-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutil.py
563 lines (415 loc) · 18.8 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
import cv2
import random
from bbox import bbox_iou, bbox_iou2
import sys
def prep_image(img, inp_dim):
"""
Prepare image for inputting to the neural network.
Returns a Variable
"""
orig_im = img
dim = orig_im.shape[1], orig_im.shape[0]
img = cv2.resize(orig_im, (inp_dim, inp_dim))
# img_ = img[:,:,::-1].transpose((2,0,1)).copy()
img_ = img.transpose((2,0,1)).copy()
img_ = torch.from_numpy(img_).float().div(255.0).unsqueeze(0)
return img_, orig_im, dim
def load_image2(image_path, transform=None):
image = Image.open(image_path)
orig_img = np.array(image)
dim = image.size
image = image.resize([416, 416], Image.LANCZOS) #224 416
if transform is not None:
image = transform(image).unsqueeze(0)
return image, orig_img, dim
def write(x, img, phrases, coco_classes, colors):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
cls = int(x[-1])
if cls == 0: # for human bbox only detection
label = "{0}".format(coco_classes[cls])
color = random.choice(colors)
cv2.rectangle(img, c1, c2,color, 3)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1 , 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + t_size[1] + 4
cv2.rectangle(img, c1, c2, color, -1)
cv2.putText(img, label, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
for i, phrase in enumerate(phrases):
cv2.putText(img, phrase, (c1[0]-200, c1[1] + t_size[1] + 150 + i*20), cv2.FONT_HERSHEY_PLAIN, 1, color, 1 )
return img
def write(x, img, raw_pharses,phrases, order, coco_classes, colors):
c1 = tuple(x[1:3].int())
c2 = tuple(x[3:5].int())
cls = int(x[-1])
attrs_name = ['Tops', 'color', 'pattern', 'gender', 'season', 'type', 'spleeves', 'Bottoms', 'color', 'pattern',
'gender', 'season', 'spleeves', 'type', "legpose"]
if cls == 0: # for human bbox only detection
#label = "{0}: {1}".format(coco_classes[cls], order)
label = " "
color = random.choice(colors)
cv2.rectangle(img, c1, c2,color, 3)
t_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_PLAIN, 1, 1)[0]
c2 = c1[0] + t_size[0] + 3, c1[1] + len(attrs_name)*t_size[1] + 4
cv2.rectangle(img, c1, c2, color, -1)
j = 0
for i in range(len(attrs_name)):
if attrs_name[i] == "Bottoms" or attrs_name[i] == "Tops":
text = attrs_name[i]
j = j + 1
else:
text = " "+attrs_name[i] + ":" + raw_pharses[i - j]
cv2.putText(img, label + " " + text, (c1[0] -t_size[0], c1[1] + t_size[1] + 5 + i*t_size[1]), cv2.FONT_HERSHEY_PLAIN, 1,
[225, 255, 255], 1)
#cv2.putText(img, label+" "+phrases, (c1[0], c1[1] + t_size[1] + 4), cv2.FONT_HERSHEY_PLAIN, 1, [225,255,255], 1)
#for i, phrase in enumerate(phrases):
# cv2.putText(img, phrase, (c1[0], c1[1] + t_size[1] + 150 + i*20), cv2.FONT_HERSHEY_PLAIN, 1, color, 1 )
return img
def view_image(bboxes):
img = np.full((416, 416, 3), 100, dtype='uint8')
for bbox in bboxes:
c1 = tuple(bbox[1:3].int())
c2 = tuple(bbox[3:5].int())
cv2.rectangle(img, c1, c2, 128+20, 3)
cv2.imshow("01", img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def sampling_sentence(samples, probs, vocab):
j = 0
captions = []
for sampled_ids in samples:
sampled_ids = sampled_ids[0].cpu().numpy()
# (1, max_seq_length) -> (max_seq_length)
probs_ids = probs[j][0].detach()
probs_ids = probs_ids.cpu().numpy()
if j == 1 :
break
j+=1
# Convert word_ids to words
sampled_caption = list()
t_caption = list()
no_flag = False
for word_id in sampled_ids:
word = vocab.idx2word[word_id]
if word == '<end>':
break
sampled_caption.append(word)
for word in sampled_caption:
if word == 'no':
no_flag = True
continue
else:
if not no_flag:
t_caption.append(word)
no_flag = False
else:
continue
