-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstart.py
554 lines (475 loc) · 24.6 KB
/
start.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
import yaml
import subprocess
import os
import re
import pathlib
import sys
import argparse
from collections import defaultdict
from difflib import SequenceMatcher
import time
import threading
import importlib
from multiprocessing import Process
try:
importlib.import_module('rich')
except ImportError:
activate_script = os.path.join("CaloEnv", "bin", "activate")
if not os.path.exists(activate_script):
print(f"Virtual environment activation script not found at {activate_script}")
sys.exit(1)
# Use the appropriate shell to activate the virtual environment
# The current process is replaced by the new shell in a subshell.
subprocess.run(["bash", "-c", f"source {activate_script} && exec python {' '.join(sys.argv)}"], shell=False)
sys.exit() # Exit after running the subprocess to avoid continuing with the current script execution
from rich.progress import Progress, BarColumn, TextColumn, TimeRemainingColumn, TimeElapsedColumn, SpinnerColumn
from rich.console import Console
import logging
from rich.logging import RichHandler
from rich.style import Style
from itertools import cycle
from rich.traceback import install
install()
from rich import print
from rich.panel import Panel
# Define a list of colors to cycle through
COLORS = ["red", "green", "yellow", "blue", "magenta", "cyan", "white"]
settings_colors = []
console = Console()
FORMAT = "%(message)s"
logging.basicConfig(
level="NOTSET", format=FORMAT, datefmt="[%X]", handlers=[RichHandler()]
)
log = logging.getLogger("rich")
def source_environment(script_path):
"""Source the script and return the updated environment variables."""
command = f"source {script_path} && env"
proc = subprocess.Popen(command, shell=True, executable="/bin/bash", stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = proc.communicate()
if proc.returncode != 0:
raise RuntimeError(f"Failed to source environment: {err.decode().strip()}")
env = {}
for line in out.decode().splitlines():
key, _, value = line.partition("=")
env[key] = value
return env
def load_root_environment():
"""Ensure the ROOT environment is loaded."""
try:
# Check if ROOT is already loaded
subprocess.run(['root-config', '--version'], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
log.info(f"ROOT environment is already loaded.")
except (subprocess.CalledProcessError, FileNotFoundError):
# Load ROOT environment
root_setup_script = "/software/nstrangmann/root/bin/thisroot.sh" # Update this path
if os.path.exists(root_setup_script):
new_env = source_environment(root_setup_script)
os.environ.update(new_env)
log.info(f"ROOT environment loaded successfully.")
else:
raise FileNotFoundError("ROOT environment setup script not found.")
# Do Event mixing (takes MB and triggered trees, mixes them using Gale-Shapley stable matching algorithm as root files)
def do_event_mixing():
print("nothing")
# Read Cuts.yaml file to create folders in IsoGammaJet: In all folders (datasets) create folder for each yaml config
def create_folders():
print("nothing")
# Function to read YAML files
def read_yaml(file_path):
with open(file_path, 'r') as file:
return yaml.safe_load(file)
# def find_files(directory, pattern, output_file):
# with open(output_file, 'w') as f:
# for root, dirs, files in os.walk(directory):
# print(f"Searching in: {root}") # Debug statement
# for file in files:
# if file.endswith(pattern):
# file_path = os.path.join(root, file)
# print(f"Found: {file_path}") # Debug statement
# f.write(file_path + '\n')
# if __name__ == "__main__":
# directory = "/alf/data/nstrangmann/CalorimeTree/Input" # Replace with the path to your directory
# pattern = "_101_Charged.root"
# output_file = "output.txt" # Output file name
# find_files(directory, pattern, output_file)
def clear_logs():
# Delete all existing log files before starting new jobs
for root, dirs, files in os.walk("./"):
for file in files:
if file.endswith("CutsAnalysis.log"):
os.remove(os.path.join(root, file))
def hadd_root_files(input_folder, output_file):
# Collect all ROOT files in the given folder
root_files = [f for f in os.listdir(input_folder) if (f.startswith('HistosFromTree_') and f.endswith('.root'))]
if not root_files:
raise RuntimeError("No ROOT files found in the specified folder.")
