-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
331 lines (296 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import time
import datetime
import math
import pickle
import numpy as np
import pandas as pd
import torch
from torchvision import datasets
import cma
from . import zooptim, arch
def prepare_data_loader(cfg):
def preprocess(dataset, name):
maxval_pixel = 255.0
image_list = []
for image in dataset.data:
if name == 'MNIST':
image = image / maxval_pixel
image_list.append(image[None])
dataset.data = torch.cat(image_list)
return dataset
match cfg.dataset:
case 'MNIST':
train_data = datasets.MNIST(root='data', train=True, download=True)
test_data = datasets.MNIST(root='data', train=False, download=True)
train_data = preprocess(train_data, name='MNIST')
test_data = preprocess(test_data, name='MNIST')
case 'FMNIST':
train_data = datasets.FashionMNIST(root='data', train=True, download=True)
test_data = datasets.FashionMNIST(root='data', train=False, download=True)
train_data = preprocess(train_data, name='MNIST')
test_data = preprocess(test_data, name='MNIST')
batch_size = cfg.batch_size
match cfg.dataset:
case 'MNIST' | 'FMNIST':
batch_size_test = 10000
train_loader = TensorsLoader(
[train_data.data.to(cfg.device), train_data.targets.to(cfg.device)],
batch_size=batch_size, shuffle=True
)
test_loader = TensorsLoader(
[test_data.data.to(cfg.device), test_data.targets.to(cfg.device)],
batch_size=batch_size_test, shuffle=False
)
case 'random':
nSamples_train, nSamples_test = 10000, 100
train_data = torch.randn((nSamples_train, cfg.net.num_features), dtype=torch.cfloat, device=cfg.device)
train_targets = torch.empty((nSamples_train, 1), device=cfg.device)
test_data = torch.randn((nSamples_test, cfg.net.num_features), dtype=torch.cfloat, device=cfg.device)
test_targets = torch.empty((nSamples_test, 1), device=cfg.device)
train_loader = TensorsLoader([train_data, train_targets], batch_size=batch_size, shuffle=True)
test_loader = TensorsLoader([test_data, test_targets], batch_size=batch_size, shuffle=False)
return train_loader, test_loader
class TrainBackprop():
def __init__(self, cfg, net_model, preprocess, progr, train_loader, test_loader):
self.net = net_model.to(cfg.device)
self.preprocess = preprocess
self.optimizer = getattr(torch.optim, cfg.optimizer)(net_model.parameters(), lr=cfg.net.lr_bp)
msg_append = '\tloss\ttr_acc\tte_acc'
fmt_append = ('{:.5f}', '{:.5f}', '{:.5f}')
self.progr = progr.set_header(msg_append, fmt_append)
self.train_loader = train_loader
self.test_loader = test_loader
def one_epoch(self, epoch, cfg):
self.progr.start_epoch(epoch, ['loss', 'tr_acc'])
for i, (input, label) in enumerate(self.train_loader):
self.optimizer.zero_grad()
input = self.preprocess(input)
output = self.net(input)
tr_acc = self.net.accuracy(output, label)
loss = self.net.criterion(output, label)
loss.backward()
self.optimizer.step()
self.progr.append_results([loss, tr_acc])
te_acc = self.perform_test()
self.progr.progress_report(te_acc)
def perform_test(self):
correct_test_list = []
for i, (input, label) in enumerate(self.test_loader):
input = self.preprocess(input)
output_test = self.net(input)
correct_test = self.net.accuracy(output_test, label)
correct_test_list.append(correct_test.item())
return np.mean(correct_test_list)
class TrainNetZoo():
def __init__(self, cfg, net_model, net_chip, preprocess, progr, train_loader, test_loader):
self.num_random = cfg.net.num_zoo_vectors
net_model = net_model.to(cfg.device)
net_chip = net_chip.to(cfg.device)
self.zoo = zooptim.ZerothOrderOptimization(cfg, net_model, net_chip, preprocess)
msg_append = '\tloss\ttr_acc\tgrad_n\tdl_pow\tte_acc\ttr_loss\tn_delta\tpmodify\t\tforward'
fmt_append = ('{:.5f}', '{:.5f}', '{:.1e}', '{:.1e}', '{:.5f}', '{:.5f}', '{:d}', '{:.3e}', '{:.3e}')
