-
Notifications
You must be signed in to change notification settings - Fork 4
/
esm-lecture-11.tex
1060 lines (696 loc) · 32.7 KB
/
esm-lecture-11.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
% NB: use pdflatex to compile NOT pdftex. Also make sure youngtab is
% there...
% converting eps graphics to pdf with ps2pdf generates way too much
% whitespace in the resulting pdf, so crop with pdfcrop
% cf. http://www.cora.nwra.com/~stockwel/rgspages/pdftips/pdftips.shtml
\documentclass[10pt,aspectratio=169,dvipsnames]{beamer}
\usetheme[color/block=transparent]{metropolis}
\usepackage[absolute,overlay]{textpos}
\usepackage{booktabs}
\usepackage[utf8]{inputenc}
\usepackage{tikz}
\usepackage[scale=2]{ccicons}
\usepackage[official]{eurosym}
%use this to add space between rows
\newcommand{\ra}[1]{\renewcommand{\arraystretch}{#1}}
\newcommand{\R}{\mathbb{R}}
\setbeamerfont{alerted text}{series=\bfseries}
\setbeamercolor{alerted text}{fg=Mahogany}
\setbeamercolor{background canvas}{bg=white}
\def\l{\lambda}
\def\m{\mu}
\def\d{\partial}
\def\cL{\mathcal{L}}
\def\co2{CO${}_2$}
\def\bra#1{\left\langle #1\right|}
\def\ket#1{\left| #1\right\rangle}
\newcommand{\braket}[2]{\langle #1 | #2 \rangle}
\newcommand{\norm}[1]{\left\| #1 \right\|}
\def\corr#1{\Big\langle #1 \Big\rangle}
\def\corrs#1{\langle #1 \rangle}
\def\mw{\text{ MW}}
\def\mwh{\text{ MWh}}
\def\emwh{\text{ \euro/MWh}}
\newcommand{\ubar}[1]{\text{\b{$#1$}}}
% for sources http://tex.stackexchange.com/questions/48473/best-way-to-give-sources-of-images-used-in-a-beamer-presentation
\setbeamercolor{framesource}{fg=gray}
\setbeamerfont{framesource}{size=\tiny}
\newcommand{\source}[1]{\begin{textblock*}{5cm}(10.5cm,8.35cm)
\begin{beamercolorbox}[ht=0.5cm,right]{framesource}
\usebeamerfont{framesource}\usebeamercolor[fg]{framesource} Source: {#1}
\end{beamercolorbox}
\end{textblock*}}
\usepackage{hyperref}
\usepackage{tikz}
\usepackage[europeanresistors,americaninductors]{circuitikz}
%\usepackage[pdftex]{graphicx}
\graphicspath{{graphics/}}
\DeclareGraphicsExtensions{.pdf,.jpeg,.png,.jpg,.gif}
\def\goat#1{{\scriptsize\color{green}{[#1]}}}
\let\olditem\item
\renewcommand{\item}{%
\olditem\vspace{5pt}}
\title{Energy System Modelling\\ Summer Semester 2020, Lecture 11}
%\subtitle{---}
\author{
{\bf Dr. Tom Brown}, \href{mailto:[email protected]}{[email protected]}, \url{https://nworbmot.org/}\\
\emph{Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI)}
}
\date{}
\titlegraphic{
\vspace{0cm}
\hspace{10cm}
\includegraphics[trim=0 0cm 0 0cm,height=1.8cm,clip=true]{kit.png}
\vspace{5.1cm}
{\footnotesize
Unless otherwise stated, graphics and text are Copyright \copyright Tom Brown, 2020.
Graphics and text for which no other attribution are given are licensed under a
\href{https://creativecommons.org/licenses/by/4.0/}{Creative Commons
Attribution 4.0 International Licence}. \ccby}
}
\begin{document}
\maketitle
\begin{frame}
\frametitle{Table of Contents}
\setbeamertemplate{section in toc}[sections numbered]
\tableofcontents[hideallsubsections]
\end{frame}
\section{Present value and discounting}
\begin{frame}
\frametitle{The value of money depends on time}
\alert{Question 1:} What would you prefer: \euro 1000 today, or \euro 1000 in 3 years?
\pause
\euro 1000 today can be invested in the bank with an interest rate of 5\%.
After 3 years you would have
\begin{equation*}
1000 \cdot (1 + 0.05)^3 = 1158
\end{equation*}
\alert{Answer 1:} Best to take the money today and use the opportunity to invest!
