-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathesm-lecture-5.tex
814 lines (577 loc) · 23.5 KB
/
esm-lecture-5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
% NB: use pdflatex to compile NOT pdftex. Also make sure youngtab is
% there...
% converting eps graphics to pdf with ps2pdf generates way too much
% whitespace in the resulting pdf, so crop with pdfcrop
% cf. http://www.cora.nwra.com/~stockwel/rgspages/pdftips/pdftips.shtml
\documentclass[10pt,aspectratio=169,dvipsnames]{beamer}
\usetheme[color/block=transparent]{metropolis}
\usepackage[absolute,overlay]{textpos}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage{tikz}
\usetikzlibrary{arrows.meta}
\usepackage[scale=2]{ccicons}
\usepackage[official]{eurosym}
%use this to add space between rows
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
\newcommand{\R}{\mathbb{R}}
\setbeamerfont{alerted text}{series=\bfseries}
\setbeamercolor{alerted text}{fg=Mahogany}
\setbeamercolor{background canvas}{bg=white}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}
\def\bra#1{\left\langle #1\right|}
\def\ket#1{\left| #1\right\rangle}
\newcommand{\braket}[2]{\langle #1 | #2 \rangle}
\newcommand{\norm}[1]{\left\| #1 \right\|}
\def\corr#1{\Big\langle #1 \Big\rangle}
\def\corrs#1{\langle #1 \rangle}
% for sources http://tex.stackexchange.com/questions/48473/best-way-to-give-sources-of-images-used-in-a-beamer-presentation
\setbeamercolor{framesource}{fg=gray}
\setbeamerfont{framesource}{size=\tiny}
\newcommand{\source}[1]{\begin{textblock*}{5cm}(10.5cm,8.35cm)
\begin{beamercolorbox}[ht=0.5cm,right]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage{circuitikz}
%\usepackage[pdftex]{graphicx}
\graphicspath{{graphics/}}
\DeclareGraphicsExtensions{.pdf,.jpeg,.png,.jpg,.gif}
\def\goat#1{{\scriptsize\color{green}{[#1]}}}
\let\olditem\item
\renewcommand{\item}{%
\olditem\vspace{5pt}}
\title{Energy System Modelling\\ Summer Semester 2020, Lecture 5}
%\subtitle{---}
\author{
{\bf Dr. Tom Brown}, \href{mailto:[email protected]}{[email protected]}, \url{https://nworbmot.org/}\\
\emph{Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)}
}
\date{}
\titlegraphic{
\vspace{0cm}
\hspace{10cm}
\includegraphics[trim=0 0cm 0 0cm,height=1.8cm,clip=true]{kit.png}
\vspace{5.1cm}
{\footnotesize
Unless otherwise stated, graphics and text are Copyright \copyright Tom Brown, 2020.
Graphics and text for which no other attribution are given are licensed under a
\href{https://creativecommons.org/licenses/by/4.0/}{Creative Commons
Attribution 4.0 International Licence}. \ccby}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\setbeamertemplate{section in toc}[sections numbered]
\tableofcontents[hideallsubsections]
\end{frame}
\section{Principles of electricity storage}
\begin{frame}
\frametitle{Recall from Previous Lectures}
Conceptual options to balance wind and solar (avoiding need for backup and curtailment):
\begin{itemize}
\item Transmission grid (last lecture)
\item \alert{Storage}
\item Demand-side management
\item Sector coupling
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Basic idea of storage}
Networks were used to shift power imbalances between different
places, i.e. in \alert{space}. Electricity storage can shift power in \alert{time}.
\vspace{0.5cm}
\centering
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=11cm]{mismatch-2011-07-01-2011-07-07}};
\draw[red,line width=5,->] (4,3) -- (4,4) -- (6.5,4) -- (6.5,2.5);
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Storage: Power Versus Energy Capacity}
For a storage unit, we have to distinguish between the \alert{power capacity} (MW) at which we can discharge (dispatch) or charge the storage, and the \alert{energy capacity} (MWh) it can store.
\begin{columns}[T]
\begin{column}{7cm}
Examples:
\begin{itemize}
\item A Tesla battery electric vehicle can charge with a power of 11~kW at home or 100-150~kW at a supercharger. The Model S has an energy capacity of 100 kWh.
\item The Hornsdale utility-scale battery in South Australia has a power capacity of 100~MW and an energy capacity of 185~MWh.
