-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathscript.py
569 lines (441 loc) · 17.7 KB
/
script.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import LinearSVC, SVR
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from scipy.misc import imread, imsave
from skimage.feature import *
from skimage.filters import gabor,gabor_kernel
from skimage import io
from sklearn.feature_extraction import image
from sklearn.preprocessing import normalize
from scipy.fftpack import fft, ifft
from sklearn import preprocessing
from sklearn.feature_selection import (SelectPercentile, f_classif, SelectKBest,
RFE, RFECV, VarianceThreshold, chi2,
mutual_info_classif)
from scipy import signal
import pickle
import copy
import h5py as h5
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import numpy as np
import numpy.ma as ma
import time
import math
import scipy
from numpy.polynomial import polynomial
import collections
import random
import functions.ftfrequencies
import functions.correlation
import functions.pca
import functions.texture
import functions.variance
#%% Path variables
# Define paths for data and corresponding labels
datapath = ''
labelpath = ''
# change the res path according to your own directory.
respath = ''
#%% Loading Data
cov = '' # define covariance filename if applicable
tomo = '' # tomogram filename
lab = '' # labels filename
coh = '' # define PolSAR coherency or covariance matrix
with h5.File(datapath + cov, 'r') as f:
cc = f['data'][()]
tmgr = np.load(datapath + tomo)
polsar = np.load(datapath + coh)
#%% Loading reference Data
labels = np.load(datapath + lab)
#%% Defining features
def simple_entropy(tmgr):
# values close to zero means there's only one dominant value
# values closer to 1 mean that the power is equally distributed
tmgr_norm = []
for i in range(tmgr.shape[0]):
tmgr_norm.append(normalize(tmgr[i],norm='l1',axis=1))
tmgr_norm = np.asarray(tmgr_norm)
entropy = [-i*(np.log(i)/np.log(200)) for i in tmgr_norm]
entropy = np.asarray(entropy)
entropy = np.nan_to_num(entropy)
H = np.sum(entropy,axis=2)
return(H)
def hist(tmgr,bins=15):
# histogram of log of data (due to large spread of data)
h = np.zeros((tmgr.shape[0],tmgr.shape[1],bins))
for i in range(tmgr.shape[0]):
for j in range(tmgr.shape[1]):
h[i,j],e = np.histogram(np.log1p(tmgr[i,j]),bins=bins)
return(h)
def polfit(tmgr,coef=7):
# Fitting polynomials to data using least-squares method
x = range(0,200)
tmgr_pol = np.zeros((tmgr.shape[0],tmgr.shape[1],coef+1))
for yi in range(0,tmgr.shape[0]):
for xi in range(0,tmgr.shape[1]):
tmgr_pol[yi,xi] = polynomial.polyfit(x,tmgr[yi,xi],coef)
return(tmgr_pol)
#GLCM Features on Intensity Image
def getGLCM(cc_meanVV,winSize):
if not isinstance(winSize,collections.Iterable):
winSize = np.asarray((winSize,))
GLCM = functions.texture.glcm_texture()
glcm_list = []
for i in winSize:
glcm_list.append(GLCM.features(cc_meanVV,i))
return(glcm_list)
#Gabor Filter Bank on Intensity Image
# Set orientation spacing to 30 deg
theta = np.asarray([0,30,60,90,120])*np.pi/180
# Set frequency ratio to sqrt(2)
frequency = np.asarray([0.05,0.05*math.sqrt(2),(0.05*math.sqrt(2))*math.sqrt(2)])