\vspace{.5cm}
``Money in the future is worth less than money today.''
\end{frame}
\begin{frame}
\frametitle{The value of money depends on time}
\alert{Question 2:} What would you prefer: \euro 1000 today, or \euro 1300 in 5 years?
\pause
If you invested \euro 1000 today, after 5 years you would have only
\begin{equation*}
1000 \cdot (1 + 0.05)^5 = 1276
\end{equation*}
\alert{Answer 2:} Best to wait for the \euro 1300 in 5 years!
\end{frame}
\begin{frame}
\frametitle{Present value}
To allow comparison between income and outgoings in different years, we need to agree on a particular point in time to evaluate the cash flows.
The simplest and most frequently used time point: today's value, known as the \alert{present value}.
For an \alert{interest rate} $r$ we multiply the income or outgoings in year $t$ by the \alert{discount factor}
\begin{equation*}
\frac{1}{(1+r)^t}
\end{equation*}
to calculate the present value. We have \alert{discounted} the future cash flow.
Future income or outgoings are \alert{worth less} from today's point of view (as long as $r$ is positive).
``Money in the future is worth less than money today.''
\end{frame}
\begin{frame}
\frametitle{Example: present value}
For our example with interest rate 5\% we can now order the options:
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{rrr}
\toprule
Income (\euro) & Year & Present value (\euro) \\
\midrule
1000 & 3 & $\frac{1000}{(1+0.05)^3} = 863$ \\
1000 & 0 & $\frac{1000}{(1+0.05)^0} = 1000$ \\
1300 & 5 & $\frac{1300}{(1+0.05)^5} = 1019$ \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\section{Investment calculations}
\begin{frame}
\frametitle{Motivation: Power plant investment}
A company is considering investing in a photovoltaic plant on its roof. The key figures:
\begin{columns}[T]
\begin{column}{6cm}
\begin{table}[!t]
\begin{tabular}{lr}
\toprule
Size & 100 kW \\
Investment cost & 800 \euro kW$^{-1}$ \\
Operating cost & 20 \euro kW$^{-1}$ a$^{-1}$\\
Feed-In Tariff & 0.1 \euro kWh$^{-1}$\\
Full load hours & 1000 \\
Period of subsidy & 20 years \\
\bottomrule
\end{tabular}
\end{table}
\end{column}
\begin{column}{6cm}
\includegraphics[width=6.5cm]{PV_Anlage_auf_der_Rottweiler_Stadthalle.jpg}
\end{column}
\end{columns}
\vspace{.5cm}
The company can invest its money elsewhere for a return of 5\%.
\alert{Is it worthwhile to invest in the photovoltaic plant?}
\source{\href{https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf}{Fraunhofer ISE Stromgestehungskosten 2018}, \href{https://de.wikipedia.org/wiki/ENRW_Energieversorgung_Rottweil\#/media/Datei:PV_Anlage_auf_der_Rottweiler_Stadthalle.jpg}{Wikipedia}}
\end{frame}
\begin{frame}
\frametitle{Investment calculations}
An \alert{investment calculation} quantifies the financial costs and benefits of an investment, assuming that future income and outgoings can be predicted.
It considers
\begin{itemize}
\item \alert{Capital costs} - Costs for investments and installation
\item \alert{Consumption costs} - Fuel, other materials (e.g. lubricants for wind turbine), etc.
\item \alert{Operating costs} - Maintenance, wages, insurance, management, etc.
\item \alert{Income} - depends on market price, subsidies, and production
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Dynamic investment calculation}
For a \alert{dynamic investment calculation} we sum the present values of all income and outgoings over the $T$ years of operation taking account of the interest rate $r$ to get the \alert{Net Present Value (NPV)}:
\begin{equation*}
NPV = \sum_{t=0}^T \frac{ - I_t - V_t - B_t + U_t}{(1+r)^t}
\end{equation*}
where $I_t$ is the capital expenditure in year $t$, $V_t$ the
consumption costs (e.g. for fuel cost $o_t$ and annual production $Q_t$, $V_t = o_t\cdot Q_t$), $B_t$ the operating costs und $U_t$ the income (e.g. average market value $\lambda_t$ times annual production
$Q_t$, $U_t = \lambda_t\cdot Q_t$).
\alert{Conclusion:} If $NPV > 0$, the investment is worthwhile.
If $NPV < 0$, better to invest with a rate of return of $r$ elsewhere.
For comparisons between different investments, a higher NPV should be preferred.