if t_caption.__len__() > 0:
if t_caption[-1] == 'and':
t_caption.pop()
sentence = ' '.join(t_caption)
p = sentence.find('and')
if p > 0:
upper = sentence[:p]
if upper.find('vest') > -1:
upper = upper + ' no sleeves'
captions.append(upper)
captions.append(sentence[p:])
else:
if sentence.find('vest') > -1:
sentence = sentence + ' no sleeves'
captions.append(sentence)
#sentence = ' '.join(sampled_caption)
# Print out the image and the generated caption
#print (sentence)
#sys.stdout.write(sentence)
#print (probs_ids)
#captions.append(sentence)
return captions
def sampling_sentence1(sampled_ids, vocab):
sampled_ids = sampled_ids[0].cpu().numpy()
# (1, max_seq_length) -> (max_seq_length)
# Convert word_ids to words
sampled_caption = list()
t_caption = list()
no_flag = False
for word_id in sampled_ids[0]:
word = vocab.idx2word[word_id]
if word == '<end>':
break
sampled_caption.append(word)
for word in sampled_caption:
if word == 'no':
no_flag = True
continue
else:
if not no_flag:
t_caption.append(word)
no_flag = False
else:
continue
if t_caption.__len__() > 0:
if t_caption[-1] == 'and':
t_caption.pop()
sentence = ' '.join(t_caption)
# Print out the image and the generated caption
print (sentence)
#print (probs_ids)
return sentence
def count_parameters(model):
return sum(p.numel() for p in model.parameters())
def count_learnable_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def convert2cpu(matrix):
if matrix.is_cuda:
return torch.FloatTensor(matrix.size()).copy_(matrix)
else:
return matrix
def predict_transform(prediction, inp_dim, anchors, num_classes, device):
batch_size = prediction.size(0)
stride = inp_dim // prediction.size(2)
grid_size = inp_dim // stride
bbox_attrs = 5 + num_classes
num_anchors = len(anchors)
anchors = [(a[0]/stride, a[1]/stride) for a in anchors]
prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size)
prediction = prediction.transpose(1,2).contiguous()
prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs)
#Sigmoid the centre_X, centre_Y. and object confidencce
prediction[:,:,0] = torch.sigmoid(prediction[:,:,0])
prediction[:,:,1] = torch.sigmoid(prediction[:,:,1])
prediction[:,:,4] = torch.sigmoid(prediction[:,:,4])
#Add the center offsets
grid_len = np.arange(grid_size)
a,b = np.meshgrid(grid_len, grid_len)
x_offset = torch.FloatTensor(a).view(-1,1)
y_offset = torch.FloatTensor(b).view(-1,1)
x_offset = x_offset.to(device)
y_offset = y_offset.to(device)
x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0)
prediction[:,:,:2] += x_y_offset
#log space transform height and the width
anchors = torch.FloatTensor(anchors)
anchors = anchors.to(device)
anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0)
prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors
#Softmax the class scores
prediction[:,:,5: 5 + num_classes] = torch.sigmoid((prediction[:,:, 5 : 5 + num_classes]))
prediction[:,:,:4] *= stride
return prediction
def load_classes(namesfile):
fp = open(namesfile, "r")
names = fp.read().split("\n")[:-1]
return names
def get_im_dim(im):
im = cv2.imread(im)
w,h = im.shape[1], im.shape[0]
return w,h
def unique(tensor):
tensor_np = tensor.cpu().numpy()
unique_np = np.unique(tensor_np)
unique_tensor = torch.from_numpy(unique_np)
tensor_res = tensor.new(unique_tensor.shape)
tensor_res.copy_(unique_tensor)
return tensor_res
def write_results(prediction, confidence, num_classes, device, nms = True, nms_conf = 0.4):
conf_mask = (prediction[:,:,4] > confidence).float().unsqueeze(2)
prediction = prediction*conf_mask
try:
ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).contiguous()
except:
return 0
box_a = prediction.new(prediction.shape)