\end{itemize}
\end{column}
\begin{column}{6cm}
\includegraphics[trim=0 0cm 0 0cm,width=5cm,clip=true]{tesla-charging.jpg}
\includegraphics[trim=0 0cm 0 0cm,width=5cm,clip=true]{tesla-hornsdale-powerpack-1_33945.jpg}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Storage consistency}
Storage units, such as batteries or hydrogen storage, labelled by $r$, can both
dispatch/discharge power within its discharging capacity (in MW):
\begin{equation*}
0 \leq g_{i,r,t,\textrm{discharge}} \leq G_{i,r,\textrm{discharge}}
\end{equation*}
and consume power to charge the storage within its charging capacity (in MW):
\begin{equation*}
0 \leq g_{i,r,t,\textrm{charge}} \leq G_{i,r,\textrm{charge}}
\end{equation*}
The total power (positive when discharging, negative when charging) can then be written:
\begin{equation*}
g_{i,r,t} = g_{i,r,t,\textrm{discharge}} - g_{i,r,t,\textrm{charge}}
\end{equation*}
There is also a limit on the total energy $e_{i,r,t}$ at each time:
\begin{equation*}
0 \leq e_{i,r,t} = e_{i,r,0} -\sum_{t'=1}^{t} g_{i,r,t'} \leq E_{i,r}
\end{equation*}
where $E_{i,r}$ is the energy capacity (in MWh). Or in iterative form
\begin{align*}
0 \leq e_{i,r,t} = e_{i,r,t-1} + g_{i,r,t,\textrm{charge}} - g_{i,r,t,\textrm{discharge}} \leq E_{i,r}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Incorporation in power balance with generation, demand and network}
We can then incorporate the storage power $g_{i,r,t}$ in our power imbalance for each node $i$ and each time $t$ from last lecture:
\begin{equation*}
p_{i,t} = \sum_{s} g_{i,s,t} + \sum_{r} g_{i,r,t} - d_{i,t} = \sum_{\ell} K_{i\ell} f_{\ell,t}
\end{equation*}
($s$ runs over generation technologies, $r$ over storage technologies, $\ell$ over network lines)
The nodes are linked in space by the network and in time by the consistency for the storage energy.
If we expand the storage power $g_{i,r,t}$ into its charging and discharging parts:
\begin{equation*}
p_{i,t} = \sum_{s} g_{i,s,t} + \sum_{r}\left(g_{i,r,t,\textrm{discharge}} - g_{i,r,t,\textrm{charge}}\right) - d_{i,t} = \sum_{\ell} K_{i\ell} f_{\ell,t}
\end{equation*}
we see that the discharging part has the sign of a generator putting power into the system, while the charging part acts like a demand extracting power from the system.
\end{frame}
\begin{frame}
\frametitle{Storage consistency: continuous version}
In the previous slide we had discrete time points $t\in\{0,1,2,\dots\}$.
The discrete equation for the total energy (sometimes called the \alert{state of charge}):
\begin{equation*}
0 \leq e_{i,r,t} = e_{i,r,0} -\sum_{t'=1}^{t} g_{i,r,t'} \leq E_{i,r}
\end{equation*}
is nothing other than an integration over time $t$.
So if we write $g_{i,r,t}$ and $e_{i,r,t}$ as continuous functions of $t$, $g_{i,r}(t)$ and $e_{i,r}(t)$, we get an integration:
\begin{equation*}
0 \leq e_{i,r}(t) = e_{i,r}(0) - \int_0^t g_{i,r}(t') dt' \leq E_{i,r}
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Continuous example}
Consider a single node (i.e. no network) with a constant demand
\begin{equation*}
d(t) = D
\end{equation*}
and a renewable wind generator with a capacity $G = 2D$ and an
availability time series
\begin{equation*}
G(t) = \frac{1}{2} \left(1 + \sin\left(\frac{2\pi}{T} t\right)\right)
\end{equation*}
so that it oscillates with period $T$ and on average produces enough energy for the demand
\begin{equation*}
\langle G(t) G \rangle = D
\end{equation*}
\alert{Question}: What are the power and energy capacities of the ideal storage unit to balance this system?
