Skip to content

Latest commit

 

History

History
97 lines (64 loc) · 3.88 KB

Readme.md

File metadata and controls

97 lines (64 loc) · 3.88 KB

2022/01/05: Downloading links for the pre-trained models have been updated. Sorry for the wait.

Context Embeddings for Art Classification

Pytorch code for the classification part of our ICMR 2019 paper Context-Aware Embeddings for Automatic Art Analysis. For the retrieval part, check this other repository.

Setup

  1. Download dataset from here.

  2. Clone the repository:

    git clone https://github.com/noagarcia/context-art-classification.git

  3. Install dependencies:

    • Python 2.7
    • pytorch (conda install pytorch=0.4.1 cuda90 -c pytorch)
    • torchvision (conda install torchvision)
    • visdom (check tutorial here)
    • pandas (conda install -c anaconda pandas)
    • gensim (conda install -c anaconda gensim)
  4. For the KGM model, download the pre-computed graph embeddings from here, and save the file into the Data/ directory.

Train

  • To train MTL multi-classifier run:

    python main.py --mode train --model mtl --dir_dataset $semart

  • To train KGM classifier run:

    python main.py --mode train --model kgm --att $attribute --dir_dataset $semart

Where $semart is the path to SemArt dataset and $attribute is the classifier type (i.e. type, school, time, or author).

Test

  • To test MTL multi-classifier run:

    python main.py --mode test --model mtl --dir_dataset $semart

  • To test KGM classifier run:

    python main.py --mode test --model kgm --att $attribute --dir_dataset $semart --model_path $model-file

Where $semart is the path to SemArt dataset, $attribute is the classifier type (i.e. type, school, time, or author), and $model-file is the path to the trained model.

You can download our pre-trained models from:

Results

Classification results on SemArt:

Model Type School Timeframe Author
VGG16 pre-trained 0.706 0.502 0.418 0.482
ResNet50 pre-trained 0.726 0.557 0.456 0.500
ResNet152 pre-trained 0.740 0.540 0.454 0.489
VGG16 fine-tuned 0.768 0.616 0.559 0.520
ResNet50 fine-tuned 0.765 0.655 0.604 0.515
ResNet152 fine-tuned 0.790 0.653 0.598 0.573
ResNet50+Attributes 0.785 0.667 0.599 0.561
ResNet50+Captions 0.799 0.649 0.598 0.607
MTL context-aware 0.791 0.691 0.632 0.603
KGM context-aware 0.815 0.671 0.613 0.615

Examples

Paintings with the highest scores for each class:

example example

Citation

@InProceedings{Garcia2017Context,
   author    = {Noa Garcia and Benjamin Renoust and Yuta Nakashima},
   title     = {Context-Aware Embeddings for Automatic Art Analysis},
   booktitle = {Proceedings of the ACM International Conference on Multimedia Retrieval},
   year      = {2019},
}