-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtranslate.py
390 lines (315 loc) · 13.6 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import argparse
import copy
import logging
import numpy
import os
import re
import pprint
import theano
import time
from collections import OrderedDict
from itertools import izip
from multiprocessing import Process, Queue
from theano import tensor
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import config as configuration
from mcg.models import EncoderDecoder, MultiEncoder, MultiDecoder
from mcg.sampling import gen_sample_ensemble_mSrc
from mcg.utils import (get_enc_dec_ids, get_enc_dec_ids_mSrc, p_,
seqs2words, words2seqs_multi_irregular,
is_multiSource, load_vocab, invert_vocab)
from multiprocessing import Process, Queue
from subprocess import Popen, PIPE
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger('translate')
def calculate_bleu(bleu_script, trans, gold):
multibleu_cmd = ['perl', bleu_script, gold, '<']
mb_subprocess = Popen(multibleu_cmd, stdin=PIPE, stdout=PIPE)
print >> mb_subprocess.stdin, '\n'.join(trans)
mb_subprocess.stdin.flush()
mb_subprocess.stdin.close()
stdout = mb_subprocess.stdout.readline()
logger.info(stdout)
out_parse = re.match(r'BLEU = [-.0-9]+', stdout)
assert out_parse is not None
bleu_score = float(out_parse.group()[6:])
mb_subprocess.terminate()
return bleu_score
def _translate(seqs_list, f_init_list, f_next_list, trg_eos_idx,
k, **kwargs):
maxlen = max([max([len(el) for el in seq.values()]) for seq in seqs_list])
sample, score, _ = gen_sample_ensemble_mSrc(
f_init_list, f_next_list, seqs_list=seqs_list, eos_idx=trg_eos_idx,
k=k, maxlen=2*maxlen, stochastic=False, argmax=False, arithmetic=True,
**kwargs)
# length normalization
lengths = numpy.array([len(s) for s in sample])
score = score / lengths
sidx = numpy.argmin(score)
return sample[sidx], score[sidx]
def translate_model(queue, rqueue, pid, f_inits_list, f_nexts_list,
trg_eos_idx, k, **kwargs):
while True:
req = queue.get()
if req is None:
break
idx, seqs_list = req[0], req[1]
print pid, '-', idx
seq, scores = _translate(
seqs_list, f_inits_list, f_nexts_list, trg_eos_idx, k)
rqueue.put((idx, seq, scores))
return
def add_single_pairs(enc_ids):
enc_ids_n = copy.deepcopy(enc_ids)
for enc_id in enc_ids:
for eid in enc_id.split('.'):
if eid not in enc_ids:
enc_ids_n.append(eid)
return enc_ids_n
def main(configs, models, val_sets, output_file, n_process=5, chr_level=False,
cgs_to_translate=None, gold_file=None, bleu_script=None, beam_size=7):
# Translate only the chosen cgs if they are valid
if cgs_to_translate is None:
raise ValueError('cgs-to-translate cannot be None')
# Check if computational graphs are valid
for cidx, config in enumerate(configs):
enc_ids, dec_ids = get_enc_dec_ids(config['cgs'])
enc_ids = add_single_pairs(enc_ids)
for cg_name in cgs_to_translate.values()[cidx]:
if cg_name not in config['cgs']:
eids = p_(cg_name)[0].split('.')
dids = p_(cg_name)[1].split('.')
