Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

using celerite to identify gran+osc. components #11

Open
skgrunblatt opened this issue Nov 6, 2019 · 0 comments
Open

using celerite to identify gran+osc. components #11

skgrunblatt opened this issue Nov 6, 2019 · 0 comments

Comments

@skgrunblatt
Copy link
Collaborator

import celerite
from celerite import terms
from celerite.modeling import Model, ConstantModel

#set the GP parameters

Q = 1.0 / np.sqrt(2.0)
w0 = muhz2omega(13)
S0 = np.var(y) / (w0*Q)
kernel = terms.SHOTerm(log_S0=np.log(S0), log_Q=np.log(Q), log_omega0=np.log(w0),
bounds=[(-25, 0), (-15, 15), (np.log(muhz2omega(5)), np.log(muhz2omega(50)))])
kernel.freeze_parameter("log_Q") #to make it aperiodic

Q = 1.0 / np.sqrt(2.0)
w0 = muhz2omega(81.0)
S0 = np.var(y) / (w0*Q)
kernel += terms.SHOTerm(log_S0=np.log(S0), log_Q=np.log(Q), log_omega0=np.log(w0),
bounds=[(-25, 0), (-15, 15), (np.log(muhz2omega(20)), np.log(muhz2omega(1000)))])
kernel.freeze_parameter("terms[1]:log_Q") #to make it aperiodic

Q = np.exp(3.0)
w0 = muhz2omega(200) #peak of oscillations at ~220 muhz
S0 = np.var(y) / (w0*Q)
kernel += terms.SHOTerm(log_S0=np.log(S0), log_Q=np.log(Q), log_omega0=np.log(w0),
bounds=[(-40, 0), (0.5, 4.2), (np.log(muhz2omega(60)), np.log(muhz2omega(800)))])

lwn = np.log(np.mean(yerr**2)/len(t))

kernel += terms.JitterTerm(log_sigma=-10, bounds=[(-20,20)])

gp = celerite.GP(kernel)
gp.compute(t, yerr)
print("Initial log likelihood: {0}".format(gp.log_likelihood(y)))
gp.get_parameter_dict()

#find max likelihood params

from scipy.optimize import minimize

def neg_log_like(params, y, gp):
gp.set_parameter_vector(params)
ll = gp.log_likelihood(y)
if not np.isfinite(ll):
return 1e10
return -ll

initial_params = gp.get_parameter_vector()
bounds = gp.get_parameter_bounds()

r = minimize(neg_log_like, initial_params, method="L-BFGS-B", bounds=bounds, args=(y, gp))
gp.set_parameter_vector(r.x)
print(r)

#Plot GP fit PSD on top of PSD of data
psd = gp.kernel.get_psd(omega)

#plot individual components
plt.plot(freq, power_ls, lw=0.5)
for k in gp.kernel.terms:
print(k)
plt.plot(freqmuhz, 1e12*k.get_psd(omega)/(2.*np.pi), "--", color='orange')

white_noise = (yerr**2 + gp.kernel.jitter) / len(t)
plt.axhline(1e12white_noise / (2np.pi), ls='--', color='orange')

#plot combined model
plt.plot(freqmuhz, 1e12*(gp.kernel.get_psd(omega) + white_noise) / (2*np.pi), color='r')

plt.yscale("log")
plt.xscale('log')
plt.xlim(2,5000)
plt.xlabel("muhz")
plt.ylabel("power (ppm^2/muhz)");

psd_interp = np.interp(freq, freqmuhz, (1e12*gp.kernel.terms[0].get_psd(omega)/(2.np.pi) + 1e12gp.kernel.terms[1].get_psd(omega)/(2.*np.pi)))

plt.plot(freq,power_ls)
plt.plot(freq,psd_interp)
plt.yscale("log")
plt.xscale('log')
plt.xlim(2,2000)
#plt.ylim(1e-50, 1)
plt.xlabel("muhz")
plt.ylabel("power (ppm^2/muhz)");

bkg_corr = power_ls - psd_interp

plt.clf()
plt.plot(freq,bkg_corr)
plt.yscale("log")
plt.xscale('log')
plt.xlim(150,200)
plt.ylim(1, 3000)
plt.xlabel("muhz")
plt.ylabel("power (ppm^2/muhz)");

#identify expected dnu and plot

acf = np.correlate(power_ls, power_ls, 'same')

acf_corr = np.correlate(bkg_corr, bkg_corr, 'same')
freq_acf = np.linspace(-freq[-1],freq[-1],len(freq))

dnu_exp = 0.267 * omega2muhz((np.e**(gp.kernel.terms[2].log_omega0))) ** 0.764

plt.plot(freq_acf, acf)
plt.plot(freq_acf, acf_corr)
plt.axvline(dnu_exp, ls='--', color='k')
plt.axvspan(0.85dnu_exp, 1.15dnu_exp, color='gray', zorder=0)
#plt.yscale("log")
#plt.xscale('log')
plt.xlim(0,20)
plt.ylim(0, 4e7)
plt.xlabel("muhz")
#plt.ylabel("power (ppm^2/muhz)");

print(gp.kernel.terms[2].log_omega0)
print('numax: ', omega2muhz((np.e**(gp.kernel.terms[2].log_omega0))),'dnu_exp: ',dnu_exp)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant