-
Notifications
You must be signed in to change notification settings - Fork 0
/
code2.py
58 lines (53 loc) · 1.92 KB
/
code2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#Traffic peridct problem. Dhanmondi - Bashundhara.
from sklearn import tree
# Data
# features: => labels : WillReachAt
# StartsAt - Day
# 6.00AM - Saturday => 6.30
# 6.10AM - " " => 6.40
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.35
# 7.30AM - " " => 8.20
# 8.00AM - " " => 9.00
# 6.00AM - Sunday => 6.30
# 6.10AM - " " => 6.40
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.55
# 7.30AM - " " => 8.40
# 8.00AM - " " => 9.50
# 6.00AM - Monday => 6.30
# 6.10AM - " " => 6.40
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.55
# 7.30AM - " " => 8.40
# 8.00AM - " " => 9.50
# 6.00AM - Tuesday => 6.30
# 6.10AM - " " => 6.40
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.55
# 7.30AM - " " => 8.40
# 8.00AM - " " => 9.50
# 6.00AM - Wednsday => 6.30
# 6.10AM - " " => 6.40
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.55
# 7.30AM - " " => 8.40
# 8.00AM - " " => 9.50
# 6.00AM - Thursday => 6.35
# 6.10AM - " " => 6.45
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.55
# 7.30AM - " " => 8.45
# 8.00AM - " " => 10.00
# 6.00AM - Friday => 6.30
# 6.10AM - " " => 6.40
# 6.30AM - " " => 7.00
# 7.00AM - " " => 7.30
# 7.30AM - " " => 8.00
# 8.00AM - " " => 8.30
# Implement regex to extract data from here.
# regex file/s => code2Regex.py
features = [[600, 0],[610, 0],[630, 0],[700, 0],[730, 0],[800, 0],[600, 1],[610, 1],[630, 1],[700, 1],[730, 1],[800, 1],[600, 2],[610, 2],[630, 2],[700, 2],[730, 2],[800, 2],[600, 3],[610, 3],[630, 3],[700, 3],[730, 3],[800, 3],[600, 4],[610, 4],[630, 4],[700, 4],[730, 4],[800, 4],[600, 5],[610, 5],[630, 5],[700, 5],[730, 5],[800, 5],[600, 6],[610, 6],[630, 6],[700, 6],[730, 6],[800, 6]]
labels = [630, 640, 700, 735, 820, 900, 630, 640, 700, 755, 840, 950, 630, 640, 700, 755, 840, 950, 630, 640, 700, 755, 840, 950, 630, 640, 700, 755, 840, 950, 635, 645, 700, 755, 845, 1000, 630, 640, 700, 730, 800, 830]
clf = tree.DecisionTreeClassifier().fit(features, labels)
print clf.predict([[795, 6]])