forked from tinkoff-ai/CORL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_eval_ETG.py
130 lines (108 loc) · 4.36 KB
/
test_eval_ETG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import jax
import optax
import flax
from algorithms.offline.rebrac_Fetch import DetActor, ActorTrainState, ReplayBuffer, Config
import gym
from algorithms.offline.rebrac_Fetch import wrap_env
import json
import metagym.quadrupedal
from typing import Any, Callable
import numpy as np
import argparse
from tqdm.auto import trange
# Load the TrainState from a file
def load_train_state(save_path, state_structure):
with open(save_path, 'rb') as f:
state_dict = flax.serialization.from_bytes(state_structure, f.read())
return state_dict
def create_train_state(actor_module, actor_key, init_state, actor_learning_rate):
return ActorTrainState.create(
apply_fn=actor_module.apply,
params=actor_module.init(actor_key, init_state),
target_params=actor_module.init(actor_key, init_state),
tx=optax.adam(learning_rate=actor_learning_rate),
)
def evaluate(
env: gym.Env,
params: jax.Array,
action_fn: Callable,
num_episodes: int,
seed: int,
) -> np.ndarray:
# env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
returns = []
success = []
for _ in trange(num_episodes, desc="Eval", leave=False):
obs, _ = env.reset()
done = False
# print("Observation:", obs)
# print("Observation_type:", type(obs))
total_reward = 0.0
while not done:
action = np.asarray(jax.device_get(action_fn(params, obs)))
obs, reward, done, info = env.step(action)
# print("Observation:", obs)
# print("Action:", action)
# print("New Obs:", obs)
# print("Reward:", reward)
# done = termination or truncation
total_reward += reward
# success.append(info['is_success'])
returns.append(total_reward)
print("Total reward:", total_reward)
# print("---"*10)
# print(f"{int(sum(success))} Suceess Episodes out of {len(success)}")
# print("---"*10)
# success_rate = sum(success)/len(success)
return np.array(returns)#, success_rate
def main(env_name, num_episodes, config_path, model_path, seed):
with open(config_path) as json_file:
config_dict = json.load(json_file)
config = Config.from_dict(Config, config_dict)
dataset_name = f'data/dataset_unitree_ground2.npy'
buffer = ReplayBuffer()
buffer.create_from_d4rl(
dataset_name, False, False
)
@jax.jit
def actor_action_fn(params: jax.Array, obs: jax.Array):
return actor.apply_fn(params, obs)
init_state = buffer.data["states"][0][None, ...]
init_action = buffer.data["actions"][0][None, ...]
key = jax.random.PRNGKey(seed=51)
key, actor_key, _ = jax.random.split(key, 3)
actor_module = DetActor(
action_dim=init_action.shape[-1],
hidden_dim=config.hidden_dim,
layernorm=config.actor_ln,
n_hiddens=config.actor_n_hiddens,
)
train_state_struc = create_train_state(actor_module, actor_key, init_state, config.actor_learning_rate)
actor = load_train_state(model_path, train_state_struc)
env = gym.make('quadrupedal-v0',render=1,task="ground")
env.action_space.seed(seed)
env.observation_space.seed(seed)
# env = wrap_env(env, buffer.mean, buffer.std)
eval_returns, eval_success = evaluate(
env,
actor.params,
actor_action_fn,
num_episodes,
seed=seed,
)
env.close()
if __name__ == "__main__":
# Set up the argument parser
parser = argparse.ArgumentParser(description="Evaluate a CORL pre-trained model.")
parser.add_argument("--env_name", type=str, default='FetchReach',help="Name of the environment to run.")
parser.add_argument("--config_path", type=str, default='data/saved_models/FetchPush/config.json', help="Path to the configuration JSON file.")
parser.add_argument("--model_path", type=str, default='data/saved_models/FetchPush/actor_state90.pkl', help="Path to the saved model.")
parser.add_argument("--num_episodes", type=int, default=5, help="Number of episodes to run.")
parser.add_argument("--seed", type=int, default=1, help="Random seed for reproducibility.")
# Parse the command-line arguments
args = parser.parse_args()
# Call the main function with the parsed arguments
main(args.env_name, args.num_episodes, args.config_path,
args.model_path, args.seed)