-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolver1d.py
645 lines (549 loc) · 17.1 KB
/
solver1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import numpy as np
def init_gauss_points(n=3):
"""
Gauss Quadrature
:param n: number of gauss points
:return: (weights of gp,Gauss points)
"""
if n == 1:
wgp = np.array([2])
egp = np.array([0])
elif n == 2:
wgp = np.array([1, 1])
egp = np.array([-1 / np.sqrt(3), 1 / np.sqrt(3)])
elif n == 3:
wgp = np.array([5 / 9, 8 / 9, 5 / 9])
egp = np.array([-np.sqrt(3 / 5), 0, np.sqrt(3 / 5)])
else:
raise Exception("Uhm, This is wendy's, we don't, more than 3 gauss points here")
return wgp, egp
def impose_boundary_condition(k, f, ibc, bc):
"""
Elimination of variables, modifies incoming stiffness and force vector
:param k: Stiffness matrix / Tangent stiffness
:param f: force vector / residue
:param ibc: node at with BC is prescribed
:param bc: boundary condition
"""
f -= (k[:, ibc] * bc)[:, None]
f[ibc] = bc
k[:, ibc] = 0
k[ibc, :] = 0
k[ibc, ibc] = 1
def get_displacement_vector(k, f):
"""
:param k: Non-singular stiffness matrix
:param f: force vector
:return: nodal displacement
"""
return np.linalg.solve(k, f)
def get_hermite_fn(gp, j, element_type=2):
"""
:param element_type: 2
:param gp: eta or gauss points or natural coordinate
:param j: jacobian
:return: (H,H',H")
"""
if element_type != 2:
raise Exception("only linear element for hermite fn")
Nmat = np.array([.25 * (gp + 2) * (1 - gp) ** 2, j * .25 * (gp + 1) * (1 - gp) ** 2,
.25 * (-gp + 2) * (1 + gp) ** 2, j * .25 * (gp - 1) * (1 + gp) ** 2])
Nmat_ = (1 / j) * np.array([0.75 * (gp ** 2 - 1), j * 0.25 * (3 * gp ** 2 - 2 * gp - 1),
0.75 * (1 - gp ** 2), j * 0.25 * (3 * gp ** 2 + 2 * gp - 1)])
Nmat__ = (1 / j ** 2) * np.array([1.5 * gp, (-.5 + 1.5 * gp) * j,
-1.5 * gp, (.5 + 1.5 * gp) * j])
return Nmat, Nmat_, Nmat__
def get_lagrange_fn(gp, element_type=2):
"""
Linear Lagrange shape functions
:param element_type: element type
:param gp: gauss point
:return: (L, L')
"""
if element_type == 2:
nmat = np.array([.5 * (1 - gp), .5 * (1 + gp)])
bmat = np.array([-.5, .5])
elif element_type == 3:
nmat = np.array([0.5 * (-1 + gp) * gp, (-gp + 1) * (gp + 1), 0.5 * gp * (1 + gp)])
bmat = np.array([0.5 * (-1 + 2 * gp), -2 * gp, 0.5 * (1 + 2 * gp)])
else:
raise Exception("Sir, This is Wendy's we only do cubic elements here !")
return nmat[:, None], bmat[:, None]
def get_connectivity_matrix(n, length, element_type=2):
"""
:param element_type: element type
:param length: length
:param n: number of 1d elements
:return: connectivity vector, nodal_data
"""
node_data = np.linspace(0, length, (element_type - 1) * n + 1)
icon = np.zeros((element_type + 1, n), dtype=np.int32)
icon[0, :] = np.arange(0, (element_type - 1) * n, element_type - 1)
if element_type == 3:
icon[1, :] = icon[0, :]
icon[2, :] = icon[1, :] + 1
icon[3, :] = icon[2, :] + 1
elif element_type == 2:
icon[1, :] = icon[0, :]
icon[2, :] = icon[1, :] + 1
else:
raise Exception("Sir, This is Wendy's we only do cubic elements here !")