self.progr = progr.set_header(msg_append, fmt_append)
self.train_loader = train_loader
self.test_loader = test_loader
self.prev_loss = 1e+16
def one_epoch(self, epoch, cfg):
self.progr.start_epoch(epoch, ['loss', 'tr_acc', 'agrad_norm', 'dloss_pow'])
agrad = None
for i, (input, label) in enumerate(self.train_loader):
self.zoo.initialize_current_batch(input, label)
match cfg.zoo.vectors:
case 'fromI':
self.zoo.delta_random(self.num_random)
case 'coordinate':
self.zoo.delta_coordinate(self.num_random)
case 'lpp':
if i % cfg.zoo.lpp.Tud == 0: # line 5, Algorithm 1
self.zoo.update_cov() # line 6, Algorithm 1
self.zoo.update_chol() # line 7, Algorithm 1
self.zoo.delta_lpp(self.num_random) # line 9, Algorithm 1
loss, tr_acc = self.zoo.evaluate_all(cfg.zoo.mu) # line 15, Algorithm 1
agrad = self.zoo.get_grad() # line 16, Algorithm 1
self.zoo.step(agrad) # line 17, Algorithm 1
dloss_pow = (torch.cat(self.zoo.deltaLosses)**2).mean()
self.progr.append_results([loss, tr_acc, agrad.norm(), dloss_pow])
te_loss, te_acc = calc_loss_accuracy(self.zoo.net_chip, self.zoo.preprocess, self.test_loader)
tr_loss, tr_acc = calc_loss_accuracy(self.zoo.net_chip, self.zoo.preprocess, self.train_loader)
avg_loss = self.progr.progress_report(
te_acc, tr_loss, self.zoo.deltaWeights.shape[0], self.zoo.cost_pmodify, self.zoo.cost_forward
)
return avg_loss
class TrainCMA():
def __init__(self, cfg, net_chip, preprocess, progr, train_loader, test_loader):
self.net = net_chip.to(cfg.device)
self.device = cfg.device
self.preprocess = preprocess
msg_append = '\tloss\ttr_acc\tte_acc\ttr_loss\tn_delta\tpmodify\t\tforward'
fmt_append = ('{:.5f}', '{:.5f}', '{:.5f}', '{:.5f}', '{:d}', '{:.3e}', '{:.3e}')
self.progr = progr.set_header(msg_append, fmt_append)
self.train_loader = train_loader
self.test_loader = test_loader
self.num_batches_per_epoch = int(train_loader.data_size / cfg.batch_size)
self.options = {
'seed': np.random.randint(1e+7),
'maxiter': cfg.epochs_cma * self.num_batches_per_epoch,
'popsize': cfg.net.num_solutions,
'verbose': cfg.cma.verbose
}
if cfg.cma.diagonal:
self.options['CMA_diagonal'] = True
self.savefile = f'/tmp/es{cfg.net.num_features}_{cfg.net.num_solutions}{cfg.cma.diagonal}.pickle'
self.counter = 0
self.cost_pmodify = self.cost_forward = 0.0
self.solution = self._init_param()
self.sigma = cfg.net.cma_sigma
self.es = cma.CMAEvolutionStrategy(self.solution, self.sigma, options=self.options)
def run(self):
self.train_loader.__iter__()
self.es.optimize(lambda x: self._fitness_func(x), callback=self._my_callback)
return self.avg_loss
def one_epoch(self, epoch):
if epoch == 0:
print(self.options)
self.train_loader.__iter__()
else:
print(f'loading from {self.savefile}')
self.es = pickle.loads(open(self.savefile, 'rb').read())
self.es.optimize(
lambda x: self._fitness_func(x), iterations=self.num_batches_per_epoch, callback=self._my_callback
)
open(self.savefile, 'wb').write(self.es.pickle_dumps())
return self.avg_loss
def _my_callback(self, es):
self.counter = 0
# es: CMAEvolutionStrategy object
if es.countiter % self.num_batches_per_epoch == 1:
epoch = int(es.countiter / self.num_batches_per_epoch)
self.progr.start_epoch(epoch, ['loss', 'tr_acc'])
loss = torch.tensor(self._forward(es.mean))
tr_acc = torch.tensor(0)
self.progr.append_results([loss, tr_acc])
if es.countiter % self.num_batches_per_epoch == 0:
param = torch.tensor(es.mean).to(torch.float32).to(self.device)
self._set_parameters(param)
te_loss, te_acc = calc_loss_accuracy(self.net, self.preprocess, self.test_loader)
tr_loss, tr_acc = calc_loss_accuracy(self.net, self.preprocess, self.train_loader)
self.avg_loss = self.progr.progress_report(
te_acc, tr_loss, self.options['popsize'], self.cost_pmodify, self.cost_forward
)