\end{frame}
\begin{frame}
\frametitle{Example: Rooftop photovoltaic unit}
All cash flows (costs and income) in \euro:
\begin{table}[!t]
\begin{tabular}{lrrrrr}
\toprule
year $t$ & 0 & 1 & 2 & $\cdots$ & 20 \\
\midrule
Capital costs $I_t$ & 80,000 & 0 & 0 & & 0\\
Operating costs $B_t$ & 0 & 2,000 & 2,000 & & 2,000 \\
Income $U_t$ & 0 & 10,000 & 10,000 & & 10,000 \\
\midrule
Net cash flow $U_t - I_t - B_t$ & -80,000 & 8,000 & 8,000 & & 8,000 \\
\midrule
Discount factor $\frac{1}{(1+r)^t}$ & 1 & $\frac{1}{(1+r)}$ & $\frac{1}{(1+r)^2}$ & & $\frac{1}{(1+r)^{20}}$ \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{NPV simplification}
If investments only occur in the first year, and the costs and income for the following years are constant, we can simplify the NPV formula:
\begin{equation*}
NPV = -I_0 + (U - V - B) \sum_{t=1}^T \frac{1}{(1+r)^t}
\end{equation*}
The sum $\sum$ is called the \alert{Present Value Factor} $PVF(r,T)$.
For a geometric series with $|q| < 1$ we have $\sum_{n=0}^\infty q^n = \frac{1}{1-q}$.
For $q= (1+r)^{-1}$ we can simplify the formula
\begin{align*}
PVF(r,T) & = \sum_{t=1}^T \frac{1}{(1+r)^t} \\
& = \left[\frac{1}{(1+r)} - \frac{1}{(1+r)^{T+1}} \right] \sum_{t=0}^\infty \frac{1}{(1+r)^t}
= \left[\frac{1}{(1+r)} - \frac{1}{(1+r)^{T+1}} \right] \frac{1}{1 - (1+r)^{-1}} \\
& = \left[\frac{1}{(1+r)} - \frac{1}{(1+r)^{T+1}} \right] \frac{1+r}{1 + r - 1} = \frac{1}{r} \left[1 - \frac{1}{(1+r)^{T}} \right]
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Example: Rooftop photovoltaic unit}
For our example with $r= 0.05$
\begin{align*}
NPV & = -80,000 + (10,000 - 2,000) \cdot \frac{1}{r} \left[1 - \frac{1}{(1+r)^{T}} \right] \\
& = -80,000 + 8,000*12.5 \\
& = 19,698
\end{align*}
\alert{Conclusion:} It's worthwile to invest in the photovoltaic unit!
\pause
NB: The calculation is very sensitive to the interest rate, e.g. with $r = 0.08$
\begin{align*}
NPV & = -80,000 + 8,000*9.8 \\
& = -1,454
\end{align*}
\alert{Conclusion:} The investment is not worthwhile.
\end{frame}
\begin{frame}
\frametitle{Return On Investment (ROI)}
The expected return or \alert{Return On Investment (ROI)} is the required interest rate to reach the point $NPV = 0$.
In our example you can either experiment or use the Newton-Raphson algorithm to determine the ROI $r$
\begin{equation*}
0 = NPV = -I_0 + (U - V - B) \sum_{t=1}^T \frac{1}{(1+r)^t}
\end{equation*}
In our example we find an ROI of $r=7.75$\%.
\end{frame}
\begin{frame}
\frametitle{German example figures for electricity production technologies in 2018}
WACC is the \alert{Weighted Average Cost of Capital} over the bank interest rate for borrowed capital (Fremdkapital) and the investor's ROI on their own investment (Eigenkapital).
\centering
\includegraphics[width=14cm]{stromgestehungskosten.png}
\source{\href{https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/DE2018_ISE_Studie_Stromgestehungskosten_Erneuerbare_Energien.pdf}{Fraunhofer ISE Stromgestehungskosten 2018}}
\end{frame}
\begin{frame}
\frametitle{Warning: Discounting over long time periods}
Over long time periods the discounting can have a very large effect....