\end{frame}
\begin{frame}
\frametitle{Continuous example}
For $D =1, T = 2\pi$:
\centering
\includegraphics[width=14cm]{demand-wind}
\end{frame}
\begin{frame}
\frametitle{Residual demand}
Our residual demand or mismatch is now
\begin{equation*}
m(t) = d(t) - G G(t) = D - D \left(1 + \sin\left(\frac{2\pi}{T} t\right)\right) = -D\sin\left(\frac{2\pi}{T} t\right)
\end{equation*}
For $D =1, T = 2\pi$:
\centering
\includegraphics[width=11cm]{mismatch-sin}
\end{frame}
\begin{frame}
\frametitle{Storage Power}
To balance this, we need a storage unit with power profile $g_r(t)$ such that the node balances:
\begin{equation*}
0 = p(t) = GG(t) + g_r(t) - d(t) = g_r(t) - m(t)
\end{equation*}
i.e.
\begin{equation*}
g_r(t) = d(t) - G G(t) = m(t) = -D\sin\left(\frac{2\pi}{T} t\right)
\end{equation*}
This will have power capacities $G_{r,\textrm{discharge}} = G_{r,\textrm{charge}} = D$. For $D =1, T = 2\pi$:
\centering
\includegraphics[width=9cm]{storage-power}
\end{frame}
\begin{frame}
\frametitle{Storage Energy}
How much energy capacity $E_{r}$ do we need? The energy profile is:
\begin{equation*}
e_r(t) = \int_{0}^{t} (-g_r(t')) dt' = D \int_0^t \sin\left(\frac{2\pi}{T} t'\right) dt' = \frac{TD}{2\pi}\left[ 1 - \cos\left(\frac{2\pi}{T} t\right)\right]
\end{equation*}
This peaks at $t=\frac{T}{2}$ so $E_r = \max_t\{e_r(t)\} = \frac{TD}{\pi}$. Faster oscillations, i.e. shorter periods, $\Rightarrow$ less energy capacity. So for $D =1, T = 2\pi$, maximum is $E_r = 2$:
\centering
\includegraphics[width=10cm]{storage-energy}
\end{frame}
\begin{frame}
\frametitle{Fourier coefficients of wind and solar in Germany}
Although wind and solar are not perfect sine waves, if we decompose
the time series in Fourier components, we do see \alert{dominant
frequencies} which can help us understand how to dimension
storage.
\vspace{1cm}
\includegraphics[width=6.9cm]{DE-solar-spectrum}
\includegraphics[width=6.9cm]{DE-onwind-spectrum}
\end{frame}
\begin{frame}
\frametitle{Storage Energy: concrete examples}
How does our formula $E_r = \frac{TD}{\pi}$ look for different
generation technologies with simplified sinusoidal profiles?
Consider a simplified demand of $D = 1$ MW.
\ra{1.05}
\begin{table}[!t]
\begin{tabular}{lllrr}
\toprule
quantity & symbol & units & solar & wind\\
\midrule
generation capacity &$G$ & MW & 2 & 2 \\
storage power capacity & $G_r$ & MW & 1 & 1 \\
period & $T$ & h & 24 & $7 \cdot 24 = 168$\\
storage energy capacity & $E_r$ & MWh & 7.6 & 53 \\
\bottomrule
\end{tabular}
\end{table}
Faster daily oscillations of solar need smaller storage capacity than weekly oscillations of wind.
NB: In reality of course solar and wind are not perfect sine waves...
\end{frame}
\begin{frame}
\frametitle{Efficiency and losses}
There are a few extra details to add now. First, no renewable has a perfectly regular sinusoidal profile.
Second, the iterative integration equation for the storage energy
\begin{align*}
e_{i,r,t} = e_{i,r,t-1} + g_{i,r,t,\textrm{charge}} - g_{i,r,t,\textrm{discharge}}
\end{align*}
needs to be amended for \alert{efficiencies} $\eta\in [0,1]$ (corresponding to \alert{losses} $1-\eta$)
\begin{align*}
e_{i,r,t} = \eta_0e_{i,r,t-1} + \eta_1g_{i,r,t,\textrm{charge}} - \eta_2^{-1} g_{i,r,t,\textrm{discharge}}
\end{align*}
$1-\eta_0$ corresponds to \alert{standing losses} or \alert{self-discharge}, $\eta_1$ to the \alert{charging efficiency} and $\eta_2$ to the \alert{discharging efficiency}.
