-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·136 lines (121 loc) · 5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/usr/bin/env python3
from argparse import ArgumentParser
from os.path import join
from time import strftime
import numpy as np
from keras import backend as K
from keras.callbacks import ModelCheckpoint, TensorBoard
from keras.layers import BatchNormalization, Bidirectional, Conv1D, Dense, Dropout, GlobalAveragePooling1D, \
GlobalMaxPooling1D, MaxPooling1D, \
Lambda, CuDNNGRU, ReLU
from keras.models import Sequential
from keras.optimizers import Adam, RMSprop
from sklearn.model_selection import train_test_split
from common import sequence_length, tokens
parser = ArgumentParser()
parser.add_argument('-a', '--arch', choices=['cnn', 'vdcnn', 'gru'], default='vdcnn', help='Model architecture to use')
parser.add_argument('-o', '--optimizer', choices=['adam', 'rmsprop'], default='adam', help='Optimizer to use')
parser.add_argument('-d', '--data', nargs='+', choices=['blogs', 'pan13_tr_en', 'pan13_te_en', 'pan14_en', 'enron'], default=['blogs', 'pan13_tr_en'], help='Datasets to train the model on')
parser.add_argument('-c', '--checkpoints', default=5, help='Frequency of checkpoints')
parser.add_argument('-l', '--logs', default='logs', help='Log directory path')
args = parser.parse_args()
arch = args.arch
datasets = args.data
x_paths = ['data/proc/' + dataset + '/x.npy' for dataset in datasets]
y_paths = [x_path.replace('x.npy', 'y.npy') for x_path in x_paths]
checkpoint_frequency = args.checkpoints
logdir = args.logs
x = []
y = []
for i, x_path in enumerate(x_paths):
x.append(np.load(x_path)[:, :sequence_length])
y.append(np.load(y_paths[i]))
x = np.vstack(x)
y = np.hstack(y)
x_tr, x_te, y_tr, y_te = train_test_split(x, y, test_size=.3, stratify=y)
del x, y
def encode(ind, length=len(tokens)):
return K.one_hot(ind, length)
def cnn():
model = Sequential()
model.add(Lambda(encode, input_shape=(None,), input_dtype='uint8', output_shape=(None, len(tokens))))
model.add(Conv1D(filters=256, kernel_size=7))
model.add(BatchNormalization())
model.add(ReLU())
model.add(MaxPooling1D(pool_size=3))
model.add(Conv1D(filters=256, kernel_size=7))
model.add(BatchNormalization())
model.add(ReLU())
model.add(MaxPooling1D(pool_size=3))
model.add(Conv1D(filters=256, kernel_size=3))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Conv1D(filters=256, kernel_size=3))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Conv1D(filters=256, kernel_size=3))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Conv1D(filters=256, kernel_size=3))
model.add(BatchNormalization())
model.add(ReLU())
model.add(GlobalAveragePooling1D())
model.add(Dense(1024))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Dropout(0.5))
model.add(Dense(1024))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Dense(1, activation='sigmoid'))
return model
def gru():
model = Sequential()
model.add(Lambda(encode, input_shape=(None,), input_dtype='uint8', output_shape=(None, len(tokens))))
model.add(Bidirectional(CuDNNGRU(256, return_sequences=True), input_shape=(None, len(tokens))))
model.add(CuDNNGRU(32))
model.add(Dense(2048, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1, activation='sigmoid'))
return model
def vdcnn():
model = Sequential()
model.add(Lambda(encode, input_shape=(None,), input_dtype='uint8', output_shape=(None, len(tokens))))
model.add(Conv1D(filters=64, kernel_size=3))
model.add(BatchNormalization())
blocks = [64, 64, 128, 128, 256, 256, 512, 512]
pools = range(1, len(blocks), 2)
for i in range(len(blocks)):
filter_size = blocks[i]
model.add(Conv1D(filters=filter_size, kernel_size=3))
model.add(BatchNormalization())
model.add(ReLU())
model.add(Conv1D(filters=filter_size, kernel_size=3))
model.add(BatchNormalization())
model.add(ReLU())
if i in pools and i < len(blocks) - 1:
model.add(MaxPooling1D(pool_size=3, strides=2))
model.add(GlobalMaxPooling1D())
model.add(Dense(2048, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(2048, activation='relu'))
model.add(BatchNormalization())
model.add(Dense(1, activation='sigmoid'))
return model
if arch == 'gru':
model = gru()
elif arch == 'vdcnn':
model = vdcnn()
else:
model = cnn()
if args.optimizer == 'adam':
optimizer = Adam(lr=5e-4, amsgrad=True)
else:
optimizer = RMSprop(lr=1e-4, rho=.9)
model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
print(model.summary())
time = strftime('%Y-%m-%d-%H:%M:%S')
id = f'{time}_{arch}_{"_".join(datasets)}'
checkpoint = ModelCheckpoint('models/' + id + '.h5', save_best_only=True, period=checkpoint_frequency)
tensorboard = TensorBoard(log_dir=join(logdir, id), write_grads=False, write_images=False, write_graph=False)
model.fit(x_tr, y_tr, epochs=30, batch_size=250, validation_data=(x_te, y_te), callbacks=[checkpoint, tensorboard])