diff --git a/src/evotorch/bbo/__init__.py b/src/evotorch/bbo/__init__.py index 7cda59d2..81ff0cbf 100644 --- a/src/evotorch/bbo/__init__.py +++ b/src/evotorch/bbo/__init__.py @@ -15,3 +15,9 @@ """ Problem types for Black-box Optimisation """ + + +__all__ = ("bbob_utilities", "bbob_problem", "bbob_noiseless_suite") + + +from . import bbob_noiseless_suite, bbob_problem, bbob_utilities diff --git a/src/evotorch/bbo/bbob_noiseless_suite.py b/src/evotorch/bbo/bbob_noiseless_suite.py index dc1d6ea5..00deb81a 100644 --- a/src/evotorch/bbo/bbob_noiseless_suite.py +++ b/src/evotorch/bbo/bbob_noiseless_suite.py @@ -397,8 +397,8 @@ def _initialize_meta_variables(self): self.R = self.make_random_orthogonal_matrix() def map_x_to_z(self, x: torch.Tensor) -> torch.Tensor: - # Lambda^10 Q T^0.5_asy ( (R(x - x_opt) ) - return self.lambda_10 * bbob_utilities.apply_orthogonal_matrix( + # Lambda^1000 Q T^0.5_asy ( (R(x - x_opt) ) + return self.lambda_1000 * bbob_utilities.apply_orthogonal_matrix( bbob_utilities.T_beta_asy( values=bbob_utilities.apply_orthogonal_matrix( x - self._x_opt.unsqueeze(0), @@ -419,6 +419,63 @@ def _apply_function(self, z: torch.Tensor, x: torch.Tensor) -> torch.Tensor: ).pow(2.0) + 10 * bbob_utilities.f_pen(x) +class CompositeGriewankRosenbrock(BBOBProblem): + def make_x_opt(self) -> torch.Tensor: + # GriewankRosenbrock has special global optimum R^T (ones) / (2 z_coeff) + return ( + bbob_utilities.apply_orthogonal_matrix(self.make_ones(self.solution_length).unsqueeze(0), self.R.T) + / (2 * self.z_coeff) + )[0] + + def initialize_meta_variables(self): + # x_opt must set manually for this task (note that this is hidden in the source code of COCO) + # see: https://github.com/numbbo/coco/blob/master/code-experiments/src/f_griewank_rosenbrock.c#L186 + # so we actually override initialize_meta_variables, rather than _initialize_meta_variables, so that x_opt can be set after R is initialized + self.z_coeff = max(1, np.sqrt(self.solution_length) / 8) + self.R = self.make_random_orthogonal_matrix() + self._x_opt = self.make_x_opt() + self._f_opt = self.make_f_opt() + + def map_x_to_z(self, x: torch.Tensor) -> torch.Tensor: + # max(1, sqrt(d)/8) R x + 1/2 + return 1 / 2 + self.z_coeff * bbob_utilities.apply_orthogonal_matrix(x, self.R) + + def _apply_function(self, z: torch.Tensor, x: torch.Tensor) -> torch.Tensor: + z_starts_at_0 = z[:, : self.solution_length - 1] + z_starts_at_1 = z[:, 1:] + # Compute rosenbrock values + rosenbrock_rotated = 100 * (z_starts_at_0.pow(2.0) - z_starts_at_1).pow(2.0) + (z_starts_at_0 - 1).pow(2.0) + return (10 / (self.solution_length - 1)) * torch.sum( + rosenbrock_rotated / 4000 - torch.cos(rosenbrock_rotated), dim=-1 + ) + 10 + + +class Schwefel(BBOBProblem): + def make_x_opt(self) -> torch.Tensor: + return 4.2096874633 * self.random_binary[0] / 2 + + def initialize_meta_variables(self): + # x_opt must set manually for this task + self.lambda_10 = self.make_lambda_alpha(10, diagonal_only=True).unsqueeze(0) + self.random_binary = self.make_random_binary_vector().unsqueeze(0) + self._x_opt = self.make_x_opt() + self._f_opt = self.make_f_opt() + + def map_x_to_z(self, x: torch.Tensor) -> torch.Tensor: + x_hat = 2 * self.random_binary * x + z_hat = x_hat + z_hat[:, 1:] = z_hat[:, 1:] + 0.25 * (x_hat[:, :-1] - 2 * torch.abs(self._x_opt[:-1]).unsqueeze(0)) + z = 100 * ( + self.lambda_10 * (z_hat - 2 * torch.abs(self._x_opt).unsqueeze(0)) + 2 * torch.abs(self._x_opt).unsqueeze(0) + ) + return z + + def _apply_function(self, z: torch.Tensor, x: torch.Tensor) -> torch.Tensor: + return (-1 / (100 * self.solution_length)) * torch.sum(z * torch.sin(torch.sqrt(torch.abs(z))), dim=-1) + ( + 4.189828872724339 + 100 * bbob_utilities.f_pen(z / 100) + ) + + # Array of functions in ordered form e.g. so that they can be accessed like 'F1' rather than by name _functions = [ Sphere, @@ -439,6 +496,8 @@ def _apply_function(self, z: torch.Tensor, x: torch.Tensor) -> torch.Tensor: Weierstrass, SchaffersF7, SchaffersF7IllConditioned, + CompositeGriewankRosenbrock, + Schwefel, ] @@ -453,16 +512,3 @@ def get_function_i(i: int) -> BBOBProblem: raise ValueError("The BBOB Noiseless suite defines only functions F1 ... F24") function_i = _functions[i - 1] return function_i - - -if __name__ == "__main__": - - for i in range(len(_functions)): - func = get_function_i(i + 1) - print("Function", func) - obj = func(10) - batch = obj.generate_batch(5) - batch[0].set_values(obj._x_opt) - print(batch) - obj.evaluate(batch) - print(batch.evals - obj._f_opt) diff --git a/src/evotorch/bbo/bbob_utilities.py b/src/evotorch/bbo/bbob_utilities.py index 58192d38..01a4e5ae 100644 --- a/src/evotorch/bbo/bbob_utilities.py +++ b/src/evotorch/bbo/bbob_utilities.py @@ -208,7 +208,7 @@ def T_beta_asy(values: torch.Tensor, beta: float) -> torch.Tensor: def T_osz(values: torch.Tensor, epsilon: float = 1e-7) -> torch.Tensor: """The T_osz function Args: - values (torch.Tensor): The vaues to apply the T_osz function to, of shape [num_samples, dimension,] + values (torch.Tensor): The values to apply the T_osz function to, of shape [num_samples, dimension,] epsilon (float): Error threshold for assuming a value is zero. The paper states that xhat and sign(x) have specific behavior at x = 0 Here, we assume that when |x| < epsilon, that rule should apply. Returns: @@ -247,49 +247,3 @@ def apply_orthogonal_matrix(values: torch.Tensor, orthogonal_matrix: torch.Tenso transformed_values (torch.Tensor): """ return torch.matmul(orthogonal_matrix, values.T).T - - -if __name__ == "__main__": - - x1 = torch.tensor([[0.0, 0.0], [0.0, 7.0]]) - print(f_pen(x1)) - - for x in x1: - penalty = 0.0 - for v in x: - c1 = v - 5 - c2 = -5 - v - if c1 > 0.0: - penalty += c1 * c1 - elif c2 > 0: - penalty += c2 * c2 - print(x, "->", penalty) - print(torch.clamp(torch.abs(x1) - 5, min=0.0, max=None)) - # import matplotlib.pyplot as plt - # import numpy as np - - # d = 10 - # v = torch.zeros((2, d)) - # betas = [0.1, 0.2, 0.5] - - # lims = [6, 1, 0.1, 0.01] - - # print(random_binary_vector(d)) - - # for lim in lims: - # lim_low = -lim - # lim_high = lim - # xs = np.linspace(lim_low, lim_high, 1000) - # ys_osy = [] - # ys_beta = {str(beta): [] for beta in betas} - # for x in xs: - # v[0, -1] = x - # ozy = T_osz(v)[0,-1] - # ys_osy.append(ozy) - # for beta in betas: - # asy = T_beta_asy(v, beta)[0,-1] - # ys_beta[str(beta)].append(asy) - # plt.plot(xs, ys_osy) - # for beta in betas: - # plt.plot(xs, ys_beta[str(beta)]) - # plt.show() diff --git a/tests/test_bbo.py b/tests/test_bbo.py new file mode 100644 index 00000000..605ee682 --- /dev/null +++ b/tests/test_bbo.py @@ -0,0 +1,22 @@ +import numpy as np +import torch + +from evotorch.bbo import bbob_noiseless_suite, bbob_problem + + +def test_bbob_noiseless_suite_global_optima(): + + n_functions = len(bbob_noiseless_suite._functions) + + dimensions = [2, 5, 10, 20, 40] + + for dimension in dimensions: + + for function_idx in range(1, n_functions + 1): + func: bbob_problem.BBOBProblem = bbob_noiseless_suite.get_function_i(function_idx)(dimension) + batch = func.generate_batch(5) + batch[0].set_values(func._x_opt) + func.evaluate(batch) + eval_of_x_opt = float(batch.evals[0] - func._f_opt) + + assert np.abs(eval_of_x_opt - 0.0) < 1e-7