\end{frame}
\begin{frame}
\frametitle{Different storage units have different parameters}
We can relate the power capacity $G_r$ to the energy capacity $E_r$
with the maximum number of hours the storage unit can be charged at full
power before the energy capacity is full, $E_r =
\textrm{max-hours}*G_r$.
\ra{1.05}
\begin{table}[!t]
\begin{tabular}{lrrrr}
\toprule
& Battery & Hydrogen & Pumped-Hydro & Water Tank\\
\midrule
$\eta_0$ & $1-\varepsilon$ & $1-\varepsilon$ & $1-\varepsilon$ & depends on size \\
$\eta_1$ & 0.9 & 0.75 & 0.9 & 0.9 \\
$\eta_2$ & 0.9 & 0.58 & 0.9 & 0.9 \\
max-hours & 2-10 & weeks & 4-10 & depends on size \\
euro per kW [$G_r$] &300 &500+450 & depends& low \\
euro per kWh [$E_r$] &200 & 10 &depends&low \\
\bottomrule
\end{tabular}
\end{table}
Parameters are roughly based on
\href{http://www.sciencedirect.com/science/article/pii/S0378775312014759}{Budischak
et al, 2012} with projections for 2030.
\end{frame}
\begin{frame}
\frametitle{Different storage units have different use cases}
Consider the cost of a storage unit with 1~kW of power capacity, and different energy capacities.
The total losses are given by the \alert{round-trip losses} in and
out of the storage $1- \eta_1\cdot \eta_2$.
\ra{1.05}
\begin{table}[!t]
\begin{tabular}{lrr}
\toprule
& Battery & Hydrogen \\
\midrule
losses & 1 - 0.9$^2$ = 0.19 & 1 - 0.58*0.75 = 0.57 \\
\euro{} for 2 kWh & 300 + 2x200 = 700 & 950 + 2x10 = 970 \\
\euro{} for 100 kWh & 300 + 100x200 = 20300 & 950 + 100x10 = 1950 \\
\bottomrule
\end{tabular}
\end{table}
Battery has lower losses and is cheaper for short storage periods.
Hydrogen has higher losses but is much cheaper for long storage periods (e.g. several days).
\alert{You try}: Explore use cases using \url{https://model.energy} for Mexico (solar+battery) and Ireland (wind+hydrogen).
\end{frame}
\section{Power-to-Gas}
\begin{frame}
\frametitle{Power-to-Gas (P2G)}
\begin{columns}[T]
\begin{column}{4cm}
\includegraphics[trim=0 0cm 0 0cm,width=5cm,clip=true]{pem_electrolyzer.png}
\vspace{.4cm}
\includegraphics[trim=0 0cm 0 0cm,width=5cm,clip=true]{Methanation_of_CO2_circle.png}
\end{column}
\begin{column}{7cm}
Power-to-Gas/Liquid (P2G/L) describes concepts to use electricity to
electrolyse water to \alert{hydrogen} H$_2$ (and oxygen O$_2$).
We can combine hydrogen with carbon oxides to get
\alert{hydrocarbons} such as methane CH$_4$ (main component of
natural gas) or liquid fuels C$_n$H$_m$.
Used for \alert{hard-to-defossilise sectors}:
\begin{itemize}
\item
\alert{dense fuels} for transport (planes, ships)
\item \alert{steel-making} \& \alert{chemicals industry}
\item \alert{high-temperature heat} or \alert{heat for buildings}
\item \alert{backup energy} for cold low-wind winter periods, i.e. as storage
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Power to Transport Fuels}
\begin{columns}[T]
\begin{column}{7cm}
\includegraphics[width=7cm]{fuel_density-science.png}
\end{column}
\begin{column}{7cm}
\begin{itemize}
\item Hydrogen has a very good gravimetric density (MJ/kg) but poor volumetric density (MJ/L).
\item Liquid hydrocarbons provide much better volumetric density for e.g. aviation.
\item WARNING: This graphic shows the thermal content of the fuel, but the \alert{conversion efficiency} of e.g. an electric motor for battery electric or fuel cell vehicle is much better than an internal combustion engine.
