-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_autoencoder.py
43 lines (35 loc) · 1.13 KB
/
evaluate_autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
# evaluate_autoencoder.py
import torch
import matplotlib.pyplot as plt
from dataset import MatrixDataset
from autoencoder import ConvAutoencoder
# Load dataset
inputs_file = 'all_inputs.npy'
outputs_file = 'all_outputs.npy'
dataset = MatrixDataset(inputs_file, outputs_file)
dataloader = DataLoader(dataset, batch_size=1, shuffle=False)
# Load the trained model
model = ConvAutoencoder()
model.load_state_dict(torch.load('autoencoder.pth'))
model.eval()
# Get a sample input
with torch.no_grad():
for batch_inputs, _ in dataloader:
# Forward pass
outputs = model(batch_inputs)
break # Only need one sample
# Visualize the original and reconstructed images
original = batch_inputs[0].squeeze().numpy()
reconstructed = outputs[0].squeeze().numpy()
plt.figure(figsize=(8, 4))
plt.subplot(1, 2, 1)
plt.imshow(original, cmap='viridis')
plt.title('Original Input')
plt.colorbar()
plt.subplot(1, 2, 2)
plt.imshow(reconstructed, cmap='viridis')
plt.title('Reconstructed Output')
plt.colorbar()
plt.tight_layout()
plt.savefig('autoencoder_reconstruction.png')
print("Reconstruction saved as 'autoencoder_reconstruction.png'")