":39,"121237":61,"1213":141,"121358":39,"12145947":121,"121669":[65,67],"1218":141,"1219000":116,"12195403":79,"121m":36,"122":[49,52,63,79,81,125,138,141,156,167,169,199],"1220":[33,138,141],"122021":39,"1222":141,"122411":39,"1225673588504812":68,"1227":141,"122784":39,"122785e":61,"12280441":140,"1229":141,"122m":36,"123":[14,52,81,97,125,138,141,156,164,184],"1232":141,"12326000":[116,190],"12335207e":165,"1234":[141,184,206],"123431":29,"12345":[39,175,184],"123456789":97,"123492":61,"1235":141,"123588":154,"1236":34,"1237":34,"1238":141,"1239":141,"123m":36,"124":[39,60,63,79,81,125,141],"1240":[138,141],"124210":39,"1245":141,"124505":39,"12452009":175,"124831":127,"125":[31,60,66,81,132,141,154,184,191,206],"1250":141,"1251":79,"125115":151,"1253":141,"1254":141,"125408":175,"125457e":61,"125479":39,"1259":44,"12592925e":165,"126":[39,63,79,81],"1260":138,"126299":39,"1264085":39,"12647":164,"12669":164,"1267":141,"12693":25,"12697628":124,"126m":36,"127":[61,68,81,135,138,141,154,167,194],"127304":79,"12733734668670776":68,"1274":[63,79],"127469":39,"1275":141,"1276":141,"127696":39,"1279":141,"127m":36,"128":[31,32,33,34,35,37,38,40,42,43,52,60,69,81,87,131,132,135,138,139,140,141,146,156,184,204],"1280":[62,138],"128188":157,"1284":141,"1285":141,"1286":141,"1287":141,"1288":126,"12882135":191,"1289":126,"12890625":141,"128n":32,"128x128":140,"129":[39,48,63,79,81,141,154],"1290":[126,141],"129009":127,"1291":[35,126,141],"129154":127,"12919":39,"1292":126,"1292794":140,"1293":141,"12934355":140,"12936294":140,"12944592e":165,"1295":141,"129527":39,"1297":141,"12985994":79,"1299":50,"12e4":[184,206],"12px":169,"13":[14,25,39,42,50,51,52,54,57,69,72,81,97,98,106,117,121,124,125,126,127,132,138,139,141,145,148,149,154,156,157,159,161,167,178,183,184,205],"130":[9,14,81,105,106,114,132,154,190],"1300":[56,138,167],"13000":131,"1300131294":[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,115,116,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,190],"1301":161,"13054062e":165,"1306":141,"130634":39,"1307":141,"130748":154,"1308":141,"130824":127,"1308242893220229":127,"13082429":127,"131":[29,66,81,169],"1310":141,"1311":141,"1312":141,"13129353e":165,"1313":141,"1315":141,"131562":126,"1316":39,"131667":39,"13168":79,"131688":154,"1317":141,"131741":39,"131m":36,"132":[29,42,50,60,81],"1320":[29,138],"1321":[126,141],"1322000":116,"1323":126,"1324":126,"132500":39,"132545":69,"13255":25,"13255345":121,"1326":[126,141],"13265":164,"1327":126,"1328":141,"1328125":141,"132931":39,"13299297":140,"133":[29,81,154],"13326":79,"133260":63,"1334":[46,141],"1338":164,"13390011":79,"133927":79,"133m":36,"134":[29,48,81,88,138,167,168,198],"1340":[138,141],"134156":39,"1342":132,"13436471":140,"1345":141,"1346":141,"13470853e":165,"135":[29,81,114,132,138,141,160,167,190],"1350":141,"135000":39,"135088":39,"135117":39,"1354":141,"1356":141,"135768":127,"1358":141,"1359":141,"135m":36,"136":[29,61,81,141],"1360":138,"1361000":[116,190],"1362":141,"136302":[65,67],"1364":141,"13671875":141,"1368":141,"13680487e":165,"1369099078838":[65,67],"136m":36,"137":[9,29,52,81,105,106,138,141,156],"1371":141,"137210":39,"13725491":140,"137321189738925e":121,"1376":141,"137600":127,"137m":36,"138":[29,81,127,138,141],"1380":138,"1382":141,"1385":141,"1386":[129,192],"1387":79,"1388":141,"139":[29,59,61,81,141,146],"1391":141,"139167":39,"1393":141,"1394":141,"13957641e":165,"1396":39,"1397":141,"1399":141,"139m":36,"14":[14,25,29,30,39,50,52,56,60,61,63,66,69,72,81,97,98,106,124,126,132,141,144,145,146,154,157,159,161,167,168,169,184,198,205,206,207],"140":[14,29,42,58,61,81,132,138,139],"1400":138,"14000":131,"140000":68,"1403671649831801":81,"1405":141,"1406":138,"140625":141,"1407":141,"140769":39,"140m":[36,42],"141":[29,81,138,141],"14100":184,"1411":[140,141],"1412":141,"141297":191,"1413000":39,"1413001":39,"1414":141,"14159":[184,185,206],"141592653589793":205,"1419":141,"142":[81,141,175,184,206],"1420":138,"1422":[63,79,141],"1425":141,"142543":79,"14260":68,"142721":69,"142m":36,"143":[48,81,138],"1430":141,"14318":61,"1432":33,"14322558":175,"1432780985872142341":123,"14355988":175,"1438":141,"1439":[141,145],"143m":36,"144":[48,66,81,115,138,178,183,190],"1440":[138,141],"144000":154,"1441":141,"1442":141,"144218":39,"1443":34,"1444":[34,141],"1445":[63,79,129,192],"14453125":141,"145":[29,30,65,66,67,81,122,132,157],"145394":175,"145m":36,"146":[66,81,122,125,157],"1460":138,"1461":[141,180],"1464":[126,141],"1465":126,"1466":[126,141],"1467":[63,79,126],"1468":[79,126,141],"1469":[126,141],"146m":36,"147":[48,66,81,122,125,141,157],"1470":[126,141],"147020":127,"147184":69,"147308":154,"1475":141,"14759957e":165,"147704":157,"147m":36,"148":[52,66,81,122,125,138,141,156,157],"1480":[138,141],"14812986":175,"1484375":141,"148495":[65,67],"1485000":[116,190],"148533":154,"14857187":157,"148572":157,"1488":141,"148822":[65,67],"148884":29,"14888888888888888":167,"148m":[36,42],"149":[62,66,81,122,141,157],"1490":[39,141],"149000":106,"1492":141,"1493":69,"149781":127,"1498":141,"14999":[63,79],"149995":191,"149m":[36,42],"14x14":32,"15":[3,14,18,25,31,32,33,37,39,41,42,50,51,52,53,54,55,56,57,59,60,62,63,66,68,69,72,79,81,88,97,106,109,116,124,125,132,138,140,143,145,154,156,157,159,161,164,167,169,178,184,190,198,205,206],"150":[7,14,40,48,52,62,66,72,79,81,87,88,122,132,137,141,151,157,159,168,198],"1500":[31,56,58,60,72,115,138,190],"15000":131,"150000":39,"150271":69,"1505":140,"1506":144,"1508":[134,141],"150800":79,"1508000":116,"150m":36,"150px":169,"151":[81,141],"1510":39,"1511":140,"151462":29,"1516198":79,"15172482":175,"151882e":61,"151m":42,"152":[35,81],"1520":138,"152049":154,"1521":141,"1522":141,"1523":141,"15234375":141,"1524":164,"1525":141,"15250298660326214":127,"15250299":127,"152503":127,"152508":69,"152570":127,"1526":164,"15262765526":63,"1527":141,"15280148e":165,"152m":42,"153":[42,81,138,141],"1530":141,"1531":141,"1532":141,"1533":164,"1536936":39,"153m":36,"154":[81,141],"1540":138,"15409465e":165,"1541":141,"1544":141,"1545":141,"1548000":116,"154m":36,"155":[81,132,138],"1555":[59,126],"1556":126,"1557":126,"1558":141,"155833":39,"155m":[36,42],"156":[50,81],"1560":138,"1561":126,"15611466e":165,"15625":141,"1563":126,"1564":126,"1565":126,"1566":141,"1567":[114,190],"156m":36,"157":[81,125,141,151,169],"1570":141,"1572":141,"1576":[39,141],"157729":[65,67],"15777777777777777":167,"157m":36,"158":[39,81,125,138],"1580":[138,141],"158123":69,"1583":141,"15858217e":165,"1586":126,"1587":126,"1588":126,"1589":126,"15895659":121,"159":[81,125,138,141],"1590":[126,141],"159000":[116,190],"15900736":140,"1593":141,"1594":141,"1594000":[116,190],"1595":[141,180],"159869":126,"1599":[50,141],"159m":42,"15e":121,"16":[14,25,29,30,31,32,33,37,38,39,42,45,46,48,50,52,53,56,58,60,61,63,64,69,79,81,97,98,106,107,115,124,127,132,135,138,139,140,141,144,145,146,154,156,157,159,161,164,165,167,168,169,175,178,179,180,184,190,191,196,198,205,206],"160":[29,30,81,121,125,132,138,141,178,179,180],"1600":[56,138],"16000":[60,116,131,190],"1600000":116,"1600x1200":164,"16015625":141,"1604":141,"1605":141,"1607":141,"160m":36,"161":[52,81,125,141,145,156],"16111":[59,198],"1611969":37,"1612":141,"1613889":37,"1614":126,"1615":126,"16158268e":165,"1616":[126,141],"161677":60,"1617":39,"1618":126,"1619":126,"161m":36,"162":[52,81,141,156,179],"1620":[126,138],"16200":59,"162016":157,"1621":141,"162308":39,"16259":61,"1626":180,"1627":[63,79],"16272558e":165,"162754":127,"162829":164,"1629":141,"162m":36,"163":[39,81,138],"1630":178,"1630251618197":[65,67],"1630537000":123,"1630544034":[123,192],"1632":141,"1635":141,"1636":79,"163636":121,"16368":42,"16384":42,"1639":61,"163m":36,"163mb":132,"164":[81,138],"1640":138,"164000":154,"1640625":141,"1641":141,"1644":141,"1645":141,"1646353":39,"16465":25,"164726":126,"1648":141,"1649":34,"164m":42,"165":[81,114,127,132,141,190],"1650":34,"1653":141,"1654":[79,180],"16578108":79,"1658":141,"165m":36,"166":[52,69,81,141,156,179],"1660":[138,141],"16622185":121,"1665":79,"16666667":191,"166667":39,"1669":39,"166m":[36,42],"167":[60,81],"1671":141,"167573":39,"1676":141,"1679":141,"16796875":141,"167m":42,"168":[81,115,190],"1680":138,"1682":141,"1683":[129,141,192],"16837":79,"1685":141,"1686":141,"1687":141,"1688000":[116,190],"168m":36,"169":[42,81,138,141],"1690":[129,192],"1691":50,"1692":141,"16928":54,"16933":164,"1694":179,"1695":[141,179],"1696":179,"1697":179,"1698":179,"169811":154,"16997346e":165,"16x16":140,"17":[14,25,35,37,39,50,52,57,59,60,61,63,69,79,81,97,106,107,124,132,138,141,145,151,154,157,159,161,167,168,169,178,179,180,184,186,198,205,206],"170":[50,81,132],"1700":138,"17000":131,"1703":[141,144],"170312":191,"170446e":61,"1706":140,"1709":141,"170m":42,"171":[81,138],"1710":141,"17111912":140,"171160":69,"1712":[141,180],"1713":141,"1715":39,"17176609":140,"17176777":140,"1718":141,"171823":127,"171833":126,"171875":141,"171909":61,"172":[60,81,146],"1720":[138,141],"1723000":116,"17233455":140,"17238052":140,"1725":[63,69,79],"17259929":140,"172664":69,"17296777":124,"172m":[36,42],"173":[59,66,69,81,138,168,198],"1730":69,"1731":141,"17312490e":165,"173211":[65,67],"173287":126,"1733":141,"17338595e":165,"173400":79,"1736":138,"1738":178,"17387827e":165,"1739":178,"173m":36,"174":[39,69,81,138,141],"1740":[138,178],"1741":[141,178],"1742":[141,178],"174330":39,"174333":127,"1745":141,"1747":39,"1748":141,"17482":25,"174871":168,"1749":141,"174m":[36,42],"175":[81,132,138,191],"1750":141,"175000":39,"175135":154,"1752":141,"1757":180,"17578125":141,"175833":39,"175m":39,"176":[60,81,121],"1760":138,"1760000":116,"176114":69,"1762":164,"176277":39,"1764":141,"1765":141,"17684239e":165,"176m":[36,39,42],"177":[63,79,81,138],"1770":141,"177000":154,"17725185":140,"1775000":116,"1776":164,"1777":164,"1779":[129,192],"177m":[36,39],"178":[68,81,141],"1780":138,"1782":113,"1784":156,"178449":61,"178456":39,"178497":168,"178542":69,"17865972":140,"1787":35,"17878":163,"1788":[141,164],"178830":127,"17889":25,"178930":61,"17897":61,"17898":61,"178m":[36,39,42],"179":[81,141],"1790":[65,67],"179056":39,"179175":127,"1792":37,"1795":141,"179603":69,"1796875":141,"1798":141,"179800":[63,79],"179m":[36,39],"18":[14,25,37,39,50,52,53,56,59,60,61,63,64,69,79,81,82,97,106,121,124,132,138,139,141,145,146,151,154,161,167,178,183,185,192,200,205],"180":[81,117,121,132,137,138,165,196],"1800":138,"18000":131,"1800000":116,"180088":39,"1803":141,"18036583":140,"1805":141,"1806":141,"1807":141,"1808":141,"180833":39,"180m":36,"181":[81,138],"1810":141,"181033e":61,"1811":141,"1811000":116,"1812":141,"181231":126,"181408":29,"181500":68,"1817":[35,141],"18175551":140,"181916":39,"181m":[36,39,42],"182":[81,121],"1820":[138,164],"182097":168,"18215":25,"1823":141,"1825":35,"1827":141,"1827000":116,"182729":168,"182m":[36,39],"183":[39,81,138,141],"183150":157,"183575":126,"183580":29,"18359375":141,"1836":141,"1836633":39,"183705":127,"1839":141,"18390":[63,79],"183m":[36,39],"184":[81,121,141],"1840":[138,141],"18421":25,"184320e":69,"1847":141,"1848000":116,"18496":[37,42],"184m":[39,42],"185":[44,58,81,121,125,132],"1852":141,"185209":127,"1855":34,"18557502":[63,79],"1856":[115,141,190],"1857":141,"18575038e":165,"18576":[63,79],"1858":34,"1858320":138,"185946e":61,"185m":[36,39],"186":[50,52,63,79,81,141,156],"1860":[79,138],"1862":141,"1864":35,"18677":79,"186868":127,"1869":141,"186m":39,"187":[81,138],"1871":79,"18714815":140,"18717328":140,"1872":141,"1872000":116,"1874":[30,129,192],"1874428":140,"187449":29,"1875":[30,132,141],"1875693":39,"18772155":79,"18781619":140,"1879":141,"187m":39,"188":[81,121,138],"1880":[1,138,141],"188054e":61,"1882":[39,141],"188339":127,"1885":141,"18851821":140,"18876416":42,"1889000":116,"188m":[36,39,42],"189":[81,121,138,141],"189083":127,"1892":141,"1893":141,"1896":141,"18965517":79,"1897":29,"1899":141,"189m":[36,39],"18th":113,"19":[39,42,50,52,61,63,69,73,81,82,97,106,117,124,127,132,139,141,145,151,152,154,167,178,185,188,189,191,198],"190":[42,58,63,79,81,132],"1900":138,"19000":131,"190222":39,"1904":[138,144],"19053":25,"1906":156,"19071257e":165,"190787":127,"1908":[35,141],"190m":[39,42],"191":[81,138,145,146],"19105823":140,"19126407":39,"19140625":141,"1915":141,"19157667":79,"191m":[36,39],"192":[61,72,81,115,132,190],"1920":[37,138],"1920000":116,"1921":141,"1923":35,"192380":39,"1925":141,"1926":35,"19269777":79,"1927":35,"1929":35,"192m":39,"193":[81,138,191],"1930":[114,141,154,190],"193100":79,"193137":29,"193203":39,"1933666654":[114,190],"1936":7,"193633":157,"1939":141,"193m":[36,39],"194":[81,121,169,205],"1940":[35,138],"1941":141,"194167":39,"1943":[30,145],"1944":141,"1944000":[116,190],"1945":141,"194532e":39,"19460641":140,"19464949":140,"194763":39,"1948":35,"1949":169,"194m":[36,39,42],"195":[52,65,67,81,132,156],"1950000":116,"195256":39,"1953125":141,"1954":[69,141],"1954000":116,"19541375872382852":167,"1955":[141,169],"19552860":191,"1956":169,"1957":69,"1959":[65,67,174,203],"195m":[36,39],"196":[52,81,138,141,156],"1960":[35,138,169],"196015":126,"1963":61,"1964":141,"1965":[65,67,69],"19651127":191,"196923":39,"196m":[36,39],"197":[52,81,121,141,156],"1970":39,"1972":[117,141,188],"19722e":138,"1973":141,"197317":81,"1974":[35,117,141],"197m":[36,39],"198":[60,81,138,141],"1980":[138,149],"1981":[69,141],"198168":127,"198279":39,"1984":[69,141],"198667":[66,88],"199":[69,81,121,138,179],"19902":25,"19903924":140,"1991":[141,185,207],"1992":[52,61],"19921875":141,"1993":[61,117,188],"199305":154,"19932988e":165,"1994":156,"1995":61,"1996":[51,54,117,141],"1997":[52,174,203],"1998":[51,54,116,117,144,154,190,193],"199833":61,"1999":[116,160],"1999000":116,"199m":[36,39,42],"1\u0435":159,"1_bar":135,"1d":[39,45,46,59,127,136],"1e":[14,32,35,42,73,87,97,133,135,138,139,144,150],"1e10":[165,196],"1e6":[165,191,196],"1f":[34,47,48,49,50,53,66,115,167,173,190,204],"1h":[63,79],"1m":132,"1min":198,"1pjb":39,"1px":169,"1s":[29,36,50,63,79,167,174],"1st":[7,14,18,22,38,56,124,131,132,169],"1stflrsf":56,"1u":39,"1x":[144,184],"1x1":139,"1x3":42,"1xcxhxw":144,"1xfhxfwx":144,"1xfhxfwxna":144,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,43,44,47,48,49,50,57,61,65,66,67,68,69,70,72,79,81,82,83,87,88,97,98,99,100,101,105,106,113,114,115,116,117,119,121,122,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,154,155,156,157,159,160,161,164,165,166,167,169,171,172,173,174,175,176,178,179,180,182,183,184,185,197,198,199,201,203,204,205],"20":[7,9,14,18,29,30,31,32,34,35,38,39,40,41,42,46,49,50,51,52,54,55,56,57,58,59,60,61,62,63,65,67,68,69,71,79,81,82,85,88,97,105,106,109,113,114,119,121,124,125,126,127,132,137,138,139,140,141,145,146,148,150,151,155,159,167,168,169,180,183,185,190,191,198,199,204,207],"200":[17,31,39,48,50,52,54,55,56,58,62,66,69,81,87,106,121,125,126,132,137,138,140,141,155,165,167,168,183,196,198,204],"2000":[14,36,56,60,114,116,127,131,138,146,167],"20000":[14,116,131,132,185],"200000":169,"2000x1500":88,"2001":[116,152],"200126e":39,"2002":[36,116],"2003":[116,146],"2004":[116,169,191],"2005":[116,138,141,146,169],"2006":[68,116,149,167],"200611":39,"2007":[68,116,117,188],"2008":[52,68,116,169,191],"2009":[50,116,141,152],"201":[39,60,81,121,125,126,141],"2010":[116,126,146,183],"2011":[116,146,160],"2012":[69,116,125,126,146,191],"20123":125,"2013":[31,69,117,126,146,149,188],"20130101":126,"20130102":126,"20130104":126,"2014":[59,69,139,146,154,191,194],"2015":[22,107,139,146,152,154,186],"2016":[52,58,146,154,160,174],"2016000":116,"2017":[113,125,146,150,154],"2018":[39,47,49,50,97,98,117,129,141,146,154,183,184,185,188,192,205],"2019":[17,117,129,141,146,148,150,154,188,192],"2019\u7248\u5b89\u88c5\u6559\u7a0b":39,"201m":[36,39,42],"202":[81,125,126,127,138],"2020":[1,14,39,56,59,97,117,119,125,129,132,138,141,148,151,152,154,188,192],"2020060289":14,"2021":[1,39,69,107,117,123,141,144,186,187,188,192],"2022":[14,113,117,119,148,149,150,178,179,186,187,188,192,207],"2023":[25,39,97,125,126,127,144,187,189,192],"2024":[73,125],"2025":117,"202500":39,"2026":125,"2028":141,"202895":39,"202m":[36,42],"203":[81,121,125,126,127,138],"2030":[107,125,152,186],"203125":141,"2033":[35,125],"2033000":[116,190],"203450":39,"203488":39,"2035":[65,67],"20350":125,"203578":157,"2037":141,"20370":125,"203848":39,"203m":36,"204":[34,60,81,121,125,126,127,141,175],"2040":[138,141],"20433":79,"20439573":140,"204445":39,"2045":141,"20453655e":165,"204565":39,"2048":[32,37,42,140],"2048n":32,"205":[34,60,81,121,125,126,132,141],"2050":[114,190],"205000":39,"205244":157,"2053":141,"2054":141,"2055":141,"2056":[72,141],"206":[60,81,125,126,154],"2060":138,"2061":[63,79,141],"2062":34,"2063":[72,141],"20635":79,"20636":79,"20637":79,"20638":79,"20639":79,"2064":63,"20640":[63,79],"2065":183,"20663297":140,"206881":[63,79],"2069":141,"206937":[65,67],"206m":36,"207":[36,60,81,125,138,141],"2070":141,"207025":126,"20703125":141,"207495":39,"207526":127,"207758":154,"207m":[36,39],"208":[60,81,125,126,138,141],"2080":138,"208342":154,"208500":68,"208516":39,"20876306":167,"2089":141,"208969":39,"20899203":140,"209":[60,81,121,138,141,183],"209111":127,"209312":172,"209435":39,"20944":14,"2095":88,"20964977e":165,"2099":39,"209m":[39,42],"20a":[125,126,127,183],"20adolesc":183,"20adult":183,"20age":183,"20algorithm":168,"20an":183,"20and":183,"20are":183,"20break":183,"20c":125,"20child":183,"20column":[125,126],"20construct":183,"20df":[125,126,127],"20df1":126,"20dfd":126,"20differ":168,"20dropna":125,"20dtype":126,"20elif":183,"20els":183,"20exampl":168,"20factor":183,"20fals":126,"20fell":183,"20find":183,"20for":183,"20from":168,"20gemi":36,"20get_age_group":183,"20how":125,"20if":183,"20in":183,"20index":[125,126,127],"20io":[125,126,127],"20lambda":126,"20left_on":125,"20list":126,"20loop":183,"20lsuffix":125,"20n":183,"20name":125,"20none":125,"20np":[125,126,127],"20numpi":[125,126,127],"20of":168,"20on":125,"20outcom":168,"20panda":[125,126,127],"20pd":[125,126,127],"20period":126,"20prime":183,"20print":183,"20px":169,"20random":126,"20rang":[125,183],"20right_on":125,"20rsuffix":125,"20scikit":168,"20speed":125,"20th":57,"20the":168,"20through":183,"20true":126,"20use":183,"20verileri":36,"20without":183,"20x":183,"20x_rang":183,"21":[14,29,39,50,61,63,69,71,73,79,81,85,97,98,106,107,124,127,132,141,143,151,167,168,169,178,179,183,185,198,205],"210":[81,121,125,132],"2100":138,"210113":39,"21018933e":165,"2103":141,"210418":127,"210424":39,"2105":141,"2107":141,"2109":141,"2109375":141,"211":[52,81,167],"2112000":[116,190],"2115":141,"2116000173":145,"211667":39,"2117":141,"211714":39,"211771":39,"21178094e":165,"2118":141,"212":[42,81,141],"2120":138,"2122":72,"212514":39,"212563":39,"212626":39,"2127":[63,79,141],"21271446":140,"212782":39,"212m":[36,39],"213":[39,81,121,138],"21351941":140,"2137":141,"21384971":140,"214":[81,141,164],"2140":138,"214141":39,"2144":141,"2145":141,"214693":39,"21475352":167,"214756":39,"2148":[115,190],"214824":39,"21484375":141,"2149":141,"215":[81,121,132],"215058":39,"2152":72,"2153":164,"2155":141,"215534":127,"2156":141,"215643":39,"21567622":167,"215682":63,"21578029":79,"2158":141,"215m":36,"216":[81,141,184],"2160":[35,138],"216000e":69,"216148":39,"216332":127,"216719002155":167,"2169":[63,79],"216924":39,"217":[81,138,151],"2173424":39,"2174":[69,72],"217478":39,"2175":141,"2176":141,"217739":39,"2178":141,"218":[81,138],"2180":[79,138],"21806371":167,"218161":[65,67],"218187":127,"218217":39,"21836272":140,"218509":154,"218612":39,"218684":69,"21875":141,"218966":39,"219":[63,79,81,121,141,167],"2190":39,"219318":126,"219367":39,"219453":157,"219544":39,"2196":141,"2197":35,"2198447506":205,"219m":36,"22":[14,39,42,48,50,52,56,61,63,69,79,81,82,115,117,124,125,126,127,132,138,140,146,151,159,161,167,169,183,185,188,190,192,205],"220":[39,60,81,121,132,138,141,183],"2200":138,"22000":116,"22003671e":165,"220173":39,"2202":141,"2203":141,"2204":141,"220500":154,"22065768e":165,"2207":141,"2208":141,"22083016e":165,"2209":141,"220m":36,"221":[81,121,138,141],"22102":79,"2212":69,"2216":69,"2217":141,"2218":141,"221846":39,"2219":[79,141],"221956":69,"22199004":79,"221m":36,"222":[33,81,138],"2220":138,"2222":141,"222222":121,"222298":154,"222337":[65,67],"2224":141,"22265625":141,"223":[39,61,79,81,141],"223238":175,"223393":126,"2235":141,"223500":68,"223854":39,"2239":69,"223910":39,"224":[42,69,73,81,141],"2240":[69,138],"2241":141,"22426":25,"2243":141,"2246467991473532e":205,"224m":36,"225":[81,132,141],"2250":141,"2251":141,"2254":79,"2255":141,"2259":141,"226":[81,138,141,173],"2260":138,"22615":164,"226218":126,"2265":141,"2265625":141,"226722":175,"2268":141,"226930":127,"227":[81,138,141],"227031":39,"2272":141,"22740589":175,"227546":39,"2278":141,"228":[81,141],"2280":138,"228077":29,"228120e":39,"2282":141,"2284":[115,190],"2287":141,"2288":141,"229":81,"2290":141,"2291":141,"2292":141,"2293":141,"229673984":39,"229679":69,"22a":[125,127],"22b":[125,127],"22bar":127,"22boolean":126,"22c":[125,127],"22d":127,"22flag":127,"22foo":127,"22golden":183,"22one":127,"22one_trunc":127,"22two":127,"22type":125,"22you":183,"23":[14,39,48,50,63,69,73,79,81,82,97,114,115,124,132,138,141,151,154,167,169,178,183,184,190,192,205],"230":[61,81,132,141,173],"2300":138,"23000":116,"230000":39,"230038":127,"23046875":141,"230769":39,"230m":[36,39],"231":[39,81,121,138,141,167],"2310":141,"2313":141,"231342":39,"23157000":[116,190],"231640":39,"23170093":79,"231768":39,"2318":141,"232":[60,69,81,138,141,167,172],"2320":138,"2322137":121,"2326":141,"2327":141,"2328":141,"2329":141,"232m":36,"233":[81,138,141,172,183],"2332":141,"2333":141,"2334":141,"2335":141,"23356147e":165,"234":[81,141,172],"2340":[138,141],"234330":39,"234368":29,"234375":141,"234571":61,"234867":127,"234978":131,"234m":36,"235":[63,79,81,132,138],"235074":126,"2353":141,"2354":141,"235449e":39,"2355":141,"235636":39,"2357":141,"236":[81,138,141,173],"2360":[138,141],"236000":39,"2360000":116,"23606797749979":97,"2361":141,"2364":141,"2365":141,"2366":141,"2367":141,"2369":141,"237":[39,81,138],"237185":39,"2373":141,"2376":141,"237692":39,"2377":141,"2378":141,"2379":141,"238":[81,138,141,173],"2380":[138,141],"2381":141,"238202":126,"2383":141,"2384":[63,79],"238462":39,"2385":141,"2386":141,"2387":141,"2388":141,"2389":141,"239":[81,138,141],"239001e":61,"2392":141,"2394000":116,"2395":141,"2396":141,"2397":141,"2398":141,"239m":36,"24":[14,32,39,42,50,51,54,60,61,63,69,79,81,82,107,124,125,127,132,141,142,150,151,159,167,169,178,179,180,186],"240":[81,132,138,141],"2400":138,"24000":116,"2401":[63,79,141],"2403":141,"2404":141,"2405":164,"2408":141,"2409":141,"241":[81,138,141],"2411":141,"241108":79,"241287":39,"2413":141,"241492":127,"24153448e":165,"2416":141,"2417":72,"2418":141,"2419000":116,"242":[81,141],"2420":138,"242098":154,"2421875":141,"242225":61,"242289":69,"2426":141,"2427":141,"243":[52,81,156],"243032":126,"2430a9896ce5":[123,192],"2433":141,"243338e":39,"243422":39,"2435":141,"243534":39,"243875":39,"244":[52,81,138,156,172],"2440":138,"244215":39,"2443":141,"2444":39,"2446":141,"244655":39,"2447":[141,171],"2448":171,"244898":157,"244950":69,"245":[81,132,138,141,151],"2450":141,"2451":141,"2455":125,"2457":125,"2458":125,"245820":39,"24591009185":79,"24597409e":165,"246":[81,141],"2460":[125,138,141],"246046":39,"24609375":141,"2461":125,"2462":125,"2463":125,"2465":141,"247":[81,138,141],"2472":141,"2474":125,"2475":[125,141],"2477":141,"2479":141,"247m":36,"248":[81,139],"2480":[138,141],"2481":141,"2483":141,"2484227":37,"2486019":37,"2488":141,"2489":141,"249":[65,67,81,141],"2495":141,"24968114e":165,"2498":141,"24c5":32,"25":[7,14,31,32,36,37,38,39,40,41,43,50,51,52,54,56,57,60,61,63,66,69,79,81,87,88,97,98,106,121,124,125,127,132,134,137,138,141,145,146,151,154,156,159,160,163,164,167,178,179,180,183,184,185,191,199,201,202,204,205,206,207],"250":[34,60,62,81,132,141,145,167,169,207],"2500":[138,161],"25000":116,"250000":[39,66,68,69,164],"2503":141,"250448":39,"2505":141,"250522":29,"251":[81,138,141],"2513":141,"251354":69,"25173":69,"252":[61,81,138],"2520":138,"2520000":116,"2522":141,"2524":141,"2525":[69,141],"252580":126,"2526":141,"2528":141,"2529":141,"252973836909085":81,"253":[81,141],"253000":116,"2532":141,"25355796912855305":126,"253558":126,"253611":169,"2537000":116,"25390625":141,"254":[52,81,141,156],"2540":138,"2547":39,"255":[29,30,31,32,35,37,41,42,43,49,72,73,81,131,132,133,134,138,139,140,204],"255000":154,"2555":141,"25551336":167,"2556":141,"255880":127,"2559":141,"256":[31,32,33,34,37,38,39,40,42,60,62,64,81,124,131,134,135,138,139,140,144,163,164,172,194,204],"2560":138,"256217e":61,"256221e":61,"25641564":140,"2568":141,"256952":39,"256n":32,"256x256x3":124,"257":[81,138,205],"2574":[63,79],"2577":141,"257736":127,"257740":29,"2578125":141,"257990":127,"258":[37,40,81],"2580":138,"258394":127,"258445":[65,67],"2586":141,"2586000":116,"25863":169,"2587":141,"259":[39,61,63,69,79,81,138],"2593":141,"259303":126,"2599":141,"259m":36,"25th":56,"26":[39,50,52,60,61,66,69,79,81,116,124,125,132,138,141,151,156,161,167,178,179,180,185,188,191,200],"260":[39,81,132,138],"2600":[39,63,138],"260000":[9,105,106],"260882":69,"260c2de0a050":193,"261":[81,141],"26129238e":165,"2613":[54,141],"26150":79,"2617":141,"26171875":141,"26190327e":165,"262":[69,81,141],"2620":138,"262048":39,"262207":39,"2624":141,"2625":141,"2629":141,"263":[81,138,141],"2631":[63,79],"263611":127,"263694e":39,"263863":39,"2639":141,"264":[66,81,141],"2640":[39,138,141],"264342":127,"26448193":191,"264598":69,"264700":[63,79],"265":[35,52,81,132,138,141,156],"265056":[65,67],"265412":154,"26541833":79,"265625":141,"2659":141,"26590556":124,"265909":164,"266":[60,81,141],"2660":138,"2661":138,"2664":141,"2664364997":64,"26646":69,"2666666666666666":14,"267":[81,138,178],"2670":141,"267009":138,"267059e":61,"2671":141,"2672":141,"2673":141,"2674":[141,164],"2677":141,"268":[81,138,141],"2680":138,"268016":29,"2681":141,"2687":141,"269":[60,81,138,141,146,173,204],"2692":141,"26953125":141,"269534380":127,"269573":61,"269898":126,"27":[39,48,50,52,60,63,69,81,124,125,132,138,141,150,156,164,167,169,178,183,184,188,206],"270":[81,132,141,178,179,180],"2700":[138,169],"27000":[116,190],"2701":141,"27017952":79,"270551":39,"2706":141,"270833":39,"2709":141,"271":[39,81,138],"2710":141,"2713":141,"2716":141,"271796":39,"2719":141,"272":[81,138,141],"2720":[138,154],"2723":79,"27242692e":165,"2725":[141,145],"2727":141,"27298934":79,"273":[81,141,160],"273000":79,"2732":141,"27342931":[63,79],"2734375":141,"27358504939668":81,"2738":141,"274":[61,81,138,141,178],"2740":138,"274082":[65,67],"274170":127,"27437630e":165,"2744":72,"274785":69,"275":[81,132,141],"2751":39,"2752":141,"2753":141,"2759":141,"276":[81,138,141],"2760":138,"2761":141,"2763":141,"2768":141,"276923":39,"277":[79,81,138],"277078":63,"277273":164,"27734375":141,"277392":29,"27745":79,"277600":39,"2778":79,"277851":127,"278":[79,81,138,141],"2780":[138,141],"27811128e":165,"2784":79,"2785":79,"2787":141,"279":[63,79,81,141,180],"2794":141,"279818":69,"28":[29,30,32,39,41,43,49,50,52,59,61,63,69,71,72,79,81,85,87,89,97,121,124,125,126,127,131,132,141,142,145,152,156,161,167,169,178,183,185,194],"280":[39,63,79,81,126,132,138,141,178,179,180],"2800":138,"280110":69,"280556":126,"2807":141,"2809":[50,141],"2809000":116,"281":[39,81,125,127,138,178],"2810":[125,126],"28109":25,"28125":141,"281427e":39,"2815":141,"2816":141,"2819":42,"282":[81,138,183],"2820":[138,164],"2824":141,"282471":126,"28255050e":165,"283":[81,183],"2831":141,"2832":141,"28327":25,"283273":69,"2833":[141,161],"283431":126,"2836":141,"2838":141,"283m":36,"284":[42,81,138,141],"2840":[138,141],"28433":25,"2846":42,"284838":127,"284887e":69,"2849":141,"284m":36,"285":[81,126,132,138],"2850":183,"28515625":141,"28528881e":165,"2854":141,"2855":141,"28566":[63,79],"28571428571428414":167,"285843":29,"28585348":167,"286":[81,126,138,155],"2860":[138,141],"286283":127,"286619":127,"287":[81,126,138,141],"287105":69,"288":[39,81,141],"2880":[138,141],"288084":126,"2881":164,"2882":141,"288m":36,"289":[50,81,171],"2890625":141,"28924647e":165,"289547":69,"28964":25,"28964919e":165,"28age":183,"28arrai":125,"28by":125,"28d":127,"28df2":125,"28l":125,"28level":125,"28list":126,"28n":183,"28np":126,"28other":125,"28rang":126,"28x":126,"28x28":[29,30,32,43],"29":[14,25,39,50,52,60,61,63,69,79,81,97,124,125,126,127,132,141,156,167,169,178,179,180,183],"290":[81,132,141],"2900":[60,138],"290224":69,"2904":141,"29040966":167,"290833":39,"29098517e":165,"291":[81,141],"2911":141,"2915":141,"2916":141,"2919":141,"291m":36,"292":[81,115,141,190],"2920":138,"292181e":61,"2922":141,"292669":[65,67],"29296875":141,"293":81,"2933":141,"2938":[65,67],"293846":39,"29399768":167,"294":[39,81,138,141,167],"2940":138,"294307":69,"294314":127,"2945":141,"295":[63,79,81,132,141],"2950":72,"295040":37,"29513185":79,"295168":[37,42],"2954":141,"296":[81,138,141],"2960":138,"2962":141,"2963":141,"2966":141,"296875":141,"29691915e":165,"296m":36,"297":[81,138,139,141],"2971":141,"2974":141,"2975":141,"2976":141,"2977":141,"297727":164,"2978":141,"298":[81,138],"2980":138,"2982":72,"298650":127,"298750":154,"299":[52,79,81,106,138,141,156],"2995":141,"2998":39,"2\u5347\u7ea7\u8865\u4e01":39,"2_2":131,"2_intro_to_tensorflow_for_deeplearn":45,"2_k":137,"2_p":135,"2_q":135,"2a":140,"2b":140,"2c":140,"2d":[1,33,45,88,114,115,127,135,165,168,178,180,198],"2d2d2d":169,"2e":135,"2f":[18,52,121,132,146,155,159,161,167],"2fe":156,"2g4adil3rc2ig":61,"2j":[124,184,206],"2m":[39,50,132,143],"2n":69,"2nd":[18,22,38,56,66,124,126,131,132],"2ndflrsf":56,"2p_":52,"2s":[35,37,63,72,144,167,198],"2urviv":161,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":61,"2vtlmaj":87,"2x":[59,80,175,184],"2x_i":[80,175],"2xbdtm2l70p":61,"2yf":160,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,39,41,42,43,46,48,49,50,53,61,64,65,66,67,68,70,72,73,76,80,81,83,87,88,89,97,98,99,101,105,106,111,113,114,115,116,117,118,121,122,123,125,126,127,129,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,154,155,156,157,159,160,161,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,192,196,198,199,201,202,203,204,205],"30":[7,14,18,32,36,39,41,49,50,51,52,53,54,57,58,61,62,63,64,65,67,68,73,81,97,98,106,109,114,115,124,125,127,132,133,141,146,151,154,156,159,160,165,167,169,183,184,185,190,191,196,199,201,202,205],"300":[18,51,54,55,56,81,132,138,151,159,160,165,167,183,196],"3000":[14,18,56,131,138,141,175],"30000":[14,116,200],"300000":[66,88],"3000000000":185,"300000012":163,"3005":141,"30078125":141,"30082566":167,"300k":152,"300px":[140,169],"301":[39,81,141],"3010":141,"301227":126,"3014":[63,79],"3015":141,"3019":141,"302":[39,81,138],"3020":138,"3022":141,"3028":141,"302842":127,"303":[81,138],"303347":39,"304":[81,138],"3040":138,"3046875":141,"304888":[65,67],"3049":141,"304m":36,"305":[69,81,132,141],"305006":127,"3054":141,"3055":141,"306":[81,138],"3060":138,"3064":141,"3067":141,"306m":36,"307":[81,138],"3071":[141,164],"3075":141,"307562":69,"3078":141,"307m":36,"308":[81,138,141],"3080":[138,141],"3081":141,"3082":141,"3085":141,"30859375":141,"3086":141,"3087":141,"3089":141,"309":[37,81,138],"30927452":79,"30957512":79,"30990":25,"309988":127,"30px":169,"31":[1,39,50,52,59,61,71,79,81,85,97,106,124,132,138,141,151,154,167,168,169,198,200],"310":[81,132],"3100":[60,138,141],"310158":126,"3103":72,"310353":69,"3105":141,"3106":141,"3107":141,"3109":141,"310943":127,"311":[81,138,141],"3111":141,"3112":141,"3113":141,"311377":29,"3116":141,"31168387":79,"3117":141,"312":[51,54,81],"3120":[138,141],"312037":81,"312196":69,"3125":141,"3127":164,"3128":141,"313":[72,81,132,138],"3131":141,"3133":141,"3134":141,"313765e":39,"314":[39,81,138],"3140":[138,141],"3141":141,"3145":141,"3146":141,"31461064e":165,"3148":[115,190],"3149":[63,79],"31491977":121,"315":[81,121,132,138],"315000":39,"31501":126,"3159":141,"316":[81,141],"3160":138,"3161":141,"3163":141,"31640625":141,"316667":39,"3168":141,"317":[81,138,141],"3170":141,"317157":127,"31722824e":165,"3177":141,"3179":141,"317m":36,"318":[39,81,126,138],"3180":138,"3181":141,"3184":141,"31856":25,"318823":29,"319":[81,126,138,141],"3191":141,"3196":141,"31t19":123,"32":[29,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,50,52,57,60,63,65,67,73,79,81,87,97,109,124,132,135,138,139,140,144,151,156,167,183,184,205],"320":[30,39,40,81,126,132,138,159,171],"3200":138,"32000":[60,116],"3202":141,"3202614379084967":175,"3203125":141,"3204":72,"3208":141,"320833":39,"321":[69,81,138,167],"3210":141,"321097":29,"32137599":167,"322":[39,63,79,81,126,138,141,167,204],"3220":138,"32208":39,"3224000":116,"322403":127,"322500":39,"322727":164,"3228":[72,141],"323":[81,167],"3230":35,"323328":61,"3234":141,"3235":141,"3238":141,"324":[81,167],"3240":138,"3242":141,"32421875":141,"3245":141,"3246":141,"3248":141,"32483282e":165,"3249":141,"325":[81,125,132,138,141,167],"3252":[63,79],"325288":126,"3255522":[184,206],"32561":53,"326":[39,81,125,141,167],"3260":138,"3261":141,"326460":[65,67],"326667":39,"32674535":[63,79],"3269":141,"326m":36,"327":[81,125,138,141],"3270":141,"327500":39,"327920":69,"328":[39,81,125,138,141],"3280":138,"328086e":39,"328125":141,"328316":69,"328333":39,"3285":141,"3286":141,"3288":141,"328865":164,"3289":61,"328947":121,"329":[39,81,125,138,141],"3291":141,"32911502e":165,"329167":39,"3293":164,"329816":39,"32995317":167,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[33,139,140],"33":[39,50,52,61,63,69,79,81,124,125,132,138,141,146,151,156,165,167,175,179,182,196],"330":[79,81,125,132],"3300":138,"3300000":[116,190],"3301":141,"3306":[61,141],"3308":141,"3309":141,"331":[81,125,138,141],"3310":[114,190],"331000":154,"33107226e":165,"33146":126,"3316":141,"3319":141,"331m":36,"332":[81,138,141],"3320":138,"33203125":141,"3323":141,"332354":60,"3326":141,"3327":141,"333":[32,81,184,206],"3331":141,"33318591117858887":50,"3333":141,"333333":[39,125],"333701":154,"3338":141,"333884":29,"3339440331":198,"334":[81,141],"3340":138,"33416821":79,"3342":141,"334288":81,"334530":69,"3346":141,"3349":141,"335":[81,132,138,141],"3357":141,"3359375":141,"336":[81,138],"3360":138,"336000":116,"336342":[65,67],"336728":127,"337":[69,81,138,141],"337128":127,"33712844":127,"33712844318932483":127,"337692":39,"3377000":116,"3378712":79,"3379":141,"33790572910997085":126,"337906":126,"338":[42,81,138],"3380":138,"33812285":[165,196],"338224":29,"33837964e":165,"3385":141,"338905":126,"338m":132,"339":[79,81,141],"3394":141,"339513":69,"33984375":141,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":61,"34":[39,50,52,60,61,63,66,79,81,98,116,124,132,138,141,156,167,183,184,185,206],"340":[81,132,138],"3400":138,"3404":141,"3406":141,"340769":39,"341":[81,138,141],"34110223":79,"3412":141,"3413":138,"341300":[63,79],"3414":141,"341511":127,"34158395":121,"341649":61,"342":[81,138],"3420":138,"342200":[63,79],"3425":141,"343":[81,141,184],"343158e":127,"3432":42,"3435":42,"3436":141,"343718":127,"34375":141,"34376245":124,"3439":42,"344":[39,81,141],"3440":138,"3443":72,"3444":141,"3445000":[116,190],"344698":63,"344828":121,"345":[33,79,81,132,138],"3455":141,"3459":37,"346":[81,141],"3460":138,"3468":141,"3469":42,"346952":127,"347":[81,138],"3471":141,"347113":127,"3474":42,"3475":42,"34765625":141,"3477":141,"348":[81,138,141],"3480":[138,154],"3482":42,"3483":141,"349":[79,81,138,141],"349388":39,"349603":69,"3497":141,"349751":29,"35":[14,31,36,39,50,63,71,79,81,85,98,124,132,140,141,159,161,167,169,179,184,206],"350":[81,125,132,141,183],"3500":[63,138,184],"35000":[116,184,206],"350000":[66,88],"3502":141,"3505":42,"350816":29,"3509":141,"351":[81,138],"3510":141,"35119":25,"3513":141,"3514":141,"3515625":141,"3516":164,"3519":[61,141],"352":[81,138],"3520":138,"352100":[63,79],"3522":141,"352222":169,"3525":42,"352877":127,"353":[81,141],"35303":69,"353293":127,"3537240779558":[65,67],"354":81,"3540":138,"35410":25,"3544":179,"354534":127,"3548":141,"355":[81,132,138,141],"3554":164,"35546875":141,"3555":141,"35554":79,"3557":141,"3558":141,"356":[79,81,138,141],"3560":138,"356047":69,"35656222554887711":[184,206],"357":[81,138],"3571":141,"357417":69,"35751418e":165,"357935":69,"358":[81,138,168,198],"3580":[61,138],"358500":[63,79],"359":[81,138,141],"359375":141,"3595":141,"3596":141,"35979533e":165,"35991534e":165,"35e3":[184,206],"35m":30,"36":[36,39,50,52,65,67,79,81,105,124,125,132,141,167,184,205,206],"360":[34,68,81,132,138],"3600":[138,154],"36000":116,"3605":141,"360555e":127,"360769":39,"3609":42,"360m":36,"361":[81,138,168,198],"3611":141,"36114314":175,"3612":141,"36155096":157,"361551":157,"36159148":167,"3617":72,"36178972e":165,"3618":141,"3619":141,"362":[81,138],"3620":138,"362000":154,"362006":127,"362069":121,"3623":141,"3625":141,"362625":127,"3627":[141,164],"362759e":61,"3628800":97,"363":[81,138],"3630":141,"363270":39,"36328125":141,"363327":126,"363636":178,"36398808":79,"364":81,"3640":138,"365":[69,81,132,138,141,145],"3650":141,"365174":126,"365349":39,"366":[81,125,138],"3660":138,"3664":141,"3668":140,"367":[81,125],"3670":141,"367103":127,"3671875":141,"3672":141,"3673":141,"368":[39,81,115,125,138,190],"3680":138,"3681":141,"368430":39,"36864":35,"369":[81,125,138,141],"36953161e":165,"3697":141,"36m":30,"37":[39,50,52,61,63,65,67,69,79,81,97,124,132,138,140,141,145,156,160,167,183,191,199],"370":[81,125,132],"3700":138,"370000":39,"370056":127,"3703":[72,141],"371":[81,125,141],"37109375":141,"37114243e":165,"3715":141,"371667":39,"371682":29,"371932":126,"372":[81,125],"3720":138,"372294e":61,"3723":141,"3725":39,"37265943e":165,"37284549e":165,"373":[42,81,125,138],"3730":141,"373333":39,"37350000":[116,190],"3737":141,"37381055e":165,"374":[79,81,125,138,167],"3740":138,"37446555e":165,"374603":121,"3748":141,"375":[81,125,132,138,141],"375147":205,"3752":141,"3756":141,"37570172":[63,79],"375833":39,"3759":141,"376":[81,125,138,141],"3760":[39,138],"376041":29,"3764":141,"376458":126,"3769":141,"377":[81,125,138,141],"377175":164,"3773":141,"3776":141,"378":[81,125,138],"3780":138,"3781":141,"3782":141,"378597":127,"3788":141,"37890625":141,"379":[63,79,81,125,141],"3791":[39,141],"379601e":39,"37m":30,"38":[9,39,50,52,53,61,66,69,79,81,105,106,121,124,132,141,145,156,161,167],"380":[42,59,70,79,81,125,132,138,141,171,172],"3800":[138,141],"38000":116,"380000":39,"3801":141,"3802":[127,141],"3803":127,"380350":39,"3804":127,"3805":[127,141],"3806":127,"38063748":121,"3807":127,"3808":127,"380813":69,"3809":127,"381":[59,81,125,138,141,171],"3810":127,"38163860e":165,"3817":141,"38176979e":165,"3819":141,"382":[70,81,138,141,172],"3820":138,"382142":127,"3822":[39,141],"382308":39,"3824":39,"382571":126,"382720":127,"3828125":141,"383":81,"3830":39,"3830571":39,"383290":69,"38332521":191,"383564":29,"3836":141,"3837":141,"3838":141,"3839":141,"384":[81,132,138,141,171],"3840":138,"384210":169,"3843":141,"384352":127,"384615":39,"384761":29,"385":[39,59,81,132,138,141,171],"3852":141,"385705":175,"385733e":39,"386":[59,81],"3860":138,"3861":141,"38616702e":165,"3862":39,"38671875":141,"387":[35,59,81,141],"387129":151,"387499":126,"3877":141,"3878":39,"388":[35,42,81],"3880":138,"38828582528":63,"3884":126,"3886":[79,126],"3887":126,"3888":126,"3889":[72,126,141],"389":[59,81,141,146],"3890":126,"3891":126,"389167":39,"3892":126,"3894":141,"3895":126,"3896":126,"3897":126,"38m":30,"39":[36,39,50,61,62,65,67,69,79,81,124,132,141,145,155,167,205],"390":[59,81,125,132],"3900":[126,138],"390001":126,"3901":126,"3902":126,"3903":[126,141],"3904":[39,141],"39051546e":165,"390566":154,"390625":141,"390775":127,"3909":36,"391":[81,141],"3915":164,"3916":[115,141,190],"392":[59,72,81,138,141],"3920":138,"3922":164,"392257":69,"3925":141,"3929":141,"393":[59,81],"39320":[63,79],"393580":61,"3937":141,"3939":141,"394":[81,138,141],"3940":138,"3942":141,"394229":29,"39453125":141,"3946":72,"395":[81,132,138],"3950":141,"3952":141,"3954":141,"395594":127,"395833":39,"396":[39,69,81],"3960":138,"3966":141,"3967":141,"39696":154,"397":[39,81],"3974":141,"3975":141,"3976":39,"39761905":156,"398":[81,138,141],"3980":[39,138],"39810246e":165,"3984375":141,"399":[81,138,141],"3991":79,"3994":171,"3995":171,"399753":127,"3998":39,"3a":[125,126,127,183],"3a10":126,"3a3":126,"3a4":126,"3a5":126,"3a6":126,"3c":183,"3d":[39,69,80,124,125,126,127,132,165,168,178,180,183,191,198],"3d0":125,"3d5":126,"3ddf":127,"3dfals":125,"3dindex":125,"3dlist":126,"3dpd":126,"3e":[126,127,183],"3f":[39,168,184,198,206],"3g":[71,85],"3int8":124,"3j":207,"3ltlqmqsncb9d0rthglvb3gjj3":61,"3m":[29,50],"3rd":[22,38,56,124,168],"3s":[37,39,61,63,132,167],"3ssnporch":56,"3x3":[32,33,139],"3x4":[184,206],"3yqlb":61,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,42,43,46,49,50,61,65,66,67,68,69,70,72,73,79,80,81,87,88,89,97,98,99,106,107,113,114,115,116,117,118,121,122,123,124,125,126,127,129,131,132,135,136,137,138,139,140,141,142,143,144,145,146,149,150,151,154,155,156,157,159,160,161,163,164,165,167,169,171,172,175,178,179,180,182,183,184,185,194,196,198,199,200,201,202,205],"40":[1,7,9,14,32,39,50,52,61,65,67,69,81,87,88,89,105,106,114,115,117,123,124,132,138,141,145,154,160,167,168,175,183,188,190,198,199,200,205],"400":[7,55,58,73,81,114,122,132,138,139,178,183],"4000":[14,36,56,60,131,138,167],"40000":[14,116],"400000":[66,88],"40000000":185,"4002912":152,"40067661":124,"4007":141,"400833":39,"400919":127,"400mg":[1,8],"401":[81,141],"4012":141,"4013":141,"4016":39,"4018":141,"401983":127,"402":[59,81],"4020":138,"40234375":141,"4029":141,"403":[81,138,191],"403000":154,"403011":29,"4031":72,"403674":126,"4038":141,"4038v2":140,"404":81,"4040":138,"4041":141,"404192":127,"404572":69,"4048":141,"40480256345":79,"405":[81,132],"4050":[114,190],"405278":81,"405309e":39,"4056":39,"406":[81,141],"4060":138,"40618608":167,"40625":141,"4066":141,"40660274e":165,"406605":126,"406667":39,"4067":141,"406m":42,"407":[81,138,141],"4071":141,"4077":141,"4077193":156,"407m":36,"408":[52,81,141,156,164],"4080":[138,141],"4081":39,"40815161e":165,"40827":164,"408376":63,"4084":141,"4087":141,"409":[34,73,79,81,141,172],"4093":141,"4096":[37,42,140],"4098":[184,206],"41":[29,39,50,52,63,69,79,81,97,124,132,141,145,156,167,169],"410":[63,79,81,132],"4100":138,"410014":60,"41015625":141,"411":[34,39,81,138],"411076":127,"41140729e":165,"4117":37,"4119":141,"411m":36,"412":[81,138],"4120":[138,141],"41212121":87,"412214e":39,"41242353":[63,79],"4127":[184,206],"413":[73,81,138,141],"41331878e":165,"413696":37,"4139":[184,206],"414":81,"4140":138,"414042":127,"4140625":141,"4141":69,"414121":127,"41420614":79,"4147":141,"41472":37,"41473":37,"4148":141,"4149":141,"415":[52,81,132,156,178,180],"415217":127,"4153":141,"415385":39,"416":81,"4160":138,"4162":141,"4165":60,"417":[35,63,79,81,141],"4179":141,"41796875":141,"418":81,"4180":138,"418056":169,"418243":127,"418384":127,"41863":25,"41867679e":165,"4189":141,"419":81,"4191616766467092":36,"4192":141,"419540":69,"419621e":61,"419676":127,"4197":36,"4198":36,"419805":127,"4199":[36,141],"41m":72,"42":[31,33,34,36,39,41,45,46,50,51,54,55,58,59,60,61,62,63,66,69,81,87,109,124,132,140,141,145,155,159,167,168,175,179,183,184,191,198,205,206],"420":[81,132,138,154],"4200":[36,138],"420000":39,"4201":36,"4202":36,"4203":36,"4204":[36,141],"4205":36,"4206":36,"4208":[115,190],"421":[39,81,138,141],"421456":29,"4215":39,"421797":29,"421875":141,"4218916":79,"4219":141,"422":81,"4220":138,"4221":164,"4222":141,"4223":54,"42237836":79,"422831":127,"4229":141,"423":[81,141],"4236":141,"42367235e":165,"423735e":69,"4238":141,"423967":191,"424":[81,138,141],"4240":138,"4243":141,"424866":39,"424965632":39,"425":[81,132,138],"425684e":39,"42577697e":165,"42578125":141,"426":[69,81],"4260":138,"4261":141,"426162":127,"4265":141,"427":[81,138,141],"4270":141,"427000":116,"427075":127,"427159":127,"427500":39,"428":81,"4280":138,"428793":191,"429":81,"429055":39,"4291":141,"4296875":141,"429800":127,"429m":36,"43":[39,42,50,52,60,61,66,69,79,81,97,124,132,141,145,167,175,183],"430":[59,71,81,85,132],"4300":[138,141],"43000":116,"430003":127,"4303":141,"431":[81,141],"43116792":[165,196],"431304":127,"431800e":61,"432":[81,141],"4320":138,"432320e":69,"432x288":69,"433":[79,81],"4334":141,"43359375":141,"433594":[66,88],"4336":141,"433792":127,"434":[81,141],"4340":138,"43420830e":165,"4345":141,"435":[63,79,81,132,138],"4350":141,"43539442771396":167,"4354":39,"435833":39,"436":81,"4360":138,"4362":[42,141],"436250":29,"436517":157,"437":[81,141],"4375":141,"437m":36,"438":[81,138,141],"4380":138,"4381":141,"439":[81,141,164],"44":[39,50,59,61,69,79,81,97,115,121,123,124,132,141,159,167,169,183,190,192,205],"440":[50,81,132,138,164],"4400":[138,141],"440000":39,"4405":141,"44085502":[63,79],"4409":72,"441":[71,81,85],"44140625":141,"441787":69,"4419":141,"442":[81,141,171,182],"4420":138,"4427":141,"44294":25,"443":81,"4432":39,"4434":141,"44359863":[165,196],"444":81,"4440":138,"44406":40,"444305":69,"44468627e":165,"4448":141,"4449":141,"445":[81,132],"4450":141,"4452":39,"4453125":141,"445368":66,"445375":39,"4455":39,"445716":157,"4459":[141,145],"446":[81,141],"4460":138,"446873":[65,67],"447":81,"4475":39,"44776251":175,"447m":36,"448":81,"4480":138,"448913":126,"449":[81,141,191],"449070":69,"44921875":141,"4494":141,"45":[14,31,34,39,43,50,51,52,54,60,81,106,114,116,121,124,132,138,141,143,145,146,154,155,156,167,169,179,183,187,190,191,204],"450":[52,81,132],"4500":[33,138],"450000":[39,116,190],"45053314":124,"451":[81,141],"451196":127,"451240":127,"451667":39,"451825":69,"452":[81,138,141],"4520":138,"4522":141,"452354":126,"452600":[63,79],"4527":141,"453":81,"453125":141,"453172e":61,"453472":69,"4535":141,"4539":141,"454":[81,138],"4540":138,"454093":127,"454335":39,"4544":141,"454545":178,"455":[41,81,132],"45520541e":165,"4554":141,"4555":141,"455649e":61,"4557":141,"455745":127,"455850496":39,"45585107":[63,79],"4559":39,"456":[33,81,97,184],"4560":138,"4562":141,"4567":141,"456968":127,"457":81,"45703125":141,"457822322845459":133,"458":[59,81],"4580":138,"4586":39,"4588":141,"459":81,"4590":141,"4591":141,"459229":126,"45998":25,"46":[39,50,60,61,81,89,116,124,132,141,167,168,191,198],"460":[81,132,138,141],"4600":138,"4601":141,"4602":141,"460483":157,"4608":141,"4609375":141,"460945":126,"461":81,"4612":141,"461758453195614":191,"46175845319564":191,"461822":[65,67],"462":81,"4620":[39,138],"463":[81,141],"463333":39,"46344":69,"4635":141,"463724e":61,"463843":127,"463988":81,"464":[49,81,141],"4640":[42,138],"4641":138,"464186":154,"4646":39,"4647":141,"464776":[65,67],"46484375":141,"465":[81,132,141],"4650":39,"465318":61,"4654":141,"46542":25,"4655":141,"466":[81,141],"4660":138,"46679593":167,"467":81,"4670":141,"467164":127,"467450":63,"4676":141,"467674":39,"468":81,"4680":138,"468052":164,"4681":141,"468333":39,"46854":25,"4686":141,"468720":61,"46875":141,"469":81,"4691":[39,141],"469107":127,"4699":141,"46m":30,"47":[39,50,52,61,79,81,97,114,121,124,138,141,145,156,167,190,191],"470":[81,132,141],"470137":175,"470205":127,"4704":141,"4705882352941178":14,"471":[69,81,141],"47178350e":165,"4719616":42,"472":[81,141],"47265625":141,"473":[79,81],"4730":141,"473497":63,"474":[81,141],"4741":141,"4743":[138,169],"474610":127,"474986":29,"475":[81,132,141],"4750":141,"4755":164,"4758":141,"4759332":167,"476":81,"4760":141,"4762":141,"476333":29,"4764":141,"4765625":141,"476572":157,"476631":157,"47663104":157,"4767":[141,164],"477":81,"4771":141,"477328":[65,67],"477492":29,"4775":141,"477621e":69,"477840":126,"47797475":121,"478":[81,141],"4781":141,"4782":141,"4785":141,"4786":141,"479":[81,141],"4790":141,"47943":164,"4795":141,"47992614761185":[65,67],"48":[32,37,39,42,50,51,54,61,79,81,88,97,109,124,141,154,167,168,191,198],"480":[60,81,132,138,141,191],"48017":25,"4802":141,"4803":141,"48046875":141,"4808":39,"4809":50,"481":[69,81,141],"4815":141,"4816":50,"481696e":127,"4818":141,"482":[81,141],"482487e":127,"4825":50,"482578":157,"4829":39,"483":[81,141],"4833":141,"483713":69,"483724":81,"484":81,"4840":50,"484167":39,"4842":[50,141],"484375":141,"4844":50,"48444509506225586":50,"4846":50,"485":[79,81,132,141],"4852":50,"4854":[50,141,164],"48542":141,"4855":50,"486":81,"4860":50,"486111":63,"48624811":79,"486477":127,"4868":50,"486801":168,"4869":[50,141],"487":81,"487439":60,"4875":50,"4876":141,"487864":154,"488":[71,81,85],"4880":50,"48817":141,"48828125":141,"4883":42,"48832919e":165,"4886":50,"48868864572551":66,"489":81,"489000":39,"48909":141,"4893":50,"4896":[50,141],"48965":141,"4897":50,"4898":50,"489919":60,"48c5":32,"49":[39,50,52,58,69,79,81,124,132,139,141,157,167,179,184,206],"490":[71,81,85,132,141],"4900":63,"490000":39,"49017":141,"4903":50,"4904":50,"490473":29,"49050":141,"4906":141,"490659":29,"4907":141,"490934":127,"491":[81,141],"4914":141,"4918":141,"492":[36,81],"4921875":141,"492209":[65,67],"492230":127,"4927":50,"4928":141,"493":81,"493067":126,"493182":164,"4932":[39,50],"493213":127,"4933":50,"4937":50,"4938":141,"49381":141,"494":[81,141],"4941":50,"49416":141,"49439034":167,"4947":141,"49473684":156,"495":[52,81,132],"4951":50,"49529":141,"496":[39,63,79,81,141],"4960":50,"49609375":141,"4964":50,"4966":50,"49663":141,"4966309980255":[65,67],"497":[81,141],"497057":127,"49715067e":165,"49719":141,"4974":141,"4975":141,"497500":39,"49752":141,"49763":141,"4978":50,"49791":141,"498":[81,141],"49834":141,"49847":141,"4985":141,"499":[63,79,81],"499111":29,"49914":141,"4994":50,"4996":39,"49960":141,"49960699":[114,190],"49971":141,"49972":141,"49974":141,"49981":141,"49984":141,"4999":[58,63,79],"49998084":37,"49c57b793eef1b8e55f297e5e019fdbf":59,"4a16":[123,192],"4ac":184,"4c":98,"4d":[124,132],"4f":[31,33,38,53,61,66,164],"4g":[71,85],"4j":[185,207],"4m":[29,50],"4px":169,"4s":[63,167],"4th":[48,124],"4x3":124,"4x4":[32,140],"5":[0,1,3,4,6,7,8,14,22,29,30,31,33,34,35,36,37,38,39,40,41,42,43,46,47,48,49,50,54,57,61,65,66,67,68,69,70,72,73,76,79,80,81,82,83,86,87,89,97,98,106,111,113,114,115,116,117,118,121,122,124,125,126,127,129,132,134,135,138,140,141,142,143,144,145,146,150,151,154,155,156,157,159,160,161,163,164,165,166,167,171,172,175,178,179,180,182,183,184,185,191,194,196,198,200,201,202,204,205],"50":[7,14,29,31,32,36,37,38,39,44,46,47,48,49,50,51,52,54,55,57,60,61,62,63,64,65,66,67,68,69,79,81,88,97,107,109,113,116,124,127,132,133,134,137,139,141,145,150,151,154,156,157,159,160,161,164,165,166,167,168,169,172,173,183,191,194,196,198,199],"500":[1,9,31,42,49,51,52,54,55,56,68,81,105,106,132,133,134,138,139,141,159,167,183],"5000":[33,36,49,56,58,87,131,139,167,175,184],"50000":[18,33,65,67,139],"500000":[39,60,66,69,88,125,154,164],"5000000":73,"500001":[63,79],"5000x1000":36,"500135":39,"5002":50,"500216":191,"5006":50,"5007":141,"5008":141,"501":[81,141],"501017e":61,"50114":141,"5012":48,"5013":141,"5014":[50,141],"50159":141,"50177":141,"502":[81,141],"502056":126,"5023":50,"5024":141,"502500":39,"5027":141,"50273":141,"5029":50,"503":81,"5030":50,"50325":141,"5033":141,"503302":127,"50334":141,"503355363845":[65,67],"5033565506537":[65,67],"503371776776":[65,67],"50343":141,"5035673795078":[65,67],"503607":69,"50363":141,"50390625":141,"504":81,"50409232e":165,"5042":50,"50467":141,"5047":141,"504911":69,"505":[69,81,141],"5050":97,"50510":141,"5053":50,"50531":141,"505415":69,"5055":141,"50562":141,"50596":141,"506":[81,141],"5060":50,"5060835072245":[65,67],"5062":50,"50635":79,"50636":141,"50641":141,"5065":50,"50654":141,"506579":29,"5067":141,"5068":50,"507":[69,81,138,164],"5070":50,"5072":141,"50728":141,"50732":141,"50735":141,"50751":141,"507547":154,"50755":141,"507725":127,"50774":141,"507812":61,"5078125":141,"50783":141,"50784":141,"50797":141,"5079999999999996":82,"508":[81,141],"508128e":39,"5083":[50,141],"50832":141,"5085":141,"50859":141,"5086":50,"5089":50,"509":[81,141],"509004":126,"5091":141,"50910":141,"509290":127,"50949":141,"5095":39,"50966":141,"50982":141,"50_startup":200,"50k":[53,117,188],"51":[39,50,61,69,79,81,124,132,141,145,167,169],"510":[81,141],"5101":141,"51010":141,"51011":141,"51027":141,"51043":141,"51047":141,"5105":141,"5106":50,"510636288":39,"51070":141,"51078":141,"51095":141,"511":81,"51101":141,"51112":141,"51133":141,"51135":141,"511588":127,"51167":141,"51171":141,"51171875":141,"51173":141,"511738":154,"5118":50,"51187":141,"511893":39,"512":[29,32,33,37,38,42,60,73,81,139,140,194],"51206":141,"5121":50,"51211":141,"51212":141,"51241":141,"51249":141,"51249098777771":50,"51259":141,"5126":141,"51262":141,"51267":141,"5127":50,"5128785371780396":50,"51288":141,"51289":141,"512n":32,"513":[59,63,81],"51304":141,"51311":141,"51312":141,"5132":141,"51323":141,"513333":39,"51356":141,"51358":141,"513588e":61,"51367":141,"51368":141,"51375":141,"51378":141,"51379":141,"51381":69,"51382":141,"51385":141,"51390":141,"51391":141,"51392":141,"51393":141,"51393182e":165,"51398":141,"514":[59,81],"514000":154,"51402":141,"51406":141,"51407":141,"51408":141,"51409":141,"5142":141,"51425":141,"5143":50,"51443":141,"51445":141,"51449":141,"51461":141,"5147":50,"51470":141,"51471":141,"5149":50,"51492":141,"51498":141,"515":81,"515088":61,"51517":141,"51524":141,"51525":141,"51527":141,"5153":50,"51533":141,"51537":141,"5154":141,"51540":141,"51542":141,"51543":141,"5155":141,"51551":141,"51556":141,"51559":141,"5156":141,"515625":141,"51563":141,"51564":141,"51565":141,"51587":141,"51589":141,"5159":50,"51594":141,"516":[59,81,141],"51600":141,"51606":141,"51610":141,"51612":141,"51615":141,"51622":141,"51633":141,"51634":141,"51635":141,"51636":141,"5164":39,"5165":141,"51654":141,"51655":141,"51665":141,"51673":141,"51676":141,"51687":141,"51688":141,"5169":50,"51691":141,"51694":141,"517":[59,79,81,141],"517015":127,"51714":141,"51716":141,"5172":141,"51721":141,"51729":141,"5173":169,"51734":141,"51742":141,"51743":141,"517460":121,"51747":141,"517490":127,"51750":141,"51770":141,"51772":141,"51775":141,"51777":141,"517839":127,"51784":141,"51786":141,"518":[81,141],"5180":141,"51818":141,"51832":141,"51839":141,"5184":50,"51843":141,"51847":141,"5185":[50,164],"51851":141,"51853":141,"518601":154,"51863":141,"51865":141,"51867":141,"5187":39,"51870":141,"51874":141,"51879":141,"51886":141,"5189":141,"51891":141,"51895":141,"51896":141,"51896994":121,"519":[81,138,141],"51907":141,"5191":141,"51912":141,"51915":141,"51918":141,"5192":141,"519278":39,"51935":141,"51941":141,"51944":141,"51946":141,"51948":141,"51950":141,"51953125":141,"51955":141,"51956":141,"51969":141,"5197":50,"51974":141,"51981":141,"51985":141,"51m":140,"52":[36,39,50,55,60,63,65,67,69,79,81,116,121,124,132,138,141,167],"520":[81,138],"52000":116,"52004":141,"52005":141,"520141":127,"52018":141,"5202":141,"5203":50,"52037":141,"52049":141,"52056":141,"52063":141,"52065":141,"52066":141,"52080":141,"52081":141,"52084":141,"52096":141,"52097":141,"521":[59,81,141],"52109":141,"52110":141,"52112":141,"52113":141,"52115":141,"52116":141,"52117":141,"52120":141,"52138":141,"5214":50,"52141":141,"52142":141,"52150":141,"52153":141,"52155":141,"52156":141,"52169":141,"52171":141,"52176":141,"5218":141,"52182":141,"52183":141,"522":[59,81,141],"52205":141,"52207":141,"52213":141,"52214":141,"52216":141,"52218":141,"52223":141,"52225":141,"52226":141,"52242":141,"52244":141,"52245":141,"52246":141,"52247":[69,141],"522500":39,"52266":141,"52272":141,"52278":141,"52282":141,"52285":141,"52286":141,"5229":50,"52297":141,"52298":141,"52299":141,"523":81,"52300":141,"52303":141,"52308":141,"52310":141,"52314":141,"52317":141,"52326":141,"52329":141,"52331":141,"52333":141,"52335":141,"52339":141,"5234375":141,"52346":141,"52347":141,"52350":141,"52351":141,"52353":141,"52356":141,"52358":141,"52359":141,"52361":141,"52364":141,"52373":141,"52383":141,"52385":141,"52389":141,"52392":141,"523965":[65,67],"524":[81,141],"52408":141,"52412":141,"52421":141,"52422":141,"524245":126,"52426":141,"52427":141,"52428":141,"52429":141,"52432":141,"52436":141,"52440":141,"52442":141,"52444":141,"52447":141,"52448":141,"5245":50,"52452":141,"52457":141,"52460":141,"524601e":39,"52463":141,"52473":141,"52474":141,"52478":141,"52489":141,"5249":141,"52490":141,"52492":141,"52495":141,"52496":141,"525":81,"5250":[50,141],"52505":141,"52516":141,"52518":141,"52524":141,"52528":141,"52534":141,"52537":141,"525385":39,"52539":141,"52541":141,"52553":141,"52558":141,"52561":141,"52564":141,"52567":141,"52569":141,"52572":141,"52574":141,"52577":141,"52579":141,"52581":141,"52587":141,"52590":141,"52594":141,"52596":141,"526":[81,141,146],"52600":141,"52602":141,"52603":141,"52606":141,"52610":141,"52618":141,"52628":141,"526409":126,"52641":141,"52647":141,"52650":141,"52653":141,"52658":141,"5266":141,"52661":141,"52666":141,"526667":39,"52672":141,"52678":141,"52679":141,"52680":141,"52683":141,"52686":141,"52689":141,"52690":141,"52691":141,"52692":141,"52693":141,"52694":141,"527":[81,138],"52700":141,"52706":141,"52707":141,"52709":141,"52717":141,"52720":141,"527283":126,"52733":141,"52734375":141,"52737":141,"52738":141,"52742":141,"52743":141,"52744":141,"52748":141,"52749":141,"52750":141,"52752":141,"527625":39,"52763":141,"52764":141,"52765":141,"52769":141,"52770":141,"52771":141,"52774":141,"52776":141,"52777":141,"52778":141,"5278":141,"52783":141,"52791":141,"52795":141,"52796":141,"528":[59,81],"52800":141,"52805":141,"5281":141,"52812":141,"52819":141,"52826":141,"52828":141,"52833":141,"52836":141,"52837":141,"52839":141,"52840":141,"52841":141,"52845":141,"52847":141,"52850":141,"52853":141,"52855":141,"52861":141,"52862":141,"52863":141,"52877":141,"52886":141,"52888":141,"52889119e":165,"5289":50,"52890":141,"52893":141,"529":[81,154],"52904":141,"52906":141,"52907":141,"5291":141,"52912":141,"52914":141,"52916":141,"5292":141,"52920":141,"52922":141,"529231":39,"5293":141,"52934":141,"52935":141,"52938":141,"52939":141,"52941":141,"52945":141,"52946":141,"5295":[50,141],"52951":141,"52952":141,"52954":141,"52957":141,"52959196":121,"5296":141,"52962":141,"52963":141,"52965":141,"52967":141,"52969":141,"52970":141,"52972":141,"52975":141,"52976":141,"5298":50,"52980":141,"52981":141,"52987":141,"52988":141,"5299":141,"52996":141,"52998":141,"52999":141,"53":[39,50,59,61,81,114,116,121,124,141,155,161,167,169,190],"530":[79,81,154],"53000":[116,190],"530000":39,"53004":141,"53006":141,"53013":141,"53014":141,"53018":141,"53025":141,"53027":141,"53028":141,"53036":141,"53037":141,"53038":141,"530416":69,"53048":141,"53052":141,"53058695":167,"53060":141,"53061":141,"53062":141,"53066":141,"53067604e":165,"53068":141,"53071":141,"53076":141,"53077":141,"53079":141,"53081":141,"53087":141,"53090":141,"53094":141,"530m":[117,188],"530wv2bvx2w7ycwfpl":61,"531":81,"53101":141,"53103":141,"53105":141,"53106":141,"53108":141,"53109":141,"53110":141,"53123":141,"53125":141,"53129":141,"53130":141,"53134":141,"531452":29,"53146":141,"53151":141,"53154":141,"53157":141,"53159":141,"53161":141,"53165":141,"53166":141,"5317":50,"531702":127,"53179":141,"53183":141,"53184":141,"53189":141,"53190":141,"53192":141,"53198":141,"532":81,"53200":141,"53202":141,"53210":141,"53214":141,"53217":141,"532197":29,"53222":141,"53224":141,"53227":141,"53237":141,"53238":141,"5324":69,"53243":141,"53245":141,"53246":141,"53248":141,"53249":141,"5325":[50,141],"53255":141,"53256":141,"53259":141,"53262":141,"53265":141,"5327":50,"53276":141,"53279":141,"5328":141,"53281":141,"53282":141,"53287":141,"53292":141,"53295":141,"53296":141,"53299":141,"533":[81,145,167],"5330":141,"53301":141,"53306":141,"53315":141,"53321":141,"53324":141,"5333":141,"53333":141,"5333333333333334":14,"53334":141,"53341":141,"53346":141,"53349":141,"5335":50,"53351":141,"53352":141,"53353":141,"53354":141,"53356":141,"53358":141,"5335853695869446":50,"5336":141,"53360":141,"53363":141,"53364":141,"53366":141,"53370":141,"53380":141,"53382":141,"533846":39,"53387":141,"53388":141,"53389":141,"53391":141,"53392":141,"53393":141,"53396":141,"534":[81,141],"5340":39,"534000":154,"53401":141,"53403":141,"53409":141,"5341":[63,79],"53411":141,"53413":141,"5342":141,"53421":141,"53426":141,"53427":141,"53428":141,"53430":141,"53437":141,"53438":141,"53441":141,"5345":39,"53450":141,"534510":29,"534563":[65,67],"53458":141,"53462":141,"53465":141,"53468":141,"53470":141,"53474":141,"53475":141,"53478":141,"53482":141,"53488":141,"5349":141,"53491":141,"53494":141,"53495":141,"535":[81,141],"5350":141,"53508":141,"53513":141,"53515625":141,"53517":141,"53518":141,"53520":141,"53521":141,"53525":59,"53529":141,"53531":141,"53536":141,"53538":141,"53551":141,"53553":141,"53556":141,"53557":141,"5356":50,"53560":141,"53563":141,"53566":141,"53570":141,"53571":141,"53574":141,"53580":141,"53584":141,"53587":141,"53588":141,"53589":141,"53593":141,"53594":141,"53595":141,"53597":141,"536":[81,141],"53606":141,"53607":141,"53616":141,"53617":141,"53627":141,"53628":141,"53630":141,"53635":141,"53642":141,"53645":141,"53652":141,"53655":141,"53657":141,"53661":141,"53662":141,"53662042e":165,"53663":141,"53666312":79,"53668":141,"53672":141,"53673":141,"53674":141,"53675":141,"53686":141,"53687":141,"536879":[65,67],"536896":69,"53691":141,"536923":39,"53693":141,"53696":141,"53697":141,"53699":141,"537":[63,79,81],"5370":141,"53706":141,"53709":141,"53712":141,"53715":141,"53719":141,"53726":141,"53728":141,"53729":141,"53732":141,"53738":141,"53747":141,"53748":141,"53749":141,"53751":141,"53757":141,"53760":141,"53762":141,"53765":141,"53768":141,"53769":141,"53771":141,"53772":141,"53774":141,"53778":141,"5378":141,"53782":141,"53783":141,"53786":141,"53788":141,"53789":141,"53797":141,"53798":141,"538":81,"53807":141,"53811":141,"53812":141,"53814":141,"53818":141,"53819":141,"53826":141,"53829":141,"538356":29,"53837":141,"53842":141,"53849":141,"538491832234":[65,67],"538494":69,"53850":141,"53855":141,"53857":141,"53859":141,"53860":141,"53863":141,"53865":141,"53866":141,"53870":141,"53871":141,"53872":141,"53879":141,"53883":141,"53891":141,"53892":141,"53894":141,"53897":141,"53899":141,"539":81,"5390625":141,"53907":141,"53908":141,"53911":141,"53912":141,"53913":141,"53919":141,"53923":141,"53924":141,"53927":141,"53938":141,"53944":141,"53946":141,"53947":141,"5395":[50,141],"53952":141,"539527":151,"539534":39,"53955":141,"53957":141,"53965":141,"53967":141,"53971":141,"53974":141,"53975":141,"53976":141,"53979":141,"53986":141,"53987":141,"53989":141,"53991":141,"53993":141,"53995":141,"54":[39,50,59,61,69,79,81,98,142,167,191,205],"540":[81,138,141],"5400":[59,63],"54001":141,"54004":141,"54005":141,"54010":141,"54014":141,"54027":141,"54031":141,"54034":141,"54035":141,"54040":141,"54044":141,"5405":141,"54054":141,"54055":141,"54062":141,"54063":141,"54068":141,"54085":141,"54086":141,"54090":141,"54094":141,"54095":141,"54097":141,"541":81,"5410":164,"541112":39,"54112":141,"54119":141,"54121":141,"54128":141,"54134":141,"54135":141,"54136":141,"5414":50,"54142":141,"54146":141,"54152":141,"54155":141,"54156":141,"54158":141,"5416":141,"54165":141,"54167":141,"54171":141,"54174":141,"54177":141,"54179":141,"54184":141,"54186":141,"54188":141,"54189":141,"5419":141,"54196":141,"542":[81,106,141],"54202":141,"54205":141,"5421":72,"54210":141,"54211":141,"54213":141,"54216":141,"54219":141,"54221":141,"54222":141,"54226":141,"54228":141,"54229":141,"54230":141,"54232":141,"54236":141,"54243":141,"54244":141,"54253":141,"54261":141,"54266":141,"54273":141,"54276":141,"54279":141,"54282":141,"54283":141,"54284":141,"54288":141,"5429":[39,50],"54293":141,"54294":141,"54296875":141,"543":81,"54300":141,"54302":141,"54303":141,"54306":141,"54311":141,"54317":141,"54318":141,"543182":164,"54321":184,"54330":141,"54331":141,"54332":141,"54334":141,"54335":141,"54336":141,"54337":141,"54338":141,"54346":141,"54349":141,"54351":141,"54359":141,"54364":141,"54366":141,"54370":141,"54376":141,"54381":141,"54383":141,"54388":141,"54389":141,"54390":141,"54394":141,"54395":141,"54396":141,"54397":141,"54398":141,"544":81,"54406":141,"54407":141,"544181":69,"54421":141,"54422":141,"54423":141,"54427":141,"54434":141,"54439":141,"54440":141,"54442":141,"54444":141,"54445":141,"54447":141,"54454":141,"54456":141,"54457":141,"5446":39,"54461":141,"54464":141,"54470":141,"54473":141,"54474":141,"54479":141,"54485":141,"544908":69,"54491":141,"54494":141,"54495":141,"54497":141,"54498":141,"545":[81,141],"54501":141,"54504":141,"54505":141,"54507":141,"54509":141,"5451":[50,141],"54516":141,"54519":141,"54524":141,"54526":141,"54527":141,"54528":141,"54530":141,"54534":141,"54536":141,"54538":141,"54540":141,"54545":141,"54554":141,"54556":141,"54559":141,"5456":141,"54564":141,"54567":141,"54570":141,"54571":141,"54573":141,"54575":141,"54582":141,"54583":141,"545833":39,"54584":141,"545850":39,"54587":141,"54589":141,"5459":50,"54593":141,"54595":141,"54596":141,"54598":141,"546":[81,138,141],"546021":[65,67],"54603":141,"54605":141,"54614":141,"54621":141,"54627315":124,"5463":141,"54630":141,"54634":141,"54636":141,"54640":141,"54641":141,"54647":141,"5465":141,"54655":141,"54658":141,"54659":141,"54662":141,"54663":141,"54667":141,"5466747351275563":155,"54670":141,"54671":141,"54672":141,"54676":141,"54679":141,"5468":141,"54683":141,"546875":141,"54693":141,"54697":141,"54699":141,"547":[50,81],"5470":50,"54705":141,"54710":141,"54715":141,"54717":141,"54718":141,"54725":141,"54731":141,"54737":141,"54738":141,"54739":141,"54741244":79,"54750":141,"54752":141,"54765":141,"54769":141,"54770":141,"54782":141,"54784":141,"54789":141,"54798":141,"548":[81,141],"54803":141,"54808":141,"54808703":167,"54810":141,"5482":39,"54824":141,"54832":141,"54833":141,"54834":141,"54836":141,"54841":141,"54842":141,"54843":141,"54846":141,"54848":141,"54854":141,"54865":141,"54866":141,"54869":141,"54877":141,"54878":141,"54880":141,"54888":141,"54898":141,"549":81,"54901961":79,"54905":141,"54914":141,"5492":[50,141],"54921":141,"54925":141,"54927":141,"54930":141,"54931":141,"54941":141,"54944":141,"54945":141,"54947":141,"54949":141,"54958":141,"5496":50,"54961":141,"54966":141,"54969":141,"54970":141,"54971":141,"54972":141,"54974":141,"54976":141,"54979":141,"54980":141,"54984":141,"54988":141,"54996":141,"54997":141,"54998":141,"55":[14,39,50,52,61,66,81,97,116,121,132,140,141,145,164,165,167,183,191,196,200],"550":[81,141],"55000":[116,190],"55010":141,"55012":141,"55017":141,"55024":141,"55029":141,"55030":141,"55031":141,"55034":141,"55035":141,"55040":141,"55053":141,"55054":141,"55056":141,"55057":141,"55060":141,"550610e":61,"55062":141,"55066":141,"55071":141,"55072":141,"55074":141,"55077":141,"55078":141,"55078125":141,"55081":141,"55083":141,"55086":141,"55087":141,"550px":126,"551":81,"5510":50,"55100":141,"55103":141,"5510652":124,"55107":141,"5511":50,"55110":141,"55116":141,"55120":141,"55124":141,"55126":141,"55127":141,"55135":141,"5514":141,"55142":141,"55149":141,"55158":141,"5516":141,"55161":141,"55164":141,"55168":141,"55179":141,"5518":141,"55181":141,"55183":141,"55186":141,"55187":141,"55191":141,"552":[81,141],"55200":141,"55204":141,"552041":69,"55209":141,"55212":141,"55220":141,"55225":141,"55231":141,"55234":141,"55236":141,"5524":69,"55241":141,"55246":141,"55250":141,"55253":141,"55255":141,"55259":141,"5526":[50,141],"55263":79,"55264":141,"55265":141,"55268":141,"55276":141,"55281":141,"55284":141,"55284461e":165,"55287":141,"55288":141,"5529":50,"55290":141,"553":[50,81],"55309":141,"5531":141,"55310":141,"55329":141,"55330":141,"55348":141,"5535":50,"55350":141,"55355":141,"55359":141,"55360":35,"55364":141,"55366":141,"5537":141,"55373":141,"5538":50,"55381":141,"55386":141,"554":[81,141],"5540":50,"5540224313735962":50,"55408":141,"55415":141,"55426":141,"55428":141,"55433":141,"554453":69,"5545":50,"55454":141,"5546875":141,"55477":141,"55481":141,"55487":141,"55491":141,"555":[81,141],"55501":141,"5552":[50,141],"55523":141,"55526":141,"55527":141,"5553":50,"55531":141,"555312":39,"55535":141,"5554":141,"55546":141,"55547":141,"555480":175,"55549":141,"5555":50,"55550":141,"55552":141,"55553":141,"55556":141,"55557":141,"55559":141,"55563":141,"55567":141,"5557":141,"55570":141,"555784":29,"555814":69,"55588338e":165,"5559":141,"55592":141,"55598":141,"556":81,"55606":141,"55609":141,"55613":141,"55620":141,"55621":141,"55623":141,"5563":50,"55635":141,"55636":141,"55637":141,"55645993":124,"55649":141,"5565":39,"55653":141,"55656":141,"5566":50,"55662":141,"55666":141,"55668":141,"55670":141,"5568":79,"5569":50,"55697":141,"557":[81,141],"5570":50,"55701":141,"55703":141,"55706":141,"55713":141,"55716":141,"55718082144":79,"55727":141,"55731":141,"55737":141,"5574":145,"55748":141,"55758":141,"55761":141,"5577":50,"55782":141,"55788":141,"55791711":79,"55799":141,"558":[63,79,81],"55801":141,"5581":50,"55812":141,"5583":50,"55830":141,"55844":141,"55846":141,"558500":154,"55851":141,"55859375":141,"55866":141,"55867":141,"5587":50,"55870":141,"55881":141,"5588235294117647":14,"55884":141,"55888":141,"55892":141,"55895":141,"55896":141,"559":[39,81,141],"55902":141,"55910":141,"55912":141,"5595":50,"55954":141,"55957":141,"5596":50,"559656":126,"55976":141,"55978":141,"55981":141,"55988":141,"55989":141,"55994":141,"55995":141,"56":[50,69,81,97,114,121,132,157,167,180,190],"560":[81,121,125,138],"5600":184,"560000":39,"5600000000000002":82,"56012":141,"56015":141,"5602":50,"5603":79,"56035":141,"56039":141,"56045":141,"56048":141,"56057":141,"56058":141,"5606":50,"56060":141,"56062":141,"56065":141,"56069":141,"5609":50,"56090":141,"56093":141,"56098":141,"561":[81,125,141],"5610":141,"56102":141,"56112253e":165,"56113":141,"56115":141,"56116":141,"56119":141,"56120":141,"56125":141,"56127":141,"56135":141,"56137":141,"56139":141,"5614":50,"561442":127,"56148":141,"56152":141,"56159":141,"5616":50,"56163":141,"56171":141,"5618":50,"5619":50,"56190":141,"561961":69,"562":81,"562000":116,"56212":141,"56217":141,"5622":[50,141],"56220":141,"56226":141,"56231":141,"56242":141,"56244":141,"56245":141,"56247":141,"5625":141,"562500":61,"56255":141,"56261":141,"56262":141,"56267":141,"56276":141,"5628":141,"563":[81,125],"5630":50,"56303":141,"56306":141,"56308":141,"5631":141,"5633":50,"56335":141,"56342":141,"56352":141,"5636":50,"56366747e":165,"5637":141,"56376":141,"5638":141,"56381":141,"56390":141,"56394":141,"56396":141,"564":[39,81,141,154],"5640":141,"56424":141,"56427":141,"5643":[50,63,79,141],"56431":141,"56435":141,"56439":79,"56447":141,"56454":141,"56466":141,"5647":39,"56471":141,"56474":141,"56498283":142,"56499":141,"565":[39,63,79,81],"56504":141,"56508":141,"56509":141,"56510":141,"56521":141,"56526":141,"56538":141,"5654":141,"56544":141,"56546":141,"56550":141,"56558":141,"5657":141,"56574":141,"56576":141,"5658":39,"56596":141,"565m":36,"566":[81,141],"5660":50,"566126":29,"56624":141,"5663":50,"56636":141,"56637":141,"56639":141,"56640625":141,"56646":141,"56647":141,"56649":141,"56660":141,"5666666666666667":14,"566760":127,"5669":141,"56699":141,"567":[81,141],"5670":50,"567088":29,"56721":141,"56729":141,"567306":61,"56735":141,"56740":141,"567453":63,"5675":50,"567530":63,"56755":141,"5676":50,"5677":50,"56770":141,"56771":141,"56777":141,"5679":50,"56790":141,"567906":151,"56791":141,"568":[79,81,141],"56805":141,"56806":141,"56812":141,"5682":50,"56823":141,"5683":50,"56837":141,"5685":50,"56852":141,"56858":141,"5686":39,"56886":141,"5689":141,"56895":141,"569":[81,141],"56917101":124,"56918":141,"56919":141,"56922":141,"56928":141,"56949":141,"5695":141,"5697":50,"56982":141,"5699":141,"56993":141,"56997":141,"57":[39,50,61,79,81,114,132,139,140,167,190],"570":[81,204],"5700":[50,141],"570000":39,"57006":141,"5701":50,"57013":141,"5702":50,"57026":141,"5703":141,"5703125":141,"57033":141,"5704":141,"57046":141,"570540":69,"57060":141,"5706829878497204":82,"57070":141,"57084":141,"57085":141,"57094815e":165,"57098":141,"571":[81,141],"57110":141,"57115":141,"57123":141,"5713":50,"571340":69,"57143":141,"57147":141,"57153":141,"57157":141,"57161":141,"57163":141,"571657":69,"57166":141,"57172":141,"57178":141,"5719":50,"57196":141,"572":81,"5720":141,"57214":141,"57228":141,"5724":50,"57242":141,"5725":50,"57250":141,"5726":50,"57260":141,"57268":141,"57276":141,"57290":141,"57294":141,"57297":141,"57299":141,"573":[39,69,81,141],"57307":141,"5732":50,"57323":141,"57328":141,"573333":39,"57336":141,"5734":50,"5736":[39,50],"57389":141,"57391":141,"57395":141,"574":[37,81],"57401":141,"5741":50,"57415":141,"57417":141,"57418":141,"57421875":141,"5744":50,"5745":127,"57467":141,"57489":141,"57498":141,"575":[81,141],"57508":141,"5753":[127,141],"57538":141,"57542":141,"57547":141,"57553":141,"57554":141,"57556":141,"57560":141,"57570":141,"5758":50,"5759":50,"57593":141,"57595":141,"57597":141,"5759974718093872":50,"576":[81,141],"5761":[50,141],"57637":141,"576487":61,"5765":50,"57652":141,"57654":141,"576586":127,"5766":[50,141],"57669":141,"5767":141,"57679":141,"57685":141,"57690":141,"57693":141,"577":81,"57704":141,"57744":141,"5777":141,"5778111219406128":50,"57789":141,"57799":141,"578":[81,141],"5781":50,"578125":141,"578142e":61,"57819":141,"57840":141,"57841":141,"57852":141,"578621":29,"57887324e":165,"5789473684210527":14,"579":[37,81],"57909":141,"5791":50,"57916":141,"5792":50,"57929":141,"57942":141,"5796":164,"57961":141,"5797":50,"57987":141,"57993":141,"58":[36,50,61,69,73,81,121,132,141,167,173],"580":[81,138],"580000":39,"58000000000":185,"58001":141,"58019":141,"5802":141,"58023":141,"580280e":127,"5803":141,"58042":141,"5805":141,"5807":141,"58078":141,"58087908e":165,"580px":126,"581":[81,141],"581082":169,"5811":50,"58110":141,"5811388300841898":24,"58113883008418981":24,"581139":69,"58137":141,"58138":69,"58149":141,"5816":50,"58164":141,"58172":141,"58177":141,"58195":141,"58197":141,"582":[81,141,146],"5820":141,"582000":154,"58203125":141,"5821":50,"58260":141,"582703":127,"582778":169,"58293":69,"58294":141,"583":81,"58310":141,"58313172":79,"58330":141,"583333":39,"5834":141,"5835":50,"5836994051933289":50,"58379":141,"58380":141,"584":[29,30,81],"584095":29,"5842":72,"5843960046768188":50,"5844":50,"5845":50,"58454":141,"58468":141,"5849056603773586":14,"58494":141,"584943":39,"585":[81,141],"5850":36,"5851":72,"58516":141,"58520":141,"58525":141,"58526":141,"585335":69,"58565":141,"5857":141,"58581":141,"58585":141,"5859375":141,"586":[81,168],"586026":127,"5861":141,"58611":141,"58615":141,"5865":37,"58651":141,"587":[81,138],"58702":141,"58716":141,"58730":141,"587452":127,"587461e":61,"5875":79,"58761":141,"58768":141,"58799":141,"588":[81,141],"58800":141,"58810":141,"5882":141,"58823529":79,"58829":141,"58832":141,"588333":39,"58840":141,"588462":39,"58860":141,"5889":79,"589":[81,191],"589167":39,"589271":39,"58930337":167,"58936":141,"58941":141,"58946":141,"58952":141,"58957":141,"5896":[63,79],"5897":50,"58978":141,"58984375":141,"58986":141,"58994":141,"59":[39,50,52,73,79,81,116,132,141,167,184,190,191,205,206],"590":[81,141,191],"590000":39,"590080":37,"59024648e":165,"59026":141,"59028151e":165,"5906":50,"5908":141,"59080":141,"5909":50,"590909":39,"590px":178,"591":81,"59114":141,"59115":141,"5913425779189757":81,"59139":141,"59146":141,"59171":141,"5918":72,"5919":[50,141],"592":81,"59210":141,"59229":141,"5923":72,"592335":127,"59248":141,"59250":141,"592509":69,"59257":141,"59282124e":165,"593":[81,141],"5932":50,"59334":141,"59337":141,"59345":141,"593450":29,"593661":61,"59375":141,"5938":58,"594":81,"59421":141,"59421842":142,"59432":141,"594403":127,"594450":29,"5947":141,"5949":72,"59493":141,"595":[81,141],"5950":141,"59512":141,"5952":141,"59524":141,"59529":141,"5954":141,"59564":141,"59566":141,"5957":141,"5958":72,"596":[81,138,141],"5961":138,"596167":127,"59617":141,"59670":141,"5969":50,"597":[81,141],"5972":50,"59756":141,"59759":159,"59765625":141,"5977":50,"598":[81,167,171],"5981":141,"598150":191,"59823":141,"5983":50,"59831252":79,"59842":141,"59853725816836":167,"5985372581684":167,"59853725816868":167,"59854":141,"5988":37,"59880":141,"59886":141,"5989":50,"599":81,"59908764e":165,"599167":39,"5994521975517273":50,"59970":141,"5998":50,"59981":141,"5999":50,"5b":[117,125,126,127,183,188],"5b0":126,"5b1":[125,126,127],"5b2":125,"5b3":[125,126],"5b380":125,"5b390":125,"5b4":126,"5b5":125,"5b7":125,"5bdf":125,"5bdfd":126,"5blambda":126,"5bmask":126,"5bnone":125,"5btrue":126,"5cm":48,"5d":[125,126,127,183],"5e":37,"5f":[32,168,198],"5g":[71,85],"5k":52,"5m":[39,50],"5more":59,"5s":[63,167],"5th":[45,124,186],"5vbcssa6":61,"5x5":32,"6":[0,7,8,14,18,22,24,29,30,31,32,33,34,35,36,37,39,40,41,42,43,46,49,50,53,61,64,65,66,67,68,69,72,79,81,82,87,88,89,97,98,101,106,109,116,117,121,122,124,125,126,127,129,132,133,137,138,139,140,141,145,146,148,151,154,155,156,157,159,161,163,164,165,167,168,171,173,178,179,180,182,183,184,185,191,192,196,198,200,205,206],"60":[7,9,14,32,33,36,39,41,43,44,50,52,58,59,65,67,68,81,82,105,106,109,114,116,122,124,132,138,159,165,167,169,190,191,196,204,205],"600":[3,73,81,116,138,139,167],"6000":[33,36,50,60,87,89,131,139],"60000":[29,30,72,139],"600000":[66,69,88],"60028":141,"6003":50,"600345":29,"60045":141,"600833":39,"600866":61,"600px":[125,126,132,159,178],"601":81,"60116":141,"60122":141,"60144":141,"6015625":141,"60192":141,"602":[69,81],"60239":141,"6026":141,"603":[81,141],"60306":141,"60320":141,"60321":141,"603333":39,"60349":141,"6036":39,"60373":79,"603m":36,"604":[79,81,141],"604039":63,"60409":141,"6041":141,"6043":50,"604382":81,"604384":[65,67],"60465":141,"6047":39,"605":81,"60522":141,"60523":141,"6053":141,"60546875":141,"60550":141,"605962":63,"606":[63,79,81,191],"60611176e":165,"60623":141,"6063":37,"6065":141,"606544":126,"60654404362744":126,"60665929e":165,"606722816":39,"607":[69,81,141],"607008e":39,"6072":39,"60733":141,"60744":141,"6075":141,"6076":141,"60764":141,"6078":141,"608":81,"6080":36,"6081":141,"6082":[63,79],"6084":138,"60850":141,"60851":141,"60863":141,"60869":164,"6088":141,"609":[81,141],"6090":[36,50],"60904":141,"6092":141,"60925":141,"609375":141,"6095":141,"6096":141,"60970":141,"6098":141,"6099":141,"60m":36,"61":[39,50,52,61,66,81,132,141,154,156,167,173,191,205],"610":[81,141],"610000":39,"6105":37,"6107":141,"611":[81,154],"611105":39,"61122":141,"611222":69,"6117":141,"61184":141,"612":81,"61204":141,"61205":141,"61216":141,"612245":127,"6123":[50,141],"612364":168,"61238":141,"6124":141,"6125":141,"613":[81,141],"6131":72,"61328125":141,"61351":141,"614":81,"614392":29,"614872":126,"6149":39,"614939":127,"615":[34,81,141],"6150":36,"61501":141,"61510254e":165,"61516":141,"6153":33,"615385":39,"61547":141,"615698":126,"61571016e":165,"616":[79,81,180],"61622":141,"61630":141,"616314e":39,"616364":29,"61663286":79,"616766":60,"617":[34,81],"6170212765957446":14,"6171875":141,"6173":39,"617423":[65,67],"6175":141,"6176":50,"61760":141,"617678":127,"617802e":61,"618":[81,141],"6180":50,"6182":69,"619":81,"619047619047619":14,"61905":141,"619219":127,"61965":141,"62":[39,50,52,61,65,67,69,73,81,116,121,138,141,156,167,173,190,200,205],"620":[81,138],"6200":36,"6201":141,"62037":141,"6204":141,"62046":141,"6205":141,"62055":141,"62066":141,"6208":141,"62084":141,"620px":126,"621":[39,81,141],"6210":36,"62107":141,"62109375":141,"62110":141,"621116e":61,"6212":141,"6213":141,"62134":141,"6215":50,"622":[81,141],"6220":141,"6225":36,"62271805":79,"623":81,"6230":141,"6231532":39,"62329":141,"6233":50,"62374":141,"624":[37,81,141],"62405":141,"62419":141,"624289":39,"6244":37,"6245":[36,141],"6246":141,"624615":39,"62477454e":165,"625":[81,141],"6250":36,"625000":39,"6254":141,"62571878891146":167,"626":81,"6263":141,"6265":72,"6266":39,"626690":126,"627":[81,141],"62712":141,"627175":39,"6274":141,"62740":141,"627590e":61,"628":81,"6283":39,"6285":39,"62860":141,"628845e":127,"62890625":141,"62891":141,"629":81,"6291":39,"6294":141,"62993":141,"63":[39,42,50,61,66,81,116,132,141,156,157,160,161,167,168,173,179,198],"630":[37,81,141],"6302":79,"630217":63,"63022":141,"6303904952264":60,"6304":37,"6305506":134,"6308":141,"630px":[125,126],"631":[81,125],"63119":141,"6312":141,"6313":141,"6315":39,"63169":141,"63197":141,"632":[81,125],"63204":141,"632456":69,"63256":141,"63262":141,"6327":39,"6328125":141,"633":[81,125],"633158":191,"633167":175,"63339":141,"6334":39,"633534":175,"6339302659034729":50,"634":[81,125],"634019":69,"634057":127,"6342":39,"63424116e":165,"6345":[36,39,141],"634504":127,"6348":141,"63481":141,"635":[39,69,81,125,141],"6350":39,"6351":50,"6352":39,"6353":164,"6354":39,"6356":39,"635833":39,"6359":39,"636":[81,125,141],"63603":141,"63608":141,"6361":39,"6362":39,"636238":61,"636364":178,"636368640":39,"63637":141,"63655":141,"6366":141,"63671875":141,"6368":39,"6369":[39,141],"637":81,"6370":39,"6371":[39,141],"6374":141,"637461":69,"63752":141,"63759":141,"637635":69,"6378":39,"63792":141,"638":[37,81,141],"6380":39,"63803":141,"6381":39,"63818037":121,"63851":141,"6387":141,"6388":141,"639":[61,81,138,141],"63940":141,"639426e":39,"63960":141,"63m":36,"64":[7,29,30,31,32,33,34,35,36,37,38,39,40,41,42,50,52,60,61,81,97,114,116,122,124,127,131,132,135,139,140,141,146,159,164,167,168,173,184,190,198,206],"640":[81,138,154],"6400":36,"64000":60,"6404":164,"64061041e":165,"640625":141,"64073":141,"64082434":142,"640x480":88,"641":81,"641035e":61,"641330":127,"642":[81,141],"64206":141,"64243":141,"642485873":175,"642977":61,"643":[81,141],"64300":141,"6431":[63,79],"6435":141,"644":[81,141],"644082":151,"6442":141,"64438":141,"6445":[63,79,141],"64453125":141,"64497":141,"645":81,"6450":36,"6451":141,"6452":50,"64536975e":165,"645452":126,"64568":141,"645767":168,"645833":[39,169],"646":[37,81],"646415":127,"646705152":39,"64671":141,"64681":141,"647":81,"6471":141,"6473":141,"6479":141,"648":[63,79,81],"6482":141,"6484375":141,"64851":141,"64859406":[63,79],"648923":127,"649":[81,138],"649167":39,"6492":141,"6497":50,"649855":39,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[34,140],"65":[35,36,50,61,68,81,116,121,132,142,145,165,167,171,173,183,184,190,196,201,202,204,206],"650":81,"6500":141,"650px":126,"651":81,"651004":69,"651954":126,"652":[81,114,190],"6522":141,"652301":127,"65234375":141,"65239850433215":167,"6527":141,"653":[81,167],"6530":[36,141],"6532":141,"65334":141,"65347":141,"6535":141,"6536995137169997":81,"6538":141,"65380":141,"654":81,"654167":39,"65443":141,"654644":69,"654676":121,"65480":141,"65492":141,"655":81,"6550":36,"65526":141,"65543325e":165,"655517642572828":167,"65555":141,"655787":69,"6559":126,"656":[37,81],"6560":[50,126],"6561":126,"65611":141,"65625":141,"656881":29,"656881421233":163,"657":[81,168,198],"6571":50,"65732685":79,"657370":127,"65746":141,"657761":175,"65793":141,"658":81,"6581":141,"65872906e":165,"659":81,"6590":36,"6591692566871643":50,"6594504178995297":121,"65949":141,"6596":37,"65962":141,"6598":126,"6599":126,"66":[30,39,50,52,81,141,154,167,171,173,184,194,206],"660":[81,138,141],"6600":[36,126],"66015625":141,"6602":126,"66022":141,"66036":141,"6604":126,"6605":126,"6607019357604422":81,"660833":39,"66098":141,"660px":125,"661":81,"661054":39,"661068":63,"661092":127,"6611":79,"6615":36,"662":[81,141],"6621":39,"662185e":39,"662224":[65,67],"662295":168,"6625":39,"6627":39,"663":[81,141],"6631":39,"6632":39,"66327":141,"6635":39,"66369":141,"6638":39,"664":81,"6640":39,"6640625":141,"6641":39,"6642":37,"664593":126,"6646":141,"6647":39,"664918e":61,"66496461":79,"665":[39,81],"665000":116,"6651":[39,141],"665144":69,"6652":39,"6653":37,"6655":39,"6657":[39,141],"666":[81,154],"6660":36,"6662":39,"66623":141,"6663":39,"6664776":134,"6665":141,"6666":39,"666666":69,"6666666666666666":52,"6666666666666667":[184,206],"666666666666667":184,"666667":39,"6669":39,"667":[37,81,141],"6670":141,"6671":141,"667258":127,"6674":39,"6675":141,"6678":141,"66796875":141,"668":81,"6680":36,"6683":39,"66840":141,"66845":141,"66867670e":165,"669":[81,141],"669000":154,"6691":141,"6695":36,"66977":141,"67":[30,50,51,54,60,81,88,126,132,141,167,171,173],"670":[81,141],"6700":36,"67000":141,"67021":141,"670623":127,"670px":125,"671":81,"671131":29,"67131":141,"6714":50,"6715":126,"6717":126,"6718":126,"671875":141,"6719":126,"672":81,"6720":36,"6721":126,"6722":[126,141],"672225":61,"67225":141,"672280":127,"6725":36,"672864":63,"673":[79,81,138,141],"673333":164,"67374":141,"673913":127,"674":81,"6740":36,"6742":72,"674257":127,"67434":141,"674452224":39,"675":81,"6750":141,"6754":141,"67550":141,"67578125":141,"6758":141,"675833":39,"676":[37,42,81],"676245":69,"6765":141,"676667":39,"6767":141,"6768":141,"677":81,"6770":141,"6771":141,"677258":61,"6775":141,"6779":141,"678":81,"6780":36,"67819323e":165,"6782":138,"6783":141,"6784":141,"67843":141,"67858615":[63,79],"6786":141,"6788":141,"679":81,"67912":141,"67953":141,"6796875":141,"6797":141,"67m":36,"68":[14,50,61,63,68,69,81,126,132,141,167,171,173,191],"680":[81,138],"6800":36,"68006699e":165,"680097":126,"680470":175,"68076":141,"6808":126,"680851":127,"6809":126,"680px":126,"681":81,"6810":[36,126],"681000":154,"6811":[50,126],"6812":126,"68123130e":165,"68141":141,"681744":[65,67],"6818":141,"682":81,"68201":141,"6821":141,"682361":127,"68269":141,"682f2f":69,"683":[81,151,154],"68359375":141,"683782":61,"684":[63,81],"6842":[39,141],"68438":79,"6844":39,"684457140":39,"6845":141,"68478":63,"68491":79,"685":81,"6850":36,"6851":39,"6852":39,"68522":69,"685279":127,"685323":172,"68537":79,"685433":79,"68543687e":165,"6855":39,"68557":141,"6858":39,"686":81,"68617":141,"686275":127,"6866":141,"6868":39,"68684":63,"6869":39,"687":81,"6870":[36,39],"6872":39,"6875":141,"6878":39,"6879":72,"68796":141,"688":[81,141],"688382":127,"688422":126,"68849":141,"6885":39,"6886":39,"6887":39,"6888":39,"6889":39,"689":[81,141],"6890":39,"6891":39,"6893":[39,141],"6894":39,"68969":141,"6897":141,"6899":39,"68m":36,"69":[39,50,69,81,121,132,141,145,167,171,173,179],"690":[81,204],"6900":[36,39],"6902":39,"690293":69,"6903":39,"69037":141,"6904":39,"6905":39,"690558":127,"6907":39,"6908":39,"6909":[39,138],"690px":126,"691":[81,138,141],"6911":39,"69136631":167,"6914":39,"69140625":141,"69147803e":165,"6915":39,"6917":39,"691763":127,"69178":141,"692":[81,125,141],"6920":39,"6921":39,"69211":141,"692181":69,"6922":39,"692308":39,"6924":39,"6925":39,"692500":39,"69261":141,"69276335e":165,"6928":39,"6929":39,"693":[81,125],"6930":39,"69301037e":165,"69318":141,"6933":39,"693381":127,"6934":[39,141],"6935":39,"6936":39,"6937":39,"69378":141,"69399":141,"694":[81,125,141],"69400":141,"6941":39,"69411":141,"6942":39,"69456":141,"6946":[39,141],"6947":39,"6948":39,"695":[37,42,81,125,138,141],"6950":36,"69500":141,"695000":154,"6952":39,"6953125":141,"695662":191,"6958":39,"695833":39,"696":81,"6960":39,"6961":39,"6962":141,"6963":39,"6965":39,"6968":39,"6969":141,"697":[79,81,125,141],"6970":[36,39],"69710373e":165,"6974":50,"69764":141,"6976998904709748":179,"69779":141,"698":81,"6982":141,"6983":141,"69831":141,"6984":39,"6985":39,"6986":39,"699":[81,125,138,154],"6990":39,"69921875":141,"699648":61,"6999":141,"6a":98,"6j":[184,206],"6m":[39,72],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":61,"6qepylt4v68sypax9kxk":61,"6qwd":61,"6s":[63,132,167],"7":[3,7,14,22,24,29,30,31,32,34,35,36,37,38,39,42,43,46,50,51,56,57,61,64,65,66,67,68,69,71,72,73,79,81,82,83,85,88,89,97,98,106,115,117,121,122,124,125,126,127,129,138,139,140,141,142,144,145,146,151,154,155,156,157,159,160,161,164,165,167,168,171,173,178,183,184,185,191,192,198,200,205,206,207],"70":[14,30,32,39,43,50,52,61,65,67,68,81,116,121,132,141,156,167,173,178,183,190,200],"700":[58,81,138],"7000":[1,79,124,131],"700592":175,"7009":141,"700px":[126,139,140,159,165,168,171,175,176],"701":[81,141],"7010":[36,141],"7011":141,"7012":141,"7018823027610779":50,"702":[81,154],"7020":39,"702500":39,"70282":141,"703":[81,125],"7030":141,"703125":141,"7032":141,"7033":138,"7034":141,"7036":141,"703982":[65,67],"704":[81,125,141],"70429":141,"7048":39,"705":[81,125,141],"7054":141,"70549":40,"7057":164,"70584":141,"706":81,"70633":141,"706839":69,"70698":141,"707":81,"70703125":141,"707064":127,"7073":141,"707557":127,"70760":141,"708":[81,141],"70884":141,"709":[81,141],"7090482711792":50,"70935":141,"7099":[63,79],"71":[30,50,52,58,79,81,97,116,121,132,141,156,161,167,173,178,190,200],"710":[81,141,154],"7100":36,"710000":63,"7104":141,"71069972e":165,"7107":141,"71086031":167,"7109375":141,"711":81,"7110":[36,141],"7111":141,"71130":141,"71140282e":165,"7117":141,"712":[81,114,190],"7125":141,"7127411872482181":82,"713":81,"7131":141,"71327164e":165,"7133":39,"713683":29,"714":81,"714350":69,"714500":154,"71469":141,"71484375":141,"715":[81,141],"7153":141,"71537":141,"716":81,"71613":69,"71625":141,"716440":81,"716541":127,"7169":138,"717":81,"7171":39,"71714":79,"71733307":[63,79],"718":81,"71817":141,"718230":69,"7184":141,"7185":141,"71875":141,"7189":141,"719":81,"7190":164,"719457":121,"71977":141,"7198":164,"71995":141,"72":[36,39,50,81,97,116,121,167,173,178,190],"720":[81,138],"7200":169,"720000":[116,127],"720109":127,"7203":[50,141],"72035":141,"72038896e":165,"7209":[39,141],"72093598500494":[65,67],"721":[81,141],"72101958323096":[65,67],"72108":141,"72115":141,"72164454424515":[65,67],"722":[81,141],"722071":151,"7222":39,"7225":141,"72265625":141,"7227":138,"722717":39,"723":[81,141],"723684":121,"724":[81,138],"724046":29,"7245":39,"724590719956222":60,"7247":141,"724924":[65,67],"725":[81,141],"7255":138,"72568":141,"72581411":167,"726":[81,125],"72645393e":165,"726562":61,"7265625":141,"72663483920857":[65,67],"726845ca9638":119,"727":[81,125,141],"727361":127,"7276":[39,138],"727750":151,"72788":79,"728":[81,138],"7280":39,"7281":[39,138],"728960":127,"729":[81,125,141],"7291":138,"7293":141,"72973067e":165,"72991":141,"73":[39,50,52,81,116,121,132,154,156,167,172,173,178,205],"730":[81,125,168,198],"7302":141,"73041":141,"73046875":141,"7305":141,"730523":126,"730px":[126,127],"731":[81,125,141],"7311":[39,141],"7312":141,"731474":127,"73167":141,"73183":141,"732":[81,167],"7327":141,"7329":141,"733":[81,125],"733707e":61,"73372":141,"734":[81,125],"7340":141,"734147e":61,"7343":141,"734375":141,"7345":36,"734924":[65,67],"734970":127,"73498":164,"735":[81,125,141],"735000":39,"7351":141,"7352":138,"7354":39,"735448":168,"735822":61,"736":[81,125],"7363":141,"73640977e":165,"73645":141,"736567":168,"736769":39,"737":[81,125],"7373":138,"73779":141,"73781752e":165,"738":[81,125,138,141],"7380":164,"73828125":141,"7383":138,"73834386":121,"73856":[37,42],"7386":141,"73886":141,"739":[81,125,141],"7390":141,"73914":141,"739191":168,"7394":50,"7395":138,"7396":39,"73m":36,"74":[29,39,50,52,61,69,81,121,141,167,172,173,178,191],"740":[81,138],"740251e":39,"74038093e":165,"740959":69,"741":[79,81,138],"741066":[65,67],"7414":138,"7415":36,"741619":154,"74170":141,"742":[81,141,164],"7421875":141,"7422":[39,141],"7424":39,"742725":63,"74273":79,"7428":141,"742940":29,"742972":168,"743":81,"74306":141,"74310":141,"74340771":79,"74354":141,"74360":141,"74382":141,"744":[81,125,138,141],"744051e":61,"7442":138,"744669":61,"744769":39,"745":[81,125],"745034":39,"745567":126,"74569":141,"7457":39,"7457109493044":66,"7458":141,"746":[81,141],"74609375":141,"747":81,"74703":141,"7475":138,"74763":141,"748":[81,141],"7483":141,"7486":141,"74871473e":165,"7488":141,"749":81,"749062":69,"749080":81,"7493":141,"7495":141,"7499":141,"75":[7,32,33,39,50,52,56,58,59,60,61,63,66,68,69,79,81,88,121,132,134,141,146,154,156,157,159,160,164,167,172,173,179,184,191,199,200,201,202,206],"750":[52,60,81,141],"7500":63,"750000":[39,61,66,164],"750178363923474":66,"750px":125,"751":81,"75151515":87,"75181":141,"752":81,"752082":69,"75226":141,"752357":127,"7529":138,"753":81,"753199":29,"753636":127,"75390625":141,"754":81,"75404635e":165,"75449424e":165,"75453":141,"754680":29,"7547":138,"7549":141,"755":[79,81,141],"75501568":42,"75555":141,"75572":141,"7558":141,"756":81,"7561":164,"7563":141,"756461":168,"7567":141,"757":81,"757191":127,"75727":141,"757329":126,"757500":39,"7578":138,"7578125":141,"758":[81,141],"758359":69,"75837":141,"7584":138,"75860":141,"758667":[66,88],"75880184e":165,"7589":138,"759":[81,141],"7590":141,"759003":175,"7592":141,"75929":141,"7596":141,"7598":141,"7599":141,"75th":[56,167],"76":[39,50,59,69,81,114,121,132,141,167,172,173,190,199],"760":[81,138],"76006":141,"76014705e":165,"7603":141,"760479":60,"760623":154,"76074":141,"761":[81,141],"761000":154,"761212":126,"76150":141,"76171875":141,"76193":141,"762":[81,126],"76219":141,"7622":141,"762382":127,"763":[81,126],"763161":[66,88],"7634":138,"76349":141,"7639":138,"764":[81,126,141],"764029e":39,"764416":127,"764420":[66,88],"7645":141,"7646":138,"7647":141,"764796592":175,"7648102045059204":50,"765":[81,126],"76536":141,"765625":141,"766":81,"7660":36,"76605":141,"7666666666666667":66,"7667":141,"7668":141,"766995e":39,"767":[81,126],"76700042e":165,"76701":141,"7673":141,"76731980371954":[65,67],"7675":141,"76750129e":165,"7678":[184,206],"768":[60,81,126],"7682":141,"7684":164,"7688":141,"769":[81,126,141],"7690":39,"7691":39,"76921":141,"769231":39,"76953125":141,"76968":141,"7699":39,"77":[39,50,61,81,116,167,173,178,205],"770":[81,141],"77016":141,"77019":141,"7704":141,"7705":36,"7706":39,"77064":141,"7707":138,"770px":125,"771":[81,125],"77100":79,"7712":[39,138],"7715":39,"7719":39,"772":[81,138,141],"7721":[138,141],"7722":39,"7723":39,"772308":39,"7724":39,"77259":141,"7727":39,"7728":[36,141],"772823":60,"773":[81,125],"7730":[39,141],"77332":141,"7734375":141,"773634":126,"773820":29,"7738266430037695":50,"773897":29,"774":81,"774000":116,"77419":141,"774272":164,"774478":126,"77455":141,"7746":39,"7749":141,"775":[81,125],"7750":39,"77506":141,"7752":141,"77531":141,"7754":39,"77584":141,"7759":39,"776":[81,125],"7762":141,"776223":175,"7763":39,"777":[81,125],"777147":127,"77734375":141,"7777":39,"777777":43,"7779":138,"778":[81,125,141],"7780":141,"7784":[138,141],"77847":141,"7785":141,"7786":[138,141],"7787":138,"7788":141,"779":[81,141],"7795":138,"77m":140,"78":[39,50,52,61,81,141,156,167,172,173],"780":[81,125,138],"7800":39,"78008":141,"780421":69,"7805":141,"7807":141,"780945":126,"781":[81,138],"78100":79,"7812":141,"78125":141,"7814":145,"7815":145,"782":81,"7829":141,"782925":39,"783":[81,168],"78319":141,"7832":138,"783333":169,"783423":29,"784":[29,30,32,43,49,72,81,87,89,131,138,141,194,204],"78431373":79,"7844":[141,164],"784500":154,"78466":141,"784899":126,"785":[63,79,81,141],"7851":141,"78515625":141,"7851741":134,"7852":141,"7856":138,"78573":141,"7858":141,"785px":125,"786":[81,138],"7860":141,"786347":127,"7866":141,"7866666666666667":66,"7867":138,"7868":141,"7868852459016393":143,"787":[79,81],"7870":141,"7871":141,"787490":29,"78775":141,"788":81,"78855":141,"7888":141,"789":81,"7890625":141,"78911":141,"7898":138,"79":[39,50,54,61,79,81,114,116,141,167,173,179,190,191],"790":[81,141],"7900":63,"7903":138,"7906":141,"7908":141,"7909":141,"791":[81,141],"7910":37,"7912":141,"791419":127,"7919":138,"792":[81,204],"792168":29,"7925":79,"79260":141,"79290307":167,"79296875":141,"793":[81,168],"7934":141,"793560":39,"7936":141,"793917":69,"794":81,"794003":168,"794464":127,"794615":39,"7949":141,"7949491493525":[65,67],"795":[81,138,198],"7951":164,"7952":141,"7953":138,"7954":[138,141],"795514":69,"7958":141,"7959":141,"796":81,"7963":141,"79641063":167,"7965":138,"7968":141,"796875":141,"796958":29,"797":[81,167],"79704":141,"7971":[138,141],"798":[81,141],"7980":[141,154],"7984":141,"7986":138,"799":[81,171],"7990":141,"7991":141,"799154":39,"79948":141,"7995":39,"799895":69,"79m":[36,39],"79uxx":61,"7b":[125,126,127],"7d":[125,126,127,184,206],"7e100":184,"7m":39,"7poa":61,"7s":[42,63,167],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":61,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,42,43,45,46,49,50,51,52,53,55,56,60,61,62,63,65,66,67,68,69,72,73,79,80,81,82,88,89,97,98,106,114,117,121,122,124,125,126,127,129,133,135,138,140,141,145,146,154,155,156,157,159,161,164,165,166,167,168,169,173,178,179,183,184,190,191,192,198,200,205,206,207],"80":[14,31,32,33,50,52,54,61,65,67,68,79,81,97,132,138,139,141,145,150,167,169,172,173,174,179],"800":[3,58,81,138,156,167,183],"8000":[60,131],"800000":[66,88],"8001":50,"800232":29,"800246e":127,"80037642":167,"8005":141,"8006672226855713":172,"80078125":141,"800px":[125,132,155,167,178],"801":[81,126],"80117999":167,"8012":141,"8013":141,"8014":141,"8015":141,"8016":141,"80180":141,"8019":[138,141],"802":[81,126],"8020":141,"802422":29,"802500":39,"8027":141,"80290755":167,"803":[81,126],"80304767e":165,"8032":138,"8033":141,"80330":169,"8034810001":191,"80351":141,"80354":141,"803611":169,"80389616":167,"8039":141,"804":[81,126],"8042":138,"804221":39,"8045":141,"8046":141,"8046875":141,"80468775":79,"8049":141,"805":[81,126,198],"8057":138,"80577065":79,"8058":141,"8059":141,"806":[81,126],"8061":141,"8064":138,"8066":[138,141],"807":[81,126],"8072":138,"8072059636181399":81,"80730058":167,"8079":138,"808":[81,126,167],"808326e":39,"80859375":141,"8088":138,"809":[81,126,141],"8091":141,"8092":138,"80936101e":165,"8094":138,"80949747e":165,"81":[39,50,59,61,68,81,97,114,121,124,132,141,145,167,173,179,184,190,206,207],"810":81,"8100":141,"810032":127,"8101":[79,138],"8106":[138,141],"81093633":167,"81098":141,"810px":125,"811":[81,126,141],"811000":154,"8115":[138,141],"8116":138,"811667":39,"8117":[138,141],"8118":141,"81180":141,"812":[81,126,141],"8121":141,"8125":[138,141],"812500":39,"813":[81,138],"8132":141,"8133":141,"8133333333333334":66,"8134":[138,141],"8135":141,"8137":141,"814":81,"8140703517587939":179,"8141":141,"8143":141,"814380":126,"8145":141,"8147":141,"81485948e":165,"815":[81,141],"8154":141,"815414":69,"8155":141,"815773":127,"816":[81,138,164],"81640625":141,"81655049e":165,"8167":138,"816772":126,"816780e":127,"8169":141,"817":81,"8172":138,"818":[81,138,141],"818000":[116,190],"818286":29,"818557e":61,"819":[81,141],"8192":[42,141],"8195":141,"8196":141,"81m":36,"82":[39,50,81,98,132,141,145,167,172,173],"820":[81,138],"8200":141,"8201":138,"8203125":141,"8206":141,"820px":126,"821":[81,141],"8215":138,"8216":141,"8217":138,"8218":141,"8219":138,"822":[34,81],"8220":141,"822130":69,"8222":141,"822259":154,"8224":42,"822754":69,"823":[34,81,138,141],"8231":[63,79],"8235":141,"823889":169,"824":81,"824100":127,"8242":141,"82421875":141,"8243":141,"8248":141,"82485143":124,"825":81,"8250":141,"825000":39,"8252":138,"8256":141,"8259":141,"826":[81,141],"8260":141,"826347":60,"827":[39,81],"827204":29,"82774910e":165,"828":81,"828066":[66,88],"828125":141,"8283":141,"8285":138,"8286":141,"829":[81,141],"829067":69,"829500":154,"829756":[65,67],"82m":36,"83":[36,39,50,61,66,81,116,132,145,167,173,179,190],"830":[81,141],"830226":127,"8307692307692308":179,"830px":125,"831":81,"8313":50,"831691":168,"832":[81,115,190],"83203125":141,"8321":138,"833":[81,154],"833333":39,"8333333333333334":167,"8337":138,"833799":127,"834":[81,138],"8340":36,"8343":138,"8348":37,"835":81,"8359375":141,"836":[81,154],"836154":39,"836667":39,"8369":138,"837":81,"83709456e":165,"83715245e":165,"8373":138,"837500":39,"837735":127,"837984":157,"838":81,"83892432e":165,"839":81,"839000":116,"8392":138,"8394":138,"83984375":141,"83m":36,"84":[41,50,52,59,61,68,81,132,141,145,156,167,173,178],"840":[81,138,151],"84001001":151,"84001003":151,"84001005":151,"84001007":151,"84001009":151,"840299":126,"8407":36,"8409":138,"841":81,"84192557":167,"842":[81,141],"842069":29,"84236351":167,"8428":138,"843":81,"8431":138,"843333":[66,88],"84375":141,"8438":138,"844":81,"8448":138,"844805":127,"8449":138,"844925":157,"845":[79,81],"8450":68,"845000":39,"8456":138,"8459":36,"846":[81,138,141],"8462":[63,79],"846506":127,"846646e":61,"847":[81,138],"84700":79,"84739223":167,"8474":138,"84765625":141,"8476788564209704":81,"8476788564209705":81,"8476788564209707":81,"8476788564209713":81,"8476788564209723":81,"8476788564209757":81,"8476788564209847":81,"8476788564210102":81,"8476788564210811":81,"8476788564212772":81,"8476788564218222":81,"8476788564233363":81,"847678856427542":81,"8476788564392248":81,"8476788564716766":81,"847678856561821":81,"8476788568122215":81,"8476788575077785":81,"8476788594398821":81,"8476788648068361":81,"8476788797150412":81,"847678921126722":81,"8476790361591695":81,"8476793556937455":81,"8476802432897899":81,"8476827088343573":81,"8476895575692671":81,"8477085818329055":81,"8477614270096787":81,"8479082191673818":81,"84797838907741":[65,67],"848":81,"848298":127,"8483159751610024":81,"8488":138,"849":[81,141],"8492":138,"849422":126,"8494486306988371":81,"849811":127,"85":[18,39,42,50,58,59,63,79,81,114,115,121,132,141,145,151,167,173,190,191,200],"850":[81,141],"8504":164,"85097502e":165,"851":[81,141],"8510":154,"8515625":141,"8516":138,"851852e":39,"852":[81,141],"852040":168,"852500":39,"8525948960817107":81,"8529":36,"853":81,"853283":126,"8533":138,"853562":168,"8536":138,"854":[81,141],"8544":36,"854448":164,"85461521e":165,"855":81,"8554":36,"85546875":141,"8554913294797688":59,"856":[81,141],"856196":[65,67],"8562":138,"856667":39,"8568203376968316":52,"857":[69,81,168,198],"8572":36,"857513":168,"85796668":[63,79],"858":81,"858334":127,"8584":36,"858556":127,"85885311e":165,"859":81,"859375":141,"8595784":124,"86":[39,50,52,59,61,63,65,67,79,81,132,141,145,151,156,161,167,169,172,173],"860":[81,138,141],"860146":61,"861":81,"8613345221452491":81,"8614":138,"8617":138,"862":81,"8629":145,"863":[81,141],"86328125":141,"8636":138,"8637678":[184,206],"863846":39,"864":[81,141],"8641":37,"8644":36,"8649":36,"865":81,"8651":42,"866":[81,141],"8666666666666667":66,"866832":168,"867":81,"86713461558":63,"8671875":141,"8672":79,"867339":39,"867500":39,"8677":138,"868":[72,81],"868170":168,"868263":151,"8684":138,"8689":138,"868942":[65,67],"869":[81,141],"869231":39,"869547":[65,67],"869839":126,"869909":127,"87":[39,50,52,59,81,132,145,151,157,167,173,184,191],"870":[81,141],"87000":[201,202],"870000":39,"87005":79,"870053":63,"870455":164,"870734":127,"870815e":61,"871":[81,126],"87109375":141,"872":[81,126,141],"872618":69,"873":[36,37,81,126,141],"8734":36,"874":[81,126,141],"874230":29,"874252":29,"875":[81,126,141],"875750":154,"876":[81,126],"876604":127,"876614":168,"8767":138,"87699381e":165,"877":[81,126,141],"877372":127,"8776021588280649":82,"878":[81,126],"878377":69,"87890625":141,"879":[81,141],"879096":168,"8798":138,"88":[41,50,52,59,61,63,79,81,132,141,156,159,161,164,167,173,175],"880":[63,79,81,138],"8808":[138,164],"881":81,"881110":29,"88114261e":165,"882":81,"8823":36,"88235294":79,"882430":61,"882500":39,"88268548e":165,"8827":138,"8828125":141,"883":[81,141],"8830":36,"883056":169,"8833":138,"883562":175,"884":81,"8842":138,"8844":138,"8845":36,"884605":127,"885":[72,81,141],"8855":61,"8856112612106326":81,"8858":61,"885964":[65,67],"886":81,"886073":29,"8861":36,"88633901":167,"8864":164,"88671875":141,"887":81,"8878":138,"888":81,"8881":138,"8883":36,"888888":159,"888889":121,"88889":[168,198],"8889":138,"889":[81,141],"8892":138,"88936548":121,"8897":42,"88k":52,"89":[39,42,50,52,59,81,132,141,156,167,169,173,183],"890":[81,141],"890625":141,"891":81,"8914":138,"892":[72,81,141],"8920":42,"8923":138,"8924":36,"8926045016077171":59,"892986":127,"893":81,"893586":69,"8937":138,"894":[81,141,154],"89400":79,"8942":138,"89453125":141,"89488":154,"895":[81,141],"8954":37,"8959":138,"896":[37,81,138,141],"896291e":61,"896499":61,"896727335512334":66,"897":[30,81],"89720787e":165,"897425":175,"8977517768607695":66,"89779848e":165,"898":[81,141],"8982142857142857":29,"8984375":141,"8986":[72,140],"898983":127,"899":[81,151],"8997":138,"8998":138,"89m":36,"8aaad":61,"8b":98,"8b9":168,"8b9ae55861f22a2809e8b3a00ef815ad":168,"8c74a315":[123,192],"8j":[184,206],"8m":[50,72],"8s":[63,140,167],"8spbdlrp3lbr9j9uejdzgqul6":61,"8x8":[52,140],"9":[7,14,18,22,24,29,30,32,34,35,36,37,38,39,42,43,45,47,49,50,52,56,60,61,62,66,68,69,71,72,79,81,82,85,88,89,97,98,106,115,117,121,122,124,125,126,127,129,132,134,138,141,142,145,146,154,155,156,157,159,165,167,168,172,173,175,178,179,180,183,184,185,190,191,192,196,198,204,205,206,207],"90":[1,7,14,31,34,36,39,40,41,50,52,53,56,58,59,61,65,67,69,81,87,121,132,141,146,156,160,167,168,173,178,179,180,196,198,205],"900":[58,81,138,141,169],"9000":131,"900000":[66,88],"90022":79,"900225":63,"900476":69,"9006":138,"901":81,"901429":81,"9017":138,"901902":127,"902":81,"902000":116,"9022":138,"90234375":141,"903":81,"903846":121,"90385283885":79,"904":81,"904227":29,"9042344":167,"905":81,"905000":39,"9051":138,"905722":69,"906":[81,141],"90625":141,"907":[81,141],"907207":127,"908":[81,141],"908097":69,"908113e":61,"908426":61,"9086":36,"909":[81,141],"90909091":87,"909581":126,"90m":36,"91":[30,39,43,50,52,59,79,81,89,116,132,141,156,167,172,173,191],"910":[81,141],"910000":154,"91015625":141,"9102":50,"9104":36,"91076629230869":36,"911":[81,141],"91111":[168,198],"911208":127,"9118":138,"912":81,"912641e":39,"913":81,"913000":69,"913196":69,"9136":36,"9137407":79,"914":81,"9140625":141,"9142":36,"914407":29,"9145":138,"915":[81,141],"9151128092433933":127,"91511281":127,"915113":127,"9152":138,"915317":127,"916":[81,138],"916667":[39,169],"917":[81,141],"9171":61,"917554018630476":66,"917709":175,"91796875":141,"918":81,"9181":138,"918462":39,"918525":127,"9187":138,"9187045":[63,79],"9189":72,"919":[81,141],"91m":36,"92":[39,41,50,51,59,61,71,81,85,121,132,141,159,167,168,172,173,175,198],"920":[81,138,141],"920135":69,"92051":146,"920px":126,"921":[81,141],"921875":141,"922":[81,141],"922500":39,"922706":39,"923":[79,81],"92300":79,"923077":121,"923210":69,"9235":61,"924":81,"92483335e":165,"925":[81,141],"9250":161,"92503668":121,"925286":29,"925591":127,"925596661128895":159,"92578125":141,"926":81,"927":81,"927040e":69,"9272":138,"927331e":69,"92780":164,"928":81,"928898":127,"929":[81,141],"9296875":141,"929699":69,"92m":36,"93":[36,39,41,50,59,61,79,81,87,114,125,132,141,167,173,175,190],"930":[81,141],"9300":63,"930808":164,"930833":39,"931":81,"9312":61,"931818":164,"932":[81,141],"9324":36,"932403":127,"933":[81,141],"9335":72,"933541":29,"93359375":141,"934":81,"9342":50,"9345":72,"934649":164,"934832":164,"935":81,"935703":126,"93598814":[63,79],"936":81,"936285":175,"9368":72,"93695094e":165,"937":[35,81,141],"9375":141,"937600e":69,"9377":72,"938":[81,141],"9382":72,"9383":138,"9385":72,"9386":138,"9388":72,"938874":164,"939":[81,138,141],"93m":36,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":61,"94":[29,39,42,49,50,52,59,61,69,71,79,81,85,114,121,125,132,141,167,173,175,178,190],"940":[81,138],"940000":39,"940000e":39,"940217":164,"9403":36,"9404":138,"941":[81,141],"941111":169,"9413":138,"94140625":141,"941642":[65,67],"9417":138,"9419":72,"942":[81,129,192],"9423":138,"942500":39,"94250252e":165,"94257014456259":52,"943":[81,141],"943324":164,"9439":72,"944":81,"944167":39,"9446":138,"945":[81,141],"9453125":141,"9454":72,"945677":126,"946":[52,81,141],"946246656":39,"9463":72,"947":81,"947202":69,"9473":138,"9479":72,"948":81,"9481":72,"948352":69,"948799":164,"949":[72,81],"94921875":141,"949230e":39,"9494233119813256":52,"95":[18,32,35,36,38,39,41,42,49,50,52,59,61,71,72,79,81,85,89,97,116,121,125,132,156,165,167,168,169,175,196,198],"950":81,"9500":63,"9503":164,"9504":72,"950791":164,"950964":60,"951":[81,141],"951123":164,"9511372931045574":52,"952":[72,81,138],"952074":29,"952655":164,"953":[52,81],"953011":154,"9530466475033655":81,"953125":141,"9534":42,"9538":72,"954":[52,81,141],"954000":154,"9543":138,"955":81,"9550":68,"955556":121,"956":[81,141],"9562":138,"9564":72,"9564565636458":[65,67],"9568":164,"957":81,"95705480e":165,"957500":39,"9576":138,"9578":72,"958":[59,72,81,141],"958084":60,"958434":29,"958786":126,"958899":168,"959":[79,81],"9590":72,"9591":[36,140],"959280":61,"9595":132,"95k":52,"95m":36,"96":[32,35,49,50,52,56,61,81,88,132,138,141,167,169,175],"960":[81,138,141,204],"9600":68,"9600000000000002":66,"960304":29,"9609375":141,"961":[81,141,154],"961250":154,"962":[72,81],"962500":39,"963":[72,81,141],"96303579":79,"963242":127,"963297":69,"96349067":121,"964":81,"9640440750048328":169,"96484375":141,"965":[81,164],"965253":69,"9652659492293556":178,"9656":164,"965629":29,"966":[81,141],"966000":154,"96658114e":165,"9666666666666667":66,"9666666666666668":66,"967":[81,141],"968":81,"9681":138,"968333":39,"96875":141,"9688888888888889":167,"96896536339727":66,"969":[72,81],"96918596":[165,196],"969394":69,"9694":138,"96945":39,"969482":127,"96982397":61,"96984417e":165,"96m":36,"97":[39,40,42,49,50,52,59,66,72,81,87,132,141,167,169,175,178,200,205],"970":[72,81],"97009000e":165,"97011173":61,"97085104e":165,"9709416":61,"971":81,"971020":29,"972":[81,141,204],"972014":127,"9723201967872726":[65,67],"9725":61,"97265625":141,"9728":138,"973":[81,141],"97318436":61,"973292":29,"9733333333333334":66,"973583":69,"9739":37,"974":[72,81],"97458101":61,"9747":138,"975":[81,141],"9750":42,"975000":39,"9753462341111744":52,"975385344":39,"9754":138,"975532":61,"9756":61,"9757":79,"9759036144578314":179,"976":[81,126,141],"9765625":141,"976m":140,"977":[81,126],"977255e":39,"977660":69,"9777777777777777":167,"978":[72,81,127,141],"9783":61,"978333":169,"9784":42,"97848561":61,"97849162":61,"97876502":61,"9789":61,"97899282":[63,79],"979":[37,72,81,126,138,141,191],"97988827":61,"97m":[36,132],"98":[42,49,50,51,60,61,62,72,81,132,141,167,169,179],"980":[72,81,127,138,141],"98046875":141,"9807":[61,72],"981":[81,127],"9810":164,"981272":127,"9814":132,"9816":61,"98176":146,"982":[72,81],"982109":151,"9824":61,"982423":175,"982500":39,"9826":138,"9827":61,"98296089":61,"983":[81,127,141],"9830":61,"983000":116,"983077":39,"9832":[61,138],"9835":61,"9839":138,"984":[81,127],"984375":141,"985":[81,127],"985000":39,"985388":175,"9855":42,"985554":69,"986":[39,81,127,138,141],"9861":138,"9864":132,"9866666666666667":66,"986792":154,"9868":61,"98693918e":165,"987":[81,141],"987500":39,"9876":42,"987654321":97,"987845":126,"988":81,"9882":132,"98828125":141,"9883":42,"989":81,"9890":42,"98901172e":165,"9894":42,"98e3715f":106,"98m":36,"99":[31,32,39,49,50,52,58,61,65,67,69,72,81,121,124,127,151,156,167],"990":[81,141],"9900":132,"990000":[201,202],"990133":29,"9905999898910522":132,"9906":132,"9907":132,"990789":127,"9909":132,"991":[59,72,81,179],"992":81,"9921875":141,"992212":154,"992258":29,"99235819e":165,"9924":36,"9927":132,"993":[81,141,154],"993280":29,"994":81,"9940711462450593":29,"9943":138,"9948":132,"9949":61,"994f5f":37,"995":[36,81],"9950":36,"995000":154,"9951":138,"99529929":121,"995873":39,"995939":69,"996":[72,81,138,141],"99609181":79,"99609375":141,"996375":126,"996421":151,"996650":39,"996840":29,"997":[81,141],"997128":39,"997217":39,"997563":127,"99757":32,"9978":37,"998":81,"998058":39,"998799":39,"998816":39,"9989":138,"999":[34,35,38,58,81,134,135],"999530266023044":60,"99959714e":165,"9996615456176722":[65,67],"9999":[58,175],"9999965334550955":[65,67],"9999997207656334":191,"999999999601675":[65,67],"99m":36,"9be4c7yahuinv1h07ucme1co9p":61,"9e726f":69,"9ec22d57b796":106,"9ect":61,"9f84":123,"9f8a78":69,"9f95":[123,192],"9k":39,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":61,"9m":72,"9s":[63,167],"\u00b5":31,"\u00b5s":191,"\u015fimdi":36,"\u03b3":61,"\u03b3xit":61,"\u03bb":164,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":39,"\u5168dlc":39,"\u5b89\u88c5\u5373\u73a9":39,"\u6597\u9c7c\u89c6\u9891":39,"\u65b0\u5efa\u6587\u4ef6\u5939":39,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":39,"\u7fa4\u661f":39,"\u8c6a\u534e\u4e2d\u6587":39,"\u8d60\u54c1":39,"\u8fc5\u96f7\u4e91\u76d8":39,"\u923d":106,"\u94f6\u6cb3\u5178\u8303dlc":39,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":39,"\ud835\udc4f":175,"\ud835\udc53":175,"\ud835\udc5a":175,"a\u00e7\u0131l\u0131\u015f":36,"abstract":[1,8,119,124],"ayl\u00f8":154,"bia\u0142ecki":192,"boolean":[7,48,97,106,122,125,126,127,138,139],"break":[14,33,36,52,64,80,129,137,141,142,148,149,174,184,203,206],"byte":[29,71,85,124,184,191,206],"cach\u00e9":192,"caf\u00e9":164,"case":[3,7,8,14,18,29,30,41,45,51,54,56,59,60,61,66,68,79,80,83,87,97,98,106,107,111,113,116,119,121,122,124,125,127,129,132,136,140,143,146,148,149,150,151,152,154,155,156,157,159,160,161,164,165,167,168,171,172,174,176,178,179,183,184,186,188,191,198,200,205,206],"catch":[137,150],"char":184,"class":[3,7,14,22,24,29,30,31,33,34,35,37,38,39,41,42,43,45,51,54,55,56,57,59,60,61,62,63,66,69,71,79,83,85,86,87,88,98,99,105,115,121,122,124,125,126,127,133,135,136,137,138,139,140,141,144,145,150,154,156,157,158,159,160,161,164,165,167,168,169,171,172,174,175,178,179,180,184,185,190,194,198,200,201,204,206],"clion2020\u7834\u89e3":39,"d\u00fc\u015f\u00fck":36,"default":[7,22,33,47,48,51,52,54,55,56,59,60,64,65,67,71,85,87,90,98,106,114,122,124,125,127,133,135,136,138,139,140,146,150,159,165,167,168,172,173,176,184,196,198,199,204,205,206],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,33,37,41,42,43,45,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68,69,71,76,79,81,85,87,93,95,97,98,103,105,106,107,108,109,111,113,114,115,116,117,118,121,122,124,126,127,129,134,136,137,138,139,140,142,143,145,146,148,150,151,152,154,156,157,159,160,163,164,165,166,167,168,169,171,172,174,175,178,182,183,185,192,198,199,200,203,205,206],"export":[42,149,169,171],"final":[7,31,32,33,43,49,50,52,53,56,57,58,60,61,69,71,81,85,87,98,111,122,127,134,138,139,140,141,143,145,149,150,151,156,159,160,161,162,165,167,169,171,174,178,179,183,184,194],"float":[22,34,36,39,45,46,48,50,51,53,57,61,72,81,97,98,122,124,127,132,134,144,155,157,168,183,185,191,198,207],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,37,38,41,42,43,47,48,49,50,51,52,54,55,56,57,58,59,60,62,63,64,65,66,67,68,71,73,79,85,86,96,108,116,121,122,123,125,126,127,131,132,133,134,135,138,139,140,141,142,143,144,145,146,148,151,156,159,161,162,164,165,166,167,168,171,172,174,177,178,179,180,182,184,192,196,198,199,200,206,207],"g\u00f6rkem":34,"g\u00fcnai":34,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,34,35,36,37,39,40,41,42,44,45,47,48,49,50,52,57,64,65,67,70,71,72,73,79,80,81,82,83,85,87,89,91,97,98,99,103,104,105,106,107,108,109,110,111,112,113,114,115,116,119,121,123,124,125,126,127,129,130,131,132,133,136,137,138,139,140,141,142,143,144,145,146,148,149,151,152,153,154,155,156,158,159,160,161,162,163,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,184,185,186,188,190,191,194,196,198,199,203,205,206,207],"int":[7,14,22,31,40,42,50,52,58,73,89,97,98,124,126,127,134,135,138,139,140,141,144,145,159,169,183,184,185,191,206,207],"long":[1,8,14,33,36,37,47,49,50,55,57,58,61,66,71,85,87,105,106,109,116,119,124,136,137,145,146,150,163,166,169,174,183,184,185,199,205,206],"micha\u0142":192,"new":[7,9,14,17,22,23,31,33,34,35,36,43,45,47,49,50,51,52,54,55,56,57,61,62,63,64,66,69,71,85,89,97,98,104,105,106,107,109,111,113,114,117,118,119,121,123,125,129,131,133,136,137,138,139,142,143,146,147,149,150,152,155,156,159,160,161,162,163,164,165,166,167,168,171,174,175,178,179,180,182,183,184,186,188,189,191,192,193,194,196,198,203,206],"null":[39,46,48,50,62,69,79,122,125,127,154,164,169,178,179],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":39,"p\u03b8":135,"pikach\u00fa":12,"public":[1,14,52,58,59,104,111,117,119,121,142,144,149,151,152,174,180,183,187,188,189],"return":[2,3,7,12,14,18,22,24,25,29,30,31,33,34,35,36,37,38,39,40,41,42,43,45,46,48,49,50,51,52,54,55,56,57,58,59,60,62,65,66,67,68,71,73,79,80,81,85,86,87,89,97,98,105,106,122,123,124,125,126,127,129,131,132,133,134,135,138,139,140,141,144,145,146,150,151,156,159,160,161,164,166,167,168,169,171,175,184,185,191,192,194,198,199,200,201,202,205,206],"short":[26,47,61,105,121,124,136,137,139,152,169,176,183,184,206],"static":[1,2,5,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,115,116,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,184,190,206],"super":[29,30,31,33,35,37,38,45,65,67,126,135,139,140,141,144,160,183,205],"switch":[0,7,14,49,52,150,156,183,205],"throw":184,"transient":148,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,62,64,66,68,69,71,72,73,79,81,82,83,85,87,88,97,101,102,105,106,113,114,121,122,124,125,126,127,129,132,133,135,137,138,139,140,141,143,144,146,151,152,154,156,157,159,163,164,165,166,167,168,169,173,175,178,179,180,182,183,184,185,190,191,194,196,200,204,205,206,207],"try":[1,3,4,5,7,9,11,14,16,18,25,31,36,37,46,47,49,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,73,81,87,88,94,97,105,106,107,109,112,113,114,115,116,119,122,123,125,126,127,129,134,140,141,143,144,150,151,152,154,155,159,160,161,163,164,165,166,167,168,169,170,172,173,174,178,179,180,181,182,184,185,198,203,206],"var":[18,39,53,57,71,85,113,135,144,156,159,178,190],"void":124,"while":[0,1,7,29,31,32,33,37,41,42,48,49,50,52,55,59,60,61,62,63,66,80,90,98,104,106,107,108,109,111,113,116,117,118,119,121,122,124,125,126,127,129,132,133,137,139,140,148,150,152,159,165,166,167,168,169,172,174,178,179,184,186,187,191,192,193,194,198,199,203,204,206],"y\u00fcksek":36,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,37,41,42,43,45,47,49,50,51,52,53,54,58,59,60,61,64,65,66,67,68,69,71,77,79,80,81,82,83,85,87,90,93,94,95,97,98,104,105,106,107,109,111,113,114,115,117,118,119,121,122,123,124,125,126,127,129,131,132,137,138,139,140,143,144,145,146,148,149,150,151,153,154,155,156,157,159,160,164,165,167,168,169,171,174,176,179,180,182,183,184,185,188,189,191,192,194,196,199,200,203,204,205,206,207],AND:[97,98,113,124,126,183,184,185],AS:[22,25,47,49,50,97,98,169,183,184,185],And:[31,32,41,43,45,50,51,52,54,58,60,64,69,71,79,81,83,85,97,105,107,109,117,121,124,131,136,137,140,145,148,149,150,151,152,156,165,167,175,180,184,188,192,196,199,206],As:[1,3,7,8,33,34,37,41,42,43,45,49,50,51,52,53,54,55,56,58,59,60,61,62,63,69,71,79,83,85,87,88,104,105,111,114,117,119,121,122,124,127,129,139,140,141,142,148,149,150,156,159,160,164,165,166,167,168,171,174,178,179,180,183,184,185,189,191,194,203,205,206],At:[28,41,50,52,58,61,71,80,85,111,121,124,129,137,149,150,152,156,160,161,166,174,180,182,183,184,191,203,204],BE:[97,98,183,184,185],BUT:[97,98,183,184,185],BY:[106,150],Be:[90,96,109,113,124,169],Being:[45,64,106,109,127],But:[33,39,41,42,45,50,51,52,54,55,58,59,60,61,63,66,71,79,85,105,109,114,117,129,134,136,143,146,148,149,150,155,159,160,161,163,165,166,167,168,174,179,182,183,184,185,196,200],By:[7,18,29,41,43,48,51,54,55,56,59,61,71,79,81,82,83,85,104,106,114,119,122,124,127,129,135,146,148,149,151,154,156,157,164,167,171,174,175,178,179,183,194],FOR:[97,98,183,184,185],For:[7,19,29,30,31,32,36,37,39,40,41,42,43,45,47,48,49,50,51,52,53,56,61,62,63,66,68,69,70,71,72,74,76,77,79,80,89,90,91,93,94,95,96,105,106,107,116,117,118,119,121,122,124,125,126,127,131,136,137,140,143,144,146,148,149,150,151,152,154,155,156,157,159,160,161,164,165,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,186,196,200,203,204,206],IN:[25,87,97,98,183,184,185],IS:[22,47,49,50,56,97,98,102,154,183,184,185],IT:[56,104,149],If:[1,7,14,16,18,29,30,33,34,36,40,41,42,43,45,47,50,51,52,53,54,55,56,59,60,61,62,64,66,68,71,74,79,81,82,85,87,97,98,100,105,106,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,135,136,137,139,141,142,145,148,149,150,152,154,156,159,160,161,163,165,166,167,168,169,171,173,174,175,178,179,180,182,183,184,185,192,198,200,203,205,206,207],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,37,40,41,42,43,45,47,48,49,50,51,52,54,55,56,59,60,61,62,63,64,66,68,69,71,74,76,79,80,81,82,83,85,87,88,93,94,95,97,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,130,131,132,133,135,136,137,138,139,140,142,143,144,146,148,149,150,151,152,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,189,191,192,193,198,200,201,202,203,204,206,207],Is:[52,98,102,104,108,111,116,117,118,135,143,149,150,154,169,174,179,180,207],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,73,74,76,77,79,81,82,83,85,87,88,89,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,178,180,182,183,184,185,187,188,194,198,199,200,201,203,204,206],Its:[136,143,159,164,179],NEAR:[63,79],NO:[97,98,183,184,185],NOT:[87,97,98,124,138,142,183,184,185],Near:[114,190],No:[7,20,29,33,52,56,58,66,73,87,93,98,103,105,106,115,137,156,165,167,172,183,184,187,190],Not:[7,41,45,51,54,56,58,71,85,106,116,122,123,141,160,172,178,179,184,199,206],OF:[22,47,49,50,97,98,138,183,184,185],ON:192,ONE:7,OR:[22,47,49,50,97,98,124,183,184,185],Of:[52,69,106,107,109,119,167,185,186],On:[51,52,54,59,60,61,62,63,68,69,71,79,85,88,106,109,111,143,150,156,159,160,163,164,165,167,168,169,174,178,182,183,189,199],One:[1,7,11,28,41,45,51,52,54,55,56,57,59,60,61,68,88,103,108,109,111,113,115,119,121,124,132,136,144,150,155,157,159,165,168,174,178,180,183,184,185,189,190,191,196,198,203,206],Or:[32,41,52,60,79,107,109,124,136,137,150,154,157,174,183,184,199,203,206],Such:[1,7,30,41,45,51,52,56,121,150,151,178,183,205],THAT:87,THE:[97,98,183,184,185],TO:[56,97,98,145,183,184,185],That:[31,32,41,45,50,51,52,54,59,63,64,69,71,79,85,109,114,121,124,129,137,155,157,160,161,167,169,174,175,179,184,185,203],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,36,38,40,41,42,43,47,48,49,50,51,52,54,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,76,79,81,83,85,88,89,95,96,97,98,104,107,108,109,111,113,114,115,117,118,119,120,121,123,124,125,126,127,131,132,133,134,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,162,163,164,165,168,169,171,172,174,175,176,178,179,185,186,188,189,190,194,195,197,198,199,200,201,202,203,204,207],Their:143,Then:[7,31,42,47,49,52,58,68,82,87,106,109,121,124,132,135,141,142,145,150,151,152,155,156,157,159,160,164,168,169,178,182,183,184,185,199],There:[0,1,3,7,18,28,29,30,32,34,37,38,40,41,43,45,48,49,51,52,53,56,59,61,62,64,66,69,71,77,79,85,90,105,106,109,111,113,114,115,118,119,121,122,123,124,125,129,131,132,133,136,139,141,142,143,145,146,148,149,150,151,152,154,155,157,159,160,163,167,168,169,170,171,173,174,175,178,179,181,182,183,184,185,203,204,205,206],These:[7,30,31,40,42,43,47,51,56,58,61,62,69,79,80,82,83,104,106,109,111,114,117,118,123,124,126,127,139,142,143,149,155,159,160,164,166,167,168,183,185,187,189,191,192,194,205],To:[0,1,7,14,18,22,29,30,33,34,37,41,42,43,47,48,50,51,52,54,56,60,63,64,68,69,71,79,80,81,87,97,104,105,106,107,109,114,115,116,117,119,121,122,124,125,127,129,134,135,136,139,140,141,142,146,147,148,149,150,151,152,156,157,160,161,163,164,165,167,168,169,171,174,175,178,179,180,182,183,184,185,189,190,192,195,198,199,203,205,206,207],WITH:[97,98,183,184,185],Will:[152,179,185],With:[7,41,43,45,49,52,58,62,63,64,89,104,108,109,113,114,116,117,118,119,123,124,126,127,129,136,149,150,157,159,160,165,167,168,174,176,183,192,199,204],_0:160,_1:157,_2:157,_:[18,29,31,33,35,38,42,43,53,58,73,86,131,132,135,137,138,139,140,141,145,146,157,160,167,175,183,184,194,200,201,206],____:[3,12,22,24,25,48,97,98,102],_____:[24,97],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:[29,30,37,42],__________________________________________________________________________________________________:35,____i:98,__abs__:97,__add__:97,__all__:183,__annotations__:[183,205],__builtins__:183,__cached__:183,__call__:[65,67,133,135,140],__class__:[38,183],__dict__:[175,201,202],__doc__:[183,205],__eq__:97,__file__:[73,183],__finalize__:[125,126],__future__:38,__get__:125,__getitem__:[126,127],__init__:[29,30,31,33,35,36,37,38,45,57,65,67,86,87,99,125,133,135,137,138,139,140,141,144,161,175,183,200,201,205],__iter__:[33,138],__len__:33,__loader__:183,__main__:[36,137,165,168,169],__mul__:97,__name__:[36,38,137,168,169,183],__operators__:141,__package__:183,__repr__:57,__spec__:183,__str__:97,__sub__:97,__truediv__:97,__version__:[43,137,167,205],_aspp:140,_attach:[123,192],_bin:56,_branch:140,_build_model:36,_bunch:[59,60],_caller:125,_check_indexing_error:127,_concaten:125,_consolidate_inplac:126,_constructor:126,_conv_block:140,_conv_bn_relu:140,_conv_relu:140,_data:126,_decor:125,_deeplabv3:140,_deprecate_mismatched_index:126,_deprecated_arg:126,_engin:127,_etag:[123,192],_fcn_16:140,_fcn_32:140,_fcn_8:140,_format_argument_list:125,_fuse_bn_tensor:139,_get_axi:126,_get_block_manager_axi:126,_get_comb_axi:125,_get_concat_axi:125,_get_join_info:125,_get_list_axi:126,_get_new_ax:125,_get_result_dim:125,_get_slice_axi:126,_get_valu:[126,127],_get_values_for_loc:127,_getbool_axi:126,_getitem_axi:126,_getitem_lowerdim:126,_getitem_tupl:126,_i:[82,83,157,167],_identity_block:140,_ilocindex:126,_index:58,_indicator_pre_merg:125,_info_axi:125,_invalid_index:126,_is_copi:126,_is_scalar_access:126,_items_overlap_with_suffix:125,_j:[157,167],_k:137,_kmean:168,_label:59,_left:125,_lib:[125,127],_locationindex:126,_locindex:126,_m:137,_make_concat_multiindex:125,_make_stag:139,_mapdataset:37,_maybe_cast_for_get_loc:126,_maybe_cast_slice_bound:126,_maybe_check_integr:125,_merge_doc:125,_merge_typ:125,_mergeoper:125,_method:191,_mgr:[125,126],_novalu:191,_oldcor:88,_other:125,_pad_1x1_to_3x3_tensor:139,_recognized_scalar:126,_reindex_and_concat:125,_rid:[123,192],_right:125,_sec_1:98,_segnet:140,_self:[123,192],_sigmoid:[86,175,201],_skip:3,_slice:126,_static:[126,127],_subplot:[69,79],_sum:191,_t:[123,192],_t_sne:[168,198],_take:126,_take_with_is_copi:126,_takeabl:126,_valid_typ:126,_validate_integ:126,_validate_kei:126,_validate_tuple_index:126,_valu:127,a0958ad901d7:123,a0:[125,191],a10:127,a1:[124,125,191],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:61,a21453:184,a23:[183,205],a2:[124,125,191],a3:125,a3z5kdkfn3tbq:61,a4:125,a5:125,a7yia1n5fo6efhugqfis3dhueyjsa:61,a_:[87,168],a_dict:184,a_i:[87,156],a_list:184,a_n:159,aaaaaa:[165,196],aafter:166,aaron:[29,52,83,138,176],ab:[52,65,67,73,82,97,98,126,134,138,144,167,183,184,206],abadi:138,abbrevi:[129,135],abc:[98,126,127,184,191,207],abcd:[7,122,126,191],abcdef:126,abcmous:[117,188],abil:[45,54,56,71,81,82,85,113,136,142,148,159,165,169,174,177,183,185,196,203],abl:[3,7,10,11,14,16,20,31,41,51,52,54,55,56,59,63,64,79,81,106,109,115,117,119,123,124,127,136,143,146,149,151,154,160,163,166,168,169,171,178,179,180,182,188,198,201,202,205],abnorm:29,abnorml:68,abo:39,aboslut:166,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,41,42,43,45,48,49,50,51,52,54,55,56,59,60,61,62,63,64,68,69,71,82,83,85,88,89,95,104,105,106,107,108,109,111,113,114,115,117,119,120,121,122,123,124,125,127,129,130,136,137,140,142,143,144,146,147,148,149,150,151,153,154,155,156,159,160,161,163,164,166,167,168,169,170,172,173,174,175,176,178,180,181,182,183,184,185,186,188,189,192,200,203,205,207],abov:[0,1,7,11,14,19,26,29,32,37,41,45,47,48,49,50,51,52,53,54,55,56,59,60,61,62,66,68,69,71,79,85,97,98,109,113,115,119,121,124,125,126,127,129,132,135,136,137,138,139,140,142,144,146,148,149,150,151,154,155,156,157,159,163,164,166,167,168,171,174,177,178,179,180,181,182,183,184,185,190,199,200],above_cutoff:167,abracadabra:184,abraham:207,abs_vector:[184,206],absenc:[56,168,198],absent:[126,175],absolut:[49,81,83,88,97,121,124,150,159,163,166,183,184,185,206],absolute_error:82,absolute_percentage_error:82,abspath:73,absurd:69,abund:[115,190],ac:[69,143,167],academ:[117,120,147,188],academi:205,acc:[33,40,49,51,54,59,132,145,204],acc_and_loss:132,acceler:[105,115,116,150,178,190],acceleromet:[121,168],accept:[16,41,42,59,69,71,85,88,105,108,111,117,124,126,127,139,150,160,164,174,183,189,203,204],acceptedcmp1:69,acceptedcmp2:69,acceptedcmp3:69,acceptedcmp4:69,acceptedcmp5:69,access:[6,14,16,39,43,71,79,85,104,106,107,109,111,113,117,123,126,142,148,151,152,169,176,178,183,184,188,189,191,199,205,206],accessor:127,accident:160,acclaim:164,accommod:[7,37,49,122,184],accompani:[121,150,178],accomplish:[93,150,160,168,174,198,203],accord:[18,47,52,56,65,67,69,104,113,114,115,116,121,124,126,139,148,151,154,156,159,164,168,169,172,174,178,179,180,182,198],accordingli:[35,43,57,132,154,183,205],account:[0,6,8,14,16,42,52,81,97,106,107,117,121,123,124,143,152,156,160,178,179,188,191],accumul:[1,52,97,111,146,157,174,184,203],accur:[15,32,33,43,52,56,61,71,74,82,85,95,106,111,117,118,121,136,140,142,144,148,151,156,163,166,168,171,174,177,178,179,189],accuraci:[29,33,34,40,41,42,50,51,52,53,54,56,58,59,62,66,71,72,74,81,82,83,85,87,88,89,107,117,122,132,140,142,143,145,150,151,152,155,156,157,159,160,162,163,165,167,169,172,173,178,179,186,188,194,198],accuracy_metr:132,accuracy_scor:[29,40,51,52,53,54,58,59,61,62,71,72,85,88,143,159,164,168,169,172,173,179,198,201,202],achiev:[32,33,41,50,52,56,58,61,69,108,111,124,137,139,140,148,149,150,151,152,159,160,161,162,164,165,166,167,183],achitectur:138,aci_servic:[9,105],aci_service_nam:[9,105],aciconfig:[9,105],acid:50,aciwebservic:[9,105],acm:[117,188],aco:35,acoust:[153,154,155],acquir:[6,108,111,150,189],acquisit:[3,107,111,119,146,186,188],acro:169,acronym:114,across:[33,45,49,56,71,85,107,117,119,121,124,125,127,129,132,142,146,148,149,150,160,164,167,183,184,186,188],act:[3,14,22,24,36,55,64,98,109,117,124,127,132,133,137,142,144,174,178,191,203],act_greedi:36,act_valu:36,action:[0,7,36,41,47,48,97,98,104,108,109,117,119,122,123,124,149,151,169,172,174,183,184,185,188,203],action_prob:137,action_s:36,actions_count:36,activ:[0,29,30,32,33,34,35,36,37,40,41,42,43,45,46,47,49,50,58,59,64,72,73,87,117,131,132,133,135,137,138,139,140,141,143,144,145,151,160,166,167,171,188,193,194,199,204],activateion:141,activation_1:37,activation_2:37,activation_3:37,activation_4:37,activespac:192,actor:183,actual:[7,39,41,42,45,48,49,50,52,53,54,58,59,61,62,68,71,73,79,80,81,82,83,85,87,88,89,97,106,116,118,119,121,122,123,124,126,127,132,135,136,146,148,154,160,162,164,166,167,171,174,176,178,179,183,185,187,189,193,200,203],actual_result:[3,14,22,24,55,98],actual_valu:[39,82],acut:159,ad:[1,7,18,22,29,32,37,39,43,45,47,50,52,54,56,61,66,69,71,81,85,97,98,116,118,121,123,133,135,139,147,149,150,159,160,161,163,165,168,174,175,178,184,200,206],ada:173,adaboost:[160,173],adaboost_clf:51,adaboostclassifi:[51,58,172,173],adagradoptim:150,adam:[29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,47,49,50,64,72,131,132,135,138,140,141,143,194],adamax:37,adamharlei:[132,193],adamoptim:[134,150],adamw:35,adapt:[35,49,60,64,104,117,139,146,150,160,176,188,204],adaptiveaveragepooling2d:139,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,37,39,40,43,44,45,46,47,48,49,52,54,56,63,64,65,67,68,72,81,97,98,113,115,118,121,123,125,129,131,134,135,139,140,141,143,144,149,159,160,161,163,164,165,166,169,173,174,178,179,180,182,183,184,185,192,194,196,199,200,203,204,206],add_1:141,add_:31,add_artist:[115,190],add_ax:168,add_legend:154,add_selectbox:199,add_slid:199,add_subplot:[36,38,49,69,72,80,137],add_trick:183,add_weight:139,addit:[1,7,18,23,32,43,48,56,61,66,68,79,80,81,97,108,109,111,113,117,118,121,122,123,124,129,137,139,140,141,144,146,150,152,156,160,161,163,164,165,167,175,178,184,185,191,192,206,207],addition:[31,122,124,129,149,152,154,156,160,165,192,196],additon:32,address:[80,81,95,108,109,111,117,143,146,148,149,152,156,163,174,183,188,189],adel:159,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,74,76,77,90,93,94,95,96,121,150],adher:[50,111,142,149],adjac:[168,183],adject:[184,206],adjunct:174,adjust:[29,33,37,42,47,57,59,60,80,139,149,150,159,160,165,168,173],adjusted_mutual_info_scor:168,adjusted_rand_scor:168,admin2:151,admin:192,administr:[152,185],admonit:[125,126,127],adobe_premier:39,adolesc:183,adopt:[61,90,107,117,149,150,156,160,186,188,207],adult:[183,205],advai:42,advanc:[36,45,68,107,117,121,127,128,130,142,147,149,150,152,156,168,174,184,192,195],advantag:[41,52,56,71,85,127,139,143,149,152,159,162,163,165,184],advent:[51,136,149],advers:28,adversari:[37,152,195],advertis:109,advic:150,advis:[7,48,55,60,63,122,159],advoc:117,ae5:168,ae:[31,135],aebf:[123,192],aeroplan:7,aerospik:192,aesthet:22,afb:169,affect:[7,17,33,40,51,54,56,58,60,71,81,85,87,107,109,111,117,121,122,137,139,150,157,163,165,166,175,183,186,188,196],affer:145,affin:[87,154,168],affinity_matrix_:167,affinitypropag:168,afford:[7,79,122,174],african:[117,152,188],afro:[154,155],afropop:[154,155],after:[0,7,14,29,32,33,34,36,37,40,41,43,49,50,51,52,53,56,57,58,59,62,64,66,69,72,79,81,87,109,113,119,121,122,124,129,131,132,139,140,141,145,146,149,150,151,154,155,157,159,160,163,164,168,173,174,178,180,183,184,185,199,201,202,204,205,206],afterward:[32,124],ag:[9,18,22,52,53,69,79,93,97,98,105,106,119,121,123,124,125,149,154,156,157,161,164,171,174,181,182,183,184,185,191,192,201,202,203,205,206,207],again:[7,14,17,41,43,49,51,52,53,54,55,59,60,61,71,85,87,122,127,135,155,160,164,166,168,179,180,183,184,185,198,199],against:[0,18,43,49,52,61,82,83,109,117,119,121,125,126,146,150,152,160,166,169,182,197],agaricu:115,age_distribut:24,age_median_imput:22,age_sal_tre:52,age_tre:52,agefil:22,agenc:109,agenda:[107,186],agent:[117,174,203],ageron:167,agg:[18,39,167],aggfunc:125,agglom:[69,154],agglomerativeclust:[69,167,168],aggreg:[7,14,51,111,116,132,156,159,164],agil:[148,149],agnost:149,ago:[136,160],agre:[22,47,49,50,117],agreement:142,agricultur:[107,116,180,186,203],ahead:[51,54,59,109,146],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:61,ai:[12,18,25,105,106,107,113,117,119,125,126,127,137,148,149,151,152,169,174,182,187,188,193,203,205],aid:[56,64,83,142,143,154,175,178],aim:[56,80,81,109,137,139,142,144,157,168,174,176,197],air:118,airbu:29,airflow:149,airlin:7,airplan:132,airport:[107,129,186,192],aka:[37,69,149],akkio:187,al:[31,71,85,116,117,152,190],alabama:151,alacazam:184,albeit:[47,179],albifron:[114,190],album:154,alcohol:[50,106],alekseynp:167,alert:148,alex:[33,135],alexa:[142,150],alexand:[130,133],alexandru:68,alexei:61,alexi:161,alexnet:139,alfredo:182,alg:58,algebra:[44,53,56,61,89,124,204],algo:[160,168],algorithm:[3,31,43,51,53,54,55,57,58,59,60,61,62,63,76,80,81,87,88,89,95,97,104,105,106,107,117,124,134,135,136,139,142,144,146,147,148,149,150,152,155,156,157,161,162,163,165,166,168,171,172,174,175,180,183,186,188,196,197,198,200,201,202,203],algoritm:160,algorythm:88,alia:[124,168,198],alic:[184,191],align:[22,82,117,124,132,139,140,144,146,154,155,157,159,165,167,168,169,171,175,176,178,179,198],alik:[0,152,159],aliz:35,all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,37,38,39,40,41,42,43,45,48,50,51,52,53,54,56,58,59,60,61,62,64,66,68,69,71,81,85,87,89,94,97,98,105,106,107,108,109,111,112,113,115,117,119,121,122,123,124,125,127,135,136,137,138,139,140,141,142,143,145,148,149,150,151,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,174,175,176,179,180,182,183,184,185,186,188,189,191,196,197,198,200,203,204,205,206,207],all_attr:31,all_clfs_acc:51,all_data:68,all_nod:1,all_photo:31,allah:142,allbeit:87,allclos:87,allegrograph:192,allei:[56,68],allevi:[51,54,56],allianc:111,alloc:[41,52,117,168,194,198],allow:[1,3,14,18,50,52,56,61,80,81,82,104,105,106,108,116,117,118,119,121,123,124,125,126,127,129,131,137,139,140,142,143,148,149,150,154,160,163,164,165,168,171,172,178,182,183,184,185,198,199,205,206,207],allow_arg:125,allowed_arg:125,allowfullscreen:[121,158,171,180],allpub:68,allud:52,almeida:50,almond:[70,115,171,172,190],almost:[7,31,37,41,45,52,59,64,73,107,109,122,129,159,160,174,175,178,183,184,199,203],alon:[69,111],along:[1,7,33,37,41,50,53,56,61,71,80,81,85,108,109,114,122,123,124,125,126,127,145,149,151,154,159,168,172,173,174,178,183,190,203],alongsid:[76,114,150],alot:[56,136],alpha:[37,57,68,69,80,82,88,114,135,138,143,156,159,160,164,165,166,167,168,184,190,196,198,201,202,206],alpha_:135,alpha_t:[135,160],alpha_t_bar:135,alpha_tb_t:160,alphabet:[118,123],alphago:[136,174],alphas_cumprod:135,alphas_cumprod_prev:135,alphas_t:135,alq:56,alreadi:[41,45,51,52,54,56,62,65,67,71,83,85,87,98,105,111,119,126,127,135,140,145,150,156,160,167,168,175,176,180,182,183,185,189,191],alright:[37,87],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,37,40,41,45,47,48,49,50,51,52,54,55,56,57,58,59,61,62,63,64,65,66,67,68,69,71,73,79,81,82,83,85,87,88,103,104,106,107,108,109,111,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,131,132,133,135,136,137,139,143,144,146,147,148,149,150,151,152,156,159,160,163,164,165,166,167,168,169,171,172,173,174,176,178,179,180,182,183,184,185,191,196,198,203,204,206],altair:199,altavista:160,alter:[80,89,111,118,183,189,205],alter_imag:89,altern:[7,16,32,47,56,61,64,116,117,122,124,143,150,154,165,166,183],although:[30,31,51,52,54,56,57,62,68,81,89,136,139,145,148,149,156,160,164,167,174,183,184],altogeh:149,altogeth:[14,166],altunyan:107,alwai:[7,14,30,33,34,35,37,41,45,47,49,50,51,54,56,57,59,60,61,63,71,85,109,114,121,124,125,127,129,135,136,137,139,146,149,150,151,152,159,160,164,165,166,167,171,174,179,183,184,185,205,206],am:[0,41,61,98,184,205],amalgam:83,amax:36,amaz:[32,106,113,140,185,186],amazon:[104,148,149,150,152,192],ambigu:[33,111,126,142,183],america:[113,181],american:[117,152,188],ami:168,aml:[9,105],aml_comput:[9,105],aml_config:[9,105],aml_nam:[9,105],amlb:150,amlcomput:[9,105],among:[7,58,61,66,69,121,124,139,149,150,159,160,164,168,174,179,197],amongst:[69,154],amor:145,amount:[7,17,31,58,61,69,80,104,105,106,115,116,119,125,129,132,136,139,142,148,150,160,161,165,166,168,169,174,180,183,184,187,188,190,191,192,196,198,203],amp:[154,169],amplifi:[107,117],amus:154,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,37,41,42,43,45,47,48,49,50,51,52,54,56,58,59,60,61,64,69,71,72,73,79,80,82,83,85,87,88,89,95,96,97,98,104,107,108,111,113,114,115,116,117,118,119,121,122,125,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,163,164,165,166,167,168,171,172,173,174,175,176,178,179,182,183,184,185,186,188,189,190,191,192,194,195,196,197,198,200,203,204,205,206,207],anaconda3:[39,88,146,168],anaconda:159,anaemia:[9,105,106],analog:[51,80,121,124,127,161],analys:[7,56,81,104,122],analysi:[1,7,16,17,18,21,31,48,69,71,81,85,105,107,110,111,118,119,122,124,125,127,129,131,136,142,143,148,154,157,160,164,167,179,186,188,189,191],analyst:106,analyt:[1,36,53,58,104,107,124,148,156,160,164,186,187],analyticsvidhya:58,analyz:[16,17,61,104,107,118,119,121,142,148,152,154,164,167,168,172,178,181,190],anatida:[114,190],ancestor:160,anchor:144,andon:117,andra:35,andrew:[113,121,148,151,174,176],android:169,anemia:106,anf:34,ang:178,angel:184,angelica:[70,171,172],angelina:52,angl:[35,89,113,159,166,193],angular_spe:35,ani:[0,3,7,14,17,18,22,26,30,31,41,45,47,49,50,51,52,53,54,55,56,57,58,59,60,62,64,66,71,79,82,85,87,97,98,104,105,109,111,114,115,117,121,122,124,125,126,127,129,136,137,139,143,145,146,148,149,150,151,152,154,156,157,159,160,163,164,166,167,168,169,171,174,179,180,182,183,184,185,188,198,199,203,205,206],anim:[125,135,156,174,194,203,205],anis:[70,115,171,172,190],anise_se:[70,171,172],ankl:[30,41,43],ann:[40,136],ann_build:46,anneal:32,anni:24,annot:[4,5,13,19,34,39,41,50,51,53,54,55,61,66,69,71,72,79,85,113,139,143,144,167],announc:87,annual:[129,192],anomal:[29,47,150],anomali:[8,14,49,51,52,150,154,167],anomalies_mask:167,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[108,117,183,188,205],anoth:[1,3,7,8,10,14,30,31,33,41,45,48,49,51,52,54,56,58,61,68,69,71,80,82,85,95,97,104,106,109,113,114,115,116,119,121,122,123,125,127,129,132,139,142,146,147,149,150,151,152,153,154,155,156,157,159,160,163,164,166,167,168,173,174,175,178,183,184,190,191,198,205,206],another_tupl:184,anser:[114,190],anseriform:[114,190],ansibl:149,anspos:29,answer:[16,23,41,51,52,53,58,87,90,107,108,113,116,121,125,136,138,139,143,147,150,151,152,156,157,160,161,169,171,174,180,182,183,189],anthropolog:154,anti:89,antialia:[35,73],antialias:35,anticip:119,antipattern:152,any_column:24,any_script_cont:3,any_style_cont:3,anymor:[166,168],anyon:[82,117,142,147],anyth:[7,13,18,45,60,63,68,109,129,154,160,174,180,182,183,189,199,203],anywai:[59,179,184],anywher:[51,52,124,174,183],ap:[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183],apach:[22,47,49,50,65,67,69,88,89,148,149,192,198,199,200,201,204],apart:[7,37,56,64,122,127,129,160],api:[6,16,29,41,42,43,47,50,59,64,104,105,106,107,118,123,125,131,149,169,171,178,179,182,186],api_doc:135,api_kei:106,apocalyps:142,apostroph:141,app:[5,6,39,45,96,104,109,113,117,121,123,151,170,188,199],appar:[160,183],apparatu:[18,121],appdata:[59,64,114,145,198,205],appeal:[51,54,55],appear:[30,31,32,49,106,114,117,121,124,139,140,141,146,150,159,160,164,166,169,178,179,180,183,184,188,194,199,206],append:[1,3,7,14,31,33,35,36,37,38,39,40,44,46,48,51,52,56,69,73,80,87,88,89,97,124,125,132,133,134,135,137,139,140,141,144,145,154,155,159,161,167,168,183,184,185,198,205,206],append_diff_column:14,appl:[40,70,117,171,172,184,188,206],apple_brandi:[70,171,172],applet:165,appli:[1,3,14,16,28,29,31,34,35,37,38,39,41,47,48,52,56,58,59,61,64,65,67,68,69,73,80,81,86,87,88,97,107,108,111,113,114,118,119,121,123,124,125,127,129,132,134,136,137,139,140,143,145,146,148,149,150,151,152,154,156,159,160,163,165,166,167,168,169,174,175,178,179,180,184,190,191,196,198,199,201,203,206],appliabl:3,applic:[0,4,16,22,40,43,47,49,50,80,82,104,105,106,107,111,117,118,119,123,124,130,133,138,139,140,144,146,148,149,150,152,156,160,164,169,174,184,185,186,188,189,195,206],apply_along_axi:89,apply_dropout:140,apply_gradi:[35,37,131,135,137,138,141],apply_if_cal:126,apply_kernel:33,appreci:37,approach:[1,23,29,33,42,47,50,52,56,60,61,68,80,87,107,111,117,119,139,142,143,148,149,150,151,152,153,154,157,159,160,165,167,168,174,175,178,179,183,184,185,186,189,203],appropri:[31,47,52,71,81,83,85,97,109,123,124,137,150,154,160,163,165,171,180,182,184,192,196],approv:[52,121,149],approx:[52,97,156,160],approxim:[7,30,50,52,86,98,142,146,156,160,164,175,178,200,201,204],apricot:[70,171,172],april:[151,178],aqi:118,aqx:56,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,77,79,80,81,82,83,85,87,88,90,93,97,98,100,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,185,187,188,189,190,191,192,193,194,195,196,198,199,200,203,204,205,206,207],arang:[29,52,57,87,124,138,145,146,167,168,191,198,201,202],arangodb:192,arbitrari:[18,49,124,125,138,160,164,184,204,205,206],arbitrarili:[167,184,206],arc:114,arcco:124,arcgi:107,architect:148,architectur:[33,37,64,106,117,123,138,139,140,141,144,148,150,151,156,166,169,188],archiv:[33,42,135,145],arcsin:124,arctan:124,are_anagram:184,area:[1,52,56,61,68,79,82,105,106,107,114,117,119,121,127,136,148,150,152,156,160,174,179,182,185,186,191,193],aren:[42,45,49,58,66,142,161,163,179],arff:59,arg:[22,40,49,50,73,97,98,125,144,160,183,205],argmax:[34,36,40,43,72,87,132,140,141,145,159,168,198],argmin:[167,168,198],argscop:144,argsort:[57,124,157],argtyp:73,argu:[57,119,150],argument2:185,argument3:185,argument:[7,41,52,64,97,108,109,123,124,125,126,127,139,140,163,166,168,184,185,204,206],arguments_dictionari:183,arguments_list:183,ari:168,aris:[28,49,97,98,117,148,152,183,184,185],aristocraci:113,arithmet:[7,31,97,121,122,124,168,183],aritifici:188,arizona:116,armagnac:[70,171,172],armi:199,around:[1,3,7,10,13,16,18,20,31,33,38,40,45,47,50,56,57,82,104,109,110,113,116,117,119,121,122,129,145,150,151,154,160,167,169,173,174,178,182,184,188,191,200,206],arous:148,arr1:124,arr2:124,arr:[49,50,73,98,124,191],arrai:[1,7,18,31,34,36,40,41,42,43,44,45,46,47,51,52,57,59,61,62,63,65,67,68,72,79,80,81,82,86,87,88,89,114,115,121,125,126,132,133,134,135,137,139,140,141,142,143,145,154,155,156,157,159,160,165,167,169,173,175,178,179,182,184,185,196,200,201,202,206,207],arrang:[14,56,66,142,146,182],array_split:141,array_to_img:[37,72,140],arriv:[69,111,121,179,189],arrow:[123,182],arrowprop:167,art:[31,132,138,139,141,147,149,150],artemisia:[70,171,172],arthur:[167,174,203],artichok:[70,171,172],articl:[28,36,38,43,51,52,54,107,109,113,115,119,121,142,154,157,160,184,186],articul:[109,152],artifact:[40,106,113,149],artifici:[18,40,43,52,89,107,119,131,136,142,143,145,147,151,152,174,201,202,204],artist:[37,154],artist_top_genr:[154,155],artistanim:135,artwork:31,arument1:185,arxiv:[134,138,140,144],as_cmap:39,as_default:134,as_fram:[62,167],as_list:[45,134,139,144],as_panda:164,asabeneh:[185,207],asarrai:159,ascend:[1,31,52,53,56,58,124,171,172],ascent:133,ascii:145,ascrib:113,asia:[170,171],asian:171,asid:[33,52,163],ask:[8,11,23,42,43,52,59,60,76,107,108,109,111,113,117,119,125,126,136,139,147,150,169,171,172,174,175,178,179,182,184,186,189,203],asp:[183,184],aspect:[11,13,56,58,87,110,111,113,116,119,144,148,150,166,180,190],aspp_siz:140,assembl:[37,183],assert:[3,14,22,24,31,48,50,55,87,97,98,99,101,102,139,140,141,144,151,167,183,184,205,206],assert_called_onc:[24,55],assert_called_once_with:[24,55],assert_frame_equ:[14,22],assert_not_cal:[24,55],assert_series_equ:14,assertalmostequ:49,assertequ:98,assertionerror:[101,102],assertrais:[14,98],assess:[23,52,81,82,103,107,108,117,143,157,166,168],asset:[12,14,15,18,22,23,24,25,48,51,52,54,55,56,58,61,62,63,64,66,69,79,87,91,106,113,169,180,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,204,206,207],assgin:56,assign:[3,6,8,11,14,16,17,19,22,24,28,35,41,42,47,48,49,51,52,54,55,56,79,81,83,95,98,105,106,107,111,113,114,115,116,121,126,129,131,135,137,138,139,140,143,144,147,148,150,151,154,155,159,160,165,166,167,171,172,173,174,176,178,179,180,182,183,184,185,198,199,200,201,205,206],assist:[106,142,168,174,198],associ:[3,7,43,97,98,105,106,109,117,121,123,124,144,149,152,157,166,174,178,182,183,184,185,187,188,192,203],assort:124,assum:[7,35,50,51,52,58,59,60,81,88,97,121,124,127,135,137,142,144,150,156,157,167,168,178,183,184,204,206],assumpt:[31,50,57,79,121,150,156,160,165,166,168,198],assur:[0,150],asterisk:[98,185],astrophysicist:6,astyp:[22,29,30,31,36,37,39,42,46,52,58,72,115,131,132,134,138,167,168,190,194,198,204],asymmetr:[148,160],asymmetri:117,asymptot:159,atlanta:[129,192],att:[139,169],attach:[43,106,115,123,190,192],attack:[105,106],attempt:[8,16,47,49,59,97,124,127,155,164,183,184,199,205,206],attend:135,attent:[69,88,127,135,136,139,141,157,159,160],attention_ax:135,attn_dim:135,attn_output:139,attr:[3,31],attract:[19,69,174],attrib:167,attribut:[7,31,52,53,60,69,88,97,106,118,119,126,143,148,157,164,168,183,198,205],attributeerror:[144,185],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,au:169,auc:[150,161,164,179],auc_weight:[9,105],auckland:[129,192],audienc:[153,189],audio:[31,43,118,160,174,203],audit:117,audubon:115,aug_test:58,aug_train:58,augment:[81,89,140,151,174,184],augment_input:140,augment_label:140,august:[149,178],aurelion:[45,51],australia:[14,169],australian:[51,54],autauga:151,authent:[106,148],author:[12,25,59,60,97,98,104,107,113,117,119,148,151,183,184,185,186],authorit:151,auto:[9,61,105,129,131,132,150,155,159,163,164,167,168,169,171,178,198],auto_add_to_figur:168,autoconfig:[3,14,22,24,55,79,97,98],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:152,autograd:[31,38],autograph:30,autokera:152,autolayout:[64,146],autom:[0,43,105,106,107,111,117,142,149,150,152,174,186,187],automat:[0,31,33,37,39,45,54,55,59,105,106,119,124,127,131,142,149,150,151,152,153,159,163,174,178,183,184,203,206],automl:[10,20,125,152,172,187],automl_config:[9,105],automl_error:[9,105],automl_set:[9,105],automlconfig:[9,105],automlrun:105,automobil:[33,132],automobile_fil:33,autonom:[144,152,203],autopct:[53,115,190],autoplai:121,autoregress:138,autotun:[35,135,139,140],autumn:[52,165,196],autumnali:[114,190],aux_loss:144,auxiliari:[52,87],av:56,avail:[1,3,7,14,29,33,39,41,52,53,54,55,56,59,64,71,77,79,85,105,106,108,111,114,115,116,117,121,122,127,129,137,145,146,148,150,151,152,154,159,160,168,171,175,180,182,183,188,189],avenu:107,averag:[7,14,18,22,24,25,29,32,33,35,38,50,51,52,54,55,61,68,69,82,83,98,109,118,119,121,124,132,135,139,154,155,156,157,159,160,164,167,168,173,176,178,179,182,198,205],average_length_of_word:97,average_method:168,average_pooling2d:139,averagepooling2d:35,averkiev:31,avg:[39,59,61,62,72,134,169,172,173,179,205],avg_pool2d:144,avg_pool:144,avgpool2d:32,avgpool:144,avil:[59,60],avocado:207,avoid:[41,49,51,52,55,56,59,60,109,116,126,127,129,141,149,150,152,159,163,167,168,173,174,180,182,183,192],aw:[41,148,149,151,152],awai:[51,66,109,115,154,165,167,174,183,184,200,203],awar:[81,107,109,113,117,124,127,174,183,186],awcmr9f:61,awesom:[97,98,106,115,136,160,183,185],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:61,ax1:[57,146],ax2:[49,57,116,146,190],ax:[1,14,22,29,30,32,33,36,37,38,39,40,41,45,49,50,52,53,56,64,66,68,69,72,79,80,88,113,114,116,124,125,126,127,132,135,137,138,146,154,159,161,164,165,167,168,178,184,190,196,198,200],axacc:49,axes3d:[69,80,88,168,198],axessubplot:[30,59,61,62,63,69,79,114,127,154,155,171,178,179,190],axhlin:[14,82,168,198],axi:[1,3,7,14,22,30,31,32,33,34,35,37,38,39,40,44,45,46,51,52,53,54,55,56,58,59,61,63,64,65,66,67,69,70,71,72,79,81,85,87,113,114,116,117,121,122,125,126,127,132,133,134,135,137,138,139,140,141,143,144,146,149,154,157,159,161,163,164,165,167,168,171,172,173,175,178,179,180,182,188,190,191,194,196,198,199,204],axisgrid:[60,79,88,116,154,179,190],axloss:49,axvlin:[167,168,198],aymer:131,az:[116,190],azim:[88,165,168,196,198],azip:[165,196],azithromycin:1,azur:[103,104,107,111,125,148,149,151,152,169,170,181,186,187,188,192],azurecontain:106,azureml:[9,104,105],b0:[125,191],b1:[124,125,137,191],b2:[124,125,137,191],b3:[123,137],b4ejbh5mczlor:61,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:61,b9c0c9:69,b:[7,14,22,29,33,34,36,39,52,56,65,67,82,87,97,98,106,121,122,123,124,125,126,127,131,135,137,138,140,141,144,145,151,154,156,157,159,165,167,168,178,183,184,185,191,196,198,199,200,205,206,207],b_1:156,b_dtree:159,b_f:141,b_g:141,b_h:145,b_i:[141,156],b_k:159,b_n:[156,159],b_o:141,b_t:160,b_y:145,ba:42,back:[1,7,29,30,31,41,45,47,48,55,79,94,98,104,105,109,119,121,124,127,129,135,146,148,149,150,156,166,169,180,182,183,184],backbon:[45,140,142,144],backend:[36,37,45,140,204],backfil:146,background:[40,100,107,139,146,169,203],background_color:[3,72],backprop:[33,145],backpropag:[33,38,87,135,145,194],backpropaget:87,backpropog:45,backtick:125,backward:[7,31,33,38,87,135,174],bad:[7,41,51,52,63,71,85,109,113,124,150,167,168,169,179,183],bad_kmeans_plot:167,bad_n_clusters_plot:167,badli:[50,52,114,150,159,200],bag:[30,41,43,56,58,157,158,171],bag_classifi:51,bagging_fract:56,bagging_freq:56,bagging_se:56,baggingclassifi:[51,156,159],baggingregressor:[156,159],baheti:143,bai:[63,79],baidunetdisk:39,baidunetdiskdownload:39,balanc:[34,51,54,59,61,65,66,67,71,83,85,105,107,149,150,152,159,160,165,166,172,186,196],balanced_subsampl:159,baldwin:151,ball:[52,156],ballback:41,baltimor:[178,179,180],bam_extract_path:29,bam_zip_file_path:29,banana:[40,184,206,207],bandwidth:104,banerje:[61,164,199,204],bank:[52,107,118,123,152,154,192,203],banko:152,bankrupt:113,bar:[1,3,15,31,41,43,53,58,66,82,105,113,114,124,125,127,157,164,171,180,185,199],bar_chart:72,barack:97,barbour:151,barchart:178,bare:[149,159],baregg:146,barh:[68,171,190],barnrais:109,barnraisersllc:109,barometr:118,barplot:[40,56,71,85,154,155],barrier:142,base64:[31,61],base:[7,11,14,15,17,18,29,31,33,36,41,43,48,51,52,54,56,57,58,59,61,62,63,68,69,71,79,81,82,85,89,98,106,107,111,113,114,117,118,119,123,124,127,129,131,135,136,137,139,140,141,142,143,144,147,148,149,150,151,152,154,156,157,159,160,161,163,165,166,168,169,172,173,174,179,180,182,183,184,185,186,187,192,193,196,199,203,204,205,206],base_estim:51,base_learn:161,base_model:[133,140],base_model_output:140,base_scor:[68,163,164],base_shap:133,base_url:14,basebal:121,baseblockmanag:126,baseclassnam:183,baselin:[150,159,164,167],baselinems:50,basemen:[18,121],basement:56,basenam:[29,30,31,33,40,43,68],basex:192,basi:[1,22,47,49,50,52,62,63,69,104,124,136,160,165,168,185,198],basic:[7,14,15,18,24,30,37,41,50,52,57,59,60,69,73,107,113,114,116,121,122,123,125,131,136,143,145,146,147,149,151,155,156,159,160,164,165,166,168,169,171,174,175,178,179,180,182,183,186,187,189,190,192,193,194,195,196,197,198,199,200,201,202,203,204,205],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basicrnncel:145,basket:[171,178],bat:37,batch:[31,32,35,37,43,46,47,50,87,131,132,133,135,138,139,140,141,148,149,150,151,152,154,168,171,194],batch_:37,batch_acc:33,batch_label:132,batch_loss:[33,141],batch_norm:[35,37,139,144],batch_normalization_1:[35,37],batch_normalization_20:42,batch_normalization_21:42,batch_normalization_22:42,batch_normalization_23:42,batch_normalization_24:42,batch_normalization_25:42,batch_normalization_26:42,batch_normalization_27:42,batch_normalization_28:42,batch_normalization_29:42,batch_normalization_2:[35,37],batch_normalization_3:[35,37],batch_normalization_4:[35,37],batch_normalization_5:[35,37],batch_normalization_6:[35,37],batch_normalization_7:[35,37],batch_normalization_8:35,batch_siz:[29,31,32,33,34,35,36,37,38,39,40,42,44,46,47,49,50,64,87,131,132,135,138,140,141,143,145,167,175,194,204],batch_x:131,batchno:35,batchnorm1d:31,batchnorm2d:38,batchnorm:[32,35,37,38,42,64,135,139,140],batchsiz:87,bathroom:56,batter_pow:[71,85],batteri:[71,85],battery_pow:[71,85],battl:115,bayesian:[135,140],baz:125,bb38:[123,192],bbox:[88,168,198],bbox_coord:42,bbox_emb:144,bc:167,bce:31,bceloss:38,bdt:159,bdt_predict:159,beam:[150,169],bear:171,beat:[49,50,174,203],beatl:185,beauti:[112,115,116,168,198],beautifuli:41,beautifulli:[45,114],becam:[119,136,160],becaus:[1,3,7,12,14,18,22,28,30,31,32,33,37,41,43,45,47,48,49,51,52,54,56,58,59,60,61,62,66,71,73,79,80,85,88,106,109,116,117,118,119,121,122,123,124,126,127,133,135,136,142,144,146,148,149,150,151,155,156,159,160,161,164,165,166,167,168,171,174,175,178,180,183,184,185,191,196,198,200,203,205],becom:[7,32,36,37,47,52,57,80,87,97,106,117,119,121,124,136,137,141,145,148,149,150,156,160,161,164,171,174,175,184,194,205],bed_room:79,bedroom:[63,79],bedroomabvgr:56,bee:[13,116,190],beef:172,beehiv:[116,190],been:[3,6,7,12,14,15,17,18,23,29,30,31,35,41,42,51,54,64,69,88,106,107,109,111,113,115,117,118,122,124,125,126,127,136,138,141,143,144,149,151,152,154,156,160,161,164,166,167,169,183,185,189,194,200,205],befor:[7,8,14,16,32,33,34,36,41,42,43,45,47,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,69,71,73,79,80,81,85,88,89,105,106,109,111,113,116,119,122,123,127,129,135,137,138,139,140,146,148,149,150,151,152,154,157,159,163,166,168,169,171,174,175,178,182,183,184,185,189,190,191,200,203,205,206],began:151,begin:[1,7,14,32,33,36,49,51,52,54,66,68,83,117,122,124,129,143,146,150,152,156,157,159,160,166,168,178,181,183,184,185,189,192,194,198,200,205,206],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,48,56,70,71,74,76,77,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,129,142,148,154,155,169,171,172,173,178,179,180,182,185,186],behav:[7,114,117,124,129,139,154,183,184,188],behavior:[17,33,64,106,107,116,117,119,121,124,127,137,143,146,150,159,166,168,172,174,185,188,198,203],behaviour:[51,54,69,124,125,165,196],behind:[31,54,55,60,62,63,64,71,80,85,117,142,143,160,162,164,165,167,168,172,175,178,184,188,199],being:[0,11,14,37,41,45,52,56,61,79,107,111,116,117,119,124,126,127,129,136,137,138,140,146,151,154,156,160,161,166,167,174,179,183,184,185,189,192,203],beings:119,believ:160,bell:[115,190],belli:[114,190],belong:[37,43,61,88,117,139,140,154,164,168,179,183,205],below:[0,3,7,12,14,15,16,17,22,24,30,40,43,45,47,48,49,50,52,55,56,59,61,62,66,73,81,97,98,101,102,107,109,115,117,121,123,124,125,132,134,136,139,143,148,149,150,151,152,156,157,159,163,164,165,166,167,168,169,173,175,178,183,185,190,200],belt:174,ben:178,benchmark:[50,107,150,152,174,186,203],bend:155,benefici:[30,152,184],benefit:[32,64,104,111,118,154,166,168,189],bengio:[29,52,83,138,176,193],benign:41,bensor:45,bere:35,bereft:183,berkelei:189,bernhard:61,bernoulli:160,bernulli:160,besid:[47,124,137,139,140,149,150,166,184,206],bespok:169,best:[1,3,10,20,22,31,33,40,41,47,49,50,51,52,54,55,56,58,59,60,61,63,68,69,79,81,87,88,89,106,113,115,118,124,125,129,137,146,148,150,156,159,160,165,166,167,171,172,174,178,179,180,184,190,191,196,197,199,200,203,206],best_estimator_:[54,55,58,59,60,61,62,63],best_k:88,best_kmean:167,best_model:40,best_model_1:41,best_model_2:41,best_model_ann:46,best_model_ann_2:46,best_model_cnn:[40,46],best_model_cnn_2:46,best_model_lstm:46,best_model_lstm_2:46,best_model_rnn:46,best_model_rnn_2:46,best_param:56,best_params_:[52,54,55,56,58,59,60,61,62,63,89,159,167],best_run:[9,105],best_score_:[52,58,61,89,159],beta16:134,beta1:[38,134,138],beta2:134,beta:[38,139,144,166],beta_1:[34,194],beta_2:34,beta_end:135,beta_start:135,beta_t:135,betas_t:135,beth:181,better:[1,3,7,14,23,30,31,32,34,37,49,50,51,52,54,56,57,58,59,61,64,68,69,71,80,81,82,85,87,104,106,108,113,116,117,119,121,122,124,131,139,142,143,146,148,149,150,151,152,154,155,156,159,160,161,163,164,166,167,168,170,171,173,174,175,178,182,183,184,188,198,199,200],bettter:63,between:[7,14,18,21,30,31,33,34,37,41,43,49,50,51,52,54,55,59,61,62,63,64,65,66,67,80,81,82,83,88,91,93,97,106,107,109,111,114,116,117,118,119,121,123,126,127,129,131,134,135,136,137,139,140,141,142,143,145,146,148,149,150,151,152,154,155,157,160,162,165,166,167,168,169,171,173,174,178,179,180,181,182,183,184,189,190,192,194,196,198,200,203,205,206],bewar:169,bewild:172,beyond:[7,48,52,62,63,121,122,136,142,146,147,150,174,183,200],bfill:7,bhwdaa:[123,192],bhwdapqz8s0:[123,192],bhwdapqz8s0baaaaaaaaaa:[123,192],bi:[104,184],bia:[38,47,56,58,65,67,79,81,86,107,117,131,134,139,143,145,146,150,152,156,165,175,186,188,200,201],bias1x1:139,bias3x3:139,bias:[41,48,51,87,107,117,122,131,149,174,186,188],bias_add:134,biasid:139,bib:106,bibb:151,bibliographi:106,bicolor:[114,190],bidirect:141,big:[3,45,58,59,64,71,85,103,104,119,136,142,148,150,160,167,168,174,179,180,185,188],big_arrai:191,big_integ:[184,206],bigger:[143,150,154,160,178,205],biggest:[69,174,203],bigodot:141,bigoplu:141,bigtabl:192,bilibili:175,bilinear:[35,139,140,144,167],bill:[183,184,185,206],bin:[18,22,29,39,49,51,54,55,56,60,61,62,114,121,123,132,144,178,179,180,190],binar:59,binari:[22,37,43,52,56,58,61,71,79,83,85,89,97,124,132,141,143,159,160,161,164,165,167,171,172,174,182,184,191,206],binary_cross_entropi:31,binary_crossentropi:[41,143,194,204],binary_search:97,binaryclass:59,binarycrossentropi:[37,138],bind:183,bing:[3,138,160],binomi:165,bio:107,biolog:[136,143],biologist:7,birch:154,birchard:185,bird:[4,19,125,132],birth:[15,69],birth_month:15,bit:[1,7,14,40,41,68,69,71,73,85,87,114,116,120,122,129,136,155,160,161,165,167,171,175,178,179,180,182,183,196],bitwis:[124,184,206],bitwise_and:124,bitwise_or:124,bitwise_xor:124,bivari:56,bizarr:113,bj:184,bla:69,black:[1,49,52,56,72,114,115,132,137,139,165,167,169,182,190],black_pepp:172,blackbox:[59,60,174],blank:[123,154,169,171,180,183],blend:[59,134,139,156],blend_models_predict:56,bleu:150,blind:113,blit:135,blob:[124,167,178,179],blob_cent:167,blob_std:167,blobs_plot:167,block:[38,43,59,60,79,87,97,135,136,139,140,142,165,169,180,182,183,184,185,199,205,206,207],block_13_expand_relu:140,block_16_project:140,block_1_expand_relu:140,block_3_expand_relu:140,block_6_expand_relu:140,block_depth:35,block_num:132,block_siz:132,blog:[1,14,28,29,31,52,58,104,107,109,115,124,125,155,160,167,186,192],blood:[24,106,182],bloom:148,blount:151,blq:56,blu:142,blue:[30,39,43,44,47,52,56,71,81,85,109,113,114,121,139,142,143,149,154,155,159,160,178,182,183,190,200],blue_count:[71,85],blueprint:[183,205],bluetooth:[71,85],bluff:200,blur:[33,73],blurri:30,bm_axi:125,bmatrix:200,bmi:182,bmi_distribut:24,bmp:168,bn:[32,38,139,140],bn_axi:140,bn_conv1:140,bn_name_bas:140,bo:[140,167,168,198],board:[22,137,174],boat:194,bob:[184,191],bodi:[15,24,114,118,121,139,169,182,183],boil:52,bold:[64,88,146],boldfac:[174,203],boldsymbol:175,bolster:152,bonu:[16,18,28],book:[0,12,18,25,51,52,98,106,109,113,117,119,121,124,125,126,127,131,134,146,147,157,159,167,172,179,183,191,205],book_cov:134,book_sal:146,bool:[14,29,122,124,125,126,127,144,167,183,184,185,191,206],bool_vec:127,boolean_arrai:124,booleanarrai:126,boost:[52,59,60,69,89,147,150,159,163,167,168,172],booster:[56,68,161,163,164],boosting_typ:56,boostrap:68,boot:[30,41,43,59],bootstrap:[51,54,55,157,159,160,164],border:[52,132,139,140,144,155,159,160,165,167,168,169,171,175,176,178],bore:39,born:160,borrow:183,boser:61,boss:52,boston:[117,188],bot:150,both:[1,7,14,29,30,31,32,33,41,43,45,48,49,51,52,54,56,58,59,60,61,62,63,64,65,66,67,68,71,74,79,80,83,85,87,97,105,107,109,113,116,117,119,121,122,124,125,126,127,129,136,137,138,140,142,144,146,148,149,150,152,159,160,162,163,164,165,166,168,169,173,174,182,183,184,188,190,192,194,203],bother:[87,180],bottleneck:135,bottom:[31,34,52,124,179,180,199],bottommost:183,bottou:193,bouhsin:46,bounc:150,bound:[42,45,49,52,97,114,124,126,127,137,144,150,167,168,174,179,183],boundari:[52,61,62,63,73,83,121,126,143,152,155,156,159,204],bounding_box_coord:42,box:[18,42,45,52,105,113,121,132,144,159,169,174,178,180,199],box_ind:144,box_logit:144,boxenplot:69,boxplot:[18,56,61,66,155],bp:182,br:15,brace:[184,206],bracket:[124,150,184,185,206],brain:[136,143,185,203],branch:[0,117,139,142,149,160,164,183,188,203],brand:[109,160,174,203],brave:183,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:61,breach:[117,188],bread:125,breakdown:[14,81,118,185],breakfast:[183,205],breakthrough:132,breathtak:[107,186],breed:[38,140],breez:150,breiman:[156,159],breinman:157,breviti:183,breweri:121,bridg:[142,152],brief:[141,174],briefli:[17,28,56,117],bright:[34,139],brighter:114,brill:152,brilliant:171,brilliantli:160,bring:[51,54,56,83,106,129,141,149,151,160,192],britannica:119,british:[7,185],broad:[64,115,117,119,121,139,146,149,152,174,183,188,190,203],broadcast:127,broaden:107,broader:[69,117,119,147,150],broadli:117,broken:[53,61,111,118,149,157,189],brook:207,brother:169,brought:[15,129],brown:[115,190],brows:[64,183],browser:[16,39,105,106,123,169],bruce:121,bruis:[115,190],brush:182,brute:151,bsmtcond:56,bsmtexposur:56,bsmtfinsf1:56,bsmtfinsf2:56,bsmtfintype1:56,bsmtfintype2:56,bsmtfullbath:56,bsmthalfbath:56,bsmtqual:56,bsmtunfsf:56,btc:39,btcdf:39,btcsave2:39,btn:169,bu:121,bubbl:190,bucket:56,buddi:183,budget:[104,187],budgetari:106,buff:[115,190],buffer:[119,124],buffer_s:[35,135,140],buffet:145,bug:[4,49,109,141,149,150,185,205],buggi:[74,90],bugi:145,bui:[36,55,59,60,104,109,117,154,178],build:[1,4,8,13,33,41,45,51,54,59,60,61,66,74,79,80,81,82,87,88,90,94,103,104,105,106,107,109,111,114,115,116,117,119,121,123,125,131,132,135,136,139,140,141,143,144,145,147,148,149,150,151,152,156,157,159,160,163,164,168,170,172,173,174,181,182,183,184,186,187,189,192,195,200,202,203,206],build_vocab:141,builder:139,built:[1,3,7,12,29,41,45,52,68,74,87,90,96,113,114,115,116,117,121,124,127,129,143,147,148,149,151,155,160,161,169,179,182,183,184,185,191,195,205,206],builtin:[168,198,205],bulk:109,bulki:149,bull:156,bullet:160,bump:[117,188],bunch:[0,1,31,52,59,60,119,138,174,184,203],bundl:149,buolamwini:[107,186],burgeon:[129,192],burn:169,bushel:[178,180],busi:[7,69,104,107,109,111,117,119,142,146,148,149,150,151,152,154,169,186,189],buss:113,butter:125,button:[15,72,105,106,123,169,182,185,199],bw_adjust:114,bwteen:41,bx8rsirp:61,bx:[29,30,33,178,184],bytearrai:[184,206],bytesio:[42,73,135,145],c0:191,c1000:14,c100:14,c1:[14,22,24,55,97,140,191],c2:[14,24,55,97,140,144,191],c3:[14,97,140],c4:[14,52,140,144],c5:[32,140],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:61,c64u:61,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:61,c:[1,14,22,32,33,47,52,56,57,59,62,63,64,66,69,82,88,97,98,109,114,121,122,123,124,125,126,127,134,141,144,145,146,151,155,157,159,164,165,167,168,173,178,179,180,183,184,191,196,198,199,201,202,205,206],c_1:167,c_:[52,81,121,159,167,168],c_i:[167,168],c_j:168,c_k:[168,198],ca:[45,116,137,169,190],cab:[107,186],cach:[35,55,60,124,140,141,152,167,192],cache_data:[73,199],cache_resourc:199,cachedproperti:125,caerulescen:[114,190],cal_data:63,calc_grad_til:73,calc_loss:133,calcul:[6,7,8,14,18,25,29,30,31,33,35,37,39,41,47,50,51,52,56,61,66,69,71,80,81,82,83,85,88,101,121,123,124,125,127,129,133,143,144,145,150,152,155,156,157,159,160,163,164,165,167,168,175,176,178,179,180,183,192,198,206],calculate_discrimin:184,calculate_sum:97,calculu:80,calendar:[183,205],calendar_clock:[183,205],calendarclock:[183,205],california:[14,117,174,191],call:[1,3,18,22,29,30,31,33,37,41,42,43,45,49,50,51,52,53,56,59,61,62,63,65,67,71,79,81,83,85,87,97,98,104,105,106,109,113,115,117,118,119,121,123,124,125,126,127,129,131,135,136,137,139,140,141,143,144,146,149,150,153,154,155,156,157,159,160,163,164,165,166,167,168,169,171,172,174,175,176,178,179,180,182,183,184,185,191,192,199,203,204,206],call_func:[183,205],callabl:[61,127],callback:[30,32,35,40,42,46,68,140,163,164,166],callout:178,cam_extract_path:29,cam_zip_file_path:29,came:[52,69,118,149,160],camera:[40,71,85,119,124,139],campaign:69,can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,37,39,40,41,42,43,44,45,46,47,48,49,50,51,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,76,79,80,81,82,83,85,87,88,90,96,97,98,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,178,179,180,181,182,183,184,185,186,189,190,191,192,194,196,198,199,200,203,204,205,206,207],canada:[14,142,169],canari:149,cancel:[41,117,156,188],cancer:41,candi:179,candid:[52,59,60,61,62,63,159,167,180,197],canin:183,cannot:[7,14,18,22,24,30,40,47,49,52,55,61,68,114,118,119,122,124,126,154,160,166,167,168,179,183,184,190,206],canon:124,canva:72,canvas_orig:131,canvas_recon:131,canvas_result:72,cap:[69,115,190],capabl:[56,87,106,117,119,127,148,149,179,184,187,188,203,206],capac:[49,50,64,71,85,149,150],capcolor:[115,190],capit:[98,183,184],capital_gain:53,capital_loss:53,capitalize_first_lett:98,capitalize_word:98,capitalized_sent:98,capitalized_word:98,caption:[136,174],captiv:125,captur:[15,23,33,40,68,81,82,108,113,117,118,119,146,148,150,166,178,194],car:[59,60,117,118,136,137,140,142,143,144,174,188,203],car_data:59,car_label:59,car_labels_prepar:59,car_test:59,car_test_label:59,car_test_labels_prepar:59,car_test_prepar:59,car_train:59,car_train_prepar:59,carambola:40,carbon:107,card:[106,117,154,188],cardiac:143,cardiovascular:106,care:[20,47,58,59,60,71,85,96,107,113,116,117,124,127,163,164,166,169,174,183,188],carefulli:[51,160],caregor:58,carlo:121,carnam:184,carri:[7,59,122],cart:[52,159,160],carton:178,carv:[155,179,181],cascad:140,cassandra:192,cassett:154,cast:[29,124,133,135,137,140,141,144,145],casted_kei:127,cat1:1,cat2:1,cat:[15,33,56,63,79,125,132,139,142,174,183,194,205],cat_col:56,cat_feat:[63,79],cat_feats_enc:79,cat_feats_encod:79,cat_feats_hot:79,cat_feats_pip:79,cat_feats_preprocess:79,cat_fil:33,cat_list:[63,79],cat_on_snow:133,cat_train:56,catalog:[16,23,107,114,186],catastroph:165,catboost_search:56,catboostregressor:56,catcher:121,categor:[51,52,54,58,60,63,68,69,83,88,116,118,121,122,123,124,125,142,143,150,159,161,174,179,182,192,203],categori:[1,7,40,43,52,53,56,58,61,62,69,71,79,83,85,104,109,111,113,114,115,117,118,119,136,137,139,140,143,148,150,152,155,157,165,167,171,172,173,174,178,179,182,184,189,190,191,196,203,204,206],categorical_crossentropi:[32,34,40,49],categoricalcrossentropi:[41,140],category_count:190,category_encod:53,cater:69,cathi:191,catplot:[58,179],caught:126,cauliflow:171,caus:[1,14,18,28,30,48,49,51,56,59,61,64,65,66,67,71,85,106,107,116,117,119,121,122,126,127,143,148,149,150,157,159,163,165,166,183,184,186,196,205,206],causal:121,causat:154,caution:113,cb:56,cbar:[41,66,71,85,143],cbar_kw:39,cbeddd:69,cc:[45,51,106,133,150,157],ccc:157,cccc:157,ccd:116,ccp_alpha:[58,59,60],ccpa:117,cd:[0,149,151,154,169],cdata_estim:89,cdata_estimator_predict:89,cdc:151,cdeott:32,cdist:[168,198],cdot:[80,83,87,157,160],ce:53,ceil:138,celeba:135,celebr:[31,52],cell:[0,3,7,17,39,41,44,45,46,47,48,49,50,59,60,62,63,68,69,87,88,101,102,106,122,123,124,125,126,127,136,141,145,146,154,159,163,164,165,167,178,180,182,183,191,193],censor:98,censor_word:98,cent:[39,178],cent_histori:[168,198],center:[14,22,35,39,68,69,72,88,104,111,115,121,124,129,132,139,140,143,144,149,151,154,155,157,159,165,167,168,169,171,175,176,178,190,196,198,200],center_circl:[115,190],centercrop:38,centernessnet:144,centimet:[62,190],centr:165,central:[55,60,106,148],centralu:106,centric:148,centroid:[154,155,168,198],centuri:[113,169],cerdeira:50,certain:[7,14,30,33,41,43,52,56,61,79,81,83,98,111,119,121,124,137,138,143,145,148,149,150,151,152,154,159,165,166,172,174,178,182,183,184,189,203,206,207],certainli:[37,136,167],cfees8eopk:123,cg:172,cgcug0a0c6nut:61,chain:[33,43,80,87,126,143,148,175,178,183],chained_assign:143,chair:[139,150],challeng:[3,8,28,40,43,48,80,83,104,107,108,116,119,121,122,125,129,149,150,151,152,154,164,172,174,185,186,192,207],champion:199,chan:144,chanc:[37,51,58,71,85,121,129,136,163],chang:[0,7,8,14,20,30,33,41,45,47,49,50,51,52,54,55,57,58,59,64,65,67,80,88,90,96,106,107,108,111,113,114,115,116,118,121,122,123,124,126,129,135,137,140,144,145,149,150,151,152,154,157,159,160,165,168,169,170,174,175,176,178,180,183,184,185,186,191,192,196,198,205,206],changeabl:[184,206],changer:103,channel:[31,33,35,37,38,40,55,60,73,132,134,139,140,144,164,168,189],channels_first:144,channels_last:140,chao:52,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,37,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,81,85,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,151,154,155,156,157,159,160,161,163,164,167,169,171,172,173,174,178,179,180,181,182,183,184,185,191],chapter_id:167,charact:[3,49,105,113,117,118,119,123,184,185,206,207],characterist:[30,31,49,56,60,61,82,118,123,137,150,160,174,179],charg:[23,52,71,85,97,98,106,156,183,184,185],charli:184,charset:[15,169],chart:[13,19,27,81,114,115,117,155,164,178,180,188],chart_data:199,charticul:115,chase:169,chatbot:142,chatgpt:[97,98,142],cheaper:[111,117],cheat:[152,172,173,176],cheatsheet:172,check:[0,3,7,10,14,20,22,24,29,31,36,40,41,42,45,47,48,51,52,54,58,60,62,63,65,67,69,88,97,98,104,105,106,107,108,117,122,132,135,136,137,138,140,141,147,149,154,155,157,159,160,163,167,168,169,171,172,182,183,185,186,198,204,206],check_dtyp:14,check_nam:14,check_str_or_non:126,check_valu:151,check_win_condit:137,checklist:[28,188],checkout:[0,149],checkpoint:141,chef:171,chen:144,cherri:[109,184,206],chervonenki:61,chess:[136,137,174],chest_pain:143,chester:169,chicago:184,child:[157,173,183],children:[11,22,69,117,157,188],children_:167,china:[14,117,142],chines:[171,172,173,175],chinese_df:171,chinese_ingredient_df:171,chiphuyen:150,chlorid:50,chloroquin:[1,8],chmax:[55,60],chmin:[55,60],chnage:[65,67],chnormal:37,choc:136,chocol:179,choderlo:113,choic:[7,27,32,41,51,71,85,106,111,113,117,119,122,124,132,136,137,141,149,150,154,159,160,167,171,172,174,179,188,203,204],chollet:29,choos:[7,29,48,50,51,58,61,71,73,80,82,85,105,109,116,122,124,125,136,137,139,143,146,148,149,150,152,154,155,156,159,160,165,166,167,173,174,175,179,185,197,198,203],chop:171,chord:[1,8],chose:[34,35,74,104,127,167,191],chosen:[33,50,56,61,106,116,124,150,156,165,167,168,169,199],chr:140,chri:32,chrome:106,chronolog:[117,188],chuck:97,chunhua:144,chunk:[73,119,168],chunk_siz:73,churn:[156,159,160,203],churn_cal:156,churn_mean_scor:156,ci:[33,116,140,146,149,151],cid:175,cifar10:[33,132],cifar10_extract_path:33,cifar10_label:132,cifar10_mdoel_nam:33,cifar10_model_respons:33,cifar10_model_save_path:33,cifar10_model_url:33,cifar10_nam:33,cifar10_respons:33,cifar10_save_path:33,cifar10_url:[33,132],cifar10_zip_file_path:33,cifar10cnnmodel:33,cifar:33,cifar_labels_fil:132,cifar_link:132,cine:145,cinnamon:[115,190],circl:[113,115,154,159,165,169,190],circle_color:167,circu:185,circuit:[106,139],circuitri:106,circular:[145,169],circumfer:116,circumst:117,cite:[59,60,120,151,182],citi:[12,17,23,51,54,79,107,113,117,136,142,150,169,178,179,180,186,188],citizen:[117,183,188],citric:50,city_:58,city_development_index:58,city_id:[12,129,192],ck:33,cl:139,cla:[168,198],claim:[97,98,183,184,185],claremont:107,clarif:23,clarifi:[108,109,149,164],clariti:[1,69,80,109,160],clasifi:88,class_busi:7,class_economi:7,class_emb:144,class_first:7,class_label:7,class_nam:[41,43,59,157],class_report:[54,59],class_weight:[51,54,59,159],classes_:172,classfic:168,classic:[41,43,52,62,63,88,131,137,138,161,165,171,174,179,203],classif:[9,32,37,40,45,55,60,63,66,69,80,90,105,106,107,111,117,121,125,131,136,140,141,143,144,145,150,156,157,159,161,162,164,165,166,167,168,172,175,182,186,188,189,194,197,201,202,203,204],classifi:[29,32,37,49,52,58,61,66,69,71,76,85,87,88,90,118,125,136,139,143,145,150,154,156,157,159,160,161,165,167,170,174,179,194,196,201,202,203,204],classification_accuraci:61,classification_error:61,classification_model_nam:43,classification_model_respons:43,classification_model_save_path:43,classification_model_url:43,classification_report:[40,41,49,53,54,59,61,62,71,72,85,89,169,172,173,179],classnam:38,claus:[123,142,183,184,205],clean:[3,18,20,22,37,41,48,56,81,94,107,108,111,113,141,145,146,148,150,151,155,172,173,174,178,180,186,189,191],clean_data:22,clean_fresh_fruit:[184,206],clean_text:145,cleand_df:48,cleaned_cuisin:[70,171,172,173],cleaner:183,cleanli:139,cleanprep:39,cleans:111,cleanup:148,clear:[3,7,8,12,14,25,40,41,52,53,61,69,82,109,116,124,125,157,160,173,174,179,182,184,185,206],clear_output:[87,133,140],clearer:[174,203],clearli:[1,14,16,28,37,49,50,54,59,60,69,109,145,146,150,152,160,168,174,175,178,185,198,203],clees:183,clever:[14,185],clf1:51,clf2:51,clf3:51,clf:[51,53,142,165,168,196,198],clf_tree:52,cli:106,click:[0,3,39,47,49,50,53,73,105,106,113,123,171,174,177,180,181,182,185,199],client:[15,17,23,52,104,152,156,160,167,183,199],climat:[107,116,186],climax:109,climb:39,clinic:[142,182],clint:97,clion:39,clionproject:39,clip:[35,37,73,89,132,134,150,174,203],clip_by_valu:[29,30,35,133],clip_value_max:[29,30],clip_value_min:[29,30],clipart:39,clipboard:121,clipped_zoom:89,clobber:124,clock:[106,183,205],clock_spe:[71,85],clockwis:[34,89],clone:[0,38,149],clone_model:35,close:[1,7,8,29,30,31,33,38,39,40,46,51,52,54,58,61,66,69,71,79,80,81,83,85,97,106,113,115,121,122,126,132,136,137,142,155,159,164,167,168,178,185,190,200],close_pric:39,closer:[14,34,50,54,55,58,61,82,87,149,155,157,167,168,180,194],closest:[41,61,106,118,154,155,165,167,168,198],closur:[109,183],cloth:148,cloud:[1,3,21,96,106,107,111,119,123,125,148,149,150,152,169,172,186,188,189,192,195],cloud_link:146,cloud_url:169,cloudform:149,cloudmus:39,cloudwatch:148,club:93,cluster:[30,52,111,114,119,121,131,149,159,173,174,178,189,203],cluster_centers_:167,cluster_classification_plot:167,cluster_dist:167,cluster_std:[165,167,196],clusterer1:167,clusterer2:167,clusterpoint:192,clustr:[69,147],clustroid:154,clutter:[114,139],cm:[31,41,43,48,53,54,59,61,62,71,85,88,122,143,157,167,168,190,198,201,202],cm_matrix:[53,61],cmap:[1,31,39,43,51,52,53,54,55,56,61,69,71,72,79,80,85,87,88,89,131,132,138,143,159,165,167,168,196,198,201,202,204],cmd:185,cn:39,cncf:149,cnn:[40,42,134,136,139],cnn_builder:46,cnt:57,co:[1,2,8,25,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,107,114,115,116,121,123,124,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,160,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,186,190,198],coars:[139,140],coat:[30,41,43],coca:25,coca_cola_co:25,cocacola:25,code3:151,code:[0,1,3,5,7,8,9,12,14,18,30,31,35,39,43,47,48,49,50,52,58,68,71,81,82,83,85,87,88,90,97,101,102,103,105,107,113,114,115,119,121,122,124,125,126,127,136,138,146,147,150,151,156,159,161,163,165,167,169,170,174,176,178,179,180,181,182,183,184,186,188,191,196,199,203,206,207],codedivheight:183,codedivwidth:183,coef0:62,coef:[68,79],coef_:[68,79,178,200,201,202],coeff:167,coeffici:[56,68,79,81,82,83,146,159,160,166,167,168,178],coerc:[36,69],cognit:[1,104,124,188],coher:[26,142,155,192],coin:[174,203],coinbas:39,coincid:[113,135],col1:[69,124],col2:[69,124],col3:69,col:[35,39,46,47,53,56,58,61,115,116,127,159,190,191,199],col_nam:[53,56,61],col_vector:124,col_wrap:[116,190],cola:25,colab:[41,45,47,49,50,136],cold:[111,189],colder:148,coll:[123,192],collabor:[107,117,149,151],collaps:116,collect:[3,6,11,31,33,36,43,51,52,54,60,81,93,104,105,107,109,111,113,117,118,119,123,124,127,129,141,145,148,150,151,156,164,165,178,182,183,184,185,186,188,189,192,204,205,206,207],collector:40,collinear:68,colnam:127,colon:183,coloni:[13,116,190],color:[1,14,18,22,29,30,33,34,39,40,43,44,51,52,53,54,56,58,69,71,72,81,82,85,88,109,114,115,116,117,118,121,124,139,140,146,154,155,157,159,165,167,168,169,178,179,180,182,184,188,190,196,198,200,201,202,206],color_bgr2grai:72,color_mod:72,color_palett:146,color_threshold:168,colorbar:[43,168,198],colorblind:116,colorjitt:38,colormap:167,colour:139,cols_del:69,colsample_bylevel:[68,163,164],colsample_bynod:[68,163,164],colsample_bytre:[68,163,164],colum:56,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,39,40,41,42,45,46,47,48,49,50,54,55,57,58,59,60,61,62,66,68,69,70,71,79,81,85,88,105,106,108,115,116,118,122,123,124,125,126,129,136,143,146,151,154,155,159,161,164,168,169,171,172,175,178,179,180,184,190,191,192,200,206],column_diff:14,column_filt:14,column_index:127,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:59,column_to_diff:14,column_to_format:48,column_to_format_uniqu:48,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[123,192],columns_to_plot:24,columntransform:[63,79,200],com:[1,2,3,12,14,18,25,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,58,68,70,71,73,85,88,89,106,109,113,114,115,116,117,119,121,125,126,127,132,133,134,135,138,139,140,142,144,146,151,152,154,155,156,157,158,159,161,163,164,167,168,169,171,172,173,174,175,176,178,179,180,183,184,187,188,190,192,193,194],comapani:58,combin:[33,37,41,50,51,52,54,55,56,58,61,63,64,71,79,80,85,86,87,89,104,107,111,113,118,134,136,139,140,142,143,146,148,149,150,151,152,156,159,160,162,163,164,165,168,173,174,175,178,182,183,184,189,200,201,206],combined_imag:37,come:[7,36,45,50,53,59,64,66,68,69,71,82,85,103,108,109,111,113,114,117,118,119,121,124,125,136,139,143,146,147,151,154,156,159,161,164,166,168,174,175,178,183,184,185,191,196,198,199],comedi:185,comfort:[7,48,56,122,182],comma:[98,124,173,184,206],command:[49,53,106,117,118,129,137,142,163,182,184,185,192,206],comment:[47,50,52,109,117,118,133,169,182,188,205],commerc:154,commerci:109,commiss:[17,23],commit:[0,117],committe:64,commom:[62,71,85],common:[7,31,33,41,47,48,49,50,52,56,58,61,64,68,81,97,104,108,109,111,117,118,124,125,127,129,132,133,141,143,144,146,148,149,150,151,154,155,160,163,165,166,167,168,171,180,181,182,183,185,187,191,206],common_el:184,common_norm:[114,190],commonest:49,commonli:[43,56,63,64,71,81,85,104,127,136,143,148,149,150,151,164,166,168,174,183,204],commun:[28,45,72,73,108,110,111,117,119,136,142,147,149,151,160,174,185,194],comp:145,compact:132,compani:[6,109,118,148,152,160,184,185],company_s:58,company_typ:58,companyx:184,compar:[14,18,21,31,33,43,49,50,52,53,56,62,63,65,66,67,71,79,82,85,95,97,98,106,113,114,116,119,121,124,126,131,135,139,150,151,152,156,157,159,164,168,172,174,179,184,203,206],comparis:[65,67],comparison:[8,14,50,52,97,111,116,118,121,123,150,156,160,165,172,183],compat:[15,30,36,37,57,73,106,124,126,134,137,141,145,147],compatible_format:205,compel:83,compens:[164,167],compet:160,competit:[136,146,152,160,163,164],compexifi:52,compil:[1,7,29,30,32,34,35,36,39,40,42,44,46,47,49,50,64,72,132,140,143,149,185,191,194],compilaton:41,complain:69,complaint:[109,117,188],compleletli:[71,85],complementari:146,complet:[1,8,21,24,34,41,42,43,51,52,54,55,58,59,60,64,71,74,80,85,106,111,113,117,119,121,124,125,127,132,135,139,142,143,144,145,146,148,150,152,164,166,167,168,174,176,178,179,180,183,184,185,187,198,205,206],completeness_scor:168,complex32:124,complex:[0,1,31,32,33,51,59,60,62,63,65,66,67,68,71,81,83,85,116,119,124,129,136,139,142,143,144,146,147,148,149,150,152,156,162,165,166,167,171,174,183,185,193,194,196,197,204,207],complex_numb:183,complex_number_1:[184,206],complex_number_2:[184,206],complex_number__1:206,complexnumb:183,complexnumberwithconstructor:183,compli:117,complianc:[22,47,49,50,117,188],compliant:117,complic:[37,52,87,119,124,143,148,149,150,160,163,166,167,180,194],compon:[35,69,80,81,106,107,113,123,131,137,146,148,149,150,151,156,160,163,165,185,186],components_:[167,168,198],compos:[37,38,63,79,87,131,142,148,149,160,168,200],compose_greet_func:183,compose_greet_func_with_closur:183,composit:[124,159],compound:[184,191,206],compound_stmt:183,comprehend:51,comprehens:[98,113,127,142,143,150,178],compress:[29,30,31,111,131,136,139],compris:[40,106,149],compromis:[7,122],comput:[3,7,18,22,32,33,37,41,43,45,48,49,51,52,55,56,60,61,68,73,80,81,82,86,87,89,104,107,108,111,119,121,122,123,125,126,127,131,134,136,138,139,142,143,144,145,147,148,149,150,152,156,157,159,160,164,165,166,168,171,174,175,179,182,184,186,187,188,199,200,201,203,206,207],computation:[33,37,52,58,124,126,136,139,146,162],computationn:33,compute_reciproc:191,compute_target:[9,105],con:[7,49,58,106,117],concat:[22,30,35,37,39,44,56,58,68,135,139,140,141,143,144,146,171,183,184],concat_axi:125,concat_index:125,concaten:[34,35,39,57,81,124,125,135,140,143,144,180,184,194,200,201,202,206],concatenated_str:183,concav:135,conceiv:[151,183],concentr:154,concept:[3,18,29,31,49,52,61,80,81,82,106,107,119,121,123,124,127,132,139,147,148,149,150,151,152,157,160,164,165,166,172,177,179,182,184,193,206],conceptu:160,concern:[7,42,49,56,60,61,69,79,111,114,117,122,142,148,149,152,160,178,190,203],concis:[124,156,174,183,184,206],conclud:[58,61,69,80,107,113,121,150,157,168],conclus:[24,52,108,117,119,178],concret:[152,168,174,198],concurr:[89,105,106],conda:[0,30,36,37,114],condens:137,condit:[3,22,31,40,41,47,49,50,52,56,98,107,117,124,135,139,143,150,157,159,160,168,178,179,180,183,184,185,205,206],condition2:56,condorcet:156,conduct:[58,105,117,168,188],conf:18,conf_matrix:[54,59],confer:[109,113,125],confid:[41,43,50,71,85,116,139,150,151,154,156,160],config:[9,39,52,68,73,141,146,156,159,168,198,199],configur:[10,43,47,49,104,106,145,148,149,150,174,180,181,183],confirm:[14,30,47,49,50,61,108,111,117,167,178,188,189],conflict:[98,109,117,127],conform:[118,127,148,150],confus:[7,34,41,52,54,59,62,71,85,88,109,122,124,143,157,159,164,166,171,183],confusingli:167,confusion_matrix:[34,40,41,53,54,59,61,62,71,72,85,88,89,143,172,173,175,179,201,202],confusion_mtx:34,congratul:[105,106,178,179,182,185],conjug:97,conjunct:119,connect:[6,30,32,33,35,43,45,47,50,64,87,97,98,107,109,117,121,139,140,142,143,145,150,166,183,184,185,194],connectionist:83,conquer:160,consciou:7,consecut:[14,32,41,51,164],consent:[117,188],consequ:[28,107,117,137,188],conserv:[114,190],conservationstatu:[114,190],consid:[1,3,7,8,11,14,18,22,24,29,37,40,41,43,47,48,51,52,55,58,64,66,80,81,98,106,108,109,111,113,118,119,120,121,122,131,132,137,139,141,142,143,146,149,150,151,152,154,156,157,159,160,161,164,165,166,167,168,169,174,179,182,183,184,196,198,205,206],consider:[61,69,106,111,117,119,120,127,160,163,167,188,189],consist:[0,1,3,8,15,30,33,34,37,43,47,51,52,54,56,61,93,111,117,122,124,131,139,140,148,149,150,151,152,157,166,168,174,178,180,184,188,189,192,203],consol:127,consolid:80,conspiraci:64,constant:[52,65,67,80,83,124,133,134,135,137,138,139,143,145,150,160,164,175],constant_initi:144,constantli:119,constitut:143,constrain:[30,137,154],constraint:[30,106,111,124,139,149,150,154,166,168,172,198],construct:[30,52,124,127,131,135,138,139,143,146,148,154,156,159,160,161,164,183,184,206],constructor:[127,139,183,184,205,206],consult:[7,125],consum:[10,20,43,47,103,105,106,108,113,116,117,118,148,150,152,165,169,174,187],consumpt:[113,169,187,191],cont:56,cont_num_var:56,contact:[192,199],contagi:179,contain:[1,3,6,7,12,14,15,17,22,29,31,33,37,38,40,41,42,43,47,48,49,50,51,52,53,54,56,59,61,62,64,71,79,85,88,91,96,97,98,105,106,108,111,118,121,122,123,125,127,129,136,138,139,140,142,143,145,148,149,150,154,156,158,159,161,164,167,169,171,174,178,179,180,182,183,184,191,205,206],container:149,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,61,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,147,150,152,154,155,156,157,159,160,161,163,164,169,171,172,173,174,178,179,180,182,183,184,185,191,198,199,200,201,204,206],contest:156,context:[9,28,31,52,61,80,105,107,109,111,117,126,127,134,140,142,150,152,154,155,166,167,169,181,183,184,186,188,189,206],contigu:124,contin:[59,60],continu:[0,1,17,18,31,33,34,41,49,50,52,56,57,60,61,64,80,81,82,83,104,105,107,114,116,121,124,125,129,135,140,142,143,149,150,151,152,154,155,159,160,161,166,169,174,179,185,203],contour:[165,167,196],contourf:[159,167,201,202],contract:[97,98,106,149,183,184,185],contradictori:150,contrari:[126,127,152],contrarili:183,contrast:[7,52,95,108,124,138,150,159,165,168,194],contrib:145,contribut:[48,54,55,59,60,68,107,124,125,126,127,142,143,147,150,156,157,159,183,184,185,186],contributor:147,control:[7,11,30,45,50,58,61,63,64,65,66,67,73,104,108,109,111,117,119,122,124,136,137,139,141,148,149,151,159,160,166,175,184,189,199,206],controlflow:183,conv0:144,conv10:35,conv1:140,conv1_1:134,conv1_2:134,conv1_featur:132,conv1_pad:140,conv1d:[46,136],conv2:35,conv2_1:134,conv2_2:134,conv2_featur:132,conv2d:[29,30,31,32,33,34,35,37,38,40,42,73,132,134,135,136,139,140,144],conv2d_1:[29,30,35,37],conv2d_20:42,conv2d_21:42,conv2d_22:42,conv2d_23:42,conv2d_24:42,conv2d_25:42,conv2d_26:42,conv2d_27:42,conv2d_28:42,conv2d_29:42,conv2d_2:[29,30,35,37],conv2d_3:37,conv2d_4:37,conv2d_5:37,conv2d_6:37,conv2d_7:37,conv2d_8:37,conv2d_9:37,conv2d_transpos:[29,30],conv2d_transpose_1:[29,30],conv2dt:30,conv2dtr:29,conv2dtra:30,conv2dtranspos:[29,30,135,140,144],conv3:35,conv3_1:134,conv3_2:134,conv3_3:134,conv3_4:134,conv3d:136,conv4:35,conv4_1:134,conv4_2:134,conv4_3:134,conv4_4:134,conv5:35,conv5_1:134,conv5_2:134,conv5_3:134,conv5_4:134,conv6:35,conv7:35,conv8:35,conv9:35,conv:[35,38,132,139,140,144],conv_block:139,conv_bn:139,conv_bn_relu:139,conv_lay:134,conv_name_bas:140,convei:[109,113,142,189],conveni:[7,48,56,116,121,122,127,140,157,160,168,178,179,183],convent:[42,45,47,71,85,129,136,152,163,183,185],converg:[37,80,114,150,154,167,168,174,198],convers:[1,48,82,106,109,122,142,150,152,180],convert:[1,3,7,14,31,37,39,41,42,43,45,47,49,51,58,59,61,66,79,88,89,91,97,98,105,113,115,117,119,126,127,131,132,133,134,139,141,143,145,164,169,174,178,180,184,199,203,204,206],convert_image_dtyp:133,convert_indic:126,convert_to_tensor:[133,137,139],convex:[115,135,190],convinc:[109,185,194],convlay:38,convnet:[135,136],convolut:[42,134,135,139,140,144,174,195,203],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convtranspose2d:[31,38],cooki:154,cool:[31,41,71,79,85,98,102,154,179],cooler:109,cooper:183,coord:[42,124],coordin:[42,45,52,64,116,124,137,144,149,172,174],cope:[40,159,160],copi:[0,1,7,14,22,29,30,31,47,48,49,50,56,66,69,71,73,85,97,98,122,124,125,126,127,129,143,146,159,168,171,173,180,183,184,185,191,198,206],coppa:117,copyreg:205,copyright:[22,47,49,50,97,98,183,184,185],cor:39,cord:[1,117,124],core:[7,9,14,16,29,39,59,60,61,62,69,71,79,85,105,106,117,120,122,125,126,127,129,139,140,143,154,159,160,163,164,167,169,171,178,191],core_mask:167,core_sample_indices_:167,corinna:61,corner:124,coronaviru:[1,151],corpor:[18,117,119],corr:[24,39,50,51,54,55,56,66,69,71,79,85,154,159,178],corr_winedf:50,corrcoef:[18,121],correct:[18,29,35,41,42,43,47,50,51,52,53,54,56,58,61,64,68,71,85,87,101,102,113,115,117,121,123,127,138,139,142,150,155,156,160,164,165,166,168,173,179,183,188,198,204,205,207],correct_label:155,correcti:[54,59],correctli:[6,34,41,43,49,50,54,56,58,59,61,71,85,88,108,139,149,155,160,164,168,176,178,184,198],correl:[8,14,51,54,66,69,107,113,114,116,117,119,146,150,154,155,159,160,165,168,169,174,186,188,194,198,200,203],correspond:[0,14,29,33,41,42,43,48,49,51,52,64,79,80,83,87,88,97,98,105,117,121,122,124,127,135,140,143,146,149,150,155,156,160,168,175,176,178,183,188,204,205],correspondingli:150,corrmat:[69,154],corrupt:174,corrwith:24,cort:61,cortex:193,cortez:50,cosin:[124,160],cosmo:[104,192],cost:[25,32,38,50,54,58,59,65,67,71,80,81,83,85,106,109,111,113,119,123,140,141,144,148,149,152,166,174,175,187,189],cost_funct:[65,67],costli:167,costlier:106,couchbas:192,couchdb:192,could:[0,5,7,10,16,17,20,23,26,29,30,32,33,34,41,47,48,49,50,52,56,57,59,60,61,64,66,68,71,85,87,104,106,109,114,116,117,118,121,122,123,124,129,137,139,146,148,149,150,151,152,154,155,156,160,164,166,167,169,171,172,174,178,179,183,184,191,192,194,203,206],couldn:[117,151,188],coulumn:14,count:[1,18,22,31,34,39,50,51,54,56,58,59,60,61,62,63,66,69,79,88,108,115,119,121,122,124,138,141,142,146,154,164,169,171,178,190,204,206],count_3g:[71,85],count_4g:[71,85],count_bug:205,count_digit:97,count_occurr:98,count_param:138,count_vector:142,count_vowel:184,count_word_occurr:98,countabl:121,counter:[141,183,205],counteract:83,counterintuit:150,counterpart:143,counti:113,countplot:[34,51,53,54,56,58,59,63,69,71,79,85],countri:[8,12,14,48,113,118,122,124,129,151,156,169,192,207],countries_and_region:14,countries_dataset_url:14,country_region:[14,151],countvector:142,coupl:[33,69,104,109,129,157,166,192],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,34,40,41,46,48,49,51,52,54,55,56,57,58,59,60,61,62,63,64,66,70,71,74,76,77,79,85,87,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,127,129,132,134,135,137,139,140,142,143,145,146,150,154,155,156,160,161,163,164,167,168,169,171,172,173,174,178,179,180,182,205],courvil:[29,52,83,138,176],cov:[18,121,168],covari:[18,114,159,168,190],cover:[3,30,51,82,111,116,117,119,122,123,124,125,134,136,155,168,174,181,182,185,189,191],covert:[109,189],covid19:151,covid:[104,113,117,151,152,188],coxboost:160,cp:143,cpickl:132,cpk:106,cpu:[31,33,38,55,60,73,105,106,138,198],cpu_cor:[9,105],cr:[114,190],crabtre:142,craft:[109,160],crash:[142,150,174],crawler:151,crazi:[145,161],creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,35,36,37,38,39,42,43,44,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,76,77,81,82,87,88,89,90,91,93,94,95,96,104,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,125,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,178,179,180,182,183,184,185,188,190,191,192,196,198,199,200,201,203,204,205,206,207],create_discrimin:194,create_gan:194,create_gener:194,create_ingredi:171,create_ingredient_df:171,create_mask:140,create_model:[40,137],create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:123,createlink:113,creatinin:106,creatinine_phosphokinas:[9,105,106],creation:[87,105,106,117,119,157,160,199],creativ:[7,113,160,174],creator:[125,132,151,160,169],credenti:106,credit:[26,52,107,117,154,157,188],crest:[51,54,55,79,114,190],crisi:104,crisp:111,criteria:[74,76,77,90,93,94,95,96,118,152,159,168,198],criterion:[31,38,52,58,59,60,83,117,157,159,168,176,204],critic:[37,56,82,106,107,109,114,119,142,148,149,150,151,152,168,174,177,190],crop:[31,35,40,132,178,179,180],crop_and_res:144,crop_height:132,crop_shap:144,crop_siz:[35,144],crop_to_bounding_box:[35,132],crop_width:132,cross:[22,37,51,58,66,68,71,83,85,111,125,126,135,139,142,146,150,156,165,167,172],cross_color:167,cross_entropi:[33,138],cross_val_predict:[71,79,85],cross_val_scor:[52,56,58,61,66,68,71,79,85,88,89,142,159,172,173],cross_valid:58,cross_validated_roc_auc:61,crossentropi:[49,87],crosstab:22,crowd:[51,115,154,156,190],crucial:[42,58,82,106,137,142,149,159,166],cruel:154,cruis:185,crypto:39,cs231n:[132,139],cs:[109,132,139,159,165,205],csci:205,csr:79,csr_matrix:79,css:[126,127,169,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],csse:[14,124,151],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,36,39,42,44,48,49,50,51,52,53,54,55,56,58,61,62,63,64,66,68,69,70,71,79,81,85,87,88,89,91,114,115,116,118,124,127,142,143,146,151,154,155,156,157,159,161,163,164,169,171,172,173,175,178,179,180,184,190,198,200,201,202,204],ct:[9,105,107,136,200],ctc:83,cto:148,cu3tc99fx:61,cube:[184,206],cuda:[31,33,38],cuisin:[70,170,173,182],cuisines_df:[70,172,173],cuisines_feature_df:[70,172,173],cuisines_label_df:[70,172,173],culliton:142,cultur:[107,109,142,188],cumprod:135,cumsum:[168,198],cumul:[137,161,178,183],cun:193,cup:145,cur_count:138,cur_group:139,cur_layer_idx:139,curat:[35,107,117,152,186],curb:83,cure:54,curinstr:183,curl:[12,25],curli:[184,185,206],curr_scor:57,currenc:39,current:[3,14,16,33,36,42,43,53,56,58,61,80,97,98,107,109,119,124,136,137,138,140,141,160,163,164,165,172,180,183,199,205],current_directori:183,current_numb:183,current_posit:36,curriculum:[76,104,171,178,182],curtain:40,curv:[14,47,49,50,52,56,64,68,80,82,114,146,154,159,160,165,167,174,178,203],cusin:171,custom:[3,6,16,23,42,45,105,107,109,111,113,117,118,125,135,136,148,149,152,154,156,157,159,164,169,174,179,183,184,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],custom_callback:41,custom_exception_is_caught:183,custom_loss:135,customer_for:69,cut:[40,52,159,167,168],cut_df:40,cutler:159,cutoff:141,cutoff_dist:167,cv2:[31,40,42,72,135],cv:[52,54,55,56,58,59,60,62,63,66,68,71,79,85,88,89,142,159,162,167],cv_cb:56,cv_fold:58,cv_gbc0:58,cv_gbc:58,cv_lgbm:56,cv_results_:[58,89],cv_ridg:68,cv_score:[58,66,88],cv_xgb:56,cvd:106,cvtcolor:72,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:61,cycl:[47,55,60,69,106,111,117,141,146,149,150,163],cycler:146,cylind:169,d1:[33,69],d3:192,d6b2b1:69,d8ca7e:37,d:[1,14,17,25,30,32,35,36,37,38,39,40,41,50,52,53,56,61,65,67,68,69,71,85,87,88,98,108,113,114,117,121,122,124,125,126,127,131,137,138,139,140,143,145,149,150,154,155,157,159,160,165,167,168,175,180,182,184,187,189,191,192,194,196,198,199,205,206],d_:135,d_g_z1:38,d_g_z2:38,d_gradient:138,d_i:124,d_layer_d_input:87,d_loss:[37,38,138],d_loss_metr:37,d_loss_tru:138,d_model:144,d_optim:37,d_predict:159,d_solver:138,d_total_error:138,d_x:38,da:32,dai:[8,14,40,46,51,52,54,69,106,107,109,118,146,150,151,156,164,174,178,185,186,199,207],daili:[1,8,14,39,107,117,142,146,151,174,185,186,203],daisi:183,damag:[97,98,113,183,184,185],damien:131,damn:150,danb:163,danceabl:[153,154,155],dancehal:[154,155],danger:[113,166],dangereus:113,daniil:150,danmaku:175,dark:[117,152,188,199],darker:[52,107],darkgreen:[71,85],darkgrid:56,dasani:[154,178,179,180],dash:[82,105,167],dashboard:[104,107,148],dat:[51,79],data2:[52,127],data:[4,5,6,13,16,17,19,21,22,26,27,30,35,36,44,52,64,70,76,77,80,82,83,87,89,91,93,94,95,96,97,106,113,115,116,120,128,131,132,136,137,138,139,140,141,142,143,145,147,149,153,155,156,157,159,160,161,162,163,165,166,167,168,170,175,178,181,182,183,194,195,197,198,201,202,205],data_batch_1:132,data_batch_2:132,data_batch_3:132,data_batch_4:132,data_batch_5:132,data_batch_:132,data_df:41,data_dir:[33,132,134,141,145],data_dmatrix:164,data_fil:[132,141,145],data_format:144,data_gener:42,data_i:[65,67],data_loc:132,data_path:[37,46,71,85],data_prepar:46,data_sci:3,data_util:31,dataarrai:124,databas:[6,40,69,104,118,119,123,125,130,145,148,169,187,188,195],databrick:[104,106],dataconversionwarn:59,datafi:117,dataflair:186,dataflow:135,datafram:[1,8,14,17,22,23,24,29,30,31,37,39,40,41,42,46,48,49,50,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,71,79,81,85,89,91,114,115,125,126,129,143,146,154,155,163,164,167,168,169,171,172,173,178,179,180,190,199],datagen:[32,34,42],datajameson:33,datalira:40,dataload:[33,38],datanul:50,datapoint:[7,69,93,140,154,155,164,171],dataset991:59,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,34,37,38,39,41,42,46,51,52,54,55,56,58,59,60,62,63,64,65,66,67,68,69,71,72,74,76,79,81,85,89,91,93,103,107,108,115,116,117,118,119,121,122,123,124,131,132,135,136,138,142,143,145,146,148,150,152,153,154,155,156,157,160,161,163,165,166,167,172,173,174,176,178,179,180,186,188,194,196,199,203],dataset_991:59,dataset_path:[31,40],dataset_test:44,dataset_tot:44,dataset_train:44,datasets_nam:[29,31,40],datasets_respons:[29,31,40],datasets_save_path:[29,31,40],datasets_url:[29,31,40],datast:131,datastor:192,datastructur:184,datatyp:[7,50],date:[1,14,36,39,46,48,51,54,59,69,106,113,122,126,127,142,146,148,151,152,169,178,179,183,205],date_column:[39,46],date_rang:[14,39,46,126,127],date_split:36,date_train:[39,46],dateset:30,datetim:[1,14,39,41,69,126,169,178],datetime64:[39,146],datetimeindex:[39,126,146,178,180],datetimeindexopsmixin:126,datetimelik:126,daum:39,daunt:150,david:[98,138,149,152,167],day_of_year:178,dayofyear:178,db4o:192,db:[12,65,67,80,86,104,107,175,186,192,200,201],dbscan2:167,dbscan:154,dbscan_plot:167,dbscandbscan:167,dcab:[184,206],dd:180,de:[41,45,85,113,117,169,188],dead:183,deadlin:107,deal:[45,51,52,54,58,59,61,69,80,98,113,119,127,142,148,149,151,159,160,166,168,169,174,183,184,185,198,203],dealt:7,death:[1,8,14,22,106,113,143,151],death_ev:[9,105,106],deaths_dataset_url:14,deaths_df:14,deborah:148,debt:152,debug:[0,36,43,87,105,169,183,185],debug_log:[9,105],dec:113,decad:[119,136,144,148,174],decai:[138,166,174,204],deceiv:[37,113,117,188],decemb:[51,54,171,178,187],decent:[42,65,67,132,150,161],decept:117,decid:[18,32,36,37,56,68,69,108,113,115,118,119,125,143,146,150,154,156,159,160,164,172,173],decim:[97,184,185,206,207],decion:59,decis:[3,11,49,50,51,54,55,56,58,61,62,63,64,71,82,83,85,106,107,109,111,115,117,118,119,136,137,142,143,148,150,151,152,155,156,157,160,163,164,165,168,172,173,174,186,188,196,198,203,204],decision_funct:[165,196],decisiontreeclassifi:[51,59,71,85,159,161,168,172,198],decisiontreeclassifierdecisiontreeclassifi:59,decisiontreeregressor:[52,60,159,161],decisiontreeregressordecisiontreeregressor:60,declar:[134,141,183,184,206],declin:[1,14,50,113,116],decod:[29,30,31,37,131,140,141,145],decoded_data:29,decoded_img:[29,30],decoder_b1:131,decoder_b2:131,decoder_h1:131,decoder_h2:131,decompos:97,decomposit:[69,168,198],decompress:31,deconstruct:107,deconv:144,deconvolut:[131,140],decor:[30,125,199],decorate_with_div:[183,205],decorate_with_p:[183,205],decreas:[33,49,50,51,52,54,56,61,66,71,85,106,116,132,139,150,156,157,159,160,166,168,179,194],decres:161,dedic:[56,106],deduc:14,deed:142,deeeeeeep:73,deem:68,deep:[16,29,30,31,32,33,34,36,37,38,39,40,41,42,44,46,49,50,52,64,79,83,106,121,124,125,126,131,132,133,134,135,138,139,140,141,142,143,144,145,147,150,151,152,166,174,176,182,193,201,202,204],deepcopi:31,deepdream:[73,132],deepen:[56,139,179,182],deeper:[7,13,17,19,50,52,81,106,111,121,139,143,150,157,165,166,171,172,178,189,196],deepfunnel:31,deeplabv3:140,deeplearn:174,deeplearningbook:131,deepli:[119,142,148,193],deeplizard:[132,134],deepmind:174,deer:132,def:[1,3,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,43,45,46,49,50,51,52,53,54,55,56,57,58,59,60,62,65,66,67,68,71,72,73,79,80,81,85,86,87,89,97,98,99,125,126,131,132,133,134,135,137,138,139,140,141,144,145,146,151,156,159,161,165,167,169,171,173,175,184,191,194,196,200,201,202,205,207],default_image_url:73,default_target_attribut:59,defe:37,defect:[174,203],defenestr:[183,205],defin:[0,1,3,14,22,30,31,32,37,41,42,47,49,50,52,53,56,59,61,64,65,67,68,80,87,88,97,107,108,109,111,114,117,120,121,123,124,125,132,134,135,137,139,141,145,148,149,150,151,152,154,155,156,159,160,161,164,165,166,167,168,169,172,178,183,184,185,189,191,199,200,206],definit:[43,52,62,68,107,119,121,123,124,126,142,144,149,157,168,174,185,203,205],deforest:107,deform:139,degrad:[31,90,107,139,148,151,167,186],degre:[3,34,38,52,61,62,63,65,67,119,121,129,137,159,178,188,200],del:[89,127,137,183],delai:[137,146],delet:[47,58,69,105,106,117,138,184,206],deliber:[182,185],delicassen:164,delicassesn:164,delici:[115,170,171],delimit:[31,39,198],deliv:[7,58,104,109,119,122,142,148,149,183],deliveri:[104,107,149,187],dell:109,delta:[49,57,61,69,83,135,137,183],deltamean:49,deltastd:49,deltatheta:137,delv:[80,82,142],demand:[7,51,54,104,106,116,146,148],demarc:155,demis:113,demo1:165,demo2:165,demo:[132,133,139,140,144,149,151,155,159,160,165,167,171,178,179],democrat:[107,117],demoforest:159,demograph:58,demographi:151,demonstr:[3,8,18,43,47,49,50,61,64,74,81,82,114,121,122,124,137,149,154,157,159,178,180,182,183,184,191],demostr:32,dendogram:168,dendrocygna:[114,190],dendrogram:168,deni:[52,117],denois:[131,135],denoise_model:135,denomin:[7,97],denorm:35,denot:[56,80,121,135,137,157,164,183,184,206],denounc:109,dens:[29,30,34,36,37,39,40,41,42,43,44,45,46,47,49,50,64,72,132,135,137,138,139,143,144,154,155,168,194,204],dense_1:[37,45],dense_2:45,dense_3:45,dense_4:42,dense_5:42,dense_block:139,densenet121:140,densenet169:140,densenet201:140,densenet264:140,densiti:[4,50,121,135,154,156,159],deon:[28,117,188],deott:32,depart:[116,117,142,160,180,188],depend:[0,7,12,14,18,25,29,30,40,48,50,52,54,59,71,81,82,85,103,104,105,106,107,108,109,110,111,113,114,115,116,118,119,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,203,204,205],depict:[37,52,132,164],deploi:[5,10,20,43,45,72,73,96,103,104,105,106,117,136,139,149,151],deploy:[9,107,111,174,187,199,203],deploy_configur:[9,105],deprec:[36,37,64,73,88,124,125,145,167,168,198],deprecate_nonkeyword_argu:125,deprecation_mask:126,deprecationwarn:[139,168,198],deprocess:133,deprocess_img:138,depth:[7,51,52,56,58,59,60,71,85,109,113,135,139,157,159,160,161,164,168,183,198],depth_multipli:139,depthwis:[139,163,164],depthwise_separable_conv:139,depthwiseconv2d:139,dequ:36,dereferenc:124,deriv:[14,16,33,52,56,59,65,67,69,81,87,107,116,124,127,139,142,146,150,154,155,164,165,171,183,185,200,205],derivedclassnam:183,desat:146,desc:31,descend:[168,183],descent:[33,47,51,56,71,83,85,86,87,135,139,150,161,164,165,172,176,177,178,196,200,201,204],descr:[59,60],descreas:58,describ:[1,2,9,11,21,28,39,41,47,49,50,51,52,53,54,55,58,59,60,61,63,66,69,71,79,81,85,87,88,93,105,108,109,114,117,121,123,124,125,129,138,139,143,144,146,148,149,150,154,160,163,164,165,168,183,192,194,198],descript:[0,9,28,52,59,93,105,106,124,125,135,141,150,169,174,183,184,185,189,203,204],description_vers:59,desert:150,deserv:121,design:[7,12,18,31,32,39,41,45,56,80,83,96,106,107,109,113,117,118,119,122,124,136,137,139,146,148,149,150,151,152,156,164,165,172,183,184,185,188,206],designated_hitt:121,desir:[34,42,50,69,97,111,117,119,124,137,143,149,174,183],desktop:[149,185],despin:[116,190],despit:[52,139,142,152],dest:146,destin:[124,148],detach:[33,38],detail:[7,11,14,16,26,29,43,52,56,59,69,71,73,76,80,85,90,106,109,115,118,121,123,125,140,149,150,151,157,160,161,163,166,168,172,174,175,178,183,185,191,198,203,207],detect:[45,48,49,51,52,61,62,63,66,107,117,122,125,136,142,143,148,150,154,159,166,174,183,186,203,205],detector:[174,203],detergents_pap:164,deterior:163,determ:32,determin:[22,32,52,53,56,61,69,71,80,82,85,97,105,106,111,119,121,124,127,129,137,139,145,149,150,152,154,155,157,160,165,166,171,174,178,179,181,182,183,184,189,191,192,196,203,204],determinist:[117,137,146],dev:[49,50,121,126,167,191],devast:116,devdoc:[168,198],develop:[7,8,41,47,49,50,56,58,61,64,103,104,105,106,107,117,119,122,125,127,136,142,144,147,148,149,150,151,152,159,160,164,166,171,174,182,185,186,188,194,199,207],devi:[65,67],devianc:[58,161],deviat:[7,18,29,31,35,49,50,61,64,66,79,82,83,108,124,135,148,157,174],devic:[15,31,33,38,56,71,85,119,123,139,148,150,151,185],devicedataload:33,devid:58,devis:80,devot:147,dexamethason:1,dexter:37,deza:182,df1:[22,125,126,127,191],df2:[22,53,125,127,191],df3:[125,191],df4:125,df5:125,df6:125,df7:125,df:[1,9,14,17,18,22,23,24,31,39,40,42,46,50,52,53,55,61,79,80,105,115,121,125,126,127,146,151,154,155,159,164,171,175,178,190,191,199],df____:24,df_attr:31,df_boxplot:24,df_corr:55,df_corr_i:24,df_corr_sex_with_i:24,df_desc:55,df_diff:14,df_filter:14,df_heat:55,df_hist:55,df_mean:24,df_null:55,df_pairplot:55,df_plot:24,df_rolling_mean:14,df_scale:46,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,39,46,64],df_train_scal:46,df_valid:64,df_y:46,dfa:127,dfd:126,dfl:126,dfm:1,dfmt:1,dfmtp:1,dfrac:161,dfx:80,dfy:80,dg77ysplly4qtmh7trbd03p9nl1g:61,dg:73,dhamaa:123,dhamaiusa4o:123,dhamaiusa4ohaaaaaaaaaa:123,dhariw:135,di:[22,61,106,117,184,188],diabet:[1,9,105,106,121,188],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,45,47,142],diagnosi:[117,188],diagnost:30,diagnoz:203,diagon:[18,121,124,168],diagram:[1,5,8,18,52,61,111,120,121,132,148,155,162,163,164,165,167,178,188,189],diamond:183,dibia:29,dice:[83,121,126,127],dickinson:[107,186],dict1:98,dict2:98,dict3:98,dict4:98,dict5:98,dict6:98,dict7:98,dict:[1,3,22,40,73,88,114,137,139,144,146,167,168,184,185,190,198,204,206],dict_1:205,dict_2:205,dictat:[7,122,136,142],dictionari:[17,23,42,79,124,127,159,183,191,205],dictionary_for_string_kei:[184,206],dictionary_via_constructor:[184,206],dictionary_via_express:[184,206],did:[7,16,18,27,41,47,52,54,55,56,57,62,63,69,71,74,79,85,109,113,114,117,121,122,150,154,155,160,164,167,168,169,172,179,180,184,185,198],didn:[45,50,58,60,62,71,85,126,127],die:143,diego:138,diet:106,dieu:[41,45,85],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,40,41,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,64,65,67,68,69,71,77,79,80,81,82,83,85,87,89,97,103,104,105,106,107,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,131,132,135,136,137,139,140,141,142,143,144,146,148,149,150,151,152,153,154,155,156,157,159,160,162,164,165,166,167,168,171,172,173,174,175,178,179,180,181,182,183,184,185,191,192,194,197,203,205,206,207],differenti:[21,80,104,131,139,150,160,164,165],differnt:57,difficult:[30,32,64,121,143,150,159,160,165,168,183,198],difficulti:[52,119,145,149,160],diffus:35,diffusion_angl:35,diffusion_models_tutori:135,diffusion_schedul:35,diffusion_step:35,diffusion_tim:35,diffusionmodel:35,difuss:135,dig:[13,19,90,114,171,172,178,180,190],digest:168,digit:[16,29,31,32,43,49,72,87,97,107,113,117,131,148,151,167,168,174,184,186,188,198,204],digitdata:49,dilat:[139,140],dilation_r:[139,140],dilemma:117,dim:[33,131,134,135,138,204],dim_z:31,dimens:[7,29,33,45,50,61,69,114,122,124,131,135,136,138,139,148,165,168,203,204],dimension:[29,30,33,41,43,45,47,62,63,88,127,131,139,154,160,165,168,198],dimensions:33,dimenss:88,diment:[65,67,69],dimi:31,diminish:[50,152],dimx:31,dine:142,dioxid:50,dip:66,dir:[58,167,183],dir_nam:137,direct:[7,43,81,89,109,126,127,131,137,141,143,152,161,168,178],directli:[1,7,14,30,31,43,64,68,83,104,105,106,109,122,123,124,127,133,137,139,142,143,146,148,150,157,159,183,184,194,206],directori:[33,37,38,39,40,53,71,81,85,106,108,122,123,134,137,141,145,169,183,185],directory_nam:137,dirnam:[31,53,58,73],dirpath:31,dirti:[50,122],disabl:[114,116,159,183,184,190,206],disable_eager_execut:134,disable_v2_behavior:145,disadvantag:[31,51,165],disappear:[139,179],disast:[104,142],disaster_tweets_test:142,disaster_tweets_train:142,disc:169,disc_num_var:56,discard:[49,127,164,184,206],discern:154,disciplin:[3,119],disclosur:117,discount:[36,137,142],discourag:124,discov:[3,4,13,19,21,37,49,108,111,113,114,116,117,118,119,120,122,130,150,153,154,172,179,180,181,182,189],discover:148,discoveri:[109,118],discrep:[42,69,83],discret:[52,56,61,83,121,124,135,137,159,160,168,174],discrimin:[117,138,152,165,184,194,196],discriminator_loss:138,discriminator_opt:37,discriminator_verdict:37,discuss:[1,3,4,7,11,18,28,50,52,81,106,109,117,119,121,122,124,125,147,148,150,152,154,156,163,164,175,182,183,191],diseas:[8,14,106,107,143,151,171,179,182,203],dish:171,disk:[12,14,25,106,149,167],dislik:109,disord:116,dispar:[80,83],dispers:[135,139,168,198],displai:[3,7,14,29,30,33,38,40,41,42,43,45,47,49,50,51,54,57,59,60,61,62,65,66,67,71,81,85,87,114,115,116,119,121,125,126,127,129,131,132,133,137,139,140,158,159,165,167,168,169,171,175,176,178,179,180,182,183,192],display_commandlin:137,display_from_datafram:42,display_grid:42,display_imag:[42,62],display_image_from_fil:42,display_list:140,display_stat:40,display_step:131,display_t:184,displaycallback:140,displi:48,disregard:[80,131],dissatisfact:119,dissemin:117,dissimilar:[52,83],dissoci:160,dist:56,distanc:[61,89,135,154,155,165,167,168,173,176,178,198],distance_down:137,distance_left:137,distance_mat:168,distance_right:137,distance_up:137,distant:[155,165],distinct:[53,56,69,137,152,157,167,171],distinctli:113,distinguish:[7,37,52,119,124,142,165,194,196],distort:114,distplot:[56,58],distract:163,distribut:[3,7,22,30,31,47,49,50,51,52,57,58,63,66,69,71,82,83,85,88,97,98,107,113,117,119,135,137,138,139,144,145,146,148,149,150,152,156,159,160,164,165,166,167,168,171,174,176,179,180,183,184,185,194,204],district:180,div:[3,22,121,125,126,127,158,169,171,178,180,183,205],dive:[7,16,52,106,107,116,125,150,152,174,175,178,190,203],diverg:[49,50,150,155,176],diverging_palett:39,divers:[107,117,142,143,148,149,153,170,174,203],divid:[14,25,31,37,41,43,49,52,61,69,71,85,87,97,114,117,119,121,123,124,129,136,139,148,150,154,155,156,157,159,169,172,173,174,179,184,188,192,203,206],divis:[14,49,97,124,150,165,183,184,185,191,205,206,207],divisible_by_2:124,divisor:[40,97],divorc:[69,113],dl:[33,87,159,203],dll:205,dm:[61,80,111,175],dmatrix:[68,164],dmitri:[14,104,178],dn:168,dna:107,dnn:136,do_deepdream:73,do_glob:183,do_loc:183,do_nonloc:183,do_not_convert:30,do_noth:183,doc:[26,41,43,45,64,72,73,76,95,105,109,115,116,123,127,168,172,183,184,192],docker:[36,53,149],docloud:205,docstr:[79,87,126,183],doctyp:[3,15,169],document:[3,5,7,10,16,25,26,39,41,51,59,71,74,76,85,97,98,100,104,105,106,107,114,116,119,124,125,135,142,148,151,152,154,155,156,164,168,172,182,184,185,192,206],documentdb:192,docutil:[125,126,127,178],docx:39,doe:[1,3,5,7,14,16,17,30,31,32,33,43,45,49,50,51,52,54,56,59,60,61,62,68,71,79,80,82,85,87,88,96,97,98,107,109,113,116,117,119,121,122,123,124,125,126,127,139,140,143,144,146,150,154,159,160,161,163,164,167,168,169,171,172,174,178,179,180,183,184,185,192,198,207],doesn:[7,26,31,32,33,40,51,54,58,59,60,66,68,71,80,81,85,87,98,109,114,118,124,127,146,148,159,161,164,173,183,184,205,206],doesnt:56,dog:[15,125,132,139,174,183,194,205],dogwithsharedtrick:183,dogwithtrick:183,doi:14,dollar:[52,79,144],domain:[7,11,16,51,56,58,82,106,107,119,120,138,142,143,150,155,180,188],domin:[71,85,154,163,207],domino:192,don:[0,7,31,32,34,41,43,45,50,51,52,54,55,58,59,60,61,62,71,85,104,105,106,107,108,109,111,126,127,129,131,136,146,148,150,163,166,167,168,169,174,179,183,184,185,186,205,206],donald:[97,185],done:[1,3,7,14,25,36,37,41,45,51,52,54,56,58,63,69,87,105,106,113,115,123,124,125,129,131,132,143,146,149,154,157,160,164,166,167,168,169,175,178,183,184,185,192,199,206],donli:154,donn:22,dont:145,donut:[27,113],door:[59,60,174],dopmzxl:73,dosag:[1,8],dot:[18,30,52,65,67,81,86,87,116,156,159,160,167,175,182,183,200,201,205],doubl:[32,52,123,154,184,185,206,207],double_quote_str:[184,206],doubled_vector:[184,206],doubt:[105,106,152,160],doug:191,doughnut:115,douyupccli:39,down:[14,26,30,47,51,52,53,54,61,71,72,80,85,87,89,97,106,109,111,137,139,142,148,149,159,160,166,173,174,175,184,189,203,206],down_shifted_imag:89,down_stack:140,downblock:35,download:[1,3,12,25,37,38,39,59,60,71,73,85,87,106,119,123,124,132,133,135,138,139,140,141,145,167,169,172,180,183,185],download_fil:[9,105,134],download_model_from_web:73,download_read_data:[71,85],download_root:167,download_url:33,downsampl:[29,30,35,135,139,140],downsid:[59,60,146],downsiz:133,downstream:148,downward:[113,135],dozen:[32,64,106,151],dp0dtheta:137,dp1dtheta:137,dp2dtheta:137,dp3dtheta:137,dp_dtheta:137,dpi:[155,167],dprobability0_dweight:137,dprobability1_dweight:137,dprobability2_dweight:137,dprobability3_dweight:137,dqn:137,dqnagent:36,drag:[7,106,115],drain:174,dramat:[109,163],drastic:[56,139,150,168,198],draw:[1,3,8,14,18,31,42,51,52,54,61,62,63,69,71,79,80,85,114,115,116,119,121,131,137,156,160,165,169,174,178,182],drawback:[143,155,184],drawing_mod:72,drawn:[51,113,121,150,156,194],dream:133,dream_img:133,dream_model:133,dreeeeeeeeeam:73,dress:[30,41,43],drewconwai:188,drift:151,drive:[47,49,50,107,109,111,117,136,140,144,148,152,169,174],driven:[0,107,117,119,137,143,148,151,186],driver:[17,23,117,174],drop:[14,31,32,39,40,43,48,49,50,51,52,53,54,55,56,58,59,61,63,64,66,69,70,71,79,85,106,115,119,122,124,127,141,143,146,156,157,161,163,164,166,167,169,171,172,173,175,178,179,180],drop_column:14,drop_dupl:[42,48,122],drop_first:143,drop_remaind:[35,46,135],drope:137,dropna:[7,39,48,56,68,69,122,125,127,146,161,163,169,178,179,191],dropnan:39,dropoff:[107,186],dropout1:139,dropout2:139,dropout:[30,33,34,37,40,44,46,87,131,139,140,145,150,194,204],dropout_1:37,dropout_2:37,dropout_3:37,dropout_4:37,dropout_keep_prob:145,dropout_r:139,dropoutlambda:49,drug:107,ds:[36,39,46,69],ds_train:135,ds_wordcloud:3,dset:38,dsse:61,dt:[39,61,124,178],dt_custom:69,dtest:68,dtl8folder:39,dtrain:[58,68,164],dtrain_predict:58,dtrain_predprob:58,dtree:159,dtyp:53,dtype:[7,14,22,24,31,33,36,37,39,45,50,53,58,59,60,61,62,63,66,68,69,70,72,79,88,115,122,124,125,126,127,133,135,137,139,140,141,144,145,146,154,157,159,164,167,169,171,172,175,178,180,191],dual:[71,85,113],dual_sim:[71,85],duc:139,duca:192,duck:[97,114,190],due:[14,18,52,56,107,116,124,136,137,139,142,143,144,150,151,156,157,159,160,161,165,166,168,186,198],duel:113,dummi:[22,68,87,146,183],dummy_inst:183,dummyclass:183,dump:[9,89,105,154,169,205],dumpstack:39,dun:145,duplic:[39,42,125,126,127,129,148,156,174,183,192],duplicate_kei:98,durabl:148,durat:[38,107,169,186],duration_histori:137,dure:[11,14,37,40,41,43,45,51,52,54,56,59,61,62,63,64,87,97,106,109,116,124,129,136,139,140,142,146,148,150,151,156,157,163,164,165,166,174,180,183,184,203,204,205],dutch:[185,207],dw:[65,67,86,175,200,201],dx:[31,121,135],dy:31,dy_pr:87,dynam:[119,146,149,183,185,205],dynamic_rnn:145,dynamodb:192,dynload:183,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:61,e2ab30:37,e5ni7of:61,e87ckhmr4qc:61,e:[1,3,8,14,16,33,35,36,37,40,44,51,52,53,54,56,57,61,65,66,67,69,71,82,85,87,97,98,106,107,117,118,119,121,122,124,125,126,127,131,135,137,138,139,143,144,145,148,154,156,160,161,166,167,168,172,174,175,178,179,180,183,184,186,188,191,194,198,200,203,204,205,206,207],e_1:156,e_:[135,159],e_n:156,e_x:156,e_z:159,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,36,37,38,40,41,42,43,45,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,66,69,71,79,80,81,82,83,85,87,88,89,95,97,98,106,107,109,111,113,116,117,118,119,121,122,123,124,125,129,135,136,137,138,139,140,142,143,144,146,148,149,150,151,154,155,156,157,159,160,162,163,164,165,166,167,168,173,174,175,176,178,179,180,183,184,185,186,191,192,196,198,199,200,204,205,206],eagerli:166,earli:[41,52,58,59,61,105,117,145,159,163,164,169,174],earlier:[7,29,41,48,52,56,87,96,105,106,107,122,127,138,143,146,155,160,167,170,171,175,179,184],early_stop:[41,163],early_stopping_round:[68,164],earlystop:[40,41,46],earn:118,earth:[61,107,183,186,207],earthquak:142,eas:[106,122,182],easi:[0,7,31,37,41,42,45,48,49,51,52,54,61,106,109,116,117,118,121,122,124,127,136,146,149,150,151,156,159,165,166,168,175,179,185,191,192,198,199,207],easier:[1,31,41,43,52,55,60,77,87,106,107,109,117,118,122,133,139,143,146,150,166,168,180,183,184,187,205,206],easiest:[14,41,121,124,150,168,198],easili:[1,7,26,40,47,48,49,51,52,59,60,61,63,71,85,109,113,116,122,124,125,127,148,149,150,151,152,157,159,167,179,199,201,202],eastwood:97,eat:[142,180,185,207],ebook:117,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[114,149,150,183],echo_funct:183,ecolog:113,econom:[52,82,107,117,146,186,188],econometr:52,economi:7,ecosystem:[107,169],ed:1,eda:[17,105,108,131],ede9d:37,edg:[15,106,123,143,145,168,184,192],edgecolor:[52,88,165,167,168,196,198],edibl:[115,190],edibleclass:[115,190],edit:[3,114,115,116,125,182,199],editor:[23,185,199,207],edna:169,edu:[60,98,109,132,139,145,159,165,189,205],educ:[11,52,53,69,107,109,167,186],education_level:58,education_num:53,effect:[7,34,40,47,51,52,54,55,56,58,59,64,79,80,106,113,117,119,124,125,129,139,140,142,143,144,148,150,151,152,154,156,160,164,165,166,168,174,178,183,184,185,187,188,194,203,206],effectiviolog:109,effects_echo_path:183,effects_fold:183,effects_init_path:183,effects_reverse_path:183,effici:[30,32,56,61,104,106,111,119,124,125,131,136,139,142,146,149,150,156,159,164,183,185,187,189],effort:[106,107,109,118,142,150,168,186],eg8djywdmyg:171,eg:[3,7,121,178],egg:[183,184,205,206],ei:57,eigenvalu:168,eigenvector:168,eight:[89,146],either:[3,7,14,22,29,41,45,47,49,50,51,54,59,105,109,121,124,125,126,127,136,140,142,144,146,148,150,151,152,154,157,159,166,172,174,183,184,185,203],ejection_fract:[9,105,106],ejtdl1tzr2vxnvlm4pwxei:61,ekf6iw6gti6:61,el:[58,152],elabor:8,elaps:135,elast:160,elasticnet:[68,166,178],elasticsearch:192,elbow:[69,167],elbow_m:69,elec_data:[51,54],elec_df:[51,54],electr:[51,54,56],electrocadriogram:29,electrocardiogram:29,electron:[71,85,106,142],eleg:185,elem:[184,206],element:[7,13,14,18,19,29,33,40,45,52,71,85,87,97,114,118,121,123,125,126,127,135,138,139,141,142,152,156,159,182,183,185,191,199,204,205,206],element_spec:37,elementwis:[33,87],elev:[88,165,168,196,198],elif:[36,38,40,89,98,126,127,134,137,144,183,184,205],elimin:[28,68,107,117,184,186],elkan:167,ell:[52,156,159],ellips:166,ellipsi:124,ellipsoid:[168,198],els:[1,7,24,31,33,35,36,38,39,40,43,52,53,56,57,59,60,72,86,87,89,98,99,104,124,125,126,129,132,133,134,135,137,138,139,140,141,144,145,167,175,183,184,185,201,205],elsevi:50,elu:143,em:168,ema:35,ema_network:35,ema_weight:35,email:[2,108,109,118,142,171,174,199,203],email_df:2,emam:152,emb:[61,121,135,145,149,158,165,171,175,176,180,183],embark:[22,82,161],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,35,131,135,136,139,141,144,145,149,151,183],embed_dim:139,embedding_dim:[35,135],embedding_lookup:[141,145],embedding_lookup_1:141,embedding_mat:[141,145],embedding_max_frequ:35,embedding_min_frequ:35,embedding_output:[141,145],embedding_s:[141,145],emblemat:83,embodi:145,embrac:[152,174,185],emerg:[119,169],emerson:109,emili:[107,186],emiss:61,emit:137,emot:[117,124,125,142,189],empath:109,emphas:[83,107,149,154],emphasi:56,empir:[52,119,160],emploi:[32,37,51,56,61,80,83,89,106,142,159,174],employ:[58,121],employe:[6,52,58,117,183,191,205],empow:[82,142,147],empti:[3,7,14,24,31,41,51,55,73,97,98,118,122,124,126,131,167,178,183,184,191,199,206],empty_tupl:184,emrebulbul23:36,emreustundag:194,emul:192,en:[3,15,30,114,117,152,169,184,188,190,192],enabl:[0,7,43,61,81,105,106,113,122,127,139,142,144,148,149,156,159,168,169,171,174,187,203],enable_categor:[68,163,164],enable_early_stop:[9,105],encapsul:149,encircl:185,enclos:[183,184,205,206],enclosedporch:56,encod:[9,22,29,30,31,49,50,51,54,56,59,63,66,69,71,85,105,131,132,140,143,145,150,155,161,174,178,203],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:131,encoder_b2:131,encoder_h1:131,encoder_h2:131,encoding_dim:30,encompass:[7,83,143],encount:[7,34,48,109,117,121,122,154,185,205],encourag:[3,117,160,168],encrypt:[111,121,148,189],encyclopedia:119,end:[3,7,29,31,32,33,36,39,41,45,48,52,54,55,56,59,60,62,63,66,71,83,85,89,106,107,108,111,113,116,117,119,121,122,124,125,126,127,132,133,136,137,138,139,140,143,146,149,151,152,156,157,159,160,164,166,167,168,173,183,184,189,191,200,205,206],end_angl:35,end_slic:126,endang:[114,190],endpoint:[119,187],endswith:[31,167],energet:154,energi:[71,85,153,154,155],enforc:[83,107,117,119,124,186],engag:[107,109,150],engin:[14,18,31,39,49,58,69,81,82,106,117,124,125,136,140,142,146,149,150,152,154,160,166,169,174,191,192,203,207],england:169,english:[142,150,184,206],enhanc:[80,82,83,113,114,116,142,143,152,174,177,191,203],enjoi:[80,113,154,207],enlarg:[140,160],enorm:[7,122,165],enough:[7,31,33,40,47,49,50,60,62,63,71,85,97,104,106,108,111,116,117,121,124,135,139,150,160,165,166,168,174,179,184,185,203],enrich:[143,148],enrol:69,enrolled_univers:58,ensembl:[52,53,54,55,58,59,60,64,71,85,121,147,150,157,159,160,162,163,164,168,172,174,198],ensur:[31,33,49,50,81,83,109,111,113,114,117,118,122,124,129,132,137,139,142,145,148,149,150,164,166,167,173,182,188,189],entail:[42,106],entangl:152,enter:[39,50,53,100,106,119,137,183,185,195,201,202,205],entertain:125,entir:[31,32,109,114,117,124,139,140,142,146,150,151,160,165,167,169,176,180,183,184,188,206],entireti:[111,189],entiti:[1,118,123,142,152,192],entri:[7,15,39,42,48,61,62,69,79,122,124,135,142,145,148,154,164,166,169,171,178,183],entropi:[37,83,135,157,159,161,165,166,168,172],entry_script:[9,105],enumer:[1,34,38,40,42,56,66,121,126,131,132,134,135,137,138,139,141,144,167,168,173,178,183,198,201,202,205],env:[0,30,36,37,97,98,114,125,126,127,146,168,172,179,183],env_test:36,envi:113,environ:[9,30,36,40,47,49,50,53,59,60,62,63,68,88,104,105,106,107,109,127,139,149,152,159,163,164,165,167,168,174,178,180,181,183,186,203],environment:106,environment_debug:36,envis:179,enzym:106,ep:[31,139,167],epic:39,epidem:[14,124],epidemiolog:151,episod:36,epistolari:113,epoch:[29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,64,72,80,87,132,135,138,140,141,143,145,148,150,161,166,175,194,204],epoch_acc:33,epoch_count:36,epoch_end:33,epoch_loss:33,epoch_seq:145,epoch_tim:38,epr:57,epsilon:[36,63,135,139,160],epsilon_decai:36,epsilon_min:36,epsilon_t:160,epub:141,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:61,eq:50,equal:[7,14,18,22,24,33,49,50,52,56,61,71,81,85,88,97,121,123,124,127,135,138,145,146,150,151,152,156,157,159,160,163,166,167,168,174,180,182,183,184,205,206],equal_var:[18,121],equat:[57,61,80,81,135,146,160,161,168,178,184],equilibrium:37,equip:[111,119,149],equiprob:156,equit:[117,188],equiv:[15,126],equival:[7,31,49,79,83,124,125,126,127,139,145,146,148,150,160,183,184,204,206],eras:1,erasur:117,eratosthen:97,erc20:39,erencan:201,eros:152,erp:148,err:[126,127,156],errd:38,errd_fak:38,errd_real:38,errg:38,erro:45,erron:114,error:[0,1,7,29,30,36,38,40,41,45,47,49,50,51,52,53,56,57,59,63,65,67,68,69,80,81,83,88,107,121,124,125,126,138,139,145,146,148,149,150,152,157,159,160,162,163,164,165,166,167,175,178,179,184,185,196,197,200,206],error_r:175,errord:82,errormsg:49,errr:[55,60],erwo:97,es:192,escap:[184,206],especi:[45,51,64,68,109,113,114,115,119,148,149,150,152,159,160,164,167,173,174,183,194,203],essai:26,essenc:[52,80],essenti:[1,7,52,80,82,104,106,119,122,141,142,143,160,168,172,175,177,191],establish:[7,33,71,81,85,104,117,140,146,150,155],estim:[18,51,52,54,55,56,58,59,60,61,62,63,66,87,89,106,109,114,118,119,121,124,137,150,151,152,154,155,156,159,163,165,167,168,173,178,182,190,197,201,202],estimators_:157,estonia:207,et:[31,36,117,152],eta:[30,68],etc:[7,28,31,33,43,47,51,52,58,71,79,85,107,119,121,124,127,136,140,144,148,149,150,151,157,159,160,174,183,185,186,189,190,191,203],ethic:[107,111,120,148,152],ethiko:117,etho:117,ethos3:109,etl:148,euclidean:[97,154,168,198],euclidian:167,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:61,european:117,ev:[52,156],eva:[123,192],eval:[31,33,41,73,134,145],eval_epoch:31,eval_epoch_va:31,eval_everi:[132,141],eval_i:132,eval_index:132,eval_metr:[68,163,164],eval_set:163,eval_x:132,evalu:[29,33,35,37,42,52,61,68,82,89,107,108,111,117,122,124,125,127,132,135,139,141,142,149,156,157,159,160,163,164,165,166,167,168,174,176,182,183,184,185,186,188,196,197,198,203,206],evaluate_on_last_n_it:167,evaluation_s:132,evanesc:[115,190],evauat:62,even:[1,3,7,18,33,42,43,48,50,52,62,64,66,68,71,85,97,104,109,113,115,116,119,121,122,124,126,127,136,137,142,146,148,149,150,151,152,154,156,159,160,163,167,168,173,174,178,179,182,183,184,191,198,199,203,205,206],even_numb:[183,205],evenli:[82,124,150],event:[97,98,104,121,125,148,149,151,169,183,184,185,188],event_nam:149,eventu:[56,148,156,192],ever:[87,105,123,129,184],everi:[3,7,33,38,41,42,45,49,51,54,58,61,64,66,72,87,109,117,118,119,122,123,124,126,129,135,137,139,140,141,146,149,150,151,157,159,160,161,164,166,167,168,174,183,184,185,193,198,199,203,206,207],everydai:[52,119,160],everyon:[104,109,123,151,160,168,171,198],everyt:160,everyth:[7,52,63,106,108,109,123,125,129,141,146,147,150,154,160,174,183],everytim:45,everywher:[119,178],evid:[17,18,56,109,119,121,142],evok:109,evolv:[1,104,116,149,164],ex:[39,56,114,117,174,190],exact:[71,85,105,121,148,150,156,157,160,165,166,196],exactli:[1,7,52,79,80,83,107,109,111,121,124,127,136,139,145,150,160,161,174,175,182,183,205],exagger:52,exam:200,exam_model:200,exam_scor:200,examin:[7,29,43,48,61,63,69,82,122,143,154,156,164,174,178,191,200],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,36,39,40,41,42,43,45,47,48,49,50,51,53,54,58,59,61,66,69,71,73,79,80,82,83,85,87,98,106,107,108,109,111,113,114,116,117,118,119,121,122,123,125,126,127,129,131,132,136,139,140,141,142,143,144,145,148,149,150,151,152,154,156,159,162,164,165,167,169,171,173,176,178,179,180,182,183,184,185,186,191,193,194,204,205,206,207],example1:[7,122],example2:[7,122],example3:[7,122],example4:[7,122],example5:7,example6:7,example_imag:133,example_tensor:45,example_train_vector:142,exce:166,excel:[23,25,29,107,115,118,123,140,165,186,190,196],except:[3,9,14,22,24,30,31,42,45,47,49,50,51,52,55,65,67,73,98,105,116,124,125,126,127,136,139,141,144,159,160,161,174,175,184,185,204,206],exception:148,exception_has_been_caught:183,exception_has_been_handl:183,exception_is_caught:183,exception_messag:183,excerpt:87,excess:[61,83,168,183],exchang:[109,117,137,149,169,189],excit:[52,109,119,133,145],exclaim:150,exclud:[56,69,98,124,125,126,163,167,182,184,206],exclude_pattern:121,exclude_word:98,exclus:[104,157,183],execut:[0,3,12,14,18,22,24,25,30,49,55,56,71,80,85,97,98,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,74,76,77,90,93,94,95,96],exercis:[0,3,12,33,49,93,122,143,148,166,178,185],exhaust:[121,159,183],exhibit:[96,121,139,150,183],exhuast:58,exist:[1,7,9,14,29,30,31,33,38,40,43,47,49,52,56,58,61,66,68,72,81,87,98,105,106,107,109,117,118,119,121,123,125,127,132,134,137,141,142,145,148,149,150,151,152,154,156,157,160,166,174,183,184,186,191,192,205,206],exist_ok:[37,38,167],exit:[148,185],exogen:137,exot:[160,163],exp1:124,exp2:124,exp:[31,35,52,56,86,87,124,127,135,151,159,160,161,165,175,191,196,201,202],expand:[7,122,123,124,159,160],expand_dim:[37,43,46,73,124,132,133,141,200],expans:[165,183],expect:[7,33,36,42,43,49,50,53,59,79,87,96,114,119,121,122,124,126,127,133,137,149,150,156,160,168,178,180,183,185],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,98],expected_result:[14,22,98],expected_sequ:98,expected_sorted_list:98,expectil:160,expedi:137,expedit:[142,152],expend:106,expens:[33,51,52,58,71,79,85,106,126,136,146,148,149,152,162,180,199],experi:[1,14,16,28,36,41,43,47,49,50,52,106,107,109,113,114,115,117,119,121,139,140,142,149,150,151,152,160,163,174,179,190,200,203],experienc:[28,117],experiment:[30,36,49,139,182],experiment_nam:[9,105],experiment_timeout_minut:[9,105],expert:[51,52,109,117,150,151,152,167],expertis:[106,107,119,150,151,186,188],expir:148,explain:[5,8,24,26,33,43,52,56,74,76,81,90,94,107,109,111,117,124,127,132,133,134,149,150,155,157,159,165,166,167,168,172,174,175,176,178,186,188,193,198],explained_variance_ratio:[168,198],explained_variance_ratio_:[168,198],explan:[10,20,24,47,49,106,117,126,127,152,160,166,184,206],explanatori:[24,114,163,178],explic:59,explicit:[124,127,168,183,198],explicitli:[87,124,126,137,174,183,203],explod:[53,141,143,150],exploit:167,explor:[9,18,23,28,36,47,49,56,62,69,81,82,88,103,104,105,106,107,109,110,111,112,115,116,117,118,125,129,143,147,149,151,154,156,160,162,165,166,168,169,171,173,174,178,179,180,182,186,189,192,199],exploratori:[17,69,71,81,85,105,131,189],expm1:68,expn:124,exponenti:[35,56,124,143,160,184,185,206,207],expos:[30,56,107,117,127,151,188],expose_map:56,exposit:109,exposur:[109,117],express:[1,8,22,30,37,46,47,49,50,80,87,97,98,109,121,124,125,126,127,141,148,156,160,174,178,179,184,185,188,200,203,205,206],extend:[33,107,117,124,149,150,159,160,174,183,184,203,205,206],extens:[0,18,41,83,106,142,150,160,182,185,192,204,205,207],extensionarrai:127,extent:[121,139,165,167,168],extercond:56,exterior1st:56,exterior2nd:56,extern:[104,117,118,121,143,152,168,188],exterqu:56,extinct:[114,190],extra:[18,51,52,124,149,157,160,164,174,184],extract:[3,8,31,32,33,39,43,46,56,69,104,118,119,124,125,132,133,134,135,136,139,140,142,143,147,148,150,180,188,203],extract_fold:132,extract_net_info:134,extract_path:[29,30,31,40],extractal:[29,30,31,33,37,38,40,42,73,132,135],extracted_text:3,extractor:3,extrapol:[52,159],extratreesclassifi:159,extratreesregressor:159,extrem:[50,56,58,121,139,143,149,160,170,192],extremli:88,ey:[30,87,113,116,150,166,193,194,200],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:124,f10:157,f1:[41,49,54,59,62,71,72,85,124,142,157,161,169,172,173,179],f1_score:161,f2:[124,157],f2ac792482e3:192,f35:61,f3:[124,157],f3ab60:69,f4:[124,127,157],f4bafb1ea019:167,f50duri2g6yv8pzu8ii:61,f5:157,f6:157,f7:157,f821:[183,184],f8:[124,157,191],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:61,f9:157,f:[0,1,3,9,14,18,24,29,30,31,33,38,39,40,47,49,50,52,53,57,66,72,73,80,83,87,89,97,98,105,113,121,124,125,126,127,131,134,135,137,138,141,143,146,154,156,157,159,160,161,164,168,171,172,175,176,178,184,185,191,199,206],f_0:160,f_:159,f_i:160,f_t:[141,160],fa:[56,137,145],face:[31,37,40,104,107,109,125,136,140,142,143,149,181,185,186,188,191,194],facebook:[117,152,188],facecolor:[37,69,88,165,167,168,196,198],facemask:[174,203],facet:113,facetgrid:[116,154,179,190],facial:[107,125,186],facil:[124,183],facilit:[55,124,143,183],fact:[1,4,14,18,19,40,41,42,45,51,52,54,59,60,64,71,85,108,113,114,115,117,118,119,121,124,129,153,155,156,159,160,165,166,167,172,179,180,183,184,201,202,203,204],factor:[52,55,56,65,67,69,71,80,85,97,104,106,116,135,139,149,156,157,159,165,166,174,183,196,201],factori:[97,104,111],fad:39,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:61,fail:[1,16,49,50,52,61,63,71,85,98,117,136,148,150,174,183,188,203],failur:[9,103,132,149],fair:[54,59,60,71,85,107,117,119,150,153,156,164,186,188],fairlearn:107,fairli:[33,42,51,69,117,132,167,168,188],fairseq:135,fairytal:178,fake:[37,38,138,194],fake_imag:138,fake_label:38,fake_loss:138,fake_samples_epoch_:38,falcon:125,fall:[43,47,49,50,64,66,104,109,114,121,124,127,159,169,171,174,178,183,203],fallaci:109,fallback:150,fals:[1,3,7,9,14,18,22,24,29,30,31,33,35,36,37,38,39,40,41,42,43,48,51,53,54,55,56,58,59,66,68,71,73,79,81,85,87,89,97,105,106,114,116,121,122,124,125,126,127,132,133,137,138,139,140,141,143,144,146,150,152,156,159,163,164,165,167,168,169,171,172,173,179,183,184,185,190,191,194,196,205,206,207],false_boolean:[184,206],false_positive_r:61,falsehood:185,famhist:175,famili:[5,22,69,109,114,115,123,147,160,164,169,173,190,192],familiar:[28,42,61,64,107,114,123,127,129,156,161,166,178,179,185,186],family_s:[22,69],family_size_max:22,familys:22,famou:163,fan:[107,185],fan_out:144,fanci:[68,119,191],far:[4,7,17,31,37,41,58,66,69,71,79,82,85,114,121,122,135,154,164,165,167,174,175,178,184,196,200,204],fare:[22,161],fare_add_averag:22,fark:36,farlei:[138,149],farmer:156,farsight:137,farther:[79,154],fascin:[115,117,181],fashion:[20,29,30,103,105,106,107,114,124,136,139,164,168,178,183,198],fashion_classifi:41,fashion_classifier_21:41,fashion_classifier_22:41,fashion_classifier_23:41,fashion_classifier_24:41,fashion_classifier_2:41,fashion_classifier_3:41,fashion_classifier_4:41,fashion_classifier_vi:41,fashion_mnist:[29,30,41,43],fashion_test:41,fashion_test_label:41,fashion_train:41,fashion_train_label:41,fashon:30,fast:[7,37,41,43,47,50,52,79,106,111,124,127,143,149,164,174,175,184,189,191,199],fastai:57,fastapi:72,fasten:56,faster:[37,47,49,51,55,56,61,71,80,85,87,119,124,143,149,163,164,167,174],fastest:[124,164,167],fastgfil:73,fatal:[8,14,183,205],fater:51,father:66,fault:149,favipiravir:1,favor:[159,160,166,174,185],favorit:[105,118,121,125],favorite_hobbi:98,fayyad:52,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[71,85,115,190],fcn:144,fe:150,feasibl:[106,150,152,156,164],feat:134,feat_df:54,feat_dict:55,feat_imp:58,feat_import:[54,55],feat_map:79,featuir:56,featur:[7,9,16,20,22,30,31,33,34,39,40,41,43,46,47,51,60,62,63,64,65,66,67,68,69,73,81,82,87,89,105,106,108,117,118,119,123,124,125,127,131,132,133,134,135,136,139,140,143,144,149,151,156,158,159,160,162,165,166,168,169,171,172,179,182,183,184,187,191,198,200,204,206],feature_1:146,feature_2:146,feature_column:88,feature_df:171,feature_extract:142,feature_fract:56,feature_fraction_se:56,feature_importances_:[53,54,55,58,157],feature_indic:157,feature_nam:[7,41,59,60,122,157,168,198],feature_rang:[39,44],feature_scor:53,feature_typ:68,featurecolumn:47,featureidx:49,featuremap:144,featurespr:47,februari:[185,189,192,207],fed:[31,43,51,53,61,127,138,139,143,145,156],feder:117,feed:[3,31,32,40,41,45,56,59,87,119,124,136,146,152,167,174,203],feed_dict:[134,137,145],feedback:[109,143,147,149,152],feedforward:[136,139],feel:[3,7,109,135,154,180,185,189],feet:68,felis_catu:133,fell:183,femal:[22,58,107,174],feminin:113,fenc:[56,68],fence_map:56,fenugreek:171,fernandez:121,fetch:[59,143,168,198],fetch_california_h:79,fetch_dataset:31,fetch_openml:[59,60,167],fetch_ucirepo:143,few:[1,7,9,14,37,40,41,43,45,47,48,49,50,52,54,59,60,61,63,68,69,71,80,81,85,87,93,105,106,107,108,109,111,114,116,117,121,122,123,124,125,127,132,139,140,141,146,147,149,150,151,154,155,160,163,164,166,167,169,174,175,179,183,184,191,194,203],fewer:[3,52,59,61,64,76,118,121,124,156,166,173,183],fewest:139,ff_dim:139,fff9ed:69,fff:169,ffffff:72,ffill:[7,122,143],ffn:139,ffn_output:139,ffoutput:39,fg86ufl9igmpwtk6aurw9v5:61,fgsymyf:61,fh:141,fhxfwxna:144,fhxfwxnax4:144,fi:157,fib_sequ:98,fibonacci:183,fibonacci_at_posit:183,fibonacci_at_position_renam:183,fibonacci_function_clon:183,fibonacci_function_exampl:183,fibonacci_list:183,fibonacci_modul:183,fibonacci_module_renam:183,fibonacci_path:183,fibonacci_smaller_than:183,fiction:31,fido:[124,183],field:[7,45,51,52,54,87,114,123,127,139,140,146,147,148,154,156,165,169,174,178,184,192,193,203,206],fieldnam:124,fifth:[124,184,206],fifti:37,fig:[1,22,30,33,36,38,40,46,56,61,66,69,72,80,88,114,115,116,135,137,138,146,159,161,165,168,190,196,198],fig_dim:22,fig_extens:167,fig_id:167,fight:56,fighter:169,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,66,68,69,71,72,79,82,85,87,88,114,115,116,131,135,138,140,146,154,155,157,159,161,164,165,167,168,190,196,198,204],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,49,50,51,52,54,55,56,57,58,59,61,63,64,66,68,69,71,72,79,80,82,85,87,88,107,115,116,118,129,131,135,137,138,139,140,146,150,152,154,155,156,157,159,164,167,168,175,180,190,192,198,199,204],figure_format:[52,68,146,156,159,168,198],figureclass:[115,190],file:[0,1,6,9,12,17,22,23,25,29,30,31,33,37,38,39,40,42,43,44,47,49,50,53,56,61,68,76,81,95,97,98,105,106,113,118,119,123,124,125,126,127,132,133,134,137,138,141,143,145,149,154,155,169,171,172,173,178,180,182,183,184,191,204,205],file_conn:[132,141,145],file_desc:73,file_id:59,file_loc:132,file_obj:73,file_output:137,file_path:[29,30,31,33,43,68],file_upload:73,fileexistserror:73,filenam:[31,40,53,58,132,134,167,169],filepath:[40,46,132,134],fill:[1,11,14,15,18,22,24,48,50,51,53,54,58,68,71,79,85,102,106,114,122,124,125,127,135,143,146,157,163,165,169,174,178,190,196],fill_:38,fill_between:[29,159,165,196],fill_betweenx:167,fill_color:72,fill_valu:125,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,48,53,56,58,68,122,143,146,191],film:113,filter:[7,14,16,24,31,33,34,40,48,56,114,124,127,129,132,135,139,140,142,154,180,192,205,206],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[114,190],filters1:140,filters2:140,filters3:140,filterwarn:[37,40,51,52,53,54,55,56,58,59,60,61,71,85,139,140,159,161,163,167],fin:[65,67],fin_col:56,final_df:39,final_estim:51,final_featur:169,final_list:205,final_pip:[63,79],final_st:141,final_state_c:141,final_state_h:141,financ:[6,82,107,119,186],financi:[6,125,137,142,160],find:[7,8,14,15,18,31,32,38,41,48,49,50,51,52,54,55,56,59,60,61,62,63,65,67,69,74,76,81,82,88,89,97,105,106,107,111,113,114,115,116,117,118,119,121,122,123,124,125,127,129,131,136,137,142,147,150,151,153,154,156,157,159,160,161,163,164,165,166,168,171,172,174,175,178,179,180,182,183,185,188,196,200,203,206],find_better_split:57,find_common_el:184,find_prime_factor:97,find_stack_level:125,find_varsplit:57,find_wanted_peopl:97,fine:[80,82,89,131,139,140,148,150,159,163,177,178],finer:[7,122,149],finish:[0,3,32,56,106,146,149,161,166,169,175,183,185],finit:[121,137,171,179],finland:207,fintech:39,fintype_map:56,fip:151,fire:[30,142],firecolumn1:39,firecolumn2:39,firecolumn:39,firefox:106,firegod:39,firehos:148,fireplac:56,fireplacequ:56,firm:69,first:[0,1,3,7,11,14,18,31,32,34,35,40,41,43,45,46,47,48,49,50,51,52,54,55,56,58,59,60,61,62,64,66,68,69,71,81,82,85,87,98,105,106,108,109,111,115,116,117,119,121,122,123,124,125,127,129,136,137,138,139,140,141,142,143,145,146,148,149,150,151,152,154,156,157,159,160,161,163,164,165,167,168,169,171,172,174,176,178,179,181,183,184,185,188,189,191,198,199,200,203,204,205,206,207],first_baseman:[18,121],first_char_set:184,first_nam:[98,205,207],first_numb:[184,206],first_param:183,first_term:134,first_tuple_numb:184,first_word:[183,205],firstli:[48,69,88,150],firstnam:[123,185,192],fiscal:25,fish:69,fisher:7,fit:[29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,46,49,50,51,52,53,54,55,56,57,59,60,61,62,63,64,65,67,68,69,71,72,79,80,81,82,85,86,88,89,93,97,98,105,118,119,123,132,134,137,140,142,143,146,148,150,151,152,155,157,159,160,161,162,163,164,167,168,169,171,172,173,175,178,179,182,183,184,185,196,198,201,202],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:145,fit_predict:[69,167],fit_resampl:171,fit_transform:[30,39,41,44,46,51,53,54,55,58,59,60,61,62,63,66,69,71,79,81,85,88,142,143,155,163,167,168,169,179,198,200,201,202],fitted_model:[9,105],fiumlogtswc31vrwbvd:61,five:[7,16,48,51,54,88,97,109,112,139,142,146,171,180,184,206],five_up:124,fix:[29,47,50,51,54,64,87,117,118,124,127,135,139,141,149,150,159,161,164,165,168,171,185,188,193,196,198],fixat:109,fixed_nois:38,fixedformatt:167,fixedloc:167,fj4b:169,fk:[12,129],flag:[3,33,36,127,139,150,154],flair:186,flat:[40,66,154],flat_map:46,flatten:[29,30,32,33,34,37,38,40,41,42,43,45,46,66,72,87,98,131,132,135,138,139,168,169,172,184,198,206],flatten_2:42,flatten_nested_list:98,flatten_vector:[184,206],flattened_list:98,flavor:[7,137,166],flaw:[68,74,90,96,107,186],fledg:160,flexibl:[7,68,104,118,124,127,129,147,148,149,160,165,187,191,192,199],flip:[71,79,85,113,137,140,174,203],flipsid:7,fll:48,float32:[29,30,31,33,36,37,45,73,124,131,132,133,135,137,138,139,140,141,144,145,167,194,204],float64:[14,24,39,46,61,62,66,69,79,122,124,126,127,154,159,168,169,175,178,191,198],float_base_shap:133,float_format:[47,49,50],float_neg:[184,206],float_numb:[184,206],float_number_via_funct:[184,206],float_with_big_:[184,206],float_with_small_:[184,206],floatbox:144,floattensor:31,floor:[39,56,137,156,184,191,206,207],floppi:149,florida:[113,191],flow:[32,34,52,114,136,143,184,206],flower:[62,88,113],flowform:165,flu:[107,186],flu_trend:146,fluctuat:[14,51,54,166,178],fluoresc:40,flush:205,fluvisit:146,fly:[169,185],fmt:[34,39,41,53,61,66,71,85,143],fn:[54,61,71,85,179],fname:31,fnlwgt:53,focu:[1,14,18,51,56,61,83,87,104,107,108,111,116,118,119,124,126,127,129,148,150,157,171,172,174,175,178,186,192,199],focus:[48,80,106,107,108,109,111,115,117,118,122,123,142,143,147,149,150,151,160,173,181,182,186,188,189],foggi:137,fold:[51,52,58,59,60,62,63,66,71,85,88,159,162,167],folder:[14,31,33,40,105,113,132,154,169,171,180,185,190],folder_path:132,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,37,41,43,45,47,49,50,52,53,55,56,60,61,68,69,79,80,81,82,88,97,98,104,105,106,107,108,109,111,113,115,117,118,119,121,123,124,125,126,127,129,131,132,134,135,136,137,139,140,141,143,144,145,146,149,150,151,154,156,157,159,160,163,164,165,166,167,168,169,172,173,174,175,176,178,179,180,182,183,184,185,192,205,206],font:[61,115,169],fontsiz:[30,40,88,132,167],fontweight:88,foo:[124,125,127,185],food:[113,148,170,184,206],fool:[113,194],footbal:52,forc:[1,107,131,151,152,154,166,183],forcast:146,forcibl:205,ford:152,forecast:[39,52,82,105,111,151,189],forecasting_d:[39,46],forehead:194,foreign:[129,137],forest:[52,59,60,64,68,71,85,121,131,142,156,158,160,163,173,174],forest_best:[54,55],forest_clf:54,forest_grid:52,forest_param:52,forest_reg:55,forget:[87,105,106,107,136,141,186],forgiv:142,forgotten:[117,141,188],fork:0,form:[3,7,49,52,53,61,69,87,117,119,122,124,127,129,134,136,137,142,143,146,149,151,154,155,160,164,165,169,171,174,178,183,184,192,200,203,204,205],form_df:15,form_linearly_separable_data:52,formal:[18,52,117,121,139,152,157,159,168,183,205],format:[6,14,26,29,31,32,33,36,37,41,42,43,47,48,50,51,53,54,55,58,59,60,61,62,63,65,67,71,79,85,97,107,113,117,118,119,122,123,124,125,132,133,134,136,137,138,140,141,144,145,148,149,155,156,159,164,165,167,168,169,172,174,180,183,185,186,191,196,198,203,204,205,207],format_person_info:98,format_vers:205,formatfactori:39,formatted_column:48,formatted_info:98,formatted_str:[184,206],former:[45,51,63,119,124,135,139,150,152,156,157,174,179,203],formul:[168,174,200],formula:[18,80,81,97,123,157,160,168,175,179,184],forth:[51,109],forthcom:182,fortran:124,fortun:[7,48,71,85,122,155,160,180],forum:147,forward:[7,31,32,33,38,48,87,122,133,142,149,174],foster:142,found:[1,9,26,32,37,52,56,58,65,67,71,73,85,89,97,105,106,108,114,118,121,124,127,132,141,142,144,148,150,151,160,163,164,165,183,184,185,199,205,206],foundat:[117,119,147,148,149,151,160,174],foundationdb:192,founder:174,four:[7,32,43,52,53,61,69,71,85,97,106,122,123,124,146,157,166,171,182,183,184,205],four_g:[71,85],fourier:124,fourteen:[168,198],fourth:[14,32,88,124],fowler:151,fp:[61,71,85,144,179],fpath:31,fpcoor:144,fpn:144,fpr:[61,179],fr:14,frac:[14,49,50,52,64,80,82,83,98,135,143,144,156,157,159,160,161,164,168,175,179,200],fractal:124,fraction:[43,52,64,159,166,167,179,184,204,206],fragil:[64,183],frame:[1,7,14,36,37,39,52,59,60,61,62,69,79,122,125,127,132,136,143,150,154,164,169,171,178],framebord:[121,125,126,127,183],framework:[0,41,43,56,106,117,132,134,136,140,141,145,147,149,150,152,164,169,176],franci:156,frank:150,fraud:[107,154,186,203],free:[3,30,50,56,97,98,107,115,117,119,135,136,144,145,152,154,174,180,183,184,185,186,188,190],freecodecamp:193,freedom:[107,121,127,137,186],freedraw:72,freez:142,french:113,freq:[39,46,59,66,79,127,146],frequenc:[1,3,35,63,66,142,146,148,150,159],frequent:[51,52,53,54,55,56,61,111,121,129,141,150,160,168,171,174,198],fresh:[74,117,164,169,180],fresh_fruit:[184,206],friedman:[52,159,164],friedman_ms:58,friend:[109,118,119,125,150],friendli:[107,113,142,149,150],frog:132,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,35,36,37,38,39,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,72,73,79,80,82,85,87,88,89,93,96,97,99,103,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,125,126,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,185,186,187,188,189,190,191,192,194,196,199,200,202,203,205,206],from_arrai:125,from_categor:40,from_config:[9,105],from_lat:31,from_logit:[43,132,138,140],from_logitstru:140,from_se:45,from_tensor_slic:[46,131],fromarrai:[31,133],front:[71,85,114,184,190,206],frontend:183,frozen:164,frozenset:[127,184,206],fruit:[69,142,143,184,206,207],fruit_nam:40,fruits_copi:[184,206],fruits_dictionari:[184,206],fruits_set:184,fruits_set_via_constructor:184,fruits_tupl:184,fruits_tuple_via_constructor:184,frustrat:148,ftc:[117,188],fu:125,fulfil:[124,160],full:[1,7,29,31,38,43,45,50,51,63,69,71,85,98,104,105,106,114,117,122,124,125,126,127,129,144,149,150,159,160,163,167,168,171,172,178,183,184,206],full_model_dir:141,fullbath:56,fulli:[0,32,33,43,47,50,66,87,90,136,137,139,140,144,148,149,150,151,160,167,174],fully_connected_size1:132,fulvou:[114,190],fun:[59,87,124,178,179,205],func:[97,125,139,183,205],func_nam:183,func_wrapp:183,function_nam:185,function_that_receives_names_argu:183,function_wrapp:[183,205],functool:134,fund:58,fundament:[54,55,60,62,80,82,104,121,124,127,130,142,171,174,175,177],fungi:115,fuqiongi:[114,145],furnish:[97,98,183,184,185],further:[1,14,37,52,56,61,62,63,69,80,81,97,105,106,118,119,121,124,131,132,134,137,142,149,150,156,160,162,163,164,167,169,173,174,175,183,191,203],furthermor:[49,52,89,108,150,160],fuse:139,fused_batch_norm:37,futher:56,futur:[29,39,46,49,56,60,81,88,107,117,119,142,145,151,152,160,169,171,174,179,183,203],future_step:[39,46],futurewarn:[88,125,167,168,198],futurolog:[132,134],fx:141,fxbyxm:61,fy:25,fykun93:61,g2d:37,g:[3,38,39,40,44,52,53,56,58,61,73,80,82,87,98,107,117,119,124,125,126,127,131,137,138,139,144,145,148,154,159,160,166,168,172,175,179,183,184,186,188,191,194,204,206,207],g_error:138,g_fake_se:138,g_gradient:138,g_k:137,g_loss:[37,38,138],g_loss_metr:37,g_loss_tru:138,g_optim:37,g_origin:134,g_resolut:37,g_sampl:138,g_solver:138,g_style:134,g_t:141,gain:[50,52,56,61,81,104,114,125,137,142,148,150,152,157,159,160,161,164],galaxi:[6,168],gallahad:183,galleri:151,galton:156,gam:160,gambl:107,gamboost:160,game:[36,39,52,103,107,137,152,174,203],gamedownload:39,gamma:[36,61,62,63,68,137,139,144,160,163,164,167],gamma_initi:144,gan:[138,151,152],gan_input:194,gan_output:194,gan_structur:194,ganlab:194,gap:[14,22,43,52,61,109,117,139,142,150,166,180,188],garagearea:56,garagearea_mean:56,garagecar:56,garagecond:56,garagefinish:56,garagequ:56,garagetyp:56,garageyrblt:56,garbag:[40,124],garbl:148,gari:39,garlic:171,gartner:[117,148,152],gate:[136,185],gatewai:148,gather:[15,40,107,108,119,135,145,150,152,154,169,173,178,186],gaug:[82,83,142,179],gaussian:[30,61,135,154,160,172,174],gaussiannb:172,gaussianprocessclassifi:172,gave:[51,52,156],gb:[1,169],gbc:58,gbdt:[56,160],gbm:[58,164],gbm_tuned_1:58,gbm_tuned_2:58,gbm_tuned_3:58,gbrt:160,gbtree:[56,163,164],gc:40,gca:[1,32,114,115,132,165,167,190,196],gcf:[115,190],gcp:149,gcv:159,gd:[56,175],gdpr:117,gdprv:56,gdwo:56,gebru:[107,186],geeksforgeek:[165,205],gees:[19,114,142,190],gelu:135,gemston:192,gen_imag:38,gen_logits_fak:138,gen_z:38,gender:[7,22,52,107,117,119,125,164,174,186,188],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,35,43,45,47,48,49,50,51,52,54,55,59,61,62,64,73,79,81,83,89,105,106,107,108,113,114,116,117,118,119,121,122,123,125,126,127,129,131,132,133,134,135,136,137,140,141,142,143,145,146,147,148,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,171,172,173,174,176,182,183,184,185,188,191,192,195,196,200,204,207],generalis:[56,165],generalist:109,generalizaton:34,generar:37,generate_from_frequ:3,generated_imag:[35,37,194],generated_paint:37,generated_path:37,generated_portrait:37,generated_text:141,generator_loss:138,generator_opt:37,genfromtxt:198,genom:107,genr:[154,155],genu:[114,190],geoffrei:[33,168,198],geograph:[63,106],geographi:151,geoloc:14,geometr:[154,165],geometri:[139,154],georg:[125,184,185,206],georgia:[117,144,188],geospati:[107,186],geq:160,geqq:135,gerg:137,germani:169,geron:[45,51],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,33,37,38,40,42,43,45,48,49,50,51,54,55,56,58,59,60,61,62,63,64,66,68,69,71,72,73,81,82,85,87,104,105,106,107,108,109,113,114,117,121,122,123,126,127,129,131,134,135,136,137,138,139,141,142,143,145,146,148,149,150,151,155,156,157,160,161,163,164,166,167,168,169,171,172,173,174,175,178,179,180,181,183,184,185,191,194,198,203,205],get_age_by_surviv:22,get_age_group:183,get_base_model:140,get_batch:31,get_bootstrap_sampl:156,get_cmap:[168,198],get_count:183,get_dat:[183,205],get_default_devic:33,get_default_graph:[36,37],get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,56,68,143,178],get_environ:[9,105],get_equivalent_kernel_bia:139,get_fil:[39,40,41,44,46,133],get_full_id:[183,205],get_grid:52,get_imaginari:183,get_index:126,get_initial_st:141,get_item:127,get_lay:[133,139,140],get_loc:[126,127],get_messag:[183,205],get_model:135,get_nam:[183,205],get_network:35,get_network_custom:35,get_oper:73,get_output:[9,105],get_param:[54,55,59,60],get_pinfect:14,get_properti:[9,105],get_real:183,get_result:125,get_rolling_window:14,get_rt:14,get_shap:[73,134,137,139,144,145],get_slice_bound:126,get_smoothed_ax:14,get_solv:138,get_std:24,get_survival_rate_by_gend:22,get_tensor:73,get_tensor_by_nam:73,get_text:183,get_the_unique_values_of_pclass:22,get_tim:[183,205],get_timestep_embed:135,get_transition_sigmoid:151,get_valu:127,get_vari:144,get_vers:140,get_xaxi:[29,30,132],get_xlim:[165,196],get_yaxi:[29,30,132],get_ylim:[165,196],getcwd:[29,30,31,33,40,43,68,183],getpro:168,gettint:45,gfile:73,ggplot:159,gh:[126,141],ghost:179,giant:138,gif:135,gift:180,gigabyt:[71,85],gigaspac:192,gill:[115,190],ginger:171,gini:[52,59,157,159,161],giraph:192,girshick:144,gist_rainbow:[71,85],git:[0,39,97,149],github:[5,14,36,39,53,59,60,62,63,68,73,80,88,106,107,124,126,127,132,140,144,147,149,151,159,163,164,165,167,171,178,179,182,193,194],githubusercont:[12,14,18,25,71,85,106,167],give:[1,7,18,24,37,43,51,52,53,56,58,61,65,67,79,82,105,106,109,113,114,117,119,121,122,124,125,127,136,138,139,143,144,150,155,157,160,161,164,165,167,174,178,179,183,184,185,188,203],give_me_sunglass:31,given:[1,7,14,18,19,22,29,33,34,41,46,49,51,52,54,55,56,58,59,60,61,62,71,79,85,87,97,98,104,106,113,114,115,116,121,124,125,131,136,137,139,140,144,150,151,152,154,155,157,159,160,164,165,166,167,168,171,172,174,178,179,180,182,183,184,190,191,197,198,200,203,205,206],gkioxari:144,glacier:148,glanc:[37,56,63,148,160,161,174],glean:109,glenc:58,glimps:142,glinternet:160,glmboost:160,glob:[2,31],global:[14,22,52,61,106,139,140,148,151,165,167,196,205],global_variables_initi:[134,145],globalaveragepooling2d:[139,140],gloss:109,glq:56,glu:[184,206],glue:148,gluon:150,gn:144,go:[0,1,7,31,37,43,45,50,51,52,54,55,57,59,60,62,63,65,67,68,69,71,79,85,87,94,103,104,105,106,109,113,114,116,121,122,124,125,126,129,135,136,140,141,145,148,149,150,155,157,160,163,166,167,168,171,174,175,179,182,183,184,185,187,194,198,203,205,207],goal:[1,7,8,16,29,48,76,79,100,107,108,109,111,119,131,137,150,151,152,160,164,165,166,174,178,186,188,189,194,203],goali:137,goalx:137,goe:[51,52,62,64,79,87,109,119,143,145,147,156,159,160,168,172,174,180,194,205],gog:39,gold:[69,151],golden:[148,183],gomez:138,gone:[3,117,160,174,203],gonna:87,good:[1,3,7,18,19,25,31,40,41,43,45,47,49,50,51,52,54,55,56,59,61,62,63,64,65,67,68,71,85,87,89,105,107,109,113,114,116,117,119,121,122,132,135,139,142,148,150,151,152,154,155,156,159,160,161,165,167,168,169,172,173,174,176,178,179,180,183,185,190,196,197,198,199,204],good_init:167,goodby:183,goodfellow:[29,52,83,138,176,194],googl:[41,45,47,49,50,104,107,117,125,132,136,142,148,149,150,151,174,185,186,192,194,203],googleapi:[73,133],googlenet:139,goos:[114,190],gosset:121,got:[7,45,52,53,58,87,145,160,161,167,168,185,199],gov:152,govern:[22,47,49,50,80,117,119,146,152,174,203],govt:117,gp:194,gpu:[33,37,41,45,51,56,105,106],gpu_hist:56,gpu_id:[68,163,164],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:61,grab:[43,124],gracefulli:[126,184],grad:[33,37,73,137],grad_bias:87,grad_boost_clf:51,grad_input:87,grad_output:87,grad_softmax_crossentropy_with_logit:87,grad_w:87,grad_weight:87,grade:[178,179,180,199],gradient:[33,35,37,49,50,56,59,60,65,67,71,73,83,85,86,87,131,133,135,136,137,138,139,141,143,147,150,159,163,165,168,172,176,177,178,196,200,201,204],gradient_boost:161,gradient_desc:[80,81],gradient_i:80,gradient_loss:161,gradient_react_3d:178,gradient_x:80,gradientboostingclassifi:[51,58],gradientdescentanim:175,gradienttap:[35,37,131,133,135,137,138,141],gradual:[66,80,81,116,150,160,167,174,175,203],graduat:[58,69],grai:[18,29,30,31,49,72,73,87,114,119,131,138,167,168,190,198,204],grain:[7,122,148,159,178],gram:134,grammat:142,grand:139,granda:121,grant:[37,52,97,98,127,183,184,185],granular:[114,149,154,173],grape:[184,206],graph:[1,3,8,14,19,24,30,33,41,43,49,56,73,119,121,123,132,134,135,138,145,146,151,154,156,159,160,163,164,165,168,178,180,182,192],graph_def:73,graph_object:1,graphdef:73,graphic:[8,24,45,106,121,124,137,156,166,174,187,192,197],graphwin:137,grasp:[69,80,156,173],grass:[115,190],grassi:169,gratifi:115,grayscal:[43,72,167],great:[16,30,41,42,51,52,54,55,65,67,79,81,106,107,109,113,119,121,124,142,145,150,152,155,157,159,160,167,184,185,186,206],greater:[29,48,50,52,56,97,109,114,124,127,136,143,157,159,160,167,183,184,190,205,206],greater_equ:124,greatest:[52,97,124],greatli:[50,52,119,139,150,154,159,160],greedi:[52,160,164,168,198],greek:117,green:[42,51,52,53,54,109,113,114,115,121,137,139,149,160,169,178,180,184,185,190,201,202,206],greenawai:25,greengrass:151,greensock:113,greet:[183,205],greet_again:[183,205],greet_funct:183,greet_one_mor:[183,205],greet_someon:[183,205],greet_with_closur:183,greeter:183,greeting_with_div_p:183,greeting_with_p:183,greeting_with_tag:183,greetingclass:183,grei:52,gremlin:192,greys_r:132,greyscal:132,grid:[18,22,29,42,43,52,55,58,59,61,62,68,79,87,89,137,144,151,154,156,165,169,196],grid_clf:167,grid_estim:89,grid_param:89,grid_pr:62,grid_search:[54,55,59,60,61,62],gridsearch:[54,55,59,60,62,159],gridsearchcv:[52,54,55,59,60,61,62,89,159,167],gridsearchcvgridsearchcv:[59,60,62,159,167],gridspec:138,grlivarea:[56,68],groceri:[69,164,171],gross:25,ground:[68,139,184,204],groundbreak:136,groundwork:109,group:[14,18,22,31,39,51,52,56,69,79,106,107,109,111,112,113,115,116,117,118,119,121,123,135,139,141,142,144,148,150,151,153,154,155,156,159,164,168,169,171,172,174,179,180,181,182,184,186,188,189,190,191,192,198,203,205,206],group_by_categori:98,group_kei:[22,125],group_siz:144,groupbi:[1,14,18,22,31,39,56,88,115,125,180,190],groupby_sum:14,grouper:39,groupnorm:[135,144],grover:57,grow:[87,106,115,121,124,129,144,149,160,192],grow_polici:[68,163,164],grown:159,growth:[83,139,146,159],growth_rat:139,grunin:14,gryffindor:199,grzanka:133,gs:138,gsearch3:58,gsearch4:58,gsearch5:58,gt:[48,141],gt_coord:42,gu:151,guarante:[52,124,127,149,185],guardian:113,guardrail:117,guarrant:[71,85],guava:40,guess:[7,18,49,52,55,58,60,97,98,122,150,156,160,172,179,183],guesser:52,gui:[56,106,187],guid:[0,17,23,52,56,58,80,104,117,119,124,125,126,127,143,147,149,150,151,174,183,187,193,203],guidanc:[47,50,61,80,117,150,168,174,198,203],guidelin:[50,117],guido:[184,185,205,206,207],guin:121,gun:113,gust:137,gutedbanoeu:171,gutenberg:[107,141,186],guyon:61,gym:98,gyro:168,gyroscop:121,gz:[33,132,139],h0:190,h1:[1,15,18,137],h2:[1,18,137],h2o:[149,160],h5:[39,40,41,42,43,44,46],h:[18,31,33,39,73,89,98,117,135,140,141,144,145,160,164,168,184,201,206],h_:200,h_t:[145,160],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,35,37,40,41,42,43,45,47,48,49,50,51,52,54,56,58,59,64,65,66,67,69,71,79,80,81,85,87,88,93,104,106,107,108,109,111,113,114,115,116,118,119,121,122,123,124,125,126,127,129,132,136,139,140,141,142,143,144,145,146,149,150,151,152,153,154,155,156,159,160,161,163,164,165,166,167,168,169,173,174,175,178,179,182,183,184,185,189,190,191,192,194,198,199,200,203,204,205,206,207],habit:[23,69,183],habitat:[115,190],habr:168,habrastorag:168,hack:[98,117],hacker:97,had:[16,29,40,47,49,50,51,52,54,58,59,61,71,85,107,109,117,124,125,127,129,160,164,178,183,186,188],haemoglobin:106,haffner:193,haha:185,halevi:152,half:[1,31,33,51,52,54,97,121,124,146,167,178,180],half_dim:135,halfbath:56,hall:174,halloween:[178,181],halt:183,halv:[33,150],ham:[145,183,205],hamster:174,hand:[31,34,40,43,51,56,58,108,109,113,127,143,146,148,149,154,156,161,165,166,168,171,174,176,182,203],handbook:[59,60,62,63,113],handi:[41,79,124,154,183],handl:[0,7,23,40,42,51,52,56,58,60,62,63,71,81,83,85,97,98,106,109,113,114,117,119,122,124,126,127,136,143,148,149,150,151,152,154,159,162,165,172,174,182,184,187,196],handle_data:3,handle_endtag:3,handle_missing_valu:79,handle_starttag:3,handler:183,handout:155,handson:167,handwritten:[29,32,43,49,87,168,204],hang:172,hao:144,happen:[1,7,18,43,50,56,62,65,67,109,118,121,124,127,137,142,150,153,160,166,169,183,193,199],happi:[109,113,121,125,174,199,203],happier:[50,116],har:[82,104],hard:[47,51,54,61,68,109,111,136,139,160,163,167,168,174,180,203],hardcod:183,hardcov:146,harder:[47,49,52,64,69,150,151,160,183],hardest:169,hardwar:[104,106,111,149,152,167],harm:[28,106,107,117,186,188],harmon:[41,54,59,61,71,85,168],harmoni:156,harvard:109,harvest:179,hasattr:139,hash:[48,123,185,192],hashabl:184,hashablet:125,hashtabl:127,hashtable_class_help:127,hashtag:104,hasn:[66,166],hasti:[159,160],hat:[80,82,83,139,156,157,160,164,175,199],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,35,37,40,41,42,43,45,47,48,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,71,73,79,81,82,83,85,87,96,97,98,102,103,104,105,106,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,164,165,166,167,168,169,171,172,173,174,175,176,178,180,182,183,184,185,189,190,192,193,198,199,200,203,204,205,206],haven:[42,55,60,174],hay:185,hazelcast:192,hbase:192,hbr:109,hc:168,hd:40,hdbscan:154,hdf5:194,he:[18,121,125,139,144,145,146,149,156,159,169,174,203],he_norm:140,head:[1,14,15,24,29,31,36,39,40,41,46,49,50,51,52,53,54,55,56,58,59,61,62,63,65,66,67,68,69,70,71,79,81,85,88,91,114,115,116,122,127,139,142,143,144,146,151,154,156,157,161,164,169,171,172,178,179,180,190],header:[18,29,39,49,121,123,132,154,184],headlin:28,headwai:110,health:[1,13,104,117,124,142,151,188],healthcar:[82,107,143,186],healthi:106,heapprimit:183,hear:174,heard:[28,39,79,109,142,154,160,161],heart:[6,9,33,52,103,118,143,152,175],heart_diseas:143,heat:119,heatingqc:56,heatmap:[1,8,34,39,41,50,51,53,54,55,56,61,66,69,71,79,85,143,154],heav:150,heavi:[111,160,172],heavili:[133,137,149,152,155,174,180],heavyweight:172,height:[3,18,31,33,35,62,71,72,85,88,113,116,118,121,125,126,127,132,134,135,139,140,155,159,165,167,168,169,171,175,176,178,182,183,190],height_shift_rang:32,heirloom:178,held:[117,156],helicopt:137,hello:[43,98,127,132,182,183,184,185,191,205,206],hello_world_str:[184,206],helloworld:[185,207],help:[0,1,7,8,23,28,32,33,36,37,43,47,50,52,53,56,58,61,64,66,68,69,71,79,80,81,82,85,87,90,103,104,106,107,108,109,111,112,113,117,118,119,121,122,124,125,131,135,142,143,146,147,148,149,150,151,152,154,155,159,160,163,164,165,166,167,168,170,171,173,174,175,178,179,180,181,182,183,184,185,186,187,188,189,190,198,200,205],helper:[33,43,73,115,138,146],helvetica:169,henc:[7,41,50,56,61,62,63,65,67,69,79,131,148,156,168],heparin:1,her:[7,52,150],here:[1,7,11,14,18,24,28,32,36,41,43,45,47,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,68,71,79,80,81,82,85,87,89,97,98,101,102,105,106,107,109,111,113,115,117,119,121,122,123,124,125,127,129,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,154,155,157,160,161,163,164,166,167,168,172,173,174,175,178,179,182,183,184,185,191,192,194,198,199,200,203,205,206],hereaft:184,herebi:[97,98,183,184,185],hessian:160,heterogen:157,heurist:[52,150,152,160,168,174],hf:[9,105],hi:[7,51,66,73,121,125,157,166,169],hidden:[30,43,49,50,64,119,131,141,143,144,145,146,150,152,166,204],hidden_dim:144,hidden_layer_s:36,hidden_unit:204,hide:[18,49,51,54,55,59,60,71,85,183],hide_result:49,hierarch:[69,119,154,193],hierarchi:[118,139,140,168,183,193],high:[14,18,31,39,42,43,45,46,49,50,51,52,55,58,59,61,62,63,65,66,67,69,71,79,85,88,97,106,119,124,129,136,139,146,148,149,150,152,160,162,163,164,165,166,168,174,178,179,180,185,191,194,198,200,207],high_blood_pressur:[9,105,106],high_qual:175,high_valu:151,higher:[18,29,33,40,47,51,52,54,56,58,59,66,68,69,79,82,106,107,109,114,121,124,140,143,146,150,157,159,163,165,166,167,168,178],highest:[33,43,49,139,140,164,180,204],highli:[50,54,56,79,121,137,148,150,151,159,168,185,198],highlight:[1,28,83,107,115,117,119,123,129,142,149,174,203],highlight_max:199,hilari:113,him:160,hing:83,hint:[3,7,14,22,24,49,55,87,97,98,105,123,155,180,182],hinton:[33,166,168,198],hipaa:117,hire:[58,107,109,117,186],hire_d:191,hist2d:[114,190],hist:[1,18,22,29,40,49,51,54,55,58,60,61,62,63,68,114,156,190],hist_df:40,histogram:[1,4,18,41,49,51,54,56,60,61,62,79,113,121],histor:[107,113,151,174,178],histori:[29,30,31,32,33,34,35,36,37,39,40,41,46,47,49,50,64,72,106,107,132,146],history_df:[37,64],history_t:36,history_va:31,histplot:[71,85],hit:[7,137],hitchhik:149,hither:183,hline:157,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:61,ho:[61,159],hoang:139,hobbi:98,hoc:149,holbrook:64,hold:[31,34,36,52,66,83,123,127,136,156,164,174,184],holder:[97,98,183,184,185],hole:115,holidai:178,hollow:180,home:[52,79,169,183,199],homeless:113,homepag:147,hometown:184,homogen:[7,124,157,168,191],homogeneity_scor:168,honei:13,honestli:117,hong:205,honor:126,hood:[97,159,160,175,200],hope:[26,56,58,81,125,139,161,166,171,185,207],hopefulli:[43,56,63,79],hopkin:[14,124,151],hoptroff:152,hor:145,horeca:164,horizon:[137,146],horizont:[14,53,113,124,125,140],horizontalalign:[72,88,168,198],horribl:[184,206],hors:132,horseradish:171,hospit:151,host:[50,104,107,111,118,148,149,186,187],hostel:157,hostel_data:157,hostel_factor:157,hot:[1,7,41,49,53,56,111,143,145,150,174,178,189],hotel:164,hour:[33,39,51,54,58,105,106,107,109,118,150,169,186,199,200],hour_df:39,hourli:[39,118],hours_per_week:53,hous:[52,56,63,136,149,150,151,152,174,199],house_price_test:56,house_price_train:[56,163],household:[63,69,79],housekeep:137,housing_median_ag:[63,79],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,35,39,40,41,42,43,45,47,48,49,50,51,54,55,56,59,60,62,63,64,65,67,68,69,71,72,74,76,79,80,81,82,83,85,87,88,93,95,104,105,106,107,108,109,111,113,114,115,116,117,119,120,121,122,123,124,125,126,127,129,130,134,135,136,137,141,143,144,146,147,148,149,150,151,154,155,156,159,161,163,164,165,167,168,169,171,172,173,174,175,178,179,180,182,183,184,186,188,189,190,192,197,198,199,200,203,205,206],howden:[178,179,180],howev:[1,3,7,28,30,32,33,37,42,47,48,49,50,52,56,58,64,68,69,80,87,106,108,117,118,119,121,122,124,126,127,129,131,133,140,141,143,144,149,150,152,157,160,162,165,166,167,168,172,174,178,180,182,183,184,185,188,198,207],hpo:150,hr:[39,58,169,191],href:[126,127,132,133,139,140,155,159,165,167,168,169,171,175,176,178,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:61,hs:[135,144],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:61,hspace:[31,138,167],hsplit:124,hstack:124,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:61,html:[3,15,31,59,60,62,63,68,88,98,118,121,125,126,127,132,133,139,140,155,158,159,163,164,165,167,168,169,171,175,176,178,180,182,183,184,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],htmlparser:3,http:[1,2,3,12,14,15,18,22,25,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,47,49,50,53,58,59,60,68,70,71,72,73,85,87,88,89,98,105,106,113,114,115,116,117,119,121,123,125,126,127,132,133,134,135,138,139,140,141,142,144,145,146,151,152,154,155,156,157,158,159,161,163,164,167,168,169,171,172,173,174,175,176,178,179,180,183,184,186,187,188,189,190,192,193,194,198,205],http_get:3,httpmessag:167,huang:[97,98],hub:[16,104,107,119,151,186],huber:[46,83,135,160],hubspot:109,hue:[51,53,54,59,62,63,66,69,71,79,85,88,114,116,154,190],hufflepuff:199,huge:[1,66,104,136,148,174,203],human:[16,31,43,49,52,111,117,118,119,136,139,142,143,149,152,174,185,188,203],humanist:107,humbl:149,hundr:[7,135,150],hungri:[37,171],hunt:[76,87],husl:146,hutter:150,huyacli:39,hw8:61,hw:73,hxfbpxg4aih7u:61,hybrid:[83,104,146,187],hydroxychloroquin:1,hype:[39,117],hypeparamet:33,hyper:[32,62,139,141,160,168,197,198],hyperparam:56,hyperparamat:[51,62],hyperparamet:[33,47,50,51,52,54,55,56,59,60,62,63,65,67,71,85,89,105,136,139,146,151,160,164,165,167,174],hyperplan:[52,165,196],hypert:192,hypertens:106,hyphen:141,hypothes:[18,119,121],hypothesi:[29,65,67,142,164,178],hyungjin:144,i1:124,i4:[124,127,191],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:61,i8:124,i:[1,3,8,14,16,18,29,30,31,32,33,34,37,38,39,40,41,42,43,44,45,46,51,52,53,54,56,57,58,59,60,61,62,66,68,69,71,72,73,79,80,81,82,83,85,86,87,97,98,105,106,107,108,109,111,113,119,121,124,125,126,127,131,132,134,135,136,137,138,139,140,141,142,143,144,145,146,148,151,155,156,157,159,160,161,164,165,166,167,168,175,178,184,191,197,198,199,200,201,202,204,205,206,207],i_1:124,i_:[14,157],i_batch:38,i_i:157,i_imag:38,i_j:164,i_loss:35,i_m:124,i_t:[14,141],i_x:141,iaa:[104,149,187],iac:149,iam:148,ian:[29,52,83,138,176,194],iat:126,ibm:[107,117,148,149,186,192],ic:[60,145],iclr:150,icml:160,icon:[7,48,106,115,122,182,185],id3:52,id:[7,12,15,31,56,58,59,65,66,67,68,69,87,105,123,125,129,142,143,169,183,192],id_out:139,id_tensor:139,id_var:66,idea:[7,31,37,39,42,48,51,52,54,55,60,62,63,64,68,69,71,85,88,107,109,121,122,124,139,142,143,147,150,151,154,156,160,161,162,164,165,167,168,171,172,174,175,178,179,183,189,199,200,204],ideal:[56,79,82,109,119,121,142,150,156,160,163,165,166,178,179,183,185,205],ident:[43,52,117,124,125,127,137,139,140,143,145,148,149,159,184,192,206],identif:[83,137,148,165],identifi:[6,11,16,23,28,29,33,37,48,51,52,54,58,59,61,64,81,83,106,107,109,111,112,117,118,119,121,122,123,127,129,136,139,142,143,144,148,150,151,160,168,174,182,185,186,188,189,190,191,192,193,198,203],idiom:142,idl:[37,106,124],idx1:40,idx2:40,idx:[31,57,138,167],ie:15,ieee:[7,122],ifram:[121,125,126,127,132,139,140,155,158,159,165,167,168,171,175,176,178,180,183],ig:52,igam:39,iglob:31,ignit:192,ignor:[37,40,51,52,53,54,55,56,58,59,60,61,66,69,71,85,87,97,109,114,123,125,139,140,145,146,159,160,161,163,167,168,175],ignore_index:[42,125,191],ih:141,ihm:151,ii:[18,38,61],iii:31,ij:[18,121],iljxqfj1omejrnpbca8g:61,ill:163,illinoi:191,illumin:[40,139,144],illus:[117,188],illustr:[3,8,24,29,37,52,61,107,117,123,127,131,132,134,135,139,144,146,156,159,160,165,166,183,188,197],iloc:[1,14,31,36,40,44,48,49,50,52,56,66,87,89,126,127,157,159,172,175,191,200,201,202],ilsvrc:139,im:[135,144],im_batch_s:38,im_shap:135,imag:[3,28,31,34,35,36,37,40,41,42,45,49,53,61,62,66,71,72,73,80,83,85,87,89,97,107,109,112,113,118,119,124,131,132,133,134,135,136,137,138,142,143,144,145,150,152,154,156,160,163,164,168,171,174,178,179,185,186,188,190,194,203,204],image_:38,image_arrai:[38,132],image_batch:194,image_data:72,image_data_format:140,image_dataset_from_directori:[37,135],image_dict:132,image_dictionari:132,image_ev:134,image_h:31,image_height:132,image_label:41,image_loss:35,image_loss_track:35,image_of_8:72,image_path:133,image_s:[35,37,38,135,139,204],image_segmentation_diagram:167,image_shap:144,image_w:31,image_widget:73,image_width:132,imageclassificationbas:33,imagedatagener:[32,34],imagefold:[33,38],imageio:[31,132,133,134,143],imagenet:[133,134,152],imagenet_mean:73,imagenum:31,imageri:[40,109],images_path:167,imagin:[52,118,129,150,154,160,166,169,171,182,192,199],imaginari:[18,97,183,184,206],imaginary_part:183,imbal:[54,71,85,148,150,171,174,179],imbalanc:[59,60,61,155,160],imbalnc:61,imblearn:171,imdb:[117,188],img:[31,33,37,38,40,42,43,72,73,131,133,135,138,144],img_batch:133,img_class:72,img_color:72,img_grei:72,img_in:73,img_label:40,img_nois:73,img_path:40,img_pool:140,img_resc:72,img_shift:73,img_to_arrai:72,imgplot:38,imgs_numpi:138,imgur:73,immedi:[7,45,48,52,79,109,122,137,160,169,180,183],immens:[52,127],immut:[45,184,185,206,207],imp_coef:68,impact:[28,43,51,54,56,107,109,117,137,142,143,150,152,178,186,197],impair:[52,113],implaus:194,implement:[0,16,31,33,37,48,49,51,52,53,54,55,56,59,60,61,63,71,79,85,87,97,101,102,109,117,124,127,135,138,139,140,141,145,149,150,152,159,163,165,167,168,174,183,184,191,206],implemet:168,impli:[22,47,49,50,61,66,97,98,105,142,145,149,150,154,168,174,179,183,184,185],implic:[16,117,145],implicit:[117,149,159,188],implicitli:[61,137,183],imporov:68,import_graph_def:73,importance_typ:[68,163,164],importantli:[106,127,187],importerror:[183,185],impos:[159,166],imposs:[119,174,203],imprecis:142,impress:[3,41,54,62,109],improb:121,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,37,41,43,45,49,50,51,52,56,61,66,68,71,74,76,77,80,81,82,85,90,93,94,95,96,98,105,107,109,117,119,122,135,137,139,141,143,147,148,149,151,152,156,159,160,163,164,165,167,168,173,174,175,178,179,188,198,203],impur:[52,157,159],imput:[7,22,53,56,58,63,68,71,79,85,163,174,203],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,38,40,42,167],imsav:72,imshap:144,imshow:[1,3,29,30,31,33,34,35,37,38,40,41,42,43,52,72,87,89,131,132,135,138,140,167,168,194,198,204],imura:182,imwrit:[132,134],in_channel:[31,139],in_clust:167,in_plan:139,inabl:136,inaccur:[7,48,107,117,122,137,146,160,163,186],inaccuraci:[48,122],inact:106,inadequ:61,inappropri:119,inargu:41,inbox:142,inc:152,incent:117,incentiv:117,incept:132,inception5h:73,inception_v3:133,inceptionv3:133,inch:[178,179,180],incid:28,incident:166,includ:[1,3,4,8,14,31,32,37,41,43,51,53,56,58,66,69,79,80,81,83,88,97,98,104,105,106,107,110,113,114,116,117,119,121,124,125,126,127,136,139,140,144,146,147,148,149,150,151,152,153,155,157,160,163,166,167,169,171,172,174,178,179,180,181,182,183,185,186,187,191,199,200,203,204,205],include_top:[133,140],inclus:[107,117,126,137,149,150,188],incom:[52,53,69,79,117,150,157,174,184,188],income_evalu:53,incompar:113,incompat:124,incomplet:[4,48,74,95,117,118,122,137],incomprehens:119,inconsist:[37,122,189],incorpor:[52,125,140,149,151],incorrect:[15,43,47,49,50,53,61,71,79,85,138,156,160,207],incorrectli:[41,54,59,61,71,85,148,150,160,173],increa:41,increas:[14,32,33,36,37,40,41,47,49,50,51,54,55,58,59,61,64,66,69,71,81,85,87,106,109,111,116,119,121,124,131,139,144,148,149,150,152,156,159,160,164,165,166,167,168,174,185,187,196,198,207],increasingli:[133,146,150,152],incred:[41,42,51,174],increment:[50,51,66,80,97,98,124,137,148,149,150,160,161,167,183],increment_count:183,increment_funct:183,incur:[106,187],ind1:124,ind2:124,ind:[124,157,191],ind_1:124,ind_2:124,ind_n:124,inde:[7,18,50,116,124,160,161,167,168,198],indefinit:145,indent:[89,125,183],independ:[0,56,81,82,121,124,135,137,145,149,156,159,164,168,179],index:[1,7,14,24,31,33,35,38,39,40,41,42,45,52,53,54,56,58,59,61,64,68,69,79,81,88,97,115,118,122,132,139,140,141,146,154,155,159,165,167,168,169,172,173,175,178,182,183,184,192,204,206],index_col:[48,56,146],index_nam:14,index_of_8:72,indexengin:127,indexerror:[65,67,124,126,127,185],indexin:[22,24],indexingerror:126,indi:154,india:[170,171],indian:[70,171,172,173],indian_df:171,indian_ingredient_df:171,indic:[1,7,14,16,22,43,48,49,50,56,58,66,69,81,82,83,87,97,104,105,107,117,118,121,122,125,126,127,129,137,139,140,141,142,155,156,157,166,168,174,178,180,183,184,185,191,203,204,206],indirect:124,indirectli:[51,183,184,204],indistinguish:165,individu:[7,14,43,51,52,56,58,64,80,107,109,117,122,123,135,143,149,150,152,156,159,174,175,183,184,186,191,203,206],induc:141,induct:[150,154],industri:[111,117,142,146,149,152,160,174,185,203],indx:38,ineffici:[106,124,160,164,184],inequ:167,inertia:[155,168,198],inertia_:[155,167,168,198],inertia_vs_k_plot:167,inexhaust:139,inf:[14,47,57,88],infect:[1,8,14,124,151],infected_dataset_url:14,infected_df:14,