-
Notifications
You must be signed in to change notification settings - Fork 5
/
train.py
140 lines (117 loc) · 4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, sys
# add python path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
if parent_path not in sys.path:
sys.path.append(parent_path)
import random
import numpy as np
# ignore warning log
import warnings
warnings.filterwarnings('ignore')
import paddle
from model.core.workspace import load_config, merge_config, create
from model.utils.checkpoint import load_weight
from model.engine import Trainer, init_parallel_env, set_random_seed, init_fleet_env
from model.slim import build_slim_model
import model.utils.cli as cli
import model.utils.check as check
from model.utils.logger import setup_logger
logger = setup_logger('train')
def parse_args():
parser = cli.ArgsParser()
parser.add_argument(
"--eval",
action='store_true',
default=False,
help="Whether to perform evaluation in train")
parser.add_argument(
"-r", "--resume", default=None, help="weights path for resume")
parser.add_argument(
"--slim_config",
default=None,
type=str,
help="Configuration file of slim method.")
parser.add_argument(
"--enable_ce",
type=bool,
default=False,
help="If set True, enable continuous evaluation job."
"This flag is only used for internal test.")
parser.add_argument(
"--fp16",
action='store_true',
default=False,
help="Enable mixed precision training.")
parser.add_argument(
"--fleet", action='store_true', default=False, help="Use fleet or not")
parser.add_argument(
"--use_vdl",
type=bool,
default=False,
help="whether to record the data to VisualDL.")
parser.add_argument(
'--vdl_log_dir',
type=str,
default="vdl_log_dir/scalar",
help='VisualDL logging directory for scalar.')
parser.add_argument(
'--save_prediction_only',
action='store_true',
default=False,
help='Whether to save the evaluation results only')
args = parser.parse_args()
return args
def run(FLAGS, cfg):
# init fleet environment
if cfg.fleet:
init_fleet_env()
else:
# init parallel environment if nranks > 1
init_parallel_env()
if FLAGS.enable_ce:
set_random_seed(0)
# build trainer
trainer = Trainer(cfg, mode='train')
# load weights
if FLAGS.resume is not None:
trainer.resume_weights(FLAGS.resume)
elif 'pretrain_weights' in cfg and cfg.pretrain_weights:
trainer.load_weights(cfg.pretrain_weights)
# training
trainer.train(FLAGS.eval)
def main():
FLAGS = parse_args()
cfg = load_config(FLAGS.config)
cfg['fp16'] = FLAGS.fp16
cfg['fleet'] = FLAGS.fleet
cfg['use_vdl'] = FLAGS.use_vdl
cfg['vdl_log_dir'] = FLAGS.vdl_log_dir
cfg['save_prediction_only'] = FLAGS.save_prediction_only
merge_config(FLAGS.opt)
place = paddle.set_device('gpu' if cfg.use_gpu else 'cpu')
if 'norm_type' in cfg and cfg['norm_type'] == 'sync_bn' and not cfg.use_gpu:
cfg['norm_type'] = 'bn'
if FLAGS.slim_config:
cfg = build_slim_model(cfg, FLAGS.slim_config)
check.check_config(cfg)
check.check_gpu(cfg.use_gpu)
check.check_version()
run(FLAGS, cfg)
if __name__ == "__main__":
main()