-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlpo_trainer.py
246 lines (208 loc) · 10.1 KB
/
mlpo_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import sys
sys.path.append('./')
import numpy as np
import argparse
from transformers import AutoModelForCausalLM
from peft import get_peft_config, get_peft_model, PrefixTuningConfig, TaskType, PeftType
import torch
from datasets import load_dataset
import os
from transformers import AutoTokenizer
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils.log_helper import logger_init
from torch.utils.tensorboard import SummaryWriter
from datasets import load_dataset, load_from_disk
import logging
import random
from utils.set_seed import set_seed
import time
from sklearn.model_selection import train_test_split
from torch.cuda.amp import autocast, GradScaler
import os
import gc
import torch
import torch.nn.functional as F
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, BitsAndBytesConfig
from datasets import load_dataset
from peft import LoraConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training
from trl import DPOTrainer
import bitsandbytes as bnb
import wandb
from transformers import Trainer, TrainingArguments, AutoTokenizer, TrainerCallback
import json
from trl import DPOTrainer, ORPOTrainer
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
from transformers import (
AutoModelForCausalLM,
DataCollator,
PreTrainedModel,
PreTrainedTokenizerBase,
Trainer,
TrainingArguments,
)
import torch.nn as nn
class MLPOTrainer(DPOTrainer):
def __init__(self, *args, **kwargs):
self.alpha = kwargs.pop('alpha', args[0] if args else None)
self.multi_function = kwargs.pop('multi_function', args[0] if args else None)
super().__init__(*args, **kwargs)
# def zero_out_gradients_hook(self,grad):
# """Custom gradient hook to zero out the gradients of the first 200 tokens."""
# # print(grad)
# grad[:200] = 0
# # print(grad)
# return grad
# def train(self, *args, **kwargs):
# # Register the gradient hook here
# if self.multi_function:
# for name, param in self.model.named_parameters():
# if 'prompt_encoder' in name:
# param.register_hook(self.zero_out_gradients_hook)
# # Call the parent class's on_train_begin if necessary
# return super().train(*args, **kwargs)
def tokenize_row(self, *args, **kwargs):
# print("Custom train method")
feature = kwargs.get('feature', args[0] if args else None)
batch = super().tokenize_row(*args, **kwargs)
if feature:
batch['chosen_score'] = feature['chosen_score']
batch["chosen_weight"] = feature["chosen_weight"]
batch['rejected_score'] = feature['rejected_score']
batch["rejected_weight"] = feature["rejected_weight"]
batch["regularization_term"] = feature["regularization_term"]
return batch
def get_batch_loss_metrics(
self,
model,
batch: Dict[str, Union[List, torch.LongTensor]],
train_eval: Literal["train", "eval"] = "train",
):
"""Compute the DPO loss and other metrics for the given batch of inputs for train or test."""
metrics = {}
(
policy_chosen_logps,
policy_rejected_logps,
policy_chosen_logits,
policy_rejected_logits,
) = self.concatenated_forward(model, batch)
# if reference_chosen_logps and reference_rejected_logps in batch use them, otherwise use the reference model
if "reference_chosen_logps" in batch and "reference_rejected_logps" in batch:
reference_chosen_logps = batch["reference_chosen_logps"]
reference_rejected_logps = batch["reference_rejected_logps"]
else:
with torch.no_grad():
if self.ref_model is None:
with self.null_ref_context():
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
) = self.concatenated_forward(self.model, batch)
else:
(
reference_chosen_logps,
reference_rejected_logps,
_,
_,
) = self.concatenated_forward(self.ref_model, batch)
regularization_term = torch.tensor(batch["regularization_term"]).to(policy_chosen_logps.device)
losses, chosen_rewards, rejected_rewards = self.mlpo_loss(
policy_chosen_logps,
policy_rejected_logps,
reference_chosen_logps,
reference_rejected_logps,
regularization_term
)
reward_accuracies = (chosen_rewards > rejected_rewards).float()
prefix = "eval_" if train_eval == "eval" else ""
metrics[f"{prefix}rewards/chosen"] = chosen_rewards.mean().cpu()
metrics[f"{prefix}rewards/rejected"] = rejected_rewards.mean().cpu()
metrics[f"{prefix}rewards/accuracies"] = reward_accuracies.mean().cpu()
metrics[f"{prefix}rewards/margins"] = (chosen_rewards - rejected_rewards).mean().cpu()
metrics[f"{prefix}logps/rejected"] = policy_rejected_logps.detach().mean().cpu()
metrics[f"{prefix}logps/chosen"] = policy_chosen_logps.detach().mean().cpu()
metrics[f"{prefix}logits/rejected"] = policy_rejected_logits.detach().mean().cpu()
metrics[f"{prefix}logits/chosen"] = policy_chosen_logits.detach().mean().cpu()
# lambda_weight = torch.tensor(batch["lambda_weight"]).to(losses.device)
# losses = losses * lambda_weight
return losses.mean(), metrics
def mlpo_loss(
self,
policy_chosen_logps: torch.FloatTensor,
policy_rejected_logps: torch.FloatTensor,
reference_chosen_logps: torch.FloatTensor,
reference_rejected_logps: torch.FloatTensor,
regularization_term: torch.FloatTensor,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
"""Compute the DPO loss for a batch of policy and reference model log probabilities.
