-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_png.py
639 lines (548 loc) · 26.1 KB
/
generate_png.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
from typing import Optional, Union, Tuple, List, Callable, Dict
from tqdm import tqdm
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
import torch.nn.functional as nnf
import numpy as np
import abc
import ptp_utils
import seq_aligner
import shutil
from torch.optim.adam import Adam
from PIL import Image
import torch.nn as nn
import re
import cv2
import matplotlib.pyplot as plt
MY_TOKEN = ''
LOW_RESOURCE = False
NUM_DDIM_STEPS = 20
GUIDANCE_SCALE = 7.5
MAX_NUM_WORDS = 77
class LocalBlend:
def get_mask(self, maps, alpha, use_pool):
k = 1
maps = (maps * alpha).sum(-1).mean(1)
if use_pool:
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
mask = nnf.interpolate(maps, size=(x_t.shape[2:]))
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
mask = mask.gt(self.th[1-int(use_pool)])
mask = mask[:1] + mask
return mask
def __call__(self, x_t, attention_store):
self.counter += 1
if self.counter > self.start_blend:
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
maps = torch.cat(maps, dim=1)
mask = self.get_mask(maps, self.alpha_layers, True)
if self.substruct_layers is not None:
maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
mask = mask * maps_sub
mask = mask.float()
x_t = x_t[:1] + mask * (x_t - x_t[:1])
return x_t
def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
for i, (prompt, words_) in enumerate(zip(prompts, words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
alpha_layers[i, :, :, :, :, ind] = 1
if substruct_words is not None:
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
if type(words_) is str:
words_ = [words_]
for word in words_:
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
substruct_layers[i, :, :, :, :, ind] = 1
self.substruct_layers = substruct_layers.to(device)
else:
self.substruct_layers = None
self.alpha_layers = alpha_layers.to(device)
self.start_blend = int(start_blend * NUM_DDIM_STEPS)
self.counter = 0
self.th=th
class EmptyControl:
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
def __call__(self, attn, is_cross: bool, place_in_unet: str):
return attn
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return self.num_att_layers if LOW_RESOURCE else 0
@abc.abstractmethod
def forward (self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if LOW_RESOURCE:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0]
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class SpatialReplace(EmptyControl):
def step_callback(self, x_t):
if self.cur_step < self.stop_inject:
b = x_t.shape[0]
x_t = x_t[:1].expand(b, *x_t.shape[1:])
return x_t
def __init__(self, stop_inject: float):
super(SpatialReplace, self).__init__()
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 64 ** 2: # avoid memory overhead
self.step_store[key].append(attn.cpu())
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
Tuple[float, ...]]):
if type(word_select) is int or type(word_select) is str:
word_select = (word_select,)
equalizer = torch.ones(1, 77)
for word, val in zip(word_select, values):
inds = ptp_utils.get_word_inds(text, word, tokenizer)
equalizer[:, inds] = val
return equalizer
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out = out.sum(0) / out.shape[0]
return out.cpu()
def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0):
tokens = tokenizer.encode(prompts[select])
decoder = tokenizer.decode
attention_maps = aggregate_attention(attention_store, res, from_where, True, select)
images = []
for i in range(len(tokens)):
image = attention_maps[:, :, i]
image = 255 * image / image.max()
image = image.unsqueeze(-1).expand(*image.shape, 3)
image = image.numpy().astype(np.uint8)
image = np.array(Image.fromarray(image).resize((256, 256)))
image = ptp_utils.text_under_image(image, decoder(int(tokens[i])))
images.append(image)
pil_img = ptp_utils.view_images(np.stack(images, axis=0))
return pil_img
def save_noun_cross_attenton(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0,noun_idx:List[int]=[],image_id=None):