infecti:[14,151],infer:[9,105,106,139,140,141,148,149,150,151,152,154,169,174,176,191,203],infer_sampl:141,inference_config:[9,105],inferenceconfig:[9,105],inferior:52,infinispan:192,infinit:[14,58,109,137,160,183,184],infinitegraph:192,infinitydb:192,infix:124,inflection_idx:151,inflection_r:151,inflict:113,influenc:[17,54,56,80,83,111,117,137,155,169,173,174,184,189],influenti:117,info:[14,39,41,51,53,54,56,61,62,69,71,79,85,89,122,140,154,164,169,171,178,179,192],infocli:39,infograph:[109,113,119,154,155,171,178,179,180],inform:[1,4,12,14,15,17,22,23,24,25,31,39,41,42,43,45,48,50,51,52,54,55,56,58,59,60,69,71,79,82,85,98,104,105,106,107,108,109,111,114,115,117,118,119,121,123,124,125,127,129,136,137,139,140,141,142,143,144,146,148,150,151,152,154,157,159,160,164,165,166,167,168,174,178,182,183,184,186,188,189,192,194,205],infrastructur:[104,111,151,187],infti:[121,135,137,156],infus:173,ingest:149,ingrain:142,ingredi:[170,172],ingredient_df:171,inher:[66,140,142,168],inherit:191,init:[30,58,86,97,145,155,167,175,183,200,201],init_imag:134,init_lr:135,init_model:73,init_s:167,init_tim:135,initi:[0,3,15,33,36,42,45,50,51,52,56,57,65,66,67,69,73,80,81,87,97,98,104,107,117,118,124,131,134,137,139,140,141,144,148,150,152,155,159,160,163,168,174,178,180,183,184,186,191,198,205,206],initial_eda:53,initial_nois:35,initial_prob:161,initial_st:141,initiali:33,initialis:37,initialise_graph:137,inject:125,inland:[63,79],inlin:[51,53,54,55,57,59,60,61,62,63,64,68,79,80,87,88,89,138,143,159,167,169,196,198,200,201,202,204],inlinebackend:[52,68,146,156,159,168,198],inner:[39,80,97,125,126,127,129,146,183,192],innermost:[183,205],innov:[56,104,107,117,187],inordin:160,inplac:[1,7,14,22,30,38,39,42,48,50,52,53,56,125,143,146,163,169,171,175,179],input:[9,14,15,18,22,29,30,31,32,33,35,37,38,39,41,42,43,44,45,47,49,51,52,53,54,55,57,58,59,60,63,64,66,71,72,73,80,81,82,85,87,96,97,98,104,105,106,121,124,125,126,127,131,132,133,135,136,137,138,139,140,141,143,144,145,146,149,150,151,152,154,156,157,159,160,164,165,166,167,168,169,171,174,178,182,183,184,185,194,198,199,203,204],input_1:[35,135],input_2:[35,135],input_:42,input_data:[9,50,54,55,59,60,79,105],input_dim:[36,37,47,49,50,139,143,194,204],input_funct:50,input_imag:140,input_mask:140,input_proj:144,input_s:[137,140,204],input_shap:[32,34,37,39,40,41,43,44,46,64,72,132,137,139,140,144],input_signatur:133,input_tensor:140,input_text:98,input_unit:87,input_valu:137,input_width:35,inputlay:[35,42,138],inquir:142,inquiri:[107,114,142],insensit:[129,159,165],insert:[65,67,80,123,124,127,160,183,205,206],insertion_sort:98,insid:[0,1,3,33,52,62,63,64,71,80,85,121,124,127,129,131,137,139,141,143,149,161,167,169,175,184,185,199,206],insight:[11,16,51,54,56,61,62,79,80,82,104,106,107,109,114,117,119,125,147,148,186,188],inspect:[43,59,60,61,71,79,85,174],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,150,151,154,155,156,157,159,160,161,163,164,169,171,172,173,174,178,179,180,182,193,198,199,200,201,203,204],instabl:52,instagram:125,instal:[0,3,12,18,25,30,36,45,53,103,104,105,106,107,108,109,110,111,113,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,183,184,190,191,194,196,198,199,200,201,202,204,205],instanc:[7,31,48,51,52,53,54,56,61,83,88,106,107,109,122,123,124,126,136,138,139,142,144,146,149,150,152,157,159,164,166,167,174,179,184,194,203,205,206],instant:[58,115,142],instanti:[45,53,61,88,127,164,179,183],instantli:147,instead:[7,22,31,32,33,36,37,45,49,50,51,52,55,56,59,60,63,64,87,88,104,109,113,115,117,118,119,124,125,136,138,139,140,146,148,149,150,159,160,161,163,166,167,168,174,175,178,180,183,184,185,198,199,203,206],institut:[52,142,151],instruct:[0,52,71,85,105,106,109,113,136,182,185],instrument:[107,117,154,155,156,160,169],insuffici:[16,113],insur:117,int16:124,int32:[45,73,124,133,135,137,141,144,145,167],int64:[22,39,59,60,61,62,63,66,69,72,79,88,124,125,126,127,140,145,154,157,159,164,167,171,178,180,191],int64index:[169,178],int8:[58,159],int8dtyp:146,int_:121,int_featur:169,int_memori:[71,85],int_seri:7,int_shap:140,intact:22,intang:117,integ:[7,12,41,42,43,49,55,56,58,60,83,97,122,126,127,132,137,138,139,140,176,183,185,191,205,207],integer_vari:[184,206],integr:[0,61,83,104,106,107,109,117,118,119,127,135,142,148,149,151,186,187],intellectu:[117,188],intellig:[40,43,104,107,119,136,142,148,151,152,174,187,188],intellisens:90,intend:[43,83,109,113,127,142,148,149,176,183],intenion:161,intens:[52,106,139,150,168,194,198],intent:[109,113,117,142,188],intention:160,inter:[61,121,139,149],inter_nearest:72,interact:[5,7,16,29,30,81,104,105,106,109,113,119,122,127,137,142,147,148,149,160,165,178,182,183,185,187,196,199,205,207],interaction_constraint:[68,163,164],interactivesess:73,intercept:[79,80,146,175,178,200],intercept_:[79,178,200],interchang:[7,129],interconnect:143,interdisciplinari:[147,203],interest:[1,5,13,14,16,19,29,33,41,51,52,54,59,60,61,71,79,85,104,107,112,113,114,115,116,118,121,123,125,129,137,139,140,150,153,154,159,160,165,169,171,179,180,182,190,191,192,194],interestingli:[1,115,154],interfac:[16,103,106,115,118,124,185,187],interg:185,interleaf:182,intermedi:[18,30,140,143,167],intermediari:33,intern:[30,52,71,73,85,106,124,126,137,147,149,151,155,156,159,168],internet:[14,32,104,113,114,117,118,119,129,149,187],interpol:[1,31,35,52,72,138,139,140,167,171,194],interpret:[3,7,41,43,49,50,52,59,60,68,69,114,117,121,123,124,125,126,127,137,142,152,154,156,159,160,168,174,178,183,184,185,188,192,193,203,205,206],interquartil:56,interrelationship:109,interrupt:[106,166],intersect:[83,111,123,125,178,184],interspers:124,intersystem:192,intertwin:142,interv:[51,54,58,116,124,135,137,148,151,156,165,196],interview:160,intimid:164,intl:[52,156],intp:124,intra:[139,144,167],intric:83,intricaci:[82,109],intrins:169,intro:121,introduc:[18,29,31,49,52,56,68,80,81,100,109,114,119,125,135,136,137,139,140,143,144,149,150,154,160,166,183,193,194,205],introduct:[7,38,45,63,128,130,137,148,152,153,170,174,176,177,181,184,192,193,194,195,196,198,200,203,205],intuit:[52,57,71,82,85,127,136,139,160,165,174,193,198],inv_i:39,inv_sigmoid:151,inv_yhat:39,invalid:[14,114,146,148,183,185],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:127,invari:[139,150],invent:160,inventori:[107,148],inventoryexampl:123,invers:[40,66,68,124,151,159],inverse_transform:[39,44,201,202],invert:[39,124],invest:[104,149],investig:[23,49,56,107,117,118,150,159,164,178,188],investor:142,invis:[117,188],invit:124,invoc:[149,183],invok:80,involv:[7,37,45,48,52,56,69,80,81,82,83,106,108,109,111,117,119,122,125,127,139,142,164,174,177,179,183,187,189,203],io:[30,31,42,72,73,106,126,127,132,134,135,140,145,146,159,169,178,193,194],ioc:149,ion:137,iot:[119,148,169,188],iou:[83,150],ip:61,ipykernel_15370:190,ipykernel_1816:145,ipykernel_24432:198,ipykernel_2903:127,ipykernel_30912:205,ipykernel_3908:114,ipykernel_6984:64,ipykernel_launch:168,ipynb:[0,73,154,155,169,171,173,178,180,182,191],ipytest:[3,14,22,24,55,79,97,98],ipython:[12,22,25,30,40,57,62,66,87,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],ipywidget:[165,196],iq0d24li:168,iqr:[56,121],ir1:68,irani:52,ireland:12,iri:[7,48,62,88,122,127,157,174],iris_data:157,iris_df:[7,48,122],iris_df____:48,iris_isduplicated_df:48,iris_isnull_df:48,iris_support:62,iris_versicolor_3:62,iris_virginica:62,iris_with_drop_duplicates_on_column_df:48,iris_with_drop_duplicates_on_df:48,iris_with_dropna_1_values_on_rows_df:48,iris_with_dropna_2_values_on_rows_df:48,iris_with_dropna_on_column_df:48,iris_with_dropna_on_row_df:48,iris_with_fillna_back_df:48,iris_with_fillna_back_df____:48,iris_with_fillna_df:48,iris_with_fillna_df____:48,iris_with_fillna_forward_df:48,iris_with_fillna_forward_df____:48,iris_with_missing_value_after_fillna_back_df:48,iris_with_missing_value_after_fillna_df:48,iris_with_missing_value_after_fillna_forward_df:48,iris_with_missing_value_df:48,ironi:142,irrelev:[136,165],irrespect:[106,176],is_avail:[31,33,38],is_bool_index:126,is_cnn:31,is_empti:97,is_good_enough:98,is_hash:127,is_integ:126,is_leaf:57,is_list_like_index:126,is_marri:207,is_monotonic_increas:126,is_par:69,is_prim:97,is_scalar:126,is_uniqu:125,isabel:61,isalignedstruct:124,isalpha:184,ischoolonlin:189,isclos:97,isdecim:184,isdir:[40,132],isfil:[73,132,141,145],ish:[37,68],isinst:[14,33,53,97,98,126,134,139,140,144,183,184,206],island:[63,79],isn:[40,42,47,50,127,157,166,169,183],isna:[14,53,58,108],isnan:[48,124],isnt:56,isnul:[7,22,48,49,50,51,53,54,55,56,59,60,61,63,66,71,79,85,108,122,154,164,180,191],iso2:151,iso3:151,iso:148,isol:[7,80,122,149,152],iss:29,issu:[0,7,28,41,47,48,51,52,56,59,60,68,71,85,109,117,122,126,141,143,147,149,152,155,160,165,167,188],issubclass:183,issubset:14,isupp:184,item:[31,33,38,45,61,69,97,116,117,123,124,127,132,141,142,150,154,173,179,180,182,183,185,191,205,206,207],item_from_zerodim:126,items:[124,191],iter:[31,33,36,38,50,57,63,65,67,71,73,80,81,85,97,98,105,106,125,135,137,138,149,150,151,155,160,162,163,164,167,174,175,179,183,184,185,199,205,206],iter_cont:73,iter_count:138,iter_n:73,iterate_minibatch:87,iterated_numb:[183,205],iteration_count:141,iterrow:146,ith:[57,164],its:[4,6,7,12,18,22,26,28,29,31,33,35,40,41,42,43,45,50,51,52,56,61,63,64,69,71,79,80,81,82,85,90,98,104,106,107,108,111,113,114,116,117,118,119,122,123,124,125,126,129,131,135,136,137,139,140,141,142,143,146,148,149,150,152,154,155,156,157,159,160,161,164,165,166,167,168,169,171,173,174,175,176,179,180,182,183,184,185,186,189,190,191,194,196,198,203,206],itself:[7,14,52,56,87,113,119,123,129,148,149,150,151,159,160,168,169,174,179,183,184,198,203],itslek:56,iucn:114,ium:[184,206],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:61,ix2vocab:141,ix:[132,141],ix_:124,ix_cutoff:145,ix_to_vocab_dict:141,j7z80yoo:61,j:[1,32,33,34,38,39,50,52,58,97,98,113,124,131,137,138,139,150,156,157,159,160,164,167,168,184,185,198,201,202,206,207],jack:[184,206],jade:192,jag:[114,159],jake:[59,60,62,63,191],jakevdp:[165,196],jam:[37,119],jame:[121,205],jane:98,januari:[1,17],japan:[129,192],japanes:[171,172,173],japanese_df:171,japanese_ingredient_df:171,jar:149,jargon:[159,173],jasmin:25,java:149,javascript:[118,123,151,169,185,207],jbase:192,jci5e2ng6r4:158,jcodella:188,jean:[41,45,85,138,142],jeen:142,jehx7a7:61,jellek:103,jello:[184,206],jen:[107,155,171,178,179,186],jenna:112,jerom:[159,160],jerri:[97,98],jesucristo:38,jetbrain:39,jez:149,jgzcjvracubdwr59:61,jha:143,jian:144,jim:[109,119],jitter:160,jlwfklkcd5a5zdyvlszj0s5qme6nbl:61,joaquin:150,job:[3,31,39,61,68,89,104,106,109,118,119,143,149,150,154,159,172,174,184,203,206],joe:185,john:[14,97,98,124,151,183,184,185,205,206],johnson:98,joi:[107,186],join:[12,29,30,31,33,37,38,40,43,47,48,49,50,53,58,68,69,73,122,132,134,136,141,145,146,147,157,167,168,171,178,183,184,198,206],join_ax:191,join_index:125,joint:135,jointli:140,jointplot:[69,154],joke:145,joli:52,jone:160,journal:52,journei:[82,107,119,147],jovian:33,jp:14,jpeg:[31,39,73],jpg:[31,37,39,42,62,73,133,134],js:[29,147,151,169,183,207],json:[6,9,89,105,113,118,119,169],judgment:156,jul:[107,186],juli:[17,119,150],jump:[89,105,109,116,124,167,175,183],jun:[106,207],jungl:154,junho:139,jupit:207,jupyt:[0,12,18,25,59,60,62,63,68,71,85,88,89,105,106,121,122,125,126,127,146,147,159,163,164,165,167,172,178,179,180,182,183,185,191,198,199,200,201,204,205],jupyterlab:[0,165],jupyterlab_myst:[30,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],juri:156,jurong:145,juror:156,just:[0,1,3,7,9,14,18,28,29,31,41,42,45,46,47,48,51,52,57,58,59,61,62,64,68,80,87,98,104,105,106,109,114,115,117,119,121,122,124,125,126,127,129,136,139,140,142,143,144,146,149,151,152,154,157,159,160,163,164,165,166,167,168,171,174,175,178,180,183,184,185,198,199,200,203,206],justifi:[50,109,150,169],jython:[184,206],k0:125,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:61,k1:125,k2:125,k3:125,k4:125,k5:125,k5izpn8apjgrfovv82wjhtletgw:61,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:61,k8:149,k:[3,52,69,88,89,121,124,126,127,132,136,137,139,141,144,145,153,154,156,160,162,165,174,179,196,204],k_d:137,k_i:137,k_list:88,k_p:137,k_size:38,kaggl:[1,4,10,20,25,30,31,32,33,36,39,40,53,58,71,79,85,88,89,106,108,118,124,135,136,139,146,160,168,174,179,194,198,199,200,201,203,204],kaim:[139,144],kam:159,kaneoh:169,kapoor:[37,69],karnika:[37,69],karpathi:[159,165],karr:178,kashnitski:[52,156,157,159,160,198],kb:[29,37,39,42,52,62,69,122,154,164,169,178],kdd:148,kde:[22,56,58,69,114,154,190],kdeplot:[114,190],kdr:39,keep:[7,22,33,37,47,49,63,65,67,69,71,79,85,96,104,106,111,122,123,124,125,126,139,143,146,150,155,159,165,166,167,174,175,178,179,180,183],keep_dim:144,keepdim:[87,191],kei:[3,7,9,39,42,50,72,81,82,98,104,105,106,107,109,117,123,124,125,126,127,129,132,135,137,141,142,144,145,148,149,150,151,172,183,185,186,191,192,199,205,206,207],kelbowvisu:69,kept:[7,122,140,142,152],kera:[29,30,31,32,35,36,37,39,41,42,43,44,45,46,47,49,50,51,64,72,83,131,132,133,135,137,138,139,140,141,143,144,145,150,166,194],kernel1x1:139,kernel3x3:139,kernel:[31,32,33,58,62,63,139,140,146,154,164,173,178,195],kernel_initi:[35,140,143,144],kernel_s:[29,30,31,32,33,34,35,37,38,40,139,140],kernel_valu:139,kernelid:139,keskar:150,key_cal:125,key_dim:[135,139],key_is_scalar:127,key_oth:125,keyerror:[97,126,127,141,185],keys_list:97,keyword:[3,98,105,118,119,123,124,125,129,142,166,168,184,185,192,205,206],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:61,kfold:[58,61,66],kfold_scor:58,kfoldcv:66,khale:152,khg:144,kid:69,kidhom:69,kill:[142,185],killer:48,kilobyt:[55,60,174],kim:[30,139,144],kind:[1,7,15,22,30,31,40,45,47,49,50,51,52,53,54,56,58,61,62,63,64,66,68,69,71,85,95,97,98,106,112,113,114,116,122,124,126,127,131,136,141,146,147,149,154,160,164,165,166,171,172,174,175,179,180,182,183,184,185,190,194,203],kinesi:148,kingdom:12,kingma:31,kingpin:113,kit:[64,103],kitchen:157,kitchenabvgr:56,kitchenqu:56,kiwi:[40,184,206],kl:176,kld:31,km:[148,155],kmean:[69,155,167,168,198],kmeans_:167,kmeans__n_clust:167,kmeans_algorithm_plot:167,kmeans_bad:167,kmeans_good:167,kmeans_iter1:167,kmeans_iter2:167,kmeans_iter3:167,kmeans_k3:167,kmeans_k8:167,kmeans_per_k:167,kmeans_rnd_10_init:167,kmeans_rnd_init1:167,kmeans_rnd_init2:167,kmeans_variability_plot:167,kmeanskmean:167,kneighbor:[167,172,173],kneighborsclassifi:[58,88,89,167,173],kneighborsclassifierkneighborsclassifi:[88,167],knife:199,knight:[183,184,206],knights_nam:183,knights_properti:183,knn:[52,58,131,159,167,173,174],know:[7,17,18,23,27,33,41,45,47,48,51,52,54,55,58,60,61,71,79,85,87,89,104,106,108,109,117,119,121,122,123,127,129,135,136,140,143,146,150,155,160,164,166,168,174,175,183,184,185,200,203,206],knowledg:[7,31,43,52,56,61,74,81,104,106,111,119,121,135,137,142,150,151,152,160,163,168,174,178,187,188],known:[32,52,59,60,61,71,80,82,85,111,117,118,119,121,124,127,136,140,142,143,144,146,147,148,149,150,151,156,160,165,168,174,176,183,184,203],kogwl43x3ogqzqjpuoe8b:61,kool_kheart:39,korbut:150,korean:[171,172,173],korean_df:171,korean_ingredient_df:171,kosaciec_szczecinkowaty_iris_setosa:62,kotthoff:150,kpash:61,kqxjp1r14yggzhpqx_gpx6580000gn:190,kriz:[132,139],krizhevski:33,ks:156,ksv:66,kubeflow:149,kubernet:149,kullback:135,kumar:143,kuqvjmwrkag9whlqdvrh:61,kurtosi:61,kw:73,kwangnam:135,kwarg:[35,45,114,125,127,140,144,183,190,205],l1:[65,67,83,99,131,150,176],l1regular:[65,67],l2:[65,67,83,99,150,165,176],l2_leaf_reg:56,l2_loss:134,l2regular:[65,67],l4lsxqfk:61,l9dkgf1pchhmpqsobc9eb:61,l:[52,57,83,87,121,125,131,134,137,144,145,159,160,161,164,176,179,184,191,192],l_1:[68,160],l_2:[68,160],l_:[83,160],l_left:52,l_p:121,l_q:160,l_right:52,la:[142,145],lab:[0,40,41,45,60,62,63,71,85,107,186],label:[1,7,15,22,29,30,31,32,33,34,37,38,39,40,41,42,43,44,47,48,49,50,51,52,54,55,58,59,60,61,63,66,68,69,71,79,80,81,83,85,87,89,105,106,113,114,115,116,123,125,132,137,139,140,142,143,145,150,151,154,155,156,159,164,165,167,168,169,171,172,173,178,179,185,190,191,193,194,198,200,201,202],label_column_nam:[9,105],label_enc:[51,54,59],label_encod:[22,54,58],label_logit:144,label_mod:[37,135],labelbottom:167,labelencod:[39,51,54,58,59,66,69,88,155,169,179],labelleft:167,labels:[64,146,167],labels_:[155,167,168],labels_df:171,labels_fil:132,labelweight:[64,146],labl:3,labor:150,labori:[7,48,122],lachin:106,lack:[13,26,28,137,150,151,152,160,183],lackland:169,laclo:113,ladi:[113,154],ladybug:167,lag:39,lag_1:146,lai:[109,140],laid:109,lake:[104,119,148,188],laken:50,lamb:183,lambda:[1,14,22,31,32,35,37,39,46,49,56,58,68,125,126,127,141,151,164,178,184,197,205,206],lambda_i:168,lambda_l1:56,lambda_l2:56,lambdamart:160,lamda:[65,67],land:[56,148],landcontour:68,landmark:117,landscap:152,lang:[15,39,125,126,127],langua:142,languag:[1,22,43,45,47,49,50,61,119,123,124,127,129,136,145,147,149,150,174,183,184,185,191,192,205,206,207],laplacian:160,lar:[145,150],larg:[1,7,11,30,31,40,42,47,48,51,52,53,56,61,62,63,64,65,67,68,76,83,104,106,107,108,109,111,117,119,122,123,124,125,127,129,131,136,139,141,142,146,148,149,150,152,154,156,157,159,160,163,164,165,166,167,168,173,174,178,184,187,188,191,194,196,198,199,206],larger:[14,29,50,61,80,83,97,106,117,124,131,135,150,160,163,179,184,191,193],largest:[50,61,104,124,139,168],larxel:106,laser:109,laskoski:153,lasso:[68,83,160,166,178],lasso_pr:68,lasso_sklearn:[65,67],lassocv:68,lassolarscv:68,lassoregress:[65,67],last:[7,8,14,29,32,39,40,41,43,45,46,47,49,51,54,57,62,64,69,71,85,87,88,98,109,117,119,122,124,125,126,127,132,136,140,145,146,148,149,150,155,160,166,171,172,174,180,183,184,188,191,203,204,205,206],last_index:184,last_nam:[98,205,207],last_new_job:58,last_stat:141,last_tl:36,lastli:[32,37,47,56,69,109],lastnam:185,lastnewjob:58,lat:[14,151,199],late:113,latenc:[139,146,149,152],latent:[29,31,37,131,135,150],latent_dim:[29,30,37],latent_vec:31,later:[7,18,38,41,42,43,45,49,52,55,56,61,69,87,88,109,111,117,119,121,122,127,129,136,137,143,146,150,163,164,167,174,182,183,184,185,200,203,207],latest:[106,132,136,149,151],latest_iter:199,latin1:132,latin:50,latitud:[63,79,169],latter:[41,117,119,124,135,136,139,150,151,156,157,169,172,178,179],launch:[16,106,123,149,152,195],lavend:146,lavenderblush:146,law:[22,47,49,50,107,111,117,186],layer:[29,30,31,33,34,35,36,37,39,40,41,42,44,45,46,47,50,64,72,73,113,125,131,132,133,134,135,137,138,139,140,141,143,144,145,150,164,166,194],layer_1:131,layer_2:131,layer_activ:[87,133],layer_i:87,layer_input:87,layer_nam:140,layer_num:73,layer_regist:144,layernorm1:139,layernorm2:139,layernorm:139,layout:[124,137],lbfg:[167,172],lc:[66,114,190],ldot:[160,161],le:[41,66,69,88,113,121,155,193],lea:137,lead:[50,52,61,66,80,109,117,119,121,124,125,126,137,146,148,149,152,155,156,157,163,166,183,188,191],lead_tim:146,leader:152,leaderboard:68,leaf:[52,56,159,164],leagu:121,leak:[59,117,138,168],leakag:[56,68,174],leaki:[138,143],leaky_re_lu:37,leaky_re_lu_1:37,leaky_re_lu_2:37,leaky_re_lu_3:37,leaky_re_lu_4:37,leaky_relu:138,leakyrelu:[31,37,38,136,138],lean:150,lear:163,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,36,38,39,40,41,42,44,46,48,49,50,51,53,54,55,56,57,59,60,62,63,64,68,71,74,76,80,81,82,83,85,87,95,97,98,103,104,105,107,108,109,110,111,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,130,132,133,134,135,138,139,140,141,142,143,144,145,148,149,151,154,155,156,157,159,160,161,162,163,164,165,170,173,177,179,183,184,185,188,190,191,192,193,194,195,196,197,200,201,202,204,205,207],learn_curv:66,learnabl:[32,87,139,150],learned_paramet:167,learner:[56,58,83,161,162,164],learning_curv:66,learning_r:[35,36,50,51,56,58,65,67,68,80,81,86,87,131,132,134,135,137,138,141,145,164,175,200,201],learningrateschedul:[32,135],learnpython:184,learnt:[18,56,59,66,81,140,175],least:[4,8,11,13,16,28,40,52,53,61,114,117,119,121,124,126,146,150,157,160,165,166,167,178,179,183,184,190],leav:[51,52,54,64,68,71,80,85,106,109,115,119,127,142,156,157,159,164,169,180,185,190,207],lectur:[88,121,148,160],led:60,lee:[7,112,174],leed:52,leff:148,left:[1,7,31,32,33,41,45,52,56,57,58,80,82,89,97,106,108,111,114,123,124,125,126,127,131,132,137,140,143,145,156,157,159,160,161,165,167,174,175,179,183,184,189,196,199],left_column:199,left_i:157,left_idx:57,left_index:[39,125],left_on:125,left_output:137,left_shifted_imag:89,leftarrow:160,legaci:106,legal:[117,183],legend:[22,29,31,32,33,34,36,38,39,44,47,49,50,52,53,69,80,81,87,113,114,116,132,140,145,146,156,157,159,167,168,190,198,201,202],legibl:156,legisl:113,legitim:61,leibler:135,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:61,lemmat:142,len:[1,14,18,22,31,33,36,38,39,40,41,42,43,44,46,47,49,50,51,53,54,55,56,57,58,59,60,61,62,63,66,69,71,73,79,85,87,97,98,125,126,127,132,133,134,135,137,139,140,141,144,145,146,156,167,173,175,183,184,191,200,201,202,204,205,206],len_axi:126,lend:[152,179],lenet:139,length:[3,8,14,31,43,45,48,52,62,66,88,98,113,114,119,121,122,124,126,127,136,141,145,146,154,155,156,157,168,175,181,183,184,190,198,206],lenovo:64,leo:[156,157,159],lepiota:115,leq:[52,83,124,160,168],leqq:135,less:[1,6,7,8,18,26,29,31,33,37,40,41,43,51,52,54,56,58,61,68,82,97,104,106,109,114,116,117,123,124,136,141,148,149,150,154,156,159,160,163,164,166,167,168,174,180,183,184,188,191,205,206],less_equ:124,lesson:[56,64,77,141,146,168,178,179,180],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,33,34,37,41,42,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,64,68,69,71,79,81,82,85,87,88,91,101,102,104,105,107,108,109,111,113,114,115,116,117,119,121,122,123,124,125,126,127,129,131,135,136,139,140,141,142,143,145,146,147,150,151,152,153,154,155,156,157,159,160,161,164,166,167,168,169,170,171,172,173,174,178,179,180,181,182,183,185,186,188,189,191,192,198,199,200,203,204,206],lett:97,letter:[7,98,105,113,117,119,122,125,129,169,183,184,206],level:[7,43,45,47,49,56,59,60,61,69,106,117,121,124,125,135,136,139,142,143,149,150,152,154,159,160,164,165,174,183,185,191,196,200,203,204,207],leverag:[0,43,51,56,57,104,142,147,148,149,150,152,169,171,172,173,180],lexsort:124,lfw:31,lfw_attribut:31,lg:179,lgbm:56,lgbmregressor:56,lh:57,lhs_cnt:57,lhs_std:57,lhs_sum2:57,lhs_sum:57,li:[33,47,52,113,168,205],liabil:[97,98,183,184,185],liabl:[97,98,183,184,185],liaison:113,lib:[30,36,37,59,88,114,125,126,127,146,168,172,179,183,191,198,205],liblinear:172,librari:[0,1,3,7,8,18,33,36,37,40,42,43,47,48,49,50,58,77,79,81,82,91,106,108,113,114,115,116,122,123,124,142,143,147,150,152,154,156,157,159,160,169,172,173,178,179,180,181,185,190,191,194,199],licenc:[59,165,196],licens:[22,43,47,49,50,88,89,97,98,106,150,183,184,185,198,199,200,201,204],lidiya:207,lie:[52,113,121,168],lieu:160,life:[11,18,34,52,61,62,106,107,111,117,119,121,124,154,167,174,183,186,203],lifecycl:[17,23,105,107,108,149,151,152,195],lifetim:160,lift:111,light:[40,51,69,119,139,142,169,199,207],lightbgm:56,lightcor:29,lighter:[107,186],lightgbm:[51,161],lightgbm_search:56,lightgrai:1,lightn:164,lightweight:149,like:[7,11,14,17,18,23,28,30,31,33,34,35,37,41,43,45,48,50,51,52,54,55,56,57,58,59,60,61,62,63,64,68,71,79,80,81,85,87,104,105,107,108,111,113,114,117,118,119,121,122,123,124,125,126,129,132,134,136,139,141,142,143,145,146,147,148,149,150,151,154,155,156,157,159,160,163,164,166,167,168,169,171,172,174,178,179,180,182,183,184,185,186,189,191,192,194,199,200,203,204,205,206,207],likehood:160,likelihood:[109,135,165,168,171,176,179],likewis:[34,43,124],lili:24,limit:[7,14,16,22,28,31,47,49,50,52,58,61,71,79,81,82,85,97,98,106,111,117,123,124,127,137,141,143,144,148,150,151,156,157,160,164,174,183,184,185,206],limits_:[52,167],limits_c:168,limits_k:[52,168],limousin:[17,23],lin_pr:62,lin_reg:[178,200],lin_reg_2:200,lin_svc:62,lin_svr:63,linalg:[141,167],line2d:[50,72,168,178],line:[1,14,18,31,35,43,47,50,51,52,54,61,62,63,72,81,82,87,106,113,114,117,124,125,126,127,133,137,138,146,154,160,165,167,168,169,171,173,179,180,182,183,184,185,191,193,200,204,206,207],line_chart:199,line_kw:56,lineag:[117,151,188],linear:[18,31,33,36,42,43,44,47,51,52,53,54,56,57,58,62,63,65,67,71,74,80,83,85,86,87,89,124,131,132,136,137,139,142,143,150,155,159,160,164,167,168,171,172,174,176,180,181,182,183,184,195,198,203,204],linear_beta_schedul:135,linear_model:[51,58,65,66,67,68,71,79,85,86,142,146,167,169,172,173,175,178,179,182,200,201,202],linear_reg:[65,67],linear_reward_00011:137,linear_reward_00012:137,linear_reward_00013:137,linear_reward_00014:137,linear_reward_00015:137,linear_reward_00016:137,linear_reward_00017:137,linear_reward_00018:137,linear_reward_00019:137,linear_reward_00020:137,linear_reward_00021:137,linear_reward_00022:137,linear_reward_00023:137,linear_reward_00024:137,linear_reward_:137,linear_scor:61,linear_svc1000:61,linear_svc100:61,linear_svc:61,linearli:[61,88,124,135,150,165],linearregress:[79,146,175,178,182,200],linearregressionlinearregress:[178,182],linearregressionwithsgd:175,linearsvc:[61,62],linearsvclinearsvc:62,linearsvr:63,linearsvrlinearsvr:63,lineplot2:[116,190],lineplot:[51,54,58,66,116,155,179,190],liner:178,linestyl:[14,18,32,82,165,167,196],linewidth:[39,52,56,61,82,114,146,165,167,182,190,196],linguist:179,link:[1,28,29,31,63,106,109,111,113,119,126,127,137,140,142,150,151,154,160,161,164,169,182,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],linkag:[107,167,168],linnerud:93,linspac:[35,52,80,87,124,135,159,165,167,196,200],linux:[123,139],lisa:191,lisens:[65,67,69],lisheng:170,list1:97,list2:97,list3:97,list4:97,list5:97,list:[1,3,7,12,14,18,28,31,33,36,39,40,41,43,45,46,47,51,52,53,54,55,56,59,60,61,63,65,66,67,69,73,76,79,87,88,95,105,114,115,116,119,121,122,123,124,125,126,129,131,137,139,140,144,145,149,150,152,157,159,161,168,169,173,180,190,191,192],list_i:34,list_of_char:[184,206],list_of_coordin:124,list_of_numb:[184,206],listcomp:[125,184,206],listdir:[33,38,39,40],listedcolormap:[69,201,202],listen:[0,150,184],listlik:127,listnod:99,lite:169,liter:[142,183,205],literari:107,litig:142,litt:154,littl:[1,7,14,30,41,43,49,65,67,71,73,76,79,85,111,113,116,122,127,139,155,157,160,161,167,171,173,178,180,182,183,200],live:[50,52,69,104,106,107,117,118,142,145,146,147,154,155,169,174,195],living_with:69,ljust:184,lkei:125,ll:[16,22,28,29,33,42,43,47,49,50,52,64,66,68,76,82,87,104,107,108,110,111,113,117,118,123,124,125,126,127,129,130,135,140,142,143,146,148,150,155,156,157,160,161,163,166,168,169,171,172,180,181,182,183,184,191,192,206],llabel:125,llc:[47,49,50,109],lmdb:192,lmgr:125,ln:160,lo:[41,73,184],load:[2,7,9,15,17,18,23,33,35,41,47,50,53,68,81,87,89,91,114,122,132,136,138,140,141,143,146,148,149,154,159,163,165,167,168,169,173,178,179,182,183,198,199,204,205],load_batch_from_fil:132,load_breast_canc:41,load_data:[29,30,41,43,72,131,132,138,194,204],load_dataset:87,load_diabet:182,load_digit:[52,167,168],load_ext:[12,25,41],load_imag:140,load_images_from_fold:40,load_img:[40,72],load_iri:[7,48,122,168,198],load_model:[29,30,39,40,41,43,44,46,72,194],load_next_batch:167,loader:33,loadmat:134,loadtestsfromtestcas:49,loan:[52,203],lobe:169,loc:[1,14,18,22,31,32,39,42,49,50,52,53,56,58,64,68,87,114,121,126,127,132,145,146,155,156,159,168,178,180,190,191,194,198],local:[14,28,30,45,59,64,105,106,111,114,123,125,134,139,140,144,145,165,169,172,174,182,183,191,196,198,205],local_fil:169,localto:140,locat:[1,9,30,42,68,79,107,111,117,118,124,126,127,133,137,140,142,144,150,157,165,168,183,186,192],log1p:68,log2:[52,124,159],log:[0,9,16,35,38,39,41,42,56,68,83,87,89,105,106,119,124,135,140,148,149,160,161,188,201],log_2:52,log_classifi:51,log_dir:41,log_model:[71,85],log_reg:[51,66,167],log_reg_scor:167,log_scor:[71,85],log_shap:144,log_templ:31,log_transform:68,logaddexp:[124,161],loganberri:[184,206],logarithm:[124,150,152,204],logdir:41,logging_level:56,logic:[3,34,52,73,87,124,125,148,174,179,182,184,206],logical_and:124,logical_not:124,logical_or:124,logical_xor:124,logist:[51,58,61,80,94,107,141,160,164,167,169,171,174,176,178,181,182,195,204],logisticregress:[51,58,66,71,85,167,169,172,173,175,179,201,202],logisticregressionlogisticregress:167,logisticregressor:66,logit:[38,43,87,139,141,144,145,150],logit_output:141,logitech:40,logits_concat:144,logits_fak:138,logits_for_answ:87,logits_out:145,logits_r:138,logvar:31,lon:199,london:12,long_:151,longer:[7,32,37,41,47,50,51,52,54,56,64,79,80,106,111,118,127,150,163,167,168,175,183,198,205],longest:[71,85,109],longitud:[63,79,169],loo:179,looa:178,loob:178,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,37,43,45,48,49,50,51,52,54,56,57,60,61,62,64,66,68,69,71,76,79,81,82,85,87,88,91,93,104,105,106,107,109,111,113,114,115,116,117,119,121,122,123,124,126,129,134,139,141,142,145,150,153,154,155,156,159,160,164,166,167,168,169,170,171,172,175,179,180,182,183,184,186,190,191,192,194,198,200,206],lookback:[39,46],lookout:125,lookup:[121,123,124],loop:[33,36,58,98,113,124,127,137,143,152,155,167,174,183,184,185,191,205,206],looper:[107,155,171,178,179,186],loos:[71,85,154],lopinavir:1,lose:[68,168],loss:[13,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,50,56,57,58,64,69,72,121,127,131,132,133,134,135,136,138,140,141,143,145,159,161,162,164,166,172,177,194,196,197,200],loss_acc_metrics_df:41,loss_d:38,loss_fn:[37,132],loss_fun:141,loss_funct:[56,81],loss_g:38,loss_grad:87,loss_histori:161,loss_vae_fn:31,lossi:31,lossless:31,lost:31,lot:[3,7,14,48,50,51,52,54,58,61,68,90,104,105,106,118,119,122,139,141,146,154,157,159,160,161,163,164,166,169,171,173,174,183,203],lotarea:[56,68],lotfrontag:[56,68],lotfrontage_mean:56,lotshap:68,loud:[153,154,155],loudli:[168,198],loukid:117,love:[37,52,98,142,171,183,207],low:[18,30,39,42,43,45,46,47,50,51,58,59,61,63,65,66,67,69,71,79,85,97,103,105,107,109,121,124,139,150,163,165,166,170,178,179,180,181,184,186,194],low_valu:151,lower:[1,3,7,29,49,50,51,56,58,61,66,79,82,98,106,117,121,124,126,127,131,132,141,145,150,156,160,167,178,179,184,188],lower_cas:102,lowercas:[98,184],lowest:[7,167],lowqualfinsf:56,loyal:156,loyal_cal:156,loyal_mean_scor:156,loyalti:113,lpsa:175,lr:[31,33,34,38,50,65,66,67,80,86,165,172,175,194,196,200,201],lr_d:38,lr_g:38,lrschedul:135,ls:149,lst2:40,lst:[40,97,98,184,185],lstm:[44,136,141],lstm_builder:46,lstm_model:[39,44,141],lstm_output:141,lsuffix:125,lt:[79,169],ltd:58,ltorgo:60,ltsm:136,ltv:160,lu:[139,140],luci:[24,152],lucidchart:109,luck:[49,113],lucki:[71,85],luckili:[87,141],lug_boot:59,luggag:59,lui:60,lunch:174,lund:205,lvert:[131,166,176,197],lvl:68,lw:[52,159,165,168,196,198],lwq:56,ly:87,m1:[18,182],m2:18,m:[1,3,12,18,24,25,30,35,36,38,61,65,67,68,103,104,105,106,107,108,109,110,111,114,115,116,117,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,203,204,205],m_:18,m_dep:[71,85],mac:[106,139,182],macheads101:165,machin:[0,3,7,12,18,25,31,33,37,40,41,42,45,48,50,51,52,54,55,56,58,59,60,71,80,81,82,83,85,95,103,104,105,107,111,113,117,119,121,123,125,126,127,131,136,137,142,143,145,146,147,148,149,150,151,154,155,156,159,160,161,162,163,164,166,170,171,172,173,177,178,179,180,183,185,188,191,193,194,195,197,200,205,207],machine_cpu:60,machine_cup:55,machine_data:[55,60],machine_label:60,machine_learning_complet:85,maciej:35,maco:[123,185],macro:[36,59,61,62,72,169,172,173,179],made:[16,24,29,40,45,51,52,64,71,80,85,87,105,106,111,123,124,136,139,143,146,148,149,154,156,160,162,174,182,183,185,192,205],madip:[154,178,179,180],mae:[29,39,56,64,81,83,159,176],mae_cb:56,mae_lgbm:56,mae_xgb:56,magic:[160,174,184],magic_dict:97,magnitud:[68,82,88,121,178],mah:[71,85],mai:[1,8,12,14,22,25,28,30,31,32,34,41,47,48,49,50,51,52,54,58,59,60,61,62,64,65,66,67,71,79,80,81,83,85,87,106,107,108,109,111,114,117,118,119,121,122,123,124,125,126,127,129,132,137,139,140,142,145,146,148,149,150,151,152,154,156,157,159,160,163,164,165,166,167,168,169,174,176,178,179,183,184,185,186,189,196,205,206],mail:[52,119,156],main:[3,12,18,25,31,38,45,51,52,55,56,60,61,68,71,80,85,87,104,106,111,113,119,121,124,131,132,136,140,142,143,148,152,159,160,162,165,166,168,174,178,179,183,188,189,203],mainli:[56,131,139,145,165],maint:59,maintain:[31,59,80,104,118,136,139,147,149,151,159,174],mainten:[59,104,111,152,174,183,189,205],major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,51,52,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,83,85,87,88,89,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,167,169,171,172,173,174,178,179,180,182,183,184,185,193,198,199,200,201,204],major_axi:127,major_disciplin:58,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,36,39,40,42,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,68,69,71,79,81,82,85,87,89,97,104,106,107,108,109,111,114,116,117,118,119,121,122,124,125,127,129,133,134,135,136,137,138,139,141,142,143,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,165,166,167,169,171,174,175,176,177,178,182,183,184,185,186,188,191,192,199,200,203,206,207],make_blob:[165,167,196],make_circl:[159,165,196,201],make_classif:[201,202],make_dataclass:127,make_df:191,make_grid:33,make_increment_funct:183,make_lag:146,make_me_smil:31,make_moon:[167,201],make_multistep_target:146,make_pipelin:178,make_regress:[65,67],make_test_funct:30,make_train_funct:30,makedir:[29,30,31,33,37,38,40,43,68,72,81,132,134,141,145,167,183],maketran:98,makeup:113,male:[22,58,174],malici:117,malign:41,man:[106,169],manag:[0,39,104,105,106,107,108,109,118,121,126,130,142,148,149,151,159,181,185,186,192],manageri:109,mandat:117,mandi:154,maneuv:113,manfr:[184,206],mango:[40,207],mani:[1,3,7,18,29,36,37,40,41,45,46,48,49,51,52,53,54,55,56,58,59,60,61,62,63,68,69,71,72,79,80,85,88,93,104,105,106,107,108,109,111,113,115,116,117,119,121,124,125,126,127,130,132,136,137,139,140,141,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,163,164,165,166,167,169,171,172,174,175,180,182,183,184,185,187,188,191,194,203,205,206,207],manifold:[30,168,198],manipul:[42,89,113,117,119,127,129,130,137,174,184,191,199,203,206],manishmsft:192,manner:[7,30,52,61,107,117,119,122,127,142,149,151,178,184,188,206],manual:[1,142,150,151,152,166,167,168,198],manual_se:33,manufactur:[149,203],map:[1,5,7,22,30,31,33,35,37,40,43,45,46,50,53,58,61,71,72,73,85,97,107,114,119,124,125,131,135,136,137,139,140,141,143,151,154,157,165,171,174,179,183,184,187,203,204,205,206],map_data:199,map_funct:97,mapper:[30,125],mapper_fruit_nam:40,mapper_noisi:30,mapper_org:30,mappingproxi:124,mar:[150,183,207],marcela:153,march:[187,192],marco:169,margarin:113,margin:[62,63,87,125,126,127,152,169],mari:[183,205],marin:169,marit:69,marital_statu:[53,69],mark:[1,66,88,97,127,165,174,203],markdown:[40,182],marker:[69,88,127,167,168,179,198],marker_s:30,markeredgecolor:146,markeredgewidth:[165,196],markerfacecolor:146,markers:[165,167,196],market:[51,54,69,104,117,119,137,142,143,154,174,187],marketing_campaign:69,marketplac:117,marklog:192,maroon:[69,115,190],marquis:113,marri:69,mart:160,martin:[22,150,151],mask:[7,48,56,66,122,124,126,140,191],mask_logit:144,maskrcnn_upxconv_head:144,mason:117,mass:[24,109,114,160,182],massiv:[43,107,186],master:[7,14,58,69,71,73,82,85,154,167],masteri:135,masvnrarea:56,masvnrtyp:56,mat:[134,142],mat_mean:134,mat_tensor:45,match:[0,7,34,43,47,50,65,67,76,124,125,127,129,135,139,146,154,165,168,174,183,198],matconvnet:134,materi:[52,107,121,122,168],math:[18,29,31,35,39,45,48,62,63,83,97,121,133,135,140,176,178,179,180,185,205],mathbb:[121,137,160],mathbf:[157,167,168,200],mathcal:[137,160],mathemat:[56,58,61,80,81,82,97,98,118,119,121,124,132,135,136,143,151,154,160,166,168,174,176,178,184,185,191,200,206,207],mathematician:121,mathfrak:157,matlab_2016:39,matmul:[124,131,134,137,141,145],matmul_1:141,mato:50,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,72,77,79,80,81,82,85,87,88,89,103,104,105,106,107,108,109,110,111,113,114,115,116,121,122,123,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,182,186,190,191,194,196,198,199,200,201,202,204,205],matplotlibdeprecationwarn:[64,168,198],matric:[47,52,68,124,145,150,165,168,179],matrix:[1,8,18,24,33,34,40,41,45,51,52,54,59,62,66,69,71,79,85,87,88,121,124,132,134,143,154,165,168,174,182,184,198,206],matt:142,matter:[61,87,109,117,148,166,174,179,183,185,197],max:[3,7,18,22,32,33,39,40,43,49,50,52,59,60,61,62,63,66,69,72,73,79,83,88,108,114,125,132,138,143,144,145,154,159,161,164,167,168,169,184,190,201,202],max_:168,max_ag:22,max_bin:[56,68,163,164],max_cat_threshold:68,max_cat_to_onehot:[68,163,164],max_concurrent_iter:[9,105],max_delta_step:[68,163,164],max_depth:[51,52,54,56,59,60,68,157,159,161,163,164,168,198],max_depth_grid:159,max_dim:133,max_document_length:145,max_featur:[51,52,54,59,60,157,159],max_features_grid:159,max_img_height:73,max_img_width:73,max_it:[58,66,80,167,169],max_ix:145,max_leaf_nod:[54,55,58,59,60,159],max_leav:[68,163,164],max_len:[145,184],max_nod:[9,105],max_pool:134,max_pool_size1:132,max_pool_size2:132,max_pooling2d:139,max_pooling2d_20:42,max_pooling2d_21:42,max_pooling2d_22:42,max_pooling2d_23:42,max_pooling2d_24:42,max_pooling2d_25:42,max_pooling2d_26:42,max_pooling2d_27:42,max_pooling2d_28:42,max_pooling2d_29:42,max_row:[47,49,50],max_sampl:51,max_sequence_length:145,max_signal_r:35,max_val:29,max_valu:73,maxbodymass:[114,190],maxdepth:159,maxim:[38,52,61,83,133,137,168,173,176,183,198],maximis:165,maximum:[3,7,22,49,50,51,52,55,58,59,60,80,87,105,106,114,131,138,139,159,165,168,176,179],maxiter:137,maxlen:[36,145],maxlength:[114,190],maxpool2d:[31,32,33,34,42,135],maxpooli:42,maxpooling2d:[40,132,135,140],maxstep:137,maxval:[35,135,138],maxwingspan:[114,190],mayb:[7,64,109,116,126,146,155,161,173,178],maybe_cal:126,maybe_convert_indic:126,maze:137,maze_collect:137,maze_typ:137,mb:[37,39,42,61,79,171],mcculloch:145,mckinnei:[124,125],md5_checksum:59,md:[113,121,182],mdkjmpmcwjy:175,mdp:137,me:[1,37,41,111,139,161,178,179,185,189,199],meadow:[115,190],mean:[3,7,14,18,22,29,31,32,33,34,35,37,38,39,41,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,73,79,80,81,83,85,87,88,89,97,104,105,106,107,108,109,113,116,117,118,119,122,124,125,129,131,134,137,141,142,144,145,146,150,152,153,154,156,157,159,160,161,163,164,165,166,173,174,175,176,178,179,180,183,184,185,186,191,196,200,201,203,204,206],mean_1:145,mean_absolute_error:[35,56,81,163,204],mean_actu:82,mean_confidence_interv:18,mean_cross_v:56,mean_imput:79,mean_squar:131,mean_squared_error:[39,44,55,56,60,63,79,81,146,178,204],meanarr:50,meaning:[3,16,30,43,114,117,139,142,148,174,189],meansquarederror:[29,30],meant:[124,149],meantim:174,measur:[7,14,24,43,51,52,54,61,62,68,71,79,81,82,83,85,106,107,111,116,117,118,119,121,135,137,146,150,151,152,154,155,157,159,162,167,168,174,178,180,183,188,189,198,200,203],meat:69,mechan:[47,80,124,136,139,142,148,149,183,205],med:[1,59,179],media:[5,51,52,54,107,109,121,142,149,151,152,186],median:[7,18,22,56,59,79,127,160,174],median_house_valu:[63,79],median_incom:[63,79],medic:[1,8,41,104,106,107,117,140,154,182,188],medicin:[8,119,174],medium:[1,61,71,79,85,109,168,192],meet:[109,113,117,124,180,188],mega:[71,85],megapixel:[40,71,85],megatrend:117,mehdi:138,mel:150,melt:66,member:[5,43,52,69,107,109,111,117,154,156,184,186,189,206],membership:[184,185,206],memcach:192,memcachedb:192,meme:160,memmap:167,memo:109,memor:[43,71,85],memori:[33,36,39,51,55,56,60,61,62,69,71,79,85,122,124,132,136,137,140,148,149,150,154,164,165,167,168,169,171,178,184,191],memory_gb:[9,105],memory_unit:137,memorycachestoragemanag:73,memoryview:[184,206],men:[58,93,117,188],mention:[0,1,2,8,19,40,41,45,58,61,111,119,121,123,124,127,136,140,142,146,148,152,157,160,166,174,175,183,191],menu:[41,105,106,199],merchant:[97,98,183,184,185],mercuri:207,mere:124,merg:[14,31,39,69,97,122,160,168,183,184,185],merge_dict:98,merged_dict:98,merged_list:99,mergetwolist:99,merteuil:113,meshgrid:[52,80,159,165,167,196,201,202],mess:[71,85,180],messag:[52,61,97,106,109,118,126,145,156,174,183,184,189],messi:[73,148,174],met:[31,41,124],meta:[15,56,150,156,169],metadata:[1,7,48,118,122,124,127,129,148,183,205],metaflow:149,metal:149,meteorologist:146,meter:[107,186],metho:[65,66,67],method:[1,3,7,14,18,24,30,31,33,37,42,43,48,49,52,56,58,59,60,69,71,80,81,85,96,97,105,106,107,111,113,114,115,116,119,122,124,125,126,131,135,139,140,143,144,146,147,148,149,150,151,152,154,156,157,159,160,162,164,168,169,171,172,173,174,178,179,182,188,189,191,195,198,205],method_nam:183,methodnam:183,methodolog:[135,150,160],methylprednisolon:1,metric:[29,32,34,35,37,39,40,41,42,43,46,49,51,52,53,54,55,56,57,58,59,60,62,63,65,67,72,79,80,81,88,89,105,106,109,132,140,142,143,146,148,151,155,159,161,163,164,167,169,172,173,175,178,179,198,201,202],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:61,mi:[47,168],michalbialecki:192,michigan:117,mickei:97,micro:[148,163,169],microcomput:149,microphon:150,microprocessor:[71,85],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,39,43,48,51,56,70,71,74,76,77,90,91,93,94,95,96,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,129,148,152,154,155,169,171,172,173,178,179,180,182,186,188,192],mid:[97,151,168],middl:[93,97,115,140,155,165],middlenam:185,midnight:126,midpoint:[151,179],might:[1,7,11,14,18,26,33,34,40,45,49,51,56,57,61,64,66,68,71,80,82,85,104,106,113,116,118,119,121,122,124,129,137,142,143,144,146,148,150,154,156,159,166,167,172,174,175,178,179,182,183,184,185,192,194,200,203],migrat:148,mike:24,milk:164,miller:121,millimet:[129,192],million:[32,33,107,139,174,186,203],millionair:185,mimic:[32,43,119,124,143,183,203],min:[1,3,7,18,31,39,49,50,52,60,61,63,66,68,69,72,73,79,88,108,114,125,127,139,144,145,154,159,160,164,167,168,169,190,201,202],min_:[59,161,168,200],min_child_sampl:56,min_child_weight:[56,68,163,164],min_freq:141,min_impurity_decreas:[58,59,60],min_impurity_split:[58,159],min_ix:145,min_leaf:57,min_nod:[9,105],min_sampl:167,min_samples_leaf:[52,54,59,60,159],min_samples_leaf_grid:159,min_samples_split:[54,55,59,60,159],min_signal_r:35,min_val:29,min_weight_fraction_leaf:[58,59,60,159],min_word_freq:141,min_word_frequ:145,minbodymass:[114,190],mind:[7,37,47,107,111,122,125,139,150,152,155,179,189],mine:[3,50,52,111,130,165,185],minecraft:160,ming:205,mini:[150,179],miniatur:178,minibatch:[36,38,87,138,168],minibatch_kmean:167,minibatch_kmeans_vs_kmean:167,minibatchkmean:167,minibatchkmeansminibatchkmean:167,miniconda:[125,126,127,172,179,183],minim:[29,32,43,51,52,54,55,56,57,69,80,81,83,94,117,119,131,134,142,145,146,150,154,155,156,160,161,164,166,167,172,174,175,176,177,178,188,200,204],minima:[57,150,175],minimis:[165,196],minimum:[3,7,35,50,52,55,58,60,66,80,106,114,124,159,161,164,165,166,175,178,184,206],minio_url:59,minlength:[114,190],minmaxscal:[39,41,44,49,62,64,71,79,85],minnesota:[4,114,190],minor:[50,61,68,83,171],minor_axi:127,minu:[160,161],minut:[9,49,51,52,54,105,106,109,118,119,124,132,149,151,154,155,156,167,169,171,173,182],minval:[35,135,138],minwingspan:[114,190],mirza:138,misc:[134,205],miscfeatur:[56,68],misclassfi:56,misclassif:[52,66,88],misclassifi:[56,66,148,164],miscval:[56,68],misgend:107,mislead:[59,117,148,174,188,203],misleading_label:37,mismatch:[60,124],misrepresent:[117,188],miss:[14,16,18,19,22,24,25,31,51,52,54,55,58,60,63,68,69,82,108,119,124,125,126,127,143,146,148,150,154,159,161,163,174,178,183,203],miss_rinola:39,missclass:52,missing_count:56,mission:117,mistak:[52,56,64,68,109,137,148,160,164,185],mistaken:183,misus:149,mit:[43,58,97,98,106,107,117,165,183,184,185,186,188,196],mitchel:[52,174,203],mitig:[28,107,117,143,166,186],mitpress:98,mix:[35,126,127,160,178,180,184,206],mixed3:133,mixed5:133,mixed_list:[184,206],mixtur:[154,160],mkdir:[38,73,137],mkframe:14,mkl:168,ml2:167,ml:[50,51,54,62,68,70,71,74,76,77,79,90,91,93,94,95,96,103,104,121,136,143,145,146,147,149,150,152,168,169,170,171,172,173,174,175,176,178,179,180,181,182,187,203],ml_04:175,mlaa:149,mlb:18,mleap:149,mlearn:60,mlflow:[106,149],mlop:[147,151],mlp:[30,45,144,204],mlpclassifi:172,mlsummari:60,mltest:49,mlu:159,mm:180,mmax:[55,60],mmin:[55,60],mn:56,mncb:61,mnist:[29,30,35,41,72,87,131,138,167,168,174,194,204],mnist_784:167,mnist_8x8:198,mnist_test:[32,87,89],mnist_train:[32,87,89],mnist_train_smal:49,mnistdata:49,mnistdf:49,mnistdf_backup:49,mnistlabel:49,mnistpr:49,mnprv:56,mntfishproduct:69,mntfruit:69,mntgoldprod:69,mntmeatproduct:69,mntsweetproduct:69,mntwine:69,mnww:56,mo:[168,198],mobil:[71,85,109,139,149,168,169,199],mobile_price_test:[71,85],mobile_price_train:[71,85],mobile_test:[71,85],mobile_train:[71,85],mobile_wt:[71,85],mobilenetv1:140,mobilenetv2:[139,140],mock:[5,24,55],mock_df_boxplot:24,mock_df_hist:55,mock_df_pairplot:55,mock_df_plot:24,mock_pairplot:55,mod_resourc:205,mode:[0,7,33,53,56,88,106,139,140,143,144,149,150,167,169,178,179,180,183,195],modefin:48,modefined_sklearn_iris_dataset:48,model2:144,model:[7,10,14,20,31,32,36,44,57,60,62,63,64,65,73,80,82,83,89,90,93,94,95,103,107,108,111,117,118,119,121,122,124,125,131,132,133,134,136,138,141,143,147,148,154,156,157,159,160,161,162,164,165,167,168,170,171,172,173,175,177,187,188,189,192,195,196,198,199],model_1:41,model_2:42,model_auto:31,model_dir:73,model_ev:41,model_filenam:[73,169],model_histori:140,model_lasso:68,model_mean:135,model_nam:[9,30,31,105],model_new:72,model_output:141,model_path:[39,40,41,44,46,105,141],model_perform:56,model_respons:[30,31],model_ridg:68,model_save_path:[30,31],model_select:[29,31,32,34,40,41,51,52,53,54,55,56,58,59,60,61,62,63,66,68,71,79,80,81,85,88,89,142,143,146,159,161,163,164,167,168,169,172,173,175,178,179,182,198,200,201,202],model_url:[30,31,39,40,41,44,46],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:68,model_zip_url:73,modelcheckpoint:[40,41,46],modelfit:58,moder:[66,152],modern:[64,111,136,149,151],modif:[29,139,159],modifi:[1,8,47,49,50,52,69,97,98,119,124,125,127,129,133,138,140,150,151,161,163,168,175,183,184,185,191,192,198,205,207],modifii:98,modnam:183,modul:[31,33,38,61,68,87,105,106,119,123,133,140,144,149,150,151,167,168,169,179,182],modulenotfounderror:[87,185],modulo:[184,206],modulu:[184,185,206,207],moment:[106,113,138,144,146,150,151,155,160,168,171,174,178,184,185,204],momentarili:191,momentum:[37,132,204],mondai:[51,54],monei:[18,106,107,119,157,160,185,186],moneybal:107,mongodb:[119,192],monitor:[40,41,43,46,105,106,107,142,147,148,149,150,151,187],monkei:125,monolith:142,monoton:[126,152,159,183],monotone_constraint:[68,163,164],monster:87,month:[1,14,15,40,118,146,178,180,185],monthli:[1,118,146,178],mood:[107,186],moodle2:205,moon:31,moraga:161,moral:[6,113,117,188],mordvintsev:133,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,36,37,40,41,42,43,45,48,50,52,55,56,58,59,60,61,64,65,66,67,68,69,79,80,81,82,83,87,104,105,106,107,108,109,111,112,113,114,115,116,117,118,119,121,122,123,124,125,127,129,132,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,163,164,165,166,167,168,169,170,171,173,174,176,178,179,181,182,183,184,185,186,189,191,192,196,198,199,200,203,204,205,206,207],moreov:[52,61,64,69,139,160,161,168],mosold:[56,68],mosquera:152,most:[1,3,7,14,17,18,24,29,30,31,32,37,41,43,45,49,50,51,52,53,54,55,56,57,59,60,61,62,64,65,67,68,69,79,83,87,104,106,109,112,114,115,116,117,119,121,122,123,124,125,126,127,129,131,136,137,139,143,146,147,148,149,150,151,152,154,155,156,157,159,160,161,164,165,166,167,168,171,172,174,175,180,182,183,184,185,187,190,191,198,203,204,205,206],mostli:[7,61,119,136,150,159,160,178,179,180,203],motiv:[60,63,107,117,136],motor:137,motorcycl:52,mous:97,move:[7,14,33,35,40,42,49,51,54,80,87,109,111,113,124,135,136,142,148,150,151,156,160,163,167,168,175,184,185],move_down:137,move_left:137,move_right:137,move_up:137,movement:[137,142,160],movi:[107,113,117,174,186,188],moving_mean:139,moving_vari:139,mp3:31,mpeg:31,mpimg:38,mpl3:168,mpl:[133,167,171],mpl_toolkit:[69,80,88,113,165,168,196,198],mplot3d:[69,80,88,113,165,168,196,198],mri:[107,152],mrr:150,ms:[167,191],mse:[36,39,42,46,47,49,50,52,55,57,60,63,79,80,81,83,88,131,150,157,159,164,175,176,178,200],mse_cross_v:79,mseloss:31,msg:[49,88,125,179],msi:39,msocach:39,msr:107,msrafil:144,mssubclass:[56,68],mszone:[56,68],mtwuhpol:61,mu:[31,121,135,156,159],mu_i:168,mu_j:168,mu_k:168,mu_p:135,mu_q:135,much:[1,3,7,18,30,49,50,51,52,54,56,57,59,60,61,63,64,68,69,71,79,85,106,108,109,119,121,124,125,129,136,140,143,148,150,155,156,157,159,160,161,166,167,168,171,174,178,179,183,191,203],mudiger:150,mug:139,mul:[31,134],multi:[30,42,45,49,59,83,124,125,127,139,140,143,146,148,149,151,154,165,171,183,191,192],multi_class:[167,172],multi_grid:140,multi_line_str:[184,206],multiclass:[140,143,150,165,171,172],multicollinear:[81,168,198],multidimension:[45,124,132],multidisciplinari:142,multifield:124,multiheadattent:[135,139],multiindex:[125,127],multilabel:172,multilay:139,multilin:[116,184,185,206,207],multiline_str:184,multimod:121,multinomi:[172,179],multioutput:172,multioutputregressor:146,multipl:[0,7,12,16,18,33,43,45,47,51,54,55,58,68,73,88,93,97,98,111,114,116,119,122,125,126,127,129,132,136,139,141,142,143,146,148,149,150,152,154,160,162,164,165,166,182,185,191,192,196,205,206,207],multipli:[45,80,81,87,97,123,124,139,160,163,166,168,175,178,205],multipurpos:207,multitud:163,multivalu:192,multivari:200,munich:[117,188],muralidhar:66,muscl:185,music:[153,154,155,156],muskmelon:40,must:[0,30,32,37,41,42,43,47,50,61,66,69,79,80,87,97,105,109,111,118,120,123,124,126,127,134,139,149,150,152,154,165,167,169,174,178,183,184,196,203,205,206],mustach:169,mustard:172,mutabl:[45,124,183,184,206],mutual:168,muufdbikxdmks9nw6kt1ryvntpqvf9:61,mv:192,mvbase:192,mventerpris:192,mx:[80,175],mx_i:[80,175],mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:61,my:[34,56,124,125,141,143,144,150,151,169,183,184,199,205,206],my_dict:[97,98],my_funct:205,my_get_text:[183,205],my_imput:163,my_list:[97,205],my_mnist:167,my_model:163,my_modul:205,my_own_classifi:201,my_sum:[101,205],my_tupl:[184,206],mybind:195,mybnk3dsmcymz0gwylxxqfulhrvy5axto:61,myconda1:168,mycount:183,myct:[55,60],mycustomerror:183,myfunct:205,myhtmlpars:3,mylst:185,mymodel0:58,mymodel:58,myownlinearregress:200,myownlogisticregress:[86,201],myqcloud:[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,115,116,121,127,132,134,135,138,139,140,142,146,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,190],mysql:[129,192],myst:165,mysteri:171,mythbusting_1:59,n24wr7ee6evwkotuekcka3picccvrgxpyku:61,n:[7,9,18,25,29,30,31,33,36,39,40,41,47,52,53,54,57,58,59,61,65,66,67,69,80,82,83,89,97,98,106,113,117,121,124,126,127,131,132,133,135,137,138,139,140,141,144,145,146,149,150,156,157,159,160,165,167,168,175,176,178,179,180,183,184,185,187,189,192,196,200,205,206],n_1:52,n_2:52,n_:159,n_anchor:144,n_arrai:45,n_channel:31,n_class:[87,139],n_classifi:173,n_cluster:[69,155,167,168,198],n_clusters_:167,n_clusters_per_class:[201,202],n_col:31,n_color:[146,167],n_column:50,n_compon:[30,69,168,198],n_connected_components_:167,n_core:[71,85],n_dense_block:139,n_estim:[51,52,53,54,55,56,57,58,68,157,159,164,173],n_featur:[39,65,67,86,175,200,201,202],n_features_in_:167,n_filter:[42,139],n_group:135,n_head:135,n_hour:39,n_i:[52,124,168],n_imag:38,n_in:39,n_inform:[201,202],n_init:[155,167,168],n_input:38,n_item:42,n_iter:[56,63,86,167,175,200,201],n_iter_no_chang:58,n_j:168,n_job:[30,52,54,55,58,68,89,159,164],n_label:167,n_layer:139,n_layers_per_block:139,n_leaves_:167,n_loss:35,n_neighbor:[88,89,167],n_ob:39,n_out:39,n_output:38,n_redund:[201,202],n_resnet:135,n_row:[31,50],n_sampl:[52,59,65,67,86,156,159,165,167,175,196,200,201],n_split:[58,61,66,159],n_test:[52,159],n_train:[52,159],n_train_hour:39,n_var:39,na:[7,14,48,53,56,68,69,122,125,126,127,144,150],na_val:53,nabla:160,naftaliharri:[155,167],nah:145,nair:33,naiv:[87,124,143,160,163],name1:124,name2:124,name:[0,1,7,8,9,12,14,15,18,22,24,32,35,36,37,39,41,42,43,56,57,59,60,61,62,63,66,69,70,73,79,87,88,97,98,101,105,106,111,114,118,119,121,123,124,125,126,129,133,134,135,136,139,140,141,142,143,144,145,146,149,150,154,157,160,164,166,168,169,171,172,173,174,175,178,179,180,182,183,184,185,190,191,192,198,199,205,206,207],name_1:[184,206],name_2:[184,206],nameerror:[183,185],namespac:[183,205],nan:[1,14,18,39,47,48,49,53,56,58,66,68,79,88,121,122,124,125,127,142,146,150,163,164,169,178,179,180],nanosecond:[55,60],narr:[113,117],narrow:[47,51,52,97,115,156,173,174,190,203],nasknxwdtb4aaaaasuvork5cyii:61,nasty_list:97,nat:36,nation:[107,169,171,186],nativ:[149,191,192],native_countri:53,native_country_41:53,natur:[1,40,45,47,49,56,61,69,109,112,115,116,117,119,124,126,127,136,137,143,145,146,150,154,175,178,180,185,200],naught:87,navig:[104,106,107,169,186],nax4:144,nbmake:0,nbsp:[43,146],nbviewer:[59,60,62,63,68,88,159,163,164,165,167,178,182],nbyte:191,ncc:60,nchw:144,ncluster:155,ncol:[38,40,132],nconfus:40,ncss:144,ndarrai:79,ndf:39,ndframe:[125,126],ndim:[45,124,125,144,191],ndimag:89,nearbi:[154,159],nearer:178,nearest:[1,31,35,88,89,138,154,155,165,167,168,172,174,183,194,196],nearest_neighbor:[140,168],nearli:[51,54,71,85,144,191,200],neat:[68,178,179,183],neatli:172,necess:[136,149],necessari:[0,7,12,18,20,25,30,40,42,47,52,81,82,103,104,105,106,107,108,109,110,111,113,114,115,116,117,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,203,204,205],necessarili:[51,68,109,121,131,150,178],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,33,39,41,42,43,44,45,46,48,49,50,51,52,54,55,56,57,58,59,60,61,64,65,67,69,74,76,77,81,87,88,90,93,94,95,96,97,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,133,134,135,140,142,146,148,149,150,151,152,154,155,156,159,160,163,164,165,166,167,168,169,171,172,173,174,178,180,182,183,184,185,188,189,192,196,198,199,200,203,205,206],needless:[7,124],neg:[41,43,52,53,54,58,59,61,68,71,73,85,97,107,121,124,135,136,137,142,143,150,152,160,165,167,168,179,183,184,185,194,204,206,207],neg_mean_squared_error:68,neg_root_mean_squared_error:[56,79],negative_integ:[184,206],negative_slop:38,negativs:54,neglig:50,neigbor:168,neigh_garag:56,neigh_lot:56,neighbor:[51,54,58,88,89,137,155,167,172,174],neighborhood:56,neightborhood:56,neither:[76,161],neo4j:192,nepoch:31,neptun:207,neq:[124,137,156],ner:142,nervou:145,ness:144,nest:[58,80,98,113,124,127,183],nested_list:98,nested_tupl:184,nestim:61,net50:139,net:[6,25,32,36,49,139,140,145,160,164],netd:38,neteas:39,netflix:[117,136,174,188],netg:38,network:[5,29,30,31,37,39,42,43,45,47,49,50,51,64,66,71,85,104,107,119,124,125,131,137,139,140,141,144,146,147,148,149,150,152,160,166,169,171,172,174,182,187,188,195,202,203],network_weight:134,networth:185,neural:[29,30,31,36,37,38,42,43,45,47,49,51,64,66,71,85,124,125,131,137,139,140,141,144,146,147,150,152,160,166,169,171,172,174,182,194,195,202,203],neuralearn:135,neuralnetwork:137,neuron:[30,41,43,47,49,64,136,143,145,150,166,193],neurral:166,neutral:[143,149],neutron:61,never:[31,41,51,52,54,56,58,59,87,106,118,124,138,139,150,166,174,183,203],nevernest:183,nevertheless:[7,88,122,124],new_ax:125,new_column:[14,178,179,180],new_data:126,new_df:30,new_dict:184,new_imag:34,new_label:126,new_pumpkin:[178,179,180],new_row:125,new_shap:[133,144],newaxi:[29,30,47,65,67,124,140,182],newbi:150,newcom:142,newer:[79,150,191],newest:69,newli:[14,42,127,129,184],newlin:[141,184,205],newshap:124,newton:[97,172],next:[3,7,9,34,35,36,37,38,39,40,41,42,43,46,48,49,50,51,52,54,55,56,58,60,63,64,69,81,97,98,99,103,105,106,107,109,111,117,122,124,125,129,135,136,137,139,141,143,145,146,149,150,151,154,156,159,160,161,163,164,165,167,168,169,171,173,174,179,180,182,183,184,185,191,199,203,205,206],next_diffusion_tim:35,next_noise_r:35,next_noisy_imag:35,next_num:98,next_signal_r:35,next_stat:36,nfals:61,nfold:164,ng2017mlyearn:150,ng2d:42,ng:[113,148,151,174,176],ngo:58,nh:144,nhwc:144,ni:[184,206],nice:[49,52,68,114,161,168,171,184,198,206],nicer:[1,14,175,183],nichol:135,nick:[132,134,141,145],nigeria:153,nigerian:[154,155],night:[52,134,156,169,200],ninfav:14,ninfect:14,nipy_spectr:[168,198],niter:73,niven:200,nj:156,nl:59,nlargest:39,nleft:125,nlhlong01:159,nlookup:124,nlp:[1,61,139,150],nlp_rake:3,nltk:1,nmodel:58,nmultilin:185,nn:[31,33,35,37,38,41,131,134,135,137,138,139,141,144,145],nn_vi:[132,193],no_enrol:58,no_exceptions_has_been_fir:183,no_grad:[31,33],no_missing_data_df:48,no_missing_dup_data_df:48,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:150,node:[1,30,43,52,105,106,113,123,141,143,149,157,159,164,192,207],node_id:157,nois:[3,29,31,35,37,38,43,47,52,61,66,71,73,85,131,137,138,152,154,159,160,165,166,167,194,196,200,201],noise_dim:138,noise_factor:[29,30],noise_loss:35,noise_loss_track:35,noise_r:35,noise_s:138,noise_shap:49,noise_vari:35,noisi:[29,35,151,154,155,159,160],noisy_imag:35,nol20:119,nolli:119,nomin:[56,59,164],non:[1,14,18,29,30,35,37,39,42,46,56,58,61,62,63,69,73,79,97,98,106,117,122,124,125,126,127,130,131,135,141,142,143,150,152,154,157,159,160,164,165,166,168,169,174,178,183,188,195,205],non_block:33,non_cor:167,non_core_mask:167,none:[3,9,14,18,22,24,29,30,35,36,37,39,40,42,47,49,50,51,54,55,57,58,59,60,65,67,68,71,72,85,86,94,98,99,105,106,115,116,121,122,124,125,126,127,132,133,135,137,138,139,140,143,144,145,146,155,156,159,163,164,165,166,167,168,171,175,176,178,183,184,190,196,198,200,201,206],nonetheless:167,nonetyp:[184,191,206],nonexistent_column:14,nonflat:154,noninfring:[97,98,183,184,185],nonlin:47,nonlinear:[32,47,63,73,81,136,139,150,166,178],nonparametr:[159,172],nonzero:[35,57,124],nooooooo:185,noqa:[183,184],nor:76,norm:[42,117,144,166,167],norm_hist:56,normal:[7,29,30,31,32,35,37,38,41,42,45,47,51,52,54,61,68,71,72,79,85,87,122,124,131,132,133,134,135,136,139,140,141,143,144,148,150,155,157,159,160,166,168,174,180,183,194,198,204],normal_:38,normal_goal_i:137,normal_goal_x:137,normal_i:137,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:137,normalizaiton:32,normalization_matrix:134,normalization_mean:134,normalized_data:[71,85],normalizedata:50,norri:97,north:[79,181],northgat:192,norwai:207,norwegian:183,nosql:[119,188],nostruct:124,not_equ:124,not_existing_charact:[184,206],not_existing_vari:183,not_ther:124,notabl:[63,136,174,192],notat:[56,118,123,124,127,183,184,206],notclean:39,note:[0,1,7,8,14,18,29,30,35,37,41,42,43,49,50,52,54,55,56,59,60,63,68,69,71,73,85,88,89,105,106,108,116,117,118,121,122,124,125,126,127,133,135,136,140,142,150,152,154,156,157,159,160,161,165,167,168,178,180,182,183,184,198,200,206],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,35,37,41,42,43,51,55,56,59,60,62,63,65,66,67,68,69,71,74,77,85,87,88,89,90,94,106,107,108,121,122,131,136,138,147,154,155,159,163,164,165,167,168,169,172,175,178,179,180,181,185,186,191,195,198,199,200,201,204],notebook_path:[29,30,31,33,40,43,68],noteworthi:[83,135],notexist:3,notfittederror:161,noth:[7,43,59,62,64,69,87,116,124,138,156,160,161,163,164,167,175,183],notic:[7,29,41,42,50,97,98,107,109,111,114,115,116,121,122,123,129,146,166,169,174,180,183,184,185,189,191,192,200,203,205],notifi:[117,188],notion:[51,60,174],notnul:[7,48,53,122,191],notori:[37,113],notwithstand:[7,122],noun:139,novel:[113,140,144],novemb:[113,146,151],novic:109,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,36,37,41,42,43,45,47,48,49,50,51,52,53,54,56,58,59,60,61,62,63,64,68,69,71,79,80,85,87,88,94,96,104,105,106,107,109,115,116,117,118,119,121,122,124,125,127,129,134,138,140,141,142,143,144,145,146,149,150,155,156,157,159,160,161,164,165,166,167,168,169,171,172,174,175,178,179,180,182,183,184,185,186,192,198,199,200,206],nowadai:[119,165],nowdai:174,np:[1,7,14,18,22,24,29,30,31,32,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,72,73,79,80,81,82,86,87,89,91,121,122,124,125,126,127,131,132,133,134,135,137,138,139,141,142,143,145,146,151,156,157,159,161,164,165,167,168,169,171,172,173,175,178,179,182,191,194,196,198,199,200,201,202,204],np_util:32,npm:113,npredict:40,npy:34,npython:185,npz:138,nrow:[33,38,40,132],ns:39,nsampl:[39,46,140],nsecond:184,nshape:[65,67],nspose:30,nstandard:18,nswdeman:[51,54],nswdemand:[51,54],nswprice:[51,54],nt:[114,190,192],ntest:[41,43,204],nthe:[41,51,54,55,59,60,62,63,71,85],ntrain:66,ntree:159,ntrue:61,nu:161,nuanc:142,nudg:[117,188],nuforc:169,null_accuraci:61,nullifi:83,num1:205,num2:205,num3:205,num:[63,79,97,124,131,140,141,184,205,206],num_allow_arg:125,num_anchor:144,num_batch:[141,145],num_block:139,num_boost_round:[68,164],num_categori:144,num_channel:132,num_class:[32,139,140,144],num_col:[35,43,56],num_conv:144,num_epoch:[33,35,138],num_exampl:140,num_feat:[63,79],num_feats_imput:79,num_feats_pip:79,num_feats_preprocess:79,num_featur:[87,131],num_filt:139,num_head:[135,139],num_hidden_1:131,num_hidden_2:131,num_hours_studi:200,num_imag:[35,43],num_img:37,num_input_data:[71,85],num_iter:81,num_label:204,num_lay:[139,144],num_list:[63,79],num_memory_unit:137,num_output:87,num_parallel_cal:[35,140],num_parallel_tre:[68,163,164],num_patch:139,num_pip:63,num_preprocess:63,num_queri:144,num_row:[35,43],num_scal:79,num_target:132,num_to_plot:157,num_unit:[87,145],num_vowel:184,num_work:33,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,37,39,40,41,42,43,45,47,48,49,50,51,52,54,56,57,59,60,61,64,65,66,67,69,71,73,79,80,81,82,85,87,88,89,105,106,109,111,113,114,115,116,118,119,122,125,127,129,131,135,136,137,138,139,140,141,142,143,144,146,149,150,151,154,155,156,157,159,160,163,164,165,166,169,171,172,173,174,175,178,179,180,182,183,188,190,191,194,196,198,199,200,203,205],number_imgs_each_part:40,number_limit:183,number_of_iter:[183,205],number_of_part:40,number_to_be_found:[183,205],numbug:205,numcatalogpurchas:69,numclass:49,numcol:[116,190],numdealspurchas:69,numer:[1,8,31,33,41,45,48,51,54,59,60,63,68,69,71,85,87,97,106,108,113,114,115,116,118,121,122,123,124,129,136,137,142,150,155,157,159,173,174,178,180,182,184,190,192,203,206],numeric_:56,numeric_feat:68,numeric_train:56,numeric_v:97,numpi:[1,7,14,18,22,24,29,30,31,32,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,72,73,79,80,81,82,83,87,88,89,91,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,186,190,194,195,196,198,199,200,201,202,204,205],numstorepurchas:69,numvehicl:146,numwebpurchas:69,numwebvisitsmonth:69,nuniqu:53,nusvc:61,nvalid:66,nvarianc:18,nw:144,nx0:144,nx1:57,nx4:144,nx:[39,46,124],nxcx:144,nxn:132,ny0:144,ny:[39,46,124],nyandwi:[41,45,51,54,55,71,79,85,174],nyc:[107,111,113,186],nyu:205,nywvm6_euxq:165,nz:38,o4yuzatazi:61,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:61,o:[12,25,44,53,56,57,61,69,88,117,124,137,144,145,152,156,167,168,184,204,206],o_lay:134,o_t:141,ob:36,obama:[97,152],obei:[41,124,165],obes:106,obj:[124,125,126,183,191],object:[3,7,9,14,16,24,31,37,39,45,46,49,50,52,55,56,58,59,61,66,68,69,70,79,82,87,88,105,107,113,115,118,122,123,125,126,131,132,136,138,139,140,141,142,143,146,149,150,151,153,154,160,163,164,165,166,168,169,171,172,174,178,184,185,186,190,192,193,204,205,206,207],object_:124,object_col:69,objectdatabas:192,objectdb:192,objectstor:192,observ:[1,3,7,18,30,39,49,55,61,82,83,118,119,122,127,135,137,146,148,150,154,155,156,157,160,163,168,171,178,179,198],observablehq:178,observepoint:109,obtain:[3,22,24,47,49,50,52,60,61,69,87,97,98,119,121,124,135,149,150,157,159,162,164,178,183,184,185,188,206],obviou:[18,58,115,121,139,159],obvious:[52,58,116,165,194],ocademi:[0,12,18,25,102,106,126,127,147,185,193,205,207],occam:166,occasion:[152,183],occlud:[139,144],occlus:[40,139],occup:[53,164],occur:[1,7,8,28,51,54,61,80,117,124,133,141,146,150,166,169,180,183,184,199,205],occurr:[1,2,8,28,48,49,56,61,122,179],ocean:[63,79],ocean_proxim:[63,79],oceanproxim:79,octav:73,octave_n:73,octave_scal:[73,133],octob:[117,180,192],od:183,odaba:192,odd:[97,205],odor:[115,190],odot:135,odunsi:154,ofcours:136,off:[30,34,35,37,38,40,41,48,51,52,54,58,61,63,64,71,82,83,85,87,111,135,137,138,139,140,141,146,150,156,159,164,166,167,168,174,175,183,189,194,204],offer:[21,41,69,80,83,104,113,114,115,117,124,139,148,154,163,171,172,173,179,180,188,191],offic:[119,139,146],office16:39,offici:[45,124,164],offlin:169,offset:[124,160],often:[1,3,7,8,41,43,48,51,52,54,56,61,64,71,81,85,106,107,113,117,118,119,121,122,124,135,137,139,141,142,143,146,149,150,156,157,159,160,166,167,172,174,175,179,180,181,183,184,188,191,205,206],oftentim:119,oh:[49,141,156],ohadlight:139,ohh:[51,54,59,71,85],oil:37,ok:[123,127,129,145,156],okai:[43,59,60,143,167],old:[52,69,125,149,155,171,185,205],older:[121,124,169],oldest:69,oldid:192,oleksii:[97,98,183,184,185],ols:165,omar:58,omega_t:145,omit:[1,29,42,121,125,156,160,183,184],omp_num_thread:168,on3sx3y9kwmxfjcw:61,on_bad_lin:39,on_epoch_end:[41,42,140],onboard:[109,148],onc:[0,7,43,45,47,50,55,57,60,79,81,87,105,106,117,119,121,122,124,125,138,141,146,148,149,150,160,161,164,166,169,173,174,179,183,185,205,207],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,35,37,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,58,60,61,62,63,64,65,67,68,69,71,73,74,77,79,80,81,82,85,87,89,90,95,96,97,98,104,106,107,109,111,112,113,114,115,116,117,119,121,122,123,124,125,126,127,129,132,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,159,160,163,164,165,166,167,168,169,171,172,173,174,175,178,179,181,182,183,184,185,186,190,191,192,196,199,200,203,204,205,206,207],one_hot:[7,79],one_hot_data:7,one_hot_encod:[22,79],one_trunc:127,onefield:124,onehotencod:[53,63,79,200],ones:[7,11,35,37,38,45,48,51,52,58,65,67,68,81,83,106,107,109,113,122,124,131,135,139,148,154,155,159,164,166,168,179,180,185,186,191,194,200],ones_for_answ:87,ones_lik:138,ones_tensor:45,ones_tensor_1:45,ongo:[111,152,189],oni:145,onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,35,37,40,41,42,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,65,67,68,71,79,85,87,95,97,98,103,104,105,106,109,111,114,117,118,121,122,123,124,125,126,127,129,132,133,136,137,139,142,143,144,145,146,148,149,150,152,154,157,159,160,164,165,166,167,168,169,172,175,176,178,179,180,183,184,185,187,189,192,196,198,205,206,207],onlin:[1,28,117,119,121,124,125,142,149,152,169,174,183],only_path:40,onnx:[149,169],ontario:14,onto:[49,53,109,131,151,168,198,200],ontotext:192,onward:14,oob:156,oob_scor:159,oocademi:185,op:[73,125,132,134,141,145],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,37,38,39,40,41,43,44,45,46,48,51,52,54,55,56,57,58,59,60,61,62,63,64,66,68,70,71,73,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,149,150,152,154,155,156,157,159,160,161,163,164,168,169,171,172,173,174,178,179,180,182,183,184,185,191,198,199,200,201,203,204,205,207],open_access:106,openai:142,opencv:[39,135],openinsight:192,openlink:192,openml1:59,openml:[55,59,60],openporchsf:56,openqm:192,oper:[7,18,25,33,41,51,58,61,69,80,88,97,104,106,117,119,121,123,125,126,134,137,139,141,142,143,147,148,149,150,151,168,179,183,185,187,188,207],operand:[124,184,191,206],operation:[117,188],opinion:[142,150],opportun:[56,106,107,108,142,150,152,166,169],oppos:[127,163,168,183,184],opposit:[7,113,131,142,153,161,166,179,194],oppurtun:160,opt:[104,183],opt_func:33,optic:[149,154],optim:[29,30,31,32,33,34,35,36,37,39,40,41,42,43,44,45,46,47,49,52,54,56,59,64,69,72,80,81,82,83,88,106,107,109,114,121,124,127,131,132,134,135,136,137,138,139,140,141,143,145,148,151,152,155,157,159,160,161,163,164,165,168,172,175,176,178,179,194,196,198],optimis:[81,165],optimist:[51,156],optimizerd:38,optimizerg:38,optimum:[58,155,168],option:[1,7,15,16,45,47,50,52,71,73,79,85,88,98,99,105,107,111,116,117,122,123,124,125,127,138,143,146,148,149,152,160,167,169,172,173,183,184,185,186,191,204,205,206],option_context:88,oracl:[129,192],orang:[40,52,113,114,121,137,169,171,179,184,190,206,207],orchestr:[148,149],ord:140,ord_col:56,ord_enc:59,order:[1,3,6,7,14,18,31,41,45,48,49,52,55,56,57,59,60,66,69,71,79,80,85,87,88,97,114,115,117,118,119,121,122,123,124,125,126,127,135,137,139,142,144,146,150,151,152,156,159,160,161,164,165,168,169,174,178,179,183,184,185,188,190,192,198,200,203,205,206,207],ordin:179,ordinal_map:56,ordinalencod:[59,79],ordinari:[59,79,146,179],ordinary_encod:79,oreilli:109,org:[3,22,47,49,50,59,60,62,63,68,73,88,109,127,133,134,135,140,141,144,152,159,163,164,165,167,168,178,182,183,184,192,193,198,205],organ:[34,41,104,105,107,111,114,117,118,119,122,123,124,139,142,148,149,168,174,182,186,188,189,190,192,198,199,203],organiz:117,orgin:[55,60,79],orient:[37,136,139,148,182,183,184,185,206],orientdb:192,orig_shap:144,origin:[3,7,14,29,30,31,34,37,40,47,51,52,57,59,60,61,65,67,73,85,94,97,98,116,119,124,125,127,131,133,134,138,146,148,149,154,156,157,159,160,161,164,165,167,168,171,178,179,180,183,184,192],original_featur:134,original_imag:134,original_image_path:134,original_image_url:134,original_image_weight:134,original_img:133,original_label:126,original_lay:134,original_layers_w:134,original_loss:134,original_minus_mean:134,original_norm:134,original_str:[102,184],originl:57,orign:69,ornella:107,orthogon:[131,168,198],os:[29,30,31,33,35,36,37,38,39,40,43,47,49,50,53,58,61,68,72,73,81,87,89,103,104,105,106,107,108,109,110,111,114,115,116,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],ossif:117,other:[3,7,14,17,18,20,31,33,36,41,42,43,45,46,48,50,51,53,54,55,56,58,59,60,61,64,66,68,79,81,82,83,87,88,90,93,97,98,103,105,106,107,109,114,115,116,117,118,121,122,123,125,127,129,131,135,136,139,140,142,143,144,146,147,148,149,150,151,152,153,154,155,156,157,159,160,163,164,165,166,167,168,170,171,174,175,176,178,180,181,182,183,184,185,191,192,198,200,201,202,203,204,205,206],other_nam:[183,205],otherno:183,otherwis:[33,63,83,87,97,98,124,125,126,127,129,132,139,143,150,152,154,159,163,174,178,180,183,184,185],ouch:167,our:[1,3,7,14,18,29,30,31,32,33,34,37,40,41,42,43,45,48,49,50,52,54,56,57,58,59,60,61,62,65,67,68,69,71,79,80,81,82,83,85,87,88,107,108,109,115,116,117,119,121,122,125,129,131,132,135,136,138,139,142,143,144,146,147,150,151,152,154,155,156,157,159,160,161,164,166,167,168,169,171,172,173,174,175,178,179,182,183,185,188,191,192,198,199,203,207],ourselv:[50,56,146,160,168],oustand:51,out1:139,out:[3,7,8,14,15,18,29,33,34,36,38,42,43,45,50,52,55,56,58,61,64,66,68,69,71,73,85,97,98,104,105,107,109,113,114,116,117,118,119,121,122,124,126,127,129,132,134,135,136,137,139,140,142,144,146,147,149,150,152,154,155,157,159,160,163,164,166,168,169,171,172,173,174,175,179,180,182,183,184,185,191,192,198,199,203,205],out_channel:[31,139],out_col:56,out_conn:141,out_filt:140,out_sampl:135,out_sent:141,outbreak:14,outcom:[7,16,58,61,69,83,107,111,117,119,121,122,135,148,156,168,171,178,179],outer:[80,171,183,191],outermost:[125,183],outfield:121,outli:150,outlier:[7,47,48,49,62,63,69,79,81,82,83,112,114,121,148,150,154,155,156,159,160,165,167,190],outliers_influ:[56,66],outlin:[56,109,117,146],outlook:142,outperform:[51,150],output:[7,9,29,30,31,33,35,37,38,39,41,42,43,45,48,49,50,52,53,58,69,73,80,83,87,104,105,106,122,124,126,127,131,132,133,134,135,136,137,138,139,140,141,143,144,145,146,150,151,152,154,156,157,159,160,161,164,166,167,169,171,174,178,179,183,184,185,191,192,193,194,199,203,204,206],output_channel:[35,140],output_class:140,output_dim:144,output_everi:132,output_fil:134,output_file_nam:137,output_final_layer_before_activation_funct:137,output_gener:134,output_imag:38,output_loc:132,output_memori:137,output_prepar:[39,46],output_s:139,output_scrol:140,output_stag:140,output_unit:87,outsid:[56,109,121,124,125,143,163,172,175,183,205],outwork:174,over:[1,7,8,13,14,24,31,32,33,37,41,48,50,51,53,54,56,61,69,71,73,81,83,85,87,95,98,104,107,109,113,116,117,122,124,129,131,132,136,137,138,139,141,143,144,145,146,148,149,150,151,154,156,157,159,160,161,164,167,169,171,172,173,175,176,179,181,183,184,185,186,187,190,192,205,206],over_sampl:171,overal:[7,13,14,30,31,50,51,52,56,58,69,107,108,116,118,119,122,142,150,157,160,174,178,203],overallcond:56,overallqu:56,overcom:[51,54,59,60,165],overdu:52,overexcit:166,overfit:[32,33,41,43,49,50,51,52,54,55,56,59,60,62,63,64,65,67,68,71,81,85,87,146,150,156,159,160,162,163,164,165,173,196,204],overfit_cat:56,overfit_num:56,overflow:125,overhead:[144,191],overlap:[18,121,124,125,154,155,183],overli:[51,52],overlin:[135,157],overload:165,overlook:[117,142,174],overrid:[127,183,205],overridden:30,override_groups_map:139,oversampl:171,overshadow:152,overshoot:[80,161],oversimplif:109,overtim:174,overtrain:66,overview:[52,76,106,109,114,136,148,150,168,195],overwhelm:[69,119],overwhelmingli:69,overwrit:[137,184,205,206],ovr:[167,172],owlim:192,own:[0,11,17,28,40,43,52,64,93,95,104,105,106,107,111,113,117,121,124,125,131,137,139,148,151,152,156,159,160,165,166,167,168,174,183,189,203],owner:[148,157],ownership:[52,117,188],ox:141,oxford:[117,188],oxford_iiit_pet:140,ozair:138,p1:205,p2:[32,135,205],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:61,p:[3,18,32,38,50,52,57,58,59,73,121,124,125,126,127,132,135,137,138,139,140,146,150,155,156,157,159,161,164,165,166,167,168,169,171,174,175,176,178,183,184,196,200,203,205,206],p_1:[52,121,135],p_2:[52,121],p_:[52,135],p_i:[52,135],p_k:52,p_n:[121,135],p_sampl:135,p_valu:121,paa:[104,187],pace:[43,80],pack:[124,182,184,205],packag:[18,30,36,37,53,59,88,107,114,121,124,125,126,127,146,149,154,160,168,169,171,172,174,178,179,180,182,186,191,194,198,205],package_fold:183,package_init_path:183,packed_tupl:184,pacsuta:137,pad:[1,14,18,29,30,32,33,34,35,37,38,40,42,56,124,131,135,139,140,144,145,167,169],pad_bord:144,pad_sequ:145,padding_11:139,paderborn:137,page:[3,21,26,41,45,59,60,62,63,68,88,106,107,109,118,119,125,151,159,163,164,165,167,169,175,176,178,179,182,186],pagefil:39,pai:[18,61,88,104,117,136,141,157,159,178,187,188],paid:[117,136,188],pain:167,paint:[37,123],pair:[7,52,95,98,121,123,124,143,159,160,167,168,172,183,184,185,192,205,206,207],pair_list:3,pairgrid:[60,79,179],pairplot:[60,69,71,79,85],pairwis:[88,159,168],pal:[37,69],palett:[40,53,58,69,71,85,113,114,116,146,190],palette_kwarg:146,palette_kwargs_:146,palinami:[65,67],pallet:69,palyground:178,pamphlet:52,pan:140,pancak:137,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,34,36,37,39,40,41,42,44,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,79,80,81,85,87,88,89,91,103,104,105,106,107,109,110,111,114,115,116,121,122,123,124,126,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,186,189,190,194,195,196,198,199,200,201,202,204,205],pandasarrai:127,pandastutor:[125,126,127],pandem:[1,11,124,151],panel:199,paper:[7,14,21,26,28,51,52,107,119,121,134,136,138,140,141,144,164,167,168,176,179,186,193],paperback:146,papercodereview:144,papiu:68,par:68,parabol:178,paradigm:[119,174,203],paragraph:[93,95,141,183],parallel:[30,38,56,104,106,140,159,163,164,168],param:[29,30,35,37,42,49,50,63,65,66,67,68,140,164,183],param_count:138,param_distribut:[56,63],param_grid:[52,58,59,60,61,62,159,167],param_lst:56,param_test1:58,param_test2:58,param_test3:58,param_test4:58,param_test5:58,paramet:[3,7,10,22,31,32,33,34,42,43,47,50,51,54,59,60,61,62,63,64,65,66,67,68,71,80,81,83,85,86,87,89,105,106,114,116,121,122,124,125,126,131,132,134,135,136,138,139,140,141,145,146,150,151,160,161,163,164,165,166,167,168,172,173,175,178,179,183,184,185,197,200,201,205,206],parameteriz:151,parameterless:183,parameters_input:185,parameters_output:185,parametr:165,params_grid:[54,55,59,60,62],paramt:[33,161],parch:22,paremet:[62,79],parent:[6,22,117,126,183,188],parenthes:[7,183,184,205,206],parenthood:69,park:169,parma:[65,67],parmet:166,parquet:119,parquet_url:59,parrot:[125,183,205],parrot_typ:183,pars:[3,69,142,146],parse_d:146,parsed_data:3,parsefromstr:73,parser:[3,183],part:[1,7,8,11,30,33,34,40,45,49,52,56,69,71,85,87,97,104,105,108,109,111,112,113,117,119,120,122,123,124,127,131,137,138,139,140,141,144,146,147,148,149,150,151,152,154,155,156,159,160,165,166,168,169,173,174,175,178,180,181,182,183,184,185,190,194,196,203,205,206,207],parti:[104,109,119],partial:[40,90,115,124,148,150,154,160,161,164,190],partial_deriv:135,partial_fit:167,partially_propag:167,particip:[52,69,117,145,156,160,188],particular:[7,31,42,45,51,52,53,59,61,79,97,98,108,111,115,116,118,122,123,124,125,127,136,142,150,156,157,160,167,174,178,183,184,185,189,203,206],particularli:[7,48,114,116,117,122,142,152,154,155,180,184,206],partit:[52,123,124,148,155,165],partner:[69,117,188],pascal:183,pass:[0,3,7,31,37,41,48,50,52,56,58,59,60,61,73,81,87,97,108,109,114,117,124,125,127,132,133,135,136,138,139,142,143,161,166,168,172,178,183,184,185,190,199,205,206],passag:113,passeng:[7,17,22,23],passenger_class:22,passengerid:161,passion:[109,184,206],passthrough:200,past:[51,52,56,69,73,117,129,132,139,144,145,146,149,151,152,169,193],pastel2:167,patch:[24,51,55,104,139,178],patch_dim:139,patch_project:139,patch_siz:139,patchifi:139,path:[0,2,15,17,23,29,30,31,33,37,38,40,42,43,47,49,50,52,53,58,68,71,72,73,81,85,105,115,117,124,132,134,135,137,140,141,145,146,152,160,161,167,173,183,190,205],path_to_param:134,pathcollect:[165,178],pathlib:[42,146],pathnam:[47,49,50],pathwai:143,patienc:[40,41,46],patient:[24,41,105,106,107,142,143,150,182],patil:42,patrick:58,pattern:[37,56,57,58,64,66,69,81,82,83,107,108,111,116,117,119,136,146,149,153,154,162,166,174,179,182,183,188,189,203],paul:[39,185],paus:137,pave:68,pavithra:[65,67],pawel:207,payment:52,pb:73,pbar_out:31,pc:[71,85],pca:[69,131],pca_d:69,pclass:[22,161],pclass_xt:22,pclass_xt_pct:22,pcolormesh:52,pctdistanc:[115,190],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,34,36,37,39,40,41,42,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,79,80,81,85,87,88,89,91,114,115,116,121,122,125,126,127,142,143,146,151,154,155,156,157,159,161,163,164,168,169,171,172,173,175,178,179,180,190,194,198,199,200,201,202,204],pdf:[140,205],pdist:168,peac:109,peach:40,peak:163,pear:[40,184,206],pearsonr:68,peek:[89,97,179],peep:41,peer:107,peke:205,penal:[136,160,174,194,203],penalti:[61,83,117,131,139,160,165,166],pendant:[115,190],peopl:[3,14,31,41,48,51,58,79,98,104,106,107,109,111,113,117,119,121,122,124,125,149,150,152,174,184,187,188,192,203,205],people_info:98,people_to_check1:97,people_to_check2:97,pep557:127,per:[33,40,47,49,50,51,52,62,69,73,114,116,124,127,132,135,138,139,140,144,150,167,171,178,180,190,191],perceiv:[154,174,203],percent:[1,168,198,204],percentag:[14,34,43,52,54,61,64,71,79,85,106,150,159,179],percentil:[121,156,167],percentile_closest:167,percept:[154,174],perceptron:30,perceptu:139,perceptualedg:109,percsampl:159,perctraindata:159,perf:175,perfect:[49,51,61,66,98,114,166,167,176,190],perfectli:[7,52,66,71,85,122,150,156,165,178,196],perform:[1,7,18,31,32,33,40,41,42,43,50,51,52,53,55,56,58,60,61,63,64,66,68,69,79,80,81,82,87,88,89,94,98,104,106,111,119,121,123,124,129,135,136,137,139,140,142,143,144,147,148,149,150,151,152,154,156,157,159,160,161,163,164,165,166,167,168,171,172,178,179,182,183,184,185,187,189,191,197,199,200,205,206],performcv:58,perhap:[4,49,50,64,69,114,135,140,146,154,167,174,194,203],period:[13,14,39,40,46,51,54,106,107,126,127,146,152,183],period_rang:146,periodindex:146,perm:98,permiss:[22,47,49,50,97,98,106,117,183,184,185],permit:[97,98,124,183,184,185],permut:[31,33,87,98,145,168],perpendicular:[52,61],perplex:150,persimmon:40,persist:[9,137,152],person:[6,7,14,28,31,37,52,53,59,69,97,98,105,107,109,117,118,119,121,123,136,142,143,146,149,174,182,183,184,185,188,203,205],person_id:31,personsdata:123,perspect:[107,117,139,160],perst:192,persuad:109,persuas:109,pertain:[69,142,143],pertin:142,pervas:[117,119,142],pet:15,petabyt:[107,186],petal:[48,62,88,122,157,168,198],petallength:[88,127,157],petallengthcm:66,petalratio:127,petalwidth:[88,127,157],petalwidthcm:66,peter:[121,184,206],petrova:14,pfa:149,pg100:141,pg4mtoh4b05qn5dt:61,ph:50,ph_delta_weights_list:137,phase:[33,58,108,109,151,154,174,203],phd:[58,69],phi:135,phil:142,phone:[6,71,85,109,117,118,119,168,184,188,199,206],phonem:141,photo:[31,34,45,103,110,112,125,130,170,181,194],photo_id:31,photo_numb:31,photo_path:31,photograph:[119,125,153],photoshopcs6:39,php:[192,205],phrase:[29,139,142,174,189],physic:[52,106,137,149],physician:142,physicochem:50,physiolog:93,pi:[35,135,137,157,184,185,205,206],pi_j:157,pi_valu:[184,206],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,33,37,66,68,71,73,85,95,109,116,123,137,155,159,161,164,167,180,182,192],pickl:[132,141,149,205],pickler:205,pickletool:205,pickup:[107,186],pictur:[1,3,14,30,31,38,52,53,61,62,119,121,124,125,136,150,156,157,160,168,174,194,198,203],pid:137,pie:[27,53,71,85,113,178,180],pie_pumpkin:178,piec:[48,53,61,102,108,119,122,142,148,151,163,182,194],piecewis:52,pii:117,pil:[31,73,133,134],pile:143,pillow:[133,183],pin:[125,199],pin_memori:33,pineappl:[184,206],pinfect:14,pink:[1,113,115,190],pinpoint:56,piotr:144,pip:[3,12,18,25,30,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],pipe:59,pipelin:[55,58,59,60,62,63,66,105,106,140,148,149,150,151,166,167,178],pipeline_scor:167,pipelinepipelin:[167,178],pipeln:66,piplin:137,pitaya:40,pitch:151,pitt:145,pivot:[39,83,119,142],pivot_t:125,pix2pix:140,pixel:[29,30,33,37,40,41,43,45,49,52,71,85,89,124,132,133,139,140,143,144,150,168,174,198],pk:[12,129],pkl:169,pktfrwjz:61,pl:[69,157],place:[7,33,48,52,56,69,97,98,106,108,109,113,119,122,124,127,136,142,148,156,169,171,179,182,183,184,185,206],placehold:[50,73,134,137,139,145,169,185,199],plai:[3,14,18,45,50,52,58,79,80,82,105,119,121,142,148,160,165,173,182,183,196,199],plain:[3,139],plainli:115,plan:[1,52,69,104,109,148,151,156],plane:[52,139,154,159,165,168,178,198],planet:[6,107,186,207],planetari:[107,186],plant:142,plastic:154,platelet:[9,105,106],platform:[10,20,45,104,106,109,142,148,149,152,160,169,174,185,187,203],plausibl:194,play:80,player:[18,107,121,149,174,175],playground:[140,151,159,160,165,171,175],playgroundn:178,pleas:[15,29,36,37,47,48,49,50,51,54,59,60,62,63,68,87,88,105,127,132,139,159,163,164,165,166,167,169,174,176,178,182,183,195],plenti:[113,148,150,152,160,167,168],plot:[1,3,8,14,15,18,19,29,31,33,34,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,56,58,59,61,62,63,64,66,68,69,71,72,80,81,82,85,87,88,93,113,119,121,127,132,137,138,140,141,145,146,150,154,157,159,161,165,166,167,168,171,172,174,175,178,180,182,196,198,200,201,202,203,204],plot_3d:[165,196],plot_accuraci:33,plot_align:22,plot_centroid:167,plot_clust:167,plot_clusterer_comparison:167,plot_color:22,plot_dat:36,plot_data:167,plot_dbscan:167,plot_decision_boundari:167,plot_galleri:31,plot_imag:43,plot_import:164,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[33,38],plot_model:204,plot_multistep:146,plot_param:146,plot_profit:36,plot_spectral_clust:167,plot_support:[165,196],plot_surfac:80,plot_svc_decision_funct:[165,196],plot_svm:[165,196],plot_titl:22,plot_train:40,plot_tre:[59,157],plot_value_arrai:43,plotli:[1,30,46],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,72,79,80,81,82,85,87,88,89,114,115,116,121,131,132,135,137,138,140,141,145,146,154,155,156,157,159,161,164,165,167,168,171,175,178,180,182,190,194,196,198,200,201,202,204],plu:[32,52,81,86,113,124,127,175,200,201],plug:175,plugin:0,pluginfil:205,plum:40,plumag:183,plymouth:156,pm:[121,183,205],pmml:149,pneumonia:1,png:[3,37,38,40,61,68,72,137,167,168,174,178,179],po:[42,56,137,144,167],poc:106,poem:107,poetic:107,poetri:[107,186],poignant:116,poin:66,point3d:127,point:[7,8,11,15,16,28,29,30,31,33,37,41,43,49,50,51,52,54,61,62,63,64,69,71,79,80,82,85,89,109,111,113,114,116,118,121,122,124,126,127,137,144,145,146,149,150,154,155,156,159,160,164,165,166,167,168,169,171,173,174,178,179,180,181,182,183,184,191,197,198,199,200,203,204,206],pointer:[97,124,129],pointwis:139,pois:125,poison:[115,190],pojo:149,polar:39,poli:[61,62,63,178],polic:107,polici:[104,111,174,203],polli:125,poloclub:[132,193,194],poly_best:62,poly_pr:62,poly_svc100:61,poly_svc:[61,62],poly_svr:63,poly_transform:200,polynomi:[62,63,74,81,165,166,181],polynomialfeatur:[178,200],polynomialfeaturespolynomialfeatur:178,pomegran:40,pond:142,ponder:80,pool1:134,pool1_pad:140,pool2:134,pool3:134,pool4:134,pool:[32,132,134,136,139,140],pool_siz:[34,35,40,132,139],poolarea:[56,68],poolqc:[56,68],poor:[31,41,42,55,60,61,66,71,79,85,124,141,150,154,160,166,174],poorer:82,poorli:[33,61,90,150,165,166,174,197],pop:[7,14,35,36,97,109,127,135,143,154,155,184,191,206],popul:[4,13,14,63,79,115,118,121,129,146,156,159,160,178,180,182,190,192],popular:[1,45,47,52,61,108,109,111,118,123,136,147,149,150,151,152,153,154,155,160,161,162,164,168,171,179,184,185,198],porch:56,port:22,portabl:[117,135,205],portal:[9,52,106],portion:[33,52,97,98,124,139,142,148,150,168,182,183,184,185],portrait:37,pose:[37,40,51],posit:[3,28,36,41,52,53,54,56,58,59,68,71,80,83,85,97,107,121,124,127,136,137,139,142,143,144,150,157,160,165,168,179,183,184,185,193,198,200,205,206,207],position_embed:139,position_salari:200,positionalembed:135,positive_integ:[184,206],positive_vector:[184,206],positv:61,possess:[56,71,79,85,203],possibl:[1,11,34,41,45,47,49,50,52,54,56,61,63,71,79,83,85,97,107,113,119,121,124,125,127,132,135,136,139,141,146,148,149,150,151,152,156,159,160,164,165,167,168,174,178,183,184,186,203,206],post:[0,1,14,28,29,32,45,52,124,125,142,144,145,169,187],post_imag:168,postdoc:185,posterior:159,posterior_vari:135,posterior_variance_t:135,postgradu:69,postur:37,potenti:[23,28,41,49,56,59,82,106,107,109,111,114,117,119,121,124,126,127,133,136,137,142,150,152,164,171,180,186,188,197],pothol:[117,188],potrait:37,potrait_gener:37,potraits_gener:37,pouget:138,pound:[116,156,180],pow:[31,131,137],power:[1,7,33,45,51,54,55,59,60,61,62,63,81,82,103,104,107,109,113,124,125,127,136,137,142,150,152,160,164,165,168,174,178,183,184,185,186,191,205,206],power_of:[183,205],ppf:18,pprint:31,ppwwyyxx:144,pq:59,practic:[4,7,16,30,41,47,49,50,52,55,60,61,63,69,107,111,117,119,121,122,124,129,131,136,139,140,141,145,146,149,150,152,156,160,163,165,166,168,169,174,179,182,183,184,185,188,198,205],practical_dl:87,practis:165,practition:[82,117,146,188],prafulla:135,pragati:143,prashant111:53,prashant:[61,164,199,204],pre:[3,9,43,49,104,106,125,140,150,151,152,163,166,178,182],preced:[49,80,124,139,143,183],precis:[29,41,48,49,54,56,59,62,68,71,72,80,82,85,87,97,108,124,145,150,151,166,169,172,173,179,183,200],precision_recall_curv:[172,173],precision_scor:[29,172,173],precison:[54,59],precomput:127,pred:[29,33,40,41,51,54,55,56,58,59,60,68,72,132,146,161,168,178,198],pred_bbox:42,pred_class:40,pred_coord:42,pred_imag:35,pred_mask:140,pred_nois:35,predefin:[33,121,123,137,154,173,177,192],predf:57,predi:57,predicit:161,predict:[9,22,29,33,34,35,36,37,39,41,42,45,46,47,49,50,51,53,54,55,57,59,60,61,62,63,64,65,66,67,68,69,71,79,80,81,82,83,86,87,89,107,111,117,119,121,132,135,136,137,139,141,142,143,144,145,146,148,149,150,151,152,155,156,157,159,160,161,162,163,165,167,169,171,173,174,175,176,177,178,179,180,181,182,183,186,187,188,189,194,203,204],predict_class:[49,72],predict_imag:33,predict_proba:[58,161,167,168,172,179,198],predict_row:57,predicted_column:[39,46],predicted_df:[39,46],predicted_label:43,predicted_nois:135,predicted_pric:44,predicted_valu:[39,82],prediction_text:169,predictions_arrai:43,predictions_on_train:[71,85],predictions_singl:43,predictor:[51,58,68,150,157,163,164,167,178],predominantli:[37,107,186],preds_test_cb:56,preds_test_lgbm:56,preds_test_xgb:56,prefer:[50,58,66,79,107,117,121,124,149,150,159,164,166,167,174,176,179,181,184,185,186,206],prefetch:[35,46,131,135,140],preffer:66,prefix:[22,58,143,183,184,206],prefrenc:69,preiousli:37,preliminari:[142,155],preload:178,premis:[104,111,149,171,189],prep:[39,171],prepackag:182,prepar:[18,22,45,51,54,55,59,60,71,79,85,105,106,108,109,111,113,130,131,148,167,168,174,187,189,198],prepare_dataset:35,prepend:183,prepocess:37,preprint:[14,52],preprints202006:14,preprocess:[32,34,39,41,44,45,46,52,53,56,61,64,66,81,88,132,139,142,143,145,149,150,155,169,178,179,182,200,201,202],preprocess_imag:35,preprocess_img:138,preprocess_input:133,preprocessor:64,prerequisit:[0,134,147,183],prescrib:142,presenc:[56,142,150],present:[1,3,4,5,7,9,13,14,19,21,26,27,36,48,51,53,54,56,59,74,76,90,94,95,97,98,107,109,113,115,121,122,124,125,126,127,139,141,144,147,148,151,152,171,172,174,175,183,185,186],preserv:[48,89,117,122,124,125,127,136,167,179,183],preset:16,press:[39,53,137,146,182,185,199],pressur:[24,106,118,119,182],presum:[37,154],pretend:[18,160,183],pretrain:[136,140,194],pretti:[7,31,56,59,60,62,66,68,142,154,155,157,163,167,168,172,173,174,179,180,200],preval:143,prevent:[28,30,32,43,45,49,52,56,106,107,124,125,135,137,150,151,156,159,165,166,183,184,196,206],preview:[61,106,107],previou:[7,14,17,32,36,41,49,50,51,52,57,58,59,80,81,87,105,108,113,114,118,121,122,123,124,125,135,139,140,141,143,146,150,152,155,156,159,160,161,162,163,164,167,168,169,172,173,174,178,180,183,184,203,206],previouli:51,previous:[18,43,56,59,80,81,122,124,149,155,156,173,179,191],previous_numb:183,prgn:[71,85],price:[22,39,51,54,56,59,68,71,79,82,107,116,136,142,150,157,171,174,178,179,186,202,203],price_add_averag:22,price_rang:[71,85],priceperlb:[116,190],pricier:180,prim:183,primari:[6,7,48,58,71,80,85,105,106,118,119,122,126,127,129,164,192,193],primarili:[7,80,83,109,127,157,182,203],primary_metr:[9,105],prime:[97,183],prime_factor:97,prime_text:141,primit:[184,206],princ:57,princip:[69,131],principl:[31,47,49,50,52,58,104,107,119,129,137,156,164,165,166,183,188],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,65,66,67,68,69,71,72,79,80,81,82,83,85,87,88,89,97,105,115,121,124,131,132,133,134,135,137,138,139,140,141,142,143,145,146,155,156,157,159,161,163,164,167,168,169,171,172,173,175,178,179,180,182,183,184,185,190,191,194,198,200,201,202,204,205,206,207],print_everi:138,print_four_numb:205,print_funct:38,print_stat:29,printfeatureimport:58,printmd:40,prior:[61,106,113,116,145,164,187],priorit:150,prioriti:106,privaci:[111,117,152,188],privat:[58,104,111,149,187,189],privileg:183,prix:139,priya:44,prize:[117,188],pro:[7,39,49,58,106,117],prob:[39,161],proba:172,probabilist:[61,135,136],probability_model:43,probabl:[7,31,33,41,43,50,51,52,54,57,58,60,83,87,103,106,107,108,109,111,114,118,119,120,129,135,136,137,139,143,150,154,155,156,159,160,161,167,173,174,176,178,180,182,184,194],probalist:136,probe:[6,61],problem:[7,11,23,29,37,43,47,48,49,50,51,54,56,58,59,60,62,64,66,69,80,81,83,89,95,105,108,109,111,113,117,119,121,122,124,125,136,137,139,140,141,143,144,146,147,149,150,155,156,157,161,164,165,166,167,168,171,172,175,176,180,184,188,189,196,197],problemat:[18,26,150],proce:[37,56,69,71,81,85,87,143,164],procedur:[49,52,56,146,152,156,159,160,164,178],proceed:52,process:[1,3,7,11,18,28,30,31,32,34,37,42,43,44,45,47,48,50,52,53,55,58,59,60,61,64,69,71,80,81,85,87,95,97,104,105,106,107,108,109,117,118,119,124,131,132,136,137,139,140,143,145,146,147,149,150,152,155,156,159,160,161,162,163,164,165,167,168,169,171,172,173,174,175,177,178,182,183,184,185,186,187,188,191,197,198,199,203,204],processed_data:31,processing_d:59,processor:[71,85,89],prod:[124,138],produc:[7,29,31,32,37,48,53,59,61,64,106,113,114,116,119,122,124,142,143,144,146,148,149,154,156,164,166,174,180,183,184,188,194],product:[11,13,51,69,81,97,104,106,107,109,116,117,118,119,121,124,127,135,139,146,147,148,149,150,151,168,169,174,179,186,187,188,190,199,203,204,205],production:[48,151,152],prodvalu:[116,190],profession:[104,142,149,154,164,185,188],professor:[160,174],profil:[61,117,189],profit:[36,123,160,192],profium:192,program:[39,43,52,59,104,106,117,118,127,129,135,136,142,147,148,149,150,165,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,204],programm:[118,174,183,185,203,207],programmat:[7,106,122],progress:[14,37,41,47,49,73,116,132,148,150,173,174,182,183,194],progress_info:132,progress_widget:73,project:[5,7,9,16,22,30,31,37,39,60,61,68,69,80,97,98,104,107,109,111,115,117,122,124,131,133,135,137,138,139,140,141,144,145,147,148,149,150,151,152,165,168,171,174,182,183,185,186,187,189,196,198,199,203],project_fold:105,project_root_dir:167,promin:52,promis:[47,87,117,188],promot:69,promote_typ:124,prompt:[6,106,169,185],prone:[68,159],pronounc:[129,182],proof:[28,106,154],propag:[7,31,87,126,127,146,154,167,168,204],propens:163,proper:[18,51,54,55,59,60,71,85,109,124,132,142,154,174],properli:[5,48,66,87,96,122,148,150,156,162,174,179,180,203],properti:[9,14,31,33,35,37,49,50,52,57,88,105,117,121,123,124,125,150,157,159,160,165,178,183,184,188,192],proport:[52,61,64,82,113,121,159,160,166],propos:[61,108,109,135,138,139,141,144,152,156,159,165,167,189,196,204],proposals2:144,proprocess:41,prose:31,prospect:109,prostat:175,protagonist:113,protect:[14,104,107,117,148,186,188],protocol:126,prototyp:[49,50,106,107],prove:[18,26,28,52,113,119,121,150,154,156,159],provid:[0,1,7,12,14,15,16,17,21,23,28,33,34,41,42,43,47,48,50,51,52,54,55,56,59,60,61,79,80,82,83,87,97,98,104,106,107,108,109,111,113,117,119,122,123,124,126,127,129,131,132,136,139,142,143,144,146,147,148,149,150,151,154,156,157,159,160,164,166,167,169,172,174,180,182,183,184,185,186,188,189,192,194,203,204,206],provinc:14,province_st:[14,151],provis:[105,149],provisioning_configur:[9,105],proxim:[79,154,159],prp:[55,60],prune:[52,139],pseudo:[18,160],pseudocod:160,pseudonym:121,psgk:61,psycholog:154,pt:60,pth:[31,33,38],public_dataset:[71,85],publicli:[106,151],publish:[52,55,60,61,97,98,106,121,148,149,183,184,185,187],publish_tim:1,pubu:[71,85],pull:[52,113,117,127],pullov:[30,41,43],puls:61,pulsar:61,pulsar_star:61,pumpkin:[77,94,96,171,178,179,181],pun:183,punctuat:[97,98,141],pungent:[115,190],purchas:[69,104,109,116,119,178],pure:[35,41,50,61,87,121,126,159,183],puriti:157,purpl:[30,113,115,190],purpos:[16,30,36,49,50,60,61,62,63,69,80,97,98,111,117,124,127,132,134,136,138,150,154,164,167,169,174,179,182,183,184,185,188,189,191,203,205,206,207],pursu:[107,150,174,203],pursuit:80,push:[0,49,97,109,113,137,142,149,183,191],pussin:[97,98],put:[39,41,45,52,57,64,69,83,106,109,117,129,136,145,156,160,166,174,182,183,184,185,203,205,206],pval:[18,121],pvt:58,pw:157,px:[30,33,46],px_height:[71,85],px_width:[71,85],pxi:127,py39:[30,36,37,114],py3:205,py:[9,30,36,37,59,64,73,88,105,114,125,126,127,132,137,145,168,169,172,179,183,184,185,190,191,198,205,206,207],pycharm:39,pycharmproject:205,pycon:125,pydata:[124,125,127],pygment:121,pylab:22,pylint:[183,184,206],pyobjecthasht:127,pypi:[184,206],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,66,68,69,71,72,79,80,81,82,85,87,88,89,114,115,116,121,131,132,135,137,138,140,141,145,146,154,155,156,157,159,161,164,165,167,168,171,175,178,180,182,190,194,196,198,200,201,202,204],pyramid:[140,151],pytest:[0,3,14,22,24,55,79,97,98,147,183,184,206],python37:205,python38:[59,198],python39:183,python3:[97,98,125,126,127,169,172,179,183,191],python3_7_4:205,python:[0,1,3,7,18,22,23,30,33,36,39,42,45,48,51,53,58,59,60,61,62,63,81,87,105,106,107,108,114,121,122,125,126,127,130,132,133,134,135,139,141,145,147,149,167,168,169,171,180,186,187,188,189,190,192,193,194,195,196,197,198,199,200,201,202,203,204],python_3_2021:205,python_cast:184,python_datatyp:184,python_dictionari:184,python_funct:205,python_numb:184,python_oper:184,python_ref_str:184,python_set:184,python_str:184,python_try_except:183,python_tupl:184,python_util:[107,108,109,110,111,180],python_vari:184,pythonista:184,pythonpath:183,pythontutor:[183,185],pythonwin:205,pytorch:[31,33,106,136,138,169],pytutor:0,pyvideo:125,pywaffl:[115,190],pyx:[125,127],q1:121,q3:121,q:[22,36,52,124,135,168,179,205],q_:[135,137],q_sampl:135,qbbc3cjsnjg:176,qbcdxtzitda:61,qgl:61,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:61,qizx:192,qmcrlph5c7vc:61,qmqvejnztng9kv28rwerdmjfiwjrgfn:61,qq:[3,14,22,24,55,97,98],qqpcmgr_docpro:39,qty:123,quad:[80,156,160,175],quadrat:[56,61,83,159,160,165,184],quadraticdiscrinationanalysi:172,qualit:[6,24,109,118,148,174,188],qualiti:[0,40,48,49,50,55,56,58,64,68,87,90,106,108,111,114,117,118,121,139,149,151,152,154,156,157,159,168,173,174,178,179,180,188,189,198],quan:59,quantifi:[61,80,82,83,111,189],quantil:[56,108,160],quantit:[6,52,56,109,118,148,174,188],quantiti:[4,111,115,119,123,137,146,174],quantiz:[139,150],quarter:139,quarterli:118,quartil:[7,18,56],quebec:14,queliti:31,queri:[2,12,16,25,48,104,118,119,122,127,129,135,142,148,169,189,192],query_emb:144,question:[0,16,17,23,28,32,49,51,52,53,59,60,61,76,80,107,108,109,111,113,116,117,119,121,125,136,142,143,147,150,151,152,160,161,165,169,171,174,178,182,188,189,191,203],questionstd:145,queue:109,quick:[41,42,50,51,54,55,56,63,69,82,88,106,127,142,150,152,154,165,168,171,174,177,180,181],quickli:[7,14,41,42,47,49,50,60,71,79,85,106,114,116,122,124,135,148,149,160,164,178,179,191,194],quicksight:148,quickstart:149,quiet:[3,12,18,25,30,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],quirk:184,quit:[1,3,7,18,33,34,37,40,41,42,52,61,62,63,69,71,85,115,116,125,129,144,150,156,157,159,167,172,173,174,175,178,182,184,203],quora:152,quot:[125,183,184,185,206,207],quotient:[97,124,168],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:61,r2:[65,67,81],r2_score:[65,67,81,82],r2_socr:[65,67],r:[22,29,30,31,33,37,38,40,42,57,61,66,79,81,87,116,121,124,132,134,135,137,140,141,145,149,154,159,160,165,167,168,169,184,190,196,198,200],r_0:14,r_:[52,89,137,160,167],r_k:137,r_p:121,r_t:[8,160],rabbit:205,race:[53,169],racial:107,radial:[62,63,165],radic:139,radio:[61,199],raffael:119,rag:36,raggedtensorvalu:36,rai:107,rainbow:116,rainfall_id:[129,192],rainforest:118,rais:[3,14,22,24,55,97,98,101,102,107,117,124,125,126,127,137,140,150,152,184,186,205,206],raise_for_statu:146,rajesh:143,rake:3,ram:[40,55,71,85,106,159],ramif:173,ran:[10,20,185],rand:[18,36,51,52,81,159,168,191],rand_i:132,rand_index:[42,132],rand_indic:42,rand_tensor:45,rand_x:132,randint:[31,38,42,52,72,73,156,175,191,194,204],randn:[31,38,81,87,126,127,199],randn_lik:31,random:[29,31,32,33,35,36,37,38,39,40,41,42,45,46,47,49,52,57,58,59,60,61,62,63,64,66,68,69,71,72,73,81,85,87,108,124,126,127,131,132,135,137,138,139,140,141,145,150,155,156,158,160,163,164,166,167,168,171,173,174,175,191,194,198,199,204],random_flip_left_right:135,random_index:[41,135],random_norm:[131,134],random_normal_initi:[140,144],random_se:33,random_split:33,random_st:[29,30,31,34,40,41,51,52,53,54,55,56,58,59,60,61,62,63,64,66,68,79,81,88,143,155,157,159,161,163,164,165,167,168,169,173,175,178,179,196,198,200,201,202],random_strength:56,random_transform:38,random_uniform:145,randomappli:38,randomflip:140,randomforest:58,randomforestclassifi:[51,52,53,54,58,157,159,168,172,173],randomforestclassifierrandomforestclassifi:159,randomforestregressor:[55,157,159],randomhorizontalflip:38,randomizedsearchcv:[56,63],randomizedsearchcvrandomizedsearchcv:63,randomli:[30,34,42,52,56,57,64,68,82,135,139,140,156,157,159,166,167,168,198],randomnorm:[131,139],randomrot:38,randomst:[159,191],randomtreesembed:159,randrang:36,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,65,66,67,71,72,73,79,80,81,86,87,88,89,98,104,106,107,114,117,119,121,124,125,126,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,155,157,161,162,163,167,168,175,179,184,187,188,191,194,198,199,200,201,202,204,205,206],rangeindex:[39,61,62,69,79,122,154,164,171,191],rank:[45,117,124,126,150,154,157,160,172,188],rankboost:160,ranspos:30,rapid:[107,185],rapidli:[124,148,168],rare:[56,61,111,150,154,159,160,191],raschka:[52,131,138,141,145],rate:[6,8,14,22,33,35,36,49,50,51,57,64,66,80,81,106,107,109,113,118,136,137,138,139,140,141,150,151,157,161,163,164,166,167,168,175,179,198,203,204],rater:49,ratetc:145,rather:[7,31,37,48,56,71,80,83,85,104,116,119,122,124,127,129,142,149,154,159,165,167,174,178,182,183,184,191,199,203,206],ratio:[14,41,48,51,54,59,61,127,150,157,167],ration:[41,109],rational:157,ravel:[52,58,59,159,161,165,167,172,173,196,201,202],ravenclaw:199,ravendb:192,raw:[6,12,14,16,18,25,45,47,59,60,64,71,83,85,106,118,119,121,122,127,139,148,150,151,167,169,174,180,191,203],raw_data:29,rawinputlstjson:183,rayleigh:168,razor:166,rb:[73,132,169],rbf:[62,63,167,196],rbf_score:61,rbf_svc:61,rbk:61,rbkzduqmatb85:61,rbr_1x1:139,rbr_dens:139,rbr_ident:139,rbr_reparam:139,rc:[22,37,64,69,146,167],rcl:[156,159],rcnn:144,rcparam:[14,61,68,138,159,190],rdbm:192,rdss:97,re:[3,7,15,31,34,39,41,42,43,47,49,50,54,59,64,66,68,71,85,87,107,109,111,122,123,124,125,126,127,129,132,133,139,140,141,142,144,145,150,151,160,161,166,169,171,174,175,178,182,183,184,186,192,199,203],re_fit:62,reach:[33,37,43,50,52,57,80,111,157,159,163,165,168,175,183,184],react:[178,207],reaction:147,read:[16,29,31,41,47,49,55,56,60,71,73,85,87,106,113,114,115,116,117,119,121,123,124,133,141,145,147,150,168,171,172,178,179,182,183,184,205],read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,36,39,42,44,46,48,49,50,51,52,53,54,55,56,58,61,62,63,64,66,68,69,70,71,79,81,85,87,88,89,91,114,115,116,121,127,142,146,151,154,155,156,157,159,161,163,164,169,171,172,173,175,178,179,180,190,200,201,202,204],read_file_from_url:73,read_tabl:175,readabl:[0,115,149,169,184,185,206,207],reader:104,readi:[34,41,43,51,53,54,61,71,85,106,148,149,150,151,152,154,161,169,172,173,174,178,180,182],readm:[5,113],readthedoc:30,real:[0,7,11,28,29,33,34,36,37,38,39,40,41,44,47,48,52,55,59,60,61,62,83,97,117,119,122,123,124,125,137,138,139,142,143,144,146,148,149,151,152,156,160,166,167,174,178,183,184,185,188,191,192,194,195,200,203,206],real_data:138,real_imag:[37,38],real_label:38,real_loss:138,real_part:183,real_sampl:38,real_stock_pric:44,realist:[40,194],realiti:[7,58,117,136,150,179,192],realiz:[111,137,145,160,179],realli:[41,51,56,58,62,63,68,71,85,105,109,116,142,164,166,172,174,179,183,184,203,206],realm:[52,82,142,143,192],realpython:183,rearrang:[80,113],reason:[7,11,14,41,48,51,52,62,64,68,71,79,85,87,104,119,121,122,124,132,142,149,150,152,156,157,161,163,164,168,174,176,182,184,187,203],reassign:184,reboot:107,rebuild:41,rec:56,recal:[29,41,49,52,54,59,62,71,72,85,108,124,150,156,161,169,172,173,179,191],recalcul:157,recall_scor:29,recap:168,receiv:[6,43,61,87,105,108,109,118,127,137,145,151,160,179,183,189],recenc:69,recent:[14,45,69,87,109,124,125,126,127,146,152,160,172,191,205],recept:193,recgon:204,recip:[160,200],recipi:118,recogn:[41,45,64,71,72,85,107,124,136,139,142,144,148,168,174,183,186,203],recognit:[30,40,43,132,136,139,141,142,143,151,174,203],recommend:[15,47,51,106,107,109,116,117,119,123,124,125,127,150,157,159,160,167,168,182,183,185,188],recomput:168,recon_x:31,reconstr_img:131,reconstruct:[29,30,31,131,152],reconstructed_imag:131,record:[9,15,69,105,117,118,124,132,135,136,142,146,148,151,154,160,174,183,191,203,205],recov:[14,151,160],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,39,104,148,151],recreat:[50,114,115,131],recruit:117,rect:[38,168,198],rectangl:[42,52,123,137],rectifi:[87,117,132,136,139,143],recur:49,recurr:[28,171],recurs:[52,97,98,145,183],recycl:39,red:[14,39,42,43,44,47,50,51,52,54,58,64,81,82,106,109,113,114,115,121,139,157,159,165,166,167,178,184,185,190,196,200,201,202,206],red_win:64,reddit:113,redefin:[49,108,111,183],redhat:149,redi:192,redo:[96,148],redshift:148,reduc:[7,30,32,37,41,47,49,51,52,54,56,58,59,60,63,66,69,80,97,106,111,124,134,136,139,140,142,143,149,150,152,154,156,159,160,163,164,166,167,168,169,174,175,179,184,198,203,204,205],reduce_max:29,reduce_mean:[73,131,133,139,141,145],reduce_min:29,reduce_std:133,reduce_sum:[133,134,141],reduct:[31,52,56,131,146,156,157,159,168,203],reduction_model:30,redund:[69,131,164,183],ref:[30,149,173],refer:[3,17,22,23,24,33,34,42,45,48,51,52,54,56,58,59,60,62,79,80,82,104,105,106,108,109,111,113,117,121,123,124,126,127,129,131,132,134,135,136,137,139,145,148,149,150,151,152,154,155,156,166,169,173,174,178,183,184,203],referenc:[52,183,184],reference_answ:87,referenti:119,refin:152,refit:[54,55,59,60],reflect:[7,28,40,41,69,83,96,117,148,154,169],reformat:43,refram:39,refresh:[42,106,151,180],refus:[47,117,188],reg:[56,68,159,174],reg_alpha:[56,163,164],reg_lambda:[56,163],reg_model:79,reg_tre:52,reg_tree_pr:52,regard:[7,33,52,116,122,124,137,142,159,160,164,179,184],regardless:[48,121,124,149,152,154,183,184],regdataset:159,regener:[50,145],regex:[178,180],regim:166,region:[14,79,106,117,144,151,155,164,170,183],regist:[9,69,105,106,205],register_model:[9,105],registr:[1,124],registri:[106,149],regplot:[56,146],regress:[41,42,45,47,49,51,54,56,57,58,59,61,62,68,80,96,105,111,121,136,142,143,150,155,156,157,159,161,162,164,167,168,169,170,171,173,189,195,197,203,204],regressor:[44,51,52,150,159,161,175,200],regressorchain:146,regul:[111,152,173],regular:[1,8,37,43,54,55,59,61,63,66,71,73,81,85,131,146,150,159,160,164,165,167,173,196,204],regularioz:[65,67],regularis:[165,196],regularization_weight:134,regularli:[151,152],rei:50,reilli:[117,152],reimport:[29,183],reindex:146,reindex_index:125,reinforc:[31,117,137,152,160],reinforcement_learning_course_materi:137,reinvent:152,reiter:[109,148],reject:121,rekognit:152,rel:[1,37,40,42,43,51,53,54,55,60,69,80,81,97,114,119,121,126,127,129,133,135,139,150,154,160,169,184,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],rel_error:138,rel_tol:97,relat:[1,3,16,18,28,49,58,100,106,109,116,117,118,121,127,130,135,142,145,150,151,159,166,174,179,183,185,190,195,203,204],relationship:[1,33,41,51,53,54,58,66,68,71,81,82,85,88,91,93,108,111,113,114,119,121,123,136,146,151,154,165,166,171,174,178,179,180,181,182,183,189,200,203],relax:[124,137,165],releas:[114,117,124,149,168,185,188,198,207],release_d:[154,155],relet:69,relev:[3,16,28,104,107,117,119,121,124,136,137,142,150,152,160,174,179,186,203],relevent_experi:58,reli:[59,64,71,85,111,118,119,122,123,174,179,184,206],reliabl:[82,104,107,117,149,159,174,187,188],relief_pitch:121,reload:[48,49,122],reloop:57,relplot:[116,190],relu1_1:134,relu1_2:134,relu2_1:134,relu2_2:134,relu3_1:134,relu3_2:134,relu3_3:134,relu3_4:134,relu4_1:134,relu4_2:134,relu4_3:134,relu4_4:134,relu5_1:134,relu5_2:134,relu5_3:134,relu5_4:134,relu:[29,30,31,32,33,34,35,36,37,38,40,41,42,43,45,46,49,50,64,72,73,87,132,134,136,138,139,140,143,144,194,204],relu_grad:87,remain:[7,52,56,61,64,71,83,85,97,98,117,122,124,127,135,139,142,143,148,152,156,164,168,183],remaind:[97,123,124,183,184,185,200,206],remark:[51,59,62,63,71,85,156,185,207],remdesivir:1,rememb:[7,36,50,54,59,71,85,109,119,124,141,146,150,156,160,161,166,168,179,182,184,193,200],remind:178,remix:107,remot:[0,149],remote_effects_echo_url:183,remote_effects_init_url:183,remote_effects_reverse_url:183,remote_fibonacci_url:183,remote_package_init_url:183,remote_run:[9,105],remov:[1,3,14,29,31,37,38,51,52,53,54,57,61,64,66,69,71,73,85,87,88,97,111,114,116,117,141,145,150,154,155,166,168,171,174,179,183,185,189,198,206],remove_dupl:[98,184],ren:144,renam:[1,18,61,69,88,125,127,183],render:[16,56,59,60,62,63,68,88,159,163,164,165,167,169,176,178,182,184,199,206],render_templ:169,rent:104,rep:109,repack:[178,179,180],reparameter:31,repay:203,repeat:[35,37,39,46,52,57,80,89,98,119,124,127,131,140,148,155,156,159,160,164,167,168,178,184,198,206],repeat_delai:135,repeatedli:[97,163,205],repetit:[51,54,55,60,150],replac:[7,14,22,30,31,32,36,43,48,50,51,53,56,57,58,68,69,82,87,106,122,124,139,141,145,146,150,156,167,175,178,183,184,206],replai:36,replec:51,replic:124,repo:[0,5,73,140,168],report:[14,33,40,41,54,58,59,62,109,117,142,151,169,172,173,179,180,183,188],repositori:[0,1,14,60,80,124,143,145,147,149,174],repres:[1,7,18,30,31,36,37,40,41,42,43,45,48,49,50,52,53,54,56,58,59,61,66,79,80,81,82,97,105,107,108,109,115,117,118,119,121,122,123,124,135,136,139,143,146,150,154,155,156,157,160,161,167,168,184,185,191,192,198,206],represent:[7,22,29,30,37,43,52,59,60,62,63,66,68,71,79,85,88,97,108,111,114,122,124,131,137,139,145,147,163,164,165,166,167,174,175,178,182,191,192,205],representative_digit_idx:167,representative_images_diagram:167,reproduc:[40,47,50,144,150,156,157,164,191],reproduct:14,reput:142,repvgg:139,repvgg_convert:139,repvggblock:139,request:[3,16,29,30,31,33,37,38,40,42,43,63,68,71,73,79,85,87,105,107,117,119,127,132,133,134,135,138,141,142,143,145,146,152,167,169,174,183,184,203,206],requir:[0,1,15,22,24,31,33,43,45,47,49,50,58,61,63,69,73,79,81,83,91,98,104,106,107,109,111,117,118,122,123,124,137,140,142,144,146,148,149,150,151,152,154,159,160,163,167,168,169,174,182,183,184,187,188,189,206],requires_grad:33,requisit:9,rerun:[41,45,59,60,62,63,68,88,159,163,164,165,167,178,180,182,199],res_block:135,resblock:135,rescal:[41,64,79,174],research:[1,16,28,104,109,114,115,116,117,127,136,143,150,151,152,160,171,173,174,182,187,188],researchg:52,resembl:[79,80,153],reserv:[52,87],reset:[36,47,49,50,125,137,141,166],reset_default_graph:[132,134,141,145],reset_index:[1,14,39,40,49,50,56,66],reshap:[29,30,31,32,34,36,37,39,44,45,46,49,52,72,81,87,89,125,131,132,134,135,138,139,141,144,159,165,167,168,172,178,191,194,196,198,200,201,202,204],reshaped_imag:89,reshuffle_each_iter:135,resid:[79,169],residu:[50,57,68,135,139,160,162,164],residual_block:139,residual_sum_squar:82,residual_unet:35,residualblock:35,resili:83,resist:50,resiz:[31,35,38,40,72,73,132,133,134,135,139,140,141,204],resize_bilinear:73,resize_with_pad:135,resizemethod:140,resnet101:140,resnet152:140,resnet50:140,resnet:[135,140],resolut:[31,40,43,71,85,126,135,144,167,183],resolv:[15,48,52,108,122,127,140,143,150,183],reson:[45,79],resourc:[28,41,42,45,80,104,105,107,111,117,119,124,125,129,143,148,149,150,152,154,174,183,184,187],resource_group:9,resp:73,respect:[1,14,30,33,36,49,51,52,54,56,68,69,79,87,117,124,127,129,131,133,135,139,141,157,164,167,168,174,182,184,203],respond:[142,146,182],respons:[3,9,17,37,38,52,69,80,81,105,106,107,117,132,134,138,141,142,143,146,148,157,159,169,178,182,188,189,200],rest:[52,59,105,106,122,123,124,142,149,160,166,167,172,178,179,183,184,192,206],rest_ecg:143,rest_of_the_numb:183,restart:169,restat:109,restecg:143,restor:[30,135,160],restore_best_weight:41,restrict:[7,50,97,98,118,122,159,183,184,185],result:[0,1,7,8,9,14,16,18,22,24,31,32,33,35,37,38,39,42,46,47,48,49,51,52,53,54,55,56,59,60,62,68,71,72,79,80,81,85,89,96,97,98,105,106,107,108,111,117,119,121,122,124,125,126,127,129,131,132,133,134,136,137,139,140,142,143,148,149,150,151,154,155,156,157,159,160,163,165,166,167,168,169,171,172,173,174,175,178,179,183,184,185,188,189,194,196,198,199,203,204,205,206],result_typ:124,resultdf:172,results_df:89,resum:118,ret:144,retail:[69,146,148,164],retain:[31,139,168,198],rethinkdb:192,retina:[52,68,146,156,159,168,198],retrain:[41,47,49,54,55,90,117,132,150,174],retri:179,retriev:[3,25,55,71,85,98,108,111,113,117,123,131,133,142,149,150,179,183,187,189,205],retrospect:160,retun:[65,67],return_count:[72,204],return_sequ:[44,46,141],return_st:141,return_valu:[24,55],return_x_i:[167,182],reus:[122,136,139,140,159,183,205],reusabl:[149,185],reveal:[26,147],revel:[26,192],reveng:113,revenu:[25,109],revers:[35,36,113,117,121,140,183,206],reverse_diffus:35,reversed_list:184,review:[47,104,106,107,109,113,117,135,142,149,154,160,173,174],revis:117,revisit:[107,109,114,140,179,186],revolution:142,revolutionari:[71,85,169],revolv:45,reward:[36,117,174,203],rewritten:[87,141,160],rex:124,rezend:31,rf:[12,25,41,159],rf_predict:159,rfc:[53,157,159],rfc_100:53,rfi:61,rfst:173,rgb:[33,37,40,124,139],rh:57,rho:[159,160],rho_t:160,rhs_cnt:57,rhs_std:57,rhs_sum2:57,rhs_sum:57,rhythm:29,ri:[33,157,168],ri_j:157,riak:192,rice:171,rich:[45,119],richard:152,richer:167,rid:[1,14,136,154,168,178,184],ridg:[68,71,81,83,85,142,166,178],ridge_sklearn:[65,67],ridge_sol:68,ridgeclassifi:142,ridgecv:68,ridgeregress:[65,67],right:[1,22,27,30,31,37,39,43,47,49,52,53,56,57,58,59,60,64,66,68,71,79,82,85,87,89,97,98,109,115,116,117,119,123,124,125,126,127,131,132,134,136,137,139,143,149,150,152,154,155,156,157,159,160,161,163,165,166,174,179,182,183,184,185,188,190,196,199,203],right_column:199,right_i:157,right_idx:57,right_index:[39,125],right_on:125,right_output:137,right_shifted_imag:89,rightarrow:[156,168],rightmost:[124,157],rigid:139,rigor:50,ring:[115,190],ringo:185,riot:39,rise:[1,109,114,116,121,147,166,179,195],risk:[105,106,107,117,124,149,152,165,196],riski:160,riskiest:149,ritonavir:1,river:192,rk:33,rkei:125,rkswahlyepd0yioe0t4oe3i3:61,rl:68,rlabel:125,rm:[12,25,41,205],rmaliz:35,rmse:[39,55,56,60,63,68,79,146],rmse_cb:56,rmse_cross_v:79,rmse_cv:68,rmse_lgbm:56,rmse_xgb:56,rmsle:68,rmsprop:204,rmspropoptim:145,rnd_indx:38,rnd_search:63,rng:191,rnn1:145,rnn2:145,rnn3:145,rnn4:145,rnn:[138,141,145],rnn_builder:46,rnn_cell:145,rnn_model:44,rnn_size:[141,145],rnplwnsp1zaqp:61,ro:[33,80,168,198],road:[71,85,119,136],roadwai:[117,188],roam:205,robert:159,robin:[97,183],roblem:155,robot:[117,144,174,203],robust:[7,37,40,51,56,62,64,83,140,159,160,164,165,168,176],robustscal:[53,56],roc3qtujlwlgnjug8xyjhmyab7mslm:61,roc:150,roc_auc:[58,61],roc_auc_scor:[58,61,161,179,198],roc_curv:[61,179],rocket:[40,192],roi:[109,144],roi_align:144,roialign:144,role:[14,18,58,79,80,81,83,100,111,119,121,124,136,142,143,148,160,165,180,193,196],roll:[14,73,121,141,149,183],rollback:[148,149],rollout:149,ronald:7,rong:142,room:[40,51,79,119,125,151,157,174],root:[52,55,60,63,65,67,81,97,113,115,117,135,142,154,157,169,180,184,204],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:61,ropsasrsaeuchxukvv2ymdhz:61,ross:[114,144,190],rossii:[114,190],rossum:[185,205,207],rotat:[1,3,18,22,34,40,43,53,56,89,137,144,154,155,167,168,190],rotate_in_all_direct:89,rotated_imag:89,rotation_rang:[32,34],rotobuf:114,roug:150,roughli:[14,47,49,52,121,167],round:[40,41,48,61,66,72,88,89,97,132,143,149,154,163,164,168,184,198,206],rout:[7,107,122,148,169,186],routin:124,row:[2,6,7,14,29,35,39,40,41,42,43,45,47,48,49,50,51,53,54,56,57,58,59,60,61,66,68,69,70,71,81,85,106,108,115,116,118,122,123,124,125,127,129,143,145,146,151,155,161,171,172,175,178,179,180,184,190,191,192,200,206],row_index:127,row_vector:124,rowsum:124,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:61,rpn:144,rpn_head:144,rrgtp8yqcvnf:61,rror:156,rsuffix:125,rt:[14,161],rt_with_na_fil:14,rtol:14,rule:[41,45,52,79,80,87,97,108,118,119,127,136,142,148,150,152,154,159,160,167,172,174,175,184,191,203,206],run:[0,5,7,14,30,32,33,39,40,41,45,47,49,50,51,53,54,55,58,59,68,71,73,80,81,85,87,88,89,96,101,102,104,105,106,113,114,119,121,122,123,124,125,131,132,133,134,137,138,140,141,144,145,148,149,150,159,160,163,164,166,167,168,169,172,175,178,183,185,191,198,199,203,205,207],run_a_gan:138,run_deep_dream_simpl:133,run_functions_eagerli:141,run_optim:131,run_step:133,rundetail:[9,105],runner:[149,183],running_loss:31,running_mean:139,running_var:139,runtim:[0,41,73,149,152,163,169],rush:[118,152,154],russian:31,rutherford:185,rvert:[131,166,176,197],rx:[33,168,198],ryan:64,ryanholbrook:146,s1:[24,57,124,125,126,182,184,206],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:61,s2:[57,125,127,185],s3:[124,148,168],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,36,37,38,40,41,42,43,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,69,71,73,74,81,82,83,85,87,88,89,91,96,97,98,101,102,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,133,136,137,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,159,161,163,164,166,167,169,170,171,172,173,174,177,178,181,182,183,185,186,192,197,198,199,200,203,204,206],s_0:52,s_1:[52,121],s_2:52,s_i:[52,121],s_j:121,s_n:121,s_o:52,s_text:141,s_text_ix:141,s_text_word:141,sa:127,sa_heart:175,saa:[104,148,169,187],sack:180,sacrific:52,sad:109,sadli:50,safari:106,safe:[62,149,168,174,198],safefi:59,safeti:[59,60,107,117,174,186,188],sag:[169,172],saga:172,sagemak:[148,149,151],sahara:150,sai:[7,31,33,37,50,51,52,54,59,60,61,68,71,79,85,104,117,121,122,124,136,142,145,146,150,153,156,160,166,168,174,175,179,183,184,194,198,206],said:[7,41,45,51,52,60,66,109,139,174,203],sake:[56,140,157,159],salari:[18,52,200,201,202],salary_data:200,sale:[69,82,146,174,178,179,180,184,203],salecondit:68,salepric:[68,163],saletyp:[56,68],salt:142,same:[0,1,7,9,18,29,30,31,32,33,34,35,37,40,41,42,43,45,46,47,48,49,50,51,52,53,54,56,59,60,61,63,64,65,67,69,71,79,80,81,85,88,93,98,105,109,111,115,116,118,121,122,123,124,125,127,129,131,132,133,134,135,138,139,140,141,142,143,144,145,146,148,149,150,154,156,157,159,160,161,164,166,167,168,171,173,174,175,178,179,183,184,185,189,191,199,205,206,207],samll:[65,67],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,39,41,43,49,50,51,52,55,58,59,61,62,64,65,66,67,68,71,77,82,85,87,88,98,105,106,116,117,121,122,123,132,135,137,138,140,141,144,149,151,152,155,156,157,159,160,164,165,166,168,169,171,173,174,175,178,179,182,185,189,196,203,204,207],sample_imag:[33,140],sample_kernel:33,sample_mask:140,sample_nois:138,sample_s:18,sample_submiss:142,sample_time_series_covid19_deaths_u:151,sample_weight:159,sampledb:123,sampler:33,samsung:168,samuel:[97,98,174,203],san:169,sandal:[30,41,43],sanit:[107,186],saniti:[50,141,150],sankei:1,santino:154,sape:[184,206],sar:1,sarcasm:142,sask:142,sat:142,satellit:140,satisfi:[50,56,124,151,160,168,184,206],saturn:207,save:[1,29,30,31,33,37,41,42,43,47,49,50,53,58,68,72,81,87,106,124,132,134,135,140,141,142,145,150,156,159,160,165,167,171,172,183,194,199],save_best_onli:[40,41,46],save_everi:141,save_fig:167,save_format:[29,30],save_imag:38,save_images_from_dict:132,savefig:[137,167],saw:[10,13,20,41,49,51,52,54,59,71,85,105,113,146,156,160,166,167,179,180,184,203,206],say_goodby:183,say_hello:[183,205],sc1:167,sc2:167,sc:[44,66,143,167,201,202],sc_h:[71,85],sc_w:[71,85],scalabl:[52,104,106,107,117,148,149,159,165,187,188,196],scalar:[45,137,138,140,143,160,168,198],scalar_tensor:45,scale:[0,7,15,35,39,41,42,43,47,49,51,55,58,59,60,62,63,64,66,69,72,81,104,106,107,113,117,124,139,140,143,144,149,150,155,159,166,168,174,182,187,192,194,198,203],scale_feat:[71,85],scale_pip:[55,60,62],scaled_d:69,scaler:[39,41,46,53,55,56,60,61,62,63,66,69,71,79,81,85],scaler_i:46,scali:[115,190],scan:[107,136,142,154],scari:181,scatter3d:[165,196],scatter:[18,24,47,52,62,68,69,81,82,88,113,114,115,116,121,127,154,155,159,165,167,168,175,178,180,182,190,196,198,200,201,202],scatter_3d:30,scatter_kw:146,scatterplot:[19,24,51,54,62,63,69,71,79,85,114,154,155,178,179,180,182],scaveng:76,sceipt:149,scenario:[26,40,51,54,55,80,104,109,117,119,143,149,152,174,203],scene:172,schedul:[51,54,148,151],schema:[106,119,148],schema_max:50,schema_min:50,scheme:[52,116,172],school:[11,52,58,107,205],sci:[64,182],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,48,50,56,58,59,60,62,63,88,106,108,109,113,114,115,116,118,120,121,122,123,124,125,127,129,146,147,148,160,169,174,182,185,191,195],scientif:[1,52,61,119,124,147,171,184,188,206],scientificnam:[114,190],scientist:[3,6,7,21,58,82,104,105,106,107,108,111,112,113,116,117,118,119,120,121,148,149,150,160,171,174,180,181,182,186,187,189,190],scikit:[7,41,48,49,51,53,59,60,63,64,68,74,76,81,103,104,105,106,107,108,109,110,111,114,115,116,122,123,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,173,175,179,181,190,191,194,196,198,199,200,201,202,204,205],scipi:[18,68,79,89,121,125,134,168,196,198,199],sckit:168,scoop:183,scope:[62,63,136,172,174,184,200,203,206],scope_util:144,score:[9,36,41,43,47,49,50,52,53,54,56,57,58,59,62,65,66,67,68,69,71,72,79,85,88,89,105,106,107,119,138,140,142,143,144,150,153,157,159,161,163,167,169,172,173,176,178,179,200],score_cb:56,score_lgbm:56,score_xgb:56,scoreboard:179,scoring_file_v_1_0_0:[9,105],scout:107,scrape:[107,118,186],scrapi:[107,186],scratch:[45,104,105,132,150,202],screen:[71,85,113],screenporch:56,screenshot:[16,109,144],script:[3,105,106,132,133,134,147,183,185,199,205,207],script_file_nam:[9,105],scroll:[113,125,126,127,132,155,159,167,171,178],scrollytel:113,scrutin:117,scullei:152,scylladb:192,sd:61,sdjfhhes1figky8fmsto5n:61,sdk:[103,106,125,149,187],sdpzzf8euy6hn86ydqexmfsez:61,se:18,sea:79,seaborn:[22,34,37,39,40,41,50,51,52,53,54,55,56,58,59,60,61,62,63,64,66,68,69,71,77,79,85,88,113,114,116,139,140,143,146,148,149,150,151,152,154,155,156,157,158,159,165,168,179,190,196,198,199],seali:121,seam:129,seamless:[106,142],seamlessli:149,search:[1,48,52,54,55,58,59,61,62,63,64,68,89,105,106,107,109,114,117,118,119,122,124,125,126,142,143,150,151,152,154,159,160,164,168,183,184,186,206],searchitoper:149,searchsort:124,season:[17,23,51,54,107,118,146],sebastian:[52,131,138,141,145],second:[0,7,18,31,32,40,41,43,45,50,51,52,59,106,114,117,121,123,124,127,139,142,146,150,156,157,160,161,164,167,168,169,173,174,178,183,184,185,199,204,206,207],second_baseman:[18,121],second_char_set:184,second_numb:[184,206],second_term:134,second_term_numer:134,second_tuple_numb:184,second_word:[183,205],secondari:[6,118],secondli:[160,168],secret:[26,97,152],section:[2,3,7,13,15,16,17,19,21,28,29,37,47,49,50,56,61,66,69,74,81,90,94,95,96,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,130,132,135,137,142,148,149,150,151,152,154,155,156,161,162,163,164,165,166,169,170,171,172,173,174,177,178,179,180,181,182,184,185,189,191,192,199,206,207],sector:[52,58,142],secur:[104,107,117,169,186,187,188],sedol:174,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,34,37,41,43,45,47,48,49,50,51,52,53,54,55,56,59,60,61,62,63,66,68,69,71,73,79,80,85,87,88,97,103,104,105,106,109,114,115,116,117,119,121,122,124,126,127,129,132,136,137,141,142,143,144,145,146,148,150,154,155,156,159,160,161,164,165,167,168,169,171,172,174,178,179,180,182,183,184,185,192,198,200,203,205,206],seed:[30,33,37,39,40,45,46,52,66,69,81,87,126,140,155,156,159,160,161,164,167,168,191,198],seed_numb:45,seek:[79,109,165,178,182,196,203],seem:[7,17,22,30,32,33,41,42,50,51,52,54,64,68,69,71,85,114,116,117,121,122,129,146,150,154,160,166,168,175,178,180,188],seen:[1,7,28,30,41,43,48,51,54,56,60,61,69,114,116,117,121,122,124,129,131,136,138,139,150,156,159,160,165,169,174,178,183,184,203],segment:[45,83,107,115,136,144,154,160,171,174],segmentation_mask:140,segmented_img:167,segreg:61,seir:151,select:[3,12,14,15,16,22,24,25,29,31,42,49,50,52,61,64,66,68,69,83,106,108,113,114,115,117,123,124,128,129,130,139,145,151,152,155,156,157,159,160,164,165,167,168,169,179,180,182,183,192,195,198,199],select_dtyp:[56,115,163,190],selected_featur:[169,179],selector:199,self:[3,14,18,22,24,29,30,31,33,35,36,37,38,41,42,45,49,55,57,65,67,86,87,97,98,99,126,127,133,135,138,139,140,141,144,147,148,161,165,174,175,196,200,201,205],self_dense_2:45,self_dense_3:45,sell:[36,97,98,117,178,183,184,185],selu:[46,136],selvam85:140,sem:18,semant:[119,126,127,140,183],semi:[6,118,119,154,167,174,188],semicolon:[184,206],send:[105,109,148,189],sender:[109,174,189],senet:139,sens:[1,3,7,18,32,48,51,52,55,68,71,79,85,97,106,118,119,121,122,124,127,136,156,161,174,178,180,183,192,200],sensibl:150,sensit:[39,52,61,82,129,139,148,150,152,162,168,184,193,198,206],sensor:[118,119],sent:[105,118,136,148,151,169,174],sentenc:[93,98,136,141,142,184,185,207],sentiment:[107,119,136,142,143,186],sentinel:191,seok:30,sep:[9,18,24,31,49,69,107,121,183,184,205],sepal:[62,88,122,127,157,168,198],sepal_ratio:127,sepallength:[88,127,157],sepallengthcm:66,sepalratio:127,sepalwidth:[88,127,157],sepalwidthcm:66,separ:[1,7,29,35,52,63,69,80,88,111,119,121,123,124,127,129,132,139,144,146,150,151,155,160,165,168,175,178,180,183,184,198,206],septemb:[171,180],sequel:129,sequenc:[14,18,39,43,45,51,79,83,107,121,124,136,139,141,145,146,157,183,184,185,205,206],sequenti:[29,30,31,32,33,34,36,37,38,39,40,41,43,44,46,47,49,50,56,58,64,72,87,132,136,137,138,139,140,143,145,161,162,164,168,184,194,198,204],sequential_1:37,sequential_2:[29,30],sequential_3:[29,30],sequential_window_dataset:46,ser1:191,ser2:191,ser:[127,191],sercostams:88,sergei:[31,167],seri:[7,8,14,18,22,24,31,34,39,48,51,52,53,54,58,59,60,62,68,79,81,113,122,123,125,126,136,139,140,143,145,151,155,160,172,181,183,185,192],serial:[146,149,169,205],series_to_supervis:39,seriou:61,serum:106,serum_creatinin:[9,105,106],serum_sodium:[9,105,106],serv:[45,80,82,105,111,113,124,127,150,151,152,183],server:[104,111,119,129,149,169,182,185,192],serverless:148,servic:[1,9,52,104,105,106,107,109,111,117,124,125,136,143,148,149,150,151,152,156,157,169,174,186,187,188,203],sesame_oil:172,sess1:134,sess2:134,sess:[73,134,137,141,145],session:[73,88,134,145,151,204,205],session_st:199,set1:[53,88],set2:58,set:[0,3,7,14,17,22,29,30,31,33,34,36,37,39,40,41,42,45,46,47,48,49,50,52,58,60,62,63,64,65,66,67,68,69,71,74,80,81,83,85,87,89,90,97,98,104,105,106,107,109,111,114,116,117,118,121,122,123,124,125,126,127,129,131,132,135,137,138,139,140,141,142,143,144,145,146,147,149,150,151,154,155,156,157,159,160,163,165,166,167,168,169,171,172,173,174,175,176,178,179,180,181,182,183,186,190,191,196,198,199,203,206],set_aspect:[138,146],set_axis_off:38,set_color:43,set_grad_en:31,set_index:[1,14,39,125,146],set_major_formatt:167,set_major_loc:167,set_opt:73,set_printopt:200,set_prop_cycl:146,set_properti:146,set_se:[45,46],set_styl:[56,88],set_them:154,set_ticklabel:[88,168,198],set_titl:[1,22,38,40,53,57,61,66,69,80,88,146,165,196],set_vis:[29,30,132],set_xlabel:[22,49,57,61,69,80,88,146,159,165,196],set_xlim:[165,196],set_xtick:[1,33,167],set_xticklabel:[1,53,138],set_ylabel:[22,49,57,61,66,80,88,146,159,165,196],set_ylim:[14,32,159,165,196],set_ytick:[1,33],set_yticklabel:[1,138],set_zlabel:[80,88,165,196],setfil:137,setosa:[62,66,88,127,157,168,198],settl:[117,188],settlement:[117,188],setup:[0,47,49,58,73,132,134,137,149,178,182],sever:[7,8,14,21,36,43,47,53,56,58,65,67,77,81,82,104,106,114,115,116,119,122,124,125,129,139,141,142,143,144,149,150,154,156,161,164,168,169,171,172,173,178,179,180,182,183,184,185,198,204,205,206],sew:160,sex:[9,22,53,105,106,161,182],sex_distribut:24,sex_val:22,sgd:[33,41,47,51,64,71,85,132,137,150,175,204],sgd_classifi:51,sgd_clf:[71,85],sgd_score:[71,85],sgdclassifi:[51,71,85],shade:[40,49,107,113,117,186,188],shadi:113,shadow:[40,53],shakespear:141,shakespeare_fil:141,shakespeare_model:141,shakespeare_url:141,shall:[97,98,183,184,185],shallow:[124,140,143,150,174,184,203,206],shanghai:[1,2,29,30,31,32,33,34,36,37,38,39,40,41,42,43,44,46,49,50,53,68,70,88,89,114,121,127,132,134,135,138,139,140,142,146,147,151,154,155,156,157,159,161,163,164,167,168,169,171,172,173,174,175,178,179,180,183,205],shannon:52,shaoq:144,shape:[29,30,31,32,33,34,35,37,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,65,66,67,68,72,73,81,86,87,89,115,121,122,124,131,132,133,134,135,137,138,139,140,141,142,143,144,145,149,155,159,165,167,168,169,171,175,178,179,180,182,190,191,193,194,196,198,200,201,202,204],shape_i:[65,67],shape_img:40,shape_y_0:[65,67],share:[28,33,52,53,59,61,107,108,109,111,116,117,118,119,122,124,125,126,127,142,144,147,149,151,156,157,160,168,172,174,179,183,186,191,203],sharei:[52,57,168],sharp:[150,156],she:[18,150,174,203],sheet:[152,172,173,176],shell:[30,183,207],shen:144,shepb1jhw5o:176,sherjil:138,shift:[8,14,39,46,53,56,64,71,73,85,89,98,143,145,146,149,151,154,165],shift_in_all_direct:89,shift_in_one_direct:89,shifted_imag:89,shine:[160,169],ship:[51,64,132],shipment:148,shirlei:113,shirt:[30,41,43],shoot:142,shop:[40,69,154],shortcom:139,shortcut:[139,140,183,185],shorten:61,shorter:[21,26,106,127,168],shorthand:[124,183],shortli:[154,182],shortsight:137,shortstop:121,shot:37,should:[7,18,29,30,32,33,37,40,43,47,48,49,50,52,53,60,61,65,66,67,69,72,87,88,97,98,105,106,108,109,111,113,117,119,121,122,124,126,127,129,132,136,137,139,140,141,145,148,149,150,151,152,154,155,159,163,164,166,167,168,169,171,172,173,174,175,178,179,181,182,183,184,185,188,189,194,199,200,204,205,206],shouldn:[58,109],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,34,35,36,39,40,41,42,43,44,46,47,49,51,52,53,54,55,57,58,59,60,61,62,63,64,66,68,69,71,72,73,80,81,82,85,87,89,105,107,108,109,114,115,116,121,122,123,124,125,127,131,132,133,135,136,137,138,140,141,144,145,146,149,150,151,154,155,157,159,160,161,163,164,165,167,168,171,172,174,175,178,179,180,182,185,190,192,194,198,200,201,202,203,204],show_centroid:167,show_everi:138,show_generated_img:38,show_imag:[33,138],show_images_batch:33,show_img:37,show_nam:205,show_new_sampl:34,show_output:[9,105],show_point:30,show_predict:140,show_xlabel:167,show_ylabel:167,showcas:[28,68,107,186],showclassificationresult:49,showdown:115,showexampl:49,showfileuploaderencod:73,showmean:18,shown:[0,7,14,16,30,32,51,52,54,61,74,106,121,124,139,151,152,159,165,167,174,179,183,203],showregressionresult:50,showtestdata:159,showtestimag:42,shp:144,shrink:[39,167],shrinkag:161,shuffl:[29,30,33,35,38,39,40,41,45,50,58,66,87,113,131,135,138,140,141,145,146,150,159,173],shuffle_fil:35,shuffle_tensor:45,shuffled_ix:145,shufflenet:139,shuga:154,shut:64,sibl:22,sibsp:[22,161],sicp:98,sid:113,side:[7,8,14,56,57,61,71,79,85,116,126,137,152,160,165,172,183,184,185,206],sidebar:73,siev:97,sieve_of_eratosthen:97,sift:142,sigh:150,sight:[169,172],sigma:[121,135,141,145,156,157,159,164,168],sigma_ix_i:121,sigma_p:135,sigma_q:135,sigma_t:135,sigmoid:[29,30,31,37,38,41,45,62,63,86,131,136,137,141,143,144,151,161,175,179,194,204],sigmoid_svc100:61,sigmoid_svc:61,sign:[52,55,58,65,67,106,109,123,124,159,160,176,184],signal:[35,50,61,68,71,85,109,150,155,157,166,174,182,189,194],signal_r:35,signatur:[107,127,184,186,206],signifi:[7,80,82],signific:[18,41,50,56,69,80,106,109,119,121,142,152,156,157,159,165,184,193],significantli:[49,52,80,142,148,150,154,159,160,167,168,178,184,198],signup:58,silenc:[30,168,198],silent:[48,56,163,184],silhouett:[167,168],silhouette_analysis_plot:167,silhouette_coeffici:167,silhouette_sampl:167,silhouette_scor:[155,167,168],silhouette_score_vs_k_plot:167,silu:135,silver:160,sim:[71,85,160],sim_count:[71,85],simcard:[71,85],similar:[3,6,7,14,29,31,40,45,49,52,54,61,65,67,69,71,81,85,109,111,117,119,121,122,123,124,127,131,132,140,143,144,145,146,149,150,151,152,154,155,156,160,165,168,169,171,173,174,178,183,184,185,189,191,203,206,207],similarli:[18,51,52,59,61,66,80,124,127,148,150,163,168,184],simpl:[1,3,15,30,33,34,35,41,43,45,49,50,51,52,56,57,61,66,69,71,79,80,81,82,85,88,89,108,116,119,124,127,131,132,136,139,140,142,143,144,146,149,159,160,164,165,167,168,174,175,182,183,184,185,190,193,194,198,203,206],simplefilt:[69,146],simpleimput:[56,63,79,163],simpler:[31,47,49,50,124,149,150,167,174,191],simplernn:46,simplernncel:145,simplest:[3,18,32,45,49,50,52,87,119,124,143,149,150,160,166,167,168,174,183,198,204],simpli:[0,7,30,33,42,45,48,49,50,51,52,53,69,80,83,87,105,109,113,122,125,127,136,140,150,156,160,163,165,166,167,174,178,183,184,191,199,203,206],simplic:[105,139,146,157,159,160],simplifi:[1,29,30,50,57,69,80,107,119,124,135,148,149,150,154,160,186],simpson:39,simul:[0,124,151,152,183],simultan:[37,121,139,144,149],sin:[18,35,124,135,160,205],sinc:[18,22,30,32,33,36,37,41,42,43,47,49,50,51,52,54,55,56,58,60,61,62,63,64,66,68,69,71,79,85,87,106,117,119,121,124,125,126,127,136,139,140,141,144,146,149,150,156,157,160,163,164,165,166,167,168,169,172,173,178,179,182,183,184,188,198,204,205,206],sine:124,singl:[7,32,34,42,43,45,49,51,52,56,58,61,69,71,85,97,104,116,118,122,125,126,127,139,143,144,145,146,150,151,159,162,163,164,167,168,174,176,183,184,185,203,206,207],single_quote_str:[184,206],singleton_tupl:184,singular:142,sink:104,sinn:130,sinusoid:135,sinusoidal_embed:35,sir:[14,151],siri:142,sirkap:107,sister:169,sit:[59,60,111,174,175,189],site:[16,30,36,37,59,88,104,113,114,117,119,125,126,127,142,146,152,154,168,172,179,182,183,191,198,205],situat:[28,56,61,69,109,119,121,137,142,148,150,152,157,160,178,183,184],situp:93,six:40,sixth:[184,206],size:[1,7,14,18,22,31,32,33,34,35,36,37,38,39,40,41,45,47,48,50,51,52,54,55,59,60,61,62,63,64,69,71,72,73,79,80,81,85,87,88,89,97,105,106,115,116,121,122,124,127,131,132,133,134,136,138,139,140,141,144,145,150,155,156,159,160,164,165,166,167,168,169,174,178,179,180,184,190,191,194,197,198,203,204,206],sjoerd:[184,206],skalskip:[88,89],skeeter:165,skeptic:160,sketch:185,sketchnot:182,skew:[7,22,56,59,61,68,71,85,114,155,171],skewed_feat:68,skf:159,skill:[39,49,106,107,113,114,119,129,186,190,207],skim:[105,180],skimag:134,skin:[107,186],skip:[0,3,31,35,39,43,45,49,50,114,140,143,183,184,190],skip_head:198,skiprow:31,skiti:[65,67],sklearn:[7,29,31,32,34,39,40,41,44,46,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,71,72,80,81,85,88,89,122,142,143,146,155,156,159,161,163,164,165,166,167,168,169,172,173,175,178,179,182,200,201,202],sklz5kcmqsshyyfixsjcin0srf5:61,skorski:35,sl:157,slate:123,slaughter:156,sleep:199,slept:200,slice:[53,61,87,183,184,191,206],slice_index:126,slice_loc:126,slice_obj:126,slicer:126,slide:[14,33,109,121,147,151,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],slider:73,slideshow:195,slight:[42,58,152,159],slightli:[18,30,32,43,51,52,58,66,68,109,133,135,143,159,160,166,175,178,183],slope:[80,143,175,178],slow:[14,41,51,64,79,124,144,149,175,191],slower:[7,80,106],slowest:167,slowli:[47,50],slytherin:199,sm:[145,179],small:[0,15,29,32,33,43,50,51,52,59,60,62,63,65,66,67,68,71,79,81,83,85,87,106,121,123,124,125,135,139,140,141,143,144,148,150,156,159,160,163,165,166,167,168,169,174,178,179,182,183,185,188,194,198],smaller:[7,18,30,33,37,50,64,80,87,97,114,122,124,131,139,150,156,159,163,168,179,191],smallest:[97,150],smart:[124,150,163],smartphon:[71,85,119,136],smartwatch:[6,118],smelyanskii:150,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:98,smo:[165,196],smoke:[9,105,106],smoker:171,smooth:[14,52,83,114,115,134,151,159,190],smoother:114,smoothli:[61,114,179],smote:171,smsspamcollect:145,smv:[62,63],sn:[34,37,39,40,41,50,51,52,53,54,55,56,58,59,60,61,62,63,66,68,69,71,79,85,88,114,116,143,146,154,155,156,157,159,165,168,179,190,196,198],sna:[168,198],snake:52,snapshot:[40,106,115],sne:[167,168,198],sneaker:[30,41,43],snippet:[7,52,81,151,184],snow:[19,114,190],snr:61,so:[1,4,7,15,17,18,29,30,31,32,33,34,37,40,41,42,43,45,49,50,51,52,53,54,55,56,57,58,59,60,61,62,64,65,66,67,68,69,71,79,85,87,97,98,102,106,107,109,113,114,115,116,117,121,122,124,125,126,129,131,133,135,136,139,140,141,142,143,145,146,147,148,149,150,151,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,186,191,198,203,206],social:[5,107,109,113,117,119,142,186,188],social_network_ad:[201,202],societi:[117,152],socio:[107,117,188],socr:18,socr_mlb:[18,121],soda:[123,192],sodium:106,soft:[61,167],softmax:[32,34,40,41,43,49,72,87,132,136,137,139,141,145,204],softmax_crossentropy_with_logit:87,softwar:[0,22,23,47,49,50,97,98,103,104,111,121,123,148,149,150,151,152,169,182,183,184,185,187,192,207],sold:[25,56,180],sole:[56,80,150,159,183],solid:[19,50,169],solidifi:160,soluion:[65,67],solut:[11,28,52,68,74,80,97,104,106,107,109,113,117,142,148,149,150,151,152,159,160,165,167,168,169,174,180,184,187,188,192,196,200],solv:[52,54,56,59,105,108,109,111,121,124,125,136,137,139,143,144,149,150,152,160,164,165,167,171,172,174,184,189,203],solvabl:[151,160],solver:[137,138,167,169,172],somber:109,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,37,40,41,42,43,45,47,48,49,51,52,54,56,57,58,59,60,61,62,64,66,68,69,71,73,77,79,81,82,85,87,88,90,97,104,106,107,108,109,110,111,113,114,115,116,117,118,119,121,122,123,124,125,127,129,130,131,132,133,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,156,159,160,161,163,164,165,166,167,168,169,171,172,173,174,178,179,180,182,183,185,187,188,189,191,192,194,196,200,203,206],some_digit:89,some_digit_imag:89,somehow:[7,121,124,180],someon:[7,51,103,104,109,111,142,148,150,160,174,178,183,189],someth:[7,45,56,64,71,85,87,109,114,118,119,123,124,127,129,136,152,161,166,174,178,183,184,192,193,194,203,206],sometim:[7,30,48,51,61,64,80,115,118,119,121,122,124,126,127,129,131,137,139,146,148,150,151,160,163,174,175,176,178,179,183,184,191,203,206],somewhat:[7,49,115,167,178,179,199],somewher:[88,121,160,174,178,179],sonali:109,song:[153,154,155],soo:71,soon:[29,41,160],sophist:[51,113,114,149,156,159,174,190,203],sore:136,sort:[22,40,47,52,56,64,97,119,125,126,132,139,154,159,167,168,171,174,180,183,