-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_stdp_multiple_baseline.py
416 lines (309 loc) · 14.2 KB
/
mnist_stdp_multiple_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
import nengo
import numpy as np
from numpy import random
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import os
from nengo.dists import Choice
from datetime import datetime
import pickle
from nengo.utils.matplotlib import rasterplot
import time
from InputData import PresentInputWithPause
from nengo.neurons import LIFRate
from nengo.params import Parameter, NumberParam, FrozenObject
from nengo.dists import Choice, Distribution, get_samples, Uniform
from nengo.utils.numpy import clip, is_array_like
from utilis import *
from args_mnist import args as my_args
import itertools
import random
import logging
import random
from stdp import STDP
def evaluate_mnist_multiple_baseline(args):
#############################
# load the data
#############################
input_nbr = args.input_nbr
input_nbr = args.input_nbr
probe_sample_rate = (input_nbr/10)/1000 #Probe sample rate. Proportional to input_nbr to scale down sampling rate of simulations
x = args.digit
np.random.seed(args.seed)
random.seed(args.seed)
data = np.load('mnist_norm.npz', allow_pickle=True)
image_train_filtered = data['image_train_filtered']/255
label_train_filtered = data['label_train_filtered']
image_test_filtered = data['image_test_filtered']/255
label_test_filtered = data['label_test_filtered']
image_assign_filtered = image_train_filtered
label_assign_filtered = label_train_filtered
image_train_filtered = np.tile(image_train_filtered,(args.iterations,1,1))
label_train_filtered = np.tile(label_train_filtered,(args.iterations))
#Simulation Parameters
#Presentation time
presentation_time = 0.20
#Pause time
# pause_time = args.pause_time + 0.0001
pause_time = 0.15
#Iterations
iterations=args.iterations
#Input layer parameters
n_in = args.n_in
# g_max = 1/784 #Maximum output contribution
amp_neuron = args.amp_neuron
n_neurons = args.n_neurons # Layer 1 neurons
# inhib_factor = args.inhib_factor #Multiplication factor for lateral inhibition
input_neurons_args = {
"n_neurons":n_in,
"dimensions":1,
"label":"Input layer",
"encoders":nengo.dists.Choice([[1]]),
# "max_rates":nengo.dists.Uniform(22,22),
"intercepts":nengo.dists.Uniform(0,0),
# "gain":nengo.dists.Choice([args.gain_in]),
# "bias":nengo.dists.Choice([args.bias_in]),
# "noise":nengo.processes.WhiteNoise(dist=nengo.dists.Gaussian(args.noise_input, (args.noise_input/2)+0.00001), seed=1),
"neuron_type":nengo.LIF(amplitude=args.amp_neuron),
"seed":0
# "neuron_type":nengo.neurons.SpikingRectifiedLinear()#SpikingRelu neuron.
}
#Layer 1 parameters
layer_1_neurons_args = {
"n_neurons":n_neurons,
"dimensions":1,
"label":"Layer 1",
"encoders":nengo.dists.Choice([[1]]),
"gain":nengo.dists.Choice([2]),
"bias":nengo.dists.Choice([0]),
# "intercepts":nengo.dists.Choice([0]),
# "max_rates":nengo.dists.Choice([args.rate_out,args.rate_out]),
# "noise":nengo.processes.WhiteNoise(dist=nengo.dists.Gaussian(0, 0.5), seed=1),
# "neuron_type":nengo.neurons.LIF(tau_rc=args.tau_out, min_voltage=0)
# "neuron_type":MyLIF_out(tau_rc=args.tau_out, min_voltage=-1)
"neuron_type":STDPLIF(tau_rc=0.02, inhibition_time=args.inhibition_time,inc_n=args.inc_n,tau_n=args.tau_n)
}
#Learning rule parameters
learning_args = {
"alf_p":args.alpha_p,
"alf_n":args.alpha_n,
"beta_p":args.beta_p,
"beta_n":args.beta_n,
"pre_tau":args.tau_pre,
"post_tau":args.tau_post
}
# learning_args = {
# "lr": args.lr,
# "tau_stdp":args.tau_stdp,
# }
# argument_string = "presentation_time: "+ str(presentation_time)+ "\n pause_time: "+ str(pause_time)+ "\n input_neurons_args: " + str(input_neurons_args)+ " \n layer_1_neuron_args: " + str(layer_1_neurons_args)+"\n Lateral Inhibition parameters: " + str(lateral_inhib_args) + "\n learning parameters: " + str(learning_args)+ "\n g_max: "+ str(g_max)
images = image_train_filtered
labels = label_train_filtered
np.random.seed(args.seed)
random.seed(args.seed)
# weights randomly initiated
layer1_weights = np.random.uniform(0,1, (n_neurons, n_in))
model = nengo.Network("My network", seed = args.seed)