attention_maps = aggregate_attention(attention_store, res, from_where, True, select)
save_ts = attention_maps
torch.save(save_ts,f'./outputs/attn_db/{image_id}.pt')
def save_torch_tensor(ts,path):
# if not osp.exists(path):
torch.save(ts,path)
def save_multi_scale_attention_map(attention_store: AttentionStore,tag_id=None,idx=None):
if not osp.exists(f'./outputs/attn_db/{tag_id}/cross16_{idx}.pt'):
cross_16 = aggregate_attention(attention_store,16,['down','up'],is_cross=True,select=0)
save_torch_tensor(cross_16,f'./outputs/attn_db/{tag_id}/cross16_{idx}.pt')
if not osp.exists(f'./outputs/attn_db/{tag_id}/cross32_{idx}.pt'):
cross_32 = aggregate_attention(attention_store,32,['down','up'],is_cross=True,select=0)
save_torch_tensor(cross_32,f'./outputs/attn_db/{tag_id}/cross32_{idx}.pt')
if not osp.exists(f'./outputs/attn_db/{tag_id}/cross64_{idx}.pt'):
cross_64 = aggregate_attention(attention_store,64,['down','up'],is_cross=True,select=0)
save_torch_tensor(cross_64,f'./outputs/attn_db/{tag_id}/cross64_{idx}.pt')
if not osp.exists(f'./outputs/attn_db/{tag_id}/self_16.pt'):
self_16 = aggregate_attention(attention_store,16,['down','up'],is_cross=False,select=0)
save_torch_tensor(self_16,f'./outputs/attn_db/{tag_id}/self_16.pt')
if not osp.exists(f'./outputs/attn_db/{tag_id}/self_32.pt'):
self_32 = aggregate_attention(attention_store,32,['down','up'],is_cross=False,select=0)
save_torch_tensor(self_32,f'./outputs/attn_db/{tag_id}/self_32.pt')
#
if not osp.exists(f'./outputs/attn_db/{tag_id}/self_64.pt'):
self_64 = aggregate_attention(attention_store,64,['down','up'],is_cross=False,select=0)
save_torch_tensor(self_64,f'./outputs/attn_db/{tag_id}/self_64.pt')
def load_512(image_path, left=0, right=0, top=0, bottom=0):
if type(image_path) is str:
image = np.array(Image.open(image_path))
if len(image.shape)==2:
image = image[:,:,np.newaxis].repeat(3,axis=2)
else:
image = image_path
image = np.array(Image.fromarray(image).resize((512, 512)))
return image
class NullInversion:
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
return prev_sample
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
beta_prod_t = 1 - alpha_prod_t
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output # noise?
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
return next_sample
def get_noise_pred_single(self, latents, t, context):
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"]
return noise_pred
def get_noise_pred(self, latents, t, is_forward=True, context=None):
latents_input = torch.cat([latents] * 2)
if context is None:
context = self.context
guidance_scale = 1 if is_forward else GUIDANCE_SCALE
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
if is_forward:
latents = self.next_step(noise_pred, t, latents)
else:
latents = self.prev_step(noise_pred, t, latents)
return latents
@torch.no_grad()
def latent2image(self, latents, return_type='np'):
latents = 1 / 0.18215 * latents.detach()
image = self.model.vae.decode(latents)['sample']
if return_type == 'np':
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = (image * 255).astype(np.uint8)
return image
@torch.no_grad()
def image2latent(self, image):
with torch.no_grad():
if type(image) is Image:
image = np.array(image)
if type(image) is torch.Tensor and image.dim() == 4:
latents = image
else:
image = torch.from_numpy(image).float() / 127.5 - 1
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
latents = self.model.vae.encode(image)['latent_dist'].mean
latents = latents * 0.18215
return latents
@torch.no_grad()
def init_prompt(self, prompt: str):
uncond_input = self.model.tokenizer(
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
return_tensors="pt"
)
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
text_input = self.model.tokenizer(
[prompt],
padding="max_length",
max_length=self.model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
self.context = torch.cat([uncond_embeddings, text_embeddings])
self.prompt = prompt
@torch.no_grad()
def ddim_loop(self, latent):
uncond_embeddings, cond_embeddings = self.context.chunk(2)
all_latent = [latent]
latent = latent.clone().detach()
for i in range(NUM_DDIM_STEPS):
