-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsac.py
executable file
·331 lines (252 loc) · 10.8 KB
/
sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam
from torch.distributions import Normal
LOG_STD_MIN = -20
LOG_STD_MAX = 2
EPS = 1e-6
def copy_tensor(x):
return x.clone().detach().cpu()
def danger_mask(x):
mask = torch.isnan(x) + torch.isinf(x)
mask = torch.sum(mask, dim=1) > 0
return mask
class Replay:
def __init__(self, d_state, d_action, size):
self.states = torch.zeros([size, d_state]).float()
self.next_states = torch.zeros([size, d_state]).float()
self.actions = torch.zeros([size, d_action]).float()
self.rewards = torch.zeros([size, 1]).float()
self.masks = torch.zeros([size, 1]).float()
self.ptr = 0
self.d_state = d_state
self.d_action = d_action
self.size = size
self.normalizer = None
self.buffer_full = False
def clear(self):
d_state = self.d_state
d_action = self.d_action
size = self.size
self.states = torch.zeros([size, d_state]).float()
self.next_states = torch.zeros([size, d_state]).float()
self.actions = torch.zeros([size, d_action]).float()
self.rewards = torch.zeros([size, 1]).float()
self.masks = torch.zeros([size, 1]).float()
self.ptr = 0
self.buffer_full = False
def setup_normalizer(self, normalizer):
self.normalizer = normalizer
def add(self, states, actions, rewards, next_states, masks=None):
n_samples = states.size(0)
if masks is None:
masks = torch.ones(n_samples, 1)
states, actions, rewards, next_states = copy_tensor(states), copy_tensor(actions), copy_tensor(rewards), copy_tensor(next_states)
rewards = rewards.unsqueeze(1)
# skip ones with NaNs and Infs
skip_mask = danger_mask(states) + danger_mask(actions) + danger_mask(rewards) + danger_mask(next_states)
include_mask = (skip_mask == 0)
n_samples = torch.sum(include_mask).item()
if self.ptr + n_samples >= self.size:
# crude, but ok
self.ptr = 0
self.buffer_full = True
i = self.ptr
j = self.ptr + n_samples
self.states[i:j] = states[include_mask]
self.actions[i:j] = actions[include_mask]
self.rewards[i:j] = rewards[include_mask]
self.next_states[i:j] = next_states[include_mask]
self.masks[i:j] = masks
self.ptr = j
def sample(self, batch_size):
idxs = np.random.randint(len(self), size=batch_size)
states, actions, rewards, next_states, masks = self.states[idxs], self.actions[idxs], self.rewards[idxs], self.next_states[idxs], self.masks[idxs]
if self.normalizer is not None:
states = self.normalizer.normalize_states(states)
next_states = self.normalizer.normalize_states(next_states)
return states, actions, rewards, next_states, masks
def __len__(self):
if self.buffer_full:
return self.size
return self.ptr
def init_weights(layer):
nn.init.orthogonal_(layer.weight)
nn.init.constant_(layer.bias, 0)
class ParallelLinear(nn.Module):
def __init__(self, n_in, n_out, ensemble_size):
super().__init__()
weights = []
biases = []
for _ in range(ensemble_size):
weight = torch.Tensor(n_in, n_out).float()
bias = torch.Tensor(1, n_out).float()
nn.init.orthogonal_(weight)
bias.fill_(0.0)
weights.append(weight)
biases.append(bias)
weights = torch.stack(weights)
biases = torch.stack(biases)
self.weights = nn.Parameter(weights)
self.biases = nn.Parameter(biases)
def forward(self, inp):
op = torch.baddbmm(self.biases, inp, self.weights)
return op
class ActionValueFunction(nn.Module):
def __init__(self, d_state, d_action, n_hidden):
super().__init__()
self.layers = nn.Sequential(ParallelLinear(d_state + d_action, n_hidden, ensemble_size=2),
nn.LeakyReLU(),
ParallelLinear(n_hidden, n_hidden, ensemble_size=2),
nn.LeakyReLU(),
ParallelLinear(n_hidden, 1, ensemble_size=2))
def forward(self, state, action):
x = torch.cat([state, action], dim=1)
x = x.unsqueeze(0).repeat(2, 1, 1)
y1, y2 = self.layers(x)
return y1, y2
class StateValueFunction(nn.Module):
def __init__(self, d_state, n_hidden):
super().__init__()
one = nn.Linear(d_state, n_hidden)
init_weights(one)
two = nn.Linear(n_hidden, n_hidden)
init_weights(two)
three = nn.Linear(n_hidden, 1)
init_weights(three)
self.layers = nn.Sequential(one,
nn.LeakyReLU(),
two,
nn.LeakyReLU(),
three)
def forward(self, state):
return self.layers(state)
class GaussianPolicy(nn.Module):
def __init__(self, d_state, d_action, n_hidden):
super().__init__()
one = nn.Linear(d_state, n_hidden)
init_weights(one)
two = nn.Linear(n_hidden, n_hidden)
init_weights(two)
three = nn.Linear(n_hidden, 2 * d_action)
init_weights(three)
