|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "execution_count": 1, |
| 6 | + "metadata": {}, |
| 7 | + "outputs": [], |
| 8 | + "source": [ |
| 9 | + "%matplotlib inline" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "\n", |
| 17 | + "Simple axes example\n", |
| 18 | + "====================\n", |
| 19 | + "\n", |
| 20 | + "This example shows a couple of simple usage of axes.\n", |
| 21 | + "\n", |
| 22 | + "\n" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "code", |
| 27 | + "execution_count": 2, |
| 28 | + "metadata": {}, |
| 29 | + "outputs": [ |
| 30 | + { |
| 31 | + "data": { |
| 32 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAD7CAYAAABKfn7LAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzt3WlQVFf+PvCnafalgRZlUURABMEVUURwcIFonMQtOiYao8lkzCQ1U5OZmtdTlu+mMlPxl6UmE1NWHBOXGBUnToIbAiIkCNooEMAWGkFBGqQXZe++/xdU379tI3YjRE/yfKqokrv0/XbT/fS555x7VUiSBCIiEofb0y6AiIhcw+AmIhIMg5uISDAMbiIiwTC4iYgEw+AmIhIMg5uISDAMbiIiwTC4iYgE4+7KxiEhIdKUKVPGqBQiol+28vLydkmSxj9uO5eCe8qUKSgrKxt5VURE9EgKhaLRme3YVUJEJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYNyfdgH083H8+HFotVr86U9/gqenJwBAo9EgJydH3mbq1Kl49dVXn1aJRE45cOAA6urq5N/Xrl2LOXPmAABMJhM++OADLFq0CMuWLXsq9TG4aVTcvn0bV69exXPPPSeH9oMSEhIQFhYGtVo95P51dXUoLi5GS0sLJEnC+PHjMX/+fPnD4gyLxYJLly6htbUVra2t0Ov1sFgsWL16NZKTk0f83IbS39+PoqIiVFZWwmg0wsvLC1OmTMGSJUswfvx4px9Hr9ejsrJSrtloNAIA/va3v8HNbXRPiPV6PfLz86HT6dDb24vAwEDMmDEDGRkZ8PDwcOmx6urq8MMPP0Cv16OrqwsBAQEIDw9HWloaIiMjR61mjUaDS5cuQa/XQ6FQIDw8HIsWLcK0adNcepze3l6UlpaiqqoKBoMBkiQhMDAQCQkJSE1NhZ+fn932M2fOREREBFpbW1FTU2O3TqVSISUlBSUlJZg3bx4CAwOf+Hm6isFNo+LcuXPw8vJCSkrKkOsTEhIeGcKlpaX49ttv4evri1mzZkGpVKK6uho5OTloa2vDc88951QN/f39yM3NBQD4+/vD399fDsLRNDAwgP379+PmzZuIiIhAamoqTCYTqqqqUFdXh23btmHSpElOPdaNGzdQUFAANzc3qNVquLu7Y2BgYNRrbm5uxr59+2C1WpGYmAiVSoWGhgYUFBSgoaEBr732GtzdnYuDM2fO4OLFi/D19UVCQgJ8fX1x9+5d1NbW4scff8S6deswa9asJ6759OnTKC4uhkqlQnJyMiwWCyorK3HgwAGsWrUKCxYscOpxenp6sGfPHnR0dCAiIkJ+HzY2NqKwsBAajQY7duyAv7+/vM/MmTMBDH5xPBzcAJCeno7S0lIUFhbixRdffOLn6ioGNz2xjo4O1NfXIzk52eWWm8FgwOnTp+Hj44MdO3YgKCgIAJCZmYk9e/aguLgY06dPd6oV5+HhgS1btiAsLAwBAQHIz89Hfn7+SJ7SsEpKSnDz5k0kJiZi48aNUCgUAICkpCQcOnQIJ06cwDvvvCMvH87UqVPx5ptvIjQ0FB4eHti9ezcMBsOo1mu1WnHixAn09/fjlVdeQXx8PABAkiQcOXIE1dXV+P7775GRkfHYx7p37x6Ki4vh7++Pt99+266l2tDQgH379uH8+fNPHNxNTU0oLi6GWq3G7373O/j4+AAYDMx///vfOH36NKZNmya/X4ZTXl6Ojo4OzJ07F2vWrLFbl5OTA41Gg/LycmRmZjpdX0BAAGJiYnD16lVkZ2fD29vbtSf4hBjczwiNRoPa2lq0trbCbDZDqVRiwoQJmD9/vsOH4Mcff8Thw4cxadIkvP7661AqlfK6trY27NmzB97e3vj9739v98EymUwoKirC9evXYTKZ4OnpicmTJ+NXv/oVJk6caHeM3t5efP/996iqqoLRaIQkSfDz80NERATS09MREREhb3vlyhVIkoSkpCSXn/eVK1cwMDCA9PR0uw+hj48PFi9ejBMnTqCsrMyp4FYqlYiLi3O5BldIkoSysjIAQHZ2tl04JyQkICoqCo2NjdDpdIiOjn7s44WEhIxZrTaNjY3Q6/WIioqSQxsAFAoFsrOzUV1djbKyMqSnpz/2y8bWzTBx4kSH7oXo6Gh4eXnh/v37T1yz7TVevHixHNoAEBQUhAULFqCgoABXrlzB0qVLH/tYnZ2dADBk90p8fDw0Gs2Iap4xYwa0Wi0qKysfeaY5Vjir5Blx8uRJGAwGREVFYeHChZgxYwaMRiOOHTuGvLw8u22nT5+OBQsWoLm52W5df38/jhw5goGBAaxfv97ug9XS0oJPPvkEly5dwrhx45Camor4+Hg0NjZi7969uH79urytJEn44osvcP78eXh5eSE5ORnz58/HxIkT0djYiObmZrt66uvr4ebm5nT3wIMaGhoADLY8H2ZbZtvmWdDZ2Qmj0Yhx48YhODjYYf2zWPNwr3FwcDDGjRsHg8EgB9xwxo0bB6VSiVu3bqGrq8tuXWNjI3p7exETEzOmNbv6Gk+YMAEA7N7jNrYByJHUPHnyZACD7/+fGlvcz4h33nnHYeDOYrHgiy++QFFREVJSUqBSqeR1zz33nHw6GR0djalTp+J///sf9Ho9MjMz7Vp7VqsVR44cQV9fH7Zt24YpU6bI68xmMz799FOcOHEC7777Ltzd3dHW1oampiYkJCTg5ZdftqtJkiT09PTIv/f19aG1tRUhISFDDko+Tnt7O4DBQHhYQEAAPD09YTKZ0N/f73I3zFgYrt4Hl3d0dPxkNT2OMzV3dHSgo6PjkYPHNj4+PsjOzsapU6fw8ccfIyEhAT4+Pujs7ERtbS1iY2OfuM+3r69PPiMMCAgYsl7A+dc4OTkZ165dw+XLl3Hnzh05cG1nIsuXL0dCQoLLdarVanh7e6OxsdHlfZ8UW9zPiKE+MEqlEgsWLIDVanVoXbi7u2PDhg3w8PDA8ePHUVxcDI1Gg6ioKIe+urq6Oty9excLFiywC21gMBzT09Nx7949h2MMFZQKhcLu1NVsNsNqtQ75AXNGb28vADyyj9DLywsA7L4snibR6gVGv+aFCxdi06ZNsFqtKC8vR1FREaqqqqBSqTBnzhyHLpSnXa+7uzu2bduGlJQU3Lp1CyUlJSgpKcHt27cRFxc3otC28ff3x/3798dkQHk4bHE/I4xGI4qKitDQ0ACj0Yj+/n679SaTyWGfcePG4cUXX8TRo0dx+vRp+Pr64qWXXnKYRmbr2jAajUMO1tlaLnq9HnFxcRg/fjzCwsJw7do1GAwGJCQkYPLkyYiIiLDrTwcgny6P9eCMMwN9zxLR6gWcr/nixYs4d+4cUlNTsWDBAvj7+6O9vR1nz57F0aNH0draiuzs7DGu1vl6u7q68NVXX6G9vR0bNmxAbGwsJElCfX09cnNzsWfPHmzbts1hnMcZtkZMV1eX3RnxWGNwPwM6OzuxZ88edHd3IyoqCrGxsfDy8oKbmxsMBgM0Gg0sFsuQ+8bExMDLywu9vb1ISkoa8s1jC9eqqqph6+jr6wMAuLm5Ydu2bSgoKEB1dTXOnDkDYLClM3v2bGRlZcndIrZW+UhbHF5eXujq6kJPTw98fX0d1ttaX7ZW1tP2uNbes1YvMLo163Q6nDlzBtOnT8eKFSvk5eHh4Xj55Zfx4Ycfori4GCkpKUOOAfzU9QKD0wp1Op3djBpgcHDR3d0dhw4dwpkzZ7B9+3aXa7W9752dSjlaGNzPgJKSEnR1ddldnWVz7do1aDSaIfeTJAnHjx9Hb28vfH19UV5ejhkzZiAqKspuO1tr+OE37nB8fHywcuVKrFy5Enfv3oVOp0N5eTlKS0vR09OD9evXA4B8Wtzd3e3Sc7YJCQnBzZs30dHR4RDcZrMZfX19UKlUz0T/NvD/Z4E8qn/VtvxR/clPw2jWbBvMe7jLDRj8Ep84cSJ+/PFHtLS0jDi4PT09oVKpYDKZYDabHbrhXH2Nh6vZNhZ0+/btEdXa1dUFNzc3u+7DnwL7uJ8Bd+/eBTA4W+Rhww18FBcXQ6vVYtasWdi2bRvc3Nxw9OhRh9F+22yPkQ6iqNVqJCcnY/v27fD09ERtba28zt/fH35+fvIAmKtsHxytVuuwzrbMmWl1P5Xg4GAEBgaio6NjyFkYz2LNw73GnZ2d6OjoQFBQkFNBa2thPvwes7FNq3u4S81Vo/m+GK7mJ6m3r68PZrMZoaGhP3nXGIP7GWCbv6zT6eyWa7VaXL58ech9bFMB1Wo1fv3rXyM0NBQrV66EyWRCTk4OJEmSt42Pj4darcalS5eGnBIFDF7wYOtX7+zsRFtbm8M2PT09sFgsdqeFCoUCUVFR6Orqkr+AXDFnzhy4u7ujtLTU7sKT7u5uXLhwAQAc5sj29PSgvb0dZrPZ5eM9zGAwYOfOndi9e7dT2ysUCrmeM2fO2L3ONTU1aGxsxPjx4x1ad0ajEe3t7Q5jFyORn5+PnTt3On1xUVRUFMaPH4/Gxka7L11JkuRusJSUFLvwsVgsaG9vd/ib2s7mysvLHcZdrl+/jqamJri7uzvMu9+9ezd27tzp9MVFttf4woULdmdzBoMBpaWlcHd3x9y5c+326erqQnt7u0NA22rOz8+3+3tZrVb5NRzJdMBbt27BarU+lS9pdpU8A+bPn48rV67gyJEjmD59OlQqFdra2qDVapGUlITKykq77Xt6evD1118DADZs2CD39aWkpKC+vh7V1dUoKSnBokWLAAy2JjZt2oT9+/fjyy+/RGRkJMLCwuDh4QGTyYRbt26hs7MTf/3rX+Hh4YE7d+7g0KFDiIiIwIQJExAQEID79++jtrYWFovF4Qq76dOno7q6Glqt1unLkG2Cg4ORnZ2N7777Dp9++imSkpLkS95NJhMWLVrkEAI1NTXIycnBnDlzsHbtWrt1RUVFcuu/tbUVwOBFPjdv3gQwOPf2wfuW2D7IrtwXJC0tDXV1daiursaePXsQExMDo9GIqqoqeHh4YM2aNQ4tsOPHj0On02H79u12od7V1YXTp0/b/Q4AJ06ckB8jIyPD7kIdV2t2c3PDmjVrsG/fPnz11VdITExEYGAg6uvrcfv2bUyePBkLFy6028dsNuOjjz5CUFAQ3n33XXl5YmIiYmJiUF9fL08HtA1O1tXVQZIkZGVlOXR7uVpzZGQk0tLSUFJSgn/9619ITEyExWJBVVUVuru7sWrVKoerJktLS5Gfn48lS5ZgyZIl8vKsrCw0NTWhoqICLS0tctDW19dDr9fD19cXy5cvd6quB924cQPA0GfKY43B/QwIDQ3F9u3bkZeXh+vXr8NqtSIsLAybNm2Ct7e3Q3CfOHECBoMBK1assLuCEQBWr16NlpYWnDt3DlFRUfJIeWhoKN5++22UlJSgrq4OGo0GCoUC/v7+CA8Px9KlS+UPW0REBBYvXgydTgetVovu7m74+fkhPDwcqampDlcnJiYm4tSpU6ioqHA5uAEgNTUVQUFBKC4uRkVFhXyTqWXLlrl0kylg8Czl4TOXpqYmNDU1yb8/GNx37twBMDhQ5Sx3d3e89tprKCoqwrVr11BSUgIvLy8kJCRg6dKlLt1kqq+vb8gxjIqKCvnfc+bMsQvuO3fuQKFQuHSl6qRJk7Bjxw6cP38eN27cQG9vL4KCgpCZmYmMjAynB9cUCgW2bNmCS5cuobKyEjU1Nejv74ePjw/i4uKQmpqK2NhYu326u7thMpkwefJkl2ZerFixAqGhoSgtLUV5ebl8k6n09HSXbjIVGhqKt956CxcvXsSNGzdQVlYGhUIBlUqFBQsWICMjw+UZIZIk4erVqwgLCxvVm2o5S/HgqcPjpKSkSLZLUYkedOHCBZw7dw5vvfUWwsPD5eW227oONfD6LDh16hTKysrw5z//echZLc8aSZLw3nvvITo6Ghs3bnza5TiltrYWBw8exJYtW8b8lgSj7VHvX9tzWr9+/ajcUMtGoVCUS5L02Ovn2eKmUZGWloaysjKcP38emzdvdlifk5ODnJycZ+5+3DqdDvPmzRMitIHBe9F0dXU5dUOoZ4VOp0NYWJhQof3w/bgfJEkS8vPzERERId9F8KfGFjeNmsbGRjQ0NGDRokXyPO+H72esVqtHtYVCNBauXbtmN33Sdj95YLD/v7y83G7ZaHG2xc3gJiJ6Rjgb3JwOSEQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCeZne1vXkJCQIf9zUPpl0el0I/7/MImeVT/b4J4yZQp4J0N6+P+rJPo5YFcJEZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCcb9aRfwNJhMJnz44Yd4/fXXERERAQDYvXs3DAYDAGDJkiVYsmSJvL3RaMSpU6dw48YNAEBMTAxWrlyJwMDAYY9z+/ZtlJeXo7GxEUajEb6+vpg8eTKWLVuG4ODgEddfU1OD/Px8tLe3w8/PD/PmzUNGRgbc3Ib/Hi4vL0dNTQ1aW1vR09OD4OBgzJ49GwsXLoRSqRxRLQMDA8jLy8PVq1fR09ODsLAwZGdnIyoq6rH75uTkoLm5GWazGZIkITg4GMnJyZg/f/5jn8uj3Lx5E2fOnEFLSwu8vb1hNBrR398PDw+PYffTarW4ePEi9Ho9uru74efnh8jISCxZsgTjx4+XtyssLEReXh4AQKVS4S9/+QsAoKWlBXv37sUf/vCHx74viJ7UL7LFff78eURHR8uhbRMXF4c333wTycnJ8rL+/n7s27cP7e3tWLduHdatW4eOjg58/vnn6OvrG/Y4lZWVaGtrQ2pqKrZs2YKsrCy0tLTg008/hdFoHFHtWq0Whw8fxsSJE7FlyxYsXLgQhYWFOHfu3GP3LSgogL+/P55//nls3rwZSUlJOH/+PI4ePTqiWgDgxIkTuHz5MpYuXYrNmzcjICAA+/fvR2tr62P3HRgYQGpqKjZu3IhNmzYhJiYGubm5OHXq1IhquXPnDv7zn//Az88PmzdvxrJly9Dd3Y2cnJzH7tvd3Y3w8HCsWrUKW7duxfLly9HW1obPPvtM/kIHgDlz5uDNN99EXFyc3f7h4eGIiYmRQ51oLP3iWtz37t3D1atXsWnTJod1fn5+mDRpkt2y8vJydHZ24o9//CPUajUAIDQ0FB9++CHKy8uRlpb2yGOlp6fDz8/PbllkZCT+7//+Tw47V509exaTJ0/Giy++CACIjo5GX18fCgsLkZaWBn9//0fu+9Zbb9nVEx0dDWDwi6yzs9Pls4DW1lZcu3YNa9aswdy5cwEAU6ZMwccff4zz58/jlVdeGXb/DRs22P0eGxsLs9mMK1eu4Pnnn3epFmDweahUKmzcuFE+g1CpVKiqqkJGRgbCw8Mfue/MmTMxc+ZMu2UTJ07ERx99hOrqaixatEh+PJVK5fB3BYCUlBQcPHgQWVlZCAgIcLl+ImeNWXDfvXsX+fn5uHnzJu7du4eAgADExsZi+fLl8PHxAQCYzWZ88skniIyMxMsvvyzvW15ejm+++QabN2/GtGnTAAy2fPPz81FVVQWz2YyAgAAkJydj8eLFUCgUAIC+vj6cPXsWtbW1aGlpwXvvvYfQ0FCsWrUKISEhAACNRgNPT09MnTrVqedRW1uLSZMmyaENAMHBwYiMjERNTc2wwT3UhzsoKAi+vr4wmUxOHf9BRqMRra2tcmjbzJo1C+fPn8f169flAHW2HttZh8lkcjm4a2troVQqMWPGDHmZm5sbZsyYgaKiIgwMDMDd3bW3mK+v74i6SSwWC7RaLdLS0uy6fXx8fKBUKlFTUzNscD+qFgBOdyPFxsbCy8sLGo0GixcvdulYRK4Ys64Ss9kMlUqFlStXYuvWrcjMzERDQwO+/PJLeZuAgACsWbMGNTU1KCsrAwDo9Xrk5uYiNTVVDm2r1Yr9+/fj8uXLWLhwIbZs2YLk5GQUFhbi9OnT8uPl5uaiqqoKmZmZUKvVeOGFFxAWFoaenh55G61Wi8jISKfDQa/XY8KECQ7LJ0yYAL1e7/Lrotfrcf/+fbt+U1f2tR37QcHBwfDw8BhRPY2NjVAoFBg3btyI6gkKCnLoP54wYQIsFgvu3r372MeQJAlWqxU9PT2orq6GRqMZ9svwUTo7OzEwMODw2igUCqjVaqdfG6vVCovFgo6ODnzzzTfw9/e3+2IajpubGyIjI6HVal2un8gVY9bijoqKshugioyMhFqtxt69e9HS0iK3fqZNm4bU1FScOnUKEREROHHiBNRqNbKzs+V9r127hps3b+L111+XHzMmJgbAYL9tRkYG/Pz80NzcjFmzZiE5ORleXl6YPn06pk+fLj+OJEm4desWFi5c6PTz6O7uls8QHuTj42P3heAMq9WKkydPws/Pb9iW8XC12I49VD229c66c+cOvv/+e8ydO3fYLpbh6nlULQ/WO5zr16/jwIEDAAZDNiMjA5mZmSOq5cFjP1yPs6/NZ599htu3bwMA1Go1tm3bNuSZyqOEhYWhuLgYkiTJZ4JEo23MgttisaC4uBgVFRUwGAwYGBiQ13V0dNidtmZnZ6OxsRF79+6FQqHAjh077E6xtVotgoKCEBkZCavVKi+PjY1FXl4empubER8fj4iICGg0Gvj6+qKvrw9Wq9WuZd3T04P+/n6XPoiPIkmSy/t8++23aGpqwpYtW4YMmCc5pqv1mM1mHDx4EGq1GitWrHC5luGO6UotkydPxo4dO9DT04OGhgYUFxcDAJYvXz4qtbhaz7p169Db24vOzk4UFxdj//79eOONNxAUFOTU/n5+fhgYGEB3d7fc1UI02sYsuM+ePYvS0lJkZmYiMjISnp6eMJlMOHz4sF2IA4C7uzuSkpJw7tw5JCQkOHQj3L9/HwaDAbt27RryWF1dXQCAVatWwd/fH1euXEF7ezvee+89zJ49G8uXL4eHh4d8XFemvnl7ew/ZWuvp6YG3t7fTj3P27FmUl5dj7dq1iI2NdXq/Bw3Xku3p6XH6y6Crqwv79+8HALz66qvw8vIacT1DzY6xnYk4U4+3t7fczx4TEwOlUomCggLMnz8fKpXKpVqAR782znZN2babNGkS4uLisHv3bhQVFeGFF15wan9bg6O/v9+p7YlGYsyCu7KyErNnz8avfvUredmjps+1tbWhsLAQERERqKmpQU1NDRISEuT1vr6+CA4OxsaNG4fc39Ya8vT0RFZWFrKysrB3714sXrwYZ8+ehVKpRHZ2ttwCcqWL41F92Xq93ukwKCwsRFFREZ5//nnMnj3b6WMPVYvt2JGRkfJyg8GA/v5+p+rp7e3FF198ga6uLrzxxhsuheNQ9dTU1DjMk9br9VAqlXYDus6KiIiAJEkwGAwu1aZWq+Hu7u7wt5IkCZ2dnUhMTHS5Fm9vb6jVaqf66m1sXxxsbdNYGrPByf7+focBQI1G47DdwMAAjh49ipCQEPz2t7/F9OnT8d///hdms1neZurUqTAajfD09ERERITDz1AfEnd3dyxatAihoaFoa2sDMNjSDg4ORmdnp9PPIz4+Hs3NzXb7GAwG3Lx5E/Hx8Y/d/4cffkBeXh6WL1+O1NRUp487lMDAQISFheHq1at2y69evQqlUukwt/hh/f39+PLLL9HZ2YmtW7eOKFgfFB8fD4vFgqqqKnmZ1WpFZWUlYmNjXZ5RAgA6nQ4KhcLlGS5KpRJTp05FVVWVXXdad3c3BgYGnPpbPezevXtob293qRaDwYDAwMDHXvBD9CTGLLinTp2KiooKXLp0CTdu3MDJkyfR1NTksN3p06dx9+5dvPTSS1AqlVi9ejXc3d1x7NgxuW9y5syZiIyMxL59+1BSUoL6+npcv34dpaWl2L9/v3xa+tlnn+HChQuoq6tDb28v8vPz0draatc1ERUVhVu3bjn9PJKTkxEUFISDBw+ipqYGtbW1OHjwIAIDA5GSkiJvZ+vKKSgokJdVVlYiNzcXU6dORXR0NJqbm+Wfh1uGn3/+OXbv3v3YepYvX47GxkZ888030Ol0KCkpQWFhIVJTU+0GGAsKCrBr1y67i0cOHz6MpqYmLFmyBP39/Xb13L9/3+657Ny5E/n5+cPWEhYWhhkzZiA3NxeXL19GfX09vv76axgMBoc56h988AH27dsn/15XV4evvvoKGo0GDQ0NqK2txcmTJ1FSUoJ58+bZzYPOycnBzp07H/vaLFmyBEajEUeOHEF9fT0uX74Mk8mExMREu4utKioqsGvXLuh0OnnZoUOHUFBQgJqaGjQ0NKCsrAyff/453Nzc5DnczmhubnbqqlGiJzFmXSWrVq0CAPmKvri4OLz00kvYs2cWVVyBAAAEVElEQVSPvE1dXR1KS0uxevVqeZ61j48P1q9fj3379uHixYvIyMiAUqnE1q1bUVRUJF8Q4+npieDgYEybNk3us46KikJVVRWKiopw9+5dVFdXY+XKlXYt3aSkJHnA1JkBJ09PT2zbtg25ubk4fvw4JEmSL3n39PS029ZqtdoNhGm1WkiSBK1W6zBFbMqUKdi+fbv8e19fn1MzO+Li4vCb3/wG+fn50Gg08Pf3x+LFix3mDdum2T3IVsN3333n8Lhr167FnDlz5FoAOFXPmjVrkJeXh7y8PPT09CA0NBSvvvqqw5zph18btVoNSZKQl5eH+/fvw9vbG+PGjcO6descLoRx9rUJCwvD1q1bcebMGRw4cABeXl7w8fHBunXr7LYb6rWZNGkSqqqqUFJSAovFApVKhSlTpmDx4sVOD0wajUbcuXMHy5Ytc2p7ohGTJMnpn3nz5kmieFStVqtV2r17t1RQUGC3/P3335eOHTsmWSwWyWq1/hQlynp7e6Vdu3ZJlZWVP+lxH6WsrEz6+9//LvX19T3tUiRJkqR//OMfUlFR0Yj2He33rNVqlSwWi3Ts2DHpn//8p926CxcuSO+//75ksVhG9Zj0ywGgTHIii39xl7wrFAosXboUp06dQlpaml1fZEVFBSoqKhxuMjXWmpqaEBwcPKIBtLGg0+kcXpunpaOjAwMDA5g/f/7TLgUAcOHCBbubTNkMDAzghx9+QFZW1ohvkEXkLIXkwhzXlJQUyXaF47MuJSUFj6pVkiQUFxdj2rRp8kyMO3fuwGKxABi8opP3mvh5GO59MBJms1keOFcqlQgNDQUAtLe3o6amBunp6bzwhkZMoVCUS5KU8rjtfnEtbmCw1Z2enm63zPYBJBrOo77UQ0JCkJGR8RQqol8intMREQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBj3p13AWNHpdEhJSXnaZdBTptPpnnYJRKPuZxvc7e3tT7sEIqIxwa4SIiLBMLiJiATD4CYiEgyDm4hIMAxuIiLBMLiJiATD4CYiEgyDm4hIMAxuIiLBMLiJiATD4CYiEgyDm4hIMAxuIiLBMLiJiATD4CYiEgyDm4hIMAxuIiLBMLiJiATD4CYiEgyDm4hIMAxuIiLBMLiJiATD4CYiEgyDm4hIMAxuIiLBMLiJiASjkCTJ+Y0VCj2AxrErh4joFy1KkqTxj9vIpeAmIqKnj10lRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESC+X9lEqEIFiGZqQAAAABJRU5ErkJggg==\n", |