\begin{columns}[T]
\begin{column}{9cm}
\centering
\includegraphics[width=9.5cm]{discounting.pdf}
\end{column}
\begin{column}{5cm}
\begin{itemize}
\item Long-term benefits aren't seen, e.g. long production life of nuclear power plants or benefits of long-lived efficiency measures
\item Long-term costs are also suppressed, e.g. decommissioning, waste disposal, climate damages
\item This is a \alert{controversial topic!}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Programming example: photovoltaic plant}
\centering
\includegraphics[width=10.5cm]{PV_programming_example.png}
\end{frame}
\begin{frame}
\frametitle{Programming example: nuclear plant}
\centering
\includegraphics[width=10.5cm]{nuclear_programming_example.png}
\end{frame}
\begin{frame}
\frametitle{Summary}
\begin{itemize}
\item Future income or costs are worth less from today's point of view
\item To calculate the \alert{present value} give the \alert{interest rate} $r$, multiply the cash flow in year $t$ by the \alert{discount factor} $\frac{1}{(1+r)^t}$
\item To calculate the \alert{net present value (NPV)} for an investment, sum the present values of all income and costs
\item If $NPV > 0$, the investment is worthwhile compared to investing with interest rate $r$
\item For two different investments, a higher NPV should be preferred
\item \alert{Long-term} costs or benefits are \alert{suppressed} by discounting
\end{itemize}
\end{frame}
\section{Levelised Cost Of Electricity (LCOE)}
\begin{frame}
\frametitle{Levelised Cost Of Energy (LCOE)}
You can also solve for the market value or feed-in tariff that's
necessary to cover all the costs of the investment, i.e. the point
where the present value of all income balances the present value of
all costs. You solve for the price $\lambda$ such that
\begin{equation*}
0 = NPV = -I_0 + (\lambda Q - oQ - B) PVF(r,T)
\end{equation*}
(using $V = oQ$). We find:
\begin{equation*}
\lambda = \frac{1}{Q} \left( \frac{I_0}{PVF(r,T)} + B + oQ \right) = \frac{1}{Q} \left( \frac{I_0}{PVF(r,T)} + B \right) + o
\end{equation*}
In our example we find a price of $\lambda =$ 89 \euro/MWh for $i=0.05$. % One could reduce the feed-in tariff from 100 \euro/MWh to this value!
This value corresponds to the average long-term costs of the unit, since we've divided the total yearly costs by the total production $Q$. It is called the
the \alert{Levelised Cost Of Energy (LCOE)}.
It is also called the \alert{Long-Run Marginal Cost (LMRC)}, since we've added to the short-run marginal cost $o$ an annualised contribution to the capital cost and the operating costs.
Check: The higher $I_0$ or $B$ are, the higher the LCOE. The higher $Q$ is, the lower the LCOE.
\end{frame}
\begin{frame}
\frametitle{Annuity}
The \alert{annuity} is the annualised investment cost $a = \frac{I_0}{PVF(r,T)}$ and
$a(r,T) = \frac{1}{PVF(r,T)}$ is the \alert{annuity factor}, which spreads the capital costs $I_0$ evenly over the operational years of the investment (like a mortgage for a house).
For a loan $I_0$ from the bank, the bank is compensated for the \alert{opportunity cost} of investing elsewhere at a rate of $r$ by an annual fixed sum $a$ so that the NPV for the bank is zero
\begin{equation*}
0 = NPV = -I_0 + \sum_{t=0}^T \frac{a}{(1+r)^t} = -I_0 + PVF(r,T) \frac{I_0}{PVF(r,T)}
\end{equation*}
The formula for the annuity factor is derived from that for the PVF:
\begin{equation*}
a(r,T) = \frac{1}{PVF(r,T)} = \frac{ r}{ 1 - (1+r)^{-T}}
\end{equation*}
\end{frame}
\begin{frame}[fragile]
\frametitle{Examples of annuity factor}
\begin{columns}[T]
\begin{column}{6.5cm}
AF = Annuity Factor, $a(r,T)$
\begin{table}[!t]
\centering
\begin{tabular}{@{}rrr@{}}
\toprule
Lifetime $T$ & Discount Rate $r$ & AF $a(r,T)$ \\
years & \% & per unit \\
\midrule
20 & 0 & 0.05 \\
20 & 5 & 0.08 \\
20 & 10 & 0.12 \\
20 & 20 & 0.21 \\
40 & 0 & 0.025 \\
40 & 5 & 0.06 \\
40 & 10 & 0.10 \\
40 & 20 & 0.20 \\
\bottomrule
\end{tabular}
\end{table}
\end{column}
\begin{column}{7.5cm}
Things to notice:
\begin{itemize}
\item AF reduce to $1/T$ in limit $r \to 0$
\item AF climbs steeply with $r$
\item For long lifetimes, AF is similar to short lifetimes for high $r$ - in reality investors try to pay off investments faster than lifetime
\item In reality, an investor would provide some capital themselves, e.g. 10-20\% of the capital cost, and borrow the rest from the bank. The weighted average of the investor's desired internal rate of return and that of the bank loan is the \alert{weighted average cost of capital} (WACC).
