-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathdecode.py
362 lines (297 loc) · 16.2 KB
/
decode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import copy
import ipdb
import math
import os
import torch
import numpy as np
import time
from torch.nn import functional as F
from torch.autograd import Variable
from tqdm import tqdm, trange
from model import Transformer, FastTransformer, INF, TINY, softmax
from data import NormalField, NormalTranslationDataset, TripleTranslationDataset, ParallelDataset, data_path
from utils import Metrics, Best, computeBLEU, computeBLEUMSCOCO, Batch, masked_sort, computeGroupBLEU, organise_trg_len_dic, make_decoder_masks, \
double_source_masks, remove_repeats, remove_repeats_tensor, print_bleu, oracle_converged, equality_converged, jaccard_converged
from time import gmtime, strftime
import copy
from multiset import Multiset
tokenizer = lambda x: x.replace('@@ ', '').split()
def run_fast_transformer(decoder_inputs, decoder_masks,\
sources, source_masks,\
targets,\
encoding,\
model, args, use_argmax=True):
trg_unidx = model.output_decoding( ('trg', targets) )
batch_size, src_len, hsize = encoding[0].size()
all_decodings = []
all_probs = []
iter_ = 0
bleu_hist = [ [] for xx in range(batch_size) ]
output_hist = [ [] for xx in range(batch_size) ]
multiset_hist = [ [] for xx in range(batch_size) ]
num_iters = [ 0 for xx in range(batch_size) ]
done_ = [False for xx in range(batch_size)]
final_decoding = [ None for xx in range(batch_size) ]
while True:
curr_iter = min(iter_, args.num_decs-1)
next_iter = min(iter_+1, args.num_decs-1)
decoding, out, probs = model(encoding, source_masks, decoder_inputs, decoder_masks,
decoding=True, return_probs=True, iter_=curr_iter)
dec_output = decoding.data.cpu().numpy().tolist()
"""
if args.trg_len_option != "reference":
decoder_masks = 0. * decoder_masks
for bidx in range(batch_size):
try:
decoder_masks[bidx,:(dec_output[bidx].index(3))+1] = 1.
except:
decoder_masks[bidx,:] = 1.
"""
if args.adaptive_decoding == "oracle":
out_unidx = model.output_decoding( ('trg', decoding ) )
sentence_bleus = computeBLEU(out_unidx, trg_unidx, corpus=False, tokenizer=tokenizer)
for bidx in range(batch_size):
output_hist[bidx].append( dec_output[bidx] )
bleu_hist[bidx].append(sentence_bleus[bidx])
converged = oracle_converged( bleu_hist, num_items=args.adaptive_window )
for bidx in range(batch_size):
if not done_[bidx] and converged[bidx] and num_iters[bidx] == 0:
num_iters[bidx] = iter_ + 1 - (args.adaptive_window -1)
done_[bidx] = True
final_decoding[bidx] = output_hist[bidx][-args.adaptive_window]
elif args.adaptive_decoding == "equality":
for bidx in range(batch_size):
#if 3 in dec_output[bidx]:
# dec_output[bidx] = dec_output[bidx][:dec_output[bidx].index(3)]
output_hist[bidx].append( dec_output[bidx] )
converged = equality_converged( output_hist, num_items=args.adaptive_window )
for bidx in range(batch_size):
if not done_[bidx] and converged[bidx] and num_iters[bidx] == 0:
num_iters[bidx] = iter_ + 1
done_[bidx] = True
final_decoding[bidx] = output_hist[bidx][-1]
elif args.adaptive_decoding == "jaccard":
for bidx in range(batch_size):
#if 3 in dec_output[bidx]:
# dec_output[bidx] = dec_output[bidx][:dec_output[bidx].index(3)]
output_hist[bidx].append( dec_output[bidx] )
multiset_hist[bidx].append( Multiset(dec_output[bidx]) )
