diff --git a/cpp_ext/TorchTensor.pybinds.cpp b/cpp_ext/TorchTensor.pybinds.cpp index 29ffa90d..b42f47d6 100644 --- a/cpp_ext/TorchTensor.pybinds.cpp +++ b/cpp_ext/TorchTensor.pybinds.cpp @@ -8,10 +8,10 @@ c.def("__abs__", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue c.def("__and__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return __and__(self, other); }, "other"_a); // __bool__(self) -> builtins.bool -c.def("__bool__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__bool__ with signature __bool__(self) -> builtins.bool"); }); +c.def("__bool__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __bool__ with signature __bool__(self) -> builtins.bool"); }); // __complex__(self) -> builtins.complex -c.def("__complex__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__complex__ with signature __complex__(self) -> builtins.complex"); }); +c.def("__complex__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __complex__ with signature __complex__(self) -> builtins.complex"); }); // __div__(self, other Any) -> Tensor // aten::div.Scalar : (Tensor, Scalar) -> (Tensor) @@ -30,7 +30,7 @@ c.def("__eq__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValu c.def("__eq__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return __eq__(self, other); }, "other"_a); // __float__(self) -> builtins.float -c.def("__float__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__float__ with signature __float__(self) -> builtins.float"); }); +c.def("__float__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __float__ with signature __float__(self) -> builtins.float"); }); // __ge__(self, other Any) -> Tensor // aten::ge.Scalar : (Tensor, Scalar) -> (Tensor) @@ -41,7 +41,7 @@ c.def("__ge__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValu c.def("__ge__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return __ge__(self, other); }, "other"_a); // __getitem__(self, indices Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor -c.def("__getitem__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__getitem__ with signature __getitem__(self, indices Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor"); }); +c.def("__getitem__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __getitem__ with signature __getitem__(self, indices Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor"); }); // __gt__(self, other Any) -> Tensor // aten::gt.Scalar : (Tensor, Scalar) -> (Tensor) @@ -52,73 +52,73 @@ c.def("__gt__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValu c.def("__gt__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return __gt__(self, other); }, "other"_a); // __iadd__(self, other Any) -> Tensor -c.def("__iadd__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__iadd__ with signature __iadd__(self, other Any) -> Tensor"); }); +c.def("__iadd__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __iadd__ with signature __iadd__(self, other Any) -> Tensor"); }); // @overload __iand__(self, other Tensor) -> Tensor -c.def("__iand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__iand__ with signature @overload __iand__(self, other Tensor) -> Tensor"); }); +c.def("__iand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __iand__ with signature @overload __iand__(self, other Tensor) -> Tensor"); }); // @overload __iand__(self, other Union[Number, _complex]) -> Tensor -c.def("__iand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__iand__ with signature @overload __iand__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__iand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __iand__ with signature @overload __iand__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __iand__(self, other Any) -> Tensor -c.def("__iand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__iand__ with signature @overload __iand__(self, other Any) -> Tensor"); }); +c.def("__iand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __iand__ with signature @overload __iand__(self, other Any) -> Tensor"); }); // __idiv__(self, other Any) -> Tensor -c.def("__idiv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__idiv__ with signature __idiv__(self, other Any) -> Tensor"); }); +c.def("__idiv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __idiv__ with signature __idiv__(self, other Any) -> Tensor"); }); // __ifloordiv__(self, other Any) -> Tensor -c.def("__ifloordiv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ifloordiv__ with signature __ifloordiv__(self, other Any) -> Tensor"); }); +c.def("__ifloordiv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ifloordiv__ with signature __ifloordiv__(self, other Any) -> Tensor"); }); // @overload __ilshift__(self, other Tensor) -> Tensor -c.def("__ilshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ilshift__ with signature @overload __ilshift__(self, other Tensor) -> Tensor"); }); +c.def("__ilshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ilshift__ with signature @overload __ilshift__(self, other Tensor) -> Tensor"); }); // @overload __ilshift__(self, other Union[Number, _complex]) -> Tensor -c.def("__ilshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ilshift__ with signature @overload __ilshift__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__ilshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ilshift__ with signature @overload __ilshift__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __ilshift__(self, other Any) -> Tensor -c.def("__ilshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ilshift__ with signature @overload __ilshift__(self, other Any) -> Tensor"); }); +c.def("__ilshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ilshift__ with signature @overload __ilshift__(self, other Any) -> Tensor"); }); // __imod__(self, other Any) -> Tensor -c.def("__imod__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__imod__ with signature __imod__(self, other Any) -> Tensor"); }); +c.def("__imod__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __imod__ with signature __imod__(self, other Any) -> Tensor"); }); // __imul__(self, other Any) -> Tensor -c.def("__imul__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__imul__ with signature __imul__(self, other Any) -> Tensor"); }); +c.def("__imul__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __imul__ with signature __imul__(self, other Any) -> Tensor"); }); // __int__(self) -> builtins.int -c.def("__int__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__int__ with signature __int__(self) -> builtins.int"); }); +c.def("__int__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __int__ with signature __int__(self) -> builtins.int"); }); // __invert__(self) -> Tensor -c.def("__invert__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__invert__ with signature __invert__(self) -> Tensor"); }); +c.def("__invert__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __invert__ with signature __invert__(self) -> Tensor"); }); // @overload __ior__(self, other Tensor) -> Tensor -c.def("__ior__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ior__ with signature @overload __ior__(self, other Tensor) -> Tensor"); }); +c.def("__ior__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ior__ with signature @overload __ior__(self, other Tensor) -> Tensor"); }); // @overload __ior__(self, other Union[Number, _complex]) -> Tensor -c.def("__ior__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ior__ with signature @overload __ior__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__ior__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ior__ with signature @overload __ior__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __ior__(self, other Any) -> Tensor -c.def("__ior__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ior__ with signature @overload __ior__(self, other Any) -> Tensor"); }); +c.def("__ior__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ior__ with signature @overload __ior__(self, other Any) -> Tensor"); }); // @overload __irshift__(self, other Tensor) -> Tensor -c.def("__irshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__irshift__ with signature @overload __irshift__(self, other Tensor) -> Tensor"); }); +c.def("__irshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __irshift__ with signature @overload __irshift__(self, other Tensor) -> Tensor"); }); // @overload __irshift__(self, other Union[Number, _complex]) -> Tensor -c.def("__irshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__irshift__ with signature @overload __irshift__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__irshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __irshift__ with signature @overload __irshift__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __irshift__(self, other Any) -> Tensor -c.def("__irshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__irshift__ with signature @overload __irshift__(self, other Any) -> Tensor"); }); +c.def("__irshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __irshift__ with signature @overload __irshift__(self, other Any) -> Tensor"); }); // __isub__(self, other Any) -> Tensor -c.def("__isub__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__isub__ with signature __isub__(self, other Any) -> Tensor"); }); +c.def("__isub__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __isub__ with signature __isub__(self, other Any) -> Tensor"); }); // @overload __ixor__(self, other Tensor) -> Tensor -c.def("__ixor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ixor__ with signature @overload __ixor__(self, other Tensor) -> Tensor"); }); +c.def("__ixor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ixor__ with signature @overload __ixor__(self, other Tensor) -> Tensor"); }); // @overload __ixor__(self, other Union[Number, _complex]) -> Tensor -c.def("__ixor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ixor__ with signature @overload __ixor__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__ixor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ixor__ with signature @overload __ixor__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __ixor__(self, other Any) -> Tensor -c.def("__ixor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ixor__ with signature @overload __ixor__(self, other Any) -> Tensor"); }); +c.def("__ixor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ixor__ with signature @overload __ixor__(self, other Any) -> Tensor"); }); // __le__(self, other Any) -> Tensor // aten::le.Scalar : (Tensor, Scalar) -> (Tensor) @@ -129,16 +129,16 @@ c.def("__le__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValu c.def("__le__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return __le__(self, other); }, "other"_a); // __long__(self) -> builtins.int -c.def("__long__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__long__ with signature __long__(self) -> builtins.int"); }); +c.def("__long__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __long__ with signature __long__(self) -> builtins.int"); }); // @overload __lshift__(self, other Tensor) -> Tensor -c.def("__lshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__lshift__ with signature @overload __lshift__(self, other Tensor) -> Tensor"); }); +c.def("__lshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __lshift__ with signature @overload __lshift__(self, other Tensor) -> Tensor"); }); // @overload __lshift__(self, other Union[Number, _complex]) -> Tensor -c.def("__lshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__lshift__ with signature @overload __lshift__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__lshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __lshift__ with signature @overload __lshift__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __lshift__(self, other Any) -> Tensor -c.def("__lshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__lshift__ with signature @overload __lshift__(self, other Any) -> Tensor"); }); +c.def("__lshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __lshift__ with signature @overload __lshift__(self, other Any) -> Tensor"); }); // __lt__(self, other Any) -> Tensor // aten::lt.Scalar : (Tensor, Scalar) -> (Tensor) @@ -153,7 +153,7 @@ c.def("__lt__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValu c.def("__matmul__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return __matmul__(self, other); }, "other"_a); // __mod__(self, other Any) -> Tensor -c.def("__mod__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__mod__ with signature __mod__(self, other Any) -> Tensor"); }); +c.def("__mod__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __mod__ with signature __mod__(self, other Any) -> Tensor"); }); // __mul__(self, other Any) -> Tensor // aten::mul.Scalar : (Tensor, Scalar) -> (Tensor) @@ -176,149 +176,149 @@ c.def("__ne__", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValu c.def("__neg__", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return __neg__(self); }); // __nonzero__(self) -> builtins.bool -c.def("__nonzero__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__nonzero__ with signature __nonzero__(self) -> builtins.bool"); }); +c.def("__nonzero__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __nonzero__ with signature __nonzero__(self) -> builtins.bool"); }); // @overload __or__(self, other Tensor) -> Tensor -c.def("__or__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__or__ with signature @overload __or__(self, other Tensor) -> Tensor"); }); +c.def("__or__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __or__ with signature @overload __or__(self, other Tensor) -> Tensor"); }); // @overload __or__(self, other Union[Number, _complex]) -> Tensor -c.def("__or__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__or__ with signature @overload __or__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__or__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __or__ with signature @overload __or__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __or__(self, other Any) -> Tensor -c.def("__or__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__or__ with signature @overload __or__(self, other Any) -> Tensor"); }); +c.def("__or__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __or__ with signature @overload __or__(self, other Any) -> Tensor"); }); // __radd__(self, other Any) -> Tensor -c.def("__radd__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__radd__ with signature __radd__(self, other Any) -> Tensor"); }); +c.def("__radd__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __radd__ with signature __radd__(self, other Any) -> Tensor"); }); // __rand__(self, other Any) -> Tensor -c.def("__rand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rand__ with signature __rand__(self, other Any) -> Tensor"); }); +c.def("__rand__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rand__ with signature __rand__(self, other Any) -> Tensor"); }); // __rfloordiv__(self, other Any) -> Tensor -c.def("__rfloordiv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rfloordiv__ with signature __rfloordiv__(self, other Any) -> Tensor"); }); +c.def("__rfloordiv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rfloordiv__ with signature __rfloordiv__(self, other Any) -> Tensor"); }); // __rmul__(self, other Any) -> Tensor -c.def("__rmul__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rmul__ with signature __rmul__(self, other Any) -> Tensor"); }); +c.def("__rmul__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rmul__ with signature __rmul__(self, other Any) -> Tensor"); }); // __ror__(self, other Any) -> Tensor -c.def("__ror__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__ror__ with signature __ror__(self, other Any) -> Tensor"); }); +c.def("__ror__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __ror__ with signature __ror__(self, other Any) -> Tensor"); }); // __rpow__(self, other Any) -> Tensor -c.def("__rpow__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rpow__ with signature __rpow__(self, other Any) -> Tensor"); }); +c.def("__rpow__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rpow__ with signature __rpow__(self, other Any) -> Tensor"); }); // @overload __rshift__(self, other Tensor) -> Tensor -c.def("__rshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rshift__ with signature @overload __rshift__(self, other Tensor) -> Tensor"); }); +c.def("__rshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rshift__ with signature @overload __rshift__(self, other Tensor) -> Tensor"); }); // @overload __rshift__(self, other Union[Number, _complex]) -> Tensor -c.def("__rshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rshift__ with signature @overload __rshift__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__rshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rshift__ with signature @overload __rshift__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __rshift__(self, other Any) -> Tensor -c.def("__rshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rshift__ with signature @overload __rshift__(self, other Any) -> Tensor"); }); +c.def("__rshift__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rshift__ with signature @overload __rshift__(self, other Any) -> Tensor"); }); // __rtruediv__(self, other Any) -> Tensor -c.def("__rtruediv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rtruediv__ with signature __rtruediv__(self, other Any) -> Tensor"); }); +c.def("__rtruediv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rtruediv__ with signature __rtruediv__(self, other Any) -> Tensor"); }); // __rxor__(self, other Any) -> Tensor -c.def("__rxor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__rxor__ with signature __rxor__(self, other Any) -> Tensor"); }); +c.def("__rxor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __rxor__ with signature __rxor__(self, other Any) -> Tensor"); }); // __setitem__(self, indices Union[None, _int, slice, Tensor, List, Tuple], val Union[Tensor, Number]) -> None -c.def("__setitem__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__setitem__ with signature __setitem__(self, indices Union[None, _int, slice, Tensor, List, Tuple], val Union[Tensor, Number]) -> None"); }); +c.def("__setitem__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __setitem__ with signature __setitem__(self, indices Union[None, _int, slice, Tensor, List, Tuple], val Union[Tensor, Number]) -> None"); }); // __truediv__(self, other Any) -> Tensor -c.def("__truediv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__truediv__ with signature __truediv__(self, other Any) -> Tensor"); }); +c.def("__truediv__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __truediv__ with signature __truediv__(self, other Any) -> Tensor"); }); // @overload __xor__(self, other Tensor) -> Tensor -c.def("__xor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__xor__ with signature @overload __xor__(self, other Tensor) -> Tensor"); }); +c.def("__xor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __xor__ with signature @overload __xor__(self, other Tensor) -> Tensor"); }); // @overload __xor__(self, other Union[Number, _complex]) -> Tensor -c.def("__xor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__xor__ with signature @overload __xor__(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("__xor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __xor__ with signature @overload __xor__(self, other Union[Number, _complex]) -> Tensor"); }); // @overload __xor__(self, other Any) -> Tensor -c.def("__xor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("__xor__ with signature @overload __xor__(self, other Any) -> Tensor"); }); +c.def("__xor__", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: __xor__ with signature @overload __xor__(self, other Any) -> Tensor"); }); // _addmm_activation(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1, use_gelu _bool=False) -> Tensor -c.def("_addmm_activation", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_addmm_activation with signature _addmm_activation(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1, use_gelu _bool=False) -> Tensor"); }); +c.def("_addmm_activation", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _addmm_activation with signature _addmm_activation(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1, use_gelu _bool=False) -> Tensor"); }); // _autocast_to_full_precision(self, cuda_enabled _bool, cpu_enabled _bool) -> Tensor -c.def("_autocast_to_full_precision", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_autocast_to_full_precision with signature _autocast_to_full_precision(self, cuda_enabled _bool, cpu_enabled _bool) -> Tensor"); }); +c.def("_autocast_to_full_precision", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _autocast_to_full_precision with signature _autocast_to_full_precision(self, cuda_enabled _bool, cpu_enabled _bool) -> Tensor"); }); // _autocast_to_reduced_precision(self, cuda_enabled _bool, cpu_enabled _bool, cuda_dtype _dtype, cpu_dtype _dtype) -> Tensor -c.def("_autocast_to_reduced_precision", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_autocast_to_reduced_precision with signature _autocast_to_reduced_precision(self, cuda_enabled _bool, cpu_enabled _bool, cuda_dtype _dtype, cpu_dtype _dtype) -> Tensor"); }); +c.def("_autocast_to_reduced_precision", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _autocast_to_reduced_precision with signature _autocast_to_reduced_precision(self, cuda_enabled _bool, cpu_enabled _bool, cuda_dtype _dtype, cpu_dtype _dtype) -> Tensor"); }); // _coalesced_(self, coalesced _bool) -> Tensor -c.def("_coalesced_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_coalesced_ with signature _coalesced_(self, coalesced _bool) -> Tensor"); }); +c.def("_coalesced_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _coalesced_ with signature _coalesced_(self, coalesced _bool) -> Tensor"); }); // _conj(self) -> Tensor -c.def("_conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_conj with signature _conj(self) -> Tensor"); }); +c.def("_conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _conj with signature _conj(self) -> Tensor"); }); // _conj_physical(self) -> Tensor -c.def("_conj_physical", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_conj_physical with signature _conj_physical(self) -> Tensor"); }); +c.def("_conj_physical", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _conj_physical with signature _conj_physical(self) -> Tensor"); }); // _dimI(self) -> _int -c.def("_dimI", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_dimI with signature _dimI(self) -> _int"); }); +c.def("_dimI", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _dimI with signature _dimI(self) -> _int"); }); // _dimV(self) -> _int -c.def("_dimV", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_dimV with signature _dimV(self) -> _int"); }); +c.def("_dimV", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _dimV with signature _dimV(self) -> _int"); }); // _indices(self) -> Tensor -c.def("_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_indices with signature _indices(self) -> Tensor"); }); +c.def("_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _indices with signature _indices(self) -> Tensor"); }); // _is_all_true(self) -> Tensor -c.def("_is_all_true", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_is_all_true with signature _is_all_true(self) -> Tensor"); }); +c.def("_is_all_true", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _is_all_true with signature _is_all_true(self) -> Tensor"); }); // _is_any_true(self) -> Tensor -c.def("_is_any_true", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_is_any_true with signature _is_any_true(self) -> Tensor"); }); +c.def("_is_any_true", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _is_any_true with signature _is_any_true(self) -> Tensor"); }); // _is_view(self) -> _bool -c.def("_is_view", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_is_view with signature _is_view(self) -> _bool"); }); +c.def("_is_view", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _is_view with signature _is_view(self) -> _bool"); }); // _is_zerotensor(self) -> _bool -c.def("_is_zerotensor", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_is_zerotensor with signature _is_zerotensor(self) -> _bool"); }); +c.def("_is_zerotensor", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _is_zerotensor with signature _is_zerotensor(self) -> _bool"); }); // @staticmethod _make_subclass(cls Type[S], data Tensor, require_grad _bool=False, dispatch_strides _bool=False, dispatch_device _bool=False, device_for_backend_keys Optional[_device]=None) -> S -c.def("_make_subclass", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_make_subclass with signature @staticmethod _make_subclass(cls Type[S], data Tensor, require_grad _bool=False, dispatch_strides _bool=False, dispatch_device _bool=False, device_for_backend_keys Optional[_device]=None) -> S"); }); +c.def("_make_subclass", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _make_subclass with signature @staticmethod _make_subclass(cls Type[S], data Tensor, require_grad _bool=False, dispatch_strides _bool=False, dispatch_device _bool=False, device_for_backend_keys Optional[_device]=None) -> S"); }); // _neg_view(self) -> Tensor -c.def("_neg_view", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_neg_view with signature _neg_view(self) -> Tensor"); }); +c.def("_neg_view", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _neg_view with signature _neg_view(self) -> Tensor"); }); // _nested_tensor_size(self) -> Tensor -c.def("_nested_tensor_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_nested_tensor_size with signature _nested_tensor_size(self) -> Tensor"); }); +c.def("_nested_tensor_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _nested_tensor_size with signature _nested_tensor_size(self) -> Tensor"); }); // _nested_tensor_storage_offsets(self) -> Tensor -c.def("_nested_tensor_storage_offsets", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_nested_tensor_storage_offsets with signature _nested_tensor_storage_offsets(self) -> Tensor"); }); +c.def("_nested_tensor_storage_offsets", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _nested_tensor_storage_offsets with signature _nested_tensor_storage_offsets(self) -> Tensor"); }); // _nested_tensor_strides(self) -> Tensor -c.def("_nested_tensor_strides", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_nested_tensor_strides with signature _nested_tensor_strides(self) -> Tensor"); }); +c.def("_nested_tensor_strides", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _nested_tensor_strides with signature _nested_tensor_strides(self) -> Tensor"); }); // _nnz(self) -> _int -c.def("_nnz", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_nnz with signature _nnz(self) -> _int"); }); +c.def("_nnz", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _nnz with signature _nnz(self) -> _int"); }); // _to_dense(self, dtype Optional[_dtype]=None, masked_grad Optional[_bool]=None) -> Tensor -c.def("_to_dense", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_to_dense with signature _to_dense(self, dtype Optional[_dtype]=None, masked_grad Optional[_bool]=None) -> Tensor"); }); +c.def("_to_dense", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _to_dense with signature _to_dense(self, dtype Optional[_dtype]=None, masked_grad Optional[_bool]=None) -> Tensor"); }); // _values(self) -> Tensor -c.def("_values", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("_values with signature _values(self) -> Tensor"); }); +c.def("_values", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: _values with signature _values(self) -> Tensor"); }); // abs_(self) -> Tensor // aten::abs_ : (Tensor) -> (Tensor) c.def("abs_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return abs_(self); }); // absolute(self) -> Tensor -c.def("absolute", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("absolute with signature absolute(self) -> Tensor"); }); +c.def("absolute", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: absolute with signature absolute(self) -> Tensor"); }); // absolute_(self) -> Tensor -c.def("absolute_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("absolute_ with signature absolute_(self) -> Tensor"); }); +c.def("absolute_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: absolute_ with signature absolute_(self) -> Tensor"); }); // acos(self) -> Tensor -c.def("acos", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("acos with signature acos(self) -> Tensor"); }); +c.def("acos", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: acos with signature acos(self) -> Tensor"); }); // acos_(self) -> Tensor -c.def("acos_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("acos_ with signature acos_(self) -> Tensor"); }); +c.def("acos_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: acos_ with signature acos_(self) -> Tensor"); }); // acosh(self) -> Tensor -c.def("acosh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("acosh with signature acosh(self) -> Tensor"); }); +c.def("acosh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: acosh with signature acosh(self) -> Tensor"); }); // acosh_(self) -> Tensor -c.def("acosh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("acosh_ with signature acosh_(self) -> Tensor"); }); +c.def("acosh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: acosh_ with signature acosh_(self) -> Tensor"); }); // add_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha Optional[Number]=1) -> Tensor // aten::add_.Scalar : (Tensor, Scalar, Scalar) -> (Tensor) @@ -329,10 +329,10 @@ c.def("add_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue c.def("add_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other, const PyAnyTorchScalarValue &alpha) -> PyAnyTorchTensorValue { return add_(self, other, alpha); }, "other"_a, py::kw_only(), "alpha"_a = 1); // addbmm(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addbmm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addbmm with signature addbmm(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addbmm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addbmm with signature addbmm(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // addbmm_(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addbmm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addbmm_ with signature addbmm_(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addbmm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addbmm_ with signature addbmm_(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // addcdiv(self, tensor1 Tensor, tensor2 Tensor, *, value Union[Number, _complex]=1) -> Tensor // aten::addcdiv : (Tensor, Tensor, Tensor, Scalar) -> (Tensor) @@ -355,51 +355,51 @@ c.def("addcmul_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorVa c.def("addmm", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &mat1, const PyAnyTorchTensorValue &mat2, const PyAnyTorchScalarValue &beta, const PyAnyTorchScalarValue &alpha) -> PyAnyTorchTensorValue { return addmm(self, mat1, mat2, beta, alpha); }, "mat1"_a, "mat2"_a, py::kw_only(), "beta"_a = 1, "alpha"_a = 1); // addmm_(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addmm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addmm_ with signature addmm_(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addmm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addmm_ with signature addmm_(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // addmv(self, mat Tensor, vec Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addmv", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addmv with signature addmv(self, mat Tensor, vec Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addmv", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addmv with signature addmv(self, mat Tensor, vec Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // addmv_(self, mat Tensor, vec Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addmv_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addmv_ with signature addmv_(self, mat Tensor, vec Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addmv_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addmv_ with signature addmv_(self, mat Tensor, vec Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // addr(self, vec1 Tensor, vec2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addr with signature addr(self, vec1 Tensor, vec2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addr with signature addr(self, vec1 Tensor, vec2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // addr_(self, vec1 Tensor, vec2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("addr_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("addr_ with signature addr_(self, vec1 Tensor, vec2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("addr_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: addr_ with signature addr_(self, vec1 Tensor, vec2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // adjoint(self) -> Tensor -c.def("adjoint", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("adjoint with signature adjoint(self) -> Tensor"); }); +c.def("adjoint", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: adjoint with signature adjoint(self) -> Tensor"); }); // align_as(self, other Tensor) -> Tensor -c.def("align_as", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("align_as with signature align_as(self, other Tensor) -> Tensor"); }); +c.def("align_as", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: align_as with signature align_as(self, other Tensor) -> Tensor"); }); // @overload align_to(self, order Sequence[Union[str, ellipsis, None]], ellipsis_idx _int) -> Tensor -c.def("align_to", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("align_to with signature @overload align_to(self, order Sequence[Union[str, ellipsis, None]], ellipsis_idx _int) -> Tensor"); }); +c.def("align_to", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: align_to with signature @overload align_to(self, order Sequence[Union[str, ellipsis, None]], ellipsis_idx _int) -> Tensor"); }); // @overload align_to(self, names Sequence[Union[str, ellipsis, None]]) -> Tensor -c.def("align_to", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("align_to with signature @overload align_to(self, names Sequence[Union[str, ellipsis, None]]) -> Tensor"); }); +c.def("align_to", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: align_to with signature @overload align_to(self, names Sequence[Union[str, ellipsis, None]]) -> Tensor"); }); // @overload all(self) -> Tensor // aten::all : (Tensor) -> (Tensor) c.def("all", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return all(self); }); // allclose(self, other Tensor, rtol _float=1e-05, atol _float=1e-08, equal_nan _bool=False) -> _bool -c.def("allclose", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("allclose with signature allclose(self, other Tensor, rtol _float=1e-05, atol _float=1e-08, equal_nan _bool=False) -> _bool"); }); +c.def("allclose", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: allclose with signature allclose(self, other Tensor, rtol _float=1e-05, atol _float=1e-08, equal_nan _bool=False) -> _bool"); }); // amax(self, dim Union[_int, _size]=(), keepdim _bool=False) -> Tensor // aten::amax : (Tensor, int[], bool) -> (Tensor) c.def("amax", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &dim, const PyTorch_BoolValue &keepdim) -> PyAnyTorchTensorValue { return amax(self, dim, keepdim); }, "dim"_a = std::vector{}, "keepdim"_a = false); // amin(self, dim Union[_int, _size]=(), keepdim _bool=False) -> Tensor -c.def("amin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("amin with signature amin(self, dim Union[_int, _size]=(), keepdim _bool=False) -> Tensor"); }); +c.def("amin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: amin with signature amin(self, dim Union[_int, _size]=(), keepdim _bool=False) -> Tensor"); }); // aminmax(self, *, dim Optional[_int]=None, keepdim _bool=False) -> torch.return_types.aminmax -c.def("aminmax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("aminmax with signature aminmax(self, *, dim Optional[_int]=None, keepdim _bool=False) -> torch.return_types.aminmax"); }); +c.def("aminmax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: aminmax with signature aminmax(self, *, dim Optional[_int]=None, keepdim _bool=False) -> torch.return_types.aminmax"); }); // angle(self) -> Tensor -c.def("angle", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("angle with signature angle(self) -> Tensor"); }); +c.def("angle", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: angle with signature angle(self) -> Tensor"); }); // @overload any(self) -> Tensor // aten::any : (Tensor) -> (Tensor) @@ -410,93 +410,93 @@ c.def("any", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { re c.def("any", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyTorch_BoolValue &keepdim) -> PyAnyTorchTensorValue { return any(self, dim, keepdim); }, "dim"_a, "keepdim"_a = false); // apply_(self, callable Callable) -> Tensor -c.def("apply_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("apply_ with signature apply_(self, callable Callable) -> Tensor"); }); +c.def("apply_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: apply_ with signature apply_(self, callable Callable) -> Tensor"); }); // arccos(self) -> Tensor -c.def("arccos", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arccos with signature arccos(self) -> Tensor"); }); +c.def("arccos", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arccos with signature arccos(self) -> Tensor"); }); // arccos_(self) -> Tensor -c.def("arccos_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arccos_ with signature arccos_(self) -> Tensor"); }); +c.def("arccos_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arccos_ with signature arccos_(self) -> Tensor"); }); // arccosh(self) -> Tensor -c.def("arccosh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arccosh with signature arccosh(self) -> Tensor"); }); +c.def("arccosh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arccosh with signature arccosh(self) -> Tensor"); }); // arccosh_(self) -> Tensor -c.def("arccosh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arccosh_ with signature arccosh_(self) -> Tensor"); }); +c.def("arccosh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arccosh_ with signature arccosh_(self) -> Tensor"); }); // arcsin(self) -> Tensor -c.def("arcsin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arcsin with signature arcsin(self) -> Tensor"); }); +c.def("arcsin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arcsin with signature arcsin(self) -> Tensor"); }); // arcsin_(self) -> Tensor -c.def("arcsin_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arcsin_ with signature arcsin_(self) -> Tensor"); }); +c.def("arcsin_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arcsin_ with signature arcsin_(self) -> Tensor"); }); // arcsinh(self) -> Tensor -c.def("arcsinh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arcsinh with signature arcsinh(self) -> Tensor"); }); +c.def("arcsinh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arcsinh with signature arcsinh(self) -> Tensor"); }); // arcsinh_(self) -> Tensor -c.def("arcsinh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arcsinh_ with signature arcsinh_(self) -> Tensor"); }); +c.def("arcsinh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arcsinh_ with signature arcsinh_(self) -> Tensor"); }); // arctan(self) -> Tensor -c.def("arctan", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arctan with signature arctan(self) -> Tensor"); }); +c.def("arctan", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arctan with signature arctan(self) -> Tensor"); }); // arctan2(self, other Tensor) -> Tensor -c.def("arctan2", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arctan2 with signature arctan2(self, other Tensor) -> Tensor"); }); +c.def("arctan2", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arctan2 with signature arctan2(self, other Tensor) -> Tensor"); }); // arctan2_(self, other Tensor) -> Tensor -c.def("arctan2_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arctan2_ with signature arctan2_(self, other Tensor) -> Tensor"); }); +c.def("arctan2_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arctan2_ with signature arctan2_(self, other Tensor) -> Tensor"); }); // arctan_(self) -> Tensor -c.def("arctan_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arctan_ with signature arctan_(self) -> Tensor"); }); +c.def("arctan_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arctan_ with signature arctan_(self) -> Tensor"); }); // arctanh(self) -> Tensor -c.def("arctanh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arctanh with signature arctanh(self) -> Tensor"); }); +c.def("arctanh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arctanh with signature arctanh(self) -> Tensor"); }); // arctanh_(self) -> Tensor -c.def("arctanh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("arctanh_ with signature arctanh_(self) -> Tensor"); }); +c.def("arctanh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: arctanh_ with signature arctanh_(self) -> Tensor"); }); // argmax(self, dim Optional[_int]=None, keepdim _bool=False) -> Tensor // aten::argmax : (Tensor, int?, bool) -> (Tensor) c.def("argmax", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalIntValue &dim, const PyTorch_BoolValue &keepdim) -> PyAnyTorchTensorValue { return argmax(self, dim, keepdim); }, "dim"_a = py::none(), "keepdim"_a = false); // argmin(self, dim Optional[_int]=None, keepdim _bool=False) -> Tensor -c.def("argmin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("argmin with signature argmin(self, dim Optional[_int]=None, keepdim _bool=False) -> Tensor"); }); +c.def("argmin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: argmin with signature argmin(self, dim Optional[_int]=None, keepdim _bool=False) -> Tensor"); }); // @overload argsort(self, *, stable _bool, dim _int=-1, descending _bool=False) -> Tensor -c.def("argsort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("argsort with signature @overload argsort(self, *, stable _bool, dim _int=-1, descending _bool=False) -> Tensor"); }); +c.def("argsort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: argsort with signature @overload argsort(self, *, stable _bool, dim _int=-1, descending _bool=False) -> Tensor"); }); // @overload argsort(self, dim _int=-1, descending _bool=False) -> Tensor -c.def("argsort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("argsort with signature @overload argsort(self, dim _int=-1, descending _bool=False) -> Tensor"); }); +c.def("argsort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: argsort with signature @overload argsort(self, dim _int=-1, descending _bool=False) -> Tensor"); }); // @overload argsort(self, dim Union[str, ellipsis, None], descending _bool=False) -> Tensor -c.def("argsort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("argsort with signature @overload argsort(self, dim Union[str, ellipsis, None], descending _bool=False) -> Tensor"); }); +c.def("argsort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: argsort with signature @overload argsort(self, dim Union[str, ellipsis, None], descending _bool=False) -> Tensor"); }); // argwhere(self) -> Tensor -c.def("argwhere", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("argwhere with signature argwhere(self) -> Tensor"); }); +c.def("argwhere", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: argwhere with signature argwhere(self) -> Tensor"); }); // as_strided(self, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor -c.def("as_strided", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("as_strided with signature as_strided(self, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor"); }); +c.def("as_strided", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: as_strided with signature as_strided(self, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor"); }); // as_strided_(self, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor -c.def("as_strided_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("as_strided_ with signature as_strided_(self, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor"); }); +c.def("as_strided_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: as_strided_ with signature as_strided_(self, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor"); }); // as_strided_scatter(self, src Tensor, size Sequence[Union[_int, SymInt]], stride Sequence[Union[_int, SymInt]], storage_offset Optional[Union[_int, SymInt]]=None) -> Tensor // aten::as_strided_scatter : (Tensor, Tensor, int[], int[], int?) -> (Tensor) c.def("as_strided_scatter", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &src, const PyAnyTorchListOfTorchIntValue &size, const PyAnyTorchListOfTorchIntValue &stride, const PyAnyTorchOptionalIntValue &storage_offset) -> PyAnyTorchTensorValue { return as_strided_scatter(self, src, size, stride, storage_offset); }, "src"_a, "size"_a, "stride"_a, "storage_offset"_a = py::none()); // as_subclass(self, cls Type[S]) -> S -c.def("as_subclass", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("as_subclass with signature as_subclass(self, cls Type[S]) -> S"); }); +c.def("as_subclass", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: as_subclass with signature as_subclass(self, cls Type[S]) -> S"); }); // asin(self) -> Tensor -c.def("asin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("asin with signature asin(self) -> Tensor"); }); +c.def("asin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: asin with signature asin(self) -> Tensor"); }); // asin_(self) -> Tensor -c.def("asin_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("asin_ with signature asin_(self) -> Tensor"); }); +c.def("asin_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: asin_ with signature asin_(self) -> Tensor"); }); // asinh(self) -> Tensor -c.def("asinh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("asinh with signature asinh(self) -> Tensor"); }); +c.def("asinh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: asinh with signature asinh(self) -> Tensor"); }); // asinh_(self) -> Tensor -c.def("asinh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("asinh_ with signature asinh_(self) -> Tensor"); }); +c.def("asinh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: asinh_ with signature asinh_(self) -> Tensor"); }); // atan(self) -> Tensor // aten::atan : (Tensor) -> (Tensor) @@ -515,10 +515,10 @@ c.def("atan2_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValu c.def("atan_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return atan_(self); }); // atanh(self) -> Tensor -c.def("atanh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("atanh with signature atanh(self) -> Tensor"); }); +c.def("atanh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: atanh with signature atanh(self) -> Tensor"); }); // atanh_(self) -> Tensor -c.def("atanh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("atanh_ with signature atanh_(self) -> Tensor"); }); +c.def("atanh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: atanh_ with signature atanh_(self) -> Tensor"); }); // baddbmm(self, batch1 Tensor, batch2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor // aten::baddbmm : (Tensor, Tensor, Tensor, Scalar, Scalar) -> (Tensor) @@ -549,7 +549,7 @@ c.def("bernoulli_", [](const PyAnyTorchTensorValue &self, const PyTorch_FloatVal c.def("bernoulli_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &p, const PyAnyTorchOptionalGeneratorValue &generator) -> PyAnyTorchTensorValue { return bernoulli_(self, p, generator); }, "p"_a, "generator"_a = py::none()); // bfloat16(self) -> Tensor -c.def("bfloat16", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bfloat16 with signature bfloat16(self) -> Tensor"); }); +c.def("bfloat16", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bfloat16 with signature bfloat16(self) -> Tensor"); }); // bincount(self, weights Optional[Tensor]=None, minlength _int=0) -> Tensor // aten::bincount : (Tensor, Tensor?, int) -> (Tensor) @@ -564,16 +564,16 @@ c.def("bitwise_and", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTenso c.def("bitwise_and_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return bitwise_and_(self, other); }, "other"_a); // @overload bitwise_left_shift(self, other Tensor) -> Tensor -c.def("bitwise_left_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_left_shift with signature @overload bitwise_left_shift(self, other Tensor) -> Tensor"); }); +c.def("bitwise_left_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_left_shift with signature @overload bitwise_left_shift(self, other Tensor) -> Tensor"); }); // @overload bitwise_left_shift(self, other Union[Number, _complex]) -> Tensor -c.def("bitwise_left_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_left_shift with signature @overload bitwise_left_shift(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("bitwise_left_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_left_shift with signature @overload bitwise_left_shift(self, other Union[Number, _complex]) -> Tensor"); }); // @overload bitwise_left_shift_(self, other Tensor) -> Tensor -c.def("bitwise_left_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_left_shift_ with signature @overload bitwise_left_shift_(self, other Tensor) -> Tensor"); }); +c.def("bitwise_left_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_left_shift_ with signature @overload bitwise_left_shift_(self, other Tensor) -> Tensor"); }); // @overload bitwise_left_shift_(self, other Union[Number, _complex]) -> Tensor -c.def("bitwise_left_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_left_shift_ with signature @overload bitwise_left_shift_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("bitwise_left_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_left_shift_ with signature @overload bitwise_left_shift_(self, other Union[Number, _complex]) -> Tensor"); }); // bitwise_not(self) -> Tensor // aten::bitwise_not : (Tensor) -> (Tensor) @@ -592,16 +592,16 @@ c.def("bitwise_or", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensor c.def("bitwise_or_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return bitwise_or_(self, other); }, "other"_a); // @overload bitwise_right_shift(self, other Tensor) -> Tensor -c.def("bitwise_right_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_right_shift with signature @overload bitwise_right_shift(self, other Tensor) -> Tensor"); }); +c.def("bitwise_right_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_right_shift with signature @overload bitwise_right_shift(self, other Tensor) -> Tensor"); }); // @overload bitwise_right_shift(self, other Union[Number, _complex]) -> Tensor -c.def("bitwise_right_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_right_shift with signature @overload bitwise_right_shift(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("bitwise_right_shift", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_right_shift with signature @overload bitwise_right_shift(self, other Union[Number, _complex]) -> Tensor"); }); // @overload bitwise_right_shift_(self, other Tensor) -> Tensor -c.def("bitwise_right_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_right_shift_ with signature @overload bitwise_right_shift_(self, other Tensor) -> Tensor"); }); +c.def("bitwise_right_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_right_shift_ with signature @overload bitwise_right_shift_(self, other Tensor) -> Tensor"); }); // @overload bitwise_right_shift_(self, other Union[Number, _complex]) -> Tensor -c.def("bitwise_right_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bitwise_right_shift_ with signature @overload bitwise_right_shift_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("bitwise_right_shift_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bitwise_right_shift_ with signature @overload bitwise_right_shift_(self, other Union[Number, _complex]) -> Tensor"); }); // @overload bitwise_xor(self, other Tensor) -> Tensor // aten::bitwise_xor.Tensor : (Tensor, Tensor) -> (Tensor) @@ -616,20 +616,20 @@ c.def("bitwise_xor_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTens c.def("bmm", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &mat2) -> PyAnyTorchTensorValue { return bmm(self, mat2); }, "mat2"_a); // bool(self) -> Tensor -c.def("bool", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("bool with signature bool(self) -> Tensor"); }); +c.def("bool", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: bool with signature bool(self) -> Tensor"); }); // @overload broadcast_to(self, size Sequence[Union[_int, SymInt]]) -> Tensor // aten::broadcast_to : (Tensor, int[]) -> (Tensor) c.def("broadcast_to", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &size) -> PyAnyTorchTensorValue { return broadcast_to(self, size); }, "size"_a); // byte(self) -> Tensor -c.def("byte", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("byte with signature byte(self) -> Tensor"); }); +c.def("byte", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: byte with signature byte(self) -> Tensor"); }); // cauchy_(self, median _float=0, sigma _float=1, *, generator Optional[Generator]=None) -> Tensor -c.def("cauchy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cauchy_ with signature cauchy_(self, median _float=0, sigma _float=1, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("cauchy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cauchy_ with signature cauchy_(self, median _float=0, sigma _float=1, *, generator Optional[Generator]=None) -> Tensor"); }); // ccol_indices(self) -> Tensor -c.def("ccol_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ccol_indices with signature ccol_indices(self) -> Tensor"); }); +c.def("ccol_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ccol_indices with signature ccol_indices(self) -> Tensor"); }); // ceil(self) -> Tensor // aten::ceil : (Tensor) -> (Tensor) @@ -640,22 +640,22 @@ c.def("ceil", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { r c.def("ceil_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return ceil_(self); }); // chalf(self, *, memory_format Optional[memory_format]=None) -> Tensor -c.def("chalf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("chalf with signature chalf(self, *, memory_format Optional[memory_format]=None) -> Tensor"); }); +c.def("chalf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: chalf with signature chalf(self, *, memory_format Optional[memory_format]=None) -> Tensor"); }); // char(self) -> Tensor -c.def("char", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("char with signature char(self) -> Tensor"); }); +c.def("char", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: char with signature char(self) -> Tensor"); }); // cholesky(self, upper _bool=False) -> Tensor -c.def("cholesky", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cholesky with signature cholesky(self, upper _bool=False) -> Tensor"); }); +c.def("cholesky", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cholesky with signature cholesky(self, upper _bool=False) -> Tensor"); }); // cholesky_inverse(self, upper _bool=False) -> Tensor -c.def("cholesky_inverse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cholesky_inverse with signature cholesky_inverse(self, upper _bool=False) -> Tensor"); }); +c.def("cholesky_inverse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cholesky_inverse with signature cholesky_inverse(self, upper _bool=False) -> Tensor"); }); // cholesky_solve(self, input2 Tensor, upper _bool=False) -> Tensor -c.def("cholesky_solve", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cholesky_solve with signature cholesky_solve(self, input2 Tensor, upper _bool=False) -> Tensor"); }); +c.def("cholesky_solve", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cholesky_solve with signature cholesky_solve(self, input2 