\end{itemize}
\end{column}
\end{columns}
\source{\href{https://doi.org/10.1126/science.aas9793}{Davis et al, 2018}}
\end{frame}
\begin{frame}
\frametitle{Power to Gas Concept as Storage}
\centering
\includegraphics[width=12cm]{solar-hydrogen-system-illustration.jpg}
\source{Buildipedia}
\end{frame}
\begin{frame}
\frametitle{Power-to-Gas (P2G)}
\begin{columns}[T]
\begin{column}{5cm}
\includegraphics[trim=0 0cm 0 0cm,width=4.5cm,clip=true]{salt_caverns.jpg}
\vspace{.4cm}
\includegraphics[trim=0 0cm 0 0cm,width=4.5cm,clip=true]{Gas-pipeline.jpg}
\end{column}
\begin{column}{7cm}
\begin{itemize}
\item Gases and liquids are easy to \alert{store} and \alert{transport} than electricity.
\item Storage capacity of the German natural gas network in terms of energy: ca 230 TWh. Europe wide it is 1100 TWh (see \href{https://agsi.gie.eu/}{\bf\color{blue}\underline{online table}}). In addition, losses in the gas network are small.
\item (NB: Volumetric energy density of hydrogen, i.e. MWh/m$^3$, is around three times lower than natural gas.)
\item Pipelines can carry many GW underground, out of sight.
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{German Natural Gas Grid}
\begin{figure}
\includegraphics[width=6cm]{gasgrid.jpg}
\caption{Buildipedia}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{German Gas Transmission Network Operators Plan a Hydrogen Network}
\begin{columns}[T]
\begin{column}{7cm}
\includegraphics[width=7cm]{fnb_gas_h2_startnetz_2030.jpg}
\end{column}
\begin{column}{6cm}
\begin{itemize}
\item German Gas Transmission Network Operators have published a plan for a new nationwide hydrogen network to take hydrogen between sites of production (e.g. electrolysis near the coast where offshore wind is connected), sites of storage (underground caverns) and consumers of hydrogen (industry, etc.).
\item 90\% of planned 2050 hydrogen network converts old natural gas pipelines; only 10\% needs to be built new.
\end{itemize}
\end{column}
\end{columns}
\source{\href{https://www.fnb-gas.de/fnb-gas/veroeffentlichungen/pressemitteilungen/fernleitungsnetzbetreiber-veroeffentlichen-h2-startnetz-2030/}{Fernleitungsnetzbetreiber}}
\end{frame}
\begin{frame}
\frametitle{Electrolysis}
\centering
\includegraphics[width=10cm]{electrol.jpg}
\source{Hyperphysics, Georgia State University}
\end{frame}
\begin{frame}
\frametitle{Thermodynamic Calculation Electrolysis}
\begin{equation*}
H_2 O \rightarrow H_2 + \frac{1}{2} O_2
\end{equation*}
For one mole at conditions 298 K and one atmosspheric pressure
\begin{table}
\begin{center}
\begin{tabular}{llll}
x & $H_2$ & $O_2$ & $H_2 O$\\
Entropy [J/K] & 130.7 & 205.1 & 69.9\\
Enthalpy [kJ] & 0 & 0 & -285.8
\end{tabular}
\end{center}
\end{table}
Gibbs free energy $dG = dH - TdS$,
\begin{align*}
\Delta G = 285.8 kJ - 48.7 kJ = 237.1 kJ
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Fuel Cell}
\centering
\includegraphics[width=8cm]{fuelcell.jpg}
\source{Hyperphysics, Georgia State University}
\end{frame}
\begin{frame}
\frametitle{Thermodynamics of Fuel Cell}
Again: one mole at conditions 298 K and one atmosspheric pressure
\begin{equation*}
H_2 O \rightarrow H_2 + \frac{1}{2} O_2
\end{equation*}
Gibbs free energy $dG = dH - TdS$,
\begin{align*}
\Delta G = 285.8 kJ - 48.7 kJ = 237.1 kJ
\end{align*}
max theoretical efficiency
\begin{align*}
\frac{\Delta G}{\Delta U} = 0.83
\end{align*}
\end{frame}
\section{Demand-Side Management (DSM)}
\begin{frame}
\frametitle{Recall from Previous Lectures}
Conceptual options to balance the power system:
\begin{itemize}
\item Transmission grid
\item Storage
\item \alert{Demand-side management}
\item Sector coupling
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Basic Idea of Storage}
Basic idea of storage: move supply:
\vspace{0.5cm}
\centering
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=11cm]{mismatch-2011-07-01-2011-07-07}};
\draw[red,line width=5,->] (4,3) -- (4,4) -- (6.5,4) -- (6.5,2.5);
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Basic Idea of Demand-Side Management}
Modify demand instead of generation!