return icon.T, node_data
def init_stiffness_force(nnod, dof):
"""
:param nnod: number of nodes
:param dof: Dof
:return: zero stiffness n force
"""
return np.zeros((nnod * dof, nnod * dof)), np.zeros((nnod * dof, 1))
def get_theta_from_rotation(rmat):
"""
Algorithm proposed by Spurrier
:param rmat: rotation matrix
:return: theta
"""
q = np.zeros(4)
trq = np.trace(rmat)
v = np.array([trq, rmat[0, 0], rmat[1, 1], rmat[2, 2]])
m = v.argmax()
maxval = v[m]
if m == 0:
q[0] = 0.5 * np.sqrt(1 + maxval)
q[1] = 0.25 * (rmat[2, 1] - rmat[1, 2]) / q[0]
q[2] = 0.25 * (rmat[0, 2] - rmat[2, 0]) / q[0]
q[3] = 0.25 * (rmat[1, 0] - rmat[0, 1]) / q[0]
elif m == 1:
q[1] = np.sqrt(0.5 * maxval + 0.25 * (1 - trq))
q[0] = 0.25 * (rmat[2, 1] - rmat[1, 2]) / q[1]
q[2] = 0.25 * (rmat[0, 1] + rmat[1, 0]) / q[1]
q[3] = 0.25 * (rmat[2, 0] + rmat[0, 2]) / q[1]
elif m == 2:
q[2] = np.sqrt(0.5 * maxval + 0.25 * (1 - trq))
q[1] = 0.25 * (rmat[0, 1] + rmat[1, 0]) / q[2]
q[0] = 0.25 * (rmat[0, 2] - rmat[2, 0]) / q[2]
q[3] = 0.25 * (rmat[1, 2] + rmat[2, 1]) / q[2]
elif m == 3:
q[3] = np.sqrt(0.5 * maxval + 0.25 * (1 - trq))
q[1] = 0.25 * (rmat[2, 0] + rmat[0, 2]) / q[3]
q[2] = 0.25 * (rmat[1, 2] + rmat[2, 1]) / q[3]
q[0] = 0.25 * (rmat[1, 0] - rmat[0, 1]) / q[3]
else:
raise Exception("not max index")
if q[0] >= 0:
normt = 2 * np.arcsin(np.linalg.norm(q[1:]))
else:
normt = 2 * (np.pi - np.arcsin(np.linalg.norm(q[1:])))
if np.isclose(normt, 0, atol=1e-6):
return np.zeros((3,))
else:
return normt / np.linalg.norm(q[1:]) * q[1:]
def get_theta_from_rotation_deprecated(rmat):
"""
Lie group log map
:param rmat: rotation matrix
:return: theta vector
"""
t = np.arccos((np.trace(rmat) - 1) / 2)
if np.isclose(t, 0):
return np.zeros((3,))
# print(get_axial_from_skew_symmetric_tensor(t * 0.5 / np.sin(t) * (rmat - rmat.T)))
return axial(t * 0.5 / np.sin(t) * (rmat - rmat.T))
def skew(x):
"""
:param x: vector
:return: skew symmetric tensor for which x is axial
"""
x = np.reshape(x, (3,))
return np.array([[0, -x[2], x[1]],
[x[2], 0, -x[0]],
[-x[1], x[0], 0]]
)
def axial(x):
"""
x better be skew symmetric tensor
:param x: skew symmetric tensor
:return: axial vector
"""
return np.array([x[2, 1], x[0, 2], x[1, 0]])
def get_rotation_from_theta_tensor_deprecated(x):
"""
:param x: theta vector
:return: rotation tensor
"""
x = skew(x)
t = np.sqrt(0.5 * np.trace(x.T @ x))
if np.isclose(abs(t), 0, atol=1e-6):
return np.eye(3)
else:
return np.eye(3) + np.sin(t) / t * x + (1 - np.cos(t)) / t ** 2 * x @ x
def get_rotation_from_theta_tensor(x):
"""
using quaternions
:param x: skew symmetric tensor
:return: rotation tensor
"""
x = np.reshape(x, (3,))
normt = np.linalg.norm(x)
if np.isclose(normt, 0, atol=1e-8):
return np.eye(3)
else:
q = np.zeros(4)
q[0] = np.cos(normt / 2)
q[1:] = np.sin(normt / 2) / normt * x
return 2 * np.array([
[q[0] ** 2 + q[1] ** 2 - 0.5, q[1] * q[2] - q[3] * q[0], q[1] * q[3] + q[2] * q[0]],
[q[2] * q[1] + q[3] * q[0], q[0] ** 2 + q[2] ** 2 - 0.5, q[2] * q[3] - q[1] * q[0]],
