-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathtest.py
51 lines (40 loc) · 1.38 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import roboschool, gym
from TD3 import TD3
from PIL import Image
def test():
env_name = "RoboschoolWalker2d-v1"
random_seed = 0
n_episodes = 3
lr = 0.002
max_timesteps = 2000
render = True
save_gif = False
filename = "TD3_{}_{}".format(env_name, random_seed)
filename += '_solved'
directory = "./preTrained/{}".format(env_name)
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
policy = TD3(lr, state_dim, action_dim, max_action)
policy.load_actor(directory, filename)
for ep in range(1, n_episodes+1):
ep_reward = 0
state = env.reset()
for t in range(max_timesteps):
action = policy.select_action(state)
state, reward, done, _ = env.step(action)
ep_reward += reward
if render:
env.render()
if save_gif:
img = env.render(mode = 'rgb_array')
img = Image.fromarray(img)
img.save('./gif/{}.jpg'.format(t))
if done:
break
print('Episode: {}\tReward: {}'.format(ep, int(ep_reward)))
ep_reward = 0
env.close()
if __name__ == '__main__':
test()