-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
226 lines (191 loc) · 7.73 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import os
os.chdir(os.path.dirname(os.path.realpath(__file__)))
import numpy as np
import torch
from torch.autograd import Variable
from networks import classifierMNISTFC, classifierMNISTCNN
import torch.multiprocessing as mp
import copy
from torchvision import datasets, transforms
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=False)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('../data', train=False, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=64, shuffle=True)
def fcMNIST():
classifier = classifierMNISTFC(784, 10, bias=True, lr=0.001)
classifier.cuda()
for e in range(2):
for batch_idx, (data, target) in enumerate(train_loader):
data = Variable(data.cuda())
data = torch.flatten(data, 1)
target = Variable(target.cuda())
loss = classifier.update(data, target)
print("{:.2f}%\tEpoch :{:.2f}\tLoss :{:.2f}".format(100*batch_idx/len(train_loader), e, loss))
def evaluate(model):
correct = 0
total = len(test_loader.dataset)
print(total)
for data, target in test_loader:
data = Variable(data.cuda())
# data = torch.flatten(data, 1)
# target = oneHot(target)
target = Variable(target.cuda())
numCorrect, _ = model.eval(data, target)
correct += numCorrect
return 100*correct/total
def cnnMNIST():
lr = 0.001
classifier = classifierMNISTCNN(784, 10, bias=False, lr=lr)
classifier.cuda()
for e in range(5):
epLoss = 0
for batch_idx, (data, target) in enumerate(train_loader):
data = Variable(data.cuda())
target = Variable(target.cuda())
loss = classifier.update(data, target)
epLoss += loss.item()
print("{} Loss: {}".format(e, epLoss/len(train_loader)))
ev = evaluate(classifier)
print("Model {} evaluation accuracy: %{}".format(1, ev))
# cnnMNIST()
# model1 = classifierMNISTCNN(None, 10, bias=False, lr=0.1).to('cuda')
# model2 = classifierMNISTCNN(None, 10, bias=True, lr=0.001).to('cuda')
def sarsaTest():
act_len = 9 #! Breakout: 4 | MsPackman: 9
env = gym.make(ENV0)
if ENV == ENV0:
act_len = 9
elif ENV == ENV1:
act_len = 4
obs_len = env.observation_space.shape[0]
ddsarsa = DeepDoubleSarsa(obs_len, act_len, bias=True)
ddsarsa.to(device)
target = DeepDoubleSarsa(obs_len, act_len, bias=True)
target.to(device)
replay_buffer = ReplayBuffer(BUFFER_SIZE)
alpha, gamma, epsilon = 0.1, 0.99, 1.0
max_score = 0
rewards, lossa, lossb = [], [], []
print(env.observation_space.shape)
print(env.action_space)
for e in range(1, EPISODES+1):
done = False
total_reward = 0
obs1 = env.reset()
obs = Variable(torch.from_numpy(obs1))
obs = obs.view(-1, obs_len)
obs = obs.float()
obs = obs.to(device)
qa = ddsarsa(obs)
qb = target(obs)
qa = np.squeeze(qb.cpu().data.numpy())
qb = np.squeeze(qa.cpu().data.numpy())
a = gym_act(env, qa, qb, epsilon)
loss = Variable(torch.FloatTensor([0.0]))
t = 0
while not done:
n_obs1, r, done, _ = env.step(a)
total_reward +=r
n_obs = Variable(torch.from_numpy(n_obs1))
n_obs = n_obs.view(-1, obs_len)
n_obs = n_obs.float()
n_obs = n_obs.to(device)
n_qa = ddsarsa(n_obs)
n_qb = target(n_obs)
n_qa = np.squeeze(n_qa.cpu().data.numpy())
n_qb = np.squeeze(n_qb.cpu().data.numpy())
an = gym_act(env, n_qa, n_qb, epsilon)
if done:
