-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsearch.py~
365 lines (259 loc) · 11.1 KB
/
search.py~
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# search.py
# ---------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# ([email protected]) and Dan Klein ([email protected]).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel ([email protected]).
"""
In search.py, you will implement generic search algorithms which are called by
Pacman agents (in searchAgents.py).
"""
import util
import game
from pprint import pprint
class SearchProblem:
"""
This class outlines the structure of a search problem, but doesn't implement
any of the methods (in object-oriented terminology: an abstract class).
You do not need to change anything in this class, ever.
"""
def getStartState(self):
"""
Returns the start state for the search problem.
"""
util.raiseNotDefined()
def isGoalState(self, state):
"""
state: Search state
Returns True if and only if the state is a valid goal state.
"""
util.raiseNotDefined()
def getSuccessors(self, state):
"""
state: Search state
For a given state, this should return a list of triples, (successor,
action, stepCost), where 'successor' is a successor to the current
state, 'action' is the action required to get there, and 'stepCost' is
the incremental cost of expanding to that successor.
"""
util.raiseNotDefined()
def getCostOfActions(self, actions):
"""
actions: A list of actions to take
This method returns the total cost of a particular sequence of actions.
The sequence must be composed of legal moves.
"""
util.raiseNotDefined()
def tinyMazeSearch(problem):
"""
Returns a sequence of moves that solves tinyMaze. For any other maze, the
sequence of moves will be incorrect, so only use this for tinyMaze.
"""
from game import Directions
s = Directions.SOUTH
w = Directions.WEST
return [s, s, w, s, w, w, s, w]
def depthFirstSearch(problem):
"""
Search the deepest nodes in the search tree first.
Code written by:
Nike Lambooy
Nicky Lenaers
DFS takes O(b^m) time with
b = maximum branching factor
m = maximum depth of the state space (in this case finite)
DFS takes O(b*m) space because 'black' nodes are removed, resulting in linear space.
"""
# Initialize Stack() instances for LIFO datastructure (Source: College 2, Slide 38)
fringe = util.Stack()
visited = util.Stack()
parents = util.Stack()
actions = util.Queue()
# Initialize the fringe
fringe.push([problem.getStartState()])
while not problem.isGoalState(fringe.list[-1][0]):
successors = problem.getSuccessors(fringe.list[-1][0])
# Current node is visited, because it will soon be expanded...
visited.push(fringe.list[-1][0])
parent = fringe.list[-1][0]
# Use pop BEFORE adding items to the fringe, because it removes the last item
fringe.pop()
# Loop over successors using xrange loading lazingly
for index in reversed(xrange(len(successors))):
if successors[index][0] not in visited.list:
# Push successors to the fringe if not visited
fringe.push([successors[index][0], parent, successors[index][1]])
parents.push(fringe.list[-1])
# Assign goal item as first state (actions is build backwards)
state = fringe.list[-1][0]
# Build actions
while state != problem.getStartState():
for index in xrange(len(parents.list)):
if state == parents.list[index][0]:
actions.push(parents.list[index][2])
state = parents.list[index][1]
# Return the actions Pacman will take
return actions.list
def breadthFirstSearch(problem):
"""
Search the shallowest nodes in the search tree first.
Code written by:
Nike Lambooy
Nicky Lenaers
BFS takes O(b^d+1) time with
b = maximum branching factor
d = depth of the least-cost solution
1 = the frist node (root node)
BFS takes O(b^d+1) space, keeping every node in memory.
"""
# Initialize Queue() instances for FIFO datastructure (Source: College 2, Slide 32)
fringe = util.Queue()
visited = util.Queue()
parents = util.Queue()
actions = util.Queue()
# Initialize the fringe
fringe.push(problem.getStartState())
while not problem.isGoalState(fringe.list[-1]):
successors = problem.getSuccessors(fringe.list[-1])
# Current node is visited, because it will soon be expanded...
visited.push(fringe.list[-1])
# Add item to be expanded as the current parent
parent = fringe.list[-1]
# Loop over successors using xrange loading lazingly
for index in reversed(xrange(len(successors))):
if successors[index][0] not in visited.list:
fringe.push(successors[index][0])
visited.push(successors[index][0])
parents.push([successors[index][0], parent, successors[index][1]])
fringe.pop()
# Assign goal item as first state (actions is build backwards)
state = fringe.list[-1]
# Build actions
while state != problem.getStartState():
for index in xrange(len(parents.list)):
if state == parents.list[index][0]:
actions.push(parents.list[index][2])
state = parents.list[index][1]
return actions.list
def uniformCostSearch(problem):
"""
Search the node of least total cost first.