\vspace{0.5cm}
\centering
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=11cm]{mismatch-2011-07-01-2011-07-07}};
\draw[red,line width=5,<-] (4,3) -- (4,4) -- (6.5,4) -- (6.5,2.5);
\end{tikzpicture}
\end{frame}
\begin{frame}
\frametitle{Demand-Side Management / Demand-Side Response}
Modification of the Demand for energy through various means such as price incentives
Charge consumers based on the true price of utilities at the time of consumption
Issues: higher utility cost for consumers, communication infrastructure, synchronisation, cost, privacy, hacking
\end{frame}
\begin{frame}
\frametitle{Cases of DSM: Efficiency Measures}
\begin{minipage}[t]{0.5\textwidth}
\begin{figure}
\includegraphics[width=1.\textwidth]{efficiency-crop.pdf}
\end{figure}
\end{minipage}\hfill
\begin{minipage}[t]{0.5\textwidth}
\begin{itemize}
\item Permanent reduction of the demand by use of more efficient appliances
\begin{itemize}
\item washing machines
\item refrigerators
\item water heaters
\end{itemize}
\item Germany: Reduction of 25\% of gross electrical energy by 2050 compared to 2008
\end{itemize}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Cases of DSM: Peak Shaving}
\begin{minipage}[t]{0.5\textwidth}
\begin{figure}
\includegraphics[width=1.\textwidth]{peakshaving-crop.pdf}
\end{figure}
\end{minipage}\hfill
\begin{minipage}[t]{0.5\textwidth}
\begin{itemize}
\item Infrastructure designed for peak demand situations
\item Commercial consumers often charged based on their peak demand
\end{itemize}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Cases of DSM: Load Shifting}
\begin{minipage}[t]{0.5\textwidth}
\begin{figure}
\includegraphics[width=1.\textwidth]{loadshifting-crop.pdf}
\end{figure}
\end{minipage}\hfill
\begin{minipage}[t]{0.5\textwidth}
\begin{itemize}
\item Shift electrical demand from times of deficits to times of surpluses
\item provide price incentives to cause load shifting via smart meters
\item different price incentive schemes possible, e.g., time of use prices, seasonal prices, etc.
\end{itemize}
\end{minipage}
\end{frame}
\begin{frame}
\frametitle{Modelling Approach for DSM}
\begin{itemize}
\item loads into different categories with assumed max. shifting periods (e.g., 8 hours for household applications)
\item shifting charges a virtual storage buffer
\begin{align}
P_n[R_n(t)](t) &= R_n(t) - L_n(t).
\end{align}
\item filling level is consequently given by
\begin{align}
E_n[R_n(t)](t) &= \int_0^t P_n[R_n(t')](t') dt'
\end{align}
\item constraints by shifting periods, e.g.,
\begin{align}
E^{+}_n(t) &= \int_t^{t+\Delta t} L_n(t') dt'
\end{align}
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Modelling Approach for DSM}
\centering
\includegraphics[width=12cm]{timeseries-crop.pdf}
% timeseries-crop.pdf: 0x0 pixel, 0dpi, 0.00x0.00 cm, bb=
\end{frame}
\begin{frame}
\frametitle{Modelling Approach for DSM}
Load shifting supports system integration of variable renewables, especially PV
% backup_vs_shareofrenewables-crop.pdf: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=
\centering
\includegraphics[width=0.75\textwidth]{optimal_mix-crop.pdf}
% optimal_mix-crop.pdf: 0x0 pixel, 300dpi, 0.00x0.00 cm, bb=
\source{Kies et al., Energies, 2016}
\end{frame}
\begin{frame}
\frametitle{Demand-Side Management (DSM) Summary}
\begin{itemize}
\item Demand-side management can contribute to successful power system operation
\item Efficiency first!
\item ``Daily'' scale supports PV integration
\item Building infrastructure for DSM can be cost-intensive and cause minor additional energy consumption
\item Needs a careful consideration of constraints from consumer side
\item Synchronisation via pricing can amplify fluctuations
\item Other concerns: hacking and privacy
\end{itemize}
\end{frame}
\end{document}