-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsorting.py
250 lines (180 loc) · 8.31 KB
/
sorting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import math
import random
from PIL import Image, ImageFilter
import pixel_utils
from options import Options
from utils import SortParams
class SortingEngine:
"""Sorting engine class."""
def __init__(self, options: Options):
self.options = options
self.image = None
self.og_image_size = (0, 0)
self.image_size = (0, 0)
self.image_data = None
self.edge_image_data = None
self.skey = None
def make_symmetrical(self, array):
"""Make symmetrical if self.sm==True"""
if self.sm:
return array[::2] + array[::-2]
return array
def calc_bounds(self, y: int) -> tuple:
"""
Calculate bounds for sorting. It prevents sorting black parts of image when angle is nonzero.
:param y: Current y
:type y: int
:returns: Relative left bound, relative right bound, start index and end index.
:rtype: tuple
"""
start = 0
end = self.image_size[0]
yoffset = y * self.image_size[0]
if self.sort_params.a % 90 != 0:
start = round(max(self.x1-(y/self.sin_alpha)*self.sin_beta, self.x2-((self.image_size[1]-y)/self.sin_beta)*self.sin_alpha))
end = round(min(self.x1+(y/self.sin_beta)*self.sin_alpha, self.x2+((self.image_size[1]-y)/self.sin_alpha)*self.sin_beta))
return (start, end, yoffset+start, yoffset+end)
def sort_image(self, *, sort_params: SortParams, image: Image, og_image_size: tuple) -> None:
"""
Sort image.
:param sort_params: SortParams object
:type sort_params: SortParams
:param image: Image object
:type image: Image
:param og_image_size: Original image size
:type og_image_size: tuple
"""
self.sort_params = sort_params
self.image = image
self.og_image_size = og_image_size
self.image_data = list(self.image.getdata())
self.image_size = self.image.size
self.sin_alpha = math.sin(math.radians(self.sort_params.a%90))
self.sin_beta = math.sin(math.radians(90-(self.sort_params.a%90)))
self.x1 = self.og_image_size[(self.sort_params.a//90)%2]*self.sin_beta
self.y1 = self.og_image_size[(self.sort_params.a//90)%2]*self.sin_alpha
self.x2 = self.image_size[0]-self.x1
self.y2 = self.image_size[1]-self.y1
self.chunky_offset = 0
self.skey = getattr(pixel_utils, self.options.sk.value)
self.re = self.options.re.value
self.sm = self.options.sm.value
if self.options.de.value:
og_image_data = self.image_data.copy()
# red
self.image_data = [(i[0], 0, 0) for i in og_image_data]
getattr(self, self.options.sg.value+"_sort")()
self.image_data = [(self.image_data[i][0], og_image_data[i][1], og_image_data[i][2]) for i in range(len(og_image_data))]
og_image_data = self.image_data.copy()
# green
self.image_data = [(0, i[1], 0) for i in og_image_data]
getattr(self, self.options.sg.value+"_sort")()
self.image_data = [(og_image_data[i][0], self.image_data[i][1], og_image_data[i][2]) for i in range(len(og_image_data))]
og_image_data = self.image_data.copy()
# blue
self.image_data = [(0, 0, i[2]) for i in og_image_data]
getattr(self, self.options.sg.value+"_sort")()
self.image_data = [(og_image_data[i][0], og_image_data[i][1], self.image_data[i][2]) for i in range(len(og_image_data))]
og_image_data = self.image_data.copy()
else:
# execute sort method
getattr(self, self.options.sg.value+"_sort")()
self.image.putdata(self.image_data)
self.image_data = None
self.edge_image_data = None
def none_sort(self) -> None:
"""Sort with none segmentation."""
to_sort = []
for y in range(self.image_size[1]):
rstart, rend, start, end = self.calc_bounds(y)
to_sort.extend(self.image_data[start:end])
to_sort.sort(key=self.skey, reverse=self.re)
index = 0
for y in range(self.image_size[1]):
rstart, rend, start, end = self.calc_bounds(y)
self.image_data[start:end] = self.make_symmetrical(to_sort[index:index+end-start])
index += end-start
def row_sort(self) -> None:
"""Sort with row segmentation."""
for y in range(self.image_size[1]):
# rstart, rend - relative x
# start, end - absolute x
rstart, rend, start, end = self.calc_bounds(y)
row = self.image_data[start:end]
row.sort(key=self.skey, reverse=self.re)
if self.sm:
row = self.make_symmetrical(row)
self.image_data[start:end] = row
# it works faster than accessing self.image_data directly
def edge_sort(self) -> None:
"""Sort with edge segmentation."""
self.edge_image_data = list(self.image.filter(ImageFilter.FIND_EDGES).getdata())
t = self.sort_params.t
of = self.sort_params.of
for y in range(self.image_size[1]):
rstart, rend, start, end = self.calc_bounds(y)
row = self.image_data[start:end]
edge_row = self.edge_image_data[start:end]
segment_begin = 0
for x in range(len(row)):
if pixel_utils.lightness(edge_row[min(x-of, len(row)-1)]) > t*255 or x==len(row)-1:
if x - segment_begin > 1:
row[segment_begin:x] = self.make_symmetrical(sorted(row[segment_begin:x], key=self.skey, reverse=self.re))
if x != 0:
segment_begin = x+1
self.image_data[start:end] = row
def melting_sort(self) -> None:
"""Sort with melting segmentation."""
sz = self.sort_params.sz
for y in range(self.image_size[1]):
rstart, rend, start, end = self.calc_bounds(y)
row = self.image_data[start:end]
width = sz*self.og_image_size[0]*(1-(0.5*(random.random()+0.5)))
x = 0
while x < len(row):
last_x = round(x)
x += width*random.random() if x == 0 else width
row[last_x:round(x)] = self.make_symmetrical(sorted(row[last_x:round(x)], key=self.skey, reverse=self.re))
self.image_data[start:end] = row
def blocky_sort(self) -> None:
"""Sort with blocky segmentation."""
sz = self.sort_params.sz
r = self.sort_params.r
for y in range(self.image_size[1]):
rstart, rend, start, end = self.calc_bounds(y)
row = self.image_data[start:end]
block_size = sz*self.og_image_size[0]
offset = round(block_size*r*(random.random() - 0.5))
x = (rstart//block_size)*block_size
first_iter = True
while x < rend:
last_x = max(round(x)-rstart, 0)
x += block_size + offset * first_iter
x = max(x, rstart)
if max(0, rend-x) <= -offset+1:
x -= offset
row[last_x:round(x)-rstart] = self.make_symmetrical(sorted(row[last_x:round(x)-rstart], key=self.skey,
reverse=(y//block_size)%2 != self.re))
first_iter = False
self.image_data[start:end] = row
def chunky_sort(self) -> None:
"""Sort with chunky segmentation."""
l = self.sort_params.l
r = self.sort_params.r
chunky_offset = 0
for y in range(self.image_size[1]):
rstart, rend, start, end = self.calc_bounds(y)
if rend-rstart < 2:
continue
row = self.image_data[start:end]
offset = 0
x = -(l-chunky_offset)
while x < len(row):
last_offset = offset
offset = round(l*r*(random.random() - 0.5))
last_x = round(max(x, 0))
x += l
row[last_x+last_offset:round(x+offset)] = self.make_symmetrical(sorted(row[last_x+last_offset:round(x+offset)], key=self.skey,
reverse=self.re))
chunky_offset = (((((len(row) - chunky_offset) // l)+1) * l) + chunky_offset) % len(row)
self.image_data[start:end] = row