if not all([eid in enc_ids for eid in eids]) or \
not all([did in dec_ids for did in dids]):
raise ValueError(
'Zero shot is NOT valid for [{}]'.format(cg_name))
logger.info('Zero shot is valid for [{}]'.format(cg_name))
config['cgs'].append(cg_name)
else:
logger.info('Translation is valid for [{}]'.format(cg_name))
# Create Theano variables
floatX = theano.config.floatX
src_sel = tensor.matrix('src_selector', dtype=floatX)
trg_sel = tensor.matrix('trg_selector', dtype=floatX)
x_sampling = tensor.matrix('source', dtype='int64')
y_sampling = tensor.vector('target', dtype='int64')
prev_state = tensor.matrix('prev_state', dtype=floatX)
# for multi source - maximum is 10 for now
xs_sampling = [tensor.matrix('source%d' % i, dtype='int64')
for i in range(10)]
# Iterate over multiple models
enc_dec_dict = OrderedDict()
f_init_dict = OrderedDict()
f_next_dict = OrderedDict()
enc_ids_dict = OrderedDict()
dec_ids_dict = OrderedDict()
for mi, (model_id, model_path, config) in enumerate(
zip(cgs_to_translate.keys(), models, configs)):
# Helper variables
cgs = config['cgs']
trng = RandomStreams(config['seed'] if 'seed' in config else 1234)
enc_ids, dec_ids = get_enc_dec_ids_mSrc(cgs)
enc_ids_dict[model_id] = enc_ids
dec_ids_dict[model_id] = dec_ids
# Create encoder-decoder architecture
logger.info('Creating encoder-decoder for model [{}]'.format(mi))
enc_dec = EncoderDecoder(
encoder=MultiEncoder(enc_ids=get_enc_dec_ids(cgs)[0], **config),
decoder=MultiDecoder(**config))
# Allocate parameters
enc_dec.init_params()
# Build sampling models
logger.info('Building sampling models for model [{}]'.format(mi))
f_inits, f_nexts, f_next_states = enc_dec.build_sampling_models(
x_sampling, y_sampling, src_sel, trg_sel, prev_state,
trng=trng, xs=xs_sampling)
# Load parameters
logger.info('Loading parameters for model [{}]'.format(mi))
enc_dec.load_params(model_path)
enc_dec_dict[model_id] = enc_dec
f_init_dict[model_id] = f_inits
f_next_dict[model_id] = f_nexts
# Output translation file names to be returned
translations = {}
# Fetch necessary functions and variables from all models
f_inits_list = []
f_nexts_list = []
src_vocabs_list = []
src_vocabs_sizes_list = []
source_files = OrderedDict()
for midx, (model_id, cg_names) in enumerate(cgs_to_translate.items()):
for cg_name in cg_names:
config = configs[midx]
enc_name = p_(cg_name)[0]
dec_name = p_(cg_name)[1]
enc_ids = enc_name.split('.')
f_inits_list.append(f_init_dict[model_id][cg_name])
f_nexts_list.append(f_next_dict[model_id][cg_name])
if is_multiSource(cg_name):
source_files.update(val_sets[cg_name])
else:
source_files[enc_name] = val_sets[cg_name]
src_vocabs = OrderedDict()
src_vocab_sizes = OrderedDict()
# This ordering will be abided all the way
for eid in p_(cg_name)[0].split('.'):
src_vocabs[eid] = load_vocab(
config['src_vocabs'][eid], 0, config['src_eos_idxs'][eid],
config['unk_id'])
src_vocab_sizes[eid] = config['src_vocab_sizes'][eid]
src_vocabs_list.append(src_vocabs)
src_vocabs_sizes_list.append(src_vocab_sizes)
saveto = output_file
# Skip if outputs exist
if os.path.exists(saveto):
logger.info('Outputs exist:')
logger.info(' ... {}'.format(saveto))
logger.info(' ... skipping')
return
logger.info('Output file: [{}]'.format(saveto))
# Prepare target vocabs and files, make sure special tokens are there
trg_vocab = load_vocab(
configs[0]['trg_vocabs'][dec_name], 0,
configs[0]['trg_eos_idxs'][dec_name], configs[0]['unk_id'])
# Invert dictionary
trg_ivocab = invert_vocab(trg_vocab)
# Actual translation here
for eid, fname in source_files.items():
logger.info('Translating from [{}]-[{}]...'.format(eid, fname))
logger.info('Using [{}] processes...'.format(n_process))
val_start_time = time.time()
# helper functions for multi-process
def _send_jobs(source_fnames, source_files,
src_vocabs_list, src_vocabs_sizes_list):
for idx, rows in enumerate(izip(*source_fnames)):
lines = OrderedDict(zip(source_files.keys(), rows))
seqs_list = [
words2seqs_multi_irregular(
lines, src_vocabs_list[ii], src_vocabs_sizes_list[ii])
for ii, _ in enumerate(src_vocabs_list)]
queue.put((idx, seqs_list))
return idx+1
def _finish_processes():
for midx in xrange(n_process):
queue.put(None)
def _retrieve_jobs(n_samples):