# Out: array([ 0.05 , 0.07071068, 0.1 ])
def getGabor(img,theta,frequency):
gabor_im = []
if not isinstance(theta,collections.Iterable):
theta = np.asarray((theta,))
if not isinstance(frequency,collections.Iterable):
frequency = np.asarray((frequency,))
for t in theta:
for f in frequency:
filt_real,filt_imag = gabor(img,frequency=f, theta=t)
filt_total = filt_real + 1j * filt_imag
gabor_im.append(filt_total)
gabor_im = np.asarray(gabor_im)
gabor_im = np.moveaxis(gabor_im, 0, -1)
return(gabor_im)
def getLBPHist(uniform,var,bins=5,windowsize=10):
"""Get the LBP histogram for each pixel in LBP array as the
joint distribution between the normalized histograms of LBP
uniform patterns and LBP_var as contrast measure"""
bin_edge = np.linspace(0,uniform.max(),bins+1)
bin_edge_var = np.linspace(0,np.log1p(var.max()),bins+1)
(height,width) = uniform.shape
lbp_array = np.zeros((height,width,bins+3))
right_edge = width % windowsize
bottom_edge = height % windowsize
nr_vals = float(windowsize*windowsize)
# Crop out the window and calculate the histogram
for yi in range(0,height - windowsize, windowsize):
for xi in range(0,width - windowsize, windowsize):
window = uniform[yi:yi+windowsize,xi:xi+windowsize]
hist = np.histogram(window,bins=bin_edge)[0]/nr_vals
window_var = var[yi:yi+windowsize,xi:xi+windowsize]
hist_var = np.histogram(np.log1p(window_var),bins=bin_edge_var)[0]/nr_vals
lbp_array[yi:yi+windowsize,xi:xi+windowsize,0:bins] = hist*hist_var
lbp_array[yi:yi+windowsize,xi:xi+windowsize,bins] = np.sum((hist*hist_var)**2)
lbp_array[yi:yi+windowsize,xi:xi+windowsize,bins+1] = window.mean()
lbp_array[yi:yi+windowsize,xi:xi+windowsize,bins+2] = window.std()
# fill edges that are left over
if right_edge != 0:
lbp_array[:,-right_edge:,:] = lbp_array[:,-right_edge-1]
if bottom_edge != 0:
lbp_array[-bottom_edge:,:] = lbp_array[-bottom_edge-1,:]
return(lbp_array)
# standard local statistics
tmgr_mean = np.mean(tmgr, axis=2)
tmgr_std = np.std(tmgr, axis=2)
tmgr_max = np.max(tmgr, axis=2)
tmgr_min = np.min(tmgr, axis=2)
tmgr_range = np.max(tmgr, axis=2)-np.min(tmgr, axis=2)
# coefficient of variation
tmgr_cov = np.mean(tmgr,axis=2)**2/np.std(tmgr,axis=2)**2
# Pearson Kurtosis
tmgr_kurt = scipy.stats.kurtosis(tmgr, axis=2,fisher=False)
# clipping at 2*mean to account for large spread of data
def clip(tmgr):
tmgr2 = copy.deepcopy(tmgr)
tmgr2[tmgr2>2*tmgr2.mean()] = 2*tmgr2.mean()
return(tmgr2)
#tmgr_mean = clip(tmgr_mean)
#tmgr_std = clip(tmgr_std)
#tmgr_max = clip(tmgr_max)
#tmgr_min = clip(tmgr_min)
#tmgr_cov = clip(tmgr_cov)
#tmgr_kurt = clip(tmgr_kurt)
#tmgr_range = clip(tmgr_range)
# position of max/min value
tmgr_argmax = np.argmax(tmgr, axis=2)
tmgr_argmin = np.argmin(tmgr, axis=2)
# Pearson's second skewness coefficient (median skewness)
tmgr_skew = (3*(np.mean(tmgr,axis=2)-np.median(tmgr,axis=2)))/np.std(tmgr,axis=2)
tmgr_en = simple_entropy(tmgr)
tmgr_hist = hist(tmgr)
tmgr_pol = polfit(tmgr)
ft = functions.ftfrequencies.frequencies()
tmgr_amp = ft.importantf(tmgr,k=5)
var = functions.variance.variance()