184,190,199,203,205,206],sort_i:57,sort_idx:57,sort_index:126,sort_valu:[1,31,52,53,56,58,68,171,172],sort_x:57,sosa:178,sosb:178,soshnikov:[14,104,178],soudelor:142,sound:[7,18,31,47,121,122,136,156,163,174,203],sound_packag:183,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,40,41,45,46,48,51,52,54,55,56,57,58,59,60,61,62,63,64,66,68,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,112,113,114,115,116,117,119,121,122,123,124,125,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,191,193,198,199,200,201,203,204,205,207],source_indic:1,sours:145,south:[51,54],soy_sauc:172,sp:143,space:[1,6,29,31,37,40,52,87,97,98,107,113,115,121,124,125,131,137,139,142,144,150,151,157,159,160,164,165,168,169,173,179,180,183,184,185,186,190,198,205,206,207],spacing_h:144,spacing_w:144,spam:[142,145,171,174,183,184,203,206],span:[69,116,152,184,206],spanish:52,spark:[148,149],sparki:154,spars:[79,131,142,159,160,164],sparse_categorical_accuraci:132,sparse_categorical_crossentropi:[41,49,72,132,141],sparse_softmax_cross_entropy_with_logit:145,sparsecategoricalaccuraci:132,sparsecategoricalcrossentropi:[41,43,132,140],sparsiti:[83,164],spatial:[107,136,139,140,144,168,198],speak:[109,113,116,148,150,168,169,183],speaker:[142,150],speci:[62,66,88,114,115],special:[7,29,31,56,64,83,106,119,122,124,136,154,164,165,174,179,182,183,184,191,205],specialti:180,specif:[3,7,14,22,28,31,40,41,42,45,47,48,49,50,51,52,54,64,71,72,80,82,83,85,104,107,108,117,118,122,124,125,127,129,139,140,142,143,145,148,149,150,152,154,156,159,160,161,165,168,173,174,178,183,184,185,193,198,205,206],specifi:[1,7,14,22,31,33,34,41,42,45,48,50,80,81,89,104,122,124,125,127,139,149,151,159,163,164,172,174,183,184,203,206],spectral:154,spectralclust:[167,168],spectralclusteringspectralclust:167,spectrum:121,specular:40,speech:[43,83,104,136,143,174],speechi:[153,154,155],speed:[14,41,56,64,71,85,87,106,111,117,124,125,139,144,150,151,152,163,164],spend:[23,51,69,71,85,104,109,149,160,163,174],spent:[69,109,150,160],spepal:48,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:61,spike:[1,112,113,116,190],spinach:180,spine:116,spline:160,split:[31,33,35,36,39,41,51,54,57,58,62,63,64,66,73,81,87,88,124,125,129,133,134,137,139,140,141,143,144,145,146,148,150,156,157,159,160,161,165,167,168,174,178,179,182,183,184,185,191,192,196,198,205,206],split_col:57,split_data:161,split_nam:57,splitidx:50,splitted_str:184,splitted_sub_str:184,splitter:[59,60],spokan:142,sponsor:[111,149,189],spore:[115,190],sport:107,sports_hobbi:98,spot:[7,48,122,124,142,166,174,203],spotifi:154,spous:22,spread:[14,119,121,129,135,137,154,160,180],spreadsheet:[6,23,25,27,76,118,125,127,129,169,174,180,203],spring:[151,183],springer:150,spruce:180,spuriou:[61,64,113],sql:[12,25,104,119,123,125,127,129,148,192],sqlite:[12,25],sqrt:[39,54,55,56,57,58,60,63,68,79,82,98,121,135,138,139,144,157,159,168,178,198],sqrt_alphas_cumprod:135,sqrt_alphas_cumprod_t:135,sqrt_iter:98,sqrt_one_minus_alphas_cumprod:135,sqrt_one_minus_alphas_cumprod_t:135,sqrt_recip_alpha:135,sqrt_recip_alphas_t:135,sqrtimg:138,sqrtn:138,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:61,squar:[35,39,41,47,50,52,55,60,63,65,67,68,71,80,81,83,85,97,115,124,131,135,137,146,150,154,155,156,159,160,164,165,166,167,168,175,178,179,184,199,200,204,205,206],square_root:97,square_tupl:[184,206],squared_error:[60,82],squarederror:56,squeez:[29,30,31,37,38,132,144,165],sr:144,src:[36,37,113,121,125,126,127,132,139,140,144,155,158,159,165,167,168,171,175,176,178,180,183],ss20:[131,138,141,145],ssh:106,st:[72,73,145],st_canva:72,stabal:64,stabil:[87,116,143,150,155],stabl:[1,68,124,127,150,167,168,198],stack:[1,22,31,33,41,56,113,124,125,136,139,143,144,148,160,190],stack_clf:51,stackingclassifi:51,stacklevel:125,stackoverflow:18,staff:157,staff_id:[183,205],stage0:139,stage1:139,stage2:139,stage3:139,stage4:139,stage:[17,23,57,58,61,108,109,111,139,140,144,149,164,166,174,189],stai:[50,79,150,169,175,199],stakehold:[109,111,189],stalk:[115,190],stamp:[51,54],stand:[51,61,64,71,85,109,116,142,152,161,164],standard:[7,18,29,31,35,48,49,50,61,64,66,69,79,94,108,111,117,122,124,127,129,136,146,148,149,151,157,160,163,165,174,178,180,183,205],standard_d2_v2:[9,105],standardscal:[46,55,60,61,63,64,66,69,79,81,143,201,202],stanford:[38,107,139,159,160,165,174,178,179],stapl:83,star:[61,69,171,184],starri:134,starry_night:134,start:[0,1,3,8,11,13,18,29,33,34,38,42,43,45,47,48,49,50,56,58,61,63,69,71,72,73,80,81,85,87,89,97,98,104,105,106,107,108,109,113,114,116,117,119,121,123,124,126,127,132,133,134,137,138,141,142,143,145,146,147,151,155,157,159,160,161,163,164,165,166,167,168,169,171,173,174,178,179,180,183,184,185,187,191,193,194,198,199,201,202,203,206],start_angl:35,start_idx:87,start_slic:126,start_tim:40,starter:[31,113,179],starti:137,starting_pitch:121,startswith:[3,137,167],startup:[45,58],startx:137,stat453:[131,138,141,145],stat:[18,41,51,55,56,60,66,68,69,121,150,151,156,196],stat_interv:156,state:[9,13,14,15,31,36,51,52,54,61,105,107,113,116,118,124,127,129,132,136,139,141,145,148,149,150,151,156,161,168,169,171,173,180,183,190,192,199],state_c:141,state_dict:38,state_h:141,state_s:36,statement:[31,33,101,102,117,118,121,123,129,137,142,182,185,192],stationeri:39,statist:[7,40,49,52,54,56,61,63,82,111,116,117,119,120,124,135,145,147,150,151,152,154,156,159,160,165,171,174,178,189,191,194],statquest:175,statsmodel:[56,66],statu:[22,59,69,105,106,114,137,142,149,151,190],std:[18,24,29,31,39,49,50,60,61,63,66,69,79,87,88,121,124,139,154,159,164,167,191],std_agg:57,stdarr:50,stddev:[135,144,145],stderr:49,stdout:205,steam:39,steep:[151,179],steer:43,stellar:61,stem:[7,58],step:[0,7,9,16,28,30,31,33,35,36,37,38,39,40,41,42,43,45,46,49,50,51,52,54,56,61,62,63,64,66,69,72,73,80,81,82,87,97,104,105,106,107,108,109,111,114,117,119,123,124,126,129,131,132,133,135,136,137,139,140,141,143,145,148,149,150,151,152,155,156,157,164,167,168,169,171,174,175,178,180,183,184,188,191,198,201,202,203],step_siz:[35,133],steps_mean:137,steps_per_epoch:[32,42,140],steps_remain:133,steps_taken:137,stepwis:178,stereotyp:117,stick:[50,109],sticki:115,stiff:183,stikeleath:109,still:[7,18,37,50,51,54,55,59,80,121,122,124,125,126,127,136,140,141,145,146,148,149,150,160,167,174,183,184,199,206],stochast:[87,135,137,160,172,175,204],stock:[116,137,142,174,190],stockast:[51,71,85],stop:[33,40,41,52,57,80,105,124,126,127,159,163,164,168,175,183,191,201,202],stop_gradi:144,stop_train:41,storag:[11,33,73,104,106,111,119,129,133,178,179,180,187,188,189,192],store:[6,7,11,12,29,30,31,33,40,42,43,48,52,55,66,68,69,71,81,85,97,98,101,104,109,118,119,122,124,125,129,130,131,135,136,141,146,148,149,150,151,152,157,163,165,183,184,185,187,192,199,206,207],stori:[4,13,19,52,112,113,168,184,189,190,206],storymap:107,storytel:[19,26,189],stott:7,str1:[50,184],str2:184,str:[1,9,14,33,36,38,42,49,50,56,58,61,68,71,72,85,88,105,125,126,132,135,140,144,157,163,178,180,183,184,185,191,205,206,207],straight:[45,47,52,73,109,163,165,178,182,196,200,204],straightforward:[31,80,119,124,150,163,168,169,179,182,183],straightfoward:146,strang:[18,113,180],strateg:[137,174],strategi:[7,29,43,49,51,54,63,69,71,79,85,109,117,137,140,150,151,171,174,176,203],strategist:109,stratifi:[159,168,198],stratifiedkfold:[66,159],stratifiedkfoldcv:66,stream:[49,52,73,104,136,137,144,148,149,152,174,203,205],streamlin:[139,142,147],streamlit:151,streamlit_app:73,streamlit_drawable_canva:72,street:[62,63,68,117,188],strenghten:57,strength:[1,56,146,150,165,196],strengthen:[104,160],stretch:[1,8,124,168],strftime:39,strict:[111,126,150],strictli:183,stride:[29,30,31,32,33,34,37,38,131,132,135,139,140,144],string:[7,14,22,40,56,58,61,88,122,124,125,126,127,141,180],string_vari:[184,206],string_with_whitespac:[184,206],stringio:146,strip:[3,14,61,141,183,184,206],stripe:179,stripplot:179,strive:[37,83,142],stroke_color:72,stroke_width:72,strong:[18,45,51,54,56,66,68,114,116,121,139,141,154,156,160,162,164,174],stronger:[36,168],strongest:[56,117],strongli:[121,160,167,174,203],struct:124,structur:[6,7,12,22,30,31,39,41,43,52,59,60,69,95,97,117,118,119,123,128,129,130,131,132,136,137,139,140,142,143,144,148,161,164,165,168,169,172,174,178,180,183,185,188,190,192,193,196,198,203,205],struggl:[150,156],strutur:163,stubbornli:47,stuck:[64,150],student:[16,18,66,119,121,123,151,166,178,182,192],student_admiss:205,studi:[14,16,33,40,52,69,136,160,165,170,172,174,186,188,191,200,203],studio:[7,9,105,107,178,180,181,182,186],study_15:59,study_1:59,study_20:59,study_41:59,study_7:59,stuff:[87,183],stump:160,stun:59,style:[0,3,32,37,39,53,64,69,96,124,125,126,127,132,139,140,146,147,151,154,155,159,165,167,168,169,171,175,176,178,186,187,188,189,190,191,192,193,194,196,197,198,200,201,202,203,204,205,206,207],style_expect:134,style_featur:134,style_gram_matrix:134,style_imag:134,style_image_path:134,style_image_url:134,style_image_weight:134,style_lay:134,style_loss:134,style_minus_mean:134,style_norm:134,style_shap:134,style_weight:134,stylenet:132,stylesheet:[126,127,169,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],sub:[1,73,94,124,141,145,150,178,179,180],sub_str:184,subarrai:191,subclass:[3,29,141,183],subdimension:124,subgraph:168,subgroup:[52,107,117],subitem:183,subject:[1,7,31,37,47,52,97,98,107,109,117,118,124,142,183,184,185,186,188,194],sublicens:[97,98,183,184,185],sublist:98,subm:56,submiss:56,submit:[9,15,68,77,93,105,109,150,169],submodul:183,subnet:148,suboptim:167,subpackag:183,subplot:[1,29,30,31,33,34,35,37,38,39,40,41,42,43,52,53,56,57,61,66,69,87,114,116,132,135,138,140,146,154,155,159,161,165,167,168,190,196,198,204],subplot_kw:40,subplots_adjust:[31,34,165,167,196],subsampl:32,subscrib:[117,149,188],subscript:[104,106,117,188],subscription_id:9,subsect:[7,48,122],subsequ:[31,32,51,56,80,124,137,159,163,164,173,184,199,206],subset:[7,18,33,42,43,48,51,52,69,71,79,85,88,91,94,117,121,122,124,126,127,131,136,149,150,159,160,163,164],subspac:[51,124,159,168,198],substanti:[97,98,156,157,183,184,185],substitut:[7,11,125,183,205],substr:[1,184,206],subsubitem:183,subtl:[7,122,163],subtract:[81,82,97,124,140,184,185,191,206,207],subtre:52,subtyp:184,subwai:107,succe:174,succeed:164,success:[107,109,117,124,139,150,151,152,160,174,183,184,200],successfulli:[37,38,52,58,137,150,151,160],succinct:109,sudden:66,suddenli:66,sue:191,suffer:[58,59,60,136,143,146],suffici:[30,32,121,156,160,164,165,184],suffix:[125,169,182,183],sugar:[50,124,183],suggest:[11,14,18,33,42,61,82,121,143,152,157,159,160,174,178],suit:[45,49,61,62,63,126,155,174,179,190],suitabl:[3,56,62,124,136,148,152,160,172,174,183,204],sulfur:50,sulphat:50,sum:[1,7,14,18,22,25,31,33,35,39,49,50,51,52,53,54,55,56,57,58,59,60,61,63,65,67,68,69,71,79,82,85,86,87,121,123,124,125,135,137,138,143,145,146,154,155,156,157,159,160,162,164,165,167,168,171,175,178,180,183,191,196,200,201,204,205],sum_:[52,80,82,83,135,137,145,156,157,159,160,164,166,168,175,197,200],sum_i:[131,156],sum_inertia_:167,sum_of_list:97,sum_of_valu:97,sum_t:160,summar:[53,61,79,108,109,121,139,141,157,174,176],summari:[7,29,30,37,42,48,49,51,54,55,60,80,81,106,109,124,135,136,183,188,191,194],summaris:[61,81],summat:[80,139,143,175],summer16:205,summer:[17,107,111],sun:[59,144],sundai:[51,54],sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:40,sup:50,supercalifragilisticexpialidoci:[184,206],supercharg:113,superclass:139,superimpos:[47,116],superman:97,supermarket:40,superpow:60,supervis:[29,37,39,52,54,55,59,60,61,62,63,71,85,139,140,147,150,152,153,154,159,160,164,165,167,168,171,172,173,182,198],supervisor:137,suppli:[7,51,54,93,107,116,124,148,183],support:[0,1,7,18,45,49,50,51,52,54,56,59,60,71,72,83,85,87,106,107,108,109,111,113,115,117,118,121,124,126,127,140,142,147,148,149,150,154,156,159,160,164,167,169,172,174,179,182,183,184,191,199,206],support_vectors_:[165,196],suppos:[18,51,52,119,121,124,140,156,157,165,180,184],suppress:[126,143,168],supris:41,suptitl:18,sure:[0,4,9,11,48,51,52,54,87,109,113,115,117,118,121,122,124,134,146,150,152,155,161,167,171,172,174,176,178,182,183,184,188],surfac:[52,56,80,81,115,190],surmis:155,surpass:[29,152],surpris:[7,122,124,154,174,175,180,183],surprisingli:[55,179],surround:[119,140,178,184],survei:[6,7,119,148,157,188],surveil:[119,144,152],surviv:[22,151,160,203],survivor:22,suscept:151,suspect:[61,200],suspicion:148,sustain:[16,106,149],sustract:161,sv_classifi:51,svc:[51,58,61,62,165,172,196],svcsvc:[62,165],svm:[51,58,83,131,172,173,174],svmj:[159,165],svr:63,svr_rnd:63,svrsvr:63,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:61,sw:157,swap:[98,124,127,184],swarmplot:[69,179],sweden:207,sweet:[69,166],swish:35,swiss:199,switzerland:146,sx:73,sy:[3,12,18,25,30,39,49,69,73,87,103,104,105,106,107,108,109,110,111,114,115,116,121,122,123,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,185,190,191,194,196,198,199,200,201,202,204,205],syllabl:184,symbol:[46,58,142,183,185],symmetr:[144,148,160,168,184],symptom:142,synaps:104,sync:121,synchron:152,synonym:[61,83,139,191],synset:139,syntact:[124,183,205],syntax:[124,127,129,169,183,191],syntaxerror:[183,185],synthes:89,synthesi:89,synthet:[52,150,151,152,171],syphili:[117,188],system:[14,39,40,43,50,52,79,104,106,107,109,111,117,118,123,124,136,137,142,145,147,148,149,150,151,152,160,169,182,185,186,188,192,194,207],systemat:[117,152,174],sz:73,t:[0,1,7,14,18,24,26,30,31,32,33,34,36,37,39,40,41,42,43,45,47,49,50,51,52,53,54,55,57,58,59,60,61,62,65,66,67,68,69,71,79,80,81,85,86,87,98,104,105,106,107,108,109,111,113,114,117,118,121,123,124,125,126,127,129,131,134,135,136,137,139,141,142,144,145,146,148,150,151,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,178,179,182,183,184,185,186,188,190,191,196,198,200,201,202,203,205,206],t_1:[121,159],t_2:121,t_:137,t_dim:135,t_fix:137,t_grad:73,t_index:135,t_input:73,t_k:137,t_loss:31,t_maze:137,t_n:159,t_obj:73,t_preprocess:73,t_score:73,t_valu:121,ta:56,tab:[22,31,105,106,123,127,183],tabl:[11,12,14,48,76,113,115,119,121,123,124,127,148,150,151,154,157,172,178,179,183,184,199,206],table_data:[184,206],table_str:[184,206],tableau:[109,115],tabular:[41,53,61,106,124,136,163,174,184,192,203],tac:183,tack:124,tackl:[42,52,56,62,63,107,125,147,150,164,167,180],tag:[3,9,59,69,105,118,183],tag_nam:183,tags_decor:183,tags_to_skip:3,taha:46,tail:[39,48,51,54,56,68,71,79,85,122],tailor:83,taiwan:142,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:61,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,37,40,43,45,47,49,50,51,52,54,55,56,58,59,60,61,63,66,68,69,71,79,80,81,82,85,87,88,93,97,104,105,106,107,108,109,111,113,115,116,117,118,119,121,122,124,125,126,127,129,131,132,135,136,137,139,140,141,142,143,147,148,149,150,154,155,156,159,160,163,164,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,188,194,198,203,205,207],takeabl:[126,127],takeawai:[7,24,48,109,122],taken:[1,24,28,34,36,48,58,111,119,121,122,124,137,146,152,164,180,189,200],talent:107,talk:[16,18,52,64,71,85,107,109,113,117,119,121,147,161,164,174,179,186,188,200],talk_tim:[71,85],tall:[116,137,139],taller:[18,121],tan:[115,124,190],tandem:205,tang:150,tangent:124,tangerin:[184,206],tangibl:104,tanh:[37,38,47,138,141,143,194,204],tape:[0,35,37,133,137,138,141],tar:[33,132,139],tarantool:192,tarfil:[33,132],target:[1,9,29,30,36,38,41,51,52,54,55,57,58,59,60,62,64,65,66,67,68,69,71,79,80,81,83,85,87,93,97,105,106,131,134,141,142,143,144,146,148,149,150,155,156,157,159,160,161,165,167,168,174,176,182,183,198,200,203,204],target_class:61,target_f:36,target_fil:132,target_indic:1,target_nam:41,target_s:[72,132],target_shap:134,tarih:36,task:[7,8,9,16,37,42,43,45,48,49,53,59,60,61,62,71,81,82,83,85,100,104,105,106,108,111,112,113,114,117,119,122,123,124,125,136,139,140,142,143,144,147,148,149,150,152,153,160,161,162,164,165,166,167,168,169,170,171,172,173,174,176,179,180,181,182,185,187,190,200,203,205],task_typ:56,tast:[153,154],tasti:[115,190],taught:[56,154],tax:37,taxi:[17,111],taxicab:[107,186],taxonom:7,tbd:[130,132,133,134,139,140,141,142,145,146,155,156,157,159,160,161,163,164],tc:182,tchnormal:42,tcl:161,tdd:147,tdsp:111,teach:[41,113,139,207],team:[17,18,23,69,107,109,111,117,121,147,149,152],teammat:[100,109],tecent_fil:39,tech:[45,203],technic:[39,45,52,117,129,148,149,152,160,161,163,174,188,192,203],techniqu:[1,4,7,15,17,32,34,43,48,51,52,56,58,59,60,61,62,69,74,76,79,80,81,82,83,89,90,107,108,111,112,116,117,119,121,122,124,128,130,136,150,154,155,156,159,163,164,166,171,172,173,174,175,176,178,179,180,182,184,189,200],technolog:[58,104,107,118,142,148,152,160,169,174],tediou:[111,123,165,178],teenag:69,teenhom:69,telecom_churn:[52,156,159],telecom_data:156,telemetri:29,televis:109,tell:[4,7,13,19,37,52,56,57,58,62,71,85,107,109,112,113,117,121,136,142,146,159,166,174,175,190,194,203,205],temb:135,temp:[39,64,81,114,132,134,145,184,198,205],temp_original_loss:134,temp_output_:134,temp_test_acc:[132,145,159],temp_test_loss:145,temp_train_acc:[132,145,159],temp_train_loss:[132,145],temperatur:[118,119,181],templat:[39,123,151,169],tempo:[154,155],tempor:83,temporari:[73,124,134],temporarili:[33,80],temporary_attribut:183,tempt:[50,121],temptat:50,ten:[49,58,79,132,139,171],tencent:39,tend:[41,51,54,55,58,59,60,61,64,113,114,124,125,136,143,155,156,174,192],tendenc:[112,190],tens_reshap:45,tension:140,tensor2tensor:135,tensor:[33,37,73,132,137,138,139,140,141,145,191,204],tensor_0:45,tensor_1:45,tensor_1d:45,tensor_2:45,tensor_2d:45,tensor_3d:45,tensor_nam:45,tensor_shuffl:45,tensorflow:[30,35,36,37,39,40,42,43,44,46,47,49,50,51,59,60,64,72,73,83,106,131,132,134,135,136,137,138,139,140,141,144,145,147,149,150,151,152,169,171,175,182,194,204],tensorflow_addon:[35,135,139],tensorflow_cookbook:[132,134,141,145],tensorflow_dataset:[35,140],tensorflow_inception_graph:73,tensorpack:144,tensorspec:[37,133],term:[1,3,31,49,51,52,54,59,61,80,81,82,105,107,116,119,123,124,129,135,136,137,139,142,145,148,152,154,155,160,165,166,167,168,173,174,178,179,183,186,192,196,200,203],termin:[0,41,105,106,113,137,169,180,183,185],terminolog:[1,61,117,123,129,154,173],terribl:[49,142],territori:14,test:[0,14,15,22,29,31,32,35,36,39,40,41,42,43,52,57,60,62,63,66,68,71,81,85,89,98,104,106,107,114,117,119,124,131,132,139,140,141,142,143,145,146,149,150,154,155,156,159,160,161,166,167,168,169,172,173,174,178,179,182,183,185,194,197,198,203,204],test_absolute_valu:97,test_acc:[43,132,159],test_accuraci:[132,145],test_addit:97,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[132,140],test_calculate_happy_cas:98,test_calculate_with_invalid_c_input:98,test_calculate_with_none_input:98,test_calculate_with_str_input:98,test_capitalize_words_default:98,test_capitalize_words_exclude_word:98,test_censor_word:98,test_censor_words_no_censor:98,test_censor_words_partial_match:98,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:97,test_cont:3,test_count_occurr:98,test_count_occurrences_empty_list:98,test_count_occurrences_str:98,test_count_word_occurr:98,test_count_word_occurrences_empty_text:98,test_count_word_occurrences_same_word_rep:98,test_data:[29,51,54,55,59,63,79,131],test_data_path:[71,85],test_data_schema:50,test_dataset:33,test_df:[14,22,24,55,87,89,142],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:55,test_df_hist_with_empty_df:55,test_df_hist_with_none_df:55,test_df_pairplot_happy_cas:55,test_df_pairplot_with_empty_df:55,test_df_pairplot_with_none_df:55,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_dict:145,test_discrimin:138,test_discriminator_loss:138,test_divis:97,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:50,test_empty_list:97,test_equ:97,test_existing_el:97,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:98,test_fibonacci_sequence_single_term:98,test_fibonacci_sequence_zero_term:98,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:98,test_flatten_nested_lists_empty_list:98,test_flatten_nested_lists_no_nested_list:98,test_float_numb:97,test_fold:132,test_format_person_info:98,test_format_person_info_empty_list:98,test_format_person_info_single_person:98,test_funct:[30,183],test_function_scop:183,test_gener:138,test_generator_loss:138,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:183,test_group_by_categori:98,test_group_by_category_empty_input:98,test_group_by_category_no_categori:98,test_group_by_category_single_categori:98,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[39,163],test_imag:[43,132,140],test_img:72,test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:159,test_init:3,test_input_data:[63,79],test_input_dim:50,test_insertion_sort:98,test_insertion_sort_empty_list:98,test_insertion_sort_single_element_list:98,test_insertion_sort_sorted_list:98,test_is_empti:97,test_label:[29,43,63,79,132],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:97,test_load:33,test_loss:[29,43,132,145],test_lstm_model:141,test_merge_dicts_with_list:98,test_merge_nested_dict:98,test_merge_three_dict:98,test_merge_two_dict:98,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model:42,test_ms:[63,79],test_multipl:97,test_nam:[68,132],test_negative_numb:97,test_non_existing_el:97,test_nul:50,test_one_as_input:97,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_path:42,test_permut:98,test_permutations_empty_list:98,test_permutations_single_el:98,test_pop:97,test_positive_numb:97,test_pr:[62,63,79],test_pred_poli:62,test_preprocess:[63,79],test_push:97,test_rang:50,test_remove_dupl:98,test_remove_duplicates_empty_dict:98,test_remove_duplicates_empty_list:98,test_remove_duplicates_no_dupl:98,test_remove_duplicates_str:98,test_respons:68,test_result:33,test_rms:[63,79,146],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:97,test_sampl:[9,105],test_save_path:68,test_scal:[55,62],test_scor:[58,66],test_single_element_list:97,test_siz:[29,31,32,34,41,51,52,53,54,55,56,58,59,60,61,62,63,79,81,88,143,146,159,161,163,164,168,169,172,173,175,178,179,182,198,200,201,202],test_sqrt:98,test_sqrt_non_perfect_squar:98,test_sqrt_perfect_squar:98,test_square_funct:97,test_str:98,test_string_input:97,test_string_numb:97,test_string_upper_empty_str:98,test_string_upper_happy_cas:98,test_string_upper_none_str:98,test_subtract:97,test_url:[3,68],test_vari:183,test_vector:142,test_wrong_target_typ:97,test_x:[39,65,67,163],test_zero:97,testabl:147,testappenddiffcolumn:14,testbinarysearch:97,testcalcul:98,testcalculatesum:97,testcapitalizefirstletterp:98,testcapitalizeword:98,testcas:[3,14,22,24,49,55,98],testcensorword:98,testcleanfar:22,testcolumnfilt:14,testcomplex:97,testcountdigit:97,testcountoccurr:98,testcountwordoccurr:98,testdfboxplot:24,testdfhist:55,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:97,testfibonacci:98,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:97,testflattennestedlist:98,testformatpersoninfo:98,testgcd:97,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:98,testgroupbysum:14,testimoni:109,testing_imag:42,testinsertionsort:98,testlabelencod:22,testload:49,testmapfunct:97,testmean:49,testmergedict:98,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:98,testremovedupl:98,testrtwithnafil:14,testset:[44,56],testsieveoferatosthen:97,testsqrt:98,testsquareroot:97,teststack:97,teststd:49,teutschmann:181,texa:[117,169,191],text3d:[88,168,198],text:[1,12,15,23,39,41,43,45,50,59,60,61,68,71,72,73,79,83,85,98,104,107,109,113,118,119,123,124,132,136,139,140,141,142,143,145,146,148,150,154,155,157,159,160,161,165,167,168,169,171,174,175,176,178,180,182,183,184,185,186,187,188,189,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207],text_data:145,text_data_target:145,text_data_train:145,text_process:145,text_str:145,text_templ:73,text_widget:73,textbf:157,textbook:[52,160,174],textbox:90,textcolor:166,textcoord:167,textrefer:183,textrm:[80,175],texts_to_sequ:145,texttestrunn:49,textual:[1,8,113,115,183],tf0btgg9:61,tf:[29,30,35,36,37,39,40,41,42,43,44,46,47,49,50,73,83,131,132,133,134,135,137,138,139,140,141,144,145,150,166,171,194],tf_util:36,tfa:[35,135,139],tfboard_callback:41,tfd:[35,140],tfdetect:144,tffunc:73,tfutil:144,tfv1:144,tgz:33,th:[52,82,121,124,135,143,156,159,168],thai:[171,172,173],thai_df:171,thai_ingredient_df:171,thal:143,than:[1,2,7,8,14,18,29,30,31,32,33,36,40,41,43,45,47,48,49,51,52,54,56,58,59,61,62,63,64,66,71,76,83,85,87,97,104,106,109,114,116,117,119,121,122,123,124,125,127,129,135,136,139,141,142,143,146,149,150,152,154,155,156,157,159,160,163,164,165,166,167,168,172,173,174,178,179,180,182,183,184,185,188,191,192,196,198,199,200,203,205,206,207],thang:139,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,150,154,155,156,157,159,160,161,163,164,165,169,171,172,173,174,178,179,180,182,183,184,185,198,199,200,201,204],thecodeship:183,thedatasciencevenndiagram:120,thee:184,theguardian:113,thei:[1,6,7,12,15,18,23,25,31,41,43,45,48,49,50,51,52,54,58,59,60,61,64,68,69,71,79,80,85,87,95,104,105,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,133,135,136,137,138,139,140,141,142,143,144,146,148,149,150,152,154,156,157,159,160,164,165,166,167,168,169,174,175,178,179,180,182,183,184,185,186,188,189,191,193,198,203,205,206,207],them:[0,1,3,7,15,21,26,30,31,33,34,37,40,41,42,43,45,47,48,51,52,54,56,58,59,60,61,62,63,66,69,71,79,80,83,85,87,88,90,95,98,104,105,106,108,109,111,113,115,116,117,119,121,122,124,126,129,130,131,132,134,135,136,139,140,141,142,143,144,146,147,148,149,150,151,152,156,159,160,161,163,164,165,166,167,168,171,174,175,178,179,180,182,183,184,185,187,188,192,198,203,204,205,206],theme:[30,39,109],themselv:[7,64,109,111,124,136,160,179,203],theorem:156,theoret:[119,150,156,159,165,182],theori:[52,108,113,121,135,142,145,160,165],thereaft:137,therebi:[142,154,165],therecord:69,therefor:[7,30,32,47,52,56,106,124,135,137,139,148,150,152,159,160,161,164,165,167,168,183,184,198,206],thereof:191,theta:[135,159,160,161,200],theta_0:160,theta_1:[159,161],theta_2:159,theta_i:[159,160],theta_n:161,theta_t:160,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,44,45,46,47,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,76,77,79,80,81,82,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,129,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,177,178,180,181,182,183,184,185,186,188,189,190,191,192,193,198,199,200,201,202,203,204,205,206,207],thick:1,thicksim:135,thing:[1,7,41,45,51,52,54,55,59,62,65,67,68,71,79,85,87,105,106,108,109,111,113,117,119,121,122,124,126,127,129,136,146,151,153,154,160,167,168,169,171,174,183,184,192,194,198,199,203,206],think:[7,11,18,26,28,31,34,43,45,49,50,51,52,57,64,71,85,107,109,113,117,119,124,127,129,142,145,150,151,154,155,165,166,168,171,173,174,179,180,182,183,184,196,198,206],thinkhdi:109,third:[14,32,41,51,52,66,104,109,121,124,157,160,183],third_baseman:121,third_term:134,third_tuple_str:184,this_file_dir:73,thisag:185,thisplot:43,tho:[184,206],thon:[184,206],thorough:149,thoroughli:108,those:[1,7,14,16,18,32,40,46,49,51,52,54,58,59,64,71,79,85,106,108,109,111,114,115,116,117,118,119,121,122,124,125,127,132,134,137,141,142,143,145,146,148,149,151,154,156,157,160,163,165,168,171,174,178,183,184,189,203,205,206],thou:141,though:[7,43,49,64,107,109,116,124,125,127,145,146,150,151,163,173,179,183],thought:[7,16,30,34,55,60,71,85,109,119,124,149,174,189,191],thoughtfulli:95,thousand:[29,51,52,79,113,151,164],thread:168,threadpoolctl:155,threaten:[114,190],three:[7,13,14,19,21,27,29,32,37,40,42,50,51,52,54,58,62,69,76,79,88,93,97,98,103,104,107,115,118,123,124,127,131,132,139,140,143,144,146,148,150,151,152,154,155,165,167,169,183,184,186,191,196,205,206],three_g:[71,85],thresh:[7,72,122],threshold:[1,18,29,48,49,52,56,61,121,148,150,159,160,179],through:[1,3,9,10,20,24,30,31,43,47,49,50,56,63,64,65,67,69,81,87,95,97,104,105,106,108,109,111,113,114,117,118,119,123,124,125,127,132,133,135,137,139,140,141,142,143,145,146,147,148,149,150,151,152,154,155,160,161,163,166,171,172,174,178,182,183,184,185,188,191,194,195,200,203,205],throughout:[42,87,109,111,121,149,160,174,178,189,203],thrown:124,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:61,thu:[3,14,32,45,49,51,52,55,56,59,61,69,106,116,119,121,124,125,127,136,154,156,157,159,163,164,165,166,168,174,178,179,180,181,183],thumbnail:[73,133],thunder9:39,thunder:39,ti:[109,145],tial:[65,67],tian:144,tibco:192,tibshirani:159,tic:183,tick:[3,105,154,157,167],tick_param:[56,167],ticker:167,ticket:109,tid:113,tidi:180,tier:148,tight_layout:[18,31,35,38,40,43,56,114,167,190],tiktok:152,tile:[73,106,167],tile_s:73,till:[58,166],tim:200,time:[0,1,7,8,9,13,14,29,31,32,33,35,36,38,39,40,41,44,45,47,51,52,54,55,56,58,60,61,62,63,64,65,67,68,69,71,79,82,85,87,105,106,107,108,109,111,113,115,116,119,121,122,124,125,127,129,132,133,135,136,137,138,139,140,141,142,143,145,148,149,150,151,152,155,156,157,160,163,164,165,166,167,168,169,172,174,178,179,180,182,183,184,185,186,187,190,192,198,199,200,203,205,206],time_model:40,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[154,155],time_step:135,time_t:36,timeit:[167,191],timelin:[100,151],timeseri:46,timeseriesclassif:29,timestamp:[39,118,126,146,148],timestap:46,timestep:[39,46,135,145],timnit:[107,186],tin:159,ting:178,tini:[33,167],tiniest:174,tip:[17,23,87,109,179],titan:161,titanic_train:22,titanic_train_and_test:161,titl:[15,22,29,30,31,32,33,34,38,39,40,41,44,47,49,50,52,56,57,58,61,66,68,71,72,80,81,82,85,87,88,114,115,116,118,121,125,126,127,132,140,141,145,154,155,157,159,167,168,169,182,184,190,192,198,200,201,202],title1:167,title2:167,title_cas:102,titlepad:[64,146],titles:[64,146],titleweight:[64,146],tj:39,tkt:145,tl:36,tl_start:36,tld:61,tmp:[12,25,29,30,31,33,37,38,39,40,43,68,72,81,127,141,145,183],tmp_folder:183,tmp_folder_path:[29,30,31,33,40,43,68],tmp_zip_path:40,tn:[54,61,71,85,179],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:61,to_categor:[32,40,204],to_csv:[68,81,171],to_datetim:[1,14,36,39,46,69,178],to_devic:33,to_drop:69,to_fil:3,to_fram:[125,171],to_lat:31,to_numer:[36,58,69],to_numpi:[46,127,178],to_pandas_datafram:[9,105],to_period:146,to_plot:69,to_print:137,to_pydatetim:126,to_renam:125,to_replac:175,to_seri:39,toarrai:79,tobacco:106,tocilizumab:1,todai:[69,113,117,141,143,147,148,150,152,160,161],todens:142,todo:138,toe:183,togeth:[0,1,3,7,8,14,39,41,43,48,51,52,69,98,109,115,121,122,123,124,129,135,143,149,154,157,160,164,166,168,175,183,184,185,192,205,206],toggl:106,toh:30,toi:[18,157,160],token:[45,139,142,145,185],tokyo:[14,129,192],tol:58,told:109,toler:[127,152],tolist:[39,40,46,51,157],tom:[24,174,185,203],tomato:[40,180],tomomi:182,tomorrow:204,tone:107,tong:144,tongchuan:39,too:[18,32,49,50,51,52,54,55,56,59,60,63,66,68,79,113,114,116,126,135,136,146,149,150,154,155,156,160,163,166,172,174,178,179,180,183,184,206],took:[17,20,40,52,109,160,167,169],tool:[7,41,53,56,61,104,106,107,108,111,117,118,119,122,125,127,135,147,148,149,150,152,155,160,168,170,178,180,181,183,184,186,187,191],toolbox:[119,160],toolchain:149,toolkit:[107,149],tooltip:113,top:[3,7,16,30,31,34,41,43,47,52,54,56,59,66,79,87,89,97,106,109,116,123,124,127,144,147,148,151,154,155,156,168,171,179,180,183,191,199,200,207],top_pol:39,top_sen:39,top_tweet:39,top_vol:39,topic:[1,104,107,108,109,115,117,121,122,123,124,147,152,201,202],topilimag:33,topolog:30,toppredict:172,torch:[31,33,38],torchvis:[33,38],torgo:60,toronto:[132,139,166],tort:[97,98,183,184,185],total:[7,29,30,31,35,36,37,38,39,41,42,45,50,52,53,56,58,59,60,61,62,63,69,71,79,80,82,85,97,113,116,121,122,123,124,134,139,151,154,156,157,159,164,167,168,169,178,184,198,204,205],total_bedroom:[63,79],total_incom:184,total_len:31,total_na:53,total_profit:36,total_promo:69,total_room:[63,79],total_s:132,total_sum_squar:82,total_var_i:134,total_var_x:134,total_variation_loss:134,total_volum:184,totalbath:56,totalbsmtfin:56,totalbsmtsf:56,totallot:56,totalporch:56,totalprod:[116,190],totalprofit:36,totalsf:56,totensor:[33,38],totrmsabvgrd:56,toucantoco:109,touch:[62,63,71,85,119,174],touch_scr:[71,85],touch_screen:[71,85],touchscreen:[71,85],tour:113,toward:[61,80,109,117,124,142,143,159,169,175,184,188],towardsdatasci:[119,192],tp:[54,61,71,85,179],tpr:[61,179],tpsnva:109,tqdm:[31,38,87],tqdm_notebook:38,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:61,trace:133,traceback:[87,124,125,126,127,191,205],track:[3,35,37,41,47,49,98,106,107,109,117,123,126,141,142,150,151,160,167],tractabl:135,trade:[51,58,71,85,137,139,150,159,166,174,181],tradeoff:[7,54,59,71,85,122],trader:[39,142],tradit:[3,47,56,106,109,121,139,149,150,151,152,170,174,182,192,203],tradition:[109,148,150],traffic:[107,118,119,149],trail:[61,124,173,184],train:[9,10,20,29,35,39,44,45,46,47,50,52,58,64,65,67,68,80,89,96,103,109,111,117,119,121,125,131,132,134,135,137,138,139,141,142,143,144,145,146,148,149,152,154,156,157,159,160,161,162,163,165,166,167,168,169,172,173,175,176,178,179,182,186,187,188,194,196,197,198],train_acc:[132,159],train_accuraci:[41,145],train_batch:140,train_d:33,train_data:[29,38,51,52,54,55,59,63,71,79,85,131],train_data_path:[71,85],train_dataset:[35,135],train_df:[87,89,142],train_dict:145,train_dir:132,train_dl:33,train_fold:132,train_funct:30,train_i:[39,163],train_imag:[43,132,140],train_index:159,train_label:[29,38,43,52,132],train_length:140,train_load:[33,38],train_log:87,train_loss:[29,31,33,41,132,141,145],train_nam:[68,132],train_on_batch:[132,194],train_op:141,train_path:42,train_respons:68,train_rms:146,train_save_path:68,train_scor:66,train_siz:[33,66],train_solution_bounding_box:42,train_step:[35,37,134,141,145],train_test_split:[29,31,32,34,40,41,51,52,53,54,55,56,58,59,60,61,62,63,66,79,80,81,88,143,146,159,161,163,164,167,168,169,172,173,175,178,179,182,198,200,201,202],train_url:68,train_va:31,train_vector:142,train_x:[31,39,163],trainabl:[29,30,35,37,42,64,131,135,139,140,172,194],trainable_vari:[131,137,138,141],trainable_weight:[35,37,135],trainhistori:[47,49,50],training_block:135,training_data:[9,105],training_data_preprocess:[63,79],training_fin:[71,85],training_hour:58,training_imag:42,training_input_data:[63,71,79,85],training_label:[63,71,79,85],training_loss:66,training_s:66,training_sc:44,training_seq_len:141,training_step:[33,131],trainset:44,trait:69,traj1:137,tran:[178,179,180],trane:[65,67],trang:87,transact:[6,17,129,154],transcrib:[142,152],transcript:152,transduct:[150,154],transfer:[31,33,51,54,123,131,136,140,143],transform:[7,22,30,33,38,41,43,44,46,47,48,49,51,52,53,54,55,56,58,59,62,63,64,68,69,73,81,87,88,104,114,122,124,127,131,132,134,135,139,142,143,144,146,147,148,150,155,157,163,165,167,168,174,198,200,201,202,203,205],transform_fpcoor_for_tf:144,transformed_df:171,transformed_feature_df:171,transformed_label_df:171,transformer_block:139,transformerblock:139,transfrom:62,transit:[104,139,151,160],transition_block:139,translat:[43,98,109,119,136,142,148,151,174],transmit:119,transpar:[117,152,188],transpos:[29,38,41,47,63,79,81,87,124,131,132,134,144,145,184,206],transposed_matrix:[184,206],transposed_row:[184,206],trap:[117,150,188],trash:182,travel:146,travers:[31,184],treat:[1,7,42,58,61,71,80,85,117,122,124,125,126,127,129,139,149,150,183,188],treatment:[117,124,142,182,188],tree:[31,51,54,55,56,57,64,71,73,85,137,150,156,157,160,161,163,168,172,173,174,198,203],tree_best:[59,60],tree_clf:[59,71,85],tree_grid:52,tree_list:157,tree_method:56,tree_param:52,tree_pr:52,tree_reg:60,tree_reg_sc:60,tree_scor:[71,85],treebeardtech:0,trees_grid:159,trekhleb:[97,98,183,184,185],tremend:7,trend:[14,51,54,81,82,107,109,113,117,118,142,166,186,188,190],treshold:1,trevor:159,tri:[37,52,58,60,65,67,156,166,174],triag:149,trial:[50,150,172,182],triangl:[167,168],triangular:154,trick:[32,37,113,117,131,150,163,164,165,166,174,183,188],tricki:165,trickier:[129,192],trigger:[0,117,124,148,149,151],trim:141,trip:[23,107,186],tripadvisor:157,tripl:[124,184,185,206,207],triplestor:192,triu:66,triumphantli:150,trivial:[87,136,139],troubl:[64,113,154,159],trouser:[30,41,43,52],truck:[132,136],true_boolean:[184,206],true_count:138,true_label:43,true_positive_r:61,truli:[51,56,59,66],trump:185,truncat:145,truncated_norm:[137,145],trust:[59,60,62,63,68,88,109,113,152,159,163,164,165,167,178,182,195],truth:[113,124,139,184,185,200,204,206],ts:146,tsne:[168,198],tstep:137,tsv:[18,24,121],ttest_ind:[18,121],tthoe3gp290gz:61,tue:59,tumor:154,tunabl:[52,204],tune:[49,51,52,61,62,68,71,80,82,85,89,131,146,159,160,162,164,174,175,177,197],tup:126,tupl:[33,34,51,126,139,140,144,168,182,183,192,198,206],turn:[3,7,30,33,35,41,43,50,52,80,147,199,203],turntabl:153,turori:149,turtl:124,tuskege:[117,188],tutor:147,tutori:[1,29,31,35,61,73,82,115,124,125,132,133,140,142,147,166,180,182,183,184,185,194,200],tv:109,tval:[18,121],tweak:[90,115,155,173,175],tweet:[104,123,142],tweet_vol:39,twenti:93,twice:[124,145,183],twin:169,twinx:[116,190],twitter:[104,123,192],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,34,37,39,40,41,43,45,47,48,50,51,52,54,55,56,58,59,61,62,63,64,65,67,69,71,77,79,85,87,88,89,95,97,98,103,106,107,109,111,113,114,115,116,117,121,122,123,124,125,126,127,129,131,132,134,135,136,139,141,142,143,144,146,149,150,151,152,154,157,159,160,164,165,166,167,168,169,171,172,173,174,177,178,179,182,183,189,192,194,196,199,203,205,206],twofield:124,twon:137,tx:169,txt:[31,73,132,137,141,145,169,174],type:[1,6,7,9,15,19,20,29,30,31,33,35,37,39,40,41,42,45,47,48,50,51,52,54,55,59,60,61,62,63,66,69,71,73,79,81,85,98,99,105,106,107,111,114,115,116,117,118,121,122,123,125,126,127,129,131,135,137,139,140,143,144,145,146,148,150,152,154,155,160,162,163,164,165,168,169,178,179,180,181,182,183,186,187,188,189,190,191,192,193,194,196,197,198,199,200,201,202,204,205],typeerror:[97,98,124,126,127,185,191,205],typhoon:142,typic:[3,8,14,22,32,45,47,48,49,51,52,58,64,66,71,79,80,85,104,111,118,119,121,122,124,127,131,136,146,148,149,150,151,152,159,160,163,164,171,178,179,183,200],typo:142,u10:[124,191],u2:192,u:[68,116,137,140,145,157,184],u_:137,u_k:137,ua:[15,205],uber:[107,186],ubuntu:149,ucb:189,uci:[50,60,143,145],ucimlrepo:143,ucl:[174,203],ucla:151,uclaacm:178,ufo:169,ufunc:7,ugli:[113,184],ugqbzwiq8iiufasvi9dz:61,ugqprfa:61,uhbmv7qcey4:58,ui:[106,149,199],uid:151,uid_iso_fips_lookup_t:14,uint8:[31,37,42,72,73,124,132,133,134],uk:[14,137,169],ultim:[81,97,98,118,119,174,203],ultra:139,um:52,umap:30,umap_3d:30,umap_:30,umap_df:30,umbrella:[123,192],umn:109,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:61,umr_sum:191,umt:189,un:[169,184,206],unabl:[30,56,59,60,62,63,66,68,88,159,163,164,165,167,178,182],unacc:59,unaccept:152,unaffect:124,unalign:127,unalt:80,unambigu:124,unansw:109,unbalanc:[68,71,85,160,165,196],unbatch:135,unbias:[150,156],uncertain:137,uncertainti:[52,168],unchang:[143,175,184],uncheck:83,uncom:14,uncondition:[183,205],unconstrain:40,uncorrel:[68,156,159],uncov:[19,56,111,180,181],undefin:[7,18,183],under:[0,22,31,40,47,49,50,52,53,65,67,69,88,89,106,114,117,121,123,124,144,149,150,151,152,159,160,165,172,175,176,179,180,185,191,192,196,198,199,200,201,204,207],under_name_scop:144,undercomplet:30,underfit:[63,64,65,67,163],undergradu:69,underli:[61,66,80,81,82,104,111,114,121,136,142,166,174,178,191,200,203,204],underlin:167,undermin:113,underneath:61,underrepres:[71,85],underscor:[105,123,183,184,192,206],underset:[87,160],understand:[7,16,23,30,31,43,45,47,50,52,79,80,81,82,83,104,105,106,107,108,111,112,113,114,116,117,118,119,121,124,125,131,136,142,143,146,147,150,151,152,154,160,161,163,164,165,166,168,169,170,172,174,175,178,179,180,182,184,185,186,188,189,192,201,202,203],understood:[7,56,111,118,124,183,189],undertak:[83,109],undesir:28,undestard:161,undisclos:152,undu:83,unearth:56,unemploy:151,unet:135,unet_model:140,uneven:[154,171],unexpect:[50,96,125,150,166,183,205],unexpectedli:183,unf:56,unfair:117,unfamiliar:174,unfold:[52,113,145],unfortun:[18,105,160,167],unhandl:183,unhealthi:106,unhelp:171,unicorn:150,unidata:192,unifi:[111,143,144,150],uniform:[18,35,37,45,49,57,73,121,135,137,138,143],uniformli:[7,156,167],unimagin:148,unimport:68,unindex:[124,184],uninform:58,unintend:[28,107,117,188],unintention:183,union:[83,117,124,127,184],uniq:53,uniqu:[5,14,22,40,48,49,52,53,58,59,66,69,72,79,82,83,98,106,123,125,127,136,142,146,150,160,167,169,171,174,176,178,183,184,185,192,201,202,204,206,207],unique_list:98,unique_numb:184,unique_valu:98,uniqueag:185,unit:[0,12,30,32,41,43,44,45,47,49,50,55,60,64,79,87,106,107,116,118,123,124,129,132,136,139,141,143,149,150,151,156,166,174,178,179,180,186,192,194,204,205],unittest:[3,14,22,24,49,50,55,79,97,98],univari:[7,80,135,182],univers:[14,66,117,121,137,147,152,166,192,204,205],unix:[46,148],unknown:[59,60,121,137,141,154,160,166,183],unknowningli:56,unlabel:[131,150,154,159,167,168,174,198,203],unlaw:117,unless:[22,47,49,50,58,127,146,183,205],unlik:[33,58,62,68,69,82,87,124,150,156,159,184,185,191,194,201,202,206,207],unlimit:[184,206],unlock:[26,180],unnam:[70,171,172,173,178,179,180],unnecessari:[124,129,166,167],unord:[79,184,185,206,207],unpack:[3,127,154,179,184],unpickl:205,unpreced:117,unprun:159,unqualifi:183,unrel:3,unreli:174,unrol:145,unsaf:124,unscal:[41,60],unse:41,unseen:[41,43,52,66,159,174,182],unsort:98,unsorted_list:98,unspecifi:[45,124],unsplash:[103,110,112,130,153,170,181],unsqueez:[31,33],unstabl:[64,150,160],unstack:43,unstructur:[6,118,119,148,174,188,203],unsuccess:150,unsupervis:[37,52,69,121,147,150,152,154,159,173,174,182,195],unsupervised_learn:167,unsupport:[174,184,191,206],unsur:15,unsurprisingli:169,until:[31,33,52,57,63,69,80,97,108,124,129,145,150,155,156,159,167,168,174,183,184,192,198,203],untouch:127,untrain:37,untruncated_norm:144,unununium:[184,206],unus:[124,180],unusu:[124,166],unweight:179,unwrap:117,unzip:[37,38,132],up:[0,3,5,7,14,18,22,33,37,39,41,42,48,50,51,52,54,55,56,58,60,62,64,66,68,69,71,85,89,90,91,97,104,105,106,107,108,109,111,113,117,121,122,123,124,126,127,129,132,137,139,140,143,144,146,149,150,151,152,154,156,159,160,161,163,164,165,166,167,168,169,171,174,178,179,180,181,183,184,185,192,203,206],up_sampling2d:[35,37],up_sampling2d_1:37,up_sampling2d_2:37,up_sampling2d_3:37,up_shifted_imag:89,up_stack:140,upbeat:109,upblock:35,upcast:[7,122],upcom:7,updat:[0,31,37,38,43,45,50,51,54,57,65,67,80,81,86,87,88,97,98,114,118,131,133,134,135,136,137,138,141,145,146,149,150,160,161,163,164,167,168,174,175,187,194,198,199,200,201,204],update_st:[35,37],update_trac:30,update_weight:137,upfront:109,upgrad:[104,114,149],upload:[9,20,105,106,123,151,168],upload_d:59,upon:[41,52,66,106,117,119,129,164,168],upper:[7,30,32,53,97,126,129,131,145,150,167,168,184,205],upper_cas:102,uppercas:185,uppered_anim:205,upsampl:[29,30,135,140],upsamplin:37,upsampling2:37,upsampling2d:[35,37,140],upward:135,uranu:207,urban:[115,190],url:[0,3,42,59,62,73,106,119,133,134,135,138,144,167,178,179,186,188],url_for:169,url_setosa:62,url_versicolor:62,url_virginica:62,urllib:[63,71,73,79,85,87,132,167,183],urlopen:73,urlretriev:[71,85,87,132,167,183],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,34,36,37,39,40,42,44,45,46,47,48,49,51,52,53,54,55,56,57,59,60,62,63,68,69,71,73,74,77,79,80,82,83,85,87,89,91,94,96,103,104,105,106,107,108,111,112,115,116,117,118,119,121,122,123,124,125,126,127,129,130,131,132,133,135,136,137,138,139,140,141,143,144,145,146,148,149,151,154,155,156,157,159,160,161,162,163,165,166,170,171,173,175,176,181,182,183,184,186,187,188,189,191,192,194,195,196,198,200,203,205,206,207],usa:151,usabl:[113,148],usag:[5,39,51,56,61,62,69,79,106,107,117,122,154,160,164,169,171,178,182,183,184,186,187,206],usd:36,usd_tri:36,usda:180,usdt:[39,46],use_bia:[35,139,140,144],use_column_width:73,use_inf_as_na:88,use_na_proxi:125,useless:124,user:[6,17,23,45,56,59,64,103,104,106,107,109,113,114,115,116,117,118,119,124,125,126,127,140,142,145,146,149,150,152,174,182,183,185,186,187,188,191,198,199,203,205],userwarn:[30,88,114,127,145,167,168,172,179,190],usf:145,usr:[125,126,127,172,179,183,191],usual:[7,42,48,50,51,52,54,56,61,68,71,85,87,104,108,109,114,118,122,124,125,126,127,131,135,136,137,139,145,146,148,149,150,152,154,159,160,165,166,168,174,175,180,183,184,185,200],ut:156,utf:[15,141,169],util:[31,32,33,36,38,39,40,41,42,44,46,56,59,60,68,72,80,81,82,83,97,122,125,126,133,138,140,142,144,149,150,151,164,182,183,204],utilis:42,utilitarian:150,uvicorn:72,v0_8:64,v1:[14,36,37,59,73,124,125,126,127,134,137,141,145,149],v2:[137,149],v2rayn:39,v3:[39,124,149],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:61,v7:61,v7t09o1tbxdw8p7:61,v:[1,3,39,58,125,126,127,166,168,197],v_:137,v_measure_scor:168,vaccin:[11,151],vae:31,vae_model:31,vagu:[109,174],val1:97,val2:97,val3:97,val4:97,val:[31,57,87,97,99,141],val_acc:[33,40,49],val_accuraci:[32,40,41,72,132,140],val_d:33,val_dataset:35,val_dl:33,val_load:33,val_log:87,val_loss:[30,31,33,34,39,40,46,49,50,64,72,132,140],val_siz:33,val_subsplit:140,val_x:31,valdat:33,valid:[7,14,15,31,34,40,41,48,51,58,64,68,71,85,87,98,117,122,124,125,126,127,132,139,140,142,148,150,156,159,163,166,172,174,178,183,185,204],validation_data:[29,30,32,34,39,64,132,140],validation_dir:132,validation_epoch_end:33,validation_fract:58,validation_loss:66,validation_split:[39,40,41,46,49,50,72],validation_step:[33,140],valmont:113,vals1:191,vals2:191,valu:[1,3,6,8,14,15,18,22,29,30,31,32,34,37,39,40,41,42,43,44,45,46,47,48,50,51,52,54,55,57,60,62,63,65,66,67,68,69,72,73,80,81,82,83,87,88,89,90,101,102,105,107,108,111,114,115,116,117,118,119,121,122,123,125,126,129,131,132,134,135,136,139,140,141,142,143,144,146,148,150,151,154,155,156,157,159,160,161,162,163,165,167,168,169,171,172,174,175,176,178,179,180,181,182,185,188,189,192,197,198,199,200,201,202,203,205,206,207],valuabl:[7,80,82,142,151,159],value_count:[7,14,15,22,34,40,53,56,58,59,61,62,63,66,69,71,79,85,154,155,171,190],value_left:125,value_right:125,valueerror:[97,124,125,126,127,137,140,183,184,185,206],valueless:7,values_list:97,van:[185,205,207],vanderpla:[59,60,62,63],vanilla:[7,141],vanish:[136,139,141,143],vanooteghem:103,vanschoren:150,vapnik:61,var1:39,var2:39,var3:39,var4:39,var5:39,var_idx:57,var_tensor:45,vare:29,varepsilon_i:156,varepsilon_j:156,vari:[37,41,51,54,56,106,118,119,124,143,148,155,159,167,168,180,198],variabl:[7,22,31,33,38,40,52,55,56,58,60,66,68,69,71,79,80,81,82,85,88,93,97,98,101,102,106,111,113,114,116,122,131,133,134,135,136,137,141,143,145,148,150,151,154,155,157,159,160,165,168,169,171,174,178,181,182,185,189,190,199,200,203,207],variable_nam:183,variables_and_typ:184,variad:183,varianc:[18,35,52,56,58,65,67,82,87,114,131,156,164,168,190,198],variance_inflation_factor:[56,66],variance_scaling_initi:144,variant:[61,136,167,183],variat:[40,49,134,135,139,144,160,168,183,204],varieti:[43,45,56,124,139,142,146,160,166,168,172,178,179,180,184,206],varinac:[65,67],variou:[16,28,30,37,40,41,52,56,61,64,69,82,83,90,95,104,106,107,112,113,115,116,117,118,124,125,127,136,139,140,142,143,148,149,151,152,153,154,156,160,171,173,174,180,182,185,190,192,203],vassilvitskii:167,vast:[7,22,104,119,122,142,148],vastli:37,vault:106,vc:40,vdf:39,ve:[7,28,31,52,80,87,107,109,111,117,122,123,124,125,129,139,143,146,156,160,166,174,179,183,184,186,192,199,205],vec:[31,87,156],vect_tensor:45,vector:[7,29,31,33,45,47,51,52,57,59,65,66,67,71,83,85,87,124,131,135,138,139,140,141,143,145,150,159,166,168,169,172,174,178,184,191,198,200,203,204,206],vectorregress:165,vegan:182,veget:181,vegetable_oil:172,vehicl:[136,146,203],veil:[115,190],veloc:[137,192],vend:148,venn:[120,188],venu:[106,107,183,207],verb:[142,183],verbos:[32,36,39,40,43,46,47,49,50,52,54,55,56,58,59,60,61,62,63,64,89,113,132,140,143,159,163,167],verdict:37,verghes:109,veri:[14,18,30,31,40,41,42,43,47,49,51,52,54,55,56,57,59,60,61,64,65,66,67,69,71,79,85,88,103,106,108,109,111,114,115,119,121,124,125,127,131,133,136,139,141,143,145,146,148,149,150,151,154,155,157,159,160,163,164,165,166,167,168,169,170,171,173,174,176,179,180,182,183,184,185,191,194,197,198,201,202,206,207],verif:[0,121],verifi:[33,41,47,49,50,60,79,101,102,115,116,126,139,150,154,161,167],verify_integr:[125,191],versa:[51,52,54,58,59,71,85,121],versant:192,versatil:[184,206],versicolor:[62,66,88,157],versicolour:[88,168,198],version:[1,7,22,29,33,36,47,48,49,50,51,52,59,61,80,88,106,111,121,124,125,126,129,134,136,140,144,145,149,150,154,161,163,167,168,175,182,185,191,198,207],version_info:[87,167],versu:[160,182],vert:18,vertex:52,vertic:[3,18,42,113,121,124,168],verticalalign:72,veryde:134,verydeep:134,vet:[113,125],vf4l3peswap51eb6clsmx7uuklt158tt0o:61,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:61,vgg16:140,vgg19:140,vgg:139,vgg_data:134,vgg_dir:134,vgg_layer:134,vgg_net:134,vgg_network:134,vgg_path:134,vgg_url:134,vgood:59,vhigh:59,vhx8dhywgnjy2:61,vi:[125,126,127,132,155,165],via:[7,69,114,123,125,126,127,134,140,160,165,166,167,168,172,183,198],viabil:106,vibranc:113,vibrant:174,vicdemand:[51,54],vice:[51,52,54,58,59,71,85,121],vicin:[1,8],viciou:113,vicki:[184,206],vicomt:113,vicpric:[51,54],victor:[29,146],victoria:[51,54],vid_4_10520:42,video:[45,118,119,121,123,124,132,134,136,144,152,160,163,165,171,174,176,177,180,181,182,185,188,203],view:[7,30,31,33,38,41,49,61,69,88,104,105,106,109,113,119,123,139,140,164,169,179,180,191],view_init:[165,196],viewpoint:[137,139,144],viewport:15,vinegar:172,vinod:33,viola:160,violat:[117,152,188],violenc:113,violent:142,violinplot:58,virginica:[62,66,88,157,168,198],viridi:[39,80,159],virtual:[104,106,142,149,182],virtuoso:192,visibl:[30,42,59,109,137,139,143],vision:[33,43,45,89,104,125,136,139,144,150,160,169,171,174,193,203],visiontransform:139,visit:[104,119,139,144,146,156,178,179,186,188],visitor:157,visual:[0,1,5,8,14,15,16,18,19,30,42,47,48,51,52,53,54,55,56,60,61,71,73,79,80,81,85,89,104,105,106,107,117,119,121,122,124,125,126,127,131,132,134,136,139,140,143,146,147,148,154,155,156,157,159,160,164,165,167,168,169,171,172,174,175,178,181,182,183,186,188,189,193,195,198,200,203],visualcapitalist:109,visualis:[31,61,165,178],visualize_input:72,vital:[56,142],viz:167,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:61,vladimir:61,vlfeat:134,vm:[104,105,106],vm_size:[9,105],vmail:[52,156],vmax:[31,39,154],vmin:31,vocab2ix:141,vocab:141,vocab_processor:145,vocab_s:[141,145],vocab_to_ix_dict:141,vocabulari:[141,145,154],voic:[52,136,142,156],voila:[115,157],vol:39,volatil:50,voldemort:192,volt:183,voltag:183,volum:[7,46,104,106,142,148,149,150,152,178,180,187],volume_btc:39,volume_dollar:39,volumetr:136,volunt:117,voluntari:117,voluntarili:117,von:133,voom:183,vooooom:183,voronoi:[155,167],voronoi_plot:167,vot_classifi:51,vote:[121,147,151,156,159,160,172],votingclassifi:51,vs:[33,39,40,43,57,61,69,71,85,90,106,109,111,114,115,117,137,148,149,150,154,161,163,167,171,172,178,179,180,182,189,195,200],vs_code_with_a_notebook_open:182,vscode:191,vscodecod:39,vstack:[124,165,196],vthyuhdilvw8hkemhmr:61,vu:[114,190],vue:113,vulner:[114,125,190],vutil:38,w0:145,w1:[137,145],w2:[137,145],w3:137,w3school:[183,184],w:[31,33,65,67,73,79,87,88,89,121,131,132,137,140,141,144,145,146,160,164,166,167,168,183,192,197,198],w_0:160,w_:[141,157],w_box:144,w_crop:144,w_h:145,w_hh:145,w_hx:145,w_i:[157,160,166,168,197],w_img:144,w_j:[160,164],w_n:159,w_xaxi:[168,198],w_yaxi:[168,198],w_yh:145,w_zaxi:[168,198],wa:[1,11,16,28,32,33,40,41,45,47,51,52,54,55,56,59,60,61,62,63,79,81,97,107,109,111,113,117,118,119,121,124,126,127,136,139,140,143,144,146,148,149,151,154,155,156,157,160,167,168,169,171,172,173,174,182,183,184,185,186,189,198,200,203,206,207],waffl:[27,113],wai:[0,1,3,7,11,18,30,37,41,43,45,48,51,52,54,55,56,58,59,60,61,62,63,64,71,73,76,79,81,85,87,103,104,107,108,109,113,114,115,116,117,118,119,121,122,123,124,127,129,130,136,137,139,142,143,144,145,147,148,149,150,151,154,155,156,159,160,161,163,164,166,167,168,169,171,172,173,174,179,180,182,183,184,185,189,190,191,192,199,200,203,205,206],waistlin:93,wait:[1,106,108,132,133,140,163,174,185],wait_for_complet:[9,105],wait_for_deploy:[9,105],wake:150,wale:[51,54],walk:[1,31,53,58,95,123,125,151,163,171,173],wall:[137,168,172,198],walter:145,want:[1,3,7,8,14,16,17,18,23,30,40,41,43,45,48,49,50,51,52,53,54,55,58,59,60,61,64,65,67,71,79,82,83,85,87,88,104,106,107,109,114,117,118,119,121,122,124,125,129,136,137,139,140,142,144,146,150,154,157,160,161,163,164,165,166,168,169,171,173,174,176,178,179,182,183,184,185,189,190,192,196,198,199,200,203,205,206],wanted1:97,wanted2:97,wanted_peopl:97,ward:[138,154],warehous:[104,148],warm_start:[58,159],warn:[30,36,37,40,50,51,52,53,54,55,56,58,59,60,61,69,71,73,85,88,114,124,125,136,139,140,141,143,146,159,161,163,167,168,172,179,190,198],warn_singular:[114,190],warnopt:69,warrant:[32,152,155],warranti:[22,47,49,50,97,98,183,184,185],warren:145,warrior:160,wasn:109,wast:[107,115,148,152,184,190],wat:145,watch:[58,119,133,136,174,175,178,179,180],water:[107,194],waterfowl:[114,190],wavenet:136,wb:[29,30,31,33,37,38,40,43,68,73,134,138,169],wc:3,wcss:155,wd:68,wdrfosfa13slih0epo:61,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,33,34,37,40,41,42,45,46,48,49,50,51,53,54,55,56,57,59,60,61,62,63,64,65,66,67,68,69,71,72,73,79,80,81,82,83,85,87,88,89,103,104,105,106,107,108,109,111,114,116,117,119,121,122,123,124,125,126,127,129,131,132,134,135,136,137,139,140,141,142,143,144,145,146,147,148,149,150,151,154,155,156,157,159,160,161,162,163,164,165,166,167,168,169,171,172,173,174,175,176,178,179,180,182,183,184,185,186,188,189,190,191,192,193,196,198,199,200,203,204,205,206,207],weak:[48,56,57,58,122,146,150,154,159,160,162,164,179],weaker:1,weapon:[117,184,206],wear:[174,203],wearer:6,weather:[107,146],web:[5,40,96,104,105,106,107,113,118,119,121,143,149,151,152,154,170,176,182,185,186,195,207],webapp:151,webservic:[9,105],websit:[104,119,137,139,151,152,157,174,178,180,182,203],wechat:39,wechat_fil:39,wechat_files_comput:39,weeight:166,week:[39,51,52,54,109,146],weekend:109,weekli:[14,146,151],weigh:[58,160,180],weight:[7,18,30,33,35,37,39,40,41,45,47,49,51,54,56,58,59,60,61,62,64,65,66,67,68,71,72,79,85,86,87,89,105,109,121,124,131,133,134,135,137,138,139,141,142,143,144,145,146,150,156,157,159,164,165,166,167,168,169,171,172,173,175,179,180,191,194,200,201],weight_1:146,weight_2:146,weight_decai:35,weightag:56,weights_init:38,weights_list:137,weird:174,welcom:[147,182,184,205,206],well:[3,5,15,18,30,31,37,40,41,42,45,47,48,49,51,52,55,56,58,59,60,61,62,63,66,68,69,71,74,76,79,81,82,83,85,87,88,93,94,108,109,111,113,114,116,118,119,121,122,123,124,125,126,127,129,136,137,139,140,142,144,146,149,150,154,155,156,159,160,164,166,167,168,173,174,176,178,179,180,182,183,185,189,191,194,197,200,203,207],went:[10,41,48,51,54,109,122,174,183],wer:178,were:[7,10,12,16,20,31,40,41,45,49,51,52,54,55,59,60,62,63,64,68,71,74,79,81,85,106,108,109,117,121,123,124,125,129,135,141,146,148,149,151,155,156,160,164,167,169,174,178,179,183,185,188,192,193,203,205],west:79,wget:139,wh:145,what:[1,7,10,16,17,18,21,26,31,37,41,49,50,51,52,54,55,56,57,58,59,62,64,65,67,68,69,71,79,80,85,87,95,103,107,108,111,114,116,117,118,121,122,123,124,125,127,129,133,136,137,143,145,149,150,151,153,154,160,164,166,167,168,169,171,173,175,178,179,180,182,183,185,186,192,193,199],whatev:[59,60,87,109,136,139,163,166,174,183],wheat:[174,203],wheel:152,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,36,37,41,43,45,47,48,49,50,51,52,54,55,56,58,59,60,61,62,63,64,65,66,67,68,71,79,80,81,82,83,85,88,90,103,106,108,109,111,113,114,115,117,118,119,121,122,123,124,125,126,127,129,132,135,136,139,140,141,142,143,146,148,149,150,151,152,154,156,157,159,160,163,164,165,166,167,168,169,171,172,173,175,176,178,179,181,182,183,184,185,187,188,189,191,193,194,198,199,200,203,205,206],whenev:[45,124,149,150,166],where:[2,7,12,14,17,25,28,29,31,33,34,40,41,43,47,48,51,52,53,56,57,60,61,63,66,69,71,72,79,82,83,85,87,97,106,107,108,109,111,113,114,115,117,118,121,122,123,124,125,126,127,129,135,140,142,143,146,148,149,150,153,155,156,157,159,160,163,164,165,166,167,168,169,171,174,175,176,178,179,180,182,183,184,185,186,188,189,191,192,198,199,200,203,206],wherea:[31,42,52,56,59,61,71,85,124,165,174,179,182,183,184,196,203],wherefor:141,wherev:183,whether:[7,22,23,29,32,37,48,49,50,52,53,60,82,88,97,98,105,114,117,121,122,124,126,127,138,139,140,142,148,150,152,159,160,168,171,174,179,182,183,184,185,203,205,206],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,37,40,41,43,45,48,49,50,51,52,54,55,56,57,58,60,61,62,64,65,66,67,69,71,73,77,79,80,81,82,85,87,88,97,98,104,105,106,107,108,109,113,115,116,117,118,119,121,122,123,124,125,126,127,129,131,134,135,136,139,140,141,142,144,145,146,147,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,171,172,173,174,175,178,179,180,182,183,184,185,189,190,191,192,194,196,199,200,203,205,206],whichev:146,whiskei:[70,171,172],whistl:[114,190],white:[3,39,49,50,52,72,114,115,132,137,139,151,152,168,179,182,185,190,198,207],white_bread:[70,171,172],white_win:[70,171,172],whitegrid:[53,64,88,146],whitesmok:[115,190],whitespac:[48,122,183,184,206],who:[31,45,48,52,58,69,79,104,108,109,111,117,118,121,122,148,156,160,174,183,184,185,188,189,206],whole:[14,41,45,52,54,55,56,58,59,60,61,64,71,79,85,121,131,136,138,148,149,151,152,156,159,164,168,171,174,184,190,194,206],whole_grain_wheat_flour:[70,171,172],wholesale_customers_data:164,whom:[97,98,118,147,183,184,185],whose:[58,64,114,124,127,137,145,183,184,206],why:[7,16,18,41,45,47,48,49,50,51,52,55,62,68,69,74,80,87,90,95,103,106,107,108,109,111,117,121,122,124,129,132,154,155,156,160,161,165,167,168,172,174,175,179,180,183,186,188,189,192],wide:[45,56,63,80,81,82,104,106,117,124,127,136,138,139,143,144,146,148,149,152,160,162,184,187,192,206],wider:[121,151,166],widespread:[142,160],widget:[9,105],widow:69,width:[1,3,14,15,31,33,35,48,62,63,71,72,85,88,113,115,121,122,125,126,127,132,134,135,139,140,155,157,159,167,168,169,171,175,176,178,180,183,190,198],width_multipli:139,width_shift_rang:32,wif:145,wifi:[71,85],wifi_count:[71,85],wiki:[3,133],wikimedia:[62,133,136],wikipedia:[3,45,119,121,164,174,192,193,203],wild:[31,125,154,169],wildfir:142,wildli:[163,172],william:121,willing:37,willingli:7,willpow:87,win32:205,win:[59,137,139,145,160,164],wind:137,window:[14,40,46,123,132,142,168,183,185,192,205],window_s:46,wine:[50,64,69,70,171,172],wine_feature_col:50,wine_feature_row:50,wine_schema:50,winedf:50,winefeatur:50,winefeaturessimpl:50,winefeaturessmal:50,winelabel:50,winelabelssmal:50,winequ:50,wingspan:114,winner:160,winston:58,winter:[17,111],wirefram:109,wisdom:[51,156],wise:[7,56,124,127,135,139,140,141,164],wish:[124,126,129,184,185,205,206],with_column:24,with_info:140,with_titl:31,withdraw:117,withheld:117,within:[6,33,48,49,50,52,56,58,79,88,105,108,109,111,114,115,117,118,121,122,123,143,144,149,155,164,168,178,182,183,184,191,198,205,206],without:[0,1,4,16,18,21,22,34,40,45,47,49,50,52,54,59,62,66,83,97,98,106,109,113,117,121,124,125,127,131,139,142,143,148,150,163,164,165,168,169,174,183,184,185,196,198,203,206],wkly:145,woke:161,woman:[52,106],women:[117,188],won:[7,51,54,58,62,109,124,129,136,137,139,150,163,164,166,174,200,203],wonder:[47,50,107,113,129],wood:[70,115,171,172,190],wooddecksf:56,word1:184,word2:184,word:[1,3,31,41,43,45,51,56,61,71,85,93,95,98,108,112,114,117,119,121,122,124,136,138,139,141,142,143,144,145,146,150,156,159,160,164,166,168,174,175,178,182,183,184,185,188,189,190,200,203,205,206],word_count:[98,141,145],word_index:[183,205],word_list:141,wordcloud:3,wordnet:139,words_length:183,work:[1,3,4,7,11,18,19,24,30,31,33,37,41,43,45,47,48,51,54,55,56,59,60,61,62,63,65,67,68,69,71,76,77,79,80,81,85,87,88,90,95,104,105,106,107,108,109,111,113,117,118,119,121,122,123,126,127,129,131,132,133,136,140,141,143,144,146,147,148,149,150,151,154,155,156,157,159,161,163,164,166,167,168,169,170,171,172,173,174,178,179,180,181,183,184,185,188,189,191,198,199,200,203,205],workbench:[107,186],workbook:123,workclass:53,workflow:[0,56,88,105,106,107,109,117,125,148,149,152,163,186],workload:[106,142,148],workplac:[6,109],worksheet:123,workshop:125,workspac:149,workstat:106,world:[0,7,18,28,29,33,36,38,40,41,43,47,48,52,55,59,60,62,64,82,98,113,117,119,122,123,125,127,132,136,139,143,144,145,146,148,149,151,152,156,160,161,166,169,174,178,183,184,185,188,191,192,195,203,205,206,207],worldwid:[106,117],worri:[104,121,174,183],wors:[43,49,150,159,167,173,194],worst:[61,178,179],worth:[6,32,50,68,112,114,139,159,160,161,168,174,185,190,203],would:[1,7,11,14,16,18,23,24,30,31,37,41,45,49,51,52,54,56,58,60,61,62,63,64,68,69,71,76,79,85,87,93,95,109,111,118,119,121,122,124,126,127,129,135,136,143,146,150,151,154,155,156,159,160,161,163,165,166,167,168,169,171,173,174,178,179,180,182,183,184,192,198,199,203,206],wouldn:[7,118,160,183],wow:[49,51,54,59,63,167],wrangl:124,wrap:[30,33,68,73,116,131,146,149,183],wrapper:[33,73,124,125,146,183,205],wrestl:[7,122],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:61,write:[0,1,3,7,21,22,23,26,29,30,31,33,37,38,40,43,47,49,50,52,53,58,68,72,73,87,98,105,109,117,119,121,124,127,129,132,134,136,137,138,141,145,150,156,159,160,167,169,174,175,182,183,184,185,203,205,206],write_imag:73,writefil:205,written:[7,93,113,124,125,135,141,147,159,164,168,183,184,185,205,206,207],wrong:[1,14,43,49,58,117,119,121,139,150,160,167,183,184,185,206],wrong_nam:14,wrong_sampl:18,wrote:[49,138,185],wrt:53,ws:[9,105,191],wspace:[138,165,167,196],wsr4u5caj:61,wt:145,wts2:46,wu:113,www:[22,25,32,47,49,50,58,60,113,117,121,132,133,134,135,139,141,146,152,155,158,165,167,171,175,176,180,183,184,187,192,193,194,205],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:61,x0:144,x0_box:144,x1:[32,52,114,124,140,144,167,190,191,201,202],x1_max:52,x1_min:52,x1y1x2y2:144,x27:[59,60,62,63,159,163,164,165,167,178],x2:[32,52,114,124,167,190,191,201,202],x2_max:52,x2_min:52,x3:[32,114,190,191],x4:[114,190],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:61,x5:[114,190],x6:[114,190],x80:39,x86:39,x99ve:39,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,47,48,49,51,52,53,54,56,57,58,59,61,62,63,65,66,67,68,69,71,72,73,79,80,81,83,85,86,87,88,89,97,98,107,113,114,116,117,121,124,125,126,127,131,132,134,135,137,138,139,140,141,143,144,145,146,151,154,155,156,157,159,160,161,163,164,165,167,168,169,171,172,173,174,175,176,178,179,182,183,184,185,188,190,191,194,196,198,199,200,201,202,203,205,206],x_0:[135,145],x_1:[52,121,135,145,156,157,159,167,174,203],x_1p_1:121,x_2:[52,121,135,145,157,159,167,174,203],x_2p_2:121,x_3:157,x_4:157,x_:[18,135,137,157],x_batch:[87,135,167],x_center:[168,198],x_cluster_dist:167,x_data:[141,145],x_digit:167,x_digits_dist:167,x_dist:167,x_histori:80,x_i:[18,121,131,135,159,160,168],x_init:[80,167],x_int:80,x_j:[18,157,159,168],x_k:[137,159],x_m:156,x_max:52,x_min:[52,80],x_mm:167,x_n:[121,135,174,203],x_new:167,x_noisi:135,x_np_n:121,x_organ:34,x_pca:[168,198],x_po:137,x_poli:200,x_rang:[159,183],x_reduc:[168,198],x_representative_digit:167,x_set:[201,202],x_shape:135,x_shuffl:145,x_start:135,x_t:[135,145],x_test:[29,30,32,34,41,44,51,52,53,54,55,58,60,61,62,68,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],x_test_circl:159,x_test_noisi:[29,30],x_test_scal:[41,81],x_test_with_bia:81,x_train2:32,x_train:[29,30,31,32,34,39,40,41,44,46,51,52,53,54,55,56,58,60,61,62,64,68,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],x_train_add:89,x_train_batch:145,x_train_circl:159,x_train_combin:89,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:167,x_train_scal:[41,55,60,62,81],x_train_with_bia:81,x_tsne:[168,198],x_umap:30,x_val2:32,x_val:[31,56,87],x_valid:64,x_vif:66,xa:57,xarrai:124,xaxi:[88,198],xb:33,xception:140,xe2:39,xentropi:87,xfb:61,xfhxfw:144,xfit:[165,196],xfyplk79sjp:61,xgb:[56,58,68,164],xgb_clf:164,xgb_cv:164,xgb_pred:68,xgb_reg:56,xgb_search:56,xgbclassifi:[58,164],xgbclassifierxgbclassifi:164,xgboost:[51,58,146,160,161,162],xgboostclassifi:58,xgbregressor:[56,68,146,163],xgbregressorxgbregressor:[68,163],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:61,xi:[57,61,140],xit:61,xj:61,xk:137,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:61,xks2cxejztkqivxffffcr4:61,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:61,xl:179,xlabel:[18,22,29,31,32,33,34,36,38,39,40,41,43,44,52,57,58,59,61,62,63,68,71,80,81,82,85,88,114,127,132,137,140,141,145,155,156,167,168,178,179,182,190,198,200,201,202],xlim:[52,58,157,159,165,168,196,198,201,202],xmax:42,xmin:42,xor:124,xplzqjohaao63bfq05ntwlheg6anqrhcuin:61,xrp:46,xs:[57,126,140,175],xtick:[3,18,22,31,38,40,42,43,49,56,58,154,155,157,167,190],xticklabel:[41,71,85],xu:138,xw:61,xx1:159,xx2:159,xx:[52,167],xxl:179,xxxx:106,xy:[72,165,167,178,196],xytext:167,y0:144,y1:[57,144,167],y1x1y2x2:144,y212szmlszq:191,y2:[57,167],y3:57,y4:57,y5:57,y:[14,30,34,36,39,40,41,42,46,47,49,51,52,53,54,56,57,58,59,61,62,63,65,66,67,68,69,71,72,73,79,80,81,82,83,85,86,87,88,98,113,114,116,121,124,127,135,137,138,141,143,145,146,151,154,155,156,157,159,160,161,163,164,165,167,168,169,172,173,174,175,176,178,179,180,182,184,185,190,194,196,198,200,201,202,203,205,206],y_2:145,y_:137,y_batch:87,y_clr:[168,198],y_cluster_kmean:155,y_di:194,y_digit:167,y_dist:167,y_distribut:24,y_fit:146,y_gen:194,y_hat:159,y_histori:80,y_i:[52,57,80,82,83,157,159,160,164,175],y_init:80,y_j:52,y_k:137,y_lag_2:146,y_lag_3:146,y_lag_4:146,y_lag_5:146,y_lag_6:146,y_lag_:146,y_max:52,y_min:[52,80],y_output:[141,145],y_po:137,y_pred:[53,57,61,65,67,72,81,83,88,143,146,161,164,167,172,173,175,182,200,201,202],y_pred_100:53,y_pred_idx:167,y_pred_sklearn:[65,67],y_pred_test:[61,81],y_pred_train:61,y_predict:[34,86,175,200,201],y_predict_class:34,y_predicted_:175,y_predicted_cl:[86,175,201],y_prob:161,y_representative_digit:167,y_score:179,y_set:[201,202],y_shuffl:145,y_step_1:146,y_step_2:146,y_step_3:146,y_step_:146,y_test:[30,32,34,40,41,51,52,53,54,55,58,60,61,62,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],y_test_circl:159,y_test_class:40,y_test_prepar:[51,54],y_train2:32,y_train:[30,32,34,39,40,41,44,46,51,52,53,54,55,56,58,60,61,62,64,72,81,87,88,89,131,132,143,145,146,159,161,164,167,168,169,172,173,175,178,179,182,194,198,200,201,202,204],y_train_add:89,y_train_batch:145,y_train_circl:159,y_train_combin:89,y_train_partially_propag:167,y_train_prepar:[51,54],y_train_propag:167,y_true:[34,81,83],y_val2:32,y_val:[56,87],y_valid:64,ya:[61,87],yahoo:160,yam:[70,171,172],yandex:[56,160],yandexdataschool:87,yang:140,yaxi:[88,167,198],yb:33,ye:[7,47,52,105,106,116,117,152,156,159,174,183,185],year:[1,13,14,24,25,51,52,53,54,58,69,109,116,117,119,125,129,132,146,149,160,164,178,182,184,185,188,190,192,200,205],year_birth:69,yearbuilt:56,yeast:[70,171,172],yellow:[17,23,52,109,113,114,115,178,184,190,206],yellowbrick:69,yellowlabradorlooking_new:133,yet:[0,14,37,42,45,52,55,60,62,98,105,106,113,150,152,160,161,168,170,174,183,198],yetayeh:207,yf:160,yfit:[165,196],yfozmvgstfo5xi:61,yhat:39,yhat_ac:69,yi:57,yield:[31,33,42,52,61,87,116,127,160,163,164,183,190],yieldpercol:[116,190],yiyiwang0826:25,yizh:178,yk_temp:39,ylabel:[18,22,29,31,32,33,34,36,38,39,41,44,52,57,58,59,61,62,63,66,68,71,80,81,82,85,88,114,116,127,132,137,140,141,145,155,156,167,168,178,179,180,182,190,198,200,201,202],ylgnbu:[53,61],ylim:[43,50,140,165,196,201,202],ylorbr:[116,190],ymax:42,ymean:49,ymeanactu:49,ymin:42,yml:0,ymp6irqbiss3usmcdyxx:61,yogurt:[70,171,172],yolo:[69,144],york:[14,17,23,52,121,150,184,191],yoshua:[29,52,83,138,176],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,39,41,42,43,44,45,46,47,48,50,51,52,53,54,55,56,58,59,60,62,64,68,71,74,76,79,81,82,83,85,87,88,90,94,95,96,97,98,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,120,121,122,123,124,125,126,127,129,130,131,132,133,134,135,136,137,138,139,140,142,143,144,146,147,148,150,151,152,154,155,156,157,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,180,181,182,183,184,185,186,187,189,190,192,198,199,200,201,202,205,206,207],younger:123,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,41,47,48,49,51,52,54,55,60,62,64,68,71,74,76,79,80,82,85,87,88,90,93,95,96,97,98,101,102,112,136,167,168,170,181,198,199,203],yourself:[7,49,52,107,109,114,116,122,159,174],yourthoughtpartn:109,yousfi:58,youtub:[45,58,121,132,134,136,151,158,165,168,171,174,175,176,180],youyang:151,ypred:[49,81],yrsold:[56,68],ys:[57,175],ystd:49,ystdactual:49,yt:[121,158,171,180],ytest:146,ytick:[31,38,40,42,43,167,168,198],yticklabel:[41,71,85],yu:135,yup:79,yuri:[52,156,157,159,160,198],yy:[52,167],yyyi:180,z1:[31,97],z2:[31,97],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:61,z5zy85g4yjw:121,z:[30,31,38,47,50,69,80,98,124,127,135,137,138,140,145,150,151,159,167,168,183,184,185,206],z_costcontact:69,z_h:145,z_j:157,z_revenu:69,z_y:145,zalando:43,zaxi:[88,198],zd_zt:39,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:61,zealand:[129,192],zero:[1,33,35,37,38,42,45,52,56,57,65,67,68,73,80,81,83,86,87,97,98,107,121,124,127,137,139,141,142,143,144,150,156,159,161,166,168,175,183,184,185,191,194,198,200,201,205,206,207],zero_grad:[31,33,38],zero_padding2d:37,zerodivisionerror:[97,98,183,185,205],zeropaddin:37,zeropadding2d:[37,139,140],zeros_lik:[73,87,138,167],zeroth:[184,206],zettabyt:117,zh:89,zhangqi:191,zhi:144,zia:188,zinkevich:150,zip:[18,22,29,30,31,33,35,37,38,40,42,43,68,73,124,131,135,137,138,140,141,145,165,168,183,184,196,198,204,205,206],zip_fil:73,zip_file_nam:73,zip_file_path:[29,30,31,40,73],zip_filenam:[37,38],zip_ref:[29,30,31,33,37,38,40,42,135],zip_store_path:[29,30,31,33,43,68],zip_url:[37,38,145],zipfil:[29,30,31,33,37,38,40,42,68,73,135,145],zlad:39,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:61,zodb:192,zone:148,zoom:89,zoom_rang:[32,34,89],zoomed_imag:89,zopedb:192,zorder:167,zorro:97,zsy:61,zth:144,zucchini:[70,171,172],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:61,zw:89},titles:["40. Self-paced assignments","40.22. Analyzing COVID-19 papers","40.27. Analyzing data","40.9. Analyzing text about Data Science","40.13. Apply your skills","40.16. Build your own custom vis","40.17. Classifying datasets","40.26. Data preparation","40.24. Data processing in Python","40.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","40.40. Data Science project using Azure ML SDK","40.10. Data Science scenarios","40.20. Displaying airport data","40.15. Dive into the beehive","40.23. Estimation of COVID-19 pandemic","40.25. Evaluating data from a form","40.36. Explore a planetary computer dataset","40.37. Exploring for answers","40.19. Introduction to probability and statistics","40.12. Lines, scatters and bars","40.39. Low code/no code Data Science project on Azure ML","40.38. Market research","40.29. Matplotlib applied","40.28. NYC taxi data in winter and summer","40.18. Small diabetes study","40.21. Soda profits","40.35. Tell a story","40.14. Try it in Excel","40.11. Write a data ethics case study","40.104. Intro to Autoencoders","40.105. Base/Denoising Autoencoder & Dimension Reduction","40.106. Fun with Variational Autoencoders","40.93. How to choose cnn architecture mnist","40.97. Object Recognition in Images using CNN","40.95. Sign Language Digits Classification with CNN","40.119. Summary","40.115. DQN On Foreign Exchange Market","40.116. Art by gan","40.118. Generative Adversarial Networks (GANs)","40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment","40.110. NN Classify 15 Fruits Assignment","40.109. Neural Networks for Classification with TensorFlow","40.120. Car Object Detection","40.122. Basic classification: Classify images of clothing","40.102. Google Stock Price Prediction RNN","40.98. Intro to TensorFlow for Deep Learning","40.107. Time Series Forecasting Assignment","40.86. Counterintuitive Challenges in ML Debugging","40.85. Data engineering","40.87. Case Study: Debugging in Classification","40.88. Case Study: Debugging in Regression","40.78. Beyond random forests: more ensemble models","40.79. Decision trees","40.83. Random Forest Classifier with Feature Importance","40.77. Random forests for classification","40.76. Random forests intro and regression","40.82. Boosting with tuning","40.81. Gradient boosting","40.80. Hyperparameter tuning gradient boosting","40.69. Decision Trees - Classification","40.68. Decision Trees - Intro and Regression","40.65. Kernel method assignment 1","40.67. Support Vector Machines (SVM) - Classification","40.66. Support Vector Machines (SVM) - Intro and SVM for Regression","40.72. Dropout and Batch Normalization","40.73. Lasso and Ridge Regression","40.71. Learning Curve To Identify Overfit & Underfit","40.70. Model selection assignment 1","40.74. Regularized Linear Models","40.75. Customer segmentation: clustering - assignment 3","40.91. Build Classification Model","40.90. Build classification models","40.53. Build ML web app - assignment 1","40.54. Build ML web app - assignment 2","40.59. Create a regression model","40.63. Delicious asian and indian cuisines","40.64. Explore classification methods","40.57. Exploring visualizations","40.60. Linear and polynomial regression","40.45. Linear regression - California Housing","40.48. Gradient descent","40.49. Linear Regression Implementation from Scratch","40.46. Linear Regression Metrics","40.47. Loss Function","40.56. Managing data","40.50. ML logistic regression - assignment 1","40.51. ML logistic regression - assignment 2","40.52. ML neural network - Assignment 1","40.42. Machine Learning overview - assignment 1","40.43. Machine Learning overview - assignment 2","40.92. Parameter play","40.62. Pumpkin varieties and color","40.55. Regression tools","40.44. Regression with Scikit-learn","40.61. Retrying some regression","40.89. Study the solvers","40.58. Try a different model","40.8. Python programming advanced","40.7. Python programming basics","40.6. Python programming introduction","40.5. Project Plan\u200b Template","40.3. First assignment","40.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4.3. Advanced Pandas Techniques","5.4.2. Data Selection","5.4.1. Introduction and Data Structures","5.4. Pandas","5.1. Relational databases","5. Working with data","27. Autoencoder","23. Convolutional Neural Networks","23.3.1.2. Deepdream in TensorFlow","23.3.1.1. Stylenet / Neural-Style","33. Diffusion Model","21. Intro to Deep Learning","30. Deep Q-learning","24. Generative adversarial networks","31. Image classification","32. Image segmentation","28. Long-short term memory","26. Natural Language Processing Overview","22. Neural Networks","34. Object detection","25. Recurrent Neural Networks","29. Time series","Learn AI together, for free","37. Data engineering","39. Model deployment","38. Model training & evaluation","35. Overview","36. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","20. Model selection","17. Unsupervised learning","19. Unsupervised learning: PCA and clustering","12.4. Build a web app to use a Machine Learning model","12. Getting started with classification","12.1. Introduction to classification","12.2. More classifiers","12.3. Yet other classifiers","10. Machine Learning overview","13.2. Gradient descent","13.1. Loss function","13. Parameter Optimization","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","41.10. Data Science in real world","41.9. Data Science in the cloud","41.4. Data Science introduction","41.8. Data Science lifecycle","41.7. Data visualization","41.6. NumPy and Pandas","41.5. Relational vs. non-relational database","41.20. Convolutional Neural Network","41.21. Generative Adversarial Network","41. Slides","41.18. Kernel method","41.19. Model Selection","41.17. Unsupervised learning","41.16. Build an machine learning web application","41.12. Linear Regression","41.13. Logistic Regression","41.14. Logistic Regression","41.11. Machine Learning overview","41.15. Neural Network","41.3. Python programming advanced","41.2. Python programming basics","41.1. Python programming introduction"],titleterms:{"0":61,"1":[3,24,30,32,45,51,52,54,55,56,58,59,60,61,62,63,67,71,72,79,80,85,87,88,109,118,124,139,168,186,187,188,189,190,191,192,193,194,196,200,202,206,207],"10":[41,58,132,139],"100":[53,61,139],"1000":[61,139],"11":58,"12":58,"13":58,"1300131294":165,"15":40,"19":[1,8,14,134],"1d":124,"2":[3,24,30,32,45,46,51,52,53,54,55,56,58,59,60,62,63,71,73,80,85,86,89,109,118,124,168,186,187,188,189,190,191,192,193,194,196,200,202,206,207],"2d":[30,124,196],"3":[3,24,32,40,45,51,52,54,55,56,58,59,60,62,63,69,71,79,85,109,124,186,187,188,189,190,191,193,194,200,206,207],"3d":[30,88,113,196],"4":[3,24,32,45,51,52,53,54,55,56,58,59,60,62,63,71,85,109,168,186,187,188,189,190,191,192,206,207],"5":[24,32,45,51,52,55,56,58,59,60,62,63,71,85,88,109,139,168,186,187,188,189,190,192,206,207],"50":58,"500":58,"6":[45,52,54,55,56,58,59,60,62,63,71,85,186,187,188,189,190],"7":[45,52,54,55,58,59,60,62,63,186,189,190],"8":[54,58,189],"9":58,"90":165,"abstract":175,"boolean":[124,184,185,206,207],"break":[97,183,205],"case":[28,47,49,50,52,109,117,180,196],"class":[36,40,49,52,53,65,67,97,176,183,205],"default":[53,61,134,183],"do":[49,119,179,180,184,188,196],"final":[51,73,79,80,175],"float":[7,184,206],"function":[45,53,61,80,81,83,87,97,98,124,136,137,160,175,176,183,185,191,201,202,204,205],"import":[9,29,33,38,43,46,51,53,54,55,56,58,59,60,61,62,63,66,68,69,88,122,134,135,150,157,164,182,183,200,201,202,204],"long":141,"new":[58,99,124,127,201,202],"null":[7,61,191],"public":38,"return":[99,137,183],"short":141,"static":165,"true":61,"try":[0,27,50,71,80,85,96,183,205],"while":[97,183,205],A:[31,136,166,172,173,178],And:174,At:[48,175,176],But:180,By:160,For:[97,142],Is:152,It:[129,179,192],NOT:179,Not:174,On:36,One:[79,80,204],That:201,The:[9,37,45,53,55,80,82,87,105,106,122,129,143,166,167,173,180,182,183,184,187,191,192,193,196,205,206],There:180,To:[66,166],With:[34,146,175],about:[3,33,116,171,179,190],absolut:[82,176],acceler:167,access:[98,124,127],accuraci:[32,43,49,61,139,164,168,204],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,74,76,77,79,85,87,88,89,90,91,93,94,95,96,97,98,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,126,127,129,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,147,150,154,155,156,157,159,160,161,163,164,165,169,171,172,173,174,178,179,180,182,183,184,185,193,196,198,199,200,201,204],ackowledg:194,action:137,activ:136,actual:109,ad:[30,31,49,64,68,124,166],adaboost:51,adam:204,add:[50,124,150],addit:127,advanc:[32,97,124,125,183,205],adversari:[38,138,194],after:[30,166,197],ag:24,against:50,agent:[36,137],agglom:[167,168],aggreg:[124,125,188,191],ahead:87,ai:[37,43,147,198],airport:12,aka:66,algorithm:[52,56,137,151,154,159,160,164,167],align:127,all:[24,49,79,116,129,178,190,192],an:[9,31,66,68,105,106,109,123,124,169,193,199],anagram:184,analysi:[8,39,51,53,54,55,56,58,59,60,61,62,63,79,82,104,108,168,174,198,203],analyz:[1,2,3,18,108,124,180,189],anchor:[40,53],anim:113,ann:46,annot:[183,205],anomal:49,anomali:29,anoth:38,answer:17,ap:165,api:[34,45],app:[72,73,169],append:[98,191],appli:[4,22,49,117,172,173,188],applic:[52,131,142,168,199,203],approach:[53,109,129,172,192],ar:184,arbitrari:183,architectur:[32,132,136,143,193,204],argument:[134,183,205],arithmet:[127,184,206],arrai:[124,127,191],art:37,artifici:203,artwork:37,ascend:[98,99],asian:75,ask:180,assert:53,assign:[0,12,25,40,46,61,67,69,72,73,85,86,87,88,89,101,102,124,125,127,168,202],assist:140,attribut:[61,124,127,191],auc:[58,61],audienc:109,augment:[32,34,135],author:182,autoencod:[29,30,31,131],automl:[9,105,106,150],avail:124,averag:[97,180],avoid:[113,166],axi:124,azur:[9,10,20,105,106,123],b:[80,175],babylonian:98,backend:72,background:135,backprop:87,bag:[51,156,159,164],balanc:171,bar:[19,22,190],base:[30,97,126,164],basebal:18,baselin:[49,50,174,203],basi:61,basic:[29,32,43,45,98,117,124,127,137,184,185,188,191,206,207],batch:[33,64,167],beehiv:13,begin:109,behind:57,best:[9,32,38,105,152],beta:135,better:[172,179],between:[24,56,58,71,79,85,124,159,176,188,191],beyond:[41,51,165,196],bi:56,bia:[66,159,166,197],bibliographi:[25,175,176],big:204,binai:56,binari:[41,176,179],binder:0,bird:[114,190],bit:[31,124],bitcoin:39,blend:56,bmi:24,boost:[51,56,57,58,160,161,162,164],bootstrap:156,bound:135,boundari:[165,167,196],boxplot:[24,88],bp:24,brain:193,broadcast:[124,191],bug:50,build:[5,29,31,32,37,42,43,52,53,70,71,72,73,85,113,142,155,169,178,179,180,190,199],c:61,cach:199,calcul:[49,97,98,184],california:79,call:205,callabl:126,callback:41,can:[35,52,58,119,188],candid:58,capac:166,captur:[111,189],car:42,cardin:53,cast:[184,206],catalog:148,catboost:56,categor:[7,53,56,59,71,79,85,178,200],categori:98,categorical_crossentropi:204,caus:47,central:[18,121],centroid:167,chain:127,challeng:[1,14,22,47,117,124,136,139,142,144,188],chang:[34,56],changin:34,channel:109,chart:[113,116,190,199],check:[30,49,50,53,55,59,61,71,79,85,150,164,180,184,207],checkbox:199,checklist:117,choic:[127,152],choos:[32,52,79,104,106,113,168,172,187],churn:52,cifar:[132,139],citi:[58,129,192],classic:[139,140,144,160],classif:[34,41,43,49,51,52,53,54,59,61,62,70,71,76,83,85,88,139,160,170,171,173,174,176,179,196],classifi:[6,40,41,43,51,53,54,59,62,164,171,172,173],clean:[69,122,169,171,179],cloth:43,cloud:[9,72,73,103,104,105,187],cluster:[9,69,105,106,153,154,155,167,168,198],cnn:[32,33,34,46,132,144,193],co:165,code:[20,73,80,106,117,131,132,133,134,135,137,139,140,141,142,143,144,145,149,175,185,187,194,205],collect:[40,174,203],color:[91,113],column:[7,53,56,127,199],com:165,combin:[124,125,126,191],come:201,comment:[61,184,185,206,207],commerc:142,common:[65,67,83,122,136,184],commun:[109,189],compani:58,compar:[61,190],comparison:[124,159,184,206],compil:[37,41,43,204],complet:35,complex:[50,52,97,184,206],compon:[142,143,168,198],comprehens:[179,184,206],comput:[1,9,14,16,24,105,106,124,191,193,204],con:[52,159],concat:[125,191],concaten:[56,191],concept:[83,117,129,188,192],conclus:[1,18,31,32,34,47,49,50,61,65,67,69,81,82,83,109,121,129,160,163,164,166,180,197],conculs:37,condit:97,confid:[18,121],configur:[9,105,182],confus:[53,61,179,201,202],connect:[131,136,147,193],consider:169,constant:45,consum:9,consumpt:[105,106,148],contain:124,content:[33,59,60,62,63,203,205],context:58,continu:[97,137,183,205],control:[41,183,185,205],converg:47,convert:[56,124],convolut:[29,32,33,131,132,136,193],corp:18,correl:[18,24,50,55,56,71,79,85,121,178,179],correspond:1,cosin:135,cosmo:123,cost:176,count:[97,98,184],counterintuit:47,covari:121,covid:[1,8,14,124],creat:[9,32,40,41,45,47,71,74,79,85,97,98,105,106,124,127,194],creation:[58,65,67,124],criteria:52,cross:[52,61,79,88,164,176,201],crucial:52,csv:46,cuisin:[75,171,172],cultur:117,current:132,curv:[37,61,66,150,166,179],custom:[5,35,41,52,69,142],cv:[61,164],d3:113,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,37,38,39,40,41,42,43,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,61,62,63,65,66,67,68,69,71,79,81,84,85,88,103,104,105,107,108,109,110,111,112,114,117,118,119,121,122,123,124,125,126,127,129,130,134,135,146,148,150,151,152,154,164,169,171,172,173,174,179,180,184,185,186,187,188,189,190,191,192,196,199,200,203,204,206,207],databas:[12,129,192],databasetyp:192,dataclass:127,datafram:[7,122,127,191],dataset:[6,16,29,30,31,33,35,36,40,43,47,48,49,50,53,61,88,105,106,114,125,139,140,159,164,168,171,182,190,191,198,200,201,202,204],datatyp:124,date:180,db:123,dbscan:167,deal:[7,48,56,97,122,124],debug:[47,49,50,150],decept:113,decis:[52,53,59,60,159,167],decisiontre:57,decisiontreeclassifi:52,declar:[53,61,164],decor:[183,205],decorrel:159,decreas:47,deep:[43,45,136,137,146,203],deepdream:133,deeplab:140,def:[183,185],defin:[29,33,36,81,118,119,140,146,174,179,188,203,205],definit:[117,135,137,183,188],degre:24,del:[98,184,206],delet:127,delici:75,demens:30,demo:168,denois:[29,30,35],dens:[32,87,136],densenet:139,densiti:[22,114,190],depend:[24,137],deploi:[9,174,203],deploy:[72,73,105,106,149,151],depth:150,deriv:[80,175],descent:[80,81,160,175],describ:[7,118],descript:[61,88,108],design:[200,204],detect:[7,29,42,144],determin:180,detr:144,develop:[0,81],deviat:121,diabet:[24,182],diagnosi:1,dict:[97,98,127],dictionari:[97,98,184,185,206,207],differ:[24,96,127,176],difficult:80,diffus:135,difuss:35,digit:[34,52,89,119,132],dimens:[30,53,88,198],dimension:[61,69,80,124,159,191],direct:146,dirrec:146,disciplin:58,discours:142,discov:171,discrimin:[37,38],diseas:24,dispers:61,displai:[12,53,113,124,155,199],distant:196,distribut:[18,24,53,56,61,114,121,154,190],dive:[13,165],diverg:135,divid:88,docstr:[184,205,206],document:[123,183,205],doe:[0,142,194],dog:38,donut:[115,190],download:[29,134],dqn:36,draw:[196,199],drop:7,drop_dupl:7,dropout:[32,49,64,166,197],dual:[116,190],duplic:[7,48,98,122,184],e:142,earli:[166,180,197],early_stopping_round:163,easi:152,ecg:29,eda:[53,71,85,164,174,203],educ:58,effect:[109,189],elbo:135,elbow:155,element:[98,124,184],elif:97,els:97,emot:109,emul:123,encod:[7,53,58,79,88,200,204],end:109,endpoint:[9,105,106],engin:[48,50,53,56,148,151],enrol:58,enrollee_id:58,ensembl:[51,56,156,158,173],entropi:[52,176,201],envireon:36,environ:[0,137,182,185],episod:137,equat:200,equival:50,error:[61,82,156,174,176,183,203,205],establish:[49,50,174,203],estim:[14,22],ethic:[28,117,188],eval:125,evalu:[15,41,43,51,54,55,56,59,60,62,63,69,71,79,81,85,88,137,150,151,204],everydai:142,everyth:[124,188,191],evid:135,evil:18,evolut:[149,164],exampl:[29,38,52,64,104,124,137,146,157,160,161,163,166,168,174,192,200,203],excel:27,except:[97,183,205],exchang:36,exercis:[7,154,155,169,171,172,173,179,180,182],exist:[45,124],expect:135,experi:[9,32,58,105,180],explod:47,exploit:137,explor:[7,16,17,31,33,43,48,51,53,54,61,71,76,77,79,80,85,108,114,122,123,137,190,191],exploratori:[39,51,53,54,55,58,59,60,61,62,63,79,108,174,203],express:183,extend:98,extract:[1,193],extrem:[159,164],f1:61,facet:[116,190],failur:[105,106],fals:61,fashion:[41,43],faster:144,fcn:140,fco:144,featur:[32,49,50,52,53,54,55,56,58,59,61,71,79,85,88,146,147,150,157,164,174,178,193,201,202,203],feed:[43,143],feel:80,fibonacci:98,field:[119,124,188],figur:165,file:[34,46,72,185,207],fill:[7,56,97],filter:184,financ:142,find:[53,58,71,80,85,167,184],fine:132,first:[29,88,101,180,182],fisher:168,fit:[47,58,66,165,166,197,200,204],fix:49,flask:169,flat:124,flatten:193,flow:[183,185,205],flu:146,fold:[61,164],forecast:[46,146],foreign:36,forest:[51,53,54,55,157,159],fork:31,form:15,format:[49,98,184,206],formul:[71,85,203],formula:[82,98],forward:[135,143],four:178,frame:[151,152],free:[80,147],frequenc:53,friedman:160,from:[15,34,40,45,65,67,81,86,98,124,127,184,193,198,201,204],frontend:72,frontier:[175,176],fruit:40,full:[87,193],fulli:131,fun:31,gain:[80,175],gan:[37,38,194],gate:141,gbm:160,gcd:97,gender:[24,58],gener:[37,38,40,42,98,124,138,194],geograph:79,ger:194,get:[1,3,24,41,47,88,98,115,119,124,154,158,170,182,190],giant:198,github:0,give:31,glass:31,global:[32,88,183],go:[41,172],goal:[3,122],good:[66,166,200],googl:44,govern:148,gradient:[47,51,57,58,80,81,160,161,162,164,175],grid:[116,179,190],gridsearch:61,gridsearchcv:58,group:[88,98,125],guid:43,hand:184,handl:[48,59,61,66,79,183,191],handwritten:[52,132],have:[49,56,179],hdf5:72,head:7,healthcar:142,heart:[105,106],hello:171,here:180,hidden:136,hide:199,hierarch:[125,167],high:[47,125,159],higher:61,hing:165,hint:50,histogram:[22,55,114,190],histori:[139,140,144,160],honei:[116,190],hood:61,hot:[79,204],hous:79,how:[0,32,52,118,132,140,142,152,160,166,185,193,194,196,204],http:165,human:[107,186],hyperparam:35,hyperparamet:[58,61,150],hyperplan:61,hypothesi:[18,24,121,200],id:[40,53],identifi:[7,56,66,108],iiit:140,illustr:157,imag:[29,30,32,33,38,43,125,139,140,165,167,193],imagenet:139,imbalanc:49,impact:166,implement:[34,41,50,81,82,98,134,161,164,200],improv:[54,55,58,59,60,62,63,150],includ:[184,206],inconsist:[48,108],indent:[184,185,206,207],index:[124,125,126,127,191],indian:75,indic:124,individu:[33,79,124],industri:[107,186],inequ:135,inertia:167,info:7,inform:[7,61,122],infrastructur:149,ingest:[148,151],ingredi:171,inherit:[183,205],initi:[9,38,58,167],input:[50,61,79],insensit:196,insert:[98,184],insid:[183,205],insight:[3,71,85,175],instal:[182,185],instanc:[105,183],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,74,76,90,93,94,95,96],integ:[124,184,206],intellig:203,interpret:[66,82,150,166],interv:[18,121],intro:[29,45,55,60,63,136],introduc:[127,191],introduct:[9,18,24,30,52,56,61,64,66,79,81,99,104,105,109,111,120,121,124,127,154,155,160,162,164,168,171,178,179,180,182,185,188,197,199,201,202,204,207],intuit:[61,80,157,164,168,175],inventori:123,investig:14,involv:124,iri:[66,168,198],isol:56,issu:168,item:[98,184],iter:124,jensen:135,job:58,join:[98,125,129,191,192],jpeg:165,js:113,json:123,just:56,k:[61,155,159,164,167,168,173,198],kaggl:22,kei:[143,174,184,203],kera:[34,40,204],kernel:[22,61,165,193,196],keyword:183,kl:135,knn:88,know:[115,190],l1:[166,197],l2:[166,197],label:[53,88,126,127,174,203,204],lag:146,lambda:[97,166,183],languag:[34,142],larg:[32,121],lasso:[65,67],lasson:[65,67],last:[48,58],latent:30,law:121,layer:[32,43,49,87,136,148,204],layout:199,lda:167,learn:[9,37,43,45,47,52,58,61,65,66,67,79,88,89,93,106,131,136,137,146,147,150,152,153,158,166,167,168,169,171,172,174,175,176,178,180,181,182,187,198,199,203],learning_r:163,legal:142,length:97,let:[80,165,175,184,194,196,205],level:[34,58],libari:33,librari:[29,32,34,38,39,44,53,61,69,88,135,164,182,200,201,202,204],lifecycl:[110,111,189],lightgbm:56,like:[109,127],limit:[18,121,167],line:[19,116,178,190,196,199],linear:[49,50,61,68,78,79,81,82,135,146,165,166,173,175,178,179,196,200,201,202],linearli:196,list:[97,98,99,127,183,184,185,205,206,207],liter:[184,206],load:[12,14,25,29,30,31,32,34,36,37,38,39,40,43,44,46,49,51,54,55,56,58,59,60,62,63,69,88,105,106,134,135,164],local:0,logic:57,logist:[66,71,85,86,165,172,175,179,196,201,202],look:[1,41,55,58,178],loop:[38,57,87,97],loss:[47,49,66,81,83,87,150,160,165,176,201,204],lot:[56,179],low:[20,106,187],lower:[102,135],lstm:[39,46],m:[80,175],machin:[9,43,61,62,63,79,88,89,106,152,153,165,169,174,175,176,181,182,187,196,199,203],mae:82,magic:199,main:[137,164],maintain:[111,189],mainten:151,major:58,make:[14,37,43,113,140,164,180,201,202],manag:[84,111,123,180,189],mani:32,manipul:[45,124],map:[32,56,79,173,199],mape:82,margin:[61,165,196],market:[21,36,180],mask:144,math:[57,80,124,165],mathemat:175,matplotlib:[22,180],matrix:[50,53,56,61,179,200,201,202],max:[124,188,191],max_depth:58,max_featur:58,maxim:[165,196],maximum:[61,191],mean:[24,82,121,135,155,167,168,198],meaning:[109,113],media:104,median:121,medicin:1,memori:141,men:24,merg:[98,99,125,191],method:[51,61,76,98,109,127,142,155,165,167,183,184,196,204,206],metric:[61,71,82,85,150,168,204],min:[124,188,191],min_samples_leaf:58,min_samples_split:58,mind:109,mini:167,minimum:191,miscellan:58,miss:[7,48,53,56,59,61,71,79,85,97,122,164,180,191],ml:[9,10,20,47,72,73,85,86,87,105,106,160],mnist:[32,43,49,52,132,198],mobilenet:139,mode:121,model:[8,9,29,30,33,34,35,37,38,39,40,41,42,43,45,46,47,49,50,51,52,53,54,55,56,58,59,61,66,67,68,69,70,71,72,74,79,81,85,88,96,105,106,135,137,139,140,142,144,146,149,150,151,152,153,155,163,166,169,174,178,179,180,181,182,194,197,200,201,202,203,204],modul:[183,205],more:[32,51,54,71,85,172,175,180],most:58,mostli:56,motiv:165,mse:82,much:32,multi:176,multiclass:41,multicollinear:[56,66],multioutput:146,multipl:[124,167,183,184,200],multistep:146,mushroom:[115,190],mutabl:98,myqcloud:165,n_estim:163,n_job:163,name:[53,127,165],namedtupl:127,nan:[7,191],nation:172,nativ:124,natur:142,ndarrai:[124,127],nearest:159,need:179,neighbor:[159,173],nest:[184,206],net:35,network:[32,33,35,38,40,41,87,113,132,134,136,138,143,145,193,194,201,204],neural:[32,33,40,41,87,132,134,136,143,145,193,201,204],next:29,nlp:142,nn:40,nois:[30,135],noisi:30,non:[7,123,192,196],none:[7,191],nonlinear:[49,50,87],nonloc:183,normal:[18,22,46,50,64,121,200],nosql:[123,192],note:51,notebook:[105,182],now:[72,196],number:[53,58,97,98,121,124,167,168,184,185,204,206,207],numer:[7,52,53,56,61,79,191],numpi:[34,124,191],nyc:23,o:40,object:[33,42,80,83,124,127,144,175,176,183,191],obtain:152,occurr:98,odd:180,one:180,oper:[45,98,124,127,184,191,206],optim:[38,50,58,61,150,167,177,200,204],option:[0,49,106,165,175,176,199],order:98,ordin:56,ordinari:[174,203],orign:30,other:[29,52,71,85,119,124,173,179],our:[72,200,204,205],out:[0,156],outlier:[56,61],outlin:[196,197,198],output:[79,205],over:[166,197],overcom:142,overfit:[61,66,166],overiew:146,overview:[29,42,43,88,89,125,126,127,131,137,141,142,151,166,174,203],own:[5,200,205],oxford:140,pace:0,packag:183,pad:193,pair:32,pairplot:[55,88],panda:[7,46,108,125,127,128,191],pandem:14,paper:[1,8,104,124],paramet:[38,52,53,58,88,90,159,177,204],parameter:135,part:[24,55],partial:[80,175],pass:49,path:46,pca:[167,168,198],pd:191,peopl:97,percentag:[53,82],perceptron:143,perform:[45,71,85,125,174,203,204],permut:157,pet:140,phrase:109,pickl:169,pictur:40,pie:[115,190],piec:97,pipelin:[79,139],pivot:125,plai:[90,193,194,201],plan:[58,100,173],planetari:16,play:175,plot:[22,24,30,32,57,79,114,116,179,190,199],plote:37,point:196,polici:137,polynomi:[61,78,178,200],pool:193,popul:98,posit:[61,126],potenti:131,practic:[157,159],pragmat:142,pre:[14,39,58],precis:61,predict:[40,43,44,52,56,58,72,85,88,105,106,140,164,166,172,197,200,201,202],predictor:56,prepar:[7,31,32,34,41,46,81,122,140,146,155,173,178,180],prepreprocess:37,preprocess:[37,38,43,51,54,55,58,59,60,62,63,68,69,71,79,85,135,167,174,203,204],prerequisit:[155,178,179],preserv:191,preview:[53,164],price:[44,85,180],princip:[168,198],principl:117,pro:[52,159],probabl:[18,24,121,188],problem:[42,52,53,61,71,85,151,152,159,160,174,200,203],process:[8,14,39,49,56,79,111,125,135,142,148,151,189,193],product:[73,152],profession:117,profil:[69,108],profit:25,program:[97,98,99,124,174,183,184,185,203,205,206,207],progress:[24,199],project:[10,20,100,105,106,113],promot:124,properti:[53,135],proport:[115,190],pumpkin:[91,180],put:[79,152,178],python:[8,82,97,98,99,124,164,182,183,184,185,191,205,206,207],q:137,qualiti:[52,148,150],quantiti:190,quartil:121,queri:[108,123,125],question:[179,180],quot:198,r2:82,r:[82,144],r_t:14,radial:61,rainfal:[129,192],rais:183,random:[18,30,51,53,54,55,121,157,159,188],rang:[85,97,127,183],rate:[47,58,61],rbf:[61,165],re:135,reach:47,read:[46,52,164],readabl:113,readi:24,real:[18,104,107,121,150,159,186],reason:[66,172],recal:61,recap:82,recogn:89,recognit:[33,52],record:127,recurr:[136,145],recurs:[146,184],reduc:50,reduct:[30,69,198],redund:56,refer:[14,186,187,188,189,190,191,192,205,206,207],refresh:66,regress:[50,52,55,60,63,65,66,67,71,74,78,79,81,82,83,85,86,92,93,94,146,160,165,166,172,174,175,176,178,179,180,181,182,196,200,201,202],regressor:[55,60,63],regul:117,regular:[49,65,67,68,83,166,197],reinforc:[174,203],relat:[119,123,129,188,192],relationship:[56,79,116,129,190,192],relev:58,remov:[7,48,49,56,58,98,122,124,184],renam:53,replac:98,report:[53,61],represent:159,research:[21,107,132,175,176,186],reshap:124,residu:[35,82,143],resnet:[139,143],resourc:[106,168],respect:[80,175],respons:109,result:[3,30,40,41,50,58,61,164,200,201,202],retri:94,retriev:[129,192],revers:[135,184],reward:137,ridg:[65,67],right:[106,113,180],rl:137,rmse:82,rnn:[44,46,136],road:87,roc:[61,179],role:[51,55],root:[82,98],rotaion:34,row:88,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,74,76,77,90,93,94,95,96],rule:124,run:[9,61,182],s:[72,79,80,135,160,165,168,175,176,179,180,184,188,189,190,191,194,196,201,202,205,207],salepric:56,sampl:[31,108],satisfi:150,save:[9,38,105],scalar:[124,127],scale:[30,53,56,61,71,79,85,88,201,202],scatter:[19,22,57],scatterplot:[56,116,190],scenario:11,schedul:135,schema:[12,50],scienc:[3,9,10,11,20,103,104,105,107,110,111,117,119,186,187,188,189,203],scientif:104,scikit:[52,61,65,67,93,172,178,180,182],scope:[183,205],score:[61,82,155,164],scratch:[40,65,67,81,86,200,201,204],sdk:[9,10,105],search:[97,148],second:[29,49,102,180],section:[83,176],secur:[111,148,189],see:[58,193],segment:[69,140,167],segnet:140,select:[45,53,67,126,127,150,166,174,191,197,203],selectbox:199,self:[0,104,105,106,107,109,111,113,114,115,116,117,118,119,121,123,124,125,129,131,132,134,137,145,150,151,152,154,155,169,171,173,178,179,180,182,183,184],semant:142,sens:14,sentenc:97,sentiment:[39,104],separ:[53,61,164,196,201],seper:72,sequenc:98,sequenti:45,seri:[46,127,146,191],serv:149,servic:142,session:[80,175],set:[32,43,51,53,54,55,56,59,61,79,88,134,164,184,185,200,201,202,204,207],setdefault:98,setup:[38,42,50,105,185],sex:24,shanghai:165,shape:[7,45,88,164],shell:185,shortcom:[129,192],show:[38,88,113,199],showcas:148,shuffl:[49,61],side:179,sidebar:199,sigmoid:[61,201,202],sign:34,silhouett:155,similar:159,simpl:[31,46,47,150,166,178,191,200],simpler:35,simul:[18,57],singl:[33,79,98,124,129,136,192],size:58,skew:49,skicit:[65,67],skill:4,skip:80,sklearn:[79,157,196,198],slice:[49,98,124,126,127,150],slide:195,slider:199,small:[24,58],smile:31,social:104,soda:25,solut:[47,49,50,137],solver:95,some:[38,94,175,184],someth:[35,180],sort:[98,124],sourc:118,space:[30,61],special:141,specif:[9,58,61],specifi:98,spectral:[167,168],split:[34,49,50,52,53,56,59,61,79,98,164,172,173,200,201,202],splite:88,spread:[8,124],spreadsheet:123,squar:[82,98,176],st:199,stack:[51,97],standard:[121,139,143],start:[41,129,150,154,158,170,182,192],state:137,statement:[53,97,160,183,184,205,206],statist:[18,24,50,53,59,71,79,85,108,121,164,188],step:[3,29,58,79,146,160],still:179,stock:44,stop:[166,197],storag:148,store:[111,123,189],stori:[26,109],storytel:109,str:[98,102],strategi:[1,122,146,149,180],stratifi:61,streamlit:[72,73,199],stride:124,string:[97,98,183,184,185,205,206,207],structur:[1,32,83,124,127,191],student:[107,186],studi:[24,28,47,49,50,95,104,105,106,107,109,111,113,114,115,116,117,118,119,121,123,124,125,129,131,132,134,137,145,150,151,152,154,155,169,171,173,178,179,180,182,183,184],studio:[106,185],style:[113,134,199],stylenet:134,subarrai:124,subclass:45,subplot2grid:22,subplot:22,subsambl:32,subsampl:58,sum:97,summari:[32,35,47,53,59,61,71,85,164,165,204],summer:23,sup:192,supervis:[174,203],support:[61,62,63,165,173,196],sustain:[107,186],svc:173,svm:[61,62,63,165,196],svr1:165,svr:165,swarm:179,syntax:[142,184,185,206],system:[174,203],tabl:[33,125,129,192,203,205],tail:7,take:41,target:[53,56,61,164],task1:46,task2:[46,58],task5:54,task:[24,46,51,52,54,55,56,58,79,118,137,146],taxi:23,taxonomi:137,techniqu:[125,142],tell:26,templat:100,tensor:45,tensorboard:41,tensorflow:[29,41,45,133],term:[98,141],terminolog:[137,174,203],test:[18,24,33,34,49,50,51,53,54,55,56,58,59,61,79,87,88,121,151,164,200,201,202],text:[3,114,190],text_input:199,tf:45,thank:203,theme:199,theorem:[18,121],theori:[31,168],thi:[0,43,57,83,175,176,179],thing:180,third:29,tidi:179,time:[46,72,80,104,146,175,193,194],titan:22,titl:[98,102,124],todo:35,togeth:[56,147,178],toi:52,tool:[92,124,169,182],top:139,trade:182,tradeoff:[166,197],traffic:146,train:[30,31,32,33,34,36,37,38,40,41,42,43,49,51,53,54,55,56,59,60,61,62,63,66,71,79,81,85,87,88,105,106,136,140,150,151,164,174,200,201,202,203,204],trane:200,transfer:[134,150],transform:[3,61,79,119,136,159],transpos:127,treatment:1,tree:[52,53,58,59,60,159,164],trend:[1,132,146],trick:[61,135,196],trigonometr:124,tune:[56,58,88,132,150,163],tunnel:146,tupl:[124,127,184,185,207],turn:[104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,169,171,172,173,174,175,176,178,179,180,182,183,184,185,186,187,188,189,190,191,192,205,206,207],tweet:39,twiddl:124,two:[80,99,184,191],type:[53,56,58,109,113,119,124,136,174,184,185,203,206,207],typic:[174,203],u:35,ufunc:[124,191],under:[61,166,197],underfit:[61,66,166],understand:[49,56,109],univari:[56,200],univers:[58,124,191],unpack:[183,205],unstructur:124,unsupervis:[131,167,168,198,203],up:[43,98,182],upper:[98,102],upvot:31,us:[10,30,33,35,41,43,50,58,61,64,65,66,67,72,81,88,97,98,109,113,114,134,142,147,150,152,164,167,168,169,172,174,178,179,180,185,190,199,204],useless:56,v3:140,v:[165,196,201,202],valid:[32,33,49,50,52,56,61,66,79,88,164],valu:[7,24,49,53,56,58,59,61,71,79,85,97,98,124,127,137,164,166,183,184,190,191],variabl:[18,24,32,45,53,61,121,124,164,167,179,183,184,188,205,206],varianc:[24,66,121,135,155,159,166,197],variat:[31,56],varieti:91,vector:[53,61,62,63,127,142,164,165,173,196],veri:50,verifi:43,versa:184,vgg:134,vggnet:139,vi:5,via:[32,179],vice:184,video:175,view:[53,124,204],vif:66,violin:179,visual:[3,22,35,40,41,58,77,88,108,112,113,114,115,116,179,180,184,185,190,204],visualis:[200,201,202],vit:139,volum:39,vote:51,vowel:184,vs:[164,174,192,203],w:40,waffl:[115,190],wai:[9,105,106,178,187],wait:180,want:97,we:[35,52,58],web:[72,73,169,199],weight:[38,160],what:[24,32,45,88,104,105,106,109,119,139,140,142,144,146,152,161,163,172,174,176,187,188,189,190,194,198,200,203,207],when:[174,201],where:119,whole:200,why:[104,136,185,187,196,207],widget:199,width:[150,165],wingspan:190,winter:23,within:124,women:24,word:[97,109],work:[0,52,58,114,124,130,142,160,182,190,194],workflow:[174,203],workspac:[9,105,106],world:[107,121,150,186],write:[28,199],xgboost:[56,68,163,164],y:24,yet:173,you:[49,80,119,179,188,203],your:[4,5,50,104,105,106,107,108,109,111,113,114,115,116,117,118,119,121,122,123,124,125,129,130,131,132,133,134,135,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,154,155,156,157,159,160,161,163,164,165,166,169,171,172,173,174,175,176,178,179,180,182,183,184,185,186,187,188,189,190,191,192,205,206,207],zero:49,zoom:34}}) \ No newline at end of file +Search.setIndex({docnames:["assignments/README","assignments/data-science/analyzing-COVID-19-papers","assignments/data-science/analyzing-data","assignments/data-science/analyzing-text-about-data-science","assignments/data-science/apply-your-skills","assignments/data-science/build-your-own-custom-vis","assignments/data-science/classifying-datasets","assignments/data-science/data-preparation","assignments/data-science/data-processing-in-python","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way","assignments/data-science/data-science-project-using-azure-ml-sdk","assignments/data-science/data-science-scenarios","assignments/data-science/displaying-airport-data","assignments/data-science/dive-into-the-beehive","assignments/data-science/estimation-of-COVID-19-pandemic","assignments/data-science/evaluating-data-from-a-form","assignments/data-science/explore-a-planetary-computer-dataset","assignments/data-science/exploring-for-anwser","assignments/data-science/introduction-to-statistics-and-probability","assignments/data-science/lines-scatters-and-bars","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml","assignments/data-science/market-research","assignments/data-science/matplotlib-applied","assignments/data-science/nyc-taxi-data-in-winter-and-summer","assignments/data-science/small-diabetes-study","assignments/data-science/soda-profits","assignments/data-science/tell-a-story","assignments/data-science/try-it-in-excel","assignments/data-science/write-a-data-ethics-case-study","assignments/deep-learning/autoencoder/autoencoder","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist","assignments/deep-learning/cnn/image-classification","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn","assignments/deep-learning/difussion-model/denoising-difussion-model","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market","assignments/deep-learning/gan/art-by-gan","assignments/deep-learning/gan/gan-introduction","assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment","assignments/deep-learning/nlp/getting-start-nlp-with-classification-task","assignments/deep-learning/nn-classify-15-fruits-assignment","assignments/deep-learning/nn-for-classification-assignment","assignments/deep-learning/object-detection/car-object-detection","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing","assignments/deep-learning/rnn/google-stock-price-prediction-rnn","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning","assignments/deep-learning/time-series-forecasting-assignment","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging","assignments/machine-learning-productionization/data-engineering","assignments/machine-learning-productionization/debugging-in-classification","assignments/machine-learning-productionization/debugging-in-regression","assignments/machine-learning-productionization/random-forest-classifier","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models","assignments/ml-advanced/ensemble-learning/decision-trees","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance","assignments/ml-advanced/ensemble-learning/random-forests-for-classification","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression","assignments/ml-advanced/gradient-boosting/boosting-with-tuning","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting","assignments/ml-advanced/kernel-method/decision_trees_for_classification","assignments/ml-advanced/kernel-method/decision_trees_for_regression","assignments/ml-advanced/kernel-method/kernel-method-assignment-1","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression","assignments/ml-advanced/model-selection/dropout-and-batch-normalization","assignments/ml-advanced/model-selection/lasso-and-ridge-regression","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit","assignments/ml-advanced/model-selection/model-selection-assignment-1","assignments/ml-advanced/model-selection/regularized-linear-models","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering","assignments/ml-fundamentals/build-classification-model","assignments/ml-fundamentals/build-classification-models","assignments/ml-fundamentals/build-ml-web-app-1","assignments/ml-fundamentals/build-ml-web-app-2","assignments/ml-fundamentals/create-a-regression-model","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines","assignments/ml-fundamentals/explore-classification-methods","assignments/ml-fundamentals/exploring-visualizations","assignments/ml-fundamentals/linear-and-polynomial-regression","assignments/ml-fundamentals/linear-regression/california_housing","assignments/ml-fundamentals/linear-regression/gradient-descent","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch","assignments/ml-fundamentals/linear-regression/linear-regression-metrics","assignments/ml-fundamentals/linear-regression/loss-function","assignments/ml-fundamentals/managing-data","assignments/ml-fundamentals/ml-logistic-regression-1","assignments/ml-fundamentals/ml-logistic-regression-2","assignments/ml-fundamentals/ml-neural-network-1","assignments/ml-fundamentals/ml-overview-iris","assignments/ml-fundamentals/ml-overview-mnist-digits","assignments/ml-fundamentals/parameter-play","assignments/ml-fundamentals/pumpkin-varieties-and-color","assignments/ml-fundamentals/regression-tools","assignments/ml-fundamentals/regression-with-scikit-learn","assignments/ml-fundamentals/retrying-some-regression","assignments/ml-fundamentals/study-the-solvers","assignments/ml-fundamentals/try-a-different-model","assignments/prerequisites/python-programming-advanced","assignments/prerequisites/python-programming-basics","assignments/prerequisites/python-programming-introduction","assignments/project-plan-template","assignments/set-up-env/first-assignment","assignments/set-up-env/second-assignment","data-science/data-science-in-the-cloud/data-science-in-the-cloud","data-science/data-science-in-the-cloud/introduction","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way","data-science/data-science-in-the-cloud/the-low-code-no-code-way","data-science/data-science-in-the-wild","data-science/data-science-lifecycle/analyzing","data-science/data-science-lifecycle/communication","data-science/data-science-lifecycle/data-science-lifecycle","data-science/data-science-lifecycle/introduction","data-science/data-visualization/data-visualization","data-science/data-visualization/meaningful-visualizations","data-science/data-visualization/visualization-distributions","data-science/data-visualization/visualization-proportions","data-science/data-visualization/visualization-relationships","data-science/introduction/data-science-ethics","data-science/introduction/defining-data","data-science/introduction/defining-data-science","data-science/introduction/introduction","data-science/introduction/introduction-to-statistics-and-probability","data-science/working-with-data/data-preparation","data-science/working-with-data/non-relational-data","data-science/working-with-data/numpy","data-science/working-with-data/pandas/advanced-pandas-techniques","data-science/working-with-data/pandas/data-selection","data-science/working-with-data/pandas/introduction-and-data-structures","data-science/working-with-data/pandas/pandas","data-science/working-with-data/relational-databases","data-science/working-with-data/working-with-data","deep-learning/autoencoder","deep-learning/cnn/cnn","deep-learning/cnn/cnn-deepdream","deep-learning/cnn/cnn-vgg","deep-learning/difussion-model","deep-learning/dl-overview","deep-learning/dqn","deep-learning/gan","deep-learning/image-classification","deep-learning/image-segmentation","deep-learning/lstm","deep-learning/nlp","deep-learning/nn","deep-learning/object-detection","deep-learning/rnn","deep-learning/time-series","intro","machine-learning-productionization/data-engineering","machine-learning-productionization/model-deployment","machine-learning-productionization/model-training-and-evaluation","machine-learning-productionization/overview","machine-learning-productionization/problem-framing","ml-advanced/clustering/clustering-models-for-machine-learning","ml-advanced/clustering/introduction-to-clustering","ml-advanced/clustering/k-means-clustering","ml-advanced/ensemble-learning/bagging","ml-advanced/ensemble-learning/feature-importance","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning","ml-advanced/ensemble-learning/random-forest","ml-advanced/gradient-boosting/gradient-boosting","ml-advanced/gradient-boosting/gradient-boosting-example","ml-advanced/gradient-boosting/introduction-to-gradient-boosting","ml-advanced/gradient-boosting/xgboost","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance","ml-advanced/kernel-method","ml-advanced/model-selection","ml-advanced/unsupervised-learning","ml-advanced/unsupervised-learning-pca-and-clustering","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model","ml-fundamentals/classification/getting-started-with-classification","ml-fundamentals/classification/introduction-to-classification","ml-fundamentals/classification/more-classifiers","ml-fundamentals/classification/yet-other-classifiers","ml-fundamentals/ml-overview","ml-fundamentals/parameter-optimization/gradient-descent","ml-fundamentals/parameter-optimization/loss-function","ml-fundamentals/parameter-optimization/parameter-optimization","ml-fundamentals/regression/linear-and-polynomial-regression","ml-fundamentals/regression/logistic-regression","ml-fundamentals/regression/managing-data","ml-fundamentals/regression/regression-models-for-machine-learning","ml-fundamentals/regression/tools-of-the-trade","prerequisites/python-programming-advanced","prerequisites/python-programming-basics","prerequisites/python-programming-introduction","slides/data-science/data-science-in-real-world","slides/data-science/data-science-in-the-cloud","slides/data-science/data-science-introduction","slides/data-science/data-science-lifecycle","slides/data-science/data-visualization","slides/data-science/numpy-and-pandas","slides/data-science/relational-vs-non-relational-database","slides/deep-learning/cnn","slides/deep-learning/gan","slides/introduction","slides/ml-advanced/kernel-method","slides/ml-advanced/model-selection","slides/ml-advanced/unsupervised-learning","slides/ml-fundamentals/build-an-ml-web-app","slides/ml-fundamentals/linear-regression","slides/ml-fundamentals/logistic-regression","slides/ml-fundamentals/logistic-regression-condensed","slides/ml-fundamentals/ml-overview","slides/ml-fundamentals/neural-network","slides/python-programming/python-programming-advanced","slides/python-programming/python-programming-basics","slides/python-programming/python-programming-introduction"],envversion:{"sphinx.domains.c":2,"sphinx.domains.changeset":1,"sphinx.domains.citation":1,"sphinx.domains.cpp":5,"sphinx.domains.index":1,"sphinx.domains.javascript":2,"sphinx.domains.math":2,"sphinx.domains.python":3,"sphinx.domains.rst":2,"sphinx.domains.std":2,"sphinx.ext.intersphinx":1,"sphinxcontrib.bibtex":9,sphinx:56},filenames:["assignments/README.md","assignments/data-science/analyzing-COVID-19-papers.ipynb","assignments/data-science/analyzing-data.ipynb","assignments/data-science/analyzing-text-about-data-science.ipynb","assignments/data-science/apply-your-skills.md","assignments/data-science/build-your-own-custom-vis.md","assignments/data-science/classifying-datasets.md","assignments/data-science/data-preparation.ipynb","assignments/data-science/data-processing-in-python.md","assignments/data-science/data-science-in-the-cloud-the-azure-ml-sdk-way.ipynb","assignments/data-science/data-science-project-using-azure-ml-sdk.md","assignments/data-science/data-science-scenarios.md","assignments/data-science/displaying-airport-data.ipynb","assignments/data-science/dive-into-the-beehive.md","assignments/data-science/estimation-of-COVID-19-pandemic.ipynb","assignments/data-science/evaluating-data-from-a-form.ipynb","assignments/data-science/explore-a-planetary-computer-dataset.md","assignments/data-science/exploring-for-anwser.ipynb","assignments/data-science/introduction-to-statistics-and-probability.ipynb","assignments/data-science/lines-scatters-and-bars.md","assignments/data-science/low-code-no-code-data-science-project-on-azure-ml.md","assignments/data-science/market-research.md","assignments/data-science/matplotlib-applied.ipynb","assignments/data-science/nyc-taxi-data-in-winter-and-summer.ipynb","assignments/data-science/small-diabetes-study.ipynb","assignments/data-science/soda-profits.ipynb","assignments/data-science/tell-a-story.md","assignments/data-science/try-it-in-excel.md","assignments/data-science/write-a-data-ethics-case-study.md","assignments/deep-learning/autoencoder/autoencoder.ipynb","assignments/deep-learning/autoencoder/base-denoising-autoencoder-dimension-reduction.ipynb","assignments/deep-learning/autoencoder/variational-autoencoder-and-faces-generation.ipynb","assignments/deep-learning/cnn/how-to-choose-cnn-architecture-mnist.ipynb","assignments/deep-learning/cnn/image-classification.ipynb","assignments/deep-learning/cnn/object-recognition-in-images-using-cnn.ipynb","assignments/deep-learning/cnn/sign-language-digits-classification-with-cnn.ipynb","assignments/deep-learning/difussion-model/denoising-difussion-model.ipynb","assignments/deep-learning/dqn/dqn-on-foreign-exchange-market.ipynb","assignments/deep-learning/gan/art-by-gan.ipynb","assignments/deep-learning/gan/gan-introduction.ipynb","assignments/deep-learning/image-segmentation/comparing-edge-based-and-region-based-segmentation.ipynb","assignments/deep-learning/lstm/bitcoin-lstm-model-with-tweet-volume-and-sentiment.ipynb","assignments/deep-learning/nlp/getting-start-nlp-with-classification-task.ipynb","assignments/deep-learning/nn-classify-15-fruits-assignment.ipynb","assignments/deep-learning/nn-for-classification-assignment.ipynb","assignments/deep-learning/object-detection/car-object-detection.ipynb","assignments/deep-learning/overview/basic-classification-classify-images-of-clothing.ipynb","assignments/deep-learning/rnn/google-stock-price-prediction-rnn.ipynb","assignments/deep-learning/tensorflow/intro_to_tensorflow_for_deeplearning.ipynb","assignments/deep-learning/time-series-forecasting-assignment.ipynb","assignments/machine-learning-productionization/counterintuitive-challenges-in-ml-debugging.ipynb","assignments/machine-learning-productionization/data-engineering.ipynb","assignments/machine-learning-productionization/debugging-in-classification.ipynb","assignments/machine-learning-productionization/debugging-in-regression.ipynb","assignments/machine-learning-productionization/random-forest-classifier.ipynb","assignments/ml-advanced/ensemble-learning/beyond-random-forests-more-ensemble-models.ipynb","assignments/ml-advanced/ensemble-learning/decision-trees.ipynb","assignments/ml-advanced/ensemble-learning/random-forest-classifier-feature-importance.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-for-classification.ipynb","assignments/ml-advanced/ensemble-learning/random-forests-intro-and-regression.ipynb","assignments/ml-advanced/gradient-boosting/boosting-with-tuning.ipynb","assignments/ml-advanced/gradient-boosting/gradient-boosting-assignment.ipynb","assignments/ml-advanced/gradient-boosting/hyperparameter-tuning-gradient-boosting.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_classification.ipynb","assignments/ml-advanced/kernel-method/decision_trees_for_regression.ipynb","assignments/ml-advanced/kernel-method/kernel-method-assignment-1.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_classification.ipynb","assignments/ml-advanced/kernel-method/support_vector_machines_for_regression.ipynb","assignments/ml-advanced/model-selection/dropout-and-batch-normalization.ipynb","assignments/ml-advanced/model-selection/lasso-and-ridge-regression.ipynb","assignments/ml-advanced/model-selection/learning-curve-to-identify-overfit-underfit.ipynb","assignments/ml-advanced/model-selection/model-selection-assignment-1.ipynb","assignments/ml-advanced/model-selection/regularized-linear-models.ipynb","assignments/ml-advanced/unsupervised-learning/customer-segmentation-clustering.ipynb","assignments/ml-fundamentals/build-classification-model.ipynb","assignments/ml-fundamentals/build-classification-models.ipynb","assignments/ml-fundamentals/build-ml-web-app-1.ipynb","assignments/ml-fundamentals/build-ml-web-app-2.ipynb","assignments/ml-fundamentals/create-a-regression-model.md","assignments/ml-fundamentals/delicious-asian-and-indian-cuisines.ipynb","assignments/ml-fundamentals/explore-classification-methods.md","assignments/ml-fundamentals/exploring-visualizations.md","assignments/ml-fundamentals/linear-and-polynomial-regression.ipynb","assignments/ml-fundamentals/linear-regression/california_housing.ipynb","assignments/ml-fundamentals/linear-regression/gradient-descent.