Tensor, upper _bool=False) -> Tensor"); }); // chunk(self, chunks _int, dim _int=0) -> List[Tensor] -c.def("chunk", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("chunk with signature chunk(self, chunks _int, dim _int=0) -> List[Tensor]"); }); +c.def("chunk", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: chunk with signature chunk(self, chunks _int, dim _int=0) -> List[Tensor]"); }); // @overload clamp(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor // aten::clamp : (Tensor, Scalar?, Scalar?) -> (Tensor) @@ -690,35 +690,35 @@ c.def("clamp_min", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarV c.def("clamp_min_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue &min) -> PyAnyTorchTensorValue { return clamp_min_(self, min); }, "min"_a); // @overload clip(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor -c.def("clip", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("clip with signature @overload clip(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor"); }); +c.def("clip", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: clip with signature @overload clip(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor"); }); // @overload clip(self, min Optional[Union[Number, _complex]]=None, max Optional[Union[Number, _complex]]=None) -> Tensor -c.def("clip", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("clip with signature @overload clip(self, min Optional[Union[Number, _complex]]=None, max Optional[Union[Number, _complex]]=None) -> Tensor"); }); +c.def("clip", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: clip with signature @overload clip(self, min Optional[Union[Number, _complex]]=None, max Optional[Union[Number, _complex]]=None) -> Tensor"); }); // @overload clip_(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor -c.def("clip_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("clip_ with signature @overload clip_(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor"); }); +c.def("clip_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: clip_ with signature @overload clip_(self, min Optional[Tensor]=None, max Optional[Tensor]=None) -> Tensor"); }); // @overload clip_(self, min Optional[Union[Number, _complex]]=None, max Optional[Union[Number, _complex]]=None) -> Tensor -c.def("clip_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("clip_ with signature @overload clip_(self, min Optional[Union[Number, _complex]]=None, max Optional[Union[Number, _complex]]=None) -> Tensor"); }); +c.def("clip_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: clip_ with signature @overload clip_(self, min Optional[Union[Number, _complex]]=None, max Optional[Union[Number, _complex]]=None) -> Tensor"); }); // clone(self, *, memory_format Optional[memory_format]=None) -> Tensor // aten::clone : (Tensor, int?) -> (Tensor) c.def("clone", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalIntValue &memory_format) -> PyAnyTorchTensorValue { return clone(self, memory_format); }, "memory_format"_a = py::none()); // coalesce(self) -> Tensor -c.def("coalesce", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("coalesce with signature coalesce(self) -> Tensor"); }); +c.def("coalesce", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: coalesce with signature coalesce(self) -> Tensor"); }); // col_indices(self) -> Tensor -c.def("col_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("col_indices with signature col_indices(self) -> Tensor"); }); +c.def("col_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: col_indices with signature col_indices(self) -> Tensor"); }); // conj(self) -> Tensor -c.def("conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("conj with signature conj(self) -> Tensor"); }); +c.def("conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: conj with signature conj(self) -> Tensor"); }); // conj_physical(self) -> Tensor -c.def("conj_physical", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("conj_physical with signature conj_physical(self) -> Tensor"); }); +c.def("conj_physical", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: conj_physical with signature conj_physical(self) -> Tensor"); }); // conj_physical_(self) -> Tensor -c.def("conj_physical_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("conj_physical_ with signature conj_physical_(self) -> Tensor"); }); +c.def("conj_physical_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: conj_physical_ with signature conj_physical_(self) -> Tensor"); }); // contiguous(self, memory_format=torch.contiguous_format) -> Tensor // aten::contiguous : (Tensor, int) -> (Tensor) @@ -729,19 +729,19 @@ c.def("contiguous", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue c.def("copy_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &src, const PyTorch_BoolValue &non_blocking) -> PyAnyTorchTensorValue { return copy_(self, src, non_blocking); }, "src"_a, "non_blocking"_a = false); // @overload copysign(self, other Tensor) -> Tensor -c.def("copysign", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("copysign with signature @overload copysign(self, other Tensor) -> Tensor"); }); +c.def("copysign", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: copysign with signature @overload copysign(self, other Tensor) -> Tensor"); }); // @overload copysign(self, other Union[Number, _complex]) -> Tensor -c.def("copysign", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("copysign with signature @overload copysign(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("copysign", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: copysign with signature @overload copysign(self, other Union[Number, _complex]) -> Tensor"); }); // @overload copysign_(self, other Tensor) -> Tensor -c.def("copysign_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("copysign_ with signature @overload copysign_(self, other Tensor) -> Tensor"); }); +c.def("copysign_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: copysign_ with signature @overload copysign_(self, other Tensor) -> Tensor"); }); // @overload copysign_(self, other Union[Number, _complex]) -> Tensor -c.def("copysign_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("copysign_ with signature @overload copysign_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("copysign_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: copysign_ with signature @overload copysign_(self, other Union[Number, _complex]) -> Tensor"); }); // corrcoef(self) -> Tensor -c.def("corrcoef", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("corrcoef with signature corrcoef(self) -> Tensor"); }); +c.def("corrcoef", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: corrcoef with signature corrcoef(self) -> Tensor"); }); // cos(self) -> Tensor // aten::cos : (Tensor) -> (Tensor) @@ -752,129 +752,129 @@ c.def("cos", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { re c.def("cos_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return cos_(self); }); // cosh(self) -> Tensor -c.def("cosh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cosh with signature cosh(self) -> Tensor"); }); +c.def("cosh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cosh with signature cosh(self) -> Tensor"); }); // cosh_(self) -> Tensor -c.def("cosh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cosh_ with signature cosh_(self) -> Tensor"); }); +c.def("cosh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cosh_ with signature cosh_(self) -> Tensor"); }); // @overload count_nonzero(self, dim Optional[_int]=None) -> Tensor -c.def("count_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("count_nonzero with signature @overload count_nonzero(self, dim Optional[_int]=None) -> Tensor"); }); +c.def("count_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: count_nonzero with signature @overload count_nonzero(self, dim Optional[_int]=None) -> Tensor"); }); // @overload count_nonzero(self, dim _size) -> Tensor -c.def("count_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("count_nonzero with signature @overload count_nonzero(self, dim _size) -> Tensor"); }); +c.def("count_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: count_nonzero with signature @overload count_nonzero(self, dim _size) -> Tensor"); }); // @overload count_nonzero(self, *dim _int) -> Tensor -c.def("count_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("count_nonzero with signature @overload count_nonzero(self, *dim _int) -> Tensor"); }); +c.def("count_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: count_nonzero with signature @overload count_nonzero(self, *dim _int) -> Tensor"); }); // cov(self, *, correction _int=1, fweights Optional[Tensor]=None, aweights Optional[Tensor]=None) -> Tensor -c.def("cov", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cov with signature cov(self, *, correction _int=1, fweights Optional[Tensor]=None, aweights Optional[Tensor]=None) -> Tensor"); }); +c.def("cov", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cov with signature cov(self, *, correction _int=1, fweights Optional[Tensor]=None, aweights Optional[Tensor]=None) -> Tensor"); }); // cpu(self) -> Tensor // aten::cpu : (Tensor) -> (Tensor) c.def("cpu", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return cpu(self); }); // cross(self, other Tensor, dim Optional[_int]=None) -> Tensor -c.def("cross", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cross with signature cross(self, other Tensor, dim Optional[_int]=None) -> Tensor"); }); +c.def("cross", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cross with signature cross(self, other Tensor, dim Optional[_int]=None) -> Tensor"); }); // crow_indices(self) -> Tensor -c.def("crow_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("crow_indices with signature crow_indices(self) -> Tensor"); }); +c.def("crow_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: crow_indices with signature crow_indices(self) -> Tensor"); }); // cuda(self, device Optional[Union[_device, _int, str]]=None, non_blocking _bool=False) -> Tensor -c.def("cuda", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cuda with signature cuda(self, device Optional[Union[_device, _int, str]]=None, non_blocking _bool=False) -> Tensor"); }); +c.def("cuda", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cuda with signature cuda(self, device Optional[Union[_device, _int, str]]=None, non_blocking _bool=False) -> Tensor"); }); // @overload cummax(self, dim _int) -> torch.return_types.cummax -c.def("cummax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cummax with signature @overload cummax(self, dim _int) -> torch.return_types.cummax"); }); +c.def("cummax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cummax with signature @overload cummax(self, dim _int) -> torch.return_types.cummax"); }); // @overload cummax(self, dim Union[str, ellipsis, None]) -> torch.return_types.cummax -c.def("cummax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cummax with signature @overload cummax(self, dim Union[str, ellipsis, None]) -> torch.return_types.cummax"); }); +c.def("cummax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cummax with signature @overload cummax(self, dim Union[str, ellipsis, None]) -> torch.return_types.cummax"); }); // @overload cummin(self, dim _int) -> torch.return_types.cummin -c.def("cummin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cummin with signature @overload cummin(self, dim _int) -> torch.return_types.cummin"); }); +c.def("cummin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cummin with signature @overload cummin(self, dim _int) -> torch.return_types.cummin"); }); // @overload cummin(self, dim Union[str, ellipsis, None]) -> torch.return_types.cummin -c.def("cummin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cummin with signature @overload cummin(self, dim Union[str, ellipsis, None]) -> torch.return_types.cummin"); }); +c.def("cummin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cummin with signature @overload cummin(self, dim Union[str, ellipsis, None]) -> torch.return_types.cummin"); }); // @overload cumprod(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor -c.def("cumprod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cumprod with signature @overload cumprod(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("cumprod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cumprod with signature @overload cumprod(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload cumprod(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor -c.def("cumprod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cumprod with signature @overload cumprod(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("cumprod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cumprod with signature @overload cumprod(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload cumprod_(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor -c.def("cumprod_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cumprod_ with signature @overload cumprod_(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("cumprod_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cumprod_ with signature @overload cumprod_(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload cumprod_(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor -c.def("cumprod_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cumprod_ with signature @overload cumprod_(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("cumprod_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cumprod_ with signature @overload cumprod_(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload cumsum(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor // aten::cumsum : (Tensor, int, int?) -> (Tensor) c.def("cumsum", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyAnyTorchOptionalIntValue &dtype) -> PyAnyTorchTensorValue { return cumsum(self, dim, dtype); }, "dim"_a, "dtype"_a = py::none()); // @overload cumsum_(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor -c.def("cumsum_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cumsum_ with signature @overload cumsum_(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("cumsum_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cumsum_ with signature @overload cumsum_(self, dim _int, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload cumsum_(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor -c.def("cumsum_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("cumsum_ with signature @overload cumsum_(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("cumsum_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: cumsum_ with signature @overload cumsum_(self, dim Union[str, ellipsis, None], *, dtype Optional[_dtype]=None) -> Tensor"); }); // data_ptr(self) -> _int -c.def("data_ptr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("data_ptr with signature data_ptr(self) -> _int"); }); +c.def("data_ptr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: data_ptr with signature data_ptr(self) -> _int"); }); // deg2rad(self) -> Tensor -c.def("deg2rad", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("deg2rad with signature deg2rad(self) -> Tensor"); }); +c.def("deg2rad", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: deg2rad with signature deg2rad(self) -> Tensor"); }); // deg2rad_(self) -> Tensor -c.def("deg2rad_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("deg2rad_ with signature deg2rad_(self) -> Tensor"); }); +c.def("deg2rad_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: deg2rad_ with signature deg2rad_(self) -> Tensor"); }); // dense_dim(self) -> _int -c.def("dense_dim", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dense_dim with signature dense_dim(self) -> _int"); }); +c.def("dense_dim", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dense_dim with signature dense_dim(self) -> _int"); }); // dequantize(self) -> Tensor -c.def("dequantize", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dequantize with signature dequantize(self) -> Tensor"); }); +c.def("dequantize", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dequantize with signature dequantize(self) -> Tensor"); }); // det(self) -> Tensor -c.def("det", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("det with signature det(self) -> Tensor"); }); +c.def("det", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: det with signature det(self) -> Tensor"); }); // detach(self) -> Tensor // aten::detach : (Tensor) -> (Tensor) c.def("detach", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return detach(self); }); // detach_(self) -> Tensor -c.def("detach_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("detach_ with signature detach_(self) -> Tensor"); }); +c.def("detach_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: detach_ with signature detach_(self) -> Tensor"); }); // diag(self, diagonal _int=0) -> Tensor -c.def("diag", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("diag with signature diag(self, diagonal _int=0) -> Tensor"); }); +c.def("diag", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: diag with signature diag(self, diagonal _int=0) -> Tensor"); }); // diag_embed(self, offset _int=0, dim1 _int=-2, dim2 _int=-1) -> Tensor -c.def("diag_embed", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("diag_embed with signature diag_embed(self, offset _int=0, dim1 _int=-2, dim2 _int=-1) -> Tensor"); }); +c.def("diag_embed", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: diag_embed with signature diag_embed(self, offset _int=0, dim1 _int=-2, dim2 _int=-1) -> Tensor"); }); // diagflat(self, offset _int=0) -> Tensor -c.def("diagflat", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("diagflat with signature diagflat(self, offset _int=0) -> Tensor"); }); +c.def("diagflat", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: diagflat with signature diagflat(self, offset _int=0) -> Tensor"); }); // @overload diagonal(self, *, outdim Union[str, ellipsis, None], dim1 Union[str, ellipsis, None], dim2 Union[str, ellipsis, None], offset _int=0) -> Tensor -c.def("diagonal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("diagonal with signature @overload diagonal(self, *, outdim Union[str, ellipsis, None], dim1 Union[str, ellipsis, None], dim2 Union[str, ellipsis, None], offset _int=0) -> Tensor"); }); +c.def("diagonal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: diagonal with signature @overload diagonal(self, *, outdim Union[str, ellipsis, None], dim1 Union[str, ellipsis, None], dim2 Union[str, ellipsis, None], offset _int=0) -> Tensor"); }); // @overload diagonal(self, offset _int=0, dim1 _int=0, dim2 _int=1) -> Tensor -c.def("diagonal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("diagonal with signature @overload diagonal(self, offset _int=0, dim1 _int=0, dim2 _int=1) -> Tensor"); }); +c.def("diagonal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: diagonal with signature @overload diagonal(self, offset _int=0, dim1 _int=0, dim2 _int=1) -> Tensor"); }); // diagonal_scatter(self, src Tensor, offset _int=0, dim1 _int=0, dim2 _int=1) -> Tensor // aten::diagonal_scatter : (Tensor, Tensor, int, int, int) -> (Tensor) c.def("diagonal_scatter", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &src, const PyTorch_IntValue &offset, const PyTorch_IntValue &dim1, const PyTorch_IntValue &dim2) -> PyAnyTorchTensorValue { return diagonal_scatter(self, src, offset, dim1, dim2); }, "src"_a, "offset"_a = 0, "dim1"_a = 0, "dim2"_a = 1); // diff(self, n _int=1, dim _int=-1, prepend Optional[Tensor]=None, append Optional[Tensor]=None) -> Tensor -c.def("diff", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("diff with signature diff(self, n _int=1, dim _int=-1, prepend Optional[Tensor]=None, append Optional[Tensor]=None) -> Tensor"); }); +c.def("diff", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: diff with signature diff(self, n _int=1, dim _int=-1, prepend Optional[Tensor]=None, append Optional[Tensor]=None) -> Tensor"); }); // digamma(self) -> Tensor -c.def("digamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("digamma with signature digamma(self) -> Tensor"); }); +c.def("digamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: digamma with signature digamma(self) -> Tensor"); }); // digamma_(self) -> Tensor -c.def("digamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("digamma_ with signature digamma_(self) -> Tensor"); }); +c.def("digamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: digamma_ with signature digamma_(self) -> Tensor"); }); // dim(self) -> _int // aten::dim : (Tensor) -> (int) c.def("dim", [](const PyAnyTorchTensorValue &self) -> PyTorch_IntValue { return dim(self); }); // dist(self, other Tensor, p Union[Number, _complex]=2) -> Tensor -c.def("dist", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dist with signature dist(self, other Tensor, p Union[Number, _complex]=2) -> Tensor"); }); +c.def("dist", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dist with signature dist(self, other Tensor, p Union[Number, _complex]=2) -> Tensor"); }); // div(self, other Union[Tensor, Number], *, rounding_mode Optional[str]=None) -> Tensor // aten::div.Tensor_mode : (Tensor, Tensor, str?) -> (Tensor) @@ -885,46 +885,46 @@ c.def("div", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue & c.def("div_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other, const PyAnyTorchOptionalStringValue &rounding_mode) -> PyAnyTorchTensorValue { return div_(self, other, rounding_mode); }, "other"_a, "rounding_mode"_a = py::none()); // @overload divide(self, other Tensor) -> Tensor -c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide with signature @overload divide(self, other Tensor) -> Tensor"); }); +c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide with signature @overload divide(self, other Tensor) -> Tensor"); }); // @overload divide(self, other Tensor, *, rounding_mode Optional[str]) -> Tensor -c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide with signature @overload divide(self, other Tensor, *, rounding_mode Optional[str]) -> Tensor"); }); +c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide with signature @overload divide(self, other Tensor, *, rounding_mode Optional[str]) -> Tensor"); }); // @overload divide(self, other Union[Number, _complex], *, rounding_mode Optional[str]) -> Tensor -c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide with signature @overload divide(self, other Union[Number, _complex], *, rounding_mode Optional[str]) -> Tensor"); }); +c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide with signature @overload divide(self, other Union[Number, _complex], *, rounding_mode Optional[str]) -> Tensor"); }); // @overload divide(self, other Union[Number, _complex]) -> Tensor -c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide with signature @overload divide(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide with signature @overload divide(self, other Union[Number, _complex]) -> Tensor"); }); // @overload divide_(self, other Tensor) -> Tensor -c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide_ with signature @overload divide_(self, other Tensor) -> Tensor"); }); +c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide_ with signature @overload divide_(self, other Tensor) -> Tensor"); }); // @overload divide_(self, other Tensor, *, rounding_mode Optional[str]) -> Tensor -c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide_ with signature @overload divide_(self, other Tensor, *, rounding_mode Optional[str]) -> Tensor"); }); +c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide_ with signature @overload divide_(self, other Tensor, *, rounding_mode Optional[str]) -> Tensor"); }); // @overload divide_(self, other Union[Number, _complex], *, rounding_mode Optional[str]) -> Tensor -c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide_ with signature @overload divide_(self, other Union[Number, _complex], *, rounding_mode Optional[str]) -> Tensor"); }); +c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide_ with signature @overload divide_(self, other Union[Number, _complex], *, rounding_mode Optional[str]) -> Tensor"); }); // @overload divide_(self, other Union[Number, _complex]) -> Tensor -c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("divide_ with signature @overload divide_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: divide_ with signature @overload divide_(self, other Union[Number, _complex]) -> Tensor"); }); // dot(self, tensor Tensor) -> Tensor -c.def("dot", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dot with signature dot(self, tensor Tensor) -> Tensor"); }); +c.def("dot", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dot with signature dot(self, tensor Tensor) -> Tensor"); }); // double(self) -> Tensor -c.def("double", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("double with signature double(self) -> Tensor"); }); +c.def("double", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: double with signature double(self) -> Tensor"); }); // @overload dsplit(self, sections _int) -> List[Tensor] -c.def("dsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dsplit with signature @overload dsplit(self, sections _int) -> List[Tensor]"); }); +c.def("dsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dsplit with signature @overload dsplit(self, sections _int) -> List[Tensor]"); }); // @overload dsplit(self, indices _size) -> List[Tensor] -c.def("dsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dsplit with signature @overload dsplit(self, indices _size) -> List[Tensor]"); }); +c.def("dsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dsplit with signature @overload dsplit(self, indices _size) -> List[Tensor]"); }); // @overload dsplit(self, *indices _int) -> List[Tensor] -c.def("dsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("dsplit with signature @overload dsplit(self, *indices _int) -> List[Tensor]"); }); +c.def("dsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: dsplit with signature @overload dsplit(self, *indices _int) -> List[Tensor]"); }); // element_size(self) -> _int -c.def("element_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("element_size with signature element_size(self) -> _int"); }); +c.def("element_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: element_size with signature element_size(self) -> _int"); }); // @overload eq_(self, other Tensor) -> Tensor // aten::eq_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -935,7 +935,7 @@ c.def("eq_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue & c.def("eq_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return eq_(self, other); }, "other"_a); // equal(self, other Tensor) -> _bool -c.def("equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("equal with signature equal(self, other Tensor) -> _bool"); }); +c.def("equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: equal with signature equal(self, other Tensor) -> _bool"); }); // erf(self) -> Tensor // aten::erf : (Tensor) -> (Tensor) @@ -946,26 +946,26 @@ c.def("erf", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { re c.def("erf_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return erf_(self); }); // erfc(self) -> Tensor -c.def("erfc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("erfc with signature erfc(self) -> Tensor"); }); +c.def("erfc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: erfc with signature erfc(self) -> Tensor"); }); // erfc_(self) -> Tensor -c.def("erfc_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("erfc_ with signature erfc_(self) -> Tensor"); }); +c.def("erfc_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: erfc_ with signature erfc_(self) -> Tensor"); }); // erfinv(self) -> Tensor -c.def("erfinv", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("erfinv with signature erfinv(self) -> Tensor"); }); +c.def("erfinv", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: erfinv with signature erfinv(self) -> Tensor"); }); // erfinv_(self) -> Tensor -c.def("erfinv_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("erfinv_ with signature erfinv_(self) -> Tensor"); }); +c.def("erfinv_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: erfinv_ with signature erfinv_(self) -> Tensor"); }); // exp(self) -> Tensor // aten::exp : (Tensor) -> (Tensor) c.def("exp", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return exp(self); }); // exp2(self) -> Tensor -c.def("exp2", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("exp2 with signature exp2(self) -> Tensor"); }); +c.def("exp2", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: exp2 with signature exp2(self) -> Tensor"); }); // exp2_(self) -> Tensor -c.def("exp2_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("exp2_ with signature exp2_(self) -> Tensor"); }); +c.def("exp2_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: exp2_ with signature exp2_(self) -> Tensor"); }); // exp_(self) -> Tensor // aten::exp_ : (Tensor) -> (Tensor) @@ -988,7 +988,7 @@ c.def("expm1", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { c.def("expm1_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return expm1_(self); }); // exponential_(self, lambd _float=1, *, generator Optional[Generator]=None) -> Tensor -c.def("exponential_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("exponential_ with signature exponential_(self, lambd _float=1, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("exponential_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: exponential_ with signature exponential_(self, lambd _float=1, *, generator Optional[Generator]=None) -> Tensor"); }); // @overload fill_(self, value Tensor) -> Tensor // aten::fill_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -999,13 +999,13 @@ c.def("fill_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue c.def("fill_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &value) -> PyAnyTorchTensorValue { return fill_(self, value); }, "value"_a); // fill_diagonal_(self, fill_value Union[Number, _complex], wrap _bool=False) -> Tensor -c.def("fill_diagonal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("fill_diagonal_ with signature fill_diagonal_(self, fill_value Union[Number, _complex], wrap _bool=False) -> Tensor"); }); +c.def("fill_diagonal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: fill_diagonal_ with signature fill_diagonal_(self, fill_value Union[Number, _complex], wrap _bool=False) -> Tensor"); }); // fix(self) -> Tensor -c.def("fix", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("fix with signature fix(self) -> Tensor"); }); +c.def("fix", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: fix with signature fix(self) -> Tensor"); }); // fix_(self) -> Tensor -c.def("fix_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("fix_ with signature fix_(self) -> Tensor"); }); +c.def("fix_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: fix_ with signature fix_(self) -> Tensor"); }); // @overload flatten(self, start_dim _int=0, end_dim _int=-1) -> Tensor // aten::flatten.using_ints : (Tensor, int, int) -> (Tensor) @@ -1016,25 +1016,25 @@ c.def("flatten", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &s c.def("flip", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &dims) -> PyAnyTorchTensorValue { return flip(self, dims); }, "dims"_a); // fliplr(self) -> Tensor -c.def("fliplr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("fliplr with signature fliplr(self) -> Tensor"); }); +c.def("fliplr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: fliplr with signature fliplr(self) -> Tensor"); }); // flipud(self) -> Tensor -c.def("flipud", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("flipud with signature flipud(self) -> Tensor"); }); +c.def("flipud", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: flipud with signature flipud(self) -> Tensor"); }); // float(self) -> Tensor -c.def("float", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("float with signature float(self) -> Tensor"); }); +c.def("float", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: float with signature float(self) -> Tensor"); }); // @overload float_power(self, exponent Tensor) -> Tensor -c.def("float_power", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("float_power with signature @overload float_power(self, exponent Tensor) -> Tensor"); }); +c.def("float_power", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: float_power with signature @overload float_power(self, exponent Tensor) -> Tensor"); }); // @overload float_power(self, exponent Union[Number, _complex]) -> Tensor -c.def("float_power", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("float_power with signature @overload float_power(self, exponent Union[Number, _complex]) -> Tensor"); }); +c.def("float_power", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: float_power with signature @overload float_power(self, exponent Union[Number, _complex]) -> Tensor"); }); // @overload float_power_(self, exponent Tensor) -> Tensor -c.def("float_power_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("float_power_ with signature @overload float_power_(self, exponent Tensor) -> Tensor"); }); +c.def("float_power_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: float_power_ with signature @overload float_power_(self, exponent Tensor) -> Tensor"); }); // @overload float_power_(self, exponent Union[Number, _complex]) -> Tensor -c.def("float_power_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("float_power_ with signature @overload float_power_(self, exponent Union[Number, _complex]) -> Tensor"); }); +c.def("float_power_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: float_power_ with signature @overload float_power_(self, exponent Union[Number, _complex]) -> Tensor"); }); // floor(self) -> Tensor // aten::floor : (Tensor) -> (Tensor) @@ -1045,13 +1045,13 @@ c.def("floor", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { c.def("floor_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return floor_(self); }); // floor_divide_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor -c.def("floor_divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("floor_divide_ with signature floor_divide_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor"); }); +c.def("floor_divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: floor_divide_ with signature floor_divide_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor"); }); // fmax(self, other Tensor) -> Tensor -c.def("fmax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("fmax with signature fmax(self, other Tensor) -> Tensor"); }); +c.def("fmax", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: fmax with signature fmax(self, other Tensor) -> Tensor"); }); // fmin(self, other Tensor) -> Tensor -c.def("fmin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("fmin with signature fmin(self, other Tensor) -> Tensor"); }); +c.def("fmin", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: fmin with signature fmin(self, other Tensor) -> Tensor"); }); // @overload fmod(self, other Tensor) -> Tensor // aten::fmod.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1062,23 +1062,23 @@ c.def("fmod", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue c.def("fmod_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue &other) -> PyAnyTorchTensorValue { return fmod_(self, other); }, "other"_a); // frac(self) -> Tensor -c.def("frac", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("frac with signature frac(self) -> Tensor"); }); +c.def("frac", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: frac with signature frac(self) -> Tensor"); }); // frac_(self) -> Tensor -c.def("frac_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("frac_ with signature frac_(self) -> Tensor"); }); +c.def("frac_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: frac_ with signature frac_(self) -> Tensor"); }); // frexp(self) -> torch.return_types.frexp -c.def("frexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("frexp with signature frexp(self) -> torch.return_types.frexp"); }); +c.def("frexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: frexp with signature frexp(self) -> torch.return_types.frexp"); }); // @overload gather(self, dim _int, index Tensor, *, sparse_grad _bool=False) -> Tensor // aten::gather : (Tensor, int, Tensor, bool) -> (Tensor) c.def("gather", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyAnyTorchTensorValue &index, const PyTorch_BoolValue &sparse_grad) -> PyAnyTorchTensorValue { return gather(self, dim, index, sparse_grad); }, "dim"_a, "index"_a, py::kw_only(), "sparse_grad"_a = false); // gcd(self, other Tensor) -> Tensor -c.def("gcd", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("gcd with signature gcd(self, other Tensor) -> Tensor"); }); +c.def("gcd", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: gcd with signature gcd(self, other Tensor) -> Tensor"); }); // gcd_(self, other Tensor) -> Tensor -c.def("gcd_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("gcd_ with signature gcd_(self, other Tensor) -> Tensor"); }); +c.def("gcd_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: gcd_ with signature gcd_(self, other Tensor) -> Tensor"); }); // @overload ge_(self, other Tensor) -> Tensor // aten::ge_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1089,40 +1089,40 @@ c.def("ge_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue & c.def("ge_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return ge_(self, other); }, "other"_a); // geometric_(self, p _float, *, generator Optional[Generator]=None) -> Tensor -c.def("geometric_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("geometric_ with signature geometric_(self, p _float, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("geometric_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: geometric_ with signature geometric_(self, p _float, *, generator Optional[Generator]=None) -> Tensor"); }); // geqrf(self) -> torch.return_types.geqrf -c.def("geqrf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("geqrf with signature geqrf(self) -> torch.return_types.geqrf"); }); +c.def("geqrf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: geqrf with signature geqrf(self) -> torch.return_types.geqrf"); }); // ger(self, vec2 Tensor) -> Tensor -c.def("ger", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ger with signature ger(self, vec2 Tensor) -> Tensor"); }); +c.def("ger", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ger with signature ger(self, vec2 Tensor) -> Tensor"); }); // get_device(self) -> _int -c.def("get_device", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("get_device with signature get_device(self) -> _int"); }); +c.def("get_device", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: get_device with signature get_device(self) -> _int"); }); // @overload greater(self, other Tensor) -> Tensor -c.def("greater", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater with signature @overload greater(self, other Tensor) -> Tensor"); }); +c.def("greater", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater with signature @overload greater(self, other Tensor) -> Tensor"); }); // @overload greater(self, other Union[Number, _complex]) -> Tensor -c.def("greater", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater with signature @overload greater(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("greater", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater with signature @overload greater(self, other Union[Number, _complex]) -> Tensor"); }); // @overload greater_(self, other Tensor) -> Tensor -c.def("greater_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater_ with signature @overload greater_(self, other Tensor) -> Tensor"); }); +c.def("greater_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater_ with signature @overload greater_(self, other Tensor) -> Tensor"); }); // @overload greater_(self, other Union[Number, _complex]) -> Tensor -c.def("greater_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater_ with signature @overload greater_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("greater_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater_ with signature @overload greater_(self, other Union[Number, _complex]) -> Tensor"); }); // @overload greater_equal(self, other Tensor) -> Tensor -c.def("greater_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater_equal with signature @overload greater_equal(self, other Tensor) -> Tensor"); }); +c.def("greater_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater_equal with signature @overload greater_equal(self, other Tensor) -> Tensor"); }); // @overload greater_equal(self, other Union[Number, _complex]) -> Tensor -c.def("greater_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater_equal with signature @overload greater_equal(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("greater_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater_equal with signature @overload greater_equal(self, other Union[Number, _complex]) -> Tensor"); }); // @overload greater_equal_(self, other Tensor) -> Tensor -c.def("greater_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater_equal_ with signature @overload greater_equal_(self, other Tensor) -> Tensor"); }); +c.def("greater_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater_equal_ with signature @overload greater_equal_(self, other Tensor) -> Tensor"); }); // @overload greater_equal_(self, other Union[Number, _complex]) -> Tensor -c.def("greater_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("greater_equal_ with signature @overload greater_equal_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("greater_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: greater_equal_ with signature @overload greater_equal_(self, other Union[Number, _complex]) -> Tensor"); }); // @overload gt_(self, other Tensor) -> Tensor // aten::gt_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1133,106 +1133,106 @@ c.def("gt_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue & c.def("gt_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return gt_(self, other); }, "other"_a); // half(self) -> Tensor -c.def("half", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("half with signature half(self) -> Tensor"); }); +c.def("half", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: half with signature half(self) -> Tensor"); }); // hardshrink(self, lambd Union[Number, _complex]=0.5) -> Tensor -c.def("hardshrink", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("hardshrink with signature hardshrink(self, lambd Union[Number, _complex]=0.5) -> Tensor"); }); +c.def("hardshrink", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: hardshrink with signature hardshrink(self, lambd Union[Number, _complex]=0.5) -> Tensor"); }); // has_names(self) -> _bool -c.def("has_names", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("has_names with signature has_names(self) -> _bool"); }); +c.def("has_names", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: has_names with signature has_names(self) -> _bool"); }); // heaviside(self, values Tensor) -> Tensor -c.def("heaviside", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("heaviside with signature heaviside(self, values Tensor) -> Tensor"); }); +c.def("heaviside", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: heaviside with signature heaviside(self, values Tensor) -> Tensor"); }); // heaviside_(self, values Tensor) -> Tensor -c.def("heaviside_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("heaviside_ with signature heaviside_(self, values Tensor) -> Tensor"); }); +c.def("heaviside_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: heaviside_ with signature heaviside_(self, values Tensor) -> Tensor"); }); // histc(self, bins _int=100, min Union[Number, _complex]=0, max Union[Number, _complex]=0) -> Tensor -c.def("histc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("histc with signature histc(self, bins _int=100, min Union[Number, _complex]=0, max Union[Number, _complex]=0) -> Tensor"); }); +c.def("histc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: histc with signature histc(self, bins _int=100, min Union[Number, _complex]=0, max Union[Number, _complex]=0) -> Tensor"); }); // @overload histogram(self, bins Tensor, *, weight Optional[Tensor]=None, density _bool=False) -> torch.return_types.histogram -c.def("histogram", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("histogram with signature @overload histogram(self, bins Tensor, *, weight Optional[Tensor]=None, density _bool=False) -> torch.return_types.histogram"); }); +c.def("histogram", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: histogram with signature @overload histogram(self, bins Tensor, *, weight Optional[Tensor]=None, density _bool=False) -> torch.return_types.histogram"); }); // @overload histogram(self, bins _int=100, *, range Optional[Sequence[_float]]=None, weight Optional[Tensor]=None, density _bool=False) -> torch.return_types.histogram -c.def("histogram", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("histogram with signature @overload histogram(self, bins _int=100, *, range Optional[Sequence[_float]]=None, weight Optional[Tensor]=None, density _bool=False) -> torch.return_types.histogram"); }); +c.def("histogram", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: histogram with signature @overload histogram(self, bins _int=100, *, range Optional[Sequence[_float]]=None, weight Optional[Tensor]=None, density _bool=False) -> torch.return_types.histogram"); }); // @overload hsplit(self, sections _int) -> List[Tensor] -c.def("hsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("hsplit with signature @overload hsplit(self, sections _int) -> List[Tensor]"); }); +c.def("hsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: hsplit with signature @overload hsplit(self, sections _int) -> List[Tensor]"); }); // @overload hsplit(self, indices _size) -> List[Tensor] -c.def("hsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("hsplit with signature @overload hsplit(self, indices _size) -> List[Tensor]"); }); +c.def("hsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: hsplit with signature @overload hsplit(self, indices _size) -> List[Tensor]"); }); // @overload hsplit(self, *indices _int) -> List[Tensor] -c.def("hsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("hsplit with signature @overload hsplit(self, *indices _int) -> List[Tensor]"); }); +c.def("hsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: hsplit with signature @overload hsplit(self, *indices _int) -> List[Tensor]"); }); // hypot(self, other Tensor) -> Tensor -c.def("hypot", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("hypot with signature hypot(self, other Tensor) -> Tensor"); }); +c.def("hypot", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: hypot with signature hypot(self, other Tensor) -> Tensor"); }); // hypot_(self, other Tensor) -> Tensor -c.def("hypot_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("hypot_ with signature hypot_(self, other Tensor) -> Tensor"); }); +c.def("hypot_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: hypot_ with signature hypot_(self, other Tensor) -> Tensor"); }); // i0(self) -> Tensor -c.def("i0", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("i0 with signature i0(self) -> Tensor"); }); +c.def("i0", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: i0 with signature i0(self) -> Tensor"); }); // i0_(self) -> Tensor -c.def("i0_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("i0_ with signature i0_(self) -> Tensor"); }); +c.def("i0_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: i0_ with signature i0_(self) -> Tensor"); }); // igamma(self, other Tensor) -> Tensor -c.def("igamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("igamma with signature igamma(self, other Tensor) -> Tensor"); }); +c.def("igamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: igamma with signature igamma(self, other Tensor) -> Tensor"); }); // igamma_(self, other Tensor) -> Tensor -c.def("igamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("igamma_ with signature igamma_(self, other Tensor) -> Tensor"); }); +c.def("igamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: igamma_ with signature igamma_(self, other Tensor) -> Tensor"); }); // igammac(self, other Tensor) -> Tensor -c.def("igammac", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("igammac with signature igammac(self, other Tensor) -> Tensor"); }); +c.def("igammac", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: igammac with signature igammac(self, other Tensor) -> Tensor"); }); // igammac_(self, other Tensor) -> Tensor -c.def("igammac_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("igammac_ with signature igammac_(self, other Tensor) -> Tensor"); }); +c.def("igammac_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: igammac_ with signature igammac_(self, other Tensor) -> Tensor"); }); // @overload index_add(self, dim _int, index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor -c.def("index_add", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_add with signature @overload index_add(self, dim _int, index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("index_add", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_add with signature @overload index_add(self, dim _int, index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload index_add(self, dim Union[str, ellipsis, None], index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor -c.def("index_add", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_add with signature @overload index_add(self, dim Union[str, ellipsis, None], index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("index_add", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_add with signature @overload index_add(self, dim Union[str, ellipsis, None], index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); // index_add_(self, dim _int, index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor -c.def("index_add_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_add_ with signature index_add_(self, dim _int, index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("index_add_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_add_ with signature index_add_(self, dim _int, index Tensor, source Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload index_copy(self, dim _int, index Tensor, source Tensor) -> Tensor -c.def("index_copy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_copy with signature @overload index_copy(self, dim _int, index Tensor, source Tensor) -> Tensor"); }); +c.def("index_copy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_copy with signature @overload index_copy(self, dim _int, index Tensor, source Tensor) -> Tensor"); }); // @overload index_copy(self, dim Union[str, ellipsis, None], index Tensor, source Tensor) -> Tensor -c.def("index_copy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_copy with signature @overload index_copy(self, dim Union[str, ellipsis, None], index Tensor, source Tensor) -> Tensor"); }); +c.def("index_copy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_copy with signature @overload index_copy(self, dim Union[str, ellipsis, None], index Tensor, source Tensor) -> Tensor"); }); // @overload index_copy_(self, dim _int, index Tensor, source Tensor) -> Tensor -c.def("index_copy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_copy_ with signature @overload index_copy_(self, dim _int, index Tensor, source Tensor) -> Tensor"); }); +c.def("index_copy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_copy_ with signature @overload index_copy_(self, dim _int, index Tensor, source Tensor) -> Tensor"); }); // @overload index_copy_(self, dim Union[str, ellipsis, None], index Tensor, source Tensor) -> Tensor -c.def("index_copy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_copy_ with signature @overload index_copy_(self, dim Union[str, ellipsis, None], index Tensor, source Tensor) -> Tensor"); }); +c.def("index_copy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_copy_ with signature @overload index_copy_(self, dim Union[str, ellipsis, None], index Tensor, source Tensor) -> Tensor"); }); // @overload index_fill(self, dim _int, index Tensor, value Tensor) -> Tensor -c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill with signature @overload index_fill(self, dim _int, index Tensor, value Tensor) -> Tensor"); }); +c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill with signature @overload index_fill(self, dim _int, index Tensor, value Tensor) -> Tensor"); }); // @overload index_fill(self, dim Union[str, ellipsis, None], index Tensor, value Tensor) -> Tensor -c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill with signature @overload index_fill(self, dim Union[str, ellipsis, None], index Tensor, value Tensor) -> Tensor"); }); +c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill with signature @overload index_fill(self, dim Union[str, ellipsis, None], index Tensor, value Tensor) -> Tensor"); }); // @overload index_fill(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor -c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill with signature @overload index_fill(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor"); }); +c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill with signature @overload index_fill(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor"); }); // @overload index_fill(self, dim Union[str, ellipsis, None], index Tensor, value Union[Number, _complex]) -> Tensor -c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill with signature @overload index_fill(self, dim Union[str, ellipsis, None], index Tensor, value Union[Number, _complex]) -> Tensor"); }); +c.def("index_fill", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill with signature @overload index_fill(self, dim Union[str, ellipsis, None], index Tensor, value Union[Number, _complex]) -> Tensor"); }); // @overload index_fill_(self, dim _int, index Tensor, value Tensor) -> Tensor -c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill_ with signature @overload index_fill_(self, dim _int, index Tensor, value Tensor) -> Tensor"); }); +c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill_ with signature @overload index_fill_(self, dim _int, index Tensor, value Tensor) -> Tensor"); }); // @overload index_fill_(self, dim Union[str, ellipsis, None], index Tensor, value Tensor) -> Tensor -c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill_ with signature @overload index_fill_(self, dim Union[str, ellipsis, None], index Tensor, value Tensor) -> Tensor"); }); +c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill_ with signature @overload index_fill_(self, dim Union[str, ellipsis, None], index Tensor, value Tensor) -> Tensor"); }); // @overload index_fill_(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor -c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill_ with signature @overload index_fill_(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor"); }); +c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill_ with signature @overload index_fill_(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor"); }); // @overload index_fill_(self, dim Union[str, ellipsis, None], index Tensor, value Union[Number, _complex]) -> Tensor -c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_fill_ with signature @overload index_fill_(self, dim Union[str, ellipsis, None], index Tensor, value Union[Number, _complex]) -> Tensor"); }); +c.def("index_fill_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_fill_ with signature @overload index_fill_(self, dim Union[str, ellipsis, None], index Tensor, value Union[Number, _complex]) -> Tensor"); }); // index_put(self, indices Optional[Union[Tuple[Tensor, ], List[Tensor]]], values Tensor, accumulate _bool=False) -> Tensor // aten::index_put.hacked_twin : (Tensor, Tensor[], Tensor, bool) -> (Tensor) @@ -1251,117 +1251,117 @@ c.def("index_put_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOf c.def("index_put_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfOptionalTensorValue &indices, const PyAnyTorchTensorValue &values, const PyTorch_BoolValue &accumulate) -> PyAnyTorchTensorValue { return index_put_(self, indices, values, accumulate); }, "indices"_a, "values"_a, "accumulate"_a = false); // index_reduce(self, dim _int, index Tensor, source Tensor, reduce str, *, include_self _bool=True) -> Tensor -c.def("index_reduce", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_reduce with signature index_reduce(self, dim _int, index Tensor, source Tensor, reduce str, *, include_self _bool=True) -> Tensor"); }); +c.def("index_reduce", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_reduce with signature index_reduce(self, dim _int, index Tensor, source Tensor, reduce str, *, include_self _bool=True) -> Tensor"); }); // index_reduce_(self, dim _int, index Tensor, source Tensor, reduce str, *, include_self _bool=True) -> Tensor -c.def("index_reduce_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("index_reduce_ with signature index_reduce_(self, dim _int, index Tensor, source Tensor, reduce str, *, include_self _bool=True) -> Tensor"); }); +c.def("index_reduce_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: index_reduce_ with signature index_reduce_(self, dim _int, index Tensor, source Tensor, reduce str, *, include_self _bool=True) -> Tensor"); }); // @overload index_select(self, dim _int, index Tensor) -> Tensor // aten::index_select : (Tensor, int, Tensor) -> (Tensor) c.def("index_select", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyAnyTorchTensorValue &index) -> PyAnyTorchTensorValue { return index_select(self, dim, index); }, "dim"_a, "index"_a); // indices(self) -> Tensor -c.def("indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("indices with signature indices(self) -> Tensor"); }); +c.def("indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: indices with signature indices(self) -> Tensor"); }); // inner(self, other Tensor) -> Tensor -c.def("inner", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("inner with signature inner(self, other Tensor) -> Tensor"); }); +c.def("inner", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: inner with signature inner(self, other Tensor) -> Tensor"); }); // int(self) -> Tensor -c.def("int", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("int with signature int(self) -> Tensor"); }); +c.def("int", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: int with signature int(self) -> Tensor"); }); // int_repr(self) -> Tensor -c.def("int_repr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("int_repr with signature int_repr(self) -> Tensor"); }); +c.def("int_repr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: int_repr with signature int_repr(self) -> Tensor"); }); // inverse(self) -> Tensor -c.def("inverse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("inverse with signature inverse(self) -> Tensor"); }); +c.def("inverse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: inverse with signature inverse(self) -> Tensor"); }); // is_coalesced(self) -> _bool -c.def("is_coalesced", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_coalesced with signature is_coalesced(self) -> _bool"); }); +c.def("is_coalesced", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_coalesced with signature is_coalesced(self) -> _bool"); }); // is_complex(self) -> _bool -c.def("is_complex", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_complex with signature is_complex(self) -> _bool"); }); +c.def("is_complex", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_complex with signature is_complex(self) -> _bool"); }); // is_conj(self) -> _bool -c.def("is_conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_conj with signature is_conj(self) -> _bool"); }); +c.def("is_conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_conj with signature is_conj(self) -> _bool"); }); // is_contiguous(self, memory_format=torch.contiguous_format) -> _bool -c.def("is_contiguous", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_contiguous with signature is_contiguous(self, memory_format=torch.contiguous_format) -> _bool"); }); +c.def("is_contiguous", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_contiguous with signature is_contiguous(self, memory_format=torch.contiguous_format) -> _bool"); }); // is_distributed(self) -> _bool -c.def("is_distributed", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_distributed with signature is_distributed(self) -> _bool"); }); +c.def("is_distributed", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_distributed with signature is_distributed(self) -> _bool"); }); // is_floating_point(self) -> _bool // aten::is_floating_point : (Tensor) -> (bool) c.def("is_floating_point", [](const PyAnyTorchTensorValue &self) -> PyTorch_BoolValue { return is_floating_point(self); }); // is_inference(self) -> _bool -c.def("is_inference", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_inference with signature is_inference(self) -> _bool"); }); +c.def("is_inference", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_inference with signature is_inference(self) -> _bool"); }); // is_neg(self) -> _bool -c.def("is_neg", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_neg with signature is_neg(self) -> _bool"); }); +c.def("is_neg", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_neg with signature is_neg(self) -> _bool"); }); // is_nonzero(self) -> _bool -c.def("is_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_nonzero with signature is_nonzero(self) -> _bool"); }); +c.def("is_nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_nonzero with signature is_nonzero(self) -> _bool"); }); // is_pinned(self, device Optional[Union[_device, str, None]]=None) -> _bool -c.def("is_pinned", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_pinned with signature is_pinned(self, device Optional[Union[_device, str, None]]=None) -> _bool"); }); +c.def("is_pinned", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_pinned with signature is_pinned(self, device Optional[Union[_device, str, None]]=None) -> _bool"); }); // is_same_size(self, other Tensor) -> _bool -c.def("is_same_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_same_size with signature is_same_size(self, other Tensor) -> _bool"); }); +c.def("is_same_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_same_size with signature is_same_size(self, other Tensor) -> _bool"); }); // is_set_to(self, tensor Tensor) -> _bool -c.def("is_set_to", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_set_to with signature is_set_to(self, tensor Tensor) -> _bool"); }); +c.def("is_set_to", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_set_to with signature is_set_to(self, tensor Tensor) -> _bool"); }); // is_signed(self) -> _bool -c.def("is_signed", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("is_signed with signature is_signed(self) -> _bool"); }); +c.def("is_signed", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: is_signed with signature is_signed(self) -> _bool"); }); // isclose(self, other Tensor, rtol _float=1e-05, atol _float=1e-08, equal_nan _bool=False) -> Tensor -c.def("isclose", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isclose with signature isclose(self, other Tensor, rtol _float=1e-05, atol _float=1e-08, equal_nan _bool=False) -> Tensor"); }); +c.def("isclose", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isclose with signature isclose(self, other Tensor, rtol _float=1e-05, atol _float=1e-08, equal_nan _bool=False) -> Tensor"); }); // isfinite(self) -> Tensor -c.def("isfinite", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isfinite with signature isfinite(self) -> Tensor"); }); +c.def("isfinite", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isfinite with signature isfinite(self) -> Tensor"); }); // isinf(self) -> Tensor -c.def("isinf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isinf with signature isinf(self) -> Tensor"); }); +c.def("isinf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isinf with signature isinf(self) -> Tensor"); }); // isnan(self) -> Tensor -c.def("isnan", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isnan with signature isnan(self) -> Tensor"); }); +c.def("isnan", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isnan with signature isnan(self) -> Tensor"); }); // isneginf(self) -> Tensor -c.def("isneginf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isneginf with signature isneginf(self) -> Tensor"); }); +c.def("isneginf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isneginf with signature isneginf(self) -> Tensor"); }); // isposinf(self) -> Tensor -c.def("isposinf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isposinf with signature isposinf(self) -> Tensor"); }); +c.def("isposinf", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isposinf with signature isposinf(self) -> Tensor"); }); // isreal(self) -> Tensor -c.def("isreal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("isreal with signature isreal(self) -> Tensor"); }); +c.def("isreal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: isreal with signature isreal(self) -> Tensor"); }); // istft(self, n_fft _int, hop_length Optional[_int]=None, win_length Optional[_int]=None, window Optional[Tensor]=None, center _bool=True, normalized _bool=False, onesided Optional[_bool]=None, length Optional[_int]=None, return_complex _bool=False) -> Tensor -c.def("istft", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("istft with signature istft(self, n_fft _int, hop_length Optional[_int]=None, win_length Optional[_int]=None, window Optional[Tensor]=None, center _bool=True, normalized _bool=False, onesided Optional[_bool]=None, length Optional[_int]=None, return_complex _bool=False) -> Tensor"); }); +c.def("istft", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: istft with signature istft(self, n_fft _int, hop_length Optional[_int]=None, win_length Optional[_int]=None, window Optional[Tensor]=None, center _bool=True, normalized _bool=False, onesided Optional[_bool]=None, length Optional[_int]=None, return_complex _bool=False) -> Tensor"); }); // item(self) -> Number -c.def("item", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("item with signature item(self) -> Number"); }); +c.def("item", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: item with signature item(self) -> Number"); }); // kron(self, other Tensor) -> Tensor -c.def("kron", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("kron with signature kron(self, other Tensor) -> Tensor"); }); +c.def("kron", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: kron with signature kron(self, other Tensor) -> Tensor"); }); // @overload kthvalue(self, k _int, dim _int=-1, keepdim _bool=False) -> torch.return_types.kthvalue -c.def("kthvalue", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("kthvalue with signature @overload kthvalue(self, k _int, dim _int=-1, keepdim _bool=False) -> torch.return_types.kthvalue"); }); +c.def("kthvalue", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: kthvalue with signature @overload kthvalue(self, k _int, dim _int=-1, keepdim _bool=False) -> torch.return_types.kthvalue"); }); // @overload kthvalue(self, k _int, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.kthvalue -c.def("kthvalue", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("kthvalue with signature @overload kthvalue(self, k _int, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.kthvalue"); }); +c.def("kthvalue", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: kthvalue with signature @overload kthvalue(self, k _int, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.kthvalue"); }); // lcm(self, other Tensor) -> Tensor -c.def("lcm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("lcm with signature lcm(self, other Tensor) -> Tensor"); }); +c.def("lcm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: lcm with signature lcm(self, other Tensor) -> Tensor"); }); // lcm_(self, other Tensor) -> Tensor -c.def("lcm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("lcm_ with signature lcm_(self, other Tensor) -> Tensor"); }); +c.def("lcm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: lcm_ with signature lcm_(self, other Tensor) -> Tensor"); }); // ldexp(self, other Tensor) -> Tensor -c.def("ldexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ldexp with signature ldexp(self, other Tensor) -> Tensor"); }); +c.def("ldexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ldexp with signature ldexp(self, other Tensor) -> Tensor"); }); // ldexp_(self, other Tensor) -> Tensor -c.def("ldexp_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ldexp_ with signature ldexp_(self, other Tensor) -> Tensor"); }); +c.def("ldexp_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ldexp_ with signature ldexp_(self, other Tensor) -> Tensor"); }); // @overload le_(self, other Tensor) -> Tensor // aten::le_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1380,44 +1380,44 @@ c.def("lerp", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue c.def("lerp_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &end, const PyAnyTorchTensorValue &weight) -> PyAnyTorchTensorValue { return lerp_(self, end, weight); }, "end"_a, "weight"_a); // @overload less(self, other Tensor) -> Tensor -c.def("less", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less with signature @overload less(self, other Tensor) -> Tensor"); }); +c.def("less", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less with signature @overload less(self, other Tensor) -> Tensor"); }); // @overload less(self, other Union[Number, _complex]) -> Tensor -c.def("less", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less with signature @overload less(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("less", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less with signature @overload less(self, other Union[Number, _complex]) -> Tensor"); }); // @overload less_(self, other Tensor) -> Tensor -c.def("less_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less_ with signature @overload less_(self, other Tensor) -> Tensor"); }); +c.def("less_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less_ with signature @overload less_(self, other Tensor) -> Tensor"); }); // @overload less_(self, other Union[Number, _complex]) -> Tensor -c.def("less_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less_ with signature @overload less_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("less_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less_ with signature @overload less_(self, other Union[Number, _complex]) -> Tensor"); }); // @overload less_equal(self, other Tensor) -> Tensor -c.def("less_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less_equal with signature @overload less_equal(self, other Tensor) -> Tensor"); }); +c.def("less_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less_equal with signature @overload less_equal(self, other Tensor) -> Tensor"); }); // @overload less_equal(self, other Union[Number, _complex]) -> Tensor -c.def("less_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less_equal with signature @overload less_equal(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("less_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less_equal with signature @overload less_equal(self, other Union[Number, _complex]) -> Tensor"); }); // @overload less_equal_(self, other Tensor) -> Tensor -c.def("less_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less_equal_ with signature @overload less_equal_(self, other Tensor) -> Tensor"); }); +c.def("less_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less_equal_ with signature @overload less_equal_(self, other Tensor) -> Tensor"); }); // @overload less_equal_(self, other Union[Number, _complex]) -> Tensor -c.def("less_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("less_equal_ with signature @overload less_equal_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("less_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: less_equal_ with signature @overload less_equal_(self, other Union[Number, _complex]) -> Tensor"); }); // lgamma(self) -> Tensor -c.def("lgamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("lgamma with signature lgamma(self) -> Tensor"); }); +c.def("lgamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: lgamma with signature lgamma(self) -> Tensor"); }); // lgamma_(self) -> Tensor -c.def("lgamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("lgamma_ with signature lgamma_(self) -> Tensor"); }); +c.def("lgamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: lgamma_ with signature lgamma_(self) -> Tensor"); }); // log(self) -> Tensor // aten::log : (Tensor) -> (Tensor) c.def("log", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return log(self); }); // log10(self) -> Tensor -c.def("log10", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("log10 with signature log10(self) -> Tensor"); }); +c.def("log10", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: log10 with signature log10(self) -> Tensor"); }); // log10_(self) -> Tensor -c.def("log10_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("log10_ with signature log10_(self) -> Tensor"); }); +c.def("log10_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: log10_ with signature log10_(self) -> Tensor"); }); // log1p(self) -> Tensor // aten::log1p : (Tensor) -> (Tensor) @@ -1440,26 +1440,26 @@ c.def("log2_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { c.def("log_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return log_(self); }); // log_normal_(self, mean _float=1, std _float=2, *, generator Optional[Generator]=None) -> Tensor -c.def("log_normal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("log_normal_ with signature log_normal_(self, mean _float=1, std _float=2, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("log_normal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: log_normal_ with signature log_normal_(self, mean _float=1, std _float=2, *, generator Optional[Generator]=None) -> Tensor"); }); // @overload log_softmax(self, dim _int, dtype Optional[_dtype]=None) -> Tensor // aten::log_softmax.int : (Tensor, int, int?) -> (Tensor) c.def("log_softmax", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyAnyTorchOptionalIntValue &dtype) -> PyAnyTorchTensorValue { return log_softmax(self, dim, dtype); }, "dim"_a, "dtype"_a = py::none()); // logaddexp(self, other Tensor) -> Tensor -c.def("logaddexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logaddexp with signature logaddexp(self, other Tensor) -> Tensor"); }); +c.def("logaddexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logaddexp with signature logaddexp(self, other Tensor) -> Tensor"); }); // logaddexp2(self, other Tensor) -> Tensor -c.def("logaddexp2", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logaddexp2 with signature logaddexp2(self, other Tensor) -> Tensor"); }); +c.def("logaddexp2", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logaddexp2 with signature logaddexp2(self, other Tensor) -> Tensor"); }); // @overload logcumsumexp(self, dim _int) -> Tensor -c.def("logcumsumexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logcumsumexp with signature @overload logcumsumexp(self, dim _int) -> Tensor"); }); +c.def("logcumsumexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logcumsumexp with signature @overload logcumsumexp(self, dim _int) -> Tensor"); }); // @overload logcumsumexp(self, dim Union[str, ellipsis, None]) -> Tensor -c.def("logcumsumexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logcumsumexp with signature @overload logcumsumexp(self, dim Union[str, ellipsis, None]) -> Tensor"); }); +c.def("logcumsumexp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logcumsumexp with signature @overload logcumsumexp(self, dim Union[str, ellipsis, None]) -> Tensor"); }); // logdet(self) -> Tensor -c.def("logdet", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logdet with signature logdet(self) -> Tensor"); }); +c.def("logdet", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logdet with signature logdet(self) -> Tensor"); }); // logical_and(self, other Tensor) -> Tensor // aten::logical_and : (Tensor, Tensor) -> (Tensor) @@ -1494,17 +1494,17 @@ c.def("logical_xor", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTenso c.def("logical_xor_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return logical_xor_(self, other); }, "other"_a); // logit(self, eps Optional[_float]=None) -> Tensor -c.def("logit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logit with signature logit(self, eps Optional[_float]=None) -> Tensor"); }); +c.def("logit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logit with signature logit(self, eps Optional[_float]=None) -> Tensor"); }); // logit_(self, eps Optional[_float]=None) -> Tensor -c.def("logit_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("logit_ with signature logit_(self, eps Optional[_float]=None) -> Tensor"); }); +c.def("logit_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: logit_ with signature logit_(self, eps Optional[_float]=None) -> Tensor"); }); // @overload logsumexp(self, dim Union[_int, _size], keepdim _bool=False) -> Tensor // aten::logsumexp : (Tensor, int[], bool) -> (Tensor) c.def("logsumexp", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &dim, const PyTorch_BoolValue &keepdim) -> PyAnyTorchTensorValue { return logsumexp(self, dim, keepdim); }, "dim"_a, "keepdim"_a = false); // long(self) -> Tensor -c.def("long", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("long with signature long(self) -> Tensor"); }); +c.def("long", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: long with signature long(self) -> Tensor"); }); // @overload lt_(self, other Tensor) -> Tensor // aten::lt_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1515,13 +1515,13 @@ c.def("lt_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue & c.def("lt_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return lt_(self, other); }, "other"_a); // lu_solve(self, LU_data Tensor, LU_pivots Tensor) -> Tensor -c.def("lu_solve", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("lu_solve with signature lu_solve(self, LU_data Tensor, LU_pivots Tensor) -> Tensor"); }); +c.def("lu_solve", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: lu_solve with signature lu_solve(self, LU_data Tensor, LU_pivots Tensor) -> Tensor"); }); // map2_(self, x Tensor, y Tensor, callable Callable) -> Tensor -c.def("map2_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("map2_ with signature map2_(self, x Tensor, y Tensor, callable Callable) -> Tensor"); }); +c.def("map2_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: map2_ with signature map2_(self, x Tensor, y Tensor, callable Callable) -> Tensor"); }); // map_(self, tensor Tensor, callable Callable) -> Tensor -c.def("map_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("map_ with signature map_(self, tensor Tensor, callable Callable) -> Tensor"); }); +c.def("map_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: map_ with signature map_(self, tensor Tensor, callable Callable) -> Tensor"); }); // @overload masked_fill(self, mask Tensor, value Tensor) -> Tensor // aten::masked_fill.Scalar : (Tensor, Tensor, Scalar) -> (Tensor) @@ -1540,20 +1540,20 @@ c.def("masked_fill_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTens c.def("masked_fill_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &mask, const PyAnyTorchTensorValue &value) -> PyAnyTorchTensorValue { return masked_fill_(self, mask, value); }, "mask"_a, "value"_a); // masked_scatter(self, mask Tensor, source Tensor) -> Tensor -c.def("masked_scatter", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("masked_scatter with signature masked_scatter(self, mask Tensor, source Tensor) -> Tensor"); }); +c.def("masked_scatter", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: masked_scatter with signature masked_scatter(self, mask Tensor, source Tensor) -> Tensor"); }); // masked_scatter_(self, mask Tensor, source Tensor) -> Tensor -c.def("masked_scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("masked_scatter_ with signature masked_scatter_(self, mask Tensor, source Tensor) -> Tensor"); }); +c.def("masked_scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: masked_scatter_ with signature masked_scatter_(self, mask Tensor, source Tensor) -> Tensor"); }); // masked_select(self, mask Tensor) -> Tensor // aten::masked_select : (Tensor, Tensor) -> (Tensor) c.def("masked_select", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &mask) -> PyAnyTorchTensorValue { return masked_select(self, mask); }, "mask"_a); // matrix_exp(self) -> Tensor -c.def("matrix_exp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("matrix_exp with signature matrix_exp(self) -> Tensor"); }); +c.def("matrix_exp", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: matrix_exp with signature matrix_exp(self) -> Tensor"); }); // matrix_power(self, n _int) -> Tensor -c.def("matrix_power", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("matrix_power with signature matrix_power(self, n _int) -> Tensor"); }); +c.def("matrix_power", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: matrix_power with signature matrix_power(self, n _int) -> Tensor"); }); // @overload max(self) -> Tensor // aten::max : (Tensor) -> (Tensor) @@ -1576,13 +1576,13 @@ c.def("mean", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalIntV c.def("mean", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalListOfTorchIntValue &dim, const PyTorch_BoolValue &keepdim, const PyAnyTorchOptionalIntValue &dtype) -> PyAnyTorchTensorValue { return mean(self, dim, keepdim, dtype); }, "dim"_a = py::none(), "keepdim"_a = false, "dtype"_a = py::none()); // @overload median(self) -> Tensor -c.def("median", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("median with signature @overload median(self) -> Tensor"); }); +c.def("median", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: median with signature @overload median(self) -> Tensor"); }); // @overload median(self, dim _int, keepdim _bool=False) -> torch.return_types.median -c.def("median", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("median with signature @overload median(self, dim _int, keepdim _bool=False) -> torch.return_types.median"); }); +c.def("median", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: median with signature @overload median(self, dim _int, keepdim _bool=False) -> torch.return_types.median"); }); // @overload median(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.median -c.def("median", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("median with signature @overload median(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.median"); }); +c.def("median", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: median with signature @overload median(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.median"); }); // minimum(self, other Tensor) -> Tensor // aten::minimum : (Tensor, Tensor) -> (Tensor) @@ -1593,23 +1593,23 @@ c.def("minimum", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorVal c.def("mm", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &mat2) -> PyAnyTorchTensorValue { return mm(self, mat2); }, "mat2"_a); // @overload mode(self, dim _int=-1, keepdim _bool=False) -> torch.return_types.mode -c.def("mode", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("mode with signature @overload mode(self, dim _int=-1, keepdim _bool=False) -> torch.return_types.mode"); }); +c.def("mode", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: mode with signature @overload mode(self, dim _int=-1, keepdim _bool=False) -> torch.return_types.mode"); }); // @overload mode(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.mode -c.def("mode", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("mode with signature @overload mode(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.mode"); }); +c.def("mode", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: mode with signature @overload mode(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.mode"); }); // @overload moveaxis(self, source _int, destination _int) -> Tensor -c.def("moveaxis", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("moveaxis with signature @overload moveaxis(self, source _int, destination _int) -> Tensor"); }); +c.def("moveaxis", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: moveaxis with signature @overload moveaxis(self, source _int, destination _int) -> Tensor"); }); // @overload moveaxis(self, source _size, destination _size) -> Tensor -c.def("moveaxis", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("moveaxis with signature @overload moveaxis(self, source _size, destination _size) -> Tensor"); }); +c.def("moveaxis", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: moveaxis with signature @overload moveaxis(self, source _size, destination _size) -> Tensor"); }); // @overload movedim(self, source _int, destination _int) -> Tensor // aten::movedim.int : (Tensor, int, int) -> (Tensor) c.def("movedim", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &source, const PyTorch_IntValue &destination) -> PyAnyTorchTensorValue { return movedim(self, source, destination); }, "source"_a, "destination"_a); // msort(self) -> Tensor -c.def("msort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("msort with signature msort(self) -> Tensor"); }); +c.def("msort", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: msort with signature msort(self) -> Tensor"); }); // mul_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor // aten::mul_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1620,66 +1620,66 @@ c.def("mul_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue c.def("mul_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other) -> PyAnyTorchTensorValue { return mul_(self, other); }, "other"_a); // multinomial(self, num_samples _int, replacement _bool=False, *, generator Optional[Generator]=None) -> Tensor -c.def("multinomial", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("multinomial with signature multinomial(self, num_samples _int, replacement _bool=False, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("multinomial", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: multinomial with signature multinomial(self, num_samples _int, replacement _bool=False, *, generator Optional[Generator]=None) -> Tensor"); }); // @overload multiply(self, other Tensor) -> Tensor -c.def("multiply", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("multiply with signature @overload multiply(self, other Tensor) -> Tensor"); }); +c.def("multiply", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: multiply with signature @overload multiply(self, other Tensor) -> Tensor"); }); // @overload multiply(self, other Union[Number, _complex]) -> Tensor -c.def("multiply", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("multiply with signature @overload multiply(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("multiply", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: multiply with signature @overload multiply(self, other Union[Number, _complex]) -> Tensor"); }); // @overload multiply_(self, other Tensor) -> Tensor -c.def("multiply_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("multiply_ with signature @overload multiply_(self, other Tensor) -> Tensor"); }); +c.def("multiply_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: multiply_ with signature @overload multiply_(self, other Tensor) -> Tensor"); }); // @overload multiply_(self, other Union[Number, _complex]) -> Tensor -c.def("multiply_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("multiply_ with signature @overload multiply_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("multiply_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: multiply_ with signature @overload multiply_(self, other Union[Number, _complex]) -> Tensor"); }); // mv(self, vec Tensor) -> Tensor // aten::mv : (Tensor, Tensor) -> (Tensor) c.def("mv", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &vec) -> PyAnyTorchTensorValue { return mv(self, vec); }, "vec"_a); // mvlgamma(self, p _int) -> Tensor -c.def("mvlgamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("mvlgamma with signature mvlgamma(self, p _int) -> Tensor"); }); +c.def("mvlgamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: mvlgamma with signature mvlgamma(self, p _int) -> Tensor"); }); // mvlgamma_(self, p _int) -> Tensor -c.def("mvlgamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("mvlgamma_ with signature mvlgamma_(self, p _int) -> Tensor"); }); +c.def("mvlgamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: mvlgamma_ with signature mvlgamma_(self, p _int) -> Tensor"); }); // nan_to_num(self, nan Optional[_float]=None, posinf Optional[_float]=None, neginf Optional[_float]=None) -> Tensor -c.def("nan_to_num", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nan_to_num with signature nan_to_num(self, nan Optional[_float]=None, posinf Optional[_float]=None, neginf Optional[_float]=None) -> Tensor"); }); +c.def("nan_to_num", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nan_to_num with signature nan_to_num(self, nan Optional[_float]=None, posinf Optional[_float]=None, neginf Optional[_float]=None) -> Tensor"); }); // nan_to_num_(self, nan Optional[_float]=None, posinf Optional[_float]=None, neginf Optional[_float]=None) -> Tensor -c.def("nan_to_num_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nan_to_num_ with signature nan_to_num_(self, nan Optional[_float]=None, posinf Optional[_float]=None, neginf Optional[_float]=None) -> Tensor"); }); +c.def("nan_to_num_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nan_to_num_ with signature nan_to_num_(self, nan Optional[_float]=None, posinf Optional[_float]=None, neginf Optional[_float]=None) -> Tensor"); }); // nanmean(self, dim Optional[Union[_int, _size]]=None, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor -c.def("nanmean", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nanmean with signature nanmean(self, dim Optional[Union[_int, _size]]=None, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("nanmean", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nanmean with signature nanmean(self, dim Optional[Union[_int, _size]]=None, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload nanmedian(self) -> Tensor -c.def("nanmedian", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nanmedian with signature @overload nanmedian(self) -> Tensor"); }); +c.def("nanmedian", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nanmedian with signature @overload nanmedian(self) -> Tensor"); }); // @overload nanmedian(self, dim _int, keepdim _bool=False) -> torch.return_types.nanmedian -c.def("nanmedian", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nanmedian with signature @overload nanmedian(self, dim _int, keepdim _bool=False) -> torch.return_types.nanmedian"); }); +c.def("nanmedian", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nanmedian with signature @overload nanmedian(self, dim _int, keepdim _bool=False) -> torch.return_types.nanmedian"); }); // @overload nanmedian(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.nanmedian -c.def("nanmedian", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nanmedian with signature @overload nanmedian(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.nanmedian"); }); +c.def("nanmedian", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nanmedian with signature @overload nanmedian(self, dim Union[str, ellipsis, None], keepdim _bool=False) -> torch.return_types.nanmedian"); }); // @overload nanquantile(self, q Tensor, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor -c.def("nanquantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nanquantile with signature @overload nanquantile(self, q Tensor, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); +c.def("nanquantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nanquantile with signature @overload nanquantile(self, q Tensor, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); // @overload nanquantile(self, q _float, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor -c.def("nanquantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nanquantile with signature @overload nanquantile(self, q _float, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); +c.def("nanquantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nanquantile with signature @overload nanquantile(self, q _float, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); // nansum(self, dim Optional[Union[_int, _size]]=None, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor -c.def("nansum", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nansum with signature nansum(self, dim Optional[Union[_int, _size]]=None, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("nansum", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nansum with signature nansum(self, dim Optional[Union[_int, _size]]=None, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload narrow(self, dim _int, start Tensor, length Union[_int, SymInt]) -> Tensor // aten::narrow : (Tensor, int, int, int) -> (Tensor) c.def("narrow", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyTorch_IntValue &start, const PyTorch_IntValue &length) -> PyAnyTorchTensorValue { return narrow(self, dim, start, length); }, "dim"_a, "start"_a, "length"_a); // narrow_copy(self, dim _int, start Union[_int, SymInt], length Union[_int, SymInt]) -> Tensor -c.def("narrow_copy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("narrow_copy with signature narrow_copy(self, dim _int, start Union[_int, SymInt], length Union[_int, SymInt]) -> Tensor"); }); +c.def("narrow_copy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: narrow_copy with signature narrow_copy(self, dim _int, start Union[_int, SymInt], length Union[_int, SymInt]) -> Tensor"); }); // ndimension(self) -> _int -c.def("ndimension", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ndimension with signature ndimension(self) -> _int"); }); +c.def("ndimension", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ndimension with signature ndimension(self) -> _int"); }); // @overload ne_(self, other Tensor) -> Tensor // aten::ne_.Scalar : (Tensor, Scalar) -> (Tensor) @@ -1694,96 +1694,96 @@ c.def("ne_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue & c.def("neg_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return neg_(self); }); // negative(self) -> Tensor -c.def("negative", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("negative with signature negative(self) -> Tensor"); }); +c.def("negative", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: negative with signature negative(self) -> Tensor"); }); // negative_(self) -> Tensor -c.def("negative_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("negative_ with signature negative_(self) -> Tensor"); }); +c.def("negative_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: negative_ with signature negative_(self) -> Tensor"); }); // nelement(self) -> _int -c.def("nelement", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nelement with signature nelement(self) -> _int"); }); +c.def("nelement", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nelement with signature nelement(self) -> _int"); }); // @overload new(self, *args Any, device Device=None) -> Tensor -c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("new with signature @overload new(self, *args Any, device Device=None) -> Tensor"); }); +c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: new with signature @overload new(self, *args Any, device Device=None) -> Tensor"); }); // @overload new(self, storage Storage) -> Tensor -c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("new with signature @overload new(self, storage Storage) -> Tensor"); }); +c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: new with signature @overload new(self, storage Storage) -> Tensor"); }); // @overload new(self, other Tensor) -> Tensor -c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("new with signature @overload new(self, other Tensor) -> Tensor"); }); +c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: new with signature @overload new(self, other Tensor) -> Tensor"); }); // @overload new(self, size _size, *, device Device=None) -> Tensor -c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("new with signature @overload new(self, size _size, *, device Device=None) -> Tensor"); }); +c.def("new", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: new with signature @overload new(self, size _size, *, device Device=None) -> Tensor"); }); // new_full(self, size Sequence[Union[_int, SymInt]], fill_value Union[Number, _complex], *, dtype Optional[_dtype]=None, layout Optional[_layout]=None, device Optional[Union[_device, str, None]]=None, pin_memory Optional[_bool]=False, requires_grad Optional[_bool]=False) -> Tensor -c.def("new_full", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("new_full with signature new_full(self, size Sequence[Union[_int, SymInt]], fill_value Union[Number, _complex], *, dtype Optional[_dtype]=None, layout Optional[_layout]=None, device Optional[Union[_device, str, None]]=None, pin_memory Optional[_bool]=False, requires_grad Optional[_bool]=False) -> Tensor"); }); +c.def("new_full", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: new_full with signature new_full(self, size Sequence[Union[_int, SymInt]], fill_value Union[Number, _complex], *, dtype Optional[_dtype]=None, layout Optional[_layout]=None, device Optional[Union[_device, str, None]]=None, pin_memory Optional[_bool]=False, requires_grad Optional[_bool]=False) -> Tensor"); }); // new_tensor(self, data Any, dtype Optional[_dtype]=None, device Device=None, requires_grad _bool=False) -> Tensor -c.def("new_tensor", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("new_tensor with signature new_tensor(self, data Any, dtype Optional[_dtype]=None, device Device=None, requires_grad _bool=False) -> Tensor"); }); +c.def("new_tensor", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: new_tensor with signature new_tensor(self, data Any, dtype Optional[_dtype]=None, device Device=None, requires_grad _bool=False) -> Tensor"); }); // nextafter(self, other Tensor) -> Tensor -c.def("nextafter", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nextafter with signature nextafter(self, other Tensor) -> Tensor"); }); +c.def("nextafter", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nextafter with signature nextafter(self, other Tensor) -> Tensor"); }); // nextafter_(self, other Tensor) -> Tensor -c.def("nextafter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nextafter_ with signature nextafter_(self, other Tensor) -> Tensor"); }); +c.def("nextafter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nextafter_ with signature nextafter_(self, other Tensor) -> Tensor"); }); // @overload nonzero(self, *, as_tuple Literal[False]=False) -> Tensor -c.def("nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nonzero with signature @overload nonzero(self, *, as_tuple Literal[False]=False) -> Tensor"); }); +c.def("nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nonzero with signature @overload nonzero(self, *, as_tuple Literal[False]=False) -> Tensor"); }); // @overload nonzero(self, *, as_tuple Literal[True]) -> Tuple[Tensor, ] -c.def("nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nonzero with signature @overload nonzero(self, *, as_tuple Literal[True]) -> Tuple[Tensor, ]"); }); +c.def("nonzero", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nonzero with signature @overload nonzero(self, *, as_tuple Literal[True]) -> Tuple[Tensor, ]"); }); // nonzero_static(self, *, size _int, fill_value _int=-1) -> Tensor -c.def("nonzero_static", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("nonzero_static with signature nonzero_static(self, *, size _int, fill_value _int=-1) -> Tensor"); }); +c.def("nonzero_static", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: nonzero_static with signature nonzero_static(self, *, size _int, fill_value _int=-1) -> Tensor"); }); // normal_(self, mean _float=0, std _float=1, *, generator Optional[Generator]=None) -> Tensor -c.def("normal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("normal_ with signature normal_(self, mean _float=0, std _float=1, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("normal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: normal_ with signature normal_(self, mean _float=0, std _float=1, *, generator Optional[Generator]=None) -> Tensor"); }); // @overload not_equal(self, other Tensor) -> Tensor -c.def("not_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("not_equal with signature @overload not_equal(self, other Tensor) -> Tensor"); }); +c.def("not_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: not_equal with signature @overload not_equal(self, other Tensor) -> Tensor"); }); // @overload not_equal(self, other Union[Number, _complex]) -> Tensor -c.def("not_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("not_equal with signature @overload not_equal(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("not_equal", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: not_equal with signature @overload not_equal(self, other Union[Number, _complex]) -> Tensor"); }); // @overload not_equal_(self, other Tensor) -> Tensor -c.def("not_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("not_equal_ with signature @overload not_equal_(self, other Tensor) -> Tensor"); }); +c.def("not_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: not_equal_ with signature @overload not_equal_(self, other Tensor) -> Tensor"); }); // @overload not_equal_(self, other Union[Number, _complex]) -> Tensor -c.def("not_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("not_equal_ with signature @overload not_equal_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("not_equal_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: not_equal_ with signature @overload not_equal_(self, other Union[Number, _complex]) -> Tensor"); }); // numel(self) -> _int // aten::numel : (Tensor) -> (int) c.def("numel", [](const PyAnyTorchTensorValue &self) -> PyTorch_IntValue { return numel(self); }); // numpy(self, *, force _bool=False) -> Any -c.def("numpy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("numpy with signature numpy(self, *, force _bool=False) -> Any"); }); +c.def("numpy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: numpy with signature numpy(self, *, force _bool=False) -> Any"); }); // orgqr(self, input2 Tensor) -> Tensor -c.def("orgqr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("orgqr with signature orgqr(self, input2 Tensor) -> Tensor"); }); +c.def("orgqr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: orgqr with signature orgqr(self, input2 Tensor) -> Tensor"); }); // ormqr(self, input2 Tensor, input3 Tensor, left _bool=True, transpose _bool=False) -> Tensor -c.def("ormqr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ormqr with signature ormqr(self, input2 Tensor, input3 Tensor, left _bool=True, transpose _bool=False) -> Tensor"); }); +c.def("ormqr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ormqr with signature ormqr(self, input2 Tensor, input3 Tensor, left _bool=True, transpose _bool=False) -> Tensor"); }); // outer(self, vec2 Tensor) -> Tensor -c.def("outer", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("outer with signature outer(self, vec2 Tensor) -> Tensor"); }); +c.def("outer", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: outer with signature outer(self, vec2 Tensor) -> Tensor"); }); // @overload permute(self, dims _size) -> Tensor // aten::permute : (Tensor, int[]) -> (Tensor) c.def("permute", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &dims) -> PyAnyTorchTensorValue { return permute(self, dims); }, "dims"_a); // pin_memory(self, device Optional[Union[_device, str, None]]=None) -> Tensor -c.def("pin_memory", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("pin_memory with signature pin_memory(self, device Optional[Union[_device, str, None]]=None) -> Tensor"); }); +c.def("pin_memory", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: pin_memory with signature pin_memory(self, device Optional[Union[_device, str, None]]=None) -> Tensor"); }); // pinverse(self, rcond _float=1e-15) -> Tensor -c.def("pinverse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("pinverse with signature pinverse(self, rcond _float=1e-15) -> Tensor"); }); +c.def("pinverse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: pinverse with signature pinverse(self, rcond _float=1e-15) -> Tensor"); }); // polygamma(self, n _int) -> Tensor -c.def("polygamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("polygamma with signature polygamma(self, n _int) -> Tensor"); }); +c.def("polygamma", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: polygamma with signature polygamma(self, n _int) -> Tensor"); }); // polygamma_(self, n _int) -> Tensor -c.def("polygamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("polygamma_ with signature polygamma_(self, n _int) -> Tensor"); }); +c.def("polygamma_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: polygamma_ with signature polygamma_(self, n _int) -> Tensor"); }); // positive(self) -> Tensor -c.def("positive", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("positive with signature positive(self) -> Tensor"); }); +c.def("positive", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: positive with signature positive(self) -> Tensor"); }); // @overload pow(self, exponent Tensor) -> Tensor // aten::pow.Tensor_Scalar : (Tensor, Scalar) -> (Tensor) @@ -1794,74 +1794,74 @@ c.def("pow", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue & c.def("pow", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &exponent) -> PyAnyTorchTensorValue { return pow(self, exponent); }, "exponent"_a); // @overload pow_(self, exponent Tensor) -> Tensor -c.def("pow_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("pow_ with signature @overload pow_(self, exponent Tensor) -> Tensor"); }); +c.def("pow_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: pow_ with signature @overload pow_(self, exponent Tensor) -> Tensor"); }); // @overload pow_(self, exponent Union[Number, _complex]) -> Tensor -c.def("pow_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("pow_ with signature @overload pow_(self, exponent Union[Number, _complex]) -> Tensor"); }); +c.def("pow_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: pow_ with signature @overload pow_(self, exponent Union[Number, _complex]) -> Tensor"); }); // prelu(self, weight Tensor) -> Tensor // aten::prelu : (Tensor, Tensor) -> (Tensor) c.def("prelu", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &weight) -> PyAnyTorchTensorValue { return prelu(self, weight); }, "weight"_a); // @overload prod(self, *, dtype Optional[_dtype]=None) -> Tensor -c.def("prod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("prod with signature @overload prod(self, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("prod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: prod with signature @overload prod(self, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload prod(self, dim _int, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor -c.def("prod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("prod with signature @overload prod(self, dim _int, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("prod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: prod with signature @overload prod(self, dim _int, keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); // @overload prod(self, dim Union[str, ellipsis, None], keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor -c.def("prod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("prod with signature @overload prod(self, dim Union[str, ellipsis, None], keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("prod", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: prod with signature @overload prod(self, dim Union[str, ellipsis, None], keepdim _bool=False, *, dtype Optional[_dtype]=None) -> Tensor"); }); // put(self, index Tensor, source Tensor, accumulate _bool=False) -> Tensor -c.def("put", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("put with signature put(self, index Tensor, source Tensor, accumulate _bool=False) -> Tensor"); }); +c.def("put", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: put with signature put(self, index Tensor, source Tensor, accumulate _bool=False) -> Tensor"); }); // put_(self, index Tensor, source Tensor, accumulate _bool=False) -> Tensor -c.def("put_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("put_ with signature put_(self, index Tensor, source Tensor, accumulate _bool=False) -> Tensor"); }); +c.def("put_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: put_ with signature put_(self, index Tensor, source Tensor, accumulate _bool=False) -> Tensor"); }); // q_per_channel_axis(self) -> _int -c.def("q_per_channel_axis", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("q_per_channel_axis with signature q_per_channel_axis(self) -> _int"); }); +c.def("q_per_channel_axis", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: q_per_channel_axis with signature q_per_channel_axis(self) -> _int"); }); // q_per_channel_scales(self) -> Tensor -c.def("q_per_channel_scales", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("q_per_channel_scales with signature q_per_channel_scales(self) -> Tensor"); }); +c.def("q_per_channel_scales", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: q_per_channel_scales with signature q_per_channel_scales(self) -> Tensor"); }); // q_per_channel_zero_points(self) -> Tensor -c.def("q_per_channel_zero_points", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("q_per_channel_zero_points with signature q_per_channel_zero_points(self) -> Tensor"); }); +c.def("q_per_channel_zero_points", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: q_per_channel_zero_points with signature q_per_channel_zero_points(self) -> Tensor"); }); // q_scale(self) -> _float -c.def("q_scale", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("q_scale with signature q_scale(self) -> _float"); }); +c.def("q_scale", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: q_scale with signature q_scale(self) -> _float"); }); // q_zero_point(self) -> _int -c.def("q_zero_point", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("q_zero_point with signature q_zero_point(self) -> _int"); }); +c.def("q_zero_point", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: q_zero_point with signature q_zero_point(self) -> _int"); }); // qr(self, some _bool=True) -> torch.return_types.qr -c.def("qr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("qr with signature qr(self, some _bool=True) -> torch.return_types.qr"); }); +c.def("qr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: qr with signature qr(self, some _bool=True) -> torch.return_types.qr"); }); // qscheme(self) -> _qscheme -c.def("qscheme", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("qscheme with signature qscheme(self) -> _qscheme"); }); +c.def("qscheme", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: qscheme with signature qscheme(self) -> _qscheme"); }); // @overload quantile(self, q Tensor, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor -c.def("quantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("quantile with signature @overload quantile(self, q Tensor, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); +c.def("quantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: quantile with signature @overload quantile(self, q