self.layers = nn.Sequential(one,
nn.LeakyReLU(),
two,
nn.LeakyReLU(),
three)
def forward(self, state):
y = self.layers(state)
mu, log_std = torch.split(y, y.size(1) // 2, dim=1)
log_std = torch.tanh(log_std)
log_std = LOG_STD_MIN + 0.5 * (LOG_STD_MAX - LOG_STD_MIN) * (log_std + 1)
std = torch.exp(log_std)
normal = Normal(mu, std)
pi = normal.rsample() # with re-parameterization
logp_pi = normal.log_prob(pi).sum(dim=1, keepdim=True)
# bounds
mu = torch.tanh(mu)
pi = torch.tanh(pi)
logp_pi -= torch.sum(torch.log(torch.clamp(1 - pi.pow(2), min=0, max=1) + EPS), dim=1, keepdim=True)
return pi, logp_pi, mu, log_std
class SAC(nn.Module):
def __init__(self, d_state, d_action, replay_size, batch_size, n_updates, n_hidden, gamma, alpha, lr, tau):
super().__init__()
self.d_state = d_state
self.d_action = d_action
self.gamma = gamma
self.tau = tau
self.alpha = alpha
self.replay = Replay(d_state=d_state, d_action=d_action, size=replay_size)
self.batch_size = batch_size
self.n_updates = n_updates
self.qf = ActionValueFunction(self.d_state, d_action, n_hidden)
self.qf_optim = Adam(self.qf.parameters(), lr=lr)
self.vf = StateValueFunction(self.d_state, n_hidden)
self.vf_target = StateValueFunction(self.d_state, n_hidden)
self.vf_optim = Adam(self.vf.parameters(), lr=lr)
for target_param, param in zip(self.vf_target.parameters(), self.vf.parameters()):
target_param.data.copy_(param.data)
self.policy = GaussianPolicy(self.d_state, d_action, n_hidden)
self.policy_optim = Adam(self.policy.parameters(), lr=lr)
self.grad_clip = 5
self.normalizer = None
@property
def device(self):
return next(self.parameters()).device
def setup_normalizer(self, normalizer):
self.normalizer = normalizer
self.replay.setup_normalizer(normalizer)
def __call__(self, states, eval=False):
if self.normalizer is not None:
states = self.normalizer.normalize_states(states)
pi, _, mu, _ = self.policy(states)
return mu if eval else pi
def get_state_value(self, state):
if self.normalizer is not None:
state = self.normalizer.normalize_states(state)
return self.vf(state)
def reset_replay(self):
self.replay.clear()
def update(self):
sample = self.replay.sample(self.batch_size)
states, actions, rewards, next_states, masks = [s.to(self.device) for s in sample]
q1, q2 = self.qf(states, actions)
pi, logp_pi, mu, log_std = self.policy(states)
q1_pi, q2_pi = self.qf(states, pi)
v = self.vf(states)
# target value network
v_target = self.vf_target(next_states)
# min double-Q:
min_q_pi = torch.min(q1_pi, q2_pi)
# targets for Q and V regression
q_backup = rewards + self.gamma * masks * v_target
v_backup = min_q_pi - self.alpha * logp_pi
# SAC losses
pi_loss = torch.mean(self.alpha * logp_pi - min_q_pi)
pi_loss += 0.001 * mu.pow(2).mean()
pi_loss += 0.001 * log_std.pow(2).mean()
q1_loss = 0.5 * F.mse_loss(q1, q_backup.detach())
q2_loss = 0.5 * F.mse_loss(q2, q_backup.detach())
v_loss = 0.5 * F.mse_loss(v, v_backup.detach())
value_loss = q1_loss + q2_loss + v_loss
self.policy_optim.zero_grad()
pi_loss.backward()
torch.nn.utils.clip_grad_value_(self.policy.parameters(), self.grad_clip)
self.policy_optim.step()
self.qf_optim.zero_grad()
self.vf_optim.zero_grad()
value_loss.backward()
torch.nn.utils.clip_grad_value_(self.qf.parameters(), self.grad_clip)
torch.nn.utils.clip_grad_value_(self.vf.parameters(), self.grad_clip)
self.qf_optim.step()
self.vf_optim.step()
for target_param, param in zip(self.vf_target.parameters(), self.vf.parameters()):
target_param.data.copy_(target_param.data * (1.0 - self.tau) + param.data * self.tau)
return v_loss.item(), q1_loss.item(), q2_loss.item(), pi_loss.item()
def episode(self, env, warm_up=False, train=True, verbosity=0, _log=None):
ep_returns = 0
ep_length = 0
states = env.reset()
done = False
while not done:
if warm_up:
actions = env.action_space.sample()
actions = torch.from_numpy(actions)
else:
with torch.no_grad():
actions = self(states)
next_states, rewards, done, _ = env.step(actions)
self.replay.add(states, actions, rewards, next_states)
if verbosity >= 3 and _log is not None:
_log.info(f'step_reward. mean: {torch.mean(rewards).item():5.2f} +- {torch.std(rewards).item():.2f} [{torch.min(rewards).item():5.2f}, {torch.max(rewards).item():5.2f}]')
ep_returns += torch.mean(rewards).item()
ep_length += 1
states = next_states
if train:
if not warm_up:
for _ in range(self.n_updates * ep_length):
self.update()
return ep_returns