# Pearson correalation coefficient in a neighborhood
cor = functions.correlation.correlation()
tmgr_cor3 = cor.corImage(tmgr,3)
tmgr_cor7 = cor.corImage(tmgr,7)
tmgr_cor15 = cor.corImage(tmgr,15)
cc_meanVV = np.real(np.diagonal(cc,0,2,3).mean(2))
cc_meanVV = np.log(cc_meanVV)
cc_meanVV = 255*((cc_meanVV-np.min(cc_meanVV))/(np.max(cc_meanVV)-np.min(cc_meanVV)))
cc_meanVV = cc_meanVV.astype(int)
# GLCM Features on Covariance Matrix
cc_glcm3x3 = getGLCM(cc_meanVV,3)
cc_glcm5x5 = getGLCM(cc_meanVV,5)
cc_glcm7x7 = getGLCM(cc_meanVV,7)
cc_glcm15x15 = getGLCM(cc_meanVV,15)
# Gabor filter on Covariance Matrix
cc_gabor = getGabor(cc_meanVV,theta,frequency)
cc_gabor_mag = np.abs(cc_gabor) # Magnitude response
cc_gabor_sum = np.sum(cc_gabor_mag,axis=2)
cc_gabor_var_9x9 = var.varImage(cc_gabor_mag,9)
cc_gabor_var_15x15 = var.varImage(cc_gabor_mag,15)
cc_gabor_var_21x21 = var.varImage(cc_gabor_mag,21)
# Local Binary Patterns
radius = [2,5]
n_points = [8*x for x in radius]
lbp_uniform = []
lbp_var = []
for i in range(len(radius)):
lbp_uniform.append(local_binary_pattern(cc_meanVV,n_points[i],radius[i],
method='uniform'))
lbp_var.append(local_binary_pattern(cc_meanVV,n_points[i],radius[i],
method='var'))
lbp_2rad = getLBPHist(lbp_uniform[0],lbp_var[0])
lbp_5rad = getLBPHist(lbp_uniform[1],lbp_var[1])
#%% PolSAR features
def getCoherency(CC):
""" This function calculates the coherency matrix needed for the calculation
of evaluation parameters
Input: Covariance Matrix CC, size mxnx3x3
Output Coherency Matrix coh, size mxnx3x3
"""
A=np.array([[1/math.sqrt(2), 1/math.sqrt(2), 0],
[0, 0, 1],
[1/math.sqrt(2), -1*(1/math.sqrt(2)), 0]])
coh=[]
for i in range(CC.shape[0]):
for j in range(CC.shape[1]):
coh.append(np.dot(np.dot(A,CC[i][j]),np.linalg.inv(A)))
coh = np.asarray(coh)
coh = np.reshape(coh, (CC.shape[0], CC.shape[1], 3, 3))
return coh
def getCovariance(coh):
""" This function calculates the covariance matrix from the coherency matrix
Input: Coherency Matrix coh, size mxnx3x3
Output: Covariance Matrix CC, size mxnx3x3
"""
A=np.array([[1/math.sqrt(2), 1/math.sqrt(2), 0],
[0, 0, 1],
[1/math.sqrt(2), -1*(1/math.sqrt(2)), 0]])
CC=[]
for i in range(coh.shape[0]):
for j in range(coh.shape[1]):
CC.append(np.dot(np.dot(np.linalg.inv(A),coh[i][j]),A))
CC = np.asarray(CC)
CC = np.reshape(CC, (coh.shape[0], coh.shape[1], 3, 3))
return CC
def getDecompPara(coh):
""" This function calculates the incoherent decomposition parameters,
the Entropy (H), Anistropy (A) and mean alpha angle (alpha) as presented
in: Praks et al.: Alternatives to Target Entropy and Alpha Angle in
SAR Polarimetry and Lee et al.:Evaluation and Bias Removal of Multilook
Effect on Entropy/Alpha/Anisotropy in Polarimetric SAR Decomposition
Input: coherency matrix mxnx3x3 for homogeneous areas only
Output: parameters H, A and alpha
"""
w, v = np.linalg.eigh(coh) # w: eigenvalues; v: eigenvectors
# idx = w.argsort()[::-1]
# w = w[idx]
# v = v[:,idx]
subsum = w.sum(axis=-1)
subsum = np.repeat(subsum[:, :, np.newaxis], 3, axis=2)
p = w/subsum # probabilities of eigenvalues
H = np.abs(p)*(np.log(np.abs(p))/np.log(3))
H = -np.sum(H,axis=-1) # Entropy
