-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml_model.py
261 lines (238 loc) · 11.7 KB
/
ml_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import pandas as pd
import numpy as np
from sklearn import datasets
from sklearn.linear_model import Lasso, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.feature_selection import SelectFromModel
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
class ModelRun:
def __init__(self, dataset_csv):
self.dataset = dataset_csv
# self.user = user
self.toNormalize = ['Age', 'Afraid', 'Angry', 'Attractive', 'Babyface', 'Disgusted', 'Dominant', 'Feminine', 'Happy',
'Masculine', 'Prototypic', 'Sad', 'Surprised', 'Threatening', 'Trustworthy', 'Unusual', 'Luminance_median',
'Nose_Width', 'Nose_Length', 'Lip_Thickness', 'Face_Length', 'R_Eye_H', 'L_Eye_H', 'Avg_Eye_Height', 'R_Eye_W',
'L_Eye_W','Avg_Eye_Width','Face_Width_Cheeks','Face_Width_Mouth','Forehead','Pupil_Top_R','Pupil_Top_L','Asymmetry_pupil_top',
'Pupil_Lip_R','Pupil_Lip_L','Asymmetry_pupil_lip','BottomLip_Chin','Midcheek_Chin_R','Midcheek_Chin_L','Cheeks_avg','Midbrow_Hairline_R',
'Midbrow_Hairline_L', 'CheekboneProminence']
dsN = 0
for c in self.toNormalize:
dsN = self.normalizeColumn(self.dataset, c)
self.dataset = dsN
#lin reg
self.bestAlpha = float("-inf")
self.lassoCoef = []
self.lin_reg_feats = []
self.reg_rmse = float("-inf")
#for extra trees
self.feat_importance_map = {}
self.rf_rmse = float("-inf")
def normalizeColumn(self, data, cName):
data[cName]=((data[cName]-data[cName].min())/(data[cName].max()-data[cName].min()))
return data
def pre_processing(self, dataset):
gender_mapper = {'M': 0, 'F': 1}
dataset['Gender'].replace(gender_mapper, inplace=True)
dataset['Credit_rating'] = dataset['Credit_rating'].replace(['Poor'],'1')
dataset['Credit_rating'] = dataset['Credit_rating'].replace(['Fair'],'2')
dataset['Credit_rating'] = dataset['Credit_rating'].replace(['Good'],'3')
dataset['Credit_rating'] = dataset['Credit_rating'].replace(['Very Good'],'4')
dataset['Credit_rating'] = dataset['Credit_rating'].replace(['Exceptional'],'5')
dataset['Credit_rating'] = dataset['Credit_rating'].replace(['Eceptional'],'5')
return dataset
def data_encoding(self, dataset):
ct = ColumnTransformer(transformers = [('encoder', OneHotEncoder(), [4])], remainder='passthrough')
ds = np.array(ct.fit_transform(dataset))
ds_columns = dataset.columns
ds_columns = ds_columns.drop('Race')
ds_columns = ds_columns.insert(0,'r_a')
ds_columns = ds_columns.insert(1,'r_b')
ds_columns = ds_columns.insert(2,'r_l')
ds_columns = ds_columns.insert(3,'r_w')
ds = pd.DataFrame(ds, columns=ds_columns)
return ds
def more_preprocessing(self, dataset):
dataset = dataset.drop(['Suitability'], axis=1)
dataset = dataset.drop(['Target'], axis=1)
dataset = dataset.drop(['NumberofRaters'], axis=1)
return dataset
def get_lasso_best_alpha(self, in_this_dataset):
#X and Y values
X = in_this_dataset.iloc[0:len(in_this_dataset), :-1]
y = in_this_dataset.iloc[0:len(in_this_dataset), -1:]
#Train/Test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#Lasso instance
from sklearn.linear_model import LassoCV
lassoregcv = LassoCV(n_alphas=100, normalize=False, random_state=1)
#Fit lasso model
lassoregcv.fit(X_train, y_train)
#model score
lassoregcv.score(X_test, y_test), lassoregcv.score(X_train, y_train)
#return the alpha
return lassoregcv.alpha_
def compute_lasso(self, in_this_dataset, alpha_value):
#X and Y values
X = in_this_dataset.iloc[0:len(in_this_dataset), :-1]
y = in_this_dataset.iloc[0:len(in_this_dataset), -1:]
dfX = X
#Train/Test split
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
#Lasso instance
lasso = Lasso(alpha=alpha_value, max_iter=10000)
#Fit lasso model
lasso.fit(X_train, y_train)
#model score
lasso.score(X_test, y_test), lasso.score(X_train, y_train)
#return lasso and features
return lasso, pd.Series(lasso.coef_, index=dfX.columns)
def run_regressor(self, dataset_param, features):
regressor = 0
user_id = ''
group_id = ''
accuracy = 0
rmse_scores = 0
dataset_param = dataset_param[features]
X = dataset_param.iloc[0:len(dataset_param), :-1]
y = dataset_param.iloc[0:len(dataset_param), -1:]
X = X.astype(float)
y = y.astype(float)
#split dataset into train/test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
#creating the model
from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
#train the model
regressor.fit(X_train, y_train)
#testing the model
y_pred = regressor.predict(X_test)
for pred in y_pred:
pred[0] = round(pred[0])
from sklearn.metrics import mean_squared_error
score = np.sqrt(mean_squared_error(y_test, y_pred))
return regressor, score
def run_random_forest(self, dataset_param, features, file_with_scores='dt_scores.csv', save_report=False):
classifier = 0
user_id = ''
group_id = ''
accuracy = 0
rmse_scores = 0
dataset_param = dataset_param[features]
X = dataset_param.iloc[0:len(dataset_param), :-1]
y = dataset_param.iloc[0:len(dataset_param), -1:]
X = X.astype(float)
y = y.astype(float)
#split dataset into train/test
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
#creating the model
from sklearn.ensemble import RandomForestRegressor
regressor = RandomForestRegressor(n_estimators = 50, random_state = 0)
#train the model
regressor.fit(X_train, y_train)
#testing the model
y_pred = regressor.predict(X_test)
#compute scores
from sklearn.metrics import mean_squared_error
score = np.sqrt(mean_squared_error(y_test, y_pred))
return regressor, score
def run_grid_search_cv(self, dataset_param):
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor
from sklearn.metrics import mean_squared_error
X = dataset_param.iloc[0:len(dataset_param), :-1]
y = dataset_param.iloc[0:len(dataset_param), -1:]
X = X.astype(float)
y = (y.astype(float))
params = {'max_depth': [2,3,4,5], 'max_features': ['auto', 'sqrt', 'log2'],'warm_start': [True, False], 'min_samples_split': [2, 5, 10, 15, 20]}
grid_search_cv = GridSearchCV(ExtraTreesRegressor(n_estimators=50, random_state=42), params, verbose=1, cv=3)#, n_jobs=-1)
grid_search_cv.fit(X, y.values.ravel())
y_pred = grid_search_cv.best_estimator_.predict(X)
score = np.sqrt(mean_squared_error(y, y_pred))
return grid_search_cv.best_estimator_, score
def get_feats_from(self, col_names):
all_feat_names = pd.DataFrame(col_names)
all_feat_names = all_feat_names.T
feats_to_use = []
for f in all_feat_names.columns:
val = all_feat_names[f]
if abs(val[0]) > 0.0003:
feats_to_use.append(f)
feats_to_use.append('User_choice')
return feats_to_use
def remove_feats_for_reg_in(self, ds_for_feat_selection):
# ds_for_feat_selection = ds_for_feat_selection.drop(['User'], axis=1)
ds_for_feat_selection = ds_for_feat_selection.drop(['Treatment'], axis=1)
ds_for_feat_selection = ds_for_feat_selection.drop(['TreatID'], axis=1)
return ds_for_feat_selection
def deal_with_null_cases(self):
return ['Credit_rating', 'Attractive','Disgusted', 'Feminine','Sad', 'Trustworthy', 'User_choice']
def save_model(self, folder, file_name, classifier):
import pickle
classifier_file_name = folder + file_name + '.pkl'
with open(classifier_file_name, 'wb') as file:
pickle.dump(classifier, file)
def load_model(self, file_name):
import pickle
classifer = 0
with open(file_name, 'rb') as file:
classifier = pickle.load(file)
return classifier
def get_feat_importance_for_this(self, model, user_data_set):
key_list = user_data_set.columns.tolist()
feat_importance_ = model.feature_importances_
# feat_importance_map = {}
# for key in key_list:
# feat_importance_map[key] = 0
# for i in range(0, len(feat_importance_)):
# feat_importance_map[temp[i]] = feat_importance_[i]
feat_importance_map = zip(key_list, feat_importance_)
return feat_importance_map
def get_lasso_coef(self, dataset_param, srs):
allKeys = dataset_param.columns.tolist()
map_feat_lasso = {}
for key in allKeys:
map_feat_lasso[key] = srs.get(key)
return map_feat_lasso
def whole_procedure(self, user):
self.dataset = self.pre_processing(self.dataset)
self.dataset = self.data_encoding(self.dataset)
#print(self.dataset)
self.dataset = self.more_preprocessing(self.dataset)
self.dataset = self.remove_feats_for_reg_in(self.dataset)
# alpha = self.get_lasso_best_alpha(in_this_dataset=self.dataset)
# lasso, cnames = self.compute_lasso(in_this_dataset=self.dataset, alpha_value=alpha)
feats_to_use = []
# feats_to_use = self.get_feats_from(col_names=cnames)
#less than 1% of the models will have only one featured selected - we
#use the ones pointed by the REF in these cases
# if len(feats_to_use) <= 1:
# feats_to_use = self.deal_with_null_cases()
rf_reg, rf_score = self.run_grid_search_cv(dataset_param=self.dataset)
# reg, reg_score = self.run_regressor(dataset_param=self.dataset, features=feats_to_use)
self.save_model(folder='rf_regs/', file_name=user, classifier=rf_reg)
# self.save_model(folder='regs/', file_name=user, classifier=reg)
# self.bestAlpha = alpha
# self.lassoCoef = self.get_lasso_coef(dataset_param=self.dataset, srs=cnames)
self.lin_reg_feats = feats_to_use
# self.reg_rmse = reg_score
self.feat_importance_map = self.get_feat_importance_for_this(model=rf_reg, user_data_set=self.dataset)
self.rf_rmse = rf_score
def pre_process_for_rec(self):
self.dataset = self.pre_processing(self.dataset)
self.dataset = self.data_encoding(self.dataset)
self.dataset = self.more_preprocessing(self.dataset)
# self.dataset = self.remove_feats_for_reg_in(self.dataset)
return self.dataset
def rec(self, user):
model = self.load_model('rf_regs/' + user + '.pkl')
self.dataset = self.pre_process_for_rec()
x = self.remove_feats_for_reg_in(self.dataset)
x = x.astype(float)
self.dataset['prediction'] = model.predict(x)
recommendation = pd.Series(self.dataset.prediction.values, index=self.dataset.TreatID).to_dict()
return recommendation