#############################
# Model construction
#############################
with model:
picture = nengo.Node(PresentInputWithPause(images, presentation_time, pause_time,0))
# picture = nengo.Node(nengo.processes.PresentInput(images, presentation_time=presentation_time))
# true_label = nengo.Node(nengo.processes.PresentInput(labels, presentation_time=presentation_time))
true_label = nengo.Node(PresentInputWithPause(labels, presentation_time, pause_time,-1))
# input layer
input_layer = nengo.Ensemble(**input_neurons_args)
input_conn = nengo.Connection(picture,input_layer.neurons,synapse=None)
#first layer
layer1 = nengo.Ensemble(**layer_1_neurons_args)
#Weights between input layer and layer 1
# w = nengo.Node(CustomRule_post_baseline(**learning_args), size_in=n_in, size_out=n_neurons)
# nengo.Connection(input_layer.neurons, w, synapse=None)
# nengo.Connection(w, layer1.neurons, synapse=args.synapse_layer_1)
# weights = w.output.history
conn1 = nengo.Connection(
input_layer.neurons,
layer1.neurons,
transform=layer1_weights,
learning_rule_type=STDP(pre_tau=learning_args["pre_tau"],post_tau=learning_args["post_tau"],alf_p=learning_args["alf_p"],alf_n=learning_args["alf_n"],beta_p=learning_args["beta_p"],beta_n=learning_args["beta_n"])
)
layer1_synapses_probe = nengo.Probe(conn1,"weights",label="layer1_synapses", sample_every=5)
# with nengo_ocl.Simulator(model) as sim :
with nengo.Simulator(model, dt=args.dt, optimize=True) as sim:
sim.run((presentation_time+pause_time) * input_nbr)
last_weight = sim.data[layer1_synapses_probe][-1]
sim.close()
pause_time = 0
#Neuron class assingment
images = image_assign_filtered
labels = label_assign_filtered
model = nengo.Network("My network", seed = args.seed)
with model:
# picture = nengo.Node(PresentInputWithPause(images, presentation_time, pause_time,0))
picture = nengo.Node(nengo.processes.PresentInput(images, presentation_time=presentation_time))
true_label = nengo.Node(nengo.processes.PresentInput(labels, presentation_time=presentation_time))
# true_label = nengo.Node(PresentInputWithPause(labels, presentation_time, pause_time,-1))
# input layer
input_layer = nengo.Ensemble(**input_neurons_args)
input_conn = nengo.Connection(picture,input_layer.neurons,synapse=None)
#first layer
layer1 = nengo.Ensemble(**layer_1_neurons_args)
nengo.Connection(input_layer.neurons, layer1.neurons,transform=last_weight,synapse=args.synapse_layer_1)
#Probes
p_true_label = nengo.Probe(true_label)
p_layer_1 = nengo.Probe(layer1.neurons)
# with nengo_ocl.Simulator(model) as sim :
with nengo.Simulator(model, dt=args.dt, optimize=True) as sim:
sim.run((presentation_time+pause_time) * input_nbr)
t_data = sim.trange()
labels = sim.data[p_true_label][:,0]
output_spikes = sim.data[p_layer_1]
neuron_class = np.zeros((n_neurons, 1))
n_classes = 10
for j in range(n_neurons):
spike_times_neuron_j = t_data[np.where(output_spikes[:,j] > 0)]
max_spike_times = 0
for i in range(n_classes):
class_presentation_times_i = t_data[np.where(labels == i)]
#Normalized number of spikes wrt class presentation time
num_spikes = len(np.intersect1d(spike_times_neuron_j,class_presentation_times_i))/(len(class_presentation_times_i)+1)
if(num_spikes>max_spike_times):
neuron_class[j] = i
max_spike_times = num_spikes
spikes_layer1_probe_train = sim.data[p_layer_1]
#Testing
images = image_test_filtered
labels = label_test_filtered
input_nbr = int(input_nbr/6)
model = nengo.Network(label="My network",)
with model:
# picture = nengo.Node(PresentInputWithPause(images, presentation_time, pause_time,0))
picture = nengo.Node(nengo.processes.PresentInput(images, presentation_time=presentation_time))
true_label = nengo.Node(nengo.processes.PresentInput(labels, presentation_time=presentation_time))
# true_label = nengo.Node(PresentInputWithPause(labels, presentation_time, pause_time,-1))
input_layer = nengo.Ensemble(**input_neurons_args)
input_conn = nengo.Connection(picture,input_layer.neurons,synapse=None)
#first layer
layer1 = nengo.Ensemble(**layer_1_neurons_args)
nengo.Connection(input_layer.neurons, layer1.neurons,transform=last_weight,synapse=args.synapse_layer_1)
p_true_label = nengo.Probe(true_label)
