-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmeters.py
38 lines (31 loc) · 1.2 KB
/
meters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import os
import json
import numpy as np
import os.path as osp
import matplotlib.pyplot as plt
def save_json(filename, data):
with open(filename, 'w') as f:
json.dump(data, f)
def average_accuracy(ious, save_fig=False, output_dir='./output', filename='accuracy_results'):
accuracy = []
average_accuracy = 0
thresholds = np.arange(0, 1, 0.00001)
for t in thresholds:
predictions = (ious >= t).astype(int)
TP = np.sum(predictions)
a = TP / len(predictions)
accuracy.append(a)
for i, t in enumerate(zip(thresholds[:-1], thresholds[1:])):
average_accuracy += (np.abs(t[1]-t[0])) * accuracy[i]
if save_fig:
if not osp.exists(output_dir):
os.mkdir(output_dir)
save_json(osp.join(output_dir, '{:s}.json'.format(filename)), {'accuracy': accuracy})
plt.plot(thresholds, accuracy)
plt.xlim(0, 1)
plt.xlabel('IoU')
plt.ylim(0, 1)
plt.ylabel('Accuracy')
plt.title('Accuracy-IoU curve. AA={:.5f}'.format(average_accuracy))
plt.savefig(osp.join(output_dir, '{:s}_curve.png'.format(filename)))
return average_accuracy