-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_candidate_sequence.py
217 lines (151 loc) · 6.92 KB
/
evaluate_candidate_sequence.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import torch
from torch import cuda
from transformers import AutoTokenizer, AutoModelForSequenceClassification, default_data_collator
from datasets import Dataset
from sklearn.model_selection import train_test_split
import json
from tqdm import tqdm
from transformers import AutoTokenizer, EsmForProteinFolding
import torch
from PIL import Image
import torch
import argparse
from transformers.models.esm.openfold_utils.protein import to_pdb, Protein as OFProtein
from transformers.models.esm.openfold_utils.feats import atom14_to_atom37
from Bio.PDB import PDBParser
parser = PDBParser(QUIET=True)
def calculate_average_plddt_from_pdb(pdb_file_path):
structure = parser.get_structure('protein', pdb_file_path)
plddt_values = []
for model in structure:
for chain in model:
for residue in chain:
for atom in residue:
plddt_values.append(atom.bfactor)
if not plddt_values:
return None
average_plddt = sum(plddt_values) / len(plddt_values)
return average_plddt
torch.backends.cuda.matmul.allow_tf32 = True
class Structure_Evaluate():
def __init__(self):
self.tokenizer = AutoTokenizer.from_pretrained("/data/anonymity/Pre_Train_Model/esmfold_v1")
self.model = EsmForProteinFolding.from_pretrained("/data/anonymity/Pre_Train_Model/esmfold_v1", low_cpu_mem_usage=True)
self.model = self.model.cuda()
def get_plddt_scores(self, output_pdb_folder, sequences,num = -1):
has_finished = [file for file in os.listdir(output_pdb_folder)]
plddt_results = []
pdb_results = []
if num == -1:
temp_sequences = sequences
else:
temp_sequences = sequences[ : num]
for i in tqdm(range(len(temp_sequences))):
if f"{i}.pdb" in has_finished:
pdb = None
temp_path = os.path.join(output_pdb_folder, f"{i}.pdb")
if os.path.getsize(temp_path) != 0:
plddt_score = calculate_average_plddt_from_pdb(os.path.join(output_pdb_folder, f"{i}.pdb"))
pdb_results.append(pdb)
plddt_results.append(plddt_score)
continue
test_protein = temp_sequences[i]
try:
tokenized_input = self.tokenizer([test_protein], return_tensors="pt", add_special_tokens=False)['input_ids']
tokenized_input = tokenized_input.cuda()
with torch.no_grad():
outputs = self.model(tokenized_input)
pdb = self.convert_outputs_to_pdb(outputs)
plddt_score = self.compute_average_plddt(outputs)
plddt_results.append(plddt_score)
pdb_results.append(pdb[0])
output_pdb_file = os.path.join(output_pdb_folder, f"{i}.pdb")
with open(output_pdb_file, 'w') as file:
file.write(pdb[0])
print(f"create pdb file {i}.pdb")
except:
with open("/data1/anonymity/CtrlProt/wrong_sample.txt",'a') as file:
file.write(test_protein + '\n')
plddt_results.append(0)
pdb_results.append(None)
return plddt_results, pdb_results
def compute_average_plddt(self, outputs):
x = outputs['plddt']
return torch.mean(outputs['plddt']).item()
def convert_outputs_to_pdb(self, outputs):
final_atom_positions = atom14_to_atom37(outputs["positions"][-1], outputs)
outputs = {k: v.to("cpu").numpy() for k, v in outputs.items()}
final_atom_positions = final_atom_positions.cpu().numpy()
final_atom_mask = outputs["atom37_atom_exists"]
pdbs = []
for i in range(outputs["aatype"].shape[0]):
aa = outputs["aatype"][i]
pred_pos = final_atom_positions[i]
mask = final_atom_mask[i]
resid = outputs["residue_index"][i] + 1
pred = OFProtein(
aatype=aa,
atom_positions=pred_pos,
atom_mask=mask,
residue_index=resid,
b_factors=outputs["plddt"][i],
chain_index=outputs["chain_index"][i] if "chain_index" in outputs else None,
)
pdbs.append(to_pdb(pred))
return pdbs
def load_data(file_path):
labels = []
sequences = []
with open(file_path, "r") as file:
data = file.readlines()
for line in data:
line = line.rstrip()
origin_data = json.loads(line)
label = origin_data[0]
sequence = origin_data[1]
labels.append(label)
sequences.append(sequence)
return labels, sequences
def find_txt_files(folder_path):
txt_files = []
for root, dirs, files in os.walk(folder_path):
for dirname in dirs:
file_path = os.path.join(root, dirname, "result.txt")
txt_files.append( ( dirname, file_path) )
return txt_files
def get_subfolder_paths(dir_path):
subfolder_paths = []
for root, dirs, files in os.walk(dir_path):
for subdir in dirs:
sub_path = os.path.join(root, subdir)
subfolder_paths.append(sub_path)
break
return subfolder_paths
def get_pdb():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset_path", type=str, default="./generate_candidate_sequence")
parser.add_argument("--output_path", type=str, default="./evaluate_candidate_sequence")
args = parser.parse_args()
folder_path = args.dataset_path
output_folder_path = args.output_path
device = "cuda" if cuda.is_available() else "cpu"
structure_evaluate = Structure_Evaluate()
task_name_list = ["function_0","function_1","process_0","process_1","component_0","component_1"]
for task_name in task_name_list:
input_file_path = os.path.join(folder_path, task_name, "result.txt")
output_file_path = os.path.join(output_folder_path, task_name, "result.txt")
output_pdb_folder = os.path.join(output_folder_path, task_name, 'pdb')
if not os.path.exists(output_pdb_folder):
os.makedirs(output_pdb_folder)
labels, sequences = load_data(input_file_path)
plddt_scores = []
plddt_scores, pdb_results = structure_evaluate.get_plddt_scores(output_pdb_folder, sequences)
with open(output_file_path,"w") as file:
for i in range(len(sequences)):
label = labels[i]
sequence = sequences[i]
plddt = float(plddt_scores[i]) if plddt_scores[i] else 0
file.write(json.dumps([labels[i], sequences[i].rstrip(), plddt])+'\n')
if __name__ == "__main__":
get_pdb()