Args:
policy_chosen_logps: Log probabilities of the policy model for the chosen responses. Shape: (batch_size,)
policy_rejected_logps: Log probabilities of the policy model for the rejected responses. Shape: (batch_size,)
reference_chosen_logps: Log probabilities of the reference model for the chosen responses. Shape: (batch_size,)
reference_rejected_logps: Log probabilities of the reference model for the rejected responses. Shape: (batch_size,)
Returns:
A tuple of three tensors: (losses, chosen_rewards, rejected_rewards).
The losses tensor contains the DPO loss for each example in the batch.
The chosen_rewards and rejected_rewards tensors contain the rewards for the chosen and rejected responses, respectively.
"""
pi_logratios = policy_chosen_logps - policy_rejected_logps
if self.reference_free:
ref_logratios = torch.tensor([0], dtype=pi_logratios.dtype, device=pi_logratios.device)
else:
ref_logratios = reference_chosen_logps - reference_rejected_logps
pi_logratios = pi_logratios.to(self.accelerator.device)
ref_logratios = ref_logratios.to(self.accelerator.device)
logits = pi_logratios - ref_logratios
# The beta is a temperature parameter for the DPO loss, typically something in the range of 0.1 to 0.5.
# We ignore the reference model as beta -> 0. The label_smoothing parameter encodes our uncertainty about the labels and
# calculates a conservative DPO loss.
if self.loss_type == "sigmoid":
losses = (
-F.logsigmoid(self.beta * logits - self.alpha * regularization_term) * (1 - self.label_smoothing)
- F.logsigmoid(-self.beta * logits + self.alpha * regularization_term) * self.label_smoothing
)
elif self.loss_type == "hinge":
losses = torch.relu(1 - self.beta * logits)
elif self.loss_type == "ipo":
# eqn (17) of the paper where beta is the regularization parameter for the IPO loss, denoted by tau in the paper.
losses = (logits - 1 / (2 * self.beta)) ** 2
elif self.loss_type == "kto_pair":
# eqn (7) of the HALOs paper
chosen_KL = (policy_chosen_logps - reference_chosen_logps).mean().clamp(min=0)
rejected_KL = (policy_rejected_logps - reference_rejected_logps).mean().clamp(min=0)
chosen_logratios = policy_chosen_logps - reference_chosen_logps
rejected_logratios = policy_rejected_logps - reference_rejected_logps
# As described in the KTO report, the KL term for chosen (rejected) is estimated using the rejected (chosen) half.
losses = torch.cat(
(
1 - F.sigmoid(self.beta * (chosen_logratios - rejected_KL)),
1 - F.sigmoid(self.beta * (chosen_KL - rejected_logratios)),
),
0,
)
else:
raise ValueError(
f"Unknown loss type: {self.loss_type}. Should be one of ['sigmoid', 'hinge', 'ipo', 'kto_pair']"
)
chosen_rewards = (
self.beta
* (
policy_chosen_logps.to(self.accelerator.device) - reference_chosen_logps.to(self.accelerator.device)
).detach()
)
rejected_rewards = (
self.beta
* (
policy_rejected_logps.to(self.accelerator.device)
- reference_rejected_logps.to(self.accelerator.device)
).detach()
)
losses2 = (
-F.logsigmoid(self.beta * (logits )) * (1 - self.label_smoothing)
- F.logsigmoid(-self.beta * (logits )) * self.label_smoothing
)
return losses, chosen_rewards, rejected_rewards