-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_function_generation.py
103 lines (66 loc) · 3.11 KB
/
single_function_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import sys
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
device = "cuda"
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
import torch
from transformers import AutoTokenizer
import numpy as np
from utils.set_seed import set_seed
from tqdm import tqdm
import os
set_seed(42)
seq_list = list()
base_model_name_or_path = "/data1/anonymity/Pre_Train_Model/ProtGPT2"
base_model = AutoModelForCausalLM.from_pretrained(base_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path,padding_side = "left")
task_name_list = ["function_1"]
prefix_name = 'mlpo_model'
for task_name in task_name_list:
folder_name = f"./{prefix_name}/{task_name}/"
input_p = ['<|endoftext|>']
inputs = tokenizer(input_p, return_tensors="pt")
task_name_prefix = {
"function_0":[0, -1, -1],
"function_1":[1, -1, -1],
"process_0":[-1, 0, -1],
"process_1":[-1, 1, -1],
"component_0":[-1, -1, 0],
"component_1":[-1, -1, 1],
"none":[-1,-1,-1],
}
name_prefix = task_name_prefix[task_name]
max_length = 400
for subdir in os.listdir(folder_name):
subdir_path = os.path.join(folder_name, subdir)
if os.path.isdir(subdir_path):
model = PeftModel.from_pretrained(base_model, subdir_path)
model.to(device)
model.eval()
seq_list = []
with torch.no_grad():
gen_seq_num = 50
batch_size= 50
seq_list = list()
try:
for i in tqdm(range(int(gen_seq_num/batch_size))):
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=max_length, do_sample=True, top_k=500, repetition_penalty=1.2, num_return_sequences=batch_size, eos_token_id=0)
seq_res = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)
seq_list += seq_res
remain_seq_num = gen_seq_num-int(gen_seq_num/batch_size)*batch_size
if remain_seq_num > 0:
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=max_length, do_sample=True, top_k=500, repetition_penalty=1.2, num_return_sequences=remain_seq_num, eos_token_id=0)
seq_list += seq_res
except:
continue
result_folder_path = subdir_path.replace(prefix_name,prefix_name+"_result")
os.makedirs(result_folder_path, exist_ok=True)
result_path = os.path.join(result_folder_path, 'result.txt')
with open(result_path,"w") as file:
for seq in seq_list:
seq = seq.replace("\n","")
seq = seq.rstrip()
file.write(f"[{name_prefix}, \"{seq}\"]\n")
model.to("cpu")