box_a[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2)
box_a[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2)
box_a[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2)
box_a[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2)
prediction[:,:,:4] = box_a[:,:,:4]
batch_size = prediction.size(0)
output = prediction.new(1, prediction.size(2) + 1)
write = False
for ind in range(batch_size):
#select the image from the batch
image_pred = prediction[ind]
#Get the class having maximum score, and the index of that class
#Get rid of num_classes softmax scores
#Add the class index and the class score of class having maximum score
max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1)
max_conf = max_conf.float().unsqueeze(1)
max_conf_score = max_conf_score.float().unsqueeze(1)
seq = (image_pred[:,:5], max_conf, max_conf_score)
image_pred = torch.cat(seq, 1)
#Get rid of the zero entries
non_zero_ind = (torch.nonzero(image_pred[:,4]))
image_pred_ = image_pred[non_zero_ind.squeeze(),:].view(-1,7)
#Get the various classes detected in the image
try:
img_classes = unique(image_pred_[:,-1])
except:
continue
#WE will do NMS classwise
for cls in img_classes:
if cls == 0:
#get the detections with one particular class
cls_mask = image_pred_*(image_pred_[:,-1] == cls).float().unsqueeze(1)
class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze()
image_pred_class = image_pred_[class_mask_ind].view(-1,7)
#sort the detections such that the entry with the maximum objectness
#confidence is at the top
conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1]
image_pred_class = image_pred_class[conf_sort_index]
idx = image_pred_class.size(0)
#if nms has to be done
if nms:
#For each detection
for i in range(idx):
#Get the IOUs of all boxes that come after the one we are looking at
#in the loop
try:
ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:], device)
except ValueError:
break
except IndexError:
break
#Zero out all the detections that have IoU > treshhold
iou_mask = (ious < nms_conf).float().unsqueeze(1)
image_pred_class[i+1:] *= iou_mask
#Remove the non-zero entries
non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze()
image_pred_class = image_pred_class[non_zero_ind].view(-1,7)
#Concatenate the batch_id of the image to the detection
#this helps us identify which image does the detection correspond to
#We use a linear straucture to hold ALL the detections from the batch
#the batch_dim is flattened
#batch is identified by extra batch column
batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind)
seq = batch_ind, image_pred_class
if not write:
output = torch.cat(seq,1)
write = True
else:
out = torch.cat(seq,1)
output = torch.cat((output,out))
return output
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sat Mar 24 00:12:16 2018
@author: ayooshmac
"""
def predict_transform_half(prediction, inp_dim, anchors, num_classes, CUDA = True):
batch_size = prediction.size(0)
stride = inp_dim // prediction.size(2)
bbox_attrs = 5 + num_classes
num_anchors = len(anchors)
grid_size = inp_dim // stride
prediction = prediction.view(batch_size, bbox_attrs*num_anchors, grid_size*grid_size)
prediction = prediction.transpose(1,2).contiguous()
prediction = prediction.view(batch_size, grid_size*grid_size*num_anchors, bbox_attrs)
#Sigmoid the centre_X, centre_Y. and object confidencce
prediction[:,:,0] = torch.sigmoid(prediction[:,:,0])
prediction[:,:,1] = torch.sigmoid(prediction[:,:,1])
prediction[:,:,4] = torch.sigmoid(prediction[:,:,4])
#Add the center offsets
grid_len = np.arange(grid_size)
a,b = np.meshgrid(grid_len, grid_len)
x_offset = torch.FloatTensor(a).view(-1,1)
y_offset = torch.FloatTensor(b).view(-1,1)