# Create the full paths for the ROOT files
root_files = [os.path.join(input_folder, f) for f in root_files]
# Construct the hadd command
command = ['hadd', '-f', output_file ] + root_files
# Execute the hadd command
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
log.error("Error running hadd:")
log.error(result.stderr.decode('utf-8'))
raise RuntimeError("hadd failed")
else:
print(f"Successfully combined ROOT files into {output_file}")
# Delete the original ROOT files
for root_file in root_files:
try:
os.remove(root_file)
# log.info(f"Want to delete file: {root_file}")
except OSError as e:
log.error(f"Error deleting file {root_file}: {e}")
def run_macro(dataset, setting, cut, nSplit, task_id, progress, runOptions):
processes = []
progress_values = [0] * nSplit # Initialize progress list for all jobs
doIsoGamma = runOptions['doIsoGamma']
doJets = runOptions['doJets']
doGGPi0 = runOptions['doGGPi0']
domPi0 = runOptions['domPi0']
doPlotting = runOptions['doPlotting']
doAnalysisExclGammaJet = runOptions['doAnalysisExclGammaJet']
doPlottingExclGammaJet = runOptions['doPlottingExclGammaJet']
def monitor_progress():
while any(process.poll() is None for _, process in processes):
for iJob, process in processes:
log_file = f"{dataset}/{setting}/{cut}/log_{iJob}_CutsAnalysis.log"
if os.path.exists(log_file):
with open(log_file, 'r') as f:
lines = f.readlines()
for line in reversed(lines):
match = re.search(r'\[(\d+(\.\d+)?)%\]', line)
if match:
progress_value = float(match.group(1))
progress_values[iJob - 1] = progress_value
break
min_progress = min(progress_values)
progress.update(task_id, completed=min_progress)
time.sleep(0.5) # Adjust the sleep time as needed
for iJob in range(1, nSplit + 1):
command = f'srun --partition=short --job-name=ct_{iJob} --output={dataset}/{setting}/{cut}/log_{iJob}_CutsAnalysis.log root -b -q ./Analysis/makeHistosFromTree\_C.so\(\\"{dataset}/{setting}/{cut}\\"\,\{iJob}\)'
# if none of the analysis options are enables, just run a dummy job
if not (doIsoGamma or doJets or doGGPi0 or domPi0):
command = f'echo "Dummy job {iJob}. Nothing to see here!" >> {dataset}/{setting}/{cut}/log_{iJob}_CutsAnalysis.log'
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
processes.append((iJob, process))
if (doIsoGamma or doJets or doGGPi0 or domPi0):
time.sleep(0.2)
progress_thread = threading.Thread(target=monitor_progress)
progress_thread.start()
# Wait for all subprocesses to complete
for _, process in processes:
process.wait()
# Ensure the progress is marked as 100% upon completion
progress.update(task_id, completed=100)
progress_thread.join() # Wait for the progress monitoring thread to complete
if doIsoGamma or doJets or doGGPi0 or domPi0:
hadd_root_files(f'{dataset}/{setting}/{cut}', f'{dataset}/{setting}/{cut}/HistosFromTree.root')
if doPlotting:
command = f'srun --partition=vip --job-name=ctp --output={dataset}/{setting}/{cut}/log_plot_CutsAnalysis.log root -b -q ./Analysis/plotHistosFromTree\_C.so\(\\"{dataset}/{setting}/{cut}\\"\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
log.error(result.stderr)
raise RuntimeError("plotHistosFromTree.C failed")
if doAnalysisExclGammaJet:
command = f'srun --partition=vip --job-name=ctp --output={dataset}/{setting}/{cut}/log_AnalysisExclGammaJet.log root -b -q ./Analysis/analyseExclGammaJet\_C.so\(\\"{dataset}/{setting}/{cut}\\"\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
log.error(result.stderr)
raise RuntimeError("analyseExclGammaJet.C failed")
if doPlottingExclGammaJet:
command = f'srun --partition=vip --job-name=ctp --output={dataset}/{setting}/{cut}/log_PlottingExclGammaJet.log root -b -q ./Analysis/plotExclGammaJet\_C.so\(\\"{dataset}/{setting}/{cut}\\"\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
if result.returncode != 0:
log.error(result.stderr)
raise RuntimeError("plotExclGammaJet.C failed")
def run_multiple_macros(jobs , runOptions):
color_cycle = cycle(COLORS) # Create a cycle iterator for colors
