-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrl_utils.py
325 lines (260 loc) · 13.1 KB
/
trl_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM
import json
import logging
import os
from copy import deepcopy
from typing import Optional
import torch
import torch.nn as nn
from accelerate import PartialState
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import (
EntryNotFoundError,
HFValidationError,
LocalEntryNotFoundError,
RepositoryNotFoundError,
)
from safetensors.torch import load_file as safe_load_file
from transformers import PreTrainedModel
from trl import AutoModelForSeq2SeqLMWithValueHead
from trl.import_utils import is_npu_available, is_xpu_available, is_peft_available
if is_peft_available():
from peft import (
PeftConfig,
PeftModel,
PeftModelForCausalLM,
PeftModelForSeq2SeqLM,
PromptLearningConfig,
get_peft_model,
prepare_model_for_kbit_training,
)
class AutoModelForSeq2SeqLMWithValueHead4PrefixTuning(AutoModelForSeq2SeqLMWithValueHead):
r"""
A seq2seq model with a value head in addition to the language model head.
This class inherits from `~trl.PreTrainedModelWrapper` and wraps a
`transformers.PreTrainedModel` class. The wrapper class supports classic functions
such as `from_pretrained` and `push_to_hub` and also provides some additional
functionalities such as `generate`.
Args:
pretrained_model (`transformers.PreTrainedModel`):
The model to wrap. It should be a causal language model such as GPT2.
or any model mapped inside the `AutoModelForSeq2SeqLM` class.
kwargs:
Additional keyword arguments passed along to the `ValueHead` class.
"""
def __init__(self, pretrained_model, custom_arg=None, **kwargs):
self.custom_arg = custom_arg
super().__init__(pretrained_model, **kwargs)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Instantiates a new model from a pretrained model from `transformers`. The
pretrained model is loaded using the `from_pretrained` method of the
`transformers.PreTrainedModel` class. The arguments that are specific to the
`transformers.PreTrainedModel` class are passed along this method and filtered
out from the `kwargs` argument.
Args:
pretrained_model_name_or_path (`str` or `transformers.PreTrainedModel`):
The path to the pretrained model or its name.
*model_args (`list`, *optional*)):
Additional positional arguments passed along to the underlying model's
`from_pretrained` method.
**kwargs (`dict`, *optional*):
Additional keyword arguments passed along to the underlying model's
`from_pretrained` method. We also pre-process the kwargs to extract
the arguments that are specific to the `transformers.PreTrainedModel`
class and the arguments that are specific to trl models. The kwargs
also support `prepare_model_for_kbit_training` arguments from
`peft` library.
"""
if kwargs is not None:
peft_config = kwargs.pop("peft_config", None)
reward_adapter = kwargs.pop("reward_adapter", None)
reward_adapter_name = kwargs.pop("reward_adapter_name", "reward_adapter")
is_trainable = kwargs.pop("is_trainable", False)
trl_model_args, pretrained_kwargs, peft_quantization_kwargs = cls._split_kwargs(kwargs)
token = pretrained_kwargs.get("token", None)
else:
peft_config = None
is_trainable = False
trl_model_args = {}
pretrained_kwargs = {}
peft_quantization_kwargs = {}
token = None
if reward_adapter is not None and not isinstance(reward_adapter, str):
raise ValueError(
"The `reward_adapter` argument should be a string representing the name of local path or the Hub id to the Reward Modeling adapter."
)
is_peft_model = False
current_device = cls._get_current_device()
if isinstance(pretrained_model_name_or_path, str):
is_loaded_in_8bit = pretrained_kwargs["load_in_8bit"] if "load_in_8bit" in pretrained_kwargs else False
is_loaded_in_4bit = pretrained_kwargs["load_in_4bit"] if "load_in_4bit" in pretrained_kwargs else False
else:
is_loaded_in_8bit = getattr(pretrained_model_name_or_path, "is_loaded_in_8bit", False)
is_loaded_in_4bit = getattr(pretrained_model_name_or_path, "is_loaded_in_4bit", False)
if (is_loaded_in_8bit or is_loaded_in_4bit) and "device_map" not in pretrained_kwargs:
logging.warning(
"The `device_map` argument is not provided. We will override the device_map argument."
" to set the entire"
" model on the current device. If you want to set the model on multiple devices, please provide"
" a custom `device_map` argument."
)
pretrained_kwargs["device_map"] = {"": current_device}
if is_peft_available() and peft_config is not None and not isinstance(peft_config, PeftConfig):
raise ValueError("The `peft_config` argument should be an instance of `peft.PeftConfig` class.")
