-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
309 lines (238 loc) · 8.5 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from math import inf
import numpy as np
import time
import random
class GUIInteract:
def __init__(self):
import tic_tac_toe_gui
self.gui = (
tic_tac_toe_gui.gui()
)
def move(self, board, turn):
self.board = board
self.update_screen()
move = self.selection()
self.board[move[0], move[1]] = turn
self.update_screen()
return move
def update_screen(self):
self.gui.draw_board()
self.gui.draw_xo(self.board)
def selection(self):
return self.gui.play()
def gui_final_state(self, board, final_eval_score):
self.gui.draw_line(board, final_eval_score)
def gui_show_status(self, board):
self.gui.show_status(board)
class DefaultOpponent:
def get_move(self, board, turn):
self.board = board
winning_move = self.check_winning_move(turn)
if winning_move is not None:
return winning_move
blocking_move = self.check_blocking_move(turn)
if blocking_move is not None:
return blocking_move
possible_moves = np.argwhere(self.board == 0)
move = np.random.permutation(possible_moves)[0]
return tuple(move)
def check_winning_move(self, turn):
for row in range(3):
for col in range(3):
if self.board[row][col] == 0:
self.board[row][col] = turn
if win_eval(self.board) == turn:
self.board[row][col] = 0
return row, col
self.board[row][col] = 0
return None
def check_blocking_move(self, turn):
antiturn = 2 if turn == 1 else 1
for row in range(3):
for col in range(3):
if self.board[row][col] == 0:
self.board[row][col] = antiturn
if win_eval(self.board) == antiturn:
self.board[row][col] = 0
return row, col
self.board[row][col] = 0
return None
class Random:
def get_move(self, board, turn):
self.board = board
possible_moves = np.argwhere(
self.board == 0
)
move = np.random.permutation(possible_moves)[
0
]
return (move[0], move[1])
def win_eval(board):
"""Fonction qui évalue une grille et renvoie : 0 si la partie n'est pas finie, 1 si O gagne, 2 si X gagne ou 3 si match nul"""
board = (
np.array(board) if type(board) == list else board
)
for x in range(3):
if board[x, 0] == board[x, 1] == board[x, 2] != 0:
return board[x, 0]
elif board[0, x] == board[1, x] == board[2, x] != 0:
return board[0, x]
elif board[0, 0] == board[1, 1] == board[2, 2] != 0:
return board[0, 0]
elif board[0, 2] == board[1, 1] == board[2, 0] != 0:
return board[0, 2]
if np.count_nonzero(board) < 9:
return 0
return 3
def score_eval(board, turn):
antiturn = 0
if turn == 1:
antiturn = 2
elif turn == 2:
antiturn = 1
if win_eval(board) == antiturn:
score = -1
elif win_eval(board) == turn:
score = 1
else:
score = 0
return score
def minimax_alpha_beta(board, depth, turn, alpha, beta, maximizing_player=True):
if depth == 0 or win_eval(board) != 0:
return score_eval(board, turn)
if maximizing_player:
max_score = -inf
for move in np.argwhere(board == 0):
board[move[0], move[1]] = turn
score = minimax_alpha_beta(board, depth-1, turn, alpha, beta, False)
board[move[0], move[1]] = 0
max_score = max(max_score, score)
alpha = max(alpha, score)
if beta <= alpha:
break
return max_score
else:
min_score = inf
for move in np.argwhere(board == 0):
board[move[0], move[1]] = 3 - turn
score = minimax_alpha_beta(board, depth-1, turn, alpha, beta, True)
board[move[0], move[1]] = 0
min_score = min(min_score, score)
beta = min(beta, score)
if beta <= alpha:
break
return min_score
def best_move(board, turn):
best_score = -inf
for row in range(3):
for col in range(3):
if board[row, col] == 0:
board[row, col] = turn
score = minimax_alpha_beta(
board, list(np.ravel(board)).count(0), turn, -float("inf"), float("inf"), False
)
board[row, col] = 0
best_score = max(best_score, score)
if best_score == score:
move = (row, col)
return move
def best_move_with_time(board, turn):
start = time.time()
best_score = -inf
for row in range(3):
for col in range(3):
if board[row, col] == 0:
board[row, col] = turn
score = minimax_alpha_beta(
board, list(np.ravel(board)).count(0), turn, -float("inf"), float("inf"), False
)
board[row, col] = 0
best_score = max(best_score, score)
if best_score == score:
move = (row, col)
end = time.time()
return move, (end-start)
class Minimax:
def get_move(self, board, turn):
return best_move(board, turn)
def move_with_time(self, board, turn):
return best_move_with_time(board, turn)
class Q_learning_algorithm:
def __init__(self,Q={},epsilon=0.3, alpha=0.2, gamma=0.9):
self.q_table = Q
self.epsilon = epsilon
self.alpha = alpha
self.gamma = gamma
def conceal(self,state):
s = ''
for row in range(3):
for col in range(3):
s += str(state[row,col])
return s
def interpret(self,s):
return np.array([[int(s[0]),int(s[1]),int(s[2])],[int(s[3]),int(s[4]),int(s[5])],[int(s[6]),int(s[7]),int(s[8])]])
def shape_it(self,action):
if type(action) == int:
return action
else:
return 3*action[0] + action[1]
def probable_actions(self,board):
''' retourne tous les indices de valeur 0 '''
return [i for i in range(9) if self.conceal(np.array(board))[i]=='0']
def q_storage(self,state,action):
action = self.shape_it(action)
if (self.conceal(state),action) not in self.q_table:
self.q_table[(self.conceal(state),action)] = 1
return self.q_table[(self.conceal(state),action)]
def get_move(self,board,turn):
self.board = board
actions = self.probable_actions(board)
if random.random() < self.epsilon:
self.last_move = random.choice(actions)
self.last_move = (self.last_move//3,self.last_move%3)
return self.last_move
q_values = [self.q_storage(self.board, a) for a in actions]
if turn == 2:
max_q = max(q_values)
else:
max_q = min(q_values)
if q_values.count(max_q) > 1:
best_actions = [i for i in range(len(actions)) if q_values[i] == max_q]
i = np.random.permutation(best_actions)[0]
else:
i = q_values.index(max_q)
self.last_move = actions[i]
self.last_move = (self.last_move//3,self.last_move%3)
return self.last_move
def move_with_time(self,grid,turn):
start = time.time()
self.board = grid
actions = self.probable_actions(grid)
if random.random() < self.epsilon:
self.last_move = random.choice(actions)
self.last_move = (self.last_move//3,self.last_move%3)
return self.last_move
q_values = [self.q_storage(self.board, a) for a in actions]
if turn == 2:
max_q = max(q_values)
else:
max_q = min(q_values)
if q_values.count(max_q) > 1:
best_actions = [i for i in range(len(actions)) if q_values[i] == max_q]
i = np.random.permutation(best_actions)[0]
else:
i = q_values.index(max_q)
self.last_move = actions[i]
self.last_move = (self.last_move//3,self.last_move%3)
end = time.time()
return self.last_move, (end-start)
def learn(self, S, A, S1, A1, reward):
A = self.shape_it(A)
A1 = self.shape_it(A1)
prev = self.q_storage(S, A)
maxnewq = self.q_storage(S1, A1)
S = self.conceal(S)
S1 = self.conceal(S1)
self.q_table[(S, A)] = prev + self.alpha * (
reward + self.gamma * maxnewq - prev
)