-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mlpo_multi.py
213 lines (140 loc) · 6.1 KB
/
train_mlpo_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "5"
import sys
sys.path.append('./')
import numpy as np
import argparse
from transformers import AutoModelForCausalLM
from peft import get_peft_config, get_peft_model, PrefixTuningConfig, TaskType, PeftType
import torch
from datasets import load_dataset
import os
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils.log_helper import logger_init
from torch.utils.tensorboard import SummaryWriter
from datasets import load_dataset, load_from_disk
import logging
import random
from utils.set_seed import set_seed
import time
from sklearn.model_selection import train_test_split
from torch.cuda.amp import autocast, GradScaler
import os
import gc
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
from datasets import load_dataset
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from trl import DPOTrainer
import bitsandbytes as bnb
import wandb
from transformers import Trainer, TrainingArguments, AutoTokenizer, TrainerCallback
import json
from trl import DPOTrainer, ORPOTrainer
from mlpo_trainer import MLPOTrainer
seed = 1
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
class TrainConfig:
def __init__(self):
parser = argparse.ArgumentParser(description="Train prefix_tuning_prot")
parser.add_argument("--model_name_or_path", type=str, default='/data1/anonymity/Pre_Train_Model/ProtGPT2/', help="Model checkpoint")
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs")
parser.add_argument("--lr", type=float, default=5e-5, help="learning_rate")
parser.add_argument("--dataset_name", type=str, default = "function_0")
parser.add_argument("--wandb", action="store_true")
args = parser.parse_args()
self.model_name_or_path = args.model_name_or_path
self.tokenizer_name_or_path = self.model_name_or_path
self.dataset_path = os.path.join("dpo_multi_candidate_sequence", args.dataset_name, "mlpo_dataset_multi")
self.wandb = args.wandb
name = args.dataset_name.split("_")
task1_name = name[0]+"_"+name[1]
task2_name = name[2]+"_"+name[3]
self.model_path_1 = os.path.join("prefix_tuning_model", task1_name)
self.model_path_2 = os.path.join("prefix_tuning_model", task2_name)
self.task_type = 'prefix'
self.dataset_name = args.dataset_name
self.text_column = "Sequence"
self.max_length = 400
self.lr = args.lr
self.num_epochs = args.epochs
self.batch_size = args.batch_size
self.random_seed = 42
self.output_path = os.path.join("mlpo_multi_model", args.dataset_name)
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
config = TrainConfig()
dataset = load_from_disk(config.dataset_path)
original_columns = dataset.column_names
tokenizer = AutoTokenizer.from_pretrained(config.model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
def get_training_model(task1_prefix_path, task2_prefix_path, base_model_path):
final_model = None
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
prefix_params_list = []
prefix1_model = PeftModel.from_pretrained(base_model, task1_prefix_path)
prefix2_model = PeftModel.from_pretrained(base_model, task2_prefix_path)
for name, param in prefix1_model.named_parameters():
if 'prompt_encoder' in name:
prefix_params_list.append(param.data.clone().detach())
for name, param in prefix2_model.named_parameters():
if 'prompt_encoder' in name:
prefix_params_list.append(param.data.clone().detach())
final_prefix_params = torch.cat(prefix_params_list, dim=0)
ref_peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=200)
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
ref_model = get_peft_model(base_model, ref_peft_config)
ref_model.print_trainable_parameters()
for name, param in ref_model.named_parameters():
if 'prompt_encoder' in name:
param.data.copy_( final_prefix_params.clone().detach())
base_model = AutoModelForCausalLM.from_pretrained(base_model_path)
training_peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=200)
training_model = get_peft_model(base_model, training_peft_config)
training_model.print_trainable_parameters()
for name, param in training_model.named_parameters():
if 'prompt_encoder' in name:
param.data.copy_( final_prefix_params.clone().detach())
return training_model, ref_model
model, ref_model = get_training_model(config.model_path_1, config.model_path_2, config.model_name_or_path)
output_path = config.output_path
gradient_accumulation_steps = 1
if config.batch_size == 16:
gradient_accumulation_steps = 2
if config.batch_size == 8:
gradient_accumulation_steps = 4
training_args = TrainingArguments(
per_device_train_batch_size = config.batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
num_train_epochs= config.num_epochs,
learning_rate=config.lr,
lr_scheduler_type="cosine",
logging_steps=10,
output_dir=config.output_path,
save_strategy="epoch",
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to='wandb' if config.wandb else 'none',
)
mlpo_trainer = MLPOTrainer(
model = model,
ref_model = ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
beta=0.1,
max_prompt_length=1,
max_length=400,
alpha = 0.05,
multi_function = True
)
mlpo_trainer.train()