Tensor, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); // @overload quantile(self, q _float, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor -c.def("quantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("quantile with signature @overload quantile(self, q _float, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); +c.def("quantile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: quantile with signature @overload quantile(self, q _float, dim Optional[_int]=None, keepdim _bool=False, *, interpolation str='linear') -> Tensor"); }); // rad2deg(self) -> Tensor -c.def("rad2deg", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("rad2deg with signature rad2deg(self) -> Tensor"); }); +c.def("rad2deg", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: rad2deg with signature rad2deg(self) -> Tensor"); }); // rad2deg_(self) -> Tensor -c.def("rad2deg_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("rad2deg_ with signature rad2deg_(self) -> Tensor"); }); +c.def("rad2deg_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: rad2deg_ with signature rad2deg_(self) -> Tensor"); }); // @overload random_(self, *, generator Optional[Generator]=None) -> Tensor -c.def("random_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("random_ with signature @overload random_(self, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("random_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: random_ with signature @overload random_(self, *, generator Optional[Generator]=None) -> Tensor"); }); // @overload random_(self, from_ _int, to Optional[_int], *, generator Optional[Generator]=None) -> Tensor -c.def("random_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("random_ with signature @overload random_(self, from_ _int, to Optional[_int], *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("random_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: random_ with signature @overload random_(self, from_ _int, to Optional[_int], *, generator Optional[Generator]=None) -> Tensor"); }); // @overload random_(self, to _int, *, generator Optional[Generator]=None) -> Tensor -c.def("random_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("random_ with signature @overload random_(self, to _int, *, generator Optional[Generator]=None) -> Tensor"); }); +c.def("random_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: random_ with signature @overload random_(self, to _int, *, generator Optional[Generator]=None) -> Tensor"); }); // ravel(self) -> Tensor -c.def("ravel", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("ravel with signature ravel(self) -> Tensor"); }); +c.def("ravel", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: ravel with signature ravel(self) -> Tensor"); }); // reciprocal(self) -> Tensor // aten::reciprocal : (Tensor) -> (Tensor) @@ -1872,10 +1872,10 @@ c.def("reciprocal", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorVal c.def("reciprocal_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return reciprocal_(self); }); // record_stream(self, s Stream) -> None -c.def("record_stream", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("record_stream with signature record_stream(self, s Stream) -> None"); }); +c.def("record_stream", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: record_stream with signature record_stream(self, s Stream) -> None"); }); // refine_names(self, names Sequence[Union[str, ellipsis, None]]) -> Tensor -c.def("refine_names", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("refine_names with signature refine_names(self, names Sequence[Union[str, ellipsis, None]]) -> Tensor"); }); +c.def("refine_names", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: refine_names with signature refine_names(self, names Sequence[Union[str, ellipsis, None]]) -> Tensor"); }); // relu(self) -> Tensor // aten::relu : (Tensor) -> (Tensor) @@ -1890,68 +1890,68 @@ c.def("relu_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { c.def("remainder", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue &other) -> PyAnyTorchTensorValue { return remainder(self, other); }, "other"_a); // @overload remainder_(self, other Tensor) -> Tensor -c.def("remainder_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("remainder_ with signature @overload remainder_(self, other Tensor) -> Tensor"); }); +c.def("remainder_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: remainder_ with signature @overload remainder_(self, other Tensor) -> Tensor"); }); // @overload remainder_(self, other Union[Number, _complex]) -> Tensor -c.def("remainder_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("remainder_ with signature @overload remainder_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("remainder_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: remainder_ with signature @overload remainder_(self, other Union[Number, _complex]) -> Tensor"); }); // rename(self, names Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor -c.def("rename", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("rename with signature rename(self, names Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor"); }); +c.def("rename", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: rename with signature rename(self, names Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor"); }); // rename_(self, names Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor -c.def("rename_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("rename_ with signature rename_(self, names Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor"); }); +c.def("rename_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: rename_ with signature rename_(self, names Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor"); }); // renorm(self, p Union[Number, _complex], dim _int, maxnorm Union[Number, _complex]) -> Tensor -c.def("renorm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("renorm with signature renorm(self, p Union[Number, _complex], dim _int, maxnorm Union[Number, _complex]) -> Tensor"); }); +c.def("renorm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: renorm with signature renorm(self, p Union[Number, _complex], dim _int, maxnorm Union[Number, _complex]) -> Tensor"); }); // renorm_(self, p Union[Number, _complex], dim _int, maxnorm Union[Number, _complex]) -> Tensor -c.def("renorm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("renorm_ with signature renorm_(self, p Union[Number, _complex], dim _int, maxnorm Union[Number, _complex]) -> Tensor"); }); +c.def("renorm_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: renorm_ with signature renorm_(self, p Union[Number, _complex], dim _int, maxnorm Union[Number, _complex]) -> Tensor"); }); // @overload repeat(self, repeats Sequence[Union[_int, SymInt]]) -> Tensor // aten::repeat : (Tensor, int[]) -> (Tensor) c.def("repeat", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &repeats) -> PyAnyTorchTensorValue { return repeat(self, repeats); }, "repeats"_a); // @overload repeat_interleave(self, repeats Tensor, dim Optional[_int]=None, *, output_size Optional[_int]=None) -> Tensor -c.def("repeat_interleave", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("repeat_interleave with signature @overload repeat_interleave(self, repeats Tensor, dim Optional[_int]=None, *, output_size Optional[_int]=None) -> Tensor"); }); +c.def("repeat_interleave", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: repeat_interleave with signature @overload repeat_interleave(self, repeats Tensor, dim Optional[_int]=None, *, output_size Optional[_int]=None) -> Tensor"); }); // @overload repeat_interleave(self, repeats Union[_int, SymInt], dim Optional[_int]=None, *, output_size Optional[_int]=None) -> Tensor -c.def("repeat_interleave", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("repeat_interleave with signature @overload repeat_interleave(self, repeats Union[_int, SymInt], dim Optional[_int]=None, *, output_size Optional[_int]=None) -> Tensor"); }); +c.def("repeat_interleave", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: repeat_interleave with signature @overload repeat_interleave(self, repeats Union[_int, SymInt], dim Optional[_int]=None, *, output_size Optional[_int]=None) -> Tensor"); }); // requires_grad_(self, mode _bool=True) -> Tensor -c.def("requires_grad_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("requires_grad_ with signature requires_grad_(self, mode _bool=True) -> Tensor"); }); +c.def("requires_grad_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: requires_grad_ with signature requires_grad_(self, mode _bool=True) -> Tensor"); }); // @overload reshape(self, shape Sequence[Union[_int, SymInt]]) -> Tensor // aten::reshape : (Tensor, int[]) -> (Tensor) c.def("reshape", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &shape) -> PyAnyTorchTensorValue { return reshape(self, shape); }, "shape"_a); // reshape_as(self, other Tensor) -> Tensor -c.def("reshape_as", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("reshape_as with signature reshape_as(self, other Tensor) -> Tensor"); }); +c.def("reshape_as", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: reshape_as with signature reshape_as(self, other Tensor) -> Tensor"); }); // @overload resize_(self, size Sequence[Union[_int, SymInt]], *, memory_format Optional[memory_format]=None) -> Tensor // aten::resize_ : (Tensor, int[], int?) -> (Tensor) c.def("resize_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &size, const PyAnyTorchOptionalIntValue &memory_format) -> PyAnyTorchTensorValue { return resize_(self, size, memory_format); }, "size"_a, "memory_format"_a = py::none()); // resize_as_(self, the_template Tensor, *, memory_format Optional[memory_format]=None) -> Tensor -c.def("resize_as_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("resize_as_ with signature resize_as_(self, the_template Tensor, *, memory_format Optional[memory_format]=None) -> Tensor"); }); +c.def("resize_as_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: resize_as_ with signature resize_as_(self, the_template Tensor, *, memory_format Optional[memory_format]=None) -> Tensor"); }); // resize_as_sparse_(self, the_template Tensor) -> Tensor -c.def("resize_as_sparse_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("resize_as_sparse_ with signature resize_as_sparse_(self, the_template Tensor) -> Tensor"); }); +c.def("resize_as_sparse_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: resize_as_sparse_ with signature resize_as_sparse_(self, the_template Tensor) -> Tensor"); }); // resolve_conj(self) -> Tensor -c.def("resolve_conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("resolve_conj with signature resolve_conj(self) -> Tensor"); }); +c.def("resolve_conj", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: resolve_conj with signature resolve_conj(self) -> Tensor"); }); // resolve_neg(self) -> Tensor -c.def("resolve_neg", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("resolve_neg with signature resolve_neg(self) -> Tensor"); }); +c.def("resolve_neg", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: resolve_neg with signature resolve_neg(self) -> Tensor"); }); // retain_grad(self) -> None -c.def("retain_grad", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("retain_grad with signature retain_grad(self) -> None"); }); +c.def("retain_grad", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: retain_grad with signature retain_grad(self) -> None"); }); // roll(self, shifts Union[Union[_int, SymInt], Sequence[Union[_int, SymInt]]], dims Union[_int, _size]=()) -> Tensor // aten::roll : (Tensor, int[], int[]) -> (Tensor) c.def("roll", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &shifts, const PyAnyTorchListOfTorchIntValue &dims) -> PyAnyTorchTensorValue { return roll(self, shifts, dims); }, "shifts"_a, "dims"_a = std::vector{}); // rot90(self, k _int=1, dims _size=(0, 1)) -> Tensor -c.def("rot90", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("rot90 with signature rot90(self, k _int=1, dims _size=(0, 1)) -> Tensor"); }); +c.def("rot90", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: rot90 with signature rot90(self, k _int=1, dims _size=(0, 1)) -> Tensor"); }); // @overload round(self) -> Tensor // aten::round : (Tensor) -> (Tensor) @@ -1962,7 +1962,7 @@ c.def("round", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { c.def("round_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return round_(self); }); // row_indices(self) -> Tensor -c.def("row_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("row_indices with signature row_indices(self) -> Tensor"); }); +c.def("row_indices", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: row_indices with signature row_indices(self) -> Tensor"); }); // rsqrt(self) -> Tensor // aten::rsqrt : (Tensor) -> (Tensor) @@ -1981,16 +1981,16 @@ c.def("scatter", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &d c.def("scatter", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyAnyTorchTensorValue &index, const PyAnyTorchScalarValue &value) -> PyAnyTorchTensorValue { return scatter(self, dim, index, value); }, "dim"_a, "index"_a, "value"_a); // @overload scatter_(self, dim _int, index Tensor, src Tensor) -> Tensor -c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("scatter_ with signature @overload scatter_(self, dim _int, index Tensor, src Tensor) -> Tensor"); }); +c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: scatter_ with signature @overload scatter_(self, dim _int, index Tensor, src Tensor) -> Tensor"); }); // @overload scatter_(self, dim _int, index Tensor, src Tensor, *, reduce str) -> Tensor -c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("scatter_ with signature @overload scatter_(self, dim _int, index Tensor, src Tensor, *, reduce str) -> Tensor"); }); +c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: scatter_ with signature @overload scatter_(self, dim _int, index Tensor, src Tensor, *, reduce str) -> Tensor"); }); // @overload scatter_(self, dim _int, index Tensor, value Union[Number, _complex], *, reduce str) -> Tensor -c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("scatter_ with signature @overload scatter_(self, dim _int, index Tensor, value Union[Number, _complex], *, reduce str) -> Tensor"); }); +c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: scatter_ with signature @overload scatter_(self, dim _int, index Tensor, value Union[Number, _complex], *, reduce str) -> Tensor"); }); // @overload scatter_(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor -c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("scatter_ with signature @overload scatter_(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor"); }); +c.def("scatter_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: scatter_ with signature @overload scatter_(self, dim _int, index Tensor, value Union[Number, _complex]) -> Tensor"); }); // @overload scatter_add(self, dim _int, index Tensor, src Tensor) -> Tensor // aten::scatter_add : (Tensor, int, Tensor, Tensor) -> (Tensor) @@ -2017,19 +2017,19 @@ c.def("select", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &di c.def("select_scatter", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &src, const PyTorch_IntValue &dim, const PyTorch_IntValue &index) -> PyAnyTorchTensorValue { return select_scatter(self, src, dim, index); }, "src"_a, "dim"_a, "index"_a); // @overload set_(self, storage Union[Storage, TypedStorage, UntypedStorage], offset _int, size _size, stride _size) -> Tensor -c.def("set_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("set_ with signature @overload set_(self, storage Union[Storage, TypedStorage, UntypedStorage], offset _int, size _size, stride _size) -> Tensor"); }); +c.def("set_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: set_ with signature @overload set_(self, storage Union[Storage, TypedStorage, UntypedStorage], offset _int, size _size, stride _size) -> Tensor"); }); // @overload set_(self, storage Union[Storage, TypedStorage, UntypedStorage]) -> Tensor -c.def("set_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("set_ with signature @overload set_(self, storage Union[Storage, TypedStorage, UntypedStorage]) -> Tensor"); }); +c.def("set_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: set_ with signature @overload set_(self, storage Union[Storage, TypedStorage, UntypedStorage]) -> Tensor"); }); // sgn(self) -> Tensor -c.def("sgn", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sgn with signature sgn(self) -> Tensor"); }); +c.def("sgn", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sgn with signature sgn(self) -> Tensor"); }); // sgn_(self) -> Tensor -c.def("sgn_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sgn_ with signature sgn_(self) -> Tensor"); }); +c.def("sgn_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sgn_ with signature sgn_(self) -> Tensor"); }); // short(self) -> Tensor -c.def("short", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("short with signature short(self) -> Tensor"); }); +c.def("short", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: short with signature short(self) -> Tensor"); }); // sigmoid(self) -> Tensor // aten::sigmoid : (Tensor) -> (Tensor) @@ -2040,13 +2040,13 @@ c.def("sigmoid", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue c.def("sigmoid_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return sigmoid_(self); }); // sign(self) -> Tensor -c.def("sign", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sign with signature sign(self) -> Tensor"); }); +c.def("sign", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sign with signature sign(self) -> Tensor"); }); // sign_(self) -> Tensor -c.def("sign_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sign_ with signature sign_(self) -> Tensor"); }); +c.def("sign_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sign_ with signature sign_(self) -> Tensor"); }); // signbit(self) -> Tensor -c.def("signbit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("signbit with signature signbit(self) -> Tensor"); }); +c.def("signbit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: signbit with signature signbit(self) -> Tensor"); }); // sin(self) -> Tensor // aten::sin : (Tensor) -> (Tensor) @@ -2057,16 +2057,16 @@ c.def("sin", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { re c.def("sin_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return sin_(self); }); // sinc(self) -> Tensor -c.def("sinc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sinc with signature sinc(self) -> Tensor"); }); +c.def("sinc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sinc with signature sinc(self) -> Tensor"); }); // sinc_(self) -> Tensor -c.def("sinc_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sinc_ with signature sinc_(self) -> Tensor"); }); +c.def("sinc_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sinc_ with signature sinc_(self) -> Tensor"); }); // sinh(self) -> Tensor -c.def("sinh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sinh with signature sinh(self) -> Tensor"); }); +c.def("sinh", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sinh with signature sinh(self) -> Tensor"); }); // sinh_(self) -> Tensor -c.def("sinh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sinh_ with signature sinh_(self) -> Tensor"); }); +c.def("sinh_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sinh_ with signature sinh_(self) -> Tensor"); }); // @overload size(self) -> Size // aten::size : (Tensor) -> (int[]) @@ -2081,10 +2081,10 @@ c.def("size", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim) c.def("slice_scatter", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &src, const PyTorch_IntValue &dim, const PyAnyTorchOptionalIntValue &start, const PyAnyTorchOptionalIntValue &end, const PyTorch_IntValue &step) -> PyAnyTorchTensorValue { return slice_scatter(self, src, dim, start, end, step); }, "src"_a, "dim"_a = 0, "start"_a = py::none(), "end"_a = py::none(), "step"_a = 1); // slogdet(self) -> torch.return_types.slogdet -c.def("slogdet", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("slogdet with signature slogdet(self) -> torch.return_types.slogdet"); }); +c.def("slogdet", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: slogdet with signature slogdet(self) -> torch.return_types.slogdet"); }); // smm(self, mat2 Tensor) -> Tensor -c.def("smm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("smm with signature smm(self, mat2 Tensor) -> Tensor"); }); +c.def("smm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: smm with signature smm(self, mat2 Tensor) -> Tensor"); }); // @overload softmax(self, dim _int, dtype Optional[_dtype]=None) -> Tensor // aten::softmax.int : (Tensor, int, int?) -> (Tensor) @@ -2095,25 +2095,25 @@ c.def("softmax", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &d c.def("sort", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim, const PyTorch_BoolValue &descending) -> std::tuple { return sort(self, dim, descending); }, "dim"_a = -1, "descending"_a = false); // sparse_dim(self) -> _int -c.def("sparse_dim", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sparse_dim with signature sparse_dim(self) -> _int"); }); +c.def("sparse_dim", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sparse_dim with signature sparse_dim(self) -> _int"); }); // sparse_mask(self, mask Tensor) -> Tensor -c.def("sparse_mask", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sparse_mask with signature sparse_mask(self, mask Tensor) -> Tensor"); }); +c.def("sparse_mask", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sparse_mask with signature sparse_mask(self, mask Tensor) -> Tensor"); }); // sparse_resize_(self, size _size, sparse_dim _int, dense_dim _int) -> Tensor -c.def("sparse_resize_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sparse_resize_ with signature sparse_resize_(self, size _size, sparse_dim _int, dense_dim _int) -> Tensor"); }); +c.def("sparse_resize_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sparse_resize_ with signature sparse_resize_(self, size _size, sparse_dim _int, dense_dim _int) -> Tensor"); }); // sparse_resize_and_clear_(self, size _size, sparse_dim _int, dense_dim _int) -> Tensor -c.def("sparse_resize_and_clear_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sparse_resize_and_clear_ with signature sparse_resize_and_clear_(self, size _size, sparse_dim _int, dense_dim _int) -> Tensor"); }); +c.def("sparse_resize_and_clear_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sparse_resize_and_clear_ with signature sparse_resize_and_clear_(self, size _size, sparse_dim _int, dense_dim _int) -> Tensor"); }); // @overload split(self, split_size _int, dim _int=0) -> Sequence[Tensor] -c.def("split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("split with signature @overload split(self, split_size _int, dim _int=0) -> Sequence[Tensor]"); }); +c.def("split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: split with signature @overload split(self, split_size _int, dim _int=0) -> Sequence[Tensor]"); }); // @overload split(self, split_size Tuple[_int, ], dim _int=0) -> Sequence[Tensor] -c.def("split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("split with signature @overload split(self, split_size Tuple[_int, ], dim _int=0) -> Sequence[Tensor]"); }); +c.def("split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: split with signature @overload split(self, split_size Tuple[_int, ], dim _int=0) -> Sequence[Tensor]"); }); // split_with_sizes(self, split_sizes Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor] -c.def("split_with_sizes", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("split_with_sizes with signature split_with_sizes(self, split_sizes Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor]"); }); +c.def("split_with_sizes", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: split_with_sizes with signature split_with_sizes(self, split_sizes Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor]"); }); // sqrt(self) -> Tensor // aten::sqrt : (Tensor) -> (Tensor) @@ -2140,22 +2140,22 @@ c.def("squeeze", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue c.def("squeeze", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim) -> PyAnyTorchTensorValue { return squeeze(self, dim); }, "dim"_a); // @overload squeeze_(self) -> Tensor -c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("squeeze_ with signature @overload squeeze_(self) -> Tensor"); }); +c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: squeeze_ with signature @overload squeeze_(self) -> Tensor"); }); // @overload squeeze_(self, dim _int) -> Tensor -c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("squeeze_ with signature @overload squeeze_(self, dim _int) -> Tensor"); }); +c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: squeeze_ with signature @overload squeeze_(self, dim _int) -> Tensor"); }); // @overload squeeze_(self, dim _size) -> Tensor -c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("squeeze_ with signature @overload squeeze_(self, dim _size) -> Tensor"); }); +c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: squeeze_ with signature @overload squeeze_(self, dim _size) -> Tensor"); }); // @overload squeeze_(self, *dim _int) -> Tensor -c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("squeeze_ with signature @overload squeeze_(self, *dim _int) -> Tensor"); }); +c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: squeeze_ with signature @overload squeeze_(self, *dim _int) -> Tensor"); }); // @overload squeeze_(self, dim Union[str, ellipsis, None]) -> Tensor -c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("squeeze_ with signature @overload squeeze_(self, dim Union[str, ellipsis, None]) -> Tensor"); }); +c.def("squeeze_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: squeeze_ with signature @overload squeeze_(self, dim Union[str, ellipsis, None]) -> Tensor"); }); // sspaddmm(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor -c.def("sspaddmm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sspaddmm with signature sspaddmm(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("sspaddmm", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sspaddmm with signature sspaddmm(self, mat1 Tensor, mat2 Tensor, *, beta Union[Number, _complex]=1, alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload std(self, dim Optional[Union[_int, _size]], unbiased _bool=True, keepdim _bool=False) -> Tensor // aten::std.dim : (Tensor, int[]?, bool, bool) -> (Tensor) @@ -2170,19 +2170,19 @@ c.def("std", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalListO c.def("std", [](const PyAnyTorchTensorValue &self, const PyTorch_BoolValue &unbiased) -> PyAnyTorchTensorValue { return std(self, unbiased); }, "unbiased"_a = true); // untyped_storage(self) -> UntypedStorage -c.def("untyped_storage", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("untyped_storage with signature untyped_storage(self) -> UntypedStorage"); }); +c.def("untyped_storage", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: untyped_storage with signature untyped_storage(self) -> UntypedStorage"); }); // storage_offset(self) -> _int -c.def("storage_offset", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("storage_offset with signature storage_offset(self) -> _int"); }); +c.def("storage_offset", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: storage_offset with signature storage_offset(self) -> _int"); }); // storage_type(self) -> Storage -c.def("storage_type", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("storage_type with signature storage_type(self) -> Storage"); }); +c.def("storage_type", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: storage_type with signature storage_type(self) -> Storage"); }); // @overload stride(self) -> Tuple[_int, ] -c.def("stride", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("stride with signature @overload stride(self) -> Tuple[_int, ]"); }); +c.def("stride", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: stride with signature @overload stride(self) -> Tuple[_int, ]"); }); // @overload stride(self, _int) -> _int -c.def("stride", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("stride with signature @overload stride(self, _int) -> _int"); }); +c.def("stride", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: stride with signature @overload stride(self, _int) -> _int"); }); // sub_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, alpha Optional[Number]=1) -> Tensor // aten::sub_.Scalar : (Tensor, Scalar, Scalar) -> (Tensor) @@ -2193,16 +2193,16 @@ c.def("sub_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchScalarValue c.def("sub_", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorValue &other, const PyAnyTorchScalarValue &alpha) -> PyAnyTorchTensorValue { return sub_(self, other, alpha); }, "other"_a, py::kw_only(), "alpha"_a = 1); // @overload subtract(self, other Tensor, *, alpha Union[Number, _complex]=1) -> Tensor -c.def("subtract", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("subtract with signature @overload subtract(self, other Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("subtract", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: subtract with signature @overload subtract(self, other Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload subtract(self, other Union[Number, _complex], alpha Union[Number, _complex]=1) -> Tensor -c.def("subtract", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("subtract with signature @overload subtract(self, other Union[Number, _complex], alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("subtract", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: subtract with signature @overload subtract(self, other Union[Number, _complex], alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload subtract_(self, other Tensor, *, alpha Union[Number, _complex]=1) -> Tensor -c.def("subtract_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("subtract_ with signature @overload subtract_(self, other Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("subtract_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: subtract_ with signature @overload subtract_(self, other Tensor, *, alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload subtract_(self, other Union[Number, _complex], alpha Union[Number, _complex]=1) -> Tensor -c.def("subtract_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("subtract_ with signature @overload subtract_(self, other Union[Number, _complex], alpha Union[Number, _complex]=1) -> Tensor"); }); +c.def("subtract_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: subtract_ with signature @overload subtract_(self, other Union[Number, _complex], alpha Union[Number, _complex]=1) -> Tensor"); }); // @overload sum(self, *, dtype Optional[_dtype]=None) -> Tensor // aten::sum : (Tensor, int?) -> (Tensor) @@ -2213,44 +2213,44 @@ c.def("sum", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalIntVa c.def("sum", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalListOfTorchIntValue &dim, const PyTorch_BoolValue &keepdim, const PyAnyTorchOptionalIntValue &dtype) -> PyAnyTorchTensorValue { return sum(self, dim, keepdim, dtype); }, "dim"_a = py::none(), "keepdim"_a = false, "dtype"_a = py::none()); // @overload sum_to_size(self, size Sequence[Union[_int, SymInt]]) -> Tensor -c.def("sum_to_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sum_to_size with signature @overload sum_to_size(self, size Sequence[Union[_int, SymInt]]) -> Tensor"); }); +c.def("sum_to_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sum_to_size with signature @overload sum_to_size(self, size Sequence[Union[_int, SymInt]]) -> Tensor"); }); // @overload sum_to_size(self, *size _int) -> Tensor -c.def("sum_to_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("sum_to_size with signature @overload sum_to_size(self, *size _int) -> Tensor"); }); +c.def("sum_to_size", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: sum_to_size with signature @overload sum_to_size(self, *size _int) -> Tensor"); }); // svd(self, some _bool=True, compute_uv _bool=True) -> torch.return_types.svd -c.def("svd", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("svd with signature svd(self, some _bool=True, compute_uv _bool=True) -> torch.return_types.svd"); }); +c.def("svd", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: svd with signature svd(self, some _bool=True, compute_uv _bool=True) -> torch.return_types.svd"); }); // swapaxes(self, axis0 _int, axis1 _int) -> Tensor -c.def("swapaxes", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("swapaxes with signature swapaxes(self, axis0 _int, axis1 _int) -> Tensor"); }); +c.def("swapaxes", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: swapaxes with signature swapaxes(self, axis0 _int, axis1 _int) -> Tensor"); }); // swapaxes_(self, axis0 _int, axis1 _int) -> Tensor -c.def("swapaxes_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("swapaxes_ with signature swapaxes_(self, axis0 _int, axis1 _int) -> Tensor"); }); +c.def("swapaxes_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: swapaxes_ with signature swapaxes_(self, axis0 _int, axis1 _int) -> Tensor"); }); // swapdims(self, dim0 _int, dim1 _int) -> Tensor -c.def("swapdims", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("swapdims with signature swapdims(self, dim0 _int, dim1 _int) -> Tensor"); }); +c.def("swapdims", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: swapdims with signature swapdims(self, dim0 _int, dim1 _int) -> Tensor"); }); // swapdims_(self, dim0 _int, dim1 _int) -> Tensor -c.def("swapdims_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("swapdims_ with signature swapdims_(self, dim0 _int, dim1 _int) -> Tensor"); }); +c.def("swapdims_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: swapdims_ with signature swapdims_(self, dim0 _int, dim1 _int) -> Tensor"); }); // t(self) -> Tensor // aten::t : (Tensor) -> (Tensor) c.def("t", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return t(self); }); // t_(self) -> Tensor -c.def("t_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("t_ with signature t_(self) -> Tensor"); }); +c.def("t_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: t_ with signature t_(self) -> Tensor"); }); // take(self, index Tensor) -> Tensor -c.def("take", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("take with signature take(self, index Tensor) -> Tensor"); }); +c.def("take", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: take with signature take(self, index Tensor) -> Tensor"); }); // take_along_dim(self, indices Tensor, dim Optional[_int]=None) -> Tensor -c.def("take_along_dim", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("take_along_dim with signature take_along_dim(self, indices Tensor, dim Optional[_int]=None) -> Tensor"); }); +c.def("take_along_dim", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: take_along_dim with signature take_along_dim(self, indices Tensor, dim Optional[_int]=None) -> Tensor"); }); // tan(self) -> Tensor -c.def("tan", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tan with signature tan(self) -> Tensor"); }); +c.def("tan", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tan with signature tan(self) -> Tensor"); }); // tan_(self) -> Tensor -c.def("tan_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tan_ with signature tan_(self) -> Tensor"); }); +c.def("tan_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tan_ with signature tan_(self) -> Tensor"); }); // tanh(self) -> Tensor // aten::tanh : (Tensor) -> (Tensor) @@ -2261,76 +2261,76 @@ c.def("tanh", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { r c.def("tanh_", [](const PyAnyTorchTensorValue &self) -> PyAnyTorchTensorValue { return tanh_(self); }); // @overload tensor_split(self, indices Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor] -c.def("tensor_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tensor_split with signature @overload tensor_split(self, indices Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor]"); }); +c.def("tensor_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tensor_split with signature @overload tensor_split(self, indices Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor]"); }); // @overload tensor_split(self, tensor_indices_or_sections Tensor, dim _int=0) -> List[Tensor] -c.def("tensor_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tensor_split with signature @overload tensor_split(self, tensor_indices_or_sections Tensor, dim _int=0) -> List[Tensor]"); }); +c.def("tensor_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tensor_split with signature @overload tensor_split(self, tensor_indices_or_sections Tensor, dim _int=0) -> List[Tensor]"); }); // @overload tensor_split(self, sections Union[_int, SymInt], dim _int=0) -> List[Tensor] -c.def("tensor_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tensor_split with signature @overload tensor_split(self, sections Union[_int, SymInt], dim _int=0) -> List[Tensor]"); }); +c.def("tensor_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tensor_split with signature @overload tensor_split(self, sections Union[_int, SymInt], dim _int=0) -> List[Tensor]"); }); // @overload tile(self, dims _size) -> Tensor -c.def("tile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tile with signature @overload tile(self, dims _size) -> Tensor"); }); +c.def("tile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tile with signature @overload tile(self, dims _size) -> Tensor"); }); // @overload tile(self, *dims _int) -> Tensor -c.def("tile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tile with signature @overload tile(self, *dims _int) -> Tensor"); }); +c.def("tile", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tile with signature @overload tile(self, *dims _int) -> Tensor"); }); // @overload to(self, device Optional[Union[_device, str]]=None, dtype Optional[_dtype]=None, non_blocking _bool=False, copy _bool=False) -> Tensor // aten::to.prim_Device : (Tensor, Device?, int?, bool, bool) -> (Tensor) c.def("to", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalDeviceValue &device, const PyAnyTorchOptionalIntValue &dtype, const PyTorch_BoolValue &non_blocking, const PyTorch_BoolValue ©) -> PyAnyTorchTensorValue { return to(self, device, dtype, non_blocking, copy); }, "device"_a = py::none(), "dtype"_a = py::none(), "non_blocking"_a = false, "copy"_a = false); // to_dense(self, dtype Optional[_dtype]=None, *, masked_grad Optional[_bool]=None) -> Tensor -c.def("to_dense", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_dense with signature to_dense(self, dtype Optional[_dtype]=None, *, masked_grad Optional[_bool]=None) -> Tensor"); }); +c.def("to_dense", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_dense with signature to_dense(self, dtype Optional[_dtype]=None, *, masked_grad Optional[_bool]=None) -> Tensor"); }); // to_mkldnn(self, dtype Optional[_dtype]=None) -> Tensor -c.def("to_mkldnn", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_mkldnn with signature to_mkldnn(self, dtype Optional[_dtype]=None) -> Tensor"); }); +c.def("to_mkldnn", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_mkldnn with signature to_mkldnn(self, dtype Optional[_dtype]=None) -> Tensor"); }); // to_padded_tensor(self, padding _float, output_size Optional[Sequence[Union[_int, SymInt]]]=None) -> Tensor -c.def("to_padded_tensor", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_padded_tensor with signature to_padded_tensor(self, padding _float, output_size Optional[Sequence[Union[_int, SymInt]]]=None) -> Tensor"); }); +c.def("to_padded_tensor", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_padded_tensor with signature to_padded_tensor(self, padding _float, output_size Optional[Sequence[Union[_int, SymInt]]]=None) -> Tensor"); }); // @overload to_sparse(self, *, layout Optional[_layout]=None, blocksize Optional[Union[_int, _size]]=None, dense_dim Optional[_int]=None) -> Tensor -c.def("to_sparse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_sparse with signature @overload to_sparse(self, *, layout Optional[_layout]=None, blocksize Optional[Union[_int, _size]]=None, dense_dim Optional[_int]=None) -> Tensor"); }); +c.def("to_sparse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_sparse with signature @overload to_sparse(self, *, layout Optional[_layout]=None, blocksize Optional[Union[_int, _size]]=None, dense_dim Optional[_int]=None) -> Tensor"); }); // @overload to_sparse(self, sparse_dim _int) -> Tensor -c.def("to_sparse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_sparse with signature @overload to_sparse(self, sparse_dim _int) -> Tensor"); }); +c.def("to_sparse", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_sparse with signature @overload to_sparse(self, sparse_dim _int) -> Tensor"); }); // to_sparse_bsc(self, blocksize Union[_int, _size], dense_dim Optional[_int]=None) -> Tensor -c.def("to_sparse_bsc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_sparse_bsc with signature to_sparse_bsc(self, blocksize Union[_int, _size], dense_dim Optional[_int]=None) -> Tensor"); }); +c.def("to_sparse_bsc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_sparse_bsc with signature to_sparse_bsc(self, blocksize Union[_int, _size], dense_dim Optional[_int]=None) -> Tensor"); }); // to_sparse_bsr(self, blocksize Union[_int, _size], dense_dim Optional[_int]=None) -> Tensor -c.def("to_sparse_bsr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_sparse_bsr with signature to_sparse_bsr(self, blocksize Union[_int, _size], dense_dim Optional[_int]=None) -> Tensor"); }); +c.def("to_sparse_bsr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_sparse_bsr with signature to_sparse_bsr(self, blocksize Union[_int, _size], dense_dim Optional[_int]=None) -> Tensor"); }); // to_sparse_csc(self, dense_dim Optional[_int]=None) -> Tensor -c.def("to_sparse_csc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_sparse_csc with signature to_sparse_csc(self, dense_dim Optional[_int]=None) -> Tensor"); }); +c.def("to_sparse_csc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_sparse_csc with signature to_sparse_csc(self, dense_dim Optional[_int]=None) -> Tensor"); }); // to_sparse_csr(self, dense_dim Optional[_int]=None) -> Tensor -c.def("to_sparse_csr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("to_sparse_csr with signature to_sparse_csr(self, dense_dim Optional[_int]=None) -> Tensor"); }); +c.def("to_sparse_csr", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: to_sparse_csr with signature to_sparse_csr(self, dense_dim Optional[_int]=None) -> Tensor"); }); // tolist(self) -> List -c.def("tolist", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tolist with signature tolist(self) -> List"); }); +c.def("tolist", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tolist with signature tolist(self) -> List"); }); // topk(self, k Union[_int, SymInt], dim _int=-1, largest _bool=True, sorted _bool=True) -> torch.return_types.topk // aten::topk : (Tensor, int, int, bool, bool) -> (Tensor, Tensor) c.def("topk", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &k, const PyTorch_IntValue &dim, const PyTorch_BoolValue &largest, const PyTorch_BoolValue &sorted) -> std::tuple { return topk(self, k, dim, largest, sorted); }, "k"_a, "dim"_a = -1, "largest"_a = true, "sorted"_a = true); // trace(self) -> Tensor -c.def("trace", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("trace with signature trace(self) -> Tensor"); }); +c.def("trace", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: trace with signature trace(self) -> Tensor"); }); // @overload transpose(self, dim0 _int, dim1 _int) -> Tensor // aten::transpose.int : (Tensor, int, int) -> (Tensor) c.def("transpose", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim0, const PyTorch_IntValue &dim1) -> PyAnyTorchTensorValue { return transpose(self, dim0, dim1); }, "dim0"_a, "dim1"_a); // transpose_(self, dim0 _int, dim1 _int) -> Tensor -c.def("transpose_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("transpose_ with signature transpose_(self, dim0 _int, dim1 _int) -> Tensor"); }); +c.def("transpose_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: transpose_ with signature transpose_(self, dim0 _int, dim1 _int) -> Tensor"); }); // triangular_solve(self, A Tensor, upper _bool=True, transpose _bool=False, unitriangular _bool=False) -> torch.return_types.triangular_solve -c.def("triangular_solve", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("triangular_solve with signature triangular_solve(self, A Tensor, upper _bool=True, transpose _bool=False, unitriangular _bool=False) -> torch.return_types.triangular_solve"); }); +c.def("triangular_solve", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: triangular_solve with signature triangular_solve(self, A Tensor, upper _bool=True, transpose _bool=False, unitriangular _bool=False) -> torch.return_types.triangular_solve"); }); // tril(self, diagonal _int=0) -> Tensor -c.def("tril", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tril with signature tril(self, diagonal _int=0) -> Tensor"); }); +c.def("tril", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tril with signature tril(self, diagonal _int=0) -> Tensor"); }); // tril_(self, diagonal _int=0) -> Tensor -c.def("tril_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("tril_ with signature tril_(self, diagonal _int=0) -> Tensor"); }); +c.def("tril_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: tril_ with signature tril_(self, diagonal _int=0) -> Tensor"); }); // triu(self, diagonal _int=0) -> Tensor // aten::triu : (Tensor, int) -> (Tensor) @@ -2341,16 +2341,16 @@ c.def("triu", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &diag c.def("triu_", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &diagonal) -> PyAnyTorchTensorValue { return triu_(self, diagonal); }, "diagonal"_a = 0); // true_divide(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out Optional[Tensor]=None) -> Tensor -c.def("true_divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("true_divide with signature true_divide(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out Optional[Tensor]=None) -> Tensor"); }); +c.def("true_divide", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: true_divide with signature true_divide(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat], *, out Optional[Tensor]=None) -> Tensor"); }); // true_divide_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor -c.def("true_divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("true_divide_ with signature true_divide_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor"); }); +c.def("true_divide_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: true_divide_ with signature true_divide_(self, other Union[Tensor, Number, torch.SymInt, torch.SymFloat]) -> Tensor"); }); // trunc(self) -> Tensor -c.def("trunc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("trunc with signature trunc(self) -> Tensor"); }); +c.def("trunc", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: trunc with signature trunc(self) -> Tensor"); }); // trunc_(self) -> Tensor -c.def("trunc_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("trunc_ with signature trunc_(self) -> Tensor"); }); +c.def("trunc_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: trunc_ with signature trunc_(self) -> Tensor"); }); // type_as(self, other Tensor) -> Tensor // aten::type_as : (Tensor, Tensor) -> (Tensor) @@ -2361,22 +2361,22 @@ c.def("type_as", [](const PyAnyTorchTensorValue &self, const PyAnyTorchTensorVal c.def("unbind", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim) -> PyAnyTorchListOfTensorValue { return unbind(self, dim); }, "dim"_a = 0); // @overload unflatten(self, dim Union[str, ellipsis, None], sizes Sequence[Union[_int, SymInt]], names Sequence[Union[str, ellipsis, None]]) -> Tensor -c.def("unflatten", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("unflatten with signature @overload unflatten(self, dim Union[str, ellipsis, None], sizes Sequence[Union[_int, SymInt]], names Sequence[Union[str, ellipsis, None]]) -> Tensor"); }); +c.def("unflatten", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: unflatten with signature @overload unflatten(self, dim Union[str, ellipsis, None], sizes Sequence[Union[_int, SymInt]], names Sequence[Union[str, ellipsis, None]]) -> Tensor"); }); // @overload unflatten(self, dim _int, sizes Sequence[Union[_int, SymInt]]) -> Tensor -c.def("unflatten", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("unflatten with signature @overload unflatten(self, dim _int, sizes Sequence[Union[_int, SymInt]]) -> Tensor"); }); +c.def("unflatten", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: unflatten with signature @overload unflatten(self, dim _int, sizes Sequence[Union[_int, SymInt]]) -> Tensor"); }); // unfold(self, dimension _int, size _int, step _int) -> Tensor -c.def("unfold", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("unfold with signature unfold(self, dimension _int, size _int, step _int) -> Tensor"); }); +c.def("unfold", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: unfold with signature unfold(self, dimension _int, size _int, step _int) -> Tensor"); }); // unsafe_chunk(self, chunks _int, dim _int=0) -> List[Tensor] -c.def("unsafe_chunk", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("unsafe_chunk with signature unsafe_chunk(self, chunks _int, dim _int=0) -> List[Tensor]"); }); +c.def("unsafe_chunk", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: unsafe_chunk with signature unsafe_chunk(self, chunks _int, dim _int=0) -> List[Tensor]"); }); // unsafe_split(self, split_size Union[_int, SymInt], dim _int=0) -> List[Tensor] -c.def("unsafe_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("unsafe_split with signature unsafe_split(self, split_size Union[_int, SymInt], dim _int=0) -> List[Tensor]"); }); +c.def("unsafe_split", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: unsafe_split with signature unsafe_split(self, split_size Union[_int, SymInt], dim _int=0) -> List[Tensor]"); }); // unsafe_split_with_sizes(self, split_sizes Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor] -c.def("unsafe_split_with_sizes", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("unsafe_split_with_sizes with signature unsafe_split_with_sizes(self, split_sizes Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor]"); }); +c.def("unsafe_split_with_sizes", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: unsafe_split_with_sizes with signature unsafe_split_with_sizes(self, split_sizes Sequence[Union[_int, SymInt]], dim _int=0) -> List[Tensor]"); }); // unsqueeze(self, dim _int) -> Tensor // aten::unsqueeze : (Tensor, int) -> (Tensor) @@ -2387,7 +2387,7 @@ c.def("unsqueeze", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue c.def("unsqueeze_", [](const PyAnyTorchTensorValue &self, const PyTorch_IntValue &dim) -> PyAnyTorchTensorValue { return unsqueeze_(self, dim); }, "dim"_a); // values(self) -> Tensor -c.def("values", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("values with signature values(self) -> Tensor"); }); +c.def("values", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: values with signature values(self) -> Tensor"); }); // @overload var(self, dim Optional[Union[_int, _size]], unbiased _bool=True, keepdim _bool=False) -> Tensor // aten::var.dim : (Tensor, int[]?, bool, bool) -> (Tensor) @@ -2402,35 +2402,35 @@ c.def("var", [](const PyAnyTorchTensorValue &self, const PyAnyTorchOptionalListO c.def("var", [](const PyAnyTorchTensorValue &self, const PyTorch_BoolValue &unbiased) -> PyAnyTorchTensorValue { return var(self, unbiased); }, "unbiased"_a = true); // vdot(self, other Tensor) -> Tensor -c.def("vdot", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("vdot with signature vdot(self, other Tensor) -> Tensor"); }); +c.def("vdot", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: vdot with signature vdot(self, other Tensor) -> Tensor"); }); // @overload view(self, size Sequence[Union[_int, SymInt]]) -> Tensor // aten::view : (Tensor, int[]) -> (Tensor) c.def("view", [](const PyAnyTorchTensorValue &self, const PyAnyTorchListOfTorchIntValue &size) -> PyAnyTorchTensorValue { return view(self, size); }, "size"_a); // view_as(self, other Tensor) -> Tensor -c.def("view_as", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("view_as with signature view_as(self, other Tensor) -> Tensor"); }); +c.def("view_as", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: view_as with signature view_as(self, other Tensor) -> Tensor"); }); // @overload vsplit(self, sections _int) -> List[Tensor] -c.def("vsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("vsplit with signature @overload vsplit(self, sections _int) -> List[Tensor]"); }); +c.def("vsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: vsplit with signature @overload vsplit(self, sections _int) -> List[Tensor]"); }); // @overload vsplit(self, indices _size) -> List[Tensor] -c.def("vsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("vsplit with signature @overload vsplit(self, indices _size) -> List[Tensor]"); }); +c.def("vsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: vsplit with signature @overload vsplit(self, indices _size) -> List[Tensor]"); }); // @overload vsplit(self, *indices _int) -> List[Tensor] -c.def("vsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("vsplit with signature @overload vsplit(self, *indices _int) -> List[Tensor]"); }); +c.def("vsplit", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: vsplit with signature @overload vsplit(self, *indices _int) -> List[Tensor]"); }); // @overload xlogy(self, other Tensor) -> Tensor -c.def("xlogy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("xlogy with signature @overload xlogy(self, other Tensor) -> Tensor"); }); +c.def("xlogy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: xlogy with signature @overload xlogy(self, other Tensor) -> Tensor"); }); // @overload xlogy(self, other Union[Number, _complex]) -> Tensor -c.def("xlogy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("xlogy with signature @overload xlogy(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("xlogy", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: xlogy with signature @overload xlogy(self, other Union[Number, _complex]) -> Tensor"); }); // @overload xlogy_(self, other Tensor) -> Tensor -c.def("xlogy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("xlogy_ with signature @overload xlogy_(self, other Tensor) -> Tensor"); }); +c.def("xlogy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: xlogy_ with signature @overload xlogy_(self, other Tensor) -> Tensor"); }); // @overload xlogy_(self, other Union[Number, _complex]) -> Tensor -c.def("xlogy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("xlogy_ with signature @overload xlogy_(self, other Union[Number, _complex]) -> Tensor"); }); +c.def("xlogy_", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) { throw NotImplementedError("NotImplementedError: xlogy_ with signature @overload xlogy_(self, other Union[Number, _complex]) -> Tensor"); }); // zero_(self) -> Tensor // aten::zero_ : (Tensor) -> (Tensor) diff --git a/scripts/generate_stuff/generate_torch_mlir_bindings_from_torch_json.py b/scripts/generate_stuff/generate_torch_mlir_bindings_from_torch_json.py index 77083d03..1c2c4156 100644 --- a/scripts/generate_stuff/generate_torch_mlir_bindings_from_torch_json.py +++ b/scripts/generate_stuff/generate_torch_mlir_bindings_from_torch_json.py @@ -305,7 +305,7 @@ def emit_not_implemented(self, method_sig, op_name): impl = dedent( f""" // {method_sig} - c.def("{op_name}", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) {{ throw NotImplementedError("{op_name} with signature {method_sig}"); }}); + c.def("{op_name}", [](PyAnyTorchTensorValue& self, py::args args, py::kwargs kwargs) {{ throw NotImplementedError("NotImplementedError: {op_name} with signature {method_sig}"); }}); """ ) self.binds_td(impl)