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}[fragile]
\frametitle{Parameters for different generation technologies}
Here are some typical investment and operational parameters projected for 2020:
\vspace{-.5cm}
\begin{table}[!t]
\centering
\begin{tabular}{@{}lrrrrrrr@{}}
\toprule
Source & Lifetime & Capital Cost & Fix O\&{}M & Var O\&{}M & $\eta$ & Fuel Cost & Marg. Cost \\
& years & \euro kW$^{-1}$ & \euro kW$^{-1}$a$^{-1}$ & \euro MWh$_{\textrm{el}}^{-1}$ & [\%] & \euro/MWh$_{\textrm{th}}$ & \euro/MWh$_{\textrm{el}}$ \\
\midrule
Hard Coal & 40 & 1200 & 30 & 6 & 39 & 10 & 32 \\
Gas OCGT & 30 & 400 & 15 & 3 & 39 & 20 & 54 \\
Gas CCGT & 30 & 800 & 20 & 4 & 60 & 20 & 37 \\
Nuclear & 40-60 & 6000 & 0 & 6 & 33 & 3.3 & 16 \\
Wind Onshore & 25 & 1240 & 35 & 0 & & 0 & 0 \\
Solar PV & 25 & 750 & 25 & 0 & & 0 & 0 \\
\bottomrule
\end{tabular}
\end{table}
O\&{}M = Operation and Maintenance, Var. = Variable, Fix. = Fixed, $\eta$ = efficiency
For a plant with capacity $G_s$ in MW and yearly production $Q$ in MWh$_{\textrm{el}}$, we have $I_0 = 1000 \cdot G_s \cdot (\textrm{Capital Cost})$, $B = 1000\cdot G_s \cdot (\textrm{Fix O\&{}M})$, $V = Q\cdot o$ where o is the marginal cost $o = (\textrm{Marg. Cost}) = (\textrm{Var O\&{}M}) + (\textrm{Fuel Cost})/\eta$.
\source{\href{https://www.diw.de/documents/publikationen/73/diw_01.c.424566.de/diw_datadoc_2013-068.pdf}{DIW Data Documentation, 2013}}
\end{frame}
\begin{frame}
\frametitle{LCOE for dispatchable generators depends on capacity factor}
The LCOE had the form (Marg. Cost) + (Yearly Fixed Costs)/(Yearly Production). Therefore it decreases with increasing capacity factor:
\begin{columns}[T]
\begin{column}{8.5cm}
\vspace{.5cm}
\centering
\includegraphics[width=8cm]{lcoe_cf.pdf}
\end{column}
\begin{column}{6.5cm}
\begin{itemize}
\item LCOE $>$ marginal cost
\item LCOE starts high then reduces as fixed costs are spread over more hours
\item There are \alert{crossing points} where some types of generators become cheaper for a given capacity factor
\item NB: All generators need downtime for regular maintenance, so cf $< 0.9$
\item NB: Carbon pricing would alter this graphic by adding to the marginal cost
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{LCOE for wind and solar depends on location: worldwide auction results 2017}
\centering
\includegraphics[width=11.5cm]{baringa-auctions.png}
\source{\href{https://www.baringa.com/getmedia/99d7aa0f-5333-47ef-b7a8-1ca3b3c10644/Baringa_Scottish-Renewables_UK-Pot-1-CfD-scenario_April-2017_Report_FINA/}{Baringa Partners LLP 2017}}
\end{frame}
\begin{frame}[fragile]
\frametitle{Levelised Cost of Electricity Since 2009 in US}
NB: Treat with care since LCOE doesn't take account of time or place of generation!
