-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
48 lines (37 loc) · 1.34 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import pandas as pd
from fancyimpute import KNN
from flask import Flask, request, jsonify
app = Flask('knn')
@app.route('/knn', methods=['POST'])
def knn():
args = request.args.to_dict(flat=False)
neighbours = args.get("neighbours", 5)
impute_columns = args.get("impute_columns", [])
impute_columns = [eval(i) for i in impute_columns]
data = request.files.get('file')
# url = "https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/abalone.data"
data = pd.read_csv(data, header=None)
for col in data.columns:
if data[col].dtype == 'object':
data[col] = data[col].astype('category')
data[col] = data[col].cat.codes
columns = data.columns
data = data.values
data_out = KNN(k=neighbours).fit_transform(data)
data_out = pd.DataFrame(data_out, columns=columns)
data_out = data_out[impute_columns]
data_dict = dict()
for col in data_out.columns:
data_dict[col] = data_out[col].values.tolist()
jsonify_data = jsonify(data_dict)
return jsonify_data, 200
if __name__ == '__main__':
if os.name == 'nt':
temp_dir = os.environ.get('Temp')
else:
temp_dir = '/tmp'
pid = open(os.path.join(temp_dir, 'knn_pid.txt'), 'w')
pid.write(str(os.getpid()))
pid.close()
app.run(host='0.0.0.0', port=5353, threaded=True)