Code written by:
Nike Lambooy
Nicky Lenaers
UCS takes O(b^(C*/e)) time with
b = maximum branching factor
C* = cost of optimal solution
e = some positive bound
UCS takes O(b^(C*/e)) space.
"""
# Initialize PriorityQueue() instance for fringe (Source: College 2, Slide 37)
fringe = util.PriorityQueue() # Step cost / Total Cost / State Coordinates
visited = util.Stack()
parents = util.Queue()
actions = util.Queue()
seen = {}
# Push first state with priority zero
fringe.push(problem.getStartState(), 0)
smallest = fringe.pop()
while not problem.isGoalState(smallest):
# First item is lowerst-cost item in the heap
successors = problem.getSuccessors(smallest)
visited.push(smallest)
cost = 0
# Look for the right parent's cost
for j in range(0, len(parents.list)):
if smallest == parents.list[j][0]:
cost = parents.list[j][3]
# Loop over successors using xrange loading lazingly
for index in reversed(xrange(len(successors))):
if successors[index][0] in seen:
prevCost = seen.get(successors[index][0])
else:
prevCost = float("inf")
if successors[index][0] not in visited.list and successors[index][2] < prevCost:
# Addition of cost-so-far and cost of successor being pushed to the fringe heap
fringe.push(successors[index][0], cost + successors[index][2])
#visited.push(successors[index][0])
seen.update({successors[index][0]: successors[index][2]})
parents.push([successors[index][0], smallest, successors[index][1], cost + successors[index][2]])
smallest = fringe.pop()
#print "SEEN: ", seen
state = smallest
# Build actions
while state != problem.getStartState():
for index in xrange(len(parents.list)):
if state == parents.list[index][0]:
actions.push(parents.list[index][2])
state = parents.list[index][1]
return actions.list
def nullHeuristic(state, problem=None):
"""
A heuristic function estimates the cost from the current state to the nearest
goal in the provided SearchProblem. This heuristic is trivial.
"""
return 0
def aStarSearch(problem, heuristic=nullHeuristic):
"""
Search the node of least total cost first.
Code written by:
Nike Lambooy
Nicky Lenaers
"""
# Initialize PriorityQueue() instance for fringe (Source: College 2, Slide 37)
fringe = util.PriorityQueue() # Step cost / Total Cost / State Coordinates
visited = util.Stack()
parents = util.Queue()
actions = util.Queue()
seen = {}
print "1"
"""
# Push first state with priority zero
fringe.push(problem.getStartState(), heuristic(problem.getStartState(),problem))
smallest = fringe.pop()
print "2"
while not problem.isGoalState(smallest):
# First item is lowerst-cost item in the heap
successors = problem.getSuccessors(smallest)
visited.push(smallest)
cost = 0
# Look for the right parent's cost
for j in range(0, len(parents.list)):
if smallest == parents.list[j][0]:
cost = parents.list[j][3]
# Loop over successors using xrange loading lazingly
for index in reversed(xrange(len(successors))):
if successors[index][0] in seen:
prevCost = seen.get(successors[index][0])
else:
prevCost = float("inf")
if successors[index][0] not in visited.list and successors[index][2] < prevCost:
# Addition of cost-so-far and cost of successor being pushed to the fringe heap
fringe.push(successors[index][0], heuristic(successors[index][0],problem))
#visited.push(successors[index][0])
seen.update({successors[index][0]: successors[index][2]})
parents.push([successors[index][0], smallest, successors[index][1], cost + successors[index][2]])
smallest = fringe.pop()
#print "SEEN: ", seen
state = smallest
# Build actions
while state != problem.getStartState():
for index in xrange(len(parents.list)):
if state == parents.list[index][0]:
actions.push(parents.list[index][2])
state = parents.list[index][1]
#return actions.list
"""
return ['West']
"""
# Abbreviations
bfs = breadthFirstSearch
dfs = depthFirstSearch
astar = aStarSearch
ucs = uniformCostSearch