forked from Hramchenko/diffusion_distiller
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathceleba_dataset.py
44 lines (34 loc) · 1.23 KB
/
celeba_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from torch.utils.data import Dataset
from tensorfn.data import LMDBReader
from torchvision import transforms
import torch
import cv2
import numpy as np
class CelebaDataset(Dataset):
def __init__(self, path, transform, resolution=256):
self.reader = LMDBReader(path, reader="raw")
self.resolution = resolution
self.transform = transform
def __len__(self):
return len(self.reader)
def __getitem__(self, index):
img_bytes = self.reader.get(
f"{self.resolution}-{str(index).zfill(5)}".encode("utf-8")
)
data = np.frombuffer(img_bytes, np.uint8)
img = cv2.imdecode(data, 1)
img = self.transform(img)
return img
class CelebaWrapper(torch.utils.data.Dataset):
def __init__(self, dataset_dir, resolution):
super().__init__()
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
transforms.RandomHorizontalFlip()
])
self.dataset = CelebaDataset(dataset_dir, transform=transform, resolution=resolution)
def __getitem__(self, item):
return self.dataset[item], 0
def __len__(self):
return len(self.dataset)