if isinstance(pretrained_model_name_or_path, str):
if is_peft_available():
try:
remote_adapter_config = hf_hub_download(
pretrained_model_name_or_path,
"adapter_config.json",
token=token,
)
except (EntryNotFoundError, LocalEntryNotFoundError, HFValidationError, RepositoryNotFoundError):
remote_adapter_config = None
else:
remote_adapter_config = None
local_adapter_present = os.path.exists(os.path.join(pretrained_model_name_or_path, "adapter_config.json"))
if (local_adapter_present or remote_adapter_config is not None) and is_peft_available():
if peft_config is not None:
logging.warning(
"`peft_config` argument ignored since a peft config file was found in "
f"{pretrained_model_name_or_path}"
)
if local_adapter_present:
trained_adapter_config = PeftConfig.from_pretrained(pretrained_model_name_or_path)
else:
remote_adapter_dir = os.path.dirname(remote_adapter_config)
trained_adapter_config = PeftConfig.from_pretrained(remote_adapter_dir)
pretrained_model = cls.transformers_parent_class.from_pretrained(
trained_adapter_config.base_model_name_or_path, *model_args, **pretrained_kwargs
)
pretrained_model = PeftModel.from_pretrained(
pretrained_model, pretrained_model_name_or_path, is_trainable=is_trainable
)
logging.info("Trained peft adapter loaded")
else:
pretrained_model = cls.transformers_parent_class.from_pretrained(
pretrained_model_name_or_path, *model_args, **pretrained_kwargs
)
if peft_config is not None:
if is_loaded_in_8bit or is_loaded_in_4bit:
pretrained_model = prepare_model_for_kbit_training(
pretrained_model,
**peft_quantization_kwargs,
)
pretrained_model = get_peft_model(pretrained_model, peft_config)
logging.info("peft adapter initialised")
elif isinstance(pretrained_model_name_or_path, cls.supported_pretrained_model_architectures):
pretrained_model = pretrained_model_name_or_path
if peft_config is not None and isinstance(pretrained_model, PreTrainedModel):
if is_loaded_in_8bit or is_loaded_in_4bit:
pretrained_model = prepare_model_for_kbit_training(
pretrained_model,
**peft_quantization_kwargs,
)
pretrained_model = get_peft_model(pretrained_model, peft_config)
logging.info("peft adapter initialised")
else:
raise ValueError(
"pretrained_model_name_or_path should be a string or a PreTrainedModel, "
f"but is {type(pretrained_model_name_or_path)}"
)
if is_peft_available():
if isinstance(pretrained_model, PeftModel):
is_peft_model = True
if not is_peft_model and reward_adapter is not None:
raise ValueError("reward_adapter can only be used with a PeftModel. ")
elif is_peft_model and reward_adapter is not None:
score_module = cls.add_and_load_reward_modeling_adapter(
pretrained_model, reward_adapter, reward_adapter_name, token=token
)
multi_adapter_args = {
"score_module": score_module,
"supports_rm_adapter": True,
"rm_adapter_name": reward_adapter_name,
}
else:
multi_adapter_args = {"supports_rm_adapter": False}
model = cls(pretrained_model, **multi_adapter_args, **trl_model_args)
is_resuming_training = True
if isinstance(pretrained_model_name_or_path, str):
safe_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors")
filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin")
sharded_index_filename = os.path.join(pretrained_model_name_or_path, "pytorch_model.bin.index.json")
safe_sharded_index_filename = os.path.join(pretrained_model_name_or_path, "model.safetensors.index.json")
is_sharded = False
use_safe = os.path.exists(safe_filename)
if not (os.path.exists(filename) or os.path.exists(safe_filename)):
filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub(
pretrained_model,
pretrained_model_name_or_path,
sharded_index_filename,
token=token,
)
if filename is None and files_to_download is None:
safe_filename, files_to_download, is_sharded, is_resuming_training = cls._get_checkpoint_from_hub(
pretrained_model,
pretrained_model_name_or_path,
safe_sharded_index_filename,
token=token,
model_name="model.safetensors",
model_index_name="model.safetensors.index.json",
)
use_safe = True
else:
use_safe = False
loading_func = safe_load_file if use_safe else torch.load
load_kwargs = {} if use_safe else {"map_location": "cpu"}
if is_resuming_training:
if is_sharded:
state_dict = {}
for shard_file in files_to_download:
filename = hf_hub_download(
pretrained_model_name_or_path,
shard_file,
token=token,
)
state_dict.update(loading_func(filename, **load_kwargs))
else:
state_dict = loading_func(filename if not use_safe else safe_filename, **load_kwargs)
else:
state_dict = pretrained_model_name_or_path.state_dict()
model.is_peft_model = is_peft_model
model.current_device = current_device
if is_resuming_training:
model.post_init(state_dict=state_dict)
return model
def forward(
self,
input_ids=None,
past_key_values=None,
attention_mask=None,
**kwargs,
):
kwargs["past_key_values"] = past_key_values
if self.is_peft_model and self.pretrained_model.active_peft_config.peft_type == "PREFIX_TUNING":
kwargs.pop("past_key_values")
base_model_output = self.pretrained_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
**kwargs,
)
last_hidden_state = base_model_output.decoder_hidden_states[-1]
lm_logits = base_model_output.logits
loss = base_model_output.loss
value = self.v_head(last_hidden_state).squeeze(-1)
if lm_logits.dtype != torch.float32:
lm_logits = lm_logits.float()
return (lm_logits, loss, value)
def enable_input_require_grads(self):
self.pretrained_model.enable_input_require_grads()
def generate(self, *args, **kwargs):
r"""
We call `generate` on the wrapped model.
"""
return self.pretrained_model.generate(*args, **kwargs)