forked from MingchaoZhu/DeepLearning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchapter6.py
411 lines (339 loc) · 12 KB
/
chapter6.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
from abc import ABC, abstractmethod
import numpy as np
import time
import re
import inspect
from collections import OrderedDict
import sys
sys.path.append('../')
from method.optimizer import OptimizerInitializer
from method.weight import WeightInitializer
from method.activation import ActivationInitializer
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def softmax(x):
e_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
return e_x / e_x.sum(axis=-1, keepdims=True)
class LayerBase(ABC):
def __init__(self, optimizer="sgd"):
self.X = [] # 网络层输入
self.gradients = {} # 网络层待梯度更新变量
self.params = {} # 网络层参数变量
self.acti_fn = None # 网络层激活函数
self.optimizer = OptimizerInitializer(optimizer)() # 网络层优化方法
@abstractmethod
def _init_params(self, **kwargs):
"""
函数作用:初始化参数
"""
raise NotImplementedError
@abstractmethod
def forward(self, X, **kwargs):
"""
函数作用:前向传播
"""
raise NotImplementedError
@abstractmethod
def backward(self, out, **kwargs):
"""
函数作用:反向传播
"""
raise NotImplementedError
def flush_gradients(self):
"""
函数作用:重置更新参数列表
"""
self.X = []
for k, v in self.gradients.items():
self.gradients[k] = np.zeros_like(v)
for k, v in self.derived_variables.items():
self.derived_variables[k] = []
def update(self):
"""
函数作用:更新参数
"""
for k, v in self.gradients.items():
if k in self.params:
self.params[k] = self.optimizer(self.params[k], v, k)
class FullyConnected(LayerBase):
"""
定义全连接层,实现 a=g(x*W+b),前向传播输入x,返回a;反向传播输入
"""
def __init__(self, n_out, acti_fn, init_w, optimizer=None):
"""
参数说明:
acti_fn:激活函数, str型
init_w:权重初始化方法, str型
n_out:隐藏层输出维数
optimizer:优化方法
"""
super().__init__(optimizer)
self.n_in = None # 隐藏层输入维数, int型
self.n_out = n_out # 隐藏层输出维数, int型
self.acti_fn = ActivationInitializer(acti_fn)()
self.init_w = init_w
self.init_weights = WeightInitializer(mode=init_w)
self.is_initialized = False # 是否初始化, bool型变量
def _init_params(self):
b = np.zeros((1, self.n_out))
W = self.init_weights((self.n_in, self.n_out))
self.params = {"W": W, "b": b}
self.gradients = {"W": np.zeros_like(W), "b": np.zeros_like(b)}
self.derived_variables = {"Z": []}
self.is_initialized = True
def forward(self, X, retain_derived=True):
"""
全连接网络的前向传播,原理见上文 反向传播算法 部分。
参数说明:
X:输入数组,为(n_samples, n_in),float型
retain_derived:是否保留中间变量,以便反向传播时再次使用,bool型
"""
if not self.is_initialized: # 如果参数未初始化,先初始化参数
self.n_in = X.shape[1]
self._init_params()
W = self.params["W"]
b = self.params["b"]
z = X @ W + b
a = self.acti_fn.forward(z)
if retain_derived:
self.X.append(X)
return a
def backward(self, dLda, retain_grads=True):
"""
全连接网络的反向传播,原理见上文 反向传播算法 部分。
参数说明:
dLda:关于损失的梯度,为(n_samples, n_out),float型
retain_grads:是否计算中间变量的参数梯度,bool型
"""
if not isinstance(dLda, list):
dLda = [dLda]
dX = []
X = self.X
for da, x in zip(dLda, X):
dx, dw, db = self._bwd(da, x)
dX.append(dx)
if retain_grads:
self.gradients["W"] += dw
self.gradients["b"] += db
return dX[0] if len(X) == 1 else dX
def _bwd(self, dLda, X):
W = self.params["W"]
b = self.params["b"]
Z = X @ W + b
dZ = dLda * self.acti_fn.grad(Z)
dX = dZ @ W.T
dW = X.T @ dZ
db = dZ.sum(axis=0, keepdims=True)
return dX, dW, db
@property
def hyperparams(self):
return {
"layer": "FullyConnected",
"init_w": self.init_w,
"n_in": self.n_in,
"n_out": self.n_out,
"acti_fn": str(self.acti_fn),
"optimizer": {
"hyperparams": self.optimizer.hyperparams,
},
"components": {
k: v for k, v in self.params.items()
}
}
class ObjectiveBase(ABC):
def __init__(self):
super().__init__()
@abstractmethod
def loss(self, y_true, y_pred):
"""
函数作用:计算损失
"""
raise NotImplementedError
@abstractmethod
def grad(self, y_true, y_pred, **kwargs):
"""
函数作用:计算代价函数的梯度
"""
raise NotImplementedError
class SquaredError(ObjectiveBase):
"""
二次代价函数。
"""
def __init__(self):
super().__init__()
def __call__(self, y_true, y_pred):
return self.loss(y_true, y_pred)
def __str__(self):
return "SquaredError"
@staticmethod
def loss(y_true, y_pred):
"""
参数说明:
y_true:训练的 n 个样本的真实值, 形状为(n,m)数组;
y_pred:训练的 n 个样本的预测值, 形状为(n,m)数组;
"""
(n, _) = y_true.shape
return 0.5 * np.linalg.norm(y_pred - y_true) ** 2 / n
@staticmethod
def grad(y_true, y_pred, z, acti_fn):