converged = jaccard_converged( multiset_hist, num_items=args.adaptive_window )
for bidx in range(batch_size):
if not done_[bidx] and converged[bidx] and num_iters[bidx] == 0:
num_iters[bidx] = iter_ + 1
done_[bidx] = True
final_decoding[bidx] = output_hist[bidx][-1]
all_decodings.append( decoding )
all_probs.append(probs)
decoder_inputs = 0
if args.next_dec_input in ["both", "emb"]:
if use_argmax:
_, argmax = torch.max(probs, dim=-1)
else:
probs_sz = probs.size()
probs_ = Variable(probs.data, requires_grad=False)
argmax = torch.multinomial(probs_.contiguous().view(-1, probs_sz[-1]), 1).view(*probs_sz[:-1])
emb = F.embedding(argmax, model.decoder[next_iter].out.weight * math.sqrt(args.d_model))
decoder_inputs += emb
if args.next_dec_input in ["both", "out"]:
decoder_inputs += out
iter_ += 1
if iter_ == args.valid_repeat_dec or (False not in done_):
break
if args.adaptive_decoding != None:
for bidx in range(batch_size):
if num_iters[bidx] == 0:
num_iters[bidx] = 20
if final_decoding[bidx] == None:
if args.adaptive_decoding == "oracle":
final_decoding[bidx] = output_hist[bidx][np.argmax(bleu_hist[bidx])]
else:
final_decoding[bidx] = output_hist[bidx][-1]
decoding = Variable(torch.LongTensor(np.array(final_decoding)))
if decoder_masks.is_cuda:
decoding = decoding.cuda()
return decoding, all_decodings, num_iters, all_probs
def decode_model(args, model, dev, evaluate=True, trg_len_dic=None,
decoding_path=None, names=None, maxsteps=None):
args.logger.info("decoding, f_size={}, beam_size={}, alpha={}".format(args.f_size, args.beam_size, args.alpha))
dev.train = False # make iterator volatile=True
if not args.no_tqdm:
progressbar = tqdm(total=200, desc='start decoding')
model.eval()
if not args.debug:
decoding_path.mkdir(parents=True, exist_ok=True)
handles = [(decoding_path / name ).open('w') for name in names]
corpus_size = 0
src_outputs, trg_outputs, dec_outputs, timings = [], [], [], []
all_decs = [ [] for idx in range(args.valid_repeat_dec)]
decoded_words, target_words, decoded_info = 0, 0, 0
attentions = None
decoder = model.decoder[0] if args.model is FastTransformer else model.decoder
pad_id = decoder.field.vocab.stoi['<pad>']
eos_id = decoder.field.vocab.stoi['<eos>']
curr_time = 0
cum_sentences = 0
cum_tokens = 0
cum_images = 0 # used for mscoco
num_iters_total = []
for iters, dev_batch in enumerate(dev):
start_t = time.time()
if args.dataset != "mscoco":
decoder_inputs, decoder_masks,\
targets, target_masks,\
sources, source_masks,\
encoding, batch_size, rest = model.quick_prepare(dev_batch, fast=(type(model) is FastTransformer), trg_len_option=args.trg_len_option, trg_len_ratio=args.trg_len_ratio, trg_len_dic=trg_len_dic, bp=args.bp)
else:
# only use first caption for calculating log likelihood
all_captions = dev_batch[1]
dev_batch[1] = dev_batch[1][0]
decoder_inputs, decoder_masks,\
targets, target_masks,\
_, source_masks,\
encoding, batch_size, rest = model.quick_prepare_mscoco(dev_batch, all_captions=all_captions, fast=(type(model) is FastTransformer), inputs_dec=args.inputs_dec, trg_len_option=args.trg_len_option, max_len=args.max_len, trg_len_dic=trg_len_dic, bp=args.bp, gpu=args.gpu>-1)
sources = None
cum_sentences += batch_size
batch_size, src_len, hsize = encoding[0].size()
# for now
if type(model) is Transformer:
all_decodings = []