A = np.zeros((coh.shape[0],coh.shape[1])) # Anisotropy
for yi in range(coh.shape[0]):
for xi in range(coh.shape[1]):
A[yi,xi] = (np.abs(w[yi,xi,1])-np.abs(w[yi,xi,2]))/(
np.abs(w[yi,xi,1])+np.abs(w[yi,xi,2]))
alpha = np.multiply(np.abs(np.arccos(v[:,:,:,0])),np.abs(p)) # alpha angle
alpha = np.mean(alpha,axis=-1) # mean alpha angle
decomp = np.stack((H,alpha,A),-1)
return(decomp)
polsar_decomp = getDecompPara(polsar)
polsar_intens = np.abs(np.diagonal(polsar,axis1=2,axis2=3))
polsar_meanVV = polsar_intens[:,:,2]
polsar_meanVV = np.log1p(polsar_meanVV)
polsar_meanVV = 255*((polsar_meanVV-np.min(polsar_meanVV))/(np.max(polsar_meanVV)-np.min(polsar_meanVV)))
polsar_meanVV = polsar_meanVV.astype(np.uint8)
winSize = [5,7,15]
polsar_glcm_list = GetGLCM(winSize,polsar_meanVV)
polsar_glcm = np.concatenate(polsar_glcm_list,axis=2)
#%% Feature Vector
features_vect = [tmgr_mean,
tmgr_std,
tmgr_max,
tmgr_min,
tmgr_cov,
tmgr_kurt,
tmgr_range,
tmgr_argmax,
tmgr_argmin,
tmgr_skew,
tmgr_en,
tmgr_hist,
tmgr_amp,
tmgr_pol,
tmgr_cor3,
tmgr_cor7,
tmgr_cor15,
cc_glcm3x3,
cc_glcm5x5,
cc_glcm7x7,
cc_glcm15x15,
cc_gabor_mag,
cc_gabor_sum,
cc_gabor_var_9x9,
cc_gabor_var_15x15,
cc_gabor_var_21x21,
lbp_2rad,
lbp_5rad]
def scale(tmgr):
tmgr_scale = []
if tmgr.ndim == 2:
tmgr_scale = preprocessing.scale(tmgr)
else:
for i in range(tmgr.shape[2]):
tmgr_scale.append(preprocessing.scale(tmgr[:,:,i]))
tmgr_scale = np.asarray(tmgr_scale)
tmgr_scale = np.moveaxis(tmgr_scale, 0, -1)
return(tmgr_scale)
features_scaled = []
for i in features_vect:
features_scaled.append(scale(i))
features_scaled = np.dstack(features_scaled)
features = np.dstack(features_vect)
#%% CLASSIFICATION
# setting up classifiers
nb_clf = GaussianNB() # Gaussian Naive Bayes
rf_clf = RandomForestClassifier(n_estimators=30,criterion='gini',max_features='sqrt',
max_depth=None,min_samples_split=2,min_samples_leaf=1,
bootstrap=True,oob_score=False,n_jobs=1)
knn_clf = KNeighborsClassifier(n_neighbors=5,weights='distance',algorithm='auto')
svm_clf = LinearSVC(penalty='l2',loss='squared_hinge',dual=False,tol=1e-4,C=1.0,
multi_class='ovr',max_iter=1000)
classifiers = [nb_clf, rf_clf, knn_clf, svm_clf]
classes = ['city', 'field', 'forest', 'grassland', 'street']
clf_labels = ['nb_clf', 'rf_clf', 'knn_clf', 'svm_clf']
def randomSelect(Y,k):
mask = np.zeros(Y.shape, dtype=bool)
for i in np.unique(Y):
ix = random.sample(list(np.where(Y==i))[0],k)
mask[ix] = True
return(mask)
# masking for 0 values (unclassified)
msk = (labels != 0)
labels_msk = labels[msk]
height = labels.shape[0]
width = labels.shape[1]
choice = np.zeros(labels.shape,dtype=bool)
choice[:(height/2),(width/2):] = True
choice[(height/2):,:(width/2)] = True
it = [choice,~choice]
t = []
predictions = []
accuracy = []
confMat = []
importances = []
for clf in classifiers:
y_predict = []
y_labels = []
start = time.time()
if clf.__class__.__name__ == 'KNeighborsClassifier':
data = features_scaled
else:
data = features
for i in it:
(x_train,y_train) = (data[i][labels[i] != 0],labels[i][labels[i] != 0])
(x_test,y_true) = (data[~i][labels[~i] != 0],labels[~i][labels[~i] != 0])
clf.fit(x_train,y_train)
