forked from rutgers/machine_learning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
35 lines (24 loc) · 751 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Setosa, Versicolour, and Virginica
# Sepal Length, Sepal Width, Petal Length and Petal Width.
import sklearn
from sklearn import datasets
from sklearn import svm
import numpy as np
from sklearn import cross_validation
from sklearn.metrics import accuracy_score,accuracy_score, confusion_matrix
iris = datasets.load_iris()
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X, y, test_size = 0.2)
model = svm.SVC()
model.fit(X_train,y_train)
#pred = model.predict([[2,2,2,2]])
pred = model.predict(X_test)
accuracy = accuracy_score(y_test, pred)
print 'Prediction:'
print pred
print ''
print 'Accuracy of: ', accuracy
print ''
print 'Confusion Matrix:'
print confusion_matrix(y_test, pred)