-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathwrappers.py
58 lines (44 loc) · 1.72 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import numpy as np
import gym
from gym.wrappers.monitoring.video_recorder import VideoRecorder
class BoundedActionsEnv(gym.ActionWrapper):
def __init__(self, env):
super().__init__(env)
self.action_space = gym.spaces.Box(low=-1, high=1, shape=self.unwrapped.action_space.shape)
def step(self, action):
action = np.clip(action, -1., 1.)
lb, ub = self.unwrapped.action_space.low, self.unwrapped.action_space.high
scaled_action = lb + (action + 1.0) * 0.5 * (ub - lb)
observation, reward, done, info = self.env.step(scaled_action)
return observation, reward, done, info
class RecordedEnv(gym.Wrapper):
def __init__(self, env):
super().__init__(env)
def reset(self, filename=''):
if hasattr(self, 'recorder'):
self.recorder.capture_frame()
self.recorder.close()
self.recorder = VideoRecorder(self.env, path=filename)
return self.env.reset()
def step(self, action):
self.recorder.capture_frame()
return self.env.step(action)
def close(self):
if hasattr(self, 'recorder'):
self.recorder.capture_frame()
self.recorder.close()
del self.recorder
return self.env.close()
class NoisyEnv(gym.Wrapper):
def __init__(self, env, stdev):
self.stdev = stdev
super().__init__(env)
def noisify(self, state):
state += np.random.normal(scale=self.stdev, size=state.size)
return state
def reset(self, filename=''):
state = self.env.reset()
return self.noisify(state)
def step(self, action):
state, reward, done, info = self.env.step(action)
return self.noisify(state), reward, done, info