(n, _) = y_true.shape
return (y_pred - y_true) * acti_fn.grad(z) / n
class CrossEntropy(ObjectiveBase):
"""
交叉熵代价函数。
"""
def __init__(self):
super().__init__()
def __call__(self, y_true, y_pred):
return self.loss(y_true, y_pred)
def __str__(self):
return "CrossEntropy"
@staticmethod
def loss(y_true, y_pred):
"""
参数说明:
y_true:训练的 n 个样本的真实值, 要求形状为(n,m)二进制(每个样本均为 one-hot 编码);
y_pred:训练的 n 个样本的预测值, 形状为(n,m);
"""
(n, _) = y_true.shape
eps = np.finfo(float).eps # 防止 np.log(0)
cross_entropy = -np.sum(y_true * np.log(y_pred + eps)) / n
return cross_entropy
@staticmethod
def grad(y_true, y_pred):
(n, _) = y_true.shape
grad = (y_pred - y_true) / n
return grad
def minibatch(X, batchsize=256, shuffle=True):
"""
函数作用:将数据集分割成 batch, 基于 mini batch 训练。
"""
N = X.shape[0]
idx = np.arange(N)
n_batches = int(np.ceil(N / batchsize))
if shuffle:
np.random.shuffle(idx)
def mb_generator():
for i in range(n_batches):
yield idx[i * batchsize : (i + 1) * batchsize]
return mb_generator(), n_batches
class DFN(object):
def __init__(
self,
hidden_dims_1=None,
hidden_dims_2=None,
optimizer="sgd(lr=0.01)",
init_w="std_normal",
loss=CrossEntropy()
):
self.optimizer = optimizer
self.init_w = init_w
self.loss = loss
self.hidden_dims_1 = hidden_dims_1
self.hidden_dims_2 = hidden_dims_2
self.is_initialized = False
def _set_params(self):
"""
函数作用:模型初始化
FC1 -> Sigmoid -> FC2 -> Softmax
"""
self.layers = OrderedDict()
self.layers["FC1"] = FullyConnected(
n_out=self.hidden_dims_1,
acti_fn="sigmoid",
init_w=self.init_w,
optimizer=self.optimizer
)
self.layers["FC2"] = FullyConnected(
n_out=self.hidden_dims_2,
acti_fn="affine(slope=1, intercept=0)",
init_w=self.init_w,
optimizer=self.optimizer
)
self.is_initialized = True
def forward(self, X_train):
Xs = {}
out = X_train
for k, v in self.layers.items():
Xs[k] = out
out = v.forward(out)
return out, Xs
def backward(self, grad):
dXs = {}
out = grad
for k, v in reversed(list(self.layers.items())):
dXs[k] = out
out = v.backward(out)
return out, dXs
def update(self):
"""
函数作用:梯度更新
"""
for k, v in reversed(list(self.layers.items())):
v.update()
self.flush_gradients()
def flush_gradients(self, curr_loss=None):
"""
函数作用:更新后重置梯度
"""
for k, v in self.layers.items():
v.flush_gradients()
def fit(self, X_train, y_train, n_epochs=20, batch_size=64, verbose=False, epo_verbose=True):
"""
参数说明:
X_train:训练数据
y_train:训练数据标签
n_epochs:epoch 次数
batch_size:每次 epoch 的 batch size
verbose:是否每个 batch 输出损失
epo_verbose:是否每个 epoch 输出损失
"""
self.verbose = verbose
self.n_epochs = n_epochs
self.batch_size = batch_size
if not self.is_initialized:
self.n_features = X_train.shape[1]
self._set_params()
prev_loss = np.inf
for i in range(n_epochs):
loss, epoch_start = 0.0, time.time()
batch_generator, n_batch = minibatch(X_train, self.batch_size, shuffle=True)
for j, batch_idx in enumerate(batch_generator):
batch_len, batch_start = len(batch_idx), time.time()
X_batch, y_batch = X_train[batch_idx], y_train[batch_idx]
out, _ = self.forward(X_batch)
y_pred_batch = softmax(out)
batch_loss = self.loss(y_batch, y_pred_batch)
grad = self.loss.grad(y_batch, y_pred_batch)
_, _ = self.backward(grad)
self.update()
loss += batch_loss
if self.verbose:
fstr = "\t[Batch {}/{}] Train loss: {:.3f} ({:.1f}s/batch)"
print(fstr.format(j + 1, n_batch, batch_loss, time.time() - batch_start))
loss /= n_batch
if epo_verbose:
fstr = "[Epoch {}] Avg. loss: {:.3f} Delta: {:.3f} ({:.2f}m/epoch)"
print(fstr.format(i + 1, loss, prev_loss - loss, (time.time() - epoch_start) / 60.0))
prev_loss = loss
def evaluate(self, X_test, y_test, batch_size=128):
acc = 0.0
batch_generator, n_batch = minibatch(X_test, batch_size, shuffle=True)
for j, batch_idx in enumerate(batch_generator):
batch_len, batch_start = len(batch_idx), time.time()
X_batch, y_batch = X_test[batch_idx], y_test[batch_idx]
y_pred_batch, _ = self.forward(X_batch)
y_pred_batch = np.argmax(y_pred_batch, axis=1)
y_batch = np.argmax(y_batch, axis=1)
acc += np.sum(y_pred_batch == y_batch)
return acc / X_test.shape[0]
@property
def hyperparams(self):
return {
"init_w": self.init_w,
"loss": str(self.loss),
"optimizer": self.optimizer,
"hidden_dims_1": self.hidden_dims_1,
"hidden_dims_2": self.hidden_dims_2,
"components": {k: v.params for k, v in self.layers.items()}
}