trans = [None] * n_samples
scores = [None] * n_samples
for idx in xrange(n_samples):
resp = rqueue.get()
trans[resp[0]] = resp[1]
scores[resp[0]] = resp[2]
if numpy.mod(idx, 10) == 0:
print 'Sample ', (idx+1), '/', n_samples, ' Done'
return trans, scores
# Open files with the correct ordering
source_fnames = [open(source_files[eid], "r")
for eid in source_files.keys()]
if n_process == 1:
trans = []
scores = []
# Process each line for each source simultaneuosly
for idx, rows in enumerate(izip(*source_fnames)):
if idx % 100 == 0 and idx != 0:
logger.info('...translated [{}] lines'.format(idx))
lines = OrderedDict(zip(source_files.keys(), rows))
seqs_list = [
words2seqs_multi_irregular(
lines, src_vocabs_list[ii], src_vocabs_sizes_list[ii])
for ii, _ in enumerate(src_vocabs_list)]
_t, _s = _translate(
seqs_list, f_inits_list, f_nexts_list, trg_vocab['</S>'],
beam_size)
trans.append(_t)
scores.append(_s)
else:
# Create queues
queue = Queue()
rqueue = Queue()
processes = [None] * n_process
for midx in xrange(n_process):
processes[midx] = Process(
target=translate_model,
args=(queue, rqueue, midx, f_inits_list, f_nexts_list,
trg_vocab['</S>'], beam_size),
kwargs={'f_next_state': f_next_states})
processes[midx].start()
n_samples = _send_jobs(source_fnames, source_files,
src_vocabs_list, src_vocabs_sizes_list)
trans, scores = _retrieve_jobs(n_samples)
_finish_processes()
logger.info("Validation Took: {} minutes".format(
float(time.time() - val_start_time) / 60.))
# Prepare translation outputs and calculate BLEU if necessary
# Note that, translations are post processed for BPE here
trans = seqs2words(trans, trg_vocab, trg_ivocab)
trans = [tt.replace('@@ ', '') for tt in trans]
if gold_file is not None and os.path.exists(gold_file):
bleu_score = calculate_bleu(
bleu_script=bleu_script, trans=trans,
gold=gold_file)
saveto += '{}'.format(bleu_score)
# Write to file
with open(saveto, 'w') as f:
print >>f, '\n'.join(trans)
translations[cg_name] = saveto
return translations, saveto
def get_parser():
def dict_type(ss):
return dict([map(str.strip, s.split(':'))
for s in ss.split(',')])
def odict2list_type(ss):
ret = OrderedDict()
for m2c in ss.split('@'):
mid, cgs = m2c.split(':')
ret[mid] = cgs.split(',')
return ret
def dict_type_mSrc(ss):
aa = dict_type(ss)
for k, v in aa.items():
if is_multiSource(k):
aa[k] = dict([el.split('=') for el in aa[k].split('@')])
return aa
parser = argparse.ArgumentParser()
parser.add_argument('--num-process', '-p', type=int, default=5)
parser.add_argument('--beam-size', type=int, default=7)
parser.add_argument('--protos', type=str, nargs='+',
help='List of prototypes (for Aiur!)')
parser.add_argument('--char-level', '-c', action="store_true",
default=False)
parser.add_argument('--cgs-to-translate', type=odict2list_type,
help='Dictionary with list values, \
eg. --cgs-to-translate=model0:fr_en,es_en@model1:fr_en')
parser.add_argument('--source-files', type=dict_type_mSrc,
help="Source files (optional), \
eg. --source-files=fi_en:file1,de_en:file2")
parser.add_argument('--output-file', type=str,
help="Translation output file")
parser.add_argument('--gold-file', type=str,
help="Translation reference file")
parser.add_argument('--bleu-script', type=str, help="Path to bleu script")
parser.add_argument("--changes", type=dict_type,
help="Changes/additions to config")
parser.add_argument('-m', '--models', nargs='+', type=str)
return parser
if __name__ == "__main__":
args = get_parser().parse_args()
# Set source files in config
val_sets = OrderedDict()
for cg_name, s_file in args.source_files.items():
logger.info('val_sets[{}]:{}'.format(cg_name, s_file))
val_sets[cg_name] = s_file
logger.info('output_file:{}'.format(args.output_file))
# Set translation output files in config
configs = []
for mi in range(len(args.models)):
config = getattr(configuration, args.protos[mi])().copy()
if args.changes is not None:
config.update(args.changes)
configs.append(config)
logger.info("Model options:\n{}".format(pprint.pformat(config)))
main(configs, args.models, val_sets, args.output_file,
n_process=args.num_process, chr_level=args.char_level,
cgs_to_translate=args.cgs_to_translate,
gold_file=args.gold_file, bleu_script=args.bleu_script,
beam_size=args.beam_size)