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings) # 先得到初始隐变量对应的噪声
latent = self.next_step(noise_pred, t, latent) #
all_latent.append(latent)
return all_latent
@property
def scheduler(self):
return self.model.scheduler
@torch.no_grad()
def ddim_inversion(self, image):
latent = self.image2latent(image)
image_rec = self.latent2image(latent)
ddim_latents = self.ddim_loop(latent)
return image_rec, ddim_latents
def null_optimization(self, latents, num_inner_steps, epsilon):
uncond_embeddings, cond_embeddings = self.context.chunk(2)
uncond_embeddings_list = []
latent_cur = latents[-1]
# bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
for i in range(NUM_DDIM_STEPS):
uncond_embeddings = uncond_embeddings.clone().detach()
uncond_embeddings.requires_grad = True
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
latent_prev = latents[len(latents) - i - 2]
t = self.model.scheduler.timesteps[i]
with torch.no_grad():
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
for j in range(num_inner_steps):
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_item = loss.item()
# bar.update()
if loss_item < epsilon + i * 2e-5:
break
# for j in range(j + 1, num_inner_steps):
# bar.update()
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
with torch.no_grad():
context = torch.cat([uncond_embeddings, cond_embeddings])
latent_cur = self.get_noise_pred(latent_cur, t, False, context)
# bar.close()
return uncond_embeddings_list
def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
self.init_prompt(prompt)
ptp_utils.register_attention_control(self.model, None)
image_gt = load_512(image_path, *offsets)
if verbose:
print("DDIM inversion...")
image_rec, ddim_latents = self.ddim_inversion(image_gt)
if verbose:
print("Null-text optimization...")
uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon)
return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings
def __init__(self, model):
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
set_alpha_to_one=False)
self.model = model
self.tokenizer = self.model.tokenizer
self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
self.prompt = None
self.context = None
def view_images(images, num_rows=1, offset_ratio=0.02):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
return pil_img
def save_visualize_cross_attn_map(cross_attn,decoder,tokens,file_name):
cross_attn = cross_attn.permute(2,0,1)
vis_images = []
for j in range(len(tokens)):
vis_img = cross_attn[j]
vis_img = vis_img - vis_img.min()
vis_img= 255*vis_img / vis_img.max()
vis_img = np.repeat(np.expand_dims(vis_img, axis=2), 3, axis=2).astype(np.uint8)
vis_img = np.array(Image.fromarray(vis_img).resize((256, 256)))
vis_img = ptp_utils.text_under_image(vis_img, decoder(int(tokens[j])))
vis_img = np.array(vis_img)
vis_images.append(vis_img)
view_images(np.concatenate(vis_images, axis=1)).save(f'./outputs/nulltext_png_multi-step/{file_name}.png')
@torch.no_grad()
def text2image_ldm_stable(
model,
prompt: List[str],
controller,
num_inference_steps: int = 50,
guidance_scale: Optional[float] = 7.5,
generator: Optional[torch.Generator] = None,
latent: Optional[torch.FloatTensor] = None,
uncond_embeddings=None,
start_time=50,
return_type='image',
file_name=None,
):
batch_size = len(prompt)
ptp_utils.register_attention_control(model, controller)
height = width = 512
text_input = model.tokenizer(
prompt,
padding="max_length",
max_length=model.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
max_length = text_input.input_ids.shape[-1]
if uncond_embeddings is None:
uncond_input = model.tokenizer(
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
)
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
else:
uncond_embeddings_ = None
latent, latents = ptp_utils.init_latent(latent, model, height, width, generator, batch_size)
model.scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(model.scheduler.timesteps[-start_time:]):
if uncond_embeddings_ is None:
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
else:
context = torch.cat([uncond_embeddings_, text_embeddings])
latents = ptp_utils.diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False)
if return_type == 'image':
