-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDL_models.py
166 lines (127 loc) · 5.55 KB
/
DL_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch
import numpy as np
def reparameterization(mu, logvar):
std = torch.exp(logvar / 2)
eps = torch.randn_like(std)
return mu + eps*std
class RDB(nn.Module):
def __init__(self, filters, res_scale=0.2):
super(RDB, self).__init__()
self.res_scale = res_scale
def block(in_features, non_linearity=True):
layers = [nn.BatchNorm3d(in_features)]
layers += [nn.ReLU(inplace=True)]
layers += [nn.Conv3d(in_features, filters, 3, 1, 1, bias=True)]
return nn.Sequential(*layers)
self.b1 = block(in_features=1 * filters)
self.b2 = block(in_features=2 * filters)
self.b3 = block(in_features=3 * filters)
self.b4 = block(in_features=4 * filters)
self.b5 = block(in_features=5 * filters, non_linearity=False)
self.blocks = [self.b1, self.b2, self.b3, self.b4, self.b5]
def forward(self, x):
inputs = x
for block in self.blocks:
out = block(inputs)
inputs = torch.cat([inputs, out], 1)
return out.mul(self.res_scale) + x
class MLRDB(nn.Module):
def __init__(self, filters, res_scale=0.2):
super(MLRDB, self).__init__()
self.res_scale = res_scale
self.dense_blocks = nn.Sequential(
RDB(filters), RDB(filters), RDB(filters)
)
def forward(self, x):
return self.dense_blocks(x).mul(self.res_scale) + x
class Encoder(nn.Module):
def __init__(self, inchannels=1, outchannels=2, filters=48, num_res_blocks=1):
super(Encoder, self).__init__()
self.conv1 = nn.Conv3d(inchannels, filters, kernel_size=3, stride=2, padding=1)
self.res_blocks = nn.Sequential(*[MLRDB(filters) for _ in range(num_res_blocks)])
self.trans = nn.Sequential(
nn.BatchNorm3d(filters),
nn.ReLU(inplace=True),
nn.Conv3d(filters, filters, kernel_size=3, stride=2, padding=1),
)
self.mu = nn.Conv3d(filters, outchannels, 3, 1, 1, bias=False)
self.logvar = nn.Conv3d(filters, outchannels, 3, 1, 1, bias=False)
def forward(self, img):
out1 = self.conv1(img)
out2 = self.res_blocks(out1)
out3 = self.trans(out2)
mu, logvar = self.mu(out3), self.logvar(out3)
z = reparameterization(mu, logvar)
return z
def _n_parameters(self):
n_params = 0
for name, param in self.named_parameters():
n_params += param.numel()
return n_params
class Decoder(nn.Module):
def __init__(self, inchannels=2, outchannels=1, filters=48, num_res_blocks=1,num_upsample=2):
super(Decoder, self).__init__()
self.conv1 = nn.Conv3d(inchannels, filters, kernel_size=3, stride=1, padding=1)
self.res_block1 = nn.Sequential(*[MLRDB(filters) for _ in range(num_res_blocks+1)])
self.transup1 = nn.Sequential(
nn.BatchNorm3d(filters),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv3d(filters, filters, kernel_size=(4,4,3), stride=1, padding=1),
)
self.res_block2 = nn.Sequential(*[MLRDB(filters) for _ in range(num_res_blocks)])
self.transup2 = nn.Sequential(
nn.BatchNorm3d(filters),
nn.ReLU(inplace=True),
nn.Upsample(scale_factor=2, mode='nearest'),
nn.Conv3d(filters, outchannels, kernel_size=(3,4,4), stride=1, padding=1),
)
def forward(self, z):
out1 = self.conv1(z)
out2 = self.res_block1(out1)
out = torch.add(out1, out2)
out3 = self.transup1(out)
out4 = self.res_block2(out3)
img = self.transup2(out4)
return img
def _n_parameters(self):
n_params= 0
for name, param in self.named_parameters():
n_params += param.numel()
return n_params
class Discriminator(nn.Module):
def __init__(self, inchannels=2, outchannels=1, filters=48):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv3d(inchannels, filters, 3, 2, 1, bias=True),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv3d(filters, filters, 3, 1, 1, bias=True),
nn.BatchNorm3d(filters),
nn.LeakyReLU(0.2, inplace=True),
)
self.fc1 = nn.Sequential(
nn.Linear(filters * 2 * 4 * 5,128),
nn.LeakyReLU(0.2, inplace=True),
)
self.fc2 = nn.Sequential(
nn.Linear(128, outchannels),
nn.Sigmoid(),
)
def forward(self, input):
output = self.main(input)
output = output.view(output.size(0), -1)
output1 = self.fc1(output)
output2 = self.fc2(output1)
return output2
def _n_parameters(self):
n_params = 0
for name, param in self.named_parameters():
n_params += param.numel()
return n_params
if __name__ == '__main__':
encoder = Encoder()
decoder = Decoder()
discriminator = Discriminator()
print("number of parameters: {}".format(encoder._n_parameters()+decoder._n_parameters()+discriminator._n_parameters()))