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-from-scratch.ipynb","assignments/ml-fundamentals/linear-regression/linear-regression-metrics.ipynb","assignments/ml-fundamentals/linear-regression/loss-function.ipynb","assignments/ml-fundamentals/managing-data.ipynb","assignments/ml-fundamentals/ml-logistic-regression-1.ipynb","assignments/ml-fundamentals/ml-logistic-regression-2.ipynb","assignments/ml-fundamentals/ml-neural-network-1.ipynb","assignments/ml-fundamentals/ml-overview-iris.ipynb","assignments/ml-fundamentals/ml-overview-mnist-digits.ipynb","assignments/ml-fundamentals/parameter-play.md","assignments/ml-fundamentals/pumpkin-varieties-and-color.ipynb","assignments/ml-fundamentals/regression-tools.ipynb","assignments/ml-fundamentals/regression-with-scikit-learn.md","assignments/ml-fundamentals/retrying-some-regression.md","assignments/ml-fundamentals/study-the-solvers.md","assignments/ml-fundamentals/try-a-different-model.md","assignments/prerequisites/python-programming-advanced.ipynb","assignments/prerequisites/python-programming-basics.ipynb","assignments/prerequisites/python-programming-introduction.ipynb","assignments/project-plan-template.ipynb","assignments/set-up-env/first-assignment.ipynb","assignments/set-up-env/second-assignment.ipynb","data-science/data-science-in-the-cloud/data-science-in-the-cloud.ipynb","data-science/data-science-in-the-cloud/introduction.ipynb","data-science/data-science-in-the-cloud/the-azure-ml-sdk-way.ipynb","data-science/data-science-in-the-cloud/the-low-code-no-code-way.ipynb","data-science/data-science-in-the-wild.ipynb","data-science/data-science-lifecycle/analyzing.ipynb","data-science/data-science-lifecycle/communication.ipynb","data-science/data-science-lifecycle/data-science-lifecycle.ipynb","data-science/data-science-lifecycle/introduction.ipynb","data-science/data-visualization/data-visualization.ipynb","data-science/data-visualization/meaningful-visualizations.ipynb","data-science/data-visualization/visualization-distributions.ipynb","data-science/data-visualization/visualization-proportions.ipynb","data-science/data-visualization/visualization-relationships.ipynb","data-science/introduction/data-science-ethics.ipynb","data-science/introduction/defining-data.ipynb","data-science/introduction/defining-data-science.ipynb","data-science/introduction/introduction.ipynb","data-science/introduction/introduction-to-statistics-and-probability.ipynb","data-science/working-with-data/data-preparation.ipynb","data-science/working-with-data/non-relational-data.ipynb","data-science/working-with-data/numpy.md","data-science/working-with-data/pandas/advanced-pandas-techniques.ipynb","data-science/working-with-data/pandas/data-selection.ipynb","data-science/working-with-data/pandas/introduction-and-data-structures.ipynb","data-science/working-with-data/pandas/pandas.md","data-science/working-with-data/relational-databases.ipynb","data-science/working-with-data/working-with-data.ipynb","deep-learning/autoencoder.ipynb","deep-learning/cnn/cnn.ipynb","deep-learning/cnn/cnn-deepdream.ipynb","deep-learning/cnn/cnn-vgg.ipynb","deep-learning/difussion-model.ipynb","deep-learning/dl-overview.ipynb","deep-learning/dqn.ipynb","deep-learning/gan.ipynb","deep-learning/image-classification.ipynb","deep-learning/image-segmentation.ipynb","deep-learning/lstm.ipynb","deep-learning/nlp.ipynb","deep-learning/nn.ipynb","deep-learning/object-detection.ipynb","deep-learning/rnn.ipynb","deep-learning/time-series.ipynb","intro.md","machine-learning-productionization/data-engineering.ipynb","machine-learning-productionization/model-deployment.ipynb","machine-learning-productionization/model-training-and-evaluation.ipynb","machine-learning-productionization/overview.ipynb","machine-learning-productionization/problem-framing.ipynb","ml-advanced/clustering/clustering-models-for-machine-learning.ipynb","ml-advanced/clustering/introduction-to-clustering.ipynb","ml-advanced/clustering/k-means-clustering.ipynb","ml-advanced/ensemble-learning/bagging.ipynb","ml-advanced/ensemble-learning/feature-importance.ipynb","ml-advanced/ensemble-learning/getting-started-with-ensemble-learning.ipynb","ml-advanced/ensemble-learning/random-forest.ipynb","ml-advanced/gradient-boosting/gradient-boosting.ipynb","ml-advanced/gradient-boosting/gradient-boosting-example.ipynb","ml-advanced/gradient-boosting/introduction-to-gradient-boosting.ipynb","ml-advanced/gradient-boosting/xgboost.ipynb","ml-advanced/gradient-boosting/xgboost-k-fold-cv-feature-importance.ipynb","ml-advanced/kernel-method.ipynb","ml-advanced/model-selection.ipynb","ml-advanced/unsupervised-learning.ipynb","ml-advanced/unsupervised-learning-pca-and-clustering.ipynb","ml-fundamentals/build-a-web-app-to-use-a-machine-learning-model.ipynb","ml-fundamentals/classification/getting-started-with-classification.ipynb","ml-fundamentals/classification/introduction-to-classification.ipynb","ml-fundamentals/classification/more-classifiers.ipynb","ml-fundamentals/classification/yet-other-classifiers.ipynb","ml-fundamentals/ml-overview.ipynb","ml-fundamentals/parameter-optimization/gradient-descent.ipynb","ml-fundamentals/parameter-optimization/loss-function.ipynb","ml-fundamentals/parameter-optimization/parameter-optimization.ipynb","ml-fundamentals/regression/linear-and-polynomial-regression.ipynb","ml-fundamentals/regression/logistic-regression.ipynb","ml-fundamentals/regression/managing-data.ipynb","ml-fundamentals/regression/regression-models-for-machine-learning.ipynb","ml-fundamentals/regression/tools-of-the-trade.ipynb","prerequisites/python-programming-advanced.ipynb","prerequisites/python-programming-basics.ipynb","prerequisites/python-programming-introduction.ipynb","slides/data-science/data-science-in-real-world.ipynb","slides/data-science/data-science-in-the-cloud.ipynb","slides/data-science/data-science-introduction.ipynb","slides/data-science/data-science-lifecycle.ipynb","slides/data-science/data-visualization.ipynb","slides/data-science/numpy-and-pandas.ipynb","slides/data-science/relational-vs-non-relational-database.ipynb","slides/deep-learning/cnn.ipynb","slides/deep-learning/gan.ipynb","slides/introduction.md","slides/ml-advanced/kernel-method.ipynb","slides/ml-advanced/model-selection.ipynb","slides/ml-advanced/unsupervised-learning.ipynb","slides/ml-fundamentals/build-an-ml-web-app.ipynb","slides/ml-fundamentals/linear-regression.ipynb","slides/ml-fundamentals/logistic-regression.ipynb","slides/ml-fundamentals/logistic-regression-condensed.ipynb","slides/ml-fundamentals/ml-overview.ipynb","slides/ml-fundamentals/neural-network.ipynb","slides/python-programming/python-programming-advanced.ipynb","slides/python-programming/python-programming-basics.ipynb","slides/python-programming/python-programming-introduction.ipynb"],objects:{},objnames:{},objtypes:{},terms:{"0":[1,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,67,68,69,70,71,72,73,74,75,76,77,83,84,85,86,87,89,90,91,92,93,101,102,103,110,117,118,119,120,125,126,128,129,130,131,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,153,154,155,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,192,194,195,198,200,202,203,204,205,206,208,209,210,211],"00":[25,29,38,41,42,63,65,66,73,131,136,169,173,183,188,195],"000":[7,29,34,46,56,62,69,71,126,143,173,195,208],"0000":[67,127,196],"000000":[41,64,67,70,73,76,83,92,125,129,130,131,158,161,168],"00000000":[127,196],"000000000":41,"000000001":41,"000000002":41,"000000003":41,"000000004":41,"000000e":73,"000001":101,"000004":158,"000014":176,"000035e":65,"000077":131,"000085":131,"0001":[60,62,67,70,83,139,141,154,179,198,204],"000169":158,"000187":158,"0002":209,"000234":158,"00026011":42,"00026941":42,"0003":[160,179],"00030352119521741776":14,"00031829":42,"000340":131,"0004":160,"00042677":42,"0004859":42,"00048828":42,"0005":[39,72,149],"00052738":42,"000537":158,"000574":131,"00058":83,"000581":67,"0006070423904348355":14,"000665":158,"00075388":42,"00082207":42,"000827":131,"00085592":42,"0009105635856522532":14,"00094271":42,"000z":127,"001":[14,31,34,35,37,39,50,60,66,70,72,90,102,141,145,148,154,179,205],"001133":73,"001214084780869671":14,"001238e":65,"0012919896640826":83,"00138378":42,"001413":41,"00153348":179,"001630":176,"001667":161,"00168324":42,"002":209,"00228":149,"00259226":186,"00270041":179,"002962":168,"00329781":42,"003411e":65,"00348282":42,"003604":135,"003652":135,"003707":131,"003750":168,"003900":135,"00390625":145,"00398532":83,"003990":135,"004013":135,"004016":135,"004066":135,"004198":135,"00421906e":42,"004265":176,"0043602":42,"00440216":42,"004663":135,"004767":135,"004884":135,"0049057":42,"005":[62,136,158],"005005":135,"005100":131,"005355":135,"00544156":179,"005524":135,"00561v3":144,"006":142,"00605086":144,"006220":135,"006323":135,"006457":168,"0068":30,"0069":30,"0070":30,"007000":158,"0071":30,"007185":[69,71],"0072":30,"007236":135,"007273":41,"0073":30,"0073697495707838":131,"00736975":131,"007370":131,"007380":168,"0074":30,"0076":30,"0077":30,"0078125":145,"0079":30,"008080":168,"0081":30,"008281":168,"008460":135,"0085":30,"008532e":73,"008906e":65,"009":142,"0090":30,"0092":160,"009477":73,"0097":30,"00978788e":169,"0098":160,"01":[1,14,31,37,41,42,50,53,56,60,62,65,66,70,73,77,83,85,91,123,127,130,131,135,136,137,142,148,150,160,165,169,171,192],"010000":67,"010309":125,"010679":135,"010763":130,"010a691e01d7":[127,196],"01130490957":83,"011305":67,"01138062":179,"01171875":145,"012114":41,"012419":131,"01246024":[67,83],"012635":73,"01273177e":169,"0129":38,"013":142,"01304349e":169,"013246":161,"01324612":161,"013417":168,"013538":73,"013547":168,"01355":148,"014371":168,"014542612245156494":179,"014739":131,"014840":131,"014940":41,"01497":148,"015":[142,158],"0152":160,"015625":[65,145],"016186":168,"016305":158,"01632993161855452":70,"016520":135,"016667":41,"016788":130,"017":182,"0170":65,"0171":136,"01743954":144,"017500":41,"01764613":186,"017692":41,"0183":37,"018352":73,"0189":41,"019231":41,"0195":41,"01953125":145,"0196":[30,41,160],"0196warn":30,"0198":41,"01990749":186,"02":[14,36,39,41,54,62,65,73,130,131,139,144,150,163,169],"0204":41,"0205":41,"02060786":144,"0207":41,"020724e":41,"0210":41,"021057989893612013":179,"0212":41,"0213":41,"02137124":171,"021448":41,"0215":41,"0218":41,"02187239":186,"021919":29,"021973":42,"0220":41,"022331":[69,71],"022377":29,"022443":42,"022460":130,"0226":41,"022692":73,"022738":41,"02277928":144,"0229":[41,136],"0230":41,"0231":41,"023286":42,"0233":41,"0234":41,"0234375":145,"02356819":144,"0238":41,"0246":41,"024613e":65,"02497744e":169,"025358e":131,"0255":[41,136,160],"025568e":65,"025820":161,"0260":41,"026109":83,"026275":42,"02653783":83,"0268":41,"02689146":[67,83],"02734375":145,"02744117":144,"02749798e":169,"0276":41,"02763018":83,"027800":158,"0283":136,"028300":158,"028325":131,"028881":73,"0289":14,"0292":41,"02935816e":169,"0296":41,"02d":38,"03":[14,39,41,42,65,73,127,130,131,150,169,196],"0301":136,"0302":41,"03026961":144,"0311":[41,136],"03121360e":169,"03125":145,"031324":130,"031506725":29,"032":77,"03265429":144,"03265986323710903":70,"03267463":144,"0327":41,"0328":41,"033114":73,"033842":131,"033892e":41,"0339":41,"0342":41,"034452":131,"03446420e":169,"03482076":186,"0348944":144,"035":77,"03501685e":169,"035077":161,"03515625":145,"0352":41,"0353":41,"03530027e":169,"035406":131,"035444":131,"035480":131,"035499e":65,"035711":[69,71],"035785":161,"0358":41,"036":142,"0362":136,"03669362":144,"03676084":83,"037089":131,"0372":41,"0375":41,"037540":41,"0376":41,"037692":41,"0377":41,"03807591":186,"0382":38,"0383":41,"0386":41,"038871":131,"0390":41,"0390625":145,"039105":161,"039164":41,"0392":41,"039250":158,"0393":41,"0394":41,"03942163":83,"039600":42,"039738":161,"039893":41,"0399":41,"03_intellij":41,"03d":[31,39],"04":[14,41,42,53,65,73,120,125,130,131,150,169],"0400":41,"04000000001":41,"040021":73,"04015012":144,"0402":41,"040343":130,"0404":41,"0407":41,"04124236":83,"0416":41,"0418":41,"0420":41,"042143e":65,"04218550e":169,"0423":41,"042321":29,"0424":158,"04251990648936265":171,"04296875":145,"043":142,"0430":41,"04340085":186,"0435":41,"0436":41,"044":158,"0440":41,"0442235":186,"0443":136,"044444":125,"04460606335028361":182,"0447":[41,158],"0447134":144,"0448":41,"045":142,"045000":41,"04555172":83,"045561":41,"045637":41,"0458":41,"04597":144,"0463":41,"0467":41,"046875":145,"04690235":83,"047":142,"0471":41,"04764906":83,"048622":83,"04915341":144,"04922013e":169,"0496":41,"049672":83,"04d":141,"04t22":63,"05":[14,38,41,42,52,65,72,91,129,131,142,150,154,160,167,171,179],"0500":165,"0506":41,"05068012":186,"05068934":144,"05078125":145,"05093587":128,"051":142,"051164":65,"05129013":83,"05163977794943221":70,"051695":41,"0517":41,"05174632":144,"052646":41,"0528":41,"052836":131,"05283644":83,"053126":176,"05345990e":169,"053607":41,"05377960e":42,"053899":161,"053903":41,"054000":[70,92],"05409845":144,"0541":41,"054369":131,"054430e":65,"05447388e":42,"0546875":145,"05504988":144,"0555621":144,"05558296":83,"05581988":144,"05587v3":144,"055nnvtoa3qdwa3bvtpoxd6eljn4usoouann3ovpiyhpax3neltd9abdu17":65,"056":142,"05667198":144,"057":142,"0571":136,"05729737e":169,"05736295e":169,"05743935":144,"057504":[69,71],"0580":53,"05816076":144,"05859375":145,"0589":41,"05899204":144,"059025":29,"059100":158,"059136e":65,"05919117":144,"0595":41,"059532":73,"05d":[39,141],"05vabnfa1d":169,"06":[14,37,41,65,73,131,142,182],"06040135":144,"061038":131,"061164":131,"0612":37,"061476":161,"06156753":[169,200],"06164216":144,"061652":130,"06169621":186,"061881":161,"0621118":160,"06227022":144,"0625":[145,169,200],"062868":41,"063025":131,"06376063":125,"0638174":144,"064":142,"064079":73,"064088":131,"06468739e":169,"06525736":144,"06537655":144,"065508":83,"06556804":144,"06576":138,"0660":37,"06640625":145,"0668":41,"06704963":144,"067482e":65,"067647":131,"0677799":144,"068415":65,"06866593e":169,"06870":148,"06870405":144,"0688":65,"0688029":144,"06886704":144,"0694":41,"069473e":65,"06948027":144,"069987":73,"07":[1,41,56,65,129,130,131,136,142,160,182,195],"0703125":145,"070471":131,"070833":41,"07103796":179,"07117926e":169,"071203171893359e":195,"071268":41,"0713":41,"0716":38,"071856":64,"072046":73,"0721":38,"07272727":91,"073":142,"07383654":83,"07394277":144,"07421875":145,"074246":41,"07432988":83,"074776":161,"075":[142,172,202],"075001":131,"07534395":144,"075361":73,"0754":41,"07554621":144,"07555147":144,"075604":179,"075650":158,"07604103":83,"07614989":131,"07614989061128":131,"076150":131,"07665441":144,"076661":73,"076923":41,"07737338323":67,"077500":41,"07769945e":169,"077712":161,"0781":53,"078125":145,"07878788":91,"078843":41,"078910":[69,71],"078934e":65,"079167":41,"07959982":83,"08":[41,53,65,73,101,120,125,127,131,182,187,192,209],"0801":36,"080870":41,"081":142,"08104258":179,"0813":36,"08157576":144,"0819":41,"08203125":145,"08206309":144,"08207602e":169,"0822":158,"0823":36,"082436":131,"0829":158,"083032":131,"083333":41,"0835":36,"0835601":125,"08377614":144,"0839":37,"0841":36,"08421487":144,"0843":53,"08484848":91,"085":[172,202],"085537":195,"08588317":144,"0859375":145,"086":142,"0864":36,"086798":29,"087":[142,158],"0881":36,"088730":161,"08898591":144,"088992":41,"08925183":144,"0893":41,"08946078":144,"089525":158,"08963869e":169,"08964461":144,"08984375":145,"09":[25,37,41,65,73,83,131,142],"090000":41,"090298":41,"090321":158,"090548":41,"090717":41,"09090909":91,"09091988e":169,"091":142,"091439":41,"09146885":179,"091489":41,"091574":65,"091606":73,"09207596":144,"0924":[37,149],"092731":131,"09274592":144,"092939":158,"09312624":144,"0934":36,"093557":131,"0937":149,"09375":145,"093902":130,"094025":41,"094383":41,"094390":131,"0944":37,"094493":41,"095000":41,"095163":41,"09531643e":169,"0954":149,"095922":41,"09592476":144,"096131":131,"096164":41,"096233":130,"0964":158,"096545":41,"096688":41,"096907":73,"09704554168":83,"097061":41,"097124":41,"097329":130,"09736372":83,"097565":41,"09759183e":169,"097633":131,"09765625":145,"097692":41,"09772872e":169,"0978":144,"097950":158,"098004":41,"098327":41,"098485":41,"0985":41,"098512":41,"09913234":144,"099139":41,"099198":41,"099369":41,"099380":41,"09941497e":169,"099428":41,"099534":41,"099587":41,"099596":41,"099674":41,"0a":[129,130,131,187],"0aarrai":129,"0ad":131,"0adel":131,"0adf":[129,131],"0adf1":[129,130],"0adf2":129,"0adfd":130,"0adfl":130,"0afor":187,"0aget_age_group":187,"0aimport":[129,130,131],"0aindex":129,"0al":129,"0amask":130,"0anp":130,"0aother":129,"0as1":130,"0ax":130,"0cm":51,"0f":46,"0n":32,"0nb81h2lf3u6tgo":65,"0rvhljoesr6bt4cmi":65,"0s":[29,30,37,41,45,53,60,66,67,76,83,136,144,147,149,171,178],"0th":[46,130],"0x0000020ad04ad280":30,"0x0000020ad0975280":30,"0x132a05eb0":194,"0x15efcfd6708":172,"0x15efe146708":172,"0x1799f6b3e80":76,"0x1799f7b00d0":76,"0x1f49b239f08":83,"0x1f4a26c7b08":83,"0x1f4a26efc48":83,"0x1f4a2788808":83,"0x1f4a27bb588":83,"0x1f4ad02ae08":83,"0x1f4ad061988":83,"0x20ad0773190":30,"0x227c78bf790":64,"0x24c343c74c8":73,"0x24c38b8cfc8":73,"0x25c6dfaf370":36,"0x28523a37dc0":158,"0x7e1538110d60":171,"0x7e3d355e1e70":53,"0x7e3d441045e0":53,"0x7f2ffc9951e0":128,"0x7f880645a550":182,"0x7f88170fc6a0":182,"0x7f9b21c61670":160,"0x7fe8301c2fa0":169,"0x7fe83267c070":169,"0x7ff214796dc0":183,"0x7ff23cb12580":183,"0x7ff69a626c10":120,"1":[0,1,6,7,9,14,15,18,22,25,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,50,51,52,53,54,57,61,68,69,70,72,73,74,77,85,86,87,90,93,101,102,103,104,105,109,110,117,118,119,120,121,123,125,126,129,130,131,133,135,136,137,138,139,140,141,142,144,145,146,147,148,149,150,152,153,154,155,158,159,160,161,163,164,165,167,168,169,170,171,173,175,176,177,178,179,180,182,183,184,186,187,188,189,202,203,205,208,209],"10":[1,2,7,14,18,22,24,25,29,30,31,32,33,34,35,36,37,38,39,41,42,43,45,46,48,49,50,52,53,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,76,77,83,84,85,89,91,92,93,101,102,110,113,118,121,123,125,128,129,130,131,138,139,140,142,145,147,149,150,154,155,158,159,160,161,163,164,168,169,171,172,173,175,177,182,186,187,188,192,194,195,200,202,203,204,205,206,208,209,210,211],"100":[7,14,18,31,33,35,37,38,39,40,44,46,51,52,53,54,55,56,58,59,60,62,66,68,69,70,71,72,75,77,83,84,85,86,89,91,92,101,119,128,136,137,138,141,142,144,145,147,154,155,156,158,160,163,167,168,169,171,172,173,177,182,183,184,187,188,194,195,198,200,202,203,208,209,210],"1000":[3,14,18,31,33,34,36,52,54,56,60,62,64,66,67,70,85,90,91,93,111,116,125,135,139,142,144,145,154,160,161,163,165,167,171,179,183,187,190,194,203,205,206,209],"10000":[14,29,30,34,36,39,62,70,76,91,135,139,141,143,173],"100000":[60,70,92,139],"1000000":[169,187,189,195],"10000000000":169,"1000px":163,"1001":155,"1003":155,"1004":145,"100486":41,"1005":155,"1006":145,"10061107":144,"1007":[76,83,155],"10071":129,"10072":129,"10073":129,"100795":150,"1008":45,"10086":129,"10087":129,"100878":29,"10088":129,"1009":[76,145,155],"10090":129,"10091":129,"10092":129,"10093":129,"10094":129,"100942":41,"10095":129,"10096":129,"10097":129,"10098":129,"10099":129,"100k":177,"100m":[37,154],"100tl":37,"101":[85,145,161,171],"1010":[76,158,173],"10100":129,"10101":129,"10102":129,"10103":129,"10104":129,"1011":45,"10119387961131":[69,71],"1012":76,"1012000":120,"10134804":144,"1014":145,"10143793":179,"101451":41,"1015":145,"1015625":145,"101744868":45,"101761236":45,"1018":41,"101m":37,"102":[56,65,85,145,158,161],"1020":[118,142,194],"1021":145,"1022":76,"10220":58,"1023":145,"102352":150,"1024":[32,34,38,39,45,68,139,142,143,144,198],"1024n":32,"102530":42,"1026":145,"102657":41,"1027":145,"102724":41,"1028":[35,76,145],"1029":145,"102b":155,"102k":56,"102m":37,"103":[56,62,65,85,145,160,161,184],"1030":[35,145],"103095":41,"1032":[76,145],"1033":[145,149],"103500":158,"103536":150,"10359594":138,"1036":145,"103669":130,"1037":172,"1038":145,"103997":41,"104":[56,65,85,160,161],"1040":[119,142,145,194],"1040000":120,"1044":76,"104412":41,"10444444444444445":171,"10449817":144,"10452":41,"10460062":144,"1048":[41,73,145],"1048832":45,"105":[85,136,142,143,144,145,155,158,159,163,169,171,172,175,179,180,182],"1050":[118,145,194],"10509942":144,"1052":145,"105237":83,"1053":83,"10546875":145,"10553714e":169,"105586":41,"1056":145,"105651e":41,"105748":161,"105937":168,"105m":37,"106":[42,65,85,145],"1060":142,"10601041":144,"1060762990306165":85,"10613463":144,"1063":145,"10639190e":169,"1064":145,"1065":130,"10651042":144,"10655":168,"106569":150,"1066":[118,130,194],"106649":41,"1067":130,"1068":[130,145],"1069":[41,130],"106m":37,"107":[56,85,145,160],"1070":130,"1071":145,"1072":[119,130,194],"107282":41,"1073":[130,145],"1075":145,"10782758":144,"107m":37,"108":[85,129,145,198,209],"1080":142,"108032":41,"108381":131,"1084":145,"108428":131,"1085":145,"1086":131,"1087":145,"1088":[131,145],"1089":131,"109":[85,129,142],"1090":131,"109091":125,"1091":145,"109167":41,"10928802805393":64,"1093":145,"109375":145,"1096":[145,195],"109604":131,"1097":63,"1098":145,"1099":34,"109m":37,"10m":[121,149,192],"11":[14,22,25,37,41,45,52,53,56,63,65,66,68,70,73,76,77,85,92,93,101,102,110,111,120,125,128,129,131,136,141,145,146,147,149,150,153,158,159,160,161,163,171,175,182,183,184,187,188,190,209,210],"110":[14,56,64,65,72,85,129,136,160,163,187],"1100":[142,158],"11000":135,"110000":41,"1103":149,"1104":145,"110426":65,"1105":[67,83],"1106":[67,83,145],"1107":[53,145],"11088":25,"110m":37,"111":[37,65,73,76,84,85,129,141,142,145,158,159],"111000":158,"11109":101,"1111":[133,196],"111101":41,"11111":101,"11111749e":169,"1112":145,"1114":145,"1115":149,"1116":73,"1116058338033":70,"111618":41,"1117":145,"111700":41,"11171325":144,"111752":41,"1119":92,"111958":130,"111982":73,"111m":37,"112":[70,85,129,145,158],"1120":142,"112151":168,"1123":145,"11234131":144,"1123949416":196,"1124":145,"112425":41,"11250":72,"112522":29,"112638":131,"1127":76,"1128":145,"1129":145,"112m":37,"113":[41,56,63,85,118,145,160,194],"1130":158,"1132":145,"11328125":145,"1133":145,"113362":41,"113402":125,"1135":[41,76],"1136000":[120,194],"1137":145,"1138":[67,83],"113m":37,"114":[56,67,83,85,142,145,160],"1140":142,"11404718":144,"1142000":120,"114224":42,"1143":76,"1144":[119,194],"1145":145,"114639":[69,71],"1147":41,"114700":83,"114954":131,"115":[53,63,65,85,136,145,158],"1151":37,"115161":172,"115237":67,"115238":83,"1153":145,"11530945":[169,200],"115337":161,"115588":73,"11567072":144,"11569134":179,"1157":145,"116":[37,70,85,118,145,158,194],"1160":[29,30,142,145,158],"1160103":41,"11609933":83,"1162":145,"1163":145,"1164":145,"1166":[67,83],"11663747":83,"1167":145,"1168":[29,30,45],"116819":161,"11683491e":169,"116m":37,"117":[67,77,85,145],"1170px":129,"11715698e":42,"1171875":145,"11742":83,"1175":145,"117513":67,"117522":158,"1176":[133,196],"11761":64,"11770":25,"118":[53,67,83,85,145],"1180":[142,145],"1180160":[38,45],"1183":145,"1184":145,"1187":145,"118m":37,"119":[45,67,83,85,142,145,171],"1190":149,"11903076":144,"119048":41,"1191":[65,145],"11912291":144,"1192":145,"1194":149,"1196":168,"119621":29,"1197":160,"1197000":120,"1198":160,"11983416102879":171,"11988789":144,"1199":[145,176,177],"11anon_oac":184,"11m":149,"11th":49,"12":[14,22,25,37,39,41,43,45,46,48,49,53,55,56,57,58,59,60,65,67,72,73,75,76,83,85,89,92,101,102,110,118,120,125,128,129,130,131,136,142,143,145,149,150,158,159,160,161,163,165,168,171,172,173,179,183,187,188,194,202,205,206,209,210],"120":[14,39,41,66,70,85,101,136,142,145,169,200,209],"1200":[62,142,145],"12000":[135,168],"120000":[67,83,188],"1201":145,"1202":143,"120679e":131,"1207":145,"120m":37,"121":[52,56,67,70,83,85,145,160,171],"121005085892223":85,"12108":64,"12109375":145,"121096":130,"12109601307967026":130,"1211":41,"121237":65,"1213":145,"121358":41,"12147502e":169,"121669":[69,71],"1218":145,"1219000":120,"12195403":83,"121m":37,"122":[52,56,67,83,85,129,142,145,160,171,173,203],"1220":[34,142,145],"122021":41,"1222":145,"122402":130,"122411":41,"1225673588504812":72,"1227":145,"122784":41,"122785e":65,"12280441":144,"1229":145,"122m":37,"123":[14,33,56,85,101,129,142,145,160,168,188],"1232":145,"12326000":[120,194],"1234":[145,188,210],"123431":29,"12345":[41,179,188],"123456789":101,"123492":65,"1235":145,"123588":158,"1236":35,"1237":35,"1238":145,"1239":145,"123m":37,"124":[41,64,67,83,85,129,145],"1240":[142,145],"124087":130,"124210":41,"1245":145,"124505":41,"125":[31,64,70,85,136,145,158,188,195,210],"1250":145,"1251":83,"125115":155,"1253":145,"1254":145,"125408":179,"125457e":65,"125479":41,"1259":47,"126":[41,67,83,85],"1260":142,"126299":41,"1264085":41,"12647":168,"12669":168,"1267":145,"12693":25,"12697628":128,"126m":37,"127":[65,72,85,139,142,145,158,171,198],"127304":83,"12733734668670776":72,"1274":[67,83],"127431":131,"127469":41,"1275":145,"1276":145,"127696":41,"1279":145,"127m":37,"128":[31,32,33,34,35,36,38,39,42,43,45,46,56,64,73,85,91,135,136,139,142,143,144,145,150,160,188,208],"1280":[66,142],"128162":130,"128188":161,"1284":145,"1285":[145,149],"1286":145,"1287":145,"1288":130,"12882135":195,"1289":130,"12890625":145,"128n":32,"128x128":144,"129":[41,51,67,83,85,145,158],"1290":[130,145],"129014":131,"1291":[36,130,145],"12919":41,"1292":130,"1292794":144,"1293":145,"12934355":144,"12936294":144,"1295":145,"129527":41,"12966134e":169,"1297":145,"12985994":83,"1299":53,"12e4":[188,210],"12m":149,"12px":173,"13":[14,25,41,45,53,55,56,58,61,73,76,85,101,102,110,121,125,128,129,130,136,142,143,145,149,152,153,158,160,161,163,165,171,182,187,188,209],"130":[9,14,85,109,110,118,136,158,194],"1300":[60,142,171],"13000":135,"1300131294":[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,119,120,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,194],"1301":165,"1302":149,"130533":131,"1306":145,"130634":41,"130649":131,"1307":145,"130748":158,"1308":145,"131":[29,70,85,173],"1310":145,"1311":145,"1312":145,"1313":145,"1315":145,"1316":41,"131667":41,"13168":83,"131688":158,"1317":145,"131741":41,"131m":37,"132":[29,45,53,64,85],"1320":[29,142],"1321":[130,145],"1322000":120,"1323":130,"1324":130,"132500":41,"132543":130,"132545":73,"13255":25,"1326":[130,145],"13265":168,"1327":130,"1328":145,"1328125":145,"132931":41,"13299297":144,"133":[29,85,158],"13326":83,"133260":67,"1334":[49,145],"1338":168,"13390011":83,"133927":83,"133m":37,"134":[29,51,85,92,142,171,172,202],"1340":[142,145],"134156":41,"1342":136,"13436471":144,"1345":145,"1346":145,"135":[29,85,118,136,142,145,164,171,194],"1350":145,"135000":41,"13502571e":169,"135088":41,"135117":41,"13533305":179,"1354":145,"13554822e":169,"1356":145,"135762":131,"1358":145,"1359":145,"135m":37,"136":[29,65,85,145],"1360":142,"1361000":[120,194],"1362":145,"136302":[69,71],"136368":131,"1364":145,"13653559":179,"13669937e":169,"13671875":145,"136719":131,"1368":145,"1369099078838":[69,71],"136m":37,"137":[9,29,56,85,109,110,142,145,160],"1371":145,"137210":41,"13725491":144,"137321189738925e":125,"1376":145,"137m":37,"138":[29,85,131,142,145],"1380":142,"1382":145,"1385":145,"1386":[133,196],"1387":83,"1388":145,"139":[29,63,65,85,145,150],"139063":131,"1391":145,"139167":41,"1393":145,"1394":145,"1396":41,"1397":145,"13982857e":169,"1399":145,"13997155e":169,"139m":37,"13m":149,"14":[14,25,29,30,41,53,54,56,60,64,65,67,70,73,76,85,101,102,110,125,128,130,131,136,145,148,149,150,158,161,163,165,171,172,173,188,202,209,210,211],"140":[14,29,45,62,65,85,136,142,143],"1400":[142,149],"14000":135,"140000":72,"140074":131,"1403671649831801":85,"1405":145,"1406":142,"140625":145,"1407":145,"140769":41,"140m":[37,45],"141":[29,85,142,145],"14100":188,"1411":[144,145],"1412":145,"141297":195,"1413000":41,"1413001":41,"1414":145,"14159":[188,189,210],"141592653589793":209,"14160174e":169,"1419":145,"142":[85,145,179,188,210],"1420":142,"1422":[67,83,145],"142242":131,"14234563e":169,"1425":145,"142543":83,"14260":72,"142721":73,"142m":37,"143":[51,85,142],"1430":145,"14318":65,"1432":34,"1432780985872142341":127,"1438":145,"1439":145,"143m":37,"144":[51,70,85,119,142,182,187,194],"1440":[142,145],"144000":158,"1441":145,"1442":145,"144218":41,"1443":35,"1444":[35,145],"1445":[67,83,133,196],"14453125":145,"145":[29,30,69,70,71,85,126,136,161],"145394":179,"145m":37,"146":[70,85,126,129,161],"1460":142,"1461":[145,184],"1464":[130,145],"1465":130,"1466":[130,145],"1467":[67,83,130],"1468":[83,130,145],"1469":[130,145],"146m":37,"147":[51,70,85,126,129,145,161],"1470":[130,145],"147184":73,"147308":158,"1475":145,"147704":161,"147m":37,"148":[56,70,85,126,129,142,145,160,161],"1480":[142,145],"14812986":179,"1484375":145,"148495":[69,71],"1485000":[120,194],"148533":158,"14857187":161,"148572":161,"1488":145,"148822":[69,71],"148884":29,"14888888888888888":171,"148m":[37,45],"149":[66,70,85,126,145,161],"1490":[41,145],"149000":110,"1492":145,"1493":73,"149653":131,"1498":145,"14999":[67,83],"149995":195,"149m":[37,45],"14m":149,"14x14":32,"15":[3,14,18,25,31,32,33,34,38,41,44,45,53,54,55,56,57,58,59,60,61,63,64,66,67,70,72,73,76,83,85,92,101,110,113,120,128,129,136,142,144,147,149,158,160,161,163,165,168,171,173,182,188,194,202,209,210],"150":[7,14,40,43,51,56,66,70,76,83,85,91,92,126,136,141,145,155,161,163,172,202],"1500":[31,60,62,64,76,119,142,194],"15000":135,"150000":41,"150271":73,"1505":144,"1506":148,"1508":[138,145],"150800":83,"1508000":120,"150m":37,"150px":173,"151":[85,145],"1510":41,"1511":144,"15119934e":42,"151262":130,"1512622144956577":130,"151462":29,"1516198":83,"15172482":179,"151849":130,"151882e":65,"15190726e":169,"151976":131,"151m":45,"152":[36,42,85],"1520":142,"152049":158,"1521":145,"1522":145,"1523":145,"152300":131,"15234375":145,"1524":168,"1525":145,"152508":73,"1526":168,"15262765526":67,"1527":145,"152m":45,"153":[45,85,142,145],"1530":[145,149],"1531":145,"1532":145,"1533":168,"153373":131,"1536936":41,"153m":37,"154":[85,145],"1540":142,"1541":145,"1544":145,"1545":145,"1546":149,"1548000":120,"15480133":125,"154m":37,"155":[85,136,142],"1555":[63,130],"1556":130,"1557":130,"1558":145,"155833":41,"155m":[37,45],"156":[53,85],"1560":142,"1561":130,"15615109e":169,"15625":145,"1563":130,"1564":130,"1565":130,"1566":145,"1567":[118,194],"156m":37,"157":[85,129,145,155,173],"1570":145,"1572":145,"1576":[41,145],"157729":[69,71],"15777777777777777":171,"1579":149,"157m":37,"158":[41,85,129,142],"1580":[142,145],"158123":73,"1583":145,"1586":130,"1587":130,"1588":130,"1589":130,"159":[85,129,142,145],"1590":[130,145],"159000":[120,194],"15900736":144,"1593":145,"1594":145,"1594000":[120,194],"1595":[145,184],"1596":149,"15973821e":169,"1599":[53,145],"159m":45,"15e":125,"15m":149,"16":[14,25,29,30,31,32,33,34,38,39,41,45,48,49,51,53,56,57,60,62,64,65,67,68,73,83,85,101,102,110,111,119,128,136,139,142,143,144,145,148,149,150,158,160,161,163,165,168,169,171,172,173,179,182,183,184,188,194,195,200,202,209,210],"160":[29,30,85,125,129,136,142,145,182,183,184],"1600":[60,142],"16000":[64,120,135,194],"1600000":120,"1600x1200":168,"16015625":145,"16024654e":169,"1604":145,"1605":145,"1607":145,"160m":37,"161":[56,85,129,145,160],"1611":149,"16111":[63,149,202],"1611969":38,"1612":145,"161382":131,"1613889":38,"1614":130,"1615":130,"1616":[130,145],"161677":64,"1617":41,"1618":130,"1619":130,"161m":37,"162":[56,85,145,160,183],"1620":[130,142],"16200":63,"162016":161,"1621":145,"162125":131,"1622":149,"1623":149,"162308":41,"16259":65,"1626":184,"1627":[67,83],"162754":131,"162829":168,"1629":145,"162m":37,"163":[41,85,142],"1630":182,"1630251618197":[69,71],"1630537000":127,"1630544034":[127,196],"1631":149,"1632":[145,149],"1635":145,"1636":83,"163636":125,"16368":45,"16384":45,"1639":65,"163m":37,"163mb":136,"164":[85,142],"1640":[142,149],"164000":158,"1640625":145,"1641":145,"1644":145,"1645":145,"164533":131,"1646353":41,"16465":25,"1647":149,"1648":145,"1649":35,"164m":45,"165":[85,118,131,136,145,194],"1650":35,"165221":131,"1653":145,"1654":[83,184],"16550446e":42,"16578108":83,"1658":145,"165m":37,"166":[56,73,85,145,160,183],"1660":[142,145],"1665":83,"16666667":195,"166667":41,"1669":41,"166m":[37,45],"167":[64,85],"1671":145,"1675":149,"167573":41,"1676":145,"1679":145,"16796875":145,"167m":45,"168":[85,119,194],"1680":142,"1682":145,"1683":[133,145,196],"16837":83,"1685":145,"1686":145,"1687":145,"1688000":[120,194],"168m":37,"169":[45,85,142,145],"1690":[133,196],"1691":53,"1692":145,"16928":58,"16933":168,"1694":183,"1695":[145,183],"1696":183,"169605":131,"1697":183,"1698":183,"169811":158,"16x16":144,"17":[14,25,36,38,41,53,56,61,63,64,65,67,73,83,85,101,110,111,128,136,142,145,149,155,158,161,163,165,171,172,173,182,183,184,188,190,202,209,210],"170":[53,85,136],"1700":142,"17000":135,"1703":[145,148],"170312":195,"170446e":65,"1706":144,"17067697e":169,"1709":145,"170m":45,"171":[85,142],"1710":145,"17111912":144,"171160":73,"1712":[145,184],"1713":145,"1715":41,"171656":131,"17176609":144,"17176777":144,"1718":145,"171875":145,"171909":65,"172":[64,85,150],"1720":[142,145],"1723000":120,"17233455":144,"17238052":144,"1725":[67,73,83],"17259929":144,"172664":73,"17296777":128,"172989":131,"172m":[37,45],"173":[63,70,73,85,142,172,202],"1730":73,"1731":145,"173211":[69,71],"1733":145,"17339829e":169,"173400":83,"1736":142,"1738":182,"1739":182,"173m":37,"174":[41,73,85,142,145],"1740":[142,182],"1741":[145,182],"1742":[145,182],"174330":41,"17449102e":169,"1745":145,"1747":41,"1748":145,"17482":25,"174871":172,"1749":145,"174m":[37,45],"175":[85,136,142,195],"1750":145,"175000":41,"17500248":125,"175069":179,"175135":158,"1752":145,"17533917e":169,"1757":184,"175772":131,"17578125":145,"175833":41,"175m":41,"176":[64,85,125],"1760":142,"1760000":120,"176114":73,"1762":168,"176277":41,"1764":145,"1765":145,"176m":[37,41,45],"177":[67,83,85,142],"1770":145,"177000":158,"177071":130,"17725185":144,"177400":131,"1775000":120,"1776":168,"1777":168,"1779":[133,196],"177m":[37,41],"178":[72,85,145],"1780":142,"1782":117,"1784":160,"178449":65,"178456":41,"178497":172,"178542":73,"17865972":144,"1787":36,"1788":[145,168],"17889":25,"178930":65,"17897":65,"17898":65,"178m":[37,41,45],"179":[85,145],"1790":[69,71],"179056":41,"1792":38,"179242":131,"17925531e":169,"1795":145,"179603":73,"1796875":145,"1798":145,"179800":[67,83],"179m":[37,41],"17m":149,"18":[14,25,38,41,53,56,57,60,63,64,65,67,68,73,83,85,86,101,110,125,128,136,142,143,145,149,150,155,158,165,171,182,187,189,196,204,209],"180":[33,85,121,125,136,141,142,169,200],"1800":142,"18000":135,"1800000":120,"180088":41,"1803":145,"18036583":144,"1805":145,"1806":145,"180658":130,"1807":145,"1808":145,"180833":41,"180m":37,"180x180x3":33,"181":[85,142],"1810":145,"181033e":65,"1811":145,"1811000":120,"1812":145,"181408":29,"181500":72,"1817":[36,145],"18175551":144,"181916":41,"181m":[37,41,45],"182":[85,125],"1820":[142,149,168],"182097":172,"18215":25,"1823":145,"18237040e":169,"1825":[36,149],"1827":145,"1827000":120,"182729":172,"18288803e":42,"182m":[37,41],"183":[41,85,142,145],"183150":161,"183580":29,"18359375":145,"1836":145,"1836633":41,"1839":145,"18390":[67,83],"183m":[37,41],"184":[85,125,145],"1840":[142,145],"18421":25,"18424606e":42,"184320e":73,"18441446e":169,"1847":145,"1848":149,"1848000":120,"18496":[38,45],"184m":[41,45],"185":[47,62,85,125,129,136],"18517844e":169,"1852":145,"1855":35,"18557502":[67,83],"1856":[119,145,194],"1857":145,"18576":[67,83],"1858":35,"1858320":142,"185946e":65,"185m":[37,41],"186":[53,56,67,83,85,145,160],"1860":[83,142],"1862":145,"1864":36,"18647253e":169,"18664192":125,"1867":42,"18677":83,"1869":145,"186m":41,"187":[85,142],"1871":83,"18714815":144,"18717328":144,"1872":145,"1872000":120,"1874":[30,133,196],"1874428":144,"187449":29,"1875":[30,136,145],"1875693":41,"18772155":83,"18781619":144,"187857":130,"1879":145,"187m":41,"188":[85,125,142],"1880":[1,142,145],"188054e":65,"1882":[41,145],"18844927e":169,"1885":145,"18851821":144,"18876416":45,"1889000":120,"188m":[37,41,45],"189":[85,125,142,145],"1892":145,"1893":145,"1896":145,"18965517":83,"189688":131,"1897":29,"1899":145,"189m":[37,41],"18th":117,"19":[41,45,53,56,65,67,73,77,85,86,101,110,121,128,131,136,143,145,149,155,156,158,171,182,189,192,193,195,202],"190":[45,62,67,83,85,136],"1900":142,"19000":135,"190222":41,"1904":[142,148],"190416":131,"19053":25,"1906":160,"1908":[36,145],"190m":[41,45],"191":[85,142,150],"19105823":144,"19123":167,"19126407":41,"191304":131,"19140625":145,"1915":145,"19157667":83,"191m":[37,41],"192":[65,76,85,119,136,194],"1920":[38,142],"1920000":120,"1921":145,"1923":36,"192380":41,"1925":145,"1926":36,"19269777":83,"1927":36,"1929":36,"192m":41,"193":[85,142,195],"1930":[118,145,158,194],"193100":83,"193137":29,"193203":41,"1933666654":[118,194],"1936":7,"193633":161,"1939":145,"193m":[37,41],"194":[85,125,173,209],"1940":[36,142],"1941":145,"194167":41,"1943":[30,149],"19437386e":169,"1944":145,"1944000":[120,194],"19447708e":42,"1945":145,"194532e":41,"19460641":144,"19464949":144,"194763":41,"1948":36,"1949":173,"194m":[37,41,45],"195":[56,69,71,85,136,160],"1950000":120,"195256":41,"1953125":145,"1954":[73,145],"1954000":120,"19541375872382852":171,"1955":[145,173],"19552860":195,"1956":173,"1957":73,"1959":[69,71,178,207],"195m":[37,41],"196":[56,85,142,145,160],"1960":[36,142,173],"1963":65,"1964":145,"1965":[69,71,73],"19651127":195,"196923":41,"196m":[37,41],"197":[56,85,125,145,160],"1970":41,"197080":131,"1972":[121,145,192],"19722e":142,"1973":145,"197317":85,"1974":[36,121,145],"197m":[37,41],"198":[64,85,142,145],"1980":[142,153],"1981":[73,145],"198279":41,"1984":[73,145],"198573":131,"198667":[70,92],"1987":149,"199":[73,85,125,142,183],"19902":25,"19903924":144,"1991":[145,189,211],"1992":[56,65],"19921875":145,"1993":[65,121,192],"199305":158,"1994":160,"1995":65,"1996":[55,58,121,145],"1997":[56,178,207],"1998":[55,58,120,121,148,158,194,197],"199833":65,"1999":[120,164],"1999000":120,"19991344e":169,"199m":[37,41,45],"1\u0435":163,"1_bar":139,"1d":[41,48,49,63,131,140],"1e":[14,32,36,45,77,91,101,137,139,142,143,148,154],"1e10":[169,200],"1e6":[169,195,200],"1f":[35,50,51,52,53,57,70,119,171,177,194,208],"1h":[67,83],"1m":136,"1min":202,"1pjb":41,"1px":173,"1s":[29,37,53,67,83,171,178],"1st":[7,14,18,22,39,60,128,135,136,173],"1stflrsf":60,"1u":41,"1x":[148,188],"1x1":143,"1x3":45,"1xcxhxw":148,"1xfhxfwx":148,"1xfhxfwxna":148,"2":[0,6,7,11,14,18,22,29,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,50,51,52,53,54,61,65,69,70,71,72,73,74,76,83,85,86,87,91,92,101,102,103,104,105,109,110,117,118,119,120,121,123,125,126,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,158,159,160,161,163,164,165,168,169,170,171,173,175,176,177,178,179,180,182,183,184,186,187,188,189,201,202,203,205,207,208,209],"20":[7,9,14,18,29,30,31,32,33,35,36,39,41,43,44,45,49,52,53,54,55,56,58,59,60,61,62,63,64,65,66,67,69,71,72,73,75,83,85,86,89,92,101,109,110,113,117,118,123,125,128,129,130,131,136,141,142,143,144,145,149,150,152,154,155,159,163,171,172,173,184,187,189,194,195,202,203,208,211],"200":[17,31,41,51,53,56,58,59,60,62,66,70,73,85,91,110,125,129,130,136,141,142,144,145,159,169,171,172,187,200,202,208],"2000":[14,37,60,64,118,120,131,135,142,150,171],"20000":[14,120,135,136,189],"200000":173,"2000x1500":92,"2001":[120,156],"200126e":41,"2002":[37,120],"200223":130,"2003":[120,150],"2004":[120,173,195],"2005":[120,142,145,150,173],"2006":[72,120,153,171],"200611":41,"2007":[72,120,121,192],"2008":[56,72,120,173,195],"2009":[53,120,145,156],"201":[41,64,85,125,129,130,145],"2010":[120,130,150,187],"2011":[120,150,164],"2012":[73,120,129,130,150,195],"20123":129,"2013":[31,73,121,130,150,153,192],"20130101":130,"20130102":130,"20130104":130,"2014":[63,73,143,150,158,195,198],"2015":[22,111,143,150,156,158,190],"2016":[56,62,150,158,164,178],"2016000":120,"2017":[117,129,150,154,158],"2018":[41,50,52,53,54,101,102,121,133,145,150,158,187,188,189,192,196,209],"2019":[17,54,121,133,145,150,152,154,158,192,196],"2019\u7248\u5b89\u88c5\u6559\u7a0b":41,"201m":[37,41,45],"202":[85,129,130,131,142],"2020":[1,14,41,60,63,101,121,123,129,133,136,142,145,152,155,156,158,192,196],"2020060289":14,"2021":[1,41,73,111,121,127,145,148,190,191,192,196],"2022":[14,117,121,123,152,153,154,182,183,190,191,192,196,211],"2023":[25,41,101,129,130,131,148,191,193,196],"2024":[77,129,149],"2025":121,"202500":41,"2026":129,"2028":145,"202805":130,"202895":41,"202m":[37,45],"203":[85,125,129,130,131,142],"2030":[111,129,156,190],"203125":145,"2033":[36,129],"2033000":[120,194],"203450":41,"203488":41,"2035":[69,71],"20350":129,"203578":161,"2037":145,"20370":129,"203848":41,"203m":37,"204":[35,64,85,125,129,130,131,145,179],"2040":[142,145],"20433":83,"20439573":144,"204445":41,"2045":145,"204565":41,"2048":[32,38,45,144],"2048n":32,"205":[35,64,85,125,129,130,136,145],"2050":[118,194],"205000":41,"205043":131,"205244":161,"2053":145,"2054":145,"2055":145,"2056":[76,145],"20583705e":169,"206":[64,85,129,130,158],"2060":142,"2061":[67,83,145],"2062":35,"2063":[76,145],"20635":83,"20636":83,"20637":83,"20638":83,"20639":83,"20639801e":42,"2064":67,"20640":[67,83],"2065":187,"20663297":144,"206881":[67,83],"2069":145,"206937":[69,71],"206m":37,"207":[37,64,85,129,142,145],"2070":145,"20703125":145,"207495":41,"207758":158,"207m":[37,41],"208":[64,85,129,130,142,145],"2080":142,"208342":158,"208500":72,"208516":41,"20876306":171,"2089":145,"208969":41,"20899203":144,"209":[64,85,125,142,145,187],"209435":41,"20944":14,"2095":92,"2099":41,"209m":[41,45],"20a":[129,130,131,187],"20adolesc":187,"20adult":187,"20age":187,"20algorithm":172,"20an":187,"20and":187,"20are":187,"20break":187,"20c":129,"20child":187,"20column":[129,130],"20construct":187,"20df":[129,130,131],"20df1":130,"20dfd":130,"20differ":172,"20dropna":129,"20dtype":130,"20elif":187,"20els":187,"20exampl":172,"20factor":187,"20fals":130,"20fell":187,"20find":187,"20for":187,"20from":172,"20gemi":37,"20get_age_group":187,"20how":129,"20if":187,"20in":187,"20index":[129,130,131],"20io":[129,130,131],"20lambda":130,"20left_on":129,"20list":130,"20loop":187,"20lsuffix":129,"20n":187,"20name":129,"20none":129,"20np":[129,130,131],"20numpi":[129,130,131],"20of":172,"20on":129,"20outcom":172,"20panda":[129,130,131],"20pd":[129,130,131],"20period":130,"20prime":187,"20print":187,"20px":173,"20random":130,"20rang":[129,187],"20right_on":129,"20rsuffix":129,"20scikit":172,"20speed":129,"20th":61,"20the":172,"20through":187,"20true":130,"20use":187,"20verileri":37,"20without":187,"20x":187,"20x_rang":187,"21":[14,29,40,41,53,65,67,73,75,77,83,85,89,101,102,110,111,128,131,136,145,147,155,171,172,173,182,183,187,189,202,209],"210":[85,125,129,136],"2100":142,"210113":41,"2103":145,"210424":41,"2105":145,"2107":145,"2109":145,"2109375":145,"211":[56,85,171],"2112000":[120,194],"2115":145,"211667":41,"2117":145,"211714":41,"211771":41,"2118":145,"212":[45,85,145],"2120":142,"2122":76,"212514":41,"212563":41,"212626":41,"2127":[67,83,145],"21271446":144,"212782":41,"212m":[37,41],"213":[41,85,125,142],"21351941":144,"2137":145,"21384971":144,"214":[85,145,168],"2140":142,"214141":41,"2144":145,"21447655e":169,"2145":145,"214693":41,"21475352":171,"214756":41,"2148":[119,194],"214824":41,"21484375":145,"2149":145,"215":[85,125,136],"215000":131,"215058":41,"2152":76,"2153":168,"2155":145,"21556523":179,"2156":145,"215643":41,"21567622":171,"215682":67,"21578029":83,"2158":145,"215m":37,"216":[85,145,188],"2160":[36,142],"216000e":73,"216148":41,"216719002155":171,"2169":[67,83],"216924":41,"217":[85,142,155],"2173424":41,"2174":[73,76],"217478":41,"2175":145,"21753011e":169,"2176":145,"217739":41,"2178":145,"21783545e":169,"218":[85,142],"2180":[83,142],"21806371":171,"218161":[69,71],"218217":41,"21836272":144,"21845922e":169,"218509":158,"2186":42,"218612":41,"218684":73,"21875":145,"218966":41,"219":[67,83,85,125,145,171],"2190":41,"219367":41,"219453":161,"219544":41,"2196":145,"2197":36,"2198447506":209,"219m":37,"22":[14,41,45,51,53,56,60,65,67,73,83,85,86,119,121,128,129,130,131,136,142,144,150,155,163,165,171,173,187,189,192,194,196,209],"220":[41,64,85,125,136,142,145,187],"2200":142,"22000":120,"220173":41,"2202":145,"2203":145,"2204":145,"220500":158,"22067261e":42,"2207":145,"2208":145,"2209":145,"220m":37,"221":[85,125,142,145],"22102":83,"2212":73,"2216":73,"2217":145,"2218":145,"221846":41,"2219":[83,145],"221956":73,"22199004":83,"221m":37,"222":[34,85,142],"2220":142,"2222":145,"222222":125,"222298":158,"222337":[69,71],"2224":145,"2225":149,"22265625":145,"223":[41,65,83,85,145],"2235":145,"223500":72,"223854":41,"2239":73,"223910":41,"224":[45,73,77,85,145],"2240":[73,142],"2241":145,"22426":25,"2243":145,"2246467991473532e":209,"224m":37,"225":[85,136,145],"2250":145,"2251":145,"2254":83,"22545290e":169,"2255":145,"2259":145,"226":[85,142,145],"2260":142,"22611444e":169,"22615":168,"226176":131,"2265":145,"2265625":145,"226673":131,"226722":179,"2268":145,"227":[85,142,145],"227031":41,"22708941e":169,"2272":145,"227546":41,"2278":145,"228":[85,145],"2280":142,"228077":29,"228120e":41,"2282":145,"2284":[119,194],"2285":149,"228550":130,"2287":145,"2288":145,"229":85,"2290":145,"2291":145,"2292":145,"2293":145,"229673984":41,"229679":73,"22969874e":169,"22a":[129,131],"22b":[129,131],"22bar":131,"22boolean":130,"22c":[129,131],"22d":131,"22flag":131,"22foo":131,"22golden":187,"22one":131,"22one_trunc":131,"22two":131,"22type":129,"22you":187,"23":[14,41,51,53,67,73,77,83,85,86,101,118,119,128,136,142,145,155,158,171,173,182,187,188,194,196,209],"230":[65,85,136,145,177],"2300":142,"23000":120,"230000":41,"23046875":145,"230769":41,"230m":[37,41],"231":[41,85,125,142,145,171,176,177],"2310":145,"2313":145,"231342":41,"23157000":[120,194],"231640":41,"23170093":83,"231768":41,"2318":145,"232":[64,73,85,142,145,171],"2320":142,"2326":145,"2327":145,"2328":145,"2329":145,"232m":37,"233":[85,142,145,176,187],"2332":145,"2333":145,"2334":145,"233477":131,"2335":145,"234":[85,145],"2340":[142,145],"234330":41,"234368":29,"234375":145,"234571":65,"234978":135,"234m":37,"235":[67,83,85,136,142],"2353":145,"23532076758141082":131,"23532077":131,"235321":131,"2354":145,"235449e":41,"2355":145,"235636":41,"2357":145,"236":[85,142,145,176],"2360":[142,145],"236000":41,"2360000":120,"23606797749979":101,"2361":145,"2364":145,"236431":130,"2365":145,"2366":145,"2367":145,"2369":145,"237":[41,85,142],"23702":42,"237185":41,"2373":145,"2376":145,"237692":41,"2377":145,"2378":145,"2379":145,"238":[85,142,145],"2380":[142,145],"2381":145,"2383":145,"2384":[67,83],"238462":41,"2385":145,"2386":145,"2387":145,"2388":145,"2389":145,"239":[85,142,145],"239001e":65,"2392":145,"2394000":120,"2395":145,"239501":130,"2396":145,"2397":145,"2398":145,"239m":37,"24":[14,32,41,42,45,53,55,58,64,65,67,73,83,85,86,111,128,129,131,136,145,146,154,155,163,171,173,182,183,184,190],"240":[85,136,142,145],"2400":142,"24000":120,"2401":[42,67,83,145],"2403":145,"2404":145,"2405":168,"2408":145,"2409":145,"241":[85,142,145],"2411":145,"241108":83,"241287":41,"2413":145,"2416":145,"2417":76,"2418":145,"2419000":120,"242":[85,145,177],"2420":142,"242098":158,"2421875":145,"242225":65,"242289":73,"242545":131,"2426":145,"2427":145,"243":[56,85,160],"2430a9896ce5":[127,196],"2433":145,"243338e":41,"243422":41,"2435":145,"243534":41,"24364250e":169,"243875":41,"244":[56,85,142,160],"2440":142,"244215":41,"2443":145,"2444":41,"2446":145,"244655":41,"2447":[145,175],"2448":175,"244898":161,"244950":73,"245":[85,136,142,145,155,177],"2450":145,"2451":145,"2455":129,"2457":129,"2458":129,"245820":41,"245839":130,"24591009185":83,"246":[85,145],"2460":[129,142,145],"246046":41,"24609375":145,"2461":129,"2462":129,"2463":129,"2465":145,"247":[85,142,145],"2472":145,"2474":129,"2475":[129,145],"2477":145,"2479":145,"247m":37,"248":[85,143],"2480":[142,145],"2481":145,"2483":145,"2484227":38,"2486019":38,"2488":145,"2489":145,"249":[69,71,85,145,176],"2495":145,"2498":145,"249865":130,"24c5":32,"24m":149,"25":[7,14,31,32,37,38,39,41,42,43,44,46,53,55,56,58,60,61,64,65,67,70,73,83,85,91,92,101,102,110,125,128,129,131,136,138,141,142,145,149,150,155,158,160,163,164,167,168,171,182,183,184,187,188,189,195,203,205,206,208,209,210,211],"250":[35,64,66,85,136,145,149,171,173,176,211],"2500":[142,165],"25000":120,"250000":[41,70,72,73,168],"2503":145,"250448":41,"2505":145,"250522":29,"251":[85,142,145,177],"2513":145,"251354":73,"25173":73,"251957":130,"252":[65,85,142],"2520":142,"2520000":120,"2522":145,"2524":145,"2525":[73,145],"252526":131,"2526":145,"2528":145,"2529":145,"252973836909085":85,"253":[85,145],"253000":120,"2532":145,"253611":173,"2537000":120,"25390625":145,"254":[56,85,145,160],"2540":142,"2547":41,"255":[29,30,31,32,33,36,38,44,45,46,52,76,77,85,135,136,137,138,142,143,144,208],"255000":158,"2555":145,"25551336":171,"2556":145,"255614":131,"2559":145,"255933":131,"256":[31,32,34,35,38,39,41,42,43,45,64,66,68,85,128,135,138,139,142,143,144,148,167,168,198,208],"2560":142,"256217e":65,"256221e":65,"25641564":144,"256662":130,"2568":145,"256952":41,"256n":32,"256x256x3":128,"257":[85,142,209],"2574":[67,83],"2577":145,"257740":29,"2578125":145,"258":[38,43,85],"2580":142,"258445":[69,71],"2586":145,"2586000":120,"25863":173,"258653":131,"2587":145,"258906":130,"259":[41,65,67,73,83,85,142],"2593":145,"25931094e":169,"2595":149,"2599":145,"259m":37,"25th":60,"26":[41,53,56,64,65,70,73,83,85,120,128,129,136,142,145,155,160,165,171,182,183,184,189,192,195,204],"260":[41,42,85,136,142],"2600":[41,67,142],"260000":[9,109,110],"260882":73,"260c2de0a050":197,"261":[85,145],"2613":[58,145],"261400":130,"26150":83,"2617":145,"26171875":145,"262":[73,85,145],"2620":142,"262048":41,"262207":41,"2624":145,"2625":145,"2629":145,"263":[85,142,145],"2631":[67,83],"263694e":41,"263863":41,"2639":145,"264":[70,85,145],"2640":[41,142,145],"26448193":195,"264598":73,"264700":[67,83],"265":[36,42,56,85,136,142,145,160],"265056":[69,71],"265412":158,"26541833":83,"265625":145,"265630":131,"2659":145,"26590556":128,"265909":168,"266":[64,85,145],"2660":142,"2661":142,"2664":145,"2664364997":68,"26646":73,"2666666666666666":14,"267":[85,142,182],"2670":145,"267009":142,"267059e":65,"2671":145,"2672":145,"267238":131,"2673":145,"2674":[145,168],"26769257e":42,"2677":145,"268":[85,142,145],"2680":142,"268016":29,"2681":145,"26835":42,"2687":145,"269":[42,64,85,131,142,145,150,208],"2692":145,"2693":149,"26953125":145,"269534380":131,"269573":65,"26989269e":169,"27":[41,51,53,56,64,67,73,85,128,129,136,142,145,154,160,168,171,173,182,187,188,192,210],"270":[85,136,145,182,183,184],"2700":[142,173],"27000":[120,194],"2701":145,"27017952":83,"270551":41,"2706":145,"270833":41,"2709":145,"271":[41,85,142],"2710":145,"2713":145,"2716":145,"271796":41,"2719":145,"272":[85,142,145],"2720":[142,158],"2723":83,"2725":145,"2727":145,"272923":131,"27298934":83,"273":[85,145,164],"273000":83,"2732":145,"27342931":[67,83],"2734375":145,"27354":42,"27355957e":42,"27358504939668":85,"2738":145,"27381897e":42,"274":[65,85,142,145,182],"2740":142,"274082":[69,71],"2744":76,"274785":73,"275":[85,136,145],"2751":41,"2752":145,"2753":145,"2759":145,"276":[85,142,145],"2760":142,"2761":145,"2763":145,"2768":145,"276923":41,"277":[83,85,142],"277078":67,"277273":168,"27734375":145,"27735919e":169,"277392":29,"27745":83,"277600":41,"2778":83,"278":[54,83,85,142,145],"2780":[142,145],"2784":83,"2785":83,"2787":145,"279":[67,83,85,145,184],"279057":131,"2794":145,"279666":131,"279818":73,"28":[29,30,32,41,44,46,52,53,56,63,65,67,73,75,76,83,85,89,91,93,101,125,128,129,130,131,135,136,145,146,156,160,165,171,173,182,187,189,198],"280":[41,67,83,85,130,136,142,145,182,183,184],"2800":142,"280110":73,"2807":145,"2809":[53,145],"2809000":120,"281":[41,85,129,131,142,182],"2810":[129,130],"28109":25,"28125":145,"281427e":41,"2815":145,"2816":145,"2819":45,"282":[85,142,187],"2820":[142,168],"2824":145,"282879":131,"283":[85,187],"2831":145,"2832":145,"28327":25,"283273":73,"2833":[145,165],"2836":145,"2838":145,"28393465e":169,"283m":37,"284":[45,85,142,145],"2840":[142,145],"28433":25,"2846":45,"284642":130,"284887e":73,"2849":145,"284m":37,"285":[85,130,136,142],"2850":187,"28515625":145,"2854":145,"2855":145,"28566":[67,83],"28571428571428414":171,"285843":29,"28585348":171,"286":[85,130,142,159],"2860":[142,145],"287":[85,130,142,145],"287105":73,"288":[41,85,145],"2880":[142,145],"2881":168,"28813776e":169,"2882":145,"288m":37,"289":[42,53,85,175],"289028":131,"2890625":145,"289547":73,"28964":25,"28age":187,"28arrai":129,"28by":129,"28d":131,"28df2":129,"28l":129,"28level":129,"28list":130,"28n":187,"28np":130,"28other":129,"28rang":130,"28x":130,"28x28":[29,30,32,46],"29":[14,25,41,53,54,56,64,65,67,73,83,85,101,128,129,130,131,136,145,160,171,173,182,183,184,187],"290":[85,136,145],"2900":[64,142],"290224":73,"2904":145,"29040966":171,"290833":41,"291":[85,145],"2911":145,"2915":145,"2916":145,"2919":145,"291m":37,"292":[85,119,145,194],"2920":142,"292181e":65,"2922":145,"292669":[69,71],"29296875":145,"293":85,"2933":145,"29340":42,"29340409e":169,"2938":[69,71],"293846":41,"29399768":171,"294":[41,42,85,142,145,171],"2940":142,"294307":73,"2945":145,"294904":131,"295":[67,83,85,136,145],"2950":76,"295040":38,"295113":131,"29513185":83,"295168":[38,45],"29518659e":169,"2954":145,"295910":130,"296":[85,142,145],"2960":142,"2962":145,"2963":145,"29630879e":169,"2966":145,"296875":145,"296m":37,"297":[85,142,143,145],"2971":145,"2974":145,"2975":145,"2976":145,"2977":145,"297727":168,"2978":145,"29780579e":42,"298":[85,142],"2980":142,"2982":76,"298750":158,"299":[42,56,83,85,110,142,145,160],"2995":145,"299628":131,"2998":41,"2\u5347\u7ea7\u8865\u4e01":41,"2_2":135,"2_intro_to_tensorflow_for_deeplearn":48,"2_k":141,"2_p":139,"2_q":139,"2a":144,"2b":144,"2c":144,"2d":[1,34,48,92,118,119,131,139,169,172,182,184,202],"2d2d2d":173,"2e":139,"2f":[18,33,56,125,136,150,159,163,165,171],"2fe":160,"2g4adil3rc2ig":65,"2j":[128,188,210],"2m":[41,53,136,147],"2n":73,"2nd":[18,22,39,60,70,128,130,135,136],"2ndflrsf":60,"2p_":56,"2s":[36,38,67,76,148,171,202],"2urviv":165,"2uzaipygetzmkni96ng18dyippbmj3hekpjeafd3fcrkemh4azefi2mqvxrfngxztozguhnbefu2la3avusz":65,"2vtlmaj":91,"2x":[63,84,179,188],"2x_i":[84,179],"2xbdtm2l70p":65,"2yf":164,"3":[0,1,6,7,8,9,11,14,16,22,23,29,30,31,33,34,35,36,37,38,39,40,41,42,44,45,46,49,51,52,53,54,57,65,68,69,70,71,72,74,76,77,80,84,85,87,91,92,93,101,102,103,105,109,110,115,117,118,119,120,121,122,125,126,127,129,130,131,133,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,158,159,160,161,163,164,165,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,196,200,202,203,205,206,207,208,209],"30":[7,14,18,32,37,40,41,44,52,53,55,56,57,58,61,62,65,66,67,68,69,71,72,77,85,101,102,110,113,118,119,128,129,131,136,137,145,150,155,158,160,163,164,169,171,173,187,188,189,194,195,200,203,205,206,209],"300":[18,55,58,59,60,85,136,142,155,163,164,169,171,187,200],"3000":[14,18,60,135,142,145,179],"30000":[14,42,120,204],"300000":[70,92],"3000000000":189,"300000012":167,"3005":145,"30078125":145,"30082566":171,"300k":156,"300px":[144,173],"301":[41,85,145],"3010":145,"3014":[67,83],"3015":145,"30189633e":169,"3019":145,"302":[41,85,142],"3020":142,"3022":145,"302548":131,"3028":145,"303":[85,142],"303347":41,"304":[85,142],"3040":142,"30404801e":169,"3046875":145,"304888":[69,71],"3049":145,"304m":37,"305":[73,85,136,145],"3054":145,"3055":145,"306":[85,142],"3060":142,"3064":145,"3067":145,"306m":37,"307":[85,142],"3071":[145,168],"3075":145,"307562":73,"3078":145,"307m":37,"308":[85,142,145],"3080":[142,145],"3081":145,"3082":145,"3085":145,"30859375":145,"3086":145,"3087":145,"3089":145,"309":[38,85,142],"309233":131,"30927452":83,"3093":149,"30957512":83,"30990":25,"30px":173,"31":[1,41,53,56,63,65,75,83,85,89,101,110,128,136,142,145,155,158,171,172,173,202,204],"310":[85,136],"3100":[64,142,145],"3103":[76,149],"310353":73,"3105":145,"3106":145,"3107":145,"3109":145,"311":[85,142,145],"3111":145,"3112":145,"3113":145,"311377":29,"3116":145,"31168387":83,"3117":145,"312":[55,58,85],"3120":[142,145],"312037":85,"312196":73,"3125":145,"3127":168,"3128":145,"313":[76,85,136,142],"3131":145,"3133":145,"3134":145,"313765e":41,"314":[41,85,142],"3140":[142,145],"3141":145,"3142194":125,"3145":145,"3146":145,"3148":[119,194],"3149":[67,83],"315":[85,125,136,142],"315000":41,"31501":130,"3159":145,"316":[85,145],"3160":142,"3161":145,"3163":145,"31640625":145,"316667":41,"3168":145,"317":[85,142,145],"3170":145,"31754741e":169,"3177":145,"3179":145,"317m":37,"318":[41,85,130,142],"3180":142,"3181":145,"3184":145,"31856":25,"318823":29,"319":[85,130,142,145],"3191":145,"3196":145,"31t19":127,"32":[29,31,32,33,34,35,36,37,38,39,41,43,44,45,47,48,49,53,56,61,64,67,69,71,77,83,85,91,101,113,128,136,139,142,143,144,148,155,160,171,187,188,209],"320":[30,41,43,85,130,136,142,163,175],"3200":142,"32000":[64,120],"3202":145,"3202614379084967":179,"3203125":145,"3204":76,"3208":145,"320833":41,"321":[73,85,142,171],"3210":145,"321097":29,"321188":131,"32137599":171,"321772":131,"322":[41,67,83,85,130,142,145,171,208],"3220":142,"32208":41,"3224000":120,"322500":41,"322727":168,"3228":[76,145],"323":[85,171],"3230":36,"323328":65,"3234":145,"3235":145,"3238":145,"324":[85,171],"3240":142,"3242":145,"32421875":145,"3245":145,"3246":145,"3248":145,"3249":145,"325":[85,129,136,142,145,171],"3252":[67,83],"325377":130,"3255522":[188,210],"32561":57,"326":[41,85,129,145,171],"3260":142,"3261":145,"32622333e":169,"326460":[69,71],"326667":41,"32674535":[67,83],"3269":145,"326m":37,"327":[85,129,142,145],"3270":145,"327500":41,"327920":73,"328":[41,85,129,142,145],"3280":142,"328086e":41,"328125":145,"328316":73,"328333":41,"3285":145,"3286":145,"3288":145,"328865":168,"3289":65,"328947":125,"329":[41,85,129,142,145],"3291":145,"329167":41,"3293":168,"329481":131,"329816":41,"32995317":171,"32c3":32,"32c5":32,"32c5s2":32,"32n":32,"32x32":[34,143,144],"33":[41,53,56,65,67,73,83,85,128,129,136,142,145,150,155,160,169,171,179,183,186,200],"330":[83,85,129,136],"3300":142,"3300000":[120,194],"3301":145,"3306":[65,145],"3308":145,"3309":145,"331":[85,129,142,145],"3310":[118,194],"331000":158,"33146":130,"3316":145,"3319":145,"331m":37,"332":[85,142,145],"3320":142,"33203125":145,"3323":145,"332317":131,"332354":64,"3326":145,"3327":145,"333":[32,85,188,210],"333045":130,"3330454933340619":130,"3331":145,"333110":130,"33318591117858887":53,"3333":145,"333333":[41,129],"333701":158,"3338":145,"333884":29,"3339440331":202,"334":[85,145],"3340":142,"33416821":83,"3342":145,"334288":85,"334530":73,"3346":145,"3349":145,"335":[85,136,142,145],"3357":145,"3359375":145,"336":[42,85,142],"3360":142,"336000":120,"336342":[69,71],"337":[73,85,142,145],"337178938356":167,"337692":41,"3377000":120,"3378712":83,"3379":145,"338":[45,85,142],"3380":142,"33812285":[169,200],"338224":29,"3385":145,"338m":136,"339":[83,85,145],"3394":145,"339513":73,"33984375":145,"33j5zsqxrbaifkki8kiqevc9w9loi3sltucxl49t":65,"33m":149,"34":[41,53,56,64,65,67,70,83,85,102,120,128,131,136,142,145,160,171,187,188,189,210],"340":[85,136,142],"3400":142,"3404":145,"3406":145,"340769":41,"340906":131,"341":[85,142,145],"34110223":83,"3412":145,"3413":142,"341300":[67,83],"3414":145,"341649":65,"342":[85,142],"3420":142,"342200":[67,83],"3425":145,"343":[85,145,188],"3432":45,"3435":45,"3436":145,"34375":145,"34376245":128,"3439":45,"344":[41,85,145],"3440":142,"3443":76,"3444":145,"3445000":[120,194],"344698":67,"344828":125,"345":[34,83,85,136,142],"3455":145,"3459":38,"346":[42,85,145],"3460":142,"346652":131,"3468":145,"3469":45,"347":[85,142],"3471":145,"3474":45,"3475":45,"34765":42,"34765625":145,"3477":145,"348":[54,85,142,145],"3480":[142,158],"3482":45,"3483":145,"349":[83,85,142,145],"349388":41,"349603":73,"3497":145,"349751":29,"35":[14,31,37,41,53,67,75,83,85,89,102,128,136,144,145,163,165,171,173,183,188,210],"350":[85,129,136,145,187],"3500":[67,142,188],"35000":[120,188,210],"350000":[70,92],"3502":145,"3505":45,"350816":29,"3509":145,"351":[85,142],"3510":145,"351179":131,"35119":25,"3513":145,"3514":145,"3515625":145,"3516":168,"3519":[65,145],"352":[85,142],"3520":142,"352100":[67,83],"3522":145,"352222":173,"3525":45,"353":[85,145],"35303":73,"35313706e":169,"353490":130,"3537240779558":[69,71],"354":85,"3540":142,"35410":25,"3544":183,"3548":145,"355":[85,136,142,145],"3554":168,"355442":131,"35546875":145,"3555":145,"35554":83,"3557":145,"3558":145,"356":[83,85,142,145],"3560":142,"356047":73,"35650803e":169,"35656222554887711":[188,210],"356566e":131,"357":[85,142],"3571":145,"357417":73,"35775710e":169,"357935":73,"358":[85,142,172,202],"3580":[65,142],"358500":[67,83],"359":[85,142,145],"35903936e":169,"359375":145,"3595":145,"3596":145,"35e3":[188,210],"35m":30,"36":[37,41,42,53,56,69,71,83,85,109,128,129,136,145,171,188,209,210],"360":[35,72,85,136,142],"3600":[142,158],"36000":120,"36019897e":42,"3605":145,"360769":41,"3609":45,"360m":37,"361":[85,142,172,202],"3611":145,"36114314":179,"3612":145,"36155096":161,"361551":161,"36159148":171,"3617":76,"361724":131,"3618":145,"3619":145,"362":[85,142],"3620":142,"362000":158,"362069":125,"3623":145,"3625":145,"3627":[145,168],"362759e":65,"3628800":101,"363":[85,142],"3630":145,"363270":41,"36328125":145,"363636":182,"36398808":83,"364":85,"3640":142,"364581":131,"36473":42,"365":[73,85,136,142,145],"3650":145,"365349":41,"365811":131,"366":[85,129,142],"3660":142,"3664":145,"36644657e":169,"3668":144,"367":[85,129],"3670":145,"3671875":145,"3672":145,"3673":145,"367530":130,"368":[41,85,119,129,142,194],"3680":142,"3681":145,"368430":41,"36864":36,"369":[85,129,142,145],"369197":131,"3697":145,"36d72442aefd8232":42,"36m":30,"37":[41,53,56,65,67,69,71,73,83,85,101,128,136,142,144,145,160,164,171,187,195,203],"370":[85,129,136],"3700":142,"370000":41,"3703":[76,145],"371":[85,129,145],"37109375":145,"3715":145,"371667":41,"371682":29,"372":[85,129],"3720":142,"372294e":65,"3723":145,"3725":41,"373":[45,85,129,142],"3730":145,"373333":41,"37350000":[120,194],"3737":145,"373888":130,"374":[83,85,129,142,171],"3740":142,"374603":125,"3748":145,"375":[85,129,136,142,145],"375147":209,"3752":145,"3756":145,"37570172":[67,83],"375833":41,"3759":145,"376":[85,129,142,145],"3760":[41,142],"376041":29,"3762":149,"3764":145,"376707":131,"3769":145,"377":[85,129,142,145],"377175":168,"3773":145,"3776":145,"378":[85,129,142],"3780":142,"3781":145,"3782":145,"378791":131,"3788":145,"37890625":145,"379":[67,83,85,129,145],"3791":[41,145],"379601e":41,"37d61fd2272659b1":42,"37m":30,"38":[9,41,53,56,57,65,70,73,83,85,109,110,125,128,136,145,160,165,171],"380":[45,63,74,83,85,129,136,142,145,175,176],"3800":[142,145],"38000":120,"380000":41,"3801":145,"3802":[131,145],"3803":131,"380350":41,"3804":131,"3805":[131,145],"3806":131,"3807":131,"3808":131,"380813":73,"3809":131,"381":[63,85,129,142,145,175],"3810":131,"381185":130,"3817":145,"3819":145,"382":[74,85,142,145,176],"3820":142,"3822":[41,145],"382308":41,"3824":41,"3828125":145,"383":85,"3830":41,"3830571":41,"383290":73,"38332521":195,"383564":29,"3836":145,"3837":145,"38378143e":42,"3838":145,"3839":145,"384":[85,136,142,145,175],"3840":142,"384210":173,"3843":145,"384615":41,"384761":29,"385":[41,63,85,136,142,145,175],"3852":145,"385705":179,"385733e":41,"386":[63,85],"3860":142,"3861":145,"3862":41,"386440":131,"38671875":145,"386818":130,"387":[36,63,85,145],"387129":155,"3877":145,"3878":41,"388":[36,45,85],"3880":142,"38828582528":67,"3884":130,"388495":130,"3886":[83,130],"3887":130,"3888":130,"3889":[76,130,145],"389":[63,85,145,150],"3890":130,"3891":130,"389167":41,"3892":130,"3894":145,"3895":130,"3896":130,"3897":130,"389738":131,"38m":30,"39":[37,41,53,65,66,69,71,73,83,85,128,136,145,159,171,209],"390":[63,85,129,136],"3900":[130,142],"3901":130,"3902":130,"3903":[130,145],"3904":[41,145],"390566":158,"390584":130,"3906":149,"390625":145,"3909":37,"391":[85,145],"3915":168,"3916":[119,145,194],"392":[63,76,85,142,145],"3920":142,"3922":168,"392257":73,"3925":145,"392552":130,"3929":145,"393":[63,85],"39320":[67,83],"393580":65,"3937":145,"3939":145,"394":[85,142,145],"3940":142,"3942":145,"394229":29,"39453125":145,"3946":76,"395":[85,136,142],"3950":145,"3952":145,"3954":145,"395833":41,"396":[41,73,85],"3960":142,"396047":131,"3966":145,"3967":145,"39696":158,"397":[41,85],"3974":145,"3975":145,"3976":41,"39761905":160,"398":[85,142,145],"3980":[41,142],"3984375":145,"398623":131,"399":[85,142,145],"3991":83,"3994":175,"3995":175,"39972045e":169,"3998":41,"3a":[129,130,131,187],"3a10":130,"3a3":130,"3a4":130,"3a5":130,"3a6":130,"3c":187,"3d":[41,73,84,128,129,130,131,136,169,172,182,184,187,195,202],"3d0":129,"3d5":130,"3ddf":131,"3dfals":129,"3dindex":129,"3dlist":130,"3dpd":130,"3e":[130,131,187],"3f":[41,172,188,202,210],"3g":[75,89],"3int8":128,"3j":211,"3ltlqmqsncb9d0rthglvb3gjj3":65,"3m":[29,53],"3rd":[22,39,60,128,172],"3s":[38,41,65,67,136,149,171],"3ssnporch":60,"3x3":[32,34,143],"3x4":[188,210],"3yqlb":65,"4":[0,6,7,14,22,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,49,52,53,54,65,69,70,71,72,73,74,76,77,83,84,85,91,92,93,101,102,103,110,111,117,118,119,120,121,122,126,127,128,129,130,131,133,135,136,139,140,141,142,143,144,145,146,147,148,149,150,153,154,155,158,159,160,161,163,164,165,167,168,169,171,173,175,176,179,182,183,184,186,187,188,189,198,200,202,203,204,205,206,209],"40":[1,7,9,14,32,33,41,53,54,56,65,69,71,73,85,91,92,93,109,110,118,119,121,127,128,136,142,145,158,164,171,172,179,187,192,194,202,203,204,209],"400":[7,59,62,77,85,118,126,136,142,143,182,187],"4000":[14,37,60,64,135,142,171],"40000":[14,120],"400000":[70,92],"40000000":189,"4002912":156,"40067661":128,"400698":130,"4007":145,"400833":41,"400mg":[1,8],"401":[85,145],"4012":145,"4013":145,"4016":41,"4018":145,"402":[63,85],"4020":142,"40216064e":42,"40234375":145,"402461":131,"4029":145,"403":[85,142,195],"403000":158,"403011":29,"4031":76,"4038":145,"4038v2":144,"403950":131,"404":85,"4040":142,"4041":145,"404166":131,"404572":73,"4048":145,"40480256345":83,"405":[85,136],"4050":[118,194],"405278":85,"405309e":41,"4056":41,"406":[85,145],"4060":142,"40618608":171,"40625":145,"406383":131,"4066":145,"406667":41,"4067":145,"40675528e":169,"406m":45,"407":[85,142,145],"4071":145,"4077":145,"4077193":160,"407m":37,"408":[56,85,145,160,168],"4080":[142,145],"4081":41,"40827":168,"408376":67,"4084":145,"40847":130,"408470":130,"4087":145,"409":[35,77,83,85,145,176],"4093":145,"4096":[38,45,144],"4098":[188,210],"40996577e":169,"41":[29,41,53,54,56,67,73,83,85,101,128,136,145,160,171,173],"410":[67,83,85,136],"4100":142,"410014":64,"41015625":145,"411":[35,41,85,142],"4117":38,"411786":131,"4119":145,"411m":37,"412":[85,142],"4120":[142,145],"41212121":91,"412146":131,"41214628169062806":131,"412214e":41,"41242353":[67,83],"4127":[188,210],"413":[77,85,142,145],"413696":38,"4139":[188,210],"414":85,"4140":142,"4140625":145,"4141":73,"414184":179,"41420614":83,"4147":145,"41472":38,"41473":38,"41473335e":169,"4148":145,"4149":145,"415":[56,85,136,160,182,184],"4153":145,"415385":41,"416":85,"4160":142,"4162":145,"4165":64,"417":[36,67,83,85,145],"4179":145,"41796875":145,"418":85,"4180":142,"41800805e":169,"418056":173,"41863":25,"4189":145,"419":85,"41915124e":169,"4191616766467092":37,"4192":145,"419540":73,"419621e":65,"4197":37,"4198":37,"4199":[37,145],"41m":76,"42":[31,34,35,37,41,42,44,48,49,53,54,55,58,59,62,63,64,65,66,67,70,73,85,91,113,128,136,144,145,149,159,163,171,172,179,183,187,188,195,202,209,210],"420":[85,136,142,158],"4200":[37,142],"420000":41,"4201":37,"4202":37,"4203":37,"4204":[37,145],"4205":37,"4206":37,"4208":[119,194],"421":[41,85,142,145],"421456":29,"4215":41,"421797":29,"421875":145,"4218916":83,"4219":145,"422":85,"4220":142,"4221":168,"4222":145,"4223":58,"42235376":125,"42237836":83,"4229":145,"423":[85,145],"4236":145,"423735e":73,"4238":145,"423967":195,"424":[85,142,145],"4240":142,"4243":145,"424866":41,"424965632":41,"425":[85,136,142],"425306":131,"425538":131,"425684e":41,"42578125":145,"425798":131,"426":[73,85],"4260":142,"4261":145,"4265":145,"42685419e":169,"427":[85,142,145],"4270":145,"427000":120,"42707062e":42,"427500":41,"428":85,"4280":142,"428448":131,"428793":195,"429":85,"429055":41,"4291":145,"42932572e":169,"4296875":145,"429m":37,"43":[41,45,53,56,64,65,70,73,83,85,101,128,136,145,171,179,187],"430":[63,75,85,89,136],"4300":[142,145],"43000":120,"4303":145,"431":[85,145],"43116792":[169,200],"431800e":65,"432":[85,145],"4320":142,"432320e":73,"432x288":73,"433":[83,85],"433153":130,"4334":145,"43359375":145,"433594":[70,92],"4336":145,"434":[85,145],"4340":142,"4345":145,"435":[42,67,83,85,136,142],"4350":145,"43539442771396":171,"4354":41,"435656":131,"435833":41,"436":85,"4360":142,"4362":[45,145],"436250":29,"43641024":179,"436517":161,"437":[85,145],"4375":145,"437m":37,"438":[85,142,145],"4380":142,"4381":145,"439":[85,145,168],"44":[41,53,54,63,65,73,83,85,101,119,125,127,128,136,145,163,171,173,187,194,196,209],"440":[53,85,136,142,168],"4400":[142,145],"440000":41,"44001770e":42,"4405":145,"44085502":[67,83],"4409":76,"441":[75,85,89],"44140625":145,"441787":73,"4419":145,"442":[85,145,175,186],"4420":142,"44221823e":169,"4427":145,"44294":25,"443":85,"4432":41,"4434":145,"44359863":[169,200],"444":85,"4440":142,"44406":43,"444305":73,"4448":145,"4449":145,"445":[42,85,136],"4450":145,"4452":41,"4453125":145,"445368":70,"445375":41,"4455":41,"445716":161,"4459":[145,149],"446":[85,145],"4460":142,"446873":[69,71],"447":85,"4475":41,"44767761e":42,"447m":37,"448":85,"4480":142,"448885":179,"449":[85,145,195],"449070":73,"44921875":145,"4494":145,"45":[14,31,35,41,46,53,54,55,56,58,64,85,110,118,120,125,128,136,142,145,147,150,158,159,160,171,173,183,187,191,194,195,208],"450":[56,85,136],"4500":[34,142],"450000":[41,120,194],"45025583e":169,"45053314":128,"451":[85,145],"451667":41,"451825":73,"452":[85,142,145],"4520":142,"4522":145,"452600":[67,83],"45266050e":169,"4527":145,"45299624e":169,"453":85,"453125":145,"453172e":65,"453472":73,"4535":145,"4539":145,"454":[85,142],"4540":142,"454335":41,"4544":145,"454545":182,"455":[44,85,136],"4554":145,"4555":145,"455649e":65,"4557":145,"455850496":41,"45585107":[67,83],"4559":41,"456":[34,85,101,188],"4560":142,"456198":130,"4562":145,"4567":145,"457":85,"45703125":145,"457822322845459":137,"458":[63,85],"4580":142,"45826232":125,"4586":41,"4588":145,"459":85,"4590":145,"4591":145,"45998":25,"46":[41,53,54,64,65,85,93,120,128,136,145,171,172,195,202],"460":[85,136,142,145],"4600":142,"4601":145,"4602":145,"460483":161,"460609":130,"4608":145,"4609375":145,"461":85,"4612":145,"461414":131,"461758453195614":195,"46175845319564":195,"461822":[69,71],"461847":131,"461849":130,"462":85,"4620":[41,142],"462067":179,"463":[85,145],"463333":41,"46344":73,"463448":131,"4635":145,"463724e":65,"463988":85,"464":[52,85,145],"4640":[45,142],"4641":142,"464186":158,"4646":41,"4647":145,"464776":[69,71],"46484375":145,"465":[85,136,145],"4650":41,"465318":65,"4654":145,"46542":25,"4655":145,"4656":149,"466":[85,145],"4660":142,"46679593":171,"467":85,"4670":145,"467450":67,"467570":131,"4676":145,"467674":41,"468":85,"4680":142,"468052":168,"4681":145,"468333":41,"468384":131,"46854":25,"4686":145,"468720":65,"46875":145,"469":85,"4691":[41,145],"4699":145,"46m":30,"47":[41,53,56,65,83,85,101,118,125,128,142,145,160,171,177,194,195],"470":[85,136,145],"470137":179,"4704":145,"4705882352941178":14,"470642":131,"4707":149,"471":[73,85,145],"47191825e":169,"4719616":45,"472":[85,145],"472429":131,"47265625":145,"47284":42,"473":[83,85],"4730":145,"473497":67,"474":[85,145],"4741":145,"4743":[142,173],"474986":29,"475":[85,136,145],"4750":145,"4755":168,"4758":145,"4759332":171,"476":85,"4760":145,"4762":145,"476333":29,"4764":145,"4765625":145,"476572":161,"476631":161,"47663104":161,"4767":[145,168],"477":85,"4771":145,"477328":[69,71],"477492":29,"4775":145,"477621e":73,"477910":130,"478":[85,145],"4781":145,"4782":145,"4785":145,"4786":145,"47861920e":169,"478804":131,"479":[85,145],"4790":145,"47943":168,"4795":145,"47992614761185":[69,71],"48":[32,38,41,45,53,55,58,65,83,85,92,101,113,128,145,158,171,172,195,202],"480":[64,85,136,142,145,195],"48017":25,"4802":145,"4803":145,"48046875":145,"480655":131,"4808":41,"4809":53,"481":[73,85,145],"4815":145,"4816":53,"48168319e":169,"4818":145,"482":[85,145],"4825":53,"482578":161,"48281860e":42,"4829":41,"483":[85,145],"4833":145,"483713":73,"483724":85,"484":85,"4840":[42,53],"484010":179,"484167":41,"4842":[53,145],"4842477557110338":131,"48424776":131,"484248":131,"484375":145,"4844":53,"48444509506225586":53,"4846":53,"485":[83,85,136,145],"4852":53,"48527527e":42,"4854":[53,145,168],"48542":145,"4855":53,"486":85,"4860":53,"486069":131,"486111":67,"48624811":83,"4868":53,"486801":172,"4869":[53,145],"487":85,"487439":64,"4875":53,"4876":145,"48765671":125,"48772751e":169,"487864":158,"488":[75,85,89],"4880":53,"488090":131,"48817":145,"48828125":145,"4883":45,"4886":53,"48868864572551":70,"489":85,"489000":41,"48909":145,"4893":53,"4896":[53,145],"48965":145,"4897":53,"4898":53,"489919":64,"48c5":32,"49":[41,53,56,62,73,83,85,128,131,136,143,145,161,171,183,188,210],"490":[75,85,89,136,145],"4900":67,"490000":41,"49017":145,"4903":53,"4904":53,"490473":29,"49050":145,"4906":145,"490659":29,"4907":145,"491":[85,145],"4914":145,"4918":145,"492":[37,85],"492178":131,"4921875":145,"492209":[69,71],"4927":53,"4928":145,"493":85,"493182":168,"4932":[41,53],"49322154e":169,"4933":53,"4937":53,"4938":145,"49381":145,"494":[85,145],"4941":53,"49416":145,"49439034":171,"4947":145,"49473684":160,"495":[56,85,136],"4951":53,"49527669e":169,"49529":145,"496":[41,67,83,85,145],"4960":53,"49609375":145,"49630006e":169,"4964":53,"496488":131,"4966":53,"49663":145,"4966309980255":[69,71],"497":[85,145],"49719":145,"4974":145,"4975":145,"497500":41,"49752":145,"49763":145,"4978":53,"49791":145,"498":[85,145],"49834":145,"49847":145,"4985":145,"499":[67,83,85],"499111":29,"49914":145,"4994":53,"4996":41,"49960":145,"49960699":[118,194],"49971":145,"49972":145,"49974":145,"49981":145,"49984":145,"4999":[62,67,83],"49998084":38,"49c57b793eef1b8e55f297e5e019fdbf":63,"4a16":[127,196],"4ac":188,"4c":102,"4d":[128,136],"4f":[31,34,39,57,65,70,168],"4g":[75,89],"4j":[189,211],"4m":[29,53],"4px":173,"4s":[67,171],"4th":[51,128],"4x3":128,"4x4":[32,144],"5":[0,1,3,4,6,7,8,14,22,29,30,31,34,35,36,37,38,39,40,41,42,43,44,45,46,49,50,51,52,53,54,58,61,65,69,70,71,72,73,74,76,77,80,83,84,85,86,87,90,91,93,101,102,110,115,117,118,119,120,121,122,125,126,128,129,130,131,133,136,138,139,142,144,145,146,147,148,149,150,154,155,158,159,160,161,163,164,165,167,168,169,170,171,175,176,179,182,183,184,186,187,188,189,195,198,200,202,204,205,206,208,209],"50":[7,14,29,31,32,37,38,39,41,42,47,49,50,51,52,53,55,56,58,59,61,64,65,66,67,68,69,70,71,72,73,83,85,92,101,111,113,117,120,128,136,137,138,141,143,145,149,154,155,158,160,161,163,164,165,168,169,170,171,172,173,176,177,187,195,198,200,202,203],"500":[1,9,31,45,52,55,56,58,59,60,72,85,109,110,136,137,138,142,143,145,163,171,187],"5000":[34,37,52,60,62,91,135,143,171,179,188],"50000":[18,34,69,71,143],"500000":[41,64,70,73,92,129,158,168],"5000000":77,"500001":[67,83],"5000x1000":37,"500135":41,"5002":53,"500216":195,"5006":53,"5007":145,"5008":145,"501":[85,145],"501017e":65,"50114":145,"5012":51,"5013":145,"5014":[53,145],"50159":145,"50177":145,"502":[85,145],"5023":53,"5024":145,"502500":41,"5027":145,"50273":145,"50276894e":169,"5029":53,"503":85,"5030":53,"50325":145,"5033":145,"50334":145,"503355363845":[69,71],"5033565506537":[69,71],"503371776776":[69,71],"50343":145,"5035673795078":[69,71],"503607":73,"50363":145,"50390625":145,"504":85,"5042":53,"50467":145,"5047":145,"50489807e":42,"504911":73,"505":[73,85,145],"5050":101,"50510":145,"5053":53,"50531":145,"505415":73,"5055":145,"50562":145,"50596":145,"506":[85,145],"5060":53,"5060835072245":[69,71],"5062":53,"50635":83,"50636":145,"50641":145,"5065":53,"50654":145,"506579":29,"5067":145,"5068":53,"507":[73,85,142,168],"5070":53,"5072":145,"50728":145,"50732":145,"50735":145,"50751":145,"507547":158,"50755":145,"50774":145,"507812":65,"5078125":145,"50783":145,"50784":145,"50797":145,"5079999999999996":86,"508":[85,145],"508128e":41,"5083":[53,145],"50832":145,"5085":145,"50859":145,"5086":53,"5089":53,"509":[85,145],"5091":145,"50910":145,"50949":145,"5095":41,"50966":145,"50982":145,"50_startup":204,"50k":[57,121,192],"51":[41,53,65,73,83,85,128,136,145,171,173],"510":[85,145],"5101":145,"51010":145,"51011":145,"51027":145,"510410":131,"51043":145,"51047":145,"5105":145,"5106":53,"510636288":41,"51070":145,"51078":145,"510892":131,"51095":145,"511":85,"51101":145,"51112":145,"51133":145,"51135":145,"51167":145,"51171":145,"51171875":145,"51173":145,"511738":158,"5118":53,"51187":145,"511893":41,"511919e":131,"512":[29,32,34,38,39,45,64,77,85,143,144,198],"51206":145,"5121":53,"51211":145,"51212":145,"51241":145,"51249":145,"51249098777771":53,"51259":145,"5126":145,"51262":145,"51267":145,"5127":53,"5128785371780396":53,"51288":145,"51289":145,"512n":32,"513":[63,67,85],"51304":145,"51311":145,"51312":145,"5132":145,"51323":145,"513333":41,"51356":145,"51358":145,"513588e":65,"51367":145,"51368":145,"51375":145,"51378":145,"51379":145,"51381":73,"51382":145,"51385":145,"51390":145,"51391":145,"51392":145,"51393":145,"51398":145,"514":[63,85],"514000":158,"51402":145,"51406":145,"51407":145,"51408":145,"51409":145,"5142":145,"51425":145,"5143":53,"51443":145,"51445":145,"51449":145,"51461":145,"5147":53,"51470":145,"51471":145,"5149":53,"51492":145,"51498":145,"515":85,"515088":65,"51517":145,"51524":145,"51525":145,"51527":145,"5153":53,"51533":145,"51537":145,"5154":145,"51540":145,"51542":145,"51543":145,"5155":145,"51551":145,"515554":130,"51556":145,"51559":145,"5156":145,"515625":145,"51563":145,"51564":145,"51565":145,"515731":131,"51587":145,"51589":145,"5159":53,"51594":145,"516":[63,85,145],"51600":145,"51606":145,"51610":145,"51612":145,"51612345e":169,"51615":145,"51622":145,"51633":145,"51634":145,"51635":145,"51636":145,"5164":41,"5165":145,"51654":145,"51655":145,"51665":145,"51673":145,"51676":145,"51687":145,"51688":145,"5169":53,"51691":145,"51694":145,"517":[63,83,85,145],"51714":145,"51716":145,"5172":145,"51721":145,"51729":145,"5173":173,"51734":145,"51742":145,"51743":145,"517460":125,"51747":145,"51750":145,"51770":145,"51772":145,"51775":145,"51777":145,"51784":145,"51786":145,"518":[85,145],"5180":145,"51818":145,"518221":130,"51832":145,"51839":145,"5184":53,"51843":145,"51847":145,"5185":[53,168],"51851":145,"51853":145,"518601":158,"51863":145,"51865":145,"51867":145,"5187":41,"51870":145,"51874":145,"51879":145,"51886":145,"5189":145,"51891":145,"51895":145,"51896":145,"519":[85,142,145],"51907":145,"5191":145,"51912":145,"51915":145,"51918":145,"5192":145,"519278":41,"51935":145,"51941":145,"51944":145,"51946":145,"51948":145,"51950":145,"51953125":145,"51955":145,"51956":145,"51969":145,"5197":53,"51974":145,"51981":145,"51985":145,"51m":144,"52":[37,41,53,59,64,67,69,71,73,83,85,120,125,128,136,142,145,171],"520":[85,142],"52000":120,"52004":145,"52005":145,"52018":145,"5202":145,"5203":53,"52037":145,"52049":145,"52056":145,"52063":145,"52065":145,"52066":145,"52080":145,"52081":145,"52084":145,"52096":145,"52097":145,"521":[63,85,145],"52109":145,"52110":145,"52112":145,"52113":145,"52115":145,"52116":145,"52117":145,"52120":145,"52138":145,"5214":53,"52141":145,"52142":145,"52150":145,"52153":145,"52155":145,"52156":145,"52169":145,"52171":145,"52176":145,"5218":145,"52182":145,"52183":145,"52187305e":169,"522":[63,85,145],"52205":145,"52207":145,"52213":145,"52214":145,"52216":145,"52218":145,"52223":145,"52225":145,"52226":145,"52242":145,"52244":145,"52245":145,"52246":145,"52247":[73,145],"522500":41,"52266":145,"52272":145,"52278":145,"52282":145,"52285":145,"52286":145,"5229":53,"52297":145,"52298":145,"52299":145,"523":85,"52300":145,"52303":145,"52308":145,"52310":145,"52314":145,"52317":145,"523248":131,"52326":145,"52329":145,"52331":145,"52333":145,"52335":145,"52339":145,"5234375":145,"52346":145,"52347":145,"52350":145,"52351":145,"52353":145,"52356":145,"52358":145,"52359":145,"52361":145,"52364":145,"52373":145,"52383":145,"52385":145,"52389":145,"52392":145,"523965":[69,71],"524":[85,145],"52408":145,"52412":145,"52421":145,"52422":145,"52426":145,"52427":145,"52428":145,"52429":145,"52432":145,"52436":145,"52440":145,"52442":145,"52444":145,"52447":145,"52448":145,"5245":53,"52452":145,"52457":145,"52460":145,"524601e":41,"52463":145,"52473":145,"52474":145,"52478":145,"52489":145,"5249":145,"52490":145,"52492":145,"52495":145,"52496":145,"525":85,"5250":[53,145],"525000":131,"52505":145,"52516":145,"52518":145,"52524":145,"52528":145,"52534":145,"52537":145,"525385":41,"52539":145,"52541":145,"525503":131,"52553":145,"52558":145,"52561":145,"52564":145,"52567":145,"52569":145,"52572":145,"52574":145,"52577":145,"52579":145,"52581":145,"52587":145,"52590":145,"52594":145,"52596":145,"526":[85,145,150],"52600":145,"52602":145,"52603":145,"52606":145,"52610":145,"52618":145,"52628":145,"52641":145,"52647":145,"52650":145,"52653":145,"52658":145,"5266":145,"52661":145,"52666":145,"526667":41,"52672":145,"52678":145,"52679":145,"52680":145,"52683":145,"52686":145,"52689":145,"52690":145,"52691":145,"52692":145,"52693":145,"52694":145,"527":[85,142],"52700":145,"52706":145,"52707":145,"52709":145,"52717":145,"52720":145,"52733":145,"52734375":145,"52737":145,"52738":145,"52742":145,"52743":145,"52744":145,"52748":145,"52749":145,"52750":145,"52752":145,"527625":41,"52763":145,"52764":145,"52765":145,"52769":145,"52770":145,"52771":145,"52774":145,"52776":145,"52777":145,"52778":145,"5278":145,"52783":145,"52791":145,"52795":145,"52796":145,"528":[63,85],"52800":145,"52805":145,"5281":145,"52812":145,"52819":145,"52826":145,"52828":145,"52833":145,"52836":145,"52837":145,"52839":145,"52840":145,"52841":145,"52845":145,"52847":145,"52850":145,"52853":145,"52855":145,"52861":145,"52862":145,"52863":145,"52877":145,"52886":145,"52888":145,"5289":53,"52890":145,"52893":145,"529":[85,158],"52904":145,"52906":145,"52907":145,"5291":145,"52912":145,"52914":145,"52916":145,"5292":145,"52920":145,"52922":145,"529231":41,"5293":145,"52934":145,"52935":145,"52938":145,"52939":145,"52941":145,"52945":145,"52946":145,"5295":[53,145],"52951":145,"52952":145,"52954":145,"52957":145,"52959196":125,"5296":145,"52962":145,"52963":145,"52965":145,"52967":145,"52969":145,"5296b0c19e1ce60":42,"52970":145,"52972":145,"52975":145,"52976":145,"5298":53,"52980":145,"52981":145,"52987":145,"52988":145,"5299":145,"52996":145,"52998":145,"52999":145,"53":[41,42,53,54,63,65,85,118,120,125,128,145,159,165,171,173,194],"530":[83,85,158],"53000":[120,194],"530000":41,"53004":145,"53006":145,"53013":145,"53014":145,"53018":145,"53025":145,"53027":145,"53028":145,"53036":145,"53037":145,"53038":145,"530416":73,"53048":145,"53052":145,"53058695":171,"53060":145,"53061":145,"53062":145,"53066":145,"53068":145,"53071":145,"53076":145,"53077":145,"53079":145,"53081":145,"53087":145,"53090":145,"53094":145,"530m":[121,192],"530wv2bvx2w7ycwfpl":65,"531":85,"53101":145,"53103":145,"53105":145,"53106":145,"53108":145,"53109":145,"53110":145,"53123":145,"53125":145,"53129":145,"53130":145,"53134":145,"531452":29,"53146":145,"53151":145,"53154":145,"53157":145,"53159":145,"53161":145,"53165":145,"53166":145,"5317":53,"53179":145,"53183":145,"53184":145,"53189":145,"53190":145,"53192":145,"53198":145,"532":85,"53200":145,"53202":145,"53210":145,"53214":145,"53217":145,"532197":29,"532217":131,"53222":145,"53224":145,"53227":145,"53237":145,"53238":145,"5324":73,"53243":145,"53245":145,"53246":145,"53248":145,"53249":145,"5325":[53,145],"53255":145,"53256":145,"53259":145,"53262":145,"53265":145,"5327":53,"53276":145,"53279":145,"5328":145,"53281":145,"53282":145,"53287":145,"53292":145,"53295":145,"53296":145,"53299":145,"533":[85,171],"5330":145,"53301":145,"533059":131,"53306":145,"53315":145,"53321":145,"53324":145,"5333":145,"53333":145,"5333333333333334":14,"53334":145,"53341":145,"53346":145,"53348897":125,"53349":145,"5335":53,"53351":145,"53352":145,"53353":145,"53354":145,"53356":145,"53358":145,"5335853695869446":53,"5336":145,"53360":145,"53363":145,"53364":145,"533659":130,"53366":145,"53370":145,"53380":145,"53382":145,"533846":41,"53387":145,"53388":145,"53389":145,"53391":145,"53392":145,"53393":145,"53396":145,"534":[85,145],"5340":41,"534000":158,"53401":145,"53403":145,"53409":145,"5341":[67,83],"53411":145,"53413":145,"5342":145,"53421":145,"53426":145,"53427":145,"53428":145,"53430":145,"53437":145,"53438":145,"53441":145,"5345":41,"53450":145,"534510":29,"534563":[69,71],"53458":145,"53462":145,"53465":145,"53468":145,"53470":145,"53474":145,"53475":145,"53478":145,"53482":145,"53488":145,"5349":145,"53491":145,"53494":145,"53495":145,"535":[85,145],"5350":145,"53508":145,"53513":145,"53515625":145,"53517":145,"53518":145,"53520":145,"53521":145,"53525":63,"53529":145,"53531":145,"53536":145,"53538":145,"53551":145,"53553":145,"53556":145,"53557":145,"5356":53,"53560":145,"53563":145,"53566":145,"53570":145,"53571":145,"53574":145,"53580":145,"53584":145,"53587":145,"53588":145,"53589":145,"53593":145,"53594":145,"53595":145,"53597":145,"536":[85,145],"536031":131,"53606":145,"53607":145,"53616":145,"53617":145,"53627":145,"53628":145,"53630":145,"53635":145,"53642":145,"53645":145,"53652":145,"53655":145,"53657":145,"53661":145,"53662":145,"53663":145,"53666312":83,"53668":145,"53672":145,"53673":145,"53674":145,"53675":145,"53686":145,"53687":145,"536879":[69,71],"536896":73,"53691":145,"536923":41,"53693":145,"53696":145,"53697":145,"53699":145,"537":[67,83,85],"5370":145,"53706":145,"53709":145,"53712":145,"53715":145,"53719":145,"53726":145,"53728":145,"53729":145,"53732":145,"53738":145,"53747":145,"53748":145,"53749":145,"53751":145,"53757":145,"53760":145,"53762":145,"53765":145,"53768":145,"53769":145,"53771":145,"53772":145,"53774":145,"53778":145,"5378":145,"53782":145,"53783":145,"53786":145,"53788":145,"53789":145,"53797":145,"53798":145,"538":85,"53807":145,"53811":145,"53812":145,"53814":145,"53818":145,"53819":145,"53826":145,"53829":145,"538356":29,"53837":145,"53842":145,"53849":145,"538491832234":[69,71],"538494":73,"53850":145,"53855":145,"53857":145,"53859":145,"53860":145,"53863":145,"53865":145,"53866":145,"53870":145,"53871":145,"53872":145,"53879":145,"53879547e":42,"53883":145,"53891":145,"53892":145,"53894":145,"53897":145,"53899":145,"539":85,"5390625":145,"53907":145,"53908":145,"53911":145,"53912":145,"53913":145,"53919":145,"53923":145,"53924":145,"53927":145,"53938":145,"53944":145,"53946":145,"53947":145,"5395":[53,145],"53952":145,"539527":155,"539534":41,"53955":145,"53957":145,"53965":145,"53967":145,"53971":145,"53974":145,"53975":145,"53976":145,"53979":145,"53986":145,"53987":145,"53989":145,"53991":145,"53993":145,"53995":145,"54":[41,53,63,65,73,83,85,102,146,171,195,209],"540":[85,142,145],"5400":[63,67],"54001":145,"54004":145,"54005":145,"54010":145,"54014":145,"54027":145,"54031":145,"54034":145,"54035":145,"54040":145,"54044":145,"5405":145,"54054":145,"54055":145,"54062":145,"54063":145,"54068":145,"54085":145,"54086":145,"54090":145,"54094":145,"54095":145,"54097":145,"541":85,"5410":168,"541112":41,"54112":145,"54119":145,"54119856e":169,"54121":145,"54128":145,"54134":145,"54135":145,"54136":145,"5414":53,"54142":145,"54146":145,"54152":145,"54153669e":169,"54155":145,"54156":145,"54158":145,"5416":145,"54165":145,"54167":145,"54171":145,"54174":145,"54177":145,"54179":145,"541833":131,"54184":145,"54186":145,"54188":145,"54189":145,"5419":145,"54196":145,"542":[85,110,145],"54202":145,"542029":130,"54205":145,"5421":76,"54210":145,"54211":145,"54213":145,"54216":145,"54219":145,"54221":145,"54222":145,"54226":145,"54228":145,"54229":145,"54230":145,"54232":145,"54236":145,"54243":145,"54244":145,"54253":145,"54261":145,"54266":145,"54273":145,"54276":145,"54279":145,"54282":145,"54283":145,"54284":145,"54288":145,"5429":[41,53],"54293":145,"54294":145,"54296875":145,"543":85,"54300":145,"54302":145,"54303":145,"54306":145,"54311":145,"54317":145,"54318":145,"543182":168,"54321":188,"54330":145,"54331":145,"54332":145,"54334":145,"54335":145,"54336":145,"54337":145,"54338":145,"54346":145,"54349":145,"54351":145,"54359":145,"54364":145,"54366":145,"54370":145,"54376":145,"54381":145,"54383":145,"54388":145,"54389":145,"54390":145,"54394":145,"54395":145,"54396":145,"54397":145,"54398":145,"544":85,"54406":145,"54407":145,"544181":73,"54421":145,"54422":145,"54423":145,"54427":145,"54434":145,"54439":145,"54440":145,"54442":145,"54444":145,"54445":145,"54447":145,"54453":42,"54454":145,"54456":145,"54457":145,"5446":41,"54461":145,"54464":145,"54470":145,"54473":145,"54474":145,"54479":145,"54485":145,"544908":73,"54491":145,"54494":145,"54495":145,"54497":145,"54498":145,"545":[85,145],"54501":145,"54504":145,"54505":145,"54507":145,"545079":131,"54509":145,"5451":[53,145],"54516":145,"54519":145,"54524":145,"54526":145,"54527":145,"54528":145,"54530":145,"54534":145,"54536":145,"54538":145,"54540":145,"54545":145,"54554":145,"54556":145,"54559":145,"5456":145,"54564":145,"54567":145,"54570":145,"54571":145,"54573":145,"54575":145,"54582":145,"54583":145,"545833":41,"54584":145,"545850":41,"54587":145,"54589":145,"5459":53,"54593":145,"54595":145,"54596":145,"54598":145,"546":[85,142,145],"546021":[69,71],"54603":145,"54605":145,"54614":145,"54621":145,"54627315":128,"5463":145,"54630":145,"54634":145,"54636":145,"54640":145,"54641":145,"54643578e":169,"54647":145,"5465":145,"54655":145,"54658":145,"54659":145,"54662":145,"54663":145,"54667":145,"5466747351275563":159,"54670":145,"54671":145,"54672":145,"54676":145,"54679":145,"5468":145,"54683":145,"546875":145,"54693":145,"54697":145,"54699":145,"547":[53,85],"5470":53,"54705":145,"54710":145,"54715":145,"54717":145,"54718":145,"54725":145,"54731":145,"54737":145,"54738":145,"54739":145,"54741244":83,"54750":145,"54752":145,"54765":145,"54769":145,"54770":145,"54772959":125,"54782":145,"54784":145,"54789":145,"54798":145,"548":[85,145],"54803":145,"54808":145,"54808703":171,"54810":145,"5482":41,"54824":145,"54832":145,"54833":145,"54834":145,"54836":145,"54841":145,"54842":145,"54843":145,"54846":145,"54848":145,"54854":145,"54865":145,"54866":145,"54869":145,"54877":145,"54878":145,"54880":145,"54888":145,"54898":145,"549":85,"54900465e":169,"54901961":83,"54905":145,"54914":145,"5492":[53,145],"54921":145,"54925":145,"54927":145,"54930":145,"54931":145,"54941":145,"54944":145,"54945":145,"54947":145,"54949":145,"54958":145,"5496":53,"54961":145,"54966":145,"54969":145,"54970":145,"54971":145,"54972":145,"54974":145,"54976":145,"549784e":131,"54979":145,"54980":145,"54984":145,"54988":145,"54996":145,"54997":145,"54998":145,"54c1e3b9184cb5b6":42,"55":[14,41,53,56,65,70,85,101,120,125,136,144,145,168,169,171,177,187,195,200,204],"550":[85,145],"55000":[120,194],"55010":145,"55012":145,"55017":145,"55024":145,"55029":145,"55030":145,"55031":145,"55034":145,"55035":145,"55040":145,"55053":145,"55054":145,"55056":145,"55057":145,"55060":145,"550610e":65,"55062":145,"55066":145,"55071":145,"55072":145,"55074":145,"55077":145,"55078":145,"55078125":145,"55081":145,"55083":145,"55086":145,"55087":145,"55095091e":169,"550px":130,"551":85,"5510":53,"55100":145,"55103":145,"5510652":128,"55107":145,"5511":53,"55110":145,"55116":145,"55120":145,"55124":145,"55126":145,"55127":145,"55135":145,"5514":145,"55142":145,"55149":145,"55158":145,"5516":145,"55161":145,"55164":145,"55168":145,"55179":145,"5518":145,"55181":145,"55183":145,"55186":145,"55187":145,"55191":145,"552":[85,145],"55200":145,"55204":145,"552041":73,"55209":145,"55212":145,"55220":145,"55225":145,"55231":145,"55234":145,"55236":145,"5524":73,"55241":145,"55246":145,"55250":145,"55253":145,"55255":145,"55259":145,"5526":[53,145],"55263":83,"55264":145,"55265":145,"55268":145,"552745":131,"55276":145,"55281":145,"55284":145,"55287":145,"55288":145,"5529":53,"55290":145,"553":[53,85],"55309":145,"5531":145,"55310":145,"55329":145,"55330":145,"55348":145,"5535":53,"55350":145,"55355":145,"55359":145,"55360":36,"55364":145,"55366":145,"5537":145,"55373":145,"5538":53,"55381":145,"55386":145,"554":[85,145],"5540":53,"5540224313735962":53,"55408":145,"55415":145,"55422993e":169,"55426":145,"55428":145,"55433":145,"554453":73,"5545":53,"55454":145,"5546875":145,"55477":145,"55481":145,"55487":145,"55491":145,"555":[85,145],"55501":145,"555015":130,"5552":[53,145],"555218":131,"55523":145,"55526":145,"55527":145,"5553":53,"55531":145,"555312":41,"55535":145,"5554":145,"55546":145,"55547":145,"55549":145,"5555":53,"55550":145,"55552":145,"55553":145,"55556":145,"55557":145,"55559":145,"55563":145,"55567":145,"5557":145,"55570":145,"555784":29,"555814":73,"5559":145,"55592":145,"55598":145,"556":85,"55606":145,"55609":145,"55613":145,"55620":145,"55621":145,"55623":145,"5563":53,"55635":145,"55636":145,"55637":145,"55645993":128,"55649":145,"5565":41,"55653":145,"55656":145,"5566":53,"55662":145,"55666":145,"55668":145,"55670":145,"5568":83,"5569":53,"55697":145,"557":[85,145],"5570":53,"55701":145,"55703":145,"55706":145,"55713":145,"55716":145,"55718082144":83,"557190":131,"55727":145,"55731":145,"55737":145,"5574":149,"55748":145,"55758":145,"55761":145,"5577":53,"55782":145,"55788":145,"55791711":83,"55799":145,"558":[67,83,85],"55801":145,"5581":53,"55812":145,"5583":53,"55830":145,"55844":145,"55846":145,"558500":158,"55851":145,"55859375":145,"55866":145,"55867":145,"5587":53,"55870":145,"55881":145,"5588235294117647":14,"55884":145,"55888":145,"55892":145,"55895":145,"55896":145,"559":[41,85,145],"55902":145,"55910":145,"55912":145,"55922699e":42,"5595":53,"55954":145,"55957":145,"5596":53,"55976":145,"55978":145,"55981":145,"55988":145,"55989":145,"55994":145,"55995":145,"56":[53,54,73,85,101,118,125,136,161,171,184,194],"560":[85,125,129,142],"5600":188,"560000":41,"5600000000000002":86,"56012":145,"56015":145,"5602":53,"5603":83,"56035":145,"56039":145,"56045":145,"56048":145,"56057":145,"56058":145,"5606":53,"56060":145,"56062":145,"56065":145,"56069":145,"5609":53,"56090":145,"56093":145,"56098":145,"561":[85,129,145],"5610":145,"56102":145,"56113":145,"56115":145,"56116":145,"56119":145,"56120":145,"56125":145,"56127":145,"56135":145,"56137":145,"56139":145,"5614":53,"56148":145,"56152":145,"56159":145,"5616":53,"56163":145,"56171":145,"5618":53,"5619":53,"56190":145,"561961":73,"562":85,"562000":120,"56212":145,"56215161e":169,"56217":145,"5622":[53,145],"56220":145,"56226":145,"56231":145,"56242":145,"56244":145,"56245":145,"56247":145,"5625":145,"562500":65,"56255":145,"56261":145,"56262":145,"56267":145,"562754":131,"56276":145,"5628":145,"563":[85,129],"5630":53,"56303":145,"56306":145,"56308":145,"5631":145,"56319105e":169,"563252":130,"5633":53,"56335":145,"56342":145,"56352":145,"5636":53,"5637":145,"56376":145,"5638":145,"56381":145,"56390":145,"56394":145,"56396":145,"564":[41,85,145,158],"5640":145,"56424":145,"56427":145,"5643":[53,67,83,145],"56430225e":169,"56431":145,"56435":145,"56439":83,"56447":145,"56454":145,"56466":145,"5647":41,"56471":145,"56474":145,"56498283":146,"56499":145,"565":[41,67,83,85],"56504":145,"56508":145,"56509":145,"56510":145,"56521":145,"56526":145,"56538":145,"5654":145,"56544":145,"56546":145,"56550":145,"56558":145,"5657":145,"56574":145,"56576":145,"5658":41,"56596":145,"565m":37,"566":[85,145],"5660":53,"566126":29,"56624":145,"5663":53,"56636":145,"56637":145,"56639":145,"56640625":145,"56646":145,"56647":145,"56649":145,"56660":145,"5666666666666667":14,"5669":145,"56699":145,"567":[85,145],"5670":53,"567088":29,"56721":145,"56729":145,"567306":65,"56735":145,"56740":145,"567453":67,"56749644e":169,"5675":53,"567530":67,"56755":145,"5676":53,"5677":53,"56770":145,"56771":145,"56777":145,"5679":53,"56790":145,"567906":155,"56791":145,"567919":130,"56792380e":169,"568":[83,85,145],"568008":130,"56805":145,"56806":145,"56812":145,"5682":53,"56823":145,"5683":53,"56837":145,"5685":53,"56852":145,"56858":145,"5686":41,"56886":145,"5689":145,"56895":145,"569":[85,145],"56917101":128,"56918":145,"56919":145,"56922":145,"56928":145,"56949":145,"5695":145,"5697":53,"56982":145,"5699":145,"56993":145,"56997":145,"57":[41,53,65,83,85,118,136,143,144,171,194],"570":[85,208],"5700":[53,145],"570000":41,"57006":145,"5701":53,"57013":145,"5702":53,"57026":145,"5703":145,"5703125":145,"57033":145,"5704":145,"57046":145,"570540":73,"57060":145,"5706829878497204":86,"57070":145,"57084":145,"57085":145,"57098":145,"571":[85,145],"57110":145,"57115":145,"57123":145,"5713":53,"571340":73,"57143":145,"57147":145,"57153":145,"57157":145,"57161":145,"57163":145,"571657":73,"57166":145,"57172":145,"57178":145,"5719":53,"57196":145,"572":85,"5720":145,"57214":145,"57228":145,"5724":53,"57242":145,"5725":53,"57250":145,"5726":53,"57260":145,"57268":145,"57276":145,"57290":145,"57294":145,"57297":145,"57299":145,"573":[41,73,85,145],"57307":145,"5732":53,"57323":145,"57328":145,"573333":41,"57336":145,"5734":53,"5736":[41,53],"57389":145,"57391":145,"57395":145,"574":[38,85],"57401":145,"5741":53,"57415":145,"57417":145,"57418":145,"57421875":145,"5744":53,"5745":131,"57467":145,"57489":145,"57498":145,"575":[85,145],"57508":145,"5753":[42,131,145,149],"57538":145,"57542":145,"57547":145,"57553":145,"57554":145,"57556":145,"57560":145,"57570":145,"5758":53,"5759":53,"57593":145,"57595":145,"57597":145,"5759974718093872":53,"576":[85,145],"5761":[53,145],"57637":145,"576487":65,"5765":53,"57652":145,"57654":145,"5766":[53,145],"57669":145,"5767":145,"57679":145,"57685":145,"57690":145,"57693":145,"577":85,"57704":145,"57744":145,"5777":145,"5778111219406128":53,"57789":145,"57799":145,"578":[85,145],"5781":53,"578125":145,"578142e":65,"57819":145,"57840":145,"57841":145,"57852":145,"578621":29,"5789473684210527":14,"579":[38,85],"57909":145,"5791":53,"579158":131,"57916":145,"5792":53,"57929":145,"57942":145,"5796":168,"57961":145,"5797":53,"57987":145,"57993":145,"58":[37,53,65,73,77,85,125,136,145,171],"580":[85,142],"580000":41,"58000000000":189,"58001":145,"58019":145,"5802":145,"58023":145,"5803":145,"58042":145,"5805":145,"5807":145,"58078":145,"58079":125,"580px":130,"581":[85,145],"581082":173,"5811":53,"58110":145,"5811388300841898":24,"58113883008418981":24,"581139":73,"58137":145,"58138":73,"58149":145,"5816":53,"58164":145,"58172":145,"58177":145,"58181501e":169,"58195":145,"58197":145,"582":[85,145,150],"5820":145,"582000":158,"58203125":145,"5821":53,"58260":145,"582778":173,"58293":73,"58294":145,"583":85,"58310":145,"58313172":83,"583136":130,"58330":145,"583333":41,"5834":145,"5835":53,"5836994051933289":53,"58379":145,"58380":145,"584":[29,30,85],"584095":29,"5842":76,"584304":131,"584389":130,"5843960046768188":53,"5844":53,"5845":53,"58454":145,"58468":145,"5849056603773586":14,"58494":145,"584943":41,"585":[85,145],"5850":37,"5851":76,"58516":145,"58520":145,"58525":145,"58526":145,"585335":73,"58549785e":169,"58565":145,"5857":145,"58581":145,"58585":145,"5859375":145,"586":[85,172],"5861":145,"58611":145,"58615":145,"5865":38,"58651":145,"587":[85,142],"58702":145,"58716":145,"58730":145,"587461e":65,"5875":83,"58761":145,"58768":145,"58799":145,"588":[85,145],"58800":145,"58810":145,"5882":145,"58823529":83,"58829":145,"58832":145,"588333":41,"58840":145,"588462":41,"58860":145,"5889":83,"589":[85,195],"589167":41,"589271":41,"58930337":171,"58936":145,"58941":145,"58946":145,"58952":145,"58957":145,"5896":[67,83],"5897":53,"58978":145,"58984375":145,"58986":145,"58994":145,"59":[41,53,56,77,83,85,120,136,145,171,188,194,195,209,210],"590":[85,145,195],"590000":41,"590080":38,"59026":145,"5906":53,"5908":145,"59080":145,"5909":53,"590909":41,"590px":182,"591":85,"59114":145,"59115":145,"5913425779189757":85,"59139":145,"59146":145,"59171":145,"5918":76,"5919":[53,145],"592":85,"59210":145,"59229":145,"5923":76,"59248":145,"59250":145,"592509":73,"59257":145,"592px":33,"593":[85,145],"5932":53,"59334":145,"59337":145,"59345":145,"593450":29,"593661":65,"59375":145,"5938":62,"594":85,"59420865e":169,"59421":145,"59421842":146,"59432":145,"594450":29,"5947":145,"5949":76,"59493":145,"595":[85,145],"5950":145,"59512":145,"5952":145,"59524":145,"59525364e":169,"59529":145,"5954":145,"59564":145,"59566":145,"5957":145,"5958":76,"59591482e":169,"596":[85,142,145],"5961":142,"59617":145,"59670":145,"596767":131,"5969":53,"597":[85,145],"5972":53,"597450":131,"59756":145,"59759":163,"59765625":145,"5977":53,"597948":131,"597988":130,"598":[85,171,175],"5981":145,"598150":195,"59823":145,"5983":53,"59831252":83,"59842":145,"59849616e":169,"59853725816836":171,"5985372581684":171,"59853725816868":171,"59854":145,"5988":38,"59880":145,"59886":145,"5989":53,"598945":131,"599":85,"599167":41,"599277":131,"5994521975517273":53,"59970":145,"5998":53,"59981":145,"5999":53,"5b":[121,129,130,131,187,192],"5b0":130,"5b1":[129,130,131],"5b2":129,"5b3":[129,130],"5b380":129,"5b390":129,"5b4":130,"5b5":129,"5b7":129,"5bdf":129,"5bdfd":130,"5blambda":130,"5bmask":130,"5bnone":129,"5btrue":130,"5cm":51,"5d":[129,130,131,187],"5e":38,"5f":[32,172,202],"5g":[75,89],"5k":56,"5m":[41,53],"5more":63,"5s":[67,171],"5th":[48,128,190],"5vbcssa6":65,"5x5":32,"6":[0,7,8,14,18,22,24,29,30,31,32,34,35,36,37,38,41,42,43,44,45,46,49,52,53,54,57,65,68,69,70,71,72,73,76,83,85,86,91,92,93,101,102,105,110,113,120,121,125,126,128,129,130,131,133,136,137,141,142,143,144,145,149,150,152,155,158,159,160,161,163,165,167,168,169,171,172,175,182,183,184,186,187,188,189,195,196,200,202,204,209,210],"60":[7,9,14,32,33,34,37,41,44,46,47,53,56,62,63,69,71,72,85,86,109,110,113,118,120,126,128,136,142,163,169,171,173,177,194,195,200,208,209],"600":[3,77,85,120,142,143,171],"6000":[34,37,53,64,91,93,135,143],"60000":[29,30,76,143],"600000":[70,73,92],"60028":145,"6003":53,"600345":29,"60045":145,"600833":41,"600866":65,"600px":[129,130,136,163,182],"601":85,"60114670e":42,"60116":145,"60122":145,"60144":145,"6015625":145,"60192":145,"602":[73,85],"602028":131,"60220868e":169,"60239":145,"602528":131,"6026":145,"603":[85,145],"60306":145,"60320":145,"60321":145,"60332519e":169,"603333":41,"60349":145,"60357230e":169,"6036":41,"60373":83,"60381281e":169,"603m":37,"604":[83,85,145],"604039":67,"60409":145,"6041":145,"6043":53,"604382":85,"604384":[69,71],"60465":145,"6047":41,"605":85,"60522":145,"60523":145,"6053":145,"60546875":145,"60548791e":169,"60550":145,"605962":67,"606":[67,83,85,195],"60623":145,"6063":38,"6065":145,"606722816":41,"607":[73,85,145],"607008e":41,"6072":41,"60733":145,"60744":145,"6075":145,"6076":145,"60764":145,"6078":145,"608":85,"6080":37,"6081":145,"6082":[67,83],"6084":142,"60850":145,"60851":145,"60863":145,"60869":168,"608724":179,"6088":145,"609":[85,145],"6090":[37,53],"60904":145,"6092":145,"60925":145,"609339":130,"609375":145,"6095":145,"6096":145,"60970":145,"6098":145,"6099":145,"60m":37,"61":[41,53,54,56,65,70,85,136,145,158,160,171,177,195,209],"610":[85,145],"610000":41,"6105":38,"6107":145,"611":[85,158],"611105":41,"61122":145,"611222":73,"61158124e":169,"6117":145,"61184":145,"612":85,"61204":145,"61205":145,"61216":145,"612245":131,"6123":[53,145],"612364":172,"61238":145,"6124":145,"612405":131,"6125":145,"613":[85,145],"6131":76,"61328125":145,"61351":145,"614":85,"614392":29,"6149":41,"615":[35,85,145],"6150":37,"61501":145,"61516":145,"6153":34,"615385":41,"61547":145,"616":[83,85,184],"616175":130,"61622":145,"61630":145,"616314e":41,"616364":29,"61663286":83,"616766":64,"617":[35,85],"6170212765957446":14,"6171875":145,"6173":41,"617423":[69,71],"6175":145,"6176":53,"61760":145,"617712":131,"617802e":65,"618":[85,145],"6180":53,"6182":73,"619":85,"619047619047619":14,"61905":145,"61965":145,"62":[41,53,56,65,69,71,73,77,85,120,125,142,145,160,171,177,194,204,209],"620":[85,142],"6200":37,"6201":145,"62037":145,"6204":145,"62046":145,"6205":145,"62055":145,"62066":145,"620727":131,"6208":145,"62084":145,"620px":130,"621":[41,85,145],"6210":37,"62107":145,"62109375":145,"62110":145,"621116e":65,"6212":145,"6213":145,"62134":145,"6215":53,"622":[85,145],"6220":145,"6225":37,"62271805":83,"623":85,"6230":145,"6231532":41,"62329":145,"6233":53,"62374":145,"624":[38,85,145],"62405":145,"624059":130,"6240593506280346":130,"62419":145,"624289":41,"6244":38,"6245":[37,145],"6246":145,"624615":41,"625":[85,145],"6250":37,"625000":41,"6254":145,"62557666e":169,"62571878891146":171,"625803":131,"625998":131,"626":85,"6263":145,"6265":76,"6266":41,"627":[85,145],"62712":145,"627175":41,"6274":145,"62740":145,"627590e":65,"628":85,"6283":41,"6285":41,"62860":145,"62890625":145,"62891":145,"629":85,"6291":41,"6294":145,"62993":145,"63":[41,45,53,65,70,85,120,136,145,160,161,164,165,171,172,177,183,202],"630":[38,85,145],"6302":83,"630217":67,"63022":145,"6303904952264":64,"6304":38,"6305506":138,"6308":145,"630px":[129,130],"631":[85,129],"63119":145,"6312":145,"6313":145,"6315":41,"63169":145,"63197":145,"632":[85,129],"63204":145,"632456":73,"63256":145,"63262":145,"6327":41,"6328125":145,"633":[85,129],"633158":195,"63339":145,"6334":41,"633534":179,"6339302659034729":53,"634":[85,129],"634019":73,"6342":41,"63420490e":169,"6345":[37,41,145],"6348":145,"63481":145,"635":[41,73,85,129,145],"6350":41,"6351":53,"6352":41,"6353":168,"635397":131,"6354":41,"6356":41,"635833":41,"6359":41,"636":[85,129,145],"63603":145,"63608":145,"6361":41,"6362":41,"636238":65,"636364":182,"636368640":41,"63637":145,"63655":145,"6366":145,"63671875":145,"6368":41,"6369":[41,145],"637":85,"6370":41,"6371":[41,145],"63726835e":169,"6374":145,"637461":73,"63752":145,"63759":145,"637635":73,"6378":41,"63792":145,"638":[38,85,145],"6380":41,"63803":145,"6381":41,"63851":145,"6387":145,"6388":145,"639":[65,85,142,145],"63940":145,"639426e":41,"63958699e":169,"639588":130,"63960":145,"63m":37,"64":[7,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,53,56,64,65,85,101,118,120,126,128,135,136,139,143,144,145,150,163,168,171,172,176,177,188,194,202,210],"640":[85,142,158],"6400":37,"64000":64,"6404":168,"640625":145,"64073":145,"64082434":146,"640x480":92,"641":85,"641035e":65,"642":[85,145],"64206":145,"64211531e":169,"64243":145,"642485873":179,"642977":65,"643":[85,145],"64300":145,"6431":[67,83],"6435":[42,145],"644":[85,145],"644082":155,"6442":145,"64438":145,"6445":[67,83,145],"64453125":145,"64497":145,"645":85,"6450":37,"6451":145,"6452":53,"64568":145,"645767":172,"645833":[41,173],"645885":130,"646":[38,85],"646705152":41,"64671":145,"64681":145,"646848":131,"647":85,"6471":145,"6473":145,"647744":131,"6479":145,"648":[67,83,85],"64805431":125,"6482":145,"6484375":145,"64851":145,"64859406":[67,83],"649":[85,142],"649167":41,"6492":145,"649232":130,"6497":53,"64982451e":169,"649855":41,"64c3":32,"64c5":32,"64c5s2":32,"64n":32,"64x64":[35,144],"65":[36,37,53,65,72,85,120,125,136,146,169,171,175,187,188,194,200,205,206,208,210],"650":85,"6500":145,"650px":130,"651":85,"651004":73,"65127388":131,"6512738833704724":131,"651274":131,"652":[85,118,194],"6522":145,"65223263":125,"65234375":145,"65239850433215":171,"6527":145,"653":[85,171],"6530":[37,145],"6532":145,"65334":145,"65347":145,"6535":145,"6536995137169997":85,"6538":145,"65380":145,"654":85,"654167":41,"65443":145,"654644":73,"65480":145,"65492":145,"655":85,"6550":37,"65526":145,"655365":179,"65540311":125,"655517642572828":171,"65555":145,"655553e":131,"655787":73,"6559":130,"656":[38,85],"6560":[53,130],"6561":130,"65611":145,"65625":145,"65670227e":169,"656881":29,"657":[85,172,202],"6571":53,"65732685":83,"65746":145,"657658":131,"65793":145,"658":85,"6581":145,"659":85,"6590":37,"65907190e":169,"6591692566871643":53,"6594504178995297":125,"65949":145,"6596":38,"65962":145,"6598":130,"6599":130,"65m":149,"66":[30,41,53,56,85,145,158,171,175,188,198,210],"660":[85,142,145],"6600":[37,130],"66015625":145,"6602":130,"66022":145,"66036":145,"6604":130,"660451":131,"6605":130,"6607019357604422":85,"660833":41,"66098":145,"660px":129,"661":85,"661054":41,"661068":67,"6611":83,"6615":37,"662":[85,145],"6621":41,"662185e":41,"662224":[69,71],"662295":172,"662475":131,"6625":41,"66265869e":42,"6627":41,"663":[85,145],"6631":41,"6632":41,"66327":145,"6635":41,"66369":145,"6638":41,"663811":131,"664":85,"6640":41,"6640625":145,"6641":41,"6642":38,"6646":145,"6647":41,"664918e":65,"66496461":83,"665":[41,85],"665000":120,"6651":[41,145],"665144":73,"6652":41,"6653":38,"6655":41,"6657":[41,145],"666":[85,158],"6660":37,"6662":41,"66623":145,"6663":41,"6664776":138,"6665":145,"6666":41,"666666":73,"6666666666666666":56,"6666666666666667":[188,210],"666666666666667":188,"666667":41,"6669":41,"667":[38,85,145],"6670":145,"6671":145,"6674":41,"6675":145,"6678":145,"66796875":145,"668":85,"6680":37,"6683":41,"66840":145,"66845":145,"669":[85,145],"669000":158,"6691":145,"6695":37,"66952876e":169,"66977":145,"67":[30,53,55,58,64,85,92,130,136,145,171,175,177],"670":[33,85,145],"6700":37,"67000":145,"67021":145,"670px":129,"671":85,"671131":29,"67131":145,"6714":53,"6715":130,"6717":130,"6718":130,"671875":145,"6719":130,"672":85,"6720":37,"67209274e":169,"6721":130,"6722":[130,145],"672225":65,"67225":145,"6725":37,"672864":67,"672916":131,"672963":131,"673":[83,85,142,145],"673333":168,"67372042e":169,"67374":145,"673913":131,"674":85,"6740":37,"6742":76,"67434":145,"674452224":41,"675":85,"6750":145,"675010":131,"6754":145,"67550":145,"67578125":145,"6758":145,"675833":41,"676":[38,45,85],"676245":73,"6765":145,"676667":41,"6767":145,"6768":145,"677":85,"6770":145,"6771":145,"677258":65,"6775":145,"6779":145,"678":85,"6780":37,"6782":142,"6783":145,"6784":145,"67843":145,"678478":131,"67858615":[67,83],"6786":145,"6788":145,"679":85,"67912":145,"67953":145,"6796875":145,"6797":145,"67m":37,"68":[14,53,65,67,72,73,85,130,136,145,171,175,177,195],"680":[85,142],"6800":37,"680470":179,"68076":145,"6808":130,"680851":131,"6809":130,"680px":130,"681":85,"6810":[37,130],"681000":158,"6811":[53,130],"6812":130,"68141":145,"681744":[69,71],"6818":145,"682":85,"68201":145,"6821":145,"68269":145,"682f2f":73,"683":[85,155,158],"68323517e":42,"683499":131,"68359375":145,"683782":65,"683995":131,"684":[67,85],"6842":[41,145],"68438":83,"6844":41,"684457140":41,"6845":145,"68478":67,"68491":83,"685":85,"6850":37,"6851":41,"6852":41,"68522":73,"68537":83,"685433":83,"6855":41,"685531":131,"68557":145,"6858":41,"686":85,"68617":145,"686275":131,"6866":145,"68667298e":169,"6868":41,"68684":67,"6869":41,"687":85,"6870":[37,41],"6872":41,"6875":145,"6878":41,"6879":76,"68796":145,"688":[85,145],"68849":145,"6885":41,"6886":41,"6887":41,"688719":131,"6888":41,"6889":41,"689":[85,145],"6890":41,"6891":41,"6893":[41,145],"6894":41,"68969":145,"6897":145,"6899":41,"68m":37,"69":[41,53,73,85,125,136,145,171,175,176,177,183],"690":[85,208],"6900":[37,41],"6902":41,"690293":73,"6903":41,"69037":145,"6904":41,"6905":41,"690659":130,"6907":41,"6908":41,"6909":[41,142],"690px":130,"691":[85,142,145],"6911":41,"69136631":171,"6914":41,"69140625":145,"6915":41,"6917":41,"69178":145,"692":[85,129,145],"6920":41,"6921":41,"69211":145,"692181":73,"6922":41,"692308":41,"6924":41,"6925":41,"692500":41,"69261":145,"6928":41,"6929":41,"693":[85,129],"6930":41,"69318":145,"6933":41,"6934":[41,145],"6935":41,"6936":41,"6937":41,"69378":145,"69399":145,"694":[85,129,145],"69400":145,"6941":41,"69411":145,"69412994e":42,"6942":41,"69456":145,"6946":[41,145],"6947":41,"6948":41,"695":[38,45,85,129,142,145],"6950":37,"69500":145,"695000":158,"6952":41,"6953125":145,"695662":195,"6958":41,"695833":41,"696":85,"6960":41,"696038":131,"6961":41,"6962":145,"6963":41,"6965":41,"6968":41,"6969":145,"697":[83,85,129,145],"6970":[37,41],"6974":53,"69764":145,"6976998904709748":183,"69779":145,"698":85,"6982":145,"6983":145,"69831":145,"6984":41,"6985":41,"6986":41,"699":[85,129,142,158],"6990":41,"69921875":145,"699648":65,"6999":145,"6a":102,"6j":[188,210],"6m":[41,76],"6mmdhn2djnpyqgrayxddt5izqxtbz42iipcqon1dhjdqkz6kpxp4x":65,"6qepylt4v68sypax9kxk":65,"6qwd":65,"6s":[67,136,171],"7":[3,7,14,22,24,29,30,31,32,35,36,37,38,39,41,42,45,46,49,53,54,55,60,61,65,68,69,70,71,72,73,75,76,77,83,85,86,87,89,92,93,101,102,110,119,121,125,126,128,129,130,131,133,142,143,144,145,146,148,149,150,155,158,159,160,161,163,164,165,168,169,171,172,175,177,182,187,188,189,195,196,202,204,209,210,211],"70":[14,30,32,41,46,53,54,56,65,69,71,72,85,120,125,136,145,160,171,177,182,187,194,204],"700":[33,62,85,142],"7000":[1,83,128,135],"7009":145,"700px":[130,143,144,163,169,172,175,179,180],"701":[85,145],"7010":[37,145],"7011":145,"7012":145,"7018823027610779":53,"702":[85,158],"7020":41,"702500":41,"70282":145,"703":[85,129],"7030":145,"703125":145,"7032":145,"7033":142,"7034":145,"7036":145,"703982":[69,71],"704":[85,129,145],"70429":145,"7048":41,"705":[85,129,145],"7054":145,"70549":43,"7057":168,"70584":145,"706":85,"70633":145,"706839":73,"70698":145,"707":85,"70703125":145,"7073":145,"70760":145,"708":[85,145],"708015":130,"70884":145,"70895915e":169,"709":[85,145],"7090482711792":53,"70935":145,"7099":[67,83],"71":[30,53,56,62,83,85,101,120,125,136,145,160,165,171,176,177,182,194,204],"710":[85,145,158],"7100":37,"710000":67,"7104":145,"7107":145,"71086031":171,"7109375":145,"711":85,"7110":[37,145],"7111":145,"71130":145,"7117":145,"711806":131,"712":[85,118,194],"7125":145,"7127411872482181":86,"713":85,"7131":145,"7133":41,"713683":29,"714":85,"714350":73,"714500":158,"71469":145,"71484375":145,"715":[85,145],"7153":145,"71537":145,"71578957e":169,"716":85,"71613":73,"71625":145,"716308":131,"716440":85,"7169":142,"717":85,"7171":41,"71714":83,"71733307":[67,83],"71747425e":169,"718":85,"71817":145,"718230":73,"7184":145,"7185":145,"71875":145,"7189":145,"719":85,"7190":168,"71902117":125,"719457":125,"71977":145,"7198":168,"71995":145,"72":[37,41,53,85,101,120,125,171,177,182,194],"720":[85,142],"7200":173,"720000":[120,131],"7203":[53,145],"72035":145,"7209":[41,145],"72093598500494":[69,71],"721":[85,145],"72101958323096":[69,71],"72108":145,"72115":145,"72164454424515":[69,71],"722":[85,145],"722071":155,"7222":41,"72226459e":169,"7225":145,"72265625":145,"7227":142,"722717":41,"723":[85,145],"723684":125,"724":[85,142],"724046":29,"7245":41,"724590719956222":64,"7247":145,"724924":[69,71],"725":[85,145],"725399":130,"7255":142,"72568":145,"72581411":171,"726":[85,129],"72627890e":169,"726562":65,"7265625":145,"72663483920857":[69,71],"726845ca9638":123,"726940":130,"727":[85,129,145],"727484":179,"7276":[41,142],"727750":155,"72788":83,"728":[85,142],"7280":41,"7281":[41,142],"729":[85,129,145],"7291":142,"7293":145,"72991":145,"73":[41,53,56,85,120,125,136,158,160,171,177,182,209],"730":[85,129,172,202],"7302":145,"73041":145,"73046875":145,"7305":145,"730px":[130,131],"731":[85,129,145],"7311":[41,145],"7312":145,"73167":145,"73183":145,"732":[85,171],"732573":131,"7327":145,"7329":145,"733":[42,85,129],"73307516e":169,"733707e":65,"73372":145,"734":[85,129],"7340":145,"734147e":65,"734157":131,"7343":145,"734375":145,"7345":37,"734924":[69,71],"73498":168,"735":[85,129,145],"735000":41,"7351":145,"7352":142,"7354":41,"735448":172,"735822":65,"736":[85,129],"73625860e":169,"7363":145,"73645":145,"736567":172,"736769":41,"737":[85,129],"7373":142,"737524":131,"73779":145,"738":[85,129,142,145],"7380":168,"738248":131,"73825064e":169,"73828125":145,"7383":142,"738389":131,"73856":[38,45],"7386":145,"73886":145,"739":[85,129,145],"7390":145,"73914":145,"739191":172,"7394":53,"7395":142,"739580":131,"7396":41,"73m":37,"74":[29,41,53,56,65,73,85,125,145,171,177,182,195],"740":[85,142],"740251e":41,"740959":73,"741":[83,85,142],"741066":[69,71],"74108070e":169,"7414":142,"7415":37,"741619":158,"74170":145,"741986":131,"742":[85,145,168],"7421875":145,"7422":[41,145],"7424":41,"742725":67,"74273":83,"7428":145,"742856":131,"742940":29,"742972":172,"743":85,"74306":145,"74307116e":169,"74310":145,"743285":131,"74340771":83,"74354":145,"743542":131,"74360":145,"74382":145,"744":[85,129,142,145],"744051e":65,"7442":142,"744669":65,"744769":41,"745":[85,129],"745034":41,"74569":145,"7457":41,"7457109493044":70,"7458":145,"746":[85,145],"74609375":145,"746965":131,"747":85,"74703":145,"7475":142,"74763":145,"748":[85,145],"7483":145,"7486":145,"74875226e":169,"7488":145,"749":85,"749062":73,"749080":85,"7493":145,"7495":145,"74989164e":169,"7499":145,"75":[7,32,34,41,42,53,56,60,62,63,64,65,67,70,72,73,83,85,92,125,136,138,145,150,158,160,161,163,164,168,171,176,177,183,188,195,203,204,205,206,210],"750":[56,64,85,145],"7500":67,"750000":[41,65,70,168],"750178363923474":70,"750716":131,"750px":129,"751":85,"75151515":91,"75181":145,"752":85,"752082":73,"75226":145,"7529":142,"753":85,"753199":29,"75390625":145,"754":85,"754374":131,"75453":145,"754680":29,"7547":142,"7549":145,"755":[83,85,145],"75501568":45,"75548704e":169,"75555":145,"75572":145,"7558":145,"756":85,"7561":168,"756231":131,"7563":145,"756461":172,"7567":145,"757":85,"75727":145,"7575":149,"757500":41,"7578":142,"7578125":145,"758":[85,145],"758359":73,"75837":145,"7584":142,"75860":145,"758667":[70,92],"7589":142,"759":[85,145],"7590":145,"7592":145,"75929":145,"7596":145,"7598":145,"7599":145,"75th":[60,171],"76":[41,53,63,73,85,118,125,136,145,171,177,194,203],"760":[85,142],"76006":145,"7603":145,"760479":64,"760623":158,"76074":145,"761":[85,145],"761000":158,"76150":145,"76170674e":169,"76171875":145,"76193":145,"762":[85,130],"76219":145,"7622":145,"762576":131,"763":[85,130],"763161":[70,92],"7634":142,"76349":145,"7639":142,"764":[85,130,145],"764029e":41,"764420":[70,92],"7645":145,"7646":142,"7647":145,"764796592":179,"7648102045059204":53,"765":[85,130],"76536":145,"765625":145,"766":85,"7660":37,"76605":145,"7666666666666667":70,"7667":145,"7668":145,"766995e":41,"767":[85,130],"76701":145,"767181":131,"7673":145,"76731980371954":[69,71],"7675":145,"7678":[188,210],"768":[64,85,130],"7682":145,"7684":168,"7688":145,"769":[85,130,145],"7690":41,"7691":41,"76921":145,"769231":41,"769422":130,"76953125":145,"76968":145,"7699":41,"77":[41,53,65,85,120,171,177,182,209],"770":[85,145],"77002253":125,"77016":145,"77019":145,"7704":145,"7705":37,"7706":41,"77064":145,"7707":142,"770px":129,"771":[85,129],"77100":83,"7712":[41,142],"7715":41,"7719":41,"772":[85,142,145],"7721":[142,145],"7722":41,"7723":41,"772308":41,"7724":41,"77259":145,"7727":41,"7728":[37,145],"772823":64,"773":[85,129],"7730":[41,145],"77332":145,"7734375":145,"773820":29,"7738266430037695":53,"773897":29,"774":85,"774000":120,"77419":145,"774272":168,"77455":145,"7746":41,"7749":145,"775":[85,129],"7750":41,"77506":145,"77519226e":42,"7752":145,"77531":145,"7754":41,"77584":145,"7759":41,"776":[85,129],"7762":145,"776223":179,"7763":41,"776956":130,"777":[85,129],"77734375":145,"777493":131,"7777":41,"777777":46,"7779":142,"778":[85,129,145],"7780":145,"7784":[142,145],"77847":145,"7785":145,"778597":131,"7786":[142,145],"7787":142,"7788":145,"778871":131,"779":[85,145],"77909926e":169,"7795":142,"7798165137614679":176,"77m":144,"78":[41,53,54,56,65,85,145,160,171,176,177],"780":[85,129,142],"7800":41,"78008":145,"780421":73,"7805":145,"7807":145,"781":[85,142],"78100":83,"7812":145,"78125":145,"782":85,"7829":145,"782925":41,"783":[85,172],"78319":145,"7832":142,"783333":173,"783423":29,"784":[29,30,32,46,52,76,85,91,93,135,142,145,198,208],"78428669e":169,"78431373":83,"7844":[145,168],"784500":158,"78466":145,"785":[67,83,85,145],"7851":145,"78515625":145,"7851741":138,"7852":145,"7856":142,"78573":145,"7858":145,"785px":129,"786":[85,142],"7860":145,"786272":131,"7866":145,"7866666666666667":70,"7867":142,"7868":145,"7868852459016393":147,"786927":131,"787":[83,85],"7870":145,"78709665e":169,"7871":145,"787490":29,"78775":145,"788":85,"78855":145,"7888":145,"78892774e":169,"789":85,"7890625":145,"78911":145,"7898":142,"79":[41,53,58,65,83,85,118,120,145,171,176,177,183,194,195],"790":[85,145],"7900":67,"790120":131,"79028106e":169,"7903":142,"790317":131,"7906":145,"7908":145,"7909":145,"791":[85,145],"7910":38,"7912":145,"791419":131,"791840":131,"7919":142,"792":[85,208],"792168":29,"7925":83,"79260":145,"79290307":171,"79296875":145,"793":[85,172],"7934":145,"793560":41,"7936":145,"793917":73,"794":85,"794003":172,"794615":41,"7949":145,"7949491493525":[69,71],"795":[85,142,202],"7951":168,"7952":145,"7953":142,"7954":[142,145],"795514":73,"7958":145,"7959":145,"796":85,"796221":131,"7963":145,"79641063":171,"7965":142,"7968":145,"796875":145,"79692861e":169,"796958":29,"797":[85,171],"79704":145,"7971":[142,145],"798":[85,145],"7980":[145,158],"798392":131,"7984":145,"7986":142,"799":[85,175],"7990":145,"7991":145,"799154":41,"79948":145,"7995":41,"799895":73,"79997071e":169,"79m":[37,41],"79uxx":65,"7b":[129,130,131],"7b9652b17b68b7a4":42,"7d":[129,130,131,188,210],"7e100":188,"7m":41,"7poa":65,"7s":[45,67,171],"7vmzpnlc4g7slsg8kl3tmlapgxwxw2ftvkcnk1ktkbslg3jwgkumqukamoow9jx5ewjqzomeoir5fpqtdvgtxvvgxpelrg889cjligccpltukp":65,"7x7":[29,30,32],"8":[0,7,14,15,18,22,24,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,45,46,48,49,52,53,54,55,56,57,59,60,64,65,66,67,69,70,71,72,73,76,77,83,84,85,86,92,93,101,102,110,118,121,125,126,128,129,130,131,133,137,139,142,144,145,149,150,158,159,160,161,163,165,168,169,170,171,172,173,182,183,187,188,194,195,196,202,204,209,210,211],"80":[14,31,32,33,34,53,56,58,65,69,71,72,83,85,101,136,142,143,145,149,154,171,173,176,177,178,183],"800":[3,62,85,142,160,171,187],"8000":[64,135],"800000":[70,92],"8001":53,"800232":29,"80037642":171,"8005":145,"80078125":145,"800px":[129,136,159,171,182],"801":[85,130],"80117999":171,"8012":145,"8013":145,"8014":145,"8015":145,"8016":145,"80180":145,"8019":[142,145],"802":[85,130],"8020":145,"802422":29,"802500":41,"8027":145,"80290755":171,"803":[85,130],"8032":142,"8033":145,"80330":173,"80336271e":169,"8034810001":195,"80351":145,"80354":145,"803611":173,"80389616":171,"8039":145,"804":[85,130],"8042":142,"804221":41,"8045":145,"8046":145,"8046875":145,"80468775":83,"8049":145,"805":[85,130,202],"8057":142,"80577065":83,"8058":145,"8059":145,"806":[85,130],"8061":145,"80614819e":169,"80634378e":169,"8064":142,"8066":[142,145],"807":[85,130],"8072":142,"8072059636181399":85,"80730058":171,"8079":142,"808":[85,130,171],"808087":130,"808326e":41,"80859375":145,"80864142e":169,"8088":142,"809":[85,130,145],"8091":145,"8092":142,"80933237e":169,"8094":142,"81":[41,53,63,65,72,85,101,118,125,128,136,145,171,176,177,183,188,194,210,211],"810":85,"8100":145,"8101":[83,142],"8106":[142,145],"81093633":171,"81098":145,"810px":129,"811":[85,130,145],"811000":158,"8115":[142,145],"8116":142,"811667":41,"8117":[142,145],"8118":145,"81180":145,"812":[85,130,145],"8121":145,"8125":[142,145],"812500":41,"813":[85,142],"81307829e":169,"8132":145,"8133":145,"8133333333333334":70,"8134":[142,145],"8135":145,"8137":145,"814":85,"8140703517587939":183,"8141":145,"8143":145,"8145":145,"8147":145,"81484222e":42,"815":[85,145],"815145":131,"8154":145,"815414":73,"8155":145,"816":[85,142,168],"81640625":145,"8167":142,"8169":145,"817":85,"8172":142,"81746018e":169,"818":[85,142,145],"818000":[120,194],"818286":29,"818377":179,"81845995e":169,"818557e":65,"81860620e":169,"81864488e":169,"819":[85,145],"8192":[45,145],"8195":145,"8196":145,"81m":37,"82":[41,53,85,102,136,145,171,177],"820":[85,142],"8200":145,"8201":142,"8203125":145,"8206":145,"820px":130,"821":[85,145],"8215":142,"821597":130,"8216":145,"8217":142,"8218":145,"8219":142,"822":[35,85],"8220":145,"822130":73,"8222":145,"822259":158,"8224":45,"822754":73,"823":[35,85,142,145],"823045":131,"8231":[67,83],"8235":145,"823889":173,"824":85,"8242":145,"82421875":145,"8243":145,"824776":130,"8248":145,"82485143":128,"824944":131,"825":85,"8250":145,"825000":41,"8252":142,"8256":145,"8259":145,"826":[85,145],"8260":145,"826347":64,"827":[41,85],"827204":29,"828":85,"828066":[70,92],"828125":145,"8283":145,"8285":142,"8286":145,"829":[85,145],"829067":73,"829364":131,"829500":158,"829756":[69,71],"82m":37,"83":[37,41,53,65,70,85,120,136,171,177,183,194],"830":[85,145],"8307692307692308":183,"83094042e":169,"830px":129,"831":85,"83115470e":169,"8313":53,"83130016e":169,"831691":172,"832":[85,119,194],"83203125":145,"8321":142,"833":[85,158],"83300943e":169,"833333":41,"8333333333333334":171,"83334957e":169,"833597":131,"8337":142,"834":[85,142],"8340":37,"83425452e":169,"8343":142,"834313":131,"8348":38,"835":85,"8359375":145,"836":[85,158],"836154":41,"836323":130,"836667":41,"8369":142,"837":85,"8373":142,"837500":41,"837984":161,"838":85,"839":85,"839000":120,"8392":142,"8394":142,"839416":131,"83984375":145,"83m":37,"84":[44,53,56,63,65,72,85,136,145,160,171,176,177,182],"840":[85,142,155],"84001001":155,"84001003":155,"84001005":155,"84001007":155,"84001009":155,"840235":130,"8407":37,"8407442":125,"8409":142,"841":85,"84192557":171,"842":[85,145],"842069":29,"84236351":171,"842521":131,"8428":142,"843":85,"8431":142,"8433":149,"843333":[70,92],"84375":145,"8438":142,"844":85,"84402835e":169,"8448":142,"8449":142,"844925":161,"845":[83,85],"8450":72,"845000":41,"8456":142,"8459":37,"846":[85,142,145],"8462":[67,83],"846646e":65,"847":[85,142],"84700":83,"84739223":171,"8474":142,"84765625":145,"8476788564209704":85,"8476788564209705":85,"8476788564209707":85,"8476788564209713":85,"8476788564209723":85,"8476788564209757":85,"8476788564209847":85,"8476788564210102":85,"8476788564210811":85,"8476788564212772":85,"8476788564218222":85,"8476788564233363":85,"847678856427542":85,"8476788564392248":85,"8476788564716766":85,"847678856561821":85,"8476788568122215":85,"8476788575077785":85,"8476788594398821":85,"8476788648068361":85,"8476788797150412":85,"847678921126722":85,"8476790361591695":85,"8476793556937455":85,"8476802432897899":85,"8476827088343573":85,"8476895575692671":85,"8477085818329055":85,"8477614270096787":85,"8479082191673818":85,"84797838907741":[69,71],"848":85,"8483159751610024":85,"8488":142,"849":[85,145],"8492":142,"8494486306988371":85,"849773e":131,"84983913e":169,"85":[18,41,45,53,62,63,67,83,85,118,119,125,136,145,155,171,173,176,177,194,195,204],"850":[85,145],"8504":168,"851":[85,145],"8510":158,"8515625":145,"8516":142,"851852e":41,"852":[85,145],"852040":172,"852500":41,"8525948960817107":85,"8529":37,"853":85,"8533":142,"853562":172,"8536":142,"854":[85,145],"8544":37,"854448":168,"855":85,"8554":37,"85546875":145,"8554913294797688":63,"856":[42,85,145],"856196":[69,71],"8562":142,"856667":41,"8568203376968316":56,"857":[73,85,172,202],"8572":37,"857513":172,"85796668":[67,83],"858":85,"8584":37,"858734":130,"85897064e":42,"859":85,"859375":145,"8595784":128,"86":[41,53,56,63,65,67,69,71,83,85,136,145,155,160,165,171,173,177],"860":[85,142,145],"860146":65,"86057123e":169,"860666":131,"861":85,"8613345221452491":85,"8614":142,"861526":131,"8617":142,"862":85,"862276":131,"862895":131,"863":[85,145],"8630":149,"86328125":145,"8636":142,"8637678":[188,210],"863846":41,"864":[85,145],"8641":38,"8644":37,"8649":37,"865":85,"8651":45,"866":[85,145],"8666666666666667":70,"866832":172,"867":85,"86713461558":67,"8671875":145,"8672":83,"867339":41,"867500":41,"8677":142,"868":[76,85],"868170":172,"868263":155,"8684":142,"868416e":131,"868855":131,"8689":142,"868942":[69,71],"869":[85,145],"869231":41,"869547":[69,71],"87":[41,53,56,63,85,136,155,161,171,177,188,195],"870":[85,145],"87000":[205,206],"870000":41,"87005":83,"870053":67,"870455":168,"870815e":65,"871":[85,130],"87109375":145,"872":[85,130,145],"872618":73,"873":[37,38,85,130,145],"8734":37,"87381744e":169,"874":[85,130,145],"874230":29,"874252":29,"875":[85,130,145],"875499":131,"8756":149,"875628":131,"875750":158,"876":[85,130],"876614":172,"8767":142,"877":[85,130,145],"8776021588280649":86,"877954":130,"878":[85,130],"878377":73,"87890625":145,"879":[85,145],"879096":172,"8798":142,"88":[44,53,56,63,65,67,83,85,136,145,160,163,165,168,171,176,177,179],"880":[67,83,85,142],"8808":[142,168],"881":85,"881110":29,"88172306e":169,"882":85,"8823":37,"88235294":83,"882430":65,"882500":41,"8827":142,"8828125":145,"88281250e":42,"883":[85,145],"8830":37,"883056":173,"8833":142,"884":85,"8842":142,"8844":142,"8845":37,"885":[76,85,145],"8855":65,"8856112612106326":85,"8858":65,"88581848e":42,"885964":[69,71],"886":85,"886073":29,"886097":130,"8861":37,"886230e":131,"88633901":171,"8864":168,"88671875":145,"887":85,"8878":142,"887861e":131,"888":85,"88807373e":169,"8881":142,"88819707e":169,"8883":37,"888888":163,"888889":125,"88889":[172,202],"8889":142,"889":[85,145],"8892":142,"8897":45,"88k":56,"89":[41,45,53,56,63,85,136,145,160,171,173,177,187],"890":[85,145],"890625":145,"891":85,"8914":142,"892":[76,85,145],"8920":45,"89217494e":169,"8923":142,"8924":37,"8926045016077171":63,"893":85,"89342825e":169,"893586":73,"8937":142,"894":[85,145,158],"89400":83,"8942":142,"894290":131,"89453125":145,"89488":158,"895":[85,145],"8954":38,"8959":142,"896":[38,85,142,145],"896058":131,"896291e":65,"896499":65,"896727335512334":70,"897":[30,85],"897485":131,"8977517768607695":70,"898":[85,145],"8982142857142857":29,"8984375":145,"8986":[76,144],"899":[85,155],"8997":142,"8998":142,"89m":37,"8aaad":65,"8b":102,"8b9":172,"8b9ae55861f22a2809e8b3a00ef815ad":172,"8c74a315":[127,196],"8e":42,"8j":[188,210],"8m":[53,76],"8s":[67,144,171],"8spbdlrp3lbr9j9uejdzgqul6":65,"8x8":[56,144],"9":[7,14,18,22,24,29,30,32,33,35,36,37,38,39,41,42,45,46,48,50,52,53,54,56,60,64,65,66,70,72,73,75,76,83,85,86,89,92,93,101,102,110,119,121,125,126,128,129,130,131,133,136,138,142,145,146,149,150,158,159,160,161,163,169,171,172,176,179,182,183,184,187,188,189,194,195,196,200,202,208,209,210,211],"90":[1,7,14,31,35,37,41,43,44,53,56,57,60,62,63,65,69,71,73,85,91,125,136,145,150,160,164,171,172,176,177,182,183,184,200,202,209],"900":[62,85,142,145,173],"9000":135,"900000":[70,92],"90022":83,"900225":67,"900476":73,"9006":142,"901":85,"901429":85,"9017":142,"902":85,"902000":120,"9022":142,"90234375":145,"903":85,"903846":125,"90385283885":83,"904":85,"904182":130,"904227":29,"9042344":171,"905":85,"905000":41,"905040":131,"9051":142,"90570068e":42,"905722":73,"906":[85,145],"90625":145,"90671616e":169,"907":[85,145],"908":[85,145],"908097":73,"908113e":65,"908426":65,"9086":37,"909":[85,145],"90909091":91,"90998233e":169,"90m":37,"91":[30,41,46,53,56,63,83,85,93,120,136,145,160,171,177,195],"910":[85,145],"910000":158,"91015625":145,"9102":53,"91034463e":169,"9104":37,"91076629230869":37,"911":[85,145],"91111":[172,202],"9118":142,"9119":42,"912":85,"912641e":41,"913":85,"913000":73,"91312281e":169,"913196":73,"9136":37,"9137407":83,"914":85,"9140625":145,"9142":37,"914407":29,"9145":142,"915":[85,145],"91505991e":169,"9152":142,"916":[85,142],"9162":149,"916667":[41,173],"917":[85,145],"9171":65,"917554018630476":70,"91796875":145,"917983":131,"918":85,"9181":142,"918462":41,"9187":142,"9187045":[67,83],"9189":76,"919":[85,145],"91m":37,"92":[41,44,53,55,63,65,75,85,89,125,136,145,163,171,172,176,177,179,202],"920":[85,142,145],"920135":73,"92051":150,"92086185e":169,"920px":130,"921":[85,145],"92162351e":169,"921875":145,"922":[85,145],"922500":41,"922706":41,"923":[83,85],"92300":83,"923077":125,"923210":73,"9235":65,"924":85,"924251":130,"925":[85,145],"9250":165,"925286":29,"925596661128895":163,"92578125":145,"926":85,"92615075e":169,"927":85,"927040e":73,"9272":142,"927331e":73,"92780":168,"928":85,"9283":149,"929":[85,145],"9296875":145,"929699":73,"92m":37,"93":[37,41,44,53,63,65,83,85,91,118,129,136,145,171,179,194],"930":[85,145],"9300":67,"930023":131,"930808":168,"930833":41,"930838":131,"931":85,"9312":65,"931818":168,"932":[85,145],"9324":37,"932801":130,"933":[85,145],"9335":76,"933541":29,"93359375":145,"934":85,"9342":53,"9345":76,"934649":168,"934832":168,"935":85,"93598814":[67,83],"936":85,"936285":179,"93657988":125,"9368":76,"937":[36,85,145],"937017":131,"9375":145,"937600e":73,"9377":76,"938":[85,145],"9382":76,"9383":142,"9385":76,"9386":142,"9388":76,"938874":168,"939":[85,142,145],"93m":37,"93yueidgozr8cncbb6ln4itqhlckkqfh9taxiwd6gum6upgfyfcautkknrgsxo":65,"94":[29,41,45,52,53,54,56,63,65,73,75,83,85,89,118,125,129,136,145,171,179,182,194],"940":[85,142],"940000":41,"940000e":41,"940217":168,"9403":37,"94038234e":169,"9404":142,"940964":176,"941":[85,145],"941111":173,"9413":142,"94140625":145,"941642":[69,71],"9417":142,"9419":76,"942":[85,133,196],"9422":149,"9423":142,"942361":131,"942500":41,"94257014456259":56,"943":[85,145],"943324":168,"9439":76,"944":85,"944167":41,"9446":142,"94465006e":169,"945":[85,145],"9453125":145,"9454":76,"946":[56,85,145],"946246656":41,"9463":76,"947":85,"947202":73,"9473":142,"9479":76,"948":85,"9481":76,"948352":73,"9484":149,"948799":168,"949":[76,85],"94921875":145,"949230e":41,"9494233119813256":56,"9498":149,"95":[18,32,36,37,39,41,44,45,52,53,56,63,65,75,76,83,85,89,93,101,120,125,129,136,160,169,171,172,173,179,200,202],"950":85,"9500":67,"9503":168,"9504":76,"950602":131,"950791":168,"95089302e":169,"950964":64,"951":[85,145],"951123":168,"9511372931045574":56,"9518":149,"952":[76,85,142],"952074":29,"952559":130,"952655":168,"953":[56,85],"953011":158,"9530466475033655":85,"953125":145,"9534":45,"9538":76,"954":[56,85,145],"9540":149,"954000":158,"9543":142,"955":85,"9550":72,"9552":149,"955556":125,"956":[85,145],"9562":142,"9563":149,"9564":76,"9564565636458":[69,71],"9568":168,"957":85,"9574":149,"957500":41,"9576":142,"9578":76,"958":[63,76,85,145],"958084":64,"958434":29,"9585":149,"958899":172,"959":[83,85],"9590":76,"9591":[37,144],"959280":65,"9595":136,"95k":56,"95m":37,"96":[32,36,52,53,56,60,65,85,92,136,142,145,171,173,179],"960":[85,142,145,208],"9600":72,"9600000000000002":70,"960304":29,"9608":149,"9609375":145,"961":[85,145,158],"961250":158,"9619":149,"962":[76,85],"962500":41,"963":[76,85,145],"9630":149,"96303579":83,"963297":73,"9638507635801276":173,"964":85,"96430733e":169,"96484375":145,"965":[85,168],"9652":149,"965253":73,"9652659492293556":182,"96537550e":169,"9656":168,"965629":29,"965736":131,"966":[85,145],"966000":158,"9664":149,"9666666666666667":70,"9666666666666668":70,"967":[85,145],"968":85,"9681":142,"968333":41,"9686":149,"96875":145,"9688888888888889":171,"96896536339727":70,"969":[76,85],"96918596":[169,200],"969394":73,"9694":142,"96945":41,"96982397":65,"96m":37,"97":[41,43,45,52,53,56,63,70,76,85,91,136,145,171,173,179,182,204,209],"970":[76,85],"97011173":65,"9709416":65,"971":85,"971020":29,"972":[85,145,208],"9723201967872726":[69,71],"972455":131,"9725":65,"97265625":145,"9728":142,"973":[85,145],"97318436":65,"973292":29,"9733333333333334":70,"973583":73,"9739":38,"974":[76,85],"97451713":125,"97458101":65,"9747":142,"9748":149,"975":[85,145],"9750":45,"975000":41,"9753462341111744":56,"975385344":41,"9754":142,"975532":65,"9756":65,"9757":83,"9759036144578314":183,"976":[85,130,145],"9765625":145,"976m":144,"977":[85,130],"977162":130,"977255e":41,"977660":73,"9777777777777777":171,"978":[76,85,131,145],"9783":65,"978333":173,"9784":45,"97848561":65,"97849162":65,"97876502":65,"9789":65,"97899282":[67,83],"979":[38,76,85,130,142,145,195],"9795":149,"97988827":65,"97m":[37,136],"98":[45,52,53,55,64,65,66,76,85,136,145,171,173,183],"980":[76,85,131,142,145],"980233":131,"98046875":145,"9807":[65,76],"981":[85,131],"9810":168,"9814":136,"981466":131,"9816":65,"98176":150,"982":[76,85],"9821":149,"982109":155,"9824":65,"982500":41,"9826":142,"9827":65,"98296089":65,"983":[85,131,145],"9830":65,"983000":120,"983077":41,"9832":[65,142],"9835":65,"9837":149,"9839":142,"984":[85,131],"984375":145,"985":[85,131],"985000":41,"985388":179,"9855":45,"985554":73,"986":[41,85,131,142,145],"9861":142,"9864":136,"9865":149,"9866666666666667":70,"986792":158,"9868":[65,149],"987":[85,145],"9871":149,"987249":131,"9874":149,"987494":131,"987500":41,"9876":45,"987654321":101,"9879":149,"988":85,"9882":136,"98828125":145,"9883":45,"989":85,"9890":45,"98925569e":169,"9894":45,"9896":149,"98e3715f":110,"98m":37,"99":[31,32,41,52,53,56,62,65,69,71,73,76,85,125,128,131,155,160,171],"990":[85,145],"9900":136,"990000":[205,206],"990133":29,"9905":149,"9905999898910522":136,"9906":136,"9907":[136,149],"9909":136,"991":[63,76,85,183],"992":85,"9921875":145,"992212":158,"992258":29,"9924":37,"9927":136,"993":[85,145,158],"993280":29,"994":85,"9940711462450593":29,"9943":142,"9948":136,"9949":65,"994f5f":38,"995":[37,85],"9950":37,"995000":158,"9951":142,"995873":41,"995939":73,"996":[76,85,142,145],"99609181":83,"99609375":145,"996421":155,"996650":41,"996840":29,"997":[85,145],"997128":41,"99713160e":169,"997217":41,"99757":32,"9978":38,"998":85,"998058":41,"998799":41,"998816":41,"9989":142,"999":[35,36,39,62,85,138,139],"999436":131,"999530266023044":64,"9996615456176722":[69,71],"9999":[62,179],"9999965334550955":[69,71],"9999997207656334":195,"999999999601675":[69,71],"99m":37,"9be4c7yahuinv1h07ucme1co9p":65,"9e726f":73,"9ec22d57b796":110,"9ect":65,"9f84":127,"9f8a78":73,"9f95":[127,196],"9k":41,"9k7zyhrlytbcgvrzowtshs0jkcwjaa":65,"9m":[76,149],"9s":[67,171],"\u00b5":31,"\u00b5s":195,"\u015fimdi":37,"\u03b3":65,"\u03b3xit":65,"\u03bb":168,"\u03bc":31,"\u03bc1":31,"\u03bc2":31,"\u03bcn":31,"\u03c3":31,"\u03c31":31,"\u03c32":31,"\u03c321":31,"\u03c322":31,"\u03c32n":31,"\u03c3n":31,"\u4e13\u4e1a\u7248":41,"\u5168dlc":41,"\u5b89\u88c5\u5373\u73a9":41,"\u6597\u9c7c\u89c6\u9891":41,"\u65b0\u5efa\u6587\u4ef6\u5939":41,"\u65e0\u9650\u91cd\u7f6e\u63d2\u4ef6":41,"\u7fa4\u661f":41,"\u8c6a\u534e\u4e2d\u6587":41,"\u8d60\u54c1":41,"\u8fc5\u96f7\u4e91\u76d8":41,"\u923d":110,"\u94f6\u6cb3\u5178\u8303dlc":41,"\u9a71\u52a8\u4eba\u751fc\u76d8\u642c\u5bb6\u76ee\u5f55":41,"\ud835\udc4f":179,"\ud835\udc53":179,"\ud835\udc5a":179,"a\u00e7\u0131l\u0131\u015f":37,"abstract":[1,8,123,128],"ayl\u00f8":158,"bia\u0142ecki":196,"boolean":[7,51,101,110,126,129,130,131,142,143],"break":[14,33,34,37,56,68,84,133,141,145,146,152,153,178,188,207,210],"byte":[29,75,89,128,188,195,210],"cach\u00e9":196,"caf\u00e9":168,"case":[3,7,8,14,18,29,30,40,44,48,55,58,60,63,64,65,70,72,83,84,87,91,101,102,110,111,115,117,120,123,125,126,128,129,131,133,136,140,144,147,150,152,153,154,155,156,158,159,160,161,163,164,165,168,169,171,172,175,176,178,180,182,183,187,188,190,192,195,202,204,209,210],"catch":[141,154],"char":188,"class":[3,7,14,22,24,29,30,31,33,34,35,36,38,39,41,42,44,45,46,48,55,58,59,60,61,63,64,65,66,67,70,73,75,83,87,89,90,91,92,102,103,109,119,125,126,128,129,130,131,137,139,140,141,142,143,144,145,148,149,154,158,160,161,162,163,164,165,168,169,171,172,173,175,176,178,179,182,183,184,188,189,194,198,202,204,205,208,210],"clion2020\u7834\u89e3":41,"d\u00fc\u015f\u00fck":37,"default":[7,22,33,34,50,51,55,56,58,59,60,63,64,68,69,71,75,89,91,94,102,110,118,126,128,129,131,137,139,140,142,143,144,150,154,163,169,171,172,176,177,180,188,200,202,203,208,209,210],"do":[0,1,3,7,8,10,13,14,17,18,21,23,25,26,28,29,30,31,32,34,38,40,42,44,45,46,48,51,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,73,75,80,83,85,89,91,97,99,101,102,107,109,110,111,112,113,115,117,118,119,120,121,122,125,126,128,130,131,133,138,140,141,142,143,144,146,147,150,152,154,155,156,158,160,161,163,164,167,168,169,170,171,172,173,175,176,178,179,182,186,187,189,196,202,203,204,207,209,210],"export":[45,153,173,175],"final":[7,31,32,34,40,42,46,52,53,56,57,60,61,62,64,65,73,75,85,89,91,102,115,126,131,138,142,143,144,145,147,149,153,154,155,160,163,164,165,166,169,171,173,175,178,182,183,187,188,198],"float":[22,35,37,41,42,48,49,51,53,55,57,61,65,76,85,101,102,126,128,131,136,138,148,159,161,172,187,189,195,202,211],"fran\u00e7oi":29,"function":[0,1,2,3,7,14,18,22,25,30,31,33,34,38,39,42,44,45,46,50,51,52,53,55,56,58,59,60,61,62,63,64,66,67,68,69,70,71,72,75,77,83,89,90,100,112,120,125,126,127,129,130,131,135,136,137,138,139,142,143,144,145,146,147,148,149,150,152,155,160,163,165,166,168,169,170,171,172,175,176,178,181,182,183,184,186,188,196,200,202,203,204,210,211],"g\u00f6rkem":35,"g\u00fcnai":35,"import":[1,2,3,7,12,14,15,17,18,21,22,23,24,25,30,31,32,33,35,36,37,38,40,41,43,44,45,47,48,50,51,52,53,56,61,68,69,71,74,75,76,77,83,84,85,86,87,89,91,93,95,101,102,103,107,108,109,110,111,112,113,114,115,116,117,118,119,120,123,125,127,128,129,130,131,133,134,135,136,137,140,141,142,143,144,145,146,147,148,149,150,152,153,155,156,157,158,159,160,162,163,164,165,166,167,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,188,189,190,192,194,195,198,200,202,203,207,209,210,211],"int":[7,14,22,31,43,45,53,56,62,77,93,101,102,128,130,131,138,139,142,143,144,145,148,149,163,173,187,188,189,195,210,211],"long":[1,8,14,34,37,38,50,52,53,59,61,62,65,70,75,89,91,109,110,113,120,123,128,140,141,149,150,154,167,170,173,178,187,188,189,203,209,210],"micha\u0142":196,"new":[7,9,14,17,22,23,31,34,35,36,37,42,46,48,50,52,53,55,56,58,59,60,61,65,66,67,68,70,73,75,89,93,101,102,108,109,110,111,113,115,117,118,121,122,123,125,127,129,133,135,137,140,141,142,143,146,147,150,151,153,154,156,159,160,163,164,165,166,167,168,169,170,171,172,175,178,179,182,183,184,186,187,188,190,192,193,195,196,197,198,200,202,207,210],"null":[41,49,51,53,54,66,73,83,126,129,131,158,168,173,182,183],"office2016\u7b80\u4f53\u4e2d\u658764\u4f4d":41,"p\u03b8":139,"pikach\u00fa":12,"public":[1,14,56,62,63,108,115,121,123,125,146,148,153,155,156,178,184,187,191,192,193],"return":[2,3,7,12,14,18,22,24,25,29,30,31,34,35,36,37,38,39,41,42,43,44,45,46,48,49,51,52,53,55,56,58,59,60,61,62,63,64,66,69,70,71,72,75,77,83,84,85,89,90,91,93,101,102,109,110,126,127,128,129,130,131,133,135,136,137,138,139,142,143,144,145,148,149,150,154,155,160,163,164,165,168,170,171,172,173,175,179,188,189,195,196,198,202,203,204,205,206,209,210],"short":[26,42,50,65,109,125,128,140,141,143,156,173,180,187,188,210],"static":[1,2,5,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,119,120,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,188,194,210],"super":[29,30,31,34,36,38,39,48,69,71,130,139,143,144,145,148,164,187,209],"switch":[0,7,14,52,56,154,160,187,209],"throw":188,"transient":152,"true":[1,7,9,14,18,22,24,29,30,31,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,70,72,73,75,76,77,83,85,86,87,89,91,92,101,105,106,109,110,117,118,125,126,128,129,130,131,133,136,137,139,141,142,143,144,145,147,148,150,155,156,158,160,161,163,167,168,169,170,171,172,173,177,179,182,183,184,186,187,188,189,194,195,198,200,204,208,209,210,211],"try":[1,3,4,5,7,9,11,14,16,18,25,31,33,37,38,40,49,50,52,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,77,85,91,92,98,101,109,110,111,113,116,117,118,119,120,123,126,127,129,130,131,133,138,144,145,147,148,154,155,156,158,159,163,164,165,167,168,169,170,171,172,173,174,176,177,178,182,183,184,185,186,188,189,202,207,210],"var":[18,41,57,61,75,89,117,139,148,160,163,182,194],"void":128,"while":[0,1,7,29,31,32,33,34,38,44,45,51,52,53,56,59,63,64,65,66,67,70,84,94,102,108,110,111,112,113,115,117,120,121,122,123,125,126,128,129,130,131,133,136,137,141,143,144,152,154,156,163,169,170,171,172,173,176,178,182,183,188,190,191,195,196,197,198,202,203,207,208,210],"y\u00fcksek":37,A:[0,1,4,5,6,7,12,13,14,15,18,19,21,23,26,28,29,32,38,40,42,44,45,46,48,50,52,53,54,55,56,57,58,62,63,64,65,68,69,70,71,72,73,75,81,83,84,85,86,87,89,91,94,97,98,99,101,102,108,109,110,111,113,115,117,118,119,121,122,123,125,126,127,128,129,130,131,133,135,136,141,142,143,144,147,148,149,150,152,153,154,155,157,158,159,160,161,163,164,168,169,171,172,173,175,178,180,183,184,186,187,188,189,192,193,195,196,198,200,203,204,207,208,209,210,211],AND:[101,102,117,128,130,187,188,189],AS:[22,25,50,52,53,54,101,102,173,187,188,189],And:[31,32,33,44,46,48,53,55,56,58,62,64,68,73,75,83,85,87,89,101,109,111,113,121,125,128,135,140,141,144,149,152,153,154,155,156,160,169,171,179,184,188,192,196,200,203,210],As:[1,3,7,8,34,35,38,42,44,45,46,48,52,53,55,56,57,58,59,60,62,63,64,65,66,67,73,75,83,87,89,91,92,108,109,115,118,121,123,125,126,128,131,133,143,144,145,146,152,153,154,160,163,164,168,169,170,171,172,175,178,182,183,184,187,188,189,193,195,198,207,209,210],At:[28,44,53,56,62,65,75,84,89,115,125,128,133,141,153,154,156,160,164,165,170,178,184,186,187,188,195,207,208],BE:[101,102,187,188,189],BUT:[101,102,187,188,189],BY:[110,154],Be:[94,100,113,117,128,173],Being:[48,68,110,113,131],But:[34,41,42,44,45,48,53,55,56,58,59,62,63,64,65,67,70,75,83,89,109,113,118,121,133,138,140,147,150,152,153,154,159,163,164,165,167,169,170,171,172,178,183,186,187,188,189,200,204],By:[7,18,29,42,44,46,51,55,58,59,60,63,65,75,83,85,86,87,89,108,110,118,123,126,128,131,133,139,150,152,153,155,158,160,161,168,171,175,178,179,182,183,187,198],FOR:[101,102,187,188,189],For:[7,19,29,30,31,32,33,37,38,41,42,43,44,45,46,48,50,51,52,53,55,56,57,60,65,66,67,70,72,73,74,75,76,78,80,81,83,84,93,94,95,97,98,99,100,109,110,111,120,121,122,123,125,126,128,129,130,131,135,140,141,144,147,148,150,152,153,154,155,156,158,159,160,161,163,164,165,168,169,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,190,200,204,207,208,210],IN:[25,91,101,102,187,188,189],IS:[22,50,52,53,54,60,101,102,106,158,187,188,189],IT:[60,108,153],If:[1,7,14,16,18,29,30,33,34,35,37,43,44,45,46,48,50,53,55,56,57,58,59,60,63,64,65,66,68,70,72,75,78,83,85,86,89,91,101,102,104,109,110,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,139,140,141,143,145,146,149,152,153,154,156,158,160,163,164,165,167,169,170,171,172,173,175,177,178,179,182,183,184,186,187,188,189,196,202,204,207,209,210,211],In:[1,3,7,8,9,11,12,13,14,16,18,19,21,24,28,29,30,31,32,33,34,38,40,42,43,44,45,46,48,50,51,52,53,55,56,58,59,60,63,64,65,66,67,68,70,72,73,75,78,80,83,84,85,86,87,89,91,92,97,98,99,101,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,143,144,146,147,148,150,152,153,154,155,156,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,193,195,196,197,202,204,205,206,207,208,210,211],Is:[56,102,106,108,112,115,120,121,122,139,147,153,154,158,173,178,183,184,211],It:[0,1,2,3,4,5,7,8,9,10,11,13,14,15,16,17,18,19,20,23,24,26,27,28,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,51,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,77,78,80,81,83,85,86,87,89,91,92,93,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,182,184,186,187,188,189,191,192,198,202,203,204,205,207,208,210],Its:[140,147,163,168,183],NEAR:[67,83],NO:[101,102,187,188,189],NOT:[91,101,102,128,142,146,187,188,189],Near:[118,194],No:[7,20,29,34,42,56,60,62,70,77,91,97,102,107,109,110,119,141,160,169,171,176,187,188,191,194],Not:[7,44,48,55,58,60,62,75,89,110,120,126,127,145,164,176,182,183,188,203,210],OF:[22,50,52,53,54,101,102,142,187,188,189],ON:196,ONE:7,OR:[22,50,52,53,54,101,102,128,187,188,189],Of:[33,56,73,110,111,113,123,171,189,190],On:[55,56,58,63,64,65,66,67,72,73,75,83,89,92,110,113,115,147,154,160,163,164,167,168,169,171,172,173,178,182,186,187,193,203],One:[1,7,11,28,42,44,48,55,56,58,59,60,61,63,64,65,72,92,107,112,113,115,117,119,123,125,128,136,140,148,154,159,161,163,169,172,178,182,184,187,188,189,193,194,195,200,202,207,210],Or:[32,33,44,56,64,83,111,113,128,140,141,154,158,161,178,187,188,203,207,210],Such:[1,7,30,44,48,55,56,60,125,154,155,182,187,209],THAT:91,THE:[101,102,187,188,189],TO:[60,101,102,187,188,189],That:[31,32,44,48,53,55,56,58,63,67,68,73,75,83,89,113,118,125,128,133,141,159,161,164,165,171,173,178,179,183,188,189,207],The:[0,3,5,6,7,8,12,13,14,15,16,18,19,24,25,26,28,29,30,31,32,33,34,35,36,37,39,42,43,44,45,46,50,51,52,53,54,55,56,58,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,80,83,85,87,89,92,93,99,100,101,102,108,111,112,113,115,117,118,119,121,122,123,124,125,127,128,129,130,131,135,136,137,138,139,140,141,142,143,144,145,146,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,166,167,168,169,172,173,175,176,178,179,180,182,183,189,190,192,193,194,198,199,201,202,203,204,205,206,207,208,211],Their:147,Then:[7,31,45,50,52,56,62,72,86,91,110,113,125,128,136,139,145,146,149,154,155,156,159,160,161,163,164,168,172,173,182,186,187,188,189,203],There:[0,1,3,7,18,28,29,30,32,33,35,38,39,42,43,44,46,48,51,52,54,55,56,57,60,63,65,66,68,70,73,75,81,83,89,94,109,110,113,115,117,118,119,122,123,125,126,127,128,129,133,135,136,137,140,143,145,146,147,149,150,152,153,154,155,156,158,159,161,163,164,167,171,172,173,174,175,177,178,179,182,183,185,186,187,188,189,207,208,209,210],These:[7,30,31,33,40,43,45,46,50,55,60,62,65,66,73,83,84,86,87,108,110,113,115,118,121,122,127,128,130,131,143,146,147,153,159,163,164,168,170,171,172,187,189,191,193,195,196,198,209],To:[0,1,7,14,18,22,29,30,33,34,35,38,40,42,44,45,46,50,51,53,55,56,58,60,64,67,68,72,73,75,83,84,85,91,101,108,109,110,111,113,118,119,120,121,123,125,126,128,129,131,133,138,139,140,143,144,145,146,150,151,152,153,154,155,156,160,161,164,165,167,168,169,171,172,173,175,178,179,182,183,184,186,187,188,189,193,194,196,199,202,203,207,209,210,211],WITH:[101,102,187,188,189],Will:[156,183,189],With:[7,42,44,46,48,52,56,62,66,67,68,93,108,112,113,117,118,120,121,122,123,127,128,130,131,133,140,153,154,161,163,164,169,171,172,178,180,187,196,203,208],_0:164,_1:161,_2:161,_:[18,29,31,33,34,36,39,40,45,46,57,62,77,90,135,136,139,141,142,143,144,145,149,150,161,164,171,179,187,188,198,204,205,210],____:[3,12,22,24,25,51,101,102,106],_____:[24,101],______:[12,14,25],_______:14,________:14,_________:14,_________________________________________________________________:[29,30,38,45],__________________________________________________________________________________________________:36,____i:102,__abs__:101,__add__:101,__all__:187,__annotations__:[187,209],__builtins__:187,__cached__:187,__call__:[69,71,137,139,144],__class__:[39,187],__dict__:[179,205,206],__doc__:[187,209],__eq__:101,__file__:[77,187],__finalize__:[129,130],__future__:39,__get__:129,__getitem__:[130,131],__init__:[29,30,31,34,36,37,38,39,48,61,69,71,90,91,103,129,137,139,141,142,143,144,145,148,165,179,187,204,205,209],__iter__:[34,142],__len__:34,__loader__:187,__main__:[37,141,169,172,173],__mul__:101,__name__:[37,39,141,172,173,187],__operators__:145,__package__:187,__repr__:61,__spec__:187,__str__:101,__sub__:101,__truediv__:101,__version__:[46,141,171,209],_aspp:144,_attach:[127,196],_bin:60,_branch:144,_build_model:37,_bunch:[63,64],_caller:129,_check_indexing_error:131,_concaten:129,_consolidate_inplac:130,_constructor:130,_conv_block:144,_conv_bn_relu:144,_conv_relu:144,_data:130,_decor:129,_deeplabv3:144,_deprecate_mismatched_index:130,_deprecated_arg:130,_engin:131,_etag:[127,196],_fcn_16:144,_fcn_32:144,_fcn_8:144,_format_argument_list:129,_fuse_bn_tensor:143,_get_axi:130,_get_block_manager_axi:130,_get_comb_axi:129,_get_concat_axi:129,_get_join_info:129,_get_list_axi:130,_get_new_ax:129,_get_result_dim:129,_get_slice_axi:130,_get_valu:[130,131],_get_values_for_loc:131,_getbool_axi:130,_getitem_axi:130,_getitem_lowerdim:130,_getitem_tupl:130,_i:[86,87,161,171],_identity_block:144,_ilocindex:130,_index:62,_indicator_pre_merg:129,_info_axi:129,_invalid_index:130,_is_copi:130,_is_scalar_access:130,_items_overlap_with_suffix:129,_j:[161,171],_k:141,_kmean:172,_label:63,_left:129,_lib:[129,131],_locationindex:130,_locindex:130,_m:141,_make_concat_multiindex:129,_make_stag:143,_mapdataset:38,_maybe_cast_for_get_loc:130,_maybe_cast_slice_bound:130,_maybe_check_integr:129,_merge_doc:129,_merge_typ:129,_mergeoper:129,_method:195,_mgr:[129,130],_novalu:195,_oldcor:92,_other:129,_pad_1x1_to_3x3_tensor:143,_recognized_scalar:130,_reindex_and_concat:129,_rid:[127,196],_right:129,_sec_1:102,_segnet:144,_self:[127,196],_sigmoid:[90,179,205],_skip:3,_slice:130,_static:[130,131],_subplot:[73,83],_sum:195,_t:[127,196],_t_sne:[172,202],_take:130,_take_with_is_copi:130,_takeabl:130,_valid_typ:130,_validate_integ:130,_validate_kei:130,_validate_tuple_index:130,_valu:131,a0958ad901d7:127,a0:[129,195],a10:131,a1:[128,129,195],a1gkdhua8we2lilmxcctgfiycqfttwx6tljchvsbz6sfau8wquo8541xaz2myyziork:65,a21453:188,a23:[187,209],a2:[128,129,195],a3:129,a3z5kdkfn3tbq:65,a47:42,a4:129,a5:129,a7yia1n5fo6efhugqfis3dhueyjsa:65,a_:[91,172],a_dict:188,a_i:[91,160],a_list:188,a_n:163,aaaaaa:[169,200],aafter:170,aaron:[29,56,87,142,180],ab:[33,54,56,69,71,77,86,101,102,130,138,142,148,171,187,188,210],abadi:142,abat:42,abbrevi:[133,139],abc:[102,130,131,188,