| 33 | + "text/plain": [ |
| 34 | + "<Figure size 432x288 with 2 Axes>" |
| 35 | + ] |
| 36 | + }, |
| 37 | + "metadata": {}, |
| 38 | + "output_type": "display_data" |
| 39 | + } |
| 40 | + ], |
| 41 | + "source": [ |
| 42 | + "import matplotlib.pyplot as plt\n", |
| 43 | + "\n", |
| 44 | + "plt.axes([.1, .1, .8, .8])\n", |
| 45 | + "plt.xticks([])\n", |
| 46 | + "plt.yticks([])\n", |
| 47 | + "plt.text(.6, .6, 'axes([0.1, 0.1, 0.8, 0.8])', ha='center', va='center',\n", |
| 48 | + " size=20, alpha=.5)\n", |
| 49 | + "\n", |
| 50 | + "plt.axes([.2, .2, .3, .3])\n", |
| 51 | + "plt.xticks([])\n", |
| 52 | + "plt.yticks([])\n", |
| 53 | + "plt.text(.5, .5, 'axes([0.2, 0.2, 0.3, 0.3])', ha='center', va='center',\n", |
| 54 | + " size=16, alpha=.5)\n", |
| 55 | + "\n", |
| 56 | + "plt.show()" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "code", |
| 61 | + "execution_count": null, |
| 62 | + "metadata": {}, |
| 63 | + "outputs": [], |
| 64 | + "source": [] |
| 65 | + }, |
| 66 | + { |
| 67 | + "cell_type": "code", |
| 68 | + "execution_count": null, |
| 69 | + "metadata": {}, |
| 70 | + "outputs": [], |
| 71 | + "source": [] |
| 72 | + } |
| 73 | + ], |
| 74 | + "metadata": { |
| 75 | + "kernelspec": { |
| 76 | + "display_name": "Python 3", |
| 77 | + "language": "python", |
| 78 | + "name": "python3" |
| 79 | + }, |
| 80 | + "language_info": { |
| 81 | + "codemirror_mode": { |
| 82 | + "name": "ipython", |
| 83 | + "version": 3 |
| 84 | + }, |
| 85 | + "file_extension": ".py", |
| 86 | + "mimetype": "text/x-python", |
| 87 | + "name": "python", |
| 88 | + "nbconvert_exporter": "python", |
| 89 | + "pygments_lexer": "ipython3", |
| 90 | + "version": "3.7.3" |
| 91 | + } |
| 92 | + }, |
| 93 | + "nbformat": 4, |
| 94 | + "nbformat_minor": 1 |
| 95 | +} |
0 commit comments