-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseqp-bert.py
111 lines (88 loc) · 3.97 KB
/
seqp-bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/env python3
#
# Script to encode text as BERT embedded vectors in HDF5 format.
#
# Copyright (c) 2019-present, Noe Casas
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree.
#
import argparse
import numpy as np
import sys
import torch
import tqdm
from typing import Optional, Union, List, Iterable, Callable
from pytorch_pretrained_bert import BertTokenizer, BertForMaskedLM
from seqp.record import RecordWriter, ShardedWriter
from seqp.hdf5 import Hdf5RecordWriter
from seqp.encoding import TextCodec
from seqp.util import count_lines
DEFAULT_BERT_WEIGHTS = 'bert-base-multilingual-cased'
class BertInterface(TextCodec):
def __init__(self, use_gpu=False):
self.tokenizer = BertTokenizer.from_pretrained(DEFAULT_BERT_WEIGHTS)
self.model = BertForMaskedLM.from_pretrained(DEFAULT_BERT_WEIGHTS)
self.model.eval()
use_gpu = use_gpu and torch.cuda.is_available()
self.device = torch.device("cuda" if use_gpu else "cpu")
self.model.to(self.device)
def decode(self, embedded: Union[np.ndarray, torch.Tensor]) -> List[str]:
if isinstance(embedded, np.ndarray):
if len(embedded.shape) == 2: # seq_length x emb_dim
embedded = np.expand_dims(embedded, 0) # add batch dimension
assert len(embedded.shape) == 3
embedded = torch.from_numpy(embedded).to(self.device)
predictions = self.model.cls(embedded)
predicted_indexes = torch.argmax(predictions, dim=2).cpu().numpy()
predicted_tokens = self.tokenizer.convert_ids_to_tokens(predicted_indexes[0].tolist())
return predicted_tokens
def detokenize(self, tokens: List[str]) -> str:
return " ".join(tokens).replace(" ##", "")
def tokenize(self, sentence: str) -> List[str]:
return self.tokenizer.tokenize(sentence)
def encode(self, tokens: List[str]) -> Optional[np.ndarray]:
tokenized_text = ['[CLS]'] + tokens
if len(tokenized_text) > self.tokenizer.max_len:
return None
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text)
tokens_tensor = torch.LongTensor([indexed_tokens]).to(self.device)
sequence_output, _ = self.model.bert(tokens_tensor, output_all_encoded_layers=False)
return sequence_output.detach()[0].cpu().numpy()
def show_sentence(key, sentence):
print("{}: {}".format(key, sentence))
def write_records(sentences: Iterable[str],
codec: TextCodec,
writer: RecordWriter,
progress: Callable[[], None] = None):
for idx, sentence in enumerate(sentences):
sentence = sentence.strip("\r\n ")
tokens = codec.tokenize(sentence)
encoded = codec.encode(tokens)
writer.write(encoded)
if progress is not None:
progress()
def main():
parser = argparse.ArgumentParser("BERT encoder into HDF5")
parser.add_argument('--input', required=False)
parser.add_argument('--output', required=True)
parser.add_argument('--max_records', default=200000)
args = parser.parse_args()
extension = '.hdf5'
if args.output[-len(extension):] == extension:
args.output = args.output[:-len(extension)] # remove .hdf5 extension
output_file_template = args.output + "_{:05d}.hdf5"
embedder = BertInterface(use_gpu=True)
with ShardedWriter(Hdf5RecordWriter, output_file_template, args.max_records) as writer:
if args.input:
total_sentences = count_lines(args.input)
with open(args.input, 'r') as input_sentences:
with tqdm.tqdm(total=total_sentences, ncols=100, leave=False, unit='segments') as pbar:
def progress():
pbar.update(1)
write_records(input_sentences, embedder, writer, progress)
else:
write_records(sys.stdin, embedder, writer)
if __name__ == '__main__':
main()