-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprefix_tuning_prot.py
238 lines (165 loc) · 8.54 KB
/
prefix_tuning_prot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import os
import sys
sys.path.append('./')
import numpy as np
import argparse
from transformers import AutoModelForCausalLM
from peft import get_peft_config, get_peft_model, PrefixTuningConfig, TaskType, PeftType
import torch
from datasets import load_dataset
import os
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from transformers import default_data_collator, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_constant_schedule
from tqdm import tqdm
from utils.log_helper import logger_init
from torch.utils.tensorboard import SummaryWriter
from datasets import load_dataset
import logging
import random
from utils.set_seed import set_seed
import time
from sklearn.model_selection import train_test_split
from torch.cuda.amp import autocast, GradScaler
class TrainConfig:
def __init__(self):
parser = argparse.ArgumentParser(description="Train prefix_tuning_prot")
parser.add_argument("--model_name_or_path", type=str, default='/data/anonymity/Pre_Train_Model/ProtGPT2/', help="Model checkpoint")
parser.add_argument("--batch_size", type=int, default=8, help="Batch size")
parser.add_argument("--epochs", type=int, default=100, help="Number of epochs")
parser.add_argument("--dataset_path", type=str, default = "./dataset/function/0.tsv")
parser.add_argument("--dataset_name", type=str, default = "function_0")
parser.add_argument("--lr",type=float, default=5e-5)
parser.add_argument("--output_path", type=str, default = "./saved_model/")
args = parser.parse_args()
self.project_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
self.model_name_or_path = args.model_name_or_path
self.tokenizer_name_or_path = self.model_name_or_path
self.dataset_path = args.dataset_path
self.num_virtual_tokens = 100
self.peft_config = PrefixTuningConfig(task_type=TaskType.CAUSAL_LM, num_virtual_tokens=self.num_virtual_tokens)
self.task_type = 'prefix'
self.dataset_name = args.dataset_name
self.text_column = "Sequence"
self.max_length = 404
self.lr = 1e-4
self.num_epochs = args.epochs
self.batch_size = args.batch_size
self.random_seed = 42
self.model_save_dir = os.path.join(self.project_dir, 'saved_dir', f'{self.dataset_name}', f'{self.task_type}')
self.logs_save_dir = os.path.join(self.project_dir, 'logs', f'{self.dataset_name}', f'{self.task_type}')
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if not os.path.exists(self.model_save_dir):
os.makedirs(self.model_save_dir)
if not os.path.exists(self.logs_save_dir):
os.makedirs(self.logs_save_dir)
def train(config):
scaler = GradScaler()
data_files = {"train": config.dataset_path}
dataset = load_dataset('csv', data_files=config.dataset_path, split = 'train')
dataset = dataset.train_test_split(test_size=0.1)
logging.info('check the info about dataset')
tokenizer = AutoTokenizer.from_pretrained(config.model_name_or_path)
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
def preprocess_function(examples):
batch_size = len(examples["Entry\tSequence"])
print(batch_size)
inputs = [x.split("\t")[-1] for x in examples["Entry\tSequence"]]
model_inputs = tokenizer(inputs)
labels = model_inputs
for i in range(batch_size):
sample_input_ids = [tokenizer.eos_token_id] + model_inputs["input_ids"][i] + [tokenizer.eos_token_id]
label_input_ids = [tokenizer.eos_token_id] + labels["input_ids"][i] + [tokenizer.eos_token_id]
labels["input_ids"][i] = label_input_ids
model_inputs["input_ids"][i] = sample_input_ids
model_inputs["attention_mask"][i] = [1] * len(model_inputs["input_ids"][i])
for i in range(batch_size):
sample_input_ids = model_inputs["input_ids"][i]
label_input_ids = labels["input_ids"][i]
model_inputs["input_ids"][i] = sample_input_ids + [tokenizer.pad_token_id] * (
config.max_length - len(sample_input_ids)
)
model_inputs["attention_mask"][i] = model_inputs["attention_mask"][i] + [0] * (config.max_length - len(sample_input_ids))
labels["input_ids"][i] = label_input_ids + [0] * (config.max_length - len(sample_input_ids))
model_inputs["input_ids"][i] = torch.tensor(model_inputs["input_ids"][i][:config.max_length])
model_inputs["attention_mask"][i] = torch.tensor(model_inputs["attention_mask"][i][:config.max_length])
labels["input_ids"][i] = torch.tensor(labels["input_ids"][i][:config.max_length])
model_inputs["labels"] = labels["input_ids"]
return model_inputs
processed_datasets = dataset.map(
preprocess_function,
batched=True,
num_proc=1,
load_from_cache_file=False,
desc="Running tokenizer on dataset",
)
logging.info(processed_datasets)
train_dataset = processed_datasets['train']
eval_dataset = processed_datasets['test']
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=default_data_collator, batch_size=config.batch_size, pin_memory=True
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=default_data_collator, batch_size=config.batch_size, pin_memory=True)
if config.task_type == 'prefix':
model = AutoModelForCausalLM.from_pretrained(config.model_name_or_path)
model = get_peft_model(model, config.peft_config)
model.print_trainable_parameters()
elif config.task_type == 'finetune':
model = AutoModelForCausalLM.from_pretrained(config.model_name_or_path)
optimizer = torch.optim.AdamW(model.parameters(), lr=config.lr)
lr_scheduler = get_polynomial_decay_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=(len(train_dataloader) * config.num_epochs), lr_end=1e-7, power=3
)
model = model.to(config.device)
if torch.cuda.device_count() > 1:
model = torch.nn.DataParallel(model)
time_start = time.time()
for epoch in range(config.num_epochs):
model.train()
total_loss = 0
for step, batch in enumerate(tqdm(train_dataloader)):
global_iter_num = epoch * len(train_dataloader) + step + 1
batch = {k: v.to(config.device) for k, v in batch.items()}
with autocast():
outputs = model(**batch)
loss = outputs.loss
scaler.scale(loss).backward()
total_loss += loss.detach().float()
scaler.step(optimizer)
scaler.update()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
eval_loss = 0
eval_preds = []
for step, batch in enumerate(tqdm(eval_dataloader, ncols=50)):
batch = {k: v.to(config.device) for k, v in batch.items()}
with torch.no_grad():
with autocast():
outputs = model(**batch)
loss = outputs.loss
eval_loss += loss.detach().float()
eval_preds.extend(
tokenizer.batch_decode(torch.argmax(outputs.logits, -1).detach().cpu().numpy(), skip_special_tokens=True)
)
eval_epoch_loss = eval_loss / len(eval_dataloader)
eval_ppl = torch.exp(eval_epoch_loss)
train_epoch_loss = total_loss / len(train_dataloader)
train_ppl = torch.exp(train_epoch_loss)
if epoch %10 ==0:
peft_model_id = config.model_save_dir + f"/E{epoch}_VT{config.num_virtual_tokens}_eval_loss{np.around(eval_epoch_loss.cpu(), 5)}_{np.around(eval_ppl.cpu(), 5)}"
model.save_pretrained(peft_model_id)
time_end = time.time()
time_sum = time_end - time_start
config.writer.add_scalar('training time', time_sum, 0)
logging.info(f'The sum time of training {time_sum}')
if config.task_type == 'prefix':
peft_model_id = config.model_save_dir + f"/E{epoch}_VT{config.num_virtual_tokens}_eval_loss{np.around(eval_epoch_loss.cpu(), 5)}_{np.around(eval_ppl.cpu(), 5)}"
model.save_pretrained(peft_model_id)
if __name__ == '__main__':
train_config = TrainConfig()
set_seed(train_config.random_seed)
train(train_config)