From 17bac0817a36d9430ec25e3f68ec80379ffa9752 Mon Sep 17 00:00:00 2001 From: Chris Markiewicz Date: Thu, 30 May 2024 11:21:15 -0400 Subject: [PATCH] RF: Slightly simplify cosine implementation --- nipype/algorithms/confounds.py | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/nipype/algorithms/confounds.py b/nipype/algorithms/confounds.py index ccb22b5066..dba0545e8c 100644 --- a/nipype/algorithms/confounds.py +++ b/nipype/algorithms/confounds.py @@ -1535,7 +1535,6 @@ def _cosine_drift(period_cut, frametimes): Ref: http://en.wikipedia.org/wiki/Discrete_cosine_transform DCT-II """ len_tim = len(frametimes) - n_times = np.arange(len_tim) hfcut = 1.0 / period_cut # input parameter is the period # frametimes.max() should be (len_tim-1)*dt @@ -1543,13 +1542,15 @@ def _cosine_drift(period_cut, frametimes): # hfcut = 1/(2*dt) yields len_time # If series is too short, return constant regressor order = max(int(np.floor(2 * len_tim * hfcut * dt)), 1) - cdrift = np.zeros((len_tim, order)) - nfct = np.sqrt(2.0 / len_tim) + cdrift = np.ones((len_tim, order)) - for k in range(1, order): - cdrift[:, k] = nfct * np.cos((np.pi / len_tim) * (n_times + 0.5) * k) + if order > 1: + nfct = np.sqrt(2.0 / len_tim) + support = (np.pi / len_tim) * (np.arange(len_tim) + 0.5) + + for k in range(1, order): + cdrift[:, k] = nfct * np.cos(support * k) - cdrift[:, 0] = 1.0 # or 1./sqrt(len_tim) to normalize return cdrift