decoding = model(encoding, source_masks, decoder_inputs, decoder_masks,
beam=args.beam_size, alpha=args.alpha, \
decoding=True, feedback=attentions)
all_decodings.append( decoding )
num_iters = [0]
elif type(model) is FastTransformer:
decoding, all_decodings, num_iters, argmax_all_probs = run_fast_transformer(decoder_inputs, decoder_masks, \
sources, source_masks, targets, encoding, model, args, use_argmax=True)
num_iters_total.extend( num_iters )
if not args.use_argmax:
for _ in range(args.num_samples):
_, _, _, sampled_all_probs = run_fast_transformer(decoder_inputs, decoder_masks, \
sources, source_masks, encoding, model, args, use_argmax=False)
for iter_ in range(args.valid_repeat_dec):
argmax_all_probs[iter_] = argmax_all_probs[iter_] + sampled_all_probs[iter_]
all_decodings = []
for iter_ in range(args.valid_repeat_dec):
argmax_all_probs[iter_] = argmax_all_probs[iter_] / args.num_samples
all_decodings.append(torch.max(argmax_all_probs[iter_], dim=-1)[-1])
decoding = all_decodings[-1]
used_t = time.time() - start_t
curr_time += used_t
if args.dataset != "mscoco":
if args.remove_repeats:
outputs_unidx = [model.output_decoding(d) for d in [('src', sources), ('trg', targets), ('trg', remove_repeats_tensor(decoding))]]
else:
outputs_unidx = [model.output_decoding(d) for d in [('src', sources), ('trg', targets), ('trg', decoding)]]
else:
# make sure that 5 captions per each example
num_captions = len(all_captions[0])
for c in range(1, len(all_captions)):
assert (num_captions == len(all_captions[c]))
# untokenize reference captions
for n_ref in range(len(all_captions)):
n_caps = len(all_captions[0])
for c in range(n_caps):
all_captions[n_ref][c] = all_captions[n_ref][c].replace("@@ ","")
outputs_unidx = [ list(map(list, zip(*all_captions))) ]
if args.remove_repeats:
all_dec_outputs = [model.output_decoding(d) for d in [('trg', remove_repeats_tensor(all_decodings[ii])) for ii in range(len(all_decodings))]]
else:
all_dec_outputs = [model.output_decoding(d) for d in [('trg', all_decodings[ii]) for ii in range(len(all_decodings))]]
corpus_size += batch_size
if args.dataset != "mscoco":
cum_tokens += sum([len(xx.split(" ")) for xx in outputs_unidx[0]]) # NOTE source tokens, not target
if args.dataset != "mscoco":
src_outputs += outputs_unidx[0]
trg_outputs += outputs_unidx[1]
if args.remove_repeats:
dec_outputs += remove_repeats(outputs_unidx[-1])
else:
dec_outputs += outputs_unidx[-1]
else:
trg_outputs += outputs_unidx[0]
for idx, each_output in enumerate(all_dec_outputs):
if args.remove_repeats:
all_decs[idx] += remove_repeats(each_output)
else:
all_decs[idx] += each_output
#if True:
if False and decoding_path is not None:
for sent_i in range(len(outputs_unidx[0])):
if args.dataset != "mscoco":
print ('SRC')
print (outputs_unidx[0][sent_i])
for ii in range(len(all_decodings)):
print ('DEC iter {}'.format(ii))
print (all_dec_outputs[ii][sent_i])
print ('TRG')
print (outputs_unidx[1][sent_i])
else:
print ('TRG')
trg = outputs_unidx[0]
for subsent_i in range(len(trg[sent_i])):
print ('TRG {}'.format(subsent_i))
print (trg[sent_i][subsent_i])
for ii in range(len(all_decodings)):
print ('DEC iter {}'.format(ii))
print (all_dec_outputs[ii][sent_i])
print ('---------------------------')
timings += [used_t]
if not args.debug:
for s, t, d in zip(outputs_unidx[0], outputs_unidx[1], outputs_unidx[2]):