replay_buffer.push(obs1, a, r, n_obs1, an, 1.0, np.squeeze(n_qa.cpu().data.numpy()), np.squeeze(n_qb.cpu().data.numpy()))
else:
replay_buffer.push(obs1, a, r, n_obs1, an, 0.0, np.squeeze(n_qa.cpu().data.numpy()), np.squeeze(n_qb.cpu().data.numpy()))
a = an
if len(replay_buffer)>=BATCH_SIZE:
# if e%target_update:
if np.random.rand(1)[0] < 0.5:
s, ac, r, sp, ap, d, q1nn, q2nn = replay_buffer.sample(BATCH_SIZE)
loss = ddsarsa.update([s, ac, r, sp, ap, d], q2nn, gamma)
# lossa.append(loss.item())
else:
s, ac, r, sp, ap, d, q1nn, q2nn = replay_buffer.sample(BATCH_SIZE)
loss = target.update([s, ac, r, sp, ap, d], q1nn, gamma)
# ddsarsa.save('models/sarsa/target.pt')
# target.load('models/sarsa/target.pt')
obs1 = n_obs1
t += 1
if e<epsilon_decay:
epsilon -= (epsilon_start - epsilon_stop)/epsilon_decay
rewards.append(total_reward)
if max_score < total_reward:
max_score = total_reward
if not e%50:
gymEvaluate(env, ddsarsa, target, numEpisodes=20)
# if SAVE and e%saving_fq==0:
# ddsarsa.save("models/cartpole_dm1a.pt")
# target.save("models/cartpole_dm1b.pt")
# np.save('models/cartpole_fc1_rewards', rewards)
# np.save('models/cartpole_fc1_lossa', lossa)
# if SAVE and total_reward > max_score:
# if e>epsilon_decay:
# ddsarsa.save("models/max_dma.pt")
# target.save("models/max_dmb.pt")
# max_score = total_reward
print("Episode: {} | Reward: {} | Loss: {}".format(e, total_reward, loss.item()))
print("Max reward: {}".format(max_score))
# rewards.append(total_reward)
# pre = copy.deepcopy(model1.state_dict())
# print(pre["cnnLayer01.weight"][0])
# for k,v in model1.optimizer.state_dict().items():
# print(v.shape)
# print(k)
# for i in model1.optimizer.state_dict()["param_groups"]:
# print(i["lr"])
# model1.perturb()
# # print(np.random.normal(0.0, 1.0, size = v.shape))
# v += Variable(torch.FloatTensor(np.random.normal(0.0, 0.1, size = v.shape)))
# post = model1.state_dict().copy()
# print(pre["cnnLayer01.weight"][0])
# print(post["cnnLayer01.weight"][0])
# print(pre["cnnLayer01.weight"][0] == post["cnnLayer01.weight"][0])
# print(dict(model1.state_dict())["cnnLayer01.weight"])
# for g in model1.optimizer.state_dict()["param_groups"]:
# print(type(g["lr"]))
# print(model1.optimizer.state_dict()['state'])
# print(model1.optimizer.state_dict()['param_groups'])
# print(model2.optimizer.state_dict())
# print(model1.state_dict()['cnnLayer01.weight'][0] == model2.state_dict()['cnnLayer01.weight'][0])
# print(model1.optimizer.state_dict() == model2.optimizer.state_dict())
# model1.state_dict = model2.state_dict
# model1.optimizer.state_dict = model2.optimizer.state_dict
# print(model1.state_dict()['cnnLayer01.weight'][0] == model2.state_dict()['cnnLayer01.weight'][0])
# print(model1.optimizer.state_dict() == model2.optimizer.state_dict())
# for i in range(1, 10000):
# if not i%5:
# print("\r The line at: {}".format(i),end='', flush=True)
# def oneHot(vec):
# mat = torch.zeros((vec.size(0), 10))
# indices = [np.arange(vec.size(0)), vec]
# mat[indices] = 1
# return mat
# print(len(train_loader))
# for d,t in train_loader:
# print(t)
# # one = oneHot(t)
# # print(one)
# t = Variable(t)
# p = torch.LongTensor([5, 0])
# # print(t)
# # print(p)
# # print((t == p).sum().item())
# break
# print(len(train_loader))