p_layer_1 = nengo.Probe(layer1.neurons)
step_time = (presentation_time + pause_time)
with nengo.Simulator(model,dt=args.dt) as sim:
sim.run(presentation_time * input_nbr)
accuracy_2 = evaluation_v2(10,n_neurons,int(((presentation_time * label_test_filtered.shape[0]) / sim.dt) / input_nbr),spikes_layer1_probe_train,label_train_filtered,sim.data[p_layer_1],label_test_filtered,sim.dt)
labels = sim.data[p_true_label][:,0]
t_data = sim.trange()
output_spikes = sim.data[p_layer_1]
n_classes = 10
predicted_labels = []
true_labels = []
correct_classified = 0
wrong_classified = 0
class_spikes = np.ones((10,1))
for num in range(input_nbr):
#np.sum(sim.data[my_spike_probe] > 0, axis=0)
output_spikes_num = output_spikes[num*int((presentation_time + pause_time) /args.dt):(num+1)*int((presentation_time + pause_time) /args.dt),:] # 0.350/0.005
num_spikes = np.sum(output_spikes_num > 0, axis=0)
for i in range(n_classes):
sum_temp = 0
count_temp = 0
for j in range(n_neurons):
if((neuron_class[j]) == i) :
sum_temp += num_spikes[j]
count_temp +=1
if(count_temp==0):
class_spikes[i] = 0
else:
class_spikes[i] = sum_temp
# class_spikes[i] = sum_temp/count_temp
# print(class_spikes)
k = np.argmax(num_spikes)
# predicted_labels.append(neuron_class[k])
class_pred = np.argmax(class_spikes)
predicted_labels.append(class_pred)
true_class = labels[(num*int((presentation_time + pause_time) /args.dt))]
if(class_pred == true_class):
correct_classified+=1
else:
wrong_classified+=1
accuracy = correct_classified/ (correct_classified+wrong_classified)*100
print("Accuracy: ", accuracy)
sim.close()
del sim.data, labels, class_pred, spikes_layer1_probe_train
return accuracy, accuracy_2, last_weight
# for tstep in np.arange(0, len(weights), 1):
# tstep = int(tstep)
# print(tstep)
# fig, axes = plt.subplots(1,1, figsize=(3,3))
# for i in range(0,(n_neurons)):
# fig = plt.figure()
# ax1 = fig.add_subplot()
# cax = ax1.matshow(np.reshape(weights[tstep][i],(28,28)),interpolation='nearest', vmax=1, vmin=0)
# fig.colorbar(cax)
# plt.tight_layout()
# fig.savefig(folder+'/weights'+str(tstep)+'.png')
# plt.close('all')
# gen_video(folder, "weights")
# for tstep in np.arange(0, len(weights), 1):
# tstep = int(tstep)
# print(tstep)
# fig, axes = plt.subplots(1,1, figsize=(3,3))
# for i in range(0,(n_neurons)):
# fig = plt.figure()
# ax1 = fig.add_subplot()
# cax = ax1.hist(weights[tstep][i])
# ax1.set_xlim(0,1)
# ax1.set_ylim(0,350)
# plt.tight_layout()
# fig.savefig(folder+'/histogram'+str(tstep)+'.png')
# plt.close('all')
# gen_video(folder, "histogram")
if __name__ == '__main__':
logger = logging.getLogger(__name__)
args = my_args()
print(args.__dict__)
logging.basicConfig(level=logging.DEBUG)
# Fix the seed of all random number generator
seed = 500
random.seed(seed)
np.random.seed(seed)
# params = nni.get_next_parameter()
# args.g_max = params['g_max']
# args.tau_in = params['tau_in']
# args.tau_out = params['tau_out']
# args.lr = params['lr']
# args.presentation_time = params['presentation_time']
# args.rate_out = params['rate_out']
accuracy, weights = evaluate_mnist_multiple(args)
print('accuracy:', accuracy)
# now = time.strftime("%Y%m%d-%H%M%S")
# folder = os.getcwd()+"/MNIST_VDSP"+now
# os.mkdir(folder)
# plt.figure(figsize=(12,10))
# plt.subplot(2, 1, 1)
# plt.title('Input neurons')
# rasterplot(time_points, p_input_layer)
# plt.xlabel("Time [s]")
# plt.ylabel("Neuron index")
# plt.subplot(2, 1, 2)
# plt.title('Output neurons')
# rasterplot(time_points, p_layer_1)
# plt.xlabel("Time [s]")
# plt.ylabel("Neuron index")
# plt.tight_layout()
# plt.savefig(folder+'/raster'+'.png')
# for tstep in np.arange(0, len(weights), 1):
# tstep = int(tstep)
# # tstep = len(weightds) - tstep -1
# print(tstep)
# columns = int(args.n_neurons/5)
# fig, axes = plt.subplots(int(args.n_neurons/columns), int(columns), figsize=(20,25))
# for i in range(0,(args.n_neurons)):
# axes[int(i/columns)][int(i%columns)].matshow(np.reshape(weights[tstep][i],(28,28)),interpolation='nearest', vmax=1, vmin=0)
# plt.tight_layout()
# fig.savefig(folder+'/weights'+str(tstep)+'.png')
# plt.close('all')
# gen_video(folder, "weights")
logger.info('All done.')