trainconfig_colors = {}
console = Console()
bar_columns = {}
# Initialize a single Progress object
with Progress(
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
TimeRemainingColumn(),
console=console
) as progress:
tasks = {}
processes = []
for job in jobs:
dataset, trainconfig, cut, nSplit = job[:4] # Ensure we only unpack the expected number of elements
nSplit = int(nSplit) # Ensure nSplit is an integer
description = f"{dataset}, {trainconfig}, {cut}"
# Temporarily update progress columns to include the custom BarColumn
progress.columns = (
SpinnerColumn(),
TextColumn("[progress.description]{task.description}"),
BarColumn(),
TimeRemainingColumn(),
)
# Assign a new color if not already assigned
if trainconfig not in trainconfig_colors:
color = next(color_cycle)
style = f"[{color}]"
trainconfig_colors.update({trainconfig : style})
# Create a new task with a styled description
task_id = progress.add_task(f"{trainconfig_colors[trainconfig]}{description}[/]", total=100)
tasks[description] = task_id
process = Process(target=run_macro, args=(dataset, trainconfig, cut, nSplit, task_id, progress, runOptions))
processes.append(process)
process.start()
for process in processes:
process.join()
def check_files_need_distributing(subdirectory, nSplit):
max_i = -1
pattern = re.compile(r'_group_(\d+)')
# Iterate through the files in the given subdirectory
for filename in os.listdir(subdirectory):
match = pattern.search(filename)
if match:
i = int(match.group(1))
if i > max_i:
max_i = i
return max_i != nSplit
def delete_existing_grouped_files(subdirectory):
pattern = "_group_"
# Iterate through the files in the given subdirectory
for filename in os.listdir(subdirectory):
if pattern in filename:
file_path = os.path.join(subdirectory, filename)
if os.path.isfile(file_path):
os.remove(file_path)
log.info(f"Deleted file: {file_path}")
def get_file_size(file_path):
if os.path.isfile(file_path):
return os.path.getsize(file_path)
else:
return 0
def distribute_files_evenly(file_groups, num_output_files):
# Sort groups by the size of the main files (excluding _histos_)
file_groups.sort(key=lambda x: get_file_size(x[0]), reverse=True)
output_files = [[] for _ in range(min(num_output_files, len(file_groups)))]
output_sizes = [0] * len(output_files)
for main_file, histos_file in file_groups:
smallest_file_idx = output_sizes.index(min(output_sizes))
output_files[smallest_file_idx].append(main_file)
if histos_file:
output_files[smallest_file_idx].append(histos_file)
output_sizes[smallest_file_idx] += get_file_size(main_file)
return output_files
def distribute_files(analysisdirectory, inputdatapath, trainconfig, num_output_files):
analysisdirectory+='/InputFiles'
if check_files_need_distributing(analysisdirectory, num_output_files):
log.info(f"Distributing files for {analysisdirectory}...")
delete_existing_grouped_files(analysisdirectory)
else:
log.info(f"Files in {analysisdirectory} do not need to be redistributed")
return
input_file=inputdatapath + '/InputFiles_GammaIsoTree_' + trainconfig + '.txt'
input_path = pathlib.Path(input_file).resolve()
input_directory = input_path.parent
try:
with open(input_path, 'r') as f:
file_paths = [line.strip() for line in f.readlines()]
except FileNotFoundError:
log.fatal(f"The file {input_file} does not exist.")
# Group files by their main part (excluding _histos_)
file_dict = defaultdict(lambda: [None, None])
for path in file_paths:
if "_histos_" in path:
main_path = path.replace("_histos_", "_")
file_dict[main_path][1] = path
else:
file_dict[path][0] = path
# Create list of pairs (main file, histos file or None)
file_groups = [(main_file, histos_file) for main_file, histos_file in file_dict.values() if main_file]
if len(file_groups) < num_output_files:
log.warning(f"Warning: Number of input file groups ({len(file_groups)}) is less than the number of requested output files ({num_output_files}). Creating {len(file_groups)} output files instead.")