def _init_param(self):
param_list = []
for mod in self.net.modules():
if len(list(mod.modules())) > 1:
continue
for p in arch.target_parameters(mod):
param_list.append(p.flatten().detach().cpu())
return torch.cat(param_list)
def _set_parameters(self, param):
nVariation = 1
idx_start = 0
for p in arch.target_parameters(self.net):
psh = p[0].shape
length = math.prod(psh)
extracted = param[idx_start:idx_start+length]
extracted = extracted.reshape((nVariation,) + psh)
p.data = extracted.data
idx_start += length
def perform_test(self):
correct_test_list = []
for i, (input, label) in enumerate(self.test_loader):
input = self.preprocess(input)
output_test = self.net(input[None])
correct_test = self.net.accuracy(output_test[0], label)
correct_test_list.append(correct_test.item())
return np.mean(correct_test_list)
def _get_inputs_label(self):
try:
self.inputs, self.label = self.train_loader.__next__()
except StopIteration:
self.train_loader.__iter__()
self.inputs, self.label = self.train_loader.__next__()
def _forward(self, solution):
input = self.preprocess(self.inputs)
solution = torch.from_numpy(solution).to(torch.float32).to(self.device)
self._set_parameters(solution)
expanded_input = torch.cat((input[None], ))
output = self.net(expanded_input)
loss = self.net.criterion(output[0], self.label).item()
return loss
def _fitness_func(self, solution):
if self.counter == 0:
self._get_inputs_label()
self.counter += 1
self.cost_pmodify += 1
self.cost_forward += self.inputs.shape[0]
return self._forward(solution)
class ReportProgress():
def __init__(self, cfg, outfile):
self.start_time = time.time()
self.outfile = cfg.logdir + outfile
dt = datetime.datetime.fromtimestamp(self.start_time)
self._print(dt)
self._print(cfg)
def set_header(self, msg_append, fmt_append):
msg = 'epoch\ttime'
msg += msg_append
self.fmt = ('{:d}', '{:.2f}')
self.fmt += fmt_append
self._print(msg)
return self
def start_epoch(self, epoch, columns):
self.epoch = epoch
self.results = pd.DataFrame(columns=columns)
def append_results(self, results):
appending = {k: v.item() for k, v in zip(self.results.columns, results)}
app_se = pd.Series(appending)
self.results.loc[len(self.results)] = app_se
def progress_report(self, *direct_values):
elapsed_time = time.time() - self.start_time
mean_results = self.results.mean()
to_report = [self.epoch+1, elapsed_time]
to_report.extend([v for v in mean_results])
to_report.extend(direct_values)
msg = ''
for v, f in zip(to_report, self.fmt):
msg += f.format(v) + '\t'
self._print(msg[:-1])
loss_mean = self.results['loss'].mean()
return loss_mean
def report_msg(self, msg):
self._print(msg)
def _print(self, msg):
print(msg)
if self.outfile is not None:
with open(self.outfile, 'a') as f:
print(msg, file=f)
class TensorsLoader:
''' tensors: a list of tensors '''
def __init__(self, tensors, batch_size=1, shuffle=False):
self.tensors = tensors
self.batch_size = batch_size
self.shuffle = shuffle
self.data_size = tensors[0].shape[0]
def __iter__(self):
self._i = 0
if self.shuffle:
index_shuffle = torch.randperm(self.data_size)
self.tensors = [tensor[index_shuffle] for tensor in self.tensors]
return self
def __next__(self):
i1 = self.batch_size * self._i
i2 = min(self.batch_size * (self._i + 1), self.data_size)
if i1 >= self.data_size:
raise StopIteration()
self._i += 1
return [tensor[i1:i2] for tensor in self.tensors]
def calc_loss_accuracy(net_chip, preprocess, data_loader):
loss_list, correct_list = [], []
for i, (input, label) in enumerate(data_loader):
input = preprocess(input)
output = net_chip(input[None])
loss = net_chip.criterion(output[0], label)
loss_list.append(loss.item())
correct = net_chip.accuracy(output[0], label)
correct_list.append(correct.item())
return np.mean(loss_list), np.mean(correct_list)