-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_candidate_sequence.py
91 lines (67 loc) · 3 KB
/
generate_candidate_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
import sys
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
import torch
from transformers import AutoTokenizer
import numpy as np
from utils.set_seed import set_seed
from tqdm import tqdm
import os
import argparse
set_seed(1)
from Bio.PDB import PDBParser
seq_list = list()
import os
base_model_name_or_path = "/data/anonymity/Pre_Train_Model/ProtGPT2"
base_model = AutoModelForCausalLM.from_pretrained(base_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path, padding_side = "left")
parser = argparse.ArgumentParser(description="Generate candidate sequence")
parser.add_argument("--model_path", type=str, default='./prefix_tuning_model/', help="Model checkpoint")
args = parser.parse_args()
device = 'cuda'
task_name_list = ["component_0","component_1","process_0","process_1","function_0","function_1"]
for task_name in task_name_list:
prefix_model_path = os.path.join(args.model_path, task_name)
input_p = ['<|endoftext|>']
inputs = tokenizer(input_p, return_tensors="pt")
task_name_prefix = {
"function_0":[0, -1, -1],
"function_1":[1, -1, -1],
"process_0":[-1, 0, -1],
"process_1":[-1, 1, -1],
"component_0":[-1, -1, 0],
"component_1":[-1, -1, 1],
}
name_prefix = task_name_prefix[task_name]
max_length = 400
model = PeftModel.from_pretrained(base_model, prefix_model_path)
model.to(device)
model.eval()
seq_list = []
with torch.no_grad():
gen_seq_num = 50
batch_size= 50
seq_list = list()
try:
for i in tqdm(range(int(gen_seq_num/batch_size))):
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=max_length, do_sample=True, top_k=500, repetition_penalty=1.2, num_return_sequences=batch_size, eos_token_id=0)
seq_res = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)
seq_list += seq_res
remain_seq_num = gen_seq_num-int(gen_seq_num/batch_size)*batch_size
if remain_seq_num > 0:
outputs = model.generate(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=max_length, do_sample=True, top_k=500, repetition_penalty=1.2, num_return_sequences=remain_seq_num, eos_token_id=0)
seq_list += seq_res
except:
continue
result_folder_path = prefix_model_path.replace("prefix_tuning_model","generate_candidate_sequence")
os.makedirs(result_folder_path, exist_ok=True)
result_path = os.path.join(result_folder_path, 'result.txt')
with open(result_path,"w") as file:
for seq in seq_list:
seq = seq.split("\n")[0]
seq = seq.rstrip()
file.write(f"[{name_prefix}, \"{seq}\"]\n")
model.to("cpu")