num_output_files = len(file_groups)
distributed_files = distribute_files_evenly(file_groups, num_output_files)
for i, file_group in enumerate(distributed_files):
output_file_name = f"InputFiles_group_{i+1}{input_path.suffix}"
output_file_path = f"{analysisdirectory}/{output_file_name}"
with open(output_file_path, 'w') as f:
for path in file_group:
f.write(f"{path}\n")
log.info(f"Distributed paths into {num_output_files} files in the directory: {analysisdirectory}")
def compile_makeHistosFromTree():
command = 'root -q -b -x ./Analysis/makeHistosFromTree.C+\(\\"\\"\,\-1\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# if compilation fails, raise an error and print the whole compilation output
if result.returncode != 0:
log.error("Error compiling makeHistosFromTree.C:")
log.error("Error message reads:")
log.exception(result.stderr)
raise RuntimeError("Compilation failed")
def compile_plotHistosFromTree():
command = 'root -q -b -x ./Analysis/plotHistosFromTree.C+\(\\"\\"\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# if compilation fails, raise an error and print the whole compilation output
if result.returncode != 0:
log.error("Error compiling plotHistosFromTree.C:")
log.error("Error message reads:")
log.exception(result.stderr)
raise RuntimeError("Compilation failed")
def compile_analyseExclGammaJet():
command = 'root -q -b -x ./Analysis/analyseExclGammaJet.C+\(\\"\\"\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# if compilation fails, raise an error and print the whole compilation output
if result.returncode != 0:
log.error("Error compiling analyseExclGammaJet.C:")
log.error("Error message reads:")
log.exception(result.stderr)
raise RuntimeError("Compilation failed")
def compile_plotExclGammaJet():
command = 'root -q -b -x ./Analysis/plotExclGammaJet.C+\(\\"\\"\)'
result = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
# if compilation fails, raise an error and print the whole compilation output
if result.returncode != 0:
log.error("Error compiling plotExclGammaJet.C:")
log.error("Error message reads:")
log.exception(result.stderr)
raise RuntimeError("Compilation failed")
def check_and_create_folder(folder_path):
# Check if the folder exists
if not os.path.exists(folder_path):
# If the folder does not exist, create it
os.makedirs(folder_path)
log.info(f"Folder '{folder_path}' created.")
else:
log.info(f"Folder '{folder_path}' already exists.")
def run_debug(doPlotting, doAnalysisExclGammaJet, doPlottingExclGammaJet):
process = subprocess.run('root -b -q -x ./Analysis/makeHistosFromTree.C\(\\"DummyDataSet/DummyTrainConfig/Standard\\"\,\\0\\)', shell=True)
process = subprocess.run('mv DummyDataSet/DummyTrainConfig/Standard/HistosFromTree_0.root DummyDataSet/DummyTrainConfig/Standard/HistosFromTree.root', shell=True)
if doPlotting:
process = subprocess.run('root -b -q -l ./Analysis/plotHistosFromTree.C\(\\"DummyDataSet/DummyTrainConfig/Standard\\"\\)', shell=True, check=True)
if doAnalysisExclGammaJet:
process = subprocess.run('root -b -q -l ./Analysis/analyseExclGammaJet.C\(\\"DummyDataSet/DummyTrainConfig/Standard\\"\\)', shell=True, check=True)
if doPlottingExclGammaJet:
process = subprocess.run('root -b -q -l ./Analysis/plotExclGammaJet.C\(\\"DummyDataSet/DummyTrainConfig/Standard\\"\\)', shell=True, check=True)
def run_combineExclGammaJet(analysis_directory, config_yaml):
process = subprocess.run(f'root -x -q -b ./Analysis/combineExclGammaJet.C\(\\"{analysis_directory}\\"\,\\"{config_yaml}\\"\)', shell=True, check=True)
# Function to parse command line arguments
def parse_args():
parser = argparse.ArgumentParser(description='Script for processing datasets.')
parser.add_argument('--debug', action='store_true', help='Enable debug mode')
parser.add_argument('--config', type=str, help='Path to the configuration file, defaults to RunConfig.yaml', default='RunConfig.yaml')
return parser.parse_args()
# Main function
def main():
args = parse_args()
doDebug = args.debug
# Ensure ROOT environment is loaded
load_root_environment()
analysis_config = read_yaml(args.config)
doPlotting = analysis_config.get('doPlotting')
doIsoGamma = analysis_config.get('doIsoGamma')
doJets = analysis_config.get('doJets')
doGGPi0 = analysis_config.get('doGGPi0')
domPi0 = analysis_config.get('domPi0')
doAnalysisExclGammaJet = analysis_config.get('doAnalysisExclGammaJet')
doPlottingExclGammaJet = analysis_config.get('doPlottingExclGammaJet')
doCombineExclGammaJet = analysis_config.get('doCombineExclGammaJet')
log.info("Starting the analysis...")
log.info("Detected options:")
log.info(f"doIsoGamma: {doIsoGamma} | doJets: {doJets} | doGGPi0: {doGGPi0} | domPi0: {domPi0} | doPlotting: {doPlotting} | doAnalysisExclGammaJet: {doAnalysisExclGammaJet} | doPlottingExclGammaJet: {doPlottingExclGammaJet} | doCombineExclGammaJet: {doCombineExclGammaJet}")
if doDebug:
run_debug(doPlotting, doAnalysisExclGammaJet, doPlottingExclGammaJet)
exit()
cuts_config = read_yaml('Cuts.yaml')
# only compile what is needed for the selected options
if doIsoGamma or doJets or doGGPi0 or domPi0:
log.info("Compiling makeHistosFromTree.C...")
compile_makeHistosFromTree()
if doPlotting:
log.info("Compiling plotHistosFromTree.C...")
compile_plotHistosFromTree()
if doAnalysisExclGammaJet:
log.info("Compiling analyseExclGammaJet.C...")
compile_analyseExclGammaJet()
if doPlottingExclGammaJet:
log.info("Compiling plotExclGammaJet.C...")
compile_plotExclGammaJet()
nSplit = analysis_config.get('nParallelJobsPerVar', 1)
log.info(f"Running {nSplit} parallel jobs per variation.")
# Clear all existing log files
clear_logs()
# Keep track of processed MC productions to ensure distribute_files runs only once per MC production
processed_settings = set()
jobs = []
for dataset, settings in analysis_config.items():
if not isinstance(settings, dict):
continue
if 'trainconfigs' not in settings:
continue
# Now we know this is actually a dataset
inputdatapath = settings.get('path', None)
for trainconfig, cut in settings['trainconfigs'].items():
trainconfigdir = f'{dataset}/{trainconfig}'
if (dataset, trainconfig) not in processed_settings and cut != 'disabled':
if not inputdatapath:
log.warning(f"No path specified for dataset {dataset}. Skipping.")
continue
check_and_create_folder(f'{trainconfigdir}/InputFiles')
distribute_files(trainconfigdir, inputdatapath, trainconfig, nSplit)
processed_settings.add((dataset, trainconfig))
if cut == 'disabled':
continue
# elif cut == 'Standard':
# check_and_create_folder(f'{trainconfigdir}/{cut}')
# jobs.append((dataset, trainconfig, cut, nSplit))
elif cut == 'full':
for cut_name in cuts_config.keys():
check_and_create_folder(f'{trainconfigdir}/{cut_name}')
jobs.append((dataset, trainconfig, cut_name, nSplit))
else:
# split string comma separated to extract multiple cuts
try:
cuts = cut.split(',')
# if it does not work for any reason, just continue
except:
log.warning(f"Could not split cuts for {dataset}/{trainconfig}. Skipping.")
continue
for cut_name in cuts:
# remove all white spaces from cut_name
cut_name = cut_name.replace(" ", "")
# check if cut name is in cuts_config.keys(). If it is not, if one found an entry that is onlye different by one character ask "Did you mean ..."
foundCut = False
similarCut = ""
simScore = 0
for cut_name_config in cuts_config.keys():
if cut_name_config.lower() == cut_name.lower():
cut_name = cut_name_config
foundCut = True
break
# if you found a match that is similar (only one character different) ask if the user meant that
else:
s = SequenceMatcher(None, cut_name_config.lower(), cut_name.lower()).ratio()
if s > simScore:
similarCut = cut_name_config
simScore = s
if not foundCut:
log.error(f'Cut "{cut_name}" not found in Cuts.yaml. Skipping.')
if similarCut:
log.error(f'Did you maybe mean "{similarCut}" (y or n)?')
# wait for user interaction
usrInp = input("(y or n)")
if usrInp == "y":
cut_name = similarCut
foundCut = True
else:
continue
if foundCut:
check_and_create_folder(f'{trainconfigdir}/{cut_name}')
jobs.append((dataset, trainconfig, cut_name, nSplit))
runOptions = { 'doIsoGamma': doIsoGamma, 'doJets': doJets, 'doGGPi0': doGGPi0, 'domPi0': domPi0, 'doPlotting': doPlotting, 'doAnalysisExclGammaJet': doAnalysisExclGammaJet, 'doPlottingExclGammaJet': doPlottingExclGammaJet }
run_multiple_macros(jobs,runOptions)
# combine excl gamma jet
if doCombineExclGammaJet:
curDir = os.getcwd()
run_combineExclGammaJet(curDir, args.config)
if __name__ == "__main__":
main()