195,211],abcd:[7,126,130,195],abcdef:130,abcmous:[121,192],abil:[48,58,60,75,85,86,89,117,140,146,152,163,169,173,178,181,187,189,200,207],abl:[3,7,10,11,14,16,20,31,42,44,54,55,56,58,59,60,63,67,68,83,85,110,113,119,121,123,127,128,131,140,147,150,153,155,158,164,167,170,172,173,175,182,183,184,186,192,202,205,206,209],abnorm:29,abnorml:72,abo:41,aboslut:170,about:[1,4,7,11,12,13,15,16,17,18,19,22,23,26,28,29,31,33,42,44,45,46,48,51,52,53,55,56,58,59,60,63,64,65,66,67,68,72,73,75,86,87,89,92,93,99,108,109,110,111,112,113,115,117,118,119,121,123,124,125,126,127,128,129,131,133,134,140,141,144,146,147,148,150,151,152,153,154,155,157,158,159,160,163,164,165,167,168,170,171,172,173,174,176,177,178,179,180,182,184,185,186,187,188,189,190,192,193,196,204,207,209,211],abov:[0,1,7,11,14,19,26,29,32,33,38,40,42,44,48,50,51,52,53,55,56,57,58,59,60,63,64,65,66,70,72,73,75,83,89,101,102,113,117,119,123,125,128,129,130,131,133,136,139,140,141,142,143,144,146,148,150,152,153,154,155,158,159,160,161,163,167,168,170,171,172,175,178,181,182,183,184,185,186,187,188,189,194,203,204],above_cutoff:171,abracadabra:188,abraham:211,abs_vector:[188,210],absenc:[60,172,202],absent:[130,179],absolut:[42,52,54,85,87,92,101,125,128,154,163,167,170,187,188,189,210],absolute_error:86,absolute_percentage_error:86,abspath:77,absurd:73,abund:[119,194],ac:[73,147,171],academ:[121,124,151,192],academi:209,acc:[33,34,43,52,55,58,63,136,208],acc_and_loss:136,acceler:[109,119,120,154,182,194],acceleromet:[125,172],accept:[16,42,44,45,63,73,75,89,92,109,112,115,121,128,130,131,143,154,164,168,178,187,193,207,208],acceptedcmp1:73,acceptedcmp2:73,acceptedcmp3:73,acceptedcmp4:73,acceptedcmp5:73,access:[6,14,16,33,41,46,75,83,89,108,110,111,113,115,117,121,127,130,146,152,155,156,173,180,182,187,188,192,193,195,203,209,210],accessor:131,accident:164,acclaim:168,accommod:[7,38,52,126,188],accompani:[125,154,182],accomplish:[97,154,164,172,178,202,207],accord:[18,42,50,56,60,69,71,73,108,117,118,119,120,125,128,130,143,152,155,158,160,163,168,172,173,176,178,182,183,184,186,202],accordingli:[36,46,61,136,158,187,209],account:[0,6,8,14,16,45,56,85,101,110,111,121,125,127,128,147,156,160,164,182,183,192,195],accumul:[1,56,101,115,150,161,178,188,207],accur:[15,32,34,42,46,56,60,65,75,78,86,89,99,110,115,121,122,125,140,144,146,148,152,155,160,167,170,172,175,178,181,182,183,193],accuraci:[29,33,34,35,43,44,45,53,54,55,56,57,58,60,62,63,66,70,75,76,78,85,86,87,89,91,92,93,111,121,126,136,144,146,147,149,154,155,156,159,160,161,163,164,166,167,169,171,173,176,177,182,183,190,192,198,202],accuracy_metr:136,accuracy_scor:[29,43,55,56,57,58,62,63,65,66,75,76,89,92,147,163,168,172,173,176,177,183,202,205,206],achiev:[32,33,34,44,53,56,60,62,65,73,112,115,128,141,143,144,152,153,154,155,156,163,164,165,166,168,169,170,171,187],achitectur:142,aci_servic:[9,109],aci_service_nam:[9,109],aciconfig:[9,109],acid:53,aciwebservic:[9,109],acm:[121,192],aco:36,acoust:[157,158,159],acquir:[6,112,115,154,193],acquisit:[3,111,115,123,150,190,192],acro:173,acronym:118,across:[34,48,52,60,75,89,111,121,123,125,128,129,131,133,136,146,150,152,153,154,164,168,171,187,188,190,192],act:[3,14,22,24,37,42,59,68,102,113,121,128,131,136,137,141,146,148,178,182,195,207],act_greedi:37,act_valu:37,action:[0,7,37,44,50,51,101,102,108,112,113,121,123,126,127,128,153,155,173,176,178,187,188,189,192,207],action_prob:141,action_s:37,actions_count:37,activ:[0,29,30,32,33,34,35,36,37,38,42,43,44,45,46,48,49,50,52,53,62,63,68,76,77,91,121,135,136,137,139,141,142,143,144,145,147,148,149,155,164,170,171,175,192,197,198,203,208],activateion:145,activation_1:38,activation_2:38,activation_3:38,activation_4:38,activespac:196,actor:187,actual:[7,41,42,44,45,48,51,52,53,54,56,57,58,62,63,65,66,72,75,77,83,84,85,86,87,89,91,92,93,101,110,120,122,123,125,126,127,128,130,131,136,139,140,150,152,158,164,166,168,170,171,175,178,180,182,183,187,189,191,193,197,204,207],actual_result:[3,14,22,24,59,102],actual_valu:[41,86],acut:163,ad:[1,7,18,22,29,32,38,41,46,48,50,53,56,58,60,65,70,73,75,85,89,101,102,120,122,125,127,137,139,143,151,153,154,163,164,165,167,169,172,178,179,182,188,204,210],ada:177,adaboost:[164,177],adaboost_clf:55,adaboostclassifi:[55,62,176,177],adagradoptim:154,adam:[29,30,31,32,33,34,35,37,38,39,41,43,44,45,46,47,49,50,52,53,68,76,135,136,139,142,144,145,147,198],adamax:38,adamharlei:[136,197],adamoptim:[138,154],adamw:36,adapt:[36,52,64,68,108,121,143,150,154,164,180,192,208],adaptiveaveragepooling2d:143,add:[1,7,9,14,17,18,30,31,32,33,34,35,36,37,38,41,42,43,46,47,48,49,50,51,52,56,58,60,67,68,69,71,72,76,85,101,102,117,119,122,125,127,129,133,135,138,139,143,144,145,147,148,153,163,164,165,167,168,169,170,173,177,178,182,183,184,186,187,188,189,196,198,200,203,204,207,208,210],add_1:145,add_:31,add_artist:[119,194],add_ax:172,add_legend:158,add_selectbox:203,add_slid:203,add_subplot:[37,39,52,73,76,84,141],add_trick:187,add_weight:143,addit:[1,7,18,23,32,33,46,51,60,65,70,72,83,84,85,101,112,113,115,117,121,122,125,126,127,128,133,141,143,144,145,148,150,154,156,160,164,165,167,168,169,171,179,182,188,189,195,196,210,211],addition:[31,126,128,133,153,156,158,160,164,169,196,200],additon:32,address:[84,85,99,112,113,115,121,147,150,152,153,156,160,167,178,187,192,193],adel:163,adequ:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,78,80,81,94,97,98,99,100,125,154],adher:[53,115,146,153],adjac:[172,187],adject:[188,210],adjunct:178,adjust:[29,34,38,42,45,50,61,63,64,84,143,153,154,163,164,169,172,177],adjusted_mutual_info_scor:172,adjusted_rand_scor:172,admin2:155,admin:196,administr:[156,189],admonit:[129,130,131],adobe_premier:41,adolesc:187,adopt:[65,94,111,121,153,154,160,164,190,192,211],adult:[187,209],advai:45,advanc:[37,48,72,111,121,125,131,132,134,146,151,153,154,156,160,172,178,188,196,199],advantag:[44,56,60,75,89,131,143,147,153,156,163,166,167,169,188],advent:[55,140,153],advers:28,adversari:[38,156,199],advertis:113,advic:154,advis:[7,51,59,64,67,126,163],advoc:121,ae5:172,ae:[31,139],aebf:[127,196],aeroplan:7,aerospik:196,aesthet:22,afb:173,affect:[7,17,34,43,55,58,60,62,64,75,85,89,91,111,113,115,121,125,126,141,143,154,161,167,169,170,179,187,190,192,200],affer:149,affin:[91,158,172],affinity_matrix_:171,affinitypropag:172,afford:[7,83,126,178],african:[121,156,192],afro:[158,159],afropop:[158,159],after:[0,7,14,29,32,33,34,35,37,38,42,43,44,46,52,53,54,55,56,57,60,61,62,63,66,68,70,73,76,83,85,91,113,117,123,125,126,128,133,135,136,143,144,145,149,150,153,154,155,158,159,161,163,164,167,168,172,177,178,182,184,187,188,189,203,205,206,208,209,210],afterward:[32,128],ag:[9,18,22,56,57,73,83,97,101,102,109,110,123,125,127,128,129,153,158,160,161,165,168,175,178,185,186,187,188,189,195,196,205,206,207,209,210,211],again:[7,14,17,44,46,52,55,56,57,58,59,63,64,65,75,89,91,126,131,139,159,164,168,170,172,183,184,187,188,189,202,203],against:[0,18,40,46,52,56,65,86,87,113,121,123,125,129,130,150,154,156,164,170,173,186,201],agaricu:119,age_distribut:24,age_median_imput:22,age_sal_tre:56,age_tre:56,agefil:22,agenc:113,agenda:[111,190],agent:[121,178,207],ageron:171,agg:[18,41,171],aggfunc:129,agglom:[73,158],agglomerativeclust:[73,171,172],aggreg:[7,14,55,115,120,136,160,163,168],agil:[152,153],agnost:153,ago:[140,164],agre:[22,50,52,53,54,121],agreement:146,agricultur:[111,120,184,190,207],ahead:[55,58,63,113,150],ahnjovq9nfghs6fj4piqib3brpgnscyflm6riahdtaeyfclwo1cf:65,ai:[12,18,25,42,109,110,111,117,121,123,129,130,131,141,152,153,155,156,173,178,186,191,192,197,207,209],aid:[60,68,87,146,147,158,179,182],aim:[60,84,85,113,141,143,146,148,161,172,178,180,201],air:122,airbu:29,airflow:153,airlin:7,airplan:136,airport:[111,133,190,196],aka:[38,73,153],akkio:191,al:[31,75,89,120,121,156,194],alabama:155,alacazam:188,albeit:[50,183],albifron:[118,194],album:158,alcohol:[53,110],alekseynp:171,alert:152,alex:[34,139],alexa:[146,154],alexand:[134,137],alexandru:72,alexei:65,alexi:165,alexnet:143,alfredo:186,alg:62,algebra:[47,57,60,65,93,128,208],algo:[164,172],algorithm:[3,31,46,54,55,57,58,59,61,62,63,64,65,66,67,80,84,85,91,92,93,99,101,108,109,110,111,121,128,138,139,140,143,146,148,150,151,152,153,154,156,159,160,161,165,166,167,169,170,172,175,176,178,179,184,187,190,192,200,201,202,204,205,206,207],algoritm:164,algorythm:92,alia:[128,172,202],alic:[188,195],align:[22,33,86,121,128,136,143,144,148,150,158,159,161,163,169,171,172,173,175,179,180,182,183,202],alik:[0,156,163],aliz:36,all:[0,1,3,6,7,8,11,12,14,16,18,19,22,25,26,27,29,31,32,33,34,35,38,39,41,42,43,44,45,46,48,51,53,55,56,57,58,60,62,63,64,65,66,68,70,72,73,75,85,89,91,93,98,101,102,109,110,111,112,113,115,116,117,119,121,123,125,126,127,128,129,131,139,140,141,142,143,144,145,146,147,149,152,153,154,155,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,175,176,178,179,180,183,184,186,187,188,189,190,192,193,195,200,201,202,204,207,208,209,210,211],all_attr:31,all_clfs_acc:55,all_data:72,all_nod:1,all_photo:31,allah:146,allbeit:91,allclos:91,allegrograph:196,allei:[60,72],allevi:[55,58,60],allianc:115,alloc:[44,56,121,172,198,202],allow:[1,3,14,18,53,54,56,60,65,84,85,86,108,109,110,112,120,121,122,123,125,127,128,129,130,131,133,135,141,143,144,146,147,152,153,154,158,164,167,168,169,172,175,176,182,186,187,188,189,202,203,209,210,211],allow_arg:129,allowed_arg:129,allowfullscreen:[125,162,175,184],allpub:72,allud:56,almeida:53,almond:[74,119,175,176,194],almost:[7,31,33,38,44,48,56,63,68,77,111,113,126,133,163,164,178,179,182,187,188,203,207],alon:[73,115],along:[1,7,34,38,44,53,57,60,65,75,84,85,89,112,113,118,126,127,128,129,130,131,149,153,155,158,163,172,176,177,178,182,187,194,207],alongsid:[80,118,154],alot:[60,140],alpha:[38,61,72,73,84,86,92,118,139,142,147,160,163,164,168,169,170,171,172,188,194,200,202,205,206,210],alpha_:139,alpha_t:[139,164],alpha_t_bar:139,alpha_tb_t:164,alphabet:[33,122,127],alphago:[140,178],alphas_cumprod:139,alphas_cumprod_prev:139,alphas_t:139,alq:60,alreadi:[33,44,48,55,56,58,60,66,69,71,75,87,89,91,102,109,115,123,130,131,139,144,149,154,160,164,171,172,179,180,184,186,187,189,193,195],alright:[38,91],also:[0,1,3,7,14,16,18,20,23,28,29,30,31,32,33,34,35,38,43,44,48,50,51,52,53,55,56,58,59,60,61,62,63,65,66,67,68,69,70,71,72,73,75,77,83,85,86,87,89,91,92,107,108,110,111,112,113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,135,136,137,139,140,141,143,147,148,150,151,152,153,154,155,156,160,163,164,167,168,169,170,171,172,173,175,176,177,178,180,182,183,184,186,187,188,189,195,200,202,207,208,210],altair:203,altavista:164,alter:[84,93,115,122,187,193,209],alter_imag:93,altern:[7,16,32,50,60,65,68,120,121,126,128,147,154,158,169,170,187],although:[30,31,55,56,58,60,61,66,72,85,93,140,143,149,152,153,160,164,168,171,178,187,188],altogeh:153,altogeth:[14,170],altunyan:111,alwai:[7,14,30,34,35,36,38,42,44,48,50,52,53,55,58,60,61,63,64,65,67,75,89,113,118,125,128,129,131,133,139,140,141,143,150,153,154,155,156,163,164,168,169,170,171,175,178,183,187,188,189,209,210],am:[0,44,65,102,188,209],amalgam:87,amax:37,amaz:[32,110,117,144,189,190],amazon:[108,152,153,154,156,196],ambigu:[34,115,130,146,187],america:[117,185],american:[121,156,192],ami:172,aml:[9,109],aml_comput:[9,109],aml_config:[9,109],aml_nam:[9,109],amlb:154,amlcomput:[9,109],among:[7,62,65,70,73,125,128,143,153,154,163,164,168,172,178,183,201],amongst:[73,158],amor:149,amount:[7,17,31,62,65,73,84,108,109,110,119,120,123,129,133,136,140,143,146,152,154,164,165,169,170,172,173,178,184,187,188,191,192,194,195,196,200,202,207],amp:[158,173],amplifi:[111,121],amus:158,an:[1,5,7,14,16,18,20,22,23,27,28,29,30,32,33,34,35,38,40,42,44,45,46,48,50,51,52,53,54,55,56,58,60,62,63,64,65,68,73,75,76,77,83,84,86,87,89,91,92,93,99,100,101,102,108,111,112,115,117,118,119,120,121,122,123,125,126,129,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,167,168,169,170,171,172,175,176,177,178,179,180,182,183,186,187,188,189,190,192,193,194,195,196,198,199,200,201,202,204,207,208,209,210,211],anaconda3:[41,92,150,172],anaconda:163,anaemia:[9,109,110],analog:[55,84,125,128,131,165],analys:[7,60,85,108,126],analysi:[1,7,16,17,18,21,31,42,51,73,75,85,89,109,111,114,115,122,123,126,128,129,131,133,135,140,146,147,152,158,161,164,168,171,183,190,192,193,195],analyst:110,analyt:[1,37,57,62,108,111,128,152,160,164,168,190,191],analyticsvidhya:62,analyz:[16,17,42,65,108,111,122,123,125,146,152,156,158,168,171,172,176,182,185,194],anatida:[118,194],anatinu:42,anc1:42,anc:42,ancestor:164,anchor:[42,148],andon:121,andra:36,andrew:[117,125,152,155,178,180],android:173,anemia:110,anf:35,ang:182,angel:188,angelica:[74,175,176],angelina:56,angl:[36,93,117,163,170,197],angular_spe:36,ani:[0,3,7,14,17,18,22,26,30,31,42,44,48,50,52,53,54,55,56,57,58,59,60,61,62,63,64,66,68,70,75,83,86,89,91,101,102,108,109,113,115,118,119,121,125,126,128,129,130,131,133,140,141,143,147,149,150,152,153,154,155,156,158,160,161,163,164,167,168,170,171,172,173,175,178,183,184,186,187,188,189,192,202,203,207,209,210],anim:[129,139,160,178,198,207,209],anis:[74,119,175,176,194],anise_se:[74,175,176],ankl:[30,44,46],ann:[43,140],ann_build:49,anneal:32,anni:24,annot:[4,5,13,19,35,41,44,53,55,57,58,59,65,70,73,75,76,83,89,117,143,147,148,171],announc:91,annual:[133,196],anomal:[29,50,154],anomali:[8,14,52,55,56,154,158,171],anomalies_mask:171,anomalous_test_data:29,anomalous_train_data:29,anomalydetector:29,anonym:[112,121,187,192,209],anoth:[1,3,7,8,10,14,30,31,33,34,42,44,48,51,52,55,56,58,60,62,65,72,73,75,84,86,89,99,101,108,110,113,117,118,119,120,123,125,126,127,129,131,133,136,143,146,150,151,153,154,155,156,157,158,159,160,161,163,164,167,168,170,171,172,177,178,179,182,187,188,194,195,202,209,210],another_tupl:188,anser:[118,194],anseriform:[118,194],ansibl:153,anspos:29,answer:[16,23,44,55,56,57,62,91,94,111,112,117,120,125,129,140,142,143,147,151,154,155,156,160,161,164,165,173,175,178,184,186,187,193],anthropolog:158,anti:93,antialia:[36,77],antialias:36,anticip:123,antipattern:156,any_column:24,any_script_cont:3,any_style_cont:3,anymor:[170,172],anyon:[86,121,146,151],anyth:[7,13,18,48,64,67,72,113,133,158,164,178,184,186,187,193,203,207],anywai:[63,183,188],anywher:[55,56,128,178,187],ap:[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187],apach:[22,50,52,53,54,69,71,73,92,93,152,153,196,202,203,204,205,208],apart:[7,38,60,68,126,131,133,164],api:[6,16,29,33,44,45,46,50,53,63,68,108,109,110,111,122,127,129,135,149,153,173,175,182,183,186,190],api_doc:139,api_kei:110,apocalyps:146,apostroph:145,app:[5,6,41,48,100,108,113,117,121,125,127,155,174,192,203],appar:[164,187],apparatu:[18,125],appdata:[63,68,118,202,209],appeal:[55,58,59],appear:[30,31,32,42,52,110,118,121,125,128,143,144,145,150,154,163,164,168,170,173,182,183,184,187,188,192,198,203,210],append:[1,3,7,14,31,34,36,37,38,39,41,43,47,49,51,55,56,60,73,77,84,91,92,93,101,128,129,136,137,138,139,141,143,144,145,148,149,158,159,163,165,171,172,187,188,189,202,209,210],append_diff_column:14,appl:[43,74,121,175,176,188,192,210],apple_brandi:[74,175,176],applet:169,appli:[1,3,14,16,28,29,31,33,35,36,38,39,41,44,50,51,56,60,62,63,65,68,69,71,72,73,77,84,85,90,91,92,101,111,112,115,117,118,122,123,125,127,128,129,131,133,136,138,140,141,143,144,147,149,150,152,153,154,155,156,158,160,163,164,167,169,170,171,172,173,178,179,182,183,184,188,194,195,200,202,203,205,207,210],appliabl:3,applic:[0,4,16,22,33,42,43,46,50,52,53,54,84,86,108,109,110,111,115,121,122,123,127,128,134,137,142,143,144,148,150,152,153,154,156,160,164,168,173,178,188,189,190,192,193,199,210],apply_along_axi:93,apply_dropout:144,apply_gradi:[36,38,135,139,141,142,145],apply_if_cal:130,apply_kernel:34,appreci:38,approach:[1,23,29,33,34,45,50,53,54,56,60,64,65,72,84,91,111,115,121,123,143,146,147,152,153,154,155,156,157,158,161,163,164,169,171,172,178,179,182,183,187,188,189,190,193,207],appropri:[31,42,50,56,75,85,87,89,101,113,127,128,141,154,158,164,167,169,175,184,186,188,196,200],approv:[56,125,153],approx:[56,101,160,164],approxim:[7,30,53,56,90,102,146,150,160,164,168,179,182,204,205,208],apricot:[74,175,176],april:[155,182],aqi:122,aqx:60,ar:[0,1,2,3,6,7,8,9,11,14,16,17,18,21,23,24,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,76,77,81,83,84,85,86,87,89,91,92,94,97,101,102,104,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,189,191,192,193,194,195,196,197,198,199,200,202,203,204,207,208,209,210,211],arang:[29,56,61,91,128,142,149,150,171,172,195,202,205,206],arangodb:196,arbitrari:[18,52,128,129,142,164,168,188,208,209,210],arbitrarili:[171,188,210],arc:118,arcco:128,arcgi:111,architect:152,architectur:[34,38,68,110,121,127,142,143,144,145,148,152,154,155,160,170,173,192],archiv:[34,45,139,149],arcsin:128,arctan:128,are_anagram:188,area:[1,42,56,60,65,72,83,86,109,110,111,118,121,123,125,131,140,152,154,156,160,164,178,183,186,189,190,195,197],aren:[45,48,52,62,70,146,165,167,183],arff:63,arg:[22,42,43,52,53,77,101,102,129,148,164,187,209],argmax:[33,35,37,43,46,76,91,136,144,145,163,172,202],argmin:[171,172,202],argscop:148,argsort:[61,128,161],argtyp:77,argu:[61,123,154],argument2:189,argument3:189,argument:[7,33,44,56,68,101,112,113,127,128,129,130,131,143,144,167,170,172,188,189,208,210],arguments_dictionari:187,arguments_list:187,ari:172,aris:[28,52,101,102,121,152,156,187,188,189],aristocraci:117,arithmet:[7,31,101,125,126,128,172,187],aritifici:192,arizona:120,armagnac:[74,175,176],armi:203,around:[1,3,7,10,13,16,18,20,31,33,34,39,43,48,50,53,60,61,86,108,113,114,117,120,121,123,125,126,133,149,154,155,158,164,171,173,177,178,182,186,188,192,195,204,210],arous:152,arr1:128,arr2:128,arr:[52,53,77,102,128,195],arrai:[1,7,18,31,35,37,42,43,44,45,46,47,48,49,50,54,55,56,61,63,65,66,67,69,71,72,76,83,84,85,86,90,91,92,93,118,119,125,129,130,136,137,138,139,141,143,144,145,146,147,149,158,159,160,161,163,164,169,171,173,177,179,182,183,186,188,189,200,204,205,206,210,211],arrang:[14,60,70,146,150,186],array_split:145,array_to_img:[38,76,144],arriv:[73,115,125,183,193],arrow:[127,186],arrowprop:171,art:[31,136,142,143,145,151,153,154],artemisia:[74,175,176],arthur:[171,178,207],artichok:[74,175,176],articl:[28,37,39,46,55,56,58,111,113,117,119,123,125,146,158,161,164,188,190],articul:[113,156],artifact:[43,110,117,153],artifici:[18,43,46,56,93,111,123,135,140,146,147,149,151,155,156,178,205,206,208],artist:[38,158],artist_top_genr:[158,159],artistanim:139,artwork:31,arument1:189,arxiv:[138,142,144,148],as_cmap:41,as_default:138,as_fram:[66,171],as_list:[48,138,143,148],as_panda:168,asabeneh:[189,211],asarrai:163,ascend:[1,31,56,57,60,62,128,175,176],ascent:137,ascii:149,ascrib:117,asia:[174,175],asian:175,asid:[34,56,167],ask:[8,11,23,45,46,56,63,64,80,111,112,113,115,117,121,123,129,130,140,143,151,154,173,175,176,178,179,182,183,186,188,190,193,207],asp:[187,188],aspect:[11,13,33,60,62,91,114,115,117,120,123,148,152,154,170,184,194],aspp_siz:144,assembl:[38,187],assert:[3,14,22,24,31,51,53,59,91,101,102,103,105,106,143,144,145,148,155,171,187,188,209,210],assert_called_onc:[24,59],assert_called_once_with:[24,59],assert_frame_equ:[14,22],assert_not_cal:[24,59],assert_series_equ:14,assertalmostequ:52,assertequ:102,assertionerror:[105,106],assertrais:[14,102],assess:[23,56,85,86,107,111,112,121,147,161,170,172],asset:[12,14,15,18,22,23,24,25,51,55,56,58,59,60,62,65,66,67,68,70,73,83,91,95,110,117,173,184,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,208,210,211],assgin:60,assign:[3,6,8,11,14,16,17,19,22,24,28,36,42,44,45,50,51,52,54,55,56,58,59,60,83,85,87,99,102,109,110,111,115,117,118,119,120,125,130,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,151,152,154,155,158,159,163,164,169,170,171,175,176,177,178,180,182,183,184,186,187,188,189,202,203,204,205,209,210],assist:[110,146,172,178,202],associ:[3,7,46,101,102,109,110,113,121,125,127,128,148,153,156,161,170,178,182,186,187,188,189,191,192,196,207],assort:128,assum:[7,36,42,53,55,56,62,63,64,85,92,101,125,128,131,139,141,146,148,154,160,161,171,172,182,187,188,208,210],assumpt:[31,53,61,83,125,154,160,164,169,170,172,202],assur:[0,154],asterisk:[102,189],astrophysicist:6,astyp:[22,29,30,31,33,37,38,41,42,45,49,56,62,76,119,135,136,138,142,171,172,194,198,202,208],asymmetr:[152,164],asymmetri:121,asymptot:163,atlanta:[133,196],att:[143,173],attach:[46,110,119,127,194,196],attack:[109,110],attempt:[8,16,50,52,63,101,128,131,159,168,187,188,203,209,210],attend:139,attent:[73,92,131,139,140,143,145,161,163,164],attention_ax:139,attention_mask:42,attn_dim:139,attn_output:143,attr:[3,31],attract:[19,73,178],attrib:171,attribut:[7,31,33,56,57,64,73,92,101,110,122,123,130,147,152,161,168,172,187,202,209],attributeerror:[148,189],attributes_nam:31,attributes_path:31,attributes_respons:31,attributes_save_path:31,attributes_url:31,au:173,auc:[154,165,168,183],auc_weight:[9,109],auckland:[133,196],audienc:[157,193],audio:[31,46,122,164,178,207],audit:121,audubon:119,aug_test:62,aug_train:62,augment:[85,93,144,155,178,188],augment_input:144,augment_label:144,augmented_imag:33,august:[153,182],aurelion:[48,55],australia:[14,173],australian:[55,58],autauga:155,authent:[110,152],author:[12,25,42,63,64,101,102,108,111,117,121,123,152,155,187,188,189,190],authorit:155,auto:[9,65,109,133,135,136,154,159,163,167,168,171,172,173,175,182,202],auto_add_to_figur:172,autoconfig:[3,14,22,24,59,83,101,102],autoencoder_cnn:31,autoencoder_ecg:29,autogluon:156,autograd:[31,39],autograph:30,autokera:156,autolayout:[68,150],autom:[0,46,109,110,111,115,121,146,153,154,156,178,190,191],automat:[0,31,33,34,38,41,42,48,58,59,63,109,110,123,128,131,135,146,153,154,155,156,157,163,167,178,182,187,188,207,210],automl:[10,20,129,156,176,191],automl_config:[9,109],automl_error:[9,109],automl_set:[9,109],automlconfig:[9,109],automlrun:109,automobil:[34,136],automobile_fil:34,automodelforsequenceclassif:42,autonom:[148,156,207],autopct:[57,119,194],autoplai:125,autoregress:142,autotoken:42,autotun:[33,36,139,143,144],autumn:[56,169,200],autumnali:[118,194],aux_loss:148,auxiliari:[56,91],av:60,avail:[1,3,7,14,29,33,34,41,42,44,56,57,58,59,60,63,68,75,81,83,89,109,110,112,115,118,119,120,121,125,126,131,133,141,149,150,152,154,155,156,158,163,164,172,175,179,184,186,187,192,193],avenu:111,averag:[7,14,18,22,24,25,29,32,34,36,39,53,54,55,56,58,59,65,72,73,86,87,102,113,122,123,125,128,136,139,143,158,159,160,161,163,164,168,171,172,177,180,182,183,186,202,209],average_length_of_word:101,average_method:172,average_pooling2d:143,averagepooling2d:36,averkiev:31,avg:[41,63,65,66,76,138,173,176,177,183,209],avg_pool2d:148,avg_pool:148,avgpool2d:32,avgpool:148,avil:[63,64],avocado:211,avoid:[44,52,55,56,59,60,63,64,113,120,130,131,133,145,153,154,156,163,167,171,172,177,178,184,186,187,196],aw:[44,152,153,155,156],awai:[55,70,113,119,158,169,171,178,187,188,204,207],awar:[85,111,113,117,121,128,131,178,187,190],awcmr9f:65,awesom:[101,102,110,119,140,164,187,189],awl5l8tdgiwmctxfgh6jcak4yfq0tjefleix2rxwp1hxh0npv4nnlt33ulavkea3fe3jccpqrfhztmttkgitkmcsow8nd:65,ax1:[61,150],ax2:[52,61,120,150,194],ax:[1,14,22,29,30,32,33,34,37,38,39,40,41,43,44,48,52,53,56,57,60,68,70,72,73,76,83,84,92,117,118,120,128,129,130,131,136,139,141,142,150,158,163,165,168,169,171,172,182,188,194,200,202,204],axacc:52,axes3d:[73,84,92,172,202],axessubplot:[30,63,65,66,67,73,83,118,131,158,159,175,182,183,194],axhlin:[14,86,172,202],axi:[1,3,7,14,22,30,31,32,33,34,35,36,38,39,40,41,43,47,48,49,54,55,56,57,58,59,60,62,63,65,67,68,69,70,71,73,74,75,76,83,85,89,91,117,118,120,121,125,126,129,130,131,136,137,138,139,141,142,143,144,145,147,148,150,153,158,161,163,165,167,168,169,171,172,175,176,177,179,182,183,184,186,192,194,195,198,200,202,203,208],axisgrid:[64,83,92,120,158,183,194],axloss:52,axvlin:[171,172,202],aymer:135,az:[120,194],azim:[92,169,172,200,202],azip:[169,200],azithromycin:1,azur:[107,108,111,115,129,152,153,155,156,173,174,185,190,191,192,196],azurecontain:110,azureml:[9,108,109],b0:[129,195],b1:[128,129,141,195],b2:[128,129,141,195],b3:[127,141],b4ejbh5mczlor:65,b5couk05fwstwkyxnvi4e88ubjq0fcztrf9ujqfhqdcbqwcmx:65,b9c0c9:73,b:[7,14,22,29,34,35,37,41,56,60,69,71,86,91,101,102,110,125,126,127,128,129,130,131,135,139,141,142,144,145,148,149,155,158,160,161,163,169,171,172,182,187,188,189,195,200,202,203,204,209,210,211],b_1:160,b_dtree:163,b_f:145,b_g:145,b_h:149,b_i:[145,160],b_k:163,b_n:[160,163],b_o:145,b_t:164,b_y:149,ba:45,back:[1,7,29,30,31,44,48,50,51,59,83,98,102,108,109,113,123,125,128,131,133,139,150,152,153,154,160,170,173,184,186,187,188],backbon:[48,144,146,148],backend:[37,38,48,144,208],backfil:150,background:[40,43,104,111,143,150,173,207],background_color:[3,76],backprop:[34,149],backpropag:[34,39,91,139,149,198],backpropaget:91,backpropog:48,backtick:129,backward:[7,31,34,39,91,139,178],bad:[7,44,55,56,67,75,89,113,117,128,154,171,172,173,183,187],bad_kmeans_plot:171,bad_n_clusters_plot:171,badli:[53,56,118,154,163,204],bag:[30,44,46,60,62,161,162,175],bag_classifi:55,bagging_fract:60,bagging_freq:60,bagging_se:60,baggingclassifi:[55,160,163],baggingregressor:[160,163],baheti:147,bai:[67,83],baidunetdisk:41,baidunetdiskdownload:41,balanc:[35,55,58,63,65,69,70,71,75,87,89,109,111,153,154,156,163,164,169,170,176,190,200],balanced_subsampl:163,baldwin:155,ball:[56,160],ballback:44,baltimor:[182,183,184],bam_extract_path:29,bam_zip_file_path:29,banana:[43,188,210,211],bandwidth:108,banerje:[65,168,203,208],bank:[56,111,122,127,156,158,196,207],banko:156,bankrupt:117,bar:[1,3,15,31,44,46,57,62,70,86,109,117,118,128,129,131,161,168,175,184,189,203],bar_chart:76,barack:101,barbour:155,barchart:182,bare:[153,163],baregg:150,barh:[72,175,194],barlei:176,barnrais:113,barnraisersllc:113,barometr:122,barplot:[43,60,75,89,158,159],barrier:146,base64:[31,65],base:[7,11,14,15,17,18,29,31,34,37,42,44,46,51,54,55,56,58,60,61,62,63,65,66,67,72,73,75,83,85,86,89,93,102,110,111,115,117,118,121,122,123,127,128,131,133,135,139,140,141,143,144,145,146,147,148,151,152,153,154,155,156,158,160,161,163,164,165,167,169,170,172,173,176,177,178,183,184,186,187,188,189,190,191,196,197,200,203,207,208,209,210],base_estim:55,base_learn:165,base_model:[137,144],base_model_output:144,base_scor:[72,167,168],base_shap:137,base_url:14,basebal:125,baseblockmanag:130,baseclassnam:187,baselin:[154,163,168,171],baselinems:53,basemen:[18,125],basement:60,basenam:[29,30,31,34,43,46,72],basex:196,basi:[1,22,50,52,53,54,56,66,67,73,108,128,140,164,169,172,189,202],basic:[7,14,15,18,24,30,38,44,53,56,61,63,64,73,77,111,117,118,120,125,126,127,129,135,140,147,149,150,151,153,155,159,160,163,164,168,169,170,172,173,175,178,179,182,183,184,186,187,190,191,193,194,196,197,198,199,200,201,202,203,204,205,206,207,208,209],basic_autoencoder_model:29,basic_autoencoder_model_nam:29,basic_autoencoder_model_respons:29,basic_autoencoder_model_save_path:29,basic_autoencoder_model_url:29,basket:[175,182],bat:38,batch:[31,32,33,36,38,42,46,49,50,53,91,135,136,137,139,142,143,144,145,152,153,154,155,156,158,172,175,198],batch_:38,batch_acc:34,batch_label:136,batch_loss:[34,145],batch_norm:[36,38,143,148],batch_normalization_1:[36,38],batch_normalization_20:45,batch_normalization_21:45,batch_normalization_22:45,batch_normalization_23:45,batch_normalization_24:45,batch_normalization_25:45,batch_normalization_26:45,batch_normalization_27:45,batch_normalization_28:45,batch_normalization_29:45,batch_normalization_2:[36,38],batch_normalization_3:[36,38],batch_normalization_4:[36,38],batch_normalization_5:[36,38],batch_normalization_6:[36,38],batch_normalization_7:[36,38],batch_normalization_8:36,batch_siz:[29,31,32,33,34,35,36,37,38,39,41,43,45,47,49,50,52,53,68,91,135,136,139,142,144,145,147,149,171,179,198,208],batch_x:135,batchno:36,batchnorm1d:31,batchnorm2d:39,batchnorm:[32,36,38,39,45,68,139,143,144],batchsiz:91,bathroom:60,batter_pow:[75,89],batteri:[75,89],battery_pow:[75,89],battl:119,bayesian:[139,144],baz:129,bb38:[127,196],bbox:[92,172,202],bbox_coord:45,bbox_emb:148,bc:171,bce:31,bceloss:39,bdt:163,bdt_predict:163,beam:[154,173],bear:175,beat:[52,53,178,207],beatl:189,beauti:[116,119,120,172,202],beautifuli:44,beautifulli:[48,118],becam:[123,140,164],becaus:[1,3,7,12,14,18,22,28,30,31,32,34,38,42,44,46,48,50,51,52,55,56,58,60,62,63,64,65,66,70,75,77,83,84,89,92,110,113,120,121,122,123,125,126,127,128,130,131,137,139,140,146,148,150,152,153,154,155,159,160,163,164,165,168,169,170,171,172,175,178,179,182,184,187,188,189,195,200,202,204,207,209],becom:[7,32,33,37,38,50,56,61,84,91,101,110,121,123,125,128,140,141,145,149,152,153,154,160,164,165,168,175,178,179,188,198,209],bed_room:83,bedroom:[67,83],bedroomabvgr:60,bee:[13,120,194],beehiv:[120,194],been:[3,6,7,12,14,15,17,18,23,29,30,31,33,36,44,45,55,58,68,73,92,110,111,113,115,117,119,121,122,126,128,129,130,131,140,142,145,147,148,153,155,156,158,160,164,165,168,170,171,173,187,189,193,198,204,209],befor:[7,8,14,16,32,33,34,35,37,42,44,45,46,48,50,52,53,55,56,57,58,59,60,62,63,64,65,66,67,68,73,75,77,83,84,85,89,92,93,109,110,113,115,117,120,123,126,127,131,133,139,141,142,143,144,150,152,153,154,155,156,158,161,163,167,170,172,173,175,178,179,182,186,187,188,189,193,194,195,204,207,209,210],began:155,begin:[1,7,14,32,34,37,52,55,56,58,70,72,87,121,126,128,133,147,150,154,156,160,161,163,164,170,172,182,185,187,188,189,193,196,198,202,204,209,210],beginn:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,42,51,60,74,75,78,80,81,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,133,146,152,158,159,173,175,176,177,182,183,184,186,189,190],behav:[7,118,121,128,133,143,158,187,188,192],behavior:[17,34,68,110,111,120,121,123,125,128,131,141,147,150,154,163,170,172,176,178,189,192,202,207],behaviour:[55,58,73,128,129,169,200],behind:[31,58,59,64,66,67,68,75,84,89,121,146,147,164,166,168,169,171,172,176,179,182,188,192,203],being:[0,11,14,38,44,48,56,60,65,83,111,115,120,121,123,128,130,131,133,140,141,142,144,150,155,158,160,164,165,170,171,178,183,187,188,189,193,196,207],beings:123,believ:[33,164],bell:[119,194],belli:[118,194],belong:[33,38,42,46,65,92,121,143,144,158,168,172,183,187,209],below:[0,3,7,12,14,15,16,17,22,24,30,42,43,46,48,50,51,52,53,56,59,60,63,65,66,70,77,85,101,102,105,106,111,113,119,121,125,127,128,129,136,138,140,143,147,152,153,154,155,156,160,161,163,167,168,169,170,171,172,173,177,179,182,187,189,194,204],belt:178,ben:182,benchmark:[53,111,154,156,178,190,207],bend:159,benefici:[30,156,188],benefit:[32,68,108,115,122,158,170,172,193],bengio:[29,56,87,142,180,197],benign:44,bensor:48,bere:36,bereft:187,berkelei:193,bernhard:65,bernoulli:164,bernulli:164,besid:[50,128,141,143,144,153,154,170,188,210],bespok:173,best:[1,3,10,20,22,31,34,43,44,50,52,53,55,56,58,59,60,62,63,64,65,67,72,73,83,85,91,92,93,110,117,119,122,128,129,133,141,150,152,154,160,163,164,169,170,171,175,176,178,182,183,184,188,194,195,200,201,203,204,207,210],best_estimator_:[58,59,62,63,64,65,66,67],best_k:92,best_kmean:171,best_model:43,best_model_1:44,best_model_2:44,best_model_ann:49,best_model_ann_2:49,best_model_cnn:[43,49],best_model_cnn_2:49,best_model_lstm:49,best_model_lstm_2:49,best_model_rnn:49,best_model_rnn_2:49,best_param:60,best_params_:[56,58,59,60,62,63,64,65,66,67,93,163,171],best_run:[9,109],best_score_:[56,62,65,93,163],beta16:138,beta1:[39,138,142],beta2:138,beta:[39,143,148,170],beta_1:[35,198],beta_2:35,beta_end:139,beta_start:139,beta_t:139,betas_t:139,beth:185,better:[1,3,7,14,23,30,31,32,33,35,38,40,52,53,55,56,58,60,61,62,63,65,68,72,73,75,84,85,86,89,91,108,110,112,117,120,121,123,125,126,128,135,143,146,147,150,152,153,154,155,156,158,159,160,163,164,165,167,168,170,171,172,174,175,177,178,179,182,186,187,188,192,202,203,204],bettter:67,between:[7,14,18,21,30,31,33,34,35,38,44,46,52,53,54,55,56,58,59,63,65,66,67,68,69,70,71,84,85,86,87,92,95,97,101,110,111,113,115,118,120,121,122,123,125,127,130,131,133,135,138,139,140,141,143,144,145,146,147,149,150,152,153,154,155,156,158,159,161,164,166,169,170,171,172,173,175,177,178,182,183,184,185,186,187,188,193,194,196,198,200,202,204,207,209,210],bewar:173,bewild:176,beyond:[7,51,56,66,67,125,126,140,146,150,151,154,178,187,204],bfill:7,bg_label:40,bhwdaa:[127,196],bhwdapqz8s0:[127,196],bhwdapqz8s0baaaaaaaaaa:[127,196],bi:[108,188],bia:[39,42,50,60,62,69,71,83,85,90,111,121,135,138,143,147,150,154,156,160,169,179,190,192,204,205],bias1x1:143,bias3x3:143,bias:[44,51,55,91,111,121,126,135,153,178,190,192],bias_add:138,biasid:143,bib:110,bibb:155,bibliographi:110,bicolor:[118,194],bidirect:145,big:[3,48,62,63,68,75,89,107,108,123,140,146,152,154,164,171,172,178,183,184,189,192],big_arrai:195,big_integ:[188,210],bigger:[147,154,158,164,182,209],biggest:[73,178,207],bigodot:145,bigoplu:145,bigtabl:196,bilibili:179,bilinear:[36,143,144,148,171],bill:[187,188,189,210],bin:[18,22,29,41,52,55,58,59,60,64,65,66,118,125,127,136,148,182,183,184,194],binar:63,binari:[22,38,40,46,56,60,62,65,75,83,87,89,93,101,128,136,145,147,163,164,165,168,169,171,175,176,178,186,188,195,210],binary_cross_entropi:31,binary_crossentropi:[44,147,198,208],binary_fill_hol:40,binary_search:101,binaryclass:63,binarycrossentropi:[38,142],bind:187,bing:[3,142,164],binomi:169,bio:111,biolog:[140,147],biologist:7,birch:158,birchard:189,bird:[4,19,129,136],birth:[15,73],birth_month:15,bit:[1,7,14,43,44,72,73,75,77,89,91,118,120,124,126,133,140,159,164,165,169,171,175,179,182,183,184,186,187,200],bitcoin:145,bitwis:[128,188,210],bitwise_and:128,bitwise_or:128,bitwise_xor:128,bivari:60,bizarr:117,bj:188,bla:73,black:[1,52,56,60,76,118,119,136,141,143,169,171,173,186,194],blackbox:[63,64,178],blank:[127,158,173,175,184,187],blend:[63,138,143,160],blend_models_predict:60,bleu:154,blind:117,blit:139,blob:[128,171,182,183],blob_cent:171,blob_std:171,blobs_plot:171,block:[33,39,46,63,64,83,91,101,139,140,143,144,146,169,173,184,186,187,188,189,203,209,210,211],block_13_expand_relu:144,block_16_project:144,block_1_expand_relu:144,block_3_expand_relu:144,block_6_expand_relu:144,block_depth:36,block_num:136,block_siz:136,blog:[1,14,28,29,31,56,62,108,111,113,119,128,129,159,164,171,190,196],blood:[24,110,186],bloom:152,blount:155,blq:60,blu:146,blue:[30,41,46,47,50,56,60,75,85,89,113,117,118,125,143,146,147,153,158,159,163,164,182,186,187,194,204],blue_count:[75,89],blueprint:[187,209],bluetooth:[75,89],bluff:204,blur:[34,77],blurri:30,bm_axi:129,bmatrix:204,bmi:186,bmi_distribut:24,bmp:172,bn:[32,39,143,144],bn_axi:144,bn_conv1:144,bn_name_bas:144,bo:[144,171,172,202],board:[22,141,178],boat:198,bob:[188,195],bodi:[15,24,118,122,125,143,173,186,187],boil:56,bold:[68,92,150],boldfac:[178,207],boldsymbol:179,bolster:156,bonu:[16,18,28],book:[0,12,18,25,55,56,102,110,113,117,121,123,125,128,129,130,131,135,138,149,150,151,161,163,171,176,183,187,195,209],book_cov:138,book_sal:150,bool:[14,29,126,128,129,130,131,148,171,187,188,189,195,210],bool_vec:131,boolean_arrai:128,booleanarrai:130,boost:[56,63,64,73,93,151,154,163,167,171,172,176],booster:[60,72,165,167,168],boosting_typ:60,boostrap:72,boot:[30,44,46,63],bootstrap:[55,58,59,161,163,164,168],border:[56,136,143,144,148,159,163,164,169,171,172,173,175,179,180,182],bore:41,born:164,borrow:187,boser:65,boss:56,boston:[121,192],bot:154,both:[1,7,14,29,30,31,32,34,44,46,48,51,52,55,56,58,60,62,63,64,65,66,67,68,69,70,71,72,75,78,83,84,87,89,91,101,109,111,113,117,120,121,123,125,126,128,129,130,131,133,140,141,142,144,146,148,150,152,153,154,156,163,164,166,167,168,169,170,172,173,177,178,186,187,188,192,194,196,198,207],bother:[91,184],bottleneck:[33,139],bottom:[31,35,56,128,183,184,203],bottommost:187,bottou:197,bouhsin:49,bounc:154,bound:[42,45,48,52,56,101,118,128,130,131,141,148,154,171,172,178,183,187],boundari:[56,65,66,67,77,87,125,130,147,156,159,160,163,208],bounding_box_coord:45,box:[18,45,48,56,109,117,125,136,148,163,173,178,182,184,203],box_ind:148,box_logit:148,boxenplot:73,boxplot:[18,60,65,70,159],bp:186,br:15,brace:[188,210],bracket:[128,154,188,189,210],brain:[140,147,189,207],branch:[0,121,143,146,153,164,168,187,192,207],brand:[113,164,178,207],brave:187,brbpxsliqodzna6ju0hxiqid60bt7a6m1zezx02cvyzp:65,breach:[121,192],bread:129,breakdown:[14,85,122,189],breakfast:[187,209],breakthrough:136,breathtak:[111,190],breed:[39,144],breez:154,breiman:[160,163],breinman:161,breviti:187,breweri:125,bridg:[146,156],brief:[145,178],briefli:[17,28,60,121],bright:[35,143],brighter:118,brill:156,brilliant:175,brilliantli:164,bring:[55,58,60,87,110,133,145,153,155,164,196],britannica:123,british:[7,189],broad:[68,119,121,123,125,143,150,153,156,178,187,192,194,207],broadcast:131,broaden:111,broader:[73,121,123,151,154],broadli:121,broken:[57,65,115,122,153,161,193],brook:211,brother:173,brought:[15,133],brown:[119,194],brows:[68,187],browser:[16,41,109,110,127,173],bruce:125,bruis:[119,194],brush:186,brute:155,bs:42,bsmtcond:60,bsmtexposur:60,bsmtfinsf1:60,bsmtfinsf2:60,bsmtfintype1:60,bsmtfintype2:60,bsmtfullbath:60,bsmthalfbath:60,bsmtqual:60,bsmtunfsf:60,btc:41,btcdf:41,btcsave2:41,btn:173,bu:125,bubbl:194,bucket:60,buddi:187,budget:[108,191],budgetari:110,buff:[119,194],buffer:[33,123,128],buffer_s:[33,36,139,144],buffet:149,bug:[4,52,113,145,153,154,189,209],buggi:[78,94],bugi:149,bui:[37,59,63,64,108,113,121,158,182],build:[1,4,8,13,33,34,44,48,55,58,63,64,65,70,78,83,84,85,86,91,92,94,98,107,108,109,110,111,113,115,118,119,120,121,123,125,127,129,135,136,139,140,143,144,145,147,148,149,151,152,153,154,155,156,160,161,163,164,167,168,172,174,176,177,178,185,186,187,188,190,191,193,196,199,204,206,207,210],build_vocab:145,builder:143,built:[1,3,7,12,29,44,48,56,72,78,91,94,100,117,118,119,120,121,125,128,131,133,147,151,152,153,155,159,164,165,173,183,186,187,188,189,195,199,209,210],builtin:[172,202,209],bulk:113,bulki:153,bull:160,bullet:164,bump:[121,192],bunch:[0,1,31,56,63,64,123,142,178,188,207],bundl:153,buolamwini:[111,190],burgeon:[133,196],burn:173,bushel:[182,184],busi:[7,73,108,111,113,115,121,123,146,150,152,153,154,155,156,158,173,190,193],buss:117,butter:129,button:[15,76,109,110,127,173,186,189,203],bw_adjust:118,bwteen:44,bx8rsirp:65,bx:[29,30,34,182,188],bytearrai:[188,210],bytesio:[45,77,139,149],c0:195,c1000:14,c100:14,c1:[14,22,24,59,101,144,195],c2:[14,24,59,101,144,148,195],c3:[14,101,144],c4:[14,56,144,148],c5:[32,144],c5sj3kb4tplbpbg9fpdiobxig4jqp6efthvujkxvcd0rurwoprdhovcizwv2:65,c64u:65,c92liuawc7t9bolpnzylr41pifoqdwltveln8yuk4ucftcddro2ieamgrivd26fcbgnhz9d7msi:65,c:[1,14,22,32,34,50,56,60,61,63,66,67,68,70,73,86,92,101,102,113,118,125,126,127,128,129,130,131,138,145,148,149,150,155,159,161,163,168,169,171,172,177,182,183,184,187,188,195,200,202,203,205,206,209,210],c_1:171,c_:[56,85,125,163,171,172],c_i:[171,172],c_j:172,c_k:[172,202],ca:[48,120,141,173,194],cab:[111,190],cach:[33,36,59,64,128,144,145,156,171,196],cache_data:[77,203],cache_resourc:203,cachedproperti:129,caerulescen:[118,194],cal_data:67,calc_grad_til:77,calc_loss:137,calcul:[6,7,8,14,18,25,29,30,31,34,36,38,41,44,50,53,54,55,56,60,65,70,73,75,84,85,86,87,89,92,105,125,127,128,129,131,133,137,147,148,154,156,159,160,161,163,164,167,168,169,171,172,179,180,182,183,184,187,196,202,210],calculate_discrimin:188,calculate_sum:101,calculu:84,calendar:[187,209],calendar_clock:[187,209],calendarclock:[187,209],california:[14,121,178,195],call:[1,3,18,22,29,30,31,33,34,38,42,44,45,46,48,52,53,55,56,57,60,63,65,66,67,69,71,75,83,85,87,89,91,101,102,108,109,110,113,117,119,121,122,123,125,127,128,129,130,131,133,135,139,140,141,143,144,145,147,148,150,153,154,157,158,159,160,161,163,164,167,168,169,170,171,172,173,175,176,178,179,180,182,183,184,186,187,188,189,195,196,203,207,208,210],call_func:[187,209],callabl:[65,131],callback:[30,32,36,43,45,49,72,144,167,168,170],callout:182,cam_extract_path:29,cam_zip_file_path:29,came:[56,73,122,153,164],camera:[43,75,89,123,128,143],campaign:73,can:[0,1,3,6,7,8,9,10,11,13,14,16,18,19,20,21,22,23,24,26,27,29,30,31,32,33,34,35,38,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,80,83,84,85,86,87,89,91,92,94,100,101,102,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,156,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,182,183,184,185,186,187,188,189,190,193,194,195,196,198,200,202,203,204,207,208,209,210,211],canada:[14,146,173],canari:153,cancel:[44,121,160,192],cancer:44,candi:183,candid:[56,63,64,65,66,67,163,171,184,201],cane_molass:176,canin:187,canni:40,cannot:[7,14,18,22,24,30,43,50,52,56,59,65,72,118,122,123,126,128,130,158,164,170,171,172,183,187,188,194,210],canon:128,canva:76,canvas_orig:135,canvas_recon:135,canvas_result:76,cap:[73,119,194],capabl:[60,91,110,121,123,131,152,153,183,188,191,192,207,210],capac:[52,53,68,75,89,153,154],capcolor:[119,194],capit:[102,187,188],capital_gain:57,capital_loss:57,capitalize_first_lett:102,capitalize_word:102,capitalized_sent:102,capitalized_word:102,caption:[140,178],captiv:129,captur:[15,23,34,43,54,72,85,86,112,117,121,122,123,150,152,154,170,182,198],car:[63,64,121,122,140,141,144,146,147,148,178,192,207],car_data:63,car_label:63,car_labels_prepar:63,car_test:63,car_test_label:63,car_test_labels_prepar:63,car_test_prepar:63,car_train:63,car_train_prepar:63,carambola:43,carbon:111,card:[110,121,158,192],cardiac:147,cardiovascular:110,care:[20,50,62,63,64,75,89,100,111,117,120,121,128,131,167,168,170,173,178,187,192],carefulli:[55,164],caregor:62,carlo:125,carnam:188,carri:[7,63,126],cart:[56,163,164],carton:182,carv:[159,183,185],cascad:144,cassandra:196,cassett:158,cast:[29,128,137,139,141,144,145,148],casted_kei:131,cat1:1,cat2:1,cat:[15,34,60,67,83,129,136,143,146,178,187,198,209],cat_col:60,cat_feat:[67,83],cat_feats_enc:83,cat_feats_encod:83,cat_feats_hot:83,cat_feats_pip:83,cat_feats_preprocess:83,cat_fil:34,cat_list:[67,83],cat_on_snow:137,cat_train:60,catalog:[16,23,111,118,190],catalyst:42,catastroph:169,catboost_search:60,catboostregressor:60,catcher:125,categor:[54,55,56,58,62,64,67,72,73,87,92,120,122,125,126,127,128,129,146,147,154,163,165,178,183,186,196,207],categori:[1,7,42,43,46,56,57,60,62,65,66,73,75,83,87,89,108,113,115,117,118,119,121,122,123,140,141,143,144,147,152,154,156,159,161,169,171,175,176,177,178,182,183,186,188,193,194,195,200,207,208,210],categorical_crossentropi:[32,35,43,52],categoricalcrossentropi:[44,144],category_count:194,category_encod:57,cater:73,cathi:195,catplot:[62,183],caught:130,cauliflow:175,caus:[1,14,18,28,30,51,52,55,60,63,65,68,69,70,71,75,89,110,111,120,121,123,125,126,130,131,147,152,153,154,161,163,167,169,170,187,188,190,200,209,210],causal:125,causat:158,caution:117,cb:60,cbar:[44,70,75,89,147],cbar_kw:41,cbeddd:73,cc:[48,55,110,137,154,161],ccc:161,cccc:161,ccd:120,ccp_alpha:[62,63,64],ccpa:121,cd:[0,153,155,158,173],cdata_estim:93,cdata_estimator_predict:93,cdc:155,cdeott:32,cdist:[172,202],cdot:[84,87,91,161,164],ce:57,ceil:142,celeba:139,celebr:[31,56],cell:[0,3,7,17,41,44,47,48,49,50,51,52,53,63,64,66,67,72,73,91,92,105,106,110,126,127,128,129,130,131,140,145,150,158,163,167,168,169,171,182,184,186,187,195,197],censor:102,censor_word:102,cent:[41,182],cent_histori:[172,202],center:[14,22,36,41,72,73,76,92,108,115,119,125,128,133,136,143,144,147,148,153,155,158,159,161,163,169,171,172,173,175,179,180,182,194,200,202,204],center_circl:[119,194],centercrop:39,centernessnet:148,centimet:[66,194],centr:169,central:[59,64,110,152],centralu:110,centric:152,centroid:[158,159,172,202],centuri:[117,173],cerdeira:53,certain:[7,14,30,34,44,46,56,60,65,83,85,87,102,115,123,125,128,141,142,147,149,152,153,154,155,156,158,163,169,170,176,178,182,186,187,188,193,207,210,211],certainli:[38,140,171],cfees8eopk:127,cg:176,cgcug0a0c6nut:65,chain:[34,46,84,91,130,147,152,179,182,187],chained_assign:147,chair:[143,154],challeng:[3,8,28,43,46,51,84,87,108,111,112,120,123,125,126,129,133,153,154,155,156,158,168,176,178,189,190,196,211],champion:203,chan:148,chanc:[38,55,62,75,89,125,133,140,167],chang:[0,7,8,14,20,30,34,44,48,50,52,53,55,56,58,59,61,62,63,68,69,71,84,92,94,100,110,111,112,115,117,118,119,120,122,125,126,127,128,130,133,139,141,144,148,153,154,155,156,158,161,163,164,169,172,173,174,178,179,180,182,184,187,188,189,190,195,196,200,202,209,210],changeabl:[188,210],changer:107,channel:[31,33,34,36,38,39,43,59,64,77,136,138,143,144,148,168,172,193],channels_first:148,channels_last:144,chao:56,chapter:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,38,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,85,89,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,155,158,159,160,161,163,164,165,167,168,171,173,175,176,177,178,182,183,184,185,186,187,188,189,195],chapter_id:171,charact:[3,52,109,117,121,122,123,127,188,189,210,211],characterist:[30,31,52,60,64,65,86,122,127,141,154,164,178,183],charg:[23,56,75,89,101,102,110,160,187,188,189],charli:188,charset:[15,173],chart:[13,19,27,85,118,119,121,159,168,182,184,192],chart_data:203,charticul:119,chase:173,chatbot:146,chatgpt:[101,102,146],cheaper:[115,121],cheat:[156,176,177,180],cheatsheet:176,check:[0,3,7,10,14,20,22,24,29,31,37,42,43,44,45,48,50,51,54,55,56,58,62,64,66,67,69,71,73,92,101,102,108,109,110,111,112,121,126,136,139,140,141,142,144,145,151,153,158,159,161,163,164,167,171,172,173,175,176,186,187,189,190,202,208,210],check_dtyp:14,check_nam:14,check_str_or_non:130,check_valu:155,check_win_condit:141,checklist:[28,192],checkout:[0,153],checkpoint:[42,145],chef:175,chen:148,cherri:[113,188,210],chervonenki:65,chess:[140,141,178],chest_pain:147,chester:173,chicago:188,child:[161,177,187],children:[11,22,73,121,161,192],children_:171,china:[14,121,146],chines:[175,176,177,179],chinese_df:175,chinese_ingredient_df:175,chiphuyen:154,chlorid:53,chloroquin:[1,8],chmax:[59,64],chmin:[59,64],chnage:[69,71],chnormal:38,choc:140,chocol:183,choderlo:117,choic:[7,27,32,44,55,75,89,110,115,117,121,123,126,128,136,140,141,145,153,154,158,163,164,171,175,176,178,183,192,207,208],chollet:29,choos:[7,29,33,40,51,53,55,62,65,75,77,84,86,89,109,113,120,126,128,129,136,140,141,143,147,150,152,153,154,156,158,159,160,163,164,169,170,171,177,178,179,183,189,201,202,207],chop:175,chord:[1,8],chose:[35,36,42,78,108,131,171,195],chosen:[34,53,60,65,110,120,128,154,160,169,171,172,173,203],chr:144,chri:32,chrome:110,chronolog:[121,192],chuck:101,chunhua:148,chunk:[77,123,172],chunk_siz:77,churn:[160,163,164,207],churn_cal:160,churn_mean_scor:160,ci:[34,120,144,150,153,155],cid:179,cifar10:[34,136],cifar10_extract_path:34,cifar10_label:136,cifar10_mdoel_nam:34,cifar10_model_respons:34,cifar10_model_save_path:34,cifar10_model_url:34,cifar10_nam:34,cifar10_respons:34,cifar10_save_path:34,cifar10_url:[34,136],cifar10_zip_file_path:34,cifar10cnnmodel:34,cifar:34,cifar_labels_fil:136,cifar_link:136,cine:149,cinnamon:[119,194],circl:[117,119,158,163,169,173,194],circle_color:171,circu:189,circuit:[110,143],circuitri:110,circular:[149,173],circumfer:120,circumst:121,cite:[63,64,124,155,186],citi:[12,17,23,55,58,83,111,117,121,140,146,154,173,182,183,184,190,192],citizen:[121,187,192],citric:53,city_:62,city_development_index:62,city_id:[12,133,196],ck:34,cl:143,cla:[172,202],claim:[101,102,187,188,189],claremont:111,clarif:23,clarifi:[112,113,153,168],clariti:[1,73,84,113,164],clasifi:92,class_busi:7,class_economi:7,class_emb:148,class_first:7,class_label:7,class_nam:[33,44,46,63,161],class_report:[58,63],class_weight:[55,58,63,163],classes_:176,classfic:172,classic:[44,46,56,66,67,92,135,141,142,165,169,175,178,183,207],classif:[9,32,38,43,48,54,59,64,67,70,73,84,94,109,110,111,115,121,125,129,135,137,140,144,145,146,147,148,149,154,160,161,163,165,166,168,169,170,171,172,176,179,186,190,192,193,198,201,205,206,207,208],classifi:[29,32,33,38,42,52,56,62,65,70,73,75,80,89,91,92,94,122,129,140,143,147,149,154,158,160,161,163,164,165,169,171,174,178,183,198,200,205,206,207,208],classification_accuraci:65,classification_error:65,classification_model_nam:46,classification_model_respons:46,classification_model_save_path:46,classification_model_url:46,classification_report:[43,44,52,57,58,63,65,66,75,76,89,93,173,176,177,183],classify_lit:33,classnam:39,claus:[127,146,187,188,209],clean:[3,18,20,22,38,44,51,60,85,98,111,112,115,117,145,149,150,152,154,155,159,176,177,178,182,184,190,193,195],clean_data:22,clean_fresh_fruit:[188,210],clean_text:149,cleand_df:51,cleaned_cuisin:[74,175,176,177],cleaner:187,cleanli:143,cleanprep:41,cleans:115,cleanup:152,clear:[3,7,8,12,14,25,43,44,56,57,65,73,86,113,120,128,129,161,164,177,178,183,186,188,189,210],clear_output:[91,137,144],clearer:[178,207],clearli:[1,14,16,28,38,52,53,58,63,64,73,113,149,150,154,156,164,172,178,179,182,189,202,207],clees:187,clever:[14,189],clf1:55,clf2:55,clf3:55,clf:[55,57,146,169,172,200,202],clf_tree:56,cli:110,click:[0,3,41,50,52,53,57,77,109,110,117,127,175,178,181,184,185,186,189,203],client:[15,17,23,56,108,156,160,164,171,187,203],climat:[54,111,120,190],climax:113,climb:41,clinic:[146,186],clint:101,clion:41,clionproject:41,clip:[36,38,42,77,93,136,138,154,178,207],clip_by_valu:[29,30,36,137],clip_value_max:[29,30],clip_value_min:[29,30],clipart:41,clipboard:125,clipped_zoom:93,clobber:128,clock:[110,187,209],clock_spe:[75,89],clockwis:[35,93],clone:[0,39,153],clone_model:36,close:[1,7,8,29,30,31,34,39,40,41,43,49,55,56,58,62,65,70,73,75,83,84,85,87,89,101,110,117,119,125,126,130,136,140,141,146,159,163,168,171,172,182,189,194,204],close_pric:41,closer:[14,33,35,53,58,59,62,65,86,91,153,159,161,171,172,184,198],closest:[44,65,110,122,158,159,169,171,172,202],closur:[113,187],cloth:152,cloud:[1,3,21,100,110,111,115,123,127,129,152,153,154,156,173,176,190,192,193,196,199],cloud_link:150,cloud_url:173,cloudform:153,cloudmus:41,cloudwatch:152,club:97,cluster:[30,56,115,118,123,125,135,153,163,177,178,182,193,207],cluster_centers_:171,cluster_classification_plot:171,cluster_dist:171,cluster_std:[169,171,200],clusterer1:171,clusterer2:171,clusterpoint:196,clustr:[73,151],clustroid:158,clutter:[118,143],cm:[31,40,44,46,51,57,58,63,65,66,75,89,92,126,147,161,171,172,194,202,205,206],cm_matrix:[57,65],cmap:[1,31,40,41,46,55,56,57,58,59,60,65,73,75,76,83,84,89,91,92,93,135,136,142,147,163,169,171,172,200,202,205,206,208],cmd:189,cn:41,cncf:153,cnn:[33,43,45,137,138,140,143],cnn_builder:49,cnt:61,co:[1,2,8,25,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,111,118,119,120,125,127,128,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,164,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,190,194,202],coars:[143,144],coat:[30,42,44,46],coca:25,coca_cola_co:25,cocacola:25,code3:155,code:[0,1,3,5,7,8,9,12,14,18,30,31,33,36,41,46,50,51,52,53,56,62,72,75,85,86,87,89,91,92,94,101,105,106,107,109,111,117,118,119,123,125,126,128,129,130,131,140,142,150,151,154,155,160,163,165,167,169,171,173,174,178,180,182,183,184,185,186,187,188,190,192,195,200,203,207,210,211],codedivheight:187,codedivwidth:187,coef0:66,coef:[72,83],coef_:[72,83,182,204,205,206],coeff:171,coeffici:[60,72,83,85,86,87,150,163,164,170,171,172,182],coerc:[37,73],cognit:[1,108,128,192],coher:[26,146,159,196],coin:[40,178,207],coinbas:41,coincid:[117,139],coins_clean:40,col1:[73,128],col2:[73,128],col3:73,col:[36,41,49,50,57,60,62,65,119,120,131,163,194,195,203],col_nam:[57,60,65],col_vector:128,col_wrap:[120,194],cola:25,colab:[44,48,50,52,53,140],cold:[115,193],colder:152,coll:[127,196],collabor:[111,121,153,155],collaps:120,collect:[3,6,11,31,34,37,46,55,56,58,64,85,97,108,109,111,113,115,117,121,122,123,127,128,131,133,145,149,152,154,155,160,168,169,182,186,187,188,189,190,192,193,196,208,209,210,211],collector:43,collinear:72,colnam:131,colon:187,coloni:[13,120,194],color:[1,14,18,22,29,30,33,34,35,40,41,43,46,47,55,56,57,58,60,62,73,75,76,85,86,89,92,113,118,119,120,121,122,125,128,143,144,150,158,159,161,163,169,171,172,173,182,183,184,186,188,192,194,200,202,204,205,206,210],color_bgr2grai:76,color_mod:76,color_palett:150,color_threshold:172,colorbar:[46,172,202],colorblind:120,colorjitt:39,colormap:171,colour:143,cols_del:73,colsample_bylevel:[72,167,168],colsample_bynod:[72,167,168],colsample_bytre:[72,167,168],colum:60,column1:14,column2:14,column:[1,6,14,17,18,22,24,29,30,31,41,42,43,44,45,48,49,50,51,52,53,54,58,59,61,62,63,64,65,66,70,72,73,74,75,83,85,89,92,109,110,112,119,120,122,126,127,128,129,130,133,140,147,150,155,158,159,163,165,168,172,173,175,176,179,182,183,184,188,194,195,196,204,210],column_diff:14,column_filt:14,column_index:131,column_nam:[14,22,24],column_name_to_diff:14,column_or_1d:63,column_to_diff:14,column_to_format:51,column_to_format_uniqu:51,column_valu:[14,22,24],column_value_fil:22,column_value_map:22,columnar:[127,196],columns_to_plot:24,columntransform:[67,83,204],com:[1,2,3,12,14,18,25,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,62,72,74,75,77,89,92,93,110,113,117,118,119,120,121,123,125,129,130,131,136,137,138,139,142,143,144,146,148,150,155,156,158,159,160,161,162,163,165,167,168,171,172,173,175,176,177,178,179,180,182,183,184,187,188,191,192,194,196,197,198],comapani:62,combin:[34,38,44,53,54,55,56,58,59,60,62,65,67,68,75,83,84,89,90,91,93,108,111,115,117,122,138,140,143,144,146,147,150,152,153,154,155,156,160,163,164,166,167,168,169,172,177,178,179,182,186,187,188,193,204,205,210],combined_imag:38,come:[7,37,42,48,53,57,63,68,70,72,73,75,86,89,107,112,113,115,117,118,121,122,123,125,128,129,140,143,147,150,151,155,158,160,163,165,168,170,172,178,179,182,187,188,189,195,200,202,203],comedi:189,comfort:[7,51,60,126,186],comma:[102,128,177,188,210],command:[52,57,110,121,122,133,141,146,167,186,188,189,196,210],comment:[42,50,53,56,113,121,122,137,173,186,192,209],commerc:158,commerci:113,commiss:[17,23],commit:[0,121],committe:68,commom:[66,75,89],common:[7,31,34,42,44,50,51,52,53,56,60,62,65,68,72,85,101,108,112,113,115,121,122,128,129,131,133,136,137,145,147,148,150,152,153,154,155,158,159,164,167,169,170,171,172,175,184,185,186,187,189,191,195,210],common_el:188,common_norm:[118,194],commonest:52,commonli:[46,60,67,68,75,85,89,108,131,140,147,152,153,154,155,168,170,172,178,187,208],commun:[28,48,76,77,112,114,115,121,123,140,146,151,153,155,164,178,189,198],comp:149,compact:136,compani:[6,113,122,152,156,164,188,189],company_s:62,company_typ:62,companyx:188,compar:[14,18,21,31,34,42,46,52,53,56,57,60,66,67,69,70,71,75,83,86,89,99,101,102,110,117,118,120,123,125,128,130,135,139,143,144,154,155,156,160,161,163,168,172,176,178,183,188,207,210],comparis:[69,71],comparison:[8,14,53,56,101,115,120,122,125,127,154,160,164,169,176,187],compat:[15,30,37,38,61,77,110,128,130,138,141,145,151],compatible_format:209,compel:87,compens:[168,171],compet:164,competit:[140,150,156,164,167,168],compexifi:56,compil:[1,7,29,30,32,35,36,37,41,43,45,47,49,50,52,53,68,76,136,144,147,149,153,189,195,198],compilaton:44,complain:73,complaint:[113,121,192],compleletli:[75,89],complementari:150,complet:[1,8,21,24,35,42,44,45,46,55,56,58,59,62,63,64,68,75,78,84,89,110,115,117,121,123,125,128,129,131,136,139,143,146,147,148,149,150,152,154,156,168,170,171,172,178,180,182,183,184,187,188,189,191,202,209,210],completeness_scor:172,complex32:128,complex:[0,1,31,32,34,54,55,63,64,66,67,69,70,71,72,75,85,87,89,120,123,128,133,140,143,146,147,148,150,151,152,153,154,156,160,166,169,170,171,175,178,187,189,197,198,200,201,208,211],complex_numb:187,complex_number_1:[188,210],complex_number_2:[188,210],complex_number__1:210,complexnumb:187,complexnumberwithconstructor:187,compli:121,complianc:[22,50,52,53,54,121,192],compliant:121,complic:[38,56,91,123,128,147,152,153,154,164,167,170,171,184,198],compon:[36,42,73,84,85,110,111,117,127,135,141,150,152,153,154,155,160,164,167,169,189,190],components_:[171,172,202],compos:[38,39,67,83,91,135,146,152,153,164,172,204],compose_greet_func:187,compose_greet_func_with_closur:187,composit:[42,128,163],compound:[188,195,210],compound_stmt:187,comprehend:55,comprehens:[102,117,131,146,147,154,182],compress:[29,30,31,115,135,140,143],compris:[43,110,153],compromis:[7,126],comput:[3,7,18,22,32,33,34,38,42,44,46,48,51,52,55,56,59,60,64,65,72,77,84,85,86,90,91,93,108,111,112,115,123,125,126,127,129,130,131,135,138,140,142,143,146,147,148,149,151,152,153,154,156,160,161,163,164,168,169,170,172,175,178,179,183,186,188,190,191,192,203,204,205,207,210,211],computation:[34,38,56,62,128,130,140,143,150,166],computationn:34,compute_reciproc:195,compute_target:[9,109],con:[7,52,62,110,121],concat:[22,30,36,38,41,47,60,62,72,139,143,144,145,147,148,150,175,187,188],concat_axi:129,concat_index:129,concaten:[35,36,41,42,61,85,128,129,139,144,147,148,184,188,198,204,205,206,210],concatenated_str:187,concav:139,conceiv:[155,187],concentr:158,concept:[3,18,29,31,33,52,56,65,84,85,86,110,111,123,125,127,128,131,136,143,151,152,153,154,155,156,161,164,168,169,170,176,181,183,186,188,197,210],conceptu:164,concern:[7,45,52,60,64,65,73,83,115,118,121,126,146,152,153,156,164,182,194,207],concis:[42,128,160,178,187,188,210],conclud:[62,65,73,84,111,117,125,154,161,172],conclus:[24,56,112,121,123,182],concret:[156,172,178,202],concurr:[93,109,110],conda:[0,30,37,38,118,149],condens:141,condit:[3,22,31,43,44,50,52,53,54,56,60,102,111,121,128,139,143,147,154,161,163,164,172,182,183,184,187,188,189,209,210],condition2:60,condorcet:160,conduct:[62,109,121,172,192],conf:18,conf_matrix:[58,63],confer:[113,117,129],confid:[33,44,46,53,75,89,120,143,154,155,158,160,164],config:[9,41,56,72,77,145,150,160,163,172,202,203],configur:[10,42,46,50,52,108,110,149,152,153,154,178,184,185,187],confirm:[14,30,50,52,53,65,112,115,121,171,182,192,193],conflict:[102,113,121,131],conform:[122,131,152,154],confus:[7,35,44,56,58,63,66,75,89,92,113,126,128,147,161,163,168,170,175,187],confusingli:171,confusion_matrix:[35,43,44,57,58,63,65,66,75,76,89,92,93,147,176,177,179,183,205,206],confusion_mtx:35,congratul:[109,110,182,183,186,189],conjug:101,conjunct:123,connect:[6,30,32,33,34,36,46,48,50,53,68,91,101,102,111,113,121,125,143,144,146,147,149,154,170,187,188,189,198],connectionist:87,conquer:164,consciou:7,consecut:[14,32,44,55,168],consent:[121,192],consequ:[28,111,121,141,192],conserv:[118,194],conservationstatu:[118,194],consid:[1,3,7,8,11,14,18,22,24,29,38,42,43,44,46,50,51,55,56,59,62,68,70,84,85,102,110,112,113,115,117,122,123,124,125,126,135,136,141,143,145,146,147,150,153,154,155,156,158,160,161,163,164,165,168,169,170,171,172,173,178,183,186,187,188,200,202,209,210],consider:[65,73,110,115,121,123,124,131,164,167,171,192,193],consist:[0,1,3,8,15,30,33,34,35,38,46,50,55,56,58,60,65,97,115,121,126,128,135,143,144,152,153,154,155,156,161,170,172,178,182,184,188,192,193,196,207],consol:131,consolid:84,conspiraci:68,constant:[56,69,71,84,87,128,137,138,139,141,142,143,147,154,164,168,179],constant_initi:148,constantli:123,constitut:147,constrain:[30,141,158],constraint:[30,110,115,128,143,153,154,158,170,172,176,202],construct:[30,56,128,131,135,139,142,143,147,150,152,158,160,163,164,165,168,187,188,210],constructor:[131,143,187,188,209,210],consult:[7,129],consum:[10,20,46,50,107,109,110,112,117,120,121,122,152,154,156,169,173,178,191],consumpt:[117,173,191,195],cont:60,cont_num_var:60,contact:[196,203],contagi:183,contain:[1,3,6,7,12,14,15,17,22,29,31,33,34,38,39,43,44,45,46,50,51,52,53,55,56,57,58,60,63,65,66,68,75,83,89,92,95,100,101,102,109,110,112,115,122,125,126,127,129,131,133,140,142,143,144,146,147,149,152,153,154,158,160,162,163,165,168,171,173,175,178,182,183,184,186,187,188,195,209,210],container:153,content:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,65,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,151,154,156,158,159,160,161,163,164,165,167,168,173,175,176,177,178,182,183,184,186,187,188,189,195,202,203,204,205,208,210],contest:160,context:[9,28,31,42,56,65,84,109,111,113,115,121,130,131,138,144,146,154,156,158,159,170,171,173,185,187,188,190,192,193,210],contigu:128,contin:[63,64],continu:[0,1,17,18,31,34,35,44,52,53,56,60,61,64,65,68,84,85,86,87,108,109,111,118,120,125,128,129,133,139,144,146,147,153,154,155,156,158,159,163,164,165,170,173,178,183,189,207],contour:[40,169,171,200],contourf:[163,171,205,206],contract:[101,102,110,153,187,188,189],contradictori:154,contrari:[130,131,156],contrarili:187,contrast:[7,56,99,112,128,142,154,163,169,172,198],contribut:[51,54,58,59,63,64,72,111,128,129,130,131,146,147,151,154,160,161,163,187,188,189,190],contributor:151,control:[7,11,30,48,53,62,65,67,68,69,70,71,77,108,112,113,115,121,123,126,128,140,141,143,145,152,153,155,163,164,170,179,188,193,203,210],controlflow:187,conv0:148,conv10:36,conv1:144,conv1_1:138,conv1_2:138,conv1_featur:136,conv1_pad:144,conv1d:[49,140],conv2:36,conv2_1:138,conv2_2:138,conv2_featur:136,conv2d:[29,30,31,32,33,34,35,36,38,39,43,45,77,136,138,139,140,143,144,148],conv2d_1:[29,30,36,38],conv2d_20:45,conv2d_21:45,conv2d_22:45,conv2d_23:45,conv2d_24:45,conv2d_25:45,conv2d_26:45,conv2d_27:45,conv2d_28:45,conv2d_29:45,conv2d_2:[29,30,36,38],conv2d_3:38,conv2d_4:38,conv2d_5:38,conv2d_6:38,conv2d_7:38,conv2d_8:38,conv2d_9:38,conv2d_transpos:[29,30],conv2d_transpose_1:[29,30],conv2dt:30,conv2dtr:29,conv2dtra:30,conv2dtranspos:[29,30,139,144,148],conv3:36,conv3_1:138,conv3_2:138,conv3_3:138,conv3_4:138,conv3d:140,conv4:36,conv4_1:138,conv4_2:138,conv4_3:138,conv4_4:138,conv5:36,conv5_1:138,conv5_2:138,conv5_3:138,conv5_4:138,conv6:36,conv7:36,conv8:36,conv9:36,conv:[36,39,136,143,144,148],conv_block:143,conv_bn:143,conv_bn_relu:143,conv_lay:138,conv_name_bas:144,convei:[113,117,146,193],conveni:[7,51,60,120,125,126,131,144,161,164,172,182,183,187],convent:[45,48,50,75,89,133,140,156,167,187,189],converg:[38,84,118,154,158,171,172,178,202],convers:[1,33,51,86,110,113,126,146,154,156,184],convert:[1,3,7,14,31,38,41,42,44,45,46,48,50,52,54,55,62,63,65,70,83,92,93,95,101,102,109,117,119,121,123,130,131,135,136,137,138,143,145,147,149,168,173,178,182,184,188,203,207,208,210],convert_image_dtyp:137,convert_indic:130,convert_to_tensor:[137,141,143],convex:[119,139,194],convinc:[113,189,198],convlay:39,convnet:[139,140],convolut:[33,45,138,139,143,144,148,178,199,207],convolutional_autoencoder_model:29,convolutional_autoencoder_model_nam:29,convolutional_autoencoder_model_respons:29,convolutional_autoencoder_model_save_path:29,convolutional_autoencoder_model_url:29,convtranspose2d:[31,39],cooki:158,cool:[31,44,75,83,89,102,106,158,183],cooler:113,cooper:187,coord:[45,128],coordin:[45,48,56,68,120,128,141,148,153,176,178],cope:[43,163,164],copi:[0,1,7,14,22,29,30,31,33,50,51,52,53,54,60,70,73,75,77,89,101,102,126,128,129,130,131,133,147,150,163,172,175,177,184,187,188,189,195,202,210],coppa:121,copyreg:209,copyright:[22,50,52,53,54,101,102,187,188,189],cor:41,cord:[1,121,128],core:[7,9,14,16,29,41,63,64,65,66,73,75,83,89,109,110,121,124,126,129,130,131,133,143,144,147,158,163,164,167,168,171,173,175,182,195],core_mask:171,core_sample_indices_:171,corinna:65,corner:128,coronaviru:[1,155],corpor:[18,121,123],corr:[24,41,53,55,58,59,60,70,73,75,83,89,158,163,182],corr_winedf:53,corrcoef:[18,125],correct:[18,29,36,44,45,46,50,53,55,56,57,58,60,62,65,68,72,75,89,91,105,106,117,119,121,125,127,131,142,143,146,154,159,160,164,168,169,170,172,177,183,187,192,202,208,209,211],correct_label:159,correcti:[58,63],correctli:[6,35,40,44,46,52,53,58,60,62,63,65,75,89,92,112,143,153,159,164,168,172,180,182,188,202],correl:[8,14,55,58,70,73,111,117,118,120,121,123,150,154,158,159,163,164,169,172,173,178,190,192,198,202,204,207],correspond:[0,14,29,33,34,44,45,46,51,52,55,56,68,83,84,87,91,92,101,102,109,121,125,126,128,131,139,144,147,150,153,154,159,160,164,172,179,180,182,187,192,208,209],correspondingli:154,corrmat:[73,158],corrupt:178,corrwith:24,cort:65,cortex:197,cortez:53,cosin:[42,128,164],cosmo:[108,196],cost:[25,32,39,53,58,62,63,69,71,75,84,85,87,89,110,113,115,117,123,127,144,145,148,152,153,156,170,178,179,191,193],cost_funct:[69,71],costli:171,costlier:110,couchbas:196,couchdb:196,could:[0,5,7,10,16,17,20,23,26,29,30,32,34,35,42,44,50,51,52,53,56,60,61,63,64,65,68,70,72,75,89,91,108,110,113,118,120,121,122,125,126,127,128,133,141,143,150,152,153,154,155,156,158,159,160,164,168,170,171,173,175,176,178,182,183,187,188,195,196,198,207,210],couldn:[121,155,192],coulumn:14,count:[1,18,22,31,35,41,42,53,55,58,60,62,63,64,65,66,67,70,73,83,92,112,119,123,125,126,128,142,145,146,150,158,168,173,175,182,194,208,210],count_3g:[75,89],count_4g:[75,89],count_bug:209,count_digit:101,count_occurr:102,count_param:142,count_vector:146,count_vowel:188,count_word_occurr:102,countabl:125,counter:[145,187,209],counteract:87,counterintuit:154,counterpart:147,counti:117,countplot:[35,55,57,58,60,62,63,67,73,75,83,89],countri:[8,12,14,51,117,122,126,128,133,155,160,173,196,211],countries_and_region:14,countries_dataset_url:14,country_region:[14,155],countvector:146,coupl:[33,34,42,73,108,113,133,161,170,196],cours:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,29,35,42,43,44,49,51,52,54,55,56,58,59,60,61,62,63,64,65,66,67,68,70,74,75,78,80,81,83,89,91,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,131,133,136,138,139,141,143,144,146,147,149,150,154,158,159,160,164,165,167,168,171,172,173,175,176,177,178,182,183,184,186,209],courvil:[29,56,87,142,180],cov:[18,125,172],covari:[18,118,163,172,194],cover:[3,30,55,86,115,120,121,123,126,127,128,129,138,140,159,172,178,185,186,189,193,195],covert:[113,193],covid19:155,covid:[108,117,121,155,156,192],coxboost:164,cp:147,cpickl:136,cpk:110,cpu:[31,34,39,59,64,77,109,110,142,202],cpu_cor:[9,109],cr:[118,194],crabtre:146,craft:[113,164],crash:[146,154,178],crawler:155,crazi:[149,165],creat:[0,1,2,3,4,5,7,8,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,34,35,36,37,38,39,40,41,42,45,46,47,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,80,81,85,86,91,92,93,94,95,97,98,99,100,108,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,129,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,182,183,184,186,187,188,189,192,194,195,196,200,202,203,204,205,207,208,209,210,211],create_discrimin:198,create_gan:198,create_gener:198,create_ingredi:175,create_ingredient_df:175,create_mask:144,create_model:[43,141],create_sub_plot_2_grid:22,create_test_df:[14,22,24],create_test_df_1:14,create_test_df_2:14,create_test_df_3:14,created_at:127,createlink:117,creatinin:110,creatinine_phosphokinas:[9,109,110],creation:[91,109,110,121,123,161,164,203],creativ:[7,117,164,178],creator:[129,136,155,164,173],credenti:110,credit:[26,56,111,121,158,161,192],crest:[55,58,59,83,118,194],crisi:108,crisp:115,criteria:[78,80,81,94,97,98,99,100,122,156,163,172,202],criterion:[31,39,56,62,63,64,87,121,161,163,172,180,208],critic:[38,60,86,110,111,113,118,123,146,152,153,154,155,156,172,178,181,194],crop:[31,36,43,136,182,183,184],crop_and_res:148,crop_height:136,crop_shap:148,crop_siz:[36,148],crop_to_bounding_box:[36,136],crop_width:136,cross:[22,38,55,62,70,72,75,87,89,115,129,130,139,143,146,150,154,160,169,171,176],cross_color:171,cross_entropi:[34,142],cross_val_predict:[75,83,89],cross_val_scor:[56,60,62,65,70,72,75,83,89,92,93,146,163,176,177],cross_valid:62,cross_validated_roc_auc:65,crossentropi:[52,91],crosstab:22,crowd:[55,119,158,160,194],crucial:[45,62,86,110,141,146,153,163,170],cruel:158,cruis:189,crypto:41,cs231n:[136,143],cs:[113,136,143,163,169,209],csci:209,csr:83,csr_matrix:83,css:[130,131,173,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],csse:[14,128,155],csse_covid_19_data:14,csse_covid_19_time_seri:14,cssegisanddata:14,csv:[1,2,6,14,15,17,22,23,29,32,37,41,42,45,47,51,52,53,54,55,56,57,58,59,60,62,65,66,67,68,70,72,73,74,75,83,85,89,91,92,93,95,118,119,120,122,128,131,146,147,150,155,158,159,160,161,163,165,167,168,173,175,176,177,179,182,183,184,188,194,202,204,205,206,208],ct:[9,109,111,140,204],ctc:87,cto:152,cu3tc99fx:65,cube:[188,210],cuda:[31,34,39],cuisin:[74,174,177,186],cuisines_df:[74,176,177],cuisines_feature_df:[74,176,177],cuisines_label_df:[74,176,177],culliton:146,cultur:[111,113,146,192],cumprod:139,cumsum:[172,202],cumul:[141,165,182,187],cun:197,cup:149,cur_count:142,cur_group:143,cur_layer_idx:143,curat:[36,111,121,156,190],curb:87,cure:58,curinstr:187,curl:[12,25],curli:[188,189,210],curr_scor:61,currenc:41,current:[3,14,16,34,37,42,45,46,57,60,62,65,84,101,102,111,113,123,128,140,141,142,144,145,164,167,168,169,176,184,187,203,209],current_directori:187,current_numb:187,current_posit:37,curriculum:[80,108,175,182,186],curtain:43,curv:[14,50,52,53,56,60,68,72,84,86,118,150,158,163,164,169,171,178,182,207],cusin:175,custom:[3,6,16,23,45,48,109,111,113,115,117,121,122,129,139,140,152,153,156,158,160,161,163,168,173,178,183,187,188,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],custom_callback:44,custom_exception_is_caught:187,custom_loss:139,customer_for:73,cut:[43,56,163,171,172],cut_df:43,cutler:163,cutoff:145,cutoff_dist:171,cv2:[31,43,45,76,139],cv:[56,58,59,60,62,63,64,66,67,70,72,75,83,89,92,93,146,163,166,171],cv_cb:60,cv_fold:62,cv_gbc0:62,cv_gbc:62,cv_lgbm:60,cv_results_:[62,93],cv_ridg:72,cv_score:[62,70,92],cv_xgb:60,cvd:110,cvtcolor:76,cvuychzptgtwqctglq450hqpjyevwjgw04zql3rg2wjbevooeqymmivpmiwybd:65,cycl:[50,59,64,73,110,115,121,145,150,153,154,167],cycler:150,cylind:173,d1:[34,73],d3:196,d6b2b1:73,d8ca7e:38,d:[1,14,17,25,30,32,36,37,38,39,41,43,44,53,56,57,60,65,69,71,72,73,75,89,91,92,102,112,117,118,121,125,126,128,129,130,131,135,141,142,143,144,147,149,153,154,158,159,161,163,164,169,171,172,179,184,186,188,191,193,195,196,198,200,202,203,209,210],d_:139,d_g_z1:39,d_g_z2:39,d_gradient:142,d_i:128,d_layer_d_input:91,d_loss:[38,39,142],d_loss_metr:38,d_loss_tru:142,d_model:148,d_optim:38,d_predict:163,d_solver:142,d_total_error:142,d_x:39,da:32,dai:[8,14,42,43,49,54,55,56,58,73,110,111,113,122,150,154,155,160,168,178,182,189,190,203,211],daili:[1,8,14,41,111,121,146,150,155,178,189,190,207],daisi:[33,187],damag:[101,102,117,187,188,189],damien:135,damn:154,danb:167,danceabl:[157,158,159],dancehal:[158,159],dandelion:33,danger:[117,170],dangereus:117,daniil:154,danmaku:179,dark:[121,156,192,203],darker:[40,56,111],darkgreen:[75,89],darkgrid:60,dasani:[158,182,183,184],dash:[86,109,171],dashboard:[108,111,152],dat:[55,83],data2:[56,131],data:[4,5,6,13,16,17,19,21,22,26,27,30,36,37,40,42,47,56,68,74,80,81,84,86,87,91,93,95,97,98,99,100,101,110,117,119,120,124,132,135,136,140,141,142,143,144,145,146,147,149,151,153,157,159,160,161,163,164,165,166,167,169,170,171,172,174,179,182,185,186,187,198,199,201,202,205,206,209],data_augment:33,data_batch_1:136,data_batch_2:136,data_batch_3:136,data_batch_4:136,data_batch_5:136,data_batch_:136,data_df:44,data_dir:[33,34,136,138,145,149],data_dmatrix:168,data_fil:[136,145,149],data_format:148,data_gener:45,data_i:[69,71],data_loc:136,data_path:[38,49,75,89],data_prepar:49,data_sci:3,data_util:31,dataarrai:128,databas:[6,43,73,108,122,123,127,129,134,149,152,173,191,192,199],databrick:[108,110],dataconversionwarn:63,datafi:121,dataflair:190,dataflow:139,datafram:[1,8,14,17,22,23,24,29,30,31,38,41,43,44,45,49,51,52,53,54,56,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,75,83,85,89,93,95,118,119,129,130,133,147,150,158,159,167,168,171,172,173,175,176,177,182,183,184,194,203],datagen:[32,35,45],datajameson:34,datalira:43,dataload:[34,39],datanul:53,datapoint:[7,73,97,144,158,159,168,175],dataset991:63,dataset:[1,2,4,7,9,10,13,14,15,17,18,19,20,23,24,25,26,27,35,38,39,41,42,44,45,49,54,55,56,58,59,60,62,63,64,66,67,68,69,70,71,72,73,75,76,78,80,83,85,89,93,95,97,107,111,112,119,120,121,122,123,125,126,127,128,135,136,139,140,142,146,147,149,150,152,154,156,157,158,159,160,161,164,165,167,169,170,171,176,177,178,180,182,183,184,190,192,198,200,203,207],dataset_991:63,dataset_path:[31,43],dataset_test:47,dataset_tot:47,dataset_train:47,dataset_url:33,datasetdict:42,datasets_nam:[29,31,43],datasets_respons:[29,31,43],datasets_save_path:[29,31,43],datasets_url:[29,31,43],datast:135,datastor:196,datastructur:188,datatyp:[7,53],date:[1,14,37,41,49,51,55,58,63,73,110,117,126,130,131,146,150,152,155,156,173,182,183,187,209],date_column:[41,49],date_rang:[14,41,49,130,131],date_split:37,date_train:[41,49],dateset:30,datetim:[1,14,41,44,73,130,173,182],datetime64:[41,150],datetimeindex:[41,130,150,182,184],datetimeindexopsmixin:130,datetimelik:130,daum:41,daunt:154,david:[102,142,153,156,171],day_of_year:182,dayofyear:182,db4o:196,db:[12,69,71,84,90,108,111,179,190,196,204,205],dbscan2:171,dbscan:158,dbscan_plot:171,dbscandbscan:171,dcab:[188,210],dd:[42,184],de:[44,48,89,117,121,173,192],dead:187,deadlin:111,deal:[48,55,56,58,62,63,65,73,84,102,117,123,131,146,152,153,155,163,164,170,172,173,178,187,188,189,202,207],dealt:7,death:[1,8,14,22,110,117,147,155],death_ev:[9,109,110],deaths_dataset_url:14,deaths_df:14,deberta:42,debertav2forsequenceclassif:42,deborah:152,debt:156,debug:[0,37,46,91,109,173,187,189],debug_log:[9,109],dec:117,decad:[123,140,148,152,178],decai:[42,142,170,178,208],deceiv:[38,117,121,192],decemb:[55,58,175,182,191],decent:[45,69,71,136,154,165],decept:121,decid:[18,32,37,38,60,72,73,112,117,119,122,123,129,147,150,154,158,160,163,164,168,176,177],decim:[101,188,189,210,211],decion:63,decis:[3,11,52,53,55,58,59,60,62,65,66,67,68,75,86,87,89,110,111,113,115,119,121,122,123,140,141,146,147,152,154,155,156,159,160,161,164,167,168,169,172,176,177,178,190,192,200,202,207,208],decision_funct:[169,200],decisiontreeclassifi:[55,63,75,89,163,165,172,176,202],decisiontreeclassifierdecisiontreeclassifi:63,decisiontreeregressor:[56,64,163,165],decisiontreeregressordecisiontreeregressor:64,declar:[138,145,187,188,210],declin:[1,14,53,117,120],decod:[29,30,31,38,135,144,145,149],decoded_data:29,decoded_img:[29,30],decoder_b1:135,decoder_b2:135,decoder_h1:135,decoder_h2:135,decompos:101,decomposit:[73,172,202],decompress:31,deconstruct:111,deconv:148,deconvolut:[135,144],decor:[30,129,203],decorate_with_div:[187,209],decorate_with_p:[187,209],decreas:[34,52,53,55,56,58,60,65,70,75,89,110,120,136,143,154,160,161,163,164,170,172,183,198],decres:165,dedic:[60,110],deduc:14,deed:146,deeeeeeep:77,deem:72,deep:[16,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,47,49,52,53,56,68,83,87,110,125,128,129,130,135,136,137,138,139,142,143,144,145,146,147,148,149,151,154,155,156,170,178,180,186,197,205,206,208],deepcopi:31,deepdream:[77,136],deepen:[60,143,183,186],deeper:[7,13,17,19,53,56,85,110,115,125,143,147,154,161,169,170,175,176,182,193,200],deepfunnel:31,deeplabv3:144,deeplearn:178,deeplearningbook:135,deepli:[123,146,152,197],deeplizard:[136,138],deepmind:178,deer:136,def:[1,3,14,18,22,24,29,30,31,34,35,36,37,38,39,41,42,43,44,45,46,48,49,52,53,55,56,57,58,59,60,61,62,63,64,66,69,70,71,72,75,76,77,83,84,85,89,90,91,93,101,102,103,129,130,135,136,137,138,139,141,142,143,144,145,148,149,150,155,160,163,165,169,171,173,175,177,179,188,195,198,200,204,205,206,209,211],default_image_url:77,default_target_attribut:63,defe:38,defect:[178,207],defenestr:[187,209],defin:[0,1,3,14,22,30,31,32,33,38,44,45,50,52,53,56,57,60,63,65,68,69,71,72,84,91,92,101,111,112,113,115,118,121,124,125,127,128,129,136,138,139,141,143,145,152,153,154,155,156,158,159,160,163,164,165,168,169,170,171,172,173,176,182,187,188,189,193,195,203,204,210],definit:[33,46,56,66,72,111,123,125,127,128,130,146,148,153,161,172,178,189,207,209],deforest:111,deform:143,degrad:[31,94,111,143,152,155,171,190],degre:[3,35,39,54,56,65,66,67,69,71,123,125,133,141,163,182,192,204],del:[93,131,141,187],delai:[141,150],delet:[50,62,73,109,110,121,142,188,210],deliber:[186,189],delicassen:168,delicassesn:168,delici:[119,174,175],delimit:[31,41,202],delin:40,deliv:[7,62,108,113,123,126,146,152,153,187],deliveri:[108,111,153,191],dell:113,delta:[52,61,65,73,87,139,141,187],deltamean:52,deltastd:52,deltatheta:141,delv:[84,86,146],demand:[7,55,58,108,110,120,150,152],demarc:159,demis:117,demo1:169,demo2:169,demo:[136,137,143,144,148,153,155,159,163,164,169,171,175,182,183],democrat:[111,121],demoforest:163,demograph:62,demographi:155,demonstr:[3,8,18,33,46,50,52,53,65,68,78,85,86,118,125,126,128,141,153,158,161,163,182,184,186,187,188,195],demostr:32,dendogram:172,dendrocygna:[118,194],dendrogram:172,deni:[56,121],denois:[135,139],denoise_model:139,denomin:[7,101],denorm:36,denot:[60,84,125,139,141,161,168,187,188,210],denounc:113,dens:[29,30,33,35,37,38,41,42,43,44,45,46,47,48,49,50,52,53,68,76,136,139,141,142,143,147,148,149,158,159,172,198,208],dense_1:[38,48],dense_2:48,dense_3:48,dense_4:45,dense_5:45,dense_block:143,densenet121:144,densenet169:144,densenet201:144,densenet264:144,densiti:[4,53,125,139,158,160,163],deon:[28,121,192],deott:32,depart:[120,121,146,164,184,192],depend:[0,7,12,14,18,25,29,30,33,40,42,43,51,53,56,58,63,75,85,86,89,107,108,109,110,111,112,113,114,115,117,118,119,120,122,123,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,207,208,209],depict:[38,56,136,168],deploi:[5,10,20,46,48,76,77,100,107,108,109,110,121,140,143,153,155],deploy:[9,33,111,115,178,191,203,207],deploy_configur:[9,109],deprec:[37,38,68,77,92,128,129,171,172,202],deprecate_nonkeyword_argu:129,deprecation_mask:130,deprecationwarn:[143,172,202],deprocess:137,deprocess_img:142,depth:[7,55,56,60,62,63,64,75,89,113,117,139,143,161,163,164,165,168,172,187,202],depth_multipli:143,depthwis:[143,167,168],depthwise_separable_conv:143,depthwiseconv2d:143,dequ:37,dereferenc:128,deriv:[14,16,34,56,60,63,69,71,73,85,91,111,120,128,131,143,146,150,154,158,159,168,169,175,187,189,204,209],derivedclassnam:187,desat:150,desc:31,descend:[172,187],descent:[34,50,55,60,75,87,89,90,91,139,143,154,165,168,169,176,180,181,182,200,204,205,208],descr:[63,64],descreas:62,describ:[1,2,9,11,21,28,41,42,44,50,52,53,55,56,57,58,59,62,63,64,65,67,70,73,75,83,85,89,91,92,97,109,112,113,118,121,125,127,128,129,133,142,143,147,148,150,152,153,154,158,164,167,168,169,172,187,196,198,202],descript:[0,9,28,56,63,97,109,110,128,129,139,145,154,173,178,187,188,189,193,207,208],description_vers:63,desert:154,deserv:125,design:[7,12,18,31,32,41,44,48,60,84,87,100,110,111,113,117,121,122,123,126,128,140,141,143,150,152,153,154,155,156,160,168,169,176,187,188,189,192,210],designated_hitt:125,desir:[35,45,53,73,101,115,121,123,128,141,147,153,178,187],desktop:[153,189],despin:[120,194],despit:[56,143,146,156],dest:150,destin:[128,152],detach:[34,39],detail:[7,11,14,16,26,29,33,42,46,56,60,63,73,75,77,80,84,89,94,110,113,119,122,125,127,129,144,153,154,155,161,164,165,167,170,172,176,178,179,182,187,189,195,202,207,211],detect:[48,51,52,55,56,65,66,67,70,111,121,126,129,140,146,147,152,154,158,163,170,178,187,190,207,209],detector:[40,178,207],detergents_pap:168,deterior:167,determ:32,determin:[22,32,40,56,57,60,65,73,75,84,86,89,101,109,110,115,123,125,128,131,133,141,143,149,153,154,156,158,159,161,164,169,170,175,178,182,183,185,186,187,188,193,195,196,200,207,208],determinist:[121,141,150],dev:[52,53,125,130,171,195],devast:120,devdoc:[172,202],develop:[7,8,33,44,50,52,53,60,62,65,68,107,108,109,110,111,121,123,126,129,131,140,146,148,151,152,153,154,155,156,163,164,168,170,175,178,186,189,190,192,198,203,211],devi:[69,71],devianc:[62,165],deviat:[7,18,29,31,36,52,53,65,68,70,83,86,87,112,128,139,152,161,178],devic:[15,31,33,34,39,42,60,75,89,123,127,143,152,154,155,189],devicedataload:34,devid:62,devis:84,devot:151,dexamethason:1,dexter:38,deza:186,df1:[22,129,130,131,195],df2:[22,57,129,131,195],df3:[129,195],df4:129,df5:129,df6:129,df7:129,df:[1,9,14,17,18,22,23,24,31,41,42,43,45,49,53,54,56,57,59,65,83,84,109,119,125,129,130,131,150,155,158,159,163,168,175,179,182,194,195,203],df____:24,df_attr:31,df_boxplot:24,df_corr:59,df_corr_i:24,df_corr_sex_with_i:24,df_desc:59,df_diff:14,df_filter:14,df_heat:59,df_hist:59,df_mean:24,df_null:59,df_pairplot:59,df_plot:24,df_rolling_mean:14,df_scale:49,df_scatterplot:24,df_sex_1:24,df_sex_2:24,df_std:24,df_train:[22,41,49,68],df_train_scal:49,df_valid:68,df_y:49,dfa:131,dfd:130,dfl:130,dfm:1,dfmt:1,dfmtp:1,dfrac:165,dfx:84,dfy:84,dg77ysplly4qtmh7trbd03p9nl1g:65,dg:77,dhamaa:127,dhamaiusa4o:127,dhamaiusa4ohaaaaaaaaaa:127,dhariw:139,di:[22,65,110,121,188,192],diabet:[1,9,109,110,125,192],diabetes_progression_correlated_with_sex:24,diagnos:[1,8,48,50,146],diagnosi:[121,192],diagnost:30,diagnoz:207,diagon:[18,125,128,172],diagram:[1,5,8,18,56,65,115,124,125,136,152,159,166,167,168,169,171,182,192,193],diamond:187,dibia:29,dice:[87,125,130,131],dickinson:[111,190],dict1:102,dict2:102,dict3:102,dict4:102,dict5:102,dict6:102,dict7:102,dict:[1,3,22,43,77,92,118,141,143,148,150,171,172,188,189,194,202,208,210],dict_1:209,dict_2:209,dictat:[7,126,140,146],dictionari:[17,23,42,45,83,128,131,163,187,195,209],dictionary_for_string_kei:[188,210],dictionary_via_constructor:[188,210],dictionary_via_express:[188,210],did:[7,16,18,27,33,44,50,56,58,59,60,61,66,67,73,75,78,83,89,113,117,118,121,125,126,154,158,159,164,168,171,172,173,176,183,184,188,189,202],didn:[48,53,62,64,66,75,89,130,131],die:147,diego:142,diet:110,dieu:[44,48,89],dif:14,diff:14,diff_seri:14,differ:[1,3,4,7,8,11,12,13,14,18,30,31,32,33,34,35,42,43,44,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,68,69,71,72,73,75,81,83,84,85,86,87,89,91,93,101,107,108,109,110,111,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,135,136,139,140,141,143,144,145,146,147,148,150,152,153,154,155,156,157,158,159,160,161,163,164,166,168,169,170,171,172,175,176,177,178,179,182,183,184,185,186,187,188,189,195,196,198,201,207,209,210,211],differenti:[21,84,108,135,143,154,164,168,169],differnt:61,difficult:[30,32,33,68,125,147,154,163,164,169,172,187,202],difficulti:[56,123,149,153,164],diffus:36,diffusion_angl:36,diffusion_models_tutori:139,diffusion_schedul:36,diffusion_step:36,diffusion_tim:36,diffusionmodel:36,difuss:139,dig:[13,19,94,118,175,176,182,184,194],digest:172,digit:[16,29,31,32,42,46,52,76,91,101,111,117,121,135,137,152,155,171,172,178,188,190,192,202,208],digitdata:52,dilat:[143,144],dilation_r:[143,144],dilemma:121,dim:[34,135,138,139,142,208],dim_z:31,dimens:[7,29,33,34,48,53,65,73,118,126,128,135,139,140,142,143,152,169,172,207,208],dimension:[29,30,34,44,46,48,50,66,67,92,131,135,143,158,164,169,172,202],dimensions:34,dimenss:92,diment:[69,71,73],dimi:31,diminish:[53,156],dimx:31,dine:146,dioxid:53,dip:70,dir:[62,171,187],dir_nam:141,direct:[7,46,85,93,113,130,131,135,141,145,147,156,165,172,182],directli:[1,7,14,30,31,42,46,68,72,87,108,109,110,113,126,127,128,131,137,141,143,146,147,150,152,154,161,163,187,188,198,210],directori:[33,34,38,39,41,43,57,75,85,89,110,112,126,127,138,141,145,173,187,189],directory_nam:141,dirnam:[31,57,62,77],dirpath:31,dirti:[53,126],disabl:[118,120,163,187,188,194,210],disable_eager_execut:138,disadvantag:[31,55,169],disappear:[143,183],disast:[108,146],disaster_tweets_test:146,disaster_tweets_train:146,disc:173,disc_num_var:60,discard:[52,131,168,188,210],discern:158,disciplin:[3,123],disclosur:121,discount:[37,141,146],discourag:128,discov:[3,4,13,19,21,38,52,112,115,117,118,120,121,122,123,124,126,134,154,157,158,176,183,184,185,186,193],discover:152,discoveri:[42,113,122],discrep:[45,73,87],discret:[56,60,65,87,125,128,139,141,163,164,172,178],discrimin:[121,142,156,169,188,198,200],discriminator_loss:142,discriminator_opt:38,discriminator_verdict:38,discuss:[1,3,4,7,11,18,28,53,56,85,110,113,121,123,125,126,128,129,151,152,154,156,158,160,167,168,179,186,187,195],diseas:[8,14,110,111,147,155,175,183,186,207],dish:175,disk:[12,14,25,33,110,153,171],dislik:113,disord:120,dispar:[84,87],dispers:[139,143,172,202],displai:[3,7,14,29,30,34,39,43,44,45,46,48,50,52,53,54,55,58,61,63,64,65,66,69,70,71,75,85,89,91,118,119,120,123,125,129,130,131,133,135,136,137,141,143,144,162,163,169,171,172,173,175,179,180,182,183,184,186,187,196],display_commandlin:141,display_from_datafram:45,display_grid:45,display_imag:[45,66],display_image_from_fil:45,display_list:144,display_stat:43,display_step:135,display_t:188,displaycallback:144,displi:51,disregard:[84,135],dissatisfact:123,dissemin:121,dissimilar:[56,87],dissoci:164,dist:60,distanc:[65,93,139,158,159,169,171,172,177,180,182,202],distance_down:141,distance_left:141,distance_mat:172,distance_right:141,distance_up:141,distant:[159,169],distinct:[57,60,73,141,156,161,171,175],distinctli:117,distinguish:[7,38,56,123,128,146,169,198,200],distort:118,distplot:[60,62],distract:167,distribut:[3,7,22,30,31,50,52,53,54,55,56,61,62,67,70,73,75,86,87,89,92,101,102,111,117,121,123,139,141,142,143,148,149,150,152,153,154,156,160,163,164,168,169,170,171,172,175,178,180,183,184,187,188,189,198,208],district:184,div:[3,22,125,129,130,131,162,173,175,182,184,187,209],dive:[7,16,56,110,111,120,129,154,156,178,179,182,194,207],diverg:[52,53,154,159,180],diverging_palett:41,divers:[111,121,146,147,152,153,157,174,178,207],divid:[14,25,31,38,44,46,52,56,65,73,75,89,91,101,118,121,123,125,127,128,133,140,143,152,154,158,159,160,161,163,173,176,177,178,183,188,192,196,207,210],divis:[14,52,101,128,154,169,187,188,189,195,209,210,211],divisible_by_2:128,divisor:[43,101],divorc:[73,117],dl:[34,91,163,207],dll:209,dm:[65,84,115,179],dmatrix:[72,168],dmitri:[14,108,182],dn:172,dna:111,dnn:140,do_deepdream:77,do_glob:187,do_loc:187,do_nonloc:187,do_not_convert:30,do_noth:187,doc:[26,44,46,48,68,76,77,80,99,109,113,119,120,127,131,172,176,187,188,196],docker:[37,57,153],docloud:209,docstr:[83,91,130,187],doctyp:[3,15,173],document:[3,5,7,10,16,25,26,41,42,44,55,63,75,78,80,89,101,102,104,108,109,110,111,118,120,123,128,129,139,146,152,155,156,158,159,160,168,172,176,186,188,189,196,210],documentdb:196,docutil:[129,130,131,182],docx:41,doe:[1,3,5,7,14,16,17,30,31,32,33,34,46,48,52,53,55,56,58,60,63,64,65,66,72,75,83,84,86,89,91,92,100,101,102,111,113,117,120,121,123,125,126,127,128,129,130,131,143,144,147,148,150,154,158,163,164,165,167,168,171,172,173,175,176,178,182,183,184,187,188,189,196,202,211],doesn:[7,26,31,32,34,43,55,58,62,63,64,70,72,75,84,85,89,91,102,113,118,122,128,131,150,152,163,165,168,177,187,188,209,210],doesnt:60,dog:[15,129,136,143,178,187,198,209],dogwithsharedtrick:187,dogwithtrick:187,doi:14,dollar:[56,83,148],domain:[7,11,16,55,60,62,86,110,111,123,124,142,146,147,154,159,184,192],domin:[75,89,158,167,211],domino:196,don:[0,7,31,32,35,44,46,48,53,55,56,58,59,62,63,64,65,66,75,89,108,109,110,111,112,113,115,130,131,133,135,140,150,152,154,167,170,171,172,173,178,183,187,188,189,190,209,210],donald:[101,189],done:[1,3,7,14,25,37,38,42,44,48,55,56,58,60,62,67,73,91,109,110,117,119,127,128,129,133,135,136,147,150,153,158,161,164,168,170,171,172,173,179,182,187,188,189,196,203,210],donli:158,donn:22,dont:149,donut:[27,117],door:[63,64,178],dopmzxl:77,dosag:[1,8],dot:[18,30,56,69,71,85,90,91,120,160,163,164,171,179,186,187,204,205,209],doubl:[32,56,127,158,188,189,210,211],double_quote_str:[188,210],doubled_vector:[188,210],doubt:[109,110,156,164],doug:195,doughnut:119,douyupccli:41,down:[14,26,30,42,50,55,56,57,58,65,75,76,84,89,91,93,101,110,113,115,141,143,146,152,153,163,164,170,177,178,179,188,193,207,210],down_shifted_imag:93,down_stack:144,downblock:36,download:[1,3,12,25,38,39,41,63,64,75,77,89,91,110,123,127,128,136,137,139,142,143,144,145,149,171,173,176,184,187,189],download_fil:[9,109,138],download_model_from_web:77,download_read_data:[75,89],download_root:171,download_url:34,downsampl:[29,30,36,139,143,144],downsid:[63,64,150],downsiz:137,downstream:152,downward:[117,139],dozen:[32,68,110,155],dp0dtheta:141,dp1dtheta:141,dp2dtheta:141,dp3dtheta:141,dp_dtheta:141,dpi:[159,171],dprobability0_dweight:141,dprobability1_dweight:141,dprobability2_dweight:141,dprobability3_dweight:141,dqn:141,dqnagent:37,drag:[7,110,119],drain:178,dramat:[42,113,167],drastic:[60,143,154,172,202],draw:[1,3,8,14,18,31,45,55,56,58,65,66,67,73,75,83,84,89,118,119,120,123,125,135,141,160,164,169,173,178,182,186],drawback:[147,159,188],drawing_mod:76,drawn:[55,117,125,154,160,198],dream:137,dream_img:137,dream_model:137,dreeeeeeeeeam:77,dress:[30,44,46],drewconwai:192,drift:155,drive:[50,52,53,111,113,115,121,140,144,148,152,156,173,178],driven:[0,111,121,123,141,147,152,155,190],driver:[17,23,121,178],drop:[14,31,32,33,41,43,46,51,52,53,54,55,56,57,58,59,60,62,63,65,67,68,70,73,74,75,83,89,110,119,123,126,128,131,145,147,150,160,161,165,167,168,170,171,173,175,176,177,179,182,183,184],drop_column:14,drop_dupl:[45,51,126],drop_first:147,drop_remaind:[36,49,139],drope:141,dropna:[7,41,51,60,72,73,126,129,131,150,165,167,173,182,183,195],dropnan:41,dropoff:[111,190],dropout1:143,dropout2:143,dropout:[30,34,35,38,43,47,49,91,135,143,144,149,154,198,208],dropout_1:38,dropout_2:38,dropout_3:38,dropout_4:38,dropout_r:143,dropoutlambda:52,drug:111,ds:[37,41,42,49,73],ds_train:139,ds_wordcloud:3,dset:39,dsse:65,dt:[41,65,128,182],dt_custom:73,dtest:72,dtl8folder:41,dtrain:[62,72,168],dtrain_predict:62,dtrain_predprob:62,dtree:163,dtyp:57,dtype:[7,14,22,24,31,34,37,38,41,48,53,54,57,62,63,64,65,66,67,70,72,73,74,76,83,92,119,126,128,129,130,131,137,139,141,143,144,145,148,150,158,161,163,168,171,173,175,176,179,182,184,195],dual:[75,89,117],dual_sim:[75,89],duc:143,duca:196,duck:[101,118,194],due:[14,18,56,60,111,120,128,140,141,143,146,147,148,154,155,160,161,163,164,165,169,170,172,190,202],duel:117,dummi:[22,72,91,150,187],dummy_inst:187,dummyclass:187,dump:[9,93,109,158,173,209],dumpstack:41,dun:149,duplic:[41,45,129,130,131,133,152,160,178,187,196],duplicate_kei:102,durabl:152,durat:[39,111,173,190],duration_histori:141,dure:[11,14,33,38,42,43,44,46,48,55,56,58,60,63,65,66,67,68,91,101,110,113,120,128,133,140,143,144,146,150,152,154,155,160,161,167,168,169,170,178,184,187,188,207,208,209],dutch:[189,211],dw:[69,71,90,179,204,205],dx:[31,125,139],dy:31,dy_pr:91,dynam:[123,150,153,187,189,209],dynamodb:196,dynload:187,e24pc6fwtijzssqxp7ns3yqhydnshpycubsxuoacrqlpxngqdrjyenbdec6vi9bmnn0izuzie3eokikdk:65,e2ab30:38,e5ni7of:65,e87ckhmr4qc:65,e:[1,3,8,14,16,34,36,37,38,42,43,47,55,56,57,58,60,61,65,69,70,71,73,75,86,89,91,101,102,110,111,121,122,123,125,126,128,129,130,131,135,139,141,142,143,147,148,149,152,158,160,164,165,170,171,172,176,178,179,182,183,184,187,188,190,192,195,198,202,204,207,208,209,210,211],e_1:160,e_:[139,163],e_n:160,e_x:160,e_z:163,each:[1,6,7,11,14,16,21,22,29,30,31,32,33,34,37,38,39,42,43,44,45,46,48,52,53,55,56,57,58,59,60,62,63,64,65,66,67,68,70,73,75,83,84,85,86,87,89,91,92,93,99,101,102,110,111,113,115,117,120,121,122,123,125,126,127,128,129,133,139,140,141,142,143,144,146,147,148,150,152,153,154,155,158,159,160,161,163,164,166,167,168,169,170,171,172,177,178,179,180,182,183,184,187,188,189,190,195,196,200,202,203,204,208,209,210],eagerli:170,earli:[44,56,62,63,65,109,121,149,163,167,168,173,178],earlier:[7,29,33,42,44,51,56,60,91,100,109,110,111,126,131,142,147,150,159,164,171,174,175,179,183,188],early_stop:[44,167],early_stopping_round:[72,168],earlystop:[43,44,49],earn:122,earth:[65,111,187,190,211],earthquak:146,eas:[110,126,186],easi:[0,7,31,38,44,45,48,51,52,55,56,58,65,110,113,120,121,122,125,126,128,131,140,150,153,154,155,160,163,169,170,172,179,183,189,195,196,202,203,211],easier:[1,31,44,46,56,59,64,81,91,110,111,113,121,122,126,137,143,147,150,154,170,172,184,187,188,191,209,210],easiest:[14,44,125,128,154,172,202],easili:[1,7,26,40,43,50,51,52,55,56,63,64,65,67,75,89,113,117,120,126,128,129,131,152,153,154,155,156,161,163,171,183,203,205,206],eastwood:101,eat:[146,184,189,211],ebook:121,ecg5000:29,ecg_autoencoder_model:29,ecg_autoencoder_model_nam:29,ecg_autoencoder_model_respons:29,ecg_autoencoder_model_save_path:29,ecg_autoencoder_model_url:29,ecg_extract_path:29,ecg_zip_file_path:29,echo:[118,153,154,187],echo_funct:187,ecolog:117,econom:[56,86,111,121,150,190,192],econometr:56,economi:7,ecosystem:[111,173],ed:1,eda:[17,109,112,135],ede9d:38,edg:[15,33,110,127,144,147,149,172,188,196],edgecolor:[56,92,169,171,172,200,202],edibl:[119,194],edibleclass:[119,194],edit:[3,118,119,120,129,186,203],editor:[23,189,203,211],edna:173,edu:[64,102,113,136,143,149,163,169,193,209],educ:[11,56,57,73,111,113,171,190],education_level:62,education_num:57,effect:[7,35,43,50,55,56,58,59,60,62,63,68,83,84,110,117,121,123,128,129,133,143,144,146,147,148,152,154,155,156,158,160,164,168,169,170,172,178,182,187,188,189,191,192,198,207,210],effectiviolog:113,effects_echo_path:187,effects_fold:187,effects_init_path:187,effects_reverse_path:187,effici:[30,32,33,60,65,108,110,115,123,128,129,135,140,143,146,150,153,154,160,163,168,187,189,191,193],effort:[110,111,113,122,146,154,172,190],eg8djywdmyg:175,eg:[3,7,125,182],egg:[187,188,209,210],ei:61,eigenvalu:172,eigenvector:172,eight:[93,150],either:[3,7,14,22,29,40,44,48,50,52,53,54,55,58,63,109,113,125,128,129,130,131,140,144,146,148,150,152,154,155,156,158,161,163,170,176,178,187,188,189,207],ejection_fract:[9,109,110],ejtdl1tzr2vxnvlm4pwxei:65,ekf6iw6gti6:65,el:[62,156],elabor:8,elaps:139,elast:164,elasticnet:[72,170,182],elasticsearch:196,elbow:[73,171],elbow_m:73,elec_data:[55,58],elec_df:[55,58],electr:[55,58,60],electrocadriogram:29,electrocardiogram:29,electron:[75,89,110,146],eleg:189,elem:[188,210],element:[7,13,14,18,19,29,34,43,48,56,75,89,91,101,118,122,125,127,129,130,131,139,142,143,145,146,156,160,163,186,187,189,195,203,208,209,210],element_spec:38,elementwis:[34,91],elev:[40,92,169,172,200,202],elevation_map:40,elif:[37,39,43,93,102,130,131,138,141,148,187,188,209],elimin:[28,42,72,111,121,188,190],elkan:171,ell:[56,160,163],ellips:170,ellipsi:128,ellipsoid:[172,202],els:[1,7,24,31,34,36,37,39,41,43,46,56,57,60,61,63,64,76,90,91,93,102,103,108,128,129,130,133,136,137,138,139,141,142,143,144,145,148,149,171,179,187,188,189,205,209],elsevi:53,elu:147,em:172,ema:36,ema_network:36,ema_weight:36,email:[2,42,112,113,122,146,175,178,203,207],email_df:2,emam:156,emb:[65,125,139,149,153,162,169,175,179,180,184,187],embark:[22,86,165],embarked_v:22,embarked_val_:22,embarked_val_c:22,embarked_val_q:22,embed:[30,33,36,135,139,140,143,145,148,149,153,155,187],embed_dim:143,embedding_dim:[36,139],embedding_lookup:145,embedding_lookup_1:145,embedding_mat:145,embedding_max_frequ:36,embedding_min_frequ:36,embedding_output:145,embedding_s:[145,149],emblemat:87,embodi:149,embrac:[156,178,189],emerg:[123,173],emerson:113,emili:[111,190],emiss:65,emit:141,emot:[121,128,129,146,193],empath:113,emphas:[87,111,153,158],emphasi:60,empir:[56,123,164],emploi:[32,38,55,60,65,84,87,93,110,146,163,178],employ:[62,125],employe:[6,56,62,121,187,195,209],empow:[86,146,151],empti:[3,7,14,24,31,44,55,59,77,101,102,122,126,128,130,135,171,182,187,188,195,203,210],empty_tupl:188,emrebulbul23:37,emreustundag:198,emul:196,en:[3,15,30,118,121,156,173,188,192,194,196],enabl:[0,7,33,46,65,85,109,110,117,126,131,143,146,148,152,153,160,163,172,173,175,178,191,207],enable_categor:[72,167,168],enable_early_stop:[9,109],encapsul:153,encircl:189,enclos:[187,188,209,210],enclosedporch:60,encod:[9,22,29,30,31,52,53,55,58,60,63,67,70,73,75,89,109,135,136,144,147,149,154,159,165,178,182,207],encoded_c1:22,encoded_column_nam:22,encoded_column_name_prefix:22,encoded_data:29,encoded_img:[29,30],encoder_b1:135,encoder_b2:135,encoder_h1:135,encoder_h2:135,encoding_dim:30,encompass:[7,87,147],encount:[7,35,51,113,121,125,126,158,189,209],encourag:[3,121,164,172],encrypt:[115,125,152,193],encyclopedia:123,end:[3,7,29,31,32,34,37,41,44,48,51,56,58,59,60,63,64,66,67,70,75,87,89,93,110,111,112,115,117,120,121,123,125,126,128,129,130,131,136,137,140,141,142,143,144,147,150,153,155,156,160,161,163,164,168,170,171,172,177,187,188,193,195,204,209,210],end_angl:36,end_slic:130,endang:[118,194],endpoint:[123,191],endswith:[31,171],energet:158,energi:[75,89,157,158,159],enforc:[87,111,121,123,128,190],engag:[111,113,154],engin:[14,18,31,41,52,62,73,85,86,110,121,128,129,140,144,146,150,153,154,156,158,164,170,173,178,195,196,207,211],england:173,english:[42,146,154,188,210],enhanc:[84,86,87,117,118,120,146,147,156,178,181,195,207],enjoi:[84,117,158,211],enlarg:[144,164],enorm:[7,126,169],enough:[7,31,34,43,50,52,53,64,66,67,75,89,101,108,110,112,115,120,121,125,128,139,143,154,164,169,170,172,178,183,188,189,207],enrich:[147,152],enrol:73,enrolled_univers:62,ensembl:[54,56,57,58,59,62,63,64,68,75,89,125,151,154,161,163,164,166,167,168,172,176,178,202],ensur:[31,33,34,52,53,85,87,113,115,117,118,121,122,126,128,133,136,141,143,146,152,153,154,168,170,171,177,186,192,193],entail:[45,110],entangl:156,enter:[41,53,57,104,110,123,141,187,189,199,205,206,209],entertain:129,entir:[31,32,42,113,118,121,128,143,144,146,150,154,155,164,169,171,173,180,184,187,188,192,210],entireti:[115,193],entiti:[1,122,127,146,156,196],entri:[7,15,41,45,51,65,66,73,83,126,128,139,146,149,152,158,168,170,173,175,182,187],entropi:[38,87,139,161,163,165,169,170,172,176],entry_script:[9,109],enumer:[1,35,39,43,45,60,70,125,130,135,136,138,139,141,142,143,145,148,171,172,177,182,187,202,205,206,209],env:[0,30,37,38,101,102,118,129,130,131,149,150,172,176,183,187],env_test:37,envi:117,environ:[9,30,37,42,43,50,52,53,57,63,64,66,67,72,92,108,109,110,111,113,131,143,153,156,163,167,168,169,171,172,178,182,184,185,187,190,207],environment:110,environment_debug:37,envis:183,enzym:110,ep:[31,143,171],epic:41,epidem:[14,128],epidemiolog:155,episod:37,epistolari:117,epoch:[29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,49,50,52,53,68,76,84,91,136,139,142,144,145,147,149,152,154,165,170,179,198,208],epoch_acc:34,epoch_count:37,epoch_end:34,epoch_loss:34,epoch_tim:39,epochs_rang:33,epr:61,epsilon:[37,67,139,143,164],epsilon_decai:37,epsilon_min:37,epsilon_t:164,epub:145,epwxzn7xbrcqomkhcf8velmika8h865zrcf5vpp239awmfgsm7vlsy3zpqzij:65,eq:53,equal:[7,14,18,22,24,34,52,53,56,60,65,75,85,89,92,101,125,127,128,131,139,142,150,154,155,156,160,161,163,164,167,170,171,172,178,184,186,187,188,209,210],equal_var:[18,125],equat:[61,65,84,85,139,150,164,165,172,182,188],equilibrium:38,equip:[115,123,153],equiprob:160,equit:[121,192],equiv:[15,130],equival:[7,31,52,83,87,128,129,130,131,143,150,152,154,164,187,188,208,210],eras:1,erasur:121,eratosthen:101,erc20:41,erencan:205,eros:156,erp:152,err:[130,131,160],errd:39,errd_fak:39,errd_real:39,errg:39,erro:48,erron:118,error:[0,1,7,29,30,37,39,43,44,48,50,52,53,54,55,56,57,60,61,63,67,69,71,72,73,84,85,87,92,111,125,128,129,130,142,143,149,150,152,153,154,156,161,163,164,166,167,168,169,170,171,179,182,183,188,189,200,201,204,210],error_r:179,errord:86,errormsg:52,errr:[59,64],erwo:101,es:196,escap:[188,210],especi:[48,55,68,72,113,117,118,119,123,152,153,154,156,163,164,168,171,177,178,187,198,207],essai:26,essenc:[56,84],essenti:[1,7,56,84,86,108,110,123,126,145,146,147,164,172,176,179,181,195],establish:[7,34,75,85,89,108,121,144,150,154,159],estim:[18,55,56,58,59,60,62,63,64,65,66,67,70,91,93,110,113,118,122,123,125,128,141,154,155,156,158,159,160,163,167,169,171,172,177,182,186,194,201,205,206],estimators_:161,estonia:211,et:[31,37,121,156],eta:[30,72],etc:[7,28,31,33,34,46,50,55,56,62,75,83,89,111,123,125,128,131,140,144,148,152,153,154,155,161,163,164,178,187,189,190,193,194,195,207],ethic:[111,115,124,152,156],ethiko:121,etho:121,ethos3:113,etl:152,euclidean:[101,158,172,202],euclidian:171,eumskiuekkeicr7ucbqntigtiqukhfk9r3ugcoxgjfgagytsqotjgkqreoppi37rrzisckqbihtgxt8maj9gkxaevmew12mhvkqhsc2hiykqkquwaxulrth6kepmuniqjr8lxka81jbqlyqwwtwos0joleq1:65,european:121,ev:[56,160],eva:[127,196],eval:[31,34,44,77,138],eval_d:42,eval_dataset:42,eval_df:42,eval_epoch:31,eval_epoch_va:31,eval_everi:[136,145],eval_i:136,eval_index:136,eval_metr:[72,167,168],eval_set:167,eval_x:136,evalu:[29,34,36,38,42,45,56,65,72,86,93,111,112,115,121,126,128,129,131,136,139,143,145,146,153,160,161,163,164,167,168,169,170,171,172,178,180,186,187,188,189,190,192,200,201,202,207,210],evaluate_on_last_n_it:171,evaluation_s:136,evaluation_strategi:42,evanesc:[119,194],evauat:66,even:[1,3,7,18,34,40,45,46,51,53,56,66,68,70,72,75,89,101,108,113,117,119,120,123,125,126,128,130,131,140,141,146,150,152,153,154,155,156,158,160,163,164,167,171,172,177,178,182,183,186,187,188,195,202,203,207,209,210],even_numb:[187,209],evenli:[86,128,154],event:[101,102,108,125,129,152,153,155,173,187,188,189,192],event_nam:153,eventu:[60,152,160,196],ever:[91,109,127,133,188],everi:[3,7,34,39,42,44,45,48,52,55,58,62,65,68,70,76,91,113,121,122,123,126,127,128,130,133,139,141,143,144,145,150,153,154,155,161,163,164,165,168,170,171,172,178,187,188,189,197,202,203,207,210,211],everydai:[56,123,164],everyon:[108,113,127,155,164,172,175,202],everyt:164,everyth:[7,56,67,110,112,113,127,129,133,145,150,151,154,158,164,178,187],everytim:48,everywher:[123,182],evid:[17,18,60,113,123,125,146],evok:113,evolv:[1,108,120,153,168],ex:[41,60,118,121,178,194],exact:[75,89,109,125,152,154,160,161,164,169,170,200],exactli:[1,7,56,83,84,87,111,113,115,125,128,131,140,143,154,164,165,178,179,186,187,209],exagger:56,exam:204,exam_model:204,exam_scor:204,examin:[7,29,33,46,51,65,67,73,86,126,147,158,160,168,178,182,195,204],exampl:[1,2,3,7,14,16,18,19,26,28,30,31,32,33,34,37,40,41,42,43,44,45,46,48,50,51,52,53,55,57,58,62,63,65,70,73,75,77,83,84,86,87,89,91,102,110,111,112,113,115,117,118,120,121,122,123,125,126,127,129,130,131,133,135,136,140,143,144,145,146,147,148,149,152,153,154,155,156,158,160,163,166,168,169,171,173,175,177,180,182,183,184,186,187,188,189,190,195,197,198,208,209,210,211],example1:[7,126],example2:[7,126],example3:[7,126],example4:[7,126],example5:7,example6:7,example_imag:137,example_tensor:48,example_train_vector:146,exce:170,excel:[23,25,29,111,119,122,127,144,169,190,194,200],except:[3,9,14,22,24,30,31,45,48,50,52,53,54,55,56,59,69,71,77,102,109,120,128,129,130,131,140,143,145,148,163,164,165,178,179,188,189,208,210],exception:152,exception_has_been_caught:187,exception_has_been_handl:187,exception_is_caught:187,exception_messag:187,excerpt:91,excess:[65,87,172,187],exchang:[113,121,141,153,173,193],excit:[56,113,123,137,149],exclaim:154,exclud:[60,73,102,128,129,130,167,171,186,188,210],exclude_pattern:125,exclude_word:102,exclus:[108,161,187],execut:[0,3,12,14,18,22,24,25,30,33,40,52,59,60,75,84,89,101,102,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],exemplari:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,78,80,81,94,97,98,99,100],exercis:[0,3,12,34,52,97,126,147,152,170,182,189],exhaust:[125,163,187],exhibit:[100,125,143,154,187],exhuast:62,exist:[1,7,9,14,29,30,31,33,34,39,42,43,46,50,52,56,60,62,65,70,72,76,85,91,102,109,110,111,113,121,122,123,125,127,129,131,136,138,141,145,146,149,152,153,154,155,156,158,160,161,164,170,178,187,188,190,195,196,209,210],exist_ok:[38,39,171],exit:[152,189],exogen:141,exot:[164,167],exp1:128,exp2:128,exp:[31,36,56,60,90,91,128,131,139,155,163,164,165,169,179,195,200,205,206],expand:[7,126,127,128,163,164],expand_dim:[33,38,46,49,77,128,136,137,145,204],expans:[169,187],expect:[7,34,37,42,45,46,52,53,57,63,83,91,100,118,123,125,126,128,130,131,137,141,153,154,160,164,172,182,184,187,189],expect_result:14,expected_df:22,expected_diff:14,expected_output:[14,102],expected_result:[14,22,102],expected_sequ:102,expected_sorted_list:102,expectil:164,expedi:141,expedit:[146,156],expend:110,expens:[34,55,56,62,75,83,89,110,130,140,150,152,153,156,166,184,203],experi:[1,14,16,28,37,44,46,50,52,53,56,110,111,113,117,118,119,121,123,125,143,144,146,153,154,155,156,164,167,178,183,194,204,207],experienc:[28,121],experiment:[30,37,52,143,186],experiment_nam:[9,109],experiment_timeout_minut:[9,109],expert:[55,56,113,121,154,155,156,171],expertis:[110,111,123,154,155,190,192],expir:152,explain:[5,8,24,26,34,46,56,60,78,80,85,94,98,111,113,115,121,128,131,136,137,138,153,154,159,161,163,169,170,171,172,176,178,179,180,182,190,192,197,202],explained_variance_ratio:[172,202],explained_variance_ratio_:[172,202],explan:[10,20,24,42,50,52,110,121,130,131,156,164,170,188,210],explanatori:[24,118,167,182],explic:63,explicit:[128,131,172,187,202],explicitli:[91,128,130,141,178,187,207],explod:[57,145,147,154],exploit:171,explor:[9,18,23,28,37,42,50,52,60,66,73,85,86,92,107,108,109,110,111,113,114,115,116,119,120,121,122,129,133,147,151,153,155,158,160,164,166,169,170,172,173,175,177,178,182,183,184,186,190,193,196,203],exploratori:[17,73,75,85,89,109,135,193],expm1:72,expn:128,exponenti:[36,60,128,147,164,188,189,210,211],expos:[30,33,60,111,121,131,155,192],expose_map:60,exposit:113,exposur:[40,113,121],express:[1,8,22,30,38,49,50,52,53,54,84,91,101,102,113,125,128,129,130,131,145,152,160,164,178,182,183,188,189,192,204,207,209,210],extend:[34,111,121,128,153,154,163,164,178,187,188,207,209,210],extens:[0,18,44,87,110,146,154,164,186,189,196,208,209,211],extensionarrai:131,extent:[33,125,143,169,171,172],extercond:60,exterior1st:60,exterior2nd:60,extern:[108,121,122,125,147,156,172,192],exterqu:60,extinct:[118,194],extra:[18,55,56,128,153,161,164,168,178,188],extract:[3,8,31,32,33,34,41,46,49,60,73,108,122,123,128,129,136,137,138,139,140,143,144,146,147,151,152,154,184,192,207],extract_fold:136,extract_net_info:138,extract_path:[29,30,31,43],extractal:[29,30,31,34,38,39,43,45,77,136,139],extracted_text:3,extractor:3,extrapol:[56,163],extratreesclassifi:163,extratreesregressor:163,extrem:[40,53,60,62,125,143,147,153,164,174,196],extremli:92,ey:[30,91,117,120,154,170,197,198,204],eyeglass:31,eyeglasses_data:31,eyeglasses_id:31,f0:128,f10:161,f1:[44,52,58,63,66,75,76,89,128,146,161,165,173,176,177,183],f1_score:165,f2:[128,161],f2ac792482e3:196,f35:65,f3:[128,161],f3ab60:73,f4:[128,131,161],f4bafb1ea019:171,f50duri2g6yv8pzu8ii:65,f5:161,f6:161,f7:161,f821:[187,188],f8:[128,161,195],f92ym7eqlakp9nle0rysqk8ksmqlcngjqoegdbg0angjq4daqst67cxfikzwsnwtu5ajx80rqf:65,f9:161,f:[0,1,3,9,14,18,24,29,30,31,33,34,39,41,43,50,52,53,56,57,61,70,76,77,84,87,91,93,101,102,109,117,125,128,129,130,131,135,138,139,141,142,145,147,150,158,160,161,163,164,165,168,172,175,176,179,180,182,188,189,195,203,210],f_0:164,f_:163,f_i:164,f_t:[145,164],fa:[60,141,149],face:[31,38,42,43,108,111,113,129,140,144,146,147,153,185,189,190,192,195,198],facebook:[121,156,192],facecolor:[38,73,92,169,171,172,200,202],facemask:[178,207],facet:117,facetgrid:[120,158,183,194],facial:[111,129,190],facil:[128,187],facilit:[59,128,147,187],fact:[1,4,14,18,19,43,44,45,48,55,56,58,63,64,68,75,89,112,117,118,119,121,122,123,125,128,133,157,159,160,163,164,169,170,171,176,183,184,187,188,205,206,207,208],factor:[56,59,60,69,71,73,75,84,89,101,108,110,120,139,143,153,160,161,163,169,170,178,187,200,205],factori:[101,108,115],fad:41,faddfvgmmfhrdfp8aynqhtsioeg5b9f3k6nlgsbrsgtcefmco:65,fail:[1,16,52,53,56,65,67,75,89,102,121,140,152,154,178,187,192,207],failur:[9,107,136,153],fair:[58,63,64,75,89,111,121,123,154,157,160,168,190,192],fairlearn:111,fairli:[34,45,55,73,121,136,171,172,192],fairseq:139,fairytal:182,fake:[38,39,142,198],fake_imag:142,fake_label:39,fake_loss:142,fake_samples_epoch_:39,falcon:129,fall:[46,50,52,53,68,70,108,113,118,125,128,131,163,173,175,178,182,187,207],fallaci:113,fallback:154,fals:[1,3,7,9,14,18,22,24,29,30,31,34,36,37,38,39,41,43,44,45,46,51,54,55,57,58,59,60,62,63,70,72,75,77,83,85,89,91,93,101,109,110,118,120,125,126,128,129,130,131,136,137,141,142,143,144,145,147,148,150,154,156,160,163,167,168,169,171,172,173,175,176,177,183,187,188,189,194,195,198,200,209,210,211],false_boolean:[188,210],false_positive_r:65,falsehood:189,famhist:179,famili:[5,22,73,113,118,119,127,151,164,168,173,177,194,196],familiar:[28,45,65,68,111,118,127,131,133,160,165,170,182,183,189,190],family_s:[22,73],family_size_max:22,familys:22,famou:167,fan:[111,189],fan_out:148,fanci:[72,123,195],far:[4,7,17,31,38,44,62,70,73,75,83,86,89,118,125,126,139,158,168,169,171,178,179,182,188,200,204,208],fare:[22,165],fare_add_averag:22,fark:37,farlei:[142,153],farmer:160,farsight:141,farther:[83,158],fascin:[119,121,185],fashion:[20,29,30,107,109,110,111,118,128,140,143,168,172,182,187,202],fashion_classifi:44,fashion_classifier_21:44,fashion_classifier_22:44,fashion_classifier_23:44,fashion_classifier_24:44,fashion_classifier_2:44,fashion_classifier_3:44,fashion_classifier_4:44,fashion_classifier_vi:44,fashion_mnist:[29,30,44,46],fashion_test:44,fashion_test_label:44,fashion_train:44,fashion_train_label:44,fashon:30,fast:[7,38,42,44,46,50,53,56,83,110,115,128,131,147,153,168,178,179,188,193,195,203],fastai:61,fastapi:76,fasten:60,faster:[38,42,50,52,55,59,60,65,75,84,89,91,123,128,147,153,167,168,171,178],fastest:[128,168,171],fastgfil:77,fatal:[8,14,187,209],fater:55,father:70,fault:153,favipiravir:1,favor:[163,164,170,178,189],favorit:[109,122,125,129],favorite_hobbi:102,fayyad:56,fc1:31,fc21:31,fc22:31,fc3:31,fc4:31,fc:[75,89,119,194],fcn:148,fd:149,fe:154,feasibl:[110,154,156,160,168],feat:138,feat_df:58,feat_dict:59,feat_imp:62,feat_import:[58,59],feat_map:83,featuir:60,featur:[7,9,16,20,22,30,31,34,35,40,41,42,43,44,46,49,50,55,64,66,67,68,69,70,71,72,73,77,85,86,91,93,109,110,112,121,122,123,127,128,129,131,135,136,137,138,139,140,143,144,147,148,153,155,160,162,163,164,166,169,170,172,173,175,176,183,186,187,188,191,195,202,204,208,210],feature_1:150,feature_2:150,feature_column:92,feature_df:175,feature_extract:146,feature_fract:60,feature_fraction_se:60,feature_importances_:[57,58,59,62,161],feature_indic:161,feature_list:54,feature_nam:[7,44,63,64,126,161,172,202],feature_rang:[41,47],feature_scor:57,feature_typ:72,featurecolumn:50,featureidx:52,featuremap:148,featurespr:50,februari:[189,193,196,211],fed:[31,46,55,57,65,131,142,143,147,149,160],feder:121,feed:[3,31,32,43,44,48,60,63,91,123,128,140,150,156,171,178,207],feed_dict:[138,141],feedback:[113,147,151,153,156],feedforward:[140,143],feel:[3,7,113,139,158,184,189,193],feet:72,felis_catu:137,fell:187,femal:[22,62,111,178],feminin:117,fenc:[60,72],fence_map:60,fenugreek:175,fernandez:125,fetch:[63,147,172,202],fetch_california_h:83,fetch_dataset:31,fetch_openml:[63,64,171],fetch_ucirepo:147,few:[1,7,9,14,33,38,43,44,46,48,50,51,52,53,56,58,63,64,65,67,72,73,75,84,85,89,91,97,109,110,111,112,113,115,118,120,121,125,126,127,128,129,131,136,143,144,145,150,151,153,154,155,158,159,164,167,168,170,171,173,178,179,183,187,188,195,198,207],fewer:[3,56,63,65,68,80,122,125,128,160,170,177,187],fewest:143,ff_dim:143,fff9ed:73,fff:173,ffffff:76,ffill:[7,126,147],ffn:143,ffn_output:143,ffoutput:41,fg86ufl9igmpwtk6aurw9v5:65,fgsymyf:65,fh:145,fhxfwxna:148,fhxfwxnax4:148,fi:161,fib_sequ:102,fibonacci:187,fibonacci_at_posit:187,fibonacci_at_position_renam:187,fibonacci_function_clon:187,fibonacci_function_exampl:187,fibonacci_list:187,fibonacci_modul:187,fibonacci_module_renam:187,fibonacci_path:187,fibonacci_smaller_than:187,fiction:31,fido:[128,187],field:[7,48,55,56,58,91,118,127,131,143,144,150,151,152,158,160,169,173,178,182,188,196,197,207,210],fieldnam:128,fifth:[128,188,210],fifti:38,fig:[1,22,30,34,37,39,40,43,49,60,65,70,73,76,84,92,118,119,120,139,141,142,150,163,165,169,172,194,200,202],fig_dim:22,fig_extens:171,fig_id:171,fight:[33,60],fighter:173,figsiz:[1,3,14,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,70,72,73,75,76,83,86,89,91,92,118,119,120,135,139,142,144,150,158,159,161,163,165,168,169,171,172,194,200,202,208],figsize_with_subplot:22,figur:[1,3,7,14,18,22,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,46,52,53,55,56,58,59,60,61,62,63,65,67,68,70,72,73,75,76,83,84,86,89,91,92,111,119,120,122,133,135,139,141,142,143,144,150,154,156,158,159,160,161,163,168,171,172,179,184,194,196,202,203,208],figure_format:[56,72,150,160,163,172,202],figureclass:[119,194],file:[0,1,6,9,12,17,22,23,25,29,30,31,34,38,39,41,43,45,46,47,50,52,53,54,57,60,65,72,80,85,99,101,102,109,110,117,122,123,127,128,129,130,131,136,137,138,141,142,145,147,149,153,158,159,173,175,176,177,182,184,186,187,188,195,208,209],file_conn:[136,145,149],file_desc:77,file_id:63,file_loc:136,file_obj:77,file_output:141,file_path:[29,30,31,34,46,72],file_upload:77,fileexistserror:77,filenam:[31,43,57,62,136,138,171,173],filepath:[43,49,136,138],fill:[1,11,14,15,18,22,24,40,51,53,55,57,58,62,72,75,83,89,106,110,118,126,128,129,131,139,147,150,161,167,169,173,178,182,194,200],fill_:39,fill_between:[29,163,169,200],fill_betweenx:171,fill_coin:40,fill_color:76,fill_valu:129,fill_with_mean:7,fill_with_median:7,fill_with_mod:7,fillna:[1,7,14,18,22,51,57,60,62,72,126,147,150,195],film:117,filter:[7,14,16,24,31,34,35,40,43,51,60,118,128,131,133,136,139,143,144,146,158,184,196,209,210],filter_bi:24,filter_by_country_region:14,filter_ninfected_by_year_and_month:14,filteredbird:[118,194],filters1:144,filters2:144,filters3:144,filterwarn:[38,42,43,55,56,57,58,59,60,62,63,64,65,75,89,143,144,163,165,167,171],fin:[69,71],fin_col:60,final_df:41,final_estim:55,final_featur:173,final_list:209,final_pip:[67,83],final_st:145,final_state_c:145,final_state_h:145,financ:[6,86,111,123,190],financi:[6,129,141,146,164],find:[7,8,14,15,18,31,32,33,39,40,44,51,52,53,55,56,58,59,60,63,64,65,66,67,69,71,73,78,80,85,86,92,93,101,109,110,111,115,117,118,119,120,121,122,123,125,126,127,128,129,131,133,135,140,141,146,151,154,155,157,158,160,161,163,164,165,167,168,169,170,172,175,176,178,179,182,183,184,186,187,189,192,200,204,207,210],find_better_split:61,find_common_el:188,find_prime_factor:101,find_stack_level:129,find_varsplit:61,find_wanted_peopl:101,fine:[84,86,93,135,143,144,152,154,163,167,181,182],finer:[7,126,153],finish:[0,3,32,42,60,110,150,153,165,170,173,179,187,189],finit:[125,141,175,183],finland:211,fintech:41,fintype_map:60,fip:155,fire:[30,146],firecolumn1:41,firecolumn2:41,firecolumn:41,firefox:110,firegod:41,firehos:152,fireplac:60,fireplacequ:60,firm:73,first:[0,1,3,7,11,14,18,31,32,33,35,36,40,42,43,44,46,48,49,50,51,52,53,54,55,56,58,59,60,62,63,64,65,66,68,70,72,73,75,85,86,89,91,102,109,110,112,113,115,119,120,121,123,125,126,127,128,129,131,133,140,141,142,143,144,145,146,147,149,150,152,153,154,155,156,158,160,161,163,164,165,167,168,169,171,172,173,175,176,178,180,182,183,185,187,188,189,192,193,195,202,203,204,207,208,209,210,211],first_baseman:[18,125],first_char_set:188,first_imag:33,first_nam:[102,209,211],first_numb:[188,210],first_param:187,first_term:138,first_tuple_numb:188,first_word:[187,209],firstli:[51,73,92,154],firstnam:[127,189,196],fiscal:25,fish:[73,176],fisher:7,fit:[29,30,31,32,33,34,35,36,37,38,41,43,44,45,46,47,49,52,53,54,55,56,57,58,59,60,61,63,64,65,66,67,68,69,71,72,73,75,76,83,84,85,86,89,90,92,93,97,101,102,109,122,123,127,136,138,141,144,146,147,149,150,152,154,155,156,159,161,163,164,165,166,167,168,171,172,173,175,176,177,179,182,183,186,187,188,189,200,202,205,206],fit_epoch:31,fit_epoch_va:31,fit_gener:32,fit_on_text:149,fit_predict:[73,171],fit_resampl:175,fit_transform:[30,41,44,47,49,55,57,58,59,62,63,64,65,66,67,70,73,75,83,85,89,92,146,147,159,167,171,172,173,183,202,204,205,206],fitted_model:[9,109],fiumlogtswc31vrwbvd:65,five:[7,16,33,51,55,58,92,101,113,116,143,146,150,175,184,188,210],five_up:128,fix:[29,42,50,53,55,58,68,91,121,122,128,131,139,143,145,153,154,163,165,168,169,172,175,189,192,197,200,202],fixat:113,fixed_nois:39,fixedformatt:171,fixedloc:171,fj4b:173,fk:[12,133],flag:[3,34,37,131,143,154,158],flair:190,flat:[43,70,158],flat_map:49,flatten:[29,30,32,33,34,35,38,39,43,44,45,46,48,49,70,76,91,102,135,136,139,142,143,172,173,176,188,202,210],flatten_2:45,flatten_nested_list:102,flatten_vector:[188,210],flattened_list:102,flavor:[7,141,170],flaw:[72,78,94,100,111,190],fledg:164,flexibl:[7,72,108,122,128,131,133,151,152,153,164,169,191,195,196,203],flip:[75,83,89,117,141,144,178,207],flipsid:7,fll:51,float32:[29,30,31,34,37,38,48,77,128,135,136,137,139,141,142,143,144,145,148,171,198,208],float64:[14,24,41,49,65,66,70,73,83,126,128,130,131,158,163,172,173,179,182,195,202],float_base_shap:137,float_format:[50,52,53],float_neg:[188,210],float_numb:[188,210],float_number_via_funct:[188,210],float_with_big_:[188,210],float_with_small_:[188,210],floatbox:148,floattensor:31,floor:[41,60,141,160,188,195,210,211],floppi:153,florida:[117,195],flow:[32,35,56,118,140,147,188,210],flower:[33,66,92,117],flower_photo:33,flowform:169,flu:[111,190],flu_trend:150,fluctuat:[14,55,58,170,182],fluoresc:43,flush:209,fluvisit:150,fly:[173,189],fmt:[35,41,44,57,65,70,75,89,147],fn:[58,65,75,89,183],fname:31,fnlwgt:57,focu:[1,14,18,55,60,65,87,91,108,111,112,115,120,122,123,128,130,131,133,152,154,161,175,176,178,179,182,190,196,203],focus:[51,84,110,111,112,113,115,119,121,122,126,127,146,147,151,153,154,155,164,177,185,186,190,192,193],foggi:141,fold:[55,56,62,63,64,66,67,70,75,89,92,163,166,171],folder:[14,31,34,43,109,117,136,158,173,175,184,189,194],folder_path:136,folk:42,follow:[0,1,6,7,9,11,12,14,16,17,18,24,25,28,29,31,32,33,38,42,44,46,48,50,52,53,54,56,57,59,60,64,65,72,73,83,84,85,86,92,101,102,108,109,110,111,112,113,115,117,119,121,122,123,125,127,128,129,130,131,133,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,153,154,155,158,160,161,163,164,167,168,169,170,171,172,173,176,177,178,179,180,182,183,184,186,187,188,189,196,209,210],font:[65,119,173],fontsiz:[30,43,92,136,171],fontweight:92,foo:[128,129,131,189],food:[117,152,174,188,210],fool:[117,198],footbal:56,forc:[1,111,135,155,156,158,170,187],forcast:150,forcibl:209,ford:156,forecast:[41,56,86,109,115,155,193],forecasting_d:[41,49],forehead:198,foreign:[133,141],forest:[42,56,63,64,68,72,75,89,125,135,146,160,162,164,167,177,178],forest_best:[58,59],forest_clf:58,forest_grid:56,forest_param:56,forest_reg:59,forget:[91,109,110,111,140,145,190],forgiv:146,forgotten:[121,145,192],fork:0,form:[3,7,33,52,56,57,65,73,91,121,123,126,128,131,133,138,140,141,146,147,150,153,155,158,159,164,168,169,173,175,178,182,187,188,196,204,207,208,209],form_df:15,form_linearly_separable_data:56,formal:[18,56,121,125,143,156,161,163,172,187,209],format:[6,14,26,29,31,32,33,34,37,38,44,45,46,50,51,53,55,57,58,59,62,63,64,65,66,67,69,71,75,83,89,101,111,117,121,122,123,126,127,128,129,136,137,138,140,141,142,144,145,148,149,152,153,159,160,163,168,169,171,172,173,176,178,184,187,189,190,195,200,202,207,208,209,211],format_person_info:102,format_vers:209,formatfactori:41,formatted_column:51,formatted_info:102,formatted_str:[188,210],former:[48,55,67,123,128,139,143,154,156,160,161,178,183,207],formul:[172,178,204],formula:[18,84,85,101,127,161,164,172,179,183,188],forth:[55,113],forthcom:186,fortran:128,fortun:[7,51,75,89,126,159,164,184],forum:151,forward:[7,31,32,34,39,51,91,126,137,146,153,178],foster:146,found:[1,9,26,32,38,56,60,62,69,71,75,77,89,93,101,109,110,112,118,122,125,128,131,136,145,146,148,152,154,155,164,167,168,169,187,188,189,203,209,210],foundat:[121,123,151,152,153,155,164,178],foundationdb:196,founder:178,four:[7,32,46,56,57,65,73,75,89,101,110,126,127,128,150,161,170,175,186,187,188,209],four_g:[75,89],fourier:128,fourteen:[172,202],fourth:[14,32,92,128],fowler:155,fp16:42,fp:[65,75,89,148,183],fpath:31,fpcoor:148,fpn:148,fpr:[65,183],fr:14,frac:[14,52,53,56,68,84,86,87,102,139,147,148,160,161,163,164,165,168,172,179,183,204],fractal:128,fraction:[33,46,56,68,163,170,171,183,188,208,210],fragil:[68,187],frame:[1,7,14,37,38,41,56,63,64,65,66,73,83,126,129,131,136,140,147,154,158,168,173,175,182],framebord:[125,129,130,131,187],framework:[0,44,46,60,110,121,136,138,140,144,145,151,153,154,156,168,173,180],franci:160,frank:154,fraud:[111,158,190,207],free:[3,30,53,60,101,102,111,119,121,123,139,140,148,149,156,158,178,184,187,188,189,190,192,194],freecodecamp:197,freedom:[111,125,131,141,190],freedraw:76,freez:146,french:117,freq:[41,42,49,63,70,83,131,150],frequenc:[1,3,36,67,70,146,150,152,154,163],frequent:[55,56,57,58,59,60,65,115,125,133,145,154,164,172,175,178,202],fresh:[78,121,168,173,184],fresh_fruit:[188,210],fri:54,friedman:[56,163,168],friedman_ms:62,friend:[54,113,122,123,129,154],friendli:[111,117,146,153,154],frog:136,from:[0,1,3,4,6,7,9,11,12,14,16,17,18,22,23,24,25,26,28,29,30,31,32,33,34,36,37,38,39,40,41,42,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,76,77,83,84,86,89,91,92,93,97,100,101,103,107,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,129,130,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,189,190,191,192,193,194,195,196,198,200,203,204,206,207,209,210],from_arrai:129,from_categor:43,from_config:[9,109],from_keras_model:33,from_lat:31,from_logit:[33,46,136,142,144],from_logitstru:144,from_panda:42,from_pretrain:42,from_se:48,from_tensor_slic:[49,135],fromarrai:[31,137],front:[75,89,118,188,194,210],frontend:187,frozen:168,frozenset:[131,188,210],fruit:[73,146,147,188,210,211],fruit_nam:43,fruits_copi:[188,210],fruits_dictionari:[188,210],fruits_set:188,fruits_set_via_constructor:188,fruits_tupl:188,fruits_tuple_via_constructor:188,frustrat:152,ftc:[121,192],fu:129,fulfil:[128,164],full:[1,7,29,31,39,46,48,53,55,67,73,75,89,102,108,109,110,118,121,126,128,129,130,131,133,148,153,154,163,164,167,171,172,175,176,182,187,188,210],full_model_dir:145,fullbath:60,fulli:[0,32,33,34,46,50,53,70,91,94,140,141,143,144,148,152,153,154,155,164,171,178],fully_connected_size1:136,fulvou:[118,194],fun:[63,91,128,182,183,209],func:[101,129,143,187,209],func_nam:187,func_wrapp:187,function_nam:189,function_that_receives_names_argu:187,function_wrapp:[187,209],functool:138,fund:62,fundament:[58,59,64,66,84,86,108,125,128,131,134,146,175,178,179,181],fungi:119,fuqiongi:118,furnish:[101,102,187,188,189],further:[1,14,38,56,60,65,66,67,73,84,85,101,109,110,122,123,125,128,135,136,138,141,146,153,154,160,164,166,167,168,171,173,177,178,179,187,195,207],furthermor:[52,56,93,112,154,164],fuse:143,fused_batch_norm:38,futher:60,futur:[29,41,49,52,54,60,64,85,92,111,121,123,146,155,156,164,173,175,178,183,187,207],future_step:[41,49],futurewarn:[92,129,171,172,202],futurolog:[136,138],fx:145,fxbyxm:65,fy:25,fykun93:65,g2d:38,g:[3,39,41,42,43,47,56,57,60,62,65,77,84,86,91,102,111,121,123,128,129,130,131,135,141,142,143,148,149,152,158,163,164,170,172,176,179,183,187,188,190,192,195,198,208,210,211],g_error:142,g_fake_se:142,g_gradient:142,g_k:141,g_loss:[38,39,142],g_loss_metr:38,g_loss_tru:142,g_optim:38,g_origin:138,g_resolut:38,g_sampl:142,g_solver:142,g_style:138,g_t:145,gain:[53,56,60,65,85,108,118,129,141,146,152,154,156,161,163,164,165,168],galaxi:[6,172],gallahad:187,galleri:155,galton:160,gam:164,gambl:111,gamboost:164,game:[37,41,56,107,111,141,156,178,207],gamedownload:41,gamma:[37,65,66,67,72,141,143,148,164,167,168,171],gamma_initi:148,gan:[142,155,156],gan_input:198,gan_output:198,gan_structur:198,ganlab:198,gap:[14,22,46,56,65,113,121,143,146,154,170,184,192],garagearea:60,garagearea_mean:60,garagecar:60,garagecond:60,garagefinish:60,garagequ:60,garagetyp:60,garageyrblt:60,garbag:[43,128],garbl:152,gari:41,garlic:175,gartner:[121,152,156],gate:[140,189],gatewai:152,gather:[15,43,111,112,123,139,154,156,158,173,177,182,190],gaug:[86,87,146,183],gaussian:[30,65,139,158,164,176,178],gaussiannb:176,gaussianprocessclassifi:176,gave:[55,56,160],gb:[1,173],gbc:62,gbdt:[60,164],gbm:[62,168],gbm_tuned_1:62,gbm_tuned_2:62,gbm_tuned_3:62,gbrt:164,gbtree:[60,167,168],gc:43,gca:[1,32,118,119,136,169,171,194,200],gcf:[119,194],gcp:153,gcv:163,gd:[60,179],gdpr:121,gdprv:60,gdwo:60,gebru:[111,190],geeksforgeek:[169,209],gees:[19,118,146,194],gelu:139,gemston:196,gen_imag:39,gen_logits_fak:142,gen_z:39,gender:[7,22,56,111,121,123,129,168,178,190,192],gender_df:22,gender_xt:22,gender_xt_pct:22,gener:[1,3,7,18,22,30,31,32,33,34,35,36,42,46,48,50,51,52,53,54,55,56,58,59,63,65,66,68,77,83,85,87,93,109,110,111,112,117,118,120,121,122,123,125,126,127,129,130,131,133,135,136,137,138,139,140,141,144,145,146,147,150,151,152,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,175,176,177,178,180,186,187,188,189,192,195,196,199,200,204,208,211],generalis:[60,169],generalist:113,generalizaton:35,generar:38,generate_from_frequ:3,generated_imag:[36,38,198],generated_paint:38,generated_path:38,generated_portrait:38,generated_text:145,generator_loss:142,generator_opt:38,genfromtxt:202,genom:111,genr:[158,159],genu:[118,194],geoffrei:[34,172,202],geograph:[67,110],geographi:155,geoloc:14,geometr:[158,169],geometri:[143,158],georg:[129,188,189,210],georgia:[121,148,192],geospati:[111,190],geq:164,geqq:139,gerg:141,germani:173,geron:[48,55],get:[0,7,9,11,14,16,18,22,28,29,30,31,32,34,38,39,40,43,45,46,48,51,52,53,55,58,59,60,62,63,64,65,66,67,68,70,72,73,75,76,77,85,86,89,91,108,109,110,111,112,113,117,118,121,125,126,127,130,131,133,135,138,139,140,141,142,143,145,146,147,149,150,152,153,154,155,159,160,161,164,165,167,168,170,171,172,173,175,176,177,178,179,182,183,184,185,187,188,189,195,198,202,207,209],get_age_by_surviv:22,get_age_group:187,get_base_model:144,get_batch:31,get_bootstrap_sampl:160,get_cmap:[172,202],get_count:187,get_dat:[187,209],get_default_devic:34,get_default_graph:[37,38],get_df_column_diff:14,get_df_corr_with:24,get_df_mean:24,get_df_std:24,get_dummi:[7,22,54,60,72,147,182],get_environ:[9,109],get_equivalent_kernel_bia:143,get_fil:[33,41,43,44,47,49,137],get_full_id:[187,209],get_grid:56,get_imaginari:187,get_index:130,get_initial_st:145,get_item:131,get_lay:[137,143,144],get_loc:[130,131],get_messag:[187,209],get_model:139,get_nam:[187,209],get_network:36,get_network_custom:36,get_oper:77,get_output:[9,109],get_param:[58,59,63,64],get_pinfect:14,get_properti:[9,109],get_real:187,get_result:129,get_rolling_window:14,get_rt:14,get_shap:[77,138,141,143,148],get_signature_list:33,get_signature_runn:33,get_slice_bound:130,get_smoothed_ax:14,get_solv:142,get_std:24,get_survival_rate_by_gend:22,get_tensor:77,get_tensor_by_nam:77,get_text:187,get_the_unique_values_of_pclass:22,get_tim:[187,209],get_timestep_embed:139,get_transition_sigmoid:155,get_valu:131,get_vari:148,get_vers:144,get_vocab:42,get_xaxi:[29,30,136],get_xlim:[169,200],get_yaxi:[29,30,136],get_ylim:[169,200],getcwd:[29,30,31,34,43,46,72,187],getpro:172,gettint:48,gfile:77,ggplot:163,gh:[130,145],ghost:183,giant:142,gif:139,gift:184,gigabyt:[75,89],gigaspac:196,gill:[119,194],ginger:175,gini:[56,63,161,163,165],giraph:196,girshick:148,gist_rainbow:[75,89],git:[0,41,101,153],github:[5,14,37,41,57,63,64,66,67,72,77,84,92,110,111,128,130,131,136,144,148,151,153,155,163,167,168,169,171,175,182,183,186,197,198],githubusercont:[12,14,18,25,75,89,110,171],give:[1,7,18,24,38,40,46,55,56,57,60,62,65,69,71,83,86,109,110,113,117,118,121,123,125,126,128,129,131,140,142,143,147,148,154,159,161,164,165,168,169,171,178,182,183,187,188,189,192,207],give_me_sunglass:31,given:[1,7,14,18,19,22,29,34,35,42,44,49,52,55,56,58,59,60,62,63,64,65,66,75,83,89,91,101,102,108,110,117,118,119,120,125,128,129,135,140,141,143,144,148,154,155,156,158,159,161,163,164,168,169,170,171,172,175,176,178,182,183,184,186,187,188,194,195,201,202,204,207,209,210],gkioxari:148,glacier:152,glanc:[38,60,67,152,164,165,178],glean:113,glenc:62,glimps:146,glinternet:164,glmboost:164,glob:[2,31,33],global:[14,22,56,65,110,143,144,152,155,169,171,200,209],global_variables_initi:138,globalaveragepooling2d:[143,144],gloss:113,glq:60,glu:[188,210],glue:152,gluon:154,gn:148,go:[0,1,7,31,38,46,48,53,55,56,58,59,61,63,64,66,67,69,71,72,73,75,83,89,91,98,107,108,109,110,113,117,118,120,125,126,128,129,130,133,139,140,144,145,149,152,153,154,159,161,164,167,170,171,172,175,178,179,183,186,187,188,189,191,198,202,207,209,211],goal:[1,7,8,16,29,33,51,80,83,104,111,112,113,115,123,135,141,154,155,156,164,168,169,170,178,182,190,192,193,198,207],goali:141,goalx:141,goe:[55,56,66,68,83,91,113,123,147,149,151,160,163,164,172,176,178,184,198,209],gog:41,gold:[73,155],golden:[152,187],gomez:142,gone:[3,121,164,178,207],gonna:91,good:[1,3,7,18,19,25,31,33,43,44,46,48,50,52,53,55,56,58,59,60,63,65,66,67,68,69,71,72,75,89,91,93,109,111,113,117,118,120,121,123,125,126,136,139,143,146,152,154,155,156,158,159,160,163,164,165,169,171,172,173,176,177,178,180,182,183,184,187,189,194,200,201,202,203,208],good_init:171,goodby:187,goodfellow:[29,56,87,142,180,198],googl:[44,48,50,52,53,54,108,111,121,129,136,140,146,149,152,153,154,155,178,189,190,196,198,207],googleapi:[77,137],googlenet:143,goos:[118,194],gosset:125,got:[7,48,56,57,62,91,149,164,165,171,172,189,203],gov:156,govern:[22,50,52,53,54,84,121,123,150,156,178,207],govt:121,gp:198,gpu:[33,34,38,44,48,55,60,109,110],gpu_hist:60,gpu_id:[72,167,168],gqzcera47adwxyhstef0ylhkjkxs6mzc5wxktnnxrosnswyh9ihfnvbjcsbu6v8mav:65,grab:[46,128],gracefulli:[130,188],grad:[34,38,77,141],grad_bias:91,grad_boost_clf:55,grad_input:91,grad_output:91,grad_softmax_crossentropy_with_logit:91,grad_w:91,grad_weight:91,grade:[182,183,184,203],gradient:[34,36,38,40,52,53,60,63,64,69,71,75,77,87,89,90,91,135,137,139,140,141,142,143,145,147,151,154,163,167,169,172,176,180,181,182,200,204,205,208],gradient_boost:165,gradient_desc:[84,85],gradient_i:84,gradient_loss:165,gradient_react_3d:182,gradient_x:84,gradientboostingclassifi:[55,62],gradientdescentanim:179,gradienttap:[36,38,135,137,139,141,142,145],gradual:[70,84,85,120,154,164,171,178,179,207],graduat:[62,73],grai:[18,29,30,31,40,52,76,77,91,118,123,135,142,171,172,194,202,208],grain:[7,126,152,163,182],gram:138,grammat:146,grand:143,granda:125,grant:[38,56,101,102,131,187,188,189],granular:[118,153,158,177],grape:[188,210],graph:[1,3,8,14,19,24,30,34,44,46,52,60,77,123,125,127,136,138,139,142,150,155,158,160,163,164,167,168,169,172,182,184,186,196],graph_def:77,graph_object:1,graphdef:77,graphic:[8,24,48,110,125,128,141,160,170,178,191,196,201],graphwin:141,grasp:[73,84,160,177],grass:[119,194],grassi:173,gratifi:119,grayscal:[46,76,171],great:[16,30,44,45,55,56,58,59,69,71,83,85,110,111,113,117,123,125,128,146,149,154,156,159,161,163,164,171,188,189,190,210],greater:[29,51,53,56,60,101,113,118,128,131,140,147,161,163,164,171,187,188,194,209,210],greater_equ:128,greatest:[56,101,128],greatli:[53,56,123,143,154,158,163,164],greedi:[56,164,168,172,202],greek:121,green:[45,55,56,57,58,113,117,118,119,125,141,143,153,164,173,182,184,188,189,194,205,206,210],greenawai:25,greengrass:155,greensock:117,greet:[187,209],greet_again:[187,209],greet_funct:187,greet_one_mor:[187,209],greet_someon:[187,209],greet_with_closur:187,greeter:187,greeting_with_div_p:187,greeting_with_p:187,greeting_with_tag:187,greetingclass:187,grei:56,gremlin:196,greys_r:136,greyscal:136,grid:[18,22,29,45,46,56,59,62,63,65,66,72,83,91,93,141,148,155,158,160,169,173,200],grid_clf:171,grid_estim:93,grid_param:93,grid_pr:66,grid_search:[58,59,63,64,65,66],gridsearch:[58,59,63,64,66,163],gridsearchcv:[56,58,59,63,64,65,66,93,163,171],gridsearchcvgridsearchcv:[63,64,66,163,171],gridspec:142,grlivarea:[60,72],groceri:[73,168,175],gross:25,ground:[72,143,188,208],groundbreak:140,groundwork:113,group:[14,18,22,31,41,55,56,60,73,83,110,111,113,115,116,117,119,120,121,122,123,125,127,139,143,145,146,148,152,154,155,157,158,159,160,163,168,172,173,175,176,178,183,184,185,186,188,190,192,193,194,195,196,202,207,209,210],group_by_categori:102,group_kei:[22,129],group_siz:148,groupbi:[1,14,18,22,31,41,60,92,119,129,184,194],groupby_sum:14,grouper:41,groupnorm:[139,148],grover:61,grow:[91,110,119,125,128,133,148,153,164,196],grow_polici:[72,167,168],grown:163,growth:[87,143,150,163],growth_rat:143,grunin:14,gryffindor:203,grzanka:137,gs:142,gsearch3:62,gsearch4:62,gsearch5:62,gt:[51,145],gt_coord:45,gu:155,guarante:[56,128,131,153,189],guardian:117,guardrail:121,guarrant:[75,89],guava:43,guess:[7,18,52,56,59,62,64,101,102,126,154,160,164,176,183,187],guesser:56,gui:[60,110,191],guid:[0,17,23,56,60,62,84,108,121,123,128,129,130,131,147,151,153,154,155,178,187,191,197,207],guidanc:[50,53,65,84,121,154,172,178,202,207],guidelin:[53,121],guido:[188,189,209,210,211],guin:125,gun:117,gust:141,gutedbanoeu:175,gutenberg:[111,145,190],guyon:65,gym:102,gyro:172,gyroscop:125,gz:[34,136,143],h01:42,h0:194,h1:[1,15,18,141],h2:[1,18,141],h2o:[153,164],h5:[41,43,44,45,46,47,49],h:[18,31,34,41,77,93,102,121,139,144,145,148,149,164,168,172,188,205,210],h_:204,h_t:[149,164],ha:[5,6,7,12,14,15,16,17,18,23,29,30,31,33,34,36,38,42,43,44,45,46,48,50,51,52,53,55,56,58,60,62,63,68,69,70,71,73,75,83,84,85,89,91,92,97,108,110,111,112,113,115,117,118,119,120,122,123,125,126,127,128,129,130,131,133,136,140,143,144,145,146,147,148,149,150,153,154,155,156,157,158,159,160,163,164,165,167,168,169,170,171,172,173,177,178,179,182,183,186,187,188,189,193,194,195,196,198,202,203,204,207,208,209,210,211],habit:[23,73,187],habitat:[119,194],habr:172,habrastorag:172,hack:[102,121],hacker:101,had:[16,29,43,50,52,53,55,56,58,62,63,65,75,89,111,113,121,128,129,131,133,164,168,182,187,190,192],haemoglobin:110,haffner:197,haha:189,halevi:156,half:[1,31,34,55,56,58,101,125,128,150,171,182,184],half_dim:139,halfbath:60,hall:178,halloween:[182,185],halt:187,halv:[34,154],ham:[149,187,209],hamster:178,hand:[31,35,43,46,55,60,62,112,113,117,131,147,150,152,153,158,160,165,169,170,172,175,178,180,186,207],handbook:[63,64,66,67,117],handi:[44,83,128,158,187],handl:[0,7,23,43,45,55,56,60,62,64,66,67,75,85,87,89,101,102,110,113,117,118,121,123,126,128,130,131,140,147,152,153,154,155,156,158,163,166,169,176,178,186,188,191,200],handle_data:3,handle_endtag:3,handle_missing_valu:83,handle_starttag:3,handler:187,handout:159,handson:171,handwritten:[29,32,46,52,91,172,208],hang:176,hao:148,happen:[1,7,18,46,53,60,66,69,71,113,122,125,128,131,141,146,154,157,164,170,173,187,197,203],happi:[113,117,125,129,178,203,207],happier:[53,120],har:[86,108],hard:[50,55,58,65,72,113,115,140,143,164,167,171,172,178,184,207],hardcod:187,hardcov:150,harder:[50,52,56,68,73,154,155,164,187],hardest:173,hardwar:[108,110,115,153,156,171],harm:[28,110,111,121,190,192],harmon:[44,58,63,65,75,89,172],harmoni:160,harvard:113,harvest:183,hasattr:143,hash:[51,127,189,196],hashabl:188,hashablet:129,hashtabl:131,hashtable_class_help:131,hashtag:108,hasn:[70,170],hasti:[163,164],hat:[84,86,87,143,160,161,164,168,179,203],have:[0,1,3,4,6,7,8,9,12,14,15,16,17,18,20,23,25,28,29,30,31,32,33,34,35,36,38,42,43,44,45,46,48,50,51,53,55,56,57,58,59,61,62,63,64,65,66,67,68,69,70,71,73,75,77,83,85,86,87,89,91,100,101,102,106,107,108,109,110,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,168,169,170,171,172,173,175,176,177,178,179,180,182,184,186,187,188,189,193,194,196,197,202,203,204,207,208,209,210],haven:[45,59,64,178],hay:189,hazelcast:196,hbase:196,hbr:113,hc:172,hd:43,hdbscan:158,hdf5:198,he:[18,125,129,143,148,149,150,153,160,163,173,178,207],he_norm:144,head:[1,14,15,24,29,31,37,41,42,43,44,49,52,53,54,55,56,57,58,59,60,62,63,65,66,67,69,70,71,72,73,74,75,83,85,89,92,95,118,119,120,126,131,143,146,147,148,150,155,158,160,161,165,168,173,175,176,182,183,184,194],header:[18,29,41,52,125,127,136,158,188],headlin:28,headwai:114,health:[1,13,108,121,128,146,155,192],healthcar:[86,111,147,190],healthi:110,heapprimit:187,hear:178,heard:[28,41,83,113,146,158,164,165],heart:[6,9,34,56,107,122,147,156,179],heart_diseas:147,heat:123,heatingqc:60,heatmap:[1,8,35,41,44,53,55,57,58,59,60,65,70,73,75,83,89,147,158],heav:154,heavi:[115,164,176],heavili:[137,141,153,156,159,178,184],heavyweight:176,height:[3,18,31,34,36,66,75,76,89,92,117,120,122,125,129,130,131,136,138,139,143,144,159,163,169,171,172,173,175,179,180,182,186,187,194],height_shift_rang:32,heirloom:182,held:[121,160],helicopt:141,hello:[46,102,131,136,186,187,188,189,195,209,210],hello_world_str:[188,210],helloworld:[189,211],help:[0,1,7,8,23,28,32,33,34,37,38,46,50,53,56,57,60,62,65,68,70,72,73,75,83,84,85,86,89,91,94,107,108,110,111,112,113,115,116,117,121,122,123,125,126,128,129,135,139,146,147,150,151,152,153,154,155,156,158,159,163,164,167,168,169,170,171,172,174,175,177,178,179,182,183,184,185,186,187,188,189,190,191,192,193,194,202,204,209],helper:[34,46,77,119,142,150],helvetica:173,henc:[7,44,53,60,65,66,67,69,71,73,83,135,152,160,172],heparin:1,her:[7,56,154],here:[1,7,11,14,18,24,28,32,33,37,42,44,46,48,50,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