if CUDA:
x_offset = x_offset.cuda().half()
y_offset = y_offset.cuda().half()
x_y_offset = torch.cat((x_offset, y_offset), 1).repeat(1,num_anchors).view(-1,2).unsqueeze(0)
prediction[:,:,:2] += x_y_offset
#log space transform height and the width
anchors = torch.HalfTensor(anchors)
if CUDA:
anchors = anchors.cuda()
anchors = anchors.repeat(grid_size*grid_size, 1).unsqueeze(0)
prediction[:,:,2:4] = torch.exp(prediction[:,:,2:4])*anchors
#Softmax the class scores
prediction[:,:,5: 5 + num_classes] = nn.Softmax(-1)(Variable(prediction[:,:, 5 : 5 + num_classes])).data
prediction[:,:,:4] *= stride
return prediction
def write_results_half(prediction, confidence, num_classes, nms = True, nms_conf = 0.4):
conf_mask = (prediction[:,:,4] > confidence).half().unsqueeze(2)
prediction = prediction*conf_mask
try:
ind_nz = torch.nonzero(prediction[:,:,4]).transpose(0,1).contiguous()
except:
return 0
box_a = prediction.new(prediction.shape)
box_a[:,:,0] = (prediction[:,:,0] - prediction[:,:,2]/2)
box_a[:,:,1] = (prediction[:,:,1] - prediction[:,:,3]/2)
box_a[:,:,2] = (prediction[:,:,0] + prediction[:,:,2]/2)
box_a[:,:,3] = (prediction[:,:,1] + prediction[:,:,3]/2)
prediction[:,:,:4] = box_a[:,:,:4]
batch_size = prediction.size(0)
output = prediction.new(1, prediction.size(2) + 1)
write = False
for ind in range(batch_size):
#select the image from the batch
image_pred = prediction[ind]
#Get the class having maximum score, and the index of that class
#Get rid of num_classes softmax scores
#Add the class index and the class score of class having maximum score
max_conf, max_conf_score = torch.max(image_pred[:,5:5+ num_classes], 1)
max_conf = max_conf.half().unsqueeze(1)
max_conf_score = max_conf_score.half().unsqueeze(1)
seq = (image_pred[:,:5], max_conf, max_conf_score)
image_pred = torch.cat(seq, 1)
#Get rid of the zero entries
non_zero_ind = (torch.nonzero(image_pred[:,4]))
try:
image_pred_ = image_pred[non_zero_ind.squeeze(),:]
except:
continue
#Get the various classes detected in the image
img_classes = unique(image_pred_[:,-1].long()).half()
#WE will do NMS classwise
for cls in img_classes:
#get the detections with one particular class
cls_mask = image_pred_*(image_pred_[:,-1] == cls).half().unsqueeze(1)
class_mask_ind = torch.nonzero(cls_mask[:,-2]).squeeze()
image_pred_class = image_pred_[class_mask_ind]
#sort the detections such that the entry with the maximum objectness
#confidence is at the top
conf_sort_index = torch.sort(image_pred_class[:,4], descending = True )[1]
image_pred_class = image_pred_class[conf_sort_index]
idx = image_pred_class.size(0)
#if nms has to be done
if nms:
#For each detection
for i in range(idx):
#Get the IOUs of all boxes that come after the one we are looking at
#in the loop
try:
ious = bbox_iou(image_pred_class[i].unsqueeze(0), image_pred_class[i+1:], device)
except ValueError:
break
except IndexError:
break
#Zero out all the detections that have IoU > treshhold
iou_mask = (ious < nms_conf).half().unsqueeze(1)
image_pred_class[i+1:] *= iou_mask
#Remove the non-zero entries
non_zero_ind = torch.nonzero(image_pred_class[:,4]).squeeze()
image_pred_class = image_pred_class[non_zero_ind]
#Concatenate the batch_id of the image to the detection
#this helps us identify which image does the detection correspond to
#We use a linear straucture to hold ALL the detections from the batch
#the batch_dim is flattened
#batch is identified by extra batch column
batch_ind = image_pred_class.new(image_pred_class.size(0), 1).fill_(ind)
seq = batch_ind, image_pred_class
if not write:
output = torch.cat(seq,1)
write = True
else:
out = torch.cat(seq,1)
output = torch.cat((output,out))
return output