-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathinitialize_model.py
198 lines (166 loc) · 7.12 KB
/
initialize_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
"""
Initializes multi-way model using pre-trained parameters.
"""
import argparse
import logging
import numpy
import os
import theano
import config_mSrc as configuration
from theano import tensor
from mcg.models import (
EncoderDecoder, MultiEncoder, MultiDecoder)
from mcg.utils import get_enc_dec_ids
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('initialize_params')
def get_parser():
def dict_type(ss):
return dict([map(str.strip, s.split(':'))
for s in ss.split(',')])
parser = argparse.ArgumentParser()
parser.add_argument('--proto', type=str)
parser.add_argument('--ref-encs', type=dict_type,
help="Models to initialize encoders, \
eg. --ref-encs=fi:file1,de:file2")
parser.add_argument('--ref-decs', type=dict_type,
help="Models to initialize decoders, \
eg. --ref-decs=en:file1,de:file2")
parser.add_argument('--ref-att', type=str,
help="Model to initialize shared components")
parser.add_argument('--ref-dec-embs', type=dict_type,
help="Models to initialize decoder embeddings, \
eg. --ref-dec-embs=en:file1,de:file2")
parser.add_argument('--ref-enc-embs', type=dict_type,
help="Models to initialize encoder embeddings, \
eg. --ref-enc-embs=en:file1,de:file2")
return parser
def tparams_asdict(tparams):
d = {}
for tname, tparam in tparams.items():
d[tname] = tparam.get_value()
return d
def set_tparam(tparam, param):
tshape = tparam.get_value().shape
pshape = param.shape
if tshape != pshape:
val = tparam.get_value().copy()
if tshape[0] > pshape[0]:
val[:pshape[0]] = param
else:
val = param.copy()
logger.warn(
"Dimension mismatch [{}]:{} - reference {}"
.format(tparam.name, tshape, pshape))
else:
val = param.copy()
tparam.set_value(val)
def main(config, ref_encs=None, ref_decs=None, ref_att=None,
ref_enc_embs=None, ref_dec_embs=None):
# Create Theano variables
floatX = theano.config.floatX
src_sel = tensor.matrix('src_selector', dtype=floatX)
trg_sel = tensor.matrix('trg_selector', dtype=floatX)
x = tensor.lmatrix('source')
y = tensor.lmatrix('target')
x_mask = tensor.matrix('source_mask')
y_mask = tensor.matrix('target_mask')
# for multi source - maximum is 5 for now
xs = [tensor.lmatrix('source%d' % i) for i in range(5)]
x_masks = [tensor.matrix('source%d_mask' % i) for i in range(5)]
# Create encoder-decoder architecture, and initialize
logger.info('Creating encoder-decoder')
enc_ids, dec_ids = get_enc_dec_ids(config['cgs'])
enc_dec = EncoderDecoder(
encoder=MultiEncoder(enc_ids=enc_ids, **config),
decoder=MultiDecoder(**config))
enc_dec.build_models(x, x_mask, y, y_mask, src_sel, trg_sel,
xs=xs, x_masks=x_masks)
# load reference encoder models
r_encs = {}
if ref_encs is not None:
for eid, path in ref_encs.items():
logger.info('... ref-enc[{}] loading [{}]'.format(eid, path))
r_encs[eid] = dict(numpy.load(path))
# load reference decoder models
r_decs = {}
if ref_decs is not None:
for did, path in ref_decs.items():
logger.info('... ref-dec[{}] loading [{}]'.format(did, path))
r_decs[did] = dict(numpy.load(path))
# load reference model for the shared components
if ref_att is not None:
logger.info('... ref-shared loading [{}]'.format(ref_att))
r_att = dict(numpy.load(ref_att))
num_params_set = 0
params_set = {k: 0 for k in enc_dec.get_params().keys()}
# set encoder parameters of target model
for eid, rparams in r_encs.items():
logger.info(' Setting encoder [{}] parameters ...'.format(eid))
tparams = enc_dec.encoder.encoders[eid].tparams
for pname, pval in tparams.items():
set_tparam(tparams[pname], rparams[pname])
params_set[pname] += 1
num_params_set += 1
set_tparam(enc_dec.encoder.tparams['ctx_embedder_%s_W' % eid],
rparams['ctx_embedder_%s_W' % eid])
set_tparam(enc_dec.encoder.tparams['ctx_embedder_%s_b' % eid],
rparams['ctx_embedder_%s_b' % eid])
params_set['ctx_embedder_%s_W' % eid] += 1
params_set['ctx_embedder_%s_b' % eid] += 1
num_params_set += 2
# set decoder parameters of target model
for did, rparams in r_decs.items():
logger.info(' Setting decoder [{}] parameters ...'.format(did))
tparams = enc_dec.decoder.decoders[did].tparams
for pname, pval in tparams.items():
set_tparam(tparams[pname], rparams[pname])
params_set[pname] += 1
num_params_set += 1
# set shared component parameters of target model
if ref_att is not None:
logger.info(' Setting shared parameters ...')
shared_enc, shared_params = enc_dec.decoder._get_shared_params()
for pname in shared_params.keys():
set_tparam(enc_dec.decoder.tparams[pname], r_att[pname])
params_set[pname] += 1
num_params_set += 1
# set encoder embeddings
if ref_enc_embs is not None:
logger.info(' Setting encoder embeddings ...')
for eid, path in ref_enc_embs.items():
pname = 'Wemb_%s' % eid
logger.info(' ... [{}]-[{}]'.format(did, pname))
emb = numpy.load(path)[pname]
set_tparam(enc_dec.encoder.tparams[pname], emb)
params_set[pname] += 1
num_params_set += 1
# set decoder embeddings
if ref_dec_embs is not None:
logger.info(' Setting decoder embeddings ...')
for did, path in ref_dec_embs.items():
pname = 'Wemb_dec_%s' % did
logger.info(' ... [{}]-[{}]'.format(did, pname))
emb = numpy.load(path)[pname]
set_tparam(enc_dec.decoder.tparams[pname], emb)
params_set[pname] += 1
num_params_set += 1
logger.info(' Saving initialized params to [{}/.params.npz]'
.format(config['saveto']))
if not os.path.exists(config['saveto']):
os.makedirs(config['saveto'])
numpy.savez('{}/params.npz'.format(config['saveto']),
**tparams_asdict(enc_dec.get_params()))
logger.info(' Total number of params : [{}]'
.format(len(enc_dec.get_params())))
logger.info(' Total number of params set: [{}]'.format(num_params_set))
logger.info(' Duplicates [{}]'.format(
[k for k, v in params_set.items() if v > 1]))
logger.info(' Unset (random) [{}]'.format(
[k for k, v in params_set.items() if v == 0]))
logger.info(' Set {}'.format(
[k for k, v in params_set.items() if v > 0]))
if __name__ == "__main__":
args = get_parser().parse_args()
config = getattr(configuration, args.proto)().copy()
main(config, args.ref_encs, args.ref_decs, args.ref_att,
args.ref_enc_embs, args.ref_dec_embs)