,71,72,75,83,84,85,86,89,91,93,101,102,105,106,109,110,111,113,115,117,119,121,123,125,126,127,128,129,131,133,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,158,159,161,164,165,167,168,170,171,172,176,177,178,179,182,183,186,187,188,189,195,196,198,202,203,204,207,209,210],hereaft:188,herebi:[101,102,187,188,189],hessian:164,heterogen:161,heurist:[56,154,156,164,172,178],hf:[9,109],hi:[7,55,70,77,125,129,161,170,173],hidden:[30,46,52,53,68,123,135,145,147,148,149,150,154,156,170,208],hidden_dim:148,hidden_layer_s:37,hidden_unit:208,hide:[18,52,55,58,59,63,64,75,89,187],hide_result:52,hierarch:[73,123,158,197],hierarchi:[122,143,144,172,187,197],high:[14,18,31,33,41,45,46,48,49,52,53,55,56,59,62,63,65,66,67,69,70,71,73,75,83,89,92,101,110,123,128,133,140,143,150,152,153,154,156,164,166,167,168,169,170,172,178,182,183,184,189,195,198,202,204,211],high_blood_pressur:[9,109,110],high_qual:179,high_valu:155,higher:[18,29,34,43,50,55,56,58,60,62,63,70,72,73,83,86,110,111,113,118,125,128,144,147,150,154,161,163,167,169,170,171,172,182],highest:[33,34,46,52,143,144,168,184,208],highli:[53,58,60,83,125,141,152,154,155,163,172,189,202],highlight:[1,28,87,111,119,121,123,127,133,146,153,178,207],highlight_max:203,hilari:117,him:164,hing:87,hint:[3,7,14,22,24,52,59,91,101,102,109,127,159,184,186],hinton:[34,170,172,202],hipaa:121,hire:[62,111,113,121,190],hire_d:195,hist2d:[118,194],hist:[1,18,22,29,40,43,52,55,58,59,62,64,65,66,67,72,118,160,194],hist_cent:40,hist_df:43,histogram:[1,4,18,40,44,52,55,58,60,64,65,66,83,117,125],histor:[111,117,155,178,182],histori:[29,30,31,32,33,34,35,36,37,38,41,43,44,49,50,52,53,68,76,110,111,136,149,150],history_df:[38,68],history_t:37,history_va:31,histplot:[75,89],hit:[7,141],hitchhik:153,hither:187,hline:161,hn7frmhbx0grnwcxwxgvksqremvudikmafwmruksyobbcirjjq0nqss6al2kvan3f4in:65,ho:[65,163],hoang:143,hobbi:102,hoc:153,holbrook:68,hold:[31,35,37,56,70,87,127,131,140,160,168,178,188],holder:[101,102,187,188,189],hole:[40,119],holidai:182,hollow:184,home:[56,83,173,187,203],homeless:117,homepag:151,hometown:188,homogen:[7,128,161,172,195],homogeneity_scor:172,honei:13,honestli:121,hong:209,honor:130,hood:[101,163,164,179,204],hope:[26,60,62,85,129,143,165,170,175,189,211],hopefulli:[46,60,67,83],hopkin:[14,128,155],hoptroff:156,hor:149,horeca:168,horizon:[141,150],horizont:[14,33,57,117,128,129,144],horizontalalign:[76,92,172,202],horribl:[188,210],hors:136,horseradish:175,hospit:155,host:[53,108,111,115,122,152,153,190,191],hostel:161,hostel_data:161,hostel_factor:161,hot:[1,7,44,52,57,60,115,147,149,154,178,182,193],hotel:168,hour:[34,41,55,58,62,109,110,111,113,122,154,173,190,203,204],hour_df:41,hourli:[41,122],hours_per_week:57,hous:[56,60,67,140,153,154,155,156,178,203],house_price_test:60,house_price_train:[60,167],household:[67,73,83],housekeep:141,housing_median_ag:[67,83],how:[1,7,8,9,10,11,14,15,16,18,20,29,30,31,33,34,36,40,41,42,43,44,45,46,48,50,51,52,53,55,58,59,60,63,64,66,67,68,69,71,72,73,75,76,78,80,83,84,85,86,87,89,91,92,97,99,108,109,110,111,112,113,115,117,118,119,120,121,123,124,125,126,127,128,129,130,131,133,134,138,139,140,141,145,147,148,150,151,152,153,154,155,158,159,160,163,165,167,168,169,171,172,173,175,176,177,178,179,182,183,184,186,187,188,190,192,193,194,196,201,202,203,204,207,209,210],howard:42,howden:[182,183,184],howev:[1,3,7,28,30,32,34,38,40,45,50,51,52,53,56,60,62,68,72,73,84,91,110,112,121,122,123,125,126,128,130,131,133,135,137,144,145,147,148,153,154,156,161,164,166,169,170,171,172,176,178,182,184,186,187,188,189,192,202,211],hpo:154,hr:[41,62,173,195],href:[130,131,136,137,143,144,159,163,169,171,172,173,175,179,180,182,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],hs2tsaiyzwkbo6orj6wvehycjhbrkjuhw0crkpjtggndbp0arhryiicw5s0jc2svz2ebhfxhoobmrhcgskb0pxtwf:65,hs:[139,148],hsnxm5szde9abszvecizlizzyqekuo0ss8hzlzezp0:65,hspace:[31,142,171],hsplit:128,hstack:128,htkshwkqgmkzmgvh4qt4nn6juvi0bflsiclyxnon:65,html:[3,15,31,63,64,66,67,72,92,102,122,125,129,130,131,136,137,143,144,159,162,163,167,168,169,171,172,173,175,179,180,182,184,186,187,188,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],htmlparser:3,http:[1,2,3,12,14,15,18,22,25,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,50,52,53,54,57,62,63,64,72,74,75,76,77,89,91,92,93,102,109,110,117,118,119,120,121,123,125,127,129,130,131,136,137,138,139,142,143,144,145,146,148,149,150,155,156,158,159,160,161,162,163,165,167,168,171,172,173,175,176,177,178,179,180,182,183,184,187,188,190,191,192,193,194,196,197,198,202,209],http_get:3,httpmessag:171,huang:[101,102],hub:[16,108,111,123,155,190],huber:[49,87,139,164],hubspot:113,hue:[55,57,58,63,66,67,70,73,75,83,89,92,118,120,158,194],hufflepuff:203,hug:42,huge:[1,70,108,140,152,178,207],human:[16,31,46,52,56,115,121,122,123,140,143,146,147,153,156,178,189,192,207],humanist:111,humbl:153,hundr:[7,139,154],hungri:[38,175],hunt:[80,91],husl:150,hutter:154,huyacli:41,hw8:65,hw:77,hxfbpxg4aih7u:65,hybrid:[87,108,150,191],hydroxychloroquin:1,hype:[41,121],hypeparamet:34,hyper:[32,66,143,145,164,172,201,202],hyperparam:60,hyperparamat:[55,66],hyperparamet:[34,42,50,53,55,56,58,59,60,63,64,66,67,69,71,75,89,93,109,140,143,150,155,164,168,169,171,178],hyperplan:[56,169,200],hypert:196,hypertens:110,hyphen:145,hypothes:[18,123,125],hypothesi:[29,69,71,146,168,182],hyungjin:148,i1:128,i4:[128,131,195],i6hdvncl4sdud5y6jyyqihm09adf43u3jaepldi0xp9cfogdawd7jds9m5kcdyifkqt7n6n6iacdgdb:65,i8:128,i:[1,3,8,14,16,18,29,30,31,32,33,34,35,38,39,41,42,43,44,45,46,47,48,49,55,56,57,58,60,61,62,63,64,65,66,70,72,73,75,76,77,83,84,85,86,87,89,90,91,101,102,109,110,111,112,113,115,117,123,125,128,129,130,131,135,136,138,139,140,141,142,143,144,145,146,147,148,149,150,152,155,159,160,161,163,164,165,168,169,170,171,172,179,182,188,195,201,202,203,204,205,206,208,209,210,211],i_1:128,i_:[14,161],i_batch:39,i_i:161,i_imag:39,i_j:168,i_loss:36,i_m:128,i_t:[14,145],i_x:145,iaa:[108,153,191],iac:153,iam:152,ian:[29,56,87,142,180,198],iat:130,ibm:[111,121,152,153,190,196],ic:[64,149],iclr:154,icml:164,icon:[7,51,110,119,126,186,189],id3:56,id:[7,12,15,31,42,60,62,63,69,70,71,72,73,91,109,127,129,133,146,147,173,187,196],id_out:143,id_tensor:143,id_var:70,idea:[7,31,38,41,42,45,51,55,56,58,59,64,66,67,68,72,73,75,89,92,111,113,125,126,128,143,146,147,151,154,155,158,160,164,165,166,168,169,171,172,175,176,178,179,182,183,187,193,203,204,208],ideal:[33,60,83,86,113,123,125,146,154,160,164,167,169,170,182,183,187,189,209],ident:[33,42,46,56,121,128,129,131,141,143,144,147,149,152,153,163,188,196,210],identif:[42,87,141,152,169],identifi:[6,11,16,23,28,29,33,34,38,51,55,56,58,62,63,65,68,85,87,110,111,113,115,116,121,122,123,125,126,127,131,133,140,143,146,147,148,152,154,155,164,172,178,186,189,190,192,193,194,195,196,197,202,207],idiom:146,idl:[38,110,128],idx1:43,idx2:43,idx:[31,61,142,171],ie:15,ieee:[7,126],ifram:[125,129,130,131,136,143,144,159,162,163,169,171,172,175,179,180,182,184,187],ig:56,igam:41,iglob:31,ignit:196,ignor:[38,42,43,55,56,57,58,59,60,62,63,64,65,70,73,75,89,91,101,113,118,127,129,143,144,149,150,163,164,165,167,171,172,179],ignore_index:[45,129,195],ih:145,ihm:155,ii:[18,39,65],iii:31,ij:[18,125],iljxqfj1omejrnpbca8g:65,ill:167,illinoi:195,illumin:[43,143,148],illus:[121,192],illustr:[3,8,24,29,38,56,65,111,121,127,131,135,136,138,139,143,148,150,160,163,164,169,170,187,192,201],iloc:[1,14,31,37,43,47,51,52,53,56,60,70,91,93,130,131,161,163,176,179,195,204,205,206],ilsvrc:143,im:[139,148],im_batch_s:39,im_shap:139,imag:[3,28,31,35,36,37,38,40,43,44,45,48,52,57,65,66,70,75,76,77,84,87,89,91,93,101,111,113,116,117,122,123,128,135,136,137,138,139,140,141,142,146,147,148,149,154,156,158,160,164,167,168,172,175,178,182,183,189,190,192,194,198,207,208],image_:39,image_arrai:[39,136],image_batch:[33,198],image_count:33,image_data:76,image_data_format:144,image_dataset_from_directori:[33,38,139],image_dict:136,image_dictionari:136,image_ev:138,image_h:31,image_height:136,image_label:44,image_label_overlai:40,image_loss:36,image_loss_track:36,image_of_8:76,image_path:137,image_s:[33,36,38,39,139,143,208],image_segmentation_diagram:171,image_shap:148,image_w:31,image_widget:77,image_width:136,imageclassificationbas:34,imagedatagener:[32,35],imagefold:[34,39],imageio:[31,136,137,138,147],imagenet:[137,138,156],imagenet_mean:77,imagenum:31,imageri:[43,113],images_path:171,imagin:[56,122,133,154,158,164,170,173,175,186,196,203],imaginari:[18,101,187,188,210],imaginary_part:187,imbal:[58,75,89,152,154,175,178,183],imbalanc:[63,64,65,159,164],imbalnc:65,imblearn:175,imdb:[121,192],img:[31,33,34,38,39,43,45,46,76,77,135,137,139,142,148],img_arrai:33,img_batch:137,img_class:76,img_color:76,img_grei:76,img_height:33,img_in:77,img_label:43,img_nois:77,img_path:43,img_pool:144,img_resc:76,img_shift:77,img_to_arrai:[33,76],img_width:33,imgplot:39,imgs_numpi:142,imgur:77,immedi:[7,48,51,56,83,113,126,141,164,173,184,187],immens:[56,131],immut:[48,188,189,210,211],imp_coef:72,impact:[28,33,46,55,58,60,111,113,121,141,146,147,154,156,182,190,201],impair:[56,117],implaus:198,implement:[0,16,31,33,34,38,51,52,55,56,57,58,59,60,63,64,65,67,75,83,89,91,101,105,106,113,121,128,131,139,142,143,144,145,149,153,154,156,163,167,169,171,172,178,187,188,195,210],implemet:172,impli:[22,50,52,53,54,65,70,101,102,109,146,149,153,154,158,172,178,183,187,188,189],implic:[16,121,149],implicit:[121,153,163,192],implicitli:[65,141,187],imporov:72,import_graph_def:77,importance_typ:[72,167,168],importantli:[110,131,191],importerror:[187,189],impos:[163,170],imposs:[123,178,207],imprecis:146,impress:[3,44,58,66,113],improb:125,improv:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,32,33,34,38,42,44,46,48,52,53,55,56,60,65,70,72,75,78,80,81,84,85,86,89,94,97,98,99,100,102,109,111,113,121,123,126,139,141,143,145,147,151,152,153,155,156,160,163,164,167,168,169,171,172,177,178,179,182,183,192,202,207],impur:[56,161,163],imput:[7,22,57,60,62,67,72,75,83,89,167,178,207],impute_with_mean:22,impute_with_median:22,imputed_column_nam:22,imread:[31,39,43,45,171],imsav:76,imshap:148,imshow:[1,3,29,30,31,33,34,35,36,38,39,40,43,44,45,46,56,76,91,93,135,136,139,142,144,171,172,198,202,208],imura:186,imwrit:[136,138],in_channel:[31,143],in_clust:171,in_plan:143,inabl:140,inaccur:[7,51,111,121,126,141,150,164,167,190],inaccuraci:[51,126],inact:[33,110],inadequ:65,inappropri:123,inargu:44,inbound:42,inbox:146,inc:156,incent:121,incentiv:121,incept:136,inception5h:77,inception_v3:137,inceptionv3:137,inch:[182,183,184],incid:28,incident:170,includ:[1,3,4,8,14,31,32,33,38,42,44,46,55,57,60,62,70,73,83,84,85,87,92,101,102,108,109,110,111,114,117,118,120,121,123,125,128,129,130,131,140,143,144,148,150,151,152,153,154,155,156,157,159,161,164,167,170,171,173,175,176,178,182,183,184,185,186,187,189,190,191,195,203,204,207,208,209],include_top:[137,144],inclus:[111,121,130,141,153,154,192],incom:[56,57,73,83,121,154,161,178,188,192],income_evalu:57,incompar:117,incompat:128,incomplet:[4,51,78,99,121,122,126,141],incomprehens:123,inconsist:[38,126,193],incorpor:[56,129,144,153,155],incorrect:[15,46,50,52,53,57,65,75,83,89,142,160,164,211],incorrectli:[44,58,63,65,75,89,152,154,164,177],increa:44,increas:[14,32,33,34,37,38,43,44,50,52,53,55,58,59,62,63,65,68,70,73,75,85,89,91,110,113,115,120,123,125,128,135,143,148,152,153,154,156,160,163,164,168,169,170,171,172,178,189,191,200,202,211],increasingli:[137,150,154,156],incred:[44,45,55,178],increment:[53,55,70,84,101,102,128,141,152,153,154,164,165,171,187],increment_count:187,increment_funct:187,incur:[110,191],ind1:128,ind2:128,ind:[128,161,195],ind_1:128,ind_2:128,ind_n:128,inde:[7,18,53,120,128,164,165,171,172,202],indefinit:149,indent:[93,129,187],independ:[0,60,85,86,125,128,139,141,149,153,160,163,168,172,183],index:[1,7,14,24,31,34,36,39,41,43,44,45,48,54,56,57,58,60,62,63,65,68,72,73,83,85,92,101,119,122,126,136,143,144,145,150,158,159,163,169,171,172,173,176,177,179,182,186,187,188,196,208,210],index_col:[51,60,150],index_nam:14,index_of_8:76,indexengin:131,indexerror:[69,71,128,130,131,189],indexin:[22,24],indexingerror:130,indi:158,india:[174,175],indian:[74,175,176,177],indian_df:175,indian_ingredient_df:175,indic:[1,7,14,16,22,46,51,52,53,60,62,70,73,85,86,87,91,101,108,109,111,121,122,125,126,129,130,131,133,141,143,144,145,146,159,160,161,170,172,178,182,184,187,188,189,195,207,208,210],indirect:128,indirectli:[55,187,188,208],indistinguish:169,individu:[7,14,40,46,55,56,60,62,68,84,111,113,121,126,127,139,147,153,154,156,160,163,178,179,187,188,190,195,207,210],induc:145,induct:[154,158],industri:[115,121,146,150,153,156,164,178,189,207],indx:39,ineffici:[110,128,164,168,188],inequ:171,inertia:[159,172,202],inertia_:[159,171,172,202],inertia_vs_k_plot:171,inexhaust:143,inf:[14,50,61,92],infect:[1,8,14,128,155],infected_dataset_url:14,infected_df:14,infecti:[14,155],infer:[9,33,42,109,110,143,144,145,152,153,154,155,156,158,173,178,180,195,207],infer_sampl:145,inference_config:[9,109],inferenceconfig:[9,109],inferior:56,infinispan:196,infinit:[14,62,113,141,164,187,188],infinitegraph:196,infinitydb:196,infix:128,inflection_idx:155,inflection_r:155,inflict:117,influenc:[17,58,60,84,87,115,121,141,159,173,177,178,188,193],influenti:121,info:[14,41,44,55,57,58,60,65,66,73,75,83,89,93,126,144,158,168,173,175,182,183,196],infocli:41,infograph:[113,117,123,158,159,175,182,183,184],inform:[1,4,12,14,15,17,22,23,24,25,31,41,44,45,46,48,51,53,55,56,58,59,60,62,63,64,73,75,83,86,89,102,108,109,110,111,112,113,115,118,119,121,122,123,125,127,128,129,131,133,140,141,143,144,145,146,147,148,150,152,154,155,156,158,161,163,164,168,169,170,171,172,178,182,186,187,188,190,192,193,196,198,209],infrastructur:[108,115,155,191],infti:[125,139,141,160],infus:177,ingest:153,ingrain:146,ingredi:[174,176],ingredient_df:175,inher:[70,144,146,172],inherit:195,init:[30,62,90,101,159,171,179,187,204,205],init_imag:138,init_lr:139,init_model:77,init_s:171,init_tim:139,initi:[0,3,15,34,37,42,45,48,53,55,56,60,61,69,70,71,73,77,84,85,91,101,102,108,111,121,122,128,135,138,141,143,144,145,148,152,154,156,159,163,164,167,172,178,182,184,187,188,190,195,202,209,210],initial_eda:57,initial_nois:36,initial_prob:165,initial_st:145,initiali:34,initialis:38,initialise_graph:141,inject:129,inland:[67,83],inlin:[54,55,57,58,59,61,63,64,65,66,67,68,72,83,84,91,92,93,142,147,163,171,173,200,202,204,205,206,208],inlinebackend:[56,72,150,160,163,172,202],inner:[41,84,101,129,130,131,133,150,187,196],innermost:[187,209],innov:[60,108,111,121,191],inordin:164,inplac:[1,7,14,22,30,39,41,45,51,53,56,57,60,129,147,150,167,173,175,179,183],input:[9,14,15,18,22,29,30,31,32,33,34,36,38,39,41,42,44,45,46,47,48,50,52,55,56,57,58,59,61,62,63,64,67,68,70,75,76,77,84,85,86,89,91,100,101,102,108,109,110,125,128,129,130,131,135,136,137,139,140,141,142,143,144,145,147,148,149,150,153,154,155,156,158,160,161,163,164,168,169,170,171,172,173,175,178,182,186,187,188,189,198,202,203,207,208],input_1:[36,139],input_2:[36,139],input_:45,input_data:[9,53,58,59,63,64,83,109],input_dim:[37,38,50,52,53,143,147,149,198,208],input_funct:53,input_id:42,input_imag:144,input_length:149,input_mask:144,input_proj:148,input_s:[141,144,208],input_shap:[32,33,35,38,41,43,44,46,47,49,68,76,136,141,143,144,148],input_signatur:137,input_tensor:144,input_text:102,input_unit:91,input_valu:141,input_width:36,inputlay:[36,45,142],inquir:146,inquiri:[111,118,146],insensit:[133,163,169],insert:[69,71,84,127,128,131,164,187,209,210],insertion_sort:102,insid:[0,1,3,33,34,56,66,67,68,75,84,89,125,128,131,133,135,141,143,145,147,153,165,171,173,179,188,189,203,210],insight:[11,16,55,58,60,65,66,83,84,86,108,110,111,113,118,121,123,129,151,152,190,192],inspect:[33,46,63,64,65,75,83,89,178],inspir:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,154,155,158,159,160,161,163,164,165,167,168,173,175,176,177,178,182,183,184,186,197,202,203,204,205,207,208],instabl:56,instagram:129,instal:[0,3,12,18,25,30,33,37,40,48,57,107,108,109,110,111,112,113,114,115,117,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,187,188,194,195,198,200,202,203,204,205,206,208,209],instanc:[7,31,42,51,55,56,57,58,60,65,87,92,110,111,113,126,127,128,130,140,142,143,146,148,150,153,154,156,161,163,168,170,171,178,183,188,198,207,209,210],instant:[62,119,146],instanti:[48,54,57,65,92,131,168,183,187],instantli:151,instead:[7,22,31,32,34,37,38,48,52,53,55,56,59,60,63,64,67,68,91,92,108,113,117,119,121,122,123,128,129,140,142,143,144,150,152,153,154,163,164,165,167,170,171,172,178,179,182,184,187,188,189,202,203,207,210],institut:[56,146,155],instruct:[0,56,75,89,109,110,113,117,140,186,189],instrument:[111,121,158,159,160,164,173],insuffici:[16,117],insur:121,int16:128,int32:[48,77,128,137,139,141,145,148,171],int64:[22,41,54,63,64,65,66,67,70,73,76,83,92,128,129,130,131,144,158,161,163,168,171,175,182,184,195],int64index:[173,182],int8:[62,163],int8dtyp:150,int_:125,int_featur:173,int_memori:[75,89],int_seri:7,int_shap:144,intact:22,intang:121,integ:[7,12,44,45,46,52,59,60,62,64,87,101,126,130,131,136,141,142,143,144,180,187,189,195,209,211],integer_vari:[188,210],integr:[0,65,87,108,110,111,113,121,122,123,131,139,146,152,153,155,190,191],intellectu:[121,192],intellig:[43,46,108,111,123,140,146,152,155,156,178,191,192],intellisens:94,intend:[46,87,113,117,131,146,152,153,180,187],intenion:165,intens:[56,110,143,154,172,198,202],intent:[113,117,121,146,192],intention:164,inter:[65,125,143,153],inter_nearest:76,interact:[5,7,16,29,30,85,108,109,110,113,117,123,126,131,141,146,151,152,153,164,169,182,186,187,189,191,200,203,209,211],interaction_constraint:[72,167,168],interactivesess:77,intercept:[83,84,150,179,182,204],intercept_:[83,182,204],interchang:[7,133],interconnect:147,interdisciplinari:[151,207],interest:[1,5,13,14,16,19,29,34,44,55,56,58,63,64,65,75,83,89,108,111,116,117,118,119,120,122,125,127,129,133,141,143,144,154,157,158,163,164,169,173,175,183,184,186,194,195,196,198],interestingli:[1,119,158],interfac:[16,107,110,119,122,128,189,191],interg:189,interleaf:186,intermedi:[18,30,144,147,171],intermediari:34,intern:[30,56,75,77,89,110,128,130,141,151,153,155,159,160,163,172],internet:[14,32,108,117,118,121,122,123,133,153,191],interpol:[1,31,36,56,76,142,143,144,171,175,198],interpret:[3,7,33,44,46,52,53,56,63,64,72,73,118,121,125,127,128,129,130,131,141,146,156,158,160,163,164,172,178,182,187,188,189,192,196,197,207,209,210],interquartil:60,interrelationship:113,interrupt:[110,170],intersect:[87,115,127,129,182,188],interspers:128,intersystem:196,intertwin:146,interv:[55,58,62,120,128,139,141,152,155,160,169,200],interview:164,intimid:168,intl:[56,160],intp:128,intra:[143,148,171],intric:87,intricaci:[86,113],intrins:173,intro:125,introduc:[18,29,31,33,52,56,60,72,84,85,104,113,118,123,129,139,140,141,143,144,147,148,153,154,158,164,170,187,197,198,209],introduct:[7,39,48,67,132,134,141,152,156,157,174,178,180,181,185,188,196,197,198,199,200,202,204,207,209],intuit:[56,61,75,86,89,131,140,143,164,169,178,197,202],inu:42,inv_i:41,inv_sigmoid:155,inv_yhat:41,invalid:[14,118,149,150,152,187,189],invalid_column:[14,24],invalid_column_nam:[14,22,24],invalid_column_valu:24,invalid_df:14,invalid_month_typ:14,invalid_window_typ:14,invalid_year_typ:14,invalidindexerror:131,invari:[143,154],invent:164,inventori:[111,152],inventoryexampl:127,invers:[43,70,72,128,155,163],inverse_transform:[41,47,205,206],invert:[41,128],invest:[108,153],investig:[23,52,60,111,121,122,154,163,168,182,192],investor:146,invis:[121,192],invit:128,invoc:[153,187],invok:84,involv:[7,38,48,51,56,60,73,84,85,86,87,110,112,113,115,121,123,126,129,131,143,146,168,178,181,183,187,191,193,207],io:[30,31,45,76,77,110,130,131,136,138,139,144,149,150,163,173,182,197,198],ioc:153,ion:141,iot:[33,123,152,173,192],iou:[87,154],ip:65,ipykernel_15370:194,ipykernel_24432:202,ipykernel_3024:131,ipykernel_30912:209,ipykernel_3908:118,ipykernel_6984:68,ipykernel_launch:172,ipynb:[0,77,158,159,173,175,177,182,184,186,195],ipytest:[3,14,22,24,59,83,101,102],ipython:[12,22,25,30,33,40,43,61,66,70,91,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],ipywidget:[169,200],iq0d24li:172,iqr:[60,125],ir1:72,irani:56,ireland:12,iri:[7,51,66,92,126,131,161,178],iris_data:161,iris_df:[7,51,126],iris_df____:51,iris_isduplicated_df:51,iris_isnull_df:51,iris_support:66,iris_versicolor_3:66,iris_virginica:66,iris_with_drop_duplicates_on_column_df:51,iris_with_drop_duplicates_on_df:51,iris_with_dropna_1_values_on_rows_df:51,iris_with_dropna_2_values_on_rows_df:51,iris_with_dropna_on_column_df:51,iris_with_dropna_on_row_df:51,iris_with_fillna_back_df:51,iris_with_fillna_back_df____:51,iris_with_fillna_df:51,iris_with_fillna_df____:51,iris_with_fillna_forward_df:51,iris_with_fillna_forward_df____:51,iris_with_missing_value_after_fillna_back_df:51,iris_with_missing_value_after_fillna_df:51,iris_with_missing_value_after_fillna_forward_df:51,iris_with_missing_value_df:51,ironi:146,irrelev:[140,169],irrespect:[110,180],is_avail:[31,34,39],is_bool_index:130,is_cnn:31,is_empti:101,is_good_enough:102,is_hash:131,is_integ:130,is_leaf:61,is_list_like_index:130,is_marri:211,is_monotonic_increas:130,is_par:73,is_prim:101,is_scalar:130,is_uniqu:129,isabel:65,isalignedstruct:128,isalpha:188,ischoolonlin:193,isclos:101,isdecim:188,isdir:[43,136],isfil:[77,136,145,149],ish:[38,72],isinst:[14,34,57,101,102,130,138,143,144,148,187,188,210],island:[67,83],isn:[43,45,50,53,131,161,170,173,187],isna:[14,57,62,112],isnan:[51,128],isnt:60,isnul:[7,22,51,52,53,54,55,57,58,59,60,63,64,65,67,70,75,83,89,112,126,158,168,184,195],iso2:155,iso3:155,iso:152,isol:[7,84,126,153,156],iss:29,issu:[0,7,28,44,50,51,55,56,60,63,64,72,75,89,113,121,126,130,145,147,151,153,156,159,164,169,171,192],issubclass:187,issubset:14,isupp:188,item:[31,34,39,42,48,65,73,101,120,121,127,128,131,136,145,146,154,158,177,183,184,186,187,189,195,209,210,211],item_from_zerodim:130,items:[128,195],iter:[31,33,34,37,39,42,53,61,67,69,71,75,77,84,85,89,101,102,109,110,129,139,141,142,153,154,155,159,164,166,167,168,171,178,179,183,187,188,189,203,209,210],iter_cont:77,iter_count:142,iter_n:77,iterate_minibatch:91,iterated_numb:[187,209],iteration_count:145,iterrow:150,ith:[61,168],its:[4,6,7,12,18,22,26,28,29,31,33,34,36,43,44,45,46,48,53,55,56,60,65,67,68,73,75,83,84,85,86,89,94,102,108,110,111,112,115,117,118,120,121,122,123,126,127,128,129,130,133,135,139,140,141,143,144,145,146,147,150,152,153,154,156,158,159,160,161,163,164,165,168,169,170,171,172,173,175,177,178,179,180,183,184,186,187,188,189,190,193,194,195,198,200,202,207,210],itself:[7,14,56,60,91,117,123,127,133,152,153,154,155,163,164,172,173,178,183,187,188,202,207],itslek:60,iucn:118,ium:[188,210],ivborw0kggoaaaansuheugaaayqaaacccamaaabxtu9iaaaah1bmvex:65,ix2vocab:145,ix:[136,145],ix_:128,ix_cutoff:149,ix_to_vocab_dict:145,j7z80yoo:65,j:[1,32,34,35,39,41,53,56,62,101,102,117,128,135,141,142,143,154,160,161,163,164,168,171,172,188,189,202,205,206,210,211],jack:[188,210],jade:196,jag:[118,163],jake:[63,64,66,67,195],jakevdp:[169,200],jam:[38,123],jame:[125,209],jane:102,januari:[1,17],japan:[133,196],japanes:[175,176,177],japanese_df:175,japanese_ingredient_df:175,jar:153,jargon:[163,177],jasmin:25,java:153,javascript:[122,127,155,173,189,211],jbase:196,jci5e2ng6r4:162,jcodella:192,jean:[44,48,89,142,146],jeen:146,jehx7a7:65,jellek:107,jello:[188,210],jen:[111,159,175,182,183,190],jenna:116,jeremi:42,jerom:[163,164],jerri:[101,102],jesucristo:39,jetbrain:41,jez:153,jgzcjvracubdwr59:65,jha:147,jian:148,jim:[113,123],jitter:164,jlwfklkcd5a5zdyvlszj0s5qme6nbl:65,joaquin:154,job:[3,31,41,65,72,93,108,110,113,122,123,147,153,154,158,163,176,178,188,207,210],joe:189,john:[14,101,102,128,155,187,188,189,209,210],johnson:102,joi:[111,190],join:[12,29,30,31,34,38,39,43,46,50,51,52,53,57,62,72,73,77,126,136,138,140,145,149,150,151,161,171,172,175,182,187,188,202,210],join_ax:195,join_index:129,joint:139,jointli:144,jointplot:[73,158],joke:149,joli:56,jone:164,journal:56,journei:[86,111,123,151],jovian:34,jp:14,jpeg:[31,41,77],jpg:[31,33,38,41,45,66,77,137,138],js:[29,151,155,173,187,211],json:[6,9,93,109,117,122,123,173],judgment:160,jul:[111,190],juli:[17,123,154],jump:[93,109,113,120,128,171,179,187],jun:[110,211],jungl:158,junho:143,jupit:211,jupyt:[0,12,18,25,63,64,66,67,72,75,89,92,93,109,110,125,126,129,130,131,149,150,151,163,167,168,169,171,176,182,183,184,186,187,189,195,202,203,204,205,208,209],jupyterlab:[0,169],jupyterlab_myst:[30,33,40,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],juri:160,jurong:149,juror:160,just:[0,1,3,7,9,14,18,28,29,31,33,42,44,45,48,49,50,51,55,56,61,62,63,65,66,68,72,84,91,102,108,109,110,113,118,119,121,123,125,126,128,129,130,131,133,140,143,144,146,147,148,150,153,155,156,158,161,163,164,167,168,169,170,171,172,175,178,179,182,184,187,188,189,202,203,204,207,210],justifi:[53,113,154,173],jython:[188,210],k0:129,k0ejw9dkfvdwds21a1rdro0ancgqymgncr:65,k1:129,k2:129,k3:129,k4:129,k5:129,k5izpn8apjgrfovv82wjhtletgw:65,k5osgokaymjjuvfm5otnz2dlvb28rkyutra3q6ury8vlly8vf39:65,k8:153,k:[3,56,73,92,93,125,128,130,131,136,140,141,143,145,148,157,158,160,164,166,169,178,183,200,208],k_d:141,k_i:141,k_list:92,k_p:141,k_size:39,kaggl:[1,4,10,20,25,30,31,32,34,37,41,43,54,57,62,75,83,89,92,93,110,112,122,128,139,140,143,150,164,172,178,183,198,202,203,204,205,207,208],kaim:[143,148],kam:163,kaneoh:173,kapoor:[38,73],karnika:[38,73],karpathi:[163,169],karr:182,kashnitski:[56,160,161,163,164,202],kb:[29,38,41,45,56,66,73,126,158,168,173,182],kdd:152,kde:[22,60,62,73,118,158,194],kdeplot:[118,194],kdr:41,keep:[7,22,33,34,38,50,52,67,69,71,73,75,83,89,100,108,110,115,126,127,128,129,130,143,147,150,154,159,163,169,170,171,178,179,182,183,184,187],keep_dim:148,keepdim:[91,195],kei:[3,7,9,41,45,53,76,85,86,102,108,109,110,111,113,121,127,128,129,130,131,133,136,139,141,145,146,148,149,152,153,154,155,176,187,189,190,195,196,203,209,210,211],kelbowvisu:73,kept:[7,126,144,146,156],kera:[29,30,31,32,36,37,38,41,44,45,46,47,48,49,50,52,53,55,68,76,87,135,136,137,139,141,142,143,144,145,147,148,149,154,170,198],kernel1x1:143,kernel3x3:143,kernel:[31,32,34,62,66,67,143,144,150,158,168,177,182,199],kernel_initi:[36,144,147,148],kernel_s:[29,30,31,32,34,35,36,38,39,43,143,144],kernel_valu:143,kernelid:143,keskar:154,key_cal:129,key_dim:[139,143],key_is_scalar:131,key_oth:129,keyerror:[101,130,131,145,189],keys_list:101,keyword:[3,102,109,122,123,127,128,129,133,146,170,172,188,189,196,209,210],kfhh15qw86isx1ucrjzsekn0ijaykf3i96hnjna:65,kfold:[62,65,70],kfold_scor:62,kfoldcv:70,khale:156,khg:148,kid:73,kidhom:73,kill:[146,189],killer:51,kilobyt:[59,64,178],kim:[30,143,148],kind:[1,7,15,22,30,31,43,48,50,52,53,54,55,56,57,58,60,62,65,66,67,68,70,72,73,75,89,99,101,102,110,116,117,118,120,126,128,130,131,135,140,145,150,151,153,158,164,168,169,170,175,176,178,179,183,184,186,187,188,189,194,198,207],kinesi:152,kingdom:12,kingma:31,kingpin:117,kit:[68,107],kitchen:161,kitchenabvgr:60,kitchenqu:60,kiwi:[43,188,210],kl:180,kld:31,km:[152,159],kmean:[73,159,171,172,202],kmeans_:171,kmeans__n_clust:171,kmeans_algorithm_plot:171,kmeans_bad:171,kmeans_good:171,kmeans_iter1:171,kmeans_iter2:171,kmeans_iter3:171,kmeans_k3:171,kmeans_k8:171,kmeans_per_k:171,kmeans_rnd_10_init:171,kmeans_rnd_init1:171,kmeans_rnd_init2:171,kmeans_variability_plot:171,kmeanskmean:171,kneighbor:[171,176,177],kneighborsclassifi:[62,92,93,171,177],kneighborsclassifierkneighborsclassifi:[92,171],knife:203,knight:[187,188,210],knights_nam:187,knights_properti:187,knn:[56,62,135,163,171,177,178],know:[7,17,18,23,27,34,44,48,50,51,55,56,58,59,62,64,65,75,83,89,91,93,108,110,112,113,121,123,125,126,127,131,133,139,140,144,147,150,154,159,164,168,170,172,178,179,187,188,189,204,207,210],knowledg:[7,31,46,56,60,65,78,85,108,110,115,123,125,139,141,146,154,155,156,164,167,172,178,182,191,192],known:[32,33,56,63,64,65,75,84,86,89,115,121,122,123,125,128,131,140,144,146,147,148,150,151,152,153,154,155,160,164,169,172,178,180,187,188,207],kogwl43x3ogqzqjpuoe8b:65,kool_kheart:41,korbut:154,korean:[175,176,177],korean_df:175,korean_ingredient_df:175,kosaciec_szczecinkowaty_iris_setosa:66,kotthoff:154,kpash:65,kqxjp1r14yggzhpqx_gpx6580000gn:194,kriz:[136,143],krizhevski:34,ks:160,ksv:70,kubeflow:153,kubernet:153,kullback:139,kumar:147,kuqvjmwrkag9whlqdvrh:65,kurtosi:65,kw:77,kwangnam:139,kwarg:[36,48,118,129,131,144,148,187,194,209],l1:[69,71,87,103,135,154,180],l1regular:[69,71],l2:[42,69,71,87,103,154,169,180],l2_leaf_reg:60,l2_loss:138,l2regular:[69,71],l4lsxqfk:65,l9dkgf1pchhmpqsobc9eb:65,l:[56,61,87,91,125,129,135,138,141,148,149,163,164,165,168,180,183,188,195,196],l_1:[72,164],l_2:[72,164],l_:[87,164],l_left:56,l_p:125,l_q:164,l_right:56,la:[146,149],lab:[0,43,44,48,64,66,67,75,89,111,190],label2rgb:40,label:[1,7,15,22,29,30,31,32,33,34,35,38,39,40,41,42,43,44,45,46,47,50,51,52,53,55,56,58,59,62,63,64,65,67,70,72,73,75,83,84,85,87,89,91,93,109,110,117,118,119,120,127,129,136,141,143,144,146,147,149,154,155,158,159,160,163,168,169,171,172,173,175,176,177,182,183,189,194,195,197,198,202,204,205,206],label_batch:33,label_column_nam:[9,109],label_enc:[55,58,63],label_encod:[22,58,62],label_logit:148,label_mod:[38,139],labelbottom:171,labeled_coin:40,labelencod:[41,55,58,62,63,70,73,92,159,173,183],labelleft:171,labels:[68,150,171],labels_:[159,171,172],labels_batch:33,labels_df:175,labels_fil:136,labelweight:[68,150],labl:3,labor:154,labori:[7,51,126],lachin:110,lack:[13,26,28,141,154,155,156,164,187],lackland:173,laclo:117,ladi:[117,158],ladybug:171,lag:41,lag_1:150,lai:[113,144],laid:113,lake:[108,123,152,192],laken:53,lamb:187,lambda:[1,14,22,31,32,33,36,38,41,49,52,60,62,72,129,130,131,145,155,168,182,188,201,209,210],lambda_i:172,lambda_l1:60,lambda_l2:60,lambdamart:164,lamda:[69,71],land:[60,152],landcontour:72,landmark:121,landscap:156,lang:[15,41,129,130,131],langua:146,languag:[1,22,42,46,48,50,52,53,54,65,123,127,128,131,133,137,140,149,151,153,154,178,187,188,189,195,196,209,210,211],laplacian:164,lar:[149,154],larg:[1,7,11,30,31,33,42,43,45,50,51,54,55,56,57,60,65,66,67,68,69,71,72,80,87,108,110,111,112,113,115,121,123,126,127,128,129,131,133,135,140,143,145,146,150,152,153,154,156,158,160,161,163,164,167,168,169,170,171,172,177,178,182,188,191,192,195,198,200,202,203,210],larger:[14,29,53,65,84,87,101,110,121,128,135,139,154,164,167,183,188,195,197],largest:[53,65,108,128,143,172],larxel:110,laser:113,laskoski:157,lasso:[72,87,164,170,182],lasso_pr:72,lasso_sklearn:[69,71],lassocv:72,lassolarscv:72,lassoregress:[69,71],last:[7,8,14,29,32,33,40,41,42,43,44,46,48,49,50,52,55,58,61,66,68,73,75,89,91,92,102,113,121,123,126,128,129,130,131,136,140,144,150,152,153,154,159,164,170,175,176,178,184,187,188,192,195,207,208,209,210],last_index:188,last_nam:[102,209,211],last_new_job:62,last_stat:145,last_tl:37,lastli:[32,38,50,60,73,113],lastnam:189,lastnewjob:62,lat:[14,155,203],late:117,latenc:[143,150,153,156],latent:[29,31,38,135,139,154],latent_dim:[29,30,38],latent_vec:31,later:[7,18,33,39,44,45,46,48,52,54,56,59,60,65,73,91,92,113,115,121,123,125,126,131,133,140,141,147,150,154,167,168,171,178,186,187,188,189,204,207,211],latest:[110,136,140,153,155],latest_iter:203,latin1:136,latin:53,latitud:[67,83,173],latter:[44,121,123,128,139,140,143,154,155,160,161,173,176,182,183],launch:[16,110,127,153,156,199],lavend:150,lavenderblush:150,law:[22,50,52,53,54,111,115,121,190],layer:[29,30,31,33,34,35,36,37,38,41,43,44,45,47,48,49,50,53,68,76,77,117,129,135,136,137,138,139,141,142,143,144,145,147,148,149,154,168,170,198],layer_1:135,layer_2:135,layer_activ:[91,137],layer_i:91,layer_input:91,layer_nam:144,layer_num:77,layer_regist:148,layernorm1:143,layernorm2:143,layernorm:143,layout:[128,141],lbfg:[171,176],lc:[70,118,194],ldot:[164,165],le:[44,70,73,92,117,125,159,197],lea:141,lead:[53,56,65,70,84,113,121,123,125,128,129,130,141,150,152,153,156,159,160,161,167,170,187,192,195],lead_tim:150,leader:156,leaderboard:72,leaf:[56,60,163,168],leagu:125,leak:[63,121,142,172],leakag:[60,72,178],leaki:[142,147],leaky_re_lu:38,leaky_re_lu_1:38,leaky_re_lu_2:38,leaky_re_lu_3:38,leaky_re_lu_4:38,leaky_relu:142,leakyrelu:[31,38,39,140,142],lean:154,lear:167,learn:[0,3,7,12,16,18,21,22,25,28,29,30,31,32,33,34,35,37,39,40,41,42,43,44,45,47,49,51,52,53,54,55,57,58,59,60,61,63,64,66,67,68,72,75,78,80,84,85,86,87,89,91,99,101,102,107,108,109,111,112,113,114,115,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,134,136,137,138,139,142,143,144,145,146,147,148,149,152,153,155,158,159,160,161,163,164,165,166,167,168,169,174,177,181,183,187,188,189,192,194,195,196,197,198,199,200,201,204,205,206,208,209,211],learn_curv:70,learnabl:[32,91,143,154],learned_paramet:171,learner:[60,62,87,165,166,168],learning_curv:70,learning_r:[36,37,42,53,55,60,62,69,71,72,84,85,90,91,135,136,138,139,141,142,145,149,168,179,204,205],learningrateschedul:[32,139],learnpython:188,learnt:[18,60,63,70,85,144,179],least:[4,8,11,13,16,28,43,56,57,65,118,121,123,125,128,130,150,154,161,164,169,170,171,182,183,187,188,194],leav:[55,56,58,68,72,75,84,89,110,113,119,123,131,146,160,161,163,168,173,184,189,194,211],lectur:[92,125,152,164],led:64,lee:[7,116,178],leed:56,leff:152,left:[1,7,31,32,34,44,48,56,60,61,62,84,86,93,101,110,112,115,118,127,128,129,130,131,135,136,141,144,147,149,160,161,163,164,165,169,171,178,179,183,187,188,193,200,203],left_column:203,left_i:161,left_idx:61,left_index:[41,129],left_on:129,left_output:141,left_shifted_imag:93,leftarrow:164,legaci:110,legal:[42,121,187],legend:[22,29,31,32,33,34,35,37,39,41,47,50,52,53,56,57,73,84,85,91,117,118,120,136,144,149,150,160,161,163,171,172,194,202,205,206],legibl:160,legisl:117,legitim:65,leibler:139,lejmjnc8nyfra0oarlwsptp1nrr855zaajnceahw7uhgewwf:65,lemmat:146,len:[1,14,18,22,31,33,34,37,39,41,43,44,45,46,47,49,50,52,53,55,57,58,59,60,61,62,63,64,65,66,67,70,73,75,77,83,89,91,101,102,129,130,131,136,137,138,139,141,143,144,145,148,149,150,160,171,177,179,187,188,195,204,205,206,208,209,210],len_axi:130,lend:[156,183],lenet:143,length:[3,8,14,31,46,48,51,56,66,70,92,102,117,118,123,125,126,128,130,131,140,145,150,158,159,160,161,172,179,185,187,188,194,202,210],lenovo:68,leo:[160,161,163],lepiota:119,leq:[56,87,128,164,172],leqq:139,less:[1,6,7,8,18,26,29,31,33,34,38,43,44,46,55,56,58,60,62,65,72,86,101,108,110,113,118,120,121,127,128,140,145,152,153,154,158,160,163,164,167,168,170,171,172,178,184,187,188,192,195,209,210],less_equ:128,lesson:[60,68,81,145,150,172,182,183,184],let:[1,3,7,9,14,16,18,24,25,29,30,31,32,34,35,38,42,44,45,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,68,72,73,75,83,85,86,89,91,92,95,105,106,108,109,111,112,113,115,117,118,119,120,121,123,125,126,127,128,129,130,131,133,135,139,140,143,144,145,146,147,149,150,151,154,155,156,157,158,159,160,161,163,164,165,168,170,171,172,173,174,175,176,177,178,182,183,184,185,186,187,189,190,192,193,195,196,202,203,204,207,208,210],lett:101,letter:[7,102,109,117,121,123,126,129,133,173,187,188,210],level:[7,46,48,50,52,60,63,64,65,73,110,121,125,128,129,139,140,143,146,147,153,154,156,158,163,164,168,169,178,187,189,195,200,204,207,208,211],leverag:[0,46,55,60,61,108,146,151,152,153,154,156,173,175,176,177,184],lexsort:128,lfw:31,lfw_attribut:31,lg:183,lgbm:60,lgbmregressor:60,lh:61,lhs_cnt:61,lhs_std:61,lhs_sum2:61,lhs_sum:61,li:[34,50,56,117,172,209],liabil:[101,102,187,188,189],liabl:[101,102,187,188,189],liaison:117,lib:[30,37,38,63,92,118,129,130,131,149,150,172,176,183,187,195,202,209],liblinear:176,librari:[0,1,3,7,8,18,33,34,37,38,43,45,46,50,51,52,53,62,81,83,85,86,95,110,112,117,118,119,120,126,127,128,146,147,151,154,156,158,160,161,163,164,173,176,177,182,183,184,185,189,194,195,198,203],licenc:[63,169,200],licens:[22,46,50,52,53,54,92,93,101,102,110,154,187,188,189,202,203,204,205,208],lidiya:211,lie:[56,117,125,172],lieu:164,life:[11,18,35,56,65,66,110,111,115,121,123,125,128,158,171,178,187,190,207],lifecycl:[17,23,109,111,112,153,155,156,199],lifetim:164,lift:115,light:[43,55,73,123,143,146,173,203,211],lightbgm:60,lightcor:29,lighter:[111,190],lightgbm:[55,165],lightgbm_search:60,lightgrai:1,lightn:168,lightweight:153,like:[7,11,14,17,18,23,28,30,31,33,34,35,36,38,42,44,46,48,51,53,55,56,58,59,60,61,62,63,64,65,66,67,68,72,75,83,84,85,89,91,108,109,111,112,115,117,118,121,122,123,125,126,127,128,129,130,133,136,138,140,143,145,146,147,149,150,151,152,153,154,155,158,159,160,161,163,164,167,168,170,171,172,173,175,176,178,182,183,184,186,187,188,189,190,193,195,196,198,203,204,207,208,209,210,211],likehood:164,likelihood:[113,139,169,172,175,180,183],likewis:[35,46,128],lili:24,limit:[7,14,16,22,28,31,50,52,53,54,56,62,65,75,83,85,86,89,101,102,110,115,121,127,128,131,141,145,147,148,152,154,155,160,161,164,168,178,187,188,189,210],limits_:[56,171],limits_c:172,limits_k:[56,172],limousin:[17,23],lin_pr:66,lin_reg:[182,204],lin_reg_2:204,lin_svc:66,lin_svr:67,linalg:[145,171],line2d:[53,76,172,182],line:[1,14,18,31,33,36,46,50,53,55,56,58,65,66,67,76,85,86,91,110,117,118,121,128,129,130,131,137,141,142,150,158,164,169,171,172,173,175,177,183,184,186,187,188,189,195,197,204,208,210,211],line_chart:203,line_kw:60,lineag:[121,155,192],linear:[18,31,34,37,45,46,47,50,55,56,57,58,60,61,62,66,67,69,71,75,78,84,87,89,90,91,93,128,135,136,140,141,143,146,147,154,159,163,164,168,171,172,175,176,178,180,184,185,186,187,188,199,202,207,208],linear_beta_schedul:139,linear_model:[55,62,69,70,71,72,75,83,89,90,146,150,171,173,176,177,179,182,183,186,204,205,206],linear_reg:[69,71],linear_reward_00011:141,linear_reward_00012:141,linear_reward_00013:141,linear_reward_00014:141,linear_reward_00015:141,linear_reward_00016:141,linear_reward_00017:141,linear_reward_00018:141,linear_reward_00019:141,linear_reward_00020:141,linear_reward_00021:141,linear_reward_00022:141,linear_reward_00023:141,linear_reward_00024:141,linear_reward_:141,linear_scor:65,linear_svc1000:65,linear_svc100:65,linear_svc:65,linearli:[33,65,92,128,139,154,169],linearregress:[83,150,179,182,186,204],linearregressionlinearregress:[182,186],linearregressionwithsgd:179,linearsvc:[65,66],linearsvclinearsvc:66,linearsvr:67,linearsvrlinearsvr:67,lineplot2:[120,194],lineplot:[55,58,62,70,120,159,183,194],liner:182,linestyl:[14,18,32,86,169,171,200],linewidth:[40,41,56,60,65,86,118,150,169,171,186,194,200],linguist:183,link:[1,28,29,31,67,110,113,115,117,123,130,131,141,144,146,154,155,158,164,165,168,173,186,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],linkag:[111,171,172],linnerud:97,linspac:[36,56,84,91,128,139,163,169,171,200,204],linux:[127,143],lisa:195,lisens:[69,71,73],lisheng:174,list1:101,list2:101,list3:101,list4:101,list5:101,list:[1,3,7,12,14,18,28,31,33,34,37,41,43,44,46,48,49,50,54,55,56,57,58,59,60,63,64,65,67,69,70,71,73,77,80,83,91,92,99,109,118,119,120,123,125,126,127,128,129,130,133,135,141,143,144,148,149,153,154,156,161,163,165,172,173,177,184,194,195,196],list_i:35,list_of_char:[188,210],list_of_coordin:128,list_of_numb:[188,210],listcomp:[129,188,210],listdir:[34,39,41,43],listedcolormap:[73,205,206],listen:[0,154,188],listlik:131,listnod:103,lite:173,liter:[146,187,209],literari:111,litig:146,litt:158,littl:[1,7,14,30,44,46,52,69,71,75,77,80,83,89,115,117,120,126,131,143,159,161,164,165,171,175,177,182,184,186,187,204],live:[53,56,73,108,110,111,121,122,146,149,150,151,158,159,173,178,199],living_with:73,ljust:188,lkei:129,ll:[16,22,28,29,33,34,42,45,46,50,52,53,56,68,70,72,80,86,91,108,111,112,114,115,117,121,122,127,128,129,130,131,133,134,139,144,146,147,150,152,154,159,160,161,164,165,167,170,172,173,175,176,184,185,186,187,188,195,196,210],llabel:129,llc:[50,52,53,54,113],lmdb:196,lmgr:129,ln:164,lo:[44,77,188],load:[2,7,9,15,17,18,23,34,36,42,44,50,53,57,72,85,91,93,95,118,126,136,140,142,144,145,147,150,152,153,158,163,167,169,171,172,173,177,182,183,186,187,202,203,208,209],load_batch_from_fil:136,load_breast_canc:44,load_data:[29,30,44,46,76,135,136,142,198,208],load_dataset:91,load_diabet:186,load_digit:[56,171,172],load_ext:[12,25,44],load_imag:144,load_images_from_fold:43,load_img:[33,43,76],load_iri:[7,51,126,172,202],load_model:[29,30,41,43,44,46,47,49,76,198],load_next_batch:171,loader:[33,34],loadmat:138,loadtestsfromtestcas:52,loan:[56,207],lobe:173,loc:[1,14,18,22,31,32,33,41,45,52,53,56,57,60,62,68,72,91,118,125,130,131,136,149,150,159,160,163,172,182,184,194,195,198,202],local:[14,28,30,48,63,68,109,110,115,118,127,129,138,143,144,148,169,173,176,178,186,187,195,200,202,209],local_fil:173,localto:144,locat:[1,9,30,45,72,83,111,115,121,122,128,130,131,137,141,144,146,148,154,161,169,172,187,190,196],log1p:72,log2:[56,128,163],log:[0,9,16,36,39,41,42,44,45,60,72,87,91,93,109,110,123,128,139,144,152,153,164,165,192,205],log_2:56,log_classifi:55,log_dir:44,log_model:[75,89],log_reg:[55,70,171],log_reg_scor:171,log_scor:[75,89],log_shap:148,log_templ:31,log_transform:72,logaddexp:[128,165],loganberri:[188,210],logarithm:[128,154,156,208],logdir:44,logging_level:60,logic:[3,33,35,56,77,91,128,129,152,178,183,186,188,210],logical_and:128,logical_not:128,logical_or:128,logical_xor:128,logist:[55,62,65,84,98,111,145,164,168,171,173,175,178,180,182,185,186,199,208],logisticregress:[55,62,70,75,89,171,173,176,177,179,183,205,206],logisticregressionlogisticregress:171,logisticregressor:70,logit:[39,46,91,143,145,148,154],logit_output:145,logitech:43,logits_concat:148,logits_fak:142,logits_for_answ:91,logits_r:142,logvar:31,lon:203,london:12,long_:155,longer:[7,32,38,44,50,53,55,56,58,60,68,83,84,110,115,122,131,154,167,171,172,179,187,202,209],longest:[75,89,113],longitud:[67,83,173],loo:183,looa:182,loob:182,look:[3,6,7,8,10,13,14,15,17,18,20,25,28,29,30,31,33,34,35,38,42,46,48,51,52,53,55,56,58,60,61,64,65,66,68,70,72,73,75,80,83,85,86,89,91,92,95,97,108,109,110,111,113,115,117,118,119,120,121,123,125,126,127,128,130,133,138,143,145,146,149,154,157,158,159,160,163,164,168,170,171,172,173,174,175,176,179,183,184,186,187,188,190,194,195,196,198,202,204,210],lookback:[41,49],lookout:129,lookup:[125,127,128],loop:[34,37,62,102,117,128,131,141,147,156,159,171,178,187,188,189,195,209,210],looper:[111,159,175,182,183,190],loos:[75,89,158],lopinavir:1,lose:[72,172],loss:[13,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,47,48,49,53,60,61,62,68,73,76,125,131,135,136,137,138,139,140,142,144,145,147,149,163,165,166,168,170,176,181,198,200,201,204],loss_acc_metrics_df:44,loss_d:39,loss_fn:[38,136],loss_fun:145,loss_funct:[60,85],loss_g:39,loss_grad:91,loss_histori:165,loss_vae_fn:31,lossi:31,lossless:31,lost:31,lot:[3,7,14,51,53,55,56,58,62,65,72,94,108,109,110,122,123,126,143,145,150,158,161,163,164,165,167,168,170,173,175,177,178,187,207],lotarea:[60,72],lotfrontag:[60,72],lotfrontage_mean:60,lotshap:72,loud:[157,158,159],loudli:[172,202],loukid:121,love:[38,56,102,146,175,187,211],low:[18,30,41,45,46,48,49,50,53,55,62,63,65,67,69,70,71,73,75,83,89,101,107,109,111,113,125,128,143,154,167,169,170,174,182,183,184,185,188,190,198],low_valu:155,lower:[1,3,7,29,33,52,53,55,60,62,65,70,83,86,102,110,121,125,128,130,131,135,136,145,149,154,160,164,171,182,183,188,192],lower_cas:106,lowercas:[102,188],lowest:[7,171],lowqualfinsf:60,loyal:160,loyal_cal:160,loyal_mean_scor:160,loyalti:117,lpsa:179,lr:[31,34,35,39,42,53,69,70,71,84,90,169,176,179,198,200,204,205],lr_d:39,lr_g:39,lr_scheduler_typ:42,lrschedul:139,ls:153,lst2:43,lst:[43,101,102,188,189],lstm:[47,140,145],lstm_builder:49,lstm_model:[41,47,145],lstm_output:145,lsuffix:129,lt:[83,173],ltd:62,ltorgo:64,ltsm:140,ltv:164,lu:144,luci:[24,156],lucidchart:113,luck:[52,117],lucki:[75,89],luckili:[91,145],lug_boot:63,luggag:63,lui:64,lunch:178,lund:209,lvert:[135,170,180,201],lvl:72,lw:[40,56,163,169,172,200,202],lwq:60,ly:91,m1:[18,186],m2:18,m:[1,3,12,18,24,25,30,33,36,37,39,40,42,65,69,71,72,107,108,109,110,111,112,113,114,115,118,119,120,121,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,207,208,209],m_:18,m_dep:[75,89],mac:[110,143,186],macheads101:169,machin:[0,3,7,12,18,25,31,33,34,38,42,43,44,45,48,51,53,54,55,56,58,59,60,62,63,64,75,84,85,86,87,89,99,107,108,109,111,115,117,121,123,125,127,129,130,131,135,140,141,146,147,149,150,151,152,153,154,155,158,159,160,163,164,165,166,167,168,170,174,175,176,177,181,182,183,184,187,189,192,195,197,198,199,201,204,209,211],machine_cpu:64,machine_cup:59,machine_data:[59,64],machine_label:64,machine_learning_complet:89,maciej:36,maco:[127,189],macro:[37,63,65,66,76,173,176,177,183],made:[16,24,29,43,48,55,56,68,75,84,89,91,109,110,115,127,128,140,143,147,150,152,153,158,160,164,166,178,186,187,189,196,209],madip:[158,182,183,184],mae:[29,41,54,60,68,85,87,163,180],mae_cb:60,mae_lgbm:60,mae_xgb:60,magic:[164,178,188],magic_dict:101,magnitud:[72,86,92,125,182],mah:[75,89],mai:[1,8,12,14,22,25,28,30,31,32,35,44,50,51,52,53,54,55,56,58,62,63,64,65,66,68,69,70,71,75,83,84,85,87,89,91,110,111,112,113,115,118,121,122,123,125,126,127,128,129,130,131,133,136,141,143,144,146,149,150,152,153,154,155,156,158,160,161,163,164,167,168,169,170,171,172,173,178,180,182,183,187,188,189,190,193,200,209,210],mail:[56,123,160],main:[3,12,18,25,31,39,48,55,56,59,60,64,65,72,75,84,89,91,108,110,115,117,123,125,128,135,136,140,144,146,147,152,156,163,164,166,169,170,172,178,182,183,187,192,193,207],mainli:[60,135,143,149,169],maint:63,maintain:[31,63,84,108,122,140,143,151,153,155,163,178],mainten:[63,108,115,156,178,187,193,209],major:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,55,56,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,87,89,91,92,93,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,171,173,175,176,177,178,182,183,184,186,187,188,189,197,202,203,204,205,208],major_axi:131,major_disciplin:62,make:[0,1,3,4,5,7,9,11,15,18,22,30,31,32,33,37,41,43,45,48,50,51,52,53,55,56,57,58,59,60,61,62,63,64,65,66,67,68,72,73,75,83,85,86,89,91,93,101,108,110,111,112,113,115,118,120,121,122,123,125,126,128,129,131,133,137,138,139,140,141,142,143,145,146,147,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,169,170,171,173,175,178,179,180,181,182,186,187,188,189,190,192,195,196,203,204,207,210,211],make_blob:[169,171,200],make_circl:[163,169,200,205],make_classif:[205,206],make_dataclass:131,make_df:195,make_grid:34,make_increment_funct:187,make_lag:150,make_me_smil:31,make_moon:[171,205],make_multistep_target:150,make_pipelin:182,make_regress:[69,71],make_test_funct:30,make_train_funct:30,makedir:[29,30,31,34,38,39,43,46,72,76,85,136,138,145,149,171,187],maketran:102,makeup:117,male:[22,62,178],malici:121,malign:44,man:[110,173],manag:[0,41,108,109,110,111,112,113,122,125,130,134,146,152,153,155,163,185,189,190,196],manageri:113,mandat:121,mandi:158,maneuv:117,manfr:[188,210],mango:[43,211],mani:[1,3,7,18,29,37,38,43,44,48,49,51,52,55,56,57,58,59,60,62,63,64,65,66,67,72,73,75,76,83,84,89,92,97,108,109,110,111,112,113,115,117,119,120,121,123,125,128,129,130,131,134,136,140,141,143,144,145,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,167,168,169,170,171,173,175,176,178,179,184,186,187,188,189,191,192,195,198,207,209,210,211],manifold:[30,172,202],manipul:[45,54,93,117,121,123,131,133,134,141,178,188,195,203,207,210],manishmsft:196,manner:[7,30,56,65,111,121,123,126,131,146,153,155,182,188,192,210],manual:[1,33,146,154,155,156,170,171,172,202],manual_se:34,manufactur:[153,207],map:[1,5,7,22,30,31,33,34,36,38,40,42,43,46,48,49,53,57,62,65,75,76,77,89,101,111,118,123,128,129,135,139,140,141,143,144,145,147,155,158,161,169,175,178,183,187,188,191,207,208,209,210],map_data:203,map_funct:101,mape:54,mapper:[30,129],mapper_fruit_nam:43,mapper_noisi:30,mapper_org:30,mappingproxi:128,mar:[154,187,211],marcela:157,march:[191,196],marco:173,margarin:117,margin:[33,66,67,91,129,130,131,156,173],mari:[187,209],marin:173,marit:73,marital_statu:[57,73],mark:[1,70,92,101,131,169,178,207],markdown:[43,186],marker:[40,73,92,131,171,172,183,202],marker_s:30,markeredgecolor:150,markeredgewidth:[169,200],markerfacecolor:150,markers:[169,171,200],market:[55,58,73,108,121,123,141,146,147,158,178,191],marketing_campaign:73,marketplac:121,marklog:196,maroon:[73,119,194],marquis:117,marri:73,mart:164,martin:[22,154,155],mask:[7,51,60,70,126,128,130,144,195],mask_logit:148,maskrcnn_upxconv_head:148,mason:121,mass:[24,113,118,164,186],massiv:[46,111,190],master:[7,14,62,73,75,77,86,89,158,171],masteri:139,masvnrarea:60,masvnrtyp:60,mat:[138,146],mat_mean:138,mat_tensor:48,match:[0,7,35,42,46,50,53,69,71,80,128,129,131,133,139,143,150,158,169,172,178,187,202],matconvnet:138,materi:[56,111,125,126,172],math:[18,29,31,36,41,48,51,66,67,87,101,125,137,139,144,180,182,183,184,189,209],mathbb:[125,141,164],mathbf:[161,171,172,204],mathcal:[141,164],mathemat:[40,60,62,65,84,85,86,101,102,122,123,125,128,136,139,140,147,155,158,164,170,172,178,180,182,188,189,195,204,210,211],mathematician:125,mathfrak:161,matlab_2016:41,matmul:[128,135,138,141,145],matmul_1:145,mato:53,matplotlib:[1,3,14,15,18,24,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,76,81,83,84,85,86,89,91,92,93,107,108,109,110,111,112,113,114,115,117,118,119,120,125,126,127,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,186,190,194,195,198,200,202,203,204,205,206,208,209],matplotlibdeprecationwarn:[68,172,202],matric:[50,56,72,128,149,154,169,172,183],matrix:[1,8,18,24,34,35,43,44,48,55,56,58,63,66,70,73,75,83,89,91,92,125,128,136,138,147,158,169,172,178,186,188,202,210],matt:146,matter:[65,91,113,121,152,170,178,183,187,189,201],max:[3,7,18,22,32,33,34,41,43,46,52,53,56,63,64,65,66,67,70,73,76,77,83,87,92,112,118,129,136,142,147,148,158,163,165,168,171,172,173,188,194,205,206],max_:172,max_ag:22,max_bin:[60,72,167,168],max_cat_threshold:72,max_cat_to_onehot:[72,167,168],max_concurrent_iter:[9,109],max_delta_step:[72,167,168],max_depth:[55,56,58,60,63,64,72,161,163,165,167,168,172,202],max_depth_grid:163,max_dim:137,max_featur:[55,56,58,63,64,161,163],max_features_grid:163,max_img_height:77,max_img_width:77,max_it:[62,70,84,171,173],max_leaf_nod:[58,59,62,63,64,163],max_leav:[72,167,168],max_len:188,max_nod:[9,109],max_pool:138,max_pool_size1:136,max_pool_size2:136,max_pooling2d:143,max_pooling2d_20:45,max_pooling2d_21:45,max_pooling2d_22:45,max_pooling2d_23:45,max_pooling2d_24:45,max_pooling2d_25:45,max_pooling2d_26:45,max_pooling2d_27:45,max_pooling2d_28:45,max_pooling2d_29:45,max_row:[50,52,53],max_sampl:55,max_sequence_length:149,max_signal_r:36,max_val:29,max_valu:77,maxbodymass:[118,194],maxdepth:163,maxim:[39,56,65,87,137,141,172,177,180,187,202],maximis:169,maximum:[3,7,22,52,53,55,56,59,62,63,64,84,91,109,110,118,135,142,143,163,169,172,180,183],maxiter:141,maxlen:[37,149],maxlength:[118,194],maxpool2d:[31,32,34,35,45,139],maxpooli:45,maxpooling2d:[33,43,136,139,144],maxstep:141,maxval:[36,139,142],maxwingspan:[118,194],mayb:[7,68,113,120,130,150,159,165,177,182],maybe_cal:130,maybe_convert_indic:130,maze:141,maze_collect:141,maze_typ:141,mb:[38,41,45,65,83,175],mcculloch:149,mckinnei:[128,129],md5_checksum:63,md:[117,125,186],mdkjmpmcwjy:179,mdp:141,me:[1,38,44,115,143,165,182,183,189,193,203],meadow:[119,194],mean:[3,7,14,18,22,29,31,32,33,34,35,36,38,39,41,42,44,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,75,77,83,84,85,87,89,91,92,93,101,108,109,110,111,112,113,117,120,121,122,123,126,128,129,133,135,138,141,145,146,148,149,150,154,156,157,158,160,161,163,164,165,167,168,169,170,177,178,179,180,182,183,184,187,188,189,190,195,200,204,205,207,208,210],mean_absolute_error:[36,60,85,167,208],mean_actu:86,mean_confidence_interv:18,mean_cross_v:60,mean_imput:83,mean_squar:135,mean_squared_error:[41,47,59,60,64,67,83,85,150,182,208],meanarr:53,meaning:[3,16,30,46,118,121,143,146,152,178,193],meansquarederror:[29,30],meant:[128,153],meantim:178,measur:[7,14,24,46,55,56,58,65,66,72,75,83,85,86,87,89,110,111,115,120,121,122,123,125,139,141,150,154,155,156,158,159,161,163,166,171,172,178,182,184,187,192,193,202,204,207],meat:73,mechan:[50,84,128,140,143,146,152,153,187,209],med:[1,63,183],media:[5,55,56,58,111,113,125,146,153,155,156,190],median:[7,18,22,60,63,83,131,164,178],median_house_valu:[67,83],median_incom:[67,83],medic:[1,8,44,108,110,111,121,144,158,186,192],medicin:[8,123,178],medium:[1,65,75,83,89,113,172,196],meet:[113,117,121,128,184,192],mega:[75,89],megapixel:[43,75,89],megatrend:121,mehdi:142,mel:154,melt:70,member:[5,46,56,73,111,113,115,121,158,160,188,190,193,210],membership:[188,189,210],memcach:196,memcachedb:196,meme:164,memmap:171,memo:113,memor:[46,75,89],memori:[33,34,37,41,55,59,60,64,65,66,73,75,83,89,126,128,136,140,141,144,152,153,154,158,168,169,171,172,173,175,182,188,195],memory_gb:[9,109],memory_unit:141,memorycachestoragemanag:77,memoryview:[188,210],men:[62,97,121,192],mention:[0,1,2,8,19,43,44,48,62,65,115,123,125,127,128,131,140,144,146,150,152,156,161,164,170,178,179,187,195],menu:[44,109,110,203],merchant:[101,102,187,188,189],mercuri:211,mere:128,merg:[14,31,40,41,73,101,126,164,172,187,188,189],merge_dict:102,merged_dict:102,merged_list:103,mergetwolist:103,merteuil:117,meshgrid:[56,84,163,169,171,200,205,206],mess:[75,89,184],messag:[56,65,101,110,113,122,130,149,160,178,187,188,193],messi:[77,152,178],met:[31,44,128],meta:[15,60,154,160,173],metadata:[1,7,51,122,126,128,131,133,152,187,209],metaflow:153,metal:153,meteorologist:150,meter:[111,190],metho:[69,70,71],method:[1,3,7,14,18,24,30,31,33,34,38,40,45,46,51,52,54,56,60,62,63,64,73,75,84,85,89,100,101,109,110,111,115,117,118,119,120,123,126,128,129,130,135,139,143,144,147,148,150,151,152,153,154,155,156,158,160,161,163,164,166,168,172,173,175,176,177,178,182,183,186,192,193,195,199,202,209],method_nam:187,methodnam:187,methodolog:[139,154,164],methylprednisolon:1,metric:[29,32,33,35,36,38,41,43,44,45,46,49,52,55,56,57,58,59,60,61,62,63,64,66,67,69,71,76,83,84,85,92,93,109,110,113,136,144,146,147,149,150,152,155,159,163,165,167,168,171,173,176,177,179,182,183,202,205,206],mhrw5iwz2ifmqolguyvnuygzqyrvbxwmbzgjluaj:65,mi:[50,172],michalbialecki:196,michigan:121,mickei:101,micro:[152,167,173],microcomput:153,microphon:154,microprocessor:[75,89],microsoft:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,23,24,25,26,27,28,41,42,46,51,55,60,74,75,78,80,81,94,95,97,98,99,100,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,133,152,156,158,159,173,175,176,177,182,183,184,186,190,192,196],mid:[101,155,172],middl:[97,101,119,144,159,169],middlenam:189,midnight:130,midpoint:[155,183],might:[1,7,11,14,18,26,34,35,43,48,52,55,60,61,65,68,70,72,75,84,86,89,108,110,117,120,122,123,125,126,128,133,141,146,147,148,150,152,154,158,160,163,170,171,176,178,179,182,183,186,187,188,189,196,198,204,207],migrat:152,mike:24,milk:168,miller:125,millimet:[133,196],million:[32,34,111,143,178,190,207],millionair:189,mimic:[32,46,123,128,147,187,207],min:[1,3,7,18,31,33,41,52,53,56,64,65,67,70,72,73,76,77,83,92,112,118,129,131,143,148,158,163,164,168,171,172,173,194,205,206],min_:[63,165,172,204],min_child_sampl:60,min_child_weight:[60,72,167,168],min_freq:145,min_impurity_decreas:[62,63,64],min_impurity_split:[62,163],min_leaf:61,min_nod:[9,109],min_sampl:171,min_samples_leaf:[56,58,63,64,163],min_samples_leaf_grid:163,min_samples_split:[58,59,63,64,163],min_signal_r:36,min_val:29,min_weight_fraction_leaf:[62,63,64,163],min_word_freq:145,minbodymass:[118,194],mind:[7,38,50,111,115,126,129,143,154,156,159,183,193],mine:[3,53,56,115,134,169,189],minecraft:164,ming:209,mini:[154,183],miniatur:182,minibatch:[37,39,91,142,172],minibatch_kmean:171,minibatch_kmeans_vs_kmean:171,minibatchkmean:171,minibatchkmeansminibatchkmean:171,miniconda:[129,130,131,176,183,187],minim:[29,32,46,55,56,58,59,60,61,73,84,85,87,98,121,123,135,138,146,150,154,158,159,160,164,165,168,170,171,176,178,179,180,181,182,192,204,208],minima:[61,154,179],minimis:[169,200],minimum:[3,7,36,40,53,56,59,62,64,70,84,110,118,128,163,165,168,169,170,179,182,188,210],minio_url:63,minlength:[118,194],minmaxscal:[41,44,47,52,66,68,75,83,89],minnesota:[4,118,194],minor:[53,65,72,87,175],minor_axi:131,minu:[164,165],minut:[9,52,55,56,58,109,110,113,122,123,128,136,153,155,158,159,160,171,173,175,177,186],minval:[36,139,142],minwingspan:[118,194],mirza:142,misc:[138,209],miscfeatur:[60,72],misclassfi:60,misclassif:[56,70,92],misclassifi:[60,70,152,168],miscval:[60,72],misgend:111,mislead:[63,121,152,178,192,207],misleading_label:38,mismatch:[64,128],misrepresent:[121,192],miss:[14,16,18,19,22,24,25,31,40,55,56,58,59,62,64,67,72,73,86,112,123,128,129,130,131,147,150,152,154,158,163,165,167,178,182,187,207],miss_rinola:41,missclass:56,missing_count:60,mission:121,mistak:[56,60,68,72,113,141,152,164,168,189],mistaken:187,misus:153,mit:[46,62,101,102,110,111,121,169,187,188,189,190,192,200],mitchel:[56,178,207],mitig:[28,33,111,121,147,170,190],mitpress:102,mix:[36,42,130,131,164,182,184,188,210],mixed3:137,mixed5:137,mixed_list:[188,210],mixtur:[158,164],mkdir:[39,77,141],mkframe:14,mkl:172,ml2:171,ml:[53,55,58,66,72,74,75,78,80,81,83,94,95,97,98,99,100,107,108,125,140,147,149,150,151,153,154,156,172,173,174,175,176,177,178,179,180,182,183,184,185,186,191,207],ml_04:179,mlaa:153,mlb:18,mleap:153,mlearn:64,mlflow:[110,153],mlop:[151,155],mlp:[30,48,148,208],mlpclassifi:176,mlsummari:64,mltest:52,mlu:163,mm:184,mmax:[59,64],mmin:[59,64],mn:60,mncb:65,mnist:[29,30,36,44,76,91,135,142,171,172,178,198,208],mnist_784:171,mnist_8x8:202,mnist_test:[32,91,93],mnist_train:[32,91,93],mnist_train_smal:52,mnistdata:52,mnistdf:52,mnistdf_backup:52,mnistlabel:52,mnistpr:52,mnprv:60,mntfishproduct:73,mntfruit:73,mntgoldprod:73,mntmeatproduct:73,mntsweetproduct:73,mntwine:73,mnww:60,mo:[172,202],mobil:[33,75,89,113,143,153,172,173,203],mobile_price_test:[75,89],mobile_price_train:[75,89],mobile_test:[75,89],mobile_train:[75,89],mobile_wt:[75,89],mobilenetv1:144,mobilenetv2:[143,144],mock:[5,24,59],mock_df_boxplot:24,mock_df_hist:59,mock_df_pairplot:59,mock_df_plot:24,mock_pairplot:59,mod_resourc:209,mode:[0,7,34,57,60,92,110,143,144,147,148,153,154,171,173,182,183,184,187,199],modefin:51,modefined_sklearn_iris_dataset:51,model2:148,model:[7,10,14,20,31,32,37,47,54,61,64,66,67,68,69,77,84,86,87,93,94,97,98,99,107,111,112,115,121,122,123,125,126,128,129,135,136,137,138,140,142,145,147,149,151,152,158,160,161,163,164,165,166,168,169,171,172,174,175,176,177,179,181,191,192,193,196,199,200,202,203],model_1:44,model_2:45,model_auto:31,model_dir:77,model_ev:44,model_filenam:[77,173],model_histori:144,model_lasso:72,model_mean:139,model_nam:[9,30,31,109],model_new:76,model_nm:42,model_output:145,model_path:[33,41,43,44,47,49,109,145],model_perform:60,model_respons:[30,31],model_ridg:72,model_save_path:[30,31],model_select:[29,31,32,35,43,44,54,55,56,57,58,59,60,62,63,64,65,66,67,70,72,75,83,84,85,89,92,93,146,147,150,163,165,167,168,171,172,173,176,177,179,182,183,186,202,204,205,206],model_url:[30,31,41,43,44,47,49],model_va:31,model_vae_nam:31,model_vae_respons:31,model_vae_save_path:31,model_vae_url:31,model_xgb:72,model_zip_url:77,modelcheckpoint:[43,44,49],modelfit:62,moder:[70,156],modern:[68,115,140,153,155],modif:[29,143,163],modifi:[1,8,50,52,53,56,73,101,102,123,128,129,131,133,137,142,144,154,155,165,167,172,179,187,188,189,195,196,202,209,211],modifii:102,modnam:187,modul:[31,34,39,65,72,91,109,110,123,127,137,144,148,153,154,155,171,172,173,183,186],modulenotfounderror:[91,189],modulo:[188,210],modulu:[188,189,210,211],moment:[110,117,142,148,150,154,155,159,164,172,175,178,182,188,189,208],momentarili:195,momentum:[38,136,208],mon:54,mondai:[55,58],monei:[18,110,111,123,161,164,189,190],moneybal:111,mongodb:[123,196],monitor:[43,44,46,49,109,110,111,146,151,152,153,154,155,191],monkei:129,monolith:146,monoton:[130,156,163,187],monotone_constraint:[72,167,168],monster:91,month:[1,14,15,43,54,122,150,182,184,189],monthli:[1,122,150,182],mood:[111,190],moodle2:209,moon:31,moraga:165,moral:[6,117,121,192],mordvintsev:137,more:[1,2,3,7,8,14,16,17,18,21,23,28,29,33,34,35,37,38,42,43,44,45,46,48,51,53,54,56,59,60,62,63,64,65,68,69,70,71,72,73,83,84,85,86,87,91,108,109,110,111,112,113,115,116,117,118,119,120,121,122,123,125,126,127,128,129,131,133,136,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,167,168,169,170,171,172,173,174,175,177,178,180,182,183,185,186,187,188,189,190,193,195,196,200,202,203,204,207,208,209,210,211],moreov:[56,65,68,73,143,164,165,172],morpholog:40,mosold:[60,72],mosquera:156,most:[1,3,7,14,17,18,24,29,30,31,32,33,38,42,44,46,48,52,53,55,56,57,58,59,60,61,63,64,65,66,68,69,71,72,73,83,87,91,108,110,113,116,118,119,120,121,123,125,126,127,128,129,130,131,133,135,140,141,143,147,150,151,152,153,154,155,156,158,159,160,161,163,164,165,168,169,170,171,172,175,176,178,179,184,186,187,188,189,191,194,195,202,207,208,209,210],mostli:[7,65,123,140,154,163,164,182,183,184,207],motiv:[64,67,111,121,140],motor:141,motorcycl:56,mous:101,move:[7,14,34,36,43,45,52,55,58,84,91,113,115,117,128,139,140,146,152,154,155,160,164,167,171,172,179,188,189],move_down:141,move_left:141,move_right:141,move_up:141,movement:[141,146,164],movi:[111,117,121,178,190,192],moving_mean:143,moving_vari:143,mp3:31,mpeg:31,mpimg:39,mpl3:172,mpl:[137,171,175],mpl_toolkit:[73,84,92,117,169,172,200,202],mplot3d:[73,84,92,117,169,172,200,202],mri:[111,156],mrr:154,ms:[171,195],mse:[37,41,45,49,50,52,53,56,59,61,64,67,83,84,85,87,92,135,154,161,163,168,179,180,182,204],mse_cross_v:83,mseloss:31,msg:[52,92,129,183],msi:41,msocach:41,msr:111,msrafil:148,mssubclass:[60,72],mszone:[60,72],mtwuhpol:65,mu:[31,125,139,160,163],mu_i:172,mu_j:172,mu_k:172,mu_p:139,mu_q:139,much:[1,3,7,18,30,42,52,53,55,56,58,60,61,63,64,65,67,68,72,73,75,83,89,110,112,113,123,125,128,129,133,140,144,147,152,154,159,160,161,163,164,165,170,171,172,175,178,182,183,187,195,207],mudiger:154,mug:143,mul:[31,138],multi:[30,45,48,52,63,87,128,129,131,143,144,147,150,152,153,155,158,169,175,187,195,196],multi_class:[171,176],multi_grid:144,multi_line_str:[188,210],multiclass:[144,147,154,169,175,176],multicollinear:[85,172,202],multidimension:[48,128,136],multidisciplinari:146,multifield:128,multiheadattent:[139,143],multiindex:[129,131],multilabel:176,multilay:143,multilin:[120,188,189,210,211],multiline_str:188,multimod:125,multinomi:[176,183],multioutput:176,multioutputregressor:150,multipl:[0,7,12,16,18,33,34,46,48,50,55,58,59,62,72,77,92,97,101,102,115,118,120,123,126,129,130,131,133,136,140,143,145,146,147,150,152,153,154,156,158,164,166,168,169,170,186,189,195,196,200,209,210,211],multipli:[48,84,85,91,101,127,128,143,164,167,170,172,179,182,209],multipurpos:211,multitud:167,multivalu:196,multivari:204,munich:[121,192],muralidhar:70,muscl:189,music:[157,158,159,160],muskmelon:43,must:[0,30,32,38,44,45,46,50,53,65,70,73,83,84,91,101,109,113,115,122,124,127,128,130,131,138,143,153,154,156,158,169,171,173,178,182,187,188,200,207,209,210],mustach:173,mutabl:[48,128,187,188,210],mutual:172,muufdbikxdmks9nw6kt1ryvntpqvf9:65,mv:196,mvbase:196,mventerpris:196,mx:[84,179],mx_i:[84,179],mxiwdgk8ic9dz8xhyd7evn2garncxycf6tjsnoupao3pjxyhxosmimbvb06qv7nnzxvaul:65,my:[35,60,128,129,145,147,148,154,155,173,187,188,203,209,210],my_dict:[101,102],my_funct:209,my_get_text:[187,209],my_imput:167,my_list:[101,209],my_mnist:171,my_model:167,my_modul:209,my_own_classifi:205,my_sum:[105,209],my_tupl:[188,210],mybind:199,mybnk3dsmcymz0gwylxxqfulhrvy5axto:65,myconda1:172,mycount:187,myct:[59,64],mycustomerror:187,myfunct:209,myhtmlpars:3,mylst:189,mymodel0:62,mymodel:62,myownlinearregress:204,myownlogisticregress:[90,205],myqcloud:[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,119,120,125,131,136,138,139,142,143,144,146,150,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,194],mysql:[133,196],myst:169,mysteri:175,mythbusting_1:63,n24wr7ee6evwkotuekcka3picccvrgxpyku:65,n:[7,9,18,25,29,30,31,34,37,41,43,44,50,56,57,58,61,62,63,65,69,70,71,73,84,86,87,93,101,102,110,117,121,125,128,130,131,135,136,137,139,141,142,143,144,145,148,149,150,153,154,160,161,163,164,169,171,172,179,180,182,183,184,187,188,189,191,193,196,200,204,209,210],n_1:56,n_2:56,n_:163,n_anchor:148,n_arrai:48,n_channel:31,n_class:[91,143],n_classifi:177,n_cluster:[73,159,171,172,202],n_clusters_:171,n_clusters_per_class:[205,206],n_col:31,n_color:[150,171],n_column:53,n_compon:[30,73,172,202],n_connected_components_:171,n_core:[75,89],n_dense_block:143,n_estim:[54,55,56,57,58,59,60,61,62,72,161,163,168,177],n_featur:[41,69,71,90,179,204,205,206],n_features_in_:171,n_filter:[45,143],n_group:139,n_head:139,n_hour:41,n_i:[56,128,172],n_imag:39,n_in:41,n_inform:[205,206],n_init:[159,171,172],n_input:39,n_item:45,n_iter:[60,67,90,171,179,204,205],n_iter_no_chang:62,n_j:172,n_job:[30,56,58,59,62,72,93,163,168],n_label:171,n_layer:143,n_layers_per_block:143,n_leaves_:171,n_loss:36,n_neighbor:[92,93,171],n_ob:41,n_out:41,n_output:39,n_redund:[205,206],n_resnet:139,n_row:[31,53],n_sampl:[56,63,69,71,90,160,163,169,171,179,200,204,205],n_split:[62,65,70,163],n_test:[56,163],n_train:[56,163],n_train_hour:41,n_var:41,na:[7,14,51,57,60,72,73,126,129,130,131,148,154],na_val:57,nabla:164,naftaliharri:[159,171],nah:149,nair:34,naiv:[91,128,147,164,167],name1:128,name2:128,name:[0,1,7,8,9,12,14,15,18,22,24,32,33,36,37,38,41,42,44,45,46,54,60,61,63,64,65,66,67,70,73,74,77,83,91,92,101,102,105,109,110,115,118,122,123,125,127,128,129,130,133,137,138,139,140,143,144,145,146,147,148,150,153,154,158,161,164,168,170,172,173,175,176,177,178,179,182,183,184,186,187,188,189,194,195,196,202,203,209,210,211],name_1:[188,210],name_2:[188,210],nameerror:[187,189],namespac:[187,209],nan:[1,14,18,41,50,51,52,57,60,62,70,72,83,92,125,126,128,129,131,146,150,154,167,168,173,182,183,184],nanosecond:[59,64],narr:[117,121],narrow:[50,55,56,101,119,160,177,178,194,207],nasknxwdtb4aaaaasuvork5cyii:65,nasty_list:101,nat:37,nation:[111,173,175,190],nativ:[153,195,196],native_countri:57,native_country_41:57,natur:[1,42,43,48,50,52,60,65,73,113,116,119,120,121,123,128,130,131,140,141,147,149,150,154,158,179,182,184,189,204],naught:91,navig:[108,110,111,173,190],nax4:148,nbmake:0,nbsp:[46,150],nbviewer:[63,64,66,67,72,92,163,167,168,169,171,182,186],nbyte:195,ncc:64,nchw:148,ncluster:159,ncol:[39,43,136],nconfus:43,ncss:148,ndarrai:[33,83],ndf:41,ndframe:[129,130],ndi:40,ndim:[48,128,129,148,195],ndimag:[40,93],nearbi:[158,163],nearer:182,nearest:[1,31,36,92,93,142,158,159,169,171,172,176,178,187,198,200],nearest_neighbor:[144,172],nearli:[42,55,58,75,89,148,195,204],neat:[72,182,183,187],neatli:176,necess:[140,153],necessari:[0,7,12,18,20,25,30,33,40,43,45,50,56,85,86,107,108,109,110,111,112,113,114,115,117,118,119,120,121,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,207,208,209],necessarili:[55,72,113,125,135,154,182],need:[0,1,3,4,5,6,7,8,9,10,11,13,14,16,17,19,20,21,23,24,26,27,28,34,41,42,44,45,46,47,48,49,51,52,53,54,55,56,58,59,60,61,62,63,64,65,68,69,71,73,78,80,81,85,91,92,94,97,98,99,100,101,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,137,138,139,144,146,150,152,153,154,155,156,158,159,160,163,164,167,168,169,170,171,172,173,175,176,177,178,182,184,186,187,188,189,192,193,196,200,202,203,204,207,209,210],needless:[7,128],neg:[33,42,44,46,56,57,58,62,63,65,72,75,77,89,101,111,125,128,139,140,141,146,147,154,156,164,169,171,172,183,187,188,189,198,208,210,211],neg_mean_squared_error:72,neg_root_mean_squared_error:[60,83],negative_integ:[188,210],negative_slop:39,negativs:58,neglig:53,neigbor:172,neigh_garag:60,neigh_lot:60,neighbor:[55,58,62,92,93,141,159,171,176,178],neighborhood:60,neightborhood:60,neither:[80,165],neo4j:196,nepoch:31,neptun:211,neq:[128,141,160],ner:146,nervou:149,ness:148,nest:[62,84,102,117,128,131,187],nested_list:102,nested_tupl:188,nestim:65,net50:143,net:[6,25,32,37,52,143,144,149,164,168],netd:39,neteas:41,netflix:[121,140,178,192],netg:39,network:[5,29,30,31,33,38,41,45,46,48,50,52,53,55,68,70,75,89,108,111,123,128,129,135,141,143,144,145,148,150,151,152,153,154,156,164,170,173,175,176,178,186,191,192,199,206,207],network_weight:138,networth:189,neural:[29,30,31,33,37,38,39,45,46,48,50,52,55,68,70,75,89,128,129,135,141,143,144,145,148,150,151,154,156,164,170,173,175,176,178,186,198,199,206,207],neuralearn:139,neuralnetwork:141,neuron:[30,44,46,50,52,68,140,147,149,154,170,197],neurral:170,neutral:[147,153],neutron:65,never:[31,44,55,56,58,60,62,63,91,110,122,128,142,143,154,170,178,187,207],nevernest:187,nevertheless:[7,92,126,128],new_ax:129,new_column:[14,182,183,184],new_data:130,new_df:30,new_dict:188,new_imag:35,new_label:130,new_pumpkin:[182,183,184],new_row:129,new_shap:[137,148],newaxi:[29,30,50,69,71,128,144,186],newbi:154,newcom:146,newer:[83,154,195],newest:73,newli:[14,42,45,131,133,188],newlin:[145,188,209],newshap:128,newton:[101,176],next:[3,7,9,33,35,36,37,38,39,40,41,43,44,45,46,49,51,52,53,55,56,58,59,60,62,64,67,68,73,85,101,102,103,107,109,110,111,113,115,121,126,128,129,133,139,140,141,143,145,147,149,150,153,154,155,158,160,163,164,165,167,168,169,171,172,173,175,177,178,183,184,186,187,188,189,195,203,207,209,210],next_diffusion_tim:36,next_noise_r:36,next_noisy_imag:36,next_num:102,next_signal_r:36,next_stat:37,nfals:65,nfold:168,ng2017mlyearn:154,ng2d:45,ng:[117,152,155,178,180],ngo:62,nh:148,nhwc:148,ni:[42,188,210],nice:[52,56,72,118,165,172,175,188,202,210],nicer:[1,14,179,187],nichol:139,nick:[136,138,145,149],nigeria:157,nigerian:[158,159],night:[56,138,160,173,204],nightli:149,nine:33,ninfav:14,ninfect:14,nipy_spectr:[40,172,202],niter:77,niven:204,nj:160,nl:63,nlargest:41,nleft:129,nlhlong01:163,nlookup:128,nlp:[1,65,143,154],nlp_rake:3,nltk:1,nmodel:62,nmultilin:189,nn:[31,33,34,36,38,39,44,135,138,139,141,142,143,145,148],nn_vi:[136,197],no_enrol:62,no_exceptions_has_been_fir:187,no_grad:[31,34],no_missing_data_df:51,no_missing_dup_data_df:51,no_smile_data:31,no_smile_id:31,no_smile_lat:31,noced:154,node:[1,30,46,56,109,110,117,127,145,147,153,161,163,168,196,211],node_id:161,nois:[3,29,31,33,36,38,39,46,50,56,65,70,75,77,89,135,141,142,156,158,163,164,169,170,171,198,200,204,205],noise_dim:142,noise_factor:[29,30],noise_loss:36,noise_loss_track:36,noise_r:36,noise_s:142,noise_shap:52,noise_vari:36,noisi:[29,36,155,158,159,163,164],noisy_imag:36,nol20:123,nolli:123,nomin:[60,63,168],non:[1,14,18,29,30,36,38,41,45,49,60,62,65,66,67,73,77,83,101,102,110,121,126,128,129,130,131,134,135,139,145,146,147,154,156,158,161,163,164,168,169,170,172,173,178,182,187,192,199,209],non_block:34,non_cor:171,non_core_mask:171,none:[3,9,14,18,22,24,29,30,36,37,38,41,42,43,45,50,52,53,55,58,59,61,62,63,64,69,71,72,75,76,89,90,98,102,103,109,110,119,120,125,126,128,129,130,131,136,137,139,141,142,143,144,147,148,150,159,160,163,167,168,169,170,171,172,175,179,180,182,187,188,194,200,202,204,205,210],nonetheless:171,nonetyp:[188,195,210],nonexistent_column:14,nonflat:158,noninfring:[101,102,187,188,189],nonlin:50,nonlinear:[32,50,67,77,85,140,143,154,170,182],nonparametr:[163,176],nonzero:[36,61,128],nooooooo:189,noqa:[187,188],nor:80,norm:[45,121,148,170,171],norm_hist:60,normal:[7,29,30,31,32,36,38,39,44,45,48,50,55,56,58,65,72,75,76,83,89,91,126,128,135,136,137,138,139,140,143,144,145,147,148,152,154,159,161,163,164,170,172,178,184,187,198,202,208],normal_:39,normal_goal_i:141,normal_goal_x:141,normal_i:141,normal_random:18,normal_test_data:29,normal_train_data:29,normal_x:141,normalizaiton:32,normalization_lay:33,normalization_matrix:138,normalization_mean:138,normalized_d:33,normalized_data:[75,89],normalizedata:53,norri:101,north:[83,185],northgat:196,norwai:211,norwegian:187,nosql:[123,192],nostruct:128,not_equ:128,not_existing_charact:[188,210],not_existing_vari:187,not_ther:128,notabl:[67,140,178,196],notat:[60,122,127,128,131,187,188,210],notclean:41,note:[0,1,7,8,14,18,29,30,33,36,38,44,45,46,52,53,56,58,59,60,63,64,67,72,73,75,77,89,92,93,109,110,112,120,121,122,125,126,128,129,130,131,137,139,140,144,146,154,156,158,160,161,163,164,165,169,171,172,182,184,186,187,188,202,204,210],notebook:[0,4,7,9,13,16,17,18,19,22,23,30,31,33,34,36,38,44,45,46,55,59,60,63,64,66,67,69,70,71,72,73,75,78,81,89,91,92,93,94,98,110,111,112,125,126,135,140,142,151,158,159,163,167,168,169,171,172,173,176,179,182,183,184,185,189,190,195,199,202,203,204,205,208],notebook_path:[29,30,31,34,43,46,72],noteworthi:[87,139],notexist:3,notfittederror:165,noth:[7,46,63,66,68,73,91,120,128,142,160,164,165,167,168,171,179,187],notic:[7,29,33,44,45,53,101,102,111,113,115,118,119,120,125,126,127,133,150,170,173,178,184,187,188,189,193,195,196,204,207,209],notifi:[121,192],notion:[55,64,178],notnul:[7,51,57,126,195],notori:[38,117],notwithstand:[7,126],noun:143,novel:[117,144,148],novemb:[117,150,155],novic:113,now:[1,3,6,7,10,14,16,17,18,20,29,30,33,34,35,37,38,42,44,45,46,48,50,51,52,53,55,56,57,58,60,62,63,64,65,66,67,68,72,73,75,83,84,89,91,92,98,100,108,109,110,111,113,119,120,121,122,123,125,126,128,129,131,133,138,142,144,145,146,147,148,149,150,153,154,159,160,161,163,164,165,168,169,170,171,172,173,175,176,178,179,182,183,184,186,187,188,189,190,196,202,203,204,210],nowadai:[123,169],nowdai:178,np:[1,7,14,18,22,24,29,30,31,32,33,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,76,77,83,84,85,86,90,91,93,95,125,126,128,129,130,131,135,136,137,138,139,141,142,143,145,146,147,149,150,155,160,161,163,165,168,169,171,172,173,175,176,177,179,182,183,186,195,198,200,202,203,204,205,206,208],np_util:32,npm:117,npredict:43,npy:35,npython:189,npz:142,nrow:[34,39,43,136],ns:41,nsampl:[41,49,144],nsecond:188,nshape:[69,71],nspose:30,nstandard:18,nswdeman:[55,58],nswdemand:[55,58],nswprice:[55,58],nt:[118,194,196],ntest:[44,46,208],nthe:[44,55,58,59,63,64,66,67,75,89],ntrain:70,ntree:163,ntrue:65,nu:165,nuanc:146,nudg:[121,192],nuforc:173,null_accuraci:65,nullifi:87,num1:209,num2:209,num3:209,num:[67,83,101,128,135,144,145,188,209,210],num_allow_arg:129,num_anchor:148,num_batch:145,num_block:143,num_boost_round:[72,168],num_categori:148,num_channel:136,num_class:[32,33,143,144,148],num_col:[36,46,60],num_conv:148,num_epoch:[34,36,142],num_exampl:144,num_feat:[67,83],num_feats_imput:83,num_feats_pip:83,num_feats_preprocess:83,num_featur:[91,135],num_filt:143,num_head:[139,143],num_hidden_1:135,num_hidden_2:135,num_hours_studi:204,num_imag:[36,46],num_img:38,num_input_data:[75,89],num_iter:85,num_label:[42,208],num_lay:[143,148],num_list:[67,83],num_memory_unit:141,num_output:91,num_parallel_cal:[36,144],num_parallel_tre:[72,167,168],num_patch:143,num_pip:67,num_preprocess:67,num_queri:148,num_row:[36,42,46],num_scal:83,num_target:136,num_to_plot:161,num_train_epoch:42,num_unit:91,num_vowel:188,num_work:34,number:[1,3,6,7,8,14,18,22,25,29,30,31,32,33,34,35,36,37,38,41,42,43,44,45,46,48,50,51,52,53,55,56,58,60,61,63,64,65,68,69,70,71,73,75,77,83,84,85,86,89,91,92,93,109,110,113,115,117,118,119,120,122,123,126,129,131,133,135,139,140,141,142,143,144,145,146,147,148,150,153,154,155,158,159,160,161,163,164,167,168,169,170,173,175,176,177,178,179,182,183,184,186,187,192,194,195,198,200,202,203,204,207,209],number_imgs_each_part:43,number_limit:187,number_of_iter:[187,209],number_of_part:43,number_to_be_found:[187,209],numbug:209,numcatalogpurchas:73,numclass:52,numcol:[120,194],numdealspurchas:73,numer:[1,8,31,34,44,48,51,55,58,63,64,67,72,73,75,89,91,101,110,112,117,118,119,120,122,125,126,127,128,133,140,141,146,154,159,161,163,177,178,182,184,186,188,194,196,207,210],numeric_:60,numeric_feat:72,numeric_train:60,numeric_v:101,numpi:[1,7,14,18,22,24,29,30,31,32,33,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,76,77,83,84,85,86,87,91,92,93,95,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,190,194,198,199,200,202,203,204,205,206,208,209],numstorepurchas:73,numvehicl:150,numwebpurchas:73,numwebvisitsmonth:73,nuniqu:57,nusvc:65,nvalid:70,nvarianc:18,nw:148,nx0:148,nx1:61,nx4:148,nx:[41,49,128],nxcx:148,nxn:136,ny0:148,ny:[41,49,128],nyandwi:[44,48,55,58,59,75,83,89,178],nyc:[111,115,117,190],nyu:209,nywvm6_euxq:169,nz:39,o4yuzatazi:65,o6hc4qs8gkymfwwpxf6fxtxiucvqqcrsvyah3ppbsfh7yeiqsd:65,o:[12,25,33,47,57,60,61,65,73,92,121,128,141,148,149,156,160,171,172,188,208,210],o_lay:138,o_t:145,ob:37,obama:[101,156],obei:[44,128,169],obes:110,obj:[128,129,130,187,195],object:[3,7,9,14,16,24,31,38,40,41,42,48,49,52,53,54,56,59,60,62,63,65,70,72,73,74,83,86,91,92,109,111,117,119,122,126,127,129,130,135,136,138,140,142,143,144,145,146,147,150,153,154,155,157,158,164,167,168,169,170,172,173,175,176,178,182,188,189,190,194,196,197,208,209,210,211],object_:128,object_col:73,objectdatabas:196,objectdb:196,objectstor:196,observ:[1,3,7,18,30,41,52,54,59,65,86,87,122,123,126,131,139,141,150,152,154,158,159,160,161,164,167,172,175,182,183,202],observablehq:182,observepoint:113,obtain:[3,22,24,33,50,52,53,54,56,64,65,73,91,101,102,123,125,128,139,153,154,161,163,166,168,182,187,188,189,192,210],obviou:[18,62,119,125,143,163],obvious:[56,62,120,169,198],ocademi:[0,12,18,25,106,110,130,131,151,189,197,209,211],occam:170,occasion:[156,187],occlud:[143,148],occlus:[43,143],occup:[57,168],occur:[1,7,8,28,33,55,58,65,84,121,128,137,145,150,154,170,173,184,187,188,203,209],occurr:[1,2,8,28,51,52,60,65,126,183],ocean:[67,83],ocean_proxim:[67,83],oceanproxim:83,octav:77,octave_n:77,octave_scal:[77,137],octob:[121,184,196],od:187,odaba:196,odd:[101,209],odor:[119,194],odot:139,odunsi:158,ofcours:140,off:[30,33,35,36,38,39,40,43,44,51,55,56,58,62,65,67,68,75,86,87,89,91,115,139,141,142,143,144,145,150,154,160,163,168,170,171,172,178,179,187,193,198,208],offer:[21,44,73,84,87,108,117,118,119,121,128,143,152,158,167,175,176,177,183,184,192,195],offic:[123,143,150],office16:41,offici:[48,128,168],offlin:173,offset:[128,164],often:[1,3,7,8,44,46,51,55,56,58,60,65,68,75,85,89,110,111,117,121,122,123,125,126,128,139,141,143,145,146,147,150,153,154,160,161,163,164,170,171,176,178,179,183,184,185,187,188,192,195,209,210],oftentim:123,oh:[52,145,160],ohadlight:143,ohh:[55,58,63,75,89],oil:38,ok:[127,131,133,149,160],okai:[46,63,64,147,171],old:[56,73,129,153,159,175,189,209],older:[125,128,173],oldest:73,oldid:196,oleksii:[101,102,187,188,189],ols:169,omar:62,omega_t:149,omit:[1,29,45,125,129,160,164,187,188],omp_num_thread:172,on3sx3y9kwmxfjcw:65,on_bad_lin:41,on_epoch_end:[44,45,144],onboard:[113,152],onc:[0,7,42,46,48,50,53,59,61,64,83,85,91,109,110,121,123,125,126,128,129,142,145,150,152,153,154,164,165,168,170,173,177,178,183,187,189,209,211],one:[1,6,7,8,11,13,14,16,18,19,21,22,24,26,27,28,29,31,32,33,34,36,38,40,42,43,44,45,46,48,49,50,51,52,53,54,55,56,57,58,60,62,64,65,66,67,68,69,71,72,73,75,77,78,81,83,84,85,86,89,91,93,94,99,100,101,102,108,110,111,113,115,116,117,118,119,120,121,123,125,126,127,128,129,130,131,133,136,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,163,164,167,168,169,170,171,172,173,175,176,177,178,179,182,183,185,186,187,188,189,190,194,195,196,200,203,204,207,208,209,210,211],one_hot:[7,83],one_hot_data:7,one_hot_encod:[22,83],one_trunc:131,onefield:128,onehotencod:[57,67,83,204],ones:[7,11,36,38,39,48,51,55,56,62,69,71,72,85,87,110,111,113,117,126,128,135,139,143,152,158,159,163,168,170,172,183,184,189,190,195,198,204],ones_for_answ:91,ones_lik:142,ones_tensor:48,ones_tensor_1:48,ongo:[115,156,193],oni:149,onli:[0,1,7,11,14,18,24,27,29,31,32,33,34,35,36,38,42,43,44,45,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,69,71,72,75,83,89,91,99,101,102,107,108,109,110,113,115,118,121,122,125,126,127,128,129,130,131,133,136,137,140,141,143,146,147,148,149,150,152,153,154,156,158,161,163,164,168,169,170,171,172,173,176,179,180,182,183,184,187,188,189,191,193,196,200,202,209,210,211],onlin:[1,28,121,123,125,128,129,146,153,156,173,178,187],only_path:43,onnx:[153,173],ontario:14,onto:[52,57,113,135,155,172,202,204],ontotext:196,onward:14,oob:160,oob_scor:163,oocademi:189,op:[77,129,136,138,145],open:[0,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,33,34,38,39,40,41,43,44,46,47,48,49,51,54,55,56,58,59,60,61,62,63,64,65,66,67,68,70,72,74,75,77,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,153,154,156,158,159,160,161,163,164,165,167,168,172,173,175,176,177,178,182,183,184,186,187,188,189,195,202,203,204,205,207,208,209,211],open_access:110,openai:146,opencv:[41,139],openinsight:196,openlink:196,openml1:63,openml:[59,63,64],openporchsf:60,openqm:196,oper:[7,18,25,34,44,55,62,65,73,84,92,101,108,110,121,123,125,127,129,130,138,141,143,145,146,147,151,152,153,154,155,172,183,187,189,191,192,211],operand:[128,188,195,210],operation:[121,192],opinion:[146,154],opportun:[60,110,111,112,146,154,156,170,173],oppos:[131,167,172,187,188],opposit:[7,117,135,146,157,165,170,183,198],oppurtun:164,opt:[108,187],opt_func:34,optic:[153,158],optim:[29,30,31,32,33,34,35,36,37,38,41,42,43,44,45,46,47,48,49,50,52,56,58,60,63,68,73,76,84,85,86,87,92,110,111,113,118,125,128,131,135,136,138,139,140,141,142,143,144,145,147,149,152,155,156,159,161,163,164,165,167,168,169,172,176,179,180,182,183,198,200,202],optimis:[85,169],optimist:[55,160],optimizerd:39,optimizerg:39,optimum:[62,159,172],option:[1,7,15,16,48,50,53,56,75,77,83,89,92,102,103,109,111,115,120,121,126,127,128,129,131,142,147,150,152,153,156,164,171,173,176,177,187,188,189,190,195,208,209,210],option_context:92,oracl:[133,196],orang:[43,56,117,118,125,141,173,175,183,188,194,210,211],orchestr:[152,153],ord:144,ord_col:60,ord_enc:63,order:[1,3,6,7,14,18,31,33,44,48,51,52,56,59,60,61,63,64,70,73,75,83,84,89,91,92,101,118,119,121,122,123,125,126,127,128,129,130,131,139,141,143,146,148,150,154,155,156,160,163,164,165,168,169,172,173,178,182,183,187,188,189,192,194,196,202,204,207,209,210,211],ordin:183,ordinal_map:60,ordinalencod:[63,83],ordinari:[63,83,150,183],ordinary_encod:83,oreilli:113,org:[3,22,50,52,53,54,63,64,66,67,72,77,92,113,131,137,138,139,144,145,148,156,163,167,168,169,171,172,182,186,187,188,196,197,202,209],organ:[35,42,44,108,109,111,115,118,121,122,123,126,127,128,143,146,152,153,172,178,186,190,192,193,194,196,202,203,207],organiz:121,orgin:[59,64,83],orient:[38,140,143,152,186,187,188,189,210],orientdb:196,orig_shap:148,origin:[3,7,14,29,30,31,33,35,38,42,43,50,55,56,61,63,64,65,69,71,77,89,98,101,102,120,123,128,129,131,135,137,138,142,150,152,153,158,160,161,163,164,165,168,169,171,172,175,182,183,184,187,188,196],original_featur:138,original_imag:138,original_image_path:138,original_image_url:138,original_image_weight:138,original_img:137,original_label:130,original_lay:138,original_layers_w:138,original_loss:138,original_minus_mean:138,original_norm:138,original_str:[106,188],originl:61,orign:73,ornella:111,ornithorhynchu:42,orthogon:[135,172,202],os:[29,30,31,33,34,36,37,38,39,40,41,43,46,50,52,53,57,62,65,72,76,77,85,91,93,107,108,109,110,111,112,113,114,115,118,119,120,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],ossif:121,other:[3,7,14,17,18,20,31,33,34,37,44,45,46,48,49,51,53,55,57,58,59,60,62,63,64,65,68,70,72,83,85,86,87,91,92,94,97,101,102,107,109,110,111,113,118,119,120,121,122,125,126,127,129,131,133,135,139,140,143,144,146,147,148,150,151,152,153,154,155,156,157,158,159,160,161,163,164,167,168,169,170,171,172,174,175,178,179,180,182,184,185,186,187,188,189,195,196,202,204,205,206,207,208,209,210],other_nam:[187,209],otherno:187,otherwis:[34,67,87,91,101,102,128,129,130,131,133,136,143,147,154,156,158,163,167,178,182,184,187,188,189],ouch:171,our:[1,3,7,14,18,29,30,31,32,34,35,38,43,44,45,46,48,51,52,53,54,56,58,60,61,62,63,64,65,66,69,71,72,73,75,83,84,85,86,87,89,91,92,111,112,113,119,120,121,123,125,126,129,133,135,136,139,140,142,143,146,147,148,150,151,154,155,156,158,159,160,161,163,164,165,168,170,171,172,173,175,176,177,178,179,182,183,186,187,189,192,195,196,202,203,207,211],ourselv:[53,60,150,164,172],oustand:55,out1:143,out:[3,7,8,14,15,18,29,33,34,35,37,39,42,45,46,48,53,54,56,59,60,62,65,68,70,72,73,75,77,89,101,102,108,109,111,113,117,118,120,121,122,123,125,126,128,130,131,133,136,138,139,140,141,143,144,146,148,150,151,153,154,156,158,159,161,163,164,167,168,170,172,173,175,176,177,178,179,183,184,186,187,188,189,195,196,202,203,207,209],out_channel:[31,143],out_col:60,out_conn:145,out_filt:144,out_sampl:139,out_sent:145,outbreak:14,outcom:[7,16,62,65,73,87,111,115,121,123,125,126,139,152,160,172,175,182,183],outer:[84,175,187,195],outermost:[129,187],outfield:125,outli:154,outlier:[7,50,51,52,66,67,73,83,85,86,87,116,118,125,152,154,158,159,160,163,164,169,171,194],outliers_influ:[60,70],outlin:[40,60,113,121,150],outlook:146,outperform:[55,154],output:[7,9,29,30,31,33,34,36,38,39,41,42,44,45,46,48,51,52,53,56,57,62,73,77,84,87,91,108,109,110,126,128,130,131,135,136,137,138,139,140,141,142,143,144,145,147,148,149,150,154,155,156,158,160,161,163,164,165,168,170,171,173,175,178,182,183,187,188,189,195,196,197,198,203,207,208,210],output_channel:[36,144],output_class:144,output_dim:[148,149],output_everi:136,output_fil:138,output_file_nam:141,output_final_layer_before_activation_funct:141,output_gener:138,output_imag:39,output_loc:136,output_memori:141,output_prepar:[41,49],output_s:143,output_scrol:144,output_stag:144,output_unit:91,outsid:[60,113,125,128,129,147,167,176,179,187,209],outwork:178,over:[1,7,8,13,14,24,31,32,33,34,38,44,51,53,55,57,58,60,65,73,75,77,85,87,89,91,99,102,108,111,113,117,120,121,126,128,133,135,136,140,141,142,143,145,147,148,149,150,152,153,154,155,158,160,161,163,164,165,168,171,173,175,176,177,179,180,183,185,187,188,189,190,191,194,196,209,210],over_sampl:175,overal:[7,13,14,30,31,33,53,55,56,60,62,73,111,112,120,122,123,126,146,154,161,164,178,182,207],overallcond:60,overallqu:60,overcom:[55,58,63,64,169],overdu:56,overexcit:170,overfit:[32,34,44,46,52,53,55,56,58,59,60,63,64,66,67,68,69,71,72,75,85,89,91,150,154,160,163,164,166,167,168,169,177,200,208],overfit_cat:60,overfit_num:60,overflow:129,overhead:[148,195],overlap:[18,33,125,128,129,158,159,187],overli:[55,56],overlin:[139,161],overload:169,overlook:[121,146,178],overrid:[131,187,209],overridden:30,override_groups_map:143,oversampl:175,overshadow:156,overshoot:[84,165],oversimplif:113,overtim:178,overtrain:70,overview:[56,80,110,113,118,140,152,154,172,199],overwhelm:[73,123],overwhelmingli:73,overwrit:[141,188,209,210],ovr:[171,176],owlim:196,own:[0,11,17,28,43,46,56,68,97,99,108,109,110,111,115,117,121,125,128,129,135,141,143,152,155,156,160,163,164,169,170,171,172,178,187,193,207],owner:[152,161],ownership:[56,121,192],ox:145,oxford:[121,192],oxford_iiit_pet:144,ozair:142,p1:209,p2:[32,139,209],p8jfm99bcnocr0fprrwgct14av4jdyx2gbnqpcnfextg3ams9qwtwvps5ycf06zz62cbjwwxw4muuruopw4ovcvkv7zqj4edmwgpr6w:65,p:[3,18,32,39,53,56,61,62,63,77,125,128,129,130,131,136,139,141,142,143,144,150,154,159,160,161,163,165,168,169,170,171,172,173,175,178,179,180,182,187,188,200,204,207,209,210],p_1:[56,125,139],p_2:[56,125],p_:[56,139],p_i:[56,139],p_k:56,p_n:[125,139],p_sampl:139,p_valu:125,paa:[108,191],pace:[46,84],pack:[128,186,188,209],packag:[18,30,37,38,57,63,92,111,118,125,128,129,130,131,149,150,153,158,164,172,173,175,176,178,182,183,184,186,190,195,198,202,209],package_fold:187,package_init_path:187,packed_tupl:188,pacsuta:141,pad:[1,14,18,29,30,32,33,34,35,36,38,39,43,45,60,128,135,139,143,144,148,149,171,173],pad_bord:148,pad_sequ:149,padding_11:143,paderborn:141,page:[3,21,26,44,48,63,64,66,67,72,92,110,111,113,122,123,129,155,163,167,168,169,171,173,179,180,182,183,186,190],pagefil:41,pai:[18,65,92,108,121,140,145,161,163,182,191,192],paid:[121,140,192],pain:171,paint:[38,127],pair:[7,42,56,99,102,125,127,128,147,163,164,171,172,176,187,188,189,196,209,210,211],pair_list:3,pairgrid:[64,83,183],pairplot:[64,73,75,83,89],pairwis:[92,163,172],pal:[38,73],palett:[43,57,62,73,75,89,117,118,120,150,194],palette_kwarg:150,palette_kwargs_:150,palinami:[69,71],pallet:73,palyground:182,pamphlet:56,pan:144,pancak:141,panda:[1,2,14,15,17,18,22,23,24,29,30,31,32,33,35,37,38,40,41,42,43,44,45,47,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,83,84,85,89,91,92,93,95,107,108,109,110,111,113,114,115,118,119,120,125,126,127,128,130,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,190,193,194,198,199,200,202,203,204,205,206,208,209],pandasarrai:131,pandastutor:[129,130,131],pandem:[1,11,128,155],panel:203,paper:[7,14,21,26,28,55,56,111,123,125,138,140,142,144,145,148,168,171,172,180,183,190,197],paperback:150,papercodereview:148,papiu:72,par:72,parabol:182,paradigm:[123,178,207],paragraph:[97,99,145,187],parallel:[30,39,42,60,108,110,144,163,167,168,172],param:[29,30,36,38,45,52,53,67,69,70,71,72,144,168,187],param_count:142,param_distribut:[60,67],param_grid:[56,62,63,64,65,66,163,171],param_lst:60,param_test1:62,param_test2:62,param_test3:62,param_test4:62,param_test5:62,paramet:[3,7,10,22,31,32,33,34,35,42,45,46,50,53,55,58,63,64,65,66,67,68,69,70,71,72,75,84,85,87,89,90,91,93,109,110,118,120,125,126,128,129,130,135,136,138,139,140,142,143,144,145,149,150,154,155,164,165,167,168,169,170,171,172,176,177,179,182,183,187,188,189,201,204,205,209,210],parameteriz:155,parameterless:187,parameters_input:189,parameters_output:189,parametr:169,params_grid:[58,59,63,64,66],paramt:[34,165],parch:22,paremet:[66,83],parent:[6,22,121,130,187,192],parenthes:[7,187,188,209,210],parenthood:73,park:173,parma:[69,71],parmet:170,parquet:123,parquet_url:63,parrot:[129,187,209],parrot_typ:187,pars:[3,73,146,150],parse_d:150,parsed_data:3,parsefromstr:77,parser:[3,187],part:[1,7,8,11,30,34,35,40,43,48,52,56,60,73,75,89,91,101,108,109,112,113,115,116,117,121,123,124,126,127,128,131,135,141,142,143,144,145,148,150,151,152,153,154,155,156,158,159,160,163,164,169,170,172,173,177,178,179,182,184,185,186,187,188,189,194,198,200,207,209,210,211],parti:[108,113,123],partial:[43,94,119,128,152,154,158,164,165,168,194],partial_deriv:139,partial_fit:171,partially_propag:171,particip:[56,73,121,149,160,164,192],particular:[7,31,42,45,48,55,56,57,63,65,83,101,102,112,115,119,120,122,126,127,128,129,131,140,146,154,160,161,164,171,178,182,187,188,189,193,207,210],particularli:[7,51,118,120,121,126,146,156,158,159,184,188,210],partit:[56,127,128,152,159,169],partner:[73,121,192],pascal:187,pass:[0,3,7,31,33,38,42,44,51,53,56,60,62,63,64,65,77,85,91,101,112,113,118,121,128,129,131,136,137,139,140,142,143,146,147,165,170,172,176,182,187,188,189,194,203,209,210],passag:117,passeng:[7,17,22,23],passenger_class:22,passengerid:165,passion:[113,188,210],passthrough:204,past:[55,56,60,73,77,121,133,136,143,148,149,150,153,155,156,173,197],pastel2:171,patch:[24,55,59,108,143,182],patch_dim:143,patch_project:143,patch_siz:143,patchifi:143,patent:42,path:[0,2,15,17,23,29,30,31,33,34,38,39,43,45,46,50,52,53,56,57,62,72,75,76,77,85,89,109,119,121,128,136,138,139,141,144,145,149,150,156,164,165,171,177,187,194,209],path_to_param:138,pathcollect:[169,182],pathlib:[33,45,150],pathnam:[50,52,53],pathwai:147,patienc:[43,44,49],patient:[24,44,109,110,111,146,147,154,186],patil:45,patrick:62,pattern:[38,54,60,61,62,68,70,73,85,86,87,111,112,115,120,121,123,140,150,153,157,158,166,170,178,183,186,187,192,193,207],paul:[41,189],paus:141,pave:72,pavithra:[69,71],pawel:211,payment:56,pb:77,pbar_out:31,pc:[75,89],pca:[73,135],pca_d:73,pclass:[22,165],pclass_xt:22,pclass_xt_pct:22,pcolormesh:56,pctdistanc:[119,194],pd:[1,2,7,14,15,17,18,22,23,24,29,30,31,32,35,37,38,41,42,43,44,45,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,83,84,85,89,91,92,93,95,118,119,120,125,126,129,130,131,146,147,150,155,158,159,160,161,163,165,167,168,172,173,175,176,177,179,182,183,184,194,198,202,203,204,205,206,208],pdf:[144,209],pdist:172,peac:113,peach:43,peak:167,pear:[43,188,210],pearsonr:72,peek:[93,101,183],peep:44,peer:111,peke:209,penal:[140,164,178,198,207],penalti:[65,87,121,135,143,164,169,170],pendant:[119,194],peopl:[3,14,31,42,44,51,55,62,83,102,108,110,111,113,115,117,121,123,125,126,128,129,153,154,156,178,188,191,192,196,207,209],people_info:102,people_to_check1:101,people_to_check2:101,pep557:131,per:[33,34,42,43,50,52,53,55,56,66,73,77,118,120,128,131,136,139,142,143,144,148,154,171,175,182,184,194,195],per_device_eval_batch_s:42,per_device_train_batch_s:42,perceiv:[158,178,207],percent:[1,33,172,202,208],percentag:[14,35,46,54,56,58,65,68,75,83,89,110,154,163,183],percentil:[125,160,171],percentile_closest:171,percept:[158,178],perceptron:30,perceptu:143,perceptualedg:113,percsampl:163,perctraindata:163,perf:179,perfect:[52,55,65,70,102,118,170,171,180,194],perfectli:[7,40,56,70,75,89,126,154,160,169,182,200],perform:[1,7,18,31,32,34,43,44,45,46,53,55,56,57,59,60,62,64,65,67,68,70,72,73,83,84,85,86,91,92,93,98,102,108,110,115,123,125,127,128,133,139,140,141,143,144,146,147,148,151,152,153,154,155,156,158,160,161,163,164,165,167,168,169,170,171,172,175,176,182,183,186,187,188,189,191,193,195,201,203,204,209,210],performcv:62,perhap:[4,42,52,53,68,73,118,139,144,150,158,171,178,198,207],period:[13,14,41,43,49,55,58,110,111,130,131,150,156,187],period_rang:150,periodindex:150,perm:102,permiss:[22,50,52,53,54,101,102,110,121,187,188,189],permit:[101,102,128,187,188,189],permut:[31,34,91,102,149,172],perpendicular:[56,65],perplex:154,persimmon:43,persist:[9,141,156],person:[6,7,14,28,31,38,56,57,63,73,101,102,109,111,113,121,122,123,125,127,140,146,147,150,153,178,186,187,188,189,192,207,209],person_id:31,personsdata:127,perspect:[111,121,143,164],perst:196,persuad:113,persuas:113,pertain:[73,146,147],pertin:146,pervas:[121,123,146],pet:15,petabyt:[111,190],petal:[51,66,92,126,161,172,202],petallength:[92,131,161],petallengthcm:70,petalratio:131,petalwidth:[92,131,161],petalwidthcm:70,peter:[125,188,210],petrova:14,pfa:153,pg100:145,pg4mtoh4b05qn5dt:65,ph:53,ph_delta_weights_list:141,phase:[34,62,112,113,155,158,178,207],phd:[62,73],phenomenon:33,phi:139,phil:146,phone:[6,75,89,113,121,122,123,172,188,192,203,210],phonem:145,photo:[31,33,35,48,107,114,116,129,134,174,185,198],photo_id:31,photo_numb:31,photo_path:31,photograph:[123,129,157],photoshopcs6:41,php:[196,209],phrase:[29,42,143,146,178,193],phrase_matching_test:42,phrase_matching_train:42,physic:[56,110,141,153],physician:146,physicochem:53,physiolog:97,pi:[36,139,141,161,188,189,209,210],pi_j:161,pi_valu:[188,210],pic:31,pic_input:31,pic_output:31,pick:[16,26,28,34,38,42,70,72,75,77,89,99,113,120,127,141,159,163,165,168,171,184,186,196],pickl:[136,145,153,209],pickler:209,pickletool:209,pickup:[111,190],pictur:[1,3,14,30,31,39,56,57,65,66,123,125,128,129,140,154,160,161,164,172,178,198,202,207],pid:141,pie:[27,57,75,89,117,182,184],pie_pumpkin:182,piec:[42,51,57,65,106,112,123,126,146,152,155,167,186,198],piecewis:56,pii:121,pil:[31,33,77,137,138],pile:147,pillow:[137,187],pin:[129,203],pin_memori:34,pineappl:[188,210],pinfect:14,pink:[1,117,119,194],pinpoint:60,piotr:148,pip:[3,12,18,25,30,33,40,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],pipe:63,pipelin:[33,59,62,63,64,66,67,70,109,110,144,152,153,154,155,170,171,182],pipeline_scor:171,pipelinepipelin:[171,182],pipeln:70,piplin:141,pitaya:43,pitch:155,pitt:149,pivot:[41,87,123,146],pivot_t:129,pix2pix:144,pixel:[29,30,33,34,38,43,44,46,48,52,56,75,89,93,128,136,137,143,144,147,148,154,172,178,202],pk:[12,133],pkl:173,pktfrwjz:65,pl:[73,161],place:[7,34,51,56,60,73,101,102,110,112,113,117,123,126,128,131,140,146,152,160,173,175,183,186,187,188,189,210],placehold:[53,77,138,141,143,173,189,203],plai:[3,14,18,48,53,56,62,83,84,86,109,123,125,146,152,164,169,177,186,187,200,203],plain:[3,143],plainli:119,plan:[1,56,73,108,113,152,155,160],plane:[56,143,158,163,169,172,182,202],planet:[6,111,190,211],planetari:[111,190],plant:146,plastic:158,platelet:[9,109,110],platform:[10,20,48,108,110,113,146,152,153,156,164,173,178,189,191,207],platypu:42,plausibl:198,play:84,player:[18,111,125,153,178,179],playground:[144,155,163,164,169,175,179],playgroundn:182,pleas:[15,29,37,38,50,51,52,53,55,58,63,64,66,67,72,91,92,109,131,136,143,163,167,168,169,170,171,173,178,180,182,186,187,199],plenti:[117,152,154,156,164,171,172],plot:[1,3,8,14,15,18,19,29,31,33,34,35,37,38,39,40,41,43,44,45,46,47,49,50,52,53,55,56,57,58,60,62,63,65,66,67,68,70,72,73,75,76,84,85,86,89,91,92,97,117,123,125,131,136,141,142,144,145,149,150,154,158,161,163,165,169,170,171,172,175,176,178,179,182,184,186,200,202,204,205,206,207,208],plot_3d:[169,200],plot_accuraci:34,plot_align:22,plot_centroid:171,plot_clust:171,plot_clusterer_comparison:171,plot_color:22,plot_dat:37,plot_data:171,plot_dbscan:171,plot_decision_boundari:171,plot_galleri:31,plot_imag:46,plot_import:168,plot_infected_vs_recov:14,plot_kind:22,plot_loss:[34,39],plot_model:208,plot_multistep:150,plot_param:150,plot_profit:37,plot_spectral_clust:171,plot_support:[169,200],plot_surfac:84,plot_svc_decision_funct:[169,200],plot_svm:[169,200],plot_titl:22,plot_train:43,plot_tre:[63,161],plot_value_arrai:46,plotli:[1,30,49],plt:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,76,83,84,85,86,89,91,92,93,118,119,120,125,135,136,139,141,142,144,145,149,150,158,159,160,161,163,165,168,169,171,172,175,179,182,184,186,194,198,200,202,204,205,206,208],plu:[32,56,85,90,117,128,131,179,204,205],plug:179,plugin:0,pluginfil:209,plum:43,plumag:187,plymouth:160,pm:[125,187,209],pmml:153,pneumonia:1,png:[3,38,39,43,65,72,76,141,171,172,178,182,183],po:[45,60,141,148,171],poc:110,poem:111,poetic:111,poetri:[111,190],poignant:120,poin:70,point3d:131,point:[7,8,11,15,16,28,29,30,31,34,38,42,44,46,52,53,55,56,58,65,66,67,68,73,75,83,84,86,89,93,113,115,117,118,120,122,125,126,128,130,131,141,148,149,150,153,154,158,159,160,163,164,168,169,170,171,172,173,175,177,178,182,183,184,185,186,187,188,195,201,202,203,204,207,208,210],pointer:[101,128,133],pointwis:143,pois:129,poison:[119,194],pojo:153,polar:41,poli:[65,66,67,182],polic:111,polici:[108,115,178,207],polli:129,pollut:42,poloclub:[136,197,198],poly_best:66,poly_pr:66,poly_svc100:65,poly_svc:[65,66],poly_svr:67,poly_transform:204,polynomi:[66,67,78,85,169,170,185],polynomialfeatur:[182,204],polynomialfeaturespolynomialfeatur:182,pomegran:43,pond:146,ponder:84,pool1:138,pool1_pad:144,pool2:138,pool3:138,pool4:138,pool:[32,33,136,138,140,143,144],pool_siz:[35,36,43,136,143],poolarea:[60,72],pooler:42,poolqc:[60,72],poor:[31,44,45,59,64,65,70,75,83,89,128,145,154,158,164,170,178],poorer:86,poorli:[34,65,94,154,169,170,178,201],pop:[7,14,36,37,101,113,131,139,147,158,159,188,195,210],popul:[4,13,14,67,83,119,122,125,133,150,160,163,164,182,184,186,194,196],popular:[1,48,50,56,65,112,113,115,122,127,140,151,153,154,155,156,157,158,159,164,165,166,168,172,175,183,188,189,202],porch:60,port:22,portabl:[121,139,209],portal:[9,56,110],portion:[34,56,101,102,128,143,146,152,154,172,186,187,188,189],portrait:38,pose:[38,43,55],posit:[3,28,37,42,44,56,57,58,60,62,63,72,75,84,87,89,101,111,125,128,131,140,141,143,146,147,148,154,161,164,169,172,183,187,188,189,197,202,204,209,210,211],position_embed:143,position_salari:204,positionalembed:139,positive_integ:[188,210],positive_vector:[188,210],positv:65,possess:[60,75,83,89,207],possibl:[1,11,35,42,44,48,50,52,53,56,58,60,65,67,75,83,87,89,101,111,117,123,125,128,129,131,136,139,140,143,145,150,152,153,154,155,156,160,163,164,168,169,171,172,178,182,187,188,190,207,210],post:[0,1,14,28,29,32,48,56,128,129,146,148,149,173,191],post_imag:172,postdoc:189,posterior:163,posterior_vari:139,posterior_variance_t:139,postgradu:73,postur:38,potenti:[23,28,44,52,60,63,86,110,111,113,115,118,121,123,125,128,130,131,137,140,141,146,154,156,168,175,184,190,192,201],pothol:[121,192],potrait:38,potrait_gener:38,potraits_gener:38,pouget:142,pound:[120,160,184],pow:[31,135,141],power:[1,7,34,48,55,58,59,63,64,65,66,67,85,86,107,108,111,113,117,128,129,131,140,141,146,154,156,164,168,169,172,178,182,187,188,189,190,195,209,210],power_of:[187,209],ppf:18,pprint:31,ppwwyyxx:148,pq:63,practic:[4,7,16,30,33,42,44,50,52,53,54,56,59,64,65,67,73,111,115,121,123,125,126,128,133,135,136,137,138,140,143,144,146,149,150,153,154,156,160,164,167,169,170,172,173,178,183,186,187,188,189,192,202,209],practical_dl:91,practis:169,practition:[86,121,150,192],prafulla:139,pragati:147,prashant111:57,prashant:[65,168,203,208],pre:[3,9,42,46,52,108,110,129,144,154,155,156,167,170,182,186],preced:[52,84,128,143,147,187],precis:[29,42,44,51,52,58,60,63,66,72,75,76,84,86,89,91,101,112,128,149,154,155,170,173,176,177,183,187,204],precision_recall_curv:[176,177],precision_scor:[29,176,177],precison:[58,63],precomput:131,pred:[29,34,42,43,44,55,58,59,60,62,63,64,72,76,136,150,165,172,182,202],pred_bbox:45,pred_class:43,pred_coord:45,pred_imag:36,pred_mask:144,pred_nois:36,predefin:[34,125,127,141,158,177,181,196],predf:61,predi:61,predicit:165,predict:[9,22,29,34,35,36,37,38,41,42,44,45,48,49,50,52,53,55,57,58,59,61,63,64,65,66,67,68,69,70,71,72,73,75,83,84,85,86,87,90,91,93,111,115,121,123,125,136,139,140,141,143,145,146,147,148,149,150,152,153,154,155,156,159,160,161,163,164,165,166,167,169,171,173,175,177,178,179,180,181,182,183,184,185,186,187,190,191,192,193,198,207,208],predict_class:[52,76],predict_imag:34,predict_proba:[62,165,171,172,176,183,202],predict_row:61,predicted_column:[41,49],predicted_df:[41,49],predicted_label:46,predicted_nois:139,predicted_pric:47,predicted_valu:[41,86],prediction_text:173,predictions_arrai:46,predictions_lit:33,predictions_on_train:[75,89],predictions_singl:46,predictor:[55,62,72,154,161,167,168,171,182],predominantli:[38,111,190],preds_test_cb:60,preds_test_lgbm:60,preds_test_xgb:60,prefer:[53,62,70,83,111,121,125,128,153,154,163,168,170,171,178,180,183,185,188,189,190,210],prefetch:[33,36,49,135,139,144],preffer:70,prefix:[22,62,147,187,188,210],prefrenc:73,preiousli:38,preliminari:[146,159],preload:182,premis:[108,115,153,175,193],prep:[41,175],prepackag:186,prepar:[18,22,42,48,55,58,59,63,64,75,83,89,109,110,112,113,115,117,134,135,152,171,172,178,191,193,202],prepare_dataset:36,prepend:187,prepocess:38,preprint:[14,56],preprints202006:14,preprocess:[32,33,35,41,44,47,48,49,56,57,60,65,68,70,85,92,136,143,146,147,149,153,154,159,173,182,183,186,204,205,206],preprocess_imag:36,preprocess_img:142,preprocess_input:137,preprocessor:68,prerequisit:[0,138,151,187],prescrib:146,presenc:[60,146,154],present:[1,3,4,5,7,9,13,14,19,21,26,27,37,51,55,57,58,60,63,78,80,94,98,99,101,102,111,113,117,119,125,126,128,129,130,131,143,145,148,151,152,155,156,175,176,178,179,187,189,190],preserv:[51,93,121,126,128,129,131,140,171,183,187],preset:16,press:[41,57,141,150,186,189,203],pressur:[24,110,122,123,186],presum:[38,158],pretend:[18,164,187],pretrain:[140,144,198],pretti:[7,31,60,63,64,66,70,72,146,158,159,161,167,171,172,176,177,178,183,184,204],preval:147,prevent:[28,30,32,46,48,52,56,60,110,111,128,129,139,141,154,155,160,163,169,170,187,188,200,210],preview:[65,110,111],previou:[7,14,17,32,33,37,44,52,53,55,56,61,62,63,84,85,91,109,112,117,118,122,125,126,127,128,129,139,143,144,145,147,150,154,156,159,160,163,164,165,166,167,168,171,172,173,176,177,178,182,184,187,188,207,210],previouli:55,previous:[18,33,46,60,63,84,85,126,128,153,159,160,177,183,195],previous_numb:187,prgn:[75,89],price:[22,41,55,58,60,63,72,75,83,86,111,120,140,146,149,154,161,175,178,182,183,190,206,207],price_add_averag:22,price_rang:[75,89],priceperlb:[120,194],pricier:184,prim:187,primari:[6,7,51,62,75,84,89,109,110,122,123,126,130,131,133,168,196,197],primarili:[7,84,87,113,131,161,186,207],primary_metr:[9,109],prime:[101,187],prime_factor:101,prime_text:145,primit:[188,210],princ:61,princip:[73,135],principl:[31,50,52,53,56,62,108,111,123,133,141,160,168,169,170,187,192],print:[1,2,3,9,15,17,18,23,24,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,46,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,69,70,71,72,73,75,76,83,84,85,86,87,89,91,92,93,101,109,119,125,128,135,136,137,138,139,141,142,143,144,145,146,147,149,150,159,160,161,163,165,167,168,171,172,173,175,176,177,179,182,183,184,186,187,188,189,194,195,198,202,204,205,206,208,209,210,211],print_everi:142,print_four_numb:209,print_funct:39,print_stat:29,printfeatureimport:62,printmd:43,prior:[65,110,117,120,168,191],priorit:154,prioriti:110,privaci:[115,121,156,192],privat:[62,108,115,153,191,193],privileg:187,prix:143,priya:47,prize:[121,192],pro:[7,41,52,62,110,121],prob:[41,165],proba:176,probabilist:[65,139,140],probability_model:46,probabl:[7,31,33,34,42,44,46,53,55,56,58,61,62,64,87,91,107,110,111,112,113,115,118,122,123,124,133,139,140,141,143,147,154,158,159,160,163,164,165,171,177,178,180,182,184,186,188,198],probalist:140,probe:[6,65],problem:[7,11,23,29,38,42,46,50,51,52,53,55,58,60,62,63,64,66,68,70,73,84,85,87,93,99,109,112,113,115,117,121,123,125,126,128,129,140,141,143,144,145,147,148,150,151,153,154,159,160,161,165,168,169,170,171,172,175,176,179,180,184,188,192,193,200,201],problemat:[18,26,154],proce:[38,60,73,75,85,89,91,147,168],procedur:[52,56,60,150,156,160,163,164,168,182],proceed:56,process:[1,3,7,11,18,28,30,31,32,33,35,38,42,45,46,47,48,50,51,53,56,57,59,62,63,64,65,68,73,75,84,85,89,91,99,101,108,109,110,111,112,113,121,122,123,128,135,136,140,141,143,144,147,149,150,151,153,154,156,159,160,163,164,165,166,167,168,169,171,172,173,175,176,177,178,179,181,182,186,187,188,189,190,191,192,195,201,202,203,207,208],processed_data:31,processing_d:63,processor:[75,89,93],prod:[128,142],produc:[7,29,31,32,38,51,57,63,65,68,110,117,118,120,123,126,128,146,147,148,150,152,153,158,160,168,170,178,184,187,188,192,198],product:[11,13,42,55,73,85,101,108,110,111,113,120,121,122,123,125,128,131,139,143,150,151,152,153,154,155,172,173,178,183,190,191,192,194,203,207,208,209],production:[51,155,156],prodvalu:[120,194],profession:[108,146,153,158,168,189,192],professor:[164,178],profil:[65,121,193],profit:[37,127,164,196],profium:196,program:[41,46,56,63,108,110,121,122,131,133,139,140,146,151,152,153,154,169,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,208],programm:[122,178,187,189,207,211],programmat:[7,110,126],progress:[14,38,44,50,52,77,120,136,152,154,177,178,186,187,198],progress_info:136,progress_widget:77,project:[5,7,9,16,22,30,31,38,40,41,64,65,72,73,84,101,102,108,111,113,115,119,121,126,128,135,137,139,141,142,143,144,145,148,149,151,152,153,154,155,156,169,172,175,178,186,187,189,190,191,193,200,202,203,207],project_fold:109,project_root_dir:171,promin:56,promis:[50,91,121,192],promot:73,promote_typ:128,prompt:[6,110,173,189],prone:[72,163],pronounc:[133,186],proof:[28,110,158],propag:[7,31,91,130,131,150,158,171,172,208],propens:167,proper:[18,55,58,59,63,64,75,89,113,128,136,146,158,178],properli:[5,51,70,91,100,126,152,154,160,166,178,183,184,207],properti:[9,14,31,34,36,38,52,53,56,61,92,109,121,125,127,128,129,154,161,163,164,169,182,187,188,192,196],proport:[56,65,68,86,117,125,163,164,170],propos:[65,112,113,139,142,143,145,148,156,160,163,169,171,193,200,208],proposals2:148,proprocess:44,prose:31,prospect:113,prostat:179,protagonist:117,protect:[14,108,111,121,152,190,192],protocol:130,prototyp:[52,53,110,111],prove:[18,26,28,56,117,123,125,154,158,160,163],provid:[0,1,7,12,14,15,16,17,21,23,28,34,35,44,45,46,50,51,53,55,56,58,59,60,63,64,65,83,84,86,87,91,101,102,108,110,111,112,113,115,117,121,123,126,127,128,130,131,133,135,136,140,143,146,147,148,150,151,152,153,154,155,158,160,161,163,164,168,170,171,173,176,178,184,186,187,188,189,190,192,193,196,198,207,208,210],provinc:14,province_st:[14,155],provis:[109,153],provisioning_configur:[9,109],proxim:[83,158,163],prp:[59,64],prune:[56,143],pseudo:[18,164],pseudocod:164,pseudonym:125,psgk:65,psycholog:158,pt:64,pth:[31,34,39],public_dataset:[75,89],publicli:[110,155],publish:[56,59,64,65,101,102,110,125,152,153,187,188,189,191],publish_tim:1,pubu:[75,89],pull:[56,117,121,131],pullov:[30,44,46],puls:65,pulsar:65,pulsar_star:65,pumpkin:[81,98,100,175,182,183,185],pun:187,punctuat:[101,102,145],pungent:[119,194],purchas:[73,108,113,120,123,182],pure:[36,44,53,65,91,125,130,163,187],puriti:161,purpl:[30,117,119,194],purpos:[16,30,37,52,53,64,65,66,67,73,84,101,102,115,121,128,131,136,138,140,142,154,158,168,171,173,178,183,186,187,188,189,192,193,195,207,209,210,211],pursu:[111,154,178,207],pursuit:84,push:[0,52,101,113,117,141,146,153,187,195],pussin:[101,102],put:[41,44,48,56,61,68,73,87,110,113,121,133,140,160,164,170,178,186,187,188,189,207,209,210],pval:[18,125],pvt:62,pw:161,px:[30,34,49],px_height:[75,89],px_width:[75,89],pxi:131,py39:[30,37,38,118],py3:209,py:[9,30,37,38,63,68,77,92,109,118,129,130,131,136,141,172,173,176,183,187,188,189,194,195,202,209,210,211],pycharm:41,pycharmproject:209,pycon:129,pydata:[128,129,131],pygment:125,pylab:22,pylint:[187,188,210],pyobjecthasht:131,pypi:[188,210],pyplot:[1,3,14,15,18,22,29,30,31,32,33,34,35,36,37,38,39,40,41,43,44,45,46,47,49,50,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,73,75,76,83,84,85,86,89,91,92,93,118,119,120,125,135,136,139,141,142,144,145,149,150,158,159,160,161,163,165,168,169,171,172,175,179,182,184,186,194,198,200,202,204,205,206,208],pyramid:[144,155],pytest:[0,3,14,22,24,59,83,101,102,151,187,188,210],python37:209,python38:[63,202],python39:187,python3:[101,102,129,130,131,173,176,183,187,195],python3_7_4:209,python:[0,1,3,7,18,22,23,30,33,34,37,41,45,48,51,55,57,62,63,64,65,66,67,85,91,109,110,111,112,118,125,126,129,130,131,134,136,137,138,139,143,145,151,153,171,172,173,175,184,190,191,192,193,194,196,197,198,199,200,201,202,203,204,205,206,207,208],python_3_2021:209,python_cast:188,python_datatyp:188,python_dictionari:188,python_funct:209,python_numb:188,python_oper:188,python_ref_str:188,python_set:188,python_str:188,python_try_except:187,python_tupl:188,python_util:[111,112,113,114,115,184],python_vari:188,pythonista:188,pythonpath:187,pythontutor:[187,189],pythonwin:209,pytorch:[31,34,110,140,142,173],pytutor:0,pyvideo:129,pywaffl:[119,194],pyx:[129,131],q1:125,q3:125,q:[22,37,56,128,139,172,183,209],q_:[139,141],q_sampl:139,qbbc3cjsnjg:180,qbcdxtzitda:65,qgl:65,qhbdyylbkvbnfrlfmvucxrow5xhs1wmxbnfgnxdijre3r9vnpmddx8mskgudzlfb10qnqi:65,qizx:196,qmcrlph5c7vc:65,qmqvejnztng9kv28rwerdmjfiwjrgfn:65,qq:[3,14,22,24,59,101,102],qqpcmgr_docpro:41,qty:127,quad:[84,160,164,179],quadrat:[60,65,87,163,164,169,188],quadraticdiscrinationanalysi:176,qualit:[6,24,113,122,152,178,192],qualiti:[0,43,51,52,53,59,60,62,68,72,91,94,110,112,115,118,121,122,125,143,153,155,156,158,160,161,163,172,177,178,182,183,184,192,193,202],quan:63,quantifi:[65,84,86,87,115,193],quantil:[60,112,164],quantit:[6,56,60,113,122,152,178,192],quantiti:[4,115,119,123,127,141,150,178],quantiz:[143,154],quarter:143,quarterli:122,quartil:[7,18,60],quebec:14,queliti:31,queri:[2,12,16,25,51,108,122,123,126,131,133,139,146,152,173,193,196],query_emb:148,question:[0,16,17,23,28,32,42,52,55,56,57,63,64,65,80,84,111,112,113,115,117,120,121,123,125,129,140,146,147,151,154,155,156,164,165,169,173,175,178,182,186,192,193,195,207],questionstd:149,queue:113,quick:[44,45,53,55,58,59,60,67,73,86,92,110,131,146,154,156,158,169,172,175,178,181,184,185],quickli:[7,14,42,44,45,50,52,53,64,75,83,89,110,118,120,126,128,139,152,153,164,168,182,183,195,198],quicksight:152,quickstart:153,quiet:[3,12,18,25,30,33,40,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],quirk:188,quit:[1,3,7,18,34,35,38,43,44,45,56,65,66,67,73,75,89,119,120,129,133,148,154,160,161,163,171,176,177,178,179,182,186,188,207],quora:156,quot:[129,187,188,189,210,211],quotient:[101,128,172],qx5jiesrfw94xegtzrdtkdjuz7nhti39ouuuo8wwxphae76msb63ba1hgkn0vbrht0vdl3u8tzoejcarcybnqi8lslxo2ysfgf08tsx3pdj2jjdzwa:65,r2:[69,71,85],r2_score:[69,71,85,86],r2_socr:[69,71],r:[22,29,30,31,34,38,39,43,45,61,65,70,83,85,91,120,125,128,136,138,139,141,144,145,149,153,158,163,164,169,171,172,173,188,194,200,202,204],r_0:14,r_:[56,93,141,164,171],r_k:141,r_p:125,r_t:[8,164],rabbit:209,race:[57,173],racial:111,radial:[66,67,169],radic:143,radio:[65,203],raffael:123,rag:37,raggedtensorvalu:37,rai:111,rainbow:120,rainfall_id:[133,196],rainforest:122,rais:[3,14,22,24,59,101,102,105,106,111,121,128,129,130,131,141,144,154,156,188,190,209,210],raise_for_statu:150,rajesh:147,rake:3,ram:[43,59,75,89,110,163],ramif:177,ran:[10,20,189],rand:[18,37,55,56,85,163,172,195],rand_i:136,rand_index:[45,136],rand_indic:45,rand_tensor:48,rand_x:136,randint:[31,39,45,56,76,77,160,179,195,198,208],randn:[31,39,85,91,130,131,203],randn_lik:31,random:[29,31,32,33,34,36,37,38,39,41,43,44,45,48,49,50,52,54,56,61,62,63,64,65,66,67,68,70,72,73,75,76,77,85,89,91,112,128,130,131,135,136,139,141,142,143,144,145,149,154,159,160,162,164,167,168,170,171,172,175,177,178,179,195,198,202,203,208],random_flip_left_right:139,random_index:[44,139],random_norm:[135,138],random_normal_initi:[144,148],random_se:34,random_split:34,random_st:[29,30,31,35,43,44,54,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,83,85,92,147,159,161,163,165,167,168,169,171,172,173,177,179,182,183,200,202,204,205,206],random_strength:60,random_transform:39,randomappli:39,randomflip:[33,144],randomforest:62,randomforestclassifi:[55,56,57,58,62,161,163,172,176,177],randomforestclassifierrandomforestclassifi:163,randomforestregressor:[54,59,161,163],randomhorizontalflip:39,randomizedsearchcv:[60,67],randomizedsearchcvrandomizedsearchcv:67,randomli:[30,33,35,45,56,60,61,68,72,86,139,143,144,160,161,163,170,171,172,202],randomnorm:[135,143],randomrot:[33,39],randomst:[163,195],randomtreesembed:163,randomzoom:33,randrang:37,rang:[1,18,22,29,30,31,32,33,34,35,36,37,38,39,41,43,44,45,46,47,48,49,50,52,53,56,57,58,59,60,61,62,63,64,69,70,71,75,76,77,83,84,85,90,91,92,93,102,108,110,111,118,121,123,125,128,129,130,135,136,137,138,139,141,142,143,144,145,146,147,148,150,152,153,154,159,161,165,166,167,171,172,179,183,188,191,192,195,198,202,203,204,205,206,208,209,210],rangeindex:[41,65,66,73,83,126,158,168,175,195],rank:[48,121,128,130,154,158,161,164,176,192],rankboost:164,ranspos:30,rapid:[111,189],rapidli:[128,152,172],rare:[60,65,115,154,158,163,164,195],raschka:[56,135,142,145,149],rate:[6,8,14,22,34,36,37,42,52,53,55,61,68,70,84,85,110,111,113,117,122,140,141,142,143,144,145,154,155,161,165,167,168,170,171,172,179,183,202,207,208],rater:52,ratetc:149,rather:[7,31,38,51,60,75,84,87,89,108,120,123,126,128,131,133,146,153,158,163,169,171,178,182,186,187,188,195,203,207,210],ratio:[14,42,44,51,55,58,63,65,131,154,161,171],ration:[44,113],rational:161,ravel:[56,62,63,163,165,169,171,176,177,200,205,206],ravenclaw:203,ravendb:196,raw:[6,12,14,16,18,25,48,50,63,64,68,75,87,89,110,122,123,125,126,131,143,152,154,155,171,173,178,184,195,207],raw_data:29,rawinputlstjson:187,rayleigh:172,razor:170,rb:[77,136,173],rbf:[66,67,171,200],rbf_score:65,rbf_svc:65,rbk:65,rbkzduqmatb85:65,rbr_1x1:143,rbr_dens:143,rbr_ident:143,rbr_reparam:143,rc:[22,38,68,73,150,171],rcl:[160,163],rcnn:148,rcparam:[14,65,72,142,163,194],rdbm:196,rdss:101,re:[3,7,15,31,33,35,41,42,44,45,46,50,52,53,58,63,68,70,72,75,89,91,111,113,115,126,127,128,129,130,131,133,136,137,143,144,145,146,148,149,154,155,164,165,170,173,175,178,179,182,186,187,188,190,196,203,207],re_fit:66,reach:[34,38,46,53,56,61,84,115,161,163,167,169,172,179,187,188],react:[182,211],reaction:151,read:[16,29,31,44,50,52,54,59,60,64,75,77,89,91,110,117,118,119,120,121,123,125,127,128,137,145,149,151,154,172,175,176,182,183,186,187,188,209],read_csv:[1,2,14,15,17,18,22,23,24,29,31,32,37,41,42,45,47,49,51,52,53,54,55,56,57,58,59,60,62,65,66,67,68,70,72,73,74,75,83,85,89,91,92,93,95,118,119,120,125,131,146,150,155,158,159,160,161,163,165,167,168,173,175,176,177,179,182,183,184,194,204,205,206,208],read_file_from_url:77,read_tabl:179,readabl:[0,119,153,173,188,189,210,211],reader:108,readi:[35,44,46,55,57,58,65,75,89,110,152,153,154,155,156,158,165,173,176,177,178,182,184,186],readm:[5,117],readthedoc:30,real:[0,7,11,28,29,34,35,37,38,39,41,43,44,47,50,51,56,59,63,64,65,66,87,101,121,123,126,127,128,129,141,142,143,146,147,148,150,152,153,155,156,160,164,170,171,178,182,187,188,189,192,195,196,198,199,204,207,210],real_data:142,real_imag:[38,39],real_label:39,real_loss:142,real_part:187,real_sampl:39,real_stock_pric:47,realist:[43,198],realiti:[7,62,121,140,154,183,196],realiz:[115,141,149,164,183],realli:[44,55,60,62,66,67,72,75,89,109,113,120,146,168,170,176,178,183,187,188,207,210],realm:[56,86,146,147,196],realpython:187,rearrang:[84,117],reason:[7,11,14,42,44,51,55,56,66,68,72,75,83,89,91,108,123,125,126,128,136,146,153,154,156,160,161,165,167,168,172,178,180,186,188,191,207],reassign:188,reboot:111,rebuild:44,rec:60,recal:[29,44,52,56,58,63,66,75,76,89,112,128,154,160,165,173,176,177,183,195],recalcul:161,recall_scor:29,recap:172,receiv:[6,46,65,91,109,112,113,122,131,141,149,155,164,183,187,193],recenc:73,recent:[14,48,73,91,113,128,129,130,131,150,156,164,176,195,209],recept:197,recgon:208,recip:[164,204],recipi:122,recogn:[44,48,68,75,76,89,111,128,140,143,146,148,152,172,178,187,190,207],recognit:[30,43,46,136,138,140,143,145,146,147,155,178,207],recommend:[15,50,55,110,111,113,120,121,123,127,128,129,131,154,161,163,164,171,172,186,187,189,192],recomput:172,recon_x:31,reconstr_img:135,reconstruct:[29,30,31,135,156],reconstructed_imag:135,record:[9,15,73,109,121,122,128,136,139,140,146,150,152,155,158,164,178,187,195,207,209],recov:[14,155,164],recovered_dataset_url:14,recovered_df:14,recoveri:[8,14,41,108,152,155],recreat:[53,118,119,135],recruit:121,rect:[39,172,202],rectangl:[45,56,127,141],rectifi:[91,121,136,140,143,147],recur:52,recurr:[28,175],recurs:[56,101,102,149,187],recycl:41,red:[14,41,45,46,47,50,53,55,56,58,62,68,85,86,110,113,117,118,119,125,143,161,163,169,170,171,182,188,189,194,200,204,205,206,210],red_sunflow:33,red_win:68,reddit:117,redefin:[52,112,115,187],redhat:153,redi:196,redo:[100,152],redshift:152,reduc:[7,30,32,33,38,44,50,52,55,56,58,60,62,63,64,67,70,73,84,101,110,115,128,138,140,143,144,146,147,153,154,156,158,160,163,164,167,168,170,171,172,173,178,179,183,188,202,207,208,209],reduce_max:29,reduce_mean:[77,135,137,143,145],reduce_min:29,reduce_std:137,reduce_sum:[137,138,145],reduct:[31,56,60,135,150,160,161,163,172,207],reduction_model:30,redund:[73,135,168,187],ref:[30,153,177],refer:[3,17,22,23,24,33,34,35,45,48,51,55,56,58,60,62,63,64,66,83,84,86,108,109,110,112,113,115,117,121,125,127,128,130,131,133,135,136,138,139,140,141,143,149,152,153,154,155,156,158,159,160,170,173,177,178,182,187,188,207],referenc:[56,187,188],reference_answ:91,referenti:123,refin:156,refit:[58,59,63,64],reflect:[7,28,43,44,73,87,100,121,152,158,173],reformat:46,refram:41,refresh:[45,110,155,184],refus:[50,121,192],reg:[60,72,163,178],reg_alpha:[60,167,168],reg_lambda:[60,167],reg_model:83,reg_tre:56,reg_tree_pr:56,regard:[7,34,56,120,126,128,141,146,163,164,168,183,188],regardless:[51,125,128,153,156,158,187,188],regdataset:163,regener:[53,149],regex:[182,184],regim:170,region:[14,42,83,110,121,144,148,155,159,168,174,187],regist:[9,73,109,110,209],register_model:[9,109],registr:[1,128],registri:[110,153],regplot:[60,150],regress:[44,45,48,50,52,55,58,60,61,62,63,65,66,72,84,100,109,115,125,140,146,147,154,159,160,161,163,165,166,168,171,172,173,174,175,177,193,199,201,207,208],regressor:[47,55,56,154,163,165,179,204],regressorchain:150,regul:[115,156,177],regular:[1,8,33,38,42,46,58,59,63,65,67,70,75,77,85,89,135,150,154,163,164,168,169,171,177,200,208],regularioz:[69,71],regularis:[169,200],regularization_weight:138,regularli:[155,156],rei:53,reilli:[121,156],reimport:[29,187],reindex:150,reindex_index:129,reinforc:[31,121,141,156,164],reinforcement_learning_course_materi:141,reinvent:156,reiter:[113,152],reject:125,rekognit:156,rel:[1,38,43,45,46,55,57,58,59,64,73,84,85,101,118,123,125,130,131,133,137,139,143,154,158,164,173,188,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],rel_error:142,rel_tol:101,relat:[1,3,16,18,28,52,62,104,110,113,120,121,122,125,131,134,139,146,149,154,155,163,170,178,183,187,189,194,199,207,208],relationship:[1,34,44,54,55,57,58,62,70,72,75,85,86,89,92,95,97,112,115,117,118,123,125,127,140,150,155,158,169,170,175,178,182,183,184,185,186,187,193,204,207],relax:[128,141,169],releas:[118,121,128,153,172,189,192,202,211],release_d:[158,159],relet:73,relev:[3,16,28,108,111,121,123,125,128,140,141,146,154,156,164,178,183,190,207],relevent_experi:62,reli:[63,68,75,89,115,122,123,126,127,178,183,188,210],reliabl:[86,108,111,121,153,163,178,191,192],relief_pitch:125,reload:[51,52,126],reloop:61,relplot:[120,194],relu1_1:138,relu1_2:138,relu2_1:138,relu2_2:138,relu3_1:138,relu3_2:138,relu3_3:138,relu3_4:138,relu4_1:138,relu4_2:138,relu4_3:138,relu4_4:138,relu5_1:138,relu5_2:138,relu5_3:138,relu5_4:138,relu:[29,30,31,32,33,34,35,36,37,38,39,43,44,45,46,48,49,52,53,68,76,77,91,136,138,140,142,143,144,147,148,198,208],relu_grad:91,remain:[7,56,60,65,68,75,87,89,101,102,121,126,128,131,139,143,146,147,152,156,160,168,172,187],remaind:[101,127,128,187,188,189,204,210],remark:[55,63,66,67,75,89,160,189,211],remdesivir:1,rememb:[7,37,53,58,63,75,89,113,123,128,145,150,154,160,164,165,170,172,183,186,188,197,204],remind:182,remix:111,remot:[0,153],remote_effects_echo_url:187,remote_effects_init_url:187,remote_effects_reverse_url:187,remote_fibonacci_url:187,remote_package_init_url:187,remote_run:[9,109],remov:[1,3,14,29,31,38,39,40,54,55,56,57,58,61,65,68,70,73,75,77,89,91,92,101,115,118,120,121,145,154,158,159,170,172,175,178,183,187,189,193,202,210],remove_dupl:[102,188],remove_small_object:40,ren:148,renam:[1,18,42,65,73,92,129,131,187],rename_column:42,render:[16,60,63,64,66,67,72,92,163,167,168,169,171,173,180,182,186,188,203,210],render_templ:173,rent:108,rep:113,repack:[182,183,184],reparameter:31,repay:207,repeat:[33,36,38,41,49,56,61,84,93,102,123,128,131,135,144,152,159,160,163,164,168,171,172,182,188,202,210],repeat_delai:139,repeatedli:[101,167,209],repetit:[55,58,59,64,154],replac:[7,14,22,30,31,32,37,42,46,51,53,55,57,60,61,62,72,73,86,91,110,126,128,143,145,150,154,160,171,179,182,187,188,210],replai:37,replec:55,replic:128,repo:[0,5,77,144,172],report:[14,34,42,43,44,58,62,63,66,113,121,146,155,173,176,177,183,184,187,192],report_to:42,repositori:[0,1,14,64,84,128,147,149,151,153,178],repres:[1,7,18,30,31,37,38,42,43,44,45,46,48,51,52,53,56,57,58,60,62,63,65,70,83,84,85,86,101,109,111,112,113,119,121,122,123,125,126,127,128,139,140,143,147,150,154,158,159,160,161,164,165,171,172,188,189,195,196,202,210],represent:[7,22,29,30,38,46,54,56,63,64,66,67,70,72,75,83,89,92,101,112,115,118,126,128,135,141,143,149,151,167,168,169,170,171,178,179,182,186,195,196,209],representative_digit_idx:171,representative_images_diagram:171,reproduc:[43,50,53,148,149,154,160,161,168,195],reproduct:14,reput:146,repvgg:143,repvgg_convert:143,repvggblock:143,request:[3,16,29,30,31,34,38,39,43,45,46,67,72,75,77,83,89,91,109,111,121,123,131,136,137,138,139,142,145,146,147,149,150,156,171,173,178,187,188,207,210],requir:[0,1,15,22,24,31,34,46,48,50,52,53,54,62,65,67,73,77,83,85,87,95,102,108,110,111,113,115,121,122,126,127,128,141,144,146,148,150,152,153,154,155,156,158,163,164,167,171,172,173,178,186,187,188,191,192,193,210],requires_grad:34,requisit:9,rerun:[44,48,63,64,66,67,72,92,163,167,168,169,171,182,184,186,203],res_block:139,resblock:139,rescal:[33,44,68,83,178],research:[1,16,28,108,113,118,119,120,121,131,140,147,154,155,156,164,175,177,178,186,191,192],researchg:56,resembl:[83,84,157],reserv:[56,91],reset:[37,50,52,53,129,141,145,170],reset_default_graph:[136,138,145],reset_index:[1,14,41,43,52,53,60,70],reshap:[29,30,31,32,35,37,38,41,47,48,49,52,56,76,85,91,93,129,135,136,138,139,142,143,145,148,163,169,171,172,176,182,195,198,200,202,204,205,206,208],reshaped_imag:93,reshuffle_each_iter:139,resid:[83,173],residu:[53,61,72,139,143,164,166,168],residual_block:143,residual_sum_squar:86,residual_unet:36,residualblock:36,resili:87,resist:53,resiz:[31,33,36,39,43,76,77,136,137,138,139,143,144,145,208],resize_bilinear:77,resize_with_pad:139,resizemethod:144,resnet101:144,resnet152:144,resnet50:144,resnet:[139,144],resolut:[31,43,46,75,89,130,139,148,171,187],resolv:[15,51,56,112,126,131,144,147,154,187],reson:[48,83],resourc:[28,44,45,48,84,108,109,111,115,121,123,128,129,133,147,152,153,154,156,158,178,187,188,191],resource_group:9,resp:77,respect:[1,14,30,34,37,52,55,56,58,60,72,73,83,91,121,128,131,133,135,137,139,143,145,161,168,171,172,178,186,188,207],respond:[146,150,186],respons:[3,9,17,38,39,56,73,84,85,109,110,111,121,136,138,142,145,146,147,150,152,161,163,173,182,186,192,193,204],rest:[56,63,109,110,126,127,128,146,153,164,170,171,176,182,183,187,188,196,210],rest_ecg:147,rest_of_the_numb:187,restart:173,restat:113,restecg:147,restor:[30,139,164],restore_best_weight:44,restrict:[7,53,101,102,122,126,163,187,188,189],result:[0,1,7,8,9,14,16,18,22,24,31,32,34,36,38,39,41,45,49,50,51,52,55,56,57,58,59,60,63,64,66,72,75,76,83,84,85,89,93,100,101,102,109,110,111,112,115,121,123,125,126,128,129,130,131,133,135,136,137,138,140,141,143,144,146,147,152,153,154,155,158,159,160,161,163,164,167,169,170,171,172,173,175,176,177,178,179,182,183,187,188,189,192,193,198,200,202,203,207,208,209,210],result_typ:128,resultdf:176,results_df:93,resum:122,ret:148,retail:[73,150,152,168],retain:[31,143,172,202],rethinkdb:196,retina:[56,72,150,160,163,172,202],retrain:[44,50,52,58,59,94,121,136,154,178],retri:183,retriev:[3,25,33,59,75,89,102,112,115,117,121,127,135,137,146,153,154,183,187,191,193,209],retrospect:164,retun:[69,71],return_count:[76,208],return_sequ:[47,49,145],return_st:145,return_valu:[24,59],return_x_i:[171,186],reus:[126,140,143,144,163,187,209],reusabl:[153,189],reveal:[26,151],revel:[26,196],reveng:117,revenu:[25,113],revers:[36,37,117,121,125,144,187,210],reverse_diffus:36,reversed_list:188,review:[50,108,110,111,113,117,121,139,146,153,158,164,177,178],revis:121,revisit:[111,113,118,144,183,190],revolution:146,revolutionari:[75,89,173],revolv:48,reward:[37,121,178,207],rewritten:[91,145,164],rex:128,rezend:31,rf:[12,25,44,54,163],rf_predict:163,rfc:[57,161,163],rfc_100:57,rfi:65,rfst:177,rgb:[33,34,38,43,128,143],rh:61,rho:[163,164],rho_t:164,rhs_cnt:61,rhs_std:61,rhs_sum2:61,rhs_sum:61,rhynch:42,rhythm:29,ri:[34,161,172],ri_j:161,riak:196,rice:175,rich:[48,123],richard:156,richer:171,rid:[1,14,140,158,172,182,188],ridg:[72,75,85,87,89,146,170,182],ridge_sklearn:[69,71],ridge_sol:72,ridgeclassifi:146,ridgecv:72,ridgeregress:[69,71],right:[1,22,27,30,31,33,38,41,46,50,52,56,57,60,61,62,63,64,68,70,72,75,83,86,89,91,93,101,102,113,119,120,121,123,127,128,129,130,131,135,136,138,140,141,143,147,153,154,156,158,159,160,161,163,164,165,167,169,170,178,183,186,187,188,189,192,194,200,203,207],right_column:203,right_i:161,right_idx:61,right_index:[41,129],right_on:129,right_output:141,right_shifted_imag:93,rightarrow:[160,172],rightmost:[128,161],rigid:143,rigor:53,ring:[119,194],ringo:189,riot:41,rise:[1,113,118,120,125,151,170,183,199],risk:[109,110,111,121,128,153,156,169,200],riski:164,riskiest:153,ritonavir:1,river:196,rk:34,rkei:129,rkswahlyepd0yioe0t4oe3i3:65,rl:72,rlabel:129,rm:[12,25,44,209],rmaliz:36,rmse:[41,59,60,64,67,72,83,150],rmse_cb:60,rmse_cross_v:83,rmse_cv:72,rmse_lgbm:60,rmse_xgb:60,rmsle:72,rmsprop:[149,208],rnd_indx:39,rnd_search:67,rng:195,rnn1:149,rnn2:149,rnn3:149,rnn4:149,rnn:[142,145,149],rnn_builder:49,rnn_model:47,rnn_size:145,rnplwnsp1zaqp:65,ro:[34,84,172,202],road:[75,89,123,140],roadwai:[121,192],roam:209,robert:163,robin:[101,187],roblem:159,robot:[121,148,178,207],robust:[7,38,40,43,55,60,66,68,87,144,163,164,168,169,172,180],robustscal:[57,60],roc3qtujlwlgnjug8xyjhmyab7mslm:65,roc:154,roc_auc:[62,65],roc_auc_scor:[62,65,165,183,202],roc_curv:[65,183],rocket:[43,196],roi:[113,148],roi_align:148,roialign:148,role:[14,18,62,83,84,85,87,104,115,123,125,128,140,146,147,152,164,169,184,197,200],roll:[14,77,125,145,153,187],rollback:[152,153],rollout:153,ronald:7,rong:146,room:[43,55,83,123,129,155,161,178],root:[56,59,64,67,69,71,85,101,117,119,121,139,146,158,161,173,184,188,208],ropdlmfyn4ohgsyja3v360gmftkvclk41nfwlarseergxyopsipx93d46srv8ri2d64xaa7qwptq9xydracyi8rh:65,ropsasrsaeuchxukvv2ymdhz:65,rose:33,ross:[118,148,194],rossii:[118,194],rossum:[189,209,211],rotat:[1,3,18,22,35,43,46,57,60,93,141,148,158,159,171,172,194],rotate_in_all_direct:93,rotated_imag:93,rotation_rang:[32,35],rotobuf:118,roug:154,roughli:[14,50,52,56,125,171],round:[43,44,51,54,65,70,76,92,93,101,136,147,153,158,167,168,172,188,202,210],rout:[7,111,126,152,173,190],routin:128,row:[2,6,7,14,29,36,41,42,43,44,45,46,48,50,51,52,53,54,55,57,58,60,61,62,63,64,65,70,72,73,74,75,85,89,110,112,119,120,122,126,127,128,129,131,133,147,149,150,155,159,165,175,176,179,182,183,184,188,194,195,196,204,210],row_index:131,row_vector:128,rowsum:128,rpjd4ybgjdq7gkacrtovujgsdyhalfr1w5fyhbiykds2iefhc89farl5yiokg0wjchcyl3mhl2bebrqo90lbfmfd7oyzgqnciklgibijeokjhnkz2318t:65,rpn:148,rpn_head:148,rrgtp8yqcvnf:65,rror:160,rsuffix:129,rt:[14,165],rt_with_na_fil:14,rtol:14,rule:[44,48,56,83,84,91,101,112,122,123,131,140,146,152,154,156,158,163,164,171,176,178,179,188,195,207,210],run:[0,5,7,14,30,32,34,41,42,43,44,48,50,52,53,55,57,58,59,62,63,72,75,77,84,85,89,91,92,93,100,105,106,108,109,110,117,118,123,125,126,127,128,129,135,136,137,138,141,142,144,145,148,152,153,154,163,164,167,168,170,171,172,173,176,179,182,187,189,195,202,203,207,209,211],run_a_gan:142,run_deep_dream_simpl:137,run_functions_eagerli:145,run_optim:135,run_step:137,rundetail:[9,109],runner:[153,187],running_loss:31,running_mean:143,running_var:143,runtim:[0,44,77,153,156,167,173],rush:[122,156,158],russian:31,rutherford:189,rvert:[135,170,180,201],rx:[34,172,202],ryan:68,ryanholbrook:150,s1:[24,61,128,129,130,186,188,210],s1qqhlobm9hyrc7kgf87fdwaibhqseihtedrbe6uai7ny2paowiewltl6:65,s2:[61,129,131,189],s3:[128,152,172],s6:24,s:[1,3,6,7,9,12,14,17,18,20,22,23,24,25,28,29,30,31,32,33,34,35,37,38,39,42,43,44,45,46,48,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,70,72,73,75,77,78,85,86,87,89,91,92,93,95,100,101,102,105,106,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,137,140,141,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,163,165,167,168,170,171,173,174,175,176,177,178,181,182,185,186,187,189,190,196,201,202,203,204,207,208,210],s_0:56,s_1:[56,125],s_2:56,s_i:[56,125],s_j:125,s_n:125,s_o:56,s_text:145,s_text_ix:145,s_text_word:145,sa:131,sa_heart:179,saa:[108,152,173,191],sack:184,sacrific:56,sad:113,sadli:53,safari:110,safe:[66,153,172,178,202],safefi:63,safeti:[63,64,111,121,178,190,192],sag:[173,176],saga:176,sagemak:[152,153,155],sahara:154,sai:[7,31,34,38,42,53,55,56,58,63,64,65,72,75,83,89,108,121,125,126,128,140,146,149,150,154,157,160,164,170,172,178,179,183,187,188,198,202,210],said:[7,44,48,55,56,64,70,113,143,178,207],sake:[60,144,161,163,176],salari:[18,56,204,205,206],salary_data:204,sale:[73,86,150,178,182,183,184,188,207],salecondit:72,salepric:[72,167],saletyp:[60,72],salt:146,same:[0,1,7,9,18,29,30,31,32,33,34,35,36,38,42,43,44,45,46,48,49,50,51,52,53,55,56,57,58,60,63,64,65,67,68,69,71,73,75,83,84,85,89,92,97,102,109,113,115,119,120,122,125,126,127,128,129,131,133,135,136,137,138,139,142,143,144,145,146,147,148,150,152,153,154,158,160,161,163,164,165,168,170,171,172,175,177,178,179,182,183,187,188,189,193,195,203,209,210,211],samll:[69,71],sampl:[2,5,9,18,25,30,33,34,35,36,37,38,39,41,44,46,52,53,55,56,59,62,63,65,66,68,69,70,71,72,75,81,86,89,91,92,102,109,110,120,121,125,126,127,136,139,141,142,144,145,148,153,155,156,159,160,161,163,164,168,169,170,172,173,175,177,178,179,182,183,186,189,193,200,207,208,211],sample_imag:[34,144],sample_kernel:34,sample_mask:144,sample_nois:142,sample_s:18,sample_submiss:146,sample_time_series_covid19_deaths_u:155,sample_weight:163,sampledb:127,sampler:34,samsung:172,samuel:[101,102,178,207],san:173,sandal:[30,44,46],sanit:[111,190],saniti:[53,145,154],sankei:1,santino:158,sape:[188,210],sar:1,sarcasm:146,sask:146,sat:[54,146],satellit:144,satisfi:[53,60,128,155,164,172,188,210],saturn:211,save:[1,29,30,31,33,34,38,44,45,46,50,52,53,54,57,62,72,76,85,91,110,128,136,138,139,144,145,146,149,154,160,163,164,169,171,175,176,187,198,203],save_best_onli:[43,44,49],save_everi:145,save_fig:171,save_format:[29,30],save_imag:39,save_images_from_dict:136,savefig:[141,171],saw:[10,13,20,44,52,55,56,58,63,75,89,109,117,150,160,164,170,171,183,184,188,207,210],say_goodby:187,say_hello:[187,209],sc1:171,sc2:171,sc:[47,70,147,171,205,206],sc_h:[75,89],sc_w:[75,89],scalabl:[56,108,110,111,121,152,153,163,169,191,192,200],scalar:[48,141,142,144,147,164,172,202],scalar_tensor:48,scale:[0,7,15,36,41,44,45,46,50,52,55,59,62,63,64,66,67,68,70,73,76,85,108,110,111,117,121,128,143,144,147,148,153,154,159,163,170,172,178,186,191,196,198,202,207],scale_feat:[75,89],scale_pip:[59,64,66],scaled_d:73,scaler:[41,44,49,57,59,60,64,65,66,67,70,73,75,83,85,89],scaler_i:49,scali:[119,194],scallion:176,scan:[111,140,146,158],scari:185,scatter3d:[169,200],scatter:[18,24,50,56,66,72,73,85,86,92,117,118,119,120,125,131,158,159,163,169,171,172,179,182,184,186,194,200,202,204,205,206],scatter_3d:30,scatter_kw:150,scatterplot:[19,24,55,58,66,67,73,75,83,89,118,158,159,182,183,184,186],scaveng:80,sceipt:153,scenario:[26,43,55,58,59,84,108,113,121,123,147,153,156,178,207],scene:176,schedul:[42,55,58,152,155],schema:[110,123,152],schema_max:53,schema_min:53,scheme:[56,120,176],school:[11,56,62,111,209],sci:[68,186],scienc:[1,2,4,5,7,8,12,13,14,15,16,17,18,19,21,22,23,24,25,26,27,28,51,53,60,62,63,64,66,67,92,110,112,113,117,118,119,120,122,124,125,126,127,128,129,131,133,150,151,152,164,173,178,186,189,195,199],scientif:[1,56,65,123,128,151,175,188,192,210],scientificnam:[118,194],scientist:[3,6,7,21,62,86,108,109,110,111,112,115,116,117,120,121,122,123,124,125,152,153,154,164,175,178,184,185,186,190,191,193,194],scikit:[7,33,40,44,51,52,55,57,63,64,67,68,72,78,80,85,107,108,109,110,111,112,113,114,115,118,119,120,126,127,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,177,179,183,185,194,195,198,200,202,203,204,205,206,208,209],scipi:[18,40,72,83,93,125,129,138,172,200,202,203],sckit:172,scoop:187,scope:[42,66,67,140,176,178,188,204,207,210],scope_util:148,score:[9,33,37,42,44,46,50,52,53,56,57,58,60,61,62,63,66,69,70,71,72,73,75,76,83,89,92,93,109,110,111,123,142,144,146,147,148,154,157,161,163,165,167,171,173,176,177,180,182,183,204],score_cb:60,score_lgbm:60,score_lit:33,score_xgb:60,scoreboard:183,scoring_file_v_1_0_0:[9,109],scout:111,scrape:[111,122,190],scrapi:[111,190],scratch:[48,108,109,136,154,206],screen:[75,89,117],screenporch:60,screenshot:[16,113,148],script:[3,109,110,136,137,138,151,187,189,203,209,211],script_file_nam:[9,109],scroll:[117,129,130,131,136,159,163,171,175,182],scrollytel:117,scrutin:121,scullei:156,scylladb:196,sd:65,sdjfhhes1figky8fmsto5n:65,sdk:[107,110,129,153,191],sdpzzf8euy6hn86ydqexmfsez:65,se:18,sea:83,seaborn:[22,33,35,38,40,41,43,44,53,55,56,57,58,59,60,62,63,64,65,66,67,68,70,72,73,75,81,83,89,92,117,118,120,143,144,147,150,152,153,154,155,156,158,159,160,161,162,163,169,172,183,194,200,202,203],seali:125,seam:133,seamless:[110,146],seamlessli:153,search:[1,51,56,58,59,62,63,65,66,67,68,72,93,109,110,111,113,118,121,122,123,126,128,129,130,146,147,154,155,156,158,163,164,168,172,187,188,190,210],searchitoper:153,searchsort:128,season:[17,23,55,58,111,122,150],sebastian:[56,135,142,145,149],second:[0,7,18,31,32,33,43,44,46,48,53,55,56,63,110,118,121,125,127,128,131,143,146,150,154,160,161,164,165,168,171,172,173,177,178,182,187,188,189,203,208,210,211],second_baseman:[18,125],second_char_set:188,second_numb:[188,210],second_term:138,second_term_numer:138,second_tuple_numb:188,second_word:[187,209],secondari:[6,122],secondli:[164,172],secret:[26,101,156],section:[2,3,7,13,15,16,17,19,21,28,29,33,38,42,50,52,53,60,65,70,73,78,85,94,98,99,100,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