y_predict = y_predict + list(clf.predict(x_test))
y_labels = y_labels + list(y_true)
if clf.__class__.__name__ == 'RandomForestClassifier':
importances.append(clf.feature_importances_)
end = time.time() - start
t.append(end)
predictions.append(y_predict)
accuracy.append(accuracy_score(y_labels, y_predict)*100)
confMat.append(confusion_matrix(y_labels, y_predict))
#Classes: 1:city, 2:field, 3:forest, 4:grassland, 5:street, (0:unclassified)
cases_or,counts_or = np.unique(labels_msk, return_counts=True)
accuracy_classes = []
for clf in range(len(classifiers)):
for i in range(0,5):
accuracy_classes.append((clf_labels[clf],((float(np.diag(confMat[clf])[i])/counts_or[i])*100),classes[i]))
# reconstructing image array
choice_vect = np.ndarray.flatten(choice)
msk_vect = np.ndarray.flatten(msk)
msk_recon1 = np.where((choice_vect == False) & (msk_vect == True))
msk_recon2 = np.where((choice_vect == True) & (msk_vect == True))
images = []
for i in range(len(predictions)):
resimg = np.zeros(choice_vect.shape)
count = np.count_nonzero(labels[~choice])
resimg[msk_recon1] = predictions[i][:count]
resimg[msk_recon2] = predictions[i][count:]
images.append(resimg.reshape(labels.shape))
#Saving Image
fn = 'all_features'
fn = 'Results/' +fn
def saveImg(array,label):
(rows,cols) = array.shape
img = np.zeros((rows,cols,3))
unclassified = [255, 255, 255] #white
city = [255, 0, 0] #red
field = [195,133,60] #sienna
forest = [0, 102, 0] #dark green
grasslands = [198, 199, 0] #light green
street = [32, 32, 32] #dark grey
img[np.where(array==0)] = unclassified
img[np.where(array==1)] = city
img[np.where(array==2)] = field
img[np.where(array==3)] = forest
img[np.where(array==4)] = grasslands
img[np.where(array==5)] = street
img = img.astype('uint8')
io.imsave(fn+'_'+label+'.png',img)
return(img)
for i in range(len(images)):
saveImg(images[i],clf_labels[i])
file = open(fn+'_results.txt','w')
file.write('Classifiers: %s\n\n' %clf_labels)
file.write('Processing time (s): %s\n\n' %t)
file.write('Overall accuracy (%%): %s\n\n' %accuracy)
file.write('Class accuracies (%%): \n%s\n\n' %accuracy_classes)
file.write('Confusion Matrices: \n%s\n\n' %confMat)
if not not importances:
file.write('Feature Importances: \n%s\n\n' %importances)
file.close()
# adding legend
for i in range(len(images)):
im = io.imread(fn+'_'+clf_labels[i]+'.png')
sizes = np.shape(im)
height = float(sizes[0])
width = float(sizes[1])
fig = plt.figure()
fig.set_size_inches(width/height, 1, forward=False)
ax = plt.Axes(fig, [0., 0., 1., 1.])
ax.set_axis_off()
fig.add_axes(ax)
legend = plt.legend([mpatches.Patch(ec='#000000',fc='#FFFFFF',lw=0.1),
mpatches.Patch(edgecolor='#000000',facecolor='#FF0000',linewidth=0.1),
mpatches.Patch(ec='#000000',fc='#C3853C',lw=0.1),
mpatches.Patch(ec='#000000',fc='#006600',lw=0.1),
mpatches.Patch(ec='#000000',fc='#C6C700',lw=0.1),
mpatches.Patch(ec='#000000',fc='#202020',lw=0.1)],
['unclassified','city','field','forest','grasslands','street'],
loc=8, prop={'size': 1.1}, ncol=6, frameon=False, columnspacing=0.5)#labelspacing=0.2)
ax.imshow(im)
plt.savefig(fn+'_'+clf_labels[i]+'.png', dpi = height)
plt.close()