[q[3] * q[1] - q[2] * q[0], q[3] * q[2] + q[1] * q[0], q[0] ** 2 + q[3] ** 2 - 0.5]
])
def get_assembly_vector(dof, n):
"""
:param dof: dof
:param n: nodes
:return: assembly points
"""
iv = []
for i in n:
for j in range(dof):
iv.append(dof * i + j)
return iv
def get_incremental_k(dt, dtds, rot):
"""
According to Simo
:param dt: delta_theta
:param dtds: delta_theta'
:param rot: rotation matrix
:return: delta_kappa
"""
norm_dt = np.linalg.norm(dt)
if np.isclose(norm_dt, 0, atol=1e-6):
return rot.T @ (dtds + 0.5 * np.cross(dt.reshape(3, ), dtds.reshape(3, ))[:, None])
x = np.sin(norm_dt) / norm_dt
x2 = np.sin(norm_dt * 0.5) / (norm_dt * 0.5)
return rot.T @ (x * dtds + (1 - x) * (dt.T @ dtds)[0][0] / norm_dt * dt / norm_dt + 0.5 * (x2 ** 2) * np.cross(
dt.reshape(3, ), dtds.reshape(3, ))[:, None])
def get_incremental_k_path_independent(t, tds):
"""
According to Crisfield & Jelenic
:param t: theta
:param tds: theta_prime
:return: kappa
"""
norm_t = np.linalg.norm(t)
tensor_t = skew(t)
if np.isclose(norm_t, 0, atol=1e-6):
return tds
x = np.sin(norm_t) / norm_t
y = (1 - np.cos(norm_t)) / norm_t
return (1 / norm_t ** 2 * (1 - x) * t @ t.T + x * np.eye(3) - y * tensor_t) @ tds
def get_e(dof, n, n_, rds):
e0 = np.zeros((dof, dof))
e0[0: 3, 0: 3] = n_ * np.eye(3)
e0[3: 6, 3: 6] = n_ * np.eye(3)
e0[3: 6, 0: 3] = -n * rds
return e0
def get_tangent_stiffness_residue(n_tensor, m_tensor, n, nx, dof, pi_i, c, rds, gloc, ncforce=None):
"""
:param gloc: gloc
:param rds: rds
:param dof: dof
:param c: elasticity
:param pi_i: pi_
:param n_tensor: axial of n
:param m_tensor: axial of m
:param n: shape function
:param nx: derivative of shape function
:param ncforce: non-conservative force body force
:return: geometric stiffness matrix
"""
nmmat = np.zeros((6, 6))
nmat = np.zeros((6, 6))
f = np.zeros((6, 6))
fn, fnx_ = n, nx
if ncforce:
fn, fnx_ = get_lagrange_fn(ncforce[1], len(n))
f[0: 3, 3: 6] = -skew(ncforce[0])
nmmat[0: 3, 3: 6] = -n_tensor
nmmat[3: 6, 3: 6] = -m_tensor
nmat[3: 6, 0: 3] = n_tensor
k = np.zeros((dof * len(n), dof * len(n)))
r = np.zeros((dof * len(n), 1))
for i in range(len(n)):
r[6 * i: 6 * (i + 1)] += get_e(dof, n[i][0], nx[i][0], rds) @ gloc
for j in range(len(n)):
k[6 * i: (i + 1) * 6, 6 * j: (j + 1) * 6] += (
get_e(dof, n[i][0], nx[i][0], rds) @ pi_i @ c @ pi_i.T @ get_e(dof, n[j][0], nx[j][0], rds).T + n[j][0]
* get_e(dof, n[i][0], nx[i][0], rds) @ nmmat + n[i][0] * nx[j][0] * nmat + fn[i][0] * fn[j][0] * f)
return k.T, r
def get_pi(rot):
"""
:param rot: rotation
:return: pi matrix
"""
piI = np.zeros((6, 6))
piI[0: 3, 0: 3] = rot
piI[3: 6, 3: 6] = rot
return piI
"""
STRAIN GRADIENT
------------------------------------------------------------------------------------------------------------------
"""
def get_h(n_, nx_):
"""
:param n_: hermite fn
:param nx_: hermite derivative
:return: consolidated shape function
"""
c = np.zeros((12, 12))
i = np.eye(3)
c[0: 3, 0: 3] = i * n_[0]
c[0: 3, 3: 6] = i * n_[1]
c[3: 6, 0: 3] = i * nx_[0]
c[3: 6, 3: 6] = i * nx_[1]
c[6: 9, 6: 9] = i * n_[0]
c[6: 9, 9: 12] = i * n_[1]