image = ptp_utils.latent2image(model.vae, latents)
else:
image = latents
return image, latent
def run_and_display(prompts, controller, latent=None, run_baseline=False, generator=None, uncond_embeddings=None, verbose=True,file_name=None):
if run_baseline:
print("w.o. prompt-to-prompt")
images, latent = run_and_display(prompts, EmptyControl(), latent=latent, run_baseline=False, generator=generator)
print("with prompt-to-prompt")
images, x_t = text2image_ldm_stable(ldm_stable, prompts, controller, latent=latent, num_inference_steps=NUM_DDIM_STEPS, guidance_scale=GUIDANCE_SCALE, generator=generator, uncond_embeddings=uncond_embeddings,file_name=file_name)
if verbose:
ptp_utils.view_images(images)
return images, x_t
def split_text(text):
words_and_punctuation = re.findall(r"[\w']+|[.,!?;]", text)
return words_and_punctuation
def setup_for_distributed(is_master):
"""
This function disables printing when not in master process
"""
import builtins as __builtin__
builtin_print = __builtin__.print
def print(*args, **kwargs):
force = kwargs.pop('force', False)
if is_master or force:
builtin_print(*args, **kwargs)
__builtin__.print = print
def is_main_process():
return dist.get_rank() == 0
from collections import Counter
def get_unique_elements(my_list):
element_counts = Counter(my_list)
unique_elements = [element for element, count in element_counts.items() if count == 1]
return unique_elements
def find_nearest_period_index(word_list):
target_index = 74
nearest_period_index = None
for i, word in enumerate(word_list[:75]):
if word == '.':
nearest_period_index = i
elif i == target_index:
break
return nearest_period_index
def split_sentences(token_list):
assert len(token_list)>75
splited_sentences = []
while len(token_list)>75:
s_end_idx = find_nearest_period_index(token_list)
if s_end_idx is None:
splited_sentences.append(token_list[:75])
token_list = token_list[75:]
else:
splited_sentences.append(token_list[:s_end_idx+1])
token_list = token_list[s_end_idx+1:]
if len(token_list)!=0:
splited_sentences.append(token_list)
return splited_sentences
import json
import os.path as osp
import torch.distributed as dist
import os
if __name__=='__main__':
dist.init_process_group(backend="nccl", init_method='env://', world_size=-1, rank=-1, group_name='')
setup_for_distributed(is_main_process())
local_rank = dist.get_rank()
world_size = dist.get_world_size()
torch.cuda.set_device(local_rank)
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
ldm_stable = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=MY_TOKEN, scheduler=scheduler).to(device)
tokenizer = ldm_stable.tokenizer
data = json.load(open("./ppmn_narr_list.json"))
null_inversion = NullInversion(ldm_stable)
for idx,i in tqdm(enumerate(range(len(data))),total=len(data)):
if i %world_size!=local_rank:
continue
image_id = data[i]['image_id']
tag_id = data[i]['tag_id']
if osp.exists(f'./outputs/attn_db/{tag_id}/'):
pass
else:
os.makedirs(f'./outputs/attn_db/{tag_id}')
# load image
image_path = osp.join(
"./datasets/coco/val2017",
"{:012d}.jpg".format(int(image_id)),
)
prompt = data[i]['caption']
tokens = split_text(prompt)
clip_tokens_ids = ldm_stable.tokenizer(prompt)['input_ids']
clip_tokens = [ldm_stable.tokenizer.decode(i) for i in clip_tokens_ids[1:-1]]
if len(clip_tokens) <=75:
sentences = [prompt]
else:
splited_tokens = split_sentences(clip_tokens)
sentences = []
start = 0
clip_tokens_ids_valid = clip_tokens_ids[1:-1] # BOS EOS
for i in range(len(splited_tokens)):
print(start,'end={}'.format(start+len(splited_tokens[i])))
sentences += [ldm_stable.tokenizer.decode([clip_tokens_ids[0]] + clip_tokens_ids_valid[start:start+len(splited_tokens[i])] + [clip_tokens_ids[-1]] )[15:-14]]
start += len(splited_tokens[i])
for idx,p in enumerate(sentences):
(image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, p, offsets=(0,0,0,0), verbose=True)
prompts=[p]
controller = AttentionStore()
image_inv, x_t = run_and_display(prompts, controller, run_baseline=False, latent=x_t, uncond_embeddings=uncond_embeddings, verbose=False,file_name=f'{tag_id}_{idx}')
save_multi_scale_attention_map(controller,tag_id,idx)
print(f'save:{tag_id}_{idx}')