-
Notifications
You must be signed in to change notification settings - Fork 4
/
utils.py
62 lines (45 loc) · 1.51 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
import random
import numpy as np
import os
# Get a render function
def get_render_func(venv):
if hasattr(venv, 'envs'):
return venv.envs[0].render
elif hasattr(venv, 'venv'):
return get_render_func(venv.venv)
elif hasattr(venv, 'env'):
return get_render_func(venv.env)
return None
# Necessary for my KFAC implementation.
class AddBias(nn.Module):
def __init__(self, bias):
super(AddBias, self).__init__()
self._bias = nn.Parameter(bias.unsqueeze(1))
def forward(self, x):
if x.dim() == 2:
bias = self._bias.t().view(1, -1)
else:
bias = self._bias.t().view(1, -1, 1, 1)
return x + bias
def init(module, weight_init, bias_init, gain=1):
weight_init(module.weight.data, gain=gain)
bias_init(module.bias.data)
return module
# https://github.com/openai/baselines/blob/master/baselines/common/tf_util.py#L87
def init_normc_(weight, gain=1):
weight.normal_(0, 1)
weight *= gain / torch.sqrt(weight.pow(2).sum(1, keepdim=True))
def seed_torch(seed=2019):
# python & numpy
random.seed(seed)
np.random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
# cpu & gpu
torch.manual_seed(seed) # set seed for cpu
torch.cuda.manual_seed(seed) # set seed for current GPU
torch.cuda.manual_seed_all(seed) # set seed for all GPU
torch.backends.cudnn.deterministic = True
# torch.backends.benchmark = False
torch.backends.benchmark = True