-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathcenterface.py
executable file
·123 lines (109 loc) · 4.71 KB
/
centerface.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import numpy as np
import cv2
import datetime
class CenterFace(object):
def __init__(self, height, width, landmarks=True):
self.landmarks = landmarks
if self.landmarks:
self.net = cv2.dnn.readNetFromONNX('./models/onnx/centerface.onnx')
else:
self.net = cv2.dnn.readNetFromONNX('./models/onnx/cface.1k.onnx')
self.img_h_new, self.img_w_new, self.scale_h, self.scale_w = self.transform(height, width)
def __call__(self, img, threshold=0.5):
blob = cv2.dnn.blobFromImage(img, scalefactor=1.0, size=(self.img_w_new, self.img_h_new), mean=(0, 0, 0), swapRB=True, crop=False)
self.net.setInput(blob)
begin = datetime.datetime.now()
if self.landmarks:
heatmap, scale, offset, lms = self.net.forward(["537", "538", "539", '540'])
else:
heatmap, scale, offset = self.net.forward(["535", "536", "537"])
end = datetime.datetime.now()
print("cpu times = ", end - begin)
if self.landmarks:
dets, lms = self.decode(heatmap, scale, offset, lms, (self.img_h_new, self.img_w_new), threshold=threshold)
else:
dets = self.decode(heatmap, scale, offset, None, (self.img_h_new, self.img_w_new), threshold=threshold)
if len(dets) > 0:
dets[:, 0:4:2], dets[:, 1:4:2] = dets[:, 0:4:2] / self.scale_w, dets[:, 1:4:2] / self.scale_h
if self.landmarks:
lms[:, 0:10:2], lms[:, 1:10:2] = lms[:, 0:10:2] / self.scale_w, lms[:, 1:10:2] / self.scale_h
else:
dets = np.empty(shape=[0, 5], dtype=np.float32)
if self.landmarks:
lms = np.empty(shape=[0, 10], dtype=np.float32)
if self.landmarks:
return dets, lms
else:
return dets
def transform(self, h, w):
img_h_new, img_w_new = int(np.ceil(h / 32) * 32), int(np.ceil(w / 32) * 32)
scale_h, scale_w = img_h_new / h, img_w_new / w
return img_h_new, img_w_new, scale_h, scale_w
def decode(self, heatmap, scale, offset, landmark, size, threshold=0.1):
heatmap = np.squeeze(heatmap)
scale0, scale1 = scale[0, 0, :, :], scale[0, 1, :, :]
offset0, offset1 = offset[0, 0, :, :], offset[0, 1, :, :]
c0, c1 = np.where(heatmap > threshold)
if self.landmarks:
boxes, lms = [], []
else:
boxes = []
if len(c0) > 0:
for i in range(len(c0)):
s0, s1 = np.exp(scale0[c0[i], c1[i]]) * 4, np.exp(scale1[c0[i], c1[i]]) * 4
o0, o1 = offset0[c0[i], c1[i]], offset1[c0[i], c1[i]]
s = heatmap[c0[i], c1[i]]
x1, y1 = max(0, (c1[i] + o1 + 0.5) * 4 - s1 / 2), max(0, (c0[i] + o0 + 0.5) * 4 - s0 / 2)
x1, y1 = min(x1, size[1]), min(y1, size[0])
boxes.append([x1, y1, min(x1 + s1, size[1]), min(y1 + s0, size[0]), s])
if self.landmarks:
lm = []
for j in range(5):
lm.append(landmark[0, j * 2 + 1, c0[i], c1[i]] * s1 + x1)
lm.append(landmark[0, j * 2, c0[i], c1[i]] * s0 + y1)
lms.append(lm)
boxes = np.asarray(boxes, dtype=np.float32)
keep = self.nms(boxes[:, :4], boxes[:, 4], 0.3)
boxes = boxes[keep, :]
if self.landmarks:
lms = np.asarray(lms, dtype=np.float32)
lms = lms[keep, :]
if self.landmarks:
return boxes, lms
else:
return boxes
def nms(self, boxes, scores, nms_thresh):
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = np.argsort(scores)[::-1]
num_detections = boxes.shape[0]
suppressed = np.zeros((num_detections,), dtype=np.bool)
keep = []
for _i in range(num_detections):
i = order[_i]
if suppressed[i]:
continue
keep.append(i)
ix1 = x1[i]
iy1 = y1[i]
ix2 = x2[i]
iy2 = y2[i]
iarea = areas[i]
for _j in range(_i + 1, num_detections):
j = order[_j]
if suppressed[j]:
continue
xx1 = max(ix1, x1[j])
yy1 = max(iy1, y1[j])
xx2 = min(ix2, x2[j])
yy2 = min(iy2, y2[j])
w = max(0, xx2 - xx1 + 1)
h = max(0, yy2 - yy1 + 1)
inter = w * h
ovr = inter / (iarea + areas[j] - inter)
if ovr >= nms_thresh:
suppressed[j] = True
return keep