c[9: 12, 6: 9] = i * nx_[0]
c[9: 12, 9: 12] = i * nx_[1]
return c
"""
***********************************************************************************************
MATERIAL STIFFNESS
"""
def c_full(es, eb, hes, heb, coupler=None):
"""
:param es: standard stretch stiffness
:param eb: standard bending stiffness
:param hes: higher order stretch stiffness
:param heb: higher order bending stiffness
:param coupler: coupling
:return: c_full (refer to notes)
"""
c = np.zeros((12, 12))
c[0: 3, 0: 3] = es
c[3: 6, 3: 6] = hes
c[6: 9, 6: 9] = eb
c[9: 12, 9: 12] = heb
if not coupler:
return c
return c + coupler
def d_u(hes, heb):
"""
:param hes: higher order stretch stiffness
:param heb: higher order bending stiffness
:return: d_u (refer to notes)
"""
c = np.zeros((12, 12))
c[0: 3, 0: 3] = hes
c[6: 9, 6: 9] = heb
return c
def d_l(hes, heb):
"""
:param hes: higher order stretch stiffness
:param heb: higher order bending stiffness
:return: c_l (refer to notes)
"""
c = np.zeros((12, 12))
c[3: 6, 3: 6] = hes
c[9: 12, 9: 12] = heb
return c
"""
*******************************************************************
"""
"""
***********************************************************************************
ROTATIONS
"""
def pi(r):
"""
:param r: rotation tensor
:return: pi
"""
c = np.zeros((12, 12))
c[0: 3, 0: 3] = r
c[3: 6, 3: 6] = r
c[6: 9, 6: 9] = r
c[9: 12, 9: 12] = r
return c
def pi_l(r):
"""
:param r: rotation tensor
:return: pi_l
"""
c = np.zeros((12, 12))
c[3: 6, 3: 6] = r
c[9: 12, 9: 12] = r
return c
def pi_u(r):
"""
:param r: rotation tensor
:return: pi_u
"""
c = np.zeros((12, 12))
c[0: 3, 0: 3] = r
c[6: 9, 6: 9] = r
return c
def pi_uds(rds):
"""
:param rds: rotation tensor derivative
:return: pi_uds
"""
c = np.zeros((12, 12))
c[0: 3, 0: 3] = rds
c[6: 9, 6: 9] = rds
return c
def pi_lds(rds):
"""
:param rds: rotation tensor derivative
:return: pi_lds
"""
c = np.zeros((12, 12))
c[3: 6, 3: 6] = rds
c[9: 12, 9: 12] = rds
return c
def k_u(k):
"""
:param k: kappa vector
:return: k_u
"""
c = np.zeros((12, 12))
c[0: 3, 0: 3] = skew(k)
c[6: 9, 6: 9] = skew(k)
return c
"""
***************************************************************************
OPERATORS
"""
def e(n_, nx_, nxx_, rds, rdsds):
"""
:param rds: rds
:param n_: hermite fn
:param nx_: hermite derivative
:param nxx_: hermite double derivative
:param rdsds: rdsds
:return: e
"""
i = np.eye(3)
c = np.zeros((12, 12))
rds = skew(rds)
rdsds = skew(rdsds)
c[0: 3, 0: 3] = i * nx_[0]
c[0: 3, 3: 6] = i * nx_[1]
c[0: 3, 6: 9] = rds * n_[0]
c[0: 3, 9: 12] = rds * n_[1]
c[3: 6, 0: 3] = i * nxx_[0]
c[3: 6, 3: 6] = i * nxx_[1]
c[3: 6, 6: 9] = rdsds * n_[0] + rds * nx_[0]
c[3: 6, 9: 12] = rdsds * n_[1] + rds * nx_[1]
c[6: 9, 6: 9] = i * nx_[0]
c[6: 9, 9: 12] = i * nx_[1]
c[9: 12, 6: 9] = i * nxx_[0]
c[9: 12, 9: 12] = i * nxx_[1]
return c
def e_l(rds):
c = np.zeros((12, 12))
c[3: 6, 3: 6] = np.eye(3)
c[3: 6, 6: 9] = skew(rds)
c[9: 12, 9: 12] = np.eye(3)
return c
def e_u(rds):
c = np.zeros((12, 12))
c[0: 3, 3: 6] = np.eye(3)
c[0: 3, 6: 9] = skew(rds)
c[6: 9, 9: 12] = np.eye(3)
return c
def e_g(n_, nx_, nxx_, rds, rdsds):
"""
:param rds: rds
:param n_: hermite fn
:param nx_: hermite derivative
:param nxx_: hermite double derivative
:param rdsds: rdsds
:return: e_g
"""
i = np.eye(3)
c = np.zeros((12, 12))
rds = skew(rds)
rdsds = skew(rdsds)
c[0: 3, 0: 3] = i * nxx_[0]
c[0: 3, 3: 6] = i * nxx_[1]
c[0: 3, 6: 9] = rdsds * n_[0] + rds * nx_[0]
c[0: 3, 9: 12] = rdsds * n_[1] + rds * nx_[1]
c[6: 9, 6: 9] = i * nxx_[0]
c[6: 9, 9: 12] = i * nxx_[1]
return c
def e_f(nx_, nxx_):
"""
:param nxx_: hermite double derivative
:param nx_: hermite derivative
:return: e_f
"""
c = np.zeros((12, 12))
i = np.eye(3)
c[6: 9, 0: 3] = (nx_[0] + nxx_[0]) * i
c[6: 9, 3: 6] = (nx_[1] + nxx_[1]) * i
c[9: 12, 0: 3] = nx_[0] * i
c[9: 12, 3: 6] = nx_[1] * i
return c
"""
*******************************************************************
"""
"""
******************************************************************************************
FORCES/STRESSES
"""
def matn(n, nb, nx_, nxx_):
c = np.zeros((12, 12))
c[6: 9, 0: 3] = skew(n) * nx_[0] + skew(nb) * nxx_[0]
c[6: 9, 3: 6] = skew(n) * nx_[1] + skew(nb) * nxx_[1]
c[9: 12, 0: 3] = skew(nb) * nx_[0]
c[9: 12, 3: 6] = skew(nb) * nx_[1]
return c
def matnm(n, nb, m, mb):
c = np.zeros((12, 12))
n = skew(n)
nb = skew(nb)
m = skew(m)
mb = skew(mb)
c[0: 3, 6: 9] = -n
c[3: 6, 6: 9] = -nb
c[0: 3, 9: 12] = -nb
c[6: 9, 6: 9] = -m
c[9: 12, 6: 9] = -mb
c[6: 9, 9: 12] = -mb
return c
"""
*********************************************************************
"""
def get_higher_order_tangent_residue(n_, nx_, nxx_, rds, rdsds, rmat, rmatds, cs, cb, ds, db, kvec, dof, gloc, element_type=2, coupler=None):
nmat, nbmat, mmat, mbmat = gloc[0: 3], gloc[3: 6], gloc[6: 9], gloc[9: 12]
f = dof * element_type
k = np.zeros((f, f))
r = np.zeros((f, 1))
for i in range(element_type):
hi, hi_, hi__ = n_[2 * i: 2 * (i + 1), 0], nx_[2 * i: 2 * (i + 1), 0], nxx_[2 * i: 2 * (i + 1), 0]
Ei = e(hi, hi_, hi__, rds, rdsds).T
Hmati = get_h(hi, hi_)
r[dof * i: dof * (i + 1)] += Ei @ gloc
for j in range(element_type):
hj, hj_, hj__ = n_[2 * j: 2 * (j + 1), 0], nx_[2 * j: 2 * (j + 1), 0], nxx_[2 * j: 2 * (j + 1), 0]
Hmatj = get_h(hj, hj_)
Ej = e(hj, hj_, hj__, rds, rdsds).T
E_lj = e_l(rds) @ Hmatj
E_uj = e_u(rds) @ Hmatj
E_gj = e_g(hj, hj_, hj__, rds, rdsds)
E_fj = e_f(hj_, hj__)
A1 = Ei @ matnm(nmat, nbmat, mmat, mbmat) @ Hmatj
A2 = Ei @ pi(rmat) @ c_full(cs, cb, ds, db, coupler) @ pi(rmat).T @ Ej.T
A3 = Ei @ pi_l(rmat) @ d_l(ds, db) @ pi_lds(rmatds).T @ E_lj
A4 = Ei @ pi_u(rmat) @ k_u(kvec) @ d_u(ds, db) @ pi_uds(rmatds).T @ E_uj
A5 = Ei @ pi_u(rmat) @ k_u(kvec) @ d_u(ds, db) @ pi_u(rmat).T @ E_gj
A6 = Hmati.T @ matn(nmat, nbmat, hj_, hj__)
k[dof * i: dof * (i + 1), dof * j: dof * (j + 1)] += (A1 + A2 + A3 + A4 + A5 + A6)
return k, r
def beizer_curve():
pass
if __name__ == "__main__":
icon_m, i_m = get_connectivity_matrix(10, 1)
# print(icon_m)
# print(i_m)
# b = get_incremental_k(np.array([1, 1, 1]), np.array([1, 1, 2]), np.eye(3))
# print(b)