s, t, d = s.replace('@@ ', ''), t.replace('@@ ', ''), d.replace('@@ ', '')
print(s, file=handles[0], flush=True)
print(t, file=handles[1], flush=True)
print(d, file=handles[2], flush=True)
if not args.no_tqdm:
progressbar.update(iters)
progressbar.set_description('finishing sentences={}/batches={}, \
length={}/average iter={}, speed={} sec/batch'.format(\
corpus_size, iters, src_len, np.mean(np.array(num_iters)), curr_time / (1 + iters)))
if evaluate:
for idx, each_dec in enumerate(all_decs):
if len(all_decs[idx]) != len(trg_outputs):
break
if args.dataset != "mscoco":
bleu_output = computeBLEU(each_dec, trg_outputs, corpus=True, tokenizer=tokenizer)
else:
bleu_output = computeBLEUMSCOCO(each_dec, trg_outputs, corpus=True, tokenizer=tokenizer)
args.logger.info("iter {} | {}".format(idx+1, print_bleu(bleu_output)))
if args.adaptive_decoding != None:
args.logger.info("----------------------------------------------")
args.logger.info("Average # iters {}".format(np.mean(num_iters_total)))
bleu_output = computeBLEU(dec_outputs, trg_outputs, corpus=True, tokenizer=tokenizer)
args.logger.info("Adaptive BLEU | {}".format(print_bleu(bleu_output)))
args.logger.info("----------------------------------------------")
args.logger.info("Decoding speed analysis :")
args.logger.info("{} sentences".format(cum_sentences))
if args.dataset != "mscoco":
args.logger.info("{} tokens".format(cum_tokens))
args.logger.info("{:.3f} seconds".format(curr_time))
args.logger.info("{:.3f} ms / sentence".format((curr_time / float(cum_sentences) * 1000)))
if args.dataset != "mscoco":
args.logger.info("{:.3f} ms / token".format((curr_time / float(cum_tokens) * 1000)))
args.logger.info("{:.3f} sentences / s".format(float(cum_sentences) / curr_time))
if args.dataset != "mscoco":
args.logger.info("{:.3f} tokens / s".format(float(cum_tokens) / curr_time))
args.logger.info("----------------------------------------------")
if args.decode_which > 0:
args.logger.info("Writing to special file")
parent = decoding_path / "speed" / "b_{}{}".format(args.beam_size if args.model is Transformer else args.valid_repeat_dec,
"" if args.model is Transformer else "_{}".format(args.adaptive_decoding != None))
args.logger.info(str(parent))
parent.mkdir(parents=True, exist_ok=True)
speed_handle = (parent / "results.{}".format(args.decode_which) ).open('w')
print("----------------------------------------------", file=speed_handle, flush=True)
print("Decoding speed analysis :", file=speed_handle, flush=True)
print("{} sentences".format(cum_sentences), file=speed_handle, flush=True)
if args.dataset != "mscoco":
print("{} tokens".format(cum_tokens), file=speed_handle, flush=True)
print("{:.3f} seconds".format(curr_time), file=speed_handle, flush=True)
print("{:.3f} ms / sentence".format((curr_time / float(cum_sentences) * 1000)), file=speed_handle, flush=True)
if args.dataset != "mscoco":
print("{:.3f} ms / token".format((curr_time / float(cum_tokens) * 1000)), file=speed_handle, flush=True)
print("{:.3f} sentences / s".format(float(cum_sentences) / curr_time), file=speed_handle, flush=True)
if args.dataset != "mscoco":
print("{:.3f} tokens / s".format(float(cum_tokens) / curr_time), file=speed_handle, flush=True)
print("----------------------------------------------", file=speed_handle, flush=True)