,134,136,139,141,146,152,153,154,155,156,158,159,160,165,166,167,168,169,170,173,174,175,176,177,178,181,182,183,184,185,186,188,189,193,195,196,203,210,211],sector:[56,62,146],secur:[108,111,121,173,190,191,192],sedol:178,see:[1,3,6,7,8,9,10,14,18,22,30,31,32,35,38,42,44,46,48,50,51,52,53,54,55,56,57,58,59,60,63,64,65,66,67,70,72,73,75,77,83,84,89,91,92,101,107,108,109,110,113,118,119,120,121,123,125,126,128,130,131,133,136,140,141,145,146,147,148,149,150,152,154,158,159,160,163,164,165,168,169,171,172,173,175,176,178,182,183,184,186,187,188,189,196,202,204,207,209,210],seed:[30,33,34,38,41,42,43,48,49,56,70,73,85,91,130,144,149,159,160,163,164,165,168,171,172,195,202],seed_numb:48,seek:[33,83,113,169,182,186,200,207],seem:[7,17,22,30,32,34,44,45,53,55,56,58,68,72,73,75,89,118,120,121,125,126,133,150,154,158,164,170,172,179,182,184,192],seen:[1,7,28,30,44,46,51,55,58,60,64,65,73,118,120,121,125,126,128,133,135,140,142,143,154,160,163,164,169,173,178,182,187,188,207],segment:[48,87,111,119,140,148,158,164,175,178],segmentation_coin:40,segmentation_mask:144,segmented_img:171,segreg:65,seir:155,select:[3,12,14,15,16,22,24,25,29,31,45,52,53,56,65,68,70,72,73,87,110,112,117,118,119,121,127,128,132,133,134,143,155,156,159,160,161,163,164,168,169,171,172,173,183,184,186,187,196,199,202,203],select_dtyp:[60,119,167,194],selected_featur:[173,183],selector:203,self:[3,14,18,22,24,29,30,31,34,36,37,38,39,44,45,48,52,59,61,69,71,90,91,101,102,103,130,131,137,139,142,143,144,145,148,151,152,165,169,178,179,200,204,205,209],self_dense_2:48,self_dense_3:48,sell:[37,101,102,121,182,187,188,189],selu:[49,140],selvam85:144,sem:18,semant:[123,130,131,144,187],semi:[6,122,123,158,171,178,192],semicolon:[188,210],send:[109,113,152,193],sender:[113,178,193],senet:143,sens:[1,3,7,18,32,51,55,56,59,72,75,83,89,101,110,122,123,125,126,128,131,140,160,165,178,182,184,187,196,204],sensibl:154,sensit:[41,56,65,86,133,143,152,154,156,166,172,188,197,202,210],sensor:[122,123],sent:[42,109,122,140,152,155,173,178],sentenc:[42,97,102,140,145,146,188,189,211],sentiment:[42,111,123,140,145,146,147,190],sentinel:195,seok:30,sep:[9,18,24,31,52,73,111,125,187,188,209],sepal:[66,92,126,131,161,172,202],sepal_ratio:131,sepallength:[92,131,161],sepallengthcm:70,sepalratio:131,sepalwidth:[92,131,161],sepalwidthcm:70,separ:[1,7,29,36,42,56,67,73,84,92,115,123,125,127,128,131,133,136,143,148,150,154,155,159,164,169,172,179,182,184,187,188,202,210],septemb:[175,184],sequel:133,sequenc:[14,18,41,42,46,48,55,83,87,111,125,128,140,143,145,149,150,161,187,188,189,209,210],sequenti:[29,30,31,32,34,35,37,38,39,41,43,44,46,47,49,50,52,53,60,62,68,76,91,136,140,141,142,143,144,147,149,165,166,168,172,188,198,202,208],sequential_1:38,sequential_1_input:33,sequential_2:[29,30],sequential_3:[29,30],sequential_window_dataset:49,ser1:195,ser2:195,ser:[131,195],sercostams:92,sergei:[31,171],seri:[7,8,14,18,22,24,31,35,41,51,55,56,57,58,62,63,64,66,72,83,85,117,126,127,129,130,140,143,144,147,149,155,159,164,176,185,187,189,196],serial:[150,153,173,209],series_to_supervis:41,seriou:65,serum:110,serum_creatinin:[9,109,110],serum_sodium:[9,109,110],serv:[48,84,86,109,115,117,128,131,154,155,156,187],server:[108,115,123,133,153,173,186,189,196],serverless:152,servic:[1,9,56,108,109,110,111,113,115,121,128,129,140,147,152,153,154,155,156,160,161,173,178,190,191,192,207],serving_default:33,sess1:138,sess2:138,sess:[77,138,141,145],session:[77,92,138,155,208,209],session_st:203,set1:[57,92],set2:62,set:[0,3,7,14,17,22,29,30,31,33,34,35,37,38,40,41,43,44,45,48,49,50,51,52,53,54,56,62,64,66,67,68,69,70,71,72,73,75,78,84,85,87,89,91,93,94,101,102,108,109,110,111,113,115,118,120,121,122,125,126,127,128,129,130,131,133,135,136,139,141,142,143,144,145,146,147,148,149,150,151,153,154,155,158,159,160,161,163,164,167,169,170,171,172,173,175,176,177,178,179,180,182,183,184,185,186,187,190,194,195,200,202,203,207,210],set_aspect:[142,150],set_axis_off:39,set_color:46,set_grad_en:31,set_index:[1,14,41,129,150],set_major_formatt:171,set_major_loc:171,set_opt:77,set_printopt:204,set_prop_cycl:150,set_properti:150,set_se:[48,49,149],set_styl:[60,92],set_them:158,set_ticklabel:[92,172,202],set_titl:[1,22,39,40,43,57,61,65,70,73,84,92,150,169,200],set_vis:[29,30,136],set_xlabel:[22,52,61,65,73,84,92,150,163,169,200],set_xlim:[169,200],set_xtick:[1,34,171],set_xticklabel:[1,57,142],set_ylabel:[22,52,61,65,70,84,92,150,163,169,200],set_ylim:[14,32,163,169,200],set_ytick:[1,34],set_yticklabel:[1,142],set_zlabel:[84,92,169,200],setfil:141,setosa:[66,70,92,131,161,172,202],settl:[121,192],settlement:[121,192],setup:[0,50,52,62,77,136,138,141,153,182,186],sever:[7,8,14,21,33,37,40,46,50,57,60,62,69,71,81,85,86,108,110,118,119,120,123,126,128,129,133,143,145,146,147,148,153,154,158,160,165,168,172,173,175,176,177,182,183,184,186,187,188,189,202,208,209,210],sew:164,sex:[9,22,57,109,110,165,186],sex_distribut:24,sex_val:22,sgd:[34,44,50,55,68,75,89,136,141,154,179,208],sgd_classifi:55,sgd_clf:[75,89],sgd_score:[75,89],sgdclassifi:[55,75,89],shade:[43,52,111,117,121,190,192],shadi:117,shadow:[43,57],shakespear:145,shakespeare_fil:145,shakespeare_model:145,shakespeare_url:145,shall:[101,102,187,188,189],shallow:[128,144,147,154,178,188,207,210],shanghai:[1,2,29,30,31,32,33,34,35,37,38,39,41,42,43,44,45,46,47,49,52,53,54,57,72,74,92,93,118,125,131,136,138,139,142,143,144,146,150,151,155,158,159,160,161,163,165,167,168,171,172,173,175,176,177,178,179,182,183,184,187,209],shannon:56,shaoq:148,shape:[29,30,31,32,33,34,35,36,38,41,43,44,45,46,47,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,69,70,71,72,76,77,85,90,91,93,119,125,126,128,135,136,137,138,139,141,142,143,144,145,146,147,148,149,153,159,163,169,171,172,173,175,179,182,183,184,186,194,195,197,198,200,202,204,205,206,208],shape_i:[69,71],shape_img:43,shape_y_0:[69,71],share:[28,34,56,57,63,65,111,112,113,115,120,121,122,123,126,128,129,130,131,146,148,151,153,155,160,161,164,172,176,178,183,187,190,195,207],sharei:[40,56,61,172],sharp:[154,160],she:[18,154,178,207],sheet:[156,176,177,180],shell:[30,187,211],shen:148,shepb1jhw5o:180,sherjil:142,shift:[8,14,41,49,57,60,68,75,77,89,93,102,147,149,150,153,155,158,169],shift_in_all_direct:93,shift_in_one_direct:93,shifted_imag:93,shine:[164,173],ship:[55,68,136],shipment:152,shirlei:117,shirt:[30,44,46],shoot:146,shop:[43,73,158],shortcom:143,shortcut:[143,144,187,189],shorten:65,shorter:[21,26,110,131,172],shorthand:[128,187],shortli:[158,186],shortsight:141,shortstop:125,shot:38,should:[7,18,29,30,32,33,34,38,42,43,46,50,51,52,53,56,57,64,65,69,70,71,73,76,91,92,101,102,109,110,112,113,115,117,121,123,125,126,128,130,131,133,136,140,141,143,144,145,149,152,153,154,155,156,158,159,163,167,168,170,171,172,173,175,176,177,178,179,182,183,185,186,187,188,189,192,193,198,203,204,208,209,210],shouldn:[62,113],show:[1,3,5,7,8,9,13,14,15,16,18,19,29,30,31,32,33,35,36,37,40,41,43,44,45,46,47,49,50,52,55,56,57,58,59,61,62,63,64,65,66,67,68,70,72,73,75,76,77,84,85,86,89,91,93,109,111,112,113,118,119,120,125,126,127,128,129,131,135,136,137,139,140,141,142,144,145,148,149,150,153,154,155,158,159,161,163,164,165,167,168,169,171,172,175,176,178,179,182,183,184,186,189,194,196,198,202,204,205,206,207,208],show_centroid:171,show_everi:142,show_generated_img:39,show_imag:[34,142],show_images_batch:34,show_img:38,show_nam:209,show_new_sampl:35,show_output:[9,109],show_point:30,show_predict:144,show_xlabel:171,show_ylabel:171,showcas:[28,72,111,190],showclassificationresult:52,showdown:119,showexampl:52,showfileuploaderencod:77,showmean:18,shown:[0,7,14,16,30,32,42,55,56,58,65,78,110,125,128,143,155,156,163,169,171,178,183,187,207],showregressionresult:53,showtestdata:163,showtestimag:45,shp:148,shrink:[41,171],shrinkag:165,shuffl:[29,30,33,34,36,39,41,43,44,48,53,62,70,91,117,135,139,142,144,145,149,150,154,163,177],shuffle_fil:36,shuffle_tensor:48,shuffled_ix:149,shufflenet:143,shuga:158,shut:68,sibl:22,sibsp:[22,165],sicp:102,sid:117,side:[7,8,14,60,61,65,75,83,89,120,130,141,156,164,169,176,187,188,189,210],sidebar:77,siev:101,sieve_of_eratosthen:101,sift:146,sigh:154,sight:[173,176],sigma:[125,139,145,149,160,161,163,168,172],sigma_ix_i:125,sigma_p:139,sigma_q:139,sigma_t:139,sigmoid:[29,30,31,38,39,44,48,66,67,90,135,140,141,145,147,148,155,165,179,183,198,208],sigmoid_svc100:65,sigmoid_svc:65,sign:[33,56,59,62,69,71,110,113,127,128,137,163,164,180,188],signal:[36,53,65,72,75,89,113,154,159,161,170,178,186,193,198],signal_r:36,signatur:[33,111,131,188,190,210],signifi:[7,84,86],signific:[18,40,44,53,60,73,84,110,113,123,125,146,156,160,161,163,169,188,197],significantli:[52,56,84,146,152,154,158,163,164,171,172,182,188,202],signup:62,silenc:[30,172,202],silent:[51,60,167,188],silhouett:[171,172],silhouette_analysis_plot:171,silhouette_coeffici:171,silhouette_sampl:171,silhouette_scor:[159,171,172],silhouette_score_vs_k_plot:171,silu:139,silver:164,sim:[75,89,164],sim_count:[75,89],simcard:[75,89],similar:[3,6,7,14,29,31,33,42,43,48,52,56,58,65,69,71,73,75,85,89,113,115,121,123,125,126,127,128,131,135,136,144,147,148,149,150,153,154,155,156,158,159,160,164,169,172,173,175,177,178,182,187,188,189,193,195,207,210,211],similarli:[18,55,56,63,65,70,84,128,131,152,154,167,172,188],simpl:[1,3,15,30,34,35,36,40,42,44,46,48,52,53,55,56,60,61,65,70,73,75,83,84,85,86,89,92,93,112,120,123,128,131,135,136,140,143,144,146,147,148,150,153,163,164,168,169,171,172,178,179,186,187,188,189,194,197,198,202,207,210],simplefilt:[73,150],simpleimput:[60,67,83,167],simpler:[31,50,52,53,128,153,154,171,178,195],simplernn:[49,149],simplest:[3,18,32,48,52,53,56,91,123,128,147,153,154,164,170,171,172,178,187,202,208],simpli:[0,7,30,34,45,48,51,52,53,55,56,57,73,84,87,91,109,113,117,126,129,131,140,144,154,160,164,167,169,170,171,178,182,187,188,195,203,207,210],simplic:[109,143,150,161,163,164],simplifi:[1,29,30,33,53,61,73,84,111,123,128,139,152,153,154,158,164,190],simpson:41,simul:[0,128,155,156,187],simultan:[38,125,143,148,153],sin:[18,36,128,139,164,209],sinc:[18,22,30,32,34,37,38,40,44,45,46,50,52,53,55,56,58,59,60,62,64,65,66,67,68,70,72,73,75,83,89,91,110,121,123,125,128,129,130,131,140,143,144,145,148,150,153,154,160,161,164,167,168,169,170,171,172,173,176,177,182,183,186,187,188,192,202,208,209,210],sine:128,singl:[7,32,35,45,46,48,52,55,56,60,62,65,73,75,89,101,108,120,122,126,129,130,131,143,147,148,149,150,154,155,163,166,167,168,171,172,178,180,187,188,189,207,210,211],single_quote_str:[188,210],singleton_tupl:188,singular:146,sink:108,sinn:134,sinusoid:139,sinusoidal_embed:36,sir:[14,155],siri:146,sirkap:111,sister:173,sit:[63,64,115,178,179,193],site:[16,30,37,38,63,92,108,117,118,121,123,129,130,131,146,149,150,156,158,172,176,183,186,187,195,202,209],situat:[28,60,65,73,113,123,125,141,146,152,154,156,161,164,182,187,188],situp:97,six:43,sixth:[188,210],size:[1,7,14,18,22,31,32,34,35,36,37,38,39,40,41,42,43,44,48,50,51,53,55,56,58,59,63,64,65,66,67,68,73,75,76,77,83,84,85,89,91,92,93,101,109,110,119,120,125,126,128,131,135,136,137,138,140,142,143,144,145,148,149,154,159,160,163,164,168,169,170,171,172,173,178,182,183,184,188,194,195,198,201,202,207,208,210],sjoerd:[188,210],skalskip:[92,93],skeeter:169,skeptic:164,sketch:189,sketchnot:186,skew:[7,22,60,63,65,72,75,89,118,159,175],skewed_feat:72,skf:163,skicit:54,skill:[41,52,54,110,111,117,118,123,133,136,137,138,146,149,150,190,194,211],skim:[109,184],skimag:[40,138],skin:[111,190],skip:[0,3,31,36,41,46,48,52,53,118,144,147,187,188,194],skip_head:202,skiprow:31,skiti:[69,71],sklearn:[7,29,31,32,35,41,43,44,47,49,51,52,54,55,56,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,75,76,84,85,89,92,93,126,146,147,150,159,160,163,165,167,168,169,170,171,172,173,176,177,179,182,183,186,204,205,206],sklz5kcmqsshyyfixsjcin0srf5:65,skorski:36,sl:161,slate:127,slaughter:160,sleep:203,slept:204,slice:[57,65,91,187,188,195,210],slice_index:130,slice_loc:130,slice_obj:130,slicer:130,slide:[14,34,113,125,151,155,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],slider:77,slideshow:199,slight:[45,62,156,163],slightli:[18,30,32,46,55,56,62,70,72,113,137,139,147,163,164,170,179,182,187],slope:[84,147,179,182],slow:[14,44,55,68,83,128,148,153,179,195],slower:[7,42,84,110],slowest:171,slowli:[50,53],slytherin:203,sm:[149,183],small:[0,15,29,32,33,34,40,42,46,53,55,56,63,64,66,67,69,70,71,72,75,83,85,87,89,91,110,125,127,128,129,139,143,144,145,147,148,152,154,160,163,164,167,169,170,171,172,173,178,182,183,186,187,189,192,198,202],smaller:[7,18,30,33,34,38,53,68,84,91,101,118,126,128,135,143,154,160,163,167,172,183,195],smallest:[101,154],smart:[128,154,167],smartphon:[75,89,123,140],smartwatch:[6,122],smelyanskii:154,smile_data:31,smile_id:31,smile_lat:31,smile_vec:31,smith:102,smo:[169,200],smoke:[9,109,110],smoker:175,smooth:[14,56,87,118,119,138,155,163,194],smoother:118,smoothli:[65,118,183],smote:175,smsspamcollect:149,smv:[66,67],sn:[35,38,41,43,44,53,55,56,57,58,59,60,62,63,64,65,66,67,70,72,73,75,83,89,92,118,120,147,150,158,159,160,161,163,169,172,183,194,200,202],sna:[172,202],snake:56,snapshot:[43,110,119],sne:[171,172,202],sneaker:[30,44,46],snippet:[7,56,85,155,188],snow:[19,118,194],snr:65,so:[1,4,7,15,17,18,29,30,31,32,33,34,35,38,42,43,44,45,46,48,52,53,55,56,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,75,83,89,91,101,102,106,110,111,113,117,118,119,120,121,125,126,128,129,130,133,135,137,139,140,143,144,145,146,147,149,150,151,152,153,154,155,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,190,195,202,207,210],sobel:40,social:[5,111,113,117,121,123,146,190,192],social_network_ad:[205,206],societi:[121,156],socio:[111,121,192],socr:18,socr_mlb:[18,125],soda:[127,196],sodium:110,soft:[65,171],softmax:[32,33,35,43,44,46,52,76,91,136,140,141,143,145,149,208],softmax_crossentropy_with_logit:91,softwar:[0,22,23,50,52,53,54,101,102,107,108,115,125,127,152,153,154,155,156,173,186,187,188,189,191,196,211],sold:[25,60,184],sole:[60,84,154,163,187],solid:[19,53,173],solidifi:164,soluion:[69,71],solut:[11,28,56,72,78,84,101,108,110,111,113,117,121,146,152,153,154,155,156,163,164,169,171,172,173,178,184,188,191,192,196,200,204],solv:[42,56,58,60,63,109,112,113,115,125,128,129,140,141,143,147,148,153,154,156,164,168,169,171,175,176,178,188,193,207],solvabl:[155,164],solver:[141,142,171,173,176],somber:113,some:[0,1,3,7,8,10,11,12,14,15,16,17,18,20,21,25,28,30,31,33,34,35,38,42,43,44,45,46,48,50,51,52,54,55,56,58,60,61,62,63,64,65,66,68,70,72,73,75,77,81,83,85,86,89,91,92,94,101,108,110,111,112,113,114,115,117,118,119,120,121,122,123,125,126,127,128,129,131,133,134,135,136,137,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,157,158,160,163,164,165,167,168,169,170,171,172,173,175,176,177,178,182,183,184,186,187,189,191,192,193,195,196,198,200,204,207,210],some_digit:93,some_digit_imag:93,somehow:[7,125,128,184],someon:[7,55,107,108,113,115,146,152,154,164,178,182,187,193],someth:[7,42,48,60,68,75,89,91,113,118,122,123,127,128,131,133,140,156,165,170,178,182,187,188,196,197,198,207,210],sometim:[7,30,33,51,55,65,68,84,119,122,123,125,126,128,130,131,133,135,141,143,150,152,154,155,164,167,178,179,180,182,183,187,188,195,207,210],somewhat:[7,42,52,119,171,182,183,203],somewher:[92,125,164,178,182,183],sonali:113,song:[157,158,159],soo:75,soon:[29,44,164],sophist:[55,117,118,153,160,163,178,194,207],sore:140,sort:[22,43,50,56,60,68,101,123,129,130,136,143,158,163,171,172,175,178,184,187,188,194,203,207,209,210],sort_i:61,sort_idx:61,sort_index:130,sort_valu:[1,31,56,57,60,62,72,175,176],sort_x:61,sosa:182,sosb:182,soshnikov:[14,108,182],soudelor:146,sound:[7,18,31,50,125,126,140,160,167,178,207],sound_packag:187,sourc:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,40,43,44,48,49,51,54,55,56,58,59,60,61,62,63,64,65,66,67,68,70,72,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,116,117,118,119,120,121,123,125,126,127,128,129,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,195,197,202,203,204,205,207,208,209,211],source_indic:1,sours:149,south:[55,58],soy_sauc:176,soybean:176,sp:147,space:[1,6,29,31,38,43,56,91,101,102,111,117,119,125,128,129,135,141,143,146,148,154,155,161,163,164,168,169,172,173,177,183,184,187,188,189,190,194,202,209,210,211],spacing_h:148,spacing_w:148,spam:[146,149,175,178,187,188,207,210],span:[73,120,156,188,210],spanish:56,spark:[152,153],sparki:158,spars:[83,135,146,163,164,168],sparse_categorical_accuraci:136,sparse_categorical_crossentropi:[44,52,76,136,145,149],sparsecategoricalaccuraci:136,sparsecategoricalcrossentropi:[33,44,46,136,144],sparsiti:[87,168],spatial:[111,140,143,144,148,172,202],speak:[113,117,120,152,154,172,173,187],speaker:[146,154],speci:[66,70,92,118,119],special:[7,29,31,60,68,87,110,123,126,128,140,158,168,169,178,183,186,187,188,195,209],specialti:184,specif:[3,7,14,22,28,31,43,44,45,48,50,51,52,53,54,55,56,58,68,75,76,84,86,87,89,108,111,112,121,122,126,128,129,131,133,143,144,146,147,149,152,153,154,156,158,160,163,164,165,169,172,177,178,182,187,188,189,197,202,209,210],specifi:[1,7,14,22,31,34,35,44,45,48,51,53,84,85,93,108,126,128,129,131,143,153,155,163,167,168,176,178,187,188,207,210],spectral:158,spectralclust:[171,172],spectralclusteringspectralclust:171,spectrum:125,specular:43,speech:[46,87,108,140,147,178],speechi:[157,158,159],speed:[14,44,60,68,75,89,91,110,115,121,128,129,143,148,154,155,156,167,168],spend:[23,55,73,75,89,108,113,153,164,167,178],spent:[73,113,154,164],spepal:51,spigeabqjcqcjpji8ek2gq3feuwpa07b3mmrhwktxsn67uoiyut4sgkuoutl8jqc5a:65,spike:[1,116,117,120,194],spinach:184,spine:120,spline:164,split:[31,33,34,36,37,41,42,44,55,58,61,62,66,67,68,70,77,85,91,92,128,129,133,137,138,141,143,144,145,147,148,149,150,152,154,160,161,163,164,165,169,171,172,178,182,183,186,187,188,189,195,196,200,202,209,210],split_col:61,split_data:165,split_nam:61,splitidx:53,splitted_str:188,splitted_sub_str:188,splitter:[63,64],spokan:146,sponsor:[115,153,193],spore:[119,194],sport:111,sports_hobbi:102,spot:[7,51,126,128,146,170,178,207],spotifi:158,spous:22,spread:[14,123,125,133,139,141,158,164,184],spreadsheet:[6,23,25,27,80,122,129,131,133,173,178,184,207],spring:[155,187],springer:154,spruce:184,spuriou:[40,65,68,117],sql:[12,25,108,123,127,129,131,133,152,196],sqlite:[12,25],sqrt:[41,58,59,60,61,62,64,67,72,83,86,102,125,139,142,143,148,161,163,172,182,202],sqrt_alphas_cumprod:139,sqrt_alphas_cumprod_t:139,sqrt_iter:102,sqrt_one_minus_alphas_cumprod:139,sqrt_one_minus_alphas_cumprod_t:139,sqrt_recip_alpha:139,sqrt_recip_alphas_t:139,sqrtimg:142,sqrtn:142,sqrzypw0qccfugn2wxewatjnaka17wwjlsrqdqfu1jch8nwfc14oqv2anesclwvrugbvlhspfwzjrcf8etm8okncdewokyi:65,squar:[36,41,44,50,53,56,59,64,67,69,71,72,75,84,85,87,89,101,119,128,135,139,141,150,154,158,159,160,163,164,168,169,170,171,172,179,182,183,188,203,204,208,209,210],square_root:101,square_tupl:[188,210],squared_error:[64,86],squarederror:60,squeez:[29,30,31,38,39,136,148,169],sr:148,src:[37,38,117,125,129,130,131,136,143,144,148,159,162,163,169,171,172,175,179,180,182,184,187],ss20:[135,142,145,149],ssh:110,st:[76,77,149],st_canva:76,stabal:68,stabil:[91,120,147,154,159],stabl:[1,72,128,131,154,171,172,202],stack:[1,22,31,34,44,60,117,128,129,140,143,147,148,152,164,194],stack_clf:55,stackingclassifi:55,stacklevel:129,stackoverflow:18,staff:161,staff_id:[187,209],stage0:143,stage1:143,stage2:143,stage3:143,stage4:143,stage:[17,23,61,62,65,112,113,115,143,144,148,153,168,170,178,193],stai:[53,83,154,173,179,203],stakehold:[113,115,193],stalk:[119,194],stall:33,stamp:[55,58],stand:[55,65,68,75,89,113,120,146,156,165,168],standard:[7,18,29,31,36,51,52,53,65,68,70,73,83,98,112,115,121,126,128,131,133,140,150,152,153,155,161,164,167,169,178,182,184,187,209],standard_d2_v2:[9,109],standardscal:[49,59,64,65,67,68,70,73,83,85,147,205,206],stanford:[39,111,143,163,164,169,178,182,183],stapl:87,star:[65,73,175,188],starri:138,starry_night:138,start:[0,1,3,8,11,13,18,29,34,35,39,40,45,46,48,50,51,52,53,60,62,65,67,73,75,76,77,84,85,89,91,93,101,102,108,109,110,111,112,113,117,118,120,121,123,125,127,128,130,131,136,137,138,141,142,145,146,147,150,151,155,159,161,163,164,165,167,168,169,170,171,172,173,175,177,178,182,183,184,187,188,189,191,195,197,198,202,203,205,206,207,210],start_angl:36,start_idx:91,start_slic:130,start_tim:43,starter:[31,117,183],starti:141,starting_pitch:125,startswith:[3,141,171],startup:[48,62],startx:141,stat453:[135,142,145,149],stat:[18,44,55,59,60,64,70,72,73,125,154,155,160,200],stat_interv:160,state:[9,13,14,15,31,37,55,56,58,65,109,111,117,120,122,128,131,133,136,140,143,145,152,153,154,155,160,165,172,173,175,177,184,187,194,196,203],state_c:145,state_dict:39,state_h:145,state_s:37,statement:[31,34,105,106,121,122,125,127,133,141,146,186,189,196],stationeri:41,statist:[7,43,52,56,58,60,65,67,86,115,120,121,123,124,128,139,149,151,154,155,156,158,160,163,164,169,175,178,182,193,195,198],statquest:179,statsmodel:[60,70],statu:[22,63,73,109,110,118,141,146,153,155,194],std:[18,24,29,31,41,52,53,64,65,67,70,73,83,91,92,125,128,143,158,163,168,171,195],std_agg:61,stdarr:53,stddev:[139,148],stderr:52,stdout:209,steam:41,steep:[155,183],steer:46,stellar:65,stem:[7,62],step:[0,7,9,16,28,30,31,33,34,36,37,38,39,41,42,43,44,45,46,48,49,52,53,55,56,58,60,65,66,67,68,70,73,76,77,84,85,86,91,101,108,109,110,111,112,113,115,118,121,123,127,128,130,133,135,136,137,139,140,141,143,144,145,147,149,152,153,154,155,156,159,160,161,168,171,172,173,175,178,179,182,184,187,188,192,195,202,205,206,207],step_siz:[36,137],steps_mean:141,steps_per_epoch:[32,45,144],steps_remain:137,steps_taken:141,stepwis:182,stereotyp:121,stick:[53,113],sticki:119,stiff:187,stikeleath:113,still:[7,18,38,53,55,58,59,63,84,125,126,128,129,130,131,140,144,145,149,150,152,153,154,164,171,178,187,188,203,210],stochast:[91,139,141,164,176,179,208],stock:[120,141,146,149,178,194],stockast:[55,75,89],stop:[34,43,44,56,61,84,109,128,130,131,163,167,168,172,179,187,195,205,206],stop_gradi:148,stop_train:44,storag:[11,34,77,108,110,115,123,133,137,182,183,184,191,192,193,196],store:[6,7,11,12,29,30,31,34,42,43,45,46,51,56,59,70,72,73,75,85,89,101,102,105,108,113,122,123,126,128,129,133,134,135,139,140,145,150,152,153,154,155,156,161,167,169,187,188,189,191,196,203,210,211],stori:[4,13,19,56,116,117,172,188,193,194,210],storymap:111,storytel:[19,26,193],stott:7,str1:[53,188],str2:188,str:[1,9,14,33,34,37,39,45,52,53,60,62,65,72,75,76,89,92,109,129,130,136,139,144,148,161,167,182,184,187,188,189,195,209,210,211],straight:[48,50,56,77,113,167,169,182,186,200,204,208],straightforward:[31,84,123,128,154,167,172,173,183,186,187],straightfoward:150,strang:[18,117,184],strateg:[141,178],strategi:[7,29,42,46,52,55,58,67,73,75,83,89,113,121,141,144,154,155,175,178,180,207],strategist:113,stratifi:[163,172,202],stratifiedkfold:[70,163],stratifiedkfoldcv:70,stream:[42,52,56,77,108,140,141,148,152,153,156,178,207,209],streamlin:[143,146,151],streamlit:155,streamlit_app:77,streamlit_drawable_canva:76,street:[66,67,72,121,192],strenghten:61,strength:[1,60,150,154,169,200],strengthen:[108,164],stretch:[1,8,128,172],strftime:41,strict:[115,130,154],strictli:187,stride:[29,30,31,32,34,35,38,39,135,136,139,143,144,148],string:[7,14,22,43,60,62,65,92,126,128,129,130,131,145,184],string_vari:[188,210],string_with_whitespac:[188,210],stringio:150,strip:[3,14,65,145,187,188,210],stripe:183,stripplot:183,strive:[38,87,146],stroke_color:76,stroke_width:76,strong:[18,48,55,58,60,70,72,118,120,125,143,145,158,160,164,166,168,178],stronger:[37,172],strongest:[60,121],strongli:[125,164,171,178,207],struct:128,structur:[6,7,12,22,30,31,41,44,46,56,63,64,73,99,101,121,122,123,127,132,133,134,135,136,140,141,143,144,146,147,148,152,165,168,169,172,173,176,178,182,184,187,189,192,194,196,197,200,202,207,209],struggl:[154,160],strutur:167,stubbornli:50,stuck:[68,154],student:[16,18,70,123,125,127,155,170,182,186,196],student_admiss:209,studi:[14,16,34,43,56,73,140,164,169,174,176,178,190,192,195,204,207],studio:[7,9,109,111,182,184,185,186,190],study_15:63,study_1:63,study_20:63,study_41:63,study_7:63,stuff:[91,187],stump:164,stun:63,style:[0,3,32,38,41,57,68,73,100,128,129,130,131,136,143,144,150,151,155,158,159,163,169,171,172,173,175,179,180,182,190,191,192,193,194,195,196,197,198,200,201,202,204,205,206,207,208,209,210,211],style_expect:138,style_featur:138,style_gram_matrix:138,style_imag:138,style_image_path:138,style_image_url:138,style_image_weight:138,style_lay:138,style_loss:138,style_minus_mean:138,style_norm:138,style_shap:138,style_weight:138,stylenet:136,stylesheet:[130,131,173,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],sub:[1,33,42,77,98,128,145,149,154,182,183,184],sub_str:188,subarrai:195,subclass:[3,29,145,187],subdimension:128,subgraph:172,subgroup:[56,111,121],subitem:187,subject:[1,7,31,38,50,56,101,102,111,113,121,122,128,146,187,188,189,190,192,198],sublicens:[101,102,187,188,189],sublist:102,subm:60,submiss:60,submit:[9,15,72,81,97,109,113,154,173],submodul:187,subnet:152,suboptim:171,subpackag:187,subplot:[1,29,30,31,33,34,35,36,38,39,40,41,43,44,45,46,56,57,60,61,65,70,73,91,118,120,136,139,142,144,150,158,159,163,165,169,171,172,194,200,202,208],subplot_kw:43,subplots_adjust:[31,35,169,171,200],subsampl:32,subscrib:[121,153,192],subscript:[108,110,121,192],subscription_id:9,subsect:[7,51,126],subsequ:[31,32,55,60,84,128,141,163,167,168,177,188,203,210],subset:[7,18,33,34,45,46,51,55,56,73,75,83,89,92,95,98,121,125,126,128,130,131,135,140,153,154,163,164,167,168],subspac:[55,128,163,172,202],substanti:[101,102,160,161,187,188,189],substitut:[7,11,129,187,209],substr:[1,188,210],subsubitem:187,subtl:[7,126,167],subtract:[85,86,101,128,144,188,189,195,210,211],subtre:56,subtyp:188,subwai:111,succe:178,succeed:168,success:[111,113,121,128,143,154,155,156,164,178,187,188,204],successfulli:[38,39,56,62,141,154,155,164],succinct:113,sudden:70,suddenli:70,sue:195,suffer:[62,63,64,140,147,150],suffici:[30,32,125,160,164,168,169,188],suffix:[129,173,186,187],sugar:[53,128,187],suggest:[11,14,18,34,42,45,65,86,125,147,156,161,163,164,178,182],suit:[48,52,65,66,67,130,159,178,183,194],suitabl:[3,60,66,128,140,152,156,164,176,178,187,208],sulfur:53,sulphat:53,sum:[1,7,14,18,22,25,31,34,36,41,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,69,71,72,73,75,83,86,89,90,91,125,127,128,129,139,141,142,147,149,150,158,159,160,161,163,164,166,168,169,171,172,175,179,182,184,187,195,200,204,205,208,209],sum_:[56,84,86,87,139,141,149,160,161,163,164,168,170,172,179,201,204],sum_i:[135,160],sum_inertia_:171,sum_of_list:101,sum_of_valu:101,sum_t:164,summar:[57,65,83,112,113,125,143,145,161,178,180],summari:[7,29,30,38,45,51,52,55,58,59,64,84,85,110,113,128,139,140,187,192,195,198],summaris:[65,85],summat:[84,143,147,179],summer16:209,summer:[17,111,115],sun:[54,63,148],sundai:[55,58],sunflow:33,sunflower_path:33,sunflower_url:33,sunglass:31,sunglasses_data:31,sunglasses_id:31,sunglasses_lat:31,sunglasses_vec:31,sunshin:43,sup:53,supercalifragilisticexpialidoci:[188,210],supercharg:117,superclass:143,superimpos:[50,120],superman:101,supermarket:43,superpow:64,supervis:[29,38,41,56,58,59,63,64,65,66,67,75,89,143,144,151,154,156,157,158,163,164,168,169,171,172,175,176,177,186,202],supervisor:141,suppli:[7,55,58,97,111,120,128,152,187],support:[0,1,7,18,48,52,53,55,56,58,60,63,64,75,76,87,89,91,110,111,112,113,115,117,119,121,122,125,128,130,131,144,146,151,152,153,154,158,160,163,164,168,171,173,176,178,183,186,187,188,195,203,210],support_vectors_:[169,200],suppos:[18,55,56,123,125,128,144,160,161,169,184,188],suppress:[130,147,172],supris:44,suptitl:18,sure:[0,4,9,11,33,51,55,56,58,91,113,117,119,121,122,125,126,128,138,150,154,156,159,165,171,175,176,178,180,182,186,187,188,192],surfac:[56,60,84,85,119,194],surmis:159,surpass:[29,156],surpris:[7,126,128,158,178,179,184,187],surprisingli:[59,183],surround:[123,144,182,188],survei:[6,7,123,152,161,192],surveil:[123,148,156],surviv:[22,155,164,207],survivor:22,suscept:155,suspect:[65,204],suspicion:152,sustain:[16,110,153],sustract:165,sv_classifi:55,svc:[55,62,65,66,169,176,200],svcsvc:[66,169],svm:[55,62,87,135,176,177,178],svmj:[163,169],svr:67,svr_rnd:67,svrsvr:67,svxnq0nwbkfkeool59ws3awqcdihomgjxzrj7rcf7inikape9zeqssiu0czvvz9siareaafurxwl8b:65,sw:161,swap:[102,128,131,188],swarmplot:[73,183],sweden:211,sweet:[73,170],swish:36,swiss:203,switzerland:150,sx:77,sy:[3,12,18,25,30,33,40,41,52,73,77,91,107,108,109,110,111,112,113,114,115,118,119,120,125,126,127,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,179,180,182,183,184,186,187,188,189,194,195,198,200,202,203,204,205,206,208,209],syllabl:188,symbol:[49,62,146,187,189],symmetr:[148,152,164,172,188],symptom:146,synaps:108,sync:125,synchron:156,synonym:[65,87,143,195],synset:143,syntact:[128,187,209],syntax:[128,131,133,173,187,195],syntaxerror:[187,189],synthes:93,synthesi:93,synthet:[56,154,155,156,175],syphili:[121,192],system:[14,41,43,46,53,56,83,108,110,111,113,115,121,122,127,128,140,141,146,149,151,152,153,154,155,156,164,173,186,189,190,192,196,198,211],systemat:[121,156,178],sz:77,t:[0,1,7,14,18,24,26,30,31,32,33,34,35,37,38,41,42,43,44,45,46,48,50,52,53,55,56,57,58,59,61,62,63,64,65,66,69,70,71,72,73,75,83,84,85,89,90,91,102,108,109,110,111,112,113,115,117,118,121,122,125,127,128,129,130,131,133,135,138,139,140,141,143,145,146,148,149,150,152,154,155,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,182,183,186,187,188,189,190,192,194,195,200,202,204,205,206,207,209,210],t_1:[125,163],t_2:125,t_:141,t_dim:139,t_fix:141,t_grad:77,t_index:139,t_input:77,t_k:141,t_loss:31,t_maze:141,t_n:163,t_obj:77,t_preprocess:77,t_score:77,t_valu:125,ta:60,tab:[22,31,109,110,127,131,187],tabl:[11,12,14,51,80,117,119,123,125,127,128,131,152,154,155,158,161,176,182,183,187,188,203,210],table_data:[188,210],table_str:[188,210],tableau:[113,119],tabular:[44,57,65,110,128,140,167,178,188,196,207],tac:187,tack:128,tackl:[45,56,60,66,67,111,129,151,154,168,171,184],tag:[3,9,63,73,109,122,187],tag_nam:187,tags_decor:187,tags_to_skip:3,taha:49,tail:[41,51,55,58,60,72,75,83,89,126],tailor:87,taiwan:146,tajgahors4ocotjy9nzfd2lup14efuvkaejjbkdpghifzjonppwudirlzfb2z0zcqcqr18iv0f7ro4iebuqiyaif9q0jgojxciilkn7anonkruijjrghi:65,take:[1,3,7,8,9,11,14,17,18,29,30,31,32,33,34,35,38,43,46,48,50,52,53,55,56,58,59,60,62,63,64,65,67,70,72,73,75,83,84,85,86,89,91,92,97,101,108,109,110,111,112,113,115,117,119,120,121,122,123,125,126,128,129,130,131,133,135,136,139,140,141,143,144,145,146,147,151,152,153,154,158,159,160,163,164,167,168,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,192,198,202,207,209,211],takeabl:[130,131],takeawai:[7,24,51,113,126],taken:[1,24,28,35,37,51,62,115,123,125,126,128,141,150,156,168,184,193,204],talent:111,talk:[16,18,56,68,75,89,111,113,117,121,123,125,151,165,168,178,183,190,192,204],talk_tim:[75,89],tall:[120,141,143],taller:[18,125],tan:[119,128,194],tandem:209,tang:154,tangent:128,tangerin:[188,210],tangibl:108,tanh:[38,39,50,142,145,147,198,208],tape:[0,36,38,137,141,142,145],tar:[33,34,136,143],tarantool:196,tarfil:[34,136],target:[1,9,29,30,37,39,42,44,55,56,58,59,61,62,63,64,66,68,69,70,71,72,73,75,83,84,85,87,89,91,97,101,109,110,135,138,145,146,147,148,150,152,153,154,159,160,161,163,164,165,169,171,172,178,180,186,187,202,204,207,208],target_class:65,target_f:37,target_fil:136,target_indic:1,target_nam:44,target_s:[33,76,136],target_shap:138,tarih:37,task:[7,8,9,16,38,45,46,48,51,52,57,63,64,65,66,75,85,86,87,89,104,108,109,110,112,115,116,117,118,121,123,126,127,128,129,140,143,144,146,147,148,151,152,153,154,156,157,164,165,166,168,169,170,171,172,173,174,175,176,177,178,180,183,184,185,186,189,191,194,204,207,209],task_typ:60,tast:[157,158],tasti:[119,194],taught:[60,158],tax:38,taxi:[17,115],taxicab:[111,190],taxonom:7,tbd:[134,159,160,161,163,164,165,167,168],tc:186,tchnormal:45,tcl:165,tdd:151,tdsp:115,teach:[44,117,143,211],team:[17,18,23,73,111,113,115,121,125,151,153,156],teammat:[104,113],tecent_fil:41,tech:[48,207],technic:[41,48,56,121,133,152,153,156,164,165,167,178,192,196,207],techniqu:[1,4,7,15,17,32,33,35,46,51,55,56,60,62,63,64,65,66,73,78,80,83,84,85,86,87,93,94,111,112,115,116,120,121,123,125,126,128,132,134,140,154,158,159,160,163,167,168,170,175,176,177,178,179,180,182,183,184,186,188,193,204],technolog:[62,108,111,122,146,152,156,164,173,178],tediou:[115,127,169,182],teenag:73,teenhom:73,telecom_churn:[56,160,163],telecom_data:160,telemetri:29,televis:113,tell:[4,7,13,19,38,56,60,61,62,66,75,89,111,113,116,117,121,125,140,146,150,163,170,178,179,194,198,207,209],temb:139,temp:[41,54,68,85,118,136,138,188,202,209],temp_1:54,temp_2:54,temp_original_loss:138,temp_output_:138,temp_test_acc:[136,163],temp_train_acc:[136,163],temp_train_loss:136,temperatur:[122,123,185],templat:[41,127,155,173],tempo:[158,159],tempor:87,temporari:[77,128,138],temporarili:[34,84],temporary_attribut:187,tempt:[53,125],temptat:53,ten:[52,62,83,136,143,175],tencent:41,tend:[44,55,58,59,62,63,64,65,68,117,118,128,129,140,147,159,160,178,196],tendenc:[116,194],tens_reshap:48,tension:144,tensor2tensor:139,tensor:[33,34,38,77,136,141,142,143,144,145,195,208],tensor_0:48,tensor_1:48,tensor_1d:48,tensor_2:48,tensor_2d:48,tensor_3d:48,tensor_nam:48,tensor_shuffl:48,tensorflow:[30,36,37,38,41,43,45,46,47,49,50,52,53,55,63,64,68,76,77,87,110,135,136,138,139,140,141,142,143,144,145,148,149,151,153,154,155,156,173,175,179,186,198,208],tensorflow_addon:[36,139,143],tensorflow_cookbook:[136,138,145,149],tensorflow_dataset:[36,144],tensorflow_inception_graph:77,tensorpack:148,tensorspec:[38,137],term:[1,3,31,52,55,56,58,63,65,84,85,86,109,111,120,123,127,128,133,139,140,141,143,146,149,152,156,158,159,164,169,170,171,172,177,178,182,183,187,190,196,200,204,207],termin:[0,44,109,110,117,141,173,184,187,189],terminolog:[1,65,121,127,133,158,177],terribl:[52,146],territori:14,test:[0,14,15,22,29,31,32,33,36,37,41,43,44,45,46,56,61,64,66,67,70,72,75,85,89,93,102,108,110,111,118,121,123,128,135,136,143,144,145,146,147,149,150,153,154,158,159,160,163,164,165,170,171,172,173,176,177,178,182,183,186,187,189,198,201,202,207,208],test_absolute_valu:101,test_acc:[46,136,163],test_accuraci:136,test_addit:101,test_append_diff_column_happy_cas:14,test_append_diff_column_with_empty_column_to_diff:14,test_append_diff_column_with_empty_df:14,test_append_diff_column_with_empty_new_column:14,test_append_diff_column_with_invalid_column_to_diff_nam:14,test_append_diff_column_with_invalid_column_to_diff_typ:14,test_append_diff_column_with_invalid_df_typ:14,test_append_diff_column_with_invalid_new_column_typ:14,test_append_diff_column_with_none_column_to_diff:14,test_append_diff_column_with_none_df:14,test_append_diff_column_with_none_new_column:14,test_batch:[136,144],test_calculate_happy_cas:102,test_calculate_with_invalid_c_input:102,test_calculate_with_none_input:102,test_calculate_with_str_input:102,test_capitalize_words_default:102,test_capitalize_words_exclude_word:102,test_censor_word:102,test_censor_words_no_censor:102,test_censor_words_partial_match:102,test_column_filter_happy_cas:14,test_column_filter_with_empty_column_nam:14,test_column_filter_with_empty_df:14,test_column_filter_with_invalid_column_name_typ:14,test_column_filter_with_invalid_df_typ:14,test_column_filter_with_none_column_nam:14,test_column_filter_with_none_df:14,test_conjug:101,test_cont:3,test_count_occurr:102,test_count_occurrences_empty_list:102,test_count_occurrences_str:102,test_count_word_occurr:102,test_count_word_occurrences_empty_text:102,test_count_word_occurrences_same_word_rep:102,test_data:[29,55,58,59,63,67,83,135],test_data_path:[75,89],test_data_schema:53,test_dataset:34,test_df:[14,22,24,59,91,93,146],test_df_1:14,test_df_2:14,test_df_3:14,test_df_boxplot_happy_cas:24,test_df_boxplot_with_empty_df:24,test_df_boxplot_with_none_df:24,test_df_hist_happy_cas:59,test_df_hist_with_empty_df:59,test_df_hist_with_none_df:59,test_df_pairplot_happy_cas:59,test_df_pairplot_with_empty_df:59,test_df_pairplot_with_none_df:59,test_df_plot_happy_cas:24,test_df_plot_with_empty_df:24,test_df_plot_with_none_df:24,test_df_scatterplot_happy_cas:24,test_df_scatterplot_with_empty_df:24,test_df_scatterplot_with_none_df:24,test_discrimin:142,test_discriminator_loss:142,test_divis:101,test_drop_columns_happy_cas:14,test_drop_columns_with_empty_column:14,test_drop_columns_with_empty_df:14,test_drop_columns_with_invalid_columns_input:14,test_drop_columns_with_invalid_columns_nam:14,test_drop_columns_with_invalid_columns_typ:14,test_drop_columns_with_invalid_df_typ:14,test_drop_columns_with_none_column:14,test_drop_columns_with_none_df:14,test_dtyp:53,test_empty_list:101,test_equ:101,test_existing_el:101,test_featur:54,test_feed_happy_cas:3,test_feed_with_empty_cont:3,test_feed_with_empty_tag:3,test_feed_with_non:3,test_feed_with_skipped_tag:3,test_fibonacci_sequ:102,test_fibonacci_sequence_single_term:102,test_fibonacci_sequence_zero_term:102,test_filter_by_country_region_happy_cas:14,test_filter_by_country_region_with_empty_country_region_nam:14,test_filter_by_country_region_with_empty_df:14,test_filter_by_country_region_with_invalid_country_region_name_typ:14,test_filter_by_country_region_with_none_country_region_nam:14,test_filter_by_country_region_with_none_df:14,test_filter_by_country_region_with_wrong_country_region_nam:14,test_filter_by_country_region_without_none_province_st:14,test_filter_by_happy_cas:24,test_filter_by_invalid_column_nam:24,test_filter_by_invalid_column_valu:24,test_filter_by_with_empty_df:24,test_filter_by_with_none_df:24,test_filter_ninfected_by_year_and_month_happy_cas:14,test_filter_ninfected_by_year_and_month_with_empty_df:14,test_filter_ninfected_by_year_and_month_with_invalid_df_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_month_typ:14,test_filter_ninfected_by_year_and_month_with_invalid_year_numb:14,test_filter_ninfected_by_year_and_month_with_invalid_year_typ:14,test_filter_ninfected_by_year_and_month_with_none_df:14,test_filter_ninfected_by_year_and_month_with_none_month:14,test_filter_ninfected_by_year_and_month_with_none_year:14,test_flatten_nested_list:102,test_flatten_nested_lists_empty_list:102,test_flatten_nested_lists_no_nested_list:102,test_float_numb:101,test_fold:136,test_format_person_info:102,test_format_person_info_empty_list:102,test_format_person_info_single_person:102,test_funct:[30,187],test_function_scop:187,test_gener:142,test_generator_loss:142,test_get_df_column_diff_happy_cas:14,test_get_df_column_diff_with_empty_column:14,test_get_df_column_diff_with_empty_df:14,test_get_df_column_diff_with_invalid_column_nam:14,test_get_df_column_diff_with_invalid_df_typ:14,test_get_df_column_diff_with_none_column_nam:14,test_get_df_column_diff_with_none_column_typ:14,test_get_df_column_diff_with_none_df:14,test_get_df_corr_with_happy_cas:24,test_get_df_corr_with_with_empty_df:24,test_get_df_corr_with_with_invalid_column_nam:24,test_get_df_corr_with_with_none_df:24,test_get_df_mean_happy_cas:24,test_get_df_mean_with_empty_df:24,test_get_df_mean_with_none_df:24,test_get_df_std_happy_cas:24,test_get_df_std_with_empty_df:24,test_get_df_std_with_none_df:24,test_get_pinfected_happy_cas:14,test_get_pinfected_with_empty_df:14,test_get_pinfected_with_invalid_df_typ:14,test_get_pinfected_with_none_df:14,test_get_rolling_window_happy_cas:14,test_get_rolling_window_with_empty_column:14,test_get_rolling_window_with_empty_df:14,test_get_rolling_window_with_invalid_column_nam:14,test_get_rolling_window_with_invalid_column_typ:14,test_get_rolling_window_with_invalid_df_typ:14,test_get_rolling_window_with_invalid_window_typ:14,test_get_rolling_window_with_negative_window:14,test_get_rolling_window_with_none_column:14,test_get_rolling_window_with_none_df:14,test_get_rolling_window_with_none_window:14,test_get_rt_happy_cas:14,test_get_rt_with_empty_column:14,test_get_rt_with_empty_df:14,test_get_rt_with_invalid_column_nam:14,test_get_rt_with_invalid_column_typ:14,test_get_rt_with_invalid_df_typ:14,test_get_rt_with_invalid_window_typ:14,test_get_rt_with_negative_window:14,test_get_rt_with_none_column:14,test_get_rt_with_none_df:14,test_get_rt_with_none_window:14,test_get_smoothed_ax_happy_cas:14,test_get_smoothed_ax_with_empty_column_nam:14,test_get_smoothed_ax_with_empty_df:14,test_get_smoothed_ax_with_invalid_column_name_typ:14,test_get_smoothed_ax_with_invalid_df_typ:14,test_get_smoothed_ax_with_invalid_window_numb:14,test_get_smoothed_ax_with_invalid_window_typ:14,test_get_smoothed_ax_with_none_column_nam:14,test_get_smoothed_ax_with_none_df:14,test_get_smoothed_ax_with_none_window:14,test_get_smoothed_ax_with_nonexistent_column:14,test_global_variable_access:187,test_group_by_categori:102,test_group_by_category_empty_input:102,test_group_by_category_no_categori:102,test_group_by_category_single_categori:102,test_groupby_sum_happy_cas:14,test_groupby_sum_with_empty_column_nam:14,test_groupby_sum_with_empty_df:14,test_groupby_sum_with_invalid_column_nam:14,test_groupby_sum_with_invalid_column_name_typ:14,test_groupby_sum_with_invalid_df_typ:14,test_groupby_sum_with_none_column_nam:14,test_groupby_sum_with_none_df:14,test_http_get_happy_cas:3,test_http_get_with_invalid_url:3,test_http_get_with_none_url:3,test_i:[41,167],test_imag:[46,136,144],test_img:76,test_impute_with_mean_happy_cas:22,test_impute_with_mean_invalid_column_nam:22,test_impute_with_mean_with_empty_df:22,test_impute_with_mean_with_none_df:22,test_impute_with_median_happy_cas:22,test_impute_with_median_invalid_column_nam:22,test_impute_with_median_with_empty_df:22,test_impute_with_median_with_none_df:22,test_index:163,test_init:3,test_input_data:[67,83],test_input_dim:53,test_insertion_sort:102,test_insertion_sort_empty_list:102,test_insertion_sort_single_element_list:102,test_insertion_sort_sorted_list:102,test_is_empti:101,test_label:[29,46,54,67,83,136],test_label_encode_happy_cas:22,test_label_encode_invalid_column_nam:22,test_label_encode_invalid_encoded_column_nam:22,test_label_encode_with_empty_df:22,test_label_encode_with_none_df:22,test_large_numb:101,test_load:34,test_loss:[29,46,136],test_lstm_model:145,test_merge_dicts_with_list:102,test_merge_nested_dict:102,test_merge_three_dict:102,test_merge_two_dict:102,test_mkframe_happy_cas:14,test_mkframe_with_empty_column_nam:14,test_mkframe_with_empty_df_1:14,test_mkframe_with_empty_df_2:14,test_mkframe_with_empty_df_3:14,test_mkframe_with_invalid_column_nam:14,test_mkframe_with_invalid_column_typ:14,test_mkframe_with_invalid_df_1_typ:14,test_mkframe_with_invalid_df_2_typ:14,test_mkframe_with_none_column_nam:14,test_mkframe_with_none_df_1:14,test_mkframe_with_none_df_2:14,test_mkframe_with_none_df_3:14,test_model:45,test_ms:[67,83],test_multipl:101,test_nam:[72,136],test_negative_numb:101,test_non_existing_el:101,test_nul:53,test_one_as_input:101,test_one_hot_encode_happy_cas:22,test_one_hot_encode_invalid_column_nam:22,test_one_hot_encode_with_empty_df:22,test_one_hot_encode_with_none_df:22,test_path:45,test_permut:102,test_permutations_empty_list:102,test_permutations_single_el:102,test_pop:101,test_positive_numb:101,test_pr:[66,67,83],test_pred_poli:66,test_preprocess:[67,83],test_push:101,test_rang:53,test_remove_dupl:102,test_remove_duplicates_empty_dict:102,test_remove_duplicates_empty_list:102,test_remove_duplicates_no_dupl:102,test_remove_duplicates_str:102,test_respons:72,test_result:34,test_rms:[67,83,150],test_rt_with_na_filled_happy_cas:14,test_rt_with_na_filled_with_empty_df:14,test_rt_with_na_filled_with_invalid_df_typ:14,test_rt_with_na_filled_with_none_df:14,test_same_numb:101,test_sampl:[9,109],test_save_path:72,test_scal:[59,66],test_scor:[62,70],test_single_element_list:101,test_siz:[29,31,32,35,44,54,55,56,57,58,59,60,62,63,64,65,66,67,83,85,92,147,150,163,165,167,168,172,173,176,177,179,182,183,186,202,204,205,206],test_sqrt:102,test_sqrt_non_perfect_squar:102,test_sqrt_perfect_squar:102,test_square_funct:101,test_str:102,test_string_input:101,test_string_numb:101,test_string_upper_empty_str:102,test_string_upper_happy_cas:102,test_string_upper_none_str:102,test_subtract:101,test_url:[3,72],test_vari:187,test_vector:146,test_wrong_target_typ:101,test_x:[41,69,71,167],test_zero:101,testabl:151,testappenddiffcolumn:14,testbinarysearch:101,testcalcul:102,testcalculatesum:101,testcapitalizefirstletterp:102,testcapitalizeword:102,testcas:[3,14,22,24,52,59,102],testcensorword:102,testcleanfar:22,testcolumnfilt:14,testcomplex:101,testcountdigit:101,testcountoccurr:102,testcountwordoccurr:102,testdfboxplot:24,testdfhist:59,testdfplot:24,testdfscatterplot:24,testdropcolumn:14,testfactori:101,testfibonacci:102,testfilterbi:24,testfilterbycountryregion:14,testfilterninfectedbyyearandmonth:14,testfindprimefactor:101,testflattennestedlist:102,testformatpersoninfo:102,testgcd:101,testgetdfcolumndiff:14,testgetdfcorrwith:24,testgetdfmean:24,testgetdfstd:24,testgetpinfect:14,testgetrollingwindow:14,testgetrt:14,testgetsmoothedax:14,testgroupbycategori:102,testgroupbysum:14,testimoni:113,testing_imag:45,testinsertionsort:102,testlabelencod:22,testload:52,testmapfunct:101,testmean:52,testmergedict:102,testmkfram:14,testmyhtmlpars:3,testonehotencod:22,testpermut:102,testremovedupl:102,testrtwithnafil:14,testset:[47,60],testsieveoferatosthen:101,testsqrt:102,testsquareroot:101,teststack:101,teststd:52,teutschmann:185,texa:[121,173,195],text1:42,text2:42,text3d:[92,172,202],text:[1,12,15,23,41,42,44,46,48,53,63,64,65,72,75,76,77,83,87,89,102,108,111,113,117,122,123,127,128,136,140,143,144,145,146,147,149,150,152,154,158,159,161,163,164,165,169,171,172,173,175,178,179,180,182,184,186,187,188,189,190,191,192,193,195,196,197,198,200,201,202,203,204,205,206,207,208,209,210,211],text_data:149,text_data_target:149,text_data_train:149,text_process:149,text_str:149,text_templ:77,text_widget:77,textbf:161,textbook:[56,164,178],textbox:94,textcolor:170,textcoord:171,textrefer:187,textrm:[84,179],texts_to_sequ:149,texttestrunn:52,textual:[1,8,117,119,187],tf0btgg9:65,tf:[29,30,33,36,37,38,41,43,44,45,46,47,49,50,52,53,77,87,135,136,137,138,139,141,142,143,144,145,148,149,154,170,175,198],tf_model_file_path:33,tf_util:37,tfa:[36,139,143],tfboard_callback:44,tfd:[36,144],tfdetect:148,tffunc:77,tflite:33,tflite_model:33,tfliteconvert:33,tfutil:148,tfv1:148,tgz:[33,34],th:[56,86,125,128,139,147,160,163,172],thai:[175,176,177],thai_df:175,thai_ingredient_df:175,thal:147,than:[1,2,7,8,14,18,29,30,31,32,33,34,37,43,44,46,48,50,51,52,55,56,58,60,62,63,65,66,67,68,70,75,80,87,89,91,101,108,110,113,118,120,121,123,125,126,127,128,129,131,133,139,140,143,145,146,147,150,153,154,156,158,159,160,161,163,164,167,168,169,170,171,172,176,177,178,182,183,184,186,187,188,189,192,195,196,200,202,203,204,207,209,210,211],thang:143,thank:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,154,158,159,160,161,163,164,165,167,168,169,173,175,176,177,178,182,183,184,186,187,188,189,202,203,204,205,208],thecodeship:187,thedatasciencevenndiagram:124,thee:188,theguardian:117,thei:[1,6,7,12,15,18,23,25,31,33,42,44,46,48,51,52,53,55,56,58,62,63,64,65,68,72,73,75,83,84,89,91,99,108,109,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,137,139,140,141,142,143,144,145,146,147,148,150,152,153,154,156,158,160,161,163,164,168,169,170,171,172,173,178,179,182,183,184,186,187,188,189,190,192,193,195,197,202,207,209,210,211],them:[0,1,3,7,15,21,26,30,31,33,34,35,38,42,43,44,45,46,48,50,51,55,56,58,60,62,63,64,65,66,67,70,73,75,83,84,87,89,91,92,94,99,102,108,109,110,112,113,115,117,119,120,121,123,125,126,128,130,133,134,135,136,138,139,140,143,144,145,146,147,148,150,151,152,153,154,155,156,160,163,164,165,167,168,169,170,171,172,175,178,179,182,183,184,186,187,188,189,191,192,196,202,207,208,209,210],theme:[30,41,113],themselv:[7,68,113,115,128,140,164,183,207],theorem:160,theoret:[123,154,160,163,169,186],theori:[56,112,117,125,139,146,149,164,169],thereaft:141,therebi:[146,158,169],therecord:73,therefor:[7,30,32,40,42,50,56,60,110,128,139,141,143,152,154,156,163,164,165,168,169,171,172,187,188,202,210],thereof:195,theta:[139,163,164,165,204],theta_0:164,theta_1:[163,165],theta_2:163,theta_i:[163,164],theta_n:165,theta_t:164,thi:[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,80,81,83,84,85,86,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,133,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,181,182,184,185,186,187,188,189,190,192,193,194,195,196,197,202,203,204,205,206,207,208,209,210,211],thick:1,thicksim:139,thing:[1,7,42,44,48,55,56,58,59,63,66,69,71,72,75,83,89,91,109,110,112,113,115,117,121,123,125,126,128,130,131,133,140,150,155,157,158,164,171,172,173,175,178,187,188,196,198,202,203,207,210],think:[7,11,18,26,28,31,35,46,48,52,53,55,56,61,68,75,89,111,113,117,121,123,128,131,133,146,149,154,155,158,159,169,170,172,175,177,178,183,184,186,187,188,200,202,210],thinkhdi:113,third:[14,32,44,55,56,70,108,113,125,128,161,164,187],third_baseman:125,third_term:138,third_tuple_str:188,this_file_dir:77,thisag:189,thisplot:46,tho:[42,188,210],thon:[188,210],thorough:153,thoroughli:112,those:[1,7,14,16,18,32,42,43,49,52,55,56,58,62,63,68,75,83,89,110,112,113,115,118,119,120,121,122,123,125,126,128,129,131,136,138,141,145,146,147,149,150,152,153,155,158,160,161,164,167,169,172,175,178,182,187,188,193,207,209,210],thou:145,though:[7,46,52,68,111,113,120,128,129,131,149,150,154,155,167,177,183,187],thought:[7,16,30,35,59,64,75,89,113,123,128,153,178,193,195],thoughtfulli:99,thousand:[29,42,55,56,83,117,155,168],thread:172,threadpoolctl:159,threaten:[118,194],three:[7,13,14,19,21,27,29,32,33,38,43,45,53,55,56,58,62,66,73,80,83,92,97,101,102,107,108,111,119,122,127,128,131,135,136,143,144,147,148,150,152,154,155,156,158,159,169,171,173,187,188,190,195,200,209,210],three_g:[75,89],thresh:[7,76,126],threshold:[1,18,29,51,52,56,60,65,125,152,154,163,164,183],through:[1,3,9,10,20,24,30,31,42,46,50,52,53,60,67,68,69,71,73,85,91,99,101,108,109,110,112,113,115,117,118,121,122,123,127,128,129,131,136,137,139,141,143,144,145,146,147,149,150,151,152,153,154,155,156,158,159,164,165,167,170,175,176,178,182,186,187,188,189,192,195,198,199,204,207,209],throughout:[45,91,113,115,125,153,164,178,182,193,207],thrown:128,thrwebnuukudcrmdcyspswrnn7srqiwzrty3f44vjwvswkbhy5p:65,thu:[3,14,32,48,52,55,56,59,60,63,65,73,110,120,123,125,128,129,131,140,158,160,161,163,167,168,169,170,172,178,182,183,184,185,187],thumbnail:[77,137],thunder9:41,thunder:41,ti:[113,149],tial:[69,71],tian:148,tibco:196,tibshirani:163,tic:187,tick:[3,109,158,161,171],tick_param:[60,171],ticker:171,ticket:113,tid:117,tidi:184,tier:152,tight_layout:[18,31,36,39,40,43,46,60,118,171,194],tiktok:156,tile:[77,110,171],tile_s:77,till:[62,170],tim:204,time:[0,1,7,8,9,13,14,29,31,32,33,34,36,37,39,41,42,43,44,47,48,50,55,56,58,59,60,62,64,65,66,67,68,69,71,72,73,75,83,86,89,91,109,110,111,112,113,115,117,119,120,123,125,126,128,129,131,133,136,137,139,140,141,142,143,144,145,146,147,149,152,153,154,155,156,159,160,161,164,167,168,169,170,171,172,173,176,178,182,183,184,186,187,188,189,190,191,194,196,202,203,204,207,209,210],time_model:43,time_series_covid19_confirmed_glob:14,time_series_covid19_deaths_glob:14,time_series_covid19_recovered_glob:14,time_signatur:[158,159],time_step:139,time_t:37,timeit:[171,195],timelin:[104,155],timeseri:49,timeseriesclassif:29,timestamp:[41,122,130,150,152],timestap:49,timestep:[41,49,139,149],timnit:[111,190],tin:163,ting:182,tini:[34,171],tiniest:178,tip:[17,23,91,113,183],titan:165,titanic_train:22,titanic_train_and_test:165,titl:[15,22,29,30,31,32,33,34,35,39,41,43,44,47,50,52,53,56,60,61,62,65,70,72,75,76,84,85,86,89,91,92,118,119,120,122,125,129,130,131,136,144,145,149,158,159,161,163,171,172,173,186,188,194,196,202,204,205,206],title1:171,title2:171,title_cas:106,titlepad:[68,150],titles:[68,150],titleweight:[68,150],tj:41,tkt:149,tl:37,tl_start:37,tld:65,tmp:[12,25,29,30,31,34,38,39,41,43,46,72,76,85,131,145,149,187],tmp_folder:187,tmp_folder_path:[29,30,31,34,43,46,72],tmp_zip_path:43,tn:[58,65,75,89,183],tnhyqyfnsetmngznqkkxbxoqiy1gnxcjp6di0o2y4r8h3cdbjmbistoucntckz29yda5fw64wk4fpnxb1wvkic4rnetvukhrbqdw:65,to_categor:[32,43,208],to_csv:[72,85,175],to_datetim:[1,14,37,41,49,73,182],to_devic:34,to_drop:73,to_fil:3,to_fram:[129,175],to_lat:31,to_numer:[37,62,73],to_numpi:[49,131,182],to_pandas_datafram:[9,109],to_period:150,to_plot:73,to_print:141,to_pydatetim:130,to_renam:129,to_replac:179,to_seri:41,toarrai:83,tobacco:110,tocilizumab:1,todai:[42,73,117,121,145,147,151,152,154,156,164,165],todens:146,todo:142,toe:187,togeth:[0,1,3,7,8,14,41,44,46,51,55,56,73,102,113,119,125,126,127,128,133,139,147,153,158,161,164,168,170,172,179,187,188,189,196,209,210],toggl:110,toh:30,toi:[18,161,164],tok_d:42,tok_func:42,token:[48,143,146,149,189],token_type_id:42,tokyo:[14,133,196],tokz:42,tol:62,told:113,toler:[131,156],tolist:[41,43,49,55,161],tom:[24,178,189,207],tomato:[43,184],tomomi:186,tomorrow:208,tone:111,tong:148,tongchuan:41,too:[18,32,33,42,52,53,55,56,58,59,60,63,64,67,70,72,83,117,118,120,130,139,140,150,153,154,158,159,160,164,167,170,176,178,182,183,184,187,188,210],took:[17,20,43,56,113,164,171,173],tool:[7,33,44,54,57,60,65,108,110,111,112,115,121,122,123,126,129,131,139,151,152,153,154,156,159,164,172,174,182,184,185,187,188,190,191,195],toolbox:[123,164],toolchain:153,toolkit:[111,153],tooltip:117,top:[3,7,16,30,31,33,35,42,44,46,50,56,58,60,63,70,83,91,93,101,110,113,120,127,128,131,148,151,152,155,158,159,160,172,175,183,184,187,195,203,204,211],top_pol:41,top_sen:41,top_tweet:41,top_vol:41,topic:[1,42,108,111,112,113,119,121,125,126,127,128,151,156,205,206],topilimag:34,topolog:30,toppredict:176,torch:[31,34,39],torchvis:[34,39],torgo:64,toronto:[136,143,170],tort:[101,102,187,188,189],total:[7,29,30,31,33,36,37,38,39,41,42,44,45,48,53,56,57,60,62,63,64,65,66,67,73,75,83,84,86,89,101,117,120,125,126,127,128,138,143,155,158,160,161,163,168,171,172,173,182,188,202,208,209],total_bedroom:[67,83],total_incom:188,total_len:31,total_na:57,total_profit:37,total_promo:73,total_room:[67,83],total_s:136,total_sum_squar:86,total_var_i:138,total_var_x:138,total_variation_loss:138,total_volum:188,totalbath:60,totalbsmtfin:60,totalbsmtsf:60,totallot:60,totalporch:60,totalprod:[120,194],totalprofit:37,totalsf:60,totensor:[34,39],totrmsabvgrd:60,toucantoco:113,touch:[66,67,75,89,123,178],touch_scr:[75,89],touch_screen:[75,89],touchscreen:[75,89],tour:117,toward:[65,84,113,121,128,146,147,163,173,179,188,192],towardsdatasci:[123,196],tp:[58,65,75,89,183],tpr:[65,183],tpsnva:113,tqdm:[31,39,91],tqdm_notebook:39,tqglcthldriywg8myzqcl7noahjavxjdfcxbw4s9zs28husnqyjpw:65,trace:137,traceback:[91,128,129,130,131,195,209],track:[3,36,38,44,50,52,102,110,111,113,121,127,130,145,146,154,155,164,171],tractabl:139,trade:[55,62,75,89,141,143,154,163,170,178,185],tradeoff:[7,58,63,75,89,126],trader:[41,146],tradit:[3,50,60,110,113,125,143,153,154,155,156,174,178,186,196,207],tradition:[113,152,154],traffic:[111,122,123,153],trail:[65,128,177,188],train:[9,10,20,29,36,41,47,48,49,50,53,56,62,68,69,71,72,84,93,100,107,113,115,121,123,125,129,135,136,138,139,141,142,143,145,146,147,148,149,150,152,153,156,158,160,161,163,164,165,166,167,169,170,171,172,173,176,177,179,180,182,183,186,190,191,192,198,200,201,202],train_acc:[136,163],train_accuraci:44,train_batch:144,train_d:[33,34],train_data:[29,39,55,56,58,59,63,67,75,83,89,135],train_data_path:[75,89],train_dataset:[36,42,139],train_df:[91,93,146],train_dir:136,train_dl:34,train_featur:54,train_fold:136,train_funct:30,train_i:[41,167],train_imag:[46,136,144],train_index:163,train_label:[29,39,46,54,56,136],train_length:144,train_load:[34,39],train_log:91,train_loss:[29,31,34,44,136,145],train_nam:[72,136],train_on_batch:[136,198],train_op:145,train_path:45,train_respons:72,train_rms:150,train_save_path:72,train_scor:70,train_siz:[34,70],train_solution_bounding_box:45,train_step:[36,38,138,145],train_test_split:[29,31,32,35,42,43,44,54,55,56,57,58,59,60,62,63,64,65,66,67,70,83,84,85,92,147,150,163,165,167,168,171,172,173,176,177,179,182,183,186,202,204,205,206],train_url:72,train_va:31,train_vector:146,train_x:[31,41,167],trainabl:[29,30,36,38,45,68,135,139,143,144,176,198],trainable_vari:[135,141,142,145],trainable_weight:[36,38,139],trainer:42,trainhistori:[50,52,53],training_block:139,training_data:[9,109],training_data_preprocess:[67,83],training_fin:[75,89],training_hour:62,training_imag:45,training_input_data:[67,75,83,89],training_label:[67,75,83,89],training_loss:70,training_s:70,training_sc:47,training_seq_len:145,training_step:[34,135],trainingargu:42,trainset:47,trait:73,traj1:141,tran:[182,183,184],trane:[69,71],trang:91,transact:[6,17,133,158],transcrib:[146,156],transcript:156,transduct:[154,158],transfer:[31,34,55,58,127,135,140,144,147],transform:[7,22,30,33,34,39,40,42,44,46,47,49,50,51,52,55,56,57,58,59,60,62,63,66,67,68,72,73,77,85,91,92,108,118,126,128,131,135,136,138,139,143,146,147,148,150,151,152,154,159,161,167,169,171,172,178,202,204,205,206,207,209],transform_fpcoor_for_tf:148,transformed_df:175,transformed_feature_df:175,transformed_label_df:175,transformer_block:143,transformerblock:143,transfrom:66,transit:[108,143,155,164],transition_block:143,translat:[42,46,102,113,123,140,146,152,155,178],transmit:123,transpar:[121,156,192],transpos:[29,39,44,50,67,83,85,91,128,135,136,138,148,188,210],transposed_matrix:[188,210],transposed_row:[188,210],trap:[121,154,192],trash:186,travel:150,travers:[31,188],treat:[1,7,42,45,62,65,75,84,89,121,126,128,129,130,131,133,143,153,154,187,192],treatment:[121,128,146,186,192],tree:[31,55,58,59,60,61,68,75,77,89,141,154,160,161,164,165,167,172,176,177,178,202,207],tree_best:[63,64],tree_clf:[63,75,89],tree_grid:56,tree_list:161,tree_method:60,tree_param:56,tree_pr:56,tree_reg:64,tree_reg_sc:64,tree_scor:[75,89],treebeardtech:0,trees_grid:163,trekhleb:[101,102,187,188,189],tremend:7,trend:[14,55,58,85,86,111,113,117,121,122,146,170,190,192,194],treshold:1,trevor:163,tri:[38,56,62,64,69,71,160,170,178],triag:[42,153],trial:[42,53,154,176,186],triangl:[171,172],triangular:158,trick:[32,38,117,121,135,154,167,168,169,170,178,187,192],tricki:169,trickier:[133,196],trigger:[0,121,128,152,153,155],trim:145,trip:[23,111,190],tripadvisor:161,tripl:[128,188,189,210,211],triplestor:196,triu:70,triumphantli:154,trivial:[91,140,143],troubl:[68,117,158,163],trouser:[30,44,46,56],truck:[136,140],true_boolean:[188,210],true_count:142,true_label:46,true_positive_r:65,truli:[55,60,63,70],trump:189,truncat:149,truncated_norm:141,trust:[63,64,66,67,72,92,113,117,156,163,167,168,169,171,182,186,199],truth:[117,128,143,188,189,204,208,210],ts:150,tsne:[172,202],tstep:141,tsv:[18,24,125],ttest_ind:[18,125],tthoe3gp290gz:65,tue:[54,63],tulip:33,tumor:158,tunabl:[56,208],tune:[33,52,55,56,65,66,72,75,84,86,89,93,135,150,163,164,166,168,178,179,181,201],tup:130,tupl:[34,35,55,130,143,144,148,172,186,187,196,202,210],turn:[3,7,30,34,36,42,44,46,53,56,84,151,203,207],turntabl:157,turori:153,turtl:128,tuskege:[121,192],tutor:151,tutori:[1,29,31,33,36,65,77,86,119,128,129,136,137,144,146,151,170,184,186,187,188,189,198,204],tv:113,tval:[18,125],tweak:[94,119,159,177,179],tweet:[108,127,145,146],tweet_vol:41,twenti:97,twice:[128,149,187],twin:173,twinx:[120,194],twitter:[108,127,196],two:[1,3,7,8,12,13,14,18,19,27,29,30,31,32,33,35,38,41,42,43,44,46,48,50,51,53,55,56,58,59,60,62,63,65,66,67,68,69,71,73,75,81,83,89,91,92,93,99,101,102,107,110,111,113,115,117,118,119,120,121,125,126,127,128,129,130,131,133,135,136,138,139,140,143,145,146,147,148,150,153,154,155,156,158,161,163,164,168,169,170,171,172,173,175,176,177,178,181,182,183,186,187,193,196,198,200,203,207,209,210],twofield:128,twon:141,tx:173,txt:[31,77,136,141,145,149,173,178],type:[1,6,7,9,15,19,20,29,30,31,34,36,38,41,43,44,45,48,50,51,53,55,56,58,59,63,64,65,66,67,70,73,75,77,83,85,89,102,103,109,110,111,115,118,119,120,121,122,125,126,127,129,130,131,133,135,139,141,143,144,147,148,149,150,152,154,156,158,159,164,166,167,168,169,172,173,182,183,184,185,186,187,190,191,192,193,194,195,196,197,198,200,201,202,203,204,205,206,208,209],typeerror:[101,102,128,130,131,189,195,209],typhoon:146,typic:[3,8,14,22,32,48,50,51,52,55,56,62,68,70,75,83,84,89,108,115,122,123,125,126,128,131,135,140,150,152,153,154,155,156,163,164,167,168,175,182,183,187,204],typo:146,u10:[128,195],u2:196,u:[72,120,141,144,149,161,188],u_:141,u_k:141,ua:[15,209],uber:[111,190],ubuntu:153,ucb:193,uci:[53,64,147,149],ucimlrepo:147,ucl:[178,207],ucla:155,uclaacm:182,ufo:173,ufunc:7,ugli:[117,188],ugqbzwiq8iiufasvi9dz:65,ugqprfa:65,uhbmv7qcey4:62,ui:[110,153,203],uid:155,uid_iso_fips_lookup_t:14,uint8:[31,33,38,45,76,77,128,136,137,138],uk:[14,141,173],ultim:[85,101,102,122,123,178,207],ultra:143,um:56,umap:30,umap_3d:30,umap_:30,umap_df:30,umbrella:[127,196],umn:113,umokw0jfgt13wtybc8bwnpnzgvwr859t7tsomewf31raloux4ychbk5bd97j5wopu3d0g2fnghimgunwegmg31qizveudt5:65,umr_sum:195,umt:193,un:[173,188,210],unabl:[30,60,63,64,66,67,70,72,92,163,167,168,169,171,182,186],unacc:63,unaccept:156,unaffect:128,unalign:131,unalt:84,unambigu:128,unansw:113,unbalanc:[72,75,89,164,169,200],unbatch:139,unbias:[154,160],uncertain:141,uncertainti:[56,172],unchang:[147,179,188],uncheck:87,uncom:14,uncommon:42,uncondition:[187,209],unconstrain:43,uncorrel:[72,160,163],uncov:[19,60,115,184,185],undefin:[7,18,187],under:[0,22,31,43,50,52,53,54,56,57,69,71,73,92,93,110,118,121,125,127,128,148,153,154,155,156,163,164,169,176,179,180,183,184,189,195,196,200,202,203,204,205,208,211],under_name_scop:148,undercomplet:30,underfit:[67,68,69,71,167],undergradu:73,underli:[65,70,84,85,86,108,115,118,125,140,146,170,178,182,195,204,207,208],underlin:171,undermin:117,underneath:65,underrepres:[75,89],underscor:[109,127,187,188,196,210],underset:[91,164],understand:[7,16,23,30,31,33,46,48,50,53,56,83,84,85,86,87,108,109,110,111,112,115,116,117,118,120,121,122,123,125,128,129,135,140,146,147,150,151,154,155,156,158,164,165,167,168,169,170,172,173,174,176,178,179,182,183,184,186,188,189,190,192,193,196,205,206,207],understood:[7,60,115,122,128,187,193],undertak:[87,113],undesir:28,undestard:165,undisclos:156,undu:87,unearth:60,unemploy:155,unet:139,unet_model:144,uneven:[158,175],unexpect:[53,100,129,154,170,187,209],unexpectedli:187,unf:60,unfair:121,unfamiliar:178,unfil:40,unfold:[56,117,149],unfortun:[18,40,109,164,171],unhandl:187,unhealthi:110,unhelp:175,unicorn:154,unidata:196,unifi:[115,147,148,154],uniform:[18,36,38,48,52,61,77,125,139,141,142,147],uniformli:[7,160,171],unimagin:152,unimport:72,unindex:[128,188],uninform:62,unintend:[28,111,121,192],unintention:187,union:[87,121,128,131,188],uniq:57,uniqu:[5,14,22,42,43,51,52,56,57,62,63,70,73,76,83,86,87,102,110,127,129,131,140,146,150,154,164,171,173,175,178,180,182,187,188,189,196,205,206,208,210,211],unique_list:102,unique_numb:188,unique_valu:102,uniqueag:189,unit:[0,12,30,32,33,44,46,47,48,50,52,53,59,64,68,83,91,110,111,120,122,127,128,133,136,140,143,145,147,149,153,154,155,160,170,178,182,183,184,190,196,198,208,209],unittest:[3,14,22,24,52,53,59,83,101,102],univari:[7,84,139,186],univers:[14,70,121,125,141,151,156,170,196,208,209],unix:[49,152],unknown:[63,64,125,141,145,158,164,170,187],unknowningli:60,unlabel:[135,154,158,163,171,172,178,202,207],unlaw:121,unless:[22,50,52,53,54,62,131,150,187,209],unlik:[34,62,66,72,73,86,91,128,154,160,163,188,189,195,198,205,206,210,211],unlimit:[188,210],unlock:[26,184],unnam:[74,175,176,177,182,183,184],unnecessari:[128,133,170,171],unord:[83,188,189,210,211],unpack:[3,131,158,183,188],unpickl:209,unpreced:121,unprun:163,unqualifi:187,unrel:3,unreli:178,unrol:149,unsaf:128,unscal:[44,64],unse:44,unseen:[44,46,56,70,163,178,186],unsort:102,unsorted_list:102,unspecifi:[48,128],unsplash:[107,114,116,134,157,174,185],unsqueez:[31,34],unstabl:[68,154,164],unstack:46,unstructur:[6,122,123,152,178,192,207],unsuccess:154,unsupervis:[38,56,73,125,151,154,156,158,163,177,178,186,199],unsupervised_learn:171,unsupport:[178,188,195,210],unsur:15,unsurprisingli:173,until:[31,34,56,61,67,73,84,101,112,128,133,149,154,159,160,163,171,172,178,187,188,196,202,207],untouch:131,untrain:38,untruncated_norm:148,unununium:[188,210],unus:[128,184],unusu:[128,170],unwant:33,unweight:183,unwrap:121,unzip:[38,39,136],up:[0,3,5,7,14,18,22,33,34,38,41,42,44,45,51,53,55,56,58,59,60,62,64,66,68,70,72,73,75,89,93,94,95,101,108,109,110,111,112,113,115,117,121,125,126,127,128,130,131,133,136,141,143,144,147,148,150,153,154,155,156,158,160,163,164,165,167,168,169,170,171,172,173,175,178,182,183,184,185,187,188,189,196,207,210],up_sampling2d:[36,38],up_sampling2d_1:38,up_sampling2d_2:38,up_sampling2d_3:38,up_shifted_imag:93,up_stack:144,upbeat:113,upblock:36,upcast:[7,126],upcom:7,updat:[0,31,38,39,46,48,53,55,58,61,69,71,84,85,90,91,92,101,102,118,122,135,137,138,139,140,141,142,145,149,150,153,154,164,165,167,168,171,172,178,179,191,198,202,203,204,205,208],update_st:[36,38],update_trac:30,update_weight:141,upfront:113,upgrad:[108,118,153],upload:[9,20,109,110,127,155,172],upload_d:63,upon:[44,56,70,110,121,123,133,168,172],upper:[7,30,32,33,57,101,130,133,135,149,154,171,172,188,209],upper_cas:106,uppercas:189,uppered_anim:209,upsampl:[29,30,139,144],upsamplin:38,upsampling2:38,upsampling2d:[36,38,144],upward:139,uranu:211,urban:[119,194],url:[0,3,45,63,66,77,110,123,137,138,139,142,148,171,182,183,190,192],url_for:173,url_setosa:66,url_versicolor:66,url_virginica:66,urllib:[67,75,77,83,89,91,136,171,187],urlopen:77,urlretriev:[75,89,91,136,171,187],us:[0,1,2,3,4,5,6,7,8,9,11,12,14,15,16,17,18,19,20,22,23,24,27,29,31,32,35,37,38,40,41,42,43,45,47,48,49,50,51,52,54,55,56,57,58,59,60,61,63,64,66,67,72,73,75,77,78,81,83,84,86,87,89,91,93,95,98,100,107,108,109,110,111,112,115,116,119,120,121,122,123,125,126,127,128,129,130,131,133,134,135,136,137,139,140,141,142,143,144,145,147,148,149,150,152,153,155,158,159,160,161,163,164,165,166,167,169,170,174,175,177,179,180,185,186,187,188,190,191,192,193,195,196,198,199,200,202,204,207,209,210,211],usa:155,usabl:[117,152],usag:[5,41,55,60,65,66,73,83,110,111,121,126,158,164,168,173,175,182,186,187,188,190,191,210],usd:37,usd_tri:37,usda:184,usdt:[41,49],use_bia:[36,143,144,148],use_column_width:77,use_inf_as_na:92,use_na_proxi:129,useless:128,user:[6,17,23,48,60,63,68,107,108,110,111,113,117,118,119,120,121,122,123,128,129,130,131,144,146,149,150,153,154,156,178,186,187,189,190,191,192,195,202,203,207,209],userwarn:[30,92,118,131,171,172,176,183,194],usf:149,usr:[129,130,131,176,183,187,195],usual:[7,45,51,53,55,56,58,60,65,72,75,89,91,108,112,113,118,122,126,128,129,130,131,135,139,140,141,143,149,150,152,153,154,156,158,163,164,169,170,172,178,179,184,187,188,189,204],ut:160,utf:[15,145,173],util:[31,32,34,37,39,41,43,44,45,47,49,60,63,64,72,76,84,85,86,87,101,126,129,130,137,142,144,146,148,153,154,155,168,186,187,208],utilis:45,utilitarian:154,uvicorn:76,v0_8:68,v1:[14,37,38,63,77,128,129,130,131,138,141,145,153],v2:[141,153],v2rayn:41,v3:[41,42,128,153],v65nkkht5gsyqed6jhn7nvl3x672hikcirp:65,v7:65,v7t09o1tbxdw8p7:65,v:[1,3,41,62,129,130,131,170,172,201],v_:141,v_measure_scor:172,vaccin:[11,155],vae:31,vae_model:31,vagu:[113,178],val1:101,val2:101,val3:101,val4:101,val:[31,61,91,101,103,145],val_acc:[33,34,43,52],val_accuraci:[32,33,43,44,76,136,144,149],val_d:[33,34],val_dataset:36,val_dl:34,val_load:34,val_log:91,val_loss:[30,31,33,34,35,41,43,49,52,53,68,76,136,144,149],val_siz:34,val_subsplit:144,val_x:31,valdat:34,valid:[7,14,15,31,33,35,40,43,44,51,55,62,68,72,75,89,91,102,121,126,128,129,130,131,136,143,144,146,149,152,154,160,163,167,170,176,178,182,187,189,208],validation_data:[29,30,32,33,35,41,68,136,144],validation_dir:136,validation_epoch_end:34,validation_fract:62,validation_loss:70,validation_split:[33,41,43,44,49,52,53,76,149],validation_step:[34,144],valmont:117,vals1:195,vals2:195,valu:[1,3,6,8,14,15,18,22,29,30,31,32,33,35,38,40,41,43,44,45,46,47,48,49,50,51,53,54,55,56,58,59,61,64,66,67,69,70,71,72,73,76,77,84,85,86,87,91,92,93,94,105,106,109,111,112,115,118,119,120,121,122,123,125,126,127,129,130,133,135,136,138,139,140,143,144,145,146,147,148,150,152,154,155,158,159,160,161,163,164,165,166,167,169,171,172,173,175,176,178,179,180,182,183,184,185,186,189,192,193,196,201,202,203,204,205,206,207,209,210,211],valuabl:[7,84,86,146,155,163],value_count:[7,14,15,22,35,43,57,60,62,63,65,66,67,70,73,75,83,89,158,159,175,194],value_left:129,value_right:129,valueerror:[101,128,129,130,131,141,144,187,188,189,210],valueless:7,values_list:101,van:[189,209,211],vanderpla:[63,64,66,67],vanilla:[7,145],vanish:[140,143,145,147],vanooteghem:107,vanschoren:154,vapnik:65,var1:41,var2:41,var3:41,var4:41,var5:41,var_idx:61,var_tensor:48,vare:29,varepsilon_i:160,varepsilon_j:160,vari:[38,44,55,58,60,110,122,123,128,147,152,159,163,171,172,184,202],variabl:[7,22,31,34,39,43,54,56,59,60,62,64,70,72,73,75,83,84,85,86,89,92,97,101,102,105,106,110,115,117,118,120,126,135,137,138,139,140,141,145,147,152,154,155,158,159,161,163,164,169,172,173,175,178,182,185,186,189,193,194,203,204,207,211],variable_nam:187,variables_and_typ:188,variad:187,varianc:[18,36,56,60,62,69,71,86,91,118,135,160,168,172,194,202],variance_inflation_factor:[60,70],variance_scaling_initi:148,variant:[65,140,171,187],variat:[43,52,138,139,143,148,164,172,187,208],varieti:[46,48,60,128,143,146,150,164,170,172,176,182,183,184,188,210],varinac:[69,71],variou:[16,28,30,38,43,44,56,60,65,68,73,86,87,94,99,108,110,111,116,117,119,120,121,122,128,129,131,140,143,144,146,147,152,153,155,156,157,158,160,164,175,177,178,184,186,189,194,196,207],vassilvitskii:171,vast:[7,22,108,123,126,146,152],vastli:38,vault:110,vc:43,vdf:41,ve:[7,28,31,42,56,84,91,111,113,115,121,126,127,128,129,133,143,147,150,160,164,170,178,183,187,188,190,196,203,209],vec:[31,91,160],vect_tensor:48,vector:[7,29,31,34,48,50,55,56,61,63,69,70,71,75,87,89,91,128,135,139,142,143,144,145,147,149,154,163,170,172,173,176,178,182,188,195,202,204,207,208,210],vectorregress:169,vegan:186,veget:185,vehicl:[140,150,207],veil:[119,194],veloc:[141,196],vend:152,venn:[124,192],venu:[110,111,187,211],verb:[146,187],verbos:[32,37,41,43,46,49,50,52,53,56,58,59,60,62,63,64,65,66,67,68,93,117,136,144,147,163,167,171],verdict:38,verghes:113,veri:[14,18,30,31,40,42,43,44,45,46,50,52,55,56,58,59,60,61,63,64,65,68,69,70,71,73,75,83,89,92,107,110,112,113,115,118,119,123,125,128,129,131,135,137,140,143,145,147,149,150,152,153,154,155,158,159,161,163,164,167,168,169,170,171,172,173,174,175,177,178,180,183,184,186,187,188,189,195,198,201,202,205,206,210,211],verif:[0,125],verifi:[34,44,50,52,53,64,83,105,106,119,120,130,143,154,158,165,171],verify_integr:[129,195],versa:[55,56,58,62,63,75,89,125],versant:196,versatil:[188,210],versicolor:[66,70,92,161],versicolour:[92,172,202],version:[1,7,22,29,34,37,50,51,52,53,54,55,56,63,65,84,92,110,115,125,128,129,130,133,138,140,144,148,153,154,158,165,167,171,172,179,186,189,195,202,211],version_info:[91,171],versu:[164,186],vert:18,vertex:56,vertic:[3,18,45,117,125,128,172],verticalalign:76,veryde:138,verydeep:138,vet:[117,129],vf4l3peswap51eb6clsmx7uuklt158tt0o:65,vg1e19lamcl0zwjb346nru0q5g1n9m1cgakz9gnqxe43qpp0nhlch:65,vgg16:144,vgg19:144,vgg:143,vgg_data:138,vgg_dir:138,vgg_layer:138,vgg_net:138,vgg_network:138,vgg_path:138,vgg_url:138,vgood:63,vhigh:63,vhx8dhywgnjy2:65,vi:[129,130,131,136,159,169],via:[7,33,73,118,127,129,130,131,138,144,164,169,170,171,172,176,187,202],viabil:110,vibranc:117,vibrant:178,vicdemand:[55,58],vice:[55,56,58,62,63,75,89,125],vicin:[1,8],viciou:117,vicki:[188,210],vicomt:117,vicpric:[55,58],victor:[29,150],victoria:[55,58],vid_4_10520:45,video:[48,122,123,125,127,128,136,138,140,148,156,164,167,169,175,178,180,181,184,185,186,189,192,207],view:[7,30,31,33,34,39,44,52,65,73,92,108,109,110,113,117,123,127,143,144,168,173,183,184,195],view_init:[169,200],viewpoint:[141,143,148],viewport:15,vinod:34,viola:164,violat:[121,156,192],violenc:117,violent:146,violinplot:62,virginica:[66,70,92,161,172,202],viridi:[41,84,163],virtual:[108,110,146,153,186],virtuoso:196,visibl:[30,45,63,113,141,143,147],vision:[34,46,48,93,108,129,140,143,148,154,164,173,175,178,197,207],visiontransform:143,visit:[108,123,143,148,150,160,182,183,190,192],visitor:161,visual:[0,1,5,8,14,15,16,18,19,30,45,50,51,55,56,57,58,59,60,64,65,75,77,83,84,85,89,93,108,109,110,111,121,123,125,126,128,129,130,131,135,136,138,140,143,144,147,150,151,152,158,159,160,161,163,164,168,169,171,172,173,175,176,178,179,182,185,186,187,190,192,193,197,199,202,204,207],visualcapitalist:113,visualis:[31,65,169,182],visualize_input:76,vital:[60,146],viz:171,vjmi9yzk0h151fljqxe0c6kcd5dgcxydykwchd1eqbm4vtx3fmdgbr8xnmgivfktk28qnpkt1akrcd9vvkustvhxh6ggj8ifmemubkcwjsg5w69rdxnksqoyqlkymbnjlauf6xayut7pg1sxzhwp:65,vladimir:65,vlfeat:138,vm:[108,109,110],vm_size:[9,109],vmail:[56,160],vmax:[31,41,158],vmin:31,vocab2ix:145,vocab:[42,145],vocab_s:[145,149],vocab_to_ix_dict:145,vocabulari:[145,149,158],voic:[56,140,146,160],voila:[119,161],vol:41,volatil:53,voldemort:196,volt:187,voltag:187,volum:[7,49,108,110,145,146,152,153,154,156,182,184,191],volume_btc:41,volume_dollar:41,volumetr:140,volunt:121,voluntari:121,voluntarili:121,von:137,voom:187,vooooom:187,voronoi:[159,171],voronoi_plot:171,vot_classifi:55,vote:[125,151,155,160,163,164,176],votingclassifi:55,vs:[34,41,43,46,61,65,73,75,89,94,110,113,115,118,119,121,141,152,153,154,158,165,167,171,175,176,182,183,184,186,193,199,204],vs_code_with_a_notebook_open:186,vscode:195,vscodecod:41,vstack:[128,169,200],vthyuhdilvw8hkemhmr:65,vu:[118,194],vue:117,vulner:[118,129,194],vutil:39,w0:149,w1:[141,149],w2:[141,149],w3:141,w3school:[187,188],w:[31,34,69,71,77,83,91,92,93,125,135,136,141,144,145,148,149,150,164,168,170,171,172,187,196,201,202],w_0:164,w_:[145,161],w_box:148,w_crop:148,w_h:149,w_hh:149,w_hx:149,w_i:[161,164,170,172,201],w_img:148,w_j:[164,168],w_n:163,w_xaxi:[172,202],w_yaxi:[172,202],w_yh:149,w_zaxi:[172,202],wa:[1,11,16,28,32,34,43,44,48,50,55,56,58,59,60,63,64,65,66,67,83,85,101,111,113,115,117,121,122,123,125,128,130,131,140,143,144,147,148,150,152,153,155,158,159,160,161,164,171,172,173,175,176,177,178,186,187,188,189,190,193,202,204,207,210,211],waffl:[27,117],wai:[0,1,3,7,11,18,30,33,38,40,42,44,46,48,51,55,56,58,59,60,62,63,64,65,66,67,68,75,77,80,83,85,89,91,107,108,111,112,113,117,118,119,120,121,122,123,125,126,127,128,131,133,134,140,141,143,146,147,148,149,151,152,153,154,155,158,159,160,163,164,165,167,168,170,171,172,173,175,176,177,178,183,184,186,187,188,189,193,194,195,196,203,204,207,209,210],waistlin:97,wait:[1,110,112,136,137,144,167,178,189],wait_for_complet:[9,109],wait_for_deploy:[9,109],wake:154,wale:[55,58],walk:[1,31,57,62,99,127,129,155,167,175,177],wall:[141,172,176,202],walter:149,want:[1,3,7,8,14,16,17,18,23,30,33,43,44,46,48,51,52,53,54,55,56,57,58,59,62,63,64,65,68,69,71,75,83,86,87,89,91,92,108,110,111,113,118,121,122,123,125,126,128,129,133,140,141,143,144,146,148,150,154,158,161,164,165,167,168,169,170,172,173,175,177,178,180,182,183,186,187,188,189,193,194,196,200,202,203,204,207,209,210],wanted1:101,wanted2:101,wanted_peopl:101,ward:[142,158],warehous:[108,152],warm:42,warm_start:[62,163],warmup:42,warmup_ratio:42,warn:[30,37,38,42,43,53,55,56,57,58,59,60,62,63,64,65,73,75,77,89,92,118,128,129,140,143,144,145,147,149,150,163,165,167,171,172,176,183,194,202],warn_singular:[118,194],warnopt:73,warrant:[32,156,159],warranti:[22,50,52,53,54,101,102,187,188,189],warren:149,warrior:164,wasn:[33,113],wast:[111,119,152,156,188,194],wat:149,watch:[62,123,137,140,178,179,182,183,184],water:[111,198],waterfowl:[118,194],watersh:40,wavenet:140,wb:[29,30,31,33,34,38,39,43,46,72,77,138,142,173],wc:3,wcss:159,wd:72,wdrfosfa13slih0epo:65,we:[1,3,7,8,9,10,11,14,16,17,18,20,22,23,24,30,31,32,34,35,38,40,42,43,44,45,48,49,51,52,53,54,55,57,58,59,60,61,63,64,65,66,67,68,69,70,71,72,73,75,76,77,83,84,85,86,87,89,91,92,93,107,108,109,110,111,112,113,115,118,120,121,123,125,126,127,128,129,130,131,133,135,136,138,139,140,141,143,144,145,146,147,148,149,150,151,152,153,154,155,158,159,160,161,163,164,165,166,167,168,169,170,171,172,173,175,176,177,178,179,180,182,183,184,186,187,188,189,190,192,193,194,195,196,197,200,202,203,204,207,208,209,210,211],weak:[51,60,61,62,126,150,154,158,163,164,166,168,183],weaker:1,weapon:[121,188,210],wear:[178,207],wearer:6,weather:[111,150],web:[5,43,100,108,109,110,111,117,122,123,125,147,153,155,156,158,174,180,186,189,190,199,211],webapp:155,webservic:[9,109],websit:[108,123,141,143,155,156,161,178,182,184,186,207],wechat:41,wechat_fil:41,wechat_files_comput:41,weeight:170,week:[41,54,55,56,58,113,150],week_fri:54,week_mon:54,week_sat:54,week_sun:54,week_thur:54,week_tu:54,week_w:54,weekend:113,weekli:[14,150,155],weigh:[62,164,184],weight:[7,18,30,34,36,38,41,42,43,44,48,50,52,55,58,60,62,63,64,65,66,68,69,70,71,72,75,76,83,89,90,91,93,109,113,125,128,135,137,138,139,141,142,143,145,146,147,148,149,150,154,160,161,163,168,169,170,171,172,173,175,176,177,179,183,184,195,198,204,205],weight_1:150,weight_2:150,weight_decai:[36,42],weightag:60,weights_init:39,weights_list:141,weird:178,welcom:[151,186,188,209,210],well:[3,5,15,18,30,31,33,38,43,44,45,48,50,51,52,55,56,59,60,62,63,64,65,66,67,70,72,73,75,78,80,83,85,86,87,89,91,92,97,98,112,113,115,117,118,120,122,123,125,126,127,128,129,130,131,133,140,141,143,144,146,148,150,153,154,158,159,160,163,164,168,170,171,172,177,178,180,182,183,184,186,187,189,193,195,198,201,204,207,211],went:[10,33,44,51,55,58,113,126,178,187],wer:182,were:[7,10,12,16,20,31,42,43,44,48,52,55,56,58,59,63,64,66,67,68,72,75,78,83,85,89,110,112,113,121,125,127,128,129,133,139,145,150,152,153,155,159,160,164,168,171,173,178,182,183,187,189,192,196,197,207,209],weren:33,west:83,wget:143,wh:149,what:[1,7,10,16,17,18,21,26,31,33,38,42,44,52,53,55,56,58,59,60,61,62,63,66,68,69,71,72,73,75,83,84,89,91,99,107,111,112,115,118,120,121,122,125,126,127,128,129,131,133,137,140,141,147,149,153,154,155,157,158,164,168,170,171,172,173,175,177,179,182,183,184,186,187,189,190,196,197,203],whatev:[63,64,91,113,140,143,167,170,178,187],wheat:[178,207],wheel:156,when:[1,3,4,7,10,14,16,18,20,30,31,33,34,35,37,38,44,46,48,50,51,52,53,55,56,58,59,60,62,63,64,65,66,67,68,69,70,71,72,75,83,84,85,86,87,89,92,94,107,110,112,113,115,117,118,119,121,122,123,125,126,127,128,129,130,131,133,136,139,140,143,144,145,146,147,150,152,153,154,155,156,158,160,161,163,164,167,168,169,170,171,172,173,175,176,177,179,180,182,183,185,186,187,188,189,191,192,193,195,197,198,202,203,204,207,209,210],whenev:[48,128,153,154,170],where:[2,7,12,14,17,25,28,29,31,34,35,42,43,44,46,50,51,55,56,57,60,61,64,65,67,70,73,75,76,83,86,87,89,91,101,110,111,112,113,115,117,118,119,121,122,125,126,127,128,129,130,131,133,139,144,146,147,150,152,153,154,157,159,160,161,163,164,167,168,169,170,171,172,173,175,178,179,180,182,183,184,186,187,188,189,190,192,193,195,196,202,203,204,207,210],wherea:[31,33,45,56,60,63,65,75,89,128,169,178,183,186,187,188,200,207],wherefor:145,wherev:187,whether:[7,22,23,29,32,38,42,51,52,53,56,57,64,86,92,101,102,109,118,121,125,126,128,130,131,142,143,144,146,152,154,156,163,164,172,175,178,183,186,187,188,189,207,209,210],which:[0,1,3,7,8,11,12,14,18,22,24,29,31,33,34,35,38,40,42,43,44,46,48,51,52,53,55,56,58,59,60,61,62,64,65,66,68,69,70,71,73,75,77,81,83,84,85,86,89,91,92,101,102,108,109,110,111,112,113,117,119,120,121,122,123,125,126,127,128,129,130,131,133,135,138,139,140,143,144,145,146,148,149,150,151,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,175,176,177,178,179,182,183,184,186,187,188,189,193,194,195,196,198,200,203,204,207,209,210],whichev:150,whiskei:[74,175,176],whistl:[118,194],white:[3,41,52,53,56,76,118,119,136,141,143,155,156,172,183,186,189,194,202,211],white_bread:[74,175,176],white_win:[74,175,176],whitegrid:[57,68,92,150],whitesmok:[119,194],whitespac:[51,126,187,188,210],who:[31,48,51,56,62,73,83,108,112,113,115,121,122,125,126,152,160,164,178,187,188,189,192,193,210],whole:[14,44,48,56,58,59,60,62,63,64,65,68,75,83,89,125,135,140,142,152,153,155,156,160,163,168,172,175,178,188,194,198,210],whole_grain_wheat_flour:[74,175,176],wholesale_customers_data:168,whom:[101,102,122,151,187,188,189],whose:[62,68,118,128,131,141,149,187,188,210],why:[7,16,18,44,48,50,51,52,53,55,56,59,66,72,73,78,84,91,94,99,107,110,111,112,113,115,121,125,126,128,133,136,158,159,160,164,165,169,171,172,176,178,179,183,184,187,190,192,193,196],wide:[42,48,60,67,84,85,86,108,110,121,128,131,140,142,143,147,148,150,152,153,156,164,166,188,191,196,210],wider:[125,155,170],widespread:[146,164],widget:[9,109],widow:73,width:[1,3,14,15,31,34,36,51,66,67,75,76,89,92,117,119,125,126,129,130,131,136,138,139,143,144,159,161,163,171,172,173,175,179,180,182,184,187,194,202],width_multipli:143,width_shift_rang:32,wif:149,wifi:[75,89],wifi_count:[75,89],wiki:[3,137],wikimedia:[66,137,140],wikipedia:[3,48,123,125,168,178,196,197,207],wild:[31,129,158,173],wildfir:146,wildli:[167,176],william:125,willing:38,willingli:7,willpow:91,win32:209,win:[63,141,143,149,164,168],wind:141,window:[14,43,49,127,136,146,172,187,189,196,209],window_s:49,wine:[53,68,73,74,175,176],wine_feature_col:53,wine_feature_row:53,wine_schema:53,winedf:53,winefeatur:53,winefeaturessimpl:53,winefeaturessmal:53,winelabel:53,winelabelssmal:53,winequ:53,wingspan:118,winner:164,winston:62,winter:[17,115],wirefram:113,wisdom:[55,160],wise:[7,60,128,131,139,143,144,145,168],wish:[128,130,133,188,189,209,210],with_column:24,with_info:144,with_suffix:33,with_titl:31,withdraw:121,withheld:121,within:[6,34,51,52,53,56,60,62,83,92,109,112,113,115,118,119,121,122,125,126,127,147,148,153,159,168,172,182,186,187,188,195,202,209,210],without:[0,1,4,16,18,21,22,33,35,43,48,50,52,53,54,56,58,63,66,70,87,101,102,110,113,117,121,125,128,129,131,135,143,146,147,152,154,167,168,169,172,173,178,187,188,189,200,202,207,210],wkly:149,woke:165,woman:[56,110],women:[121,192],won:[7,55,58,62,66,113,128,133,140,141,143,154,167,168,170,178,204,207],wonder:[50,53,111,117,133],wood:[74,119,175,176,194],wooddecksf:60,word1:188,word2:188,word:[1,3,31,42,44,46,48,55,60,65,75,89,97,99,102,112,116,118,121,123,125,126,128,140,142,143,145,146,147,148,149,150,154,160,163,164,168,170,172,178,179,182,186,187,188,189,192,193,194,204,207,209,210],word_count:[102,145],word_index:[149,187,209],word_list:145,wordcloud:3,wordnet:143,words_length:187,work:[1,3,4,7,11,18,19,24,30,31,34,38,40,44,46,48,50,51,55,58,59,60,63,64,65,66,67,69,71,72,73,75,80,81,83,84,85,89,91,92,94,99,108,109,110,111,112,113,115,117,121,122,123,125,126,127,130,131,133,135,136,137,140,144,145,147,148,150,151,152,153,154,155,158,159,160,161,163,165,167,168,170,171,172,173,174,175,176,177,178,182,183,184,185,187,188,189,192,193,195,202,203,204,207,209],workbench:[111,190],workbook:127,workclass:57,workflow:[0,33,60,92,109,110,111,113,121,129,152,153,156,167,190],workload:[110,146,152],workplac:[6,113],worksheet:127,workshop:129,workspac:153,workstat:110,world:[0,7,18,28,29,34,37,39,43,44,46,50,51,56,59,63,64,66,68,86,102,117,121,123,126,127,129,131,136,140,143,147,148,149,150,152,153,155,156,160,164,165,170,173,178,182,187,188,189,192,195,196,199,207,209,210,211],worldwid:[110,121],worri:[108,125,178,187],wors:[46,52,154,163,171,177,198],worst:[65,182,183],worth:[6,32,53,72,116,118,143,163,164,165,172,178,189,194,207],would:[1,7,11,14,16,18,23,24,30,31,38,44,48,52,55,56,58,60,62,64,65,66,67,68,72,73,75,80,83,89,91,97,99,113,115,122,123,125,126,128,130,131,133,139,140,147,150,154,155,158,159,160,163,164,165,167,169,170,171,172,173,175,177,178,182,183,184,186,187,188,196,202,203,207,210],wouldn:[7,122,164,187],wow:[52,55,58,63,67,171],wrangl:128,wrap:[30,34,72,77,120,135,150,153,187],wrapper:[34,77,128,129,150,187,209],wrestl:[7,126],wrgsj6ct4mkv0s6rpj6xety7gqmy8lit80oz:65,write:[0,1,3,7,21,22,23,26,29,30,31,33,34,38,39,43,46,50,52,53,54,56,57,62,72,76,77,91,102,109,113,121,123,125,128,131,133,136,138,140,141,142,145,149,154,160,163,164,171,173,178,179,186,187,188,189,207,209,210],write_imag:77,writefil:209,written:[7,97,117,128,129,139,145,151,163,168,172,187,188,189,209,210,211],wrong:[1,14,33,46,52,62,121,123,125,143,154,164,171,187,188,189,210],wrong_nam:14,wrong_sampl:18,wrote:[42,52,142,189],wrt:57,ws:[9,109,195],wspace:[142,169,171,200],wsr4u5caj:65,wt:149,wts2:49,wu:117,www:[22,25,32,50,52,53,54,62,64,117,121,125,136,137,138,139,143,145,150,156,159,162,169,171,175,179,180,184,187,188,191,196,197,198,209],wxzsnhukpclpvn1op9pjq61679mjrojzzhfons0:65,x0:148,x0_box:148,x1:[32,56,118,128,144,148,171,194,195,205,206],x1_max:56,x1_min:56,x1y1x2y2:148,x27:[63,64,66,67,163,167,168,169,171,182],x2:[32,56,118,128,171,194,195,205,206],x2_max:56,x2_min:56,x3:[32,118,194,195],x4:[118,194],x4kimebdus7rzgkszdigbxnkbyqt65wweq9sbl7:65,x5:[118,194],x6:[118,194],x80:41,x86:41,x99ve:41,x:[1,14,15,22,29,30,31,32,33,34,35,36,37,38,39,41,42,43,44,45,46,48,49,50,51,52,55,56,57,58,60,61,62,63,65,66,67,69,70,71,72,73,75,76,77,83,84,85,87,89,90,91,92,93,101,102,111,117,118,120,121,125,128,129,130,131,135,136,138,139,141,142,143,144,145,147,148,149,150,155,158,159,160,161,163,164,165,167,168,169,171,172,173,175,176,177,178,179,180,182,183,186,187,188,189,192,194,195,198,200,202,203,204,205,206,207,209,210],x_0:[139,149],x_1:[56,125,139,149,160,161,163,171,178,207],x_1p_1:125,x_2:[56,125,139,149,161,163,171,178,207],x_2p_2:125,x_3:161,x_4:161,x_:[18,139,141,161],x_batch:[91,139,171],x_center:[172,202],x_cluster_dist:171,x_data:145,x_digit:171,x_digits_dist:171,x_dist:171,x_histori:84,x_i:[18,125,135,139,163,164,172],x_init:[84,171],x_int:84,x_j:[18,161,163,172],x_k:[141,163],x_m:160,x_max:56,x_min:[56,84],x_mm:171,x_n:[125,139,178,207],x_new:171,x_noisi:139,x_np_n:125,x_organ:35,x_pca:[172,202],x_po:141,x_poli:204,x_rang:[163,187],x_reduc:[172,202],x_representative_digit:171,x_set:[205,206],x_shape:139,x_shuffl:149,x_start:139,x_t:[139,149],x_test:[29,30,32,35,44,47,55,56,57,58,59,62,64,65,66,72,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],x_test_circl:163,x_test_noisi:[29,30],x_test_scal:[44,85],x_test_with_bia:85,x_train2:32,x_train:[29,30,31,32,35,41,43,44,47,49,55,56,57,58,59,60,62,64,65,66,68,72,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],x_train_add:93,x_train_circl:163,x_train_combin:93,x_train_flat:30,x_train_noisi:[29,30],x_train_noisy_flat:30,x_train_partially_propag:171,x_train_scal:[44,59,64,66,85],x_train_with_bia:85,x_tsne:[172,202],x_umap:30,x_val2:32,x_val:[31,60,91],x_valid:68,x_vif:70,xa:61,xarrai:128,xaxi:[92,202],xb:34,xception:144,xe2:41,xentropi:91,xfb:65,xfhxfw:148,xfit:[169,200],xfyplk79sjp:65,xgb:[60,62,72,168],xgb_clf:168,xgb_cv:168,xgb_pred:72,xgb_reg:60,xgb_search:60,xgbclassifi:[62,168],xgbclassifierxgbclassifi:168,xgboost:[55,62,150,164,165,166],xgboostclassifi:62,xgbregressor:[60,72,150,167],xgbregressorxgbregressor:[72,167],xhf2neuisqwe9q2ota5bqxws9epzwd8lkdb71jfdsfuznneuj7l6wzrdiqtftipxfy26z2ldqwncov6aej8o2inlmd9ckymesp0bjkgsguh1bmu6jzdb0c4aratff2cwxagqw:65,xi:[61,65,144],xit:65,xj:65,xk:141,xknfkgixmjdoybdf7ugnnwjivklotgyiz7k2rgnwbhlk95pyt6emrffsjbdva02xmfqpp:65,xks2cxejztkqivxffffcr4:65,xl5eghoaagicdnz2kpksvr69cqkiljsvoaghjsukxfxd4ehhqufanjycqebaehh5aqebjy2m3nzdawlpisegdoarbaaaqeeleqvr4no1diwkqohdnrbu3wjdarbi02tp:65,xl:183,xlabel:[18,22,29,31,32,34,35,37,39,41,43,44,46,47,56,61,62,63,65,66,67,72,75,84,85,86,89,92,118,131,136,141,144,145,149,159,160,171,172,182,183,186,194,202,204,205,206],xlim:[56,62,161,163,169,172,200,202,205,206],xmax:45,xmin:45,xor:128,xplzqjohaao63bfq05ntwlheg6anqrhcuin:65,xrp:49,xs:[61,130,144,179],xtick:[3,18,22,31,39,43,45,46,52,60,62,158,159,161,171,194],xticklabel:[44,75,89],xu:142,xw:65,xx1:163,xx2:163,xx:[56,171],xxl:183,xxxx:110,xy:[76,169,171,182,200],xytext:171,y0:148,y1:[61,148,171],y1x1y2x2:148,y212szmlszq:195,y2:[61,171],y3:61,y4:61,y5:61,y:[14,30,33,35,37,40,41,43,44,45,49,50,52,55,56,57,58,60,61,62,63,65,66,67,69,70,71,72,73,75,76,77,83,84,85,86,87,89,90,91,92,102,117,118,120,125,128,131,139,141,142,145,147,149,150,155,158,159,160,161,163,164,165,167,168,169,171,172,173,176,177,178,179,180,182,183,184,186,188,189,194,198,200,202,204,205,206,207,209,210],y_2:149,y_:141,y_batch:91,y_clr:[172,202],y_cluster_kmean:159,y_di:198,y_digit:171,y_dist:171,y_distribut:24,y_fit:150,y_gen:198,y_hat:163,y_histori:84,y_i:[56,61,84,86,87,161,163,164,168,179],y_init:84,y_j:56,y_k:141,y_lag_2:150,y_lag_3:150,y_lag_4:150,y_lag_5:150,y_lag_6:150,y_lag_:150,y_max:56,y_min:[56,84],y_output:145,y_po:141,y_pred:[57,61,65,69,71,76,85,87,92,147,150,165,168,171,176,177,179,186,204,205,206],y_pred_100:57,y_pred_idx:171,y_pred_sklearn:[69,71],y_pred_test:[65,85],y_pred_train:65,y_predict:[35,90,179,204,205],y_predict_class:35,y_predicted_:179,y_predicted_cl:[90,179,205],y_prob:165,y_representative_digit:171,y_score:183,y_set:[205,206],y_shuffl:149,y_step_1:150,y_step_2:150,y_step_3:150,y_step_:150,y_test:[30,32,35,43,44,55,56,57,58,59,62,64,65,66,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],y_test_circl:163,y_test_class:43,y_test_prepar:[55,58],y_train2:32,y_train:[30,32,35,41,43,44,47,49,55,56,57,58,59,60,62,64,65,66,68,76,85,91,92,93,135,136,147,149,150,163,165,168,171,172,173,176,177,179,182,183,186,198,202,204,205,206,208],y_train_add:93,y_train_circl:163,y_train_combin:93,y_train_partially_propag:171,y_train_prepar:[55,58],y_train_propag:171,y_true:[35,85,87],y_val2:32,y_val:[60,91],y_valid:68,ya:[65,91],yahoo:164,yam:[74,175,176],yandex:[60,164],yandexdataschool:91,yang:144,yaxi:[92,171,202],yb:34,ye:[7,50,56,109,110,120,121,156,160,163,178,187,189],year:[1,13,14,24,25,42,54,55,56,57,58,62,73,113,120,121,123,129,133,136,150,153,164,168,182,186,188,189,192,194,196,204,209],year_birth:73,yearbuilt:60,yeast:[74,175,176],yellow:[17,23,56,113,117,118,119,182,188,194,210],yellowbrick:73,yellowlabradorlooking_new:137,yet:[0,14,38,45,48,56,59,64,66,102,109,110,117,154,156,164,165,172,174,178,187,202],yetayeh:211,yf:164,yfit:[169,200],yfozmvgstfo5xi:65,yhat:41,yhat_ac:73,yi:61,yield:[31,33,34,45,56,65,91,120,131,164,167,168,187,194],yieldpercol:[120,194],yiyiwang0826:25,yizh:182,yk_temp:41,ylabel:[18,22,29,31,32,34,35,37,39,41,44,47,56,61,62,63,65,66,67,70,72,75,84,85,86,89,92,118,120,131,136,141,144,145,149,159,160,171,172,182,183,184,186,194,202,204,205,206],ylgnbu:[57,65],ylim:[46,53,144,169,200,205,206],ylorbr:[120,194],ymax:45,ymean:52,ymeanactu:52,ymin:45,yml:0,ymp6irqbiss3usmcdyxx:65,yogurt:[74,175,176],yolo:[73,148],york:[14,17,23,56,125,154,188,195],yoshua:[29,56,87,142,180],you:[0,1,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,26,27,28,29,30,31,32,33,34,35,41,42,44,45,46,47,48,49,50,51,53,54,55,56,57,58,59,60,62,63,64,66,68,72,75,78,80,83,85,86,87,89,91,92,94,98,99,100,101,102,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,124,125,126,127,128,129,130,131,133,134,135,136,137,138,139,140,141,142,143,144,146,147,148,149,150,151,152,154,155,156,158,159,160,161,163,164,165,167,168,169,170,171,172,173,174,175,176,177,178,179,180,184,185,186,187,188,189,190,191,193,194,196,202,203,204,205,206,209,210,211],younger:127,your:[0,7,9,11,16,17,19,23,26,27,28,29,32,33,34,42,44,50,51,52,55,56,58,59,64,66,68,72,75,78,80,83,84,86,89,91,92,94,97,99,100,101,102,105,106,116,140,171,172,174,185,202,203,207],yourself:[7,52,56,111,113,118,120,126,163,178],yourthoughtpartn:113,yousfi:62,youtub:[48,62,125,136,138,140,155,162,169,172,175,178,179,180,184],youyang:155,ypred:[52,85],yrsold:[60,72],ys:[61,179],ystd:52,ystdactual:52,yt:[125,162,175,184],ytest:150,ytick:[31,39,43,45,46,171,172,202],yticklabel:[44,75,89],yu:139,yup:83,yuri:[56,160,161,163,164,202],yy:[56,171],yyyi:184,z1:[31,101],z2:[31,101],z5bt0bx2dkfaicvnnfxngetnt0e2j7y77:65,z5zy85g4yjw:125,z:[30,31,39,50,53,73,84,102,128,131,139,141,142,144,149,154,155,163,171,172,187,188,189,210],z_costcontact:73,z_h:149,z_j:161,z_revenu:73,z_y:149,zalando:46,zaxi:[92,202],zd_zt:41,zdcy9hbpglxfy7px9hrlmewpjjzzzjhnajf0t78plkqryfsznc4xql3:65,zealand:[133,196],zero:[1,33,34,36,38,39,45,48,56,60,61,69,71,72,77,84,85,87,90,91,101,102,111,125,128,131,141,143,145,146,147,148,154,160,163,165,170,172,179,187,188,189,195,198,202,204,205,209,210,211],zero_grad:[31,34,39],zero_padding2d:38,zerodivisionerror:[101,102,187,189,209],zeropaddin:38,zeropadding2d:[38,143,144],zeros_lik:[40,77,91,142,171],zeroth:[188,210],zettabyt:121,zh:93,zhangqi:195,zhi:148,zia:192,zinkevich:154,zip:[18,22,29,30,31,34,36,38,39,43,45,46,72,77,128,135,139,141,142,144,145,149,169,172,187,188,200,202,208,209,210],zip_fil:77,zip_file_nam:77,zip_file_path:[29,30,31,43,77],zip_filenam:[38,39],zip_ref:[29,30,31,34,38,39,43,45,139],zip_store_path:[29,30,31,34,46,72],zip_url:[38,39,149],zipfil:[29,30,31,34,38,39,43,45,72,77,139,149],zlad:41,zn:31,znqn85053zltaka5jxfylfyesc1k5w8dzgqesmbrcz:65,zodb:196,zone:152,zoom:93,zoom_rang:[32,35,93],zoomed_imag:93,zopedb:196,zorder:171,zorro:101,zsy:65,zth:148,zucchini:[74,175,176],zut3vtnbg6hloje6yfvqbbk0jiyijjbtnsshondn6:65,zw:93},titles:["40. Self-paced assignments","40.22. Analyzing COVID-19 papers","40.27. Analyzing data","40.9. Analyzing text about Data Science","40.13. Apply your skills","40.16. Build your own custom vis","40.17. Classifying datasets","40.26. Data preparation","40.24. Data processing in Python","40.41. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","40.40. Data Science project using Azure ML SDK","40.10. Data Science scenarios","40.20. Displaying airport data","40.15. Dive into the beehive","40.23. Estimation of COVID-19 pandemic","40.25. Evaluating data from a form","40.36. Explore a planetary computer dataset","40.37. Exploring for answers","40.19. Introduction to probability and statistics","40.12. Lines, scatters and bars","40.39. Low code/no code Data Science project on Azure ML","40.38. Market research","40.29. Matplotlib applied","40.28. NYC taxi data in winter and summer","40.18. Small diabetes study","40.21. Soda profits","40.35. Tell a story","40.14. Try it in Excel","40.11. Write a data ethics case study","40.106. Intro to Autoencoders","40.107. Base/Denoising Autoencoder & Dimension Reduction","40.108. Fun with Variational Autoencoders","40.94. How to choose cnn architecture mnist","40.99. Image classification","40.98. Object Recognition in Images using CNN","40.96. Sign Language Digits Classification with CNN","40.122. Summary","40.117. DQN On Foreign Exchange Market","40.118. Art by gan","40.120. Generative Adversarial Networks (GANs)","40.121. Comparing edge-based and region-based segmentation","40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment","40.126. Getting Start NLP with classification task","40.112. NN Classify 15 Fruits Assignment","40.111. Neural Networks for Classification with TensorFlow","40.123. Car Object Detection","40.125. Basic classification: Classify images of clothing","40.104. Google Stock Price Prediction RNN","40.100. Intro to TensorFlow for Deep Learning","40.109. Time Series Forecasting Assignment","40.86. Counterintuitive Challenges in ML Debugging","40.85. Data engineering","40.87. Case Study: Debugging in Classification","40.88. Case Study: Debugging in Regression","40.89. Introduction","40.78. Beyond random forests: more ensemble models","40.79. Decision trees","40.83. Random Forest Classifier with Feature Importance","40.77. Random forests for classification","40.76. Random forests intro and regression","40.82. Boosting with tuning","40.81. Gradient boosting","40.80. Hyperparameter tuning gradient boosting","40.69. Decision Trees - Classification","40.68. Decision Trees - Intro and Regression","40.65. Kernel method assignment 1","40.67. Support Vector Machines (SVM) - Classification","40.66. Support Vector Machines (SVM) - Intro and SVM for Regression","40.72. Dropout and Batch Normalization","40.73. Lasso and Ridge Regression","40.71. Learning Curve To Identify Overfit & Underfit","40.70. Model selection assignment 1","40.74. Regularized Linear Models","40.75. Customer segmentation: clustering - assignment 3","40.92. Build Classification Model","40.91. Build classification models","40.53. Build ML web app - assignment 1","40.54. Build ML web app - assignment 2","40.59. Create a regression model","40.63. Delicious asian and indian cuisines","40.64. Explore classification methods","40.57. Exploring visualizations","40.60. Linear and polynomial regression","40.45. Linear regression - California Housing","40.48. Gradient descent","40.49. Linear Regression Implementation from Scratch","40.46. Linear Regression Metrics","40.47. Loss Function","40.56. Managing data","40.50. ML logistic regression - assignment 1","40.51. ML logistic regression - assignment 2","40.52. ML neural network - Assignment 1","40.42. Machine Learning overview - assignment 1","40.43. Machine Learning overview - assignment 2","40.93. Parameter play","40.62. Pumpkin varieties and color","40.55. Regression tools","40.44. Regression with Scikit-learn","40.61. Retrying some regression","40.90. Study the solvers","40.58. Try a different model","40.8. Python programming advanced","40.7. Python programming basics","40.6. Python programming introduction","40.5. Project Plan\u200b Template","40.3. First assignment","40.4. Second assignment","8. Data Science in the cloud","8.1. Introduction","8.3. Data Science in the cloud: The \u201cAzure ML SDK\u201d way","8.2. The \u201clow code/no code\u201d way","9. Data Science in the real world","7.2. Analyzing","7.3. Communication","7. Data Science lifecycle","7.1. Introduction to the Data Science lifecycle","6. Data visualization","6.4. Making meaningful visualizations","6.1. Visualizing distributions","6.2. Visualizing proportions","6.3. Visualizing relationships: all about honey \ud83c\udf6f","4.2. Data Science ethics","4.3. Defining data","4.1. Defining data science","4. Introduction","4.4. Introduction to statistics and probability","5.5. Data preparation","5.2. Non-relational data","5.3. NumPy","5.4.3. Advanced Pandas Techniques","5.4.2. Data Selection","5.4.1. Introduction and Data Structures","5.4. Pandas","5.1. Relational databases","5. Working with data","27. Autoencoder","23. Convolutional Neural Networks","23.3.1.2. Deepdream in TensorFlow","23.3.1.1. Stylenet / Neural-Style","33. Diffusion Model","21. Intro to Deep Learning","30. Deep Q-learning","24. Generative adversarial networks","31. Image classification","32. Image segmentation","28. Long-short term memory","26. Natural Language Processing Overview","22. Neural Networks","34. Object detection","25. Recurrent Neural Networks","29. Time series","Learn AI together, for free","37. Data engineering","39. Model deployment","38. Model training & evaluation","35. Overview","36. Problem framing","14. Clustering models for Machine Learning","14.1. Introduction to clustering","14.2. K-Means clustering","15.1. Bagging","15.3. Feature importance","15. Getting started with ensemble learning","15.2. Random forest","16.1. Gradient Boosting","16.2. Gradient boosting example","16. Introduction to Gradient Boosting","16.3. XGBoost","16.4. XGBoost + k-fold CV + Feature Importance","18. Kernel method","20. Model selection","17. Unsupervised learning","19. Unsupervised learning: PCA and clustering","12.4. Build a web app to use a Machine Learning model","12. Getting started with classification","12.1. Introduction to classification","12.2. More classifiers","12.3. Yet other classifiers","10. Machine Learning overview","13.2. Gradient descent","13.1. Loss function","13. Parameter Optimization","11.3. Linear and polynomial regression","11.4. Logistic regression","11.2. Managing data","11. Regression models for Machine Learning","11.1. Tools of the trade","3. Python programming advanced","2. Python programming basics","1. Python programming introduction","41.10. Data Science in real world","41.9. Data Science in the cloud","41.4. Data Science introduction","41.8. Data Science lifecycle","41.7. Data visualization","41.6. NumPy and Pandas","41.5. Relational vs. non-relational database","41.20. Convolutional Neural Network","41.21. Generative Adversarial Network","41. Slides","41.18. Kernel method","41.19. Model Selection","41.17. Unsupervised learning","41.16. Build an machine learning web application","41.12. Linear Regression","41.13. Logistic Regression","41.14. Logistic Regression","41.11. Machine Learning overview","41.15. Neural Network","41.3. Python programming advanced","41.2. Python programming basics","41.1. Python programming introduction"],titleterms:{"0":65,"1":[3,24,30,32,48,55,56,58,59,60,62,63,64,65,66,67,71,75,76,83,84,89,91,92,113,122,128,143,172,190,191,192,193,194,195,196,197,198,200,204,206,210,211],"10":[44,62,136,143],"100":[57,65,143],"1000":[65,143],"11":62,"12":62,"13":62,"1300131294":169,"15":43,"19":[1,8,14,138],"1d":128,"2":[3,24,30,32,48,49,55,56,57,58,59,60,62,63,64,66,67,75,77,84,89,90,93,113,122,128,172,190,191,192,193,194,195,196,197,198,200,204,206,210,211],"2d":[30,128,200],"3":[3,24,32,43,48,55,56,58,59,60,62,63,64,66,67,73,75,83,89,113,128,190,191,192,193,194,195,197,198,204,210,211],"3d":[30,92,117,200],"4":[3,24,32,48,55,56,57,58,59,60,62,63,64,66,67,75,89,113,172,190,191,192,193,194,195,196,210,211],"5":[24,32,48,55,56,59,60,62,63,64,66,67,75,89,92,113,143,172,190,191,192,193,194,196,210,211],"50":62,"500":62,"6":[48,56,58,59,60,62,63,64,66,67,75,89,190,191,192,193,194],"7":[48,56,58,59,62,63,64,66,67,190,193,194],"8":[58,62,193],"9":62,"90":169,"abstract":179,"boolean":[128,188,189,210,211],"break":[101,187,209],"case":[28,50,52,53,56,113,121,184,200],"class":[37,43,52,56,57,69,71,101,180,187,209],"default":[57,65,138,187],"do":[52,123,183,184,188,192,200],"final":[55,77,83,84,179],"float":[7,188,210],"function":[48,57,65,84,85,87,91,101,102,128,140,141,164,179,180,187,189,195,205,206,208,209],"import":[9,29,34,39,42,46,49,54,55,57,58,59,60,62,63,64,65,66,67,70,72,73,92,126,138,139,154,161,168,186,187,204,205,206,208],"long":145,"new":[33,62,103,128,131,205,206],"null":[7,65,195],"public":39,"return":[103,141,187],"short":145,"static":169,"true":65,"try":[0,27,53,75,84,89,100,187,209],"while":[101,187,209],A:[31,33,140,170,176,177,182],And:178,At:[51,179,180],But:184,By:164,For:[101,146],Is:156,It:[133,183,196],NOT:183,Not:178,On:37,One:[54,83,84,208],That:205,The:[9,38,48,57,59,84,86,91,109,110,126,133,147,170,171,177,184,186,187,188,191,195,196,197,200,209,210],There:184,To:[70,170],With:[35,150,179],about:[3,34,120,175,183,194],absolut:[86,180],acceler:171,access:[102,128,131],accuraci:[32,46,52,65,143,168,172,208],acknowledg:[1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,51,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,78,80,81,83,89,91,92,93,94,95,97,98,99,100,101,102,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,130,131,133,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,151,154,158,159,160,161,163,164,165,167,168,169,173,175,176,177,178,182,183,184,186,187,188,189,197,200,202,203,204,205,208],ackowledg:198,action:141,activ:140,actual:113,ad:[30,31,52,68,72,128,170],adaboost:55,adam:208,add:[53,128,154],addit:131,advanc:[32,101,128,129,187,209],adversari:[39,142,198],after:[30,170,201],ag:24,against:53,agent:[37,141],agglom:[171,172],aggreg:[128,129,192,195],ahead:91,ai:[38,46,151,202],airport:12,aka:70,algorithm:[56,60,141,155,158,163,164,168,171],align:131,all:[24,52,83,120,133,182,194,196],an:[9,31,70,72,109,110,113,127,128,173,197,203],anagram:188,analysi:[8,41,55,57,58,59,60,62,63,64,65,66,67,83,86,108,112,172,178,202,207],analyz:[1,2,3,18,112,128,184,193],anchor:[43,57],anim:117,ann:49,annot:[187,209],anomal:52,anomali:29,anoth:39,answer:17,ap:169,api:[35,48],app:[76,77,173],append:[102,195],appli:[4,22,52,121,176,177,192],applic:[56,135,146,172,203,207],approach:[57,113,133,176,196],ar:188,arbitrari:187,architectur:[32,136,140,147,197,208],argument:[138,187,209],arithmet:[131,188,210],arrai:[128,131,195],art:38,artifici:207,artwork:38,ascend:[102,103],asian:79,ask:184,assert:57,assign:[0,12,25,43,49,65,71,73,76,77,89,90,91,92,93,105,106,128,129,131,172,206],assist:144,attribut:[65,128,131,195],auc:[62,65],audienc:113,augment:[32,33,35,139],author:186,autoencod:[29,30,31,135],automl:[9,109,110,154],avail:128,averag:[101,184],avoid:[117,170],axi:128,azur:[9,10,20,109,110,127],b:[84,179],babylonian:102,backend:76,background:139,backprop:91,bag:[55,160,163,168],balanc:175,bar:[19,22,194],base:[30,40,101,130,168],basebal:18,baselin:[52,53,178,207],basi:65,basic:[29,32,33,46,48,102,121,128,131,141,188,189,192,195,210,211],batch:[34,68,171],beehiv:13,begin:113,behind:61,best:[9,32,39,109,156],beta:139,better:[176,183],between:[24,60,62,75,83,89,128,163,180,192,195],beyond:[44,55,169,200],bi:60,bia:[70,163,170,201],bibliographi:[25,179,180],big:208,binai:60,binari:[44,180,183],binder:0,bird:[118,194],bit:[31,128],bitcoin:41,blend:60,bmi:24,boost:[55,60,61,62,164,165,166,168],bootstrap:160,bound:139,boundari:[169,171,200],boxplot:[24,92],bp:24,brain:197,broadcast:[128,195],bug:53,build:[5,29,31,32,38,45,46,56,57,74,75,76,77,89,117,146,159,173,182,183,184,194,203],c:65,cach:203,calcul:[52,101,102,188],california:83,call:209,callabl:130,callback:44,can:[36,56,62,123,192],candid:62,capac:170,captur:[115,193],car:45,cardin:57,cast:[188,210],catalog:152,catboost:60,categor:[7,57,60,63,75,83,89,182,204],categori:102,categorical_crossentropi:208,caus:50,central:[18,125],centroid:171,chain:131,challeng:[1,14,22,50,121,128,140,143,146,148,192],chang:[35,60],changin:35,channel:113,chart:[117,120,194,203],check:[30,52,53,57,59,63,65,75,83,89,154,168,184,188,211],checkbox:203,checklist:121,choic:[131,156],choos:[32,56,83,108,110,117,172,176,191],churn:56,cifar:[136,143],citi:[62,133,196],classic:[143,144,148,164],classif:[33,35,42,44,46,52,55,56,57,58,63,65,66,74,75,80,87,89,92,143,164,174,175,177,178,180,183,200],classifi:[6,43,44,46,55,57,58,63,66,168,175,176,177],clean:[73,126,173,175,183],cloth:46,cloud:[9,76,77,107,108,109,191],cluster:[9,73,109,110,157,158,159,171,172,202],cnn:[32,34,35,49,136,148,197],co:169,code:[20,77,84,110,121,135,136,137,138,139,141,143,144,145,146,147,148,149,153,179,189,191,198,209],collect:[43,178,207],color:[95,117],column:[7,57,60,131,203],com:169,combin:[128,129,130,195],come:205,comment:[65,188,189,210,211],commerc:146,common:[69,71,87,126,140,188],commun:[113,193],compani:62,compar:[40,65,194],comparison:[128,163,188,210],compil:[33,38,44,46,208],complet:36,complex:[53,56,101,188,210],compon:[146,147,172,202],comprehens:[183,188,210],comput:[1,9,14,16,24,109,110,128,195,197,208],con:[56,163],concat:[129,195],concaten:[60,195],concept:[87,121,133,192,196],conclus:[1,18,31,32,35,50,52,53,65,69,71,73,85,86,87,113,125,133,164,167,168,170,184,201],conculs:38,condit:101,confid:[18,125],configur:[9,33,109,186],confus:[57,65,183,205,206],connect:[135,140,151,197],consider:173,constant:48,consum:9,consumpt:[109,110,152],contain:128,content:[34,63,64,66,67,207,209],context:62,continu:[101,141,187,209],control:[44,187,189,209],converg:50,convert:[33,60,128],convolut:[29,32,34,135,136,140,197],corp:18,correl:[18,24,53,59,60,75,83,89,125,182,183],correspond:1,cosin:139,cosmo:127,cost:180,count:[101,102,188],counterintuit:50,covari:125,covid:[1,8,14,128],creat:[9,32,33,43,44,48,50,75,78,83,89,101,102,109,110,128,131,198],creation:[62,69,71,128],criteria:56,cross:[56,65,83,92,168,180,205],crucial:56,csv:49,cuisin:[79,175,176],cultur:121,current:136,curv:[38,65,70,154,170,183],custom:[5,36,44,56,73,146],cv:[65,168],d3:117,data:[1,2,3,7,8,9,10,11,12,14,15,18,20,23,24,25,28,29,31,32,33,34,35,38,39,41,43,44,45,46,48,49,50,51,52,53,54,55,57,58,59,60,61,62,63,64,65,66,67,69,70,71,72,73,75,83,85,88,89,92,107,108,109,111,112,113,114,115,116,118,121,122,123,125,126,127,128,129,130,131,133,134,138,139,150,152,154,155,156,158,168,173,175,176,177,178,183,184,188,189,190,191,192,193,194,195,196,200,203,204,207,208,210,211],databas:[12,133,196],databasetyp:196,dataclass:131,datafram:[7,126,131,195],dataset:[6,16,29,30,31,33,34,36,37,43,46,50,51,52,53,57,65,92,109,110,118,129,143,144,163,168,172,175,186,194,195,202,204,205,206,208],datatyp:128,date:184,db:127,dbscan:171,deal:[7,51,60,101,126,128],debug:[50,52,53,154],decept:117,decis:[54,56,57,63,64,163,171],decisiontre:61,decisiontreeclassifi:56,declar:[57,65,168],decor:[187,209],decorrel:163,decreas:50,deep:[46,48,140,141,150,207],deepdream:137,deeplab:144,def:[187,189],defin:[29,34,37,85,122,123,144,150,178,183,192,207,209],definit:[121,139,141,187,192],degre:24,del:[102,188,210],delet:131,delici:79,demens:30,demo:172,denois:[29,30,36],dens:[32,91,140],densenet:143,densiti:[22,118,194],depend:[24,141],deploi:[9,178,207],deploy:[76,77,109,110,153,155],depth:154,deriv:[84,179],descent:[84,85,164,179],describ:[7,122],descript:[65,92,112],design:[204,208],detect:[7,29,45,148],determin:184,detr:148,develop:[0,85],deviat:125,diabet:[24,186],diagnosi:1,dict:[101,102,131],dictionari:[101,102,188,189,210,211],differ:[24,100,131,180],difficult:84,diffus:139,difuss:36,digit:[35,56,93,123,136],dimens:[30,57,92,202],dimension:[65,73,84,128,163,195],direct:150,dirrec:150,disciplin:62,discours:146,discov:175,discrimin:[38,39],diseas:24,dispers:65,displai:[12,57,117,128,159,203],distant:200,distribut:[18,24,57,60,65,118,125,158,194],dive:[13,169],diverg:139,divid:92,docstr:[188,209,210],document:[127,187,209],doe:[0,146,198],dog:39,donut:[119,194],download:[29,33,138],dqn:37,draw:[200,203],drop:7,drop_dupl:7,dropout:[32,33,52,68,170,201],dual:[120,194],duplic:[7,51,102,126,188],e:146,earli:[170,184,201],early_stopping_round:167,easi:156,ecg:29,eda:[42,57,75,89,168,178,207],edg:40,educ:62,effect:[113,193],elbo:139,elbow:159,element:[102,128,188],elif:101,els:101,emot:113,emul:127,encod:[7,54,57,62,83,92,204,208],end:113,endpoint:[9,109,110],engin:[51,53,57,60,152,155],enrol:62,enrollee_id:62,ensembl:[55,60,160,162,177],entropi:[56,180,205],envireon:37,environ:[0,141,186,189],episod:141,equat:204,equival:53,error:[65,86,160,178,180,187,207,209],establish:[52,53,178,207],estim:[14,22],ethic:[28,121,192],eval:129,evalu:[15,44,46,55,58,59,60,63,64,66,67,73,75,83,85,89,92,141,154,155,208],everydai:146,everyth:[128,192,195],evid:139,evil:18,evolut:[153,168],exampl:[29,39,56,68,108,128,141,150,161,164,165,167,170,172,178,196,204,207],excel:27,except:[101,187,209],exchang:37,exercis:[7,158,159,173,175,176,177,183,184,186],exist:[48,128],expect:139,experi:[9,32,62,109,184],explod:50,exploit:141,explor:[7,16,17,31,33,34,46,51,54,55,57,58,65,75,80,81,83,84,89,112,118,126,127,141,194,195],exploratori:[41,55,57,58,59,62,63,64,65,66,67,83,112,178,207],express:187,extend:102,extract:[1,197],extrem:[163,168],f1:65,facet:[120,194],failur:[109,110],fals:65,fashion:[44,46],faster:148,fcn:144,fco:148,featur:[32,52,53,54,56,57,58,59,60,62,63,65,75,83,89,92,150,151,154,161,168,178,182,197,205,206,207],feed:[46,147],feel:84,fibonacci:102,field:[123,128,192],figur:169,file:[35,49,76,189,211],fill:[7,60,101],filter:188,financ:146,find:[57,62,75,84,89,171,188],fine:136,first:[29,92,105,184,186],fisher:172,fit:[50,62,70,169,170,201,204,208],fix:52,flask:173,flat:128,flatten:197,flow:[187,189,209],flu:150,fold:[65,168],forecast:[49,150],foreign:37,forest:[54,55,57,58,59,161,163],fork:31,form:15,format:[52,102,188,210],formul:[75,89,207],formula:[86,102],forward:[139,147],four:182,frame:[155,156],free:[84,151],frequenc:57,friedman:164,from:[15,35,43,48,69,71,85,90,102,128,131,188,197,202,205,208],frontend:76,frontier:[179,180],fruit:43,full:[91,197],fulli:135,fun:31,gain:[84,179],gan:[38,39,198],gate:145,gbm:164,gcd:101,gender:[24,62],gener:[38,39,43,45,102,128,142,198],geograph:83,ger:198,get:[1,3,24,42,44,50,92,102,119,123,128,158,162,174,186,194],giant:202,github:0,give:31,glass:31,global:[32,92,187],go:[44,176],goal:[3,126],good:[70,170,204],googl:47,govern:152,gradient:[50,55,61,62,84,85,164,165,166,168,179],grid:[120,183,194],gridsearch:65,gridsearchcv:62,group:[92,102,129],guid:46,hand:188,handl:[51,63,65,70,83,187,195],handwritten:[56,136],have:[52,60,183],hdf5:76,head:7,healthcar:146,heart:[109,110],hello:175,here:184,hidden:140,hide:203,hierarch:[129,171],high:[50,129,163],higher:65,hing:169,hint:53,histogram:[22,59,118,194],histori:[143,144,148,164],honei:[120,194],hood:65,hot:[54,83,208],hous:83,how:[0,32,56,122,136,144,146,156,164,170,189,197,198,200,208],http:169,human:[111,190],hyperparam:36,hyperparamet:[62,65,154],hyperplan:65,hypothesi:[18,24,125,204],id:[43,57],identifi:[7,60,70,112],iiit:144,illustr:161,imag:[29,30,32,33,34,39,46,129,143,144,169,171,197],imagenet:143,imbalanc:52,impact:170,implement:[35,44,53,85,86,102,138,165,168,204],improv:[58,59,62,63,64,66,67,154],includ:[188,210],inconsist:[51,112],indent:[188,189,210,211],index:[128,129,130,131,195],indian:79,indic:128,individu:[34,83,128],industri:[111,190],inequ:139,inertia:171,info:7,inform:[7,65,126],infrastructur:153,ingest:[152,155],ingredi:175,inherit:[187,209],initi:[9,39,62,171],input:[53,65,83],insensit:200,insert:[102,188],insid:[187,209],insight:[3,75,89,179],instal:[186,189],instanc:[109,187],instruct:[4,5,6,10,11,13,15,16,17,19,20,21,23,26,27,28,78,80,94,97,98,99,100],integ:[128,188,210],intellig:207,interpret:[70,86,154,170],interv:[18,125],intro:[29,48,59,64,67,140],introduc:[131,195],introduct:[9,18,24,30,54,56,60,65,68,70,83,85,103,108,109,113,115,124,125,128,131,158,159,164,166,168,172,175,182,183,184,186,189,192,201,203,205,206,208,211],intuit:[65,84,161,168,172,179],inventori:127,investig:14,involv:128,iri:[70,172,202],isol:60,issu:172,item:[102,188],iter:128,jensen:139,job:62,join:[102,129,133,195,196],jpeg:169,js:117,json:127,just:60,k:[65,159,163,168,171,172,177,202],kaggl:22,kei:[147,178,188,207],kera:[33,35,43,208],kernel:[22,65,169,197,200],keyword:187,kl:139,knn:92,know:[119,194],l1:[170,201],l2:[170,201],label:[54,57,92,130,131,178,207,208],lag:150,lambda:[101,170,187],languag:[35,146],larg:[32,125],lasso:[69,71],lasson:[69,71],last:[51,62],latent:30,law:125,layer:[32,46,52,91,140,152,208],layout:203,lda:171,learn:[9,38,46,48,50,56,62,65,69,70,71,83,92,93,97,110,135,140,141,150,151,154,156,157,162,170,171,172,173,175,176,178,179,180,182,184,185,186,191,202,203,207],learning_r:167,legal:146,length:101,let:[84,169,179,188,198,200,209],level:[35,62],libari:34,librari:[29,32,35,39,41,47,54,57,65,73,92,139,168,186,204,205,206,208],lifecycl:[114,115,193],lightgbm:60,like:[113,131],limit:[18,125,171],line:[19,120,182,194,200,203],linear:[52,53,65,72,82,83,85,86,139,150,169,170,177,179,182,183,200,204,205,206],linearli:200,list:[101,102,103,131,187,188,189,209,210,211],lite:33,liter:[188,210],load:[12,14,25,29,30,31,32,33,35,37,38,39,41,43,46,47,49,52,55,58,59,60,62,63,64,66,67,73,92,109,110,138,139,168],local:0,logic:61,logist:[70,75,89,90,169,176,179,183,200,205,206],look:[1,44,59,62,182],loop:[39,61,91,101],loss:[50,52,70,85,87,91,154,164,169,180,205,208],lot:[60,183],low:[20,110,191],lower:[106,139],lstm:[41,49],m:[84,179],machin:[9,46,65,66,67,83,92,93,110,156,157,169,173,178,179,180,185,186,191,200,203,207],mae:86,magic:203,main:[141,168],maintain:[115,193],mainten:155,major:62,make:[14,38,46,54,117,144,168,184,205,206],manag:[88,115,127,184,193],mani:32,manipul:[48,128],map:[32,60,83,177,203],mape:86,margin:[65,169,200],market:[21,37,184],mask:148,math:[61,84,128,169],mathemat:179,matplotlib:[22,184],matrix:[53,57,60,65,183,204,205,206],max:[128,192,195],max_depth:62,max_featur:62,maxim:[169,200],maximum:[65,195],mean:[24,86,125,139,159,171,172,202],meaning:[113,117],media:108,median:125,medicin:1,memori:145,men:24,merg:[102,103,129,195],method:[55,65,80,102,113,131,146,159,169,171,187,188,200,208,210],metric:[65,75,86,89,154,172,208],min:[128,192,195],min_samples_leaf:62,min_samples_split:62,mind:113,mini:171,minimum:195,miscellan:62,miss:[7,51,57,60,63,65,75,83,89,101,126,168,184,195],ml:[9,10,20,50,76,77,89,90,91,109,110,164],mnist:[32,46,52,56,136,202],mobilenet:143,mode:125,model:[8,9,29,30,33,34,35,36,38,39,41,42,43,44,45,46,48,49,50,52,53,55,56,57,58,59,60,62,63,65,70,71,72,73,74,75,76,78,83,85,89,92,100,109,110,139,141,143,144,146,148,150,153,154,155,156,157,159,167,170,173,178,182,183,184,185,186,198,201,204,205,206,207,208],modul:[187,209],more:[32,55,58,75,89,176,179,184],most:62,mostli:60,motiv:169,mse:86,much:32,multi:180,multiclass:44,multicollinear:[60,70],multioutput:150,multipl:[128,171,187,188,204],multistep:150,mushroom:[119,194],mutabl:102,myqcloud:169,n_estim:167,n_job:167,name:[57,131,169],namedtupl:131,nan:[7,195],nation:176,nativ:128,natur:146,ndarrai:[128,131],nearest:163,need:183,neighbor:[163,177],nest:[188,210],net:36,network:[32,34,36,39,43,44,91,117,136,138,140,142,147,149,197,198,205,208],neural:[32,34,43,44,91,136,138,140,147,149,197,205,208],next:29,nlp:[42,146],nn:43,nois:[30,139],noisi:30,non:[7,127,196,200],none:[7,195],nonlinear:[52,53,91],nonloc:187,normal:[18,22,49,53,68,125,204],nosql:[127,196],note:55,notebook:[109,186],now:[76,200],number:[57,62,101,102,125,128,171,172,188,189,208,210,211],numer:[7,56,57,60,65,83,195],numeric:42,numpi:[35,128,195],nyc:23,o:43,object:[34,45,84,87,128,131,148,179,180,187,195],obtain:156,occurr:102,odd:184,one:184,oper:[48,102,128,131,188,195,210],optim:[39,53,62,65,154,171,181,204,208],option:[0,52,110,169,179,180,203],order:102,ordin:60,ordinari:[178,207],orign:30,other:[29,56,75,89,123,128,177,183],our:[42,76,204,208,209],out:[0,160],outlier:[60,65],outlin:[200,201,202],output:[83,209],over:[170,201],overcom:146,overfit:[33,65,70,170],overiew:150,overview:[29,45,46,92,93,129,130,131,135,141,145,146,155,170,178,207],own:[5,204,209],oxford:144,pace:0,packag:187,pad:197,pair:32,pairplot:[59,92],panda:[7,49,112,129,131,132,195],pandem:14,paper:[1,8,108,128],paramet:[39,56,57,62,92,94,163,181,208],parameter:139,part:[24,59],partial:[84,179],pass:52,path:49,pca:[171,172,202],pd:195,peopl:101,percentag:[57,86],perceptron:147,perform:[33,48,75,89,129,178,207,208],permut:161,pet:144,phrase:113,pickl:173,pictur:43,pie:[119,194],piec:101,pipelin:[83,143],pivot:129,plai:[94,197,198,205],plan:[62,104,177],planetari:16,play:179,plot:[22,24,30,32,61,83,118,120,183,194,203],plote:38,point:200,polici:141,polynomi:[65,82,182,204],pool:197,popul:102,posit:[65,130],potenti:135,practic:[161,163],pragmat:146,pre:[14,41,62],precis:65,predict:[33,43,46,47,54,56,60,62,76,89,92,109,110,144,168,170,176,201,204,205,206],predictor:60,prepar:[7,31,32,35,44,49,85,126,144,150,159,177,182,184],prepreprocess:38,preprocess:[38,39,46,55,58,59,62,63,64,66,67,72,73,75,83,89,139,171,178,207,208],prerequisit:[159,182,183],preserv:195,preview:[57,168],price:[47,89,184],princip:[172,202],principl:121,pro:[56,163],probabl:[18,24,125,192],problem:[45,56,57,65,75,89,155,156,163,164,178,204,207],process:[8,14,41,52,60,83,115,129,139,146,152,155,193,197],product:[77,156],profession:121,profil:[73,112],profit:25,program:[101,102,103,128,178,187,188,189,207,209,210,211],progress:[24,203],project:[10,20,104,109,110,117],promot:128,properti:[57,139],proport:[119,194],pumpkin:[95,184],put:[83,156,182],python:[8,86,101,102,103,128,168,186,187,188,189,195,209,210,211],q:141,qualiti:[56,152,154],quantiti:194,quartil:125,queri:[112,127,129],question:[183,184],quot:202,r2:86,r:[86,148],r_t:14,radial:65,rainfal:[133,196],rais:187,random:[18,30,55,57,58,59,125,161,163,192],rang:[89,101,131,187],rate:[50,62,65],rbf:[65,169],re:139,reach:50,read:[49,56,168],readabl:117,readi:24,real:[18,108,111,125,154,163,190],reason:[70,176],recal:65,recap:86,recogn:93,recognit:[34,56],record:131,recurr:[140,149],recurs:[150,188],reduc:53,reduct:[30,73,202],redund:60,refer:[14,190,191,192,193,194,195,196,209,210,211],refresh:70,region:40,regress:[53,56,59,64,67,69,70,71,75,78,82,83,85,86,87,89,90,96,97,98,150,164,169,170,176,178,179,180,182,183,184,185,186,200,204,205,206],regressor:[59,64,67],regul:121,regular:[52,69,71,72,87,170,201],reinforc:[178,207],relat:[123,127,133,192,196],relationship:[60,83,120,133,194,196],relev:62,remov:[7,51,52,60,62,102,126,128,188],renam:57,replac:102,report:[57,65],represent:163,research:[21,111,136,179,180,190],reshap:128,residu:[36,86,147],resnet:[143,147],resourc:[110,172],respect:[84,179],respons:113,result:[3,30,33,43,44,53,62,65,168,204,205,206],retri:98,retriev:[133,196],revers:[139,188],reward:141,ridg:[69,71],right:[110,117,184],rl:141,rmse:86,rnn:[47,49,140],road:91,roc:[65,183],role:[55,59],root:[86,102],rotaion:35,row:92,rubric:[4,5,6,8,10,11,13,16,17,19,20,21,23,24,26,27,28,78,80,81,94,97,98,99,100],rule:128,run:[9,33,65,186],s:[76,83,84,139,164,169,172,179,180,183,184,188,192,193,194,195,198,200,205,206,209,211],salepric:60,sampl:[31,112],satisfi:154,save:[9,39,109],scalar:[128,131],scale:[30,57,60,65,75,83,89,92,205,206],scatter:[19,22,61],scatterplot:[60,120,194],scenario:11,schedul:139,schema:[12,53],scienc:[3,9,10,11,20,107,108,109,111,114,115,121,123,190,191,192,193,207],scientif:108,scikit:[56,65,69,71,97,176,182,184,186],scope:[187,209],score:[65,86,159,168],scratch:[43,69,71,85,90,204,205,208],sdk:[9,10,109],search:[101,152],second:[29,52,106,184],section:[87,180],secur:[115,152,193],see:[62,197],segment:[40,73,144,171],segnet:144,select:[48,57,71,130,131,154,170,178,195,201,207],selectbox:203,self:[0,108,109,110,111,113,115,117,118,119,120,121,122,123,125,127,128,129,133,135,136,138,141,154,155,156,158,159,173,175,177,182,183,184,186,187,188],semant:146,sens:14,sentenc:101,sentiment:[41,108],separ:[57,65,168,200,205],seper:76,sequenc:102,sequenti:[33,48],seri:[49,131,150,195],serv:153,servic:146,session:[84,179],set:[32,42,46,55,57,58,59,60,63,65,83,92,138,168,188,189,204,205,206,208,211],setdefault:102,setup:[33,39,45,53,109,189],sex:24,shanghai:169,shape:[7,48,92,168],shell:189,shortcom:[133,196],show:[39,92,117,203],showcas:152,shuffl:[52,65],side:183,sidebar:203,sigmoid:[65,205,206],sign:35,silhouett:159,similar:163,simpl:[31,49,50,154,170,182,195,204],simpler:36,simul:[18,61],singl:[34,54,83,102,128,133,140,196],size:62,skew:52,skicit:[69,71],skill:4,skip:84,sklearn:[83,161,200,202],slice:[52,102,128,130,131,154],slide:199,slider:203,small:[24,62],smile:31,social:108,soda:25,solut:[50,52,53,141],solver:99,some:[39,98,179,188],someth:[36,184],sort:[102,128],sourc:122,space:[30,65],special:145,specif:[9,62,65],specifi:102,spectral:[171,172],split:[35,52,53,54,56,57,60,63,65,83,102,168,176,177,204,205,206],splite:92,spread:[8,128],spreadsheet:127,squar:[86,102,180],st:203,stack:[55,101],standard:[33,125,143,147],start:[42,44,133,154,158,162,174,186,196],state:141,statement:[57,101,164,187,188,209,210],statist:[18,24,53,57,63,75,83,89,112,125,168,192],step:[3,29,62,83,150,164],still:183,stock:47,stop:[170,201],storag:152,store:[115,127,193],stori:[26,113],storytel:113,str:[102,106],strategi:[1,126,150,153,184],stratifi:65,streamlit:[76,77,203],stride:128,string:[101,102,187,188,189,209,210,211],structur:[1,32,87,128,131,195],student:[111,190],studi:[24,28,50,52,53,99,108,109,110,111,113,115,117,118,119,120,121,122,123,125,127,128,129,133,135,136,138,141,154,155,156,158,159,173,175,177,182,183,184,186,187,188],studio:[110,189],style:[117,138,203],stylenet:138,subarrai:128,subclass:48,subplot2grid:22,subplot:22,subsambl:32,subsampl:62,sum:101,summari:[32,33,36,50,57,63,65,75,89,168,169,208],summer:23,sup:196,supervis:[178,207],support:[65,66,67,169,177,200],sustain:[111,190],svc:177,svm:[65,66,67,169,200],svr1:169,svr:169,swarm:183,syntax:[146,188,189,210],system:[178,207],tabl:[34,129,133,196,207,209],tail:7,take:44,target:[57,60,65,168],task1:49,task2:[49,62],task5:58,task:[24,42,49,55,56,58,59,60,62,83,122,141,150],taxi:23,taxonomi:141,techniqu:[129,146],tell:26,templat:104,tensor:48,tensorboard:44,tensorflow:[29,33,44,48,137],term:[102,145],terminolog:[141,178,207],test:[18,24,34,35,42,52,53,54,55,57,58,59,60,62,63,65,83,91,92,125,155,168,204,205,206],text:[3,118,194],text_input:203,tf:48,thank:207,theme:203,theorem:[18,125],theori:[31,172],thi:[0,46,61,87,179,180,183],thing:184,third:29,threshold:40,tidi:183,time:[49,76,84,108,150,179,197,198],titan:22,titl:[102,106,128],todo:36,togeth:[60,151,182],toi:56,token:42,tool:[96,128,173,186],top:143,trade:186,tradeoff:[170,201],traffic:150,train:[30,31,32,33,34,35,37,38,39,42,43,44,45,46,52,54,55,57,58,59,60,63,64,65,66,67,70,75,83,85,89,91,92,109,110,140,144,154,155,168,178,204,205,206,207,208],trane:204,transfer:[138,154],transform:[3,65,83,123,140,163],transpos:131,treatment:1,tree:[54,56,57,62,63,64,163,168],trend:[1,136,150],trick:[65,139,200],trigonometr:128,tune:[60,62,92,136,154,167],tunnel:150,tupl:[128,131,188,189,211],turn:[54,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,133,134,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,173,175,176,177,178,179,180,182,183,184,186,187,188,189,190,191,192,193,194,195,196,209,210,211],tweet:41,twiddl:128,two:[84,103,188,195],type:[57,60,62,113,117,123,128,140,178,188,189,207,210,211],typic:[178,207],u:36,ufunc:[128,195],under:[65,170,201],underfit:[65,70,170],understand:[52,60,113],univari:[60,204],univers:[62,128,195],unpack:[187,209],unstructur:128,unsupervis:[135,171,172,202,207],up:[46,102,186],upper:[102,106],upvot:31,us:[10,30,33,34,36,44,46,53,62,65,68,69,70,71,76,85,92,101,102,113,117,118,138,146,151,154,156,168,171,172,173,176,178,182,183,184,189,194,203,208],useless:60,util:33,v3:144,v:[169,200,205,206],valid:[32,34,42,52,53,56,60,65,70,83,92,168],valu:[7,24,52,57,60,62,63,65,75,83,89,101,102,128,131,141,168,170,187,188,194,195],variabl:[18,24,32,48,57,65,125,128,168,171,183,187,188,192,209,210],varianc:[24,70,125,139,159,163,170,201],variat:[31,60],varieti:95,vector:[57,65,66,67,131,146,168,169,177,200],veri:53,verifi:46,versa:188,vgg:138,vggnet:143,vi:5,via:[32,183],vice:188,video:179,view:[57,128,208],vif:70,violin:183,visual:[3,22,33,36,43,44,54,62,81,92,112,116,117,118,119,120,183,184,188,189,194,208],visualis:[204,205,206],vit:143,volum:41,vote:55,vowel:188,vs:[168,178,196,207],w:43,waffl:[119,194],wai:[9,109,110,182,191],wait:184,want:101,we:[36,56,62],web:[76,77,173,203],weight:[39,164],what:[24,32,48,92,108,109,110,113,123,143,144,146,148,150,156,165,167,176,178,180,191,192,193,194,198,202,204,207,211],when:[178,205],where:123,whole:204,why:[108,140,189,191,200,211],widget:203,width:[154,169],wingspan:194,winter:23,within:128,women:24,word:[101,113],work:[0,56,62,118,128,134,146,164,186,194,198],workflow:[178,207],workspac:[9,109,110],world:[111,125,154,190],write:[28,203],xgboost:[60,72,167,168],y:24,yet:177,you:[52,84,123,183,192,207],your:[4,5,53,54,108,109,110,111,112,113,115,117,118,119,120,121,122,123,125,126,127,128,129,133,134,135,136,137,138,139,141,142,143,144,145,146,147,148,149,150,152,153,154,155,156,158,159,160,161,163,164,165,167,168,169,170,173,175,176,177,178,179,180,182,183,184,186,187,188,189,190,191,192,193,194,195,196,209,210,211],zero:52,zoom:35}}) \ No newline at end of file diff --git a/slides/data-science/data-science-in-real-world.html b/slides/data-science/data-science-in-real-world.html index 88ee847815..4585f60392 100644 --- a/slides/data-science/data-science-in-real-world.html +++ b/slides/data-science/data-science-in-real-world.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/data-science/data-science-in-the-cloud.html b/slides/data-science/data-science-in-the-cloud.html index eb59a710e2..65963a2ef1 100644 --- a/slides/data-science/data-science-in-the-cloud.html +++ b/slides/data-science/data-science-in-the-cloud.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/data-science/data-science-introduction.html b/slides/data-science/data-science-introduction.html index c7bd8bbd19..b694d62ca1 100644 --- a/slides/data-science/data-science-introduction.html +++ b/slides/data-science/data-science-introduction.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/data-science/data-science-lifecycle.html b/slides/data-science/data-science-lifecycle.html index 8ad8795726..6f450b6df9 100644 --- a/slides/data-science/data-science-lifecycle.html +++ b/slides/data-science/data-science-lifecycle.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/data-science/data-visualization.html b/slides/data-science/data-visualization.html index f7fb5da01d..363cb98353 100644 --- a/slides/data-science/data-visualization.html +++ b/slides/data-science/data-visualization.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/data-science/numpy-and-pandas.html b/slides/data-science/numpy-and-pandas.html index 440523b973..24dc257020 100644 --- a/slides/data-science/numpy-and-pandas.html +++ b/slides/data-science/numpy-and-pandas.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/data-science/relational-vs-non-relational-database.html b/slides/data-science/relational-vs-non-relational-database.html index f3a2f34949..a628546f02 100644 --- a/slides/data-science/relational-vs-non-relational-database.html +++ b/slides/data-science/relational-vs-non-relational-database.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/deep-learning/cnn.html b/slides/deep-learning/cnn.html index 0467d048b3..9a01b2949c 100644 --- a/slides/deep-learning/cnn.html +++ b/slides/deep-learning/cnn.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/deep-learning/gan.html b/slides/deep-learning/gan.html index a691486fdf..f5d4dcf7ab 100644 --- a/slides/deep-learning/gan.html +++ b/slides/deep-learning/gan.html @@ -27,8 +27,8 @@ - + @@ -1109,114 +1109,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/introduction.html b/slides/introduction.html index ac6b9671f3..72773e9230 100644 --- a/slides/introduction.html +++ b/slides/introduction.html @@ -27,8 +27,8 @@ - + @@ -99,7 +99,7 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • @@ -1600,11 +1620,11 @@

    41. Slides +

    previous

    -

    40.122. Basic classification: Classify images of clothing

    +

    40.126. Getting Start NLP with classification task

    diff --git a/slides/ml-advanced/kernel-method.html b/slides/ml-advanced/kernel-method.html index 42468f6b9f..65022cb6c5 100644 --- a/slides/ml-advanced/kernel-method.html +++ b/slides/ml-advanced/kernel-method.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression
    +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-advanced/model-selection.html b/slides/ml-advanced/model-selection.html index 8980d3ebed..c5f4028edc 100644 --- a/slides/ml-advanced/model-selection.html +++ b/slides/ml-advanced/model-selection.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-advanced/unsupervised-learning.html b/slides/ml-advanced/unsupervised-learning.html index 60b3d93e9c..d7c21cd172 100644 --- a/slides/ml-advanced/unsupervised-learning.html +++ b/slides/ml-advanced/unsupervised-learning.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-fundamentals/build-an-ml-web-app.html b/slides/ml-fundamentals/build-an-ml-web-app.html index f083e60ff7..6908400ee9 100644 --- a/slides/ml-fundamentals/build-an-ml-web-app.html +++ b/slides/ml-fundamentals/build-an-ml-web-app.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-fundamentals/linear-regression.html b/slides/ml-fundamentals/linear-regression.html index 27b667c13b..cdbb32d237 100644 --- a/slides/ml-fundamentals/linear-regression.html +++ b/slides/ml-fundamentals/linear-regression.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-fundamentals/logistic-regression-condensed.html b/slides/ml-fundamentals/logistic-regression-condensed.html index 4fe9e8eb26..f9bf7eeccc 100644 --- a/slides/ml-fundamentals/logistic-regression-condensed.html +++ b/slides/ml-fundamentals/logistic-regression-condensed.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-fundamentals/logistic-regression.html b/slides/ml-fundamentals/logistic-regression.html index a8e0072a55..e51a27547f 100644 --- a/slides/ml-fundamentals/logistic-regression.html +++ b/slides/ml-fundamentals/logistic-regression.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-fundamentals/ml-overview.html b/slides/ml-fundamentals/ml-overview.html index 19f8093b81..b635773838 100644 --- a/slides/ml-fundamentals/ml-overview.html +++ b/slides/ml-fundamentals/ml-overview.html @@ -27,8 +27,8 @@ - + @@ -1112,114 +1112,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/ml-fundamentals/neural-network.html b/slides/ml-fundamentals/neural-network.html index 5c51366ae6..6d901a9f49 100644 --- a/slides/ml-fundamentals/neural-network.html +++ b/slides/ml-fundamentals/neural-network.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/python-programming/python-programming-advanced.html b/slides/python-programming/python-programming-advanced.html index 462acbcca1..778ad0faba 100644 --- a/slides/python-programming/python-programming-advanced.html +++ b/slides/python-programming/python-programming-advanced.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/python-programming/python-programming-basics.html b/slides/python-programming/python-programming-basics.html index 08b2d3e2c6..4d254ab20d 100644 --- a/slides/python-programming/python-programming-basics.html +++ b/slides/python-programming/python-programming-basics.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task
  • diff --git a/slides/python-programming/python-programming-introduction.html b/slides/python-programming/python-programming-introduction.html index ba25787f4b..b9edb44f4f 100644 --- a/slides/python-programming/python-programming-introduction.html +++ b/slides/python-programming/python-programming-introduction.html @@ -27,8 +27,8 @@ - + @@ -1110,114 +1110,134 @@

    Ocademy Open Machine Learning Book

    40.88. Case Study: Debugging in Regression +
  • + + 40.89. Introduction + +
  • - 40.89. Study the solvers + 40.90. Study the solvers
  • - 40.90. Build classification models + 40.91. Build classification models
  • - 40.91. Build Classification Model + 40.92. Build Classification Model
  • - 40.92. Parameter play + 40.93. Parameter play
  • - 40.93. How to choose cnn architecture mnist + 40.94. How to choose cnn architecture mnist
  • - 40.95. Sign Language Digits Classification with CNN + 40.96. Sign Language Digits Classification with CNN
  • - 40.97. Object Recognition in Images using CNN + 40.98. Object Recognition in Images using CNN + +
  • +
  • + + 40.99. Image classification
  • - 40.98. Intro to TensorFlow for Deep Learning + 40.100. Intro to TensorFlow for Deep Learning
  • - 40.100. Bitcoin LSTM Model with Tweet Volume and Sentiment + 40.102. Bitcoin LSTM Model with Tweet Volume and Sentiment
  • - 40.102. Google Stock Price Prediction RNN + 40.104. Google Stock Price Prediction RNN
  • - 40.104. Intro to Autoencoders + 40.106. Intro to Autoencoders
  • - 40.105. Base/Denoising Autoencoder & Dimension Reduction + 40.107. Base/Denoising Autoencoder & Dimension Reduction
  • - 40.106. Fun with Variational Autoencoders + 40.108. Fun with Variational Autoencoders
  • - 40.107. Time Series Forecasting Assignment + 40.109. Time Series Forecasting Assignment
  • - 40.109. Neural Networks for Classification with TensorFlow + 40.111. Neural Networks for Classification with TensorFlow
  • - 40.110. NN Classify 15 Fruits Assignment + 40.112. NN Classify 15 Fruits Assignment
  • - 40.115. DQN On Foreign Exchange Market + 40.117. DQN On Foreign Exchange Market
  • - 40.116. Art by gan + 40.118. Art by gan
  • - 40.118. Generative Adversarial Networks (GANs) + 40.120. Generative Adversarial Networks (GANs) + +
  • +
  • + + 40.121. Comparing edge-based and region-based segmentation
  • - 40.119. Summary + 40.122. Summary
  • - 40.120. Car Object Detection + 40.123. Car Object Detection
  • - 40.122. Basic classification: Classify images of clothing + 40.125. Basic classification: Classify images of clothing + +
  • +
  • + + 40.126. Getting Start NLP with classification task