forked from yjh0410/RT-ODLab
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
194 lines (166 loc) · 7.34 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import argparse
import cv2
import os
import time
import numpy as np
from copy import deepcopy
import torch
# load transform
from dataset.build import build_dataset, build_transform
# load some utils
from utils.misc import load_weight, compute_flops
from utils.box_ops import rescale_bboxes
from utils.vis_tools import visualize
from config import build_dataset_config, build_model_config, build_trans_config
from models.detectors import build_model
def parse_args():
parser = argparse.ArgumentParser(description='Real-time Object Detection LAB')
# Basic setting
parser.add_argument('-size', '--img_size', default=640, type=int,
help='the max size of input image')
parser.add_argument('--show', action='store_true', default=False,
help='show the visulization results.')
parser.add_argument('--save', action='store_true', default=False,
help='save the visulization results.')
parser.add_argument('--cuda', action='store_true', default=False,
help='use cuda.')
parser.add_argument('--save_folder', default='det_results/', type=str,
help='Dir to save results')
parser.add_argument('-ws', '--window_scale', default=1.0, type=float,
help='resize window of cv2 for visualization.')
parser.add_argument('--resave', action='store_true', default=False,
help='resave checkpoints without optimizer state dict.')
# Model setting
parser.add_argument('-m', '--model', default='yolov1', type=str,
help='build yolo')
parser.add_argument('--weight', default=None,
type=str, help='Trained state_dict file path to open')
parser.add_argument('-ct', '--conf_thresh', default=0.3, type=float,
help='confidence threshold')
parser.add_argument('-nt', '--nms_thresh', default=0.5, type=float,
help='NMS threshold')
parser.add_argument('--topk', default=100, type=int,
help='topk candidates dets of each level before NMS')
parser.add_argument("--no_decode", action="store_true", default=False,
help="not decode in inference or yes")
parser.add_argument('--fuse_conv_bn', action='store_true', default=False,
help='fuse Conv & BN')
parser.add_argument('--no_multi_labels', action='store_true', default=False,
help='Perform post-process with multi-labels trick.')
parser.add_argument('--nms_class_agnostic', action='store_true', default=False,
help='Perform NMS operations regardless of category.')
# Data setting
parser.add_argument('--root', default='/Users/liuhaoran/Desktop/python_work/object-detection/dataset/',
help='data root')
parser.add_argument('-d', '--dataset', default='coco',
help='coco, voc.')
parser.add_argument('--min_box_size', default=8.0, type=float,
help='min size of target bounding box.')
parser.add_argument('--mosaic', default=None, type=float,
help='mosaic augmentation.')
parser.add_argument('--mixup', default=None, type=float,
help='mixup augmentation.')
parser.add_argument('--load_cache', action='store_true', default=False,
help='load data into memory.')
return parser.parse_args()
@torch.no_grad()
def test_det(args,
model,
device,
dataset,
transform=None,
class_colors=None,
class_names=None,
class_indexs=None):
num_images = len(dataset)
save_path = os.path.join('det_results/', args.dataset, args.model)
os.makedirs(save_path, exist_ok=True)
for index in range(num_images):
print('Testing image {:d}/{:d}....'.format(index+1, num_images))
image, _ = dataset.pull_image(index)
orig_h, orig_w, _ = image.shape
# prepare
x, _, ratio = transform(image)
x = x.unsqueeze(0).to(device)
t0 = time.time()
# inference
outputs = model(x)
scores = outputs['scores']
labels = outputs['labels']
bboxes = outputs['bboxes']
print("detection time used ", time.time() - t0, "s")
# rescale bboxes
bboxes = rescale_bboxes(bboxes, [orig_w, orig_h], ratio)
# vis detection
img_processed = visualize(image=image,
bboxes=bboxes,
scores=scores,
labels=labels,
class_colors=class_colors,
class_names=class_names,
class_indexs=class_indexs)
if args.show:
h, w = img_processed.shape[:2]
sw, sh = int(w*args.window_scale), int(h*args.window_scale)
cv2.namedWindow('detection', 0)
cv2.resizeWindow('detection', sw, sh)
cv2.imshow('detection', img_processed)
cv2.waitKey(0)
if args.save:
# save result
cv2.imwrite(os.path.join(save_path, str(index).zfill(6) +'.jpg'), img_processed)
if __name__ == '__main__':
args = parse_args()
# cuda
if args.cuda:
print('use cuda')
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Dataset & Model Config
data_cfg = build_dataset_config(args)
model_cfg = build_model_config(args)
trans_cfg = build_trans_config(model_cfg['trans_type'])
# Transform
val_transform, trans_cfg = build_transform(args, trans_cfg, model_cfg['max_stride'], is_train=False)
# Dataset
dataset, dataset_info = build_dataset(args, data_cfg, trans_cfg, val_transform, is_train=False)
num_classes = dataset_info['num_classes']
np.random.seed(0)
class_colors = [(np.random.randint(255),
np.random.randint(255),
np.random.randint(255)) for _ in range(num_classes)]
# build model
model = build_model(args, model_cfg, device, num_classes, False)
# load trained weight
model = load_weight(model, args.weight, args.fuse_conv_bn)
model.to(device).eval()
# compute FLOPs and Params
model_copy = deepcopy(model)
model_copy.trainable = False
model_copy.eval()
compute_flops(
model=model_copy,
img_size=args.img_size,
device=device)
del model_copy
# resave model weight
if args.resave:
print('Resave: {}'.format(args.model.upper()))
checkpoint = torch.load(args.weight, map_location='cpu')
checkpoint_path = 'weights/{}/{}/{}_pure.pth'.format(args.dataset, args.model, args.model)
torch.save({'model': model.state_dict(),
'mAP': checkpoint.pop("mAP"),
'epoch': checkpoint.pop("epoch")},
checkpoint_path)
print("================= DETECT =================")
# run
test_det(args=args,
model=model,
device=device,
dataset=dataset,
transform=val_transform,
class_colors=class_colors,
class_names=dataset_info['class_names'],
class_indexs=dataset_info['class_indexs'],
)