\centering
\includegraphics[width=14cm]{lazard-cropped.jpg}
\source{\href{https://www.lazard.com/perspective/levelized-cost-of-energy-2017/}{Lazard's LCOE Analysis V11}}
\end{frame}
\section{Multi-horizon investment: Motivation}
\begin{frame}
\frametitle{Short-run efficiency}
Short-run efficiency is concerned with the \alert{efficient operation} of the existing energy system, assuming that the capacities of all investments are fixed.
\begin{columns}[T]
\begin{column}{7.5cm}
\alert{Example}: Power plant dispatch for inelastic demand $d$. All capacities $G_s$ [MW] are fixed. We optimise the \alert{dispatch} $g_s$ [MW], assuming that the \alert{marginal costs} $o_s$ [\euro/MWh] scale linearly with the dispatch. We minimise \alert{total operational costs}:
\begin{equation*}
\min_{\{g_s\}} \sum_s o_s g_s
\end{equation*}
with constraints
\begin{align*}
\sum_s g_s & = d\hspace{1cm} \leftrightarrow \hspace{1cm} \l \\
g_s & \leq G_s \hspace{1cm}\leftrightarrow\hspace{1cm} \bar{\m}_s \\
- g_s & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} \ubar{\m}_s
\end{align*}
\end{column}
\begin{column}{6.5cm}
\vspace{.5cm}
%https://www.forum-csr.net/News/7186/Marktwirtschaftparadox.html
\includegraphics[trim=0 0cm 0 0cm,width=7cm,clip=true]{merit-order-effekt_neu1.png}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Long-run efficiency}
Long-run efficiency is concerned with the \alert{efficient operation} and \alert{the efficient dimensioning of investments} in the energy system.
\begin{columns}[T]
\begin{column}{7.5cm}
\alert{Example}: Power plant \alert{dispatch} $g_{s,t}$ (costs $o_s$) and \alert{capacities} $G_s$ (annualised costs $c_s$) are optimised over a year of hourly time periods $t$ with demand $d_t$:
\begin{equation*}
\min_{\{g_{s,t},G_s\}} \sum_{s,t} o_s g_{s,t} + \sum_s c_s G_s
\end{equation*}
with constraints
\begin{align*}
\sum_s g_{s,t} & = d_t\hspace{1cm} \leftrightarrow \hspace{1cm} \l_t \\
g_{s,t} & \leq G_s \hspace{1cm}\leftrightarrow\hspace{1cm} \bar{\m}_{s,t} \\
- g_{s,t} & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} \ubar{\m}_{s,t}
\end{align*}
\end{column}
\begin{column}{7cm}
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] (image) at (0,0) {\includegraphics[width=6cm]{screening-load-duration-clean}};
\draw (1.8,4.0) node{$c_2$};
\draw (1.8,5.2) node{$c_1$};
\draw (2.5,3.3) node{$\theta_2$};
\draw (4.8,3.3) node{$\theta_1$};
\draw (2.5,0.1) node{$\theta_2$};
\draw (4.8,0.1) node{$\theta_1$};
\end{tikzpicture}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Multi-horizon investment}
Dynamic multi-horizon investment is concerned with the \alert{changing capacities of investments} in the energy system over many years or even \alert{decades}.
At which point in time should we invest in renewables/gas/storage?
We consider several time horizons, typically years, in which plants can be dismantled or built.
Why are we concerned with changes over decades?
\pause
Since many aspects of the energy system change over decades, e.g.:
\begin{itemize}
\item \alert{Energy consumption} (particularly in developing countries)
\item \alert{Resource scarcity} (scarcity of oil, cobalt, rare earth metals, etc.)
\item \alert{Political targets} (e.g. reduction of greenhouse gas emissions)
\item \alert{Technology maturity, costs and other parameters} (e.g. efficiency)
\item \alert{Economic growth}
\item \alert{Behavioural change} (car sharing, less flying, online gaming, etc.)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Example: political targets}
\includegraphics[width=14cm]{co2_targets.png}
\source{Agora Energiewende}
\end{frame}
\begin{frame}
\frametitle{Example: Net-Zero Emissions by 2050}
Paris-compliant 1.5$^\circ$~C scenarios from European Commission - \alert{net-zero GHG in EU by 2050}
\vspace{.4cm}
%Figure 6 from https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf
\includegraphics[width=14cm]{eu-lts-net-zero.png}
\source{\href{https://ec.europa.eu/clima/sites/clima/files/docs/pages/com_2018_733_en.pdf}{European Commission `Clean Planet for All', 2018}}
\end{frame}
\begin{frame}
\frametitle{Example: Cost Developments of Renewable Energy}
LCOE = \alert{Levelised Cost of Energy} = Total Costs $/$ Energy Output
\centering
\includegraphics[width=14cm]{lazard-cropped.jpg}
\source{\href{https://www.lazard.com/perspective/levelized-cost-of-energy-2017/}{Lazard's LCOE Analysis V11}}
\end{frame}
\section{Multi-horizon investment: Theoretical formulation}
\begin{frame}
\frametitle{Discounted Total Costs}
We will consider the total costs over \alert{multiple years} $a = 1,\dots A$.
How do we compare costs in 2020 to those in 2040?
\pause
The totals costs are expressed in their
\alert{present value} using the
\alert{discount rate} $r$, to allow comparison between different years.
For costs (or income) in year $a$ we \alert{discount} the costs with a factor
\begin{equation*}
\frac{1}{(1+r)^a}
\end{equation*}
because we could have invested until this year $a$ with return $r$.
Costs in the future are \alert{worth less} from today's point of view.
For rate $r$ we optimised the \alert{discounted total costs}
\begin{equation*}
\sum_{a=1}^A \frac{1}{(1+r)^a} \left\{ \textrm{Total costs in year } a \right\}
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Warning: Discounting over long time periods}
Over long time periods the discounting can have a very large effect....
\begin{columns}[T]
\begin{column}{9cm}
\centering
\includegraphics[width=9.5cm]{discounting.pdf}
\end{column}
\begin{column}{5cm}
\begin{itemize}
\item Long-term benefits aren't seen, e.g. long production life of nuclear power plants or benefits of long-lived efficiency measures
\item Long-term costs are also suppressed, e.g. decommissioning, waste disposal, climate damages
\item This is a \alert{controversial topic!}
\end{itemize}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Example of Electricity System until 2050}
We optimise the discounted total costs over 30 years from 2021 to 2050
\begin{equation*}
\min_{\{g_{s,t,a},Q_{s,a},G_{s,a}\}} \sum_{a=1}^A \frac{1}{(1+r)^a} \left\{ \sum_{s,t} o_{s,a} g_{s,t,a} + \sum_{s,b} c_{s,b} Q_{s,b} \mathbb{I}(a \geq b) \mathbb{I}(a < b+L_s)
\right\}
\end{equation*}
Here $Q_{s,a}$ is the new capacity built in year $a$, $G_{s,a}$ is the total capacity available in year $a$, $L_s$ is the lifetime and $\mathbb{I}$ is an indicator function that is $1$ if the condition is fulfilled, $0$ otherwise. $Q_{s,a}$ may also have fixed values for $a<1$ to represent existing capacity. $Q_{s,a}$ and $G_{s,a}$ are related by
\begin{equation*}
G_{s,a} = \sum_{b = 1}^{L_s} Q_{s,a-b}
\end{equation*}
The old constraints apply for each year $a$
\begin{align*}
\sum_s g_{s,t,a} & = d_{s,a}\hspace{1cm} \leftrightarrow \hspace{1cm} \l_{t,a} \\
g_{s,t,a} & \leq G_{s,a} \hspace{1cm}\leftrightarrow\hspace{1cm} \bar{\m}_{s,t,a} \\
- g_{s,t,a} & \leq 0 \hspace{1cm}\leftrightarrow\hspace{1cm} \ubar{\m}_{s,t,a}
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Global constraints}
With a long-term perspective we can now set exciting constraints.
For example, we can restrict total \alert{emissions} over the period:
\begin{equation*}
\sum_{s,t,a} e_i g_{s,t,a}\leq \textrm{CAP}_{\textrm{CO}_2}
\end{equation*}
where $e_s$ is the specific emissions of technology $s$ (tonnes of CO$_2$ per MWh$_{\textrm{el}}$).
Or limit \alert{resource consumption} for a technology $s$:
\begin{equation*}
\sum_{t,a} g_{s,t,a}\leq \textrm{CAP}_{s}
\end{equation*}
\end{frame}
\begin{frame}
\frametitle{Learning effects}
Technology costs sink with accumulated manufacturing experience, particularly for new immature technologies.
We promote $c_{s,a}$ to an optimisation variable that depends on the cumulative generator capacity.
A simple \alert{one-factor learning model} for the costs is
\begin{equation*}
c_{s,a} = c_{s,0} \left(\sum_{b=1}^a Q_{s,b} \right)^{-\gamma_s}
\end{equation*}
where $c_{s,0}$ is the initial cost, $Q_{s,b}$ is the capacity produced in year $b$ and $\gamma_s$ is the \alert{learning parameter}.
The \alert{learning rate} $LR$ is the reduction in cost for every doubling of production
\begin{equation*}
LR_s = 1-2^{-\gamma_s}
\end{equation*}
Example for photovoltaics: $\gamma = 0.33$ $\implies$ if cumulative production doubles, the costs reduce by 20\% (\alert{Swanson's Law}).
\end{frame}
\begin{frame}
\frametitle{Swanson's Law for photovoltaic modules}
The underlying dynamic is a fast decay in costs with deployment (\alert{learning-by-doing}).
\vspace{.2cm}
\centering
\includegraphics[width=9.5cm]{1024px-Swansons-law.png}
\end{frame}
\begin{frame}
\frametitle{More complicated learning models}
In the literature there are more sophisticated learning models than the one-factor model, e.g.
\begin{itemize}
\item \alert{Multi-component learning models}: different parts of the
cost experience different learning rates, e.g. some parts of the
cost do not experience learning, such as fixed material and labour
costs, call it $c_{s,\textrm{base}}$. Only the remainder
experiences learning:
\begin{equation*}
c_{s,a} = c_{s,\textrm{base}} + (c_{s,0}-c_{s,\textrm{base}}) \left(\sum_{b=1}^a Q_{s,b} \right)^{-\gamma_s}
\end{equation*}
In the case of PV, $c_{s,\textrm{base}}$ would include e.g. the labour costs of installation.
\item \alert{Multi-factor learning models}: the cost depends not just on the cumulative capacity, but on other factors such as knowledge stock $KS$ through research and development
\begin{equation*}
c_{s,a} = c_{s,0}\left(\sum_{b=1}^a Q_{s,b} \right)^{-\gamma_{s,1}} \left(\sum_{b=1}^a KS_{s,b} \right)^{-\gamma_{s,2}}
\end{equation*}
\end{itemize}
\end{frame}
\section{Multi-horizon investment: Simplified example}
\begin{frame}
\frametitle{Simplified example}
\url{https://nworbmot.org/courses/esm-2020/lectures/notebooks/dynamic_investment.ipynb}
Time period: 2021 until 2070. Discount rate: $r = 0.05$.
Constant electricity demand $d_{t,a} = d = 100$ GW.
At the start of the simulation there is already 100~GW of 20-year-old coal plants.
3 generation technologies are available that are dispatchable (for Concentrating Solar Power (CSP) need good direct solar insolation, e.g. New Mexico or Morocco).
\ra{1.1}
\begin{table}[!t]
\begin{tabular}{lrrrrrr}
\toprule
Tech & Capital costs & Marg. costs & LCOE & Cap & Emissions & Lifetime \\
& (\euro MW$^{-1}$ a$^{-1}$) & (\euro MWh$_{\textrm{el}}^{-1}$) & (\euro MWh$_{\textrm{el}}^{-1}$) & factor & (tCO$_2$MWh$_{\textrm{el}}^{-1}$) & years \\
\midrule
Coal &30*8760 & 20 & 50 & 1 & 1 & 40\\
Nuclear & 65*8760 & 10 & 75 & 1 & 0 & 40 \\
CSP & 150*8760 & 0 & 150 & 1 & 0 & 30 \\
\bottomrule
\end{tabular}
\end{table}
\end{frame}
\begin{frame}
\frametitle{Simplified example}
Since each technology can generate continuously and the demand is constant, we assume $g_{s,t,a}$ is constant for all $t$
\begin{equation*}
g_{s,t,a} = g_{s,a} \leq G_{s,a}
\end{equation*}
This simplifies the optimisation problem considerably:
\begin{equation*}
\min_{\{g_{s,t,a},Q_{s,a},G_{s,a}\}} \sum_{a=1}^A \frac{1}{(1+r)^a} \left\{ \sum_{s} o_{s,a} g_{s,a}\cdot 8760 + \sum_{s,b} c_{s,b} Q_{s,b} \mathbb{I}(a \geq b) \mathbb{I}(a < b+L_s)
\right\}
\end{equation*}
with constraints for each year $a$
\begin{align*}
\sum_s g_{s,a} & = d
\end{align*}
\end{frame}
\begin{frame}
\frametitle{Vanilla Version: No CO$_2$ budget, no learning, no discounting}
Only new coal is built, since it's cheapest.
Total costs without discounting: 50\euro/MWh $\cdot$ 8760 $\cdot$ 100 GW $\cdot$ 50 years = 2190 billion \euro
\centering
\includegraphics[width=11cm]{no_co2-no_learning-dispatch.pdf}
\end{frame}
\begin{frame}
\frametitle{Vanilla Version: No CO$_2$ budget, no learning, discounting}
Only coal is built, since it's cheapest.
Total costs with discount rate 5\%: 840 billion \euro
\centering
\includegraphics[width=